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Abstract 

Human African trypanosomiasis (HAT) is a parasitic disease caused by the 

protozoan parasites T. b. rhodesiense and T. b. gambiense. The disease is 

currently endemic in 36 sub-Saharan countries with an estimated 60 million 

people at risk from the infection. The disease progresses through two stages; an 

early or haemolymphatic stage where the parasites are confined to the 

peripheral compartment and a late or encephalitic stage where the parasites 

penetrate the blood-brain barrier (BBB) and invade the CNS. Without treatment 

the disease is invariably fatal but at present chemotherapy is reliant on a small 

handful of drugs. Pentamidine and suramin are available for the treatment of 

the early stage of the disease while the CNS stage of the disease is treated with 

a combination of nifurtimox and eflornithine known as NECT therapy or 

melarsoprol. NECT therapy is only effective in the treatment of T. b. gambiense 

infections meaning treatment of T. b. rhodesiense infections is completely 

dependent on the trivalent arsenical melarsoprol. Melarsoprol is an extremely 

toxic compound, the administration of which is extremely painful and associated 

with numerous adverse reactions. The most serious of which is a post treatment 

reactive encephalopathy (PTRE). The PTRE occurs in up to 10% of all patients 

given melarsoprol. Half of all patients who develop the PTRE will die as a result 

of the compliciation. This gives melarsoprol chemotherapy an overall fatality 

rate of 5% which is unacceptably high. There is therefore an urgent need for 

new, safe and easily administrable trypanocides.  

To improve the physiochemical and pharmacokinetic properties of melarsoprol 

the drug was complexed with two cyclodextrin molecules, hydroxypropyl-β-

cyclodextrin (HPβCD) and randomly methylated-β-cyclodextrin (RAMβCD) to 

produce; mel/HPβCD and mel/RAMβCD. Cyclodextrins are cyclic 

oligosaccharides, widely used within the pharmaceutical industry to improve the 

solubility and oral bioavailability of poorly soluble lipophilic drugs. In this study, 

the trypanocidal activity of the melarsoprol cyclodextrin complexes was 

investigated in-vitro and in an in-vivo CNS stage model of T. b. brucei infection. 

In-vitro studies showed that the trypanocidal activity of melarsoprol is retained 

following its complexation with HPβCD and RAMβCD. The in-vitro trypanocidal 

activity of the melarsoprol cyclodextrin complexes against bloodstream T. b. 
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brucei trypanosomes was comparable to that of contemporary melarsoprol. 

Furthermore, in an in-vivo murine model of CNS stage T. b. brucei the 

melarsoprol cyclodextrin complexes, mel/HPβCD and mel/RAMβCD produced 

100% cure rates when administered orally at a dose of 0.05 mmol/kg, daily, for 

seven consecutive days. Contemporary melarsoprol when administered by the 

same route and schedule only cured 33.3% of the animals. The cyclodextrins 

HPβCD and RAMβCD thus increase the oral bioavailability of melarsoprol whilst 

retaining the compounds trypanocidal activity. An oral administrable, water 

soluble formulation of melarsoprol instantly eliminates the problems associated 

with the intravenous administration of conventional melarsoprol. Furthermore, 

an orally available formulation would be of great benefit in the resource poor, 

isolated settings in which HAT occurs as patients would not require 

hospitalisation during treatment thus alleviating the pressure on local hospitals.  

In the current investigation quantitative taqman PCR was utilised to investigate 

the rate of parasite clearance from the CNS during complexed melarsoprol 

treatment. Both mel/HPβCD and mel/RAMβCD were rapidly trypanocidal. 

Twenty-four hours after administration of one dose the number of trypanosomes 

within the brain was reduced by greater than 80% and all trypanosomes were 

eliminated from the brain by twenty-four hours after administration of four 

doses of mel/HPβCD and five doses of mel/RAMβCD. The elimination of all 

trypanosomes from the CNS following four doses of mel/HPβCD and five doses of 

mel/RAMβCD, indicates that it may be possible to reduce the dosage schedule 

from seven daily doses to four daily doses of mel/HPβCD and five doses of 

mel/RAMβCD. A short, simple, easily administrable treatment protocol is an 

essential requirement of any new trypanocide as if the treatment schedule is 

prolonged and complicated patients are unlikely to comply.  

CNS stage trypanosome infection is associated with a breakdown of the blood-

brain barrier (BBB). Ideally following successful chemotherapy BBB function 

should be restored. In this investigation the effect of a curative mel/HPβCD 

treatment regime on the BBB was investigated in a murine model of CNS T. b. 

brucei infection using small bore MRI analysis. Mel/HPβCD treatment results in a 

rapid restoration of BBB function as by twenty-four hours after the completion of 

mel/HPβCD therapy the integrity of the BBB was fully restored. However, a very 
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mild neuroinflammatory reaction persisted in the brain for up to fifteen days 

after completion of chemotherapy. This suggests that the BBB damage observed 

in trypanosome infection may be due to either the parasites directly or their 

secretory products and not as a result of the ongoing neuroinflammatory 

reaction.  

Despite melarsoprol being in use for over 60 years its pharmacokinetics are 

poorly understood and a sensitive assay by which to quantify the concentration 

of arsenic reaching tissues following administration of the compound is not 

available. In this study a gas chromatography mass spectrometry (GC-MS) 

technique was developed to quantify the concentration of arsenic reaching the 

plasma and brain following oral and intravenous administration of the 

melarsoprol cyclodextrin complexes, mel/HPβCD and mel/RAMβCD. The GC-MS 

assay had a limit of detection of 5ng/ml and a precision (expressed as the inter-

day coefficient of variation) of 13.2%. The concentration of arsenic within the 

brain following the oral and intravenous administration of mel/HPβCD was below 

the limit of quantification of the assay. The pharmacokinetics of mel/HPβCD and 

mel/RAMβCD could therefore not be determined in the present study.  

This study demonstrates that the melarsoprol cyclodextrin complexes 

mel/HPβCD and mel/RAMβCD are highly trypanocidal with no overt signs of 

toxicity and more importantly are orally available. Following the oral 

administration of mel/HPβCD or mel/RAMβCD the melarsoprol is slowly released 

over a prolonged period of time from the cyclodextrin cavity. Patients are 

therefore not exposed to a ‘bolus’ of the drug as is the case in the intravenous 

administration of contemporary melarsoprol. The slow and sustained release of 

melarsoprol from the cyclodextrins should result in less adverse reactions and a 

decreased incidence of the PTRE. Furthermore, the complexed melarsoprol 

treatment protocol is shorter than the currently used 10 day concise melarsoprol 

treatment schedule therefore the total amount of melarsoprol administered to 

patients will be reduced. Patients should therefore experience fewer adverse 

reactions. In conclusion the results from this study demonstrate that the 

melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD are promising 

oral candidates for the treatment of HAT.  
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 “Our greatest glory is not in never falling, but in rising every time we fall” 

Confucius 



 

VI 

Dedicated to mum, my shining light and inspiration x



 

VII 

Acknowledgements 

First and foremost I would to thank my supervisors Dr Jean Rodgers and Prof. 

Peter Kennedy for their unwavering support and encouragement over the last 

three and a half years. I am eternally grateful to Jean for her constant guidance, 

reassurance and patience, especially over the last few months while writing up, 

without which I would never have reached the end. I would also like to 

acknowledge Barbara Bradley for all her help and support both in the lab and 

outside. Without her help and patience, long days in the unit would have turned 

into even longer nights. Thank you.   

A proportion of this work would not have been completed without the 

contributions of several collaborators. I am extremely grateful to Dr Stèphane 

Gibaud, of Nancy Universitè for developing the melarsoprol cyclodextrin 

complexes and for making me feel extremely welcome in his laboratory. At the 

University of Strathclyde, Department of Pharmacy I would like to thank Prof. 

Alex Mullen for all his helpful, enthusiastic and animated discussions and also Dr 

Fitsum Araya for showing me the ‘ropes’ in the laboratory. I would also like to 

acknowledge Prof. George Gettinby for assisting with the statistical analysis 

conducted in this thesis. With the help of tea and biscuits he made the world of 

statistics seem a less daunting place. 

I would also like to thank all the past and present members of the 

trypanosomiasis group and the department of veterinary parasitology for making 

the laboratory and department a pleasure to work in, and for providing an 

endless supply of cakes! 

I would like to thank all my friends and family for being a constant source of 

support and encouragement both through the good times and the bad. I would 

especially like to thank Lesley for always being no more than a phone call away. 

Her kind words and reassurances saw me through the low points. Finally, I would 

like to thank my Dad for his endless and unconditional love, support, 

encouragement and constant belief in me over the last few years, without which 

I would not be where I am today.  



 

VIII 

Declaration 

I declare that this thesis and the results presented within it are entirely my own 

work.  

No part of this thesis has been previously submitted for a degree at any other 

institution. 

 

Amy Jones 



 

IX 

Supporting oral presentations 

Jones, A., Rodgers, J., Bradley, B., Barrett, M. P. and Kennedy (2010). Complex 
melarsoprol; a possible oral therapy for the treatment of human African 
trypanosomiasis. Nanotryp consortium meeting. 23rd September 2010 Paris, 
France 

Jones, A., Rodgers, J., Bradley, B., Barrett, M. P. and Kennedy (2010). Complex 
melarsoprol; a possible oral therapy for the treatment of human African 
trypanosomiasis. X11th International Congress of Parasitology. 15th – 20th 
August 2010 Melbourne.  

Jones, A., Rodgers, J., Bradley, B., Barrett, M.P. and Kennedy, P.G.E (2010) 
Complex melarsoprol: a promising candidate in the treatment of human 
African trypanosomiasis. Faculty of Biomedical and Life Sciences Seminar 
Series.  

Jones, A., Rodgers, J., Bradley, B., Kennedy, P.G.E (2009). Melarsoprol 
cyclodextrin inclusion complexes. Faculty of Veterinary Medicine, Division 
of Infection and Immunity Seminar Series.  

Jones, A., Rodgers, J., Bradley, B., Kennedy, P.G.E (2009). Novel approaches to 
chemotherapy in a murine model of human African trypanosomiasis. Faculty 
of Veterinary Medicine Annual Postgraduate Pfizer Prize.  



 

X 

Supporting poster presentations 

Jones, A., Rodgers, J., Bradley, B., Barrett, M.P. and Kennedy, P.G.E. (2010). 
Complex melarsoprol: A promising candidate in the treatment of human 
African trypanosomiasis. British Society for Parasitology Spring and 
Trypanosomiasis and Leishmaniasis meeting. 29th March -1st April 2010 
Cardiff.  

Jones, A., Rodgers, J., Bradley, B., Barrett, M.P. and Kennedy, P.G.E.  (2009). 
Oral Melarsoprol cures CNS stage Trypanosoma brucei brucei infection in a 
murine model of human African trypanosomiasis P139. British Society for 
Parasitology Spring and Malaria meeting. 5th-8th April 2009 Edinburgh. 

Jones, A., Rodgers, J., Bradley, B. and Kennedy, P.G.E.  (2008)  Novel forms of 
oral melarsoprol cure CNS stage Trypanosoma brucei brucei infection in a 
murine model of human African trypanosomiasis.  Infectious disease of the 
nervous system: Pathogenesis and worldwide impact. 10-13th September 
2008 Paris, France.  Published in; BMC proceedings 2008, 2 (Suppl 1):P28. 



 

XI 

 

Abbreviations 

AAS     Atomic absorption spectrometry 

AE     Elution buffer 

ALT     Alanine aminotransferase 

AP     Alkaline phosphatase 

APES     3-aminopropyltriethoxysilane 

APL     Acute promyeloctic leukaemia 

ASPT1     Adenosine sensitive pentamidine transporter  

AST     Aspartate 

ATP     Adenosine triphosphate 

BBB     Blood-brain barrier 

BMECs     Brain microvascular endothelial cells 

BSA     Bovine serum albumin 

CaM     Calmodulin 

CATT     Card agglutination test for trypanosomiasis 

CCK     Cholecystokinin 

CD      Cyclodextrin 

cDNA     Complementary deoxyribonucleic acid 



 

XII 

CGTase    Cyclodextrin glycosyl transferase 

Cmax     Maximum concentration 

CNS     Central nervous system 

CSF     Cerebrospinal fluid 

DAB     3, 3’ diaminobenzidine 

DALYs     Disability adjusted life years 

DB289     Pafuramidine maleate 

DFMO     Eflornithine 

DMEβCD    Dimethyl β cyclodextrin 

DMSO     Dimethyl sulfoxide 

DNA     Deoxyribonucleic acid 

DNDi     Drugs for neglected diseases initiative 

DRC     Democratic Republic of Congo 

DRC-ICP-MS    Dynamic reaction cell inductively coupled mass 
     spectrometry 

ED     Effective concentration 

EI     Electron impact 

ELISA     Enzyme-linked immunosorbent assay   

FAM     6-carboxyfluorescine 

FDA     Food and Drug administration 



 

XIII 

FITC     Fluorescein isothiocyanate 

FOV     Field of view 

GC-MS     Gas chromatography mass spectrometry 

GI     Gastrointestinal tract 

GLDH     Glutamate dehydrogenase 

GLM     General linear model 

GOT     Glutamic oxaloacetic 

GPT     Glutamic pyruvic 

HAPT1     High affinity pentamidine transporter 

HAT     Human African trypanosomiasis 

H&E     Haematoxylin and eosin 

HIV     Human immunodeficiency virus 

HPβCD     Hydroxyproyl β cyclodextrin 

HPLC     High performance liquid chromatography 

HRP     Horseradish peroxidise 

IC      Inhibitory concentration 

ICCT     Institute for Combat and Control of   
     trypanosomiasis 

ICP-MS     Inductively coupled plasma mass spectrometry 

I.V.     Intravenous  



 

XIV 

JPC     Japanese Pharmaceutical codex 

LAPT1     Low affinity pentamidine transporter 

LC     Liquid chromatography 

LD     Lethal dose 

mAECT    Mini anion exchange centrifugation technique 

Mel Cy     Cymelarsan 

Mel W     Trimelarsen 

MHCT     Micro haematocrit centrifugation technique 

MIC     Minimum inhibitory concentration 

MLCK     Myosin light chain kinase 

mRNA     Messenger ribonucleic acid 

MS     Multiple sclerosis 

Mt     Transverse magnetization 

MTT     Tetrazolium salt method 

Mz     Longitudinal magnetization 

NBT/BCIP    5-bromo-4-chloro-3-indolyl phosphate/nitro  
     blue tetrazolium  

NECT     Nirfurtimox eflornithine combination therapy 

NFOH     Hydroxymethylnitrofurazone 

NMR     Nuclear magnetic resonance 



 

XV 

NMT     N-myristoyltransferase 

NOAEL     No observed adverse effect level 

NSAID     Non steroidal anti-inflammatory drug 

NSHS     Normal sheep serum 

NVU     Neurovascular unit 

NWV     Net magnetization 

OCT     Ornithine carbamoyl transferase 

OD     Optical density 

ODC     Ornithine decarboxylase 

OVA     Ovalbumin 

PAP     Peroxidase anti-peroxidase  

PAR     Protease activated receptor 

PBS     Phosphate buffered saline 

PCR     Polymerase chain reaction 

PFR     Paraflagella rod 

PGBS     Phosphate glucose buffered saline 

PgMET     Plasmodium tRNA methionine 

Ph.Eur.    European Pharmacopoeia 

PPM     Parts per million 



 

XVI 

PTRE     Post treatment reactive encephalopathy 

QBC     Quantitative buffy coat 

QPCR     Quantitative polymerase chain reaction 

RAMβCD    Randomly-methylated β cyclodextrin 

RARE     Rapid acquisition with relaxation enhancement 

RBC     Red blood cells 

RF     Radiofrequency 

RNA     Ribonucleic acid 

RNAi     Ribonucleic acid interference 

RPM     Revolutions per minute 

SBEβCD    Sulfobutylether β cyclodextrin 

SIM     Single ion mode 

SSC     Salt sodium citrate 

t1/2     Terminal elimination half-life 

TAMRA    6-carboxy-tetramethyl-rhodamine 

TE     Echo time 

TEER     Transendothelial electrical resistance 

TMβCD    Trimethyl β cyclodextrin 

TR     Repetition time 



 

XVII 

tRNA     Transfer ribonucleic acid 

TSA     Tyramdie signal amplification 

USP/NF    US Pharmacopoeia 

VDβ     Volume of distribution 

VSG     Variable surface glycoprotein 

WHO     World health organisation 

w.t.     Wild type 



 

XVIII 

Table of contents 

List of figures.......................................................................... xxviii 

List of tables.............................................................................xxxi 

List of equations ...................................................................... xxxiii 

Chapter 1: Introduction .................................................................. 1 

1.1  The Trypanosomiases.............................................. 2 

1.1.1  Classification ....................................................... 2 

1.1.2  Parasite biology .................................................... 2 

1.1.2.1  Antigenic variation ................................................ 6 

1.1.3  Trypanosomes of veterinary importance ....................... 6 

1.1.4  Trypanosomes of medical importance.......................... 7 

1.1.4.1  American ............................................................ 7 

1.1.4.2  African............................................................... 7 

1.1.5  African trypanosomes ............................................. 9 

1.1.5.1  History............................................................... 9 

1.1.5.2  Geographical distribution........................................ 11 

1.1.5.3  The vector ......................................................... 13 

1.1.5.4  Life cycle........................................................... 13 

1.1.6  Trypanosomiasis in man ......................................... 14 

1.1.6.1  Current situation of HAT......................................... 14 

1.1.6.2  Pathogenesis....................................................... 16 

1.1.6.2.1 Haemolymphatic .................................................. 16 

1.1.6.2.2 Specific organ damage ........................................... 17 

1.1.6.2.3 Central nervous system pathology.............................. 18 

1.1.6.3  Clinical signs....................................................... 19 

1.1.6.3.1 Haemolymphatic manifestations ............................... 19 

1.1.6.4  Central nervous system manifestations........................ 21 

1.1.6.5  Diagnosis ........................................................... 22 

1.1.7  Chemotherapy..................................................... 26 

1.1.7.1.1 Haemolymphatic infection ...................................... 26 

1.1.7.1.2 Suramin............................................................. 26 

1.1.7.1.3 Pentamidine ....................................................... 27 

1.1.7.2  CNS infection ...................................................... 29 



 

XIX 

1.1.7.2.1 Melarsoprol ........................................................ 29 

1.1.7.2.2 Eflornithine (α difluoromethylornithine) (DFMO) ............ 33 

1.1.7.2.3 Nifurtimox ......................................................... 35 

1.1.7.2.4 Nifurtimox and eflornithine combination therapy (NECT) .. 36 

1.1.7.3  Emerging treatments ............................................. 37 

1.1.7.3.1 DB289 ............................................................... 37 

1.1.7.3.2 Fexinidazole ....................................................... 38 

1.1.7.3.3 N-myristoyltransferase inhibitors............................... 39 

1.1.7.3.4 Oxaborole 6-carboxamides ...................................... 40 

1.1.7.4  The future of HAT chemotherapy .............................. 40 

1.2  Cyclodextrins: Enabling excipients............................. 41 

1.2.1  History.............................................................. 41 

1.2.2  Structure ........................................................... 42 

1.2.3  Physicochemical properties ..................................... 44 

1.2.4  Production ......................................................... 45 

1.2.4.1  Enzymology ........................................................ 45 

1.2.4.1.1 The cyclization reaction ......................................... 46 

1.2.4.2  Industrial production ............................................. 46 

1.2.4.2.1 The solvent process............................................... 48 

1.2.4.2.2 The non-solvent process ......................................... 48 

1.2.5  Cyclodextrin derivatives ......................................... 49 

1.2.5.1  Production of cyclodextrin derivatives ........................ 50 

1.2.5.1.1 Methylated cyclodextrins ........................................ 51 

1.2.5.1.2 Hydroxypropyl β cyclodextrin (HPβCD) ........................ 51 

1.2.6  Cyclodextrin Complexes ......................................... 52 

1.2.6.1  Mechanism of inclusion .......................................... 52 

1.2.6.2  The driving force of complex formation....................... 53 

1.2.6.2.1 Release of high enthalpy water molecules.................... 53 

1.2.6.2.2 Release of ring strain............................................. 54 

1.2.6.2.3 Van der Waals forces ............................................. 54 

1.2.7  Toxicity of cyclodextrins ........................................ 54 

1.2.7.1  Cytotoxicity........................................................ 54 

1.2.7.2  Parenteral toxicity................................................ 55 

1.2.7.2.1 Alpha (α) cyclodextrin ........................................... 55 

1.2.7.2.2 Beta (β) cyclodextrin ............................................. 55 



 

XX 

1.2.7.2.3 Gamma (γ) cyclodextrin.......................................... 56 

1.2.7.2.4 Hydroxypropyl β cyclodextrin (HPβCD) ........................ 56 

1.2.7.3  Oral toxicity ....................................................... 57 

1.2.7.3.1 Alpha (α) cyclodextrin ........................................... 57 

1.2.7.3.2 Beta (β) cyclodextrin ............................................. 58 

1.2.7.3.3 Gamma (γ) cyclodextrin.......................................... 59 

1.2.7.3.4 Hydroxypropyl β cyclodextrin (HPβCD) ........................ 59 

1.2.7.3.5 Di-methyl β cyclodextrin (DMβCD) ............................. 61 

1.2.8  Pharmacological uses of cyclodextrins ........................ 61 

1.2.8.1  Decreasing toxicity ............................................... 61 

1.2.8.2  Stability ............................................................ 62 

1.2.9  Current regulatory status........................................ 63 

Chapter 2: General methods ...........................................................65 

2.1  Trypanosomes ..................................................... 66 

2.1.1  The history of T. brucei brucei stabilate GVR35 ............. 66 

2.2  The murine model of T. b. brucei .............................. 66 

2.2.1  Animals ............................................................. 67 

2.2.2  Establishing trypanosome infection ............................ 67 

2.2.3  Monitoring of parasitaemia...................................... 68 

2.3  Complexed melarsoprol.......................................... 68 

2.3.1  Preparation of complexed melarsoprol........................ 68 

2.3.2  Characterisation of melarsoprol cyclodextrin complexes... 70 

2.3.3  Calculation of complexed melarsoprol doses for oral .........

 administration..................................................... 70 

2.3.4  Calculation of volume of melarsoprol cyclodextrin complexes 

 to be orally administered........................................ 71 

2.3.5  Calculation of complexed melarsoprol dose for intravenous 

 administration..................................................... 71 

2.3.6  Calculation of the volume of mel/HPβCD to be intravenously 

 administered ...................................................... 72 

2.3.7  Preparation of melarsoprol cyclodextrin complexes for 

 administration..................................................... 72 

2.3.8  Oral administration of melarsoprol cyclodextrin complexes73 



 

XXI 

2.3.9  Intravenous administration of mel/HPβCD.................... 73 

Chapter 3: Establishing the inhibitory concentration and minimum curative 

dose of complexed melarsoprol .........................................74 

3.1  Introduction ....................................................... 75 

3.1.1  Melarsoprol ........................................................ 75 

3.1.1.1  Melarsoprol derivatives .......................................... 75 

3.1.2  The pharmacological uses of cyclodextrins ................... 77 

3.1.2.1  Increasing solubility .............................................. 77 

3.1.2.1.1 A-type profiles .................................................... 78 

3.1.2.1.2 B-type profiles..................................................... 78 

3.1.2.2  Increasing bioavailability ........................................ 79 

3.1.3  Melarsoprol cyclodextrin complexes ........................... 83 

3.2  Methods ............................................................ 85 

3.2.1  Assessing the inhibitory concentration of complexed 

 melarsoprol ........................................................ 85 

3.2.1.1  Preparation of stock solutions .................................. 85 

3.2.1.2  Preparation of working solutions ............................... 85 

3.2.1.3  Culturing of trypanosomes....................................... 85 

3.2.1.4  Alamar blue assay................................................. 86 

3.2.1.4.1 Preparation of Alamar blue solution ........................... 86 

3.2.1.4.2 Alamar blue assay................................................. 86 

3.2.1.5  Statistical analysis ................................................ 88 

3.2.2  Determining the in-vivo trypanocidal activity of complexed 

 melarsoprol and melarsoprol compounds ..................... 88 

3.2.2.1  Establishing T. b. brucei infection in mice.................... 88 

3.2.2.2  Preparation of compounds for oral administration .......... 88 

3.2.2.3  Preparation of Mel/HPβCD for intravenous administration. 89 

3.2.2.4  Chemotherapy schedules ........................................ 89 

3.2.2.4.1 Oral administration of compounds ............................. 89 

3.2.2.4.2 Intravenous administration of mel/HPβCD.................... 89 

3.2.2.5  Assessing the effectiveness of chemotherapy ................ 90 

3.2.3  Determining the hepatic toxicity of complexed melarsoprol .

 ...................................................................... 91 



 

XXII 

3.2.3.1  Chemotherapy schedules ........................................ 91 

3.2.3.2  Collection of samples ............................................ 91 

3.2.3.3  Preparation of samples for histopathology analysis ......... 91 

3.2.3.4  Histopathological analysis ....................................... 91 

3.3  Results.............................................................. 93 

3.3.1  Inhibitory concentration (IC50) of complexed melarsoprol.. 93 

3.3.2  The minimum oral curative dose of complexed melarsoprol..

 ...................................................................... 93 

3.3.3  The minimum intravenous curative dose of mel/HPβCD.... 96 

3.3.4  In-vivo trypanocidal activity of melarsoprol compounds ... 96 

3.3.5  Hepatotoxicity of complexed melarsoprol .................... 98 

3.3.5.1  Immediately following completion of the treatment regime..

 ...................................................................... 98 

3.3.5.2  Seven days after completion of chemotherapy............... 98 

3.3.5.3  Fourteen days after completion of chemotherapy........... 99 

3.3.5.4  Twenty-one days after completion of chemotherapy ......100 

3.4  Discussion .........................................................101 

Chapter 4: Detection of trypanosomes within the brain ....................... 108 

4.1  Introduction ......................................................109 

4.1.1  Location of trypanosomes in the brain .......................109 

4.1.2  In-situ hybridization .............................................112 

4.1.2.1  Detection of Trypanosoma cruzi...............................112 

4.1.3  Quantitative PCR (QPCR) .......................................113 

4.1.3.1  Principles of taqman real-time PCR...........................113 

4.1.3.2  Current uses of QPCR............................................116 

4.1.3.2.1 Diagnostics ........................................................116 

4.1.3.2.2 Assessing efficacy of chemotherapy ..........................117 

4.1.4  Melarsoprol resistance ..........................................117 

4.2  Methods ...........................................................119 

4.2.1  Melarsoprol resistant (GVR35/M14) T. b. brucei strain ....119 

4.2.2  Establishing infection with GVR35/M14 ......................119 

4.2.3  Establishing infection with GVR35/C1.9......................119 

4.2.4  Confirmation of trypanosome infection ......................120 



 

XXIII 

4.2.5  Preparation of melarsoprol cyclodextrin complexes .......120 

4.2.6  Administration of complexes...................................120 

4.2.7  In-situ hybridization .............................................121 

4.2.7.1  Treatment schedule .............................................121 

4.2.7.2  Collection of samples ...........................................121 

4.2.7.3  Preparation of samples for in-situ hybridization ............121 

4.2.7.4  In-situ hybridization procedure ................................122 

4.2.7.4.1 Oligonucleotide probe...........................................122 

4.2.7.4.2 Dewaxing and rehydration of the tissue sections ...........122 

4.2.7.4.3 Permeabilisation of the tissue sections.......................123 

4.2.7.4.4 Fixation of tissue sections ......................................124 

4.2.7.4.5 Denaturation of the target sequence .........................124 

4.2.7.4.6 Hybridization .....................................................124 

4.2.7.4.7 Post-hydridization washes ......................................124 

4.2.7.4.8 Visualisation ......................................................125 

4.2.7.4.9 Tyramide signal amplification system (TSATM PerkinElmer) ...

 .....................................................................126 

4.2.8  Quantitative PCR.................................................127 

4.2.8.1  Treatment schedule .............................................127 

4.2.8.2  Collection of samples ...........................................128 

4.2.8.3  DNA extraction ...................................................128 

4.2.8.4  Quantification of DNA ...........................................129 

4.2.8.5  Identification of gene of interest..............................129 

4.2.8.6  Generation of a plasmid containing the PFR2 gene.........130 

4.2.8.7  Resuspension of plasmids .......................................130 

4.2.8.8  Transformation of cells with PFR2 plasmid ..................131 

4.2.8.9  Purification of the plasmid .....................................131 

4.2.8.10  Quantification of purified plasmid DNA ......................132 

4.2.8.11  Calculation of the plasmid copy number contained within ...

 the purified plasmid DNA .......................................132 

4.2.8.12  Preparation of standard dilutions for the standard curve .133 

4.2.8.13  Preparation of primers and probe.............................133 

4.2.8.14  QPCR reaction ....................................................133 

4.2.8.15  Statistical analysis ...............................................134 

4.3  Results.............................................................135 



 

XXIV 

4.3.1  In-situ hybridization .............................................135 

4.3.2  QPCR...............................................................135 

4.3.2.1  T. b. brucei melarsoprol sensitive strain (GVR 35/C1.9)...135 

4.3.2.1.1 The effect of mel/HPβCD treatment on CNS parasite load135 

4.3.2.1.2 The effect of mel/RAMβCD treatment on CNS parasite load ..

 .....................................................................136 

4.3.2.1.3 Comparison of mel/HPβCD and mel/RAMβCD treatment ..138 

4.3.2.2  T. b. brucei melarsoprol resistant strain (GVR35/M14) ....141 

4.3.2.2.1 The effect of mel/HPβCD treatment on CNS parasite load141 

4.3.2.2.2 The effect of mel/RAMβCD chemotherapy on CNS parasite ..

 load ................................................................141 

4.3.2.2.3 Comparison of mel/HPβCD and mel/RAMβCD treatment ..142 

4.3.2.3  Comparison of the melarsoprol sensitive and resistant strains

 .....................................................................144 

4.4  Discussion .........................................................149 

Chapter 5: Visualisation of the changes in permeability of the blood-brain 

barrier following complexed melarsoprol chemotherapy ........ 157 

5.1  Introduction ......................................................158 

5.1.1  Barriers of the CNS ..............................................158 

5.1.1.1  The blood-brain barrier .........................................158 

5.1.1.2  The blood–CSF barrier ...........................................160 

5.1.1.3  Arachnoid barrier ................................................160 

5.1.2  Trypanosomes and the blood-brain barrier ..................162 

5.1.2.1  Trypanosome traversal of the BBB ............................162 

5.1.2.1.1 In-vitro blood-brain barrier studies ...........................162 

5.1.2.1.2 In-vivo blood-brain barrier studies ............................163 

5.1.2.2  Breakdown of the blood-brain barrier during trypanosome 

 infection...........................................................164 

5.1.3  Magnetic resonance imaging ...................................166 

5.1.3.1  Principles of magnetic resonance imaging ...................166 

5.1.3.2  The use of contrast agents .....................................168 

5.1.3.3  Magnetic resonance imaging of the CNS in disease .........168 

5.1.3.3.1 Multiple sclerosis.................................................169 



 

XXV 

5.1.3.3.2 Cerebral malaria .................................................169 

5.1.3.3.3 Human African trypanosomiasis................................170 

5.2  Methodology ......................................................174 

5.2.1  Trypanosome infection..........................................174 

5.2.2  Confirmation of trypanosome infection ......................174 

5.2.3  Preparation of complexed melarsoprol for administration 174 

5.2.4  The treatment schedule employed............................174 

5.2.5  Magnetic resonance imaging ...................................175 

5.2.5.1  Preparation of animals ..........................................175 

5.2.5.2  Magnetic resonance imaging parameters.....................175 

5.2.5.3  Analysis of magnetic resonance images ......................176 

5.2.6  Collection of samples for analysis of inflammatory reaction..

 .....................................................................176 

5.2.7  Preparation of samples for analysis of inflammatory reaction

 .....................................................................176 

5.2.8  Analysis of inflammatory reaction ............................177 

5.2.9  Statistical analysis ...............................................177 

5.3  Results.............................................................179 

5.3.1  MRI .................................................................179 

5.3.1.1  Comparison of the signal change detected on day 21 post-

 infection and in uninfected animals ..........................179 

5.3.1.2  Comparison of the percentage signal change detected on day 

 21 post-infection and following completion of mel/HPβCD 

 chemotherapy ....................................................181 

5.3.1.3  Comparison of the percentage signal change detected 24 

 hours, 8 and 15 days after completion of mel/HPβCD 

 chemotherapy ....................................................183 

5.3.2  Neuropathological reaction ....................................185 

5.4  Discussion .........................................................189 

Chapter 6: Investigating the pharmacokinetic properties of complexed 

melarsoprol ................................................................ 194 

6.1  Introduction ......................................................195 

6.1.1  Pharmacokinetics of melarsoprol..............................195 



 

XXVI 

6.1.1.1  Original bioassay .................................................195 

6.1.1.2  ELISA ...............................................................196 

6.1.1.3  Long-term bioassay ..............................................197 

6.1.1.4  Automated biological assay ....................................201 

6.1.1.5  High performance liquid chromatography assay ............202 

6.1.1.6  Comparing bioassay and HPLC approaches...................203 

6.1.2  Melarsoprol metabolites ........................................204 

6.1.3  Pharmacokinetics of complexed melarsoprol................206 

6.2  Methods ...........................................................208 

6.2.1  Establishing T. b. brucei infection ............................208 

6.2.2  Confirmation of trypanosome infection ......................208 

6.2.3  Preparation of complexed melarsoprol for oral 

 administration....................................................208 

6.2.4  Preparation of mel/HPβCD for intravenous administration208 

6.2.5  Oral administration of complexed melarsoprol .............209 

6.2.6  Intravenous administration of mel/HPβCD...................209 

6.2.7  Treatment schedule .............................................209 

6.2.7.1  Oral administration ..............................................209 

6.2.7.2  Intravenous administration .....................................209 

6.2.8  Collection of samples ...........................................210 

6.2.9  Determining the arsenic content of tissue samples by gas 

 chromatography mass spectrometry ..........................211 

6.2.9.1  Digestion of tissues ..............................................211 

6.2.9.2  Resuspension of digestion residue.............................211 

6.2.9.3  Gas chromatography mass spectrometry analysis...........212 

6.2.9.4  Assay validation ..................................................213 

6.2.9.4.1 Constructing an arsenic standard curve ......................213 

6.2.9.4.2 Determining the precision (repeatability) of the assay ....213 

6.2.9.4.3 Extraction recovery..............................................213 

6.3  Results.............................................................215 

6.3.1  Chromatograms ..................................................215 

6.3.2  Calibration curve ................................................215 

6.3.3  Precision of the assay ...........................................218 

6.3.4  Extraction recovery..............................................218 

6.3.5  Concentration of arsenic within the brain ...................219 



 

XXVII 

6.3.6  Concentration of arsenic within the plasma.................219 

6.4  Discussion .........................................................222 

Chapter 7: General Discussion ....................................................... 229 

7.1  The trypanocidal activity of mel/HPβCD and mel/RAMβCD ...

  .....................................................................230 

7.2  The effect of mel/HPβCD chemotherapy on the integrity of .

  the blood-brain barrier .........................................235 

7.3  Future work.......................................................236 

7.4  Conclusions .......................................................238 

Appendix 1............................................................................... 241 

Appendix 2............................................................................... 244 

Appendix 3............................................................................... 249 

References............................................................................... 253 

 



 

xxviii 

List of figures 

Figure 1-1:  The systematic classification of trypanosomes in use today....... 4 

Figure 1-2:  A diagram of the trypomastigote intermediate bloodstream form 

 of T. b. rhodesiense ..................................................... 5 

Figure 1-3:  A map illustrating the geographical distribution of the human 

 infective trypanosomes T. b. gambiense and T. b. rhodesiense. 12 

Figure 1-4:  The life cycle of Trypanosoma brucei spp........................... 15 

Figure 1-5:  The chemical structure of suramin ................................... 26 

Figure 1-6:  The chemical structure of pentamidine ............................. 28 

Figure 1-7:  The chemical structure of melarsoprol .............................. 30 

Figure 1-8:  The chemical structure of eflornithine .............................. 34 

Figure 1-9:  The chemical structure of nifurtimox................................ 36 

Figure 1-10:  The chemical structure of fexinidazole.............................. 39 

Figure 1-11:  The truncated cone and chemical structure of β cyclodextrin... 44 

Figure 1-12:  Schematic representation of the cyclization reaction............. 47 

Figure 1-13:  The mechanism of inclusion complex formation ................... 52 

Figure 2-1:  The grading scale used to score the level of parasitaemia in the 

 experimental animals................................................... 69 

Figure 3-1:  The possible phase-solubility profiles obtained following 

 complexation of a guest molecule with a cyclodextrin............ 79 

Figure 3-2:  The absorption of a drug from an inclusion complex following oral 

 administration. .......................................................... 82 

Figure 3-3:  The flow process used in the Alamar blue assay ................... 87 

Figure 3-4:  The treatment schedule used ......................................... 91 

Figure 3-5:  The IC50 of the compounds against wild type (s427) T. b. brucei 

 trypanosomes ............................................................ 94 

Figure 3-6:  The number of animals relapsed at each dose after receiving 

 mel/HPβCD, mel/RAMβCD, HPβCD or RAMβCD ..................... 97 

Figure 3-7:  The in-vivo trypanocidal activity of melarsoprol compounds in 

 murine CNS stage T. b. brucei model ................................ 97 

Figure 3-8:  The histopathological changes observed in the liver immediately 

 after administration of HPβCD ........................................ 98 



 

xxix 

Figure 3-9:  The histopathological changes observed in the liver 7 days after 

 completion of mel/HPβCD (A), RAMβCD (B), HPβCD (C) and 

 mel/RAMβCD (D) chemotherapy ...................................... 99 

Figure 3-10:  The histopathological changes observed in the liver 14 days after 

 completion of mel/HPβCD (A) and RAMβCD (B) chemotherapy .100 

Figure 3-11:  The histological changes observed within the liver 21 days after 

 completion of treatment..............................................100 

Figure 4-1:  A schematic representation of the Taqman PCR reaction .......114 

Figure 4-2:  Amplification plots illustrating how the Ct value is calculated .116 

Figure 4-3:  The treatment schedule used ........................................121 

Figure 4-4:  The chemotherapy regime used in the quantitative PCR (QPCR) 

 experiment..............................................................127 

Figure 4-5:  The number of copies of the PFR2 gene present within 100ng of 

 DNA prepared from approximately 25mg of brain tissue taken 

 from whole brain homogenate, of mice infected with T. b. brucei 

 (GVR35/C1.9) following chemotherapy with A) Mel/HPβCD and B) 

 Mel/RAMβCD. ...........................................................137 

Figure 4-6:  Interaction plots comparing the mean [log(x+1)] PFR2 copy 

 number detected after administration of each dose of mel/HPβCD 

 or mel/RAMβCD with number of doses..............................138 

Figure 4-7:  The number of copies of the PFR2 gene present within 100ng of 

 DNA prepared from approximately 25mg of brain tissue taken 

 from whole brain homogenate from mice infected with T. b. 

 brucei (GVR35/M14) following chemotherapy with A) Mel/HPβCD 

 and B) Mel/RAMβCD....................................................143 

Figure 4-8:  Interaction plots comparing the mean [log(x+1)] PFR2 copy 

 number detected after administration of each dose of mel/HPβCD 

 or mel/RAMβCD with number of doses..............................145 

Figure 4-9:  Interaction plots demonstrating the interactions in the mean 

 [log(x+1)] PFR2 copy number detected between the two 

 melarsoprol cyclodextrin complexes, mel/HPβCD and 

 mel/RAMβCD and the number of doses and also between the 

 melarsoprol sensitive (GVR35/C1.9) and resistant (GVR35/M14) T. 

 b. brucei stabilates ....................................................146 



 

xxx 

Figure 5-1:  The blood-brain barrier ...............................................159 

Figure 5-2:  The blood-CSF barrier .................................................160 

Figure 5-3:  The arachnoid barrier .................................................161 

Figure 5-4:  The treatment schedule employed in the MRI study..............175 

Figure 5-5:  The signal enhancement maps generated following magnetic 

 resonance imaging .....................................................182 

Figure 5-6:  The percentage signal change detected by MRI in mice infected 

 with T. b. brucei .......................................................184 

Figure 5-7:  Coronal sections through the brain of a mouse 21 days after 

 infection with T. b. brucei (A and C) and a mouse killed 15 days 

 after completion of mel/HPβCD chemotherapy (B and D) .......186 

Figure 6-1:  The oral treatment schedule employed ............................210 

Figure 6-2:  The intravenous treatment schedule employed ...................210 

Figure 6-3:  The chromatogram obtained from brain tissue spiked with 250ng 

 As .........................................................................216 

Figure 6-4:  The chromatogram obtained from normal brain tissue...........216 

Figure 6-5:  The As calibration curve for concentrations ranging from 

 1000ng/ml to 100ng/ml ...............................................217 

Figure 6-6:  The As calibration curve for concentrations ranging from 50ng/ml 

 to 5ng/ml................................................................217 

Figure 6-7:  The chromatogram obtained from a brain sample taken 1 hour 

 after the oral administration of 0.05mmol/kg mel/HPβCD ......220 

Figure 6-8:  The chromatogram obtained from a brain sample taken 4 hours 

 after the oral administration of 0.05mmol/kg mel/HPβCD ......221 

Figure 6-9:  The chromatogram obtained from a plasma sample taken 30 

 seconds after the I.V. administration of 0.03 mmol/kg mel/HPβCD

 ............................................................................221 



 

xxxi 

List of tables 

Table 1-1:  The pathogenic trypanosomes of veterinary importance .......... 8 

Table 1-2:  Registered pharmaceutical products containing cyclodextrins... 43 

Table 1-3:  The physicochemical properties of α, β and γ cyclodextrin ...... 45 

Table 1-4:  The physicochemical properties of cyclodextrin derivatives of 

 pharmaceutical importance ........................................... 50 

Table 2-1:  The amount of melarsoprol contained within 1g of each complex 

 as determined by HPLC................................................. 70 

Table 2-2:  The amount of each complex required per ml in order to give the 

 required doses ........................................................... 71 

Table 2-3:  The volume of complexed melarsoprol solution administered 

 depending upon the weight of the animal........................... 71 

Table 2-4:  The volume of mel/HPβCD solution administered I.V. to animals 

 in order to achieve a dose of 0.03mmol/kg ......................... 72 

Table 3-1:  The amount of each compound required in mg per ml in order to 

 give a dose of 0.05mmol/kg ........................................... 89 

Table 3-2:  The sixteen treatment groups used in the experiment............ 90 

Table 3-3:  Comparison of the inhibitory concentration (IC50) of the 

 mel/HPβCD, mel/RAMβCD, melarsoprol, diminazene aceturate, 

 HPβCD and RAMβCD..................................................... 95 

Table 3-4:  The number of animals cured in each treatment group........... 96 

Table 4-1:  The sequence data for the oligonucleotide probes used in the in-

 situ hybridization procedure .........................................122 

Table 4-2:  The combination of enzyme concentrations, incubation times and 

 temperatures used to identify the optimal degree of digestion for 

 the tissue sections. ....................................................123 

Table 4-3:  Sequence data for the primers and probe used to identify T. b. 

 brucei by QPCR analysis. ..............................................130 

Table 4-4:  Comparison of the number of copies of the PFR2 gene detected 

 within 100ng of DNA prepared from approximately 25mg of whole 

 brain homogenate from mice infected with melarsoprol sensitive 

 T. b. brucei trypanosomes following mel/HPβCD chemotherapy ...

 ............................................................................139 



 

xxxii 

Table 4-5:  Comparison of the number of copies of the PFR2 gene detected 

 within 100ng of DNA prepared from approximately 25mg of whole 

 brain homogenate from mice infected with melarsoprol sensitive 

 T. b. brucei trypanosomes following mel/RAMβCD chemotherapy .

 ............................................................................140 

Table 4-6:  Comparison of the number of copies of the PFR2 gene detected 

 within 100ng of DNA prepared from approximately 25mg of whole 

 brain homogenate from mice infected with melarsoprol resistant 

 T. b. brucei trypanosomes following mel/HPβCD chemotherapy ...

 ............................................................................147 

Table 4-7:  Comparison of the number of copies of the PFR2 gene detected 

 within 100ng of DNA prepared from approximately 25mg of whole 

 brain homogenate from mice infected with melarsoprol resistant 

 T. b. brucei trypanosomes following mel/RAMβCD chemotherapy .

 ............................................................................148 

Table 5-1:  Neuropathological grading scale .....................................178 

Table 5-2:  The MRI scans completed in each animal...........................180 

Table 5-3:  Comparison of the percentage signal change detected within the 

 brain, prior to mel/HPβCD chemotherapy commencing on day 21 

 post-infection and 24 hours, 8 and 15 days (corresponding to days 

 28, 35 and 42 post-infection respectively) after completion of the 

 treatment regime and in uninfected, untreated animals ........187 

Table 5-4:  Comparison of the percentage signal change detected in the brain 

 24 hours, 8 and 15 days (corresponding to days 28, 35 and 42 

 post-infection respectively) after completion of mel/HPβCD 

 chemotherapy to untreated, uninfected control animals ........188 

Table 6-1:  The treatment protocol employed in the Daloa region, Ivory Coast

 ............................................................................199 

Table 6-2:  The schedule used to digest the tissue samples ...................212 

Table 6-3:  The schedule used to completely digest all tissue elements and 

 heat the samples to dryness..........................................212 

Table 6-4:  The concentration of As detected by GC-MS in brain tissues spiked 

 with 25ng/ml As ........................................................218 

Table 6-5:  The concentration of arsenic detected by GC-MS in solutions 

 containing 25ng/ml of As .............................................219 



 

xxxiii 

List of equations 

Equation 1-1:  The complexation process ............................................. 52 

Equation 3-1:  Determination of the stability constant of complex formation .. 78 

Equation 4-1:  The equation used to calculate the change in reporter 

 fluorescence normalised to that of the quencher.................115 

Equation 4-2:  The equation used in order to calculate the number of copies of 

 the PFR2 gene fragment present within the sample of purified 

 DNA.......................................................................133 

Equation 5-1:  The equation used to generate signal enhancement maps ......176 

Equation 6-1:  The equation used to calculate the melarsoprol content of 

 samples analysed using the bioassay ................................197 

Equation 6-2:  The equation used to calculate the melarsoprol content of 

 samples analysed using the automated bioassay ..................201 



 

 

Chapter 1: Introduction 

1  

 

 



2 

 

1.1 The Trypanosomiases 

1.1.1 Classification 

The genus Trypanosoma was first created in 1843 by Gruby with all trypanosome 

species grouped together. The first attempt to distinguish the trypanosomes was 

made in 1912 by Laveran and Mesnil who classified the trypanosomes as either 

pathogenic or non-pathogenic. In 1913, the pathogenic African trypanosomes 

were further divided into three groups, based on their mode of development in 

the tsetse fly vector, by Duke and Roubaud independently (Hoare, 1970b). This 

classification was extended to the non-pathogenic trypanosomes in 1921 by 

Knuth and Du Toit. In 1926, Wenyon divided the mammalian trypanosomes into 

two major groups, the Stercoraria and the Salivaria based on their site of 

development in the vector. Species comprising the Stercoraria typical develop in 

the hindgut of the vector and are transmitted by contamination while species 

comprising the Salivaria develop in the anterior of the vector and are 

transmitted by inoculation (Hoare, 1970b). These two major divisions were 

further subdivided into groups and subgroups based on the morphology and 

biology of the trypanosomes. In 1964, Hoare simplified the classification system 

(Hoare, 1964). The two major subdivisions, Stercoraria and Salivaria, were 

retained while related trypanosome species were rearranged into subgenera to 

give the classification system in use today (Figure 1-1). 

1.1.2 Parasite biology 

Trypanosomes are unicellular eukaryotic parasites ranging in size from 12µm to 

70µm (Hoare, 1970b; Stevens and Brisse, 2004). The body takes the shape of a 

flattened spindle which is usually curved in shape but this can vary between 

species (Hoare, 1970b) (Figure 1-2). The anterior portion of the body is usually 

drawn out to a fine point while the posterior portion is usually broader and 

tapers more abruptly or terminates in a blunt or rounded tip (Hoare, 1972). A 

network of microtubules extending from one end of the cell body to the other 

serves as the cytoskeleton, maintaining the overall shape of the organism 

(Hoare, 1972). The cell body is enclosed by a strong and resistant envelope 

consisting of three layers known as the pellicle. At certain regions along the 
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body the pellicle membrane is thrown into folds forming an undulating 

membrane (Hoare, 1970b; Hoare, 1972). 

Locomotion is by means of a single flagella which runs the entire length of the 

body along the undulating membrane. Once the flagella reaches the anterior of 

the body it either terminates at the end of the membrane or continues forming a 

free portion. The flagella is composed of microtubules which are enclosed by the 

flagellar sheath. The flagella originates behind the nucleus in the posterior 

portion of the cell body at the basal body which forms the base of the flagellum. 

From the basal body the flagella emerges to the surface through an invagination 

of the membrane known as the flagellar pocket (Hoare, 1970b; Hoare, 1972).   

The kinetoplast is a distinctive feature in trypanosomes and the other members 

of the order Kinetoplastida. In trypanosomes it accounts for 10 to 20% of the 

total DNA content (Melville, Majiwa and Tait, 2004). It always lies in close 

proximity to the basal body accompanying the latter as it migrates during 

development of the trypanosome (Hoare, 1970b). The position of the kinetoplast 

within the body along with its size and shape are characteristic of certain 

species of trypanosome and can be used to identify certain species (Hoare, 

1972). Trypanosomes have a single nucleus containing a large central achromatic 

karyosome. The nucleus is usually round or elongated in appearance and is 

situated in different positions depending upon the life-cycle stage of the 

parasite. In bloodstream forms it is normally located in the central or anterior 

position. Between the nucleus and the flagella pocket lies the golgi apparatus. In 

addition to the major structural elements trypanosomes also contain numerous 

cytoplasmic inclusions (Hoare, 1970b; Hoare, 1972).  

Trypanosomes are primarily diploid organisms however there are certain regions 

of the genome which are not diploid, for example the VSG genes, their 

expression sites and the mini-chromosomes (Melville, Majiwa and Tait, 2004). 

Three classes of chromosomes have been identified in the trypanosome genome; 

mega chromosomes (≥ 1Mb), intermediate chromosomes (>100kb), and mini 

chromosomes (30-100kb). Trypanosomes possess approximately 8 to 10 mega  
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Figure 1-1: The systematic classification of trypan osomes in use today
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Figure 1-2: A diagram of the trypomastigote interme diate bloodstream form of T. b. rhodesiense  
Seen at the level of the electron microscope (Vickerman, 1970).  
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chromosomes, a 100 mini chromosomes and varying numbers of intermediate 

chromosomes (Melville, Majiwa and Tait, 2004; World Health Organisation, 

1998). 

1.1.2.1 Antigenic variation 

Trypanosomes evade the host immune system by undergoing antigenic variation. 

The entire surface of bloodstream and metacyclic trypanosomes consists of a 

variable surface glycoprotein (VSG) coat. The VSG is very immunogenic eliciting 

an immune response in the host that results in the production of antibodies 

which are lytic to the trypanosome (Barry and Carrington, 2004). In order to 

persist within the host individual trypanosomes spontaneously switch to a 

different antigenically distinct VSG coat. Thus while the trypanosomes displaying 

the original VSG are lysed by antibodies, the few trypanosomes displaying the 

antigenically distinct VSG are able to persist and proliferate, generating the next 

wave of parasitaemia. This cycle is repeated continuously giving rise to the 

characteristic fluctuating parasitaemia associated with trypanosome infections.  

Antigen switching is rapid, occurring at an average rate of one switch in every 

100 trypanosome doublings (Barry and Carrington, 2004). The repertoire of VSGs 

is extensive with each trypanosome containing >1500 VSG genes (Barry, 

Marcello, Morrison, Read et al., 2005; Berriman, Ghedin, Hertz-Fowler, Blandin 

et al., 2005). 

1.1.3 Trypanosomes of veterinary importance 

The trypanosome species of importance in sub-Saharan Africa are listed in Table 

1-1. The species T. evansi, T. congolense, T. vivax and T. b. brucei show a lack 

of host specificity infecting a wide range of mammals including cattle, horses, 

sheep and goats. Infection results in a disease known locally as ‘nagana’, the 

zulu word for 'low spirits' and is characterised by fever, anaemia and cachexia. 

In addition hind limb paralysis may also occur in infections involving T. b. brucei 

and T. vivax (Hoare, 1970a). In contrast to the other African trypanosomes the 

species T. suis, T. simiae and T. equiperdum are host specific. T. suis and T. 

simiae are primarily parasites of wild and domestic pigs producing rapid onset 

and fatal infections in the latter (Hoare, 1970a). Although, there have been 
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isolated reports of T. simiae infections occurring in cattle, horses and camels 

(Culwick and Fairbairn, 1947; Hoare, 1972; Killickkendrick and Godfrey, 1963). 

T. equiperdum occurs exclusively in equines producing veneral disease or 

dourine. Infection is characterised by an initial oedema of the genitalia followed 

by neurological sequelae (Hoare, 1970a).   

1.1.4 Trypanosomes of medical importance 

1.1.4.1 American 

Chagas disease (American trypanosomiasis) is the most important parasitic 

infection in Latin America (Miles, Yeo and Gaunt, 2004). The causative agent, 

Trypanosoma cruzi belongs to the sterocoraria division and is transmitted by 

blood feeding reduviid bugs of the subfamily Triatominae. Infection occurs when 

triatominae faeces, containing the infective metacyclic trypanosomes, is rubbed 

into the bite wound, an existing wound or the conjunctiva of the eye (Cox, 

1993). The initial phase of the disease, characterised by the presence of the 

parasites in the blood, is often asymptomatic. In approximately 90% of infected 

individuals the infection will resolve spontaneously without treatment with 

trypanocidal drugs. Approximately 60% to 70% of these patients will never 

develop clinical apparent disease. They are classed as having the indeterminate 

form of chronic Chagas disease characterised by seropositivity for T. cruzi 

accompanied by normal electrocardiagram and radiographs of the chest, 

oesophagus and colon (Rassi Jr, Rassi and Marin-Neto, 2010). The remaining 30 

to 40% of patients will go on to develop a chronic form of the disease 10 to 30 

years after initial infection. Chronic chagas disease can take one of three forms, 

cardiac, digestive (megacolon or megaoesphagus) or cardiodigestive (Rassi Jr, 

Rassi and Marin-Neto, 2010).  

1.1.4.2 African 

The only African trypanosomes infective to man are T. b. gambiense and T. b. 

rhodesiense. Cases of human trypanosomiasis as a result of infection with  
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Subgenus Species Mammalian hosts Distribution 

Duttonella T. vivax Bovines, sheep, goats, equines, dogs, 
antelopes 

Tropical Africa 

 T. uniforme Bovines, sheep, goats, antelopes East and central Africa, Angola 

Nannomonas T. congolense Bovines, sheep, goats, equines, pigs, dogs, 
antelopes 

Tropical Africa 

 T. simiae Pigs, warthogs, possibly bovines, equines and 
camels 

Tropical Africa 

Trypanozoon T. b. brucei All domestic mammals and antelopes Tropical Africa 

 T. b. rhodesiense Man, bovines, goats, antelopes East Africa 

 T. b. gambiense Man, bovines, goats, pigs and a variety of wild 
animals1 

Tropical Africa 

 T. evansi Bovines, equines, camels, dogs North and north west Africa, Sudan, 
Somalia, Philippines, Spain, Tunisia, 

Vietnam, Burkino Faso, India, Indonesia, 
Iran, Israel, Jordon, Afghanistan, Pakistan, 

South America2 

 T. equiperdum Equines North, south and south west Africa, Iran, 
Pakistan, Russia 

Pycnomonas T. suis Pigs, warthogs, bush pigs Tanzania, Burundi 

Table 1-1: The pathogenic trypanosomes of veterinar y importance  
Modified from (Hoare, 1970a; Stevens and Brisse, 2004). 1T. b. gambiense has been isolated from a wide range of wild mammals including the giant rat, porcupine, 
civets, duikers and monkeys (Herder, Simo, Nkinin and Njiokou, 2002; Massussi, Massussi, Mbida Mbida, Djieto-Lordon et al., 2010). 2The South American countries 
where cases of T. equiperdum have been reported include Bolivia and Argentina.  
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T. evansi have occasionally been reported in the literature but are exceptionally 

rare and unusual (Joshi, Shegokar, Powar, Herder et al., 2005). The African 

trypanosomes will now be discussed in further detail.   

1.1.5 African trypanosomes 

1.1.5.1 History 

The first account of sleeping sickness was recorded in 1721 by the naval surgeon 

John Atkins. He described the disease as ‘the sleepy distemper’ of blacks and 

thought that the disease only occurred in black people, in particular slaves, as a 

result of excess phlegm or serum in the brain, poor diet and a natural weakness 

of the brain (Cox, 2004). Unaware of Atkins's previous report on sleeping 

sickness, Thomas Winterbottom a physician working in Sierra Leone in 1803 

described a new disease he named 'negro lethargy'. It was characterised by 

enlargement of the posterior cervical lymph nodes. This is now know to be a 

common clinical sign of human African trypanosomiasis (HAT) and is known as 

Winterbottom’s sign (Cox, 2004; Maudlin, 2006). Although both Atkins and 

Winterbottom had described human African trypanosomiasis and the clinical 

signs associated with it, neither had any real idea about the nature of the 

disease or how it occurred.  

The first report of trypanosomes was in the blood of frogs in 1842 by Gluge. This 

was followed by similar independent reports by Mayer and Gruby in 1843 (Cox, 

2004). In the same year Gruby devised the genus Trypanosoma, deriving the 

name from the greek word for borer 'trupanon' based on the cork screw like 

movement of the parasites (Cox, 2004). Evans was the first to identify 

trypanosomes in domestic animals in 1880. He observed what is now known as T. 

evansi in the blood of camels, horses and mules suffering from a wasting disease 

called 'surra' in the Punjab (Evans, 1881). Although Evans was able to associate 

the trypanosomes with the disease he was not able to identify the source of the 

disease and thought the parasites were acquired from drinking water.  

Bruce, a British colonial medical officer stationed in South Africa was the first to 

identify the source of the disease in 1894 (Bruce, 1895). Bruce had been sent to 

Africa in order to investigate an outbreak of 'nagana', a wasting disease of cattle 
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also known as 'fly disease'. In the blood of the stricken animals Bruce discovered 

trypanosomes and named them T. brucei. He noticed that they closely 

resembled the trypanosomes that had previously been identified by Evans in 

camels and horses suffering from surra in the Punjab. Bruce was certain that the 

trypanosomes were the cause of nagana and suspected that the tsetse fly was 

responsible for its transmission as he noted that infected cattle had spent time 

in tsetse fly infested areas (Bruce, 1895). In order to confirm his suspicions 

Bruce arranged for healthy cattle to be sent to areas where tsetse flies were 

present. Upon their return the cattle were found to be infected with 

trypanosomes (Cox, 2004). Bruce thought that transmission of trypanosomes by 

the tsetse fly was purely mechanical (Bruce and Nabarro, 1903), it was not until 

1909 that the cyclical transmission of trypanosomes was demonstrated by Kleine 

(Kleine, 1909). Kleine suggested that a sexual stage of development existed in 

the tsetse fly vector. However, when the lifecycle was reviewed by Bruce, it was 

concluded that trypanosomes could only undergo asexual development and the 

sexual stage was removed from the lifecycle (Bruce, 1914). It was not until 1986 

that sexual development was demonstrated experimentally in T. b. brucei 

(Jenni, Marti, Schweizer, Betschart et al., 1986). Sexual recombination takes 

place in the salivary glands of the tsetse fly and it is thought that the 

unattached epimastigote represents the sexual stage (Gibson, Peacock, Ferris, 

Williams et al., 2008). However, mating is not mandatory and it is unclear how 

frequently genetic exchange occurs in natural trypanosome infections (Hide, 

Welburn, Tait and Maudlin, 1994; Smith, Smith, O'Rourke and Spratt, 1993; 

Sternberg, Turner, Wells, Ranford-Cartwright et al., 1989; Tait, 1980; Tibayrenc, 

Kjellberg and Ayala, 1990). 

The first report of trypanosomes in man was in 1901 by Forde, a British Colonial 

surgeon, who observed them in the blood of an Englishman who had been 

working on the River Gambia (Forde, 1902). Forde did not realise the 

significance of his discovery and showed them to Dutton who identified them as 

trypanosomes and named them T. gambiense (Dutton, 1902). In 1902, concerned 

about an epidemic that was sweeping through east Africa, the British 

government requested that the Royal Society establish a sleeping sickness 

commission to investigate the problem. The commission consisted of a young 

Italian named Aldo Castellani who incorrectly concluded that the disease was 
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caused by a bacterial Streptococcus infection. Castellani submitted a paper 

detailing his conclusions to the Proceedings of the Royal Society but its 

publication was blocked by Bruce who doubted the data presented (Cox, 2004).   

Frustrated with the lack of progress the Royal Society sent out a second sleeping 

sickness commission in 1903 consisting of Bruce and David Nabarro. By the time 

of Bruce's arrival in Africa, Castellani had already identified trypanosomes in the 

blood and cerebrospinal fluid (CSF) of patients suffering from sleeping sickness 

(Castellani, 1903) but it is the subject of much controversy as to whether 

Castellani alone identified trypanosomes as the cause of sleeping sickness or if 

he was assisted by Bruce. In 1903 Bruce submitted a report identifying T. b. 

gambiense as the causative agent of sleeping sickness in Uganda and indicated 

the tsetse fly G. palpalis as the vector responsible for transmission of the 

disease (Bruce, Nabarro and Grieg, 1903).  

The causative agent of the more acute east African sleeping sickness was not 

identified until 1910 by Stephens and Fantham (Stephens and Fantham, 1910). 

Noting a number of differences between their parasite and that previously 

described by Dutton (Dutton, 1902) they concluded that they had identified a 

new species of human trypanosome and named it T. b. rhodesiense (Stephens 

and Fantham, 1910). Game animals were subsequently confirmed as reservoir 

hosts of T. b. rhodesiense in 1912 (Kinghorn and Yorke, 1912) but it was not until 

the end of the twentieth century that domestic animals were identified as 

possible reservoir hosts of T. b. gambiense (World Health Organisation, 1998). 

1.1.5.2 Geographical distribution 

The dependence on an insect vector for transmission means the African 

trypanosomes are restricted to sub-Saharan Africa where their tsetse fly vector 

resides (Hoare, 1970b). The tsetse fly belt currently extends across 10 million 

km2 of the African continent spanning 38 countries. However, the species T. 

vivax, T. evansi and T. equiperdum have been able to extend their distribution 

beyond the African continent by evolving non-cyclical or mechanical methods of 

transmission. T. vivax and T. evansi are transmitted by biting flies primarily of 

the genera Tabanus while T. equiperdum is transmitted by direct contact during 

coitus between mares and stallions (Hoare, 1970a). Through the exportation of 

infected animals T. vivax, T. evansi and T. equiperdum are now found in 
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multiple foci around the world (Table 1-1). The African trypanosomes of animals 

T. vivax, T. simiae, T. b. brucei and T. suis are widely distributed throughout 

Africa occurring in areas where tsetse flies are present. In contrast the 

geographical distribution of the African trypanosomes infective to humans T. b. 

gambiense and T. b. rhodesiense is very distinct. T. b. gambiense is located in 

west and central Africa while T. b. rhodesiense is present in east Africa (Figure 

1-3). The geographical divide between the two subspecies roughly follows that 

of the Rift Valley (Welburn, Fevre, Coleman, Odiit et al., 2001). 

 

Figure 1-3: A map illustrating the geographical dis tribution of the human infective 
trypanosomes T. b. gambiense and T. b. rhodesiense.  
T. b. gambiense is located in west and central Africa while T. b. rhodesiense is present in east 
Africa. The black line represents the division between the two subspecies (Simarro, Jannin and 
Cattand, 2008). 

 
Currently the only country where both subspecies of the parasite exists is 

Uganda with T. b. gambiense located in the north-west and T. b. rhodesiense to 

the south-east (Maudlin, 2006). Although both subspecies currently exist in 
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Uganda they are geographically separate but there is a concern that the 

parasites are moving towards each other and that one day their distribution will 

overlap (Picozzi, Fevre, Odiit, Carrington et al., 2005). This will cause problems 

in the diagnosis and treatment of the disease as will be discussed later. 

 
1.1.5.3 The vector 

African trypanosomes are transmitted by tsetse flies of the genus Glossina. Over 

30 species comprise the genus which is separated into three subgenera Glossina, 

Nemorhina and Austenina based on the morphology of the male and female 

genitalia and the karyotype (Newstead, 1911). Only Nemorhina and Glossina 

subgenera are involved in the transmission of human African trypanosomiasis. 

Transmission of T. b. rhodesiense is mainly by four species of savannah tsetse 

flies belonging to the morsitans group. G. m. morsitans and G. m. centralis in 

east Africa, G. pallidipes in east and southern Africa and G. swynnertoni in 

Kenya and Tanzania (Pepin and Meda, 2001). One species belonging to the 

palpalis group, G. f. fuscipes has also been implicated in the transmission of T. 

b. rhodesiense in central and east Africa (World Health Organisation, 1998). The 

vectors of T. b. gambiense mainly belong to the palpalis group with the species 

responsible for transmission varying depending upon the vegetation present. In 

the forests of west and central Africa G. palpalis palpalis is the principal vector 

while G. p. gambiensis, G. tachinoides and G. fuscipes fuscipes are the main 

vectors in savannah regions. The only species of the morsitans group to act as 

vectors of T. b. gambiense are G. pallidipes and G. morsitans (Pepin and Meda, 

2001).  

1.1.5.4 Life cycle 

The life cycle of the trypanosome commences with the inoculation of metacyclic 

trypanosomes into the mammalian host by the tsetse fly (Figure 1-4). Following 

inoculation the metacyclic trypanosomes enter the bloodstream and lymphatic 

vessels where they multiply by binary fission, transforming into long slender 

trypomastigotes (Vickerman, 1985). The long slender trypomastigotes give rise to 

non-dividing short stumpy forms, which are taken up by the tsetse fly when it 

feeds on the host. Once ingested by the tsetse fly the stumpy forms pass into the 
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midgut of the fly where they transform into procyclics (Vickerman, 1985). Upon 

transformation to procyclics there is a switch in the main energy source from 

glucose to proline and the variable surface glycoprotein coat is lost (Steiger, 

1973; Vickerman, 1985). The procyclics multiply extensively in the lumen of the 

gut and invade the ectoperitrophic space through penetration of the peritrophic 

membrane (Evans and Ellis, 1983; Vickerman, Tetley, Hendry and Turner, 1988). 

From the ectoperitrophic space the trypanosomes gradually migrate forward to 

the proventriculus where they cease dividing and assume the proventricular 

mesocyclic form (Vickerman, 1985). The proventricular trypanosomes reinvade 

the endotrophic space and migrate via the oesophagus, probosics lumen and 

hypopharynx to the salivary glands (Vickerman et al., 1988; Vickerman, 1985). In 

the salivary glands the proventricular forms are transformed into epimastigotes, 

which attach to the microvilli of the wall of the salivary gland. Transition from 

the epimastigote form into the infective metacyclic form occurs through two 

intermediary stages. Initially the epimastigotes transform into uncoated 

trypomastigotes (premetacyclics) which are still capable of division (Vickerman, 

1985). Subsequently, the premetacyclics acquire the variable surface 

glycoprotein (VSG) coat and cease dividing. They are now known as metacyclics 

and are discharged into the mammalian host via the fly’s saliva during feeding 

(Vickerman, 1985). The complete cycle in the vector takes between 3 to 5 weeks 

(Vickerman et al., 1988).  

1.1.6 Trypanosomiasis in man   

1.1.6.1 Current situation of HAT 

Human African trypanosomiasis (HAT) is currently prevalent in 36 countries 

throughout sub-Saharan Africa. It is estimated that 60 million people are at risk 

from the disease but only 4 million are under adequate health surveillance 

(World Health Organisation, 1998). In 2009 9,878 cases of HAT were reported to 

the World Health Organisation (WHO) (World Health Organisation, 2010). Due to 

the remote areas in which HAT occurs and the lack of adequate disease 

screening programmes many cases go unreported therefore the true number of 

cases is likely to be considerably higher than this figure. In 2004, 1.6 million  
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Figure 1-4: The life cycle of Trypanosoma brucei spp 
The lifecycle commences when metacyclic trypanosomes are inoculated into the mammalian host by the tsetse fly. The metacyclic trypanosomes multiply by binary 
fission in the blood and lymphatic systems of the host giving rise to long slender trypomastigotes. The long slender trypomastigotes give rise to stumpy forms which are 
taken up by the tsetse fly when it feeds on the host. In the midgut of the tsetse fly the stumpy forms transform into procyclics. The procyclics multiply extensively in the 
lumen of the gut and migrate to the proventriculus where they assume the proventricular form. The proventricular forms migrate to the salivary glands where they are 
transformed into epimastigotes. Transition from the epimastigote form to the infective metacyclic occurs through two stages. Initially the epimastigotes transform into 
uncoated trypomastigotes (premetacyclics). The premetacyclics subsequently acquire the variable surface glycoprotein coat and are now known as metacyclics.
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DALYs (disability adjusted life years) were lost due to HAT (World Health 

Organisation, 2004). At the turn of the twentieth century HAT was endemic in 

sub-Saharan Africa with over 60,000 cases reported in 1930 (Simarro, Jannin and 

Cattand, 2008). The introduction of mass screening programmes and control 

measures by the colonial powers brought the disease under control and by 1960 

the disease had almost being eradicated (Simarro, Jannin and Cattand, 2008). 

However, when countries gained their independence screening programmes and 

control measures were abandoned or disrupted by civil war. As a result the 

incidence of HAT began to increase reaching a peak in 1998 with over 37,000 

cases reported (Simarro, Jannin and Cattand, 2008). In 1997 the World Health 

Organisation (WHO) expressed concern at the growing problem of HAT in sub-

Saharan Africa. This resulted in the reintroduction of screening programmes and 

control measures and gradually the number of cases of HAT began to decline. 

The disease once again appears to be largely under control in many countries 

(Simarro, Jannin and Cattand, 2008). In 2009 the number of reported cases fell 

below 10,000 for the first time in 50 years (World Health Organisation, 2010). It 

is hoped that one day HAT will be eliminated from the African continent but this 

goal is a long way off and some are sceptical as to whether elimination can ever 

be achieved.   

1.1.6.2 Pathogenesis 

The pathogenesis of HAT is poorly understood. The clinical manifestations 

associated with the haemolymphatic stage of the disease are often non-specific, 

irregular and inconsistent. Data from human patients is limited as post mortem 

examinations are not routinely conducted in Africa. Most of the information 

regarding the pathogenesis of the disease has therefore come from animal 

models.   

1.1.6.2.1 Haemolymphatic 

Anaemia is a prominent feature in trypanosome infections with the severity 

depending upon the host and species of trypanosome present. In T. b. 

rhodesiense infections severe anaemia is frequently observed while in T. b. 

gambiense infections it is not a significant clinical finding (Greenwood and 

Whittle, 1980). The anaemia is thought to arise due to the extravascular 
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destruction of red blood cells (RBC) but the mechanisms by which 

erythrophagocytosis is induced are not fully understood with numerous 

hypotheses suggested. It has been proposed that trypanosomal antigens bind to 

the surface of the RBC making the cells a target for circulating anti-

trypanosomal antibodies. As a result the RBC become susceptible to 

phagocytosis. Phagocytosis of the RBC may also be initiated through alterations 

in the RBC surface membranes which occur as a result of the cells becoming ATP 

depleted due to having to compete with the trypanosomes for essential 

metabolites (Jennings, 1976). Trypanosomes may also produce a haemolytic 

factor which causes the direct lysis of circulating RBC. This hypothesis was 

supported by the observation that trypanosomes produce a low molecular weight 

protein which when incubated with normal RBC induced lysis (Jennings, 1976).  

1.1.6.2.2 Specific organ damage 

A generalised lymphadenopathy is commonly observed in trypanosome 

infections. In T. b. gambiense infections enlargement of the lymph nodes in the 

posterior cervical triangle frequently occurs and is referred to as Winterbottom’s 

sign after the physician who first described the reaction (Apted, 1970a). 

Enlargement of the posterior cervical lymph nodes is not a common occurrence 

in T. b. rhodesiense infections where involvement of the axillary and 

epitrochlear glands is more common. However, the degree and sites of 

lymphodenopathy varies greatly between geographical locations and outbreaks 

(Apted, 1970a). Histological examination of the enlarged lymph nodes reveals 

follicular hyperplasia, sinus histiocytosis and perivascular infiltrations consisting 

of plasma and morular cells. As the infection progresses the affected lymph 

nodes become atrophic and depleted of lymphoid cells with capsular and 

trabecular fibrosis occurring in the most advanced cases (Greenwood and 

Whittle, 1980; Poltera, 1985).  

Splenic enlargement proportional to the degree of anaemia is a frequent 

occurrence in trypanosome infections. In the early stages of infection the 

sinusoids are packed with active macrophages and the Malpighian corpuscles 

increase in size. Histological examination of the Malpighian corpuscles reveals 

changes analogous to those observed in the lymph glands with the 
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transformation of small inactive lymphocytes into plasma cells. Fibrosis of the 

spleen is not observed until the latter stages of the disease (Ormerod, 1970).  

In the early stages of T. b. rhodesiense infections the heart is considered the 

organ most at risk (Ormerod, 1970). In a histological study conducted in a 

patient who had died as a result of HAT, a pancarditis involving all cardiac layers 

including the valves and conducting system was observed (Poltera, Cox and 

Owor, 1976). Cardiac involvement is not restricted to T. b. rhodesiense 

infections, sclerotic endocarditis and periarterial myocarditis have been 

reported in patients suffering from T. b. gambiense infections (Ormerod, 1970). 

Cardiac involvement has also been clearly demonstrated in animal models of 

trypanosome infection involving a range of species. In one study conducted in a 

murine model of T. b. brucei, parasites were observed in the endocardium of all 

chambers of the heart. Following the infiltration of parasites an inflammatory 

response consisting of mononuclear cells was observed. In advanced infections 

dilation of the lymphatic channels and marginal sinuses was also observed 

(Poltera, 1980).  

1.1.6.2.3 Central nervous system pathology 

The central nervous system (CNS) pathology observed in trypanosome infections 

was first described in 1906 by Mott who examined material from humans and 

experimental animals infected with T. b. gambiense (Mott, 1906). The 

pathological information from patients mostly relates to the advanced/terminal 

stages of the disease. Animal models have therefore played an important role in 

understanding the earlier pathological events associated with infection. 

Trypanosomal invasion of the CNS is characterised by a meningo-encephalitis. 

Inflammation occurs in the pia–arachnoid which becomes thickened due to the 

infiltration of lymphocytes in particular B cells, plasma cells and morular cells 

(Mott, 1906). Morular cells are a prominent feature in trypanosome infections 

and are often referred to as Mott cells after F. W. Mott, who was the first to 

describe the cells in the CNS lesions of trypanosomiasis. The cellular infiltrate 

extends along the Virchow-Robin spaces surrounding the blood vessels that enter 

the brain (Greenwood and Whittle, 1980). The blood vessels become surrounded 

by inflammatory cells in particular Mott cells producing a lesion known as a 
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perivascular cuff (Mott, 1906). Perivascular cuffing is more commonly observed 

in the Gambiense form of the disease as death due to cardiac manifestations 

frequently occurs in T. b. rhodesiense infections before CNS lesions become 

apparent (Ormerod, 1970). Activated astrocytes and microglia are frequently 

found surrounding the blood vessels and within the brain parenchyma 

(Pentreath, 1989). In some cases the lesions take the form of a severe 

haemorrhagic leukencephalopathy (Adams, Haller, Boa, Doua et al., 1986). 

Surprisingly in trypanosome infections there is little neuronal damage. Neuronal 

deterioration has only been reported in the most advances cases of the disease, 

in the region of the basal ganglia (Greenwood and Whittle, 1980).  

1.1.6.3 Clinical signs 

1.1.6.3.1 Haemolymphatic manifestations 

The first sign of trypanosome infection is often the development of a lesion at 

the site of the tsetse fly bite known as the chancre. Chancre development 

usually occurs within five to fifteen days of the initial bite although longer and 

shorter time periods have been reported (Apted, 1970a). Initially the chancre 

appears as a round inflamed area with a red spot in the centre. Over the next 48 

hours it rapidly develops into a painful round puritic nodule reaching up to three 

centimetres in diameter. Following its expansion the chancre gradually subsides 

over a two week period leaving an area of scaly desquamation (Apted, 1970a). 

The frequency with which the chancre occurs varies, it is more frequently 

reported in T. b. rhodesiense infections and in Europeans (Apted, 1970a).  

One to three weeks after the initial infective bite patients develop a fever due 

to the trypanosomes invading the blood stream. The fever is often high and is 

frequently accompanied by temporal or frontal headaches and occasionally 

vomiting and rigors (Apted, 1970a). The fever persists for up to seven days after 

which it subsides before returning in intermittent bouts punctuated with periods 

of remissions during which the patient feels well (Atouguia and Kennedy, 2000). 

The fever is more pronounced and occurs more frequently in T. b. rhodesiense 

than T. b. gambiense infections (Apted, 1970a; World Health Organisation, 

1998). In the initial stage of T. b. gambiense infections, enlargement of the 

lymph nodes in the posterior cervical triangle frequently occurs and is known as 
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Winterbottom's sign. The glands are discrete, freely movable and non-tender 

(Apted, 1970a). Enlargement of the cervical lymph nodes is characteristic of T. 

b. gambiense infections as enlargement of the glands is not frequently observed 

in T. b. rhodesiense infections where lymphadenopathy tends to be more 

generalised (World Health Organisation, 1998). 

Six to eight weeks after the onset of the illness an irregular, evanescent annular 

rash may appear on the trunk, shoulders and thighs. The rash takes the form of 

large scattered circinate, erythematous patches often reaching three to four 

centimetres in diameter (Apted, 1970a). It is most frequently observed in light 

skinned people as it is invisible in the dark skin of Africans but even in fair 

skinned people the rash is often difficult to locate. This may be due to the 

tendency of the rash to fade frequently and reappear over a period of weeks 

(Apted, 1970a). Pruritus is a common complaint in patients with first stage 

sleeping sickness being reported in 40% to 50% of cases (Atouguia and Kennedy, 

2000).  

The major organs involved in the first stage of infection are the liver, spleen and 

heart. The liver and spleen both become enlarged and are easily palpable (World 

Health Organisation, 1998). In some patients cardiac involvement is present from 

the onset of infection and tachycardia without fever is suggested to be one of 

the earliest signs of infection (Apted, 1970a; Ormerod, 1970). Although cardiac 

involvement is more common in the acute rhodesiense form of the disease 

cardiac manifestations have also been reported in T. b. gambiense infections 

(Ormerod, 1970). Cardiac manifestations common in the first stage of infection 

include lower intensity heart sounds, murmurs (Buchanan, 1929), myocarditis 

with congestive heart failure (Duggan and Hutchins, 1966; Koten and De Raadt, 

1969; Manson-Bahr and Charters, 1963), pericardial effusions (De Raadt, 2005; 

Hawking and Greenfield, 1941; Manson-Bahr and Charters, 1963), and pancarditis   

(Atouguia and Kennedy, 2000). Abnormalities in the cardiac rhythm are often 

detected by electrocardiograph (Atouguia and Kennedy, 2000) and radiographic 

imaging frequently reveals cardiomegaly due to pericardial effusion and dilation 

of the cardiac cavities (Buscher and Lejon, 2004; Manson-Bahr and Charters, 

1963).  
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Abnormalities in the endocrine system become apparent in the first stages of the 

disease. In women endocrine dysfunction manifests itself as a cessation of the 

menstrual cycle and sterility. In pregnant women who become infected, low 

birth weights, still or premature births and abortion are common occurrences 

(Apted, 1970a). In men a loss of libido and impotence are the most frequently 

reported clinical manifestations (Apted, 1970a).   

An infrequent clinical manifestation of trypanosome infection is a deep 

hyperaesthesia known as Kérandel's sign. The sensation occurs following the 

compression of soft tissues and the pain experienced is completely out of 

proportion to the force applied. The pain is felt a few seconds after the 

compression occurs and rapidly becomes severe before subsiding and 

disappearing after a few minutes (Apted, 1970a). When it is present Kérandel's 

sign is almost diagnostic of trypanosome infection but it occurs very infrequently 

being reported in only 29 out of 109 European patients examined and it appears 

to be even rarer in Africans (Apted, 1970a; Duggan and Hutchins, 1966).  

1.1.6.4 Central nervous system manifestations 

As the disease progresses central nervous system (CNS) involvement becomes 

more apparent. The clinical manifestations observed depend upon which area of 

the brain is damaged (Apted, 1970a). Damage to the extra-pyramidal area is a 

common occurrence resulting in tremors of the hands, fasciculation of the 

muscles of the limbs, face, lips and tongue and an increase in muscle tonicity 

(Apted, 1970a). Paralysis of whole muscle groups can occur due to focal lesions 

or the effects of pressure within the brain. The paralysis mainly effects the 

lower limbs and is occasionally transient but more frequently it is permanent 

(Apted, 1970a; Atouguia and Kennedy, 2000). Its occurrence varies throughout 

Africa being more common in certain regions (Apted, 1970a). The speech of 

patients is also affected becoming slow and difficult to understand as the 

disease progresses (Kellersberger, 1933).  

Mental disturbances are a common occurrence in patients with CNS stage 

disease. Initial changes may be subtle involving alterations in behaviour and 

personality (Atouguia and Kennedy, 2000; Gelfand, 1947). As the disease 

progresses patients experience irritability, anxiety, indifference, agitation and 
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manic episodes sometimes with euphoria, uncontrolled sexual impulses, violent 

moods, delirium and hallucinations (Apted, 1970a; Atouguia and Kennedy, 2000). 

The most characteristic sign of CNS involvement is the day time somnolence 

from which the disease derives its name although hypersomnia is not a feature 

of HAT (Apted, 1970a; Lundkvist, Kristensson and Bentivoglio, 2004). Instead 

there is a disruption of the sleep-wake pattern with patients developing 

uncontrollable urges to sleep during the day which alternate with night time 

insomnia (Bentivoglio, Grassi-Zucconi, Olsson and Kristensson, 1994; Lundkvist, 

Kristensson and Bentivoglio, 2004). In the latter stages of the disease the 

uncontrollable urge to sleep is almost continuous and patients frequently fall 

into sleep while talking or in the middle of a task (Atouguia and Kennedy, 2000; 

Duggan and Hutchins, 1966; Kellersberger, 1933). As the disease enters its final 

stages there is a progressive deterioration in the mental state of the patient. 

The patient becomes indifferent to their environment developing an intolerable 

pruritus and becomes emaciated (Apted, 1970a; Atouguia and Kennedy, 2000). 

Eventually the patient enters a coma and death ensues either from the disease 

itself, intercurrent infections or malnutrition (Apted, 1970a; Kellersberger, 

1933).  

1.1.6.5 Diagnosis 

As the clinical signs of HAT are non-specific diagnostic tests have to be 

performed for a definitive diagnosis to be obtained (Kennedy, 2004). Most 

patients infected with T. b. gambiense are detected during mass screening 

programs. The most commonly used test for screening populations in areas 

where T. b. gambiense occurs is the card agglutination test for trypanosomiasis 

(CATT). The CATT test was developed in 1978 and is a fast and simple way of 

detecting the presence of T. b. gambiense specific antibodies in the blood, 

plasma or serum of patients (Magnus, Van Meirvenne and Vervoort, 1978). The 

test detects the presence of antibodies against the dominant variable antigen 

LiTat 1.3. The patients’ blood is combined with a reagent containing whole, 

fixed and stained trypanosomes expressing the antigen on the card and is shaken 

for 5 minutes on a rotor. In patients who have been exposed to T. b. gambiense, 

agglutination is clearly visible (Magnus, Van Meirvenne and Vervoort, 1978). The 

sensitivity and specificity of the CATT test has been estimated to lie between 
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92-100% and 90-95% respectively (Bafort, Schutte and Gathiram, 1986; 

Jamonneau, Truc, Garcia, Magnus et al., 2000; Noireau, Gouteux and Duteurtre, 

1987; Zillmann and Albiez, 1986). False negatives can occur in patients infected 

with trypanosome strains which lack the LiTat 1.3 antigen (Dukes, Gibson, 

Gashumba, Hudson et al., 1992; Enyaru, Matovu, Akol, Sebikali et al., 1998) and 

false positives have been reported in patients with malaria and other parasitic 

infections (Magnus, Van Meirvenne and Vervoort, 1978). In all patients with a 

positive CATT, the parasite must be demonstrated in biological fluids in order for 

the diagnosis to be confirmed (Kennedy, 2004). However, this is often difficult in 

T. b. gambiense infections as the parasite is present in very low numbers in the 

peripheral circulation (Atouguia and Kennedy, 2000). Individuals who are CATT 

positive but negative for the presence of trypanosomes are subject to follow up 

investigations until parasites are visualised or the individual becomes CATT 

negative (Simarro, Ruiz, Franco and Josenando, 1999). The CATT test is only 

effective in the diagnosis of T. b. gambiense infections (Enyaru, Odiit, Winyi-

Kaboyo, Sebikali et al., 1999). In individuals where T. b. rhodesiense infection is 

suspected the only way to obtain a definitive diagnosis is by direct visualisation 

of the parasites in biological fluids. 

Biological fluids commonly examined for the presence of trypanosomes are 

blood, lymph node aspirates and cerebrospinal fluid. Thick, thin or wet blood 

films can be used to detect the parasite in the blood. In wet blood films a drop 

of the patients blood is placed on a slide and directly examined under a 

microscope for the presence of trypanosomes (World Health Organisation, 1998). 

The technique has a low sensitivity with a limit of detection of approximately 

10,000 trypanosomes per ml of blood but it is still widely used in the field due to 

its low cost, simplicity and immediate results (Chappuis, Loutan, Simarro, Lejon 

et al., 2005a). Trypanosomes are more easily visualised in the blood of patients 

with T. b. rhodesiense infections as the density of circulating parasites is higher 

than in T. b. gambiense infections (Atouguia and Kennedy, 2000). Sensitivity can 

be improved by using a concentration technique. The most widely used 

concentration technique is the microhaematocrit centrifugation technique 

(MHCT) which was developed over 30 years ago (Woo, 1970; Woo, 1971; World 

Health Organisation, 1998). Capillary tubes containing anticoagulant are filled 

three quarters full with the patients’ blood and sealed with plasticine before 
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being centrifuged at high speed. The trypanosomes are concentrated at the level 

of the white blood cells between the plasma and erythrocytes and can be 

directly visualised at low magnification. By examining more than one capillary 

tube per patient less than 500 trypanosomes per ml of blood can be detected. 

However, visualisation of the smaller trypanosomes is often impeded by the 

presence of the larger microfilariae when co-infections occur (Chappuis et al., 

2005a). A second technique which can be used to enhance the visualisation of 

trypanosomes in blood samples is the mini anion exchange centrifugation 

technique (mAECT) (Lumsden, Kimber, Evans and Doig, 1979; Zillmann, 

Konstantinov, Berger and Braun, 1996). As trypanosomes are less negatively 

charged than blood cells they can be separated from venous blood by anion 

exchange chromatography. The trypanosomes are then concentrated at the 

bottom of a glass tube by low speed centrifugation where they can be visualised 

by microscopy. The technique is very sensitive with a detection limit of less than 

100 trypanosomes per ml of blood but the technique is quite tedious and time 

consuming, limiting its use in the field (Chappuis et al., 2005a). An alternative 

to the microhaematocrit and mini anion exchange centrifugation techniques is 

the quantitative buffy coat (QBC) technique (Bailey and Smith, 1992; Levine, 

Wardlaw and Patton, 1989). The technique concentrates the parasites by high 

speed centrifugation and utilises acridine orange to stain the nucleus and 

kinetoplast. The fluorescent trypanosomes can then be visualised by ultraviolet 

light between the white blood cells in the expanded buffy coat. The technique is 

very sensitive and robust with a sensitivity of 95% for trypanosome 

concentrations of 450 per ml of blood. Despite this, production of QBC kits has 

recently ceased (Buscher and Lejon, 2004). 

In addition to blood samples, chancre and lymph node aspirates can also be 

examined for the presence of trypanosomes (World Health Organisation, 1998). 

The examination of lymph node aspirates is frequently used in the diagnosis of T. 

b. gambiense infections due to its low cost and simplicity (Buscher and Lejon, 

2004). Enlarged lymph nodes are punctured and the fresh aspirate is examined 

under the microscope for the presence of motile trypanosomes. The sensitivity 

of the technique varies between 40 and 80% depending upon the parasite strain, 

the prevalence of other diseases causing lymphadenopathy in the area and the 

stage of the disease, with sensitivity being higher during the first stage 
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(Chappuis et al., 2005a; Simarro, Louis and Jannin, 2003). Trypanosomes can be 

detected in the chancre two days earlier than in the blood but this technique is 

seldomly used in the field as most patients present late in infection when the 

chancre has resolved (Apted, 1970a).  

Once a definitive diagnosis has been obtained the stage of the disease must be 

determined due to the high toxicity of the drugs used to treat the second stage 

of the disease. The stage of the disease is determined by lumbar puncture and 

examination of the cerebrospinal fluid (CSF). The criteria for second stage 

disease as determined by WHO is the presence of one of the following in the 

cerebrospinal fluid; trypanosomes, an elevated leukocyte count (>5 cells/µl) or 

an increase in the protein content (>37mg/100ml as measured by the dye 

binding protein assay) (World Health Organisation, 1998). At present there is 

disagreement about the cut off point used to differentiate between first and 

second stage disease (Kennedy, 2008). Many believe that the cut off point for 

first stage disease should be raised to 10 or 20 cells/µl of CSF (Bisser, Lejon, 

Preux, Bouteille et al., 2002; Lejon, Reiber, Legros, Dje et al., 2003; Miezan, 

Meda, Doua, Yapo et al., 1998). This is due to studies conducted in Côte d'Ivoire 

where patients with 6 to 20 cells/µl of CSF were successfully treated with the 

first stage drug pentamidine (Doua, Miezan, Singaro, Yapo et al., 1996) while in 

a further study in Angola the relapse rate after pentamidine treatment was 

similar in patients with 0 to 5 cells/µl or 6 to 10 cell/µl of CSF (Ruiz, Simarro 

and Josenando, 2002). In Angola and Côte d’Ivoire the cut off point for first 

stage disease has already been raised to 20 cells/µl of CSF (Doua et al., 1996; 

Pepin and Milord, 1994). The quantification of protein in the CSF for stage 

determination of HAT is no longer recommended (Chappuis et al., 2005a). 

Research into the development of new diagnostic tests for HAT that are simple 

to carry out in the field and allow accurate staging of the disease is currently in 

progress.     
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1.1.7 Chemotherapy 

1.1.7.1.1 Haemolymphatic infection 

1.1.7.1.2 Suramin 

Suramin is a polysulphonated naphthyl urea (Figure 1-5) that was first used in 

the treatment of HAT in 1922 (Voogd, Vansterkenburg, Wilting and Janssen, 

1993). It was developed following the observation that two closely related 

naphthalene dyes, trypan red and trypan blue, exhibited trypanocidal activity. 

Suramin is effective against both T. b. rhodesiense and T. b. gambiense early 

stage infections but pentamidine is preferred for treatment of T. b. gambiense 

infections due to its easier administration schedule (Apted, 1970b). The 

compound is supplied as a white powder which is readily soluble in water. 

Administration consists of a test dose of 5mg/kg body weight on day one 

followed by five injections of 20mg/kg body weight every three to seven days 

(World Health Organisation, 1998). Administration is via slow intravenous 

infusions as intramuscular administration results in an intense local irritation at 

the injection site (Williamson, 1970).   

 

Figure 1-5: The chemical structure of suramin 

 
Following administration over 99.7% of the drug becomes bound to plasma 

proteins resulting in the drug being eliminated very slowly (Pepin and Milord, 

1994; World Health Organisation, 1998). It can be found in the blood up to three 

months after administration (Pepin and Milord, 1994). The main route of 

elimination is through the kidneys with approximately 80% of the administered 

dose being excreted in the urine (World Health Organisation, 1998). The kidneys 

are the main organ of accumulation of the drug and can therefore be a site of 

toxicity (World Health Organisation, 1998). Renal toxicity in the form of a mild 

proteinuria is often observed therefore patients’ urine is frequently checked 
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throughout treatment in order to detect any renal impairment (Apted, 1970b). 

Severe adverse reactions to the drug are rare. Adverse reactions which have 

been reported following suramin administration include nausea, vomiting, 

urticaria, loss of consciousness, fever, photophobia, lacrimation, exfoliative 

dermatitis and haemolytic anaemia (Apted, 1970b; Burri, Stich and Brun, 2004).  

Suramin is slowly trypanocidal killing trypanosomes 12 to 36 hours after 

administration (Hawking, 1978). It is suspected that the drug gradually 

accumulates within the trypanosome via endocytosis bound to low-density 

lipoproteins (Vansterkenburg, Coppens, Wilting, Bos et al., 1993). Despite many 

years of research the trypanocidal mechanism of suramin remains obscure. The 

drug carries six negative charges that enable the compound to bind to many 

enzymes by electrostatic interactions. Enzymes inhibited by suramin include L-α-

glycerophosphate oxidase, glyceraldehyde-3-phosphate dehydrogenase, RNA 

polymerase and kinases, thymidine kinase, dihydrofolate reductase, urease and 

hexokinase (Chello and Jaffe, 1972; Fairlamb and Bowman, 1977; Jaffe, 

Meymaria and Mccormac, 1972; Willson, Callens, Kuntz, Perie et al., 1993). 

However, it is unclear whether trypanocidal activity occurs as a direct result of 

enzyme inhibition.  

At present no resistance to suramin has been reported in the field. 

1.1.7.1.3 Pentamidine 

Pentamidine is an aromatic diamidine (Figure 1-6) that was introduced for the 

treatment of sleeping sickness in 1940 (Sands, Kron and Brown, 1985). It was 

developed after it was observed that a related compound synthalin, which 

induces hypoglycaemia in mammals, had pronounced anti-trypanocidal activity. 

Pentamidine is also used to treat antimony refractory leishmaniasis and 

Pneumocystis carni pneumonia (Drake, Lampasona, Nicks and Schwarzmann, 

1985). Pentamidine is used in the treatment of first stage T. b. gambiense 

infections. It is administered as an intramuscular injection at a dose of 4mg/kg 

body weight daily or on alternate days for 7 to 10 days (World Health 

Organisation, 1998). The drug is generally well tolerated with only minor adverse 

reactions occurring which are usually reversible. Immediately following 

administration hypotension accompanied by dizziness and collapse of the patient 
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has been reported in 9.6% of patients administered the drug (Burri, Stich and 

Brun, 2004). At the site of administration local reactions including pain, sterile 

abscesses and necrosis can occur (World Health Organisation, 1998). Systemic 

reactions which have been reported following pentamidine treatment include 

leucopenia, abnormal liver function tests, hypoglycaemia and hyperglycaemia 

(Burri, Stich and Brun, 2004).  

 

Figure 1-6: The chemical structure of pentamidine 

 
Pentamidine has a large volume of distribution of 11,850l after a single dose and 

35,000l after multiple doses (Burri, Stich and Brun, 2004). As 70-80% of the drug 

is bound to plasma proteins its half-life is very long, varying between 7 and 48 

days (World Health Organisation, 1998). The drug’s long half life led to it being 

used in mass prophylaxis campaigns by the French, Belgian and Portuguese 

colonial health authorities (Williamson, 1970). Despite being highly successful in 

controlling T. b. gambiense the prophylactic use of pentamidine is no longer 

recommended (Van Hoof, Henrard and Peel, 1944). Of the administered dose 

approximately 5% is recovered unchanged in the urine (Bronner, Gustafsson, 

Doua, Ericsson et al., 1995). In rat liver homogenates and microsomes the 

majority of the administered dose is metabolised to at least 7 primary 

metabolites by the cytochrome P450 dependant oxygenases before being 

eliminated via the urine (Bronner, Ericsson, Nordin, Wikstrom et al., 1995).  

Uptake of pentamidine into trypanosomes is carrier mediated. The primary 

carrier is the P2 aminopurine permease transporter (ASPT1) but at least two 

other transporters are involved in the uptake of pentamidine, a high affinity 

pentamidine transporter (HAPT1) and a low affinity pentamidine transporter 

(LAPT1) (de Koning and Jarvis, 2001). The mechanism of action of pentamidine is 

poorly understood. As a di-cation pentamidine interacts electrostatically with 

cellular polyanions (Denise and Barrett, 2001). Binding to nucleic acid, 

disruption of kinetoplast DNA, inhibition of mRNA trans-splicing and inhibition of 

RNA-editing have all been suggested as possible mechanisms of action but to 
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date none have been confirmed (Wang, 1995). As the drug accumulates to very 

high levels within the trypanosome it is possible that its toxic effects arise due 

to inhibition of multiple cellular targets (Carter, Berger and Fairlamb, 1995; 

Denise and Barrett, 2001).  

1.1.7.2 CNS infection 

1.1.7.2.1 Melarsoprol 

Melarsoprol, a melaminophenyl based organic arsenical (Figure 1-7) was 

introduced for the treatment of sleeping sickness in 1949 (Friedheim, 1949). The 

drug is insoluble in water so it is prepared as a 3.6% solution dissolved in 

propylene glycol. Various administration schedules have been used since its 

introduction. Until recently a schedule consisting of a series of 3-4 injections of 

increasing melarsoprol concentration separated by a drug free period of 7 to 10 

days was the most frequently used schedule (World Health Organisation, 1998). 

Recent pharmacokinetic investigations demonstrated that a concise regime 

consisting of 10 daily injections of 2.2 mg/kg was as effective and no more toxic 

than the prolonged schedule (Burri, Nkunku, Merolle, Smith et al., 2000; Schmid, 

Nkunku, Merolle, Vounatsou et al., 2004; Schmid, Richer, Bilenge, Josenando et 

al., 2005). This condensed schedule is now used in the field for the treatment of 

T. b. gambiense infections. The efficacy of the concise schedule against the 

more acute rhodesiense form of the disease has yet to be assessed. The 

prolonged schedule is therefore still recommended for the treatment of T. b. 

rhodesiense infections (Schmid et al., 2005). The mechanism by which 

melarsoprol exerts its trypanocidal effect is unknown. Trypanosomes exposed to 

melarsoprol rapidly lyse. It was suggested that inhibition of glycolysis and the 

subsequent loss of ATP could be responsible for the lysis observed but it appears 

that lysis occurs before there is a significant depletion of ATP within the parasite 

(Van Schaftingen, Opperdoes and Hers, 1987). A second possible target of 

melarsoprol is the thiol trypanothione. Trypanothione is a key, low molecular 

weight thiol comprising of two glutathione molecules conjugated with 

spermidine. It is responsible for most of the tasks carried out by glutathione in 

mammalian cells (Fairlamb and Cerami, 1992). Arsenic forms very stable 

conjugates with trypanothione therefore it has been proposed as a possible 

target of melarsoprol (Fairlamb, Henderson and Cerami, 1989). However, at the 
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point of arsenical induced lysis only a small proportion of the drug is conjugated 

with trypanothione therefore it is unclear whether trypanothione is the target of 

the drug (Fairlamb, Smith and Hunter, 1992).  

 

Figure 1-7: The chemical structure of melarsoprol 

 
Resistance to melarsoprol in the field has now reached 30% in certain areas of 

Uganda (Legros, Evans, Maiso, Enyaru et al., 1999). The mechanisms behind this 

resistance are not fully understood. Melarsoprol uptake into trypanosomes is 

mediated by the P2 aminopurine transporter (Carter and Fairlamb, 1993; 

Delespaux and de Koning, 2007; Maser, Sutterlin, Kralli and Kaminsky, 1999). 

The P2 transporter is encoded by the TbAT1 gene (Maser et al., 1999). Disruption 

of the TbAT1 gene in bloodstream T. b. brucei parasites in-vitro results in 

limited arsenical resistance suggesting that different or additional mechanisms 

for high level arsenical resistance exist (Matovu, Stewart, Geiser, Brun et al., 

2003). One mechanism that has been suggested is the over expression of ABC 

transporters. ABC transporters have already been implicated in drug resistance 

in multiple protozoan parasites (Jones and George, 2005; Klokouzas, Shahi, 

Hladky, Barrand et al., 2003). Three ABC transporter genes have been identified 

in T. b. brucei (Maser and Kaminsky, 1998). The over expression of one of these, 

TbMRPA resulted in a ten fold increase in melarsoprol resistance in-vitro (Shahi, 

Krauth-Siegel and Clayton, 2002). The TbMRPA transporter is thought to extrude 

the melarsoprol-trypanothione conjugate from the parasite rather than the drug 

itself. However, in-vivo over expression of TbMRPA did not lead to a reduced 

sensitivity to melarsoprol and there is no evidence of TbMRPA over expression in 

clinical isolates (Alibu, Richter, Voncken, Marti et al., 2006). It can therefore be 

concluded that over expression of ABC transporters is unlikely to contribute to 

melarsoprol resistance in the field (de Koning, 2008).  

Research to find an alternative transport mechanism by which melarsoprol 

enters trypanosomes led to the discovery that the high affinity pentamidine 
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transporter (HAPT) also mediates the uptake of melaminophenyl arsenicals 

(Bridges, Gould, Nerima, Maser et al., 2007; Matovu et al., 2003). It is thought 

that concomitant loss of both the P2 and HAPT transporters in trypanosomes 

could result in high level melarsoprol resistance. The hypothesis was tested in-

vitro with a cell line in which the P2 and HAPT transporter had been lost 

(Bridges et al., 2007). The cell line was highly resistant to melarsen oxide 

confirming the suspicion that high level melarsoprol resistance could occur due 

to loss of both the P2 and HAPT transporter (Bridges et al., 2007). However, the 

physiological function of HAPT is currently unknown. In-vivo a high inoculum of 

the P2/HAPT deficient line was required to establish a parasitaemia and the 

infection appeared to be self curing (Bridges et al., 2007). It is therefore 

possible that HAPT performs a function vital for trypanosomal survival in-vivo 

but not in-vitro (de Koning, 2008). The definitive mechanism by which high level 

melarsoprol resistance occurs is still to be elucidated.  

Melarsoprol chemotherapy is associated with numerous adverse reactions. 

Pyrexia, headache and general malaise occur in nearly all patients to which the 

drug is given (Burri, Stich and Brun, 2004). Other adverse reactions occasionally 

reported include peripheral motoric or sensorial neuropathy, renal dysfunction 

(proteinuria and hypertension), abdominal pains, myocardial damage, vomiting 

and diarrhoea (Blum and Burri, 2002). In less than 1% of patients a severe skin 

reaction, exfoliative dermatitis, has been reported upon completion of 

treatment (World Health Organisation, 1998). Care has to be taken when 

administering the drug as leakage of the propylene glycol solvent into the 

surrounding tissues results in chemical cellulitis and necrosis at the site of 

injection (Pepin and Milord, 1994). 

The most severe adverse reaction to melarsoprol treatment is a post treatment 

reactive encephalopathy (PTRE). The PTRE occurs in up to 10% of patients 

treated with the drug of which 50% will die from the complication (Kennedy, 

2004; Pepin and Milord, 1994). It most frequently occurs at the end of the first 

series of injections, during the interval between the first and second series of 

injections or during the second series of injections (Haller, Adams, Merouze and 

Dago, 1986). Patients experience fever, headaches, dizziness, tremors and 

slurred speech followed by mental dullness and confusion, staggering gait or 

restlessness (Haller et al., 1986; World Health Organisation, 1998). There is 
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usually a rapid deterioration in the patients condition with patients frequently 

experiencing seizures and a loss of consciousness, often progressing to a deep 

coma (Atouguia and Kennedy, 2000; Pepin and Milord, 1994; World Health 

Organisation, 1998).  

The mechanisms behind the occurrence of the PTRE are not fully understood and 

many hypotheses have been put forward. Jennings et al. proposed that 

administration of melarsoprol results in a rapid clearance of trypanosomes from 

the bloodstream but not the CNS (Jennings, McNeil, Ndungu and Murray, 1989). 

As a result the trypanosomes within the brain become the sole focus of the 

activated immune system resulting in an exacerbation of the pre-existing 

meningoencephalitis (Jennings et al., 1989). Pepin and Milord agreed that the 

PTRE was an immune mediated event but proposed an alternative mechanism for 

its occurrence (Pepin and Milord, 1991). They suggested that melarsoprol 

treatment results in the formation of immune complexes and the release of 

trypanosomal antigens which bind to glial cells and become a target for 

antibodies and T lymphocytes (Pepin and Milord, 1991). Based on this theory it 

was suggested that very aggressive treatment schedules could result in the rapid 

release of immune complexes or trypanosomal antigens thus increasing the 

likelihood of the PTRE occurring. This theory was investigated by Jennings et al. 

in a murine model of the disease (Jennings, Hunter, Kennedy and Murray, 1993). 

A rapidly curative treatment regime was administered to mice with early CNS 

stage disease, in which low numbers of trypanosomes are present within the CNS 

and also to mice suffering from relapse infections in which large numbers of 

trypanosomes are present within the CNS. In both instances the existing 

meningoencephalitis was rapidly resolved, indicating that it is the presence of 

living trypanosomes within the CNS and not trypanosomal antigens which are 

responsible for the PTRE (Jennings et al., 1993). The speed at which 

trypanosomes were killed had little effect on the development of the 

meningoencephalitis suggesting that aggressive treatment regimes which 

eliminate all trypanosomes from the CNS are less likely to result in the PTRE 

(Jennings et al., 1993).  

The development of the PTRE is not exclusively associated with HAT patients as 

it was also observed in patients with acute promyelocytic leukaemia (APL) who 

were given melarsoprol (Soignet, Tong, Hirschfeld and Warrell, 1999). It was 



33 

 

suggested that the CNS toxicity observed was due to a direct toxic effect of the 

compound (Soignet et al., 1999). However, information from HAT patients 

suggests that the PTRE is not a result of direct arsenical toxicity as patients who 

survived the PTRE could receive additional doses of melarsoprol without the 

PTRE reoccurring (Pepin, Guern, Ethier, Milord et al., 1989). Furthermore, 

incidences of encephalopathy have also been reported following the 

administration of the trypanocidal drugs eflornithine and suramin (Burri and 

Blum, 1996; Chappuis, Udayraj, Stietenroth, Meussen et al., 2005b).  

The administration of the corticosteriod prednisolone prior to and during the 

administration of melarsoprol has been suggested to prevent the development of 

the PTRE. Pepin et al. reported a decrease in the incidence of the PTRE in 

patients when 1mg/kg of prednisolone was administered orally, concurrently 

with melarsoprol (Pepin et al., 1989). However, other authors are more sceptical 

about the potential benefits of corticosteroids in preventing the PTRE. In one 

study involving patients infected with T. b. rhodesiense, the co-administration 

of corticosteroids with melarsoprol had no effect on the incidence of the PTRE 

(Orlando and Arroz, 1987).   

In patients who develop the PTRE, melarsoprol treatment is suspended and the 

symptoms of the PTRE are managed. Patients are given 5% isotonic glucose 

intravenously, body temperature and convulsions are controlled with 

antipyretics and antiepileptic drugs respectively. The cerebral oedema is treated 

with hypertonic solutions, diuretics, adrenaline and corticosteroids (World 

Health Organisation, 1986). If the symptoms resolve melarsoprol therapy can be 

restarted and interestingly the PTRE does not recur (Pepin et al., 1989).  

1.1.7.2.2 Eflornithine (αααα difluoromethylornithine) (DFMO) 

Eflornithine (Figure 1-8) is the most recent drug to be recommended for the 

treatment of second stage HAT being registered in 1990 and 1991 in the USA and 

Europe respectively (Kuzoe, 1993). It was originally developed as a potential 

antineoplastic agent however it has still not being registered for this purpose 

(Barrett, Boykin, Brun and Tidwell, 2007; Barrett and Barrett, 2000; Singh and 

Lippman, 1998). The drug was originally recommended for the treatment of 

melarsoprol refractory CNS stage T. b. gambiense infections but it has recently 
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been approved as a first line treatment for CNS stage T. b. gambiense infections 

in combination with nifurtimox (NECT therapy) (Pepin and Milord, 1994; World 

Health Organisation, 2009). As a monotherapy the drug is administered at a dose 

of 400mg/kg body weight per day given over four slow intravenous infusions 

every six hours for 14 days (World Health Organisation, 1998). Commonly 

reported adverse reactions include suppression of bone marrow activity with 

anaemia, leukopenia and thrombocytopenia being reported in 44, 27 and 7% of 

patients respectively (World Health Organisation, 1998). Diarrhoea, vomiting, 

fever and convulsions have also been reported following administration of 

eflornithine (Chappuis et al., 2005b). Generally adverse reactions are reversible 

upon cessation of treatment (Burri, Stich and Brun, 2004). Following 

administration eflornithine does not bind significantly to plasma proteins and 

approximately 80% of the administered dose is excreted unchanged in the urine 

within 24 hours (Burri and Brun, 2003). 

 

Figure 1-8: The chemical structure of eflornithine 

 
Eflornithine is an irreversible inhibitor of the enzyme ornithine decarboxylase 

(ODC) (Mamont, Duchesne, Grove and Bey, 1978). ODC catalyses the conversion 

of ornithine to putrescine which is the first rate limiting step in the synthesis of 

the polyamines spermidine and spermine (Bacchi, Nathan and Hutner, 1980). 

Polyamines are essential for the growth and multiplication of all eukaryotic cells 

(Pegg and Mccann, 1982). Selectivity arises as the ODC of T. b. gambiense is 

replenished much more slowly than in mammalian cells (Ghoda, Phillips, Bass, 

Wang et al., 1990). Upon exposure to eflornithine trypanosomes are transformed 

into non-dividing stumpy forms which are then cleared by the immune system 

(Bitonti, McCann and Sjoerdsma, 1986). A fully functioning immune system is 

therefore essential in order for eflornithine chemotherapy to be effective. 

Eflornithine is not effective in the treatment of CNS stage T. b. rhodesiense 

infections as the ODC enzyme of T. b. rhodesiense is replenished more rapidly 

than in T. b. gambiense (Iten, Mett, Evans, Enyaru et al., 1997).  
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Resistance to eflornithine has been induced in-vitro in procyclic T. b. brucei 

lines (Bellofatto, Fairlamb, Henderson and Cross, 1987; Phillips and Wang, 1987). 

Accumulation of the drug was decreased in the parasites but it is not known if 

this is a result of reduced uptake or due to an active drug extrusion mechanism. 

Resistance to eflornithine is yet to be reported in the field, if resistance did 

emerge it would have disastrous consequences for the treatment of HAT. 

One of the main limitations to the widespread use of eflornithine is its prolonged 

treatment schedule. The need for the drug to be infused every six hours for 14 

days means large quantities of infusion solutions are required, which are often 

not available in the resource poor settings where HAT occurs. Furthermore, 

patients must be hospitalised for the duration of the treatment and this places a 

massive strain on already stretched health services. In an attempt to reduce the 

administration schedule of eflornithine, the drug was recently combined with 

the orally available nitroimidazole nifurtimox to produce a combination therapy 

known as NECT. (Discussed in detail below).  

1.1.7.2.3 Nifurtimox  

Nifurtimox (Figure 1-9) was introduced in the 1960's for the treatment of Chagas 

disease which is caused by the American trypanosome T. cruzi (Brener, 1979). At 

present nifurtimox is not licensed for use in sleeping sickness, it is only used on 

compassionate grounds for the treatment of melarsoprol refractory infections 

(World Health Organisation, 1998). When nifurtimox is administered alone it is 

not very effective in the treatment of CNS stage T. b. gambiense infections with 

cure rates of between 40 and 80% (Janssens and Demuynck, 1977; Moens, 

Dewilde and Ngato, 1984; Pepin, Milford, Meurice, Ethier et al., 1992; Pepin and 

Milord, 1994; Pepin, Milord, Mpia, Meurice et al., 1989). Its efficacy improves 

greatly when it is combined with eflornithine in a combination therapy known as 

NECT (See below). 
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Figure 1-9: The chemical structure of nifurtimox 

 
Nifurtimox is given orally but it is not well tolerated with two thirds of patients 

experiencing adverse reactions (Burri, Stich and Brun, 2004). The drug is toxic to 

the peripheral and central nervous system with convulsions, psychotic reactions, 

nystagmus and vertigo frequently occurring. In addition, gastrointestinal tract 

disturbances and skin rashes have been reported (World Health Organisation, 

1998). The mode of action of nifurtimox is not fully understood. The drug is a 

nitroheterocycle and is composed of a nitro group linked to an aromatic ring 

(Figure 1-9) (Grunberg and Tisworth, 1973). Like most nitroheterocycles, 

nirfurtimox is as a pro-drug and the active metabolite is generated through 

reduction of the nitro group. In trypanosomes, reduction of nirfurtimox is 

catalysed by type I nitroreductases. The reaction generates an unsaturated 

open-chain nitrile which has pronounced trypanocidal and cytotoxic properties 

(Hall, Bot and Wilkinson, 2011). It is thought that selectivity arises as type I 

nitroreductases are predominately expressed in trypanosomes but not in 

eukaryotic cells. The cellular target of the open-chain nitrile is currently 

unknown but as the metabolite displays equivalent trypanocidal and cytotoxic 

activity, it is possible that its cellular target is common to both trypanosomes 

and eukaryotic cells (Hall, Bot and Wilkinson, 2011).            

1.1.7.2.4 Nifurtimox and eflornithine combination therapy (NECT) 

A phase III randomised open-label multi-centre trial of nifurtimox and 

eflornithine combination therapy (NECT) has recently been completed in the 

Republic and Democratic Republic of Congo (Priotto, Kasparian, Mutombo, 

Ngouama et al., 2009). In the trial patients were either given the standard 

eflornithine regime of 400mg/kg per day given by slow intravenous infusion 

every six hours for 14 days or eflornithine 400mg/kg per day by slow intravenous 

infusion every 12 hours for 7 days plus nifurtimox 15mg/kg per day orally every 8 

hours for 10 days. NECT therapy was found to be as effective as eflornithine 
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monotherapy with cure rates of 96.5 to 97.9% compared to 91.6 to 92.3% for 

eflornithine monotherapy. A lower frequency of diarrhoea, hypotension, 

infections, dysphagia, skin rashes, pruritus, fever and neutropenia was observed 

in patients receiving the NECT therapy compared to eflornithine alone. 

However, nausea, vomiting, anorexia and tremors occurred more frequently in 

patients receiving NECT therapy than eflornithine monotherapy. Neutropenia 

and anaemia were the most prominent haematological reactions in both 

treatment groups although the frequency of neutropenia was significantly 

reduced in patients receiving NECT therapy. From the clinical trial it can be 

concluded that eflornithine in combination with nifurtimox is safe and effective 

in the treatment of CNS stage T. b. gambiense infections (Priotto et al., 2009). 

NECT therapy has many advantages over eflornithine monotherapy. The simpler 

and shorter administration schedule of NECT means fewer resources are required 

and the hospitalisation time of patients is greatly reduced. This makes NECT 

therapy more feasible in the resource poor settings where HAT occurs. In 2009, 

NECT therapy was added to the WHO List of Essential Medicines for the 

treatment HAT and is now the first line drug for the treatment of T. b. 

gambiense infections (World Health Organisation, 2009). The efficacy of NECT 

therapy in the treatment of T. b. rhodesiense CNS infections has not been 

assessed and it is therefore not recommended for the treatment of T. b. 

rhodesiense infections (Priotto et al., 2009).   

1.1.7.3 Emerging treatments 

Due to the high toxicity of melarsoprol and the difficulty and cost involved in the 

administration of eflornithine there is a desperate need for the development of 

new trypanocides. Any new trypanocides must be safe, easy to administer and 

cheap to produce. In recent years a few candidates have emerged as possible 

trypanocides but none have gained approval.   

1.1.7.3.1 DB289 

DB289 (pafuramidine maleate) is a recently synthesised methamidoxime 

prodrug. In–vitro DB289 is inactive with an ED50 > 3000ng/ml but following oral 

administration it is converted to the active compound DB75 by a series of O-

demethylation and dehydroxylation reactions (Yeates, 2003). In a Cynomolgus 
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monkey model of acute T. b. rhodesiense infection cures were obtained when 

DB289 was administered orally at 10mg/kg daily for 5 days (Yeates, 2003). A 

phase I clinical safety trial was conducted in healthy volunteers. Volunteers 

were given a single DB289 treatment at doses ranging from 25 to 600mg or as 

multiple daily doses ranging from 25 to 100mg. The compound was well 

tolerated and no significant adverse effects were observed during the trial 

(Yeates, 2003). The success of the phase I trial led to a phase II trial being 

conducted in patients infected with T. b. gambiense in Angola and the 

Democratic Republic of Congo (DRC). Patients were treated with DB289 orally for 

10 days at 100mg twice a day (Barrett, 2010). The compound was well tolerated 

and at 24 months the post-treatment efficacy was 85%, which is comparable to 

that of pentamidine. However, due to the initial phase I trial being conducted in 

Caucasian patients the US Food and Drug Administration (FDA) requested a 

second retrospective phase I trial be completed in healthy indigenous African 

patients. In the study DB289  was given to the patients orally, twice a day, for 

14 days at dose of 100mg (Yeates, 2003). In approximately 25% of the patients, 

elevated liver enzymes were observed following treatment but these levels 

returned to normal. However, approximately 8 weeks after administration of the 

last dose of the drug, five patients developed acute renal toxicity (Barrett, 

2010). This resulted in the development of DB289 being discontinued. At present 

research continues into the trypanocidal activity of DB75 and two additional aza 

analogues. Although DB75 and its aza analogues have been shown to be effective 

in murine and monkey models they have not yet entered into clinical trials 

(Wenzler, Boykin, Ismail, Hall et al., 2009).  

1.1.7.3.2 Fexinidazole 

Fexinidazole is a 5-nitroimidazole (Figure 1-10) whose trypanocidal activity was 

first demonstrated in 1980, but concerns about its genotoxicity led to it being 

abandoned as a potential trypanocide (Jennings and Urquhart, 1983). However 

the discovery that different nitroheterocycles display varying degrees of 

genotoxicity and the recent introduction of novel nitroheterocycles into clinical 

trials for tuberculosis, anaerobic protozoan and helminth infections (Anderson 

and Curran, 2007; Stover, Warrener, VanDevanter, Sherman et al., 2000) led to 

a renewed interest in fexinidazole as a potential trypanocide by the Drugs for 

Neglected Disease initiative (DNDi).  
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Figure 1-10: The chemical structure of fexinidazole  

 
Fexinidazole displays a good in-vitro trypanocidal activity with an inhibitory 

concentration (IC50) of 2.57µM and 1.14µM against T. b. rhodesiense and T. b. 

gambiense respectively. In an acute murine model of T. b. rhodesiense infection 

total cures were obtained following the oral administration of fexinidazole at 

doses of 100mg/kg once daily and 50mg/kg twice daily for 4 days. In a chronic 

CNS stage murine model of T. b. brucei infection, fexinidazole, administered 

orally at a dose of 200mg/kg/day for five consecutive days cured 87.5% (7/8) of 

the animals (Torreele, Bourdin, Tweats, Kaiser et al., 2010). Toxicological 

studies completed in the rat and dog raised no issues with the no observed 

adverse effect level (NOAEL) determined to be 200mg/kg/day for both species. 

These promising results led to fexinidazole entering phase I clinical trials in 

healthy African volunteers in 2009 to allow the bioavailability, pharmaco-

kinetics and tolerability of the compound to be assessed. The trials are currently 

ongoing but it is hoped that if the compound successfully completes all pre-

clinical and clinical developmental stages it will be registered for the treatment 

of HAT by 2014 (Torreele et al., 2010).   

1.1.7.3.3 N-myristoyltransferase inhibitors 

N-myristoyltransferase (NMT) is a ubiquitous eukaryotic co- and post-

translational modification which is essential for the biological activity and 

membrane targeting of numerous important proteins (Farazi, Waksman and 

Gordon, 2001; Resh, 2006). Frearson et al. recently identified a potent inhibitor 

of NMT in T. b. brucei named DDD85646 (Frearson, Brand, McElroy, Cleghorn et 

al., 2010). DDD85646 is highly trypanocidal in-vitro with the number of motile 

trypanosomes reduced to below detectable levels within 48 hours of exposure. 

In-vivo studies in an acute T. b. brucei murine model determined the minimum 

curative oral dose of DDD85646 to be 12.5mg/kg twice a day for 4 days. 
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Complete cures were also achieved with shorter oral dosing schedules of 

100mg/kg twice a day for 1 day and 25mg/kg twice a day for two days (Frearson 

et al., 2010). The compound is currently undergoing optimization in order to 

improve its CNS penetration and selectivity.  

1.1.7.3.4 Oxaborole 6-carboxamides 

Recently a class of boron containing compounds, oxaborole carboxamides were 

identified which show potent in-vitro trypanocidal activity against T. b. brucei, 

T. b. gambiense and T. b. rhodesiense (Nare, Wring, Bacchi, Beaudet et al., 

2010). The trypanocidal activity of two of the compounds AN3520 and SCYX-6759 

was investigated in more detail. For both compounds complete cures were 

achieved in an acute T. b. brucei murine model following intraperitoneal (i.p.) 

and oral administration (p.o.). In a CNS T. b. brucei murine model SCYX-6759 

displayed a superior activity achieving 100% and 83% cure rates following i.p. and 

p.o. administration respectively (Nare et al., 2010). In comparison, i.p. 

administration of AN3520 only resulted in partial cure rates of 78% (Nare et al., 

2010). Adverse toxicological reactions were not observed following the 

administration of either compound and the compounds displayed favourable 

physiochemical profiles (Nare et al., 2010).  

The studies conducted to date suggest that oxaborole carboxamides are 

promising lead compounds and their potential to serve as trypanocidal agents is 

currently being investigated.   

1.1.7.4 The future of HAT chemotherapy 

New trypanocides, which are easily administrable, non-toxic and cheap to 

produce, are urgently required. Despite extensive research over the last few 

years, only one new compound, fexinidazole, is currently in clinical trials for the 

treatment of HAT. Melarsoprol is a very effective trypanocide. However, the 

drug’s high toxicity and difficult administration schedule mean that the 

compound is no longer used as the first line drug for the treatment of CNS stage 

T. b. gambiense infections. If the solubility of melarsoprol could be increased so 

that the compound is soluble in water, oral dosing could become a possibility, 

thereby eliminating the problems associated with administration of the drug. 
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Furthermore, if the toxicity of the drug could be reduced without its 

trypanocidal activity being compromised it could once again be used as a first 

line therapy for the treatment of HAT. One possible mechanism of improving the 

properties of melarsoprol is to utilise the drug in conjunction with cyclodextrins. 

1.2 Cyclodextrins: Enabling excipients 

1.2.1 History 

Cyclodextrin chemistry began in 1891 with the discovery of a crystalline like 

substance in the bacterial digest of starch, by the French scientist Villiers 

(Brewster and Loftsson, 2007; Villiers, 1891). The compound displayed a similar 

profile to cellulose, being resistant to acid hydrolysis and lacking any reducing 

powers. As a result Villiers named the compound ‘cellulosine’ (Loftsson and 

Duchene, 2007). No progress was made in the field until twelve years later, 

when an Austrian microbiologist, Schardinger, described two different crystalline 

compounds in the bacterial digest of potato starch (Brewster and Loftsson, 2007; 

Schardinger, 1903). The two compounds isolated from the digest displayed 

similar properties to the ‘cellulosine’ previously described by Villiers. 

Schardinger named the compounds crystalline dextrins and subsequently α 

dextrin and β dextrin (Loftsson and Duchene, 2007). Today these compounds are 

referred to as α and β cyclodextrins.  

Cyclodextrin research continued to progress in the following years with the 

identification of γ cyclodextrin by Freudenberg and Jacobi in 1935 (Freudenberg 

and Jacobi, 1935). The basic structural and physiochemical properties of α, β, 

and γ were described by Cramer in 1954 (Cramer, 1954; Loftsson and Duchene, 

2007). This work described the chemical structure, cavity size, solubility and 

reactivity of the cyclodextrins, in addition to their complexing ability and the 

effect of complextion on the stability of the included guest molecule. Although 

the full chemical structure and complexing abilities of cyclodextrins were well 

characterised by the end of the 1950’s, the compounds were only available as 

rare, impure chemicals in small quantities (Loftsson and Duchene, 2007). This 

severely restricted the use of cyclodextrins and their full potential as 

pharmaceutical agents remained unexplored. 
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Cyclodextrins are produced by the enzyme cyclodextrin glycosyltransferase 

(CGTase). The development of genetically modified CGTases, with increased 

activity and specificity enabled pure cyclodextrins to be produced in large 

quantities. The availability of high grade cyclodextrins finally allowed their 

potential use as pharmaceutical excipients to be investigated and in 1976 the 

world’s first pharmaceutical preparation containing cyclodextrins; prostaglandin 

E2/βCD (Prostarmon ETM) was launched in Japan (Loftsson and Duchene, 2007). 

In the same year α and β cyclodextrin were officially approved as food additives 

in Japan. It was a further twelve years before the first cyclodextrin based 

product piroxicam/βCD was licensed in Europe. This was followed by the 

licensing of itraconazole/2-HPβCD in the United States of America (USA) in 1997. 

Today, worldwide 30 - 40 cyclodextrin based pharmaceutical products are 

available. A selection of the most commonly used preparations are detailed in 

Table 1-2.   

1.2.2 Structure 

Cyclodextrins are cyclic oligosaccharides consisting of at least six glucopyranose 

units linked by α-1, 4 glycosidic bonds. Steric hinderances prevent the formation 

of cyclodextrins with fewer than six glucopyranose units, while larger ring 

cyclodextrins, containing more than nine dextran units, are rarely used in 

pharmaceutical products since they remain poorly characterised and are difficult 

to produce in a pure form (Loftsson and Brewster, 1996). The cyclodextrins of 

greatest pharmaceutical relevance consist of either six, seven or eight 

glucopyranose units and are designated α, β and γ respectively. Cyclodextrins 

take the shape of a truncated cone or torus rather than a perfect cylinder 

(Figure 1-11). Each glucopyranose unit contains three hydroxyl groups; one 

primary and two secondary. The secondary hydroxyls are located on the C-2 and 

C-3 atoms of the unit, while the primary hydroxyl is positioned on the C-6 atom. 

As a result, all the secondary hydroxyls are situated on the interior of the torus, 

while all the primary hydroxyls are located on the outer edge of the torus 

(Bekers, Uijtendaal, Beijnen, Bult et al., 1991).    
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Cyclodextrin Drug Trade name Formulation Company (country) 

α cyclodextrin (α CD) Alprostadil Caverject dual I. V. solution Pfizer (Europe) 

 Cefotiam-hexetil Pansporin Tablet Takeda (Japan) 

 OP-1206 Opalmon Tablet Ono (Japan) 

PGE1 Prostavastin Parenteral solutions Schwarz (Europe) 

β-Cyclodextrin (βCD) Benexate HCl Ulgut, Lonmiel Capsule Teikoku (Japan) 

 Cephalosporin Meiact Tablet Meiji Seika (Japan) 

 Cetirizine Cetrizin Chewing tablet Losan Pharma (Germany) 

 Chlordiazepoxide Transillium Tablet Gador (Argentina) 

 Dexamethasone Glymesason Ointment, tablet Fujonaga (Japan) 

 Meloxicam Mobitil Tablet and suppository Medical Union Pharmaceuticals (Egypt) 

 Nicotine Nicorette Sublingual tablet Pfizer (Europe) 

 Nitroglycerin Nitropen Sublingual tablet Nihon Kayaku (Japan) 

PGE2 Prostarmon E Sublingual tablet Ono (Japan) 

2-Hydroxypropyl-β-CD (HPβCD) Indomethacin Indocid Eye drop solution Chauvin (Europe) 

 Itraconazole Sporanox Oral and I. V. infusion Janssen (Europe, USA) 

Mitomycin MitoExtra Mitozytrex I. V. infusion Novartis (Europe) 

Sulfobutylether-β- CD (SBEβCD) Aripiprazole 

Maropitant 

Abilify 

Cerenia 

I.M. solution 

Parenteral solution 

Bristol-Myers Squibb (USA); Otsuka Pharm. (USA) 

Pfizer Animal Health (USA) 

Randomly methylated β-CD(RAMβCD) 17β-Estradiol Aerodiol Nasal Spray Servier (Europe) 

 Chloramphenicol Clorocil Eye drop solution Oftalder (Europe) 

Table 1-2: Registered pharmaceutical products conta ining cyclodextrins 
(Loftsson, Brewster and Masson, 2004; Loftsson, Jarho, Masson and Jarvinen, 2005; Szejtli, 2004) www.cyclodex.com/SafetyandRegulatoryStatus.html.
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This configuration gives rise to the truncated cone shape, with secondary 

hydroxyls forming the wider edge and primary hydroxyls forming the narrow 

edge (Uekama, Hirayama and Irie, 1998). The positioning of the primary hydroxyl 

groups results in the exterior of the torus being hydrophilic in character. In 

contrast, the interior of the cavity is hydrophobic since it is lined by a ring of 

C(3) – H and C(5) – H hydrogens and a ring of glucosidic oxygens (Bekers et al., 

1991; Uekama, Hirayama and Irie, 1998).  

 

Figure 1-11: The truncated cone and chemical struct ure of ββββ cyclodextrin  
a) Cyclodextrins take the shape of a truncated cone, with an inner cavity. The secondary hydroxyl 
groups (blue) are situated on the interior of the torus, while the primary hydroxyls (red) are located 
on the outer edge. As a result the interior of the cavity is hydrophobic while the exterior is 
hydrophilic b) The chemical structure of β cyclodextrin, showing the position of the primary (red) 
and secondary (blue) hydroxyl groups. Modified from (Loftsson and Brewster, 1996). 

 
1.2.3 Physicochemical properties 

The physicochemical properties of each cyclodextrin vary according to the 

number of glucopyranose units present in their structure (Table 1-3). The 

structure and physiochemical properties of a cyclodextrin influence its ability to 

form an inclusion complex. For example, the small cavity diameter of α 

cyclodextrin severely limits the variety of guest molecules which are able to 

enter into it and form complexes. In β cyclodextrin, hydrogen bonding between 

the C2-OH group of one glucopyranose unit and the C3-OH group of an adjacent 

unit, results in the cyclodextrin having a very low water solubility which severely 

restricts its use (Brewster, Simpkins, Hora, Stern et al., 1989; Szejtli, 1988). 

Cyclodextrins with more desirable characteristics can be produced by 

substituting one or more of the hydrogen atoms on either the primary or 

a) b) 
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secondary hydroxyls with an alternative chemical moiety. Common substitutions 

include hydroxyl, methyl, acetyl or sulfobutylether groups (Loftsson and 

Duchene, 2007; Thompson, 1997). 

 
α β γ 

Number of glucopyranose units 6 7 8 

Molecular weight 973 1135 1297 

Cavity diameter (nm) 0.47 – 0.53 0.6 – 0.66 0.75 – 0.83 

Cavity height (nm) 0.79 0.79 

Cavity volume (ml mol-1) 

0.79 

174 262 472 

Solubility (mg ml -1 at 25°) 130 18.5 300 

Table 1-3: The physicochemical properties of αααα, ββββ and γγγγ cyclodextrin 
Modified from (Loftsson and Brewster, 1996; Loftsson and Duchene, 2007; Shimpi, Chauhan and 
Shimpi, 2005; Thompson, 1997). 

 
1.2.4 Production 

1.2.4.1 Enzymology 

Cyclodextrins are produced from starch by the actions of the enzyme, 

cyclodextrin glycosyltransferase (CGTase) (Biwer, Antranikian and Heinzle, 

2002). The enzyme has been identified in nearly 30 species of bacteria. A large 

proportion of these bacteria belong to the genus Bacillus but certain species of 

Paenibacillus, Klebsiella, Thermoanaerobacterium, Thermoanaerobacter and 

Actinomycetes also produce CGTase (Abelian, Afyan, Avakian, Melkumyan et al., 

1995; Bahl, Burchhardt, Spreinat, Haeckel et al., 1991; Binder, Huber and Bock, 

1986; Fiedler, Pajatsch and Bock, 1996; Larsen, Duedahl-Olesen, Christensen, 

Mathiesen et al., 1998; Wind, Uitdehaag, Buitelaar, Dijkstra et al., 1998). 

CGTase enzymes produce a mixture of α, β and γ cyclodextrin (van der Veen, 

Uitdehaag, Dijkstra and Dijkhuizen, 2000). The ratio of α, β and γ cyclodextrin 
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produced varies depending upon the bacterial species from which the enzyme 

was isolated. For example, the CGTase from Bacillus agaradhaerens and Bacillus 

obhensis mainly produces β cyclodextrin, while α cyclodextrin is the main cyclic 

product of the CGTase isolated from Bacillus macerans and Klebsiella 

pneumoniae (Binder, Huber and Bock, 1986; Qi and Zimmermann, 2005; Sin, 

Nakamura, Kobayashi, Masaki et al., 1991; Takano, Fukuda, Monma, Kobayashi 

et al., 1986).   

CGTase are members of the transferase group of enzymes. They catalyse various 

transglycosylation reactions including cyclization, disproportionation, coupling 

and also hydrolysis of starch (Biwer, Antranikian and Heinzle, 2002; Kobayashi, 

1996). The cyclization reaction is of greatest interest here as this reaction 

ultimately results in the formation of cyclodextrins.  

1.2.4.1.1 The cyclization reaction 

The cyclization reaction consists of three stages: cleavage of the substrate, 

circularization of the linear intermediate and the formation of a new glycosidic 

bond to maintain the cyclic conformation (Figure 1-12). The reaction commences 

with the CGTase enzyme cleaving a α 1, 4 glycosidic bond in the starch, 

producing a covalent α 1, 4 linked glycosyl-enzyme intermediate (Mosi, He, 

Uitdehaag, Dijkstra et al., 1997). In the subsequent circularization step, the 

linear glycosyl-enzyme intermediate assumes a cyclic formation (Uitdehaag, 

Mosi, Kalk, van der Veen et al., 1999). Finally, a new α 1, 4 glycosidic bond is 

formed between the adjacent glucopyranose units to maintain the cyclic 

conformation (Uitdehaag, Kalk, van der Veen, Dijkhuizen et al., 1999). Upon 

formation of the glycosidic bond the CGTase is released and is free to 

participate in further reactions.  

1.2.4.2 Industrial production 

In the industrial setting cyclodextrins can be produced by two different 

methodologies. The solvent method makes use of a complexing agent, usually an 

organic solvent, to selectively precipitate the desired cyclodextrin, which is then 

easily separated from the reaction mixture (Biwer, Antranikian and Heinzle, 

2002). In the non-solvent method no complexing agent is used and a mixture of  
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Figure 1-12: Schematic representation of the cycliz ation reaction 
a) The CGTase enzyme cleaves a α 1, 4 linked bond in the starch substrate to produce b) a 
covalent α 1, 4 linked glycosyl-enzyme intermediate. c) The glycosyl-enzyme intermediate, 
subsequently assumes a cyclic conformation and in the final step d) a new glycosidic bond is 
formed to maintain the cyclic conformation.  
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cyclodextrins is produced (Biwer, Antranikian and Heinzle, 2002). The desired 

cyclodextrin is subsequently separated from the reaction mixture by 

crystallisation. 

1.2.4.2.1 The solvent process 

The process begins with the liquefaction of the substrate in order to reduce its 

viscosity. This is achieved by partially hydrolysing the starch with either 

thermostable α amylases, acids or by mechanical disintegration (Biwer, 

Antranikian and Heinzle, 2002). Over hydrolysis of the starch is detrimental to 

the process and results in decreased cyclodextrin yields. If α amylases are used 

for hydrolysis, they must be inactivated by heat treatment before the reaction 

can progress to the next stage. Following liquefaction, the starch is cooled to 

the temperature at which the CGTase is active and the enzyme, along with the 

complexing agent, is added to the reaction. Upon addition of the CGTase the 

cyclization reaction commences and cyclic products begin to be produced 

(Biwer, Antranikian and Heinzle, 2002). As the desired cyclodextrin is formed, it 

interacts with the complexing agent, producing an insoluble complex. Upon 

cessation of the reaction, the insoluble complex containing the cyclodextrin and 

complexing agent is separated from the remaining reaction mixture by 

centrifugation or filtration (Hedges, 1992). The remaining unconverted starch 

can be re-used in alternative fermentation processes such as the production of 

alcohols and antibiotics (Schmid, 1996). The recovered complex is washed and 

the complexing agent is separated from the cyclodextrin by steam distillation. 

The remaining solution containing the cyclodextrin is concentrated by vacuum 

distillation and the cyclodextrin subsequently precipitated and filtered. In the 

final step the cyclodextrin is washed and dried ready for packaging (Biwer, 

Antranikian and Heinzle, 2002).  

1.2.4.2.2 The non-solvent process 

The non-solvent method was developed by Horikoshi and co-workers in the early 

1970’s as a way of producing β cyclodextrin without the use of organic solvents 

(Horikoshi, 1979; Matzuzawa, Kawano, Nakamura and Horikoshi, 1975). As in the 

solvent method the process begins with the liquefaction of starch. In the non-

solvent method a 15% suspension of potato starch containing 10mM CaCl2 is used 
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as the substrate. Following liquefaction, the substrate is cooled and the pH 

adjusted to 8.4 by the addition of Ca(OH)2 (Schmid, 1996). The cyclization 

reaction and the formation of the cyclodextrin commences with the addition of 

the CGTase. During the cyclization reaction, the temperature of the substrate is 

maintained at 60ºC (Schmid, 1996). The reaction is allowed to progress for 30 

hours with continuous agitation, after which, the CGtase is inactivated by raising 

the reaction temperature to 100 - 120ºC. Following cessation of the reaction, 

the enzyme glucoamylase is added to the reaction mixture, to hydrolyse any 

remaining, unconverted starch and non-cyclic dextrins (Biwer, Antranikian and 

Heinzle, 2002). The resulting solution is filtered and concentrated under reduced 

pressure. The β cyclodextrin is recovered from the concentrated solution by 

crystallisation followed by centrifugation. The recovered cyclodextrin is then 

washed, recrystallised, dried and packaged, with the final product containing a 

minimum of 98% cyclodextrin (Hedges, 1992). 

The solvent method of cyclodextrin production is favoured over the non-solvent 

method as it produces a higher yield, fewer by products and consists of simpler 

reactions. The non-solvent method is mainly used in Japan to produce β 

cyclodextrin for use as a food additive (Schmid, 1996).  

1.2.5 Cyclodextrin derivatives 

The complexing ability and aqueous solubility of the parent (α, β, γ) 

cyclodextrins is considerably improved by substituting one or more of the 

primary and/or secondary hydroxyl groups with a chemical moiety (Uekama, 

1985). This effect is greatest in β cyclodextrin. The randomly methylated β 

cyclodextrin (RAMβCD), in which 14 of the 21 hydroxyl groups have been 

substituted with a methyl moiety, has a solubility of 57g/100ml. In contrast, the 

parent β cyclodextrin has a solubility of only 1.8g/100ml (Thompson, 1997). This 

increase in solubility occurs as modification of the hydroxyl groups disrupts the 

intramolecular hydrogen bonding around the torus, destabilising the crystalline 

lattice. As a result more hydroxyl groups are available to interact with the 

surrounding water molecules resulting in an increased solubility (Albers and 

Muller, 1995). 



50 

 

Functional groups commonly incorporated into the cyclodextrin torus include 

ethers, esters, aminos and azidos. In addition to substitution of the hydroxyl 

groups, the primary hydroxyls can also be oxidised to carboxy derivatives 

(Szejtli, 1996). As the parent cyclodextrins contain 18, 21 and 24 (α, β and γ) 

substitutable hydroxyl groups respectively, the possible number of cyclodextrin 

derivatives is extensive. To date more than 1500 cyclodextrin derivatives have 

been synthesized but only a small fraction are available as pharmaceutical 

excipients (Szejtli, 1998). The cyclodextrin derivatives of pharmaceutical 

importance and their physicochemical properties are listed in Table 1-4. 

 HPβCD1 RAMβCD2 SBEβCD3 

Number of glucopyranose units 7 7 7 

Molecular weight 1400 1312 2163 

Solubility (mg ml-1 at 25°C) >600 >500 >500 

Table 1-4: The physicochemical properties of cyclod extrin derivatives of pharmaceutical 
importance 
1Hydroxpropyl-β-cyclodextrin, 2Randomly methylated-β-cyclodextrin, 3Sulfobutylether-β-cyclodextrin 
(Loftsson and Duchene, 2007). 

 
1.2.5.1 Production of cyclodextrin derivatives 

The hydroxyl groups of the cyclodextrin torus differ in their degree of reactivity. 

The sterically exposed primary hydroxyl groups located at C(6) are the most 

reactive followed by the hydroxyls at positions C(2) and C(3) (Fromming and 

Szejtli, 1994). However, the difference in reactivity is quite small and selective 

substitution of the hydroxyl groups is mainly achieved through alteration of the 

reaction conditions. Despite the ability to selectively substitute hydroxyl groups, 

randomly substituted cyclodextrins are often preferred over defined, 

symmetrical modified cyclodextrins as they are less susceptible to 

recrystallisation (Fromming and Szejtli, 1994).  



51 

 

1.2.5.1.1 Methylated cyclodextrins 

Methyl substituents are introduced onto the cyclodextrin torus by an alkylation 

reaction (Thompson, 1997). β cyclodextrin contains 21 hydroxyl groups which 

can be substituted. A wide range of methyl derivatives with varying degrees of 

substitution can therefore be produced. Substitution of all 21 hydroxyl groups 

results in a fully methylated derivative (2, 3, 6-tri-O-methyl-β-cyclodextrin). 

Partial selective substitution of the C(2) and C(6) or C(3) and C(6) hydroxyls 

groups results in the dimethyl derivatives 2, 6-di-O-methyl-β-CD and 3, 6-di-O-

methyl-β-CD respectively (Thompson, Toosy and Ciccarelli, 2010). Although fully 

and partially substituted dimethylated derivatives of β cyclodextrin can be 

produced, they are of little pharmaceutical use as they are very difficult to 

purify. The methylated derivative of β cyclodextrin which is of most 

pharmaceutical use is randomly methylated (RAMβCD). RAMβCD has an average 

degree of substitution of 1.8 methyl groups per glucopyranose unit (Aman, 

Reuscher, Wimmer and Hirsenkorn, 1995; Szente and Szejtli, 1999).  

1.2.5.1.2 Hydroxypropyl ββββ cyclodextrin (HPββββCD) 

Condensation of β cyclodextrin with propylene oxide under alkaline conditions 

results in the hydroxyl groups of the cyclodextrin being substituted with a 2-

hydroxypropyl group, producing 2-hydroxypropyl-β-cyclodextrin (2-HPβCD) 

(Pitha, Szabo and Fales, 1987). The 2-hydroxypropyl function is able to insert 

onto any of the 21 hydroxyl groups of β cyclodextrin, in any combination, the 

reaction therefore generates an amorphous mixture of geometric and optical 

isomers. For 2-HPβCD it has been calculated that there are approximately 

130,000 possible derivatives and if the optically active centre of the 2-

hydroxypropyl function is taken into account this number is even greater 

(Loftsson and Brewster, 1996). Selective substitution of the hydroxyl groups can 

be achieved by adjusting the reaction conditions. A strong basic solution favours 

substitution of the primary hydroxyl groups, while a weak basic solution leads to 

substitution of the more acidic secondary hydroxyl groups (Pitha, Rao, Lindberg 

and Seffers, 1990). The 2-HPβCD’s of commercial and pharmaceutical value have 

an average degree of substitution of 4 or 8 hydroxypropyl groups per 

glucopyranose unit (Thompson, 1997).  
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1.2.6 Cyclodextrin Complexes 

1.2.6.1 Mechanism of inclusion  

Cyclodextrins are able to form inclusion complexes with a variety a polar and a-

polar guest molecules. The minimum requirement for inclusion complex 

formation is that the guest molecule must fit entirely or at least partially into 

the cyclodextrin cavity (Hirayama and Uekama, 1987). If the molecule is too 

small, it will fall out of the cavity, while large, bulky molecules are unable to 

enter into the cavity (Bekers et al., 1991). Usually 1:1 inclusion complexes are 

formed but if a molecule is too large to be entirely accommodated by one 

cyclodextrin cavity and the free uncomplexed section of the molecule is 

amenable to complex formation 1:2 complexes can be formed. Similarly, if the 

molecule is small, two molecules may enter into the cyclodextrin cavity to form 

a 2:1 complex (Thompson, 1997).  

 

Figure 1-13: The mechanism of inclusion complex for mation 
Water molecules within the cyclodextrin cavity are replaced with a guest molecule. 

 
Complex formation involves the substitution of the water molecules included 

within the cyclodextrin cavity by a guest molecule (Figure 1-13). The process can 

be depicted by Equation 1-1 assuming a 1:1 complex is formed.  

 

Equation 1-1: The complexation process 
An inclusion complex (CD.G) is formed following the interaction between a guest molecule (G) and 
a cyclodextrin (CD). The binding constant (K) is equal to the rate of dissociation (KD) / the rate of 
recombination (KR). 
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The guest molecules encapsulated within the cyclodextrin cavities are in 

equilibrium with the free guest molecules in the solution (Bekers et al., 1991). 

The overall stability of the complex is determined by two parameters, the rate 

of dissociation and the rate of recombination. Rates of dissociation and 

recombination vary widely depending upon the cyclodextrin and guest molecule 

(Thompson, 1997). 

1.2.6.2 The driving force of complex formation 

The 'driving force' behind complex formation is not fully understood but it is 

known that complexation occurs due to the interplay of numerous factors. 

Factors thought to play a role in complex formation include the replacement of 

the high enthalpy water molecules from within the cavity with a less polar guest 

molecule (Szejtli, 1999), the release of ring strain upon complexation (Clarke, 

Coates and Lincoln, 1988; Saenger, Noltemeyer, Manor, Hingerty et al., 1976) 

and van der waals forces (Cramer, 1956; Nishijo and Nagai, 1991). 

1.2.6.2.1 Release of high enthalpy water molecules 

The water molecules contained within the cyclodextrin cavity cannot form their 

full complement of hydrogen bonds like those in the bulk of the solution due to 

steric restrictions. They are therefore regarded as molecules of enhanced energy 

or enthalpy. It is postulated that the release of these enthalpy rich water 

molecules acts as a driving force for complex formation (Szejtli, 1999). This 

theory is supported by the observation that the driving force of complexation 

decreases as the cavity size of the cyclodextrin increases. This is due to the 

larger cavities being able to accommodate numerous water molecules. As a 

result the properties of the water molecules within the cavity resemble those in 

the bulk solvent i.e. they are of low energy. Consequently the driving force of 

complexation is decreased (Szejtli, 1999). The nine membered δ cyclodextrin is 

a weak complexing agent and it is predicted that the even larger cyclodextrins 

(ε,η) will be of no use as complexing agents (Miyazawa, Ueda, Nagase, Endo et 

al., 1995). 
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1.2.6.2.2 Release of ring strain 

Prior to complex formation, α cyclodextrin is in a strained high energy 

conformation as one of the glucopyranose units is rotated inwards. On complex 

formation the two water molecules inside the cavity are displaced by the guest 

molecule and the α cyclodextrin molecule undergoes a conformational change to 

a relaxed state of minimum energy. It is this transformation from a strained to a 

relaxed state that is thought to drive complex formation (Saenger et al., 1976). 

The effect is only relevant in the case of α cyclodextrin as the higher order β 

and γ cyclodextrins do not occur in a strained, distorted form.  

1.2.6.2.3 Van der Waals forces 

The entry of a guest molecule into the cyclodextrin cavity brings about changes 

in the enthalpy and entropy of the cyclodextrin. The negative change in 

enthalpy and the positive change in entrophy frequently observed upon complex 

formation are characteristic of Van der Waals forces, suggesting they may play a 

role in formation of the complex (Nishijo and Nagai, 1991). Further evidence for 

the possible role of Van der Waals forces in complex formation has come from 

molecular modelling studies. Matsui and Mochida in their work evaluating the 

binding forces contributing to the complexation of alcohols with α and β 

cyclodextrins, found Van der Waals interactions to be of primary importance in 

the inclusion process and in stabilisation of the resulting complexes (Matsui and 

Mochida, 1979). 

1.2.7 Toxicity of cyclodextrins 

1.2.7.1 Cytotoxicity 

In-vitro, cyclodextrins induce the lysis of human erythrocytes by altering the cell 

membrane (Irie, Otagiri, Sunada, Uekama et al., 1982). The degree of disruption 

depends upon which cyclodextrin the erythrocytes are exposed to. In the 

presence of α and γ cyclodextrins, the erythrocytes undergo progressive shape 

changes before eventually lysing (Ohtani, Irie, Uekama, Fukunaga et al., 1989). 

In contrast, erythrocytes exposed to β cyclodextrin, immediately swell and lyse 
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without undergoing shape changes (Ohtani et al., 1989). Haemolysis occurs as 

the cyclodextrins induce the release of essential components such as 

cholesterol, phospholipids and proteins from the cell membrane. As a result the 

erythrocyte membrane becomes more fluid and prone to lysis (Irie et al., 1982). 

1.2.7.2 Parenteral toxicity 

1.2.7.2.1 Alpha (αααα) cyclodextrin 

The LD50 of α cyclodextrin following intravenous injection in the rat is 

1000mg/kg (Frank, Gray and Weaver, 1976). Parenteral administration of α 

cyclodextrin is associated with the onset of severe nephrosis. The nephrotoxicity 

of α cyclodextrin was investigated in the rat by Frank et al. (Frank, Gray and 

Weaver, 1976). The cyclodextrin was given I.V. as 1, 2, 4 or 7 daily injections, at 

doses of 0.1g/kg or 1.0g/kg. At the lower dose of 0.1g/kg no nephrotoxicity was 

observed but the highest dose of 1.0g/kg, induced severe nephrosis. The 

nephrosis was characterised by the presence of giant lysosomes and an increase 

in the number of apical vacuoles in the proximal convoluted tubules of the 

kidney (Frank, Gray and Weaver, 1976). The mechanisms responsible for the 

nephrosis observed following the parenteral administration of α cyclodextrin are 

not fully understood.    

1.2.7.2.2 Beta (ββββ) cyclodextrin 

With an LD50 of 788mg/kg, β cyclodextrin is the most toxic of the parent 

cyclodextrins (Frank, Gray and Weaver, 1976). Parenteral administration of the 

cyclodextrin is associated with the onset of severe nephrosis. Structural changes 

become apparent in the convoluted segments of the proximal tubule of the 

kidney following a single subcutaneous dose of 670mg/kg (Frank, Gray and 

Weaver, 1976). If the cyclodextrin is repeatedly administered over 7 days at a 

dose of 450mg/kg, severe nephrosis is induced in the kidney. This nephrosis is 

similar to that observed following the I.V. administration of α cyclodextrin. 

Alterations in the vacuolar organelles of the proximal convoluted tubules of the 

kidney become apparent. The number of large and small apical vesicles 

increases and lysosomes also appear at perinuclear and basal locations and are 
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often distorted by the presence of needle-like micro-crystals, which protrude 

into the membranes (Frank, Gray and Weaver, 1976). 

Nephrosis occurs as β cyclodextrin has a high affinity for cholesterol resulting in 

the formation of cholesterol-inclusion complexes following its parenteral 

administration (Frijlink, Franssen, Eissens, Oosting et al., 1991). The 

cholesterol-inclusion complexes are filtered by the glomerular basement 

membrane and enter the urine. The lower concentration of cholesterol in the 

urine, leads to the cyclodextrin/cholesterol complex dissociating. The free 

cholesterol then re-enters the cells of the proximal convoluted tubule or loop of 

Henle where it recombines with the cyclodextrin. The resulting complex 

crystallises within the kidney and it is these intracellular crystals which cause 

most of the cellular damage (Frijlink et al., 1991). 

1.2.7.2.3 Gamma (γγγγ) cyclodextrin 

Gamma is the most toxicologically benign of the three parent cyclodextrins with 

a LD50 >2,400 mg/kg in the rat (Matsuda, Mera, Segawa, Uchida et al., 1983). 

This is 2.5 and 3 times higher than the LD50 of α and β cyclodextrin respectively. 

Sub-chronic toxicity studies, in the rat, have demonstrated that γ cyclodextrin 

can be administered I.V., daily, for 30 days, at doses of up to 200mg/kg with no 

adverse effects (Donaubauer, Fuchs, Langer and Bar, 1998). Furthermore, in 

chronic long-term, dosing studies, no remarkable adverse effects were observed 

when the cyclodextrin was administered I.V., daily at 120mg/kg to rats 

(Donaubauer et al., 1998). This lack of toxicity, in comparison to the other 

parent cyclodextrins, may be due to γ cyclodextrin having a higher intrinsic 

aqueous solubility and a lower affinity for endogenous lipids (Irie and Uekama, 

1997).  

1.2.7.2.4 Hydroxypropyl ββββ cyclodextrin (HPββββCD) 

Hydroxyalkylation of β cyclodextrin has been shown to decrease its parenteral 

toxicity. A single I.V. dose of 2000mg/kg in mice was not lethal, in contrast a 

single I.V. dose of 1820mg/kg of the parent, β cyclodextrin was 100% lethal in 

rats (Frank, Gray and Weaver, 1976). In sub-acute toxicity studies no treatment 
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related effects were observed in rats and Cynomolgus monkeys receiving 

200mg/kg HPβCD every second day for 90 days (Brewster, Estes and Bodor, 

1990). Furthermore, in a second, sub-chronic dosing study, administration of 

HPβCD at 50mg/kg/day in rats and 100mg/kg/day in dogs for 90 days, resulted in 

no adverse effects (Coussement, Vancauteren, Vandenberghe, Vanparys et al., 

1990). HPβCD is less toxic than the parent β cyclodextrin, due to its higher 

aqueous solubility (Irie and Uekama, 1997). Toxicology studies of HPβCD have 

been completed in humans. In one study HPβCD was administered by single I.V. 

infusion at doses ranging from 0.5 to 3g. No significant pathophysiological 

changes were observed in any of the volunteers and there was no alteration in 

haematological or clinical parameters. In addition, no impairment of renal 

function was observed (Seiler, Szathmary, Huss, Decoster et al., 1990). 

1.2.7.3 Oral toxicity 

Acute LD50 values cannot be determined for the parent cyclodextrins following 

oral administration as the highest possible doses do not result in animal 

mortality (Szejtli, 1996). It can only be concluded that the acute LD50 of β 

cyclodextrin is greater than 12.5g/kg for mice, 18.8g/kg for rats and more than 

5g/kg for dogs (Gergely, Sebestyen and Virag, 1982; Szejtli and Sebestyen, 

1979). The acute LD50 of γ cyclodextrin is greater than 16g/kg for mice and 8g/kg 

for dogs (Matsuda et al., 1983).   

1.2.7.3.1 Alpha (αααα) cyclodextrin 

Acute and sub-chronic toxicity studies have been completed for α cyclodextrin in 

rats and dogs (Lina and Bar, 2004a; Lina and Bar, 2004b). In the acute toxicity 

study, α cyclodextrin was well tolerated in the rat, when administered at 

concentrations of 1.5, 5 and 20% via the diet for 13 weeks. The only notable 

treatment related effects were soft stools and infrequent, mild diarrhoea in 

animals receiving the 20% diet (Lina and Bar, 2004b). No significant treatment 

related changes were also observed in dogs fed diets containing 5, 10 or 20% α 

cyclodextrin, for 13 weeks (Lina and Bar, 2004a). In common with the rat study, 

the only treatment related effect was diarrhoea, which was observed in all 

treatment groups. Following completion of treatment, increased caecal weights 
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were observed in rats receiving the 5 and 20% diets and in dogs receiving the 10 

and 20% α cyclodextrin diets. However, an increase in caecal weight is a 

physiological response to the ingestion of low digestible yet fermentable 

carbohydrates. It is commonly observed following the ingestion of sugar alcohols 

and lactose and is considered to be of little toxicology importance in humans 

(Newberne, Conner and Estes, 1988; World Health Organisation, 1987). 

1.2.7.3.2 Beta (ββββ) cyclodextrin 

In an oral toxicity study in rats, β cyclodextrin was administered via a stomach 

tube at doses of 200, 400 or 600mg/kg for either three or six months (Gergely, 

Sebestyen and Virag, 1982). For both time periods no treatment related 

alterations were observed in the bio-chemical blood values. Furthermore, gross 

pathology and histopathology analysis did not reveal any abnormalities. This lack 

of toxicity was also observed in a 6 month study conducted in the dog, in which 

β cyclodextrin was administered daily at doses of 100, 250 or 500mg/kg (Szejtli, 

1996). Occasional vomiting and loose stools or diarrhoea were observed in dogs 

fed a diet containing 10% β cyclodextrin for 90 days, however, no other 

treatment related effects were found (Hirayama and Uekama, 1987).  

The effects of prolonged oral administration of β cyclodextrin has also been 

investigated in rats and dogs (Bellringer, Smith, Read, Gopinath et al., 1995). 

Rats were fed diets containing 12,500, 25,000 or 50,000ppm β cyclodextrin 

(equivalent to 654, 1313 or 2655mg/kg/day for males and 864, 1743 or 

3614mg/kg/day for females). Dogs received diets containing 6,200, 12,500 or 

50,000ppm (equivalent to 229, 456 or 1831mg/kg/day for males and 224, 476 or 

1967mg/kg/day for females). The diets were fed for a period of 52 weeks. No 

treatment related effects were observed in rats receiving the 12,500ppm diet 

and in dogs receiving the 12,500 and 50,000ppm diets. In rats receiving the 

25,000 and 50,000ppm diets, the plasma levels of liver enzymes were elevated. 

When the livers of these animals were analysed histopathologicaly, hepatic 

changes and portal inflammatory cell infiltration, consistent with increased 

plasma liver enzyme levels were detected. In dogs an increased incidence of 

diarrhoea was observed in all treatment groups. Elevated urinary protein and 

calcium levels were also detected in dogs receiving the 50,000ppm diet. 
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However, no histopathological changes were detected in any treatment group 

therefore the minor treatment alterations observed in the dog study were 

considered to be of no toxicological importance (Bellringer et al., 1995). 

1.2.7.3.3 Gamma (γγγγ) cyclodextrin 

In an acute oral toxicity study rats were fed diets containing 5, 10, 15 and 20% γ 

cyclodextrin for 2 weeks (Lina and Bar, 1998). In common with other studies in 

which cyclodextrins were administered orally, the cyclodextrin was generally 

well tolerated. The only notable treatment related effect was an increased 

incidence of soft faeces in treatment groups receiving the 10, 15 and 20% diets. 

This lack of toxicity was also observed in a 13 week sub-chronic study conducted 

in rats and dogs (Lina and Bar, 1998; Til and Bar, 1998). Rats were fed diets 

containing 1.5, 5 or 20% γ cyclodextrin while dogs received diets containing 5, 10 

or 20% γ cyclodextrin. An increased incidence of diarrhoea was observed in dogs 

in all treatment groups and in rats receiving the 20% diet. Male rats receiving the 

20% diet also showed significantly reduced mean body weights but this was not 

observed in female rats or dogs. In female dogs receiving the 20% γ cyclodextrin 

diet a decreased urine pH was detected but urinary parameters were normal in 

all other animals. Haematological and histopathological analysis, revealed no 

abnormalities in any treatment groups for both species (Lina and Bar, 1998; Til 

and Bar, 1998). In common with previous studies in which large amounts of 

cyclodextrin was administered orally, an increased caecal weight was observed 

at the end of the treatment period, in female rats receiving the 20% diet and in 

female dogs receiving the 10 and 20% γ cyclodextrin diets (Lina and Bar, 1998; 

Lina and Bar, 2004a; Til and Bar, 1998). As in previous studies, this effect was 

considered to be a physiological response to the ingestion of low digestible, yet 

fermentable carbohydrates and was considered of little toxicological 

importance.  

1.2.7.3.4 Hydroxypropyl ββββ cyclodextrin (HPββββCD) 

Multiple studies have been conducted into the oral toxicity of HPβCD. In an 

acute 7 day study 4,500mg/kg/day HPβCD was administered to rats (Gould and 

Scott, 2005). Changes were observed in the plasma alanine aminotransferase 
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(ALT), aspartate (AST) and glutamate dehydrogenase (GLDH) levels but these 

changes were not accompanied by any histopathological changes. Alterations in 

AST and ALT plasma levels were also detected in a second oral toxicity study in 

which rats were administered HPβCD at doses of 2,250 or 4,500mg/kg/day for 7 

days. As in the previous study, the elevations in plasma liver enzymes were not 

accompanied by any histopathological changes (Gould and Scott, 2005). The 

effects of longer term HPβCD administration were investigated in a one month 

toxicity study in rats. The rats were administered HPβCD at doses of 450 or 

4,500mg/kg/day. Loose faeces was observed in rats receiving the highest dose 

from day 13 onwards. At 4,500mg/kg/day increased platelet counts, reduced 

reticulocyte numbers and lowered haematocrit values were also observed in 

males. In all treatment groups elevated plasma liver enzymes were detected. 

However, as is in the previous acute HPβCD toxicology study, the increased 

levels of plasma liver enzymes were not accompanied by any histopathological 

changes (Gould and Scott, 2005).  

The toxicity of long-term, chronic HPβCD administration was investigated in a 12 

month rat study (Gould and Scott, 2005). Rats were fed diets containing 500, 

2,000 or 5,000mg/kg/day HPβCD. Although elevated plasma liver enzymes were 

detected in a previous toxicology study, in which HPβCD was administered at a 

dose of 450mg/kg/day for a month, no toxicological effects were observed in the 

present study in animals fed a diet containing 500mg/kg HPβCD for 12 months. 

When the dietary concentration of HPβCD was increased to 2,000mg/kg/day, 

elevated plasma levels of liver enzymes were detected and urine pH and volume 

were decreased (Gould and Scott, 2005). In previous, short-term toxicological 

studies, elevated plasma liver enzymes were not associated with any 

histopathological changes. However, in the chronic dosing study, the increased 

plasma levels of liver enzymes observed following administration of 

2,000mg/kg/day HPβCD were accompanied by histopathological alterations. 

Swollen epithelial cells were detected in the urinary tract and centrilobular 

swelling in the liver and focal hyperplasia in the pancreas were also observed. At 

doses of 5,000mg/kg/day, these treatment related changes were more 

pronounced. In addition, white blood cell counts were elevated, thrombocytes 

and lipids were reduced and occult urinary blood was observed. At necropsy the 
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weight of the pancreas, kidney and lungs were increased and histopathology 

revealed an infiltration of foamy cells in the lungs (Gould and Scott, 2005).  

Clinical trials of HPβCD have been conducted in humans. No toxicological effects 

were observed in patients administered 4-8g of HPβCD orally, daily for 1 to 2 

weeks (De Beule, 1996). However, in a second study in which volunteers were 

administered 16-24g of HPβCD orally, daily for 14 days, soft stools and diarrhoea 

were observed (Irie and Uekama, 1997).  

1.2.7.3.5 Di-methyl ββββ cyclodextrin (DMββββCD) 

Limited data is available on the toxicity of the methylated cyclodextrins. In one 

study DMβCD was administered orally in aqueous solution at doses up to 

3000mg/kg to mice, with no adverse effect (Bekers et al., 1991).  

1.2.8 Pharmacological uses of cyclodextrins 

Cyclodextrins are of great interest to the pharmaceutical industry as they can 

alter the physical and chemical properties of the included guest molecule thus 

producing a compound with more desirable characteristics. Complexation is 

commonly used to improve the solubility and bioavailability of poorly soluble 

drugs, decrease toxicity, disguise unpleasant odours and tastes, increase 

stability and modify the release rate of drugs. 

1.2.8.1 Decreasing toxicity 

Complexation can prevent drug molecules from coming into direct contact with 

biological membranes. As a result local irritation and tissue damage caused by a 

drug can be reduced following complexation (Nagai and Ueda, 1996). 

Cyclodextrins have therefore been widely used to decrease the gastrointestinal 

toxicity of numerous drugs (Nambu, Kikuchi, Kikuchi, Takahashi et al., 1978; 

Santucci, Fiorucci, Chiucchiu, Sicilia et al., 1992). Santucci et al. reported a 

significant decrease in the number of acute gastric lesions in patients receiving 

the non-steroidal anti-inflammatory drug (NSAID) piroxican as a complex with β 

cyclodextrin, compared to the drug alone (Santucci et al., 1992). The ulcer 

inducing effect of indomethacin was also significantly reduced following 
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complexation of the drug with β cyclodextrin (Nambu et al., 1978). 

Cyclodextrins can also be used to reduce the haemolytic activity of amphiphatic 

drugs (Irie, Sunada, Otagiri and Uekama, 1983; Uekama, Irie, Sunada, Otagiri et 

al., 1981a; Uekama, Irie, Sunada, Otagiri et al., 1981b). The haemolytic effects 

of chlorpromazine and flufenamic, in an isotonic solution, were inhibited by the 

addition of cyclodextrins. The haemolytic activity of both drugs was decreased 

by cyclodextrins in the order of β>γ>α, with haemolysis almost completely 

inhibited by β cyclodextrin (Uekama et al., 1981a; Uekama et al., 1981b). 

Uptake of both drugs by the erythrocytes was reduced following addition of the 

cyclodextrins. This suggests that protection from haemolysis is due to a 

reduction in the effective drug concentration upon complexation and not due to 

the direct action of the cyclodextrins on the erythrocyte membrane (Uekama et 

al., 1981b). In addition to inhibiting the haemolysis of erythrocytes in-vitro, 

complexation of chlorpromazine with β cyclodextrin also alleviates the local 

tissue irritation observed following intramuscular administration of the drug 

(Irie, Kuwahara, Otagiri, Uekama et al., 1983).  

Cyclodextrins can also be utilised for detoxification. Pitha and Szente 

administered dimethyl-β-cyclodextrin (DMβCD) to animals suffering from retinoic 

acid induced, hypervitaminosis A (Pitha and Szente, 1983). In animals given the 

cyclodextrin, the survival rate increased from 39% to 69%, and symptoms 

resolved. The DMβCD formed inclusion complexes with the retinoic acid, 

decreasing its free concentration and thus reducing its toxicity (Pitha and 

Szente, 1983). 

1.2.8.2 Stability 

Cyclodextrins are able to accelerate or decelerate many reactions including, 

hydrolysis, oxidation, decarboxylation, photodecomposition and degradation 

(Bekers et al., 1991; Uekama, Hirayama and Irie, 1998). The ability of a 

cyclodextrin to either enhance or prevent the degradation of a drug depends 

upon the cyclodextrin used, the nature of the drug and the stability constant of 

the resulting complex. In the pharmaceutical industry, the stabilisation effect of 

cyclodextrins is of most interest.  
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In the harsh acidic environment of the gastrointestinal tract many drugs are 

susceptible to hydrolysis. The resulting hydrolysis products are often inactive or 

display a decreased therapeutic efficiency. Cyclodextrins can be used to inhibit 

or suppress this rate of hydrolysis. In an acidic environment the cardiac glycoside 

digoxin is susceptible to hydrolysis with one of the hydrolysis products 

digoxigenin displaying one-tenth the cardio activity of the parent compound 

(Uekama, Fujinaga, Hirayama, Otagiri et al., 1982). Complexation of digoxin 

with cyclodextrins decreases its rate of hydrolysis in the order of β>γ>α, with 

hydrolysis almost completely inhibited by β cyclodextrin (Uekama et al., 1982). 

By reducing the rate of hydrolysis, cyclodextrins enable digoxin to be given 

orally without a concurrent loss in activity.   

Many drugs are susceptible to degradation in the presence of light. The 

degradation products are often inactive and in some instances may even be 

toxic. Complexation with cyclodextrins can protect light sensitive compounds 

from this form of degradation. Tomono et al. investigated the effects of β 

cyclodextrin and its derivatives on the decomposition of photosensitive drugs. 

(Tomono, Gotoh, Okamura, Ueda et al., 1988). The photodecomposition of 

pyridoxine hydrochloride, in the solid state was reduced by 50.6% following 

complexation with trimethyl-β-cyclodextrin (TM-β-CD). β cyclodextrin and its 

dimethyl and trimethyl derivatives, also decreased the photodecomposition of 

nifedipine, hydrochlorothiazide, clofibrate and retinol acetate (Tomono et al., 

1988). By preventing photodecomposition, cyclodextrins are able to extend the 

shelf life of many light sensitive drugs and inhibit the formation of undesirable 

degradation products.  

1.2.9 Current regulatory status 

The regulatory status of cyclodextrins varies from country to country and is 

continually evolving. In Japan, all three parent cyclodextrins are approved food 

additives and are included in the Japanese Pharmaceutical codex (JPC) (Loftsson 

and Duchene, 2007). In Europe, only two of the parent cyclodextrins, α and β 

are listed in the European Pharmacopoeia (Ph.Eur.). In addition to the two 

parent cyclodextrins, the modified hydroxypropyl derivative of β cyclodextrin, 

HPβCD is also included in the Ph.Eur. In the US, the only parent cyclodextrin to 
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be listed in the US Pharmacopoeia (USP/NF) is β cyclodextrin. However, HPβCD 

is cited in the US food and drug administration's (FDA) list of inactive 

pharmaceutical ingredients (Loftsson and Duchene, 2007).  

Cyclodextrins which are not listed in a pharmacopoeia or registered as inactive 

pharmaceutical ingredients may still be used in pharmaceutical preparations. 

The modified cyclodextrins SBEβCD and RAMβCD are not included in any 

pharmacopoeia or list of inactive pharmaceutical ingredients, yet numerous 

pharmaceutical products containing these cyclodextrins have been approved by 

the regulating authorities (Table 1-2).        
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General methods 

The methods described in this chapter are used repeatedly throughout the 

thesis. If alterations are made to the techniques described here to suit the needs 

of a particular experiment they are detailed in the methods section of the 

chapter concerned. The recipes of solutions and the sources of all chemicals 

used in the work are detailed in appendices 2 and 3 respectively.    

2.1 Trypanosomes 

2.1.1 The history of T. brucei brucei stabilate GVR35 

T. b. brucei trypanosomes were isolated from an infected wildebeest in the 

Serengeti National park in 1966. The trypanosomes were subsequently 

transferred to the London School of Hygiene and Tropical Medicine and serially 

passaged through rats to produce the stabilate LUMP 22. Serial passage of the 

LUMP 22 stabilate through mice resulted in the stabilate LUMP 1001 being 

produced. In 1977 a clone of this stabilate was obtained by Dr Frank Jennings at 

the University of Glasgow. A clone of the stabilate was produced by passaging 

the trypanosomes through sub-lethally irradiated mice. The resulting clone was 

designated GVR35/C1 and was stored in liquid nitrogen. Working stabilates are 

produced from the GVR35/C1 reserve stabilate as required through passage in 

mice. The T. b. brucei trypanosomes used throughout this study were from the 

working stabilate GVR35/C1.9.  

2.2 The murine model of T. b. brucei 

The GVR35 experimental murine model was used throughout this study in order 

to evaluate the trypanocidal activity of the melarsoprol cyclodextrin inclusion 

complexes mel/HPβCD and mel/RAMβCD. The model was developed at the 

University of Glasgow Veterinary school by Dr Frank Jennings. The model is very 

well characterised and has been used extensively for evaluating the 

effectiveness of new chemotherapy regimes (Atouguia, Jennings and Murray, 

1995; Jennings, 1987; Jennings, 1992; Jennings, 1993; Jennings et al., 1993).  
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Infection of CD-1 mice with the GVR35/C1.9 T. b. brucei stabilate establishes a 

trypanosome infection in the animals. During the first 14 days of the infection, 

the trypanosomes are confined to the peripheral systems and there is no CNS 

involvement. Between days 14 and 21 post-infection the trypanosomes penetrate 

the blood-brain barrier (BBB) and CNS stage infection is established in the 

animals (Jennings and Gray, 1983). Animals sacrificed at this time point display a 

mild CNS inflammatory reaction, characterised by a slight increase in the level 

of astrocyte activation and the presence of small numbers of inflammatory cells 

in the meninges. Without treatment the disease continues to advance and most 

animals generally succumb to the disease approximately 30 days after infection. 

As this study is concerned with the ability of complexed melarsoprol to cure CNS 

stage trypanosome infections, all chemotherapy regimes commenced on day 21 

post-infection when a CNS stage infection is known to be established in the 

animals.   

2.2.1 Animals 

Female CD-1 mice were purchased from Charles River Ltd, Margate, England. 

Animals were approximately 6 to 8 weeks in age and weighed between 28 and 35 

grams. The mice were allowed to acclimatise in the animal unit at the University 

of Glasgow Veterinary School for a period of at least one week before 

undergoing any scientific procedures. The mice were housed in groups of six in 

standard caging and food and water was provided ad libitum throughout. The 

animals were maintained under a 12 hour light/dark cycle at a temperature of 

19 to 23ºC and at a humidity of 55 ± 10%.  

2.2.2 Establishing trypanosome infection 

The working stabilate GVR35/C.1.9 was initially passaged in a donor animal in 

order to obtain the number of trypanosomes required to inoculate larger batches 

of experimental animals. A small section of the frozen GVR35/C1.9 stabilate was 

removed and diluted in phosphate glucose buffered saline (PGBS) pH 8 until a 

suspension containing 2 trypanosomes per field when viewed by light microscope 

at a magnification of 400 was obtained. This equates to approximately 2 x 104 

trypanosomes/0.1ml. A 0.2ml aliquot of the suspension was injected 
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intraperitoneally into a mouse. The development of the parasitaemia in the 

animal was monitored by examining a wet blood film prepared from tail blood 

under a light microscope (described below). When the first parasitaemic peak 

was reached the animal was euthanised by exposure to increasing concentrations 

of carbon dioxide and exsanguinated by cardiac puncture. The blood was diluted 

in PGBS pH 8 as described above. A 0.1ml aliquot of the trypanosome suspension 

was then inoculated intraperitoneally in order to establish infection in the 

experimental animals.   

2.2.3 Monitoring of parasitaemia  

To confirm that the trypanosome infection had established successfully in the 

experimental animals, the parasitaemia was checked in all infected mice prior 

to the administration of any trypanocidal compounds. A 1mm section from the 

very tip of the animal’s tail was removed with scissors and a drop of blood 

expressed onto a glass microscope slide. A 7x22 mm coverslip was placed over 

the blood to produce a wet blood film and the slide was viewed under a light 

microscope at a magnification of 400. The number of trypanosomes present per 

visual field was estimated and scored according to the scale in Figure 2-1.  

2.3 Complexed melarsoprol 

2.3.1 Preparation of complexed melarsoprol 

The melarsoprol cyclodextrin complexes were prepared by Dr S. Gibaud of Nancy 

Universitè, France, according to the method previously described in Gibaud et 

al. 2005 (Gibaud, Zirar, Mutzenhardt, Fries et al., 2005). Briefly 1mmol of 

melarsoprol was added to an aqueous solution containing 2mmol of either HPβCD 

or RAMβCD. The solution was incubated under constant stirring at 25ºC for 14 

hours. Following filtration through a 0.22µm filter, the solutions were freeze-

dried to obtain dry powders. The resulting melarsoprol complexes were stored at 

room temperature and protected from the light until use.  
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Figure 2-1: The grading scale used to score the lev el of parasitaemia in the experimental 
animals 
A wet blood film was examined under a light microscope at a magnification of 400.The number of 
trypanosomes present within each visual field was estimated and graded based on the scale 
above.  
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+++± +++ 
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1 trypanosome/5 fields ± 

1-2 trypanosomes/field + 
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2.3.2 Characterisation of melarsoprol cyclodextrin complexes 

The quantity of melarsoprol incorporated into each cyclodextrin was determined 

by high-performance liquid chromatography (HPLC) (Gibaud et al., 2005). The 

ratio of melarsoprol to cyclodextrin for each complex was subsequently 

calculated (Table 2-1). 

Complex 
Amount of melarsoprol 
contained within 1g of 

complex (mg) 

Melarsoprol to cyclodextrin 
ratio 

Mel/HPβCD 59 1:17 
Mel/RAMβCD 71 1:14 

Table 2-1: The amount of melarsoprol contained with in 1g of each complex as determined 
by HPLC. 

 
2.3.3 Calculation of complexed melarsoprol doses for oral 

administration 

The amount of each complex required in order to give a melarsoprol dose of 

0.05mmol/kg was calculated. This dose is equivalent to 0.05µmols of 

melarsoprol per gram body weight. This means that 10 grams equates to 

0.5µmols, therefore the amount of complex required to prepare a solution 

containing 0.5µmols of melarsoprol in 0.1ml was calculated. 0.5µmols of 

melarsoprol in 0.1ml is equivalent to 5mmols per litre. To give a concentration 

of 5mmols per litre 1.99g of melarsoprol is required which equates to 2mg of 

melarsoprol per ml (See appendix 1 for full calculations). This value relates to 

standard melarsoprol, in order to calculate the amount of each complex 

required to give a melarsoprol concentration of 5mmols the ratio of melarsoprol 

to cyclodextrin within the complex needs to be taken into account. The ratio of 

melarsoprol to cyclodextrin in the mel/HPβCD complex is 1:17 this means that 

for every 17 grams of the complex only 1 gram is melarsoprol. Therefore to 

obtain a melarsoprol concentration of 5mmols the quantity giving 5mmols of 

melarsoprol (i.e. 2mg/ml) must be multiplied by 17. Similarly the ratio of 

melarsoprol to cyclodextrin in the mel/RAMβCD complex is 1:14 therefore the 

quantity of melarsoprol giving 5mmols (i.e. 2mg/ml) must be multiplied by 14 in 

order to obtain the correct quantity of melarsoprol. This means that to obtain a 

dose of 0.05mmol/kg, 34mg/ml of mel/HPβCD and 28mg/ml of mel/RAMβCD is 
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required. From these doses the amount of each complex required to obtain the 

other doses was calculated (Table 2-2).  

 Amount of complex required per ml (mg) 
Dose (mmol/kg) Mel/HPβCD Mel/RAβCD 
0.0125 8.5 7 
0.025 17 14 
0.05 34 28 
0.1 68 56 
0.2 136 112 

Table 2-2: The amount of each complex required per ml in order to give the required doses 

 
2.3.4 Calculation of volume of melarsoprol cyclodextrin 

complexes to be orally administered 

All drug solutions were prepared to allow their administration at 0.1ml/10g body 

weight. The volume of solution administered according to the weight of the 

mouse is detailed in Table 2-3. 

Animal weight (grams) Volume of drug to be administered (ml) 
18.0 - 22.4 0.20 
22.5 - 27.4 0.25 
27.5 - 32.4 0.30 
32.5 - 37.4 0.35 
37.5 - 42.4 0.4 
42.5 - 47.4 0.45 
47.5 - 52.0 0.50 

Table 2-3: The volume of complexed melarsoprol solu tion administered depending upon the 
weight of the animal 

  
2.3.5 Calculation of complexed melarsoprol dose for intravenous 

administration 

The amount of mel/HPβCD required to achieve a melarsoprol dose of 

0.03mmol/kg was calculated. This dose is equivalent to 0.03µmols of 

melarsoprol per gram body weight. This means that 10 grams equates to 

0.3µmols, therefore the amount of complex required to prepare a solution 

containing 0.3µmols of melarsoprol in 0.05ml was calculated. 0.3µmols of 

melarsoprol in 0.05ml is equivalent to 6mmols per litre. To give a concentration 

of 6mmols per litre 2.388g of melarsoprol is required which equates to 2.388mg 
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of melarsoprol per ml (See appendix 1 for full calculations). This value relates to 

standard melarsoprol, in order to calculate the amount of mel/HPβCD required 

to give a melarsoprol concentration of 6mmols the ratio of melarsoprol to 

cyclodextrin within the complex needs to be taken into account. The ratio of 

melarsoprol to cyclodextrin in the mel/HPβCD complex is 1:17 this means that 

for every 17 grams of the complex only 1 gram is melarsoprol. Therefore to 

obtain a melarsoprol concentration of 6mmols the quantity giving 6mmols of 

melarsoprol (i.e. 2.388mg/ml) must be multiplied by 17. This means that to 

obtain a dose of 0.03mmol/kg, 40.6mg of mel/HPβCD is required per ml.  

2.3.6 Calculation of the volume of mel/HPββββCD to be intravenously 

administered 

For intravenous administration, the mel/HPβCD solution was prepared to allow 

administration at 0.05ml/10g of body weight. The volume of the solution given 

according to the weight of the mouse is detailed in Table 2-4.  

Animal weight (grams) Volume to be administered (ml) 

18.0 – 22.45 0.1 

22.5 – 27.45 0.125 

27.5 – 32.45 0.15 

32.5 – 37.45 0.175 

37.5 – 42.45 0.2 

42.5 – 47.0 0.225 

Table 2-4: The volume of mel/HP ββββCD solution administered I.V. to animals in order t o 
achieve a dose of 0.03mmol/kg 

 
2.3.7 Preparation of melarsoprol cyclodextrin complexes for 

administration 

The melarsoprol cyclodextrin complexes are supplied as fine white powders. The 

amount of each complex required to give the appropriate doses were weighed 

out on a fine balance and placed in a sterile falcon tube. The complexes were 

subsequently dissolved in the corresponding amount of sterile water in order to 

obtain the desired concentration. The total volume required was calculated 

based on an average body weight of 40g therefore for oral administration 0.4ml 
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was prepared per mouse, while for I.V. administration 0.2ml was prepared per 

mouse. An additional 1ml was allowed to accommodate the volume lost in the 

gavage needle and syringe hub. As the stability of the melarsoprol cyclodextrin 

complexes in solution is not known, the solutions were prepared fresh each day 

immediately prior to administration.  

2.3.8 Oral administration of melarsoprol cyclodextrin complexes 

The melarsoprol cyclodextrin complexes were administered orally as a solution. 

The animals were weighed and the appropriate volume of the complexed 

melarsoprol solution taken up in a 1ml syringe. A 20 gauge x 25mm gavage 

needle was place on the syringe. Mice were restrained by grasping the scruff of 

the animals' neck between the thumb and forefinger and securing the tail 

between the third and fourth fingers. The gavage needle was carefully inserted 

into the intradental space and then slowly into the oesophagus. The complexed 

melarsoprol solution was subsequently administered. Following administration 

the gavage needle was immediately withdrawn and the animal released.  

2.3.9 Intravenous administration of mel/HPββββCD 

Animals were anaesthetised with isoflurane delivered as a mixture of 3% 

isoflurane and 50% oxygen. The animals were placed on a heat mat in order to 

dilate the caudal veins and the mel/HPβCD solution was administered, slowly 

and carefully into the tail vein using a 30 gauge insulin syringe. Anaesthesia was 

maintained throughout the procedure.    
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3.1 Introduction 

3.1.1 Melarsoprol  

Melarsoprol is a very lipophilic and poorly water soluble drug with a log P of 2.53 

and a solubility of 6mg/l at 25°C (Gibaud et al., 2005). The compound’s limited 

solubility means that it has to be dissolved in the solvent propylene glycol to 

produce a 3.6% solution. This is the only formulation of melarsoprol currently 

available. The formulation is far from ideal with the propylene glycol solvent 

posing numerous problems. Administration is extremely painful and the solution 

has to be administered very carefully and slowly, as if the solvent leaks into the 

tissues surrounding the vein, necrosis and chemical cellulitis can occur (Pepin 

and Milord, 1994). Administration of the solution is not the only problem 

associated with this drug. Melarsoprol is very toxic with patients experiencing 

numerous side effects following its administration (Blum and Burri, 2002; Burri, 

Stich and Brun, 2004; World Health Organisation, 1998). The most serious 

adverse event reported following the administration of melarsoprol is a post 

treatment reactive encephalopathy (PTRE). This reaction has been reported in 

up to 10% of patients receiving the drug, of which 50% will die as a result of the 

complication (Kennedy, 2004; Pepin and Milord, 1994). This gives melarsoprol an 

overall fatality rate of 5%, which is unacceptably high. The mechanisms behind 

the development of the PTRE are discussed in detail in chapter 1. Despite the 

problems associated with melarsoprol chemotherapy, the drug is a highly 

effective trypanocide and trypanosomes exposed to melarsoprol in-vitro lyse 

very rapidly. Furthermore, melarsoprol is still the only treatment available for 

CNS stage T. b. rhodesiense infections.  

3.1.1.1 Melarsoprol derivatives 

The high trypanocidal activity of melarsoprol led researchers to attempt to 

develop derivatives which were less toxic and water soluble yet retained the 

trypanocidal activity of melarsoprol. One melarsoprol derivative which was 

developed in the early 1960’s as a possible replacement for melarsoprol is 

trimelarsen (mel W). In an initial study conducted in six patients with late stage 

T. b. gambiense infection, mel W was found to be as effective as melarsoprol 
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when administered intramuscularly or subcutaneously as two series consisting of 

four daily injections of 1 to 5mg/kg separated by a 7 day drug free interval 

(Friedheim and De Jongh, 1959). No adverse reactions were observed and no 

trypanosomes were detected in the CSF following completion of the treatment 

regime. Following the success of this initial trial a larger scale study was 

conducted in 24 patients with intermediate or late stage CNS T. b. gambiense 

infection. Patients were administered mel W daily, for 3 consecutive days at 

4mg/kg, following a drug free period of 7 to 10 days patients received an 

additional four doses of mel W at 4mg/kg once per day (Watson, 1962). Initial 

results obtained 11 months after completion of mel W treatment indicated the 

drug was as effective as melarsoprol. In all patients the CSF cell count had 

decreased or returned to normal. However, at a second follow-up 2 years after 

completion of treatment, the CSF protein count had risen in four patients 

suggesting mel W may not be as effective as initially thought (Watson, 1965). An 

earlier study conducted by Roberston in CNS stage T. b. rhodesiense patients, 

also reported high treatment failure rates following mel W chemotherapy 

(Robertson, 1963). In the study 17 patients were given mel W as three series of 

four injections at doses ranging from 25 to 300mg/kg. Each series was separated 

by a drug free period of 3 to 11 days (Robertson, 1963). Adverse reactions were 

a common occurrence, with all but four patients developing febrile reactions 

and six patients developing CNS reactions (Robertson, 1963). Follow-up, 16 

months after completion of treatment, revealed that nine patients had relapsed. 

The results obtained by Watson (Watson, 1965) and Robertson (Robertson, 1963) 

indicate that mel W is not as effective as melarsoprol in the treatment of CNS 

stage T. b. gambiense and T. b. rhodesiense infections. Furthermore, it may be 

more toxic than melarsoprol. As a result the use of mel W in the treatment of 

HAT was abandoned.  

The following years have seen little progress in the way of new trypanocides. 

Recently DB75, N-myristoyltransferase inhibitors and oxaborole 6-carboxamides 

have been identified as potential trypanocides and fexinidazole entered phase I 

clinical trials in September 2009 (further details are contained in chapter 1) 

(Frearson et al., 2010; Nare et al., 2010; Torreele et al., 2010; Wenzler et al., 

2009). However, there is still an urgent need for the development of new 

trypanocides or the reformulation of existing ones. If the toxicity of melarsoprol 
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could be reduced and its solubility increased so that oral dosing was possible, 

without a concurrent lost in trypanocidal activity, melarsoprol could once again 

be used as a first line therapy for the treatment of HAT. One possible 

mechanism of improving the properties of contemporary melarsoprol is to utilise 

the drug in conjunction with cyclodextrins.   

3.1.2 The pharmacological uses of cyclodextrins 

Cyclodextrins are of great interest to the pharmaceutical industry as through 

complex formation they can alter the physical and chemical properties of the 

included guest molecule thus producing a compound with more desirable 

characteristics. Complexation is commonly used to improve the solubility and 

bioavailability of poorly soluble drugs, decrease toxicity, disguise unpleasant 

odours and tastes, increase stability and modify the release rate of drugs. 

3.1.2.1 Increasing solubility 

One of the most important features of cyclodextrins is their ability to increase 

the aqueous solubility of poorly soluble drugs. Upon complexation the 

hydrophobic molecule enters into the cyclodextrin cavity where it is sheathed by 

the exterior hydrophilic hydroxyl groups of the cyclodextrin. This results in an 

increase in the apparent aqueous solubility of the enclosed molecule. The 

changes in solubility observed upon complexation can be investigated by phase-

solubility analysis (Higuchi and Connons, 1965).  

Phase-solubility analysis allows the stability constant of the complex to be 

calculated and also gives an insight into the stoichiometry of the complex. The 

technique was developed by Higuchi and Connons in 1965 (Higuchi and Connons, 

1965). An excess of the drug of interest is added to solutions of increasing 

cyclodextrin concentration. The solutions are agitated until equilibrium is 

established, filtered and then the total drug concentration determined 

analytically (Brewster and Loftsson, 2007). A phase-solubility plot can then be 

constructed by plotting the solubility of the guest molecule as a function of the 

cyclodextrin concentration. A number of different solubility profiles are 

obtained depending upon the type of complex formed (Figure 3-1).  
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3.1.2.1.1 A-type profiles 

A-type solubility profiles indicate water soluble complexes are being formed 

which have a higher solubility than the free uncomplexed drug (Brewster and 

Loftsson, 2007; Higuchi and Connons, 1965). Three subtypes of A-type profiles 

have been defined: AL, AP and AN (Higuchi and Connons, 1965). In AL profiles the 

solubility of the drug increases linearly as a function of cyclodextrin 

concentration. Although, it is assumed that 1:1 complexes are being formed in 

this situation, higher order complexes in which multiple drug molecules enter 

into the cyclodextrin cavity can also give rise to AL type profiles. In AP profiles a 

greater solubilisation of the drug is obtained at higher cyclodextrin 

concentrations, suggesting that more than one cyclodextrin molecule is 

encapsulating the drug. In AN type profiles the opposite effect is seen, as the 

cyclodextrin concentration increases, solubilisation of the drug becomes less 

effective. Numerous mechanisms have been proposed for the occurrence of AN 

type profiles including alterations in the viscosity, surface tension and 

conductivity of the solution (Brewster and Loftsson, 2007).  

For complexes displaying an AL type profile where there is a 1:1 complexation, 

the stability constant (KC) of the complex can be determined from the slope and 

intercept of the initial straight-linear phase of the phase-solubility plot and is 

described by Equation 3-1:  

 

Equation 3-1: Determination of the stability consta nt of complex formation 
Where S0 is the intrinsic solubility of the drug in the absence of the cyclodextrin, St refers to the total 
aqueous solubility of the drug in the presence of a given cyclodextrin concentration (CD)t (Higuchi 
and Connons, 1965). 

 
3.1.2.1.2 B-type profiles 

B-type solubility profiles indicate the formation of complexes with limited water 

solubility and can be divided into to two types; BI and BS (Higuchi and Connons, 

1965). In BS profiles the solubility of the drug initially increases linearly as a 

function of cyclodextrin concentration. However, as the maximum solubility of 
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the drug is reached a plateau occurs. If cyclodextrin continues to be added once 

the maximum solubility of the drug is reached precipitation of the complex 

occurs. Finally, when addition of cyclodextrin results in insoluble complexes, the 

solubility is said to follow a BI type profile (Brewster and Loftsson, 2007; Higuchi 

and Connons, 1965).    

 
Figure 3-1: The possible phase-solubility profiles obtained following complexation of a 
guest molecule with a cyclodextrin.  
Profiles AN, AL and AP indicate very soluble complexes are formed where as BS type profiles 
indicate a complex of limited solubility is formed. BI profiles indicate an insoluble complex is formed.  

3.1.2.2 Increasing bioavailability 

Following oral administration the amount and rate at which a drug appears 

within the bloodstream is dependant upon a number of factors including the 

solubility, dissolution rate and the rate of intestinal absorption of the drug 

(Nagai and Ueda, 1996). If the rate-limiting step in the process is dissolution of 

the compound rather than permeation through the intestinal membrane then 

cyclodextrins can be used to increase the bioavailability of the drug (Carrier, 

Miller and Ahmed, 2007; Hirayama and Uekama, 1999; Uekama and Otagiri, 

1987). In this case cyclodextrins can lead to an increase in bioavailability by 

acting as a temporary carrier and delivering the drug to the intestinal membrane 

(Figure 3-2) (Uekama, Hirayama and Irie, 1998). Following oral administration 
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the complex is dissolved in the intestinal fluids and dissociation of the complex 

occurs at the intestinal membrane (Stella, Rao, Zannou and Zia, 1999). 

Absorption is rapid from unstable complexes displaying a high dissolution rate, 

while for more stable complexes the rate of absorption is lower as the 

equilibrium is shifted towards complex formation resulting in a lower free drug 

concentration (Uekama and Otagiri, 1987). This effect can be overcome by 

administering a competing agent at the same time as the complex. The 

competing agent competes with the drug molecule for access to the cyclodextrin 

cavity resulting in an increase in the free concentration and hence bioavailability 

of the drug. A classical example of this is the complex formed by β cyclodextrin 

and the antihistamine cinnarizene (Tokumura, Ueda, Tsushima, Kasai et al., 

1984). Although complexation increased the dissolution rate of cinnarizine by a 

factor of 30 no increase in bioavailability was observed following oral 

administration of the complex (Tokumura, Tsushima, Tatsuishi, Kayano et al., 

1985; Tokumura et al., 1984). Complexation failed to increase the bioavailability 

of cinnarizene due to the relatively high (6200M-1) stability constant of the 

complex (Tokumura et al., 1985). Tokumura et al. attempted to increase the 

bioavailability of cinnarizene from its β cyclodextrin complex by simultaneously 

administering the competing agent DL-phenylalanine (Tokumura, Nanba, 

Tsushima, Tatsuishi et al., 1986). This approach resulted in a clear increase in 

the plasma concentration of cinnarizene. DL-phenylalanine did not act as an 

absorption promoter to cinnarizene directly, as no increase in bioavailability was 

observed when cinnarizene alone was administered with DL-phenylalanine. The 

amino acid therefore acts a competing agent, when administered with 

cinnarizene-β-cyclodextrin, increasing the free concentration and hence 

bioavailability of cinnarizene (Tokumura et al., 1986).  

A further example where cyclodextrins have been used successfully to increase 

the bioavailability of a compound is the antifungal agent itraconazole. 

Itraconazole is a highly efficacious broad–spectrum triazole antifungal agent 

(Willems, Van der Geest and de Beule, 2001). However, its use is limited by its 

poor pharmacokinetic properties. The drug is very lipophilic and poorly soluble 

in water with an estimated solubility of 1ng/ml at pH 7 (Brewster, Neeskens and 

Peeters, 2007). Numerous formulations have been trialled in an attempt to 

improve the pharmacological performance of the drug. The first oral formulation 
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of the drug was based on a solid dispersion system. Inert sugar spheres were 

coated with a solvent containing the drug and hydroxypropylmethylcellulose to 

produce capsules (Gilis, De Conde, Vandecruys and [Anon], 2003). Following oral 

administration the capsules dissolve within the stomach to give a supersaturated 

solution of the drug (Leuner and Dressman, 2000). However, absorption of the 

drug is highly variable. The low pKa of itraconazole means dissolution and 

absorption of the drug occur more effectively at a low pH (Vanpeer, 

Woestenborghs, Heykants, Gasparini et al., 1989). Absorbance of the drug is 

therefore improved by administering the capsules simultaneously with food, 

which stimulates the production of gastric secretions (Grant, 2000). However, in 

HIV patients who are frequently administered the drug in order to prevent 

opportunistic fungal infections, gastric secretions are usually reduced due to 

hypochlorhydia (Welage, Carver, Revankar, Pierson et al., 1995). As a result the 

oral bioavailability of itraconazole is reduced in these patients and therapeutic 

levels are often difficult to maintain (Cartledge, Midgely and Gazzard, 1997; 

Peeters, Neeskens, Tollenaere, Van Remoortere et al., 2002). In an attempt to 

improve the oral bioavailability of itraconazole, an aqueous oral formulation was 

developed through the use of cyclodextrins.  

Itraconazole was complexed with HPβCD to produce an aqueous formulation. In 

the presence of HPβCD the solubility of itraconoazole was increased, with 

concentrations of 1.45, 2.21 and 4.0mg/ml obtained at pH 7, 4 and 2 

respectively (Peeters et al., 2002). The bioavailability of itraconazole was also 

increased following its complexation. In a comparative study, healthy volunteers 

were administered 200mg of itraconazole in the new oral formulation or as 

capsules lacking HPβCD. The bioavailability of itraconazole was increased by up 

to 37% with the oral formulation compared to the capsules (Barone, Moskovitz, 

Guarnieri, Hassell et al., 1998). Additionally, in HIV patients significantly higher 

plasma concentrations of itraconazole were obtained following administration of 

the oral itraconazole/HPβCD complex compared to the capsules (Cartledge, 

Midgely and Gazzard, 1997). This indicates that the absorption of itraconazole is 

enhanced following its complexation with HPβCD.  
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Figure 3-2: The absorption of a drug from an inclus ion complex following oral administration.  
Dissolution (Kd) of the complex occurs followed by dissociation at the intestinal membrane. An equilibrium is established between the dissociated drug, empty 
cyclodextrin and the complex. Following dissociation the free drug is able to be absorbed across the intestinal membrane. The cyclodextrin owing to its large size is 
unable to cross the intestinal membrane. Absorption of the drug is dependant on dissolution (Kd) and dissociation (KC) of the complex (Stella et al., 1999). 
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The lack of toxicity and the improvement in the absorption and bioavailability of 

itraconazole following its complexation with HPβCD led to the complex being 

approved by the US Food and Drug Administration. The oral formulation was 

registered in 1997 in the US and was subsequently followed by an I.V. 

formulation in 1999 (Peeters et al., 2002). The product is marketed as 

Sporanox.  

The example of itraconazole indicates that the solubility and bioavailability of 

poorly soluble lipophilic drugs can be improved through complexation with 

cyclodextrins. Furthermore, it demonstrates that the licensing and regulating 

bodies do approve formulations containing cyclodextrins.  

3.1.3 Melarsoprol cyclodextrin complexes 

Cyclodextrin chemistry was utilised in an attempt to produce an aqueous 

formulation of melarsoprol suitable for oral or intravenous administration. An 

aqueous solution of melarsoprol which could be administered either orally or 

parenterally would not only improve the tolerability and safety of the drug but 

would also be highly advantageous in the remote settings were HAT occurs. 

Patients could receive treatment in local health centres from community health 

workers and hospitalisation would not be required, thus strain would not be put 

on already stretched resources and patients would not become a burden on their 

families while receiving treatment. 

Initially four different melarsoprol cyclodextrin complexes were produced using 

the cyclodextrins α, β, HPβCD and RAMβCD (Gibaud et al., 2005). The complexes 

were produced by placing 1mmol of melarsoprol in an aqueous solution of the 

appropriate cyclodextrin. The suspensions were stirred for 14 hours at 25°C 

before being filtered and freeze dried. Each complex was then assessed for its 

ability to solubilise melarsoprol. The solubility of melarsoprol was not improved 

by complexation with α cyclodextrin (Gibaud et al., 2005). The failure of α 

cyclodextrin to increase the solubility of melarsoprol is most likely due to the 

cavity of the cyclodextrin being too small for adequate complexation to occur. 

The amount of melarsoprol which could be solubilised by β cyclodextrin was 

limited by the poor solubility of β cyclodextrin as at higher cyclodextrin 
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concentrations precipitation of the complex occurred (Gibaud et al., 2005). The 

best solubilisation of melarsoprol was achieved with the modified cyclodextrins 

HPβCD and RAMβCD. With both cyclodextrins an AL type phase solubility plot was 

obtained indicating that the solubility of melarsoprol increases linearly as a 

function of cyclodextrin concentration (Gibaud et al., 2005; Higuchi and 

Connons, 1965). The solubility of melarsoprol was increased by a factor of 

7.2x103 following complexation with HPβCD or RAMβCD. The stability constants 

(Ka) of the complexes were 56,077 ± 4205M for mel/RAMβCD, and 54,168 ± 

5350M for mel/HPβCD. These are within the range considered suitable for 

pharmacological use. As a result mel/HPβCD and mel/RAMβCD were selected for 

further investigation.  

In this chapter the inhibitory concentration (IC50) of mel/HPβCD and 

mel/RAMβCD against T. b. brucei bloodstream trypanosomes will be determined 

in-vitro to confirm that the melarsoprol has retained its trypanocidal activity 

following complexation with HPβCD and RAMβCD. Additionally, the minimum 

curative dose of the complexes will be determined in a murine model of CNS 

stage T. b. brucei infection.   
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3.2 Methods 

3.2.1 Assessing the inhibitory concentration of complexed 

melarsoprol 

3.2.1.1 Preparation of stock solutions 

Mel/HPβCD and mel/RAMβCD are supplied as fine white powders with the ratio 

of cyclodextrin to melarsoprol quantified for each batch. The ratio of 

cyclodextrin to melarsoprol for the complexes used in this thesis has already 

been stated in chapter two. Using these ratios the amount of mel/HPβCD and 

mel/RAMβCD required to give stock solutions of 100mM were calculated and the 

solutions prepared in DMSO. Stock solutions of melarsoprol and diminazene 

aceturate were also prepared at a concentration of 100mM. Stock solutions of 

the empty cyclodextrins HPβCD and RAMβCD were prepared at a melarsoprol 

equivalent concentration of 100mM. The stock solutions of the cyclodextrin 

complexes mel/HPβCD and mel/RAMβCD and the empty cyclodextrins HPβCD and 

RAMβCD were freshly prepared prior to each assay as no information is available 

regarding their stability in solution and at -20°C. Melarsoprol and diminazene 

aceturate are stable at -20°C, so the stock solutions of these compounds were 

stored at -20°C until use.  

3.2.1.2 Preparation of working solutions 

The 100mM stock solutions of each compound were diluted in HMI-9 culture 

medium supplemented with 10% foetal calf serum and β mercaptoethanol to give 

working solutions of 200µM. Working solutions were freshly prepared prior to 

each assay.  

3.2.1.3 Culturing of trypanosomes 

Bloodstream forms of T. b. brucei S427 were cultivated in HMI-9 medium 

containing 10% foetal calf serum and β mercaptoethanol at 37˚C in a humidified 

environment at a 5% carbon dioxide (CO2) concentration. Trypanosomes were 

allowed to proliferate until a cell density of 1-2x106 cells/ml was reached. Upon 
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reaching the required density an 8-10µl sample of the culture was removed from 

the flask and placed in the chambers of a haemocytometer. The 

haemocytometer was viewed at x10 magnification and the number of 

trypanosomes within 1mm2 of the ruled grid area counted. The total number of 

trypanosomes per ml was subsequently derived and adjusted to 4x104 

trypanosomes/ml by the addition of HMI-9 culture medium. This served as the 

seed stock in the Alamar blue assay.  

3.2.1.4 Alamar blue assay 

3.2.1.4.1 Preparation of Alamar blue solution 

A 0.49mM Alamar blue solution was prepared by the addition of 12.5mg Alamar 

blue to 100ml of 1 x PBS, pH 7.4. The solution was subsequently sterilised 

through a 0.22µm syringe filter inside a laminar flow hood. Following 

preparation the solution was stored at 4˚C and protected from the light until 

use.  

3.2.1.4.2 Alamar blue assay 

A modification of the Alamar blue assay previously described by Raz et al. was 

used (Raz, Iten, GretherBuhler, Kaminsky et al., 1997). 200µl of the working 

drug solutions were added to every second well in the first column of a 96 well 

plate, while 100µl of HMI-9 culture medium was added to the remaining wells. In 

order to obtain serial dilutions of the compounds across the plate, 100µl of the 

working drug solution from well A1 was transferred into well A2 and mixed 

thoroughly. 100µl from well A2 was then transferred into well A3. This process 

was repeated along the length of the first and second rows of the plate. The last 

well of the second row was left drug free and served as a negative control. To 

every well 100µl of the trypanosome seed stock containing 4 x 103 trypanosomes 

was added. This resulted in final drug concentrations ranging from 100µM to 

24pM. The plates were subsequently incubated for 48 hours at 37˚C under 5% 

CO2.  
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Figure 3-3: The flow process used in the Alamar blu e assay

200 µl of the working drug solutions were 
added to every second well in the first 
column 

100µl HMI-9 culture medium was added to 
the remaining wells 

Drugs were serially diluted across all rows 
of the plate to give concentrations 
ranging from 100µM to 24pM. 

20µl of Alamar blue indicator was added to 
every well and the plates incubated for a 
further 24 hours at 37°C and 5% CO2  

100µl of a seed stock containing 4 x104 

trypanosomes was added to each well. 
The plates were subsequently incubated 
for 48 hours at 37˚C and 5% CO2 

The absorbance of the plates was measured 
at excitation wavelength of 530nm and an 
emission wavelength of 590nm and the IC50 
of each compound determined 



88 

 

After the incubation period 20µl of Alamar blue solution was added to each well. 

The plates were then incubated for a further 24 hours at 37˚C and 5% CO2. 

Following the second incubation period the absorbance was measured using a 

Fluo Star fluorescence spectrometer at an excitation wavelength of 530nm and 

an emission wavelength of 590nm using the program Optima. The assay was 

performed in duplicate for each compound on three separate occasions.  

3.2.1.5 Statistical analysis 

The change in fluorescence was plotted as a function of drug concentration for 

each compound using GraphPad Prism 5 software and the inhibitory 

concentration (IC50) of each compound derived. Data was analysed using analysis 

of variance methods, in particular the General Linear Model (GLM) in Minitab 16. 

This provides a method for investigating main effect differences. To adjust for 

any zero values, the [log(x+1)] transformation was applied prior to analysis. 

Significance was measured using the p value at the 5% significance level. Effect 

sizes were further investigated using 95% confidence intervals for the differences 

between means.  

3.2.2 Determining the in-vivo trypanocidal activity of complexed 

melarsoprol and melarsoprol compounds  

3.2.2.1 Establishing T. b. brucei infection in mice 

Female CD-1 mice approximately 6 to 8 weeks in age were infected with 2 x104 

T. b. brucei trypanosomes of stabilate GVR 35/C1.9. Infection was confirmed in 

all animals prior to chemotherapy commencing by examining a wet blood film 

prepared from tail blood for the presence of trypanosomes. These procedures 

are described in detail in chapter 2. 

3.2.2.2 Preparation of compounds for oral administr ation 

Five solutions of mel/HPβCD and mel/RAMβCD were prepared at concentrations 

of 0.0125, 0.025, 0.05, 0.1 and 0.2mmol/kg. The full details regarding the 

preparation of the complexes are detailed in chapter 2. In order to assess the
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in-vivo trypanocidal activity of conventional melarsoprol formulations, 

0.05mmol/kg solutions of trimelarsen (mel W), cymelarsan (mel Cy) and a fine 

suspension of melarsoprol were prepared (Table 3-1). All solutions were freshly 

prepared at the start of each day in sterile water. 

Compound 
Amount of compound required (mg) per ml to 

give a dose of 0.05mmol/kg 

Melarsoprol 2 

Trimelarsen 2.66 

Cymelarsan 2.51 

Table 3-1: The amount of each compound required in mg per ml in order to give a dose of 
0.05mmol/kg 

 
3.2.2.3 Preparation of Mel/HP ββββCD for intravenous administration 

A 0.03mmol/kg solution of mel/HPβCD was prepared by the addition of 40.45mg 

of mel/HPβCD to sterile pyrogen free saline. The full details regarding the 

calculation of the dose are provided in chapter 2.  

3.2.2.4 Chemotherapy schedules 

Following infection mice were randomly assigned to one of sixteen treatment 

groups (Table 3-2). Each group consisted of six animals. Twenty-one days after 

infection, during the CNS stage of the disease, chemotherapy commenced.  

3.2.2.4.1 Oral administration of compounds 

The compounds were administered by oral gavage, daily, for seven consecutive 

days. Animals were appropriately restrained, the gavage needle (20 gauge x 

25mm) inserted directly into the oesophagus and the drugs slowly administered 

directly into the stomach.    

3.2.2.4.2 Intravenous administration of mel/HPββββCD 

The drug was administered once at a dose of 0.03mmol/kg into the caudal vein. 

The full procedure is described in chapter 2.  
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 Dose (mmol/kg) 

 Oral I.V. 

Drug 0.0125 0.025 0.05 0.1 0.2 0.03 

Mel/HPβCD √ √ √ √ √ √ 

Mel/RAMβCD √ √ √ √ √  

Melarsoprol   √    

Trimelarsen   √    

Cymelarsan   √    

HPβCD    √   

RAMβCD    √   

Table 3-2: The sixteen treatment groups used in the  experiment 
Each treatment group consisted of six animals. The compounds were administered orally, daily, for 
7 consecutive days. Mel/HPβCD was also administered as a single I.V. dose of 0.03mmol/kg.  

 
3.2.2.5 Assessing the effectiveness of chemotherapy  

Following completion of chemotherapy, each regime was evaluated for its ability 

to cure CNS stage T. b. brucei infection. A wet blood film prepared from tail 

blood was observed weekly for 60 days for the presence of trypanosomes (Full 

procedure is detailed in chapter 2). Animals remaining parasitaemic for two 

consecutive weeks were culled and the chemotherapy regime deemed 

unsuccessful. Mice aparasitaemic at the end of the 60 day observation period 

were sacrificed and the brain removed. The brain was homogenised in 5ml of 

PGBS and injected intraperitoneally into normal recipient mice. A wet blood film 

prepared from tail blood of the recipient mice was examined on a weekly basis 

for 60 days for the presence of trypanosomes. Animals parasitaemic for two 

consecutive weeks were culled and the chemotherapy regime deemed 

unsuccessful. Recipient animals aparasitaemic at the end of the 60 day 

observation period were considered cured and the chemotherapy regime 

deemed successful.  
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3.2.3 Determining the hepatic toxicity of complexed melarsoprol 

3.2.3.1 Chemotherapy schedules 

Mel/HPβCD, mel/RAMβCD, HPβCD or RAMβCD were administered by oral gavage, 

daily, for seven consecutive days at a dose of 0.05mmol/kg (melarsoprol 

concentration) to normal mice. Immediately after completion of chemotherapy 

three animals were sacrificed from each treatment group (Figure 3-4). An 

additional three animals from each treatment group were sacrificed 7, 14 and 21 

days after completion of chemotherapy.  

7 14 21
M M M M M M M > > >

K K K K  

Figure 3-4: The treatment schedule used 
Female CD-1 mice were administered (M) mel/HPβCD, mel/RAMβCD, HPβCD or RAMβCD daily, 
for 7 consecutive days, at a dose of 0.05mmol/kg. Three animals from each treatment group were 
sacrificed (K), immediately, 7, 14 and 21 days after completion of the treatment regime.  

  
3.2.3.2 Collection of samples 

Animals were culled by exposure to increasing levels of carbon dioxide. 

Following sacrifice the liver was carefully excised and placed in 4% neutral 

buffered formalin.  

3.2.3.3 Preparation of samples for histopathology a nalysis 

The liver was removed from the neutral buffered formalin and processed to 

paraffin blocks. From the paraffin blocks 3µm thick sections were cut and 

mounted onto glass microscope slides. The sections were stained with 

haematoxylin and eosin (H&E) in order to identify any abnormalities. 

3.2.3.4 Histopathological analysis    

The liver sections were viewed by light microscopy and any regions of 

abnormality, consistent with toxicity identified. This assessment was conducted 
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under guidance from Prof. Hal Thompson, Veterinary Pathology, University of 

Glasgow Veterinary School.  
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3.3 Results 

3.3.1 Inhibitory concentration (IC50) of complexed melarsoprol 

The change in fluorescence as a function of drug concentration was measured 

for mel/HPβCD, mel/RAMβCD, HPβCD, RAMβCD, melarsoprol and diminazene 

aceturate and the IC50 of each compound subsequently determined (Figure 3-5). 

The IC50 of melarsoprol (6.933nM) was not significantly different to that of 

mel/HPβCD (21.62nM, P = 0.267) or mel/RAMβCD (8.80nM, P = 0.200). The 

cyclodextrins alone HPβCD and RAMβCD had no trypanocidal activity. The IC50 of 

HPβCD (0nM) was significantly higher than the IC50 of melarsoprol (6.933nM, 

P=0.001), mel/HPβCD (21.62nM, P < 0.0001) and mel/RAMβCD (8.80nM, 

P=0.0007). No significant difference (P = 1.000) was detected between the IC50 

of HPβCD and RAMβCD. The IC50 of diminazene aceturate (100.6nM) was 

significantly higher than the IC50 of melarsoprol (6.933nM, P = 0.0002), 

mel/HPβCD (21.62nM, P = 0.0086) and mel/RAMβCD (8.80nM, P = 0.0003). 

Summary statistics are detailed in Table 3-3.  

3.3.2 The minimum oral curative dose of complexed melarsoprol 

At the lowest dose of 0.0125mmol/kg neither mel/HPβCD nor mel/RAMβCD 

produced any cures in the murine CNS stage model of trypanosomiasis (Figure 

3-6). Although all animals were aparasitaemic following completion of the 

chemotherapy regime, they relapsed to parasitaemia within two weeks of the 

treatment ending. When the dose was doubled to 0.025mmol/kg mel/HPβCD had 

a cure rate of 50% (3/6 animals cured) while mel/RAMβCD had a cure rate of 

66.6% (4/6 animals cured). The lowest dose at which a 100% cure rate (6/6 

animals cured) was obtained for both complexes was 0.05mmol/kg. 100% cure 

rates (6/6 animals cured) were also obtained at doses of 0.1 and 0.2mmol/kg 

(Table 3-4). HPβCD and RAMβCD had no trypanocidal activity up to doses of 

0.2mmol/kg. Animals receiving HPβCD or RAMβCD remained parasitaemic 

throughout the study.  
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Figure 3-5: The IC 50 of the compounds against wild type (s427) T. b. brucei trypanosomes 
The IC50 of mel/HPβCD, mel/RAMβCD, melarsoprol, diminazene aceturate, HPβCD and RAMβCD 
against wild type (s427) T. b. brucei trypanosomes was determined by Alamar blue assay. 
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Diminazene 
aceturate 

HPβCD Mel/HPβCD Mel/RAMβCD Melarsoprol RAMβCD 

HPβCD 
P < 0.0001 

(-5.757, -3.346) 
     

Mel/HPβCD 
P = 0.0086 

(-2.786, -0.375) 
P < 0.0001 

(1.766, 4.177) 
    

Mel/RAMβCD 
P = 0.0003 

(-3.610, -1.198) 
P = 0.0007 

(0.942, 3.353) 
P = 0.2674 

(-2.029, 0.382) 
   

Melarsoprol 
P = 0.0002 

(-3.681, -1.270) 
P = 0.001 

(0.870, 3.281) 
P = 0.2002 

(-2.101, 0.310) 
P = 0.9999 

(-1.277, 1.1340) 
  

RAMβCD 
P < 0.0001 

(-5.757, -3.345) 
P = 1.000 

(-1.205, 1.206) 
P < 0.0001 

(-4.176, -1.765) 
P = 0.0007 

(-3.352, -0.9412) 
P = 0.001 

(-3.281, -0.8696) 
 

Mean ± SE 
N 

100.6 ± 23.6 
3 

0.00 ± 0.00 
3 

21.62 ± 8.64 
3 

8.80 ± 3.00 
3 

6.983 ± 0.308 
3 

0.00 ± 0.00 
3 

Table 3-3: Comparison of the inhibitory concentrati on (IC 50) of the mel/HP ββββCD, mel/RAM ββββCD, melarsoprol, diminazene aceturate, HP ββββCD and RAM ββββCD 
The IC50 of each compound was determined against wild type S427 T. b. brucei trypanosomes by Alamar blue assay. The figures in the body of the table demonstrate 
the comparisons, in terms of statistical significance, between the IC50 (nM) of each compound, shown in the row and column headings. The p-values and 95% 
confidence intervals for differences are based on analysis using the logarithmic transformation [log(x+1)] of the IC50. The mean IC50 value ± the standard error (mean ± 
SE) and the number of repeats are also shown.    
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3.3.3 The minimum intravenous curative dose of mel/HPββββCD 

The administration of 0.03mmol/kg mel/HPβCD intravenously resulted in a cure 

rate of only 16.6% (1/6 animals cured) in a CNS stage murine model of T. b. 

brucei.  

3.3.4 In-vivo trypanocidal activity of melarsoprol compounds 

The ability of three conventional melarsoprol compounds trimelarsen, 

cymelarsan and melarsoprol to cure CNS stage murine trypanosome infection was 

investigated (Figure 3-7). Trimelarsen and cymelarsan were unable to produce 

cures when administered orally at a dose of 0.05mmol/kg, daily, for 7 

consecutive days. All animals receiving trimelarsen and cymelarsan were 

aparasitaemic following completion of chemotherapy but relapsed to 

parasitaemia within three weeks of treatment ending. A cure rate of 33.3% (2/6 

animals cured) was obtained following the administration of melarsoprol (Table 

3-4).  

Dose (mmol/kg) 

 Oral I.V. 

 0.0125 0.025 0.05 0.1 0.2 0.03 

Number of animals cured 

Mel/HPβCD 0/6 3/6 6/6 6/6 6/6 1/6 

Mel/RAMβCD 0/6 4/6 6/6 6/6 6/6 - 

Melarsoprol - - 2/6 - - - 

Trimelarsen - - 0/6 - - - 

Cymelarsan - - 0/6 - - - 

HPβCD - - - - 0/6 - 

RAMβCD - - - - 0/6 - 

Table 3-4: The number of animals cured in each trea tment group 
Animals were infected with 2x104 T. b. brucei GVR35/C1.9 trypanosomes. On day 21 post-
infection, chemotherapy commenced. The compounds were administered orally, daily, for 7 
consecutive days. Mel/HPβCD was also administered I.V. at single dose of 0.03mmol/kg.  
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Figure 3-6: The number of animals relapsed at each dose after receiving mel/HP ββββCD, 
mel/RAM ββββCD, HPββββCD or RAM ββββCD 
Animals were infected with 2 x104 T. b. brucei trypanosomes. On day 21 post-infection when CNS 
stage trypanosome infection is established animals received mel/HPβCD, mel/RAMβCD, HPβCD 
or RAMβCD at doses ranging from 0.0125 to 0.20mmol/kg. All compounds were administered by 
oral gavage, daily, for seven consecutive days. 
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Figure 3-7: The in-vivo trypanocidal activity of melarsoprol compounds in murine CNS stage 
T. b. brucei model 
All compounds were administered at a dose of 0.05mmol/kg, daily, by oral gavage, for seven 
consecutive days. 
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3.3.5 Hepatotoxicity of complexed melarsoprol 

The hepatotoxicty of complexed melarsoprol and the cyclodextrins HPβCD and 

RAMβCD following oral administration was assessed by histopathological analysis. 

3.3.5.1 Immediately following completion of the tre atment regime 

Pathological changes were detected in one animal receiving HPβCD at a dose of 

0.05mmol/kg. In this animal pyknotic cells were observed around the blood 

vessels (Figure 3-8). These changes could be the result of a vascular event, in 

which cellular blood flow was disrupted, resulting in damage to the hepatocytes. 

Histopathological changes were not detected in any other animal.  

 

Figure 3-8: The histopathological changes observed in the liver immediately after 
administration of HP ββββCD 
HPβCD was administered orally, for seven consecutive days at a dose of 0.05mmol/kg. Animals 
were sacrificed immediately after completion of the treatment regime. Pyknotic cells were observed 
around the blood vessels (A and B) (arrow heads). 

 
3.3.5.2 Seven days after completion of chemotherapy  

Small isolated foci of lymphocytes were observed within the liver parenchyma of 

one animal receiving mel/HPβCD (Figure 3-9, panel A) and also in one animal 

receiving RAMβCD therapy (Figure 3-9, panel B). Apart from these small isolated 

focuses the rest of the liver was histologically normal. In one animal receiving 

HPβCD (Figure 3-9, panel C), a small focus of necrotic cells, consisting of dead 

hepatocytes, lymphocytes and neutrophils was observed above the central vein 

(CV). The remainder of the liver was normal and these changes were not 

observed in any other treatment group. Vacuolated cytoplasm was observed in 

A 

► 
◄ 

B 

► 

◄ 



99 

 

two animals receiving mel/RAMβCD therapy (Figure 3-9, panel D). This may be 

due to the storage of glycogen within the hepatocytes.  

 
Figure 3-9: The histopathological changes observed in the liver 7 days after completion of 
mel/HPββββCD (A), RAM ββββCD (B), HPββββCD (C) and mel/RAM ββββCD (D) chemotherapy  
Mel/HPβCD, RAMβCD, HPβCD or mel/RAMβCD was administered orally, for 7 consecutive days at 
a dose of 0.05mmol/kg. 7 days after completion of chemotherapy animals were sacrificed. Small 
isolated foci of lymphocytes (arrow heads) were observed in animals administered mel/HPβCD (A) 
and RAMβCD (B). In one animal receiving HPβCD (C), a small foci of necrotic cells (arrow head) 
consisting of dead hepatocytes, lymphocytes and neutrophils was observed. Vacuolated cytoplasm 
(D) was observed in two animals administered mel/RAMβCD.    

 
3.3.5.3 Fourteen days after completion of chemother apy 

Fourteen days after the completion of chemotherapy, a small isolated focus of 

neutrophils was observed in one animal receiving mel/HPβCD (Figure 3-10, panel 

A). In two animals receiving RAMβCD, and in one animal receiving HPβCD, a mild 

focal hepatitis was observed (Figure 3-10, panel B). No histological changes were 

detected in animals receiving mel/RAMβCD.  
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Figure 3-10: The histopathological changes observed  in the liver 14 days after completion of 
mel/HPββββCD (A) and RAM ββββCD (B) chemotherapy 
Mel/HPβCD or RAMβCD were administered orally, daily, for 7 consecutive days. Animals were 
sacrificed 14 days after completion of treatment. A small isolated focus of neutrophils (arrow head) 
was observed in the liver parenchyma of one animal receiving mel/HPβCD treatment (A). Focal 
hepatitis (arrow head) was observed in animals receiving the empty cyclodextrins HPβCD and 
RAMβCD (B).  

 
3.3.5.4 Twenty-one days after completion of chemoth erapy 

Twenty-one days after the completion of treatment, histological changes were 

observed in all treatment groups. The alterations were characterised by a focal 

hepatitis within the liver parenchyma. The reaction was present in one animal 

from the mel/HPβCD, mel/RAMβCD and RAMβCD treatment groups and in two 

animals receiving HPβCD. All other animals were histologically normal.  

 

Figure 3-11: The histological changes observed with in the liver 21 days after completion of 
treatment 
Mel/HPβCD, mel/RAMβCD, HPβCD and RAMβCD were administered orally, for 7 consecutive 
days, at a dose of 0.05mmol/kg. Histopathological changes in the form of focal hepatitis (arrow 
head) were observed in all treatment groups.  
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3.4 Discussion 

For a novel formulation of melarsoprol to be considered as a new drug candidate 

in the treatment of HAT its trypanocidal activity must be comparable to that of 

the current formulation and it should display a reduced toxicity. The in-vitro 

trypanocidal activity of the melarsoprol cyclodextrin compounds mel/HPβCD and 

mel/RAMβCD against bloodstream T. b. brucei trypanosomes was determined by 

means of an Alamar blue assay. The complexation of melarsoprol to the 

cyclodextrins HPβCD or RAMβCD did not significantly reduce the in-vitro 

trypanocidal activity of melarsoprol. Of the two melarsoprol cyclodextrin 

complexes mel/RAMβCD displayed the greatest in-vitro trypanocidal activity 

against bloodstream T. b. brucei trypanosomes with an IC50 of 8.80nM compared 

to that of 21.62nM for mel/HPβCD but this difference was not significant.  

In the present study the in-vitro activity of melarsoprol was not significantly 

reduced following its complexation to HPβCD and RAMβCD. This is in contrast to 

the study by Zirar et al. who reported a significant reduction in the in-vitro 

activity of melarsoprol following its complexation with HPβCD (Zirar, Gibaud, 

Camut and Astier, 2007). In the study, erythroleukemia (K562) and 

myelomonocytic leukaemia (U937) cells lines were exposed to melarsoprol or 

mel/HPβCD at concentrations ranging from 0.01µM to 1mM (melarsoprol 

concentration). The cells were incubated for two or three days before cell 

viability was determined by the tetrazolium salt method (MTT test) (Hansen, 

Nielsen and Berg, 1989). The cytotoxicity of melarsoprol was retained following 

its complexation with HPβCD but the level of cytotoxicity observed was 

significantly reduced in both cell lines compared to free melarsoprol. For 

mel/HPβCD IC50 values of 9.3 ± 1.2 and 8.9 ± 7.2µM were obtained in the K562 

and U937 lines respectively compared to 2.65 ± 0.08 and 2.40 ± 0.02µM for free 

melarsoprol (Zirar et al., 2007). The cytotoxicity of mel/RAMβCD was not 

determined.  

The discrepancy between the present study and that of Zirar et al. could be due 

to different cells lines the two assays were conducted on. In the present study, 

the IC50 of the melarsoprol cyclodextrin complexes was determined for wild type 

S427 T. b. brucei trypanosomes. Trypanosomes are very sensitive to melarsoprol, 
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rapidly lysing in the presence of the drug. The IC50 of melarsoprol in 

trypanosomes therefore lies in the nano gram range. In the study conducted by 

Zirar et al. the cytoxicity of the melarsoprol cyclodextrin complexes was 

determined in erythroleukemia (K562) and myelomonocytic leukaemia (U937) 

cells lines. The cells lines are not as sensitive to melarsoprol as trypanosomes 

with the IC50 lying in the micro gram range. Melarsoprol is an unstable compound 

and rapidly undergoes an acid-base catalysed hydrolysis in which the 

dithiarsolane ring is opened resulting in the formation of the metabolite 

melarsen oxide (Keiser and Burri, 2000). In-vivo melarsoprol is rapidly 

metabolised to melarsen oxide (Keiser, Ericsson and Burri, 2000). This was 

demonstrated in a study investigating the metabolites of melarsoprol. The half-

life of melarsoprol by HPLC analysis was determined to be less than 30 minutes 

in the plasma. The metabolite melarsen oxide was rapidly formed reaching 

maximum plasma levels (Cmax) after 15 minutes (Keiser, Ericsson and Burri, 

2000). In in-vitro assays melarsoprol is also rapidly hydrolysed to melarsen oxide. 

When melarsoprol is complexed with the cyclodextrins HPβCD and RAMβCD the 

dithiarsolane ring is contained within the hydrophobic cyclodextrin cavity and is 

therefore inaccessible to water molecules so hydrolysis is prevented. The 

inability of melarsoprol to undergo hydrolysis while contained within the 

cyclodextrin cavity has been confirmed by stability studies (Gibaud et al., 2005). 

The degradation kinetics of melarsoprol are significantly reduced when the 

compound is contained within the cyclodextrin cavity as opposed to being free. 

By forming an inclusion complex the stability half-life of the compound is 

doubled. In order for hydrolysis to occur the melarsoprol molecule must first 

dissociate from the cyclodextrin cavity. Upon dissociation, water molecules are 

able to access the dithiarsolane ring and the active metabolite, melarsen oxide 

is formed. However, the newly formed melarsen oxide can also form complexes 

with the empty cyclodextrins resulting in a decrease in the free melarsen oxide 

concentration. The increased stability obtained by complexation and the ability 

of the active metabolite, melarsen oxide, to re-enter the cyclodextrin cavity 

means the amount of free melarsen oxide is decreased when melarsoprol is 

complexed to cyclodextrins. This lower concentration of free melarsen oxide 

could therefore account for the decreased cytotoxicity observed by Zirar et al. 

in-vitro when melarsoprol was complexed with the cyclodextrin HPβCD. As 

trypanosomes are more sensitive to melarsoprol than erythroleukemia (K562) 
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and myelomonocytic leukaemia (U937) cells lines, the free concentration of 

melarsen oxide although reduced, following the complexation of melarsoprol to 

HPβCD and RAMβCD, was still high enough to cause lysis of the trypanosomes. No 

difference was therefore detected in the present study between the IC50 of free 

melarsoprol and that of mel/HPβCD and mel/RAMβCD.   

The remote, isolated, resource poor settings in which HAT occurs means that any 

new trypanocidal compound must be easy to administer. At present patients 

must be hospitalised while receiving treatment as all currently available drugs 

require parenteral administration. An oral formulation would eliminate the need 

for hospitalisation enabling patients to be treated in local health centres, 

freeing up limited resources. In this study the minimum curative dose of 

mel/HPβCD and mel/RAMβCD following oral administration was determined and 

compared to orally administered melarsoprol, cymelarsan and trimelarsen in a 

murine model of CNS stage T. b. brucei infection. Mel/HPβCD and mel/RAMβCD 

administered at a dose of 0.05mmol/kg, daily, for seven consecutive days, cured 

murine CNS stage T. b. brucei infection. Cymelarsan and trimelarsen given at an 

equivalent dose were unable to produce cures, while melarsoprol was able to 

cure only 33.3% of the animals. The cyclodextrins alone HPβCD and RAMβCD 

displayed no trypanocidal activity.  

Melarsoprol is a very lipophillic compound (log P = 2.53) and as a result it is able 

to diffuse across biological membranes, including the blood-brain barrier (BBB) 

(Gibaud et al., 2005). However, when melarsoprol is administered orally, very 

little of the compound is absorbed due to the compounds poor solubility and 

dissolution profile. In order for a drug to be absorbed from the gastrointestinal 

tract (GI), dissolution of the compound must occur followed by permeatation 

through the mucosal membrane (Carrier, Miller and Ahmed, 2007). The poor 

solubility of melarsoprol (S0 = 6 mg/l) means dissolution of the compound is very 

slow (De = 24.6 ± 2.0% after 10 minutes at 37°C) and after 60 minutes only 60.3 ± 

6.1% of the drug is dissolved (Gibaud et al., 2005). As a result very little of the 

drug is absorbed from the GI tract. This means that the drug is unlikely to reach 

therapeutic levels within the CNS and chemotherapy will be of limited success.  
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The melarsoprol analogues cymelarsan and trimelarsen are water soluble. As a 

result, solubility and dissolution of the compounds should not be limiting factors 

in the absorption of the drugs from the GI tract as is the case with melarsoprol. 

One therefore might expect the oral bioavailability of cymelarsan and 

trimelarsen to be greater than melarsoprol. However, in the present study this 

was not the case. Cymelarsan and trimelarsen when administered orally failed to 

cure CNS stage T. b. brucei infection, while a cure rate of 33.3% was obtained 

with melarsoprol when administered at an equivalent dose. This suggests that 

cymelarsan and trimelarsen are poorly absorbed across biological membranes. 

Studies conducted by Watson and Robertson support this hypothesis (Robertson, 

1963; Watson, 1965). In the studies the authors assessed the efficacy of 

trimelarsen to cure CNS stage T. b. rhodesiense and T. b. gambiense infections. 

Initial results from the studies showed promising results with trimelarsen 

appearing to be as effective as melarsoprol. However, subsequent follow up 

investigations conducted a number of months after completion of chemotherapy 

showed that a large majority of the patients had relapsed to parasitaemia. 

Watson reported treatment failure rates of 15.8% while Robertson observed a 

much higher relapse rate of 56.25% in patients with T. b. rhodesiense infections 

(Robertson, 1963; Watson, 1962; Watson, 1965). These results suggested poor 

penetration of trimelarsen across the BBB and as a result therapeutic 

concentrations of the compound could not be obtained in the CNS.  

The complexation of melarsoprol to the cyclodextrins HPβCD and RAMβCD 

enhanced the inherent solubility of melarsoprol by a factor of 7.2 x103 (Gibaud 

et al., 2005). This increased solubility means that there is a rapid dissolution of 

the complexes. The dissolution efficiency (De) of mel/RAMβCD was determined 

to be 96.7 ± 2.5% after 10 minutes and after 1 hour complete dissolution of the 

complex had occurred (Gibaud et al., 2005). This increased rate of dissolution 

means that following complex dissociation melarsoprol rapidly permeates the 

mucosal membrane and is absorbed. As a result the oral bioavailability of the 

compound is increased. Uekama et al. reported similar observations following 

the complexation of diazepam with γ cyclodextrin (Uekama, Narisawa, Hirayama 

and Otagiri, 1983). The solubility of diazepam was increased by complexation 

and as a result the complex dissolved much more rapidly than the free drug. This 

enhanced dissolution rate led to an increase in the net amount of diazepam 
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permeating a cellophane membrane in-vitro. In-vivo the higher dissolution rate 

of the complex resulted in higher serum levels of diazepam being obtained 

following oral administration of the complex compared to the free drug alone, 

Cmax = 1.05 ± 0.16 and 0.59 ± 0.08 µg/ml respectively. Increased oral 

bioavailability as a result of enhanced dissolution and solubility kinetics brought 

about by complex formation has also been reported for itraconazole (Willems, 

Van der Geest and de Beule, 2001), artemisinin (Wong and Yuen, 2001) and 

albendazole (Evrard, Chiap, DeTullio, Ghalmi et al., 2002).  

A second factor contributing to the increased oral bioavailability observed 

following complexation of melarsoprol is that the cyclodextrins act as carriers. 

The cyclodextrins effectively deliver the compound to the mucosal membrane. 

Once at the intestinal membrane, the membrane acts as a ‘sink’ causing 

dissociation of the complex based on a simple mass action principle (Stella et 

al., 1999). Following dissociation of the complex at the intestinal membrane, 

the melarsoprol is free to diffuse across the membrane from where it enters the 

bloodstream (Figure 3-2). Undissociated complexes and the cyclodextrins 

themselves are not significantly absorbed and are mostly excreted unchanged in 

the faeces (Stella et al., 1999).  

The increased solubility and enhanced dissolution of melarsoprol as a result of 

complexation and the ability of the cyclodextrins to act as carriers, delivering 

the drug to the intestinal membrane all result in an increase in the oral 

bioavailability of melarsoprol. As a result the drug is able to penetrate into the 

CNS and cure CNS stage murine trypanosomiasis. 

A single intravenous dose of 0.03mmol/kg mel/HPβCD resulted in an 

unsatisfactory cure rate of 16.7%. The low cure rate is unlikely to be due to the 

inability of the complex to penetrate the blood-brain barrier (BBB) as successful 

cure rates were obtained following oral administration of the complexes. The 

low cure rate is probably a result of the dose administered being too low for 

therapeutic levels to be obtained within the CNS. In the I.V. schedule the total 

amount of melarsoprol administered was only 0.478mg where as in the 

successful oral regime 5.6mg of melarsoprol was administered. This is nearly a 

12 fold reduction in the amount of melarsoprol administered. For I.V. 

administration the dose is normally reduced compared to the oral dose as the 



106 

 

compound is delivered directly into the bloodstream but it is not usually reduced 

by such a large factor. Considering the low I.V. dose of mel/HPβCD 

administered, it is not surprising disappointing cure rates were obtained. The 

dose of mel/HPβCD can not be increased, as in a previous study, a dose of 

0.038mmol/kg was found to kill 40% of the animals (Zirar et al., 2007). One way, 

to raise the levels of melarsoprol reaching the CNS following I.V. administration 

of mel/HPβCD would be to lengthen the treatment schedule by administering 

the drug on a daily basis for a set period of time. However, as the 

drug/cyclodextrin complex is effective orally, there is little advantage in 

optimising a parenteral dosing regime where multiple injections are required. 

Mel/RAMβCD can not be administered I.V. as RAMβCD is nephrotoxic. Its high 

affinity for cholesterol results in the formation of cholesterol-inclusion 

complexes which crystallise within the kidney, resulting in nephrosis (Frank, 

Gray and Weaver, 1976) (Discussed in detail in chapter 1).    

Hepatitis was observed within the liver parenchyma in animals from all 

treatment groups, twenty-one days after completion of chemotherapy. However, 

the alterations were not observed in every animal and were considered to be of 

little toxicological importance (personal communication, Prof. Hal Thompson, 

University of Glasgow). Mild treatment related alterations within the liver are a 

common occurrence following the administration of cyclodextrins. Gould and 

Scott reported an increase in the plasma concentration of the liver enzymes 

ALT, AST and GLDH in rats administered 4,500mg/kg HPβCD, a day, for seven 

days (Gould and Scott, 2005). However, in contrast to the present study these 

changes were not associated with any histopathology. This is despite the dose 

administered being 225 fold higher than in the present study. In the study 

conducted by Gould and Scott, liver pathology in the form of centrilobular 

swelling was only observed in rats administered HPβCD at doses greater than 

2000mg/kg/day for a year (Gould and Scott, 2005). Discrepancies are commonly 

observed between studies investigating the oral toxicity of cyclodextrins. In one 

study, rats were administered HPβCD orally at a dose of 450mg/kg/day for one 

month (Gould and Scott, 2005). An increase in plasma liver enzymes was 

observed and plasma creatinine and triglyceride concentrations were also 

slightly reduced in males. However, in a second longer term study in which 

HPβCD was administered at a dose of 500mg/kg/day for a year in rats, no 
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toxicological effects were observed (Gould and Scott, 2005). One possible 

explanation for the discrepancies between studies investigating the toxicity of 

cyclodextrins is the route by which the cyclodextrins were administered. In some 

studies the cyclodextrins are administered by oral gavage directly into the 

stomach so the animal definitely receives the stated dose. However, in other 

studies, the cyclodextrins are fed by the diet. This means that some of the 

animals may receive a smaller dose of the cyclodextrin than stated, as the 

animals will consume varying quantities of the diet. If the taste of the diet has 

also been altered through the addition of the cyclodextrin this may also cause 

animals to consume less of the diet. Although hepatotoxicity was observed in the 

present study in mice administered 0.05mmol/kg (20mg/kg) HPβCD for seven 

days, in a study conducted in humans in which HPβCD was administered orally at 

doses up to 114mg/kg a day, for one to two weeks, no toxicological effects were 

observed (De Beule, 1996). Furthermore, HPβCD is included in the European 

Pharmacopoeia (Ph.Eur.) and the US food and drug administration’s (FDA) list of 

inactive pharmaceutical ingredients (Loftsson and Duchene, 2007). This supports 

the hypothesis that the heptatoxicity observed in the present study is of no 

toxicological importance.       

 It can be concluded from these investigations that the in-vitro trypanocidal 

activity of melarsoprol is retained following complexation with HPβCD or 

RAMβCD. The melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD 

display a superior activity in an in-vivo murine model of CNS stage T. b. brucei 

infection. The complexes are able to produce 100% cures while free melarsoprol 

is only able to produce a cure rate of 33.3%. The results from these initial 

experiments indicate that mel/HPβCD and mel/RAMβCD are promising oral 

candidates for the treatment of HAT and warrant further investigation.  



 

 

Chapter 4: Detection of trypanosomes within the 

brain 

4  
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4.1 Introduction 

The previous chapter demonstrated that the melarsoprol cyclodextrin complexes 

mel/HPβCD and mel/RAMβCD can successfully cure CNS stage T. b. brucei 

infection following oral administration. However, the time-course of 

trypanosome elimination from the brain following this treatment regime is 

unknown. This chapter discusses the development of an in-situ hybridization 

technique and quantitative PCR (QPCR) assay to visualise the location of 

trypanosomes within the brain and to assess the number of trypanosomes 

present within the brain at set time points, before, during and after completion 

of the chemotherapy regime.    

4.1.1 Location of trypanosomes in the brain 

Since the early 1900’s the ability of trypanosomes to establish a CNS infection 

has been recognised and many attempts have been made to visualise 

trypanosomes within paraffin embedded and frozen brain sections with limited 

success. Mott was one of the first to describe the histological changes that occur 

within the brain during trypanosome infection. However, trypanosomes were 

only observed sporadically within the brain parenchyma (Mott, 1906). Calwell 

also failed to detect any trypanosomes within the brains of 17 patients who had 

died as a result of T. b. rhodesiense infection (Calwell, 1937). The lack of 

trypanosomes within the brain was attributed to the patients receiving 

trypanocidal drugs prior to death and the poor fixation of the brain, resulting in 

degradation of the parasites before the specimens were examined (Calwell, 

1937). One of the first descriptions on the location of trypanosomes within the 

brain was by Stevens and Moulton in deer mice (Peromyscus maniculatus) 

infected with T. b. brucei (Stevens and Moulton, 1977). Examination of the 

paraffin embedded brain sections under a light microscope revealed that the 

trypanosomes occurred in all areas of the brain but were found most frequently 

within the choroid plexus of the lateral ventricles. In the ventricles, the 

parasites were found within the choroidal capillaries, extravascularly but 

restricted to the choroid and in the ventricular space. The trypanosomes were 

only observed sporadically within the meninges and when present they were 

usually confined to the venules. Large numbers of trypanosomes were also 
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frequently observed within the hippocampus. A second study investigating the 

localisation of T. b. rhodesiense within the brains of mice found similar results 

to those reported by Stevens and Moulton (Fink and Schmidt, 1979). Two weeks 

after infection trypanosomes were observed within the connective tissue of the 

choroid plexus. As the infection progressed the number of trypanosomes present 

within the choroid plexus of the lateral ventricles increased with dense 

aggregates of trypanosomes frequently observed. At the terminal stage of 

infection large numbers of trypanosomes were present within the connective 

tissue of the villi of the choroid plexus and within the meningeal and cerebral 

vessels. Additionally, in a number of sections trypanosomes were observed 

within the brain tissue, in particular the cortex of the cerebrum, Ammon’s horn 

and in the subcortical nuclei. It was therefore concluded that trypanosomes 

occur most frequently in areas of the brain where the vascular system is well 

developed (Fink and Schmidt, 1979).  

It is difficult to detect trypanosomes within the brain parenchyma using 

conventional histopathology staining techniques, therefore, in an attempt to 

make the parasites within the brain tissue more visible Poltera et al. used an 

immunohistology technique (Poltera, Hochmann, Rudin and Lambert, 1980). 

Brain sections were incubated with fluorescently conjugated anti-trypanosomal 

antibodies purified from rabbits inoculated with trypanosomal lysate mixed with 

Freund’s incomplete adjuvant. Using this method the trypanosomes showed a 

similar distribution to that reported by Stevens and Moulton (Stevens and 

Moulton, 1977). Trypanosomes were first located in the interstitium of the 

choroid plexus during the third or fourth week of infection with numbers 

increasing as the infection progressed. Two to three weeks after invasion of the 

choroid plexus small numbers of trypanosomes were found in the meninges, in 

particular in the lateral cerebral fissure, the perivascular spaces at the base of 

the brain and the pontocerebellar area. Electron microscopy conducted eight 

weeks after infection, revealed trypanosomes in the interstitium of the choroid 

plexus. However, no parasites were seen within the choroid ependyma (Poltera 

et al., 1980).  

An immunohistochemical approach was also used by Schultzberg et al. to 

visualise T. b. brucei trypanosomes in the nervous system of Sprague Dawley 

rats, BALB/c mice and deer mice (Schultzberg, Ambatsis, Samuelsson, 
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Kristensson et al., 1988). Brain sections were incubated with antisera collected 

from rabbits infected with trypanosomes, followed by fluorescein isothiocyanate 

(FITC) labelled goat anti-rabbit antibodies. In addition, a peroxidase anti-

peroxidase (PAP) method was used. Large numbers of trypanosomes were 

present in the choroid plexus stroma in both deer mice and rats, thirteen days 

after infection but at this point no trypanosomes were observed in the brain 

parenchyma (Schultzberg et al., 1988). By 21 days post infection, trypanosomes 

were found in the stroma of trigeminal and spinal ganglia, in the median 

eminence, pineal gland and area postrema. Only small numbers of trypanosomes 

were observed in the brain parenchyma. By 33 days post-infection the number of 

parasites present within the brain parenchyma had increased and parasites were 

also observed in the choroid and ciliary body. A similar distribution was observed 

at days 49, 55 and 68 post-infection. By the terminal stage of infection in rats, 

the number of trypanosomes present within the brain parenchyma had increased 

dramatically.  

An earlier invasion of the brain parenchyma by T. b. brucei was reported by 

Masocha et al. (Masocha, Robertson, Rottenberg, Mhlanga et al., 2004). In this 

study, the distribution of T. b. brucei in relation to cerebral blood vessels was 

investigated in C57BL/6 mice by double immunolabelling (Masocha et al., 2004). 

An anti-glucose transporter-1 antibody was used to mark endothelial cells, while 

a rabbit polyclonal anti-variant surface glycoprotein (anti-VSG) antibody was 

used to visualise trypanosomes. On day six post-infection, parasites were 

detected in the stroma of the choroid plexus and the circumventricular organs. 

At this time point parasites were confined to the lumen of intracerebral vessels 

and no trypanosomes were detected within the brain parenchyma. Thirteen days 

after infection trypanosomes were detected in the white matter and septal 

nuclei of the brain parenchyma. This is eight days earlier than in the study by 

Schultzberg et al. (Schultzberg et al., 1988). By 20 days post-infection, large 

numbers of trypanosomes were detected within the brain parenchyma and only a 

small number were observed within the lumens of intracerebral vessels (Masocha 

et al., 2004). One possible explanation for the earlier trypanosomal invasion of 

the brain observed by Masocha et al. is the animal model used in study. Masocha 

et al. conducted the experiment in C57BL/6 mice while Schultzberg et al. used 

Sprague Dawley rats, BALB/c mice and deer mice (Masocha, Rottenberg and 
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Kristensson, 2007; Schultzberg et al., 1988). Although both authours used T. b. 

brucei trypanosomes, the time course of the infection varies between animal 

species thus explaining the difference between the two studies.   

4.1.2 In-situ hybridization 

Immunohistochemistry aids in the visualisation of trypanosomes within paraffin 

embedded and frozen brain sections but the methods previously reported in the 

literature use anti-trypanosomal antibodies raised in rabbits. The processes 

involved in the generation of anti-trypanosomal antibodies are time consuming 

and expensive and only limited quantities of antibodies can be produced. There 

is a need for a simpler, more reliable technique for the visualisation of 

trypanosomes within paraffin embedded/frozen brain sections. One possible 

option is in-situ hybridization. 

In-situ hybridization allows the visualisation of specific nucleic acid sequences 

within preserved cells or tissue sections. The nucleic acid sequence is detected 

by a probe consisting of a complementary sequence to the target of interest. 

Depending on the intended target the probe can be a double stranded DNA 

probe, an RNA probe, a cDNA probe or a synthetic oligodeoxyribonucleotide 

probe (Hofler, 1990). Oligodeoxyribonucleotide probes are often favoured as 

they are easily synthesised at a low cost, and consistency and quality is 

guaranteed. The technique has been used to visualise many different infectious 

agents including varicella-zooster virus, herpes simplex, hepatitis B and Epstein-

Barr virus as well as T. cruzi (Blum, Haase and Vyas, 1984; Hyman, Ecker and 

Tenser, 1983; Lane, Olivares-Villagomez, Vnencak-Jones, McCurley et al., 1997; 

Sixbey, Nedrud, Raabtraub, Hanes et al., 1984; Stroop, Rock and Fraser, 1984). 

4.1.2.1 Detection of Trypanosoma cruzi 

In-situ hybridization was used to visualise the location of T. cruzi amastigotes 

within paraffin embedded murine cardiac sections. Digoxigenin-labelled 

oligonucleotide probes were synthesised to three regions of the T. cruzi genome 

in order to increase the chances of the amastigotes being detected. The DNA 

sequences used were a 122 bp sequence present within the mini-repeats of the 

kinetoplast mini-circles, a 188 bp segment of a 195 bp tandomly repeating 
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sequence and a 177 bp region present within the open reading frame coding for 

a 160 KD protein (FL-160-1) located on the surface of the parasite, overlaying 

the flagellum (Degrave, Fragoso, Britto, van Heuverswyn et al., 1988; Moser, 

Kirchhoff and Donelson, 1989; Van Voorhis, Schlekewy and Trong, 1991). 

Following the in-situ hybridization procedure the digoxigenin-labelled 

oligonucleotide probes were detected with an anti-digoxigenin-alkaline 

phosphatase antibody and 5-bromo-4-chloro-3-indolyl phosphate/nitro blue 

tetrazolium (NBT/BCIP) chromagen. All three oligonucleotide probes hybridised 

with the amastigote DNA present within the cardiac sections, allowing the 

location of the amastigotes to be visualised (Lane et al., 1997). Single 

amastigotes could be detected with the oligonucleotide probe designed to a 

section of the 122 bp mini-circle sequence. This study demonstrates that in-situ 

hybridization is a sensitive and reliable technique by which to detect the 

location of kinetoplast parasites within paraffin embedded tissue sections.    

4.1.3 Quantitative PCR (QPCR) 

Although in-situ hybridization has the potential to locate trypanosomes within 

the brain it cannot accurately quantify the number of parasites within the brain. 

However, this could be achieved through the use of quantitative PCR (QPCR). 

There are many different forms of QPCR including SYBR green, Molecular 

Beacons, Scorpions and Taqman real-time PCR (Stratagene, 2004). Only the 

rationale of Taqman real-time PCR will be discussed in detail.  

4.1.3.1 Principles of taqman real-time PCR 

Taqman PCR takes advantage of the 5' exonuclease activity of taq polymerase in 

combination with a dual-labelled non-extendable fluorogenic oligonucleotide 

probe and specific oligonucleotide primers to quantify the number of copies of a 

gene present in a sample (Cardullo, Agrawal, Flores, Zamecnik et al., 1988; 

Gibson, Heid and Williams, 1996; Holland, Abramson, Watson and Gelfand, 

1991). The Taqman process is illustrated schematically in Figure 4-1. The 

oligonucleotide probe is labelled with two fluorescent dyes. One dye, positioned 

at the 5' end of the probe serves as the reporter while the second dye positioned 

at the 3' end acts as a quencher. The dyes FAM (6-carboxyfluorescein) and 

TAMRA (6-carboxy-tetramethyl-rhodamine) are frequently used as reporters and 
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Figure 4-1: A schematic representation of the Taqma n PCR reaction 
a) The probe labelled with a reporter dye (FAM) and a quencher dye (TAMRA) anneals to the template DNA downstream to the primer. The close proximity of the 
reporter dye to the quencher dye means the fluorescence of the reporter dye is quenched and no fluorescence is detected. b) During the extension phase of the PCR 
reaction the primer is extended by the taq DNA polymerase. c) When the taq DNA polymerase comes into contact with the 5' end of the promoter, the probe is 
denatured and the reporter dye is cleaved. As the reporter dye is no longer in contact with the quencher dye, the fluorescence of the reporter dye is not quenched and 
fluorescence is detected. d) At the end of the PCR reaction PCR products, cleavage products and the free reporter dye are present. 
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quenchers respectively, but other dye combinations are available. When the 

probe is intact the close proximity of the two dyes means that the fluorescent 

emission of the reporter dye is quenched by the quencher dye and no 

fluorescence is detected. In the PCR reaction the probe anneals to the target 

sequence downstream from the forward primer. As the primer is extended the 5' 

end of the probe is encountered by the taq polymerase. The polymerase 

degrades the probe and in doing so the reporter dye is released. As the reporter 

dye is no longer in close proximity to the quencher, fluorescence is detected 

from the reporter dye. This relative increase in fluorescence can be monitored 

in real time throughout the PCR reaction and is proportional to the amount of 

DNA amplified in the PCR reaction and hence the quantity of target sequence 

present in the original sample.  

The fluorescence of the quencher dye TAMRA varies very little during the course 

of the PCR reaction and so serves as an internal standard to which the change in 

fluorescence of the reporter dye is normalised. The fluorescence of the reporter 

dye is normalised to that of the quencher to give a value termed ∆Rn, obtained 

using Equation 4-1: 

 

Equation 4-1: The equation used to calculate the ch ange in reporter fluorescence 
normalised to that of the quencher 
Rn+ = emission intensity of reporter/emission intensity of quencher at any given time. Rn- = 
emission intensity of reporter/emission intensity of quencher measured prior to PCR amplification 
(Heid, Stevens, Livak and Williams, 1996). 

 
The mean ∆Rn value is subsequently plotted as a function of the cycle number in 

amplification plots (Figure 4-2). In the initial phases of the reaction the ∆Rn 

value remains at base line level but as the reaction progresses the fluorescence 

intensity increases proportionally to the increase in amplicon concentration. 

Based on the variability of the base-line data a threshold fluorescence is set 

within the log phase of product accumulation. The point at which the 

amplification plot crosses the threshold is defined as the Ct value. The Ct value 

decreases linearly with increasing target quantity thus the value can be directly 

correlated to the concentration of the target DNA in the original sample. 
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Figure 4-2: Amplification plots illustrating how th e Ct value is calculated 
The mean ∆Rn value is plotted against the cycle number in order to produce amplification plots. A 
threshold level is set based on the variability of the baseline data. The point at which the 
amplification plot crosses the threshold is the Ct value.  

 
4.1.3.2 Current uses of QPCR 

4.1.3.2.1 Diagnostics 

The accuracy and sensitivity of QPCR means it is often used as the ‘gold 

standard’ in the diagnosis of numerous infectious diseases. Using this technique 

an accurate and rapid diagnosis can be made and the lack of inter-assay 

variability, means results are reliable and reproducible (Bustin and Mueller, 

2005). QPCR is frequently used to demonstrate the presence of viral nucleic acid 

within clinical samples. One example where QPCR is especially useful is in the 

diagnosis of HIV in babies born to infected mothers. Babies carry maternal 

antibodies for up to 15 months, therefore traditional antibody tests are not able 

to reliably determine the infection status of these children. QPCR assays allow 

the infection status of the children to be accurately determined and the viral 

load quantified (Fearon, 2005). The infection status of immunocompromised 

individuals, who do not mount an antibody response, can also be accurately 

determined by QPCR. Other infectious diseases, in which QPCR is frequently 

used to aid diagnosis include; Toxoplasma gondii (Lin, Chen, Kuo, Tseng et al., 

2001), Leishmania (Nicolas, Prina, Lang and Milon, 2002), West Nile virus (Tang, 

Hapip, Liu and Fang, 2006) and Plasmodium falciparum (Hermsen, Telgt, 

Linders, van de Locht et al., 2001).  

Ct 
∆
R
Q

 

Cycle number 

Threshold 
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4.1.3.2.2 Assessing efficacy of chemotherapy 

Quantitative PCR (QPCR) has been used to measure the rate of clearance of 

Plasmodium spp from the peripheral circulation following anti-malarial 

chemotherapy (Beshir, Hallett, Eziefula, Bailey et al., 2010). Primers and a 

double-labelled fluorescent probe were designed to the Plasmodium tRNA 

methionine (PgMET) gene. This gene is present as a single copy in the species P. 

vivax, P. falciparum, P. ovale. curtisi, P. ovale. wallikeri, P. malariae and P. 

knowlesi. Blood samples were collected from malaria patients upon hospital 

admission and every 24 hours thereafter until parasites had been cleared from 

the peripheral circulation. DNA was extracted from the samples and the parasite 

density quantified by QPCR (Beshir et al., 2010). Using this technique a decrease 

in parasite density was detected daily, in each sample as treatment took effect. 

The rates of parasite clearance obtained by QPCR were comparable to those 

obtained by microscopic examination of blood smears. Furthermore, QPCR 

proved to be more sensitive than the microscopic method, with limits of 

detection determined to be 5 and 50 parasites/µl of blood respectively (Beshir 

et al., 2010). This study demonstrates that QPCR is a reliable and sensitive 

method for determining the rate of parasite clearance following chemotherapy.  

4.1.4 Melarsoprol resistance 

Treatment failures following melarsoprol chemotherapy have long been 

reported. In 1994, Pepin et al. reported a relapse rate of 6.2% in patients 

infected with T. b. gambiense following melarsoprol chemotherapy (Pepin, 

Milord, Khonde, Niyonsenga et al., 1994). The relapse rate remained fairly 

constant until recently when drastic increases in the failure rate of melarsoprol 

were reported. Legros et al. reported a failure rate of 30.4% in patients with 

CNS stage T. b. gambiense in the Arua district of northern Uganda (Legros et al., 

1999). High treatment failure rates of 25% were also reported in Zaire by the 

Angolan National Institute for Combat and Control of trypanosomiasis (ICCT) 

(Burri and Keiser, 2001). The reasons for the sudden increase in the treatment 

failure rates observed following melarsoprol chemotherapy are currently 

unknown. Inter-patient and population variability in the pharmacokinetics of the 

compound, resulting in insufficient drug levels being obtained has been proposed 
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as a possible reason behind the increased failure rates (Burri and Keiser, 2001). 

The pharmacokinetics of melarsoprol in successfully treated and relapse patients 

was recently investigated (Burri and Keiser, 2001). No difference was observed 

in the pharmacological parameters measured between successfully treated 

patients and patients who relapsed, indicating that other mechanisms may lie 

behind the high treatment failure rates recently observed. As inter-patient 

variability was ruled out as a possible reason for the increased failure rates 

observed following melarsoprol chemotherapy, it was suggested that alterations 

within the parasite may be responsible (Brun, Schumacher, Schmid, Kunz et al., 

2001). The high treatment failure rates observed following melarsoprol 

chemotherapy mean that an alternative drug for the treatment of CNS-stage 

trypanosome infections is desperately needed.   

Nifurtimox and eflornithine combination therapy (NECT) has recently been 

approved as a first line therapy for treatment of CNS stage T. b. gambiense 

infections. The treatment is gradually being distributed to the countries where 

T. b. gambiense is endemic, thereby solving the problem of melarsoprol 

resistance in T. b. gambiense infections (World Health Organisation, 2009). 

However, NECT therapy has not been assessed in patients with CNS stage T. b. 

rhodesiense infections, therefore melarsoprol remains as the first line drug 

(Priotto et al., 2009). Melarsoprol refractory T. b. rhodesiense infections are 

treated with a combination of melarsoprol and the 5-nitrofuran nifurtimox 

(World Health Organisation, 1998). Adverse reactions following nifurtimox 

therapy are common and there is no standard treatment regime (Burri, Stich and 

Brun, 2004). There is therefore an urgent need for a trypanocide which is 

effective in melarsoprol resistant T. b. rhodesiense infections.  

In this chapter we will attempt to use in-situ hybridization to determine the 

location of trypanosomes within the brain prior to mel/HPβCD and mel/RAMβCD 

chemotherapy. Furthermore, the rate of trypanosome clearance following 

complexed melarsoprol chemotherapy will be determined in-vivo in a 

melarsoprol sensitive T. b. brucei stabilate (GVR35/C1.9) as well as a T. b. 

brucei strain (GVR35/M14) demonstrating resistance to melarsoprol 

chemotherapy.  
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4.2 Methods 

4.2.1 Melarsoprol resistant (GVR35/M14) T. b. brucei strain 

The melarsoprol resistant T. b. brucei strain (GVR35/M14) was adapted 

specifically for this study to assess the activity of the melarsoprol cyclodextrin 

complexes mel/HPβCD and mel/RAMβCD against melarsoprol resistant T. b. 

brucei trypanosomes. The strain was originally developed from the melarsoprol 

sensitive GVR35 T. b. brucei strain by serial passage in mice subject to 

increasing doses of topical melarsoprol. The working stabilate GVR35/M14 is 

resistant to 9µM of melarsoprol.  

4.2.2 Establishing infection with GVR35/M14 

The working stabilate GVR35/M14 was initially passaged in a donor animal in 

order to obtain the number of trypanosomes required to inoculate large batches 

of experimental animals. A small section of the frozen GVR35/M14 stabilate was 

removed and diluted in phosphate glucose buffered saline (PGBS) pH 8 until a 

suspension containing 2 trypanosomes per field when viewed by light microscope 

at a magnification of 400 was obtained. This equates to approximately 2x104 

trypanosomes/0.1ml. A 0.2ml aliquot of the suspension was injected 

intraperitoneally into a female CD-1 mouse. The development of the 

parasitaemia in the animal was monitored by examination of a wet blood film 

prepared from tail blood as detailed in chapter 2. When the first parasitaemic 

peak was reached the animal was euthanised by exposure to increasing 

concentrations of carbon dioxide and exsanguinated by cardiac puncture. The 

blood was diluted in PBSG pH 8 as described above. A 0.1ml aliquot of the 

trypanosome suspension was then inoculated intraperitoneally into female CD-1 

mice approximately 6 to 8 weeks in age and weighing 25 to 30 grams, in order to 

establish infection in the experimental animals.  

4.2.3 Establishing infection with GVR35/C1.9 

Female CD-1 mice, approximately 6 to 8 weeks in age and weighing 25 to 30 

grams were injected intraperitoneally with 2x104 T. b. brucei trypanosomes from 
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stabilate GVR35/C1.9. The full details regarding the preparation of the 

trypanosomes from the stabilate for inoculation are provided in chapter 2. 

4.2.4 Confirmation of trypanosome infection 

To confirm that the infection was successfully established in mice following 

inoculation of the stabilates GVR35/C1.9 and GVR35/M14 a wet blood film 

prepared from tail blood of each animal was examined under the microscope for 

the presence of trypanosomes. The level of parasitaemia observed in each 

animal was scored according to the system detailed in chapter 2. 

4.2.5 Preparation of melarsoprol cyclodextrin complexes 

The melarsoprol cyclodextrin complexes are supplied as fine white powders with 

the ratio of melarsoprol to cyclodextrin specified for each batch. Using the 

ratio, the amount of each complex required to give a melarsoprol concentration 

of 0.05mmol/kg was calculated. The corresponding amount of complex was 

weighed out on a fine balance and dissolved in sterile water. The solutions of 

each complex were freshly prepared each day immediately prior to 

administration. The full details of how the dose was calculated for each 

melarsoprol cyclodextrin complex are provided in chapter 2. 

4.2.6 Administration of complexes 

Prior to administration of the complexes each animal was weighed and the 

volume of complex to be administered determined using the table provided in 

chapter 2. To administer the melarsoprol cyclodextrin complexes the animals 

were appropriately restrained and a 20 gauge x 25mm gavage needle inserted 

directly into the oesophagus. The compounds were subsequently administered 

slowly and carefully directly into the stomach.  
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4.2.7 In-situ hybridization 

4.2.7.1 Treatment schedule 

Mel/HPβCD or mel/RAMβCD was administered at a dose of 0.05mmol/kg 

(melarsoprol concentration) once per day, for seven consecutive days, 

commencing on day 21 post-infection when a CNS stage infection is established 

in the animals. Immediately prior to chemotherapy commencing, six animals 

were sacrificed and served as untreated controls. Six further animals were 

sacrificed from each treatment group 24 hours and 7 days after completion of 

the treatment regimes (Figure 4-3).  

K K K

I > M M M M M M M M >

21 28 35  

Figure 4-3: The treatment schedule used 
Mel/HPβCD or mel/RAMβCD (M) was administered orally from day 21 post-infection, daily, for 7 
consecutive days. Immediately prior to chemotherapy commencing on day 21 post-infection, 6 
animals were sacrificed (K). Six further animals from each treatment group were sacrificed 24 
hours and 7 days after the completion of the chemotherapy regime.  

 
4.2.7.2 Collection of samples 

Animals were sacrificed by CO2 asphyxiation. The brain was carefully excised 

from the skull and placed into 4% neutral buffered formalin.  

4.2.7.3 Preparation of samples for in-situ hybridiz ation 

The brain samples were removed from the neutral buffered formalin and 

processed to paraffin blocks. From the paraffin blocks 10µm thick sections were 

cut and placed onto 3-aminopropyltriethoxysilane (APES) coated slides. APES 

helps adhere the tissue sections to the slides thereby minimising tissue lost 

during the in-situ hybridization procedure (Maddox and Jenkins, 1987).  



122 

 

4.2.7.4 In-situ hybridization procedure 

4.2.7.4.1 Oligonucleotide probe 

Oligonucleotide probes are short nucleotide sequences, usually between 10 and 

50 base pairs (bp) in length, which can be designed to a specific sequence 

(Leitch, Schwarzacher, Jackson and Leitch, 1994). They are often favoured over 

RNA and DNA probes in in-situ hybridization, as they are easily synthesised 

commercially, to a high specification, and purity, and various chromogenic 

labels can be incorporated. Two oligonucleotide probes were used in the in-situ 

hybridization protocol in this study (Table 4-1). The first PFR2, was designed to a 

region of the PFR2 gene encoding a 69 KDa paraflagella rod protein (Deflorin, 

Rudolf and Seebeck, 1994). A second probe was designed to a 177 bp repeat 

region present in the satellite DNA of T. b. brucei (Sloof, Bos, Konings, Menke et 

al., 1983). A digoxigenin label was included at the 5’ end of both probes to allow 

localisation of the probes within the tissue sections following the in-situ 

hybridization procedure. The probes were commercially synthesised by Eurofins 

MWG Operon.   

Probe Sequence 

PFR 2 2603cttgtcttctccttttttgtctctttccccct2634 

177 bp 132gcaagtttgcaacgctgttctttagtg158 

 

Table 4-1: The sequence data for the oligonucleotid e probes used in the in-situ 
hybridization procedure 

 
4.2.7.4.2 Dewaxing and rehydration of the tissue sections 

The paraffin embedded sections were dewaxed in 3 changes of histoclear for 5 

minutes each. In order to rehydrate the sections, slides were passed through 

graded ethanol for 5 minutes at each concentration beginning with 100%, 

progressing on to 90% and finishing at 70%. Finally the slides were rinsed in 

RNase/DNase free water. To reduce non-specific probe hybridization with non-

target sequences the sections were incubated in 0.2N HCl for 20 minutes. 

Residual HCl was removed from the sections by rinsing the sections in two 

changes of PBS for 5 minutes each time.  
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4.2.7.4.3 Permeabilisation of the tissue sections 

To allow the probe to penetrate the tissue sections and reach the target 

sequence, the tissue must be permeabilised by exposure to proteases. The 

proteases digest the proteins that surround the target nucleic acid, thus making 

it more accessible to the probe (Leitch et al., 1994). Permeabilisation of the 

tissue must be optimised as over digestion can lead to the target sequence and 

tissue morphology being lost, while under digestion can result in the probe being 

unable to access the target sequence. Permeabilisation of the brain sections was 

optimised by digesting the sections in varying concentrations of Proteinase K or 

pepsin (Table 4-2). The incubation temperature and length of incubation were 

also varied in order to determine the optimum digestion conditions. At the end 

of the digestion period, the proteases were deactivated, by rinsing the slides in 

either PBS buffer containing 2mg/ml glycine for 5 minutes for tissue sections 

incubated with Proteinase K or in 0.1M Tris-HCl, 0.15M NaCl (pH 7.5) for 3 

minutes, for tissue sections incubated with pepsin. Finally slides were rinsed in 

PBS for 5 minutes.  

Proteinase Concentration Incubation time 
Incubation 

temperature 
0.125 µg/ml 

0.25 µg/ml 

5 minutes 
7 minutes 
10 minutes 
15 minutes 

0.5 µg/ml 
0.1 µg/ml 
2 µg/ml 
5 µg/ml 
10 µg/ml 
1 mg/ml 
3 mg/ml 
5 mg/ml 

15 minutes 

37 °C 

25 µg/ml 15 minutes 
50 µg/ml 

Proteinase K 

100 µg/ml 
30 minutes 

Room 
temperature 

2 mg/ml 
2.5 mg/ml Pepsin 
3 mg/ml 

30 minutes 
Room 

temperature 

Table 4-2: The combination of enzyme concentrations , incubation times and temperatures 
used to identify the optimal degree of digestion fo r the tissue sections. 
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4.2.7.4.4 Fixation of tissue sections 

The conditions endured by the tissue sections during the in-situ hybridization 

process are harsh, as a result tissue morphology can be lost during the 

procedure. In order to prevent the loss of tissue morphology and target sequence 

a fixative can be applied to the tissue sections. In this study the tissue sections 

were fixed with 4% paraformaldehyde for 5 minutes. Paraformaldehyde cross-

links proteins within the tissue section thereby stabilising the section. However, 

care must be taken not to over expose the sections to the fixative, as this can 

decrease the permeability of the sections and prevent the probe accessing the 

target sequence.      

4.2.7.4.5 Denaturation of the target sequence 

The target sequence in this study was double stranded DNA therefore in order 

for the hybridization probe to be able to anneal to the sequence, the two 

strands of nucleic acid must be separated. Denaturation of the target sequence 

can be achieved by alkalis or heat. In this protocol denaturation of the target 

sequence was carried out at 90°C for 10 minutes by placing the slides on a hot 

plate. In order to prevent the tissue sections drying out during the denaturation 

process, the slides were covered in hybridization buffer consisting of 6 x SSC and 

50% dextran sulphate.  

4.2.7.4.6 Hybridization 

During the hydridization step the probe anneals to the target sequence. The 

hybridization temperature for DNA:DNA hybrids is 37°C (Leitch et al., 1994). 

Hybridization was carried out by placing the slides in a hybridization buffer 

consisting of 6 x SSC and 50% dextran sulphate and 2µg/ml of the oligonucleotide 

probe for 18 to 24 hours at 37°C in a humidified chamber.  

4.2.7.4.7 Post-hydridization washes 

In order to remove excess and weakly bound probe the slides were subject to a 

series of post-hybridization washes. During the post-hybridization washes, probe 

that is annealed to non-target molecules is removed, while the probe that is 
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annealed to the target sequence is maintained. A certain degree of mismatch 

will be present between the target sequence and probe. The degree of mismatch 

which is acceptable in the reaction is referred to as ‘stringency’. Stringency can 

be controlled by adjusting the salt concentration of the post-hybridization 

washes. In high stringency conditions (low salt concentrations) only probes with 

a high degree of homology to the target sequence will form stable hybrids and 

be retained. In low stringency conditions (high salt concentrations) probes 

binding to sequences with only 70-90% homology to the target sequence will be 

retained, thus in low stringency conditions non-specific hybridization signals may 

be obtained. The degree of stringency which is acceptable for the reaction must 

be determined. In this protocol high-stringency post-hybridization washes were 

used. Slides were rinsed in 2 x SSC for 5 minutes at 37°C, followed by rinsing in 

100mM Tris-HCl/150mM NaCl pH 7.4 (TBS) for 5 minutes.  

4.2.7.4.8 Visualisation 

The oligonucleotide probe contains a digoxigenin label therefore an anti-

digoxigenin antibody labelled with alkaline phosphatase (fab fragments from 

sheep) was used as the primary antibody. The antibody was diluted 1:500 in a 

buffer containing TBS, 2% normal sheep serum (NSHS) and 0.3% Triton-X. The 

tissue sections were initially incubated in the buffer without the primary 

antibody for 30 minutes to prevent non-specific background staining. The buffer 

was subsequently removed from the tissue sections and replaced with the buffer 

containing the primary antibody. The tissue sections were incubated with the 

primary antibody for 2 hours in a humidified chamber at room temperature. 

Following incubation, unbound antibody was removed by rinsing the tissue 

sections in two changes of TBS for 20 minutes each time. Finally, the slides were 

washed in 100mM Tris pH 8.2-8.5 for 5 minutes.  

 A Vector© Red Alkaline Phosphatase Substrate Kit was used to visualise the 

primary antibody according to the manufactures instructions. Briefly a working 

solution of the substrate was prepared by adding 2 drops of reagent 1 to 5 ml of 

100mM Tris-HCl pH 8.2-8.5 and mixing well. Two drops of reagent 2 were then 

added, the solution was mixed again and then 2 drops of reagent 3 added. To 

inhibit endogenous alkaline phosphatase activity, 5 drops of levamisol were 

added to the working solution. The tissue sections were incubated with the 
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substrate for 30 minutes at room temperature in a humidified chamber. As the 

substrate is light sensitive, the sections were developed in the dark. Excess 

substrate was removed by rinsing the tissue sections in 100mM Tris-HCl pH 8.2-

8.5 for 5 minutes. Finally the tissue sections were rinsed in water, counter-

stained with haematoxylin, dehydrated through a graded alcohol series, cleared 

in histoclear and permanently mounted using histomount.  

4.2.7.4.9 Tyramide signal amplification system (TSATM PerkinElmer) 

To maximise the chance of visualising the location of the bound probe a 

Tyramide signal amplification (TSATM, PerkinElmer) system was used. The TSA 

system uses horse-radish peroxidise (HRP) to catalyse the deposition of biotin-

labelled tyramide immediately adjacent to the immobilised HRP enzyme. The 

deposited tyramide is indirectly visualised by chromogenic techniques with a 

significant enhancement of the signal. The in-situ hybridization protocol detailed 

above was followed exactly up to the post-hybridization washing step, where the 

sections were rinsed in 2 x SSC for 5 minutes at 37°C. Following the post-

hybridization washes, the TSA kit was introduced. Sections were incubated in 

TNB buffer (supplied with kit) for 30 minutes at room temperature. As the kit 

utilises HRP to catalyse the deposition of biotin-labelled tyramide, HRP had to 

be introduced into the sections. This was achieved by incubating the sections 

with a IgG monoclonal mouse anti-HRP-digoxigenin antibody at a dilution of 

1:100 for 30 minutes at room temperature. As the oligonucleotide probe 

contains a digoxigenin label the antibody will bind to the probe present within 

the tissue sections forming a probe-antibody complex. Excess, unbound antibody 

was removed by rinsing the sections in 3 changes of TNT buffer for 5 minutes 

each time. The tissue sections were then incubated with the TSA biotin system 

for 10 minutes at room temperature in a humidified chamber. Following 

incubation the TSA biotin system was removed from the sections by washing in 3 

changes of TNT buffer for 5 minutes each time. 

A chromogenic method was used to visualise the deposited HRP. The sections 

were incubated with a streptavidin-HRP antibody (supplied with the TSATM kit) 

diluted 1:100 in TNB buffer for 30 minutes in a humidified chamber at room 

temperature. Excess unbound antibody was removed by washing the sections in 3 

changes of TNT buffer with each wash lasting 5 minutes. The deposited HRP was 
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visualised with a 3, 3’-diaminobenzidine (DAB) substrate kit according to the 

manufactures instructions. Briefly 2 drops of buffer stock solution were added to 

5ml of distilled water and mixed well. Four drops of DAB stock solution were 

added and the solution mixed well. Finally 2 drops of hydrogen peroxide solution 

were added and the solution mixed again. Tissue sections were incubated with 

the substrate for 10 minutes at room temperature in a humidified chamber. 

Excess DAB substrate was removed by rinsing the tissue sections in water. The 

tissue sections were subsequently counter-stained with haematoxylin, 

dehydrated through a graded ethanol series, cleared in histoclear and 

permanently mounted using histomount. 

4.2.8 Quantitative PCR 

4.2.8.1 Treatment schedule 

Mel/HPβCD or mel/RAMβCD was administered orally at a dose of 0.05mmol/kg 

(melarsoprol concentration) once per day for seven consecutive days, 

commencing on day 21 post-infection when a CNS infection is established in the 

animals. Immediately prior to chemotherapy commencing six animals were 

sacrificed and served as untreated controls. Twenty-four hours after the 

administration of each dose, six animals infected with GVR35/C1.9, the 

melarsoprol sensitive strain, and six animals infected with GVR35/M14, the 

melarsoprol resistant strain, were sacrificed from each treatment group. In 

addition, a further group from each parasite strain and treatment regime were 

sacrificed one week after completion of chemotherapy (Figure 4-4).  

K K K K K K K K
I > M M M M M M M >

21 22 23 24 25 26 27 28 35  

Figure 4-4: The chemotherapy regime used in the qua ntitative PCR (QPCR) experiment 
Female CD-1 mice were infected with 2x104 T. b. brucei trypanosomes (I) from either the 
melarsoprol sensitive stabilate GVR35/C1.9 or the melarsoprol resistant stabilate GVR35/M14. On 
day 21 post-infection, when trypanosomes are known to be established within the CNS, 
chemotherapy (M) commenced. Animals were administered either mel/HPβCD or mel/RAMβCD 
orally, at a dose of 0.05 mmol/kg, daily, for seven consecutive days. Twenty-four hours after the 
administration of each dose six animals from each group were sacrificed (K). Animals were also 
sacrificed one week after completion of chemotherapy.  
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4.2.8.2 Collection of samples 

Animals were sacrificed by CO2 asphyxiation and the blood removed by cardiac 

puncture. Immediately following exsanguination the chest cavity of the animal 

was opened and the animal perfused through the left ventricle with 120ml of 

sterile normal saline. Following perfusion the brain was carefully excised from 

the skull and immediately snap frozen on solid CO2 before being stored at -70°C. 

QPCR is an extremely sensitive technique therefore to prevent cross 

contamination occurring between samples a number of preventive measures 

were taken during sample collection. Prior to each animal being sacrificed all 

surfaces and instruments were thoroughly cleaned with hibiscrub and sprayed 

with RNase AWAY solution in order to remove all traces of nucleic acid. Gloves 

and needles were also changed after the collection of each sample.  

4.2.8.3 DNA extraction 

DNA was extracted from the brain tissues using a Qiagen DNeasy blood and 

tissue kit. The method provided with the kit was modified to suit our use. Before 

analysis the brain tissues were removed from the freezer and allowed to defrost 

at room temperature. Once thawed the brain was finely chopped with a sterile 

scalpel blade and placed in a 5ml bijoux. 3.6ml of ATL buffer was added to the 

tissue together with 400µl of 20mg/ml Proteinase K in order to lyse the tissue.  

The sample was vortexed for 10 seconds before being incubated in a 55˚C water 

bath for 3 hours and 15 minutes with agitation every 30 minutes by vortexing. 

Thirty minutes before the end of the incubation period the sample was removed 

from the water bath and homogenised through a 20 gauge needle and then 

returned to the water bath to complete the digestion. After incubation, the 

sample was removed from the water bath and a 200µl aliquot transferred to a 

1.5ml eppendorf tube. 200µl of AL buffer were added to the sample and mixed 

thoroughly by vortexing. 200µl of analytical grade ethanol were then added to 

the sample and mixed thoroughly again by vortexing. The sample was then 

transferred to a DNeasy mini-prep column. The column was centrifuged at 

8,000rpm for one minute, the flow through discarded and the column placed in a 

new 2ml collection tube. 500µl of buffer AW1 were added to the column and the 

column centrifuged again at 8,000rpm for one minute. The flow through was 
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once again discarded, the column placed in a new 2ml collection tube and 500µl 

of buffer AW2 added to the column. The column was centrifuged at 14,000rpm 

for 3 minutes in order to dry the column. The flow through was once again 

discarded and the column placed in a new 2ml collection tube. 200µl of elution 

buffer (AE) were then added to the column and allowed to stand at room 

temperature for one minute before centrifugation at 8,000rpm for one minute to 

elute the DNA. The eluate containing the DNA was collected and the column 

placed in a new 2ml collection tube. The elution process was repeated to obtain 

the maximum quantity of DNA. 

4.2.8.4 Quantification of DNA 

The concentration of the DNA extracted from the brain samples was assessed by 

measuring the optical density of a 1:10 dilution of the original sample. This was 

prepared by adding 10µl of the DNA sample to 90µl of the elution buffer (AE) 

supplied with the Qiagen kit. The sample was placed in a disposable UV 

compatible plastic microcuvette and the optical density assessed. The 

spectrophotometer was zeroed using AE buffer as a blank. The optical density of 

the sample was then measured at wavelengths of 230 (OD230), 260 (OD260), 280 

(OD280) and 320nm (OD320). The purity of the DNA sample was evaluated by 

calculating the OD260/OD280 ratio. Pure DNA yields a ratio of 1.8 therefore a ratio 

of 1.6 or higher was considered to be acceptable purity for further analysis. 

Finally a 20µg/µl DNA solution was prepared by diluting the original sample in 

the appropriate volume of AE buffer.  

4.2.8.5 Identification of gene of interest 

To detect the presence of trypanosomes in samples by QPCR, a target gene 

needs to be identified which is highly conserved and which bares no significant 

sequence homology to any murine genes. Furthermore, to prevent the 

generation of false positive results, the gene must not persist in tissues once 

trypanosomes have been eliminated. In T. b. brucei the paraflagellar rod (PFR) is 

composed of two closely related proteins of 69 and 73 kDa (Deflorin, Rudolf and 

Seebeck, 1994). The 69 kDa protein, PFR-A is encoded by a locus containing four 

tandomly arranged identical genes (Deflorin, Rudolf and Seebeck, 1994). 

Sequence analysis revealed the presence of two closely linked and tandomly 
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repeated open reading frames (PFR-A and PFR-B) 800 base pairs (bp) in length 

and of identical nucleotide sequence. Outwith the open reading frames there is 

little sequence homology. The second 73 kDa protein comprising the PFR in T. b. 

brucei is encoded by a separate gene locus termed PFR C/D. The locus consists 

of four tandomly arranged very similar or identical genes (Deflorin, Rudolf and 

Seebeck, 1994). The gene product of the locus, protein PFR-C shares only a 62% 

amino acid sequence homology with the PFR-A protein. 

Primers and a probe (Table 4-3) were designed to a section of the gene encoding 

the PFR-A protein outside of the open reading frames by Prof Dennis Grab, Johns 

Hopkins University (personal communication) and were synthesised by Eurofins 

MWG Operon. The probe was labelled with the reporter FAM at the 5' prime end 

and the quencher TAMRA at the 3' prime end.  

Gene Primers Probe 

PFR2 

FW - 2564ccaaccgtgtgtttcctcct2583 

RV - 2636gaaaaggtgtcaaactactgccg2658 

2603cttgtcttctccttttttgtctctttccccct2634 

Table 4-3: Sequence data for the primers and probe used to identify T. b. brucei by QPCR 
analysis. 

 
4.2.8.6 Generation of a plasmid containing the PFR2  gene 

A 95bp section (2564 to 2658) of the PFR2 sequence (X14819) matching the 

regions spanned by the primers and probe was cloned via TOPO-TA into a pCR2.1 

plasmid. This plasmid was commercially synthesised by Eurofins MWG operon.  

4.2.8.7 Resuspension of plasmids 

The commercially prepared, lyophilised plasmid, containing the PFR2 gene 

fragment, was resuspended in 10mM Tris pH 8.0, to give a plasmid concentration 

of 50ng/µl. Following resuspension the plasmid was stored at -80ºC.  
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4.2.8.8 Transformation of cells with PFR2 plasmid 

DH5α competent cells were transformed according to the manufacturer’s 

instructions.   

The DH5α competent cells were removed from storage at -80ºC and allowed to 

thaw in wet ice. Upon thawing a 50µl aliquot of the cells was taken and placed 

in a 0.5ml DNA/RNA free eppendorf. 5µl of the 50ng/µl plasmid suspension were 

added and incubated on wet ice for 30 minutes. Following incubation the cells 

were subject to heatshock in a water bath at 42ºC for 30 seconds before being 

returned to wet ice for a further two minute incubation period. Subsequently, 

950µl of LB broth were added to the cells before incubating for 1 hour at 37ºC. 

The culture was then removed and 100µl evenly spread over an LB/agar plate 

supplemented with 100µg/ml ampicillin and 50µg/ml kanamycin. The plate was 

incubated overnight at 37ºC.  

The following day 5µl of ampicillin (100mg/ml) and 5µl of kanamycin (50mg/ml) 

were added to 5ml of LB broth to give final concentrations of 100µg/ml and 

50µg/ml respectively. Using a sterile pick one colony was removed from the 

LB/agar plate and placed into the culture medium. The culture was mixed by 

gentle inversion before being incubated at 37ºC in an orbital incubator 

overnight. 

4.2.8.9 Purification of the plasmid 

Following growth of the transformed cells, the PFR2 plasmid was extracted using 

a High Pure Plasmid Isolation kit according to the manufacturer's instructions. 

The culture was centrifuged at 3,000rpm for 5 minutes. The supernatant was 

removed and the cells resuspended in 250µl of suspension buffer. After gentle 

mixing, the suspension was incubated at room temperature for 5 minutes before 

being transferred to a 1.5ml eppendorf tube. 250µl of lysis buffer were added 

and the suspension gently mixed and incubated at room temperature for 5 

minutes. Following incubation, 350µl of binding buffer were added, the solution 

carefully mixed and incubated on wet ice for a further 5 minutes. The 

suspension was centrifuged at 13,000rpm at 4ºC for 10 minutes. The supernatant 
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was carefully decanted and placed into a high pure filter column and the pellet 

discarded. The column was centrifuged at 13,000rpm at 4ºC for 1 minute and the 

flow through was discarded. 700µl of wash buffer II were then added and the 

column centrifuged at 13,000rpm for 1 minute. The flow through was once again 

discarded and the column membrane dried by centrifugation at 13,000rpm at 

4ºC for 1 minute. The column was then placed in a 1.5ml eppendorf tube and 

100µl elution buffer added directly to the membrane. After incubation for 1 

minute at room temperature the column was centrifuged at 13,000rpm at 4ºC 

for 1 minute. The eluate was collected and the purified plasmid DNA quantified. 

4.2.8.10 Quantification of purified plasmid DNA 

The concentration of plasmid DNA in the eluate was assessed by measuring the 

optical density of a 1:50 dilution of the eluate. This was prepared by adding 20µl 

of the purified plasmid DNA to 980µl of sterile DNA/RNase free water. A 100µl 

aliquot of the dilution was placed in a plastic UV compatible disposable 

microcuvette and the optical density assessed as described previously. 

4.2.8.11 Calculation of the plasmid copy number con tained within 

the purified plasmid DNA 

The number of copies of the plasmid and hence the number of copies of the 

PFR2 gene fragment within the purified plasmid DNA was calculated using an on-

line calculator for determining the number of copies of a template 

(http://www.uri.edu/research/gsc/resources/cndna.html). The calculator uses 

Avogadro’s number (6.022 x 1023), the template length and the amount of 

template present in the sample in nano grams to calculate the number of copies 

of the template present within a sample (Equation 4-2). The total length of the 

plasmid containing the PFR2 gene fragment insert is 3995 base pairs and the 

amount of template present within the sample was determined by 

spectrophotometer analysis as discussed previously. These two values were 

entered into the calculator and the number of copies of the PFR2 gene fragment 

present within the sample calculated. The amount of DNA required to give 1010 

copies of the PFR2 gene fragment was calculated and the purified plasmid DNA 

was diluted in 10mM Tris-HCl pH 8.5 (supplied with the High Pure Plasmid 

Isolation kit) to give 1010 copies of the PFR2 gene fragment in 5µl. 
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Equation 4-2: The equation used in order to calcula te the number of copies of the PFR2 
gene fragment present within the sample of purified  DNA 
The amount of template present (ng) within the sample is initially multiplied by Avogardro’s number 
(6.022x1023) to obtain the number of molecules of the template per gram. This number is then 
divided by the length of the template (bp), to obtain the number of copies of the template within the 
sample. The calculator assumes that one mole of a base pair weighs 650g, therefore to calculate 
the length of the template in nano grams, the length of the template in base pairs is multiplied by 
650 and then 1x109. 

 
4.2.8.12 Preparation of standard dilutions for the standard curve 

The standard containing 1010copies/5µl of the PFR2 gene was serially diluted 

with sterile DNase/RNase free water to give dilutions ranging from 1010 PFR2 

copies/5µl down to 101 copies/5µl. The range of dilutions used to construct the 

standard curve was 105, 104, 103, 102 and 101 copies/5µl. All standard dilutions 

were stored at -20 ºC until use.  

4.2.8.13 Preparation of primers and probe 

Stock solutions of primers and probes were diluted to 100pmol/µl in sterile 

DNase/RNase free water. Prior to use the stock solutions were further diluted in 

sterile DNase/RNase free water to give working concentrations of 10pmol/µl. All 

primers and probes were stored at -20ºC.  

4.2.8.14 QPCR reaction 

The number of copies of the PFR2 gene present in the brain following 

chemotherapy with complexed melarsoprol was quantified in each sample. The 

QPCR reaction consisted of 12.5µl Taqman Brilliant II master mix, 0.05pmol/µl 

(final concentration) of each primer, 0.1pmol/µl of the probe (final 

concentration), 5µl (100ng) of the template DNA and sterile DNase/RNase free 

water to make a final reaction volume of 25µl. Each sample was analysed in 

duplicate. 

The QPCR reaction was performed in an Agilent MxPro 3005 thermocycler. After 

an initial denaturation step at 95°C for 10 minutes, the PCR cycles commenced. 
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The samples were denatured at 95°C for 15 seconds before the temperature was 

reduced to 60°C for 1 minute for annealing to occur before being raised to 72°C 

for 0.01 second for extension to take place. Fluorescence data was captured at 

the end of the extension phase in each cycle. The reaction consisted of 45 

cycles. 

4.2.8.15 Statistical analysis 

All data was graphed in the software Graph Pad Prism version 5. Data were 

analysed using analysis of variance methods, in particular the General Linear 

Model procedure in Minitab 16. This provided a method for investigating 

significant main effect differences and interactions between factors such as 

time, drug and strain. As the data represented counts the [log(x+1)] 

transformation was applied prior to analysis to adjust for any zero counts. 

Significance was measured using the p-value of 5% significance level. Effect sizes 

were further investigated using 95% confidence intervals for the differences 

between means.  



135 

 

4.3 Results 

4.3.1 In-situ hybridization 

In-situ hybridization was used to visualise the location of T. b. brucei within 

paraffin embedded brain sections prior to, 24 hours and 7 days after completion 

of mel/HPβCD and mel/RAMβCD chemotherapy. Unfortunately despite attempts 

to optimise the in-situ hybridization reaction, no positive staining was observed. 

4.3.2 QPCR 

QPCR was used to assess the effect of mel/HPβCD and mel/RAMβCD 

chemotherapy on CNS parasite load, in a melarsoprol sensitive (GVR35/C1.9) and 

melarsoprol resistant (GVR35/M14) T. b. brucei strain. The parasite load within 

the CNS was quantified by measuring the number of copies of the PFR2 gene 

present within 100ng of DNA prepared from a sample containing approximately 

25mg brain homogenate taken from a homogenate of the whole brain. There is 

only one copy of the PFR2 gene target sequence within the T. b. brucei genome 

therefore one copy of the gene is equivalent to one trypanosome (Deflorin, 

Rudolf and Seebeck, 1994).   

4.3.2.1 T. b. brucei melarsoprol sensitive strain (GVR 35/C1.9) 

4.3.2.1.1 The effect of mel/HPββββCD treatment on CNS parasite load 

Administration of the melarsoprol cyclodextrin complex mel/HPβCD results in a 

rapid reduction in the number of trypanosomes present within the brain (Figure 

4-5, panel A). Immediately prior to treatment commencing on day 21 post-

infection, high copy numbers of the PFR2 gene were present in the brain (mean 

626 ± 82.8). Twenty-four hours after administration of the first dose of the 

complex a significant reduction (P < 0.0001) in the number of copies (68.1 ± 

14.7) of the PFR2 gene was detected. This reduction continued after 

administration of a second dose of mel/HPβCD. The number of copies of the 

PFR2 gene detected in the brain after administration of the second dose was 

13.13 ± 2.54, representing an 80.8% reduction compared to the numbers 
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detected after the first dose (P = 0.022). Administration of a third dose, resulted 

in a further decrease in the PFR2 copy number within the brain (4.32 ± 2.51) 

compared to 24 hours after the second dose (P = 0.023). By 24 hours after 

administration of the fourth dose, no copies of the PFR2 gene were detected 

within the brain. Summary statistics are given in Table 4-4.  

4.3.2.1.2 The effect of mel/RAMββββCD treatment on CNS parasite load 

Immediately prior to chemotherapy commencing on day 21 post-infection, high 

copy numbers of the PFR2 gene were detected within the brain (626 ± 83) 

(Figure 4-5, panel B). Administration of one dose of mel/RAMβCD results in a 

rapid reduction in the number of copies of the PFR2 gene within the brain (66.2 

± 10.8, P < 0.0001). This reduction continued with the administration of a 

second dose of mel/RAMβCD (P = 0.0134). Twenty-four hours after the 

administration of a second dose, 10.61 ± 3.09 copies of the PFR2 gene were 

detected within the brain. This is a reduction of 84% compared to the numbers 

detected after administration of the first dose. The number of copies of the 

gene detected after administration of a third dose (6.13 ± 4.70) of the complex 

was significantly lower (P = 0.0001) than the number detected after the first 

dose of the complex. However, the number of copies of the gene detected after 

administration of the third dose of the complex was not significantly different to 

the number detected after the second dose (P = 0.1363). Administration of a 

fourth dose of mel/RAMβCD resulted in a significant reduction (P = 0.0173) in the 

number of copies of the PFR2 gene within the brain (1.27 ± 1.27), compared to 

the numbers detected after administration of the second dose. The number of 

copies of the gene detected after administration of the fourth and third doses of 

the complex were not significantly different from each other (P = 0.7409). By 24 

hours after administration of the fifth dose, no copies of the PFR2 gene were 

detected. Summary statistics are detailed in Table 4-5. 
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Figure 4-5: The number of copies of the PFR2 gene p resent within 100ng of DNA prepared 
from approximately 25mg of brain tissue taken from whole brain homogenate, of mice 
infected with T. b. brucei (GVR35/C1.9) following chemotherapy with A) Mel/HP ββββCD and B) 
Mel/RAM ββββCD.  
The compounds were administered orally at a dose of 0.05mmol/kg, daily, for seven consecutive 
days, commencing on day 21 post-infection. The box plots show the median, interquartile range 
and minimum and maximum copy number detected after administration of each dose. Groups that 
do not share a letter are significantly different (P < 0.05). 
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4.3.2.1.3 Comparison of mel/HPββββCD and mel/RAMββββCD treatment 

The melarsoprol cyclodextrin complexes contain the same drug but the 

cyclodextrin carrier differs. To assess if one cyclodextrin is more efficient at 

delivering melarsoprol to the brain and hence eliminating trypanosomes, the 

rate of parasite clearance of the two compounds was compared. No significant 

difference was detected between mel/HPβCD and mel/RAMβCD (P = 0.9835). 

Interaction plots (Figure 4-6), demonstrated parallel response lines and that 

there were no interactions between mel/HPβCD and mel/RAMβCD treatment and 

the number of copies of the PFR2 gene detected after administration of each 

dose (P = 0.813). 

 

Figure 4-6: Interaction plots comparing the mean [l og(x+1)] PFR2 copy number detected 
after administration of each dose of mel/HP ββββCD or mel/RAM ββββCD with number of doses 
Mice were infected with the GVR35/C1.9 T. b. brucei melarsoprol sensitive stabilate. 
Chemotherapy commenced on day 21 post-infection. Mel/HPβCD or mel/RAMβCD was 
administered by oral gavage daily, for 7 consecutive days at a dose of 0.05mmol/kg. The number 
of copies of the PFR2 gene present within 100ng of DNA prepared from approximately 25mg of 
whole brain homogenate, 24 hours after administration of each dose was determined by QPCR. 
The interaction plots demonstrate that there are no interactions between mel/HPβCD and 
mel/RAMβCD treatment and the number of copies of the PFR2 gene detected after administration 
of each dose (P = 0.813).  
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Dose 1 2 3 

2 
P = 0.0220 

(-2.860, -0.218) 
  

3 
P = 0.0001 

(-4.390, -1.748) 
P= 0.0228 

(-2.851, -0.2088) 
 

Mean ± SE 
n 

68.1 ± 14.7 
6 

13.13 ± 2.54 
6 

4.32 ± 2.51 
6 

Table 4-4: Comparison of the number of copies of th e PFR2 gene detected within 100ng of DNA prepared f rom approximately 25mg of whole brain 
homogenate from mice infected with melarsoprol sens itive T. b. brucei trypanosomes following mel/HP ββββCD chemotherapy 
Mice were infected with T. b. brucei GVR35/C1.9. Mel/HPβCD chemotherapy commenced on day 21 post-infection. The compound was administered by oral gavage, 
daily for 7 consecutive days at dose of 0.05mmol/kg. The number of copies of the PFR2 gene present within 100ng of DNA prepared from approximately 25mg of 
whole brain homogenate, 24 hours after administration of each dose was determined by QPCR. The figures in the body of the table demonstrate the comparisons, in 
terms of statistical significance, between the number of copies of the PFR2 gene detected after administration of each dose, shown in the row and column headings. 
The p-values and 95% confidence intervals for differences are based on analysis using the logarithmic transformation [log(x + 1)] of the copy number. The mean copy 
number ± the standard error (mean ± SE) and the number of animals per group (n) are also shown. No copies of the PFR2 gene were detected after administration of 
the 4th, 5th, 6th and 7th dose of the complex. These values were therefore excluded as zero counts can bias the analysis. 
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Dose 1 2 3 4 

2 
P = 0.0134 

(-3.507, -0.348) 
   

3 
P = 0.0001 

(-4.794, -1.635) 
P = 0.1363 

(-2.866, 0.2930) 
  

4 
P < 0.0001 

(-5.368, -2.209) 
P = 0.0173 

(-3.440, -0.2813) 
P = 0.7409 

(-2.154, 1.005) 
 

Mean ± SE 
n 

66.2 ± 10.8 
6 

10.61 ± 3.09 
6 

6.13 ± 4.70 
6 

1.27 ± 1.27 
6 

Table 4-5: Comparison of the number of copies of th e PFR2 gene detected within 100ng of DNA prepared f rom approximately 25mg of whole brain 
homogenate from mice infected with melarsoprol sens itive T. b. brucei trypanosomes following mel/RAM ββββCD chemotherapy 
Mice were infected with T. b. brucei GVR35/C1.9. Mel/RAMβCD chemotherapy commenced on day 21 post-infection. The compound was administered by oral gavage, 
daily for 7 consecutive days at a dose of 0.05mmol/kg. The number of copies of the PFR2 gene present within 100ng of DNA prepared from approximately 25mg of 
whole brain homogenate, 24 hours after administration of each dose was determined by QPCR. The figures in the body of the table demonstrate the comparisons, in 
terms of statistical significance, between the number of copies of the PFR2 gene detected after administration of each dose, shown in the row and column headings. 
The p-values and 95% confidence intervals for differences are based on analysis using the logarithmic transformation [log(x + 1)] of the copy number. The mean copy 
number ± the standard error (mean ± SE) and the number of animals per group (n) are also shown. No copies of the PFR2 gene were detected following administration 
of the 5th, 6th and 7th dose of the complex. These values were therefore excluded as zero counts can bias the analysis. 
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4.3.2.2 T. b. brucei melarsoprol resistant strain (GVR35/M14) 

4.3.2.2.1 The effect of mel/HPββββCD treatment on CNS parasite load 

Immediately prior to chemotherapy commencing on day 21 post-infection, high 

copies numbers of the PFR2 gene were detected in the brain (350 ± 107) (Figure 

4-7, panel A). Twenty-four hours after administration of one dose of mel/HPβCD, 

there was a significant reduction (P = 0.0030) in the number of copies of the 

PFR2 gene (64.1 ± 11.5). Administration of a second dose, did not lead to a 

significant decrease (P = 0.9983) in the number of copies of the gene (49.83 ± 

4.52). Following administration of a third dose of the complex, there was a 

significant reduction (P = 0.0004) in the number of copies of the PFR2 gene 

detected within the brain, 7.98 ± 2.71 copies were detected compared to 49.83 

± 4.52 copies after the second dose. This equates to a reduction of 83.4%. 

Administration of a fourth dose of the complex did not significantly reduce (P = 

0.1640) the number of copies of the gene detected within the brain (2.95 ± 1.87) 

compared to the number detected after the third dose (7.98 ± 2.71). When 

animals were treated with a fifth dose of mel/HPβCD, a significant reduction (P 

< 0.0001) in the number of copies of the PFR2 gene (0.192 ± 0.192) was detected 

compared to after administration of 3 doses. However, this reduction was not 

significant when compared to the number of copies detected after 4 doses of the 

drug (P = 0.6770). The number of copies of the PFR2 gene detected after 

administration of six doses of the complex (0.508 ± 0.508) was significantly 

lower than the number detected after 3 doses (P = 0.0099). However, the 

number of copies of the gene present within the brain after six doses of the 

complex was not significantly lower than the number detected after four (P = 

0.8154) or five doses (P = 0.9999). Twenty-four hours after administration of the 

seventh dose of mel/HPβCD, no copies of the PFR2 gene were detected. 

Summary statistics are detailed in Table 4-6.  

4.3.2.2.2 The effect of mel/RAMββββCD chemotherapy on CNS parasite load 

High copy numbers of the PFR2 gene (350 ± 107) were detected in the brain 

immediately prior to chemotherapy commencing on day 21 post-infection (Figure 

4-7, panel B). Administration of one dose of mel/RAMβCD significantly reduced 
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(P = 0.01) the number of copies of the gene (62.9 ± 26). This reduction 

continued following the administration of a second dose of the complex (13.07 ± 

2.66), although the reduction was not significant (P = 0.2881) when compared to 

the number of copies detected after one dose. Following administration of a 

third dose of mel/RAMβCD, 4.34 ± 1.97 copies of the gene were detected. This is 

a significant reduction (P = 0.0022) when compared to the numbers detected 

after administration of one dose of the complex. When a fourth dose of the drug 

was administered to animals, a significant reduction (P = 0.0055) in the number 

of copies of the gene (2.65 ± 2.65) was detected compared to after 

administration of the second dose. However, the reduction in copy numbers 

detected after the fourth dose was not significant (P = 0.4813) when compared 

to the number of copies of the gene detected after 3 doses of the compound. 

The number of copies of the PFR2 gene detected after administration of a fifth 

dose (0.5668 ± 0.568) of mel/RAMβCD were significantly lower (P = 0.002) than 

the number detected after two doses of the complex. However, the number of 

copies of the gene detected after the fifth dose were not significantly different 

to the numbers detected after administration of the third (P = 0.2647) or fourth 

(P = 0.9932) doses of the complex. No copies of the PFR2 gene were detected 24 

hours after administration of the sixth dose of mel/RAMβCD. Copies of the PFR2 

gene (0.777 ± 0.777) were detected in one animal 24 hours after administration 

of the seventh dose of the complex. However, eight days after completion of 

mel/RAMβCD chemotherapy no copies of the gene were detected. Summary 

statistics are detailed in Table 4-7.  

4.3.2.2.3 Comparison of mel/HPββββCD and mel/RAMββββCD treatment 

To assess if one compound was more efficient at eliminating trypanosomes from 

the brain, the rate of parasite clearance of the two compounds was compared. A 

significant difference was detected between the two drugs (P = 0.0196). This 

was investigated further by individually comparing the number of copies of the 

PFR2 gene detected after administration of each dose of the two drugs against 

each other. A significant difference was detected between the two drugs, 

twenty-four hours after administration of the second dose (P = 0.001). In animals 

treated with mel/HPβCD a significantly higher number of copies of the PFR2  
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Figure 4-7: The number of copies of the PFR2 gene p resent within 100ng of DNA prepared 
from approximately 25mg of brain tissue taken from whole brain homogenate from mice 
infected with T. b. brucei (GVR35/M14) following chemotherapy with A) Mel/HP ββββCD and B) 
Mel/RAM ββββCD.  
The compounds were administered orally at a dose of 0.05mmol/kg, daily, for seven consecutive 
days commencing on day 21 post-infection. The box plots illustrate the median, interquartile range 
and minimum and maximum copy number detected after administration of each dose. Groups that 
do not share a letter are significantly different (P < 0.05).  
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gene were detected (49.83 ± 4.52) compared to animals treated with 

mel/RAMβCD (13.07 ± 2.66). This was the only time point at which at significant 

difference was observed between the two drugs. Interaction plots (Figure 4-8), 

illustrate parallel response lines and that there were no interactions between 

mel/HPβCD and mel/RAMβCD treatment and the number of copies of the PFR 

gene detected after administration of each dose (P = 0.336).     

 
4.3.2.3 Comparison of the melarsoprol sensitive and  resistant strains 

The rate of elimination of the PFR2 gene from the brain was compared between 

the melarsoprol sensitive (GVR35/C1.9) and melarsoprol resistant (GVR35/M14) 

strains for both drugs. A significant difference (P = 0.015) was observed between 

the two T. b. brucei strains. The PFR2 gene was eliminated more slowly in mice 

infected with the melarsoprol resistant strain (GVR35/M14) compared to the 

melarsoprol sensitive (GVR35/C1.9) strain. The two melarsoprol cyclodextrin 

compounds mel/HPβCD and mel/RAMβCD displayed an equivalent trypanocidal 

activity across the two strains, with no significant difference detected between 

the two drugs (P = 0.1013). Interaction plots (Figure 4-9) illustrate that there is 

no interaction between mel/HPβCD and mel/RAMβCD and the T. b. brucei 

strains (P = 0.096). Similarly the interaction between mel/HPβCD and 

mel/RAMβCD and the number of copies of the PFR2 gene detected after 

administration of each dose was not significant (P = 0.308) and there was no 

interaction between the number of copies of the PFR2 gene detected after 

administration of each dose and the T. b. brucei strains (P = 0.167).   
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Figure 4-8: Interaction plots comparing the mean [l og(x+1)] PFR2 copy number detected after administra tion of each dose of mel/HP ββββCD or mel/RAM ββββCD 
with number of doses 
Mice were infected with the GVR35/M14 T. b. brucei melarsoprol resistant stabilate. Chemotherapy commenced on day 21 post-infection. Mel/HPβCD or mel/RAMβCD 
was administered by oral gavage, daily, for 7 consecutive days at a dose of 0.05mmol/kg. The number of copies of the PFR2 gene present within 100ng of DNA 
prepared from approximately 25mg of whole brain homogenate, 24 hours after administration of each dose was determined by QPCR. The interaction plots illustrate 
that there is no interaction between mel/HPβCD and mel/RAMβCD treatment and the number of copies of the PFR2 gene detected after administration of each dose (P 
= 0.336).  
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Figure 4-9: Interaction plots demonstrating the int eractions in the mean [log(x+1)] PFR2 copy number d etected between the two melarsoprol cyclodextrin 
complexes, mel/HP ββββCD and mel/RAM ββββCD and the number of doses and also between the mel arsoprol sensitive (GVR35/C1.9) and resistant (GVR3 5/M14) T. 
b. brucei stabilates 
Mice were infected with either the GVR35/C1.9 melarsoprol sensitive or GVR35/M14 T. b. brucei melarsoprol resistant stabilate. Chemotherapy commenced on day 21 
post-infection. Mel/HPβCD or mel/RAMβCD was administered by oral gavage, daily, for 7 consecutive days at a dose of 0.05mmol/kg. The number of copies of the 
PFR2 gene present within 100ng of DNA prepared from approximately 25mg of whole brain homogenate, 24 hours after administration of each dose was determined 
by QPCR. Interaction plots illustrate that there is no interaction between mel/HPβCD and mel/RAMβCD and the T. b. brucei strains (P = 0.096). Similarly the interaction 
between mel/HPβCD and mel/RAMβCD and the number of copies of the PFR2 gene detected after administration of each dose was not significant (P = 0.308) and 
there was no interaction between the number of copies of the PFR2 gene detected after administration of each dose and the T. b. brucei strains (P = 0.167).    



147 
 

 

Dose 1 2 3 4 5 6 

2 
P = 0.9983 

(-1.478, 1.124) 
     

3 
P = 0.0001 

(-3.566, -0.964 
P = 0.0004 

(-3.389, -0.787) 
    

4 
P < 0.0001 

(-4.625, -2.023) 
P < 0.0001 

(-4.447, -1.846) 
P =0.1640 

(-2.360, 0.2422) 
   

5 
P < 0.0001 

(-5.259, -2.658) 
P < 0.0001 

(-5.082, -2.480) 
P = 0.0052 

(-2.994, -0.3925) 
P = 0.6770 

(-1.936, 0.6662) 
  

6 
P < 0.0001 

(-5.154, -2.552) 
P < 0.0001 

(-4.976, -2.375) 
P = 0.0099 

(-2.889, -0.2870) 
P = 0.8154 

(-1.830, 0.7718) 
P = 0.9999 

(-1.195, 1.406) 
 

Mean ± SE 
n 

64.1 ± 11.5  
6 

49.83 ± 4.52 
6 

7.98 ± 2.71 
6 

2.95 ± 1.87 
6 

0.192 ± 0.192 
6 

0.508 ± 0.508 
6 

Table 4-6: Comparison of the number of copies of th e PFR2 gene detected within 100ng of DNA prepared f rom approximately 25mg of whole brain 
homogenate from mice infected with melarsoprol resi stant T. b. brucei trypanosomes following mel/HP ββββCD chemotherapy 
Mice were infected with T. b. brucei GVR35/M14. Mel/HPβCD chemotherapy commenced on day 21 post-infection. The compound was administered by oral gavage, 
daily for 7 consecutive days at dose of 0.05mmol/kg. The number of copies of the PFR2 gene present within 100ng of DNA prepared from approximately 25mg of 
whole brain homogenate, 24 hours after administration of each dose was determined by QPCR. The figures in the body of the table demonstrate the comparisons, in 
terms of statistical significance, between the number of copies of the PFR2 gene detected after administration of each dose, shown in the row and column headings. 
The p-values and 95% confidence intervals for differences are based on analysis using the logarithmic transformation [log(x + 1)] of the copy number. The mean copy 
number ± the standard error (mean ± SE) and the number of animals per group (n) are also shown. No copies of the PFR2 gene were detected following administration 
of the 7th dose of the complex. These values were therefore excluded from the analysis as zero counts can bias the analysis. 
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Dose 1 2 3 4 5 

2 
P = 0.2881 

(-2.646, 0.492) 
    

3 
P = 0.0022 

(-3.839, -0.702) 
P = 0.2008 

(-2.762, 0.3752) 
   

4 
P < 0.0001 

(-4.721, -1.584) 
P = 0.0055 

(-3.644, -0.5068) 
P = 0.4813 

(-2.451, 0.6867) 
  

5 
P < 0.0001 

(-4.945, -1.808) 
P = 0.0020 

(-3.868, -0.7305) 
P = 0.2647 

(-2.674, 0.4630 
P = 0.9932 

(-1.792, 1.345) 
 

Mean ± SE 
n 

62.9 ± 26.0 
6 

13.07 ± 2.66 
6 

4.34 ± 1.97 
6 

2.65 ± 2.65 
6 

0.568 ± 0.568 
6 

Table 4-7: Comparison of the number of copies of th e PFR2 gene detected within 100ng of DNA prepared f rom approximately 25mg of whole brain 
homogenate from mice infected with melarsoprol resi stant T. b. brucei trypanosomes following mel/RAM ββββCD chemotherapy 
Mice were infected with T. b. brucei GVR35/M14. Mel/RAMβCD chemotherapy commenced on day 21 post-infection. The compound was administered by oral gavage, 
daily, for 7 consecutive days at dose of 0.05mmol/kg. The number of copies of the PFR2 gene present within 100ng of DNA prepared from approximately 25mg of 
whole brain homogenate, 24 hours after administration of each dose was determined by QPCR. The figures in the body of the table demonstrate the comparisons, in 
terms of statistical significance, between the number of copies of the PFR2 gene detected after administration of each dose, shown in the row and column headings. 
The p-values and 95% confidence intervals for differences are based on analysis using the logarithmic transformation [log(x + 1)] of the copy number. The mean copy 
number ± the standard error (mean ± SE) and the number of animals per group (n) are also shown. No copies of the PFR2 gene were detected in the majority of the 
animals following administration of the 6th and 7th doses of the complex. These values were therefore excluded from the analysis as zero counts can bias the analysis. 
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4.4 Discussion 

In-situ hybridization is a valuable tool for directly visualising the location of 

genes of interest within tissues. Very little is known about the areas of the brain 

in which trypanosomes reside following their traversal of the blood-brain barrier 

(BBB). Previous studies have used direct microscopy or fluorescent anti-

trypanosomal antibodies in order to visualise the trypanosomes within preserved 

brain sections (Poltera et al., 1980; Schmidt and Bafort, 1985; Schultzberg et 

al., 1988). However, both of these techniques have drawbacks. Direct 

microscopic visualisation of the trypanosomes is insensitive while the processes 

involved in the production of anti-trypanosomal antibodies are time consuming 

and problematic. The development of an in-situ hybridization assay would 

eliminate many of these problems and allow the direct visualisation of 

trypanosomes within paraffin embedded brain sections.  

Despite numerous attempts to optimise the in-situ hybridization protocol no 

positive results were obtained. Several reasons could lie behind the failure to 

obtain positive staining for trypanosomes in the tissue sections. One possible 

explanation is that the target sequence was not accessible. In order for the 

oligonucleotide probe to be able to access the target sequence it must first 

penetrate through the tissue sections. To aid penetration of the probe, tissue 

sections are permeabilised with proteases which digest the proteins surrounding 

the target sequence. However, the permeabilisation step must be optimised. 

Over digestion can result in the target sequence been lost while in under 

digested tissues the target sequence remains inaccessible to the probe. The 

degree to which the tissue sections are digested can be controlled by varying the 

concentration of the proteases, the incubation temperature and time. In this 

study, various attempts were made to optimise the permeabilisation of the 

tissues. While optimising the permeabilisation step there was a concern that 

Proteinase K was over digesting the tissue sections leading to a loss of the target 

sequence. Over digestion is a common occurrence when Proteinase K is used to 

permeabilise tissue sections (Nuovo, 1994), it was therefore decided to use 

pepsin instead of Proteinase K to digest the tissues. Pepsin is widely used in in-

situ hybridization to permeabilise tissue sections and excellent results have been 

reported following its use on formalin-fixed tissue sections (Roche, 2002). The 
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concentration of pepsin was varied along with the incubation time and 

temperature in an attempt to determine the optimal digestion conditions. 

However, despite all attempts to optimise the permeabilisation step positive 

staining for trypanosomes was still not obtained.  

A second possible explanation for the lack of positive staining is that the target 

sequence of interest was present in numbers too low to be detected. The first 

oligonucleodtide probe used was designed to a section of the PFR2 gene, which 

encodes a paraflagellar rod protein (Deflorin, Rudolf and Seebeck, 1994). This 

gene was chosen as the target sequence as it is detected consistently and 

quantitatively in QPCR assays. However, trypanosomes only have one copy of the 

PFR2 gene (Schlaeppi, Deflorin and Seebeck, 1989). This does not pose a 

problem in QPCR as the target sequence is amplified during the reaction. 

However, in in-situ hybridization the target sequence is not amplified therefore 

if the target sequence is present in low numbers it could easily be missed by the 

probe. Furthermore, if the trypanosome is only partially within the plane of the 

tissue section, the target sequence could lie outside the section, meaning the 

trypanosome will not be detected by the probe.  

The chances of detecting trypanosomes within the tissue sections could be 

increased by selecting a probe designed to a gene with a high copy number. A 

second probe was therefore designed to a section of a 177 bp repeat sequence 

found within the satellite DNA of T. b. brucei (Sloof, Menke, Caspers and Borst, 

1983). Within the T. b. brucei genome, 15,000 copies of the 177 bp repeat are 

present, thus by using a probe directed to a section of this sequence the chances 

of detecting trypanosomes within the tissue sections should be increased 

(Wickstead, Ersfeld and Gull, 2003). This gene was also chosen as the target 

sequence since a probe designed to the equivalent gene in the American 

trypanosome T. cruzi was used successfully to detect the parasites within 

paraffin-embedded cardiac sections (Lane et al., 1997).   

In a further attempt to maximise the chances of detecting trypanosomes within 

the paraffin-embedded sections, a Tyramide Signal Amplification System (TSATM 

PerkinElmer) was used. Immobilised HRP within the tissue sections converts the 

labelled tyramidine substrate into a short-lived extremely reactive intermediate. 

This intermediate interacts and covalently binds to electron rich regions of 
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adjacent proteins. The activated tyramide molecules only bind immediately 

adjacent to sites where the activating HRP is present. The subsequent detection 

of the tyramide labels by chromogenic methods yields a large amplification of 

the signal. The TSATM system means that it should be possible to detected even 

low levels of signal. However, despite the use of a probe designed to a sequence 

with a high copy number and the amplification of the hybridization signal with a 

TSATM system no positive staining for trypanosomes was observed.  

The observation of African trypanosomes within paraffin-embedded brain 

sections by in-situ hybridization has not been described previously. All previous 

reports describing the localisation of trypanosomes within paraffin-embedded 

brain sections have involved the direct observation of the trypanosomes in 

haematoxylin stained sections by light microscopy (Fink and Schmidt, 1979; 

Stevens and Moulton, 1977) or the visualisation of trypanosomes with anti-

trypanosomal antibodies previously raised in rabbits (Masocha et al., 2004; 

Poltera et al., 1980). However, the detection of trypanosomes by in-situ 

hybridization should be achievable. Lane et al. described the successful 

detection of the American trypanosome, T. cruzi within paraffin-embedded 

cardiac sections (Lane et al., 1997). The methodology used in the study was 

adapted to suit the current investigation but positive staining for T. b. brucei 

was still not obtained. In-situ hybridization consists of numerous stages, all of 

which can be adjusted depending upon the tissue and target sequence. 

Unfortunately, there is not a standard protocol for all in-situ hybridization 

applications. Positive staining is achieved by systematically adjusting previously 

reported protocols step by step, in order to determine the optimum conditions 

for the tissue and target sequence of interest. In the current investigation, 

attempts were made to adapt previously reported protocols, to suit the needs of 

the study. However, due to time restrictions, optimisation of every stage in the 

protocol could not be carried out. With further investigation and optimisation of 

the protocol it should be possible to achieve positive staining for trypanosomes. 

By being able to visualise the location of trypanosomes within the brain, the 

regions where parasites first appear after infection could be identified. 

Furthermore, the location of trypanosomes in relation to areas of 

neuroinflammation or blood-brain barrier (BBB) damage could be investigated.  
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Although it was not possible to map the location of the parasites within the CNS 

in this investigation, QPCR was used to accurately quantify the number of copies 

of the PFR2 gene present within 100ng of DNA prepared from approximately 

25mg of whole brain homogenate. The number of copies of the gene in the brain 

immediately prior to and following chemotherapy with the melarsoprol 

cyclodextrin complexes, mel/HPβCD and mel/RAMβCD was determined in a 

melarsoprol sensitive (GVR35/C1.9) and resistant (GRV35/M14) T. b. brucei 

strain.  

The melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD eliminate 

melarsoprol sensitive trypanosomes from the brain very quickly following 

administration. The PFR2 gene was not detected within the brain 24 hours after 

administration of the fourth dose of mel/HPβCD and fifth dose of mel/RAMβCD. 

Once eliminated from the brain, the gene did not reoccur. Unfortunately, in the 

present study it was not possible to determine the rate of trypanosome 

clearance from the brain following conventional melarsoprol chemotherapy, as 

the drug is very difficult to administer intravenously to mice. The rates of 

trypanosomal clearance, following conventional and complexed melarsoprol 

chemotherapy could not therefore be compared.  

The speed at which the melarsoprol cyclodextrin complexes are able to 

eliminate trypanosomes from the brain may help prevent the development of 

the PTRE and hence reduce the toxicity of the drug. The PTRE currently occurs 

in up to 10% of all patients receiving melarsoprol chemotherapy of which 50% 

will die as a result of the complication. This gives melarsoprol an overall fatality 

rate of 5% which is unacceptably high (Kennedy, 2004; Pepin and Milord, 1994). 

The precise reasons for the development of the PTRE are not fully understood 

and a number of mechanisms have been proposed. Jennings et al. suggested that 

the PTRE occurs as a result of the compound eliminating trypanosomes from the 

circulation but not the brain (Jennings et al., 1993; Jennings et al., 1989). This 

allows the immune system to become focused on the parasites remaining in the 

brain causing a severe meningoencephalitis. The author further suggested that a 

rapidly curative treatment regime which simultaneously eliminates 

trypanosomes from the tissues and the brain may prevent the development of 

the PTRE. The theory was tested in an experiment in which mice infected with 
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T. b. brucei were treated with an aggressive or subcurative chemotherapy 

regime. Mice treated with the aggressive treatment regime received a 

combination of 5-nitroimidazole (40mg/kg) and mel Cy (5mg/kg), 

intraperitoneally, once a day, for two consecutive days. A single dose of 

diminazene aceturate (40mg/kg) was administered intraperitoneally to animals 

receiving the subcurative regime. The subcurative regime eliminated 

trypanosomes from the tissues but not the brain. Mice treated with the 

aggressive chemotherapy regime did not develop meningoencephalitis. In 

contrast, mice treated with the subcurative regime developed severe 

meningoencephalitis (Jennings et al., 1993). The study concluded that the 

meningoencephalitis occurred as a result of the presence of living trypanosomes 

within the CNS and further indicated that if all the trypanosomes within the CNS 

were eliminated then the meningoencephalitis would not occur and any existing 

lesions would resolve. Complexed melarsoprol chemotherapy dramatically 

reduces the number of trypanosomes within the brain, twenty-four hours after 

administration of one dose of mel/HPβCD or mel/RAMβCD. By twenty-four hours 

after administration of 4 dose of mel/HPβCD or 5 doses of mel/RAMβCD, all 

trypanosomes were eliminated from the brain. These findings indicate that 

complexed melarsoprol acts in a rapid and aggressive manner. Therefore if the 

hypothesis suggested by Jennings et al. (1993) is correct, treatment of CNS-stage 

disease with mel/HPβCD or mel/RAMβCD should show a reduced incidence of the 

severe meningoencephalitis associated with contemporary trypanosome 

chemotherapy.  

Previous in-vivo experiments (Chapter 3) determined the minimum curative dose 

of mel/HPβCD and mel/RAMβCD in a melarsoprol sensitive T. b. brucei strain to 

be seven daily doses of 0.05mmol/kg. However, the present studies indicate that 

all trypanosomes are cleared from the brain twenty-four hours after 

administration of four doses of mel/HPβCD or five doses of mel/RAMβCD, as 

evidenced by the absence of the PFR2 gene within the brain. This suggests that 

the treatment regime could be reduced from seven doses of 0.05mmol/kg to 

four doses of mel/HPβCD or five doses of mel/RAMβCD. Furthermore, the QPCR 

assay demonstrated low copy numbers of the PFR2 gene within the brain twenty-

four hours after administration of three or four dose of mel/HPβCD and 

mel/RAMβCD respectively. It is not known if these numbers represent a viable 
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trypanosome population within the brain and this must be confirmed using the 

traditional in-vivo method of monitoring the animals for the development of a 

relapsed parasitaemia and brain transfer experiments. If the population is non-

viable then it maybe possible to reduce the chemotherapy regime further still.  

In addition to rapidly eliminating melarsoprol sensitive trypanosomes from the 

brain, the melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD 

were also able to eliminate melarsoprol resistant trypanosomes. However, the 

rate of trypanosomal clearance was slower than for the sensitive strain. The 

PFR2 gene was not eliminated until twenty-four hours after administration of the 

seventh dose of mel/HPβCD and seven days after completion of mel/RAMβCD 

chemotherapy. However, less than one copy of the PFR2 gene was detected in 

the brain twenty-four hours after administration of a fifth dose of mel/HPβCD 

and mel/RAMβCD. When the number of copies of the PFR2 gene detected within 

the brain falls below one, it is possible that this does not represent a viable 

population of trypanosomes and the samples can therefore be classed as 

negative for the presence of the PFR2 gene. However, in order to confirm if the 

samples are truly negative, the animals would need to be monitored for the 

development of a relapsed parasitaemia.  

 The T. b. brucei melarsoprol resistant strain used in the study, GVR35/M14 was 

developed from the melarsoprol sensitive GVR35/C1.9 stabilate by serially 

treating mice with increasing sub-curative doses of topical melarsoprol and 

passaging the resulting stabilates. The final strain, GVR35/M14 was resistant to 

9µM of melarsoprol. Following its development the GVR35/M14 strain was stored 

in liquid nitrogen. In this study the experimental animals were not infected 

directly with the GVR35/M14 stabilate. The stabilate was first passaged in a 

donor animal in order to obtain sufficient numbers of trypanosomes to infect 

large numbers of experimental animals. While being passaged in the donor 

animal and during the first 21 days of new infections the stabilate is not exposed 

to any trypanocidal compounds. There is therefore a concern that in the absence 

of any drug pressure the stabilate reverts back to a melarsoprol sensitive form. 

The GVR35/M14 stabilate is currently under investigation, in order to confirm 

that it has maintained a resistant phenotype in the absence of drug pressure. 

Until these studies are completed and the resistance profile of the stabilate 
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confirmed, no conclusions can be drawn regarding the activity of mel/HPβCD 

and mel/RAMβCD against T. b. brucei resistant strains.  

This study demonstrates that QPCR is an effective method for assessing the rate 

of trypanosomal clearance from the brain following chemotherapy. The method 

allows the number of trypanosomes present in the brain to be accurately 

quantified, easily and quickly. The effectiveness of new chemotherapy regimes 

can be determined within a week of the regime ending. This is a significant 

improvement on the currently used in-vivo methods, which involve monitoring 

animals for the development of a parasitaemia for up to 120 days. These 

methods are time consuming, expensive and require large numbers of 

experimental animals. The use of QPCR to evaluate new treatment regimes 

would eliminate the need for large numbers of experimental animals and allow 

results to be obtained quicker, thus saving time and money. The PFR2 gene is a 

good gene candidate for quantifying the number of trypanosomes present within 

the brain as it is stable within samples and it does not persist in the brain 

following the elimination of trypanosomes. 

This study is the first report of QPCR being used to assess the rate of 

trypanosomal clearance from the brain following chemotherapy but the method 

has already been successfully used in malaria patients to determine the rate of 

parasite clearance from the peripheral circulation following anti-malarial 

chemotherapy (Beshir et al., 2010). In agreement with this study the authors 

found QPCR to be highly sensitive, allowing low numbers of parasites to be 

detected, which may be missed when examining blood smears by microscopy. 

These investigations demonstrate that the melarsoprol cyclodextrin complexes 

mel/HPβCD and mel/RAMβCD are effective oral therapies for the treatment of 

melarsoprol sensitive CNS stage T. b. brucei infections. Administration of four 

doses of mel/HPβCD and five doses of mel/RAMβCD, orally, once per day at a 

dose of 0.05mmol/kg was sufficient to eliminate trypanosomes from the brain. 

This treatment regime is considerably shorter than the concise 10 day 

melarsoprol schedule currently used for the treatment of CNS stage T. b. 

rhodesiense infections. Furthermore, the oral bioavailability of the melarsoprol 

cyclodextrin complexes, means the problems and expenses associated with I.V. 
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administration of conventional melarsoprol are eliminated. Mel/HPβCD and 

mel/RAMβCD are therefore promising oral candidates for the treatment of CNS 

stage trypanosome infections.  



 

 

Chapter 5: Visualisation of the changes in 

permeability of the blood-brain barrier following 

complexed melarsoprol chemotherapy 
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5.1 Introduction 

The blood-brain barrier (BBB) is a specialised, highly organised structure, 

essential for normal brain function. However, in some diseases, the integrity of 

the BBB is compromised, resulting in CNS dysfunction and pathology. This 

chapter will investigate the effects of early CNS stage T. b. brucei infection on 

the integrity of the BBB using small bore magnetic resonance imaging (MRI) in 

conjunction with mel/HPβCD chemotherapy.  

5.1.1 Barriers of the CNS 

The exchange of molecules and solutes between the blood and the brain and its 

fluid spaces is regulated by three distinct barriers; the blood-brain barrier (BBB), 

the blood – CSF barrier and the arachnoid barrier.   

5.1.1.1 The blood-brain barrier 

The blood-brain barrier (BBB) is an integrated dynamic structure, separating the 

brain parenchyma from the bloodstream (Masocha, Rottenberg and Kristensson, 

2007; Schlosshauer, 1993). It is located at the level of the cerebral capillary 

endothelial cells and is present in all areas of the brain, except the regions 

responsible for regulation of the autonomic nervous system and endocrine glands 

(Ballabh, Braun and Nedergaard, 2004). The BBB is the most extensive of the 

three CNS barriers and forms the greatest interface for blood-brain exchange, 

with a surface area of approximately 20m2 per 1.3kg brain (Nag and Begley, 

2005). 

The barrier is composed of tightly apposed vascular endothelial cells (Figure 5-1) 

characterised by their increased mitrochondrial content, lack of pinocytic 

vesicles and the presence of tight junctions (Chaudhuri, 2000). The tight 

junctions hold the endothelial cells of the BBB closely together, eliminating the 

gaps that usually occur between endothelial cells elsewhere in the body and 

restricting the paracellular passive diffusion of molecules (Chaudhuri, 2000; 

Enanga, Burchmore, Stewart and Barrett, 2002). Small lipophilic molecules such 

as O2, CO2 and ethanol are able to freely diffuse across the membranes but 
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larger  hydrophobic molecules including glucose, are transported transcellularly 

by specialised transporters (Begley and Brightman, 2003). The endothelial 

basement membrane underlies the endothelial cells and separates the blood 

from the perivascular space. In close association with the endothelial cells are 

pericytes, also known as vascular smooth muscle cells. Vascular pericytes 

synthesise the major components of the basement membranes and provide 

essential structural support, helping to maintain the integrity of the tight 

junctions. The tight junctions are reinforced by the foot processes of astrocytes, 

a distinct type of glial cell essential in the maintenance of BBB integrity 

(Chaudhuri, 2000). The foot processes of the astrocytes are continuous with the 

parenchymal basement membrane which separates the perivascular space from 

the brain parenchyma. Together, the basement membranes, endothelial cells, 

astrocytes, pericytes, microglia cells and neurons constitute the neurovascular 

unit (NVU) (Choi and Kim, 2008; Persidsky, Ramirez, Haorah and Kanmogne, 

2006). The NVU is the functional unit of the BBB and is essential for normal BBB 

function (Abbott, Ronnback and Hansson, 2006).  

 

Figure 5-1: The blood-brain barrier 
The blood-brain barrier (BBB) is composed of tightly apposed endothelial cells. Tight junctions are 
located between the endothelial cells, holding the cells together and severely restricting the 
paracellular diffusion of molecules. The tight junctions are reinforced by the foot processes of 
astrocytes. The astrocytes, together with the endothelial cells, basement membranes, neurons, 
pericytes and microglial cells constitute the neurovascular unit (NVU). The NVU is the functional 
unit of the BBB.  
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5.1.1.2 The blood–CSF barrier 

The blood – CSF barrier is formed by the epithelial cells of the choroid plexus 

(Figure 5-2). The choroid plexus is a highly vascularised structure, containing an 

extensive capillary network enclosed by a single layer of cuboidal epithelium. 

The choroid plexus is situated within the lateral, third and fourth ventricles and 

is responsible for the production of CSF (Abbott, 2004). In order to produce CSF 

the endothelial cells need unrestricted access to blood-borne components. The 

endothelial cells in the choroid plexus are therefore fenestrated to allow the 

free movement of molecules. However, it is essential that the blood-borne 

components do not enter the ventricular space. To prevent the entry of blood-

borne components into the ventricular space, tight junctions exist between the 

choroid plexus endothelial cells, forming the blood-CSF barrier.  

 

Figure 5-2: The blood-CSF barrier 
The endothelial cells of the blood vessels within the choroid plexus are fenestrated, allowing the 
free movement of molecules. In order to prevent blood-borne components entering the ventricular 
space, tight junctions are present between the choroid plexus epithelial cells, forming the blood-
CSF barrier.  

 
5.1.1.3 Arachnoid barrier 

The arachnoid barrier is the least studied and most complex of the three barriers 

(Figure 5-3). The arachnoid matter along with the pia and dura form the 

meninges (Haines, Harkey and Almefty, 1993). The collagenous external dura is 

the outer most layer and is in contact with the inner surface of the skull. 

Underlying the external dura is the meningeal dura which contains more 
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fibroblasts and less collagen than the external dura (Anderson, 1969). At the 

interface of the meningeal dura and the arachnoid lies a unique population of 

elongated, flattened fibroblasts known as border cells. The cells are 

characterised by a lack of extracellular collagen, sparse intercellular junctions 

and prominent extracellular spaces (Haines, Harkey and Almefty, 1993). Internal 

to the border cells is the arachnoid barrier. The barrier is composed of 

endothelial cells connected by tight junctions similar to those found in the brain 

parenchyma, although astrocytes are absent (Rodgers, 2010; Segal, 2000). They 

form an effective barrier, preventing the movement of fluid and large molecular 

weight substances between the subarachnoid space and the dura. Underlying the 

arachnoid barrier is a loosely organised population of fibroblasts, known as 

arachnoid trabeculae, which span the subarachnoid space (Haines, Harkey and 

Almefty, 1993). The subarachnoid space is a fluid filled compartment which 

separates the arachnoid from the pia matter (Haines, Harkey and Almefty, 

1993). At the interface of the arachnoid barrier and subarachnoid space is a 

basement membrane. The basement membrane is composed of fenestrated 

endothelial cells with punctuate junctions, allowing CSF and molecules to freely 

diffuse across the cells (Segal, 2000). Internal to the subarachnoid space is the 

pia matter, composed of flattened fibroblasts. A final basement membrane 

separates the pia matter from the brain parenchyma (Haines, Harkey and 

Almefty, 1993).   

 

Figure 5-3: The arachnoid barrier 
The arachnoid barrier is located between the dural border cells and the subarachnoid space. The 
barrier is composed of endothelial cells connected by tight junctions similar to those present in the 
brain parenchyma although astrocytes are absent. The barrier prevents the movement of fluid 
between the subarachnoid space and the dura. 
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5.1.2 Trypanosomes and the blood-brain barrier 

5.1.2.1 Trypanosome traversal of the BBB 

The mechanisms by which trypanosomes traverse the BBB and invade the CNS 

are currently unknown. In an attempt to understand the cellular and molecular 

events that occur immediately prior to trypanosome traversal of the BBB both 

in-vitro and in-vivo approaches have been followed.   

5.1.2.1.1 In-vitro blood-brain barrier studies 

The in-vitro model used to study the interaction between trypanosomes and the 

BBB is comprised of human brain microvascular endothelial cells (BMECs) which 

are seeded on top of tissue culture inserts pre-coated with type I collagen. Once 

confluency is reached the human BMECs form a continuous lining and act as a 

barrier between the upper and lower compartments of the well. The upper 

compartment represents the blood side of the BBB while the lower compartment 

represents the brain side (Grab, Nikolskaia, Kim, Lonsdale-Eccles et al., 2004). 

Trypanosomes placed in the upper compartment (blood side) migrate through 

the mono-layer of human BMECs and enter the lower compartment (brain side). 

By taking transendothelial electrical resistance (TEER) measurements 

continuously throughout the experiment, the integrity of the human BMEC mono-

layer can be assessed in real-time as the trypanosomes transverse the cells. In 

addition, washing and fixing of the human BMECs allows the point of 

trypanosomal traversal to be visualised microscopically.  

Studies conducted using the in-vitro human BMEC model have shown that, prior 

to traversal of the BBB trypanosomes attach at or near to the periphery of 

endothelial cell tight junctions (Grab et al., 2004). Preceding traversal of the 

barrier, oscillatory increases in Ca2+ are induced in the microvascular endothelial 

cells by the living parasites or their secretory products. These transient 

increases in Ca2+ were completely abolished when an irreversible cathepsin-L 

cysteine protease inhibitor was added to the culture. This suggests that parasite 

derived cysteine proteases are responsible for the calcium signalling events 

(Nikolskaia, de, Kim, Lonsdale-Eccles et al., 2006). It was therefore proposed 
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that the trypanosomes induce Ca2+ signalling in the endothelial cells through 

secretion of cysteine proteases, in particular brucipain, and that these signalling 

events are essential in order for the parasites to penetrate the BBB (Nikolskaia 

et al., 2006). 

Following this discovery the search began for the molecular target of brucipain. 

Cysteine proteases are known to activate a class of G protein coupled receptors 

known as Protease Activated Receptors (PARs) (Grab, Garcia-Garcia, Nikolskaia, 

V, Kim, V et al., 2009). The human BMECs express all four PARs and it has been 

shown previously that activation of PAR-1 and PAR-2 leads to Ca2+ mediated 

transmembrane signalling in human BMECs (Kim, Di Cello, Hillaire and Kim, 

2004). Furthermore, in single cell studies, a PAR-2 agonist was able to induce 

Ca2+ signalling in greater than 60% of the human BMECs (Kim et al., 2004). These 

findings substantiated the hypothesis that trypanosome derived cysteine 

proteases induce Ca2+ signalling in human BMECs through activation of PARs. In 

order to test the hypothesis further, expression of the PAR-2 gene (F2RL1) in the 

human BMECs was decreased by greater than 95% using RNA interference (RNAi). 

Traversal of T. b. rhodesiense across the human BMEC mono-layer was decreased 

between 39 and 49% following silencing of the PAR-2 gene using this method. 

Furthermore, in human BMECs in which the PAR-2 gene had been silenced, 

normal TEER levels were maintained even in the presence of trypanosomes (Grab 

et al., 2009). The results of these studies led Grab et al. to format a hypothesis 

suggesting that parasite proteases trigger PARs, leading to the release of Ca2+ 

from intracellular stores. The increase in intracellular calcium results in 

calmodulin (CaM) activation of myosin light chain kinase (MLCK), ultimately 

leading to rearrangement of the cytoskeleton and barrier dysfunction, and 

thereby allowing trypanosomes to traverse the BBB (Grab et al., 2009).  

5.1.2.1.2 In-vivo blood-brain barrier studies 

In-vivo studies have also enabled the processes involved in trypanosome 

traversal across the blood-brain barrier to be unravelled. Work by Masocha et al. 

in a murine model of the disease found that trypanosomes were only able to 

penetrate regions of the endothelial basement membrane at sites where laminin 

α4 but not laminin α5 chains were present. Transmigration was inhibited at sites 

containing laminin α5 (Masocha, Rottenberg and Kristensson, 2007). The laminin 
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glycoprotein family form the major functional and structural component of all 

basement membranes. Laminins are heterotrimeric glycoproteins composed of 

α, β and γ chains (Timpl and Brown, 1994). To date 5 α, 4 β and 3 γ chains have 

been identified which can combine to form up to 15 different laminin isoforms 

(Colognato and Yurchenco, 2000). The α laminin chains represent the 

functionally active portion of each laminin as they form the cell-binding domains 

(Aumailley and Smyth, 1998; Tunggal, Smyth, Paulsson and Ott, 2000). The 

laminin isoforms present in the endothelial and parenchymal basement 

membranes vary. The endothelial basement membrane is composed of laminin 

α4 and α5 chains while the parenchymal basement membrane is composed of 

laminin α1 and α2 chains (Sixt, Engelhardt, Pausch, Hallmann et al., 2001). In 

endothelial membranes the expression of laminins is regulated by 

proinflammatory cytokines such as IFN-γ, IL-12 and TNF-α (Sixt et al., 2001). 

This led to the notion that proinflammatory cytokines could affect the ability of 

trypanosomes to penetrate the BBB and this hypothesis was investigated in IFN-γ 

knockout mice (IFN-γ-/-) (Masocha et al., 2004). In the IFN-γ knockout animals, 

extravasation of T. b. brucei from the cerebral blood vessels into the brain 

parenchyma was inhibited. Immunofluorescent staining revealed the expression 

of laminin α4 and α5 chains in the endothelial basement membrane of IFN-γ-/- 

mice was the same as that observed in wild type mice. Furthermore, the 

migration of T. b. brucei across the BBB was also reduced in recombinant 

activation gene-1-/- (RAG-1-/-) mice and in the absence of IL-12, a major 

activator of IFN-γ (Masocha et al., 2004). This suggested that penetration of 

trypanosomes into the brain parenchyma is dependent upon T cell derived IFN-γ. 

The mechanisms by which IFN-γ facilitates the migration of T. b. brucei across 

the BBB have still to be fully elucidated. 

5.1.2.2 Breakdown of the blood-brain barrier during  trypanosome 

infection 

The effect of trypanosome infection and transmigration into the brain on the 

integrity of the BBB is not clear. In an initial study conducted by Philip et al., 

utilising a rat model of the disease, BBB damage was assessed by monitoring the 

brain for the presence of a fluorescent dye following its injection into the 

jugular vein. Using this method an extensive and progressive breakdown of the 
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BBB was observed as the infection advanced (Philip, Dascombe, Fraser and 

Pentreath, 1994). Low levels of BBB damage were first observed on day 21 post-

infection with damage localized to the thalamus and hypothalamus (Philip et al., 

1994). As the disease progressed damage to the BBB became more widespread 

with the rhodamine dye penetrating both the white and grey matter. However, 

there was large inter-animal variation in the level of BBB damage observed and 

there was no apparent correlation between areas of high BBB damage and the 

presence of parasites (Philip et al., 1994). In a second study conducted by 

Mulenga et al. the effect of trypanosome traversal on the tight junctions of the 

BBB was investigated through visualisation of the tight junction markers occludin 

and ZO-1. The location of trypanosomes within the CNS in relation to the brain 

vascular endothelium, was also visualised using an anti-glucose transporter-1 

(GLUT-1) antibody (Mulenga, Mhlanga, Kristensson and Robertson, 2001). No 

difference in the staining patterns of occludin and ZO-1 were detected between 

infected and control animals indicating that during infection there is no 

generalised loss of tight junction proteins. The majority of the parasites were 

confined to the blood vessels on day 12 post-infection, with only small numbers 

observed in the brain parenchyma. A similar parasite distribution was also 

observed on day 22 post-infection. As the infection progressed, the number of 

parasites within the brain parenchyma increased. At days 42, 45 and 55 post-

infection, large accumulations of parasites were observed in the white matter 

and clustered around large vessels in the septal nuclei (Mulenga et al., 2001). 

This suggests that the parasites within the brain parenchyma are mainly derived 

from parasites that have directly penetrated the cerebral vessels. Furthermore, 

the T. b. brucei parasites are able to penetrate the BBB with no permanent 

disruption of the tight junctions that are essential for barrier maintenance.   

Histopathological investigations have provided insights into the morphological 

changes that occur at the BBB during trypanosome infection (Philip et al., 1994). 

However, the data the studies provide is limited as only a small section of the 

brain can be visualised and processing of the tissues can lead to artefacts which 

could be wrongly attributed to the disease process. Furthermore, histopathology 

sections only provide a ‘snap shot’ of what is happening at the BBB at the point 

in time when the animal was sacrificed, they do not allow the changes in the 

BBB to be monitored over a period of time.  
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One method by which the integrity of the BBB can be studied in great detail, 

throughout the disease process is by magnetic resonance imaging (MRI).   

5.1.3 Magnetic resonance imaging 

MRI is a non-invasive, sensitive means of visualising the whole brain. It allows 

specific regions where BBB integrity is compromised to be identified and, as it is 

performed in-vivo, any changes observed in the BBB can be attributed solely to 

the disease process.  

5.1.3.1 Principles of magnetic resonance imaging 

The aim of MRI is to differentiate between adjacent tissues. To achieve this 

goal, a signal must be generated from each tissue. In MRI the signal is generated 

through a physical phenomenon known as nuclear magnetic resonance (NMR).  

NMR occurs when certain elements interact with a magnetic field (Lipton, 

2008b). As hydrogen is the most abundant NMR compatible nucleus in human 

tissue, human MRI is focused almost entirely on the signal generated by the 

nuclei of hydrogen atoms (1H) (Lipton, 2008b). A hydrogen atom consists of a 

nucleus containing a single positively charged proton which is orbited by a single 

negatively charged electron. Only the proton is of interest in MRI (Weishaupt, 

Kochli and Marincek, 2006b). The positive charge on the proton means it 

generates a magnetic field that is local to the nucleus, that behaves just like the 

magnetic field of a permanent magnet (Lipton, 2008b). In the absence of any 

external magnetic field the orientation of the nuclear magnetic field will be 

random. However, when an external magnetic field is applied, the nuclear 

magnetic field will align with that of the external field (Lipton, 2008b).  

MRI relies on the generation of a moving magnetic field known as transverse 

magnetization (Mt). Transverse magnetization (Mt) is able to induce a voltage in 

a receiver coil. The voltage induced in the coil is directly proportional to Mt. 

Transverse magnetization (Mt) therefore provides a measurable signal which can 

be detected (Lipton, 2008d). At rest, no signal is generated as the net 

magnetization (NMV) of the sample is parallel to the external magnetic field (B0) 

and no transverse magnetization (Mt) is generated. If the position of the NMV can 

be altered so that it lies at an angle to B0, transverse magnetism will be 
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generated which can be measured. A flip of the NMV and hence generation of 

transverse magnetization (Mt) can be achieved by adding energy to the system 

(Lipton, 2008d). 

The proton of the hydrogen atom can exist in two possible energy states, a lower 

energy state (E1) and a higher energy state (E2). In order to move between the 

energy states, energy must be emitted or absorbed. The laws of thermodynamics 

state that any system will exist in the lowest possible energy configuration, 

therefore in the resting state protons will be in the lower (E1) energy state. The 

addition of energy results in the protons moving from the lower energy state (E1) 

to the higher energy state (E2). The transition between energy states results in a 

flip of the NMV and the generation of transverse magnetization (Mt) (Lipton, 

2008b). Energy is introduced into the system by a second magnetic field (B1), 

which is weaker than B0 but rotates at the natural frequency of the protons (ω0). 

The second magnetic field (B1) delivers a radiofrequency (RF) pulse to the 

system which provides the energy required for the protons to move to the higher 

energy state (E2), inducing a flip of the NMV and the generation of Mt (Lipton, 

2008d). The E2 configuration can only be maintained with the input of energy, 

therefore when the RF is shut off, the system returns to its lower (resting state) 

energy conformation (E1) and the NMV returns to its original position, parallel to 

B0 and transverse magnetization is lost. This return to resting state (M0) is known 

as relaxation (Lipton, 2008c). During relaxation there is a recovery of 

longitudinal magnetization (Mz) and a loss of transverse magnetization (Mt). The 

rate of recovery of longitudinal magnetization (Mz) is represented by the time 

constant T1. T1 is the time required for 63% of the longitudinal magnetization 

(Mz) to be recovered. The loss of transverse magnetization (Mt) is represented by 

the time constant T2 and is the amount of time required for 63% of Mt to be lost. 

The loss of transverse magnetization occurs much more rapidly than the 

recovery of longitudinal magnetization, T2 is therefore always shorter than T1 

(Lipton, 2008c). Tissues lose transverse magnetization and gain longitudinal 

magnetization at different rates. These differences in T1 and T2 mean the signal 

intensity obtained from each tissue varies, allowing the tissues to be 

distinguished (Lipton, 2008a; Weishaupt, Kochli and Marincek, 2006a). MRI can 

capture either the recovery of longitudinal magnetism (T1) or the loss of 

transverse magnetism (T2).  
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5.1.3.2 The use of contrast agents 

Contrast agents are frequently used in MRI to increase the intensity of the signal 

obtained from a tissue, allowing the tissue and any areas of abnormality to be 

easily identified. The contrast agents used in MRI frequently contain the 

paramagnetic metal ion gadolinium chelated to a ligand. Currently used 

gadolinium based contrast agents include; gadopentetate dimeglumine 

(GdDTPA), gadoteridol (GdHP-DO3A), gadodiamide (GdDTPA-BMA) and 

gadoversetamide (GdDTPA-BMEA) (Runge, Muroff and Jinkins, 2001). Following 

I.V. administration the distribution of the contrast agent within the body varies 

depending upon the contrast agent administered. Extracellular contrast agents 

distribute in the vascular and interstitial spaces, while liver and lymph node 

specific contrast agents accumulate in liver cells and the lymph nodes 

respectively (Froehlich, 2006). In tissues which accumulate the contrast agent 

the rate of recovery of longitudinal magnetism (T1) is shortened (Lipton, 2008a). 

As a result an increased signal intensity is detected on T1 weighted images, 

allowing the tissue to be easily distinguished (Nelson and Runge, 1995). Contrast 

agents are unable to penetrate the blood-brain barrier (BBB) as they are strongly 

hydrophilic, therefore no signal enhancement is observed within the brain 

parenchyma (Froehlich, 2006). However, if the integrity of the BBB is 

compromised, the contrast agent is able to penetrate the barrier and an 

enhanced signal is detected in regions of the brain where the BBB is disrupted  

(Lipton, 2008a). Contrast agents therefore allow regions of the brain where the 

BBB is disrupted to be visualised and the degree of disruption to be quantified 

through the production of signal enhancement maps.    

5.1.3.3 Magnetic resonance imaging of the CNS in di sease 

MRI has been extensively used to visualise the pathological changes in the brain 

and the BBB in numerous diseases. In the neurodegenerative disease, multiple 

sclerosis (MS), MRI is a vital tool in diagnosing and understanding the 

pathophysiological mechanisms of the disease as well as evaluating the efficacy 

of existing and novel treatment regimes. 
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5.1.3.3.1 Multiple sclerosis 

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS, 

producing characteristic lesions known as ‘plaques’ in the white and gray 

matter, spinal cord and optic nerves (Rejdak, Jackson and Giovannoni, 2010). 

Patients display a wide range of neurological symptoms which can change as the 

disease progresses (Thompson, Toosy and Ciccarelli, 2010). Diagnosis of MS is 

primarily based on clinical evaluation (Lovblad, Anzalone, Dorfler, Essig et al., 

2010). MRI can aid in the diagnosis of MS as it enables lesions to be sensitively 

and accurately visualised and monitored over a period of time. As a result, when 

combined with clinical information, MRI enables an accurate and prompt 

diagnosis of MS to be made (Filippi and Rocca, 2007).  

MRI analysis is also widely used in MS to monitor the efficacy of current and 

novel treatment regimes (Lovblad et al., 2010; Sahraian and Eshaghi, 2010).  

Through conducting MRI scans prior to treatment and at regular intervals during 

and following completion of treatment, the ability of a compound to resolve 

existing lesions and to prevent the development of new ones can be assessed. If 

the MRI data shows that the treatment is having no effect then the treatment 

regime can be adjusted as necessary and then reassessed at a later time point. 

MRI is effective for monitoring the efficacy of chemotherapy in MS and has been 

shown to be 5 to 10 times more sensitive at detecting disease activity than 

conventional clinical assessments (Rovaris and Filippi, 2005).     

5.1.3.3.2 Cerebral malaria 

Cerebral malaria is a serious and often lethal complication of Plasmodium 

falciparum infection (Looareesuwan, Laothamatas, Brown and Brittenham, 

2009). It is characterised by a diffuse encephalopathy accompanied by seizures 

and a loss of consciousness (Beales, Brabin, Dorman, Gilles et al., 2000). The 

disease is associated with a high mortality rate, even with the administration of 

anti-malarial chemotherapy and supportive treatment. Patients who do recover 

are often left with long-term neurocognitive defects (Medana and Turner, 2006). 

Despite extensive investigations, the pathophysiology of cerebral malaria is still 

not fully understood. It is thought to arise due to a complex interplay of parasite 

and host factors. In an attempt to understand the pathophysiological 
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mechanisms of cerebral malaria, MRI has been utilised to visualise the changes 

that arise at the level of the BBB, in in-vivo models of the disease and in 

patients (Looareesuwan, Wilairatana, Krishna, Kendall et al., 1995; Penet, Viola, 

Confort-Gouny, Le Fur et al., 2005; Sibson, Blamire, Perry, Gauldie et al., 2002; 

zur Muhlen, Sibson, Peter, Campbell et al., 2008).  

The pathophysiological alterations that occur within the brain of mice infected 

with P. berhei was investigated by Penet et al. (Penet et al., 2005). MRI analysis 

revealed major alterations in the cerebral structure and vasculature. Vascular 

dysfunction was characterised by a breakdown of the BBB, a reduction in 

cerebral blood flow and severe arterial flow perturbations. In addition, a 

pronounced cerebral edema and inflammatory lesions within the parenchyma 

were observed (Penet et al., 2005). From the study the authors concluded, that 

experimental cerebral malaria was an ischemic pathology, characterised by a 

severe edema (Penet et al., 2005). In addition to enabling the alterations that 

occur within the brain during experimental cerebral malaria to be characterised, 

MRI is being increasingly used in patients to gain a better understand of the 

pathogenesis, and ultimately improve treatment of the disease. Looareesuwan 

et al. conducted a MRI study in 24 adults infected with P. falciparum, suffering 

from cerebral malaria (Looareesuwan et al., 1995). MRI analysis revealed a 

swelling of the brain which was attributed to an increase in the volume of 

intracerebral blood. In contrast to the study conducted by Penet et al., in mice, 

cerebral edema was not observed in any of the patients. This difference 

between the two studies may be attributed to the different species of 

Plasmodium and host species investigated.  

5.1.3.3.3 Human African trypanosomiasis 

Large scale MRI studies on HAT patients are impossible to complete due to the 

isolated nature of the regions in which the disease occurs. The MRI studies that 

have been performed are restricted to individual case reports from patients 

treated out with Africa who contracted HAT before leaving the continent (Kager 

et al 2009, Hilde et al 2006, Gill et al 2002, Sabbah et al 1997). In one patient 

infected with the west African variant T. b. gambiense, hyperintensity was 

observed in both the periventricular white matter and midbrain along with an 

increased signal intensity in the basal ganglia. One year later, following 
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successful treatment with eflornithine, the hyperintensity in the basal ganglia 

and white matter had decreased but a moderate ventricular enlargement was 

still observed (Gill, Chatha and Carpio-O'Donovan, 2003). This is not the only 

study to report the persistence of lesions in the brain as detected by MRI 

following successful chemotherapy for HAT. In a woman infected with T. b. 

gambiense Kager et al. observed only minor improvements nine months after 

treatment despite the patient having improved both mentally and physically 

(Kager, Schipper, Stam and Majoie, 2009). Two years after successful treatment 

hyperintense signals were still observed in the corona radiate, the right cerebral 

white matter and the right basal nuclei. By four years post-treatment only 

remnants of the hyperintensity in the white matter and right basal nuclei 

remained. Persistence of lesions in the brain following successful chemotherapy 

for HAT are not restricted to infections with T. b. gambiense. Sabbah et al. 

reported MRI findings from a patient infected with the more acute east African 

variant T. b. rhodesiense (Sabbah, Brosset, Imbert, Bonardel et al., 1997). Initial 

MRI analysis revealed a thickening of the meninges and subsequent imaging, 

midway through melarsoprol therapy, revealed a high signal intensity in the 

posterior limb of both internal capsules, middle cerebellar peduncles and the 

splenium of the corpus callosum. In addition, symmetrical, focal lesions were 

detected in the deep white matter of the internal capsules, cerebellum and 

corpus callosum. One year after successful melarsoprol treatment residual 

lesions in the left cerebellum remained.  

In addition to being used to assess brain lesions in HAT patients, MRI has also 

proved useful in distinguishing between the PTRE and HAT induced encephalitis 

(Sabbah et al., 1997). As discussed previously (Chapter 1) the PTRE is a serious 

complication of melarsoprol therapy, occurring in up to 10% of all patients 

treated with the drug, of which 50% will die as a result of the complication 

(Kennedy, 2004; Pepin and Milord, 1994). It is therefore important that the PTRE 

is rapidly and correctly diagnosed so that melarsoprol treatment can be 

suspended and supportive treatment administered. Sabbah et al. reported the 

use of MRI analysis to distinguish between the PTRE and HAT induced 

encephalitis in a patient infected with T. b. rhodesiense (Sabbah et al., 1997). 

The patient received three, four day courses of melarsoprol, with a seven day, 

drug free interval between each course. Approximately one week after 
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completion of the second course of melarsoprol, the patient developed 

twitching, right hemiparesis, pyramidal syndrome, difficulty in swallowing and 

static and dynamic bilateral cerebellar syndrome. These symptoms and the 

timing of their appearance are suggestive of the PTRE. However, T2-weighted 

MRI analysis showed a symmetrical high signal intensity in the posterior limb of 

both internal capsules, middle cerebellar peduncles and the splenium of the 

corpus callosum. No brain oedema or focal lesions were observed (Sabbah et al., 

1997). These MRI findings are consistent with HAT induced encephalitis rather 

than the PTRE. As a result, the decision was made to continue melarsoprol 

treatment and the third course was administered to the patient. The patient 

subsequently recovered and MRI analysis one year later revealed all 

abnormalities with the exception of small residual foci in the left cerebellum 

had resolved. In a second case, a patient infected with T. b. rhodesiense and 

receiving melarsoprol therapy as three series of four injections of 

3.6mg/kg/day, with a seven day drug free interval between each series, 

developed generalised tonic clonic seizures 23 hours after completion of the 

second treatment series (Checkley, Pepin, Gibson, Taylor et al., 2007). MRI 

analysis revealed widespread bilateral abnormalities involving the supratentorial 

and infratentorial white matter. Multiple microhaemorrhages were also detected 

in some of these areas including the midbrain and brain stem using T2* scanning 

procedures. The PTRE was diagnosed and melarsoprol treatment suspended until 

the patients symptoms improved (Checkley et al., 2007). These studies indicate 

the value of MRI in the diagnosis and management of the PTRE. However, 

despite its usefulness it is highly unlike that the technology will become 

available to the majority of HAT patients in sub-Saharan Africa.  

The MRI studies reported in patients are very limited. In order to fully 

investigate the effect of trypanosome infection on the integrity of the BBB, 

small animal studies need to be completed. Recently the first MRI study in a 

murine model of CNS stage T. b. brucei infection was conducted by Rodgers and 

colleagues (Rodgers, McCabe, Gettinby, Bradley et al., 2011). MRI scans were 

performed on mice prior to infection and 28 days after infection with T. b. 

brucei when a CNS infection is established. The use of a contrast agent enabled 

signal intensity maps to be generated and these were then compared to 

histological images in order for any relationship between areas of inflammation 
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and areas of BBB breakdown to be established. In infected animals, the 

percentage signal change detected following injection of the contrast agent was 

significantly higher than in uninfected animals, indicating a break down in the 

BBB (Rodgers et al., 2011). Areas of increased signal intensity were detected 

throughout the brain and were not confined to the meninges, hippocampus or 

ventricles. No correlation was detected between areas of inflammation as 

observed by histology and the areas of increased signal intensity. This study 

demonstrated the integrity of the BBB is significantly compromised during early 

CNS stage T. b. brucei infection in mice. However, it is currently unknown if the 

integrity of the BBB is restored following successful chemotherapy.  

Complexed melarsoprol can cure CNS stage T. b. brucei infection in mice 

following oral administration at a daily dose of 0.05mmol/kg for seven 

consecutive days. However, it has been shown in humans by MRI analysis that 

brain lesions persist long after completion of successful chemotherapy (Gill, 

Chatha and Carpio-O'Donovan, 2003; Kager et al., 2009; Sabbah et al., 1997). 

This chapter aims to use small bore MRI to investigate the level of BBB 

dysfunction present prior to the commencement of chemotherapy and to 

establish, through serial MRI, if BBB dysfunction resolves following successful 

chemotherapy with the melarsoprol cyclodextrin complex mel/HPβCD.  
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5.2 Methodology 

5.2.1 Trypanosome infection 

Female CD-1 mice aged approximately 6 to 8 weeks and weighing 25 to 30g were 

injected intraperitoneally with 2 x 104 T. b. brucei trypanosomes. The 

methodology detailing the preparation of the trypanosomes prior to inoculation 

is provided in chapter 2.  

5.2.2 Confirmation of trypanosome infection 

Prior to chemotherapy commencing it was confirmed that a trypanosome 

infection had been successfully induced in the animals by examining a wet blood 

film prepared from tail blood of each animal, under a microscope for the 

presence of trypanosomes. The level of parasitaemia in each animal was scored 

using the system detailed in chapter 2.  

5.2.3 Preparation of complexed melarsoprol for administration 

The melarsoprol cyclodextrin complex mel/HPβCD is provided as a fine white 

powder with the ratio of melarsoprol to cyclodextrin quantified for each batch. 

The ratio of melarsoprol to cyclodextrin for the complex used in this study was 

1:17. Taking this ratio into account the amount of the mel/HPβCD complex 

required to give a melarsoprol dose of 0.05mmol/kg was calculated. The full 

details regarding the calculation of the dose are provided in chapter 2.  

5.2.4 The treatment schedule employed 

To determine the level of damage to the blood-brain barrier prior to 

chemotherapy commencing an MRI scan was performed on the mice at day 21 

post-infection. At this point trypanosomes have penetrated the blood-brain 

barrier and a CNS stage infection is established in the animals. Following the 

recovery of the animals from the MRI procedure, mel/HPβCD was administered 

by oral gavage at a dose of 0.05mmol/kg, daily, for seven consecutive days, as 

previously described (chapter 2). MRI scans were subsequently performed on 
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days 28, 35 and 42 post-infection corresponding to 24 hours, 8 and 15 days after 

the completion of chemotherapy (Figure 5-4).  

S S S S
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21 28 35 42  
Figure 5-4: The treatment schedule employed in the MRI study 
The animals were infected with 2 x104 T. b. brucei trypanosomes (I) on day 0. On day 21 post-
infection an MRI scan (S) was performed on the animals. Following the recovery of the animals 
mel/HPβCD (M) was administered orally, at a dose of 0.05 mmol/kg, daily for 7 consecutive days. 
Subsequent MRI scans (S) were performed on days 28, 35 and 42 post-infection corresponding to 
24 hours, 8 and 15 days after the completion of chemotherapy.    

 
5.2.5 Magnetic resonance imaging  

5.2.5.1 Preparation of animals 

Animals were anaesthetised with 1-2% isofluorane delivered as a mixture of 

70:30 N20:02. In order to allow remote administration of the contrast agent a tail 

vein was cannulated with a 26 gauge x 19mm cannula. The animal was placed in 

a mouse cradle and restrained using tooth and ear bars to prevent movement. 

Throughout the procedure the body temperature of the animal was monitored by 

a rectal thermo probe and adjusted as necessary by an enclosed water circuit. 

Anaesthesia was maintained throughout the procedure and the level of 

anaesthesia monitored by observation of the respiration and heart rate.  

5.2.5.2 Magnetic resonance imaging parameters 

A Bruker Biospec 7T/30cm system equipped with an inserted gradient coil 

(121mm ID, 400mT/m) and a 72mm birdcage resonator was used to perform the 

MRI imaging. Brain images were obtained by using a surface coil placed directly 

above the animal's head. The scanning protocol consisted of a RARE (rapid 

acquisition with relaxation enhancement) T1 weighted scan [effective TE (echo 

time) 76ms, TR (repetition time) 5362ms, 25 averages, matrix 176 x 176, FOV 

(field of view) 17.6 x 17.6 mm, 20 contiguous coronal slices of 0.4mm thickness] 

followed by a RARE T2 weighted scan (effective TE 9ms, TR 8000ms, 25 averages, 

matrix 176x176, FOV 17.6 x 17.6 mm, 20 contiguous coronal slices of 0.4mm 

thickness). After completion of the RARE T2 weighted scan the contrast agent 
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diethylenetriamine penta-acetic acid (Gd-DPTA Magnevist®) was administered in 

a volume of 0.1ml consisting of 50µl Gd-DPTA Magnevist® and 50µl of sterile 

water via the cannulated tail vein. Five minutes after administration of the 

contrast agent the T1 weighted scan was repeated.  

5.2.5.3 Analysis of magnetic resonance images 

All magnetic resonance images were analysed using the software image J 

(http://rsbweb.nih.gov/ij/). Prior to analysis the pre and post contrast images 

were normalised by dividing each image by its respective reco map slope value. 

Signal enhancement maps were subsequently generated from the normalised pre 

and post contrast images using Equation 5-1: 

 

Equation 5-1: The equation used to generate signal enhancement maps 

 
In order to calculate the signal enhancement observed in each animal the entire 

brain and meninges were manually selected in each of the 20 coronal slices and 

the percentage signal change calculated for each slice.  

5.2.6 Collection of samples for analysis of inflammatory reaction 

Following the final MRI scan, 15 days after completion of mel/HPβCD 

chemotherapy, animals were culled by exposure to increasing levels of carbon 

dioxide. An additional group of mice was also sacrificed on day 21 post-infection 

and served as untreated controls. Following sacrifice the brain was carefully 

excised and placed in 4% neutral buffered formalin. 

5.2.7 Preparation of samples for analysis of inflammatory 

reaction 

The brain tissues were removed from the neutral buffered formalin and 

processed to paraffin blocks. From the paraffin blocks 3µm thick sections were 

cut and mounted onto glass microscope slides. The sections were stained with 
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haematoxylin and eosin (H&E) in order to assess the severity of the inflammatory 

reaction.  

5.2.8 Analysis of inflammatory reaction 

The H&E stained brain sections were examined under light microscopy at a 

magnification of 200 fold. The severity of the meningitis, the occurrence of and 

extent of perivascular cuffing and the degree of inflammatory cell infiltration of 

the brain parenchyma was assessed and graded in each section, using a 

neuropathological grading scale previously described (Kennedy, Rodgers, 

Jennings, Murray et al., 1997). The criteria defining each neuropathological 

grade are described in Table 5-1. Briefly, a score of 0 represents normal 

histopathology, with no infiltration of inflammatory cells. Animals displaying a 

mild meningitis with a few inflammatory cells present in the meninges but no 

perivascular cuffing were assigned a grade 1 while mice displaying a moderate 

meningitis with perivascular cuffing of some of the vessels were graded as 2. As 

the inflammatory reaction progresses, the severity of the meningitis increases 

and perivascular cuffing becomes more apparent. The neuropil also becomes 

infiltrated with small populations of inflammatory cells. Animals displaying this 

level of inflammation were assigned a neuropathological score of 3. A grade of 4 

was given to animals displaying a severe meningitis, with prominent perivascular 

cuffing of the vessels, accompanied by a severe encephalitis and the presence of 

numerous inflammatory cells in the neuropil. Each section was graded 

independently by two assessors in a blinded fashion.  

5.2.9 Statistical analysis 

Data was analysed using analysis of variance methods, in particular the General 

Linear Model (GLM) in Minintab 16. This provided a method for investigating 

significant main effect differences and interactions between factors such as 

uninfected animals, infected animals and treated animals. Significance was 

measured using the P-value at the 5% significance level. Effect sizes were 

further investigated using 95% confidence intervals for the differences between 

means.  
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 0 1 2 3 4 
Meningitis None Mild Moderate Severe Severe 

Perivascular cuffing None None 
Mild cuffing of some 

vessels 
Prominent cuffing of 

some vessels 
Prominent cuffing of 

most vessels 

Encephalitis as 
defined by cellular 

activity in the 
neuropil 

None None None Moderate Severe 

Table 5-1: Neuropathological grading scale 
This table details the criteria that define the neuropathological grading score associated with specific levels of the CNS inflammatory reaction. The severity scores are 
given horizontally along the top of the table; the parameters defining the specific scores are shown vertically (Kennedy et al., 1997). 
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5.3 Results 

5.3.1 MRI 

The integrity of the BBB in mice infected with T. b. brucei was investigated on 

day 21 post-infection by MRI. Mel/HPβCD chemotherapy was then administered 

and the integrity of the BBB re-evaluated 24 hours, 8 and 15 days after 

completion of chemotherapy. Animals were serially scanned but in some cases it 

was not possible to complete all four scans on the same animal. Details of the 

scans completed on each animal are provided in Table 5-2.  

5.3.1.1 Comparison of the signal change detected on  day 21 post-

infection and in uninfected animals 

Analysis was completed using the scan data obtained from uninfected, untreated 

animals and infected animals, numbers 102, 103, 105 and 106, on day 21 post-

infection, immediately prior to chemotherapy commencing (Table 5-2). The 

percentage signal change detected following injection of contrast agent in mice 

at 21 days post-infection (mean = 19.11 ± 0.955) was significantly higher (P < 

0.0001) than that seen in uninfected control animals (mean = 7.11 ± 1.26). This 

represents a mean increase of 12% with 95% confidence interval [13.925, 

10.080]. The difference in the percentage signal change between infected and 

uninfected animals can clearly be seen on the signal enhancement maps shown 

in Figure 5-5. The areas of bright colouration indicate regions where an 

increased signal is observed. In infected animals (Figure 5-5, panel b), an 

increased signal was observed in several regions of the brain including the 

cerebral cortex, hypothalamus, hippocampus and median essence. The 

ventricular region displayed the highest level of signal change. In contrast, 

minimal signal change was observed in uninfected control animals (Figure 5-5, 

panel a).  
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 101 102 103 105 106 107 

Day 21 Post-infection (pre 
treatment) 

X √ √ √ √ X 

24 hours after completion of 
chemotherapy 

√ √ X √ X √ 

8 days after completion of 
chemotherapy √ √ X √ X √ 

15 days after completion of 
chemotherapy 

√ √ X √ X √ 

Table 5-2: The MRI scans completed in each animal 
The information in the body of the table demonstrates if the MRI scan was completed in that animal. The animal number and details of the MRI scan are displayed in 
the column and row headings respectively. A ‘√’ indicates the MRI scan was completed in the animal, while ‘X’ means the scan was not completed. 
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5.3.1.2 Comparison of the percentage signal change detected on day 

21 post-infection and following completion of mel/H PββββCD 

chemotherapy 

Analysis was completed using the scan data obtained from animals 102 and 105 

(Table 5-2) and uninfected, untreated animals. The percentage signal change 

detected prior to chemotherapy commencing on day 21 post-infection was 

compared to the levels detected 24 hours, 8 and 15 days after the completion of 

mel/HPβCD chemotherapy and also to normal uninfected, untreated mice 

(Figure 5-6, panel A). Twenty-four hours after completion of mel/HPβCD 

chemotherapy the percentage signal change detected was significantly lower 

(mean = 7.93 ± 0.455) than that seen prior to treatment commencing on day 21 

post-infection (mean = 17.9 ± 1.62) (P < 0.0001). This represents a mean 

decrease of 10% with 95% confidence interval [6.862, 13.02]. The decrease in 

signal intensity can be visualised on signal enhancement maps (Figure 5-5). 

There is a decrease in the level of signal observed in the hypothalamus, 

thalamus, cerebral cortex and median essence. A hyperintensity can be seen in 

the ventricluar region although it is reduced compared to the level observed 

prior to treatment commencing. The percentage signal change detected twenty-

four hours after the completion of mel/HPβCD treatment is not significantly 

different (P = 0.9296) to the level observed in uninfected, untreated control 

animals (7.1 ± 0.162). This indicates that by twenty-four hours after completion 

of mel/HPβCD chemotherapy the integrity of the BBB is restored. The 

percentage signal change observed within the brain eight days (9.2 ± 0.596) 

after the completion of mel/HPβCD treatment was significantly lower 

(P=<0.0001) than the level observed prior to treatment commencing on day 21 

post-infection. However, the percentage signal change detected eight days 

(9.2±0.596) after treatment completion was not significantly different 

(P=0.7622) to the level observed twenty-four hours (7.9 ± 0.455) after 

completion of chemotherapy. Fifteen days after completion of mel/HPβCD 

chemotherapy the percentage signal change detected (6.6 ± 0.463) within the 

brain was significantly lower (P < 0.0001) than the level observed prior to 

treatment commencing on day 21 post-infection (17.87 ± 1.62). However, the 

percentage signal change observed fifteen days (6.6 ± 0.463) after completion of 

treatment was not significantly different to the level detected twenty-four hours 
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Figure 5-5: The signal enhancement maps generated f ollowing magnetic resonance imaging 
Signal enhancement maps for four brain slices obtained from magnetic resonance imaging a) in an uninfected animal, b) 21 days after infection with T. b. brucei 
trypanosomes immediately prior to mel/HPβCD chemotherapy commencing. c) 24 hours after completion of the chemotherapy regime, d) 8 days after completion of 
treatment and e) 15 days after completion of the treatment regime. Mel/HPβCD was administered orally, daily, for 7 consecutive days at a dose of 0.05mmol/kg.  

Mean %  
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(P = 0.7370) and eight days after completion of the treatment regime (P = 

0.1177). Summary statistics are detailed in Table 5-3. 

5.3.1.3 Comparison of the percentage signal change detected 24 

hours, 8 and 15 days after completion of mel/HP ββββCD 

chemotherapy 

Analysis was completed using the scan data obtained from animals 101, 102, 105 

and 107 (Table 5-2). The percentage signal change detected in the brain 24 

hours, 8 and 15 days after completion of mel/HPβCD chemotherapy was 

compared to the level observed in untreated, uninfected animals (Figure 5-6, 

panel B). Twenty-four hours after the completion of mel/HPβCD chemotherapy 

the percentage signal change (8.510 ± 0.375) observed in the brain was 

significantly higher (P = 0.0254) than the level observed in untreated, uninfected 

control animals (P = 7.105 ± 0.339). Eight days after the completion of 

mel/HPβCD treatment, the percentage signal change (8.556 ± 0.361) was 

significantly higher (P = 0.0193) than the level observed in uninfected, untreated 

control animals (7.105 ± 1.62). However, the percentage signal change observed 

eight days (8.556 ± 0.362) after the completion of treatment was not 

significantly different (P = 0.9996) to the level observed twenty-four hours after 

completion of chemotherapy (8.510 ± 0.361). Fifteen days after the completion 

of mel/HPβCD therapy, the percentage signal change detected (7.103 ± 0.339) 

within the brain was not significantly different (P = 1.000) to the level observed 

in uninfected, untreated control animals (7.105 ± 1.62). The percentage signal 

change detected within the brain fifteen days after treatment completion was 

significantly lower than the level observed twenty-four hours (P = 0.0126) and 

eight days (P = 0.0091) after the completion of chemotherapy. Summary 

statistics are detailed in Table 5-4. 

 



184 

 

0

10

20

30
%

 S
ig

na
l c

ha
ng

e

The percentage signal change detected within the br ain prior to mel/HP ββββCD
chemotherapy commencing on day 21 post-infection an d 24 hours, 8 and 15 days

after completion of treatment

a

b

21 days post-infection

24 hours after completion

8 days after completion

15 days after completion

Uninfected, untreated

0

5

10

15

20

%
 S

ig
na

l c
ha

ng
e

The percentage signal change detected within the br ain 24 hours, 8 and 15
days after completion of mel/HP ββββCD chemotherapy

a b

24 hours after completion

8 days after completion

15 days after completion

Uninfected, untreated

A

B
 

Figure 5-6: The percentage signal change detected b y MRI in mice infected with T. b. brucei 
A) Immediately prior to mel/HPβCD chemotherapy commencing on day 21 post-infection and 24 
hours, 8 and 15 days after completion of treatment. B) 24 hours, 8 and 15 days after completion of 
mel/HPβCD chemotherapy. Mel/HPβCD was administered orally, daily, for 7 consecutive days at a 
dose of 0.05mmol/kg commencing on day 21 post-infection. The box plots illustrate the median, 
interquartile range and minimum and maximum percentage signal change detected at each time 
point. Groups which do not share a letter are significantly different P < 0.05.  
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5.3.2 Neuropathological reaction 

The inflammatory reaction present in the brain on day 21 post-infection and 15 

days after the completion of mel/HPβCD chemotherapy was scored using the 

neuropathological grading scale detailed in Table 5-1. On day 21 post-infection 

an early stage CNS infection is established and mice killed at this time point 

exhibited mild neuroinflammatory changes (Figure 5-7, panel A and C), with a 

neuropathology score of 1.5 ± 0.158 (n = 5). Inflammatory cells were apparent in 

the meninges and the Virchow robin spaces. An infiltration of inflammatory cells 

was also observed in the perivascular space surrounding some of the blood 

vessels in the hippocampus. The inflammatory cell infiltrate was composed of 

macrophages, lymphocytes and plasma cells. Fifteen days after the completion 

of mel/HPβCD chemotherapy the neuroinflammatory reaction present in the 

brain was significantly reduced (P = 0.0366) compared to animals killed on day 

21 post-infection. A mean neuropathological score of 1.083 ± 0.083 (n = 6) was 

detected compared to 1.5 ± 0.158 (n = 5) on day 21 post-infection. This 

represents a mean decrease of 27.8% with 95% confidence interval [0.032, 

0.801]. Fifteen days after the completion of mel/HPβCD chemotherapy mice 

exhibited very minor neuroinflammatory changes (Figure 5-7, panels B and D). A 

small number of inflammatory cells were apparent in the meninges and 

perivascular cuffing was observed sporadically around the blood vessels of the 

hippocampus. 
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Figure 5-7: Coronal sections through the brain of a  mouse 21 days after infection with T. b. 
brucei (A and C) and a mouse killed 15 days after complet ion of mel/HP ββββCD chemotherapy 
(B and D) 
Mice were infected with T. b. brucei trypanosomes. A mouse (A and C) was killed on day 21 post-
infection immediately prior to mel/HPβCD chemotherapy commencing. A second mouse (B and D) 
was administered mel/HPβCD at a dose of 0.05mmol/kg, daily, for 7 consecutive days 
commencing on day 21 post-infection. The animal was sacrificed 15 days after the completion of 
treatment. Infiltrating inflammatory cells (arrowheads) can been seen in the meninges of the 
cerebral cortex (A) and surrounding the blood vessels in the hippocampus (C) in the animal 
sacrificed on day 21 post-infection. In the animal sacrificed 15 days after completion of mel/HPβCD 
chemotherapy only small numbers of inflammatory cells (arrowheads) are observed within the 
meninges (B) and surrounding the blood vessels of the hippocampus (D).  
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Untreated, 
uninfected 

21 days post-
infection, 
untreated 

24 hours post-
treatment 

8 days post-
treatment 

15 days post-
treatment 

21 days post-
infection, untreated 

P < 0.0001 
(7.951, 13.576) 

    

24 hours post-
treatment 

P = 0.9296 
(-1.992, 3.633) 

P < 0.0001 
(-13.02, -6.862) 

   

8 days post-
treatment 

P = 0.2254 
(-0.669, 4.956) 

P < 0.0001 
(-11.70, -5.539) 

P = 0.7622 
(-1.758, 4.404) 

  

15 days post-
treatment 

P = 0.9832 
(-3.363, 2.261) 

P < 0.0001 
(-14.40, -8.234) 

P = 0.7370 
(-4.452, 1.709) 

P = 0.1177 
(-5.775, 0.3862) 

 

Mean ± SE 
N 

7.1 ± 0.162 
3 

17.87 ± 1.62 
2 

7.93 ± 0.45 
2 

9.2 ± 0.60 
2 

6.55 ± 0.46 
2 

Table 5-3: Comparison of the percentage signal chan ge detected within the brain, prior to mel/HP ββββCD chemotherapy commencing on day 21 post-infection  
and 24 hours, 8 and 15 days (corresponding to days 28, 35 and 42 post-infection respectively) after co mpletion of the treatment regime and in uninfected,  
untreated animals 
Mice were infected with T. b. brucei GVR35/C1.9. Immediately prior to treatment commencing on day 21 post-infection, animals were MRI scanned. Following recovery 
from the MRI procedure animals were administered mel/HPβCD orally at a dose of 0.05mmol/kg. Mel/HPβCD treatment continued for the next 6 days. Twenty-four 
hours, 8 and 15 days after administration of the last dose, corresponding to days 28, 35 and 42 post-infection respectively, the MRI scans were repeated. Each MRI 
scan consisted of 20 continuous coronal slices. The entire brain and meninges was manually selected in each slice and the percentage signal change calculated. The 
figures in the body of the table demonstrate the comparisons, in terms of statistical significance, between the groups shown in the row and column headings. The P-
values and 95% confidence intervals are based on analysis using the percentage signal change for each slice. The mean signal change ± the standard error (mean ± 
SE) and the number of animals per group (n) are also shown.  
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 Untreated, uninfected 24 hours post- treatment 8 days post-treatment 15 days post-treatment 

24 hours post-treatment 
P = 0.0254 

(0.123, 2.686) 
   

8 days post-treatment 
P = 0.0193 

(0.168, 2.732) 
P = 0.9996 

(-1.141, 1.2325) 
  

15 days post-treatment 
P = 1.000 

(-1.284, 1.280) 
P = 0.0126 

(-2.593, -0.2198) 
P = 0.0091 

(-2.639, -0.2657) 
 

Mean ± SE 
N 

7.105 ± 1.62 
3 

8.510 ± 0.375 
4 

8.556 ± 0.361 
4 

7.103 ± 0.3339 
4 

Table 5-4: Comparison of the percentage signal chan ge detected in the brain 24 hours, 8 and 15 days (c orresponding to days 28, 35 and 42 post-infection 
respectively) after completion of mel/HP ββββCD chemotherapy to untreated, uninfected control an imals 
Mice were infected with T. b. brucei GVR35/C1.9. On day 21 post-infection mel/HPβCD chemotherapy commenced. The drug was administered orally, daily, for 7 
consecutive days at a dose of 0.05mmol/kg. Twenty-four hours, 8 and 15 days (corresponding to days 28, 35 and 42 post-infection respectively) after completion of the 
treatment regime, animals were MRI scanned. Each MRI scan consisted of 20 continuous coronal slices. The entire brain and meninges was manually selected in each 
slice and the percentage signal change calculated. The figures in the body of the table demonstrate the comparisons, in terms of statistical significance, between the 
groups shown in the row and column headings. The P-values and 95% confidence intervals are based on analysis using the percentage signal change for each slice. 
The mean signal change ± the standard error (mean ± SE) and the number of animals per group (n) are also shown. 
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5.4 Discussion 

Trypanosomes are able to penetrate the BBB and invade the CNS. However, the 

mechanisms by which the trypanosomes transverse the barrier and the point in 

infection at which BBB integrity is compromised remains unclear. The integrity 

of the BBB on day 21 post-infection in experimental murine T. b. brucei 

infection and the subsequent effect of a curative therapeutic regime with 

mel/HPβCD on the BBB was investigated by small bore MRI.   

At day 21 post-infection, BBB dysfunction was already evident with the integrity 

of the barrier compromised. Damage to the BBB was particularly evident in the 

ventricular region. In agreement with the present study Philip et al. also 

reported an increase in BBB permeability in early CNS stage T. b. brucei 

infection (Philip et al., 1994). In this study the penetration of rhodamine into 

the brain parenchyma was investigated at different time points during the 

course of the infection. On day 21 post-infection, low levels of dye were 

occasionally observed in the thalamus and hypothalamus, indicating that some 

damage to the BBB had occurred in these regions. In a study by Sanderson et al. 

the integrity of the BBB was investigated in BALB/c mice at 7, 14, 21, 28 and 35 

days post-infection, by perfusing animals with [3H] eflornithine and [14C] sucrose 

and subsequently calculating the tissue radioactivity (Sanderson, Dogruel, 

Rodgers, Bradley et al., 2008). Sucrose is incapable of penetrating the BBB 

therefore its presence in the brain means the integrity of the BBB has been 

compromised. No difference in the tissue [14C] radioactivity levels were 

observed between uninfected and infected animals between days 7 and 21 post-

infection, indicating that the integrity of the BBB was still intact up to day 21 

post-infection. Dysfunction of the BBB was not observed until day 28 post-

infection this is 7 days later than in the present study and the study by Philip et 

al. (Philip et al., 1994). The discrepancies observed between the present study 

and that of Sanderson et al. may be due to the different animal models used in 

the two studies. The present study used the GVR35/C1.9 T. b. brucei model in 

CD-1 mice, which is very well characterised and established. CNS stage disease is 

reached between 14 and 21 days post-infection (Jennings and Gray, 1983). If the 

infection is allowed to run its natural course there is a gradual increase in the 

CNS involvement characterised by a diffuse encephalitis. The animals eventually 
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succumb to the infection around 30 days post-infection. The study by Sanderson 

et al. also used the GVR35/C1.9 T. b. brucei model but in BALB/c mice instead 

of CD-1 mice (Sanderson et al., 2008). The disease progression in BALB/c mice is 

not as well characterised as in CD-1 mice. In BALB/c mice, a CNS infection is 

established from 11 days post-infection, which is earlier than in CD-1 mice 

(Jennings and Gray, 1983; Sanderson et al., 2008). However, despite CNS stage 

disease establishing earlier in BALB/c mice, the time course of the infection is 

prolonged, with mice not succumbing to the infection until 38 days post-

infection (Sanderson et al., 2008). This is approximately 8 days later than in CD-

1 mice. The shorter infection time course in CD-1 mice could mean that BBB 

damage occurs at an earlier point in the infection compared with BALB/c mice. 

This could explain why BBB dysfunction was observed at 21 days post-infection in 

this study but not in the study conducted by Sanderson et al.  

A breakdown of the BBB during T. b. brucei infection in CD-1 mice has been 

previously reported by Rodgers et al. (Rodgers et al., 2011). In the study the 

integrity of the BBB at day 28 post-infection, was investigated by small bore MRI 

analysis. As in the present study the integrity of the BBB was compromised, with 

a mean percentage signal change of 26.7% detected. This is 7.6% higher than the 

level detected in the present study. However, in the study conducted by Rodgers 

et al. the scan was performed at 28 days post-infection which is 7 days later 

than in the present study. The results from this study and the study by Rodgers 

et al. therefore suggest that there is a progressive breakdown of the BBB during 

T. b. brucei infection in CD-1 mice.       

In addition to assessing the level of BBB dysfunction present at 21 days post-

infection, the effect of mel/HPβCD chemotherapy on BBB function was also 

investigated. The melarsoprol cyclodextrin complex mel/HPβCD was able to 

reverse the BBB dysfunction induced by T. b. brucei infection. Twenty-four 

hours after completion of the chemotherapy regime normal BBB function had 

been restored. This is the first report of the use of MRI to investigate the effect 

of chemotherapy on BBB integrity in experimental trypanosomiasis. In the 

current study no persistence of the barrier changes detected by MRI on day 21 

post-infection were observed following chemotherapy with the melarsoprol 

cyclodextrin complex mel/HPβCD. This is in contrast to the studies by Kager et 
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al. and Sabbah et al. who reported the presence of CNS lesions in patients 

treated for HAT, up to four years after completion of chemotherapy (Kager et 

al., 2009; Sabbah et al., 1997).  

A possible explanation for the quick recovery of BBB integrity observed in the 

present study following the completion of mel/HPβCD chemotherapy is the 

speed at which trypanosomes were eliminated from within the brain. QPCR 

analysis has shown that by twenty-four hours after administration of the fourth 

dose of mel/HPβCD no copies of the PFR2 gene were detected within the brain 

(details contained in chapter 4). Furthermore, once the PFR2 gene has been 

eliminated from the brain it does not reoccur. By rapidly eliminating 

trypanosomes from the brain, further damage to the BBB is prevented and the 

BBB is able to begin repairing itself. In the present study BBB integrity was 

restored by twenty-four hours after completion of mel/HPβCD chemotherapy. As 

trypanosomes were eliminated by twenty-four hours after administration of the 

fourth dose, this means that for the three days immediately prior to the MRI 

scan being completed no trypanosomes were present within the brain, enabling 

restoration of the BBB to begin. Although no CNS lesions were detectable 

twenty-four hours after completion of mel/HPβCD chemotherapy by MRI 

analysis, histopathological examination of brain sections fifteen days after 

treatment completion, revealed a very mild meningitis. This indicates that 

although BBB function is rapidly restored following mel/HPβCD chemotherapy, 

the mild inflammatory changes within the brain take longer to resolve.   

The speed at which the BBB is restored following the elimination of 

trypanosomes from the brain together with the persistence of the mild neuro-

inflammatory reaction, suggest that that the BBB damage observed in T. b. 

brucei infection could be due directly to the presence of the parasites within the 

brain and not a secondary effect resulting from the ongoing inflammatory 

reaction. The integrity of the BBB was restored within three days of the 

trypanosomes being eliminated from the brain, despite the presence of an 

ongoing inflammatory reaction. If the inflammatory reaction was responsible for 

the breakdown of the BBB, the integrity of the BBB would remain compromised 

in the presence of the ongoing inflammatory reaction. However, this was not the 

case in the present study, the inflammatory reaction was still present within the 



192 

 

brain fourteen days after BBB function had been restored. This suggests that 

disruption of the BBB is due to the direct presence of either the parasites or 

their secretory products. This hypothesis is supported by the work of Nikolskaia 

et al. and Grab et al. in an in-vitro model of the BBB. Nikolskaia et al. and Grab 

et al. proposed that trypanosomes release cysteine proteases, especially 

brucipain, which activate protein activated receptors (PARs), triggering a 

release of intracellular calcium (Grab et al., 2009; Nikolskaia et al., 2006). The 

increase in intracellular calcium ultimatley leads to a rearrangement of the cell 

cytoskeleton and barrier dysfunction through calmodulin (CAM) activation of 

myosin light chain kinase (MLCK) (Grab et al., 2009). If trypanosome cysteine 

proteases are responsible for the BBB damage observed during CNS stage 

trypanosomiasis then following the elimination of trypanosomes from the CNS, 

BBB function should be restored as cysteine proteases will no longer be released. 

In the present investigation the BBB was restored within three days of 

trypanosomes being eliminated from the brain thus supporting the hypothesis of 

Grab et al., that trypanosome derived products are responsible for the 

breakdown in the BBB observed in trypanosome infections (Grab et al., 2009).    

This study is the first to describe the use of MRI to assess the effect of 

chemotherapy on the integrity of the BBB in experimental trypanosomiasis. 

However, in multiple sclerosis (MS) MRI is frequently used to evaluate existing 

and novel chemotherapy regimes (Fazekas, Soelberg-Sorensen, Comi and Filippi, 

2007). In one such study, MRI analysis was used to demonstrate the ability of a 

new immunomodulating agent, fingolimod to reduce the number of lesions and 

disease activity in patients with relapsing MS (Kappos, Antel, Comi, Montalban et 

al., 2006). In the study, 225 patients were enrolled and assigned, on a 1:1:1 

ratio, to one of three treatment groups; placebo, 1.25mg fingolimod or 5mg 

fingolimod. The number of CNS lesions as detected on gadolinium enhanced T1 

weighted MRI images, was significantly lower in both fingolimod groups than in 

the placebo group (Kappos et al., 2006). This study demonstrates the value of 

MRI in assessing and monitoring the effectiveness of chemotherapy regimes used 

in the treatment of CNS diseases. If MRI was widely available in HAT endemic 

regions, it could be used to monitor the effect of chemotherapy on the BBB and 

allow early detection of the PTRE. It could also establish if infection with 

trypanosomes results in long term CNS damage and mental impairment in 
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patients, as very little is known about the long term consequences of 

trypanosome infection. However, MRI analysis is unlikely to become available in 

the remote regions of sub-Saharan Africa where HAT occurs. All the MRI studies 

conducted to date have been in patients out with the African continent.  

MRI technology is now becoming available within Africa, through its use in 

investigating the pathogenesis of cerebral malaria (Looareesuwan et al., 2009). 

Recently one of the first public MRI facilities was opened in Malawi through the 

collaborative efforts of Michigan State University, the Queen Elizabeth Central 

Hospital, Malawi, and the University of Malawi College of Medicine (Latourette, 

Siebert, Barto, Marable et al., 2010). However, the unit suffers from many 

operational difficulties, the main one being an unreliable electricity supply.  

Furthermore, all images need to be sent electronically to the Michigan State 

University for analysis (Latourette et al., 2010). Development of further MRI 

facilities is unlikely due to the sizeable financial requirements. Moreover, 

operational and logistical requirements associated with managing such a facility 

would prevent the creation of additional MRI units in the more remote regions of 

sub-Saharan Africa. MRI is an invaluable tool for understanding the role of the 

BBB in the pathogenesis of HAT and for assessing the effect of anti-trypanocidal 

chemotherapy on the integrity of the BBB barrier (Braakman, van de Molengraft, 

Hubert and Boerman, 2006; Gill, Chatha and Carpio-O'Donovan, 2003; Kager et 

al., 2009; Rodgers et al., 2011; Sabbah et al., 1997). However, it is highly 

unlikely that the technology will become available in the HAT endemic regions 

where it would be of greatest use.   

This chapter has demonstrated through the use of small bore MRI, that the 

integrity of the BBB is compromised on day 21 post-infection in experimental T. 

b. brucei infection. The damage induced by the infection is fully reversible 

following administration of the melarsoprol cyclodextrin complex mel/HPβCD, 

orally for 7 consecutive days at 0.05 mmol/kg. The integrity of the BBB is fully 

restored by 24 hours after completion of treatment.  



 

 

Chapter 6: Investigating the pharmacokinetic 

properties of complexed melarsoprol 

6 6 
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6.1 Introduction 

6.1.1 Pharmacokinetics of melarsoprol 

Despite melarsoprol being used in the treatment of CNS stage HAT for over 60 

years very little is known about the pharmacokinetic properties of the drug. 

Treatment schedules were initially introduced based on empirical data only. 

Over the years numerous assays have been developed in an attempt to 

understand the pharmacokinetic profile of the compound and to quantify the 

concentration of the drug reaching the CSF and brain.      

6.1.1.1 Original bioassay 

One of the first attempts to determine the concentration of melarsoprol in the 

plasma and CSF following administration was by Hawking (Hawking, 1962). 

Hawking developed a bioassay to determine the concentration of melarsoprol in 

biological fluids. The assay consisted of incubating trypanosomes in dilutions of 

serum taken from patients receiving melarsoprol therapy, for 24 hours and 

comparing the survival rate of the trypanosomes with that of trypanosomes 

incubated in known concentrations of melarsoprol. Samples were taken from 

patients receiving melarsoprol at doses ranging from 18mg to 180mg; 1, 6, 24, 48 

and 62 hours after administration. The plasma concentration of melarsoprol one 

hour after administration of 180mg ranged from 0.98 to 1.15µg/ml. By six hours 

after administration the concentration had dropped to between 0.6 and 

0.67µg/ml. The concentrations of melarsoprol in the cerebrospinal fluid (CSF) 

were only a fraction of those reached in the plasma. Six hours after 

administration of 180mg of melarsoprol the concentration detected in the CSF 

ranged from 7ng/ml to 10ng/ml. The assay was not validated and provided only 

a very basic estimation of the melarsoprol concentration in serum and CSF 

samples. One of the main problems Hawking faced when developing the bioassay 

was that culture conditions at the time only enabled trypanosomes to be kept in 

culture for 24 hours. As a result the exposure time of trypanosomes to 

compounds in the assay was severely limited, restricting the ability of the assay 

to accurately determine the melarsoprol content of samples.  
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6.1.1.2 ELISA 

In an attempt to determine more accurately the melarsoprol concentration in 

plasma and CSF samples from patients who had received melarsoprol therapy 

Maes et al. developed a sensitive ELISA (Maes, Vanderveken, Hamers, Doua et 

al., 1988). One of the first steps in the development of the assay was the 

production of high affinity antibodies against the drug molecule. In order to 

achieve this melarsoprol was conjugated with bovine serum albumin (BSA) and 

inoculated subcutaneously, in combination with Freund’s complete adjuvant into 

rabbits. The anti-melarsoprol-BSA antibodies were subsequently collected from 

the rabbits and separated from the antisera by affinity chromatography. In order 

to obtain a melarsoprol calibration curve to which samples could be compared 

to, brain samples were spiked with standard solutions of melarsoprol. The 

standards were incubated with the antibodies, before being applied to a 

microtiter plate coated with a melarsoprol-ovalbumin (OVA) conjugate. The 

percentage specific antibody-binding inhibition was subsequently calculated for 

each standard and a calibration curve constructed. The melarsoprol 

concentration in patient serum samples was determined by incubating dilutions 

of the samples with the anti-melarsoprol antibodies in a plate coated with a 

melarsoprol-OVA conjugate. The percentage specific antibody-binding inhibition 

was calculated and the melarsoprol concentration within the sample determined 

by comparing the value obtained to those in the melarsoprol calibration curve 

(Maes et al., 1988). The ELISA was capable of detecting melarsoprol 

concentrations of less than 0.25pmol/ml, but the assay was only validated on a 

small number of serum samples, collected from patients receiving melarsoprol. 

In one patient the melarsoprol concentration in the serum as determined by the 

ELISA method was found to be approximately 0.4µg/ml 60 minutes after 

administration of 3.6mg/kg of melarsoprol. This is considerably lower than the 

concentrations previously reported by Hawking (Hawking, 1962) but the lack of 

information regarding the total dose administered to patients, the time points at 

which samples were collected and the small number of samples examined makes 

it difficult to compare the results reported by Maes et al. using the ELISA to 

previous studies. Larger scale studies to determine the reliability and to validate 

the ELISA were never performed.  
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6.1.1.3 Long-term bioassay 

Advances in culture methods and the development of axenic culture systems in 

1985 made it possible to maintain trypanosomes in culture for a number of days 

without the need for sub-passaging (Baltz, Baltz, Giroud and Crockett, 1985).  

This meant that it was possible to develop a long-term bioassay in which 

trypanosomes could be exposed to drug concentrations for a prolonged period of 

time, thus over coming the problem of short drug expose times experienced by 

Hawking when initially developing a bioassay (Hawking, 1962). Utilising the new 

culture systems Burri and Brun developed a second bioassay based on the 

original Hawking method (Burri and Brun, 1992). In the assay T. b. rhodesiense 

trypanosomes were incubated with serial dilutions of melarsoprol for 72 hours at 

37˚C. Following incubation the plate was examined under a microscope and the 

highest dilution of melarsoprol with less than five motile trypanosomes 

determined. This value was defined as the minimum inhibitory concentration 

(MIC) of melarsoprol. In order to validate the assay serum samples were 

collected from patients treated with I.V. melarsoprol. The melarsoprol was 

administered as series, of four increasing doses of 1.2, 2.4, 3.6 and 3.6mg/kg, 

with a 24 hour drug free period between each dose. Serum samples were 

collected 24 hours after administration of the last dose of the first series. 

Samples were serially diluted and incubated with T. b. rhodesiense 

trypanosomes for 72 hours at 37˚C. Once again the plate was examined under a 

microscope and the MIC determined. The melarsoprol content of the samples 

was calculated according to Equation 6-1: 

 

Equation 6-1: The equation used to calculate the me larsoprol content of samples analysed 
using the bioassay 
Where Cx = Determined concentration in the investigated sample, MIC = Determined minimal 
inhibitory concentration of melarsoprol for the reference clone, D = The highest dilution of the 
sample, n = Steps of dilution to the first well with no living trypanosomes.  

 
Using this procedure, serum samples prepared from two patients were found to 

contain melarsoprol concentrations of 1.4µg/ml and 3.6µg/ml. The melarsoprol 

concentration in CSF samples collected at the same time was considerably lower 

at 108ng/ml and 43ng/ml respectively. The lower detection limit of the assay 

was determined to be 9ng/ml. The parameter measured by the assay is 



198 

 

trypanocidal activity therefore it is not possible to distinguish whether the 

activity observed is due to melarsoprol or its metabolites. The assay is also 

unable to distinguish between trypanocidal drugs therefore it is important to 

know if the patient has received any other trypanocidal drugs prior to 

melarsoprol treatment. 

Using the bioassay developed by Burri and Brun and atomic absorption 

spectrometry (AAS) Burri et al. conducted the first pharmacokinetic study on 

melarsoprol (Burri, Baltz, Giroud, Doua et al., 1993). Serum and CSF samples 

were collected from patients receiving melarsoprol for the treatment of late 

stage T. b. gambiense infections in Daloa, Ivory Coast. The treatment protocol 

employed in the region is provided in Table 6-1. In four patients serum samples 

were collected 0.5, 1, 6 and 24 hours after injections 1, 2 and 4 of the 

treatment course. In addition, CSF samples were collected 24 hours after the 

last melarsoprol injection of treatment series 2 and 3. In 15 separate patients 

serum samples were collected 24, 48 and 72 hours after the last melarsoprol 

injection of each treatment series and 120 hours after the final injection of the 

treatment schedule. CSF samples were also collected 24 hours after the last 

dose in each treatment series and 120 hours after the final dose. The maximum 

serum concentration of melarsoprol after the fourth dose of the treatment series 

was found to be in the range of 5-6µg/ml. By 120 hours after administration of 

the last dose the concentration had dropped to 0.22 ± 0.08µg/ml. In between 

each treatment series the concentration of melarsoprol in the serum dropped to 

almost zero indicating that the drug is rapidly excreted and no accumulation 

occurs. The concentration of melarsoprol reaching the CSF was approximately 50 

fold lower than that observed in the serum and varied significantly between 

patients. The maximum concentration recorded was 260ng/ml, 24 hours after 

administration of the final injection of the treatment schedule. The minimum 

concentration was below the level of detection of the assay. The study enabled 

some basic pharmacokinetic parameters to be calculated for melarsoprol. The 

mean terminal elimination half-life of melarsoprol (t1/2) was estimated to be 35 

hours with a volume of distribution (VDβ) of greater than 100l and a total 

clearance of approximately 50ml/min.   
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Day of treatment Drug Dose 

1 Melarsoprol 1.2 mg/kg 

2 Melarsoprol 2.4 mg/kg 

3 Melarsoprol 3.6 mg/kg 

4 Melarsoprol 3.6 mg/kg 

14 Melarsoprol 1.2 mg/kg 

15 Melarsoprol 2.4 mg/kg 

16 Melarsoprol 3.6 mg/kg 

17 Melarsoprol 3.6 mg/kg 

27 Melarsoprol 1.2 mg/kg 

28 Melarsoprol 2.4 mg/kg 

29 Melarsoprol 3.6 mg/kg 

30 Melarsoprol 3.6 mg/kg 

Table 6-1: The treatment protocol employed in the D aloa region, Ivory Coast 
The above schedule was used for the treatment of T. b. gambiense CNS stage trypanosomiasis in 
the study conducted by (Burri et al., 1993). 
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In a continuation of this study, a second pharmacokinetic investigation was 

conducted in uninfected vervet monkeys to compare two different treatment 

regimes (Burri, Onyango, Auma, Burudi et al., 1994). One treatment group was 

given the established schedule, with serum samples taken 0.25, 0.5, 1, 3, 6, 12, 

24, 48, 72 and 120 hours after the last injection of the first and third series and 

0.25, 24, 48 and 120 hours after the last injection of the second series. In order 

to determine the trough levels of melarsoprol additional serum samples were 

taken 24 hours after administration of the first and second injections of each 

series. CSF samples were collected 24 hours after the first, second and third 

injection of series one and three, 24 and 48 hours after the third injection of 

series two and 120 hours after the very last injection of the treatment schedule. 

The second treatment group were administered melarsoprol at a dose of 

2.2mg/kg daily for 10 days. Serum samples were collected 0.25, 0.5, 1, 3, 6, 12, 

24, 48, 72 and 120 hours after the last injection. Additional serum samples were 

collected 24 hours after administration of the second injection for determination 

of trough levels. CSF samples were collected 24 hours after the first and second 

injection and 24, 72 and 120 hours after administration of the last injection.  

The concentration of melarsoprol observed 0.25 hours after administration of 

the final dose of each series, in the group following the established treatment 

regime ranged from 1.7 to 3.1µg/ml (mean 2.2µg/ml) after the first, 2.4 to 

3.6µg/ml (mean 2.6µg/ml) after the second and 3.1 to 3.8µg/ml (mean 

3.3µg/ml) after the third series respectively. In the group receiving the 

alternate treatment regime serum concentration levels of melarsoprol 0.25 

hours after administration of the final dose of the treatment schedule, ranged 

from 2.4 to 3.1µg/ml (mean 2.8µg/ml). In common with other studies it was 

found that, following I.V. administration, melarsoprol is rapidly cleared from the 

serum (Burri et al., 1993; Hawking, 1962). Within six hours of administration 

serum levels had dropped from initial concentrations of around 3µg/ml to 0.3 to 

0.7µg/ml. The terminal-half life of melarsoprol differed significantly between 

the two treatment groups being calculated at 25.8 to 32.6 hours for the 

established treatment group and 16.7 to 25.4 hours for the group receiving the 

alternate treatment regime. The serum concentrations were below the limit of 

detection by 120 hours after the last dose in both treatment regimes, confirming 

previous reports that melarsoprol does not accumulate within the body (Burri et 
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al., 1993). The total clearance (CL) of melarsoprol was found to be 2.9 to 

4.0ml/min/kg (median 3.6ml/min/kg). In agreement with earlier studies, the 

concentration of melarsoprol in the CSF was found to be very low (55ng/ml) and 

despite the total amount of melarsoprol administered during the empirical 

regime being higher than in the alternate 10 day regime, higher CSF levels were 

not obtained (Burri et al., 1993; Hawking, 1962). Although the bioassay 

developed by Burri and Brun allowed preliminary pharmacokinetic data on 

melarsoprol to be calculated for the first time, the assay is time consuming as 

every plate must be examined microscopically to determine the melarsoprol 

concentration within the sample (Burri et al., 1993; Burri and Brun, 1992; Burri 

et al., 1994). To over come this problem, an automated fluorescent biological 

assay was developed using Alamar blue (Onyango, Burri and Brun, 2000). 

6.1.1.4 Automated biological assay 

Alamar blue contains an oxidation-reduction (redox) indicator, which in its non-

reduced state is deep blue in colour. Cellular proliferation reduces the indicator 

and a change in redox colour from blue to fluorescent red occurs. The extent of 

cellular proliferation is proportional to the intensity of the red colour (Ansar 

Ahmed, Gogal and Walsh, 1994). By measuring the level of fluorescence, the 

assay can be used to determine the viability of trypanosomes in-vitro, in the 

presence of varying concentrations of trypanocides (See chapter 3) (Raz et al., 

1997). Onyango et al. adapted the assay to determine the concentration of 

melarsoprol within serum and CSF samples (Onyango, Burri and Brun, 2000). In 

the assay, T. b. rhodesiense trypanosomes were incubated in three fold serial 

dilutions of the samples for 66 hours. Alamar blue indicator was subsequently 

added and the plates incubated for a further 6 hours before the fluorescence 

was measured. The drug concentration within the sample was calculated 

according to Equation 6-2: 

 

Equation 6-2: The equation used to calculate the me larsoprol content of samples analysed 
using the automated bioassay 
Where Cx is the concentration of drug within the sample, D is the fraction of unknown drug sample 
required for 50% reduction of live parasites, IC50 det. is the IC50 of melarsoprol for the T. b. 
rhodesiense stabilate used in the study and F is the dilution factor in the first well (Onyango, Burri 
and Brun, 2000).  
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To validate the assay 108 serum and 37 CSF samples were spiked with 

melarsoprol at concentrations ranging from 17ng/ml to 2.2µg/ml for serum and 

17ng/ml to 92ng/ml for CSF samples. The accuracy of the assay was determined 

to be 99.4% and 96.4% for serum and CSF samples respectively. The 

reproducibility of the assay, expressed as the average inter-day coefficient of 

variation was 9.9% for serum and 18.8% for CSF samples. The limit of detection 

of the assay was 4ng/ml for both serum and CSF samples (Onyango, Burri and 

Brun, 2000). The assay was only used to quantify the concentration of 

melarsoprol within spiked tissue samples, the ability of the assay to accurately 

determine the level of melarsoprol within patient samples was not evaluated. As 

in previous bioassays, the parameter measured was trypanocidal activity, which 

was expressed as melarsoprol concentration. It is not known if the trypanocidal 

activity observed is due to melarsoprol or its metabolites or even other 

trypanocides which the patients received prior to melarsoprol chemotherapy.  In 

order for the active metabolites of melarsoprol to be identified and quantified, 

a more specific assay is required. 

6.1.1.5 High performance liquid chromatography assa y 

The first method developed to separate and quantify the melaminophenyl 

arsenicals was a simple high performance liquid chromatography (HPLC) assay 

(Berger and Fairlamb, 2005). Solutions of trimelarsen (mel W), cymelarsan (mel 

Cy), melarsoprol and melarsen oxide were analysed individually and as a mixture 

containing 1.0nmol of each compound. All compounds produced sharp well 

defined peaks which were free from interference and showed no overlap. The 

limit of detection was less than 10pmol for each compound. To assess the ability 

of the HPLC method to detect melaminophenyl arsenicals in biological samples, 

foetal calf serum was spiked with a mixture of melarsen oxide, cymelarsan, 

trimelarsen and melarsoprol to give a final concentration of 100pmol of each 

compound per ml of serum. The arsenicals were extracted with an 

octadecylsilane solid-phase extraction cartridge. The recovery rates varied with 

each arsenical, melarsoprol and melarsen oxide were most successful with 

recovery rates of 65.2% and 61.5% respectively. In contrast, the recovery of 

cymelarsan and trimelarsen was poor with only 14.1% and 35.6% of each 

compound recovered respectively. Although the HPLC assay was the first to be 
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able to differentiate between the melaminophenyl arsenicals the poor recovery 

rate of the arsenicals from biological fluids and the 80 minute run time for each 

sample limits the assay’s use in assessing the concentration of melarsoprol 

reaching tissues following administration. Both the method of extracting 

arsenicals from biological samples and the HPLC method itself therefore require 

optimisation.  

Ericsson et al. developed a reverse-phase HPLC method for the determination of 

melarsoprol in plasma, whole blood, urine and cerebrospinal fluid (Ericsson, 

Schweda, Bronner, Rombo et al., 1997). In order to evaluate the assay, plasma, 

whole blood and urine were spiked with concentrations of melarsoprol ranging 

from 11.3µmol/l to 625nmol/l. Extraction was performed in chloroform and 

acetonitrile followed by back extraction into phosphoric acid. The extraction 

recovery rates obtained were better than those previously reported by Berger 

and Fairlamb, with recovery rates of 86 ± 3%, 82 ± 2% and 75 ± 2% for plasma, 

CSF and urine respectively. A poor recovery rate was only observed in whole 

blood samples with only 34 ± 1% of the melarsoprol recovered. The assay was 

further evaluated on serum samples collected from patients suffering from CNS 

stage T. b. gambiense. Immediately after administration of 3.6mg/kg of 

melarsoprol concentrations ranging from 2 to 15µM were detected.  

The melarsoprol concentrations detected by Ericsson et al. are substantially  

lower than those determined previously by Burri et al. using a bioassay approach 

(Burri et al., 1993). A similar study conducted by Bronner et al. also detected 

concentrations of melarsoprol in the plasma by HPLC analysis that did not mirror 

those found previously using bioassays (Bronner, Brun, Doua, Ericsson et al., 

1998).   

6.1.1.6 Comparing bioassay and HPLC approaches 

In the study conducted by Bronner et al. plasma, urine and CSF samples were 

collected from eight patients suffering from CNS stage T. b. gambiense infection 

in Daloa, Côte d'Ivoire (Bronner et al., 1998). The patients received three series 

of melarsoprol injections, with each series consisting of I.V. injections, once per 

day, for four days at increasing doses (Table 6-1). Each treatment series was 

separated by a 10 day drug free period. Plasma samples were collected before 
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the first injection, immediately after the fourth injection and 1, 24 hours and 5 

days after the fourth injection. Urine and CSF samples were collected before 

treatment and 24 hours after the last dose. All samples were analysed by HPLC 

analysis and bioassay. Immediately after administration of the fourth injection 

the plasma concentration of melarsoprol, as detected by HPLC analysis, varied 

from 2,230 to 15,900nmol/l. By one hour after administration, the plasma 

concentration of melarsoprol had dropped considerably to between 0 and 

1,780nmol/l and after 24 hours no melarsoprol was detected in the plasma 

(Bronner et al., 1998). Analysis of the plasma samples by bioassay immediately 

after the fourth dose detected melarsoprol levels in the same order to those 

attained by HPLC analysis. However, 1 hour after the fourth dose the levels of 

melarsoprol in the plasma were 4 to 65 fold higher than those detected by HPLC 

and low levels of melarsoprol activity were still detected 24 hours and 5 days 

after the last dose by bioassay. Discrepancies were also observed in the 

concentrations of melarsoprol detected in the urine and CSF samples. The 

concentration in the urine was 40 to 260 fold higher when measured by bioassay 

compared to HPLC analysis and while no melarsoprol was detected in the CSF by 

HPLC analysis, the bioassay detected low levels in the range of 45 to 180nmol/l. 

The discrepancies observed between HPLC analysis and the bioassay are due to 

the different parameters each assay measures. HPLC analysis is only capable of 

detecting melarsoprol while the bioassay measures trypanocidal activity and 

cannot differentiate between trypanocidal compounds. The results obtained 

from the HPLC analysis suggest that following administration melarsoprol is 

rapidly metabolised to a number of active metabolites with trypanocidal activity 

(Bronner et al., 1998). 

6.1.2 Melarsoprol metabolites  

The metabolites of melarsoprol were investigated in a study conducted by Keiser 

et al. (Keiser, Ericsson and Burri, 2000). Serum and CSF samples were collected 

from patients with CNS stage T. b. gambiense infection who had received 

melarsoprol therapy in the form of ten daily doses of 2.2mg/kg. Serum samples 

were collected 15 minutes before treatment commenced and then 1, 6 and 24 

hours after administration of the last dose. CSF samples were collected 1, 6 and 

24 hours after the first dose and 24, 48 and 72 hours after the final dose. The 
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pharmacokinetic profile of one known metabolite of melarsoprol, melarsen oxide 

was investigated in serum and CSF samples by HPLC analysis. In addition, the 

concentration of arsenic within the serum and CSF samples was analysed by 

atomic absorption spectrometry (AAS). The overall drug level within the samples 

was assessed by bioassay (Keiser, Ericsson and Burri, 2000). HPLC revealed 

maximum serum levels (Cmax) of melarsen oxide within 15 minutes of 

administration, ranging from 461 to 848ng/ml, with an average of 636 ± 

157ng/ml. At the same time point, comparable concentrations of arsenic were 

detected by AAS. The concentrations of arsenic within the serum samples ranged 

from 527 to 770ng/ml with a mean of 657 ± 90ng/ml. Melarsen oxide was rapidly 

cleared from the serum as by 8 hours after administration concentrations had 

fallen to between 7 and 11% of the Cmax and by 24 hours after administration the 

level of melarsen oxide was below the limits of detection of the HPLC assay. The 

overall half-life of melarsen oxide was calculated to be 3.9 hours by HPLC.  

Arsenic as determined by AAS, was cleared more slowly from the serum than 

melarsen oxide. Eight hours after administration of melarsoprol, 256 to 

139ng/ml (mean 182ng/ml) of arsenic was detected in the serum. By 24 hours 

after administration, the levels of arsenic within the serum had fallen, but were 

still detectable at 124 to 171ng/ml (mean 147ng/ml). The concentration of 

melarsoprol detected in the serum by bioassay, was greater than the levels of 

melarsen oxide and arsenic detected by HPLC and AAS respectively. Fifteen 

minutes after the administration of melarsoprol, the Cmax was found to be 

4,925ng/ml, this is 7.7 fold higher than the Cmax of melarsen oxide. Eight hours 

after administration, the concentration of melarsoprol had dropped to between 

998 and 1320ng/ml (mean 1140ng/ml). By 24 hours after administration of the 

drug, large concentrations of melarsoprol were still detectable within the serum 

by bioassay, concentrations ranged from 747 to 1070ng/ml (mean 855ng/ml). At 

the same time point no melarsen oxide was detectable by HPLC and only 124 to 

171ng/ml of arsenic was detected by AAS. This suggests that following 

administration melarsoprol is rapidly metabolised to melarsen oxide which, in 

turn, is further transformed into one or more active metabolites (Keiser, 

Ericsson and Burri, 2000). At present the active metabolites of melarsen oxide 

are unknown.   



206 

 

6.1.3 Pharmacokinetics of complexed melarsoprol 

The pharmacokinetic properties and tissue distribution of the melarsoprol 

cyclodextrin complex mel/HPβCD following I.V. administration has been 

investigated and compared to that of melarsoprol (Zirar, Astier, Muchow and 

Gibaud, 2008). CD-1 mice were administered a single dose of melarsoprol or 

mel/HPβCD at a dose of 0.038mmol/kg. Blood, liver, kidney and brain samples 

were taken 0.5, 30 minutes, 1, 5, 18, 24 and 48 hours after administration of the 

drug. The concentration of arsenic within the tissue was determined using a 

colorimetric method after digestion of the tissues with nitric acid and hydrogen 

peroxide (Zirar et al., 2008).  

Complexation of melarsoprol to HPβCD led to significant alterations in the 

pharmacokinetic properties of the compound. A reduction in the terminal half-

life t1/2(β) of melarsoprol from 9.1 ± 5.7 to 2.6 ± 0.4 hours occurred. The volume 

of distribution was also greatly reduced from 338 ± 88ml for melarsoprol 

compared to 186 ± 38ml for melarsoprol complexed with HPβCD (Zirar et al., 

2008). In addition to the pharmacokinetic properties the tissue distribution 

profile of melarsoprol was also modified following insertion of the compound 

into the HPβCD cavity. The complexation of melarsoprol to HPβCD resulted in 

higher concentrations of the drug reaching the bone marrow, brain, liver and 

kidneys. The major target organ for the compound following its complexation to 

HPβCD was the brain with a Cmax of 0.25µmol/g, in contrast when free 

melarsoprol was administered the major target organ was the bone marrow with 

a Cmax of 1.64µmol/g. The reasons for the alteration in the tissue affinity of 

melarsoprol following its complexation are unknown but it is thought that it 

could occur as a result of the cyclodextrins being able to deliver the drug more 

efficiently to the biological membranes (Zirar et al., 2008).  

Only the pharmacokinetic properties of mel/HPβCD following I.V. administration 

were investigated by Zirar et al. (Zirar et al., 2008). No information is available 

regarding the pharmacokinetics and tissue distribution of mel/HPβCD and 

mel/RAMβCD following oral administration. Therefore the aim of this chapter is 

to develop a gas chromatography mass spectrometry (GC-MS) method to allow 

the pharmacokinetic and tissue distribution profile of mel/HPβCD and 
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mel/RAMβCD following oral administration to be accurately determined. As it 

has recently been reported that there is an increase in the permeability of the 

blood-brain barrier during CNS stage T. b. brucei infection in mice (Rodgers et 

al., 2011), the study will be conducted in normal and infected mice in order to 

assess if infection affects the pharmacokinetic and tissue distribution profiles of 

the compounds.   
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6.2 Methods 

6.2.1 Establishing T. b. brucei infection 

Female CD-1 mice aged approximately 6 to 8 weeks in age and weighing 25 to 30 

grams were inoculated intraperitoneally with 2x104 T. b. brucei GVR35/C1.9 

trypanosomes. The methodology detailing the preparation of the trypanosomes 

prior to inoculation is provided in chapter 2.    

6.2.2 Confirmation of trypanosome infection 

To confirm that inoculation of T. b. brucei trypanosomes had led to the 

establishment of a trypanosome infection in the mice, a wet blood film of tail 

blood from each animal was examined under the microscope for the presence of 

trypanosomes. The level of parasitaemia observed in each animal was scored 

according to the system detailed in chapter 2.   

6.2.3 Preparation of complexed melarsoprol for oral 

administration 

The melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD are 

supplied as fine white powders with the ratio of melarsoprol to cyclodextrin 

specified for each batch. Using the ratio, the amount of each complex required 

to give a melarsoprol concentration of 0.05mmol/kg was calculated. The 

corresponding amount of complex was weighed out on a fine balance and 

dissolved in sterile water. The solutions of each complex were freshly prepared 

each day immediately prior to administration. The full details as to how the dose 

was calculated for each melarsoprol cyclodextrin complex are provided in 

chapter 2.  

6.2.4 Preparation of mel/HPββββCD for intravenous administration 

A 0.03mmol/kg solution of mel/HPβCD was prepared by the addition of 40.45mg 

of the complex to sterile pyrogen free saline. The full details regarding the 

calculation of the dose are provided in chapter 2. 
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6.2.5 Oral administration of complexed melarsoprol 

Prior to the administration of the complexes each animal was weighed and the 

volume of complex to be administered determined using the table provided in 

chapter 2. To administer the melarsoprol cyclodextrin complexes, the animals 

were appropriately restrained and a 20 gauge x 25mm gavage needle inserted 

directly into the oesophagus. The compounds were subsequently administered 

slowly and carefully directly into the stomach.   

6.2.6 Intravenous administration of mel/HPββββCD 

Animals were anaesthetised with isoflurane delivered as a mixture of 3% 

isoflurane and 50% oxygen. The animals were placed on a heat mat in order to 

dilate the caudal veins, and the compound administered into the tail vein using 

a 30 gauge insulin syringe. Anaesthesia was maintained throughout the 

procedure.   

6.2.7 Treatment schedule 

The pathogenesis and disease progression of T. b. brucei GVR35/C1.9 is well 

documented, with full details provided in chapter 2. Chemotherapy regimes 

commenced on day 21 post-infection, as at this time point the parasites are 

known to be established within the CNS and BBB breakdown has been 

demonstrated.  

6.2.7.1 Oral administration 

Mel/HPβCD or mel/RAMβCD was administered once, at a dose of 0.05mmol/kg. 

Animals were sacrificed at 5 minutes, 30 minutes, 1, 4, 8, 12 and 18 hours after 

administration of the compounds (Figure 6-1). At each time point three animals 

were killed. This protocol was also performed in groups of uninfected animals.  

6.2.7.2 Intravenous administration 

Mel/HPβCD was administered once at a dose of 0.03mmol/kg. Animals were 

sacrificed at 30 seconds, 5 minutes, 30 minutes, 1, 4, 8, 12 and 18 hours after 
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administration of the compound. At each time point 3 animals were killed. This 

protocol was also performed in groups of uninfected animals. 

I > M > K > K > K > K > K > K > K

21
5 

min

30 

min

1 

hr

4 

hr

8 

hr

12 

hr

18 

hr  

Figure 6-1: The oral treatment schedule employed  
Mice were infected with 2x104 T. b. brucei trypanosomes. On day 21 post-infection when CNS 
infection is known to be established chemotherapy commenced (M). Animals were administered 
one dose of mel/HPβCD or mel/RAMβCD at 0.05mmol/kg by oral gavage. Animals were 
subsequently killed (K) at the time points indicated. At each time point 3 animals were killed. This 
protocol was also performed in groups of uninfected animals. 
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Figure 6-2: The intravenous treatment schedule empl oyed 
Mice were infected with 2x104 T. b. brucei trypanosomes. On day 21 post-infection when CNS 
infection is known to be established chemotherapy commenced (M). Animals were administered 
one dose of mel/HPβCD at 0.03mmol/kg I.V. into the caudal tail vein. Animals were subsequently 
killed (K) at the time points indicated. At each time point 3 animals were killed. This protocol was 
also performed in groups of uninfected animals. 

 
6.2.8 Collection of samples 

Animals were sacrificed by CO2 asphyxiation and the blood removed by cardiac 

puncture using a 25 gauge needle containing a bead of heprin. The blood was 

stored in a sterile 1.5ml eppendorf tube at 4°C. Immediately following 

exsanguination the chest cavity of the animal was opened and the animal 

perfused through the left ventricle with 120ml of sterile normal saline. Following 

perfusion the left kidney, spleen, liver and brain were carefully excised and 

placed in a 5ml bijoux. The tissues were immediately frozen on solid CO2 before 

being stored at -70°C. In order to obtain plasma the whole blood was 

centrifuged at 13,500rpm at 15°C for 15 minutes. The separated plasma was 

subsequently collected and placed in a 1.5ml sterile eppendorf tube before 

being stored at -70°C.  
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6.2.9 Determining the arsenic content of tissue samples by gas 

chromatography mass spectrometry 

6.2.9.1 Digestion of tissues 

The tissue samples were removed from the freezer and allowed to defrost at 

room temperature before being weighed and placed in a digestion vial. 1ml of 

nitric acid (69%) was added to the tissue samples and the samples heated on a 

hot plate at 40°C for 30 minutes. The temperature of the samples was increased 

incrementally up to 100°C as described in Table 6-2. Once all the tissue was 

dissolved and a clear solution had formed, the samples were removed from the 

hotplate and cooled to room temperature. 2ml of hydrogen peroxide (30%) and 

4ml of nitric acid (69%) were added to the samples and the samples returned to 

the hotplate for 30 minutes at 40°C. The temperature of the samples was 

increased up to 120°C, to completely digest all tissue elements. The 

temperature of the samples was then incrementally increased up to 300°C and 

the samples heated to dryness. The temperature increments and incubation 

periods are detailed in Table 6-3.   

6.2.9.2 Resuspension of digestion residue 

The dried tissue digest was resuspended in 1ml of 2M HCl. To ensure complete 

resuspension of the residue, the samples were sonicated in a water bath for 10 

minutes. The suspension was then transferred to a 20ml headspace vial. The 

digestion vial was washed with 4ml of 2M HCl and the HCl subsequently transfer 

to the headspace vial. 100µl of a solution containing 10% potassium iodide (KI) 

and 10% ascorbic acid was added to the headspace vial, the vial was then sealed 

with a vial crimper and incubated at room temperature for 1 hour. 150µl of 5% 

sodium borohydride (NaBH4) was then injected into the vial through the crimp 

cap and the sample analysed by gas chromatography mass spectrometry (GC-

MS).  
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Temperature (°C) Time (minutes) 

40 30 

60 30 

80 60 

100 Until tissue is digested 

Table 6-2: The schedule used to digest the tissue s amples 
1ml of nitric acid (69%) was added to the tissue samples and the temperature of the samples 
gradually increased incrementally from 40°C to 100° C. 

 

Temperature (°C) Time (minutes) 

40 30 

60 30 

80 30 

120 120 

150 180 

175 15 

200 15 

250 30 

300 Until dry 

Table 6-3: The schedule used to completely digest a ll tissue elements and heat the samples 
to dryness 
After cooling to room temperature, 2ml of hydrogen peroxide (30%) and 4ml of nitric acid (69%) 
was added to the samples and the temperature increased from 40°C to 150°C, to completely digest 
all the tissue elements. The temperature of the samples was subsequently increased to 300°C and 
the samples heated to dryness. 

 
6.2.9.3 Gas chromatography mass spectrometry analys is  

A Thermoquest Trace GC 2000 series coupled with Fisons MD 800 mass 

spectrometer were used in the analysis. A Combi PAL autosampler was used for 

automated headspace analysis. Data was collected using Xcalibur software. 

Samples were incubated at 60°C for 3 minutes prior to injection. The carrier gas 

used was helium at a flow rate of 2ml/min. Injections were made in split mode 

at a ratio of 5:1 with an inlet temperature of 250°C. A Varian Factor FOURTM VF-

624 30m long with an internal diameter of 0.25mm and film thickness of 1.4µm 
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was used. The column temperature was first set at 35°C for 3 minutes then 

increased by a ramp of 10°C/min to 100°C. The MS signals were collected in SIM 

(singal ion) mode and electron impact (EI) for ionization. The signal monitored 

for quantification of arsine was the total response of the following ions (m/z) 

74.85, 75.85, 76.85 and 77.85. The total run time was 16 minutes.  

6.2.9.4 Assay validation 

6.2.9.4.1 Constructing an arsenic standard curve 

Solutions of arsenic (As) were prepared at concentrations of 1000, 750, 500, 250, 

100, 50, 25, 10, 5 and 1ng/ml by dissolving the corresponding amount of As2O3 in 

HPLC grade H2O. 1ml of each solution was added to 0.5g of normal rat brain 

tissue in a digestion vial. This was then digested and the residue resuspended 

and analysed by GC-MS as detailed above. The peak area was manually 

integrated for each concentration and plotted as a function of As concentration.  

6.2.9.4.2 Determining the precision (repeatability) of the assay 

The precision of the assay was determined using 5 replicates. Five, 25ng/ml 

solutions of As were prepared by dissolving the corresponding amount of As2O3 in 

HPLC grade H2O. 1ml of the solution was added to 0.5g of normal rat brain tissue 

and digested and analysed by GC-MS as detailed above. The peak area of each 

replicate was manually integrated and the arsenic concentration calculated 

using the equation obtained from the arsenic calibration curve for 

concentrations ranging from 50ng to 5ng. The precision of the assay was 

determined as the average variation of the assay results obtained under 

identical conditions (repeatability) and expressed as the coefficient of variation.   

6.2.9.4.3 Extraction recovery 

The extraction recovery of the assay was determined using 7 replicates. Seven, 

25ng/ml solutions of As were prepared by dissolving the corresponding amount of 

As2O3 in HPLC grade H20. 1ml of the solution was added to a digestion vial and 

the solution digested and analysed by GC-MS as detailed above. The peak area of 

each replicate was manually integrated and the arsenic concentration 
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determined using the equation obtained from the arsenic calibration curve for 

concentrations ranging from 50ng to 5ng. The mean arsenic concentration was 

calculated and compared to that obtained from brain tissue spiked with 25ng/ml 

As to calculate the percentage recovery.  
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6.3 Results 

6.3.1 Chromatograms 

Brain tissue was spiked with a solution containing 250ng/ml of As. The sample 

was digested by wet-acid digestion and the arsenic content determined by GC-

MS. An arsenic peak was detected at a retention time of 1.15 minutes (Figure 

6-3). The peak was well defined and separated with minimal impurity peaks. To 

confirm that the peak obtained at 1.15 minutes was arsenic, the chromatogram 

was compared to one obtained from normal brain tissue, subjected to the same 

extraction procedure as the spiked brain tissue. No peak was detected at 1.15 

minutes on the mass spectrometry chromatogram (Figure 6-4) confirming that 

the peak detected at 1.15 minutes in the spiked brain tissue was arsenic.     

6.3.2 Calibration curve 

A calibration curve was constructed using concentrations of As ranging from 

1000ng to 1ng. The relationship between arsenic concentration and peak area 

was not linear across the whole concentration range tested. However, for 

arsenic concentrations between 1000ng and 100ng a linear relationship was 

present. A linear relationship was also present at lower arsenic concentrations, 

ranging from 50ng to 5ng. This effect is often seen when constructing a 

calibration curve covering a wide range of concentrations. Two arsenic 

calibration curves were therefore constructed in the present study. One curve 

was constructed for As concentrations ranging from 1000ng to 100ng (Figure 6-5) 

and a second curve included concentrations of As ranging from 50ng to 5ng 

(Figure 6-6). The standard curves were linear within the concentration ranges 

tested, and the correlation coefficients were 0.997 for As concentrations ranging 

from 1000ng to 100ng and 0.993 for As concentrations of 50ng to 5ng. At a 

concentration of 1ng/ml, the area of the arsenic peak could not be accurately 

calculated due to its low signal to noise ratio. The limit of quantification of the 

assay was therefore determined to be 5ng/ml.  
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Figure 6-3: The chromatogram obtained from brain ti ssue spiked with 250ng As  

The sample was digested by wet-acid digestion and the arsenic content of the sample analysed by 
GC-MS. A clear, well defined, separated peak, was detected at 1.15 minutes (red arrow), 
representing the concentration of arsenic within the sample. 
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Figure 6-4: The chromatogram obtained from normal b rain tissue 
The sample was digested by wet acid digestion and the arsenic content of the sample determined 
by GC-MS. No peak was detected at 1.15minutes, confirming the peak detected at 1.15 minutes in 
the spiked brain tissue was arsenic.  
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Figure 6-5: The As  calibration curve for concentrations ranging from 1 000ng/ml to 100ng/ml 
0.5g of normal rat brain tissue was spiked with 1000, 500, 250 or 100ng/ml As. The tissue was 
digested by wet-acid digestion and the arsenic content of the sample evaluated by GC-MS. The 
peaks were manually integrated and the peak area plotted as a function of As concentration.  
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Figure 6-6: The As  calibration curve for concentrations ranging from 5 0ng/ml to 5ng/ml 
0.5g of normal rat brain tissue was spiked with 50, 25, 10 or 5ng/ml As. The tissue was digested by 
wet-acid digestion and the arsenic content of the sample evaluated by GC-MS. The peaks were 
manually integrated and the peak area plotted as a function of As concentration. 
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6.3.3 Precision of the assay 

The arsenic content of five samples of normal rat brain spiked with 25ng/ml of 

As was determined by GC-MS (Table 6-4) and the precision of the assay 

calculated. The precision (repeatability) of the assay, expressed as the average 

inter-day coefficient of variation was 14.9%. 

Sample 
As concentration 

(ng/ml) 
Peak area 

Determined arsenic 

concentration 
(ng/ml) 

1 25 300904 32.6 

2 25 234775 24.7 
3 25 217137 22.6 

4 25 236304 24.9 
5 25 234844 24.7 

Table 6-4: The concentration of As  detected by GC-MS in brain tissues spiked with 25ng /ml 
As  

0.5g of normal rat brain tissue was spiked with 25ng/ml of As. The tissue was digested by wet-acid 
digestion and the arsenic content of the sample determined by GC-MS. The peak area of the 
samples was manually integrated and the arsenic content calculated using the equation obtained 
from the As calibration curve for concentrations ranging from 50ng to 5ng.   

 
6.3.4 Extraction recovery 

The arsenic content of 7 solutions containing 25ng/ml of As was determined by 

GC-MS (Table 6-5). The arsenic concentrations obtained were compared to those 

obtained from brain tissue spiked with 25ng/ml of As (Table 6-4) and the 

percentage extraction recovery of the assay calculated. The percentage 

extraction recovery of the assay, expressed as the percentage of arsenic 

recovered from spiked brain tissue compared to the arsenic solution alone was 

87.5%. 
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Sample As Concentration (ng/ml) Peak area 
Determined arsenic 

concentration (ng/ml) 

1 25 353255 38.9 

2 25 230405 24.2 

3 25 257203 27.3 

4 25 310906 33.8 

5 25 270539 29.0 

6 25 224701 23.5 

7 25 285648 30.8 

Table 6-5: The concentration of arsenic detected by  GC-MS in solutions containing 25ng/ml 
of As  

The samples were digested by wet-acid digestion and the arsenic content of the sample 
determined by GC-MS.The peak area of the samples was manually integrated and the arsenic 
content calculated using the equation obtained from the As calibration curve for concentrations 
ranging from 50ng to 5ng.     

 
6.3.5 Concentration of arsenic within the brain 

The concentration of arsenic within the brain following oral administration of 

0.05mmol/kg mel/HPβCD was determined by GC-MS. An arsenic peak was 

detected in the brain samples taken 1 and 4 hours (Figure 6-7 and Figure 6-8 

respectively) after the oral administration of mel/HPβCD but the peak area 

could not be integrated due to the presence of large interference peaks. No 

arsenic peak was detected in the samples taken 5 minutes, 30 minutes, 8, 12 

and 18 hours after the oral administration of mel/HPβCD, as the arsenic content 

of the samples was below the limit of detection (<5ng/ml) of the assay. As no 

arsenic was detected within the brain following oral administration of 

mel/HPβCD it was concluded that it was unlikely arsenic would be detected in 

brain samples collected after oral administration of 0.05mmol/kg mel/RAMβCD. 

These samples were therefore not analysed.  

6.3.6 Concentration of arsenic within the plasma 

The concentration of arsenic within the plasma following I.V. administration of 

0.03mmol/kg mel/HPβCD was determined by GC-MS. An arsenic peak was 
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detected in the plasma sample taken 30 seconds, after the administration of 

mel/HPβCD (Figure 6-9). The area of the peak was 62,314 corresponding to an 

arsenic concentration of 3.97ng. However, this is below the determined 

detection limit of the assay and therefore cannot be considered an accurate 

concentration. Arsenic was not detected in the plasma samples taken 5 minutes, 

30 minutes, 1, 4, 8, 12 or 18 hours after the administration of mel/HPβCD. As 

the concentration of arsenic detected within the plasma immediately following 

the I.V. administration of 0.03mmol/kg mel/HPβCD was below the limit of 

detection of the assay it was concluded that it was unlikely arsenic would be 

detected in plasma samples collected after the oral administration of 

0.05mmol/kg mel/HPβCD and mel/RAMβCD. These samples were therefore not 

analysed.  
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Figure 6-7: The chromatogram obtained from a brain sample taken 1 hour after the oral 
administration of 0.05mmol/kg mel/HP ββββCD 
Mel/HPβCD was administered orally at a dose of 0.05mmol/kg and the brain removed 1 hour later. 
The brain was digested by wet-acid digestion and the arsenic content of the sample determined by 
GC-MS. An arsenic peak was detected (red arrow) but the peak area could not be calculated due 
to the presence of a large impurity peak (blue arrow).  
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Figure 6-8: The chromatogram obtained from a brain sample taken 4 hours after the oral 
administration of 0.05mmol/kg mel/HP ββββCD 
Mel/HPβCD was administered orally at a dose of 0.05mmol/kg and the brain removed 4 hours 
later. The brain was digested by wet-acid digestion and the arsenic content of the sample 
determined by GC-MS. An arsenic peak was detected (red arrow) but the peak area could not be 
calculated due to the presence of a large impurity peak (blue arrow).  
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Figure 6-9: The chromatogram obtained from a plasma  sample taken 30 seconds after the 
I.V. administration of 0.03 mmol/kg mel/HP ββββCD 
Mel/HPβCD was administered I.V. at a dose of 0.03mmol/kg and blood removed by cardiac 
puncture after 30 seconds. The whole blood was centrifuged and the plasma collected. The plasma 
was digested by wet-acid digestion and the arsenic content of the sample determined by GC-MS. 
An arsenic peak was detected (red arrow). 
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6.4 Discussion 

Melarsoprol has been used for the treatment of CNS stage trypanosomiasis for 

over 60 years, but very little is known about the drugs pharmacokinetic 

properties and tissue distribution. Previous pharmacokinetic investigations have 

used bioassays which quantify the trypanocidal activity of samples and compare 

it to known standards in order to estimate the concentration of melarsoprol 

within the samples (Burri et al., 1993; Burri and Brun, 1992; Burri et al., 1994). 

As the assay does not measure the drug directly, it is unable to differentiate 

between melarsoprol and its active metabolites. The trypanocidal activity 

observed is presumed to be solely due to the presence of melarsoprol. Attempts 

were made to distinguish between melarsoprol and its metabolites by high 

performance liquid chromatography (HPLC) (Berger and Fairlamb, 2005; Ericsson 

et al., 1997; Keiser, Ericsson and Burri, 2000). The HPLC assay developed by 

Berger and Fairlamb was able to distinguish between melarsoprol, trimelarsen, 

cymelarsan and melarsen oxide (Berger and Fairlamb, 2005). However, the 80 

minute run time prevented the analysis of large numbers of samples. To allow 

analysis of large numbers of clinical samples the assay was modified and the run 

time shortened by Ericsson et al. (Ericsson et al., 1997). However, the only 

metabolite which could be detected was melarsen oxide, which was rapidly 

eliminated from the plasma within twenty-four hours of administration. 

Furthermore, discrepancies were detected between the HPLC assays and 

bioassay. While no melarsen oxide was detected in the plasma twenty-four hours 

after administration by HPLC, pronounced trypanocidal activity was detected by 

bioassay, indicating that melarsen oxide is further metabolised. In an attempt to 

resolve the discrepancies between HPLC and bioassays, the total arsenic content 

of samples was quantified by atomic absorption spectrometry (AAS) (Keiser, 

Ericsson and Burri, 2000). However, the limit of quantification of the assay was 

50ng/ml. A sensitive, specific assay, which can accurately quantify the total 

arsenic content of samples, would allow the basic pharmacokinetic properties of 

melarsoprol to be determined.  

In this study a gas chromatography mass spectrometry (GC-MS) assay was 

developed to quantify the total arsenic content of samples following 

chemotherapy with the melarsoprol cyclodextrin complexes, mel/HPβCD and 
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mel/RAMβCD. The limit of quantification of the assay was 5ng/ml. This is ten 

times lower than the limit of quantification of the atomic absorption 

spectrometry (AAS) assay previously described by Keiser et al. (Keiser, Ericsson 

and Burri, 2000). The limit of detection of the GC-MS assay is also nearly two 

fold lower than the limit of quantification of the bioassay developed by Burri 

and Brun (Burri and Brun, 1992). Only the automated bioassay developed by 

Onyango et al. and the HPLC assay developed by Berger and Fairlamb have lower 

limits of quantification, of 4ng/ml and 3.98pg/ml respectively. However, the 

HPLC assay is not suitable for the analysis of large numbers of clinical samples 

(Berger and Fairlamb, 2005; Onyango, Burri and Brun, 2000).  

In this analysis the brain and plasma samples were digested by wet-acid 

digestion in nitric acid and hydrogen peroxide. The percentage recovery rate of 

arsenic from the brain samples using this methodology was found to be 87.5%. 

The extraction of arsenic by wet-acid digestion from brain samples has been 

previously reported by Zirar et al. (Zirar et al., 2008). However, the recovery 

rate of the method was not stated, therefore no comparisons can be made 

between the recovery rates of the present study and that of Zirar et al. The 

extraction recovery rate obtained in the present study is similar to that reported 

by Ericsson et al. for plasma samples extracted in chloroform-acetonitrile and 

back extracted into phosphoric acid where a recovery rate of 86.3% was 

reported (Ericsson et al., 1997). The recovery rate obtained in the present study 

was 22.3% higher than that previously reported by Berger et al. for plasma 

samples extracted over octadecylisilane cartridges (Berger and Fairlamb, 2005). 

Although direct comparisons cannot be made between the present study and 

those of Ericsson et al. and Berger et al. since they were conducted in different 

tissues, they indicate that the recovery rate obtained in the present study is 

within previously reported ranges for biological tissues. Unfortunately the 

percentage recovery rate of arsenic from plasma samples was not determined in 

the present study.      

The precision (repeatability) of the GC-MS assay, expressed as the inter-day 

average coefficient of variation was 14.9% for brain samples. This value is similar 

to those previously reported by Onyango et al. for the automated biological 

assay (Onyango, Burri and Brun, 2000). The repeatability for plasma and CSF 
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samples using the automated bioassay was 9.9% and 18.8% respectively. 

Unfortunately, Onyango et al. did not assess the precision of the bioassay for 

brain samples and the repeatability of plasma samples using the GC-MS assay 

was not determined in the present study, so direct comparisons between the 

two assays cannot be made. Zirar et al. investigated the arsenic content of brain 

samples by a colorimetric method, but the precision of the assay was not 

reported (Zirar et al., 2008). 

The GC-MS assay was used in the present study to determine the arsenic content 

of brain and plasma samples following oral chemotherapy with the melarsoprol 

cyclodextrin complex mel/HPβCD. Arsenic was detected within the brain one 

and four hours after the administration of mel/HPβCD but the concentration 

could not be quantified due to the presence of large impurity peaks. Arsenic was 

not detected within the brain at any other time points investigated. It can 

therefore only be concluded that the concentration of arsenic within the brain 

following the oral administration of 0.05mmol/kg mel/HPβCD is below the limits 

of detection of the assay of 5ng/ml. Arsenic was detected in the plasma, 30 

seconds after the intravenous administration of 0.03mmol/kg mel/HPβCD. At 

this time point 3.97ng of arsenic was detected. However, this value is below the 

5ng/ml limit of quantification of the assay. No arsenic was detected within the 

plasma at any other time points sampled, therefore it can only be concluded 

that the concentration of arsenic within the plasma after I.V. administration of 

0.03mmol/kg mel/HPβCD is less than 5ng/ml.  

The detection of arsenic within the plasma and brain following intravenous 

administration of mel/HPβCD has been previously reported by Zirar et al. (Zirar 

et al., 2008). In this study 0.038mmol/kg of mel/HPβCD was administered I.V. to 

mice. Plasma and brain tissue was collected 0.5, 30 minutes, 1, 5, 8, 18, 24 and 

48 hours after administration of the compound. The samples were digested in 

nitric acid and hydrogen peroxide and the arsenic within the samples converted 

to arsine gas. The gas was bubbled through a solution of silver salt and the 

absorbance of the silver salt measured and compared to standards of known 

arsenic concentration in order to determine the arsenic content of the samples 

(Zirar et al., 2008). The maximum concentration (Cmax) of arsenic detected 

within the brain following the I.V. administration of 0.038mmol/kg of 
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mel/HPβCD was 0.25µmol/g. This is equivalent to 18.75µg of arsenic per gram of 

brain tissue. Assuming the average mouse brain weighs 0.5g, the total arsenic 

content of the brain was approximately 9.37µg. The maximum concentration 

(Cmax) of arsenic obtained in the plasma following the intravenous administration 

of mel/HPβCD was not determined in the study.  

In contrast to the study by Zirar et al., arsenic was not detected within the brain 

in the present study following the oral administration of mel/HPβCD. One 

possible explanation for the discrepancy between the two studies is the route by 

which the melarsoprol cyclodextrin complex was administered. In the present 

study mel/HPβCD was administered orally, while Zirar et al. administered the 

compound intravenously. This means that in the present study the concentration 

of arsenic reaching the brain is likely to be lower, as the drug must first pass 

through the gastrointestinal tract and be absorbed across the mucosal 

membrane before entering the bloodstream and finally the brain. In contrast, 

when intravenously administered, the compound enters the bloodstream 

immediately and can pass directly into the brain, leading to high concentrations. 

This could account for our failure to detect arsenic within the brain following 

oral administration of the complexes but it does not explain why arsenic could 

only be detected within the plasma 30 seconds after the I.V. administration of 

mel/HPβCD but at no other time points. One possible explanation for the 

difference in the plasma concentration of arsenic detected in the present study 

and that of Zirar et al. is the different assays used to quantify the total arsenic 

content of the samples (Zirar et al., 2008). In the present study GS-MS was used 

to quantify the total arsenic content of the plasma samples. The only ion the 

assay measures is arsenic therefore the technique is very sensitive and specific. 

The limit of detection of the assay is 5ng/ml. In contrast, Zirar et al. used a 

colorimetric method (Zirar et al., 2008). The arsenic within the samples was 

reduced under acidic conditions by the addition of zinc, generating arsine gas. 

The arsine was bubbled through a solution of silver salt of 

diethyldithiocarbamate in pyridine and the absorbance of the solution measured 

to quantify the arsenic content of the samples. Zirar et al. did not state the 

limit of detection of the assay but other studies using a similar method have 

quoted the limit of detection of the assay to be 100ng/ml (Baghel, Singh, Pandey 

and Sekhar, 2007; Dhar, Zheng, Rubenstone and van Geen, 2004; Talmi and 
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Bostick, 1975). This is 20 fold lower than the GS-MS assay. The colorimetric 

method is not able to accurately quantify the arsenic content of samples, as the 

zinc power used within the assay to generate arsine gas also contains arsenic. 

The concentration of arsenic measured by the colorimetric method is therefore 

not solely from the samples (Baghel et al., 2007; Jacobs and Nagler, 1942). This 

could account for why arsenic was detected in the plasma samples in the study 

conducted by Zirar et al. but not in the present study.  

In a previous study in which the arsenic content of human plasma samples was 

determined by atomic absorption spectrometry (AAS) following the intravenous 

administration of melarsoprol, 147ng/ml of arsenic was still detected twenty-

four hours after administration of the drug (Keiser, Ericsson and Burri, 2000). 

However, the dose of melarsoprol administered in the study was considerably 

larger than the dose given in the present study. In the study by Keiser et al. 

patients were administered 2.2mg/kg of melarsoprol (Keiser, Ericsson and Burri, 

2000). For a 50kg patient this is equivalent to 110mg of melarsoprol. In the 

present study, mice were administered 0.03mmol/kg of mel/HPβCD this is 

equivalent to 11.94mg/kg of melarsoprol. A mouse weighing 40g would therefore 

receive 0.478mg of melarsoprol. This is 230 fold less than the dose administered 

to patients in the study conducted by Keiser et al. (Keiser, Ericsson and Burri, 

2000). Immediately after administration of 2.2mg/kg of melarsoprol Keiser et al. 

detected 657ng/ml of arsenic within the plasma (Keiser, Ericsson and Burri, 

2000). In the present study, 3.97ng/ml of arsenic was detected in the plasma 30 

seconds after the administration of mel/HPβCD. This is approximately 165.5 

times lower than that detected in humans. In humans, by one hour after 

administration of 2.2mg/kg melarsoprol, the concentration of arsenic within the 

plasma had decreased to 417ng/ml (Keiser, Ericsson and Burri, 2000). 

Extrapolating this value down to mice, the arsenic concentration within the 

plasma 1 hour after administration of 0.03mmol/kg mel/HPβCD would be 

approximately 2.5ng/ml. This is below the limit of quantification of the GC-MS 

assay and thus could explain why arsenic was only detected thirty seconds after 

the intravenous administration of mel/HPβCD in the present study. In order to 

detect the concentration of arsenic within murine tissues following the 

administration of the melarsoprol cyclodextrin complexes, mel/HPβCD and 
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mel/RAMβCD, an assay with a greater degree of sensitivity is required. One 

possible option is inductively coupled plasma mass spectrometry (ICP-MS).  

ICP-MS was developed over 20 years ago by the Houk and Gray research groups 

(Date and Gray, 1981; Houk, Fassel, Flesch, Svec et al., 1980). It is a sensitive, 

accurate, and precise tool, by which to determine the total concentration of an 

element within a sample (Kawabata, Inoue, Takahashi and Endo, 1994). Ito et al. 

used dynamic reaction cell (DRC)-ICP-MS to quantify the total concentration of 

arsenic within whole blood, collected from patients who had a total arsenic 

urine concentration of greater than 50µg/ml (Ito, Palmer, Steuerwald and 

Parsons, 2010). The whole blood was lysed and diluted 1:49 with a reagent 

containing nitric acid and Triton-X and the total arsenic content determined by 

DRC-ICP-MS. The total concentration of arsenic detected within the samples 

ranged from 1.4 and 8.0µg/L. The limit of quantification of the assay was 

300pg/ml (Ito et al., 2010). This is 16.7 times more sensitive than the GC-MS 

assay described in the present study. The ability of ICP-MS to detect arsenic 

when present within the pico gram range in samples, means that it should be 

possible to detect the extremely low concentration of arsenic present within 

murine tissues, following oral or intravenous administration of mel/HPβCD and 

mel/RAMβCD, using this technique. Only the total concentration of arsenic 

within a sample can be quantified by ICP-MS but if the technique is coupled with 

a separation assay such as chromatography, it is possible to determine the 

species of the element present within the sample (B'Hymer and Caruso, 2004). 

Mandal et al. coupled ICP-MS with high performance liquid chromatography 

(HPLC) to separate eight species of arsenic (Mandal, Ogra and Suzuki, 2001). The 

species which could be separated using the technique included, arsenocholine, 

arsenobetaine, dimethylarsinic acid (DHAV), dimethylarsinous acid (DMAIII), 

monomethylarsonic acid (MMAV), monomethylarsonous acid (MMAIII), arsenite 

(AsIII) and arsenate (AsV). The limits of detection ranged from 0.14 to 0.33ng/ml. 

The technique was used to quantify the concentration and species of arsenic 

present within plasma samples collected from residents of an arsenic affected 

district in West Bengal, India (Mandal, Ogra, Anzai and Suzuki, 2004). Four 

species of arsenic, were detected in the plasma samples at concentration 

ranging from 1.28ng/ml to 2.56ng/ml. Ito et al. also used liquid chromatography 

(LC) coupled with ICP-MS to determine the species of arsenic within whole 
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blood, collected from patients with total urine arsenic concentrations greater 

than 50µg/l (Ito et al., 2010). The technique was able to separate five species of 

arsenic, arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), 

dimethylarsinic acid (DHAV) and arsenobetaine (AsB). The analysis was 

completed in twelve minutes and the limit of detection for each species was 

<0.3ng/ml (Ito et al., 2010). The studies conducted by Mandal et al. and Ito et 

al. demonstrate that ICP-MS when coupled with chromatography techniques 

enables the quantity and species of arsenic contained within biological samples 

to be accurately quantified (Ito et al., 2010; Mandal et al., 2004). ICP-MS 

coupled with chromatography, would enable the species of arsenic present 

within murine tissues following the administration of mel/HPβCD and 

mel/RAMβCD to be accurately determined and quantified. Furthermore, the 

technique would enable the full pharmacokinetic profile of the melarsoprol 

cyclodextrin complexes to be determined and the metabolic fate of melarsoprol, 

following administration to be elucidated. 

From these investigations it can be concluded that gas chromatography mass 

spectrometry (GC-MS) is an accurate and sensitive method for quantifying the 

total amount of arsenic, present within brain samples when the concentration of 

arsenic is above 5ng/ml. The concentration of arsenic present within the brain 

and plasma of mice administered the melarsoprol cyclodextrin complexes, 

mel/HPβCD and mel/RAMβCD is below 5ng/ml, for both oral and intravenous 

administration. The concentration of arsenic within the tissues could therefore 

not be determined by GC-MS. In order to quantify the total amount of arsenic 

present within tissues following administration of mel/HPβCD and mel/RAMβCD a 

more sensitive assay is required. Inductively coupled plasma mass spectrometry 

(ICP-MS) is one option.  



 

 

Chapter 7: General Discussion 
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7.1 The trypanocidal activity of mel/HP ββββCD and 

mel/RAM ββββCD 

The melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD were 

developed with the aim of reducing the toxicity of melarsoprol and providing an 

orally administrable formulation of the drug. This investigation has 

demonstrated that the trypanocidal activity of melarsoprol is retained, following 

its complexation with the cyclodextrins HPβCD and RAMβCD. Initial studies 

investigating the drug’s efficacy in-vitro against wild type T. b. brucei 

trypanosomes demonstrated that the IC50 of the complexed molecules was 

comparable to that of contemporary melarsoprol.  

When the activity of the drugs was investigated in-vivo, both mel/HPβCD and 

mel/RAMβCD were able to produce 100% cure rates in a murine model of CNS 

stage T. b. brucei infection, when administered orally, for seven consecutive 

days, at a dose of 0.05mmol/kg. In contrast, melarsoprol, when administered at 

the same dose and by the same route, produced cure rates of only 33.3%. This 

indicates that the cyclodextrins HPβCD and RAMβCD increase the oral 

bioavailability of melarsoprol. An increase in bioavailability of the compound 

occurs, as the cyclodextrins act as carriers, delivering the drug directly to the 

intestinal membrane. Once at the intestinal membrane, dissociation of the 

complexes occurs due to a simple mass action principle and the drug is absorbed 

across the intestinal mucosa (Stella et al., 1999). An increase in the oral 

bioavailability of poorly soluble drugs, by complexation is frequently reported. 

The oral bioavailability of the antimalarial artemisinin was improved, with no 

concurrent loss in activity by complexation with β and γ cyclodextrin (Wong and 

Yuen, 2001). In this study artemisinin, artemisinin/β or artemisinin/γ were 

administered at equivalent doses to healthy volunteers. The plasma drug levels 

obtained after administration of the two complexes were two fold higher than 

those obtained following administration of the compound alone. This indicates 

that the rate and extent of artemisinin absorption is increased by complexation 

with β and γ cyclodextrins (Wong and Yuen, 2001).   
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Administration of seven daily doses of mel/HPCD or mel/RAMβCD at a dose of 

0.05mmol/kg produced 100% cure rates in a murine model of CNS stage T. b. 

brucei infection. However, quantitative taqman PCR analysis demonstrated that 

all trypanosomes were eliminated from the brain, twenty-four hours after the 

administration of four doses of mel/HPβCD or five doses of mel/RAMβCD. This 

suggests that it may be possible to reduce the regime from seven doses to four 

daily doses of mel/HPβCD or five daily doses of mel/RAMβCD. This treatment 

regime is shorter than the currently used concise 10 day melarsoprol schedule 

for the treatment of CNS stage T. b. gambiense infections. During the current 

concise 10 day schedule the total amount of melarsoprol administered to 

patients is 1080mg for a 50kg patient (Burri et al., 1993). In the current study, 

the melarsoprol cyclodextrin complexes were administered at a daily dose of 

0.05mmol/kg. This is equivalent to 19.9mg/kg of melarsoprol a day. In order to 

obtain a human equivalent dose from an animal dose, the dose must be 

normalised to the body surface area. This means that to convert the dose 

administered to mice in the present study to a human equivalent dose, the dose 

must be divided by twelve (U.S.Department of Health and Human Services, 

2005). This means that the dose administered to humans would be 4.2µmol/kg. 

This is equivalent to 1.67mg/kg of melarsoprol a day. During a four day course of 

mel/HPβCD the total amount of melarsoprol which would be administered to a 

50kg patient would be 334mg, while for a five day course of mel/RAMβCD the 

total amount of melarsoprol given would be 417.5mg. This is 3.2 and 2.6 fold 

lower, respectively, than the total amount of melarsoprol currently 

administered during the concise 10 day schedule. By reducing the total amount 

of melarsoprol which is administered to patients, the safety profile of the drug 

may be improved.  

Melarsoprol is a highly toxic drug with a number of adverse reactions associated 

with its administration. The main side effect resulting from the administration of 

melarsoprol is a post-treatment reactive encephalopathy (PTRE), which occurs in 

up to 10% of patients, administered the drug, of which 50% die as a result of the 

complication. This gives melarsoprol an overall fatality rate of 5% (Kennedy, 

2004; Pepin and Milord, 1994). Numerous mechanisms have been proposed to 

explain the occurrence of the PTRE. Pepin and Milord suggested it results from 

the formation of inclusion complexes and the release of trypanosomal antigens 
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which bind to glial cells and become a target for antibodies and T lymphocytes 

(Pepin and Milord, 1991). However, Jennings et al. suggested an alternative 

mechanism. Jennings et al. proposed that administration of melarsoprol results 

in a rapid clearance of trypanosomes from the bloodstream but not the CNS. As 

a result the trypanosomes within the brain become the sole focus of the immune 

system resulting in an exacerbation of the pre-existing meningoencephalitis 

(Jennings et al., 1989). Based on this theory, Jennings and colleagues suggested 

that aggressive treatment schedules which simultaneously eliminate 

trypanosomes from the CNS and bloodstream could prevent the development of 

the PTRE. This hypothesis was tested in a study in which mice were administered 

either a subcurative or an aggressive treatment regime (Jennings et al., 1993). 

Meningoencephalitis was not observed in animals receiving the aggressive 

chemotherapy regime, while mice administered the subcurative regime, 

developed severe meningoencephalitis. The findings of this study supported the 

original hypothesis of Jennings et al. (Jennings et al., 1989). Quantitative 

taqman PCR (QPCR) experiments conducted during the present study indicate 

that complexed melarsoprol is a rapid and aggressive treatment regime. Twenty-

four hours after the administration of one dose of mel/HPβCD or mel/RAMβCD 

there is over a nine fold reduction in the number of copies of the PFR2 gene 

detected within the brain. Therefore if the hypothesis suggested by Jennings et 

al. (1989) is correct, treatment of CNS stage disease with mel/HPβCD or 

mel/RAMβCD should result in a reduced incidence of the PTRE, associated with 

the intravenous administration of contemporary melarsoprol. Thus the toxicity 

of melarsoprol should be reduced by complexation with the cyclodextrins HPβCD 

and RAMβCD. However, in order to confirm this hypothesis the time course of 

trypanosome elimination from the brain following the I.V. administration of 

contemporary melarsoprol would have to be investigated. In the present study 

this was not possible as administration of multiple doses of contemporary 

melarsoprol I.V. to mice is not viable as the propylene glycol solvent in which 

the drug is dissolved causes severe necrosis in the tissues adjacent to the 

injection site precluding further drug administration. The rate of elimination of 

the PFR2 gene following complexed melarsoprol or contemporary melarsoprol 

chemotherapy could therefore not be directly compared in the present study.   
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The PTRE is not exclusively associated with HAT patients as it has also been 

observed in patients with acute promyelocytic leukaemia (APL) who were given 

melarsoprol (Soignet et al., 1999). Melarsoprol was administered I.V. as three 

series, of three doses of escalating concentration. An initial dose of 1mg/kg was 

given on day 1, followed by 2mg/kg on day 2 and 3.6mg/kg on day 3. During the 

second week of treatment three out of the eight patients developed generalised 

seizures. It was suggested that the CNS toxicity observed was due to a direct 

toxic effect of the drug (Soignet et al., 1999). During complexed melarsoprol 

chemotherapy the total dose of melarsoprol administered to patients would be 

reduced compared to the concise 10 day schedule of contemporary melarsoprol. 

If arsenical toxicity is responsible for the PTRE, reducing the total amount of 

melarsoprol which is administered to patients should result in a reduced 

incidence of the PTRE. Furthermore, when the melarsoprol cyclodextrin 

complexes are administered, the melarsoprol is gradually released over a 

prolonged period of time from the cyclodextrin cavity. Patients are therefore 

not exposed to a ‘bolus’ of the drug as is the case with the I.V. administration of 

contemporary melarsoprol. This controlled and sustained release of melarsoprol 

obtained with complexed melarsoprol should therefore reduce the toxicity of 

the drug and prevent the occurrence of the PTRE.  

Development of the PTRE is not the only problem associated with the 

administration of contemporary melarsoprol. The poor solubility of the drug 

means it must be dissolved in the solvent propylene glycol. This means 

administration of the drug is very painful and extreme care must be taken when 

administering the drug intravenously as if the solution leaks into the tissues 

surrounding the vein severe necrosis can occur (World Health Organisation, 

1998). As the drug has to be administered intravenously patients must be 

hospitalised for the entire duration of the treatment regime. This places an 

enormous strain on the hospitals which have very limited resources and also on 

the patients’ families who must accompany the patients to the hospital. 

Complexed melarsoprol is orally administrable therefore the problems 

associated with the intravenous administration of contemporary melarsoprol 

therapy are instantly eliminated. Furthermore, due to being orally 

administrable, patients could receive treatment at their local health centre by 

community health workers thereby relieving the pressure on hospitals. The 
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complexes could be provided pre-packaged, with the dose clearly indicated, so 

patients could take the drugs themselves. A similar scheme is currently in 

operation for the treatment of malaria. A presumptive diagnosis of malaria is 

made by specially trained members of the community. Patients are then given a 

course of pre-packed antimalarials based on their weight, which they can take 

within their own home. The packaging is clearly designed so that the patient 

knows which tablets to take each day (Hopkins, Talisuna, Whitty and Staedke, 

2007). However, although the scheme has increased the access to antimalarial 

treatment, patient compliance is often a problem. In one study conducted in 

Ghana, Nigeria and Uganda, the percentage of children receiving the correct 

dose and completing the treatment regime, ranged from 74 to 97% (Ajayi, 

Browne, Garshong, Bateganya et al., 2008). If patients do not complete the 

specified treatment regime, parasites will be exposed to subcurative drug levels, 

which could lead to the development of resistance. Treatment failures following 

melarsoprol chemotherapy of 30% have already been reported in certain regions 

of Uganda (Legros et al., 1999). Drug resistance is therefore a real threat in the 

treatment of HAT and measures would have to be taken to ensure that patients 

received the correct dose and completed the full chemotherapy regime.  

The only oral trypanocide currently in clinical development is the nitroimidazole 

fexinidazole (Torreele et al., 2010). In-vitro the IC50 of fexinidazole against T. b. 

rhodesiense trypanosomes was 48 to 82ng/ml. In contrast, the IC50 of the 

melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD against T. b. 

brucei trypanosomes was 8.6ng/ml and 3.50ng/ml respectively. However, the in-

vitro trypanocidal activity of fexinidazole and the melarsoprol cyclodextrin 

complexes cannot be directly compared due to the different parasite strains 

used in the two studies. In an in-vivo murine model of CNS stage T. b. brucei 

infection, mel/HPβCD and mel/RAMβCD produced 100% cure rates when 

administered orally, at a dose of 0.05mmol/kg (19.9mg/kg), daily, for seven 

consecutive days. Fexinidazole, in the same model was only able to cure 87.5% 

of the animals, when administered orally at a dose of 200mg/kg, daily, for five 

days (Torreele et al., 2010). If equivalent figures are seen in the treatment of 

human trypanosomiasis this means that for every 100 patients treated with 

fexinidazole 12 will relapse and will have to receive alternative treatment. 

Fexinidazole entered phase I clinical trials in September 2009 in order to 
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establish the drug’s pharmacokinetics and tolerability in healthy African 

volunteers. If successful, the compound is expected to progress to phase II 

clinical trials. However, despite the initial promising data, there is no guarantee 

that fexinidazole will successfully complete all stages of the clinical trials and 

be approved for the treatment of HAT. It is therefore important to have other 

drug candidates in development. Based on the findings from the current 

investigation, the melarsoprol cyclodextrin complexes mel/HPβCD and 

mel/RAMβCD are two possible candidates.   

7.2 The effect of mel/HP ββββCD chemotherapy on the 

integrity of the blood-brain barrier  

In the present investigation the ability of mel/HPβCD chemotherapy to rapidly 

restore the integrity of the blood-brain barrier (BBB) was demonstrated. The BBB 

is disrupted during trypanosome infection but the exact mechanism as to how 

trypanosomes traverse the barrier and invade the CNS remains unclear. Mulenga 

et al. demonstrated that trypanosome traversal of the BBB was not associated 

with a loss of tight junction proteins (Mulenga et al., 2001). However, in a MRI 

study conducted by Rodgers et al., at 28 days post-infection in mice infected 

with T. b. brucei, the integrity of the BBB was found to be compromised 

(Rodgers et al., 2011). Histological examination revealed, minimal inflammatory 

cell infiltration of the meninges and perivascular space, furthermore, there was 

no correlation between the areas of meningoencephalitis and regions of BBB 

breakdown (Rodgers et al., 2011). In the present investigation a mild 

inflammatory reaction was still present within the brain 14 days after the 

integrity of the BBB had been restored. This finding suggests that the breakdown 

in the BBB observed in trypanosome infections, is not due to the presence of a 

CNS inflammatory reaction. The rapid restoration of the BBB following the 

elimination of trypanosomes from the CNS, observed in the present study, 

suggests that either the trypanosomes directly, or their secretory products, 

disrupt the BBB. The work of Grab et al. and Nikolskaia et al. in an in-vitro 

model of the BBB supports this hypothesis (Grab et al., 2009; Nikolskaia et al., 

2006). Grab et al. proposed that trypanosomes release cysteine proteases in 

particular, brucipain, which triggers the release of intracellular calcium through 

the activation of protease activated receptors (PARs). Calmodulin (CaM) 
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activation of myosin light chain kinase (MLCK), subsequently leads to a 

rearrangement of the cytoskeleton and barrier dysfunction (Grab et al., 2009; 

Nikolskaia et al., 2006). Following the elimination of trypanosomes from the 

CNS, the integrity of the BBB should be restored as parasite derived cysteine 

proteases will no longer be released. In the current investigations, the 

melarsoprol cyclodextrin complexes, mel/HPβCD and mel/RAMβCD, rapidly 

eliminated trypanosomes from the brain, thus preventing further release of 

trypanosome derived cysteine proteases and damage to the BBB. The BBB was 

thus able to repair itself and barrier function was restored. In order to gain 

concrete evidence that the release of trypanosome derived cysteine proteases 

are responsible for the BBB damage observed in trypanosome infection, further 

investigations are required. One possible option is to develop a murine model in 

which expression of the PARs genes has been decreased. If activation of PARs by 

trypanosome derived cysteine proteases is responsible for the BBB damage 

observed in trypanosome infections, the level of BBB disruption should be 

reduced in mice in which PARs expression has been decreased.  

7.3 Future work 

The investigations in the present study demonstrate that the melarsoprol 

cyclodextrin complexes mel/HPβCD and mel/RAMβCD are promising oral 

candidates for the treatment of CNS stage trypanosome infections. However, if 

the complexes are to progress into clinical trials, further investigations are 

required. In order for complexed melarsoprol to be considered for clinical trials 

the pharmacokinetics of the complexes must be determined. In the present 

study the pharmacokinetics of the complexes was investigated by gas 

chromatography mass spectrometry (GC-MS). However, the total concentration 

of arsenic reaching the plasma and brain following oral administration of the 

complexes appears to be within the sub-nanogram range. The limit of detection 

of arsenic using the GC-MS technique is 5ng/ml, a more sensitive technique is 

therefore required to determine the pharmacokinetic properties of the 

melarsoprol cyclodextrin complexes. As discussed in chapter 6, one possible 

option is inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a 

highly sensitive technique, able to detect arsenic concentrations in the picogram 

range. Furthermore, if the method is coupled with a separation technique such 
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as chromatography, the species of arsenic present within the samples could be 

determined (B'Hymer and Caruso, 2004). This would provide important insights 

into the metabolic fate of melarsoprol following its administration, as currently 

very little is known about the active metabolites of melarsoprol.  

Mel/HPβCD and mel/RAMβCD were able to cure murine CNS stage T. b. brucei 

infection when administered daily, for seven consecutive days, at a dose of 

0.05mmol/kg. Subsequent quantitative taqman PCR (QPCR) analysis revealed all 

trypanosomes were eliminated from the CNS twenty-four hours after the 

administration of four doses of mel/HPβCD or five doses of mel/RAMβCD. This 

indicates that the number of doses of the complexes could be reduced from 

seven to four doses of mel/HPβCD and five doses mel/RAMβCD. However, QPCR 

analysis also revealed that very low copy numbers of the PFR2 gene were 

present within the brain after the administration of three doses of each 

complex. It is not known if this represents a viable population of trypanosomes. 

Further, in-vivo experiments are required in order to determine if the 

trypanosomes present within the brain after administration of three doses of the 

complexes can sustain the infection. If the trypanosomes are not viable it would 

enable the treatment regime to be reduced even further.    

In the present study the integrity of the blood brain barrier (BBB) was restored 

by twenty-four hours after the completion of mel/HPβCD chemotherapy. 

However, the exact point during the chemotherapy regime, at which barrier 

function is restored, is currently unknown. Serial MRI scanning twenty-fours 

after the administration of each dose of the complex would enable the point 

during the chemotherapy regime at which the integrity of the BBB is restored to 

be identified. This could then be compared to the number of trypanosomes 

present within the brain at that time point to establish if any correlation exists 

between the restoration of barrier function and the presence of trypanosomes 

within the CNS. Only the effect of mel/HPβCD chemotherapy on the BBB was 

investigated in the present study but the investigations could also be conducted 

for mel/RAMβCD to establish if there is any difference between the two 

complexes in their ability to restore BBB function. 
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The PTRE is a serious adverse reaction associated with melarsoprol treatment. 

The mechanisms behind the occurrence of the PTRE are poorly understood with 

numerous hypotheses proposed including, subcurative chemotherapy, arsenical 

toxicity and autoimmune mechanisms (Hunter, Murray, Jennings, Adams et al., 

1992; Jennings et al., 1989; Pepin, Milord, Khonde, Niyonsenga et al., 1995; 

Soignet et al., 1999). Recent analysis of cytokine levels within the CSF and 

plasma of late stage HAT patients has revealed that the degree of 

meningoencephalitis maybe regulated by pro and counter inflammatory 

cytokines. Lejon et al. found elevated levels of IL-6, IL-8 and IL-10 in the CSF of 

late stage T. b. gambiense patients (Lejon, Lardon, Kenis, Pinoges et al., 2002). 

The counter inflammatory cytokine IL-10 was also significantly increased in the 

plasma and CSF of late stage T. b. rhodesiense patients. However, following 

successful completion of chemotherapy the cytokine level was comparable to 

that observed in uninfected patients (MacLean, Odiit and Sternberg, 2001). In 

order to investigate further the effect of successful chemotherapy on the levels 

of pro and counter inflammatory cytokines within the brain, quantitative taqman 

PCR could be utilised to quantify the cytokines present within the brain during 

complexed melarsoprol chemotherapy. Furthermore, the cytokine levels could 

be compared with the number of trypanosomes present within the brain and 

regions of neuroinflammation, to determine if any correlation existed.  

7.4 Conclusions 

The main findings which can be drawn from the present study are: 

• The trypanocidal activity of melarsoprol is retained following its 

complexation with the cyclodextrins HPβCD and RAMβCD. 

• The cyclodextrins HPβCD and RAMβCD increase the oral bioavailability of 

melarsoprol. 

• The melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD are 

able to cure CNS stage murine T. b. brucei infection when administered 

orally, daily, at a dose of 0.05mmol/kg, for seven consecutive days. 

Melarsoprol, cymelarsan and trimelarsen, when administered at an 
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equivalent dose, following the same treatment regime produced 

unsatisfactory cure rates. 

• The human equivalent dose of mel/HPβCD and mel/RAMβCD is lower than 

the melarsoprol dosage currently administered to patients during the 

concise 10 day schedule.  

• Mel/HPβCD and mel/RAMβCD are rapidly trypanocidal, with all 

trypanosomes eliminated from the brain by twenty-four hours after 

administration of four doses of mel/HPβCD and five doses of mel/RAMβCD. 

Thus indicating the potential for further reductions in the dosage required 

for successful chemotherapy.   

• The integrity of the blood-brain barrier (BBB) as determined by MRI analysis 

is fully restored by twenty-four hours after administration of the seventh 

dose of mel/HPβCD.  

• The rapid restoration of BBB function following the elimination of 

trypanosomes from the brain, suggests that trypanosomes either directly or 

through the release of secretory products may cause the BBB damage 

observed in trypanosome infections.   

• No signs of the PTRE were observed in animals following administration of 

mel/HPβCD and mel/RAMβCD indicating that the neurotoxicity of 

melarsoprol may be reduced following complexation with HPβCD and 

RAMβCD.    

• The melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD are 

well tolerated in the mouse, following oral administration with no adverse 

treatment related reactions detected.  

In conclusion the melarsoprol cyclodextrin complexes mel/HPβCD and 

mel/RAMβCD are promising oral candidates for the treatment of CNS stage 

trypanosome infections. At present chemotherapy of CNS stage trypanosome 
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infections is reliant on either nifurtimox eflornithine combination therapy 

(NECT) for the treatment of T. b. gambiense infections or melarsoprol for the 

treatment of T. b. rhodesiense infections. Melarsoprol is extremely toxic with 

an overall fatality rate of 5%. Although NECT therapy is associated with less 

adverse reactions than melarsoprol, eflornithine must be administered by slow 

intravenous administration every twelve hours for seven days. This places a 

considerable strain on hospitals which have limited resources and also on 

patients’ families who must accompany the patients to hospital. A drug which 

is orally administrable would eliminate the need for patients to be 

hospitalised, thus alleviating the strain on hospitals and patients’ families. 

Furthermore, an orally available drug can be administered by the patients 

themselves, freeing up essential doctors and nurses. Currently, only one orally 

administrable drug, fexinidazole, is in clinical trials. It is essential that other 

orally available drugs are developed so that treatment of HAT does not 

become dependant on one drug.  

The melarsoprol cyclodextrin complexes mel/HPβCD and mel/RAMβCD are 

promising oral candidates for the treatment of HAT. The complexes are highly 

trypanocidal, orally administrable, well tolerated and consist of short 

treatment regimes. These are essential characteristics that a compound must 

posses if it to be considered as a potential new trypanocide. With further 

toxicological and pharmacokinetic studies it should be possible for the 

melarsoprol cyclodextrin complexes, mel/HPβCD and mel/RAMβCD, to enter 

into clinical trials. This would represent a huge breakthrough in the search for 

new trypanocides and could revolutionise the treatment of HAT.    
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Calculation of the oral dose of complexed melarsopr ol 

The amount of complex required to provide a melarsoprol dose of 0.05mmol/kg 

was calculated. 0.05mmol/kg is equivalent to: 

� 0.05mmol/1000g 

� 0.05µmol/1g 

The dose was prepared per 10g of body weight, 10g is therefore equivalent to 

0.5µmols of melarsoprol. For ease of administration the 0.5µmols was prepared 

in a volume of 0.1ml which is equivalent to: 

� 5µmols/ml 

� 5mmols/l 

To prepare a dose of 0.05mmol/kg, 5mmols of melarsoprol is required per litre: 

� 1M melarsoprol = 398g/l 

� 1000mM = 398g/l 

� 1mM = 0.398g/l 

� 5mM = 1.99g/l 

� 5mM = 0.00199g/ml 

� 5mM = 2mg/ml 

To prepare a melarsoprol solution of 0.05mmol/kg, 2mg of melarsoprol per ml is 

required. The ratio of melarsoprol to cyclodextrin within the complexes as 

determined by HPLC analysis is 1:17 for mel/HPβCD and 1:14 for mel/RAMβCD. 

This ratio has to be taken into account when calculating the amount of each 

complex required to obtain a melarsoprol dose of 0.05mmol/kg: 

� 0.05mmol/kg of mel/HPβCD = 2x17 = 34mg/ml 

� 0.05mmol/kg of mel/RAMβCD = 2x14 = 28mg/ml 

To obtain a dose of 0.05mmol/kg 34mg/ml of mel/HPβCD and 28mg/ml of 

mel/RAMβCD is therefore required. 
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Calculation of the intravenous dose of mel/HP ββββCD 

The amount of melarsoprol required to provide a dose of 0.03mmol/kg was 

calculated. 0.03mmol/kg is equivalent to: 

� 0.03mmol/1000g 

� 0.03µmols/1g 

The dose was prepared per 10g of bodyweight, 10g is therefore equivalent to 

0.3µmols of melarsoprol. For ease of administration 0.3µmols was prepared in a 

volume of 0.05ml which is equivalent to: 

� 6µmols/ml 

� 6mmols/l 

To prepare a dose of 0.03mmol/kg, 6mmols of melarsoprol per l is required: 

� 1M melarsoprol = 398g/l 

� 1000mM = 398g/l 

� 1mM = 0.398g/l 

� 6mM = 2.388g/l 

� 6mM = 0.002388g/ml 

� 6mM = 2.388mg/ml 

To prepare a dose of 0.03mmol/kg, 2.388mg of melarsoprol per ml is required. 

The ratio of cyclodextrin to melarsoprol in the mel/HPβCD complex is 1:17. This 

ratio must be taken into account when calculating the amount of mel/HPβCD 

required to obtain a dose of 0.03mmol/kg:  

� 2.388 x 17 = 40.6mg/ml 

40.6mg/ml of mel/HPβCD is therefore required to provide a dose of 

0.03mmol/kg.  
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Alamar blue  

Alamar blue       12.5mg 

Dissolve the Alamar blue in 100ml of 1 x PBS and mix well. Filter sterilise the 

solution with a 0.22µm syringe filter in an aseptic environment. Store at 4°C, 

protected from the light for up to 2 months.  

LB/Agar 

LB broth       5g 

Agar        5g 

Dissolve the LB broth and agar in 250ml of distilled water. Sterilise the solution 

by autoclaving. 

Phosphate buffered saline (PBS) 

Di-sodium hydrogen phosphate (anhydrous)  1.48g 

Potassium di-hydrogen phosphate (anhydrous)  0.43g 

Sodium chloride      7.2g 

Add salts to 800ml of distilled water with constant stirring. Adjust the pH to 7.4 

and make the total volume up to 1 litre with distilled water.   

Phosphate glucose buffer saline (PGBS) 

Stock buffer (without glucose) 

Di-sodium hydrogen phosphate anhydrous  13.48g 

Sodium dihydrogen phosphate anhydrous  0.622g 

NaCl        4.25g 

Dissolve salts in 1l of distilled water and adjust the pH to 8.0 

Working solution 

Dilute the stock buffer 6:4 in distilled water and add 15g/l glucose 
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TNB blocking buffer (for use in TSA TM biotin system) 

Solution A 

Tris (Mw = 121.1)      121.14g 

Dissolve in 1l of distilled water and adjust the pH to 7.5 

Solution B 

NaCl        87.66g 

Dissolve in 1l of distilled water 

Working solution 

Mix 10ml of solution A with 10ml of solution B. Gradually add 500µl of blocking 

reagent (supplied in kit) while continually stirring.  Make up to a final volume of 

100ml with distilled water and gradually heat the solution to 60°C while 

continually stirring in order to completely dissolve the blocking reagent. 

TNT wash buffer (for use in TSA TM biotin system) 

Solution A 

Tris (Mw = 121.1)      121.14g 

Dissolve in 1l of distilled water and adjust the pH to 7.5 

Solution B 

NaCl        87.66g 

Dissolve in 1l of distilled water 

Working solution 

Mix 100ml of solution A with 100ml of solution B. Add 500µl of Tween 20 and 

make up to a final volume of 1l with distilled water. 
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0.2M phosphate buffer 

Solution A 

Sodium dihydrogen phosphate    6.24g 

Dissolve in 100ml of distilled water 

Solution B 

Disodium hydrogen phosphate    5.66g 

Dissolve in 100ml of distilled water 

Working solution 

Mix 9.5ml of solution A with 40.5ml of solution B and make up to 100ml with 

distilled water, adjust the pH to 7.4.  

4% paraformaldehyde 

Paraformaldehyde      1g 

Dissolve paraformaldehyde in 10ml of distilled water at 60°C with constant 

stirring. Once dissolved, cool the solution and add 12.5ml 0.2M phosphate buffer 

(see above). Adjust the pH to 7.3 and the total volume to 25ml with distilled 

water. Store at 4°C for up to 24 hours or at -20°C for longer periods.  

10mM Tris pH 8.0  

Tris (Mw = 121.1)      1.214g 

Dissolve the salt in 800ml of distilled water. Adjust the pH to 8.0 by the addition 

of HCl and make up the final volume to 1l with distilled water. 

20x SSC (Salt Sodium Citrate) 

Sodium chloride      175.3g 

Sodium citrate      88.2g 



248 

 

Dissolve the salts in 800ml of distilled water. Adjust the pH to 7.0 and make up 

the final volume to 1l with distilled water. Differing strengths of SSC can be 

prepared by dilution of the x20 stock with distilled water. 

100mm Tris/150mm NaCl pH 7.5 (TBS) 

Solution A 

Tris (Mw = 121.1)      121.4g 

Dissolve in 1l of distilled water. 

Solution B 

NaCl        87.66g 

Dissolve in 1l of distilled water 

Working solution 

Mix 100ml of solution A with 100ml of solution B and add 750ml of distilled 

water. Adjust the pH to 7.5 and make up to the final volume of 1l with distilled 

water.  
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Source of chemicals 

Alamar Blue      Sigma Aldrich 

Ampicillin      Sigma Aldrich 

Anti-digoxigenin antibody Fab    Roche 
Fragments from sheep 

BCIP/NBT Alkaline Phosphatase   Vector Laboratories 
Substrate kit  
(5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium) 

Crimp cap two part tin and   Speck and Burke Analytical 
Blue aluminium with silicone/PTFE  
liner 20mm 

DAB( 3,3’ diaminobenzidine)   Vector Laboratories 
Substrate kit 

Dextran sulphate     Sigma Aldrich 

DH5α competent cells    Invitrogen 

DNA/RNase free water    Sigma Aldrich 

GdDPTA magnevist     Bayer Health Care    
       Pharmaceuticals  

Headspace Vial      Speck and Burke Analytical 
(Vial crimp top 20ml) 

Heparin      Martindale Pharmaceuticlas 

HCl       Fisher Scientific 

High Pure Plasmid Isolation kit   Roche 

Histoclear      Raymond A Lamb 
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HMI-9 + 10% FCS + β-mercaptoethanol  Invitrogen 

HPβCD       Sigma Aldrich 

Hydrogen peroxide (30%)    VWR 

Injectable saline     Martindale Pharmaceuticals 

Kanamycin      Sigma Aldrich 

L-Ascorbic acid     BDH Limited 

LB broth      Sigma Aldrich 

Levamisole solution     Vector Laboratories 

Mouse monoclonal [HRP.21H8] to   Abcam 
Digoxigenin (HRP) antibody 

Nitric acid      VWR 

Paraformaldehyde     Sigma Aldrich 

Pepsin       Sigma Aldrich 

Potassium iodide     Sigma Aldrich 

Proteinase K      Applichem Gmbh 

Qiagen DNeasy DNeasy blood   Qiagen 
and tissue kit 

RAMβCD      Sigma Aldrich 

RNase Away solution    VWR 

Sodium borohydride     Sigma Aldrich 
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Sterile H2O      Baxter Health Care 

Sterile normal saline    Baxter Health Care 

Taqman Brilliant II master mix   Agilent 

Tyramide signal amplification   PerkinElmer 
system (TSATM) 

Vector Red Alkaline Phosphatase   Vector laboratories  
substrate kit 
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