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Abstract 

Methylation of CpG dinucleotides is the major epigenetic modification of mammalian 

DNA which results in the remodelling of transcriptionally active euchromatin to 

transcriptionally inactive heterochromatin.  Recognition of methylated CpG by 

methylated DNA binding proteins, the MBD family, the Kaiso zinc finger family and the 

SRA domain proteins results in deacetylation and methylation of histone side chains 

through the recruitment of HDAC and HMT enzymes.  Methylation of DNA is a 

heritable process ensuring Methylation dependant transcriptional repression is passed 

from mother to daughter cell during replication.  Some of the proteins involved in this 

chromatin remodelling, MBD1, DNMT1, MLL, and CFP1 contain CXXC domains.  

hMBD1 contains 2 or 3 CXXC domains depending on the splice variant, with only the 

third CXXC domain shown to bind CpG dinucleotides.     

 

This thesis describes the work done to elucidate the structure of hMBD1 CXXC1 and to 

investigate hMBD1 CXXC12 di-domain by NMR spectroscopy and biochemical 

characterisation.  The hMBD1 CXXC1 & CXXC12 domains were successfully over 

expressed in E. coli and purified.  Unlabelled and uniformly 15N labelled proteins were 

produced for nuclear magnetic resonance (NMR) studies.  Assignment of NMR spectra 

was carried out and constraints generated enabling structure determination of hMBD1 

CXXC1 and to investigate the relationship between CXXC1 and CXXC2 of hMBD1.  

 

The solution structure of hMBD1 CXXC1 determined here was compared to the 

previously determined solution structure of hMLL CXXC in order to investigate their 

differences in DNA binding.  NOE data from hMBD1 CXXC1 and CXXC12 are 

compared in order to investigate the domain structure of CXXC12.  DNA titration of 

hMBD1 CXXC1 showed no significant interaction with a single CpG oligo while the 

loop region of hMBD1 CXXC1 differs significant in both structure and surface charge 

suggesting the loop region to be important for DNA binding.  The recorded NOE data of 

hMBD CXXC12 suggests the two CXXC domains form a globular rather than a linear 

structure      

 

 

 

 

 



 3 

Table of Contents 

 

Abstract           2 

List of tables          6 

List of figures          7 

Acknowledgments         11 

Declaration          12 

Abbreviations          13 

Chapter 1 Introduction part 1 - Epigenetics     14 

1.1 Epigentics          15 

1.2 Chromatin structure        17 

1.3 DNA Methylation         21 

1.4 Methylated DNA binding proteins       23 

 1.4.1 MeCP2            24 

 1.4.2 MBD1         25 

 1.4.3 MBD2         27 

 1.4.4 MBD3         28 

 1.4.5 MBD4          29 

 1.4.6 MBD domain structures       30 

 1.4.7 The Zinc finger family of methyl-CpG binding proteins   31 

 1.4.8 Methylated CpG binding via the SRA domain    32 

1.5 Epigenetic disease         32 

 1.5.1 Rett syndrome        33 

 1.5.2 Disease associated with other MBD proteins    34 

 1.5.3 Disease associated with Hypermethylation    35 

1.6 Non-methylated CpG and CXXC domains     36 

Chapter 2   Introduction part 2 – Protein NMR     39 

2.1 Nuclear magnetic resonance       40 

 2.1.1 Basic Theory of one dimensional NMR     40 

2.2 Homonuclear 1H NMR        41 

 2.1.1 Water suppression       41 

 2.2.2 1D homonuclear NMR       42 

 2.2.3 2D Homonuclear 1H NMR      44 

2.3 Protein Assignment using 1H homonuclear data     46 

 2.3.1 Correlation spectroscopy       47 



 4 

 2.3.2 Nuclear Overhauser Effect Spectroscopy     50 

 2.3.3 Sequential Assignment       50 

2.3 Heteronuclear NMR         51 

 2.3.1 2D 15N-HSQC        52 

 2.3.2 3D 15N heteronuclear NMR experiments    53 

2.4 Data Processing         55 

 2.4.1 Pre-Fourier transformation data processing    55 

 2.4.2 Post-Fourier transformation data processing    57 

2.5 Alternative to DFT processing       58 

2.6 important considerations for recording NMR spectra    59 

 2.6.1 Temperature, pH and Salt      59 

 2.6.2 Protein size        62 

Chapter 3 Sample preparation & NMR spectroscopy of hMBD1 CXXCC3 64 

3.1 Cloning of hMBD1 CXXC1 Domain      65 

3.1.1 Bacterial transformations      65 

3.1.2 Agarose Gel Electrophoresis      65 

3.1.3 Considerations when choosing domain size to express   65 

3.1.4 PCR of hMBD1 CXXC1 Domain     66 

3.1.5 Cloning of PCR product into pGEM-T easy    68 

3.1.6 Cloning of MBD1 CXXC1 into pGEX-6P1    70 

3.2 Protein Sample preparation       71 

3.2.1 Expression of hMBD1 CXXC1 domain     71 

3.2.2 Purification of hMBD1 CXXC1 domain     72 

3.2.3 Sample concentration and buffer exchange    73 

3.3 NMR spectroscopy        74 

3.3.1 DNA Titration of hMBD1 CXXC1     74 

Chapter 4 Chemical shift assignment and structure calculation of  

hMBD1 CXXC1          76 

4.1 NMR protein structure calculation       77 

4.2 Is the protein is structured?       77 

4.3 Sequence specific resonance assignment of hMBD1 CXXC1    79 

 4.3.1 Overlapping regions make sequential assignment difficult  79 

4.3.2 Assignment of phenylalanine side chains    81 

4.3.3 Assignment using 3D spectra      82 

4.4 Structure calculation of hMBD1 CXXC1 using ARIA    87 



 5 

 4.4.1 Structure calculation using constraints generated by Analysis  87 

 4.4.2 Structure calculation using constraints generated by ARIA  88 

 4.4.3 Additional restraints used by ARIA during structure calculations 89 

 4.4.4 Spin diffusion        90 

 4.4.5 Iterative structure calculation scheme     90 

 4.4.6 Analysis and report files       93 

Chapter 5   Structure and Functional analysis of hMBD1 CXXC1  95 

5.1 Overview          96 

5.1.1 The solution structure of hMBD1 CXXC1    96 

5.1.2 Precision of the ensemble of hMBD1 CXXC1 structures  99 

5.1.3 Geometric analysis of the ensemble of hMBD1 CXXC structures 99 

5.2 Structural features of the hMBD1 CXXC1 zinc binding motifs   102 

5.3 hMBD1 CXXC1 does not bind CpG DNA     106 

 5.3.1 15N HSQC DNA titration of hMBD1 CXXC1 reveals no protein  

DNA interaction        107 

5.3.2 Why does hMBD1 CXXC1 not bind DNA?    109 

5.4 Comparison of the loop region of hMBD1 CXXC1 and hMLL CXXC  112 

5.5 conclusion          114 

Chapter 6   NMR study of hMBD1 CXXC12     116 

6.1 Overview          117 

6.2 Cloning, expression of hMBD1 CXXC12      117 

6.3 Purification of hMBD1 CXXC12       120 

6.4 NMR studies of hMBD1 CXXC12      121 

 6.4.1 Is hMBD1 CXXC12 structured      122 

 6.4.2 Is CXXC1’s structure affected by the presence of CXXC2  123 

6.5 Conclusions         125 

Appendices          126 

Appendix A          126 

Appendix B Ramachandran plots, χ1torsion angle distributions and average 127 

 secondary structure for the final ensemble of hMBD1 CXXC structures   

Appendix C Chemical shift assignments of hMBD1 CXXC1   134 

References          137 

 

 

 



 6 

List of Tables 

 

 

Table 3.1 Acquisition parameters of NMR experiments    75 

Table 4.1 list of protons and their amino acids that could not be assigned  84 

Table 4.2 Parameters used for generating distance constraints using CcpNMR   

Analysis software          88 

Table 4.3 Additional restraints used by ARIA for zinc co-ordination by four  

cysteine residues          89 

Table 4.4 Iterative strategy for the structure calculation of hMBD1 CXXC1 using  

ARIA           92 

Table 5.1 RMSD of the final structures in the ensemble calculated to an unbiased  

mean           99 

Table 5.2 Summary of the Ramachandran statistics for the ensemble of 25  

hMBD1 CXXC1 structures.          100 

Table 5.3 Experimental restraint statistics for hMBD1 CXXC1   101 

Table 5.4 Pairwise backbone RMSD of CXXCXXC motifs compared to the  

CXXCXXC motifs from hMBD1 CXXC1 domain      105 

Table 5.5 List of residues involved in electrostatic interaction with DNA from  

hMLL CXXC1          110 

Table 6.1 Primers used for the PCR amplification of hMBD1 CXXC12  117 

Table 6.2 Amino acid sequence of the cloned hMBD1 CXXC12 domain   118 

Table 6.3 Acquisition parameters of the NOESY experiment     121 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

List of Figures 

 

 

Figure 1.1 X-ray crystal structure of the nucleosome core particle   17 

Figure 1.2a diagram of the 11 nm beads on a string conformation showing  

histone tails          19  

Figure1.2b The various histone tail covalent modifications    19 

Figure 1.3 schematic representations of MBD1 splice variants with   

different combinations of CXXC domains      25 

Figure 1.4.Model Summarizing the Function of MBD1 Complexes in  

Transcriptional Repression and DNA Replication-Coupled Maintenance of  

Histone H3-K9 Methylation        26 

Figure 1.5 Schematic representation of the two isoforms of MBD2   27 

Figure 1.6 Superposition of unbound MeCP2 and MeCP2 bound to DNA  30 

Figure 1.7 Alignment of CXXC domains from hMLL, hDNMT1, hCGBP,  

MBD1 CXXC1, CXXC2, CXXC3       36 

Figure 1.8 Stereo view of the solution structure of the MLL CXXC domain in  

cartoon form          37 

Figure 1.9 Stereo view of the solution structure of the MLL CXXC domain in  

complex with DNA         38 

Figure 2.1 Effect on the potential energy of the spin states on a nucleus when an  

external magnetic field is applied        40 

Figure 2.2 Schematic diagram of a simple 1D NMR experiment   43 

Figure 2.3 Effect of applying an external RF field (red) of sufficient strength along  

the x axis          43 

Figure 2.4 Fourier transformation of a time domain to a frequency domain  43 

Figure 2.5 1D 1H spectra of MBD1 CXXC1 relating chemical shift (in ppm) to  

different chemical environments for 1H protons     44 

Figure 2.6 Anatomy of a simple 2D homonuclear experiment    45 

Figure 2.7 Connectivities that can give rise to cross peaks in 1H-TOCSY and  
1H-NOESY          45 

Figure 2.8 Schematic of a 2D homonuclear spectrum      46 

Figure 2.9 of magnetization transfer for a 2D 1H experiment in H2O    47 

 

 



 8 

Figure 2.10 Diagram the pattern of crosspeaks for a typical spin system during a  

TOCSY experiment         48 

Figure 2.11 Characteristic COSY spectra for each of the 10 distinguishable spectra  49 

and aromatic side chains          

Figure 2.12 Example of sequentially linking backbone resonances   51 

Figure 2.13 15N HSQC of hMBD1 CXXC1      52 

Figure 2.14 Pulse sequence for basic 15N HSQC experiment    53 

Figure 2.15 Pulse sequence for a 3D 1H 15N HSQC-NOESY experiment  54 

Figure 2.16 Illustration showing the relationship between a 2D homonuclear  

spectrum and a 3D heteronuclear spectrum      54 

Figure 2.17 Diagram of the effect on line shape for a       

Lorentzian-to-Gaussian transformation      55 

Figure 2.18 Comparison of sine bell & squared sine bell curves   56 

Figure 2.19 The effects of truncation of the FID on the corresponding spectrum 57 

Figure 2.20 illustration showing the real (absorption) and imaginary part 

(dispersion) of a Lorentzian        58 

Figure 2.21 1D 1H spectra of unlabelled xDNMT1 CXXCb at various  

Temperatures          61 

Figure 2.22 Schematic showing the amino acid sequences of the three  

xDNMT1 CXXC constructs        62 

Figure 2.23 1D 1H spectra of unlabelled various xDNMT1 CXXC constructs  63 

Figure 3.1 Amino acid alignment of CXXC domains from MLL and hMBD1 66 

Figure 3.2 Plasmid map and multiple cloning site of pGEX-6P1 showing the 

PreScission protease cleavage site       67 

Figure 3.3 Primers for the PCR amplification of hMBD1 CXXC1 domain  67 

Figure 3.4 Agarose gel electrophoresis image of the MBD1 CXXC1 PCR product 68 

Figure 3.5 Agarose gel electrophoresis of the digested pGEX-6P1 vector and  

pGEM-T CXXC1 construct        70 

Figure 3.6 Agarose gel electrophoresis of a selection of 8 putative  

pGEX6P1-hMBD1CXXC1        71 

Figure 3.7 SDS-PAGE analysis of the expression and purification of MBD1    

CXXC1 domain expressed in TunerTM DE3 cells     73 

Figure 4.1 1D 1H spectrum of unlabeled hMBD1 CXXC    78 

 

 



 9 

Figure 4.2 Hα-HN region of the homonuclear 2D TOCSY and 2D NOESY  

spectra of hMBD1 CXXC1        80 

Figure 4.3 TOCSY strips for the partially assigned arginine 169 & 173 residues 81 

Figure 4.4 Strips for the NOESY of hMBD1 CXXC1 recorded in D20 showing  

cross peaks of 171F & 207F        82 

Figure 4.5 15N HSQC of hMBD1 CXXC1 showing different nitrogen chemical  

shifts for R169 and R173        83 

Figure 4.6 Strips from 3D NOESY & TOCSY spectrum showing sequential  

assignment for amino acids C176 to C179 hMBD1 CXXC1    85 

Figure 4.7 15N-HSQC of hMBD1 CXXC1 showing chemical for 56 out 61 amino  

acids           86 

Figure 5.1 A stereo view of the ensemble of 20 lowest energy of 25 final  

hMBD1 CXXC1 solution structures       97 

Figure 5.2 Per residue backbone and all atom RMSD for the final 25 hMBD1  

CXXC1 structures          98 

Figure 5.3 A stereo view of the representative structure of the closest to  

the mean structure of the 25 calculated hMBD1 CXXC1 solution structures  102 

Figure 5.4 Stereo representation of the two cysteine zinc clusters from hMBD1 

CXXC1           103 

Figure 5.5 Stereo representation of the structural alignment of (A) hMBD1  

CXXC1 residues 176-183 & 215 and hMLL CXXC residues 1155-1162 &  

1194. (B) hMBD1 CXXC1 residues 188-194 & 210 and the hMLL CXXC  

residues 1167-1175 & 1189.         104 

Figure 5.7 Stereo view of the superposition of CXXCXXC motifs from  

hMBD1 CXXC1, horse liver dehydrogenase, E.coli RecQ helicase and the  

delta subunit of the clamp loader complex of E. coli DNA polymerase III.    106 

Figure 5.8 15N HSQC of hMBD1 CXXC1 without or with DNA.   108 

Figure 5.9 Stereo representation of the electrostatic surface potential of the  

hMBD1 CXXC1 and hMLL CXXC         111 

Figure 5.10 Structural superposition of hMBD1 CXXC1 R169-S221 and hMLL  

CXXC S1152-W1196          112 

Figure 5.11 Comparison of second CXXCXXC motif & N-terminus of the  

loop region of hMBD1 CXXC1 C188 to V202 (A) and hMLL CXXC C1176  

to G1181 (B) residues.         113 

 



 10 

Figure 5.12 Stereo representation of the structural superposition of hMBD1  

CXXC1 C188-V202 and hMLL CXXC C1176-G1181     114 

Figure 6.1 Agarose gel electrophoresis image hMBD1 CXXC12 PCR product  118 

Figure 6.2 Agarose gel electrophoresis of a selection of 2 putative pGEM-T  

hMBD1 CXXC12         119 

Figure 6.3 Agarose gel electrophoresis of a selection of 2 putative  

pGEX6P1-hMBD1 CXXC12        119 

Figure 6.4 SDS-PAGE analysis of the expression and purification of hMBD1  

CXXC12 domain expressed in TunerTM DE3 cells     120 

Figure 6.5 1D 1H spectrum of unlabeled hMBD1 CXXC12    122 

Figure 6.6 HN-Hα region of the 2D homonuclear spectra of hMBD1 CXXC1 

and hMBD1 CXXC12         123 

Figure 6.7 HN-HN region of the 2D homonuclear spectra of hMBD1 CXXC1   

and hMBD1 CXXC12         124

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

Acknowledgments 

 

Firstly I would like to thank my supervisor, Dr Brian smith, for his continued support, 

advice and extreme patience over the course of my studies.    

 

I’d also like to thank Dr Yinan Fu, Steve Vance and other members of the lab for their 

advice, chats, support and grilling during lab meetings. 

 

A big thank you for Dr John Parkinson at the WestCHEM NMR Facility for the use of 

their 600 MHz magnet also Dr Dusan Uhrin & Prof. Paul Barlow at the Edinburgh 

biomolecular NMR unit for use of their 800 MHz magnet when our 600 MHz magnet 

quenched (twice). 

 

Finally a big thank you to my wife, children and parents for putting up with me during 

my studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"You know, what these people do is really very clever. They put little spies into the 

molecules and send radio signals to them, and they have to radio back what they are 

seeing.” – Felix Bloch 

 

 



 12 

I hereby declare that this thesis, and the research it describes, is entirely my own work 

except where explicitly stated.  It has not been presented in whole, or part, for any other 

degree or award. 

 

 

 

 

Ross Thomson 

March 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 13 

Definitions/abbreviations 

 

2D   two-dimensional 

3D   three-dimensional 

ARIA   ambiguous restraints for iterative assignment 

bp   base pair 

Cα   alpha proton nucleus 

Cβ   beta proton nucleus 

Cδ         delta proton nucleus 

Cγ   gamma proton nucleus 

Hζ   epsilon proton nucleu 

dH2O   distilled and deionised water 

DNA   deoxyribonucleic acid 

DNMT1  DNA methyl transferase 1 

DTT   dithiothreitol 

EDTA   ethylendiaminetetraacetic acid 

FID   free induction decay 

HN   amide proton nucleus 

HSQC   heteronuclear single quantum correlation 

IPTG   isopropyl-b-D-galactopyranoside 

MBD   methylated-DNA binding domain 

NH   amide group 

NMR   nuclear magnetic resonance 

NOESY  nuclear Overhouser effect spectroscopy 

PDB   protein data bank 

RMSD   root mean square deviation 

SDS-PAGE  sodium dodecyl sulphate polyacrylamide gel electrophoresis 

TOCSY  total correlation spectroscopy 

UV    ultraviolet radiation 



 14 

 

 

 

 

 

 

 

 

 

CHAPTER ONE 

 

INTRODUCTION PART 1: EPIGENETICS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

1.1 Epigenetics 

Epigenetics is the study of heritable changes in gene function that occur without a 

change in the sequence of nuclear DNA.  This form of inheritance allows the 

transmission of information from mother to daughter cell without the information being 

encoded in the nucleotide sequence of the gene, for example when a liver cell divides, 

the daughter cells do not start to express proteins specific to muscle cells.  Methylation 

of a CpG dinucleotide at cytosine C5 (mCpG) is a major epigenetic gene silencing 

modification in vertebrate genomes.  This modification recruits proteins which 

specifically recognise this motif.  These methylated DNA binding proteins then recruit 

enzymes which chemically and physically alter chromatin, which induces transcriptional 

repression.  Although most CpG motifs are methylated it should be noted that short 

(500-2000bp) CG-rich regions, known as CpG islands, found within 60% of human gene 

promoters remain non-methylated (Bird, A. 2002).   While this is true for normal cells, 

de novo methylation of CpG islands occurs in various cancers, inducing silencing of 

tumour suppressor genes e.g. CDH1 in breast, bladder and prostate cancer (Graff et al. 

1995), CDKN2A in many epithelial cancers (Merlo et al. 1995), and the Rb gene in 

retinoblastomas (Sakai et al. 1991). 

 

Control of gene expression/repression is important in cell development and 

differentiation to ensure that only cell-specific genes are transcribed. Some genes are 

constitutively transcribed in almost all cells, e.g. Glyceraldehyde 3 phosphate 

dehydrogenase (GAPDH); some genes are only transcribed in certain cell types, e.g. 

carnitine palmitoyltransferase I C in rat brain and testes (Price et al, 2002); others are 

only transcribed after a signaling cascade has been initiated, e.g. induction of insulin 

gene transcription by glucose in beta cells of the Islets of Langerhans (Leibiger et al. 

1998).   Eukaryotic DNA is packaged into a nucleoprotein complex called chromatin 

that is organized into two structurally distinct domains, euchromatin and 

heterochromatin (Heitz, 1928). Euchromatin is condensed during cell division but more 

open and transcriptionally active during interphase while heterochromatin is tightly 

packed and transcriptionally inactive throughout the cell cycle.  While there is only one 

class of euchromatin, heterochromatin has two variants, constitutive or facultative.  

Constitutive heterochromatin is fixed, irreversible and located at very specific spots in 

the genome that consist of DNA that contains many tandem (not inverted) repeats of a 

short repeating unit known as satellite DNA.  Facultative heterochromatin can revert to a 

euchromatin state for example, when a woman transmits the X-chromosome to a son; it 
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reverts to euchromatin from heterochromatin.   Replication of these two types of 

chromatin occurs at different time points, with heterochromatic DNA late and 

euchromatic DNA early within the cell cycle (Gilbert, 2002).  DNA methylation is 

functionally connected to these two states through histone modification.  In a simplified 

view, euchromatic DNA contains non-methylated CpGs and the histones are often 

acetylated whereas the CpGs in heterochromatin DNA are methylated and the histones 

are deacetylated with methylation occurring at histone 3 lysine 9 (H3K9m) (Cameron et 

al. 1999).  De-methylation of CpG motifs allows H3K9m to be re-acetylated (Bachman 

et al. 2003) which ultimately leads to a switch from hetero- to euchromatic DNA.  Thus 

DNA methylation is a pivotal signal for the epigenetic control of gene expression in a 

reversible heritable manner. 

 

1.2 Chromatin Structure  

The Basic building blocks of Chromatin are five types of proteins called histones which 

contain a high proportion of charged amino acids.   These histones fall into two 

categories, the nucleosomal histones and the H1 histones.  The nucleosomal group is 

made up of four histones which are called H2A, H2B, H3, H4 and their variants.  They 

are small proteins 102-135aa with H3 and H4 histones being among the most highly 

evolutionally conserved of all proteins.  The H1 histones are larger, approx 220aa, and 

are less conserved than the nucleosomal group.   Although histones are the building 

blocks of chromatin, there are also architectural proteins that are comprised of acidic or 

non-histone chromatin proteins. 

 

The 11 nm diameter nucleosome (Fig.1.1), the fundamental building block of chromatin, 

is a complex comprised of an 146 bp (base pair) length of DNA wrapped around an 

octomer core of histone proteins consisting of two copies each of H2A, H2B, H3, and 

H4 (Richmond et al. 1984, Dorigo et al. 2004).   
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Figure 1.1 X-ray crystal structure of the nucleosome core particle solved by Luger et 

al  (1997).  Ribbon traces for the 146-bp DNA phosphodiester backbones (Yellow) and 

eight histone protein main chains (orange: H3; red: H4; green: H2A; blue: H2B).  Image 

generated from PDB ref 1AO1 (Figure prepared using PyMol).  
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With a small length, 10-100bp, of DNA (linker) between each nucleosome, this type of 

chromatin thread can be visualized by electron microscopy which gives rise to the 

‘beads on a string’ structure description. The H1 histone protein binds to a specific 

region of the nucleosome and mediates the packing of the 11nm nucleosome into a 30nm 

chromatin fibre.  From this 30nm fibre the DNA can be condensed into a chromosome. 

The histones also possess N- and C- terminal tails, 14-38aa in length, that protrude from 

the nucleosome (Luger et al. 1997) and direct the formation of higher-order chromatin 

structures (Dorigo et al. 2003, Dorigo et al. 2004, Gordon et al. 2005). 

 

As mentioned previously not all proteins associated with chromatin are histones.  These 

non-histone architectural proteins are responsible for the chromatin regulatory 

mechanisms such as covalent histone modifications or ATP-dependent chromatin 

remodeling (Cosgrove et al. 2004, Smith & Peterson, 2004, Studisky et al. 2004).  The 

packing of chromatin at its lower level is defined by DNA-histone and nucleosome-

nucleosome interactions.  Chromatin remodeling at specific loci is carried out through 

tagging of the histone tails (Fig 1.2a). Covalent modification of the histone tails in the 

form of acetylation and methylation are important for the remodeling of chromatin to 

activate and repress transcription respectively (Berger, 2001, Strahl and Allis, 2000).  

Other covalent modifications include phosphorylation, ubiquitylation, sumoylation (Gill, 

2004) and ADP-ribosylation (Cohen-Armon et al. 2004) (fig 1.2b) 
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Histone deacetylation (H3K9) by histone deacetylase enzymes (HDAC) and methylation 

of the same residue by histone methyl transferases (HMT) (Fuks et al. 2003) can be 

brought about by the binding of methylated DNA binding proteins to methyl-CpG motifs 

which recruit HDACs to chromatin (Nan X et al. 1998).    The methylation of H3K9 

allows the binding of heterochromatin protein 1 (HP1) via its chromodomain (Banister et 

al. 2001) which stabilizes the formation of heterochromatin and induces transcriptional 

repression.  DNMT1 also binds the HDACs HDAC1 (Robertson et al. 2000) and 

HDAC2 (Rountree et al, 2000) via its N-terminal domain.  DNMT1 binding to HDAC2 

is associated with binding to another protein, DMAP1 (DNMT1 associated protein) 

which can mediate transcriptional repression (Rountree et al. 2000).  It should also be 

noted that loss of DNMT1 from DNMT1 knockout human cancer cells KO1 results in an 

increase of H3 acetylation and loss of trimethylation of lysine 9.  Also HDACs and HP1 

no longer interact with histone H3 and pericentrometric repetitive sequences (Espada et 

al. 2004).  This suggests that DNMT1 contributes more to heterochromatin formation 

than just the methylation of CpG motifs. 

Figure 1.2 a Diagram of the 11 nm beads on a string chromatin conformation 
showing histone tails. b The various histone tail covalent modifications. A , acetyl ;  P, 
phosphate;  M, methyl;  Ub, Ubiqutin; C, carboxy terminus; N, amino terminus.  
Adapted from Marks et al (2001)  
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1.3 DNA Methylation 

Methylation is the major covalent modification of eukaryotic DNA and almost always 

found in a palindromic CpG sequence such that the 5 methyl cytosine is found 

symmetrically on both strands (Sinsheimer 1955).  Methylated DNA was first proposed 

by Scarano (1971) and later by Holliday & Pugh (1975) and Riggs (1975) to be involved 

in cell differentiation and gene function.  Later Yeivin and Razin (1993) showed that 

epigenetic control of gene expression in mammals involves DNA methylation associated 

with gene-specific methylation patterns.  Methylation occurs at 70-80% of mammalian 

CpG sites (Ehrlich and Wang 1981) with the remaining unmethylated CpG sites being 

found in CpG rich islands.  CpG islands have been shown to be present at promoter 

regions of all constitutively expressed and approximately 40% of tissue specific genes 

(Larsen et al, 1992. Zhu et al, 2008).  However, not all CpG islands are non-methylated, 

some of which are involved in X-inactivation and genomic imprinting (Edwards & 

Ferguson-Smith, 2007., Reik, 2007) 

 

Without the replacement of methylated cytosines, DNA replication would remove 50% 

of methylated CpG from DNA after two rounds of replication through passive 

demethylation.  In order to protect the symmetrical methylation of CpG, the enzyme 

DNA methyl transferase (DNMT1) catalyses the covalent attachment of a methyl group 

to the naked cytosine in a hemi-methylated CpG (Bestor and Ingram 1983). DNMT1 is 

associated with proliferating cell nuclear antigen during DNA replication at the 

replication foci, with methylation occurring within one to two minutes of replication to 

restore a state of full methylation to the DNA (Chuang et al. 1997).  It is through this 

process that methylated DNA induced gene repression is inherited from mother to 

daughter for many generations of actively dividing cells (Razin and Riggs 1980).   

 

The reason that CpG Islands are not methylated at replication could be explained by 

their replication during G1/early S phase (Delgado et al. 1998) when DNMT1 levels are 

low (Szyf et al, 1991) and levels of the transcription factor p21 are high which could 

out-compete DNMT1 for binding to PCNA (Chuang et al. 1997).   This could prevent 

DNMT1 being present at the replication foci of CpG islands thus preventing their 

methylation.  This theory is strengthened by the fact that many CpG islands are also 

replication origins (Delgado et al. 1998) and, due to the proteolytic factors involved in 

DNA replication, could block DNMT1 access to the DNA. However, it does not explain 

the lack of methylated CpG islands that are located in the promoters of genes that lack 
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p21 recognition sites.  Recently the CXXC Finger Protein 1 (CFP1), a component of the 

SET1 H3K4 methyltransferase complex (Skalnik et al, 2008), has been shown to bind 

CpG islands (Thompson et al, 2010).  Methylation of H3K4 is a euchromatic mark 

associated with transcriptional activity (Bernstein et al, 2002., Santos-Rosa et al, 2002., 

Schneider et al, 2004).  Therefore the recruitment of CFP1 to CpG islands and 

subsequent methylation of H3K4 may prevent methylation through steric interference.   

 

It has been reported that methylated DNA does undergo active demethylation (Oswald et 

al, 2000) but this is not necessarily associated with replication (Kafri et al. 1992) while 

the paternal genome in fertilized mouse eggs is stripped of DNA methylation prior to 

zygotic fusion and subsequent replication (Mayer et al. 2000).  This demethylation of 

the paternal genome is a feature of mouse, rat, human and pig zygotes but surprisingly 

not of rabbit and sheep zygotes (Beaujean et al. 2005, Beaujean et al. 2004a, Young & 

Beaujean, 2004).  Interestingly the sheep paternal genome is significantly demethylated 

when injected into mouse oocytes (Beaujean et al. 2004b) suggesting it is not inherently 

resistant to demethylation.  While DNMT1 is responsible for maintaining methylation 

patterns during DNA replication, de novo methylation at previously unmethylated sites 

during early embryogenesis is catalyzed by DNMT3a & DNMT3b (Okano et al. 1999).  

However, DNMT1 can be stimulated to methylate CpG dinucleotides by the addition of 

fully methylated DNA (Fatami et al, 2001, Laing et al, 2001).  DNMT1 is essential for 

mouse embryogenesis as targeted knockouts of DNMT1 results in death around mid 

gestation (Li et al. 1992, Bird & Wolffe, 1999). This is also true for Xenopus laevis 

embryos which die before mid-blastula transition if DNMT1 is knocked out (Stancheva 

& Meehan, 2000).  However, this is independent of DNMT1’s methyltransferase activity 

(Dunican et al, 2008)      

 

Aberrant DNA methylation is of particular importance in cancer (Jones & Baylin, 2002) 

as hypomethylation can result in the inappropriate expression of genes while 

hypermethylation of CpG islands can switch off genes (Jones & Baylin, 2002, Feinberg 

& Vogelstein, 1983).  Hypermethylation of CpG islands found in tumor suppressor gene 

promoters is a prevalent mechanism for the transcriptional silencing of these genes 

(Robertson, 2001, Rountree et al. 2001. Esteller & Herman, 2002., Jones & Baylin, 

2002.).  Removal of methyltransferase activity from the human colorectal cancer cell 

line HCT116 by genetic (antisense/siRNA against DNMT1 RNA) or pharmacologic 

methods (5-aza-2'-deoxycytidine) causes extensive hypomethylation throughout the 
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genome, including hypermethylated regions (Robert et al. 2003, Ting et al. 2004).  

However, controversy surrounds the question of knocking out DNMT1 is sufficient for 

this observed hypomethylation event.  Ting et al. (2004) suggest that DNMT1 is 

redundant due to a compensatory role for DNMT3b.  In order to investigate this they 

produced a double knockout of DNMT1 & DNMT3b cells which showed greater than 

95% reduction in genomic methylation and crucially these cells re-expressed the tumour 

suppressor gene Cdkn2a, providing a direct link between the methylation of its promoter 

and its transcription.  These double knockout cells had a 90% reduction in growth 

compared to the wild type HCT116 cells.  DNMT1 might also be targeted to methylate 

DNA at Histone H3-K9 methylated chromatin via interaction with the histone 

methyltransferase SUV39H1 (Fuks et al. 2003).  

 

Females contain two copies of the X chromosome compared the male having just one. In 

order to compensate for this random inactivation of one copy occurs during early 

development (Lyon, 1961).  This inactivation is associated with widespread DNA 

methylation (Heard et al. 1997), while transcription of genes on the inactive 

chromosome can be reactivated when cells are treated by inhibitors of DNA methylation 

(Boumil & Lee, 2001).  Not all gene transcription on the inactive X chromosome is 

silenced as some CpG islands remain unmethylated (Heard et al. 1997). 

DNA methylation plays a critical role in genomic imprinting, the phenomenon whereby 

a small subset of all the genes in the genome are expressed according to their parent of 

origin (Bartolomei & Tilghman, 1997).  The control the reciprocal parental gene for 

almost all imprinted genes identified to date is associated with differentially methylated 

regions (Paulsen & Ferguson Smith, 2001).   

 

Thus DNA methylation states play an important role in the transcriptional repression of 

genes, regulation of chromatin structure and the development of embryos while aberrant 

DNA methylation can cause disease, including cancer & developmental disorders, and 

death during gestation.   

 

1.4 Methylated DNA binding proteins  

MeCP2, MBD1, MBD2, MBD3 and MBD4 constitute a family of proteins which 

contain the methyl-CpG-binding domain (MBD).  In the late 1980s a nuclear factor 

called MeCP1 (Methyl CpG binding Protein) was discovered.  This factor could 

discriminate between DNA molecules that contained 12 or more methylated CpG pairs 
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and unmethylated DNA in band shift assays (Meehan et al. 1989). MeCP1 is a large 

multi-subunit protein complex and has been shown to be comprised of MBD3 (Zhang et 

al. 1999), the Mi2/NuRD complex and MBD2 (Ng H et al. 1999, Feng and Zhang  

2001).  More recently other methyl-CpG binding proteins have been discovered.  The 

zinc finger proteins Kaiso (Daniel and Reynolds, 1999., Prokhortchouk et al, 2001), 

ZBTB4 and ZBTB38 (Filion et al, 2006) and UHRF1 & -2 that contain an SRA (SET 

and Ring finger-associated) domain (Unoki et al, 2004).   The first well characterized 

member of the MBD family is MeCP2.   

 

1.4.1 MeCP2    

Identified in 1992, MeCP2  is a 53kDa protein capable of binding one methyl-CpG pair 

(Lewis et al. 1992) although it is suggested that, in vitro, a flanking run of 4 or more A/T 

base pairs (Klose et al. 2005) enhances the affinity.  This is backed up by analysis of the 

binding sites in two of its known targets, Bdnf and Dlx6, which show the methyl-CpG 

site flanked by an A/T greater than 4 motifs (Klose & Bird 2006).  Levels of MeCP2 

protein vary depending on cell type with rat brain containing the highest followed by 

kidney, spleen, liver with the lowest found in testes (Nan X et al. 1993).  Although 

widespread, MeCP2 is not a major repressor of gene regulation (Tudor et al. 2002) but 

binds to loci not targeted by other MBDs (Klose et al. 2005).  However, these reports 

used cultured neurons from embryonic or immature mice where MeCP2 levels are low.  

Skene et al (2010) determined the binding pattern in mature mouse brains which showed 

a different pattern, with MeCP2 tracking the methyl-CpG density of the genome.  These 

results suggest, in mature mouse brain, that MeCP2 is a global regulator of chromatin 

structure.   

 

The MBD domain, defined as the minimum required to bind methyl-CpG, comprises 

amino acids 78-162.  This MBD domain has similar characteristics of the full length 

protein when binding methyl-CpG DNA in that it will bind a single methyl-CpG motif in 

duplex DNA and has negligible binding to hemimethylated DNA or 5-methylcytosine at 

non-CpG motifs (Nan X et al. 1993).  Within mouse EB28/10 cells, MeCP2 shows 

punctate labeling, co-localising with heterochromatin when transiently over expressed.  

This localisation to the chromatin is dependant on methylation, as over expressed 

MeCP2 in MTase mutant (methylase negative) mouse ES cells produced diffuse nuclear 

staining with only 20% localizing to chromatin (Nan X et al. 1996).  The small 

percentage of MeCP2 binding to chromatin is likely to be due to the lower levels of 
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methyl-CpG remaining (Nan X et al. 1996) and non specific DNA binding (Nan X et al. 

1993).     Once bound to methylated CpG, MeCP2 initiates transcriptional repression by 

recruiting the transcriptional co-repressor Sin3 and histone deacetylase (HDAC) 

complex (Nan X et al. 1998).  Binding of the HDAC is via a transcriptional repression 

domain (Nan X et al. 1997) and is localized to amino acids 207–310 (Yu et al. 2000).  

Removal of the acetyl group from histone H3 lysine 9 (Nan X et al. 1998) facilitates the 

methylation of the same residue by a histone methyltransferase (HMT) (Fuks et al. 

2003).  Treatment with trichostatin A (an inhibitor of HDAC), however, does not fully 

remove transcriptional repression which suggests that MeCP2 can repress by another 

pathway (Yu et al. 2000) or interaction with other complexes that do not require HDAC 

to inhibit transcription.     

 

1.4.2 MBD1 

Cross et al. (1998) identified MBD1 (formerly PCM1) by searching the XREF database 

for sequences homologous to the MBD of MeCP2. MBD1 was shown to bind methyl-

CpG via its MBD.  MBD1 was originally thought to be part of the MeCP1 complex 

(Cross et al. 1998).  However, Huck-Hui et al. (2000) showed that MeCP1 band shift 

assays were not affected when MBD1 was immunoprecipitated using a sheep antibody 

against MBD1 amino acids 351-556 from the extract.  As well as the N-terminal MBD 

domain, MBD1 also contains, depending on alternative splicing, 2 or 3 CXXC domains 

(Fujita et al, 1999, Jørgensen et al, 2004).  There are a total of 8 known isoforms of 

MBD1 with the number and type of CXXC domains shown in figure 1.3 
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Figure 1.3 schematic representations of MBD1 splice variants with different 

combinations of CXXC domains.  A: represents isoforms 1, 2, 6, 8; B: represents 

isoforms 3, 4 ,7; C: isoform 5 (formerly known as PCM1). 

 

A subunit of CAF-1 (chromatin assembly factor 1), p150, and SUV39h1, a 

methyltransferase enzyme both interact with the MBD (Fujita et al. 2003b, Resse et al. 

2003).  It is thought that MBD1 is displaced from methyl-CpG during replication but 

that through its interaction with CAF-1 via PCNA, it remains at the replication fork 

during S-phase.  Once replication has occurred, DNMT1 activity fully methylates 

hemimethylated CpG motifs allowing MBD1 to rebind to the methyl-CpG (Sarraf & 

Stancheva, 2004) (Fig. 1.4)  

 

Like MeCP2, MBD1 contains a transcriptional repression domain which, when fused to 

the Gal4 DNA binding domain, can repress transcription from a Gal containing 

promoter.  The transcriptional repression domain (TRD) is known to interact with a 

methyl-DNA glycosylase (Watanabe et al. 2003) and MCAF (MBD1-containing 

chromatin associated factor) (Fujita N et al. 2003a).   Although MBD1 does not appear 

to interact with HDAC1 or HDAC2 (Ng H et al. 2000) there is variable repression 

sensitivity when cells are treated with the HDAC inhibitor trichostatin A (Ng H et al. 

2000, Fujita N et al. 2003a) suggesting that MBD1 induced repression does not always 

require HDACs 

 

Although MBD1 knock out mice have been produced, the MBD1-/- mice show no 

detectable development defects and appear physically healthy throughout their life span.  

However, adult knockout mice show decreased neurogenesis and impaired spatial 
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learning, while neural stem cells exhibited reduced neural differentiation and increased 

genomic instability (Zhao et al. 2003). 

 

 

 

 

 

 

 

 

1.4.3 MBD2 

MBD2 was identified by Hendrich & Bird (1998) by searching for putative MBD 

domains in the EST database.  It has two possible isoforms depending on translation 

from the first (MBD2a, 43.5 kDa) or second (MBD2b, 29.kDa) ATG codon.    The 

translation from the second ATG codon produces a protein with the MBD at the extreme 

N-terminus (Hendrich & Bird, 1998) lacking the glycine rich region found in MBD2a 

(figure 1.5).    

 

 

 

 

Figure 1.4. Model summarizing the function of MBD1 complexes in  

transcriptional repression and DNA replication-coupled maintenance of histone 

H3-K9 methylation. MBD1 and H3-K9 methylase SETDB1 form a stable 

MBD1/SETDB1 complex detectable throughout the cell cycle in G1, S, and G2 

(Reproduced from Sarraf & Stancheva, 2004) 
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Figure 1.5. Schematic representation of the two isoforms of MBD2. 

 

It was proposed that MBD2b has DNA demethylase activity (Bhattacharya et al. 1999) 

but subsequent attempts by Ng et al. (1999) and Wade et al. (1999) were unable to 

reproduce these results.  Like MeCP2, transcriptional repression via MBD2 occurs 

through histone modification and it was proposed that MDB2 is part of the MeCP1 

complex (Ng et al. 1999) which comprises MBD3 (Zhang Y et al. 1999) and the 

Mi2/NuRD complex (Feng Q and Zhang Y 2001). Recently however, Guezennec et al. 

(2006) have suggested that MBD2/Nurd and MBD3/Nurd are two distinct complexes.  

Evidence to further back up Guezennec’s results is shown in MBD2 and MBD3 

knockout mice.  While MBD3-/- mice die during early embryogenesis, MBD2-/- mice are 

viable and fertile suggesting distinct but overlapping roles for MBD2 & MBD3.  

Although MBD2-/- mice are viable, they show a lack of maternal instinct that results in 

reduced pup weight (Hendrich et al. 2001).  When MBD2-/- mice are crossed with 

Apcmin/+ mice, the offspring show reduced adenoma and extended life span compared to 

normal Apcmin/+ mice (Berger & Bird. 2005).   

 

It has been shown that MBD2 interacts with the NuRD complex via a 633 aa protein 

called p66 (Brackertz et al. 2002).  This interaction between p66 and MBD2 has been 

shown to involve two domains.  In p66 aa134-238 (CR1) & aa372-633 (CR2), with the 

second sequence also containing a Zinc finger GATA domain.  In MBD2 the domains 

aa27-45 and aa211-262 bind p66 in a pull down assay (Brackertz et al. 2002).  The 

MeCP1 complex also contains p68 which has high amino acid similarity to p66.  p68 

also interacts with MBD2 but only through the highly conserved CR1 N-terminal 

binding site.   

 

1.4.4 MBD3 

Human MBD3 is a 265 amino acid 32.2kDa protein with an N-terminal MBD domain 

and a C-terminus rich in acidic residues.  It is has a high sequence similarity to MBD2b 

MBD Glycine rich 
MBD2a 

MBD 
MBD2a 



 28 

although unlike other members of the MBD family it does not bind methyl-CpG in vitro 

or localize with major satellite DNA in vivo (Hendrich & Bird. 1998).  Similarly it does 

not possess DNA demethylase activity (Wade et al. 1999).   Unlike the human form, 

Xenopus laevis xMBD3 binds methyl-CpG (Wade et al. 1999).  Xenopus laevis also 

expresses an isoform xMBD3LF, a product of alternative spicing with a sequence of 20 

amino acids inserted in the MBD domain, which cannot bind methyl-CpG (Wade et al. 

1999).  xMBD3 is expressed constitutively in the early stages of development with high 

levels detected in the prospective eye regions, brain, and branchial arches.  Suppression 

of xMBD3 in early development severely effects eye formation and brain development 

(Iwano et al. 2004).  Although MBD3 does not bind methyl-CpG it does co-purify with 

the histone remodeling complex Mi-2/NuRD (Guezennec et al. 2006). This coupled with 

the fact that MBD3-/- knockout mice are non-viable, dying during early embryogenesis 

(Hendrich et al. 2001), suggests that MBD3 plays an important role in early 

development like that of xMBD3.  While the MBD domain of MBD3 does not bind 

methyl-CpG it does bind HDAC and metastasis-associated gene 2 (MTA2) (Saito & 

Ishikawa, 2002).  This suggests that MBD3 has conserved its MBD because of the 

secondary role played by the MBD in protein-protein interactions. 

 

1.4.5 MBD4 

MBD4 was identified at the same time as MBD2 and MBD3 by Hendrich & Bird 

(1998).  This 62.6kDa protein has its MBD domain at the N-terminus and lacks the 

CXXC domains of MBD1.  Like MBD1, MBD2 and MECP2, MBD4 can also bind to 

one symmetrically methylated CpG.  The MBD is most similar to that of MeCP2 in 

sequence and the protein shows little homology to the other MBD family members out 

with the MBD domain. MBD4 does however share a low scoring match to bacterial 

DNA repair enzymes.  (Hendrich & Bird, 1999).  As well as the N-terminal MBD 

domain, MBD4 contains a C-terminal DNA glycosylase catalytic domain  (Hendrich & 

Bird, 1999, Bellacosa et al. 2005) and it has been shown that MBD4 is a thymine and 

uracil glycosylase specific for G-T and G-U mismatches resulting from the deamination 

of 5-methylcytosine and cytosine, respectively, at CpG sites (Hendrich et al. 1999).  

MBD4 is expressed in many human tissues and MBD4-GFP constructs co-localise to the 

foci of heavily methylated satellite DNA (Hendrich & Bird, 1998).  Results from MBD4 

deficient mice suggest that MBD4 suppresses tumorigenesis and CpG mutability in vivo 

as there is an increase in CpG�TpG mutation and accelerated tumor formation in cancer 

susceptible Apcmin/+ mice (Miller et al. 2002). 
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 1.4.6 MBD domain structures 

There several MBD domain structures that have been deposited in the protein data bank.  

The solution structure of MBD1 MBD (Ohki et al. 1999), MBD1 MBD in complex with 

DNA (Ohki et al, 2001), solution structure of MeCP2 MBD (Wakefield et al. 1999) and 

the crystal structure of MeCP2 MBD in complex with DNA (Ho et al, 2008) have been 

solved. The NMR derived structures for MBD1 MBD and MeCP2 MBD show similar 

structures consisting of a wedge shaped fold with four anti-parallel β-strands which 

constitute one face of the wedge.  Comparison of the crystal structure of MeCP2 in 

complex with DNA (PDB 3C21) and the unliganded NMR structure of MeCP2 (PDB 

1QK9) illustrated in figure 1.6 reveals little difference apart from the loop (L1) where 

most of the protein to DNA sugar-phosphate backbone contacts are made.  While there 

is only moderate homology between MBD1 and MeCP2 there are conserved residues 

within the MBD of the whole family.  It is likely that the MBD of MBD2, MBD3 and 

MBD4 have similar structures.  The lack of binding to methyl-CpG by mammalian 

MBD3 can be attributed to two amino acid differences within the defined MBD domain, 

a phenylalanine at position 34 in place of a tyrosine and a histidine at position 30 in 

place of an arginine (MBD1 & MBD4) or a lysine (MBD2 & MeCP2) (Saito &, 

Ishikawa. 2002). The effect of the F34 difference has the greatest effect on mCpG 

binding.  This is not surprising due to the interaction of the tyrosine side chain hydroxyl 

group hydrogen bonding to structural water groups that are involved in the protein-DNA 

interaction. 
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Figure 1.6 Superposition of unbound MeCP2 (green) and MeCP2 bound to DNA 

(yellow).  Methyl-cytosine (sticks) shown as cyan on DNA shown in orange (ribbon), 

Tyrosine 34 shown in red (sticks) and the structural water shown as a black sphere. N, 

N-terminus. Image generated in pymol.   

 

1.4.7 The Zinc finger family of methyl-CpG binding proteins 

The first member of the zinc finger family of mCpG binding proteins, Kaiso, was 

identified by a yeast 2 hybrid screen for p120 catenin (Daniel and Reynolds, 1999) and 

is a component of the NCoR corepressor complex binding via its BTB domain (Yoon et 

al, 2003) Kaiso contains three tandem zinc fingers at the C-terminus that recognize two 

consecutive symmetrical CpG sequences. In cultured cells, Kaiso recruits the NCoR 

complex to the MTA2 promoter when methylated.  This results in transcriptional 

repression with H3 K9 being deacetylated and methylated (Yoon et al, 2003).  Although 

in normal cells there is presently no information about the target of Kaiso, it is essential 

for amphibian development.  When embryonic levels of the Xenopus Kaiso homologue, 

xKaiso (Kim et al, 2002), are depleted by morpholino oligos, premature activation of 
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zygotic genes occurs before the mid-blastula transition, resulting in failure of 

gastrulation and death (Ruzov et al, 2004).  Kaiso also binds to a non-methylated DNA 

sequence, TCCTGCNA, known as a Kaiso-Binding Sequence (KBS) (Daniel et al, 

2002). This KBS sequence has been found in the promoter of matrilysin (Spring et al, 

2005) and the 5’ beta-globin insulator (Defossez et al, 2005).  The proteins ZBTB4 & 

ZBTB38 (Filion et al, 2006) contain a homologous Kaiso zinc finger domain, which also 

contain a BTB domain but also have additional zinc fingers making them longer and 

more complex.  Unlike Kaiso, the ZBTB proteins can bind a single methylated-CpG 

which may be due to sequence differences compared to Kaiso within the 3rd Kaiso like 

zinc finger although their in vivo targets are as yet unknown.  ZBTB38 has been shown 

to recruit CtBP to the densely methylated pericentrometric heterochromatin (Sasai et al, 

2005).   CtBP is a corepressor which has also been found to interact with the CXXC 

domain from MLL (Mixed Linkage Leukemia) (Xia et al, 2003) and can induce 

transcriptional repression by recruiting HDACs (Subramanian & Chinnadurai, 2003).  

Unlike ZBTB38, ZBTB4 lacks the CtBP interaction site and the BTB domain is 

disrupted by a long serine-rich insertion (Perez-Torrado et al, 2006). 

 

1.4.8 Methylated CpG binding by the SRA domain 

 UHRF1 was originally identified by Hopfner et al (2000) as CCAAT box binding 

protein before Unoki and co workers (2004) showed that UHRF1 could bind methylated 

CpG with higher affinity.  The SET and Ring finger associated (SRA) domain of 

UHRF1 is responsible for recognizing a single methylated CpG and interacting with 

HDAC1 (Unoki et al, 2004).  Recently Bostick et al (2007) showed UHRF1 has a 

preference for hemi-methylated DNA and that UHRF1 co-localizes with 

heterochromatin replication foci and interacts with DNMT1 & PCNA, suggesting a role 

in the transfer of heritable transcriptional repression similar to that of MBD1.   

 

1.5 Epigenetic Disease  

Many cellular processes including embryonic development, transcription, chromatin 

structure, X chromosome inactivation, genomic imprinting and chromosome stability are 

controlled by epigenetic mechanisms.  Any disruption to these processes will have a 

profound effect on the cell and the organism. A common disruption in humans (1:10,000 

births) is Rett Syndrome, a complex neurological disorder mainly affecting girls who 

become profoundly and multiply disabled.  In a large proportion of patients this has been 

linked to mutations in MeCP2 (Amir et al, 1999).  Epigenetic disruption is common in 
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many cancers with the tumour cells displaying global hypomethylation but having 

hypermethylated CpG islands in conjunction with histone modifications that 

repress/silence tumour suppressor genes (Fahrner et al. 2002, Ballestar et al. 2003).   

 

1.5.1 Rett syndrome  

Rett syndrome is both sporadic and familial in origin with various mutations found 

within the gene responsible for its aberrant activity. Amir et al. (1999) identified 

missense mutations within the highly conserved MBD region as well as missense and 

frame shift mutations within the TRD region while further novel mutations were 

identified by Wan et al. (1999) & Cheadle et al. (2000).   A recent review by Matijevic 

at al (2009) noted that 67% of all MeCP2 mutations are caused by a C>T mutation at 

8CpG sites (R106, R133, T158, R168, R288, R270, R294 and R306) the most common 

of which is R168X.     

 

The various mutations of MeCP2 (nonsense, missense, and frame shift) vary the level of 

functionality that the protein has.  Nonsense and frame shift mutations in the 5’ region 

are likely to lead to unstable transcripts through the process of nonsense-mediated decay 

(Dragich et al. 2000) while several missense mutation show reduced binding to mCpG in 

vitro (Ballestar et al. 2000).  Two common mutations, R106W & R133C, are located 

within the β-sheet (Wakefield et al. 1999) and show 100 fold reduction in affinity for 

binding methylated DNA in unassembled chromatin (Ballestar et al, 2000).  However in 

native mouse heterochromatin only R106W had markedly reduced binding, whereas 

R133C showed wild-type-like affinity and increased repression of a non-methylated 

reporter construct in Drosophila cells (Kudo et al. 2001). This increased affinity for non-

methylated CpG in the R133C mutant may be party due to the alteration of the DNA 

binding site since R133 is completely conserved between MBD family members while 

mutation of this arginine to an alanine in MBD1 abolishes binding to mCpG (Ohki et al. 

1999).   Another common mutation, T158M, found in the loop structure of the MBD, 

showed only a 2-fold reduction in the binding to methylated DNA while it retained 

partial affinity for heterochromatin (Kudo et al. 2001).   Disruption of mCpG binding 

and the ability of MeCP2 to interact with HDACs will affect the role of MeCP2 in 

transcriptional repression.    The brain has the highest abundance of MeCP2 compared to 

any other tissue (Nan et al. 1997) which might suggest that brain tissue is highly 

susceptible to abnormalities arising from aberrant gene expression.  This idea is 

supported by work carried out in 2000 by Cheadle et al. who noted that patients with 
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missense mutations had significantly milder disease compared to those with truncated 

isoforms.  This may be due to truncation abolishing MeCP2’s ability to interact with 

Sin3A and recruit histone deacetylase to repress transcription through its TRD (Jones et 

al, 1998, Nan et al, 1998).  However, since inhibition of histone deacetylase activity by 

the drug Trichostatin A only partially relieves transcriptional repression by the TRD 

suggesting the TRD can mediate repression in a histone deacetylase independent manor 

(Jones et al, 1998, Nan et al, 1998).  This may not be the only mechanism.  

 

1.5.2 Disease associated with other MBD proteins 

MBD1, 2, 3 do not have any known disease/syndrome associated with mutations in their 

genes.  Knockout mice have been produced for all except MBD3 for which knockout is a 

lethal genotype.   MBD1 knockout mice show no obvious development abnormalities 

and appeared healthy throughout their life.  However, their neural stem cells exhibited 

reduced neuronal differentiation, increased genomic instability and deficits in adult 

neurogenesis and hippocampal function (Zhao et al, 2003) indicating that MBD1 maybe 

important for normal brain function.  As a consequence of knocking out MBD2,  

MBD2-/- mice appear to suffer post natal depression but no other physical or mental 

abnormalities (Hendrich et al. 2001).  MBD4 knockout mice suffer increased (3-fold) C 

to G mutations particularly at mCpG sites and when crossed with the ApcMin/+ mouse the 

resultant Mbd4 / , ApcMin/+ litter have increased levels of intestinal neoplasia when 

compared to ApcMin/+ (Miller et al. 2002).   

 

While there are no disease syndromes attached to the MBD1-3 proteins, MBD4 has been 

shown to be mutated in colorectal tumours (Bader et al. 1999) and primary gastric 

cancer (Yamada et al. 2002).  However, expression levels of these proteins have been 

shown to vary in cancer cell lines and tissue.  Patra et al. (2003) compared the 

expression of MBD1, MBD2 and MECP2 in prostrate and BPH cancer cell lines.  They 

found protein expression levels of MBD1 increased in the cancer cells compared with a 

BPH (human prostatic epithelial) cell line, with the protein levels of MBD2 & MeCP2 

being repressed at the translation step, while levels of DNMT1 and HDAC1 where 

significantly increased. MBD1 has been shown to repress transcription of the p16 

tumour suppressor gene (Hendrich et al. 1999) although levels of this protein where not 

analysed.  
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1.5.3 Disease associated with Hypermethylation  

Hypermethylation of CpG islands occurs within the promoter regions of many critical 

cancer genes (Baylin et al. 1999, Esteller et al. 2001, Billard et al. 2002) which leads to 

transcriptional repression.  The promoter region of the π-class glutathione S-transferase 

gene, GSTP1, has been shown to be hypermethylated in >90% of prostate cancers (Lee 

et al. 1997, Lin et al. 2001.), >70% in liver cancers (Tchou et al. 2000) and >30% in 

breast cancer (Esteller et al. 1998).  The reduction in gene transcription has been 

attributed the hypermethylation event as treatment of the cells with inhibitors of DNMT1 

increased both GSTP1 mRNA and protein levels (Lin et al. 2001, Singal et al. 2001).  

Using siRNA techniques Lin & Nelson (2003) knocked down the transcription of MBD2 

(~79%), DNMT1 (~83%) & MeCP2 (~77%) in MCF-7 (breast cancer) cells and 

recorded an increase in transcription of GSPT1 from only the MBD2 and DNMT1 

siRNA treated cells.  DNMT1 and MBD2 have also been detected bound to the 

hypermethylated GSTP1 promoter in MCF-7 cells using ChIP assays (Lin & Nelson, 

2003) but it is unknown if DNMT1 is repressing transcription although the recruitment 

of DNMT1 to the GSTP1 promoter is dependent on the methylation of the CpG island 

(Lin & Nelson, 2003).  These data suggest that both MBD2 and DNMT1 are involved in 

aberrant transcriptional repression of GSTP1 in the MCF-7 cell line although the exact 

role of DNMT1 has not been described at this time.   

 

MBD2 expression has been studied in other cell lines.  Billard et al. (2002) studied 

MBD2 expression during normal and pathological growth of the human mammary 

gland.  They found that MBD2 expression was 20-30 fold higher in benign tumours than 

normal tissue, but in neoplastic samples MBD2 and MECP2 were deregulated.  It was 

also noted that MBD2 expression varied with tumour size in invasive ductal carcinomas.  

In contrast to the varied transcription in breast cancer, human colorectal, gastric 

cancerous tissues (Kanai et al. 1999) and the peripheral blood lymphocytes in bladder 

cancer patients (Zhu et al. 2004) show a decrease in transcription suggesting there could 

be a protective role for MBD2 in these diseases. 

 

DNMT1 has also been shown to be over expressed in various cancers compared to 

normal tissue (Sun et al. 1997, Kanai et al. 2001, Saito et al. 2001), and that over 

expression correlated significantly with detection of methylated CpG islands (Kanai et 

al. 2001).  However, DNMT1 is expressed mainly during S-phase and because tumour 

tissue is presumed to contain a greater proportion of dividing cells than normal tissue is, 
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the increase in DNMT1 expression could be due to an increase in dividing cells or an 

increase in each cell. 

 

MBD2 and DNMT1 have been implicated as key players in various gastric cancers and 

are therefore targets for anticancer drugs.  MBD2 appears to be the more attractive target 

as knocking out MBD2 does not appear to have any distinct or severe side effects unless 

you are a nursing mouse, and while inhibition of DNMT1 can restore almost wild type 

growth in cell culture it is not without side effects.  The interaction between p66 and 

MBD2 within the MeCP1 complex is an obvious target for drug design.      

 

1.6 Non-methylated CpG and CXXC domains 

The CXXC domain is characterized by a cystine rich CXXCXXC repeat where X is any 

amino acid.  CXXC domains are found in chromatin binding proteins MBD1 (2 or 3 

CXXC domains depending on splice variant), DNA methyltransferase 1 (DNMT1) 

(Bestor 1992), CpG-binding protein (CGBP) (Lee et al. 2001) and the mixed-linage 

leukaemia gene (MLL) (Tkachuk et al, 1992).  The CXXC domain in DNMT1 as been 

shown to bind zinc (Bestor 1992) while the CXXC domain of CGBP has been shown 

require zinc to bind non-methylated CpGs in vitro (Lee et al. 2001).  The 3rd CXXC 

domain in MBD1 has also been shown to bind non-methylated CpG motifs and cause the 

repression of non-methylated reporter genes via the transcriptional repression domain 

while CXXC1 & -2 do not (Jorgensen et al. 2004).  The CXXC domains (1 to 3) from 

MBD1, HRX/MLL, CGBP and DNMT1 show sequence similarity mainly through 8 

cystine residues that form the two zinc clusters (fig 1.7) with CXXC-3 showing further 

homology to CGBP and other non-methylated DNA binding proteins (Jorgensen et al. 

2004).  The CXXC domain sequences shown in figure 1.7 also contain a glycine residue 

succeeding the first cysteine in each cluster (pink)  However, MBD1 CXXC1 and 

CXXC2 lack the  sequence KFGG (and other conserved residues D 31 & Q43) compared 

to the other CXXC domains.   
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Figure 1.7 Alignment of CXXC domains from hMLL (NP_005924), hDNMT1 

(NP_001370.1), hCGBP NP_055408), MBD1 CXXC1, CXXC2, CXXC3 (NP_056671).  

Sequences were aligned using Jalview (Clamp et al, 2004).  Cysteines involved in forming the 

zinc clusters are shaded blue and numbered according to the cluster they participate in.  

Residues conserved between domains than bind non-methylated CpG are shaded green and non 

cysteine common residues between all sequences are coloured pink 
 

As noted above (p6) methylation occurs at 70-80% of mammalian CpG sites (Ehrlich 

and Wang 1981) with the remaining unmethylated CpG sites being found in CpG rich 

islands usually found in the promoter regions of house keeping genes (Bird 1986). It is 

therefore likely that CXXC domains have a role in binding to CpG islands.  Recently 

Thomson et al (2010) showed that CXXC finger protein 1 (CFP1), part of the Setd1 

H3K4 methyltransferase complex (Lee et al, 2007), localize to CpG islands and appears 

to be required for H3K4 methylation, which is normally associated with transcriptionally 

active promoters.  In acute myeloid leukemia the MLL protein is fused with LCX 

(leukemia-associated protein with a CXXC domain) (Ono et al, 2002).  This fusion 

protein is essential for target recognition, transactivation, and myeloid transformation by 

the MLL oncoprotein (Atton et al, 2004).  With a mutated CXXC domain from MLL 

which is unable to bind non-methylated CpG, the MLL/LCX fusion protein is unable to 

induce transcription from target genes.  The direct functions of the CXXC domains from 

MBD1 are currently unknown.  It has been shown that the CXXC domain from DNMT1 

is essential for enzymatic activity and that single point mutations in the CXXC domain 

disrupt the DNA binding ability but do not interfere with DNMT1 targeting to 

replication foci (Fatemi et al, 2001., Pradhan et al, 2008).  CXXC domains also have 

been shown to interact with various proteins involved in chromatin remodeling.  Xia et 

al (2003) investigated the protein-protein interactions of the MLL/LCX CXXC domain. 

Using GST-pull down assays and co-immunoprecipitation they were able to show that 

the CXXC domain interacts with CtBP (C-terminal binding protein) and hPc2 (human 

polycomb 2 protein).  CtBP can meditate transcriptional repression by recruiting HDACs 

(Subramanian & Chinnadurai, 2003) while hPc2 is a member of the PRC1 complex 

(shao et al, 1999).  MLL/LCX CXXC recruitment of PRC1 mediates transcription 



 37 

repression independent of HDAC activity (Xia et al, 2003).  Fuks et al (2000) also 

reported the DNMT1 CXXC domain could mediate HDAC-independent transcriptional 

repression using the Gal4 reporter system.  The MBD1 CXXC3 domain is similar to the 

MLL & DNMT1 CXXC domain in sequence and it can bind non-methyl CpG DNA 

(Jorgensen et al. 2004).  With this similarity in mind, Sakamoto et al (2007) used a yeast 

two hybrid screen to identify proteins that interact with the three CXXC domains from 

MBD1.  They were able to show the MBD1 CXXC3 also interacted with hPc2 while 

CXXC12 interacted with amino acids 250-337 of Ring1b.  Ring1b, like hPc2, is a major 

component of the Polycomb group (PcG) multiprotein PRC1 complex (Min et al, 2003).  

This suggests that although the first two CXXC domains from MBD1 do not bind CpG 

DNA they have a role in transcriptional repression through the interaction of the PRC1 

complex.   

 

The solution structure of the MLL CXXC domain (Allen et al, 2006), MLL in complex 

with DNA (Cierpicki et al, 2009), xDNMT1 (Thomson & Smith, unpublished) and the 

crystal structure of DNMT1 CXXC in complex with DNA (Song et al, 2010) have been 

solved.  The structure of MLL CXXC domain forms a crescent like structure containing 

two zinc atoms.  Each zinc atom is coordinated by 4 cystine residues (figure 1.8).  These 

two zinc atoms are required for structural integrity of the domain since mutation of any 

of the conserved cysteine residues results in an unfolded protein (Allen et al, 2006, 

Cierpicki et al, 2009)     

 

Figure 1.8 Stereo view of the solution structure of the MLL CXXC domain in cartoon 

form (Cierpicki et al, 2009).  Zinc atoms shown as gray spheres, N, N-terminus; C, C-

terminus.  PDB 2KKF (Figure prepared using PyMol). 

N N 

C C 



 38 

Shown in figure 1.9, the MLL CXXC domain binds the CpG motif in the major groove 

though formation of hydrogen bonds from the N4-amine groups of C118 and C106 and 

the backbone oxygen of K1185 and K1186 respectively.  The side chain of K1186 forms 

hydrogen bonds to G119 while the side chain amide of Q1187 hydrogen bonds to G107 

(Cierpicki et al, 2009).   Cierpicki et al (2009) also discovered weak NOEs between the 

side chains of R1150, S1152 and L1197 and the minor groove.  Mutation of R1150 and 

L1197 to alanine resulted in a 5 and 4 fold reduction in DNA binding affinity 

respectively.   

 

 

 

Figure 1.9 Stereo view of the solution structure of the MLL CXXC domain in complex 

with DNA in cartoon form showing the CpG palindrome in red, the DNA backbone in 

orange and the residues involved in DNA binding N, N-terminus; C, C-terminus. PDB 

2KKF (Cierpicki et al, 2009) (Figure prepared using PyMol). 
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CHAPTER TWO 

 

INTRODUCTION PART 2: PROTEIN NMR  
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m – magnetic quantum number 

2.1 Nuclear Magnetic resonance 

In this section the fundamental theory underlying the experiments that I applied in 

investigating MBD1 CXXC1 and MBD1 CXXC12 are outlined.  I have written this 

chapter from the point of view of a biologist using NMR as a technique used to answer 

questions about a proteins function.  As such I hope that a scientist without any 

experience of NMR should be able to follow and understand. 

 

2.1.1 Basic Theory of one dimensional NMR 

Nuclear magnetic resonance (NMR), first described by Felix Bloch and Edward Mills 

Purcell in 1946, is the phenomenon of atoms absorbing radio-frequency electromagnetic 

radiation (RF) under the influence of a magnetic field.  For protein NMR the detection of 

this absorption requires the use of isotopes of carbon, nitrogen and hydrogen which have 

a spin 1/2.  Spin is a quantum mechanical property attributed to protons, neutrons and 

electrons, measured in multiples of ½ and can be positive or negative.  In protein NMR, 

isotopes of carbon, nitrogen and hydrogen that have a nuclear net spin +/- ½.  Nuclear 

net spin ½ occurs when the isotopes have an unpaired proton e.g. 1H, 13C, 15N are used.  

It is a quantum mechanical requirement that nuclei with a spin ½ be in one of two states 

(low or high energy state) when placed in a magnetic field (figure 2.1).  When no 

external magnetic field is applied the two states are of equal energy.  The energies of the 

spin states are split with the application of a magnetic field.  

 

 

 

Figure 2.1 Figure showing the effect on the potential energy of the spin states on a 

nucleus when an external magnetic field is applied.    
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 At equilibrium jumping from one spin state to the other is a relatively infrequent 

occurrence.  However, application of RF energy equal to the difference between the two 

states will generate a greater amount of jumping between states. The frequency of the 

RF energy required for nuclei to absorb radiation is known as the Larmor frequency.  

The Larmor frequency is equal to the frequency of the precessional orbit of the nucleus 

in the applied magnetic field.  After a pulse of RF energy, the spin states of the majority 

of nuclei will under go relaxation to their original state.  This relaxation is known as a 

Free Induction Decay (FID) The energy required to flip the states depends on the 

strength of the magnetic field they are placed in, the type of nucleus e.g. 1H or 13C, and 

the chemical environment of the nucleus e.g. the methyl and hydroxyl protons of 

methanol absorb at different frequencies and the amide protons of two tryptophans in a 

protein are likely to absorb at different frequencies because they are in different 

chemical environments.  This effect is known as chemical shift and is a major source of 

information in NMR spectra for assignment of atom types since protons attached to Cα, 

amide N and side chain heavy atoms have characteristic chemical shifts.  

 

2.2 Homonuclear 1H NMR 

 In protein NMR there are various experiments that can be performed in order to 

elucidate a three dimensional structure.  In essence they fall into 2 categories: through 

bond, where the magnetization is transferred from atom to atom through the intervening 

covalent bonds; and through space, where the magnetization is transferred between 

atoms that are close together (< 5Å apart) but not necessarily covalently linked.  The 

experiments are performed on samples that are either unlabeled or labeled with 13C 

and/or 15N.  NMR structures of small proteins <10kDa can normally be elucidated with 

unlabelled samples using homonuclear NMR, since naturally abundant hydrogen has a 

spin ½ (Wuthrich, 1986). 

 

2.1.1 Water suppression 

The NMR experiments carried out for this thesis were performed in aqueous solutions. 

The concentration of 1H nuclei in water is approximately 110 M compared to 0.5-1.0 

mM for the protein molecules.  This results in ~105 greater equilibrium magnetization of 

water 1H spins.  Without suppressing the signal from the water, detection of the protein 

signal without spectrum distortions is impossible.  By replacing H2O with D20 

(99.999%) as the solvent, it is possible to reduce the H2O resonance signal a factor of 

105.  However, signals from exchangeable, e.g. amide 1H, nuclei will be reduced or 
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absent from the spectra.  Since scalar coupling and dipolar interactions between 

backbone amide 1HN spins with amide 15N and 1Hα spins are required for backbone 

assignment certain NMR experiments must be carried out in an H2O solvent. 

The simplest method of water suppression is presaturation.  A long low powered pulse 

which is applied scrambles the water signal around the applied Z-axis.  The net effect of 

this pulse causes the water signals from different parts of the sample to cancel each other 

out before the main sample pulse sequence is initiated.  Water suppression by 

presaturation is a simple and effective method. However, 1Hα spins close to the water 

signal can be saturated by the RF field and saturation transfer may partially saturate 

exchangeable 1H spins.   A more effective water suppression technique is excitation 

sculpting (Hwang and Shaka, 1995).  This method of water suppression is executed 

before detection of the FID and requires pulse field gradients.  A gradient pulse is first 

applied to scramble the homogeneity of magnetization in the sample.  A selective 180º 

pulsed on water followed by a non selective 180º pulse turns the water through 360º.  

Since the initial magnetization on non-water protons has been turned though 180º a 

second gradient pulse refocuses the non-water signals but not the water.  A variation of 

this excitation sculpting is known as a 3-9-19 watergate.  This type of water suppression 

is more suited to 2D and 3D experiments due to the use of selective pulses that do not 

excite water rather than the water selective and non-selective pulse in the Hwang and 

Shaka (1995) method.  The use of the non-water selective pulses shortens the time of the 

water suppression element in the pulse sequence, reducing the length of time the sample 

has to relax.    

 

2.2.2 1D homonuclear NMR 

A 1D 1H NMR experiment consists of two parts: preparation and acquisition.  In the 

simplest case, shown in figure 2.2, preparation is a 90˚ pulse applied along the x-axis 

which transfers the magnetization from the z-axis into the transverse plane to the 

negative y-axis.  The receiver coil records the signal emitted by the nuclei as they 

precess at their Larmor frequency (figure 2.3)     
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Figure 2.2 Schematic diagram of a simple 1D NMR experiment  

 

 

 

 

 

 

 

 

 

Figure 2.3 Effect of applying an external RF field (red) of sufficient strength along 

the x axis to induce rotation of the equilibrium magnetization (green) magnetization into 

the transverse plane to –y (dark blue). 

 

The 1D 1H  NMR experiment records the RF emission from the nuclei of 1H atoms only 

and the FID, a concentration of sinusoidal waves (time domain) is Fourier transformed 

to provide a frequency domain spectrum  (figure 2.4).    

 

Figure 2.4 Fourier transformation of a time domain signal to a frequency domain 

spectrum 
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This 1D spectrum can be used to provide information as to whether the protein is 

structured.  The x-axis represents the chemical shift, a relative frequency scale expressed 

in parts per million compared to the reference compound tetramethylsilane and figure 

2.5 relates the peaks to different chemical environments. 

 

 

Figure 2.5 1D 1H spectra of unlabelled hMBD1 CXXC1 (10mM deuterated 

tris(hydroxymethyl) aminomethane, 250mM NaCl, pH 6.5)  relating chemical shift (in 

ppm) to different chemical environment. 

 

The 1D 1H experiment can be a powerful diagnostic tool since the sharpness or 

broadness of the peaks relate to how structured the protein/peptide is. Very sharp methyl 

peaks coupled with lack of dispersion (where peaks cannot be distinguished one from 

another) of the backbone amides clustered around 7-8.5ppm can indicate unstructured 

protein.  A structured protein will show good dispersion of peaks (Figure 2.5) in the 

methyl and backbone amide regions.  Broader than expected line widths can be 

indicative of protein aggregation and/or conformational flexibility. 

 

2.2.3 2D Homonuclear 1H NMR 

The 1D 1H experiment is limited in the information it can provide and it is not usually 

possible to assign individual peaks to specific amino acid residues due to overlap.  2D 

homonuclear NMR experiments utilize magnetization transfer between hydrogen nuclei 

that appear as crosspeaks in the spectra.  This correlation of hydrogen nuclei is the basis 

of amino acid assignment and distance restraint measurement.  The simplest 2D 

homonuclear experiment (COSY - Correlation Spectroscopy) takes the preparation and 

Backbone HN 

aromatic Hα 

Side-chain HN 

methyl 

aliphatic 
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detection from a 1D experiment (figure 2.2) and adds an indirect evolution time (T1) and 

mixing sequence (figure 2.6).    

 

 

 

Figure 2.6 Anatomy of a simple 2D homonuclear experiment (COSY). 

 

After preparation, the spins precess for a given time, T1, where the magnetization is 

labelled with the chemical shift of a proton.  The mixing time transfers some of 

magnetization to another proton before detection.  During detection, the magnetization is 

labelled with the chemical shift of the correlated proton.  Magnetization can be 

transferred during the mixing time by scalar coupling for through bond Total Correlation 

Spectroscopy/Correlation Spectroscopy (TOCSY/COSY) or dipolar interactions for 

through space Nuclear Overhauser Effect Spectroscopy (NOESY) experiments.  The 

COSY experiment only transfers magnetization through up to 3 bonds due to the 

weakness of the scalar coupling over greater number of bonds.  Figure 2.7 illustrates the 

connectivities that give rise to cross peaks in TOCSY & NOESY spectra.  A 2D 

homonuclear experiment produces a spectrum with two frequency axes.  Signals for 

each proton detected are recorded along a diagonal, splitting the spectrum into two 

halves.   

 

 

 

 

Figure 2.7 Connectivities that can give rise to cross peaks in A) 1H-TOCSY and B) 
1H-NOESY.  Solid arrows represent intra-residuer transfer, dotted lines represent inter-

residue transfer. 

A B 
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Figure 2.8 Schematic of a 2D homonuclear spectrum.  Protons A & B are correlated 

by the cross peaks X.  Cross peaks either side of the diagonal result from magnetization 

originating from each proton. The green arrow indicates a cross peak arising from 

magnetization which originated on proton A that was transferred to B. 

 

This diagonal results from magnetization which has not been transferred during the 

mixing time and therefore remains on the same nucleus.  Signals not on the diagonal are 

the result of two protons exchanging magnetization during the mixing time (figure 2.8).      

The cross peaks that correlate a proton to another proton provide information for 

assignment of each cross peak in the spectrum.   

 

2.3 Protein Assignment using 1H homonuclear data 

There are typically three 2D homonuclear experiments, COSY (Correlation 

Spectroscopy), TOCSY (Total Corralation Spectroscopy) and NOESY (Nuclear 

Overhouser Effect Spectroscopy) that can be used for resonance assignment and 

extraction of distance information.  These experiments are used to assign spin systems, 

each of which is a group of resonances representing the chemical shifts of each residues 

protons (amide, alpha and side chain).  As with the 1D 1H spectrum (figure 2.5) specific 

regions within the 2D 1H spectrum correlate transfer between different proton groups.  

Figure 2.9 shows the layout of a 2D 1H spectrum relating chemical shift coordinates to 

proton-proton magnetization transfer. 

δ
1H F1 

δ
1H F2 
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Figure 2.9 Layout of magnetization transfer for a 2D 1H experiment in H2O 

 

2.3.1 Correlation spectroscopy 

The COSY experiment transfers the magnetization by scalar couplings and as such only 

crosspeaks between protons that are up to 3 bonds apart in the spectrum since couplings 

over 3 bonds are too small to be visible.  The COSY experiment is important for 

discriminating β & γ protons for example in glutamate where the chemical shift ranges 

of the β & γ protons overlap.  There would be a COSY cross peak correlating the Hα to 

the Hβ but not to the Hγ. Every amino acid has specific chemical shift ranges for protons 

with in each residue.    

The TOCSY (total correlation spectroscopy) experiment correlates every proton in an 

amino acid residue (figure 2.10) Magnetization is transferred through the entire spin 

system (amino acid) by successive scalar couplings.  As both the TOCSY and COSY 

experiments depend on scalar coupling, they can be used for identifying the chemical 

shift values for the resonances within each spin system.     
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Figure 2.10 Diagram the pattern of crosspeaks for an arbitrary spin system in a 

TOCSY experiment.  Green circles – autocorrelation crosspeaks for the nuclei of the 

spin system, blue circles – cross peaks correlating nuclei.   

 

However, this characteristic pattern (figure 2.11) is shared between certain amino acids 

e.g. cysteine, aspartic acid, phenylalanine, histidine, asparagine, tryptophan and tyrosine 

have the same pattern.  Therefore while it is possible to assign cross peaks to a particular 

spin system it is not possible to assign the spin system to a specific amino acid on the 

basis of the pattern of chemical shifts alone. It is not possible to sequentially link or 

calculate structure based solely on spin system assignments in COSY/TOCSY spectra.  

Assignment of spin systems to sequence specific amino acids requires the spin systems 

to be linked together (see chapter 2.3.3). 

δ
1H  

δ
1H  
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Figure 2.11 Characteristic COSY spectra for each of the 10 classes of amino acid 

residiues and aromatic side chains (reproduced from Smith, 1994)  
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2.3.2 Nuclear Overhauser Effect Spectroscopy  

For structure determination by proton NMR, information about the distance between 

atoms is crucial.  The NOESY (Nuclear Overhauser Effect Spectroscopy) experiment 

relies on dipolar interactions of spins to transfer the magnetization, through space, from 

one nucleus to another.  This through space magnetization transfer allows distance 

information to be obtained for both intra- and inter-residue interactions between protons 

that are typically less than 5Å apart.  The strength of correlation between two nuclei 

depends on the distance between them.  The closer the nuclei are to each other the more 

intense the cross peak in the spectrum.  The NOESY spectrum not only contains cross 

peaks for intra-residue correlation, which are at the same chemical shift coordinates as 

the COSY/TOCSY correlations, but also inter-residue correlations between nuclei close 

in space.  This information is required for linking spin systems together in order to 

assign them sequence specifically. 

  

2.3.3 Sequential Assignment 

Since correlations between nuclei in the same spin system are at the same chemical shift 

in both NOESY and TOSCY/COSY spectra and the Hα to HN i+1 distance is often short 

there is typically an NOE cross peak correlating the Hα from one amino acid and the HN  

the next in sequence.  Figure 2.12 shows an example of backbone sequential linking 

using the Hαi to HN i+1 inter-residue NOE.  It is not possible to rely solely on the Hαi to 

HN i+1 crosspeaks to sequentially link spin systems since there is not always a strong or 

well resolved  Hαi to HN i+1  cross peak.  For example, residues in an alpha helix have 

weak Hαi to HN i+1 but strong HN to HN i+1 NOEs.  Using the known protein sequence it is 

possible to link spin systems using NOE crosspeaks correlating HN and Hβ protons and 

HN and HN resonances of i to i+1 to make the sequential assignment less ambiguous.  

Another problem arises when trying to sequentially link a proline residue since proline 

lacks an amide proton.  Proline residues can normally be sequentially linked using the 

correlation of the proline Hδ and the Hα of the residue before.  Once spin systems have 

been linked sequentially, assignment of the side chain chemical shifts can be completed 

using the COSY experiment to help distinguish side chain protons. 
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Figure 2.12 Example of sequentially linking backbone resonances of hMBD1 CXXC1 

using 2D homonuclear TOCSY (green) & NOESY (blue) spectra by identifying the 

inter-residue 213Arg Hα to 214Arg HN crosspeak. 

 

2.3 Heteronuclear NMR  

Atom specific assignment of resonances observed in homonuclear experiments are 

dependant on well resolved spectra.  This can normally be carried out for small globular 

proteins that produce spectra with well dispersed chemical shifts for the protons in each 

of the residues.  Spectra become less well resolved as proteins increase in size due to:  

1) The increase in number of resonances due to the increase in number of protein 

residues while the chemical shift range over which signals are spread does not change.  

This increases the probability of overlap of cross peaks making assignments more 

difficult. 

 2) The decreased rotational correlation time of the protein causing faster relaxation, thus 

increasing overlap due to from broader linewidths.   

The use of 15N labelled protein allows NMR experiments to be carried out which add a 

third (nitrogen) dimension to the spectra.  Separation overlapped 2D crosspeaks possible 

because the spin systems can have different nitrogen chemical shifts (see chapter 4 p81 

for a specific example).  When proteins are labelled with both 13C and 15N, NMR 

experiments can be recorded that transfer magnetization across the peptide bond 

connecting two spin systems though bonds meaning you don’t have to use NOEs to get 

sequential assignment to work.         

1H (PPM) 

1H (PPM) 
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2.3.1 2D 15N-HSQC 

The 15N heteronuclear single quantum correlation (HSQC) experiment correlates the 

nitrogen atom of an NH(x) group to the attached proton.  Thus, the HSQC spectrum 

contains a cross peak for each backbone amide group except proline.  Also visible in an 

HSQC spectrum are the NH2 side chain groups of Asn & Gln, the aromatic NH groups 

of Trp & and more rarely His and the NƐHƐ of Arg (figure 2.13).  

The pulse sequence for a basic HSQC experiment is illustrated in figure 2.14.  The 

INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) pulse sequence is used to 

transfer magnetization from the proton to the nitrogen atom.  A 180º pulse mid evolution 

inverts the proton scalar coupling so that F1 (nitrogen dimension) lineshape does not 

contain contributions from 1H scalar coupling.  A reverse INEPT sequence transfers the 

magnetization back to the proton and detection occurs.  Decoupling the nitrogen channel 

removes the contribution of the nitrogen scalar coupling to the F2 line shape. There is no 

diagonal in the HSQC spectrum because different nuclei are observed during T1 and T2 

 

 

 

 

 

 

δ 1H  (ppm) 

δ 15N  
(ppm) 

Figure 2.13 15N HSQC of hMBD1 CXXC1, (Bruker Avance 800 MHz 
with cryoprobe, 10mM deuterated tris(hydroxymethyl)aminomethane,, 
250mM NaCl, pH 7.5, 293K).   



                                                                                                                                              53 

 

 

Figure 2.14 Pulse sequence for a basic HSQC experiment.  Thin bars are 90º & thick 

bars are 180º pulses.  Pulses are applied with x-phases unless indicated above the bar 

 

Although it is not possible to assign cross peaks to specific residues using an HSQC 

alone, the spectrum provides a unique footprint for each protein.  This footprint can 

change depending on buffer conditions and binding to ligands.  This is due to a change 

in the nuclear shielding that the atoms are experiencing, which affects the chemical shift 

at which their resonances are observed at.  This is a useful technique for investigating 

which residues, if assignments are available, interact with an added compound.  Another 

important technique that requires use of the HSQC experiment is hydrogen-deuterium 

exchange for investigating solvent accessibility and hydrogen bonding.  In solution, the 

amide hydrogen in the peptide bonds exchange with the solvent.  When D2O is used as a 

solvent in place of H2O, the amide hydrogen exchange with deuterons.   Since deuterons 

cannot be detected in a 15N HSQC experiment those cross peaks that survive are 

considered to originate from slowly exchanging HN which result from amide protons 

either involved in hydrogen bonds, or burred within a hydrophobic core. 

 

2.3.2 3D 15N heteronuclear NMR experiments 

Ambiguity of sequential resonance assignment in overlapped 2D spectra can be 

generally overcome using 3D heteronuclear versions of 2D homonuclear experiments.  

These experiments combine a 2D homonuclear TOCSY or NOESY pulse sequence and 

an HSQC pulse sequence.  For an HSQC-NOESY experiment the pulse sequence 

(Figure 2.15) starts with a homonuclear NOESY with a 90º pulse to switch 

magnetization to the transverse plane, a variable evolution time t1 to provide chemical 

shift information in the F1 domain then another 90º pulse to move the magnetization 

back to the z-axis with magnetization transfer through dipolar coupling during the 

mixing time Tm.  The remainder of the pulse sequence is identical to the HSQC 

experiment described above.       



                                                                                                                                              54 

 

 

 

Figure 2.15 Pulse sequence for a 3D 1H-15N HSQC-NOESY experiment. Thin bars 

are 90º & thick bars are 180º pulses.  Pulses are applied with x-phases unless indicated 

above the bar.  

 

The advantage of introducing the 3rd dimension in a 15N HSQC-NOESY or –TOCSY 

experiment is that since only cross peaks linked to an NH are seen in each slice, 

overlapped peaks can normally be separated by their 15N chemical shift (figure 2.16). 

 

 

Figure 2.16 Illustration showing the relationship between a 2D homonuclear spectrum 

and a 3D heteronuclear spectrum.  The overlapped cross peaks in the 2D spectrum 

(green) are separated by the introduction of the nitrogen dimension (F3).  
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2.4 Data Processing 

Before resonance assignment can begin, the recorded NMR data has to be processed 

from the time domain to the frequency domain.  Normally the direct Fourier 

transformation (DFT) of the recorded NMR signal does not yield an optimal spectrum.  

In order to maximize the information that can be extracted from the spectrum a number 

of digital signal processing techniques can be applied before and after Fourier 

transformation.  

 

2.4.1 Pre-Fourier transformation data processing 

A DFT of the FID recorded by the NMR spectrometer produces a frequency domain 

signal with a Lorentzian line shape.  The shape of the line can be improved to give 

greater resolution and sensitivity by applying functions to the FID before DFT. The 

Lorentzian line shape is produced from an FID that decays exponentially.  Therefore, if 

the decay of the FID is altered to decay with a different time dependence the resolution 

and/or single to noise can be adjusted.  Multiplying the FID by exponential function will 

deemphasize the later parts of the FID where the signal from the protein is weakest.  The 

Lorentzian-to-Gaussian is a common function applied to the FID.  The Lorentzian lines 

are converted to Gaussian lines by multiplying by an increasing exponential followed by 

a Gaussian function.  Figure 2.17 shows the effect of applying the Gaussian function to 

the FID. 

 

    

 

Figure 2.17 Diagram of the effect on line shape for a Lorentzian-to-Gaussion 

transformation.  Line width at half height are the same. (Adapted from James Keeler 

lecture notes University of Cambridge, http://www-

keeler.ch.cam.ac.uk/lectures/understanding/chapter_4.pdf) 

 

Lorentzian 

Gaussian 
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A function similar to the Gaussian is the sine bell function.  There is also a squared sine 

bell function which is more concentrated around the maximum.  Figure 2.18A illustrates 

the difference between sine bell and squared sine bell and figure 2.18B illustrates the 

flexibility of the (squared) sine bell function.  The squared sine bell function is good to 

use because it goes smoothly to zero which produces fewer truncation artifacts compared 

to the sine bell function. 

 

 

Figure 2.18  comparison of sine bell & squared sine bell curves (A) Flexibility of the 

squared sine bell function by applying a phase shift (B).  (Adapted from James Keeler 

lecture notes, University of Cambridge, http://www-

keeler.ch.cam.ac.uk/lectures/understanding/chapter_4.pdf) 

 

 For each NMR experiment a sweep width is set which is the range over which the data 

is collected (set in ppm or Hz).  To obtain a high digital resolution it is necessary to 

record a large number of data points in this sweep width (Hz/data points).  The noise in 

an FID remains more or less constant whereas the signal sinusoids decay over time.  

Therefore, at some point noise contributes more to the FID than the nuclear resonances.  

It is possible to record a smaller number of points and then extrapolate the FID by 

process called zero-filling if the signal has decayed by the end point.  Zero-filling simply 

adds zeros to the data sequence.  If the signal has not decayed when recording stops the 

FID is truncated and zero-filling leads to oscillations around the base of the peak called 

sinc-wiggles (the name comes from the peak shape as it is related to a sinc function). 

(figure 2.19).   



                                                                                                                                              57 

These sinc-wiggles can cause problems during resonance assignment later on.   

 

 

 

 

 

Figure 2.19 Figure illustrating the effects of truncation of the FID on the 

corresponding spectrum.  For spectrum A the FID was allowed to decay to almost zero 

where as spectrum B shows sinc wiggle artifacts caused by truncation of the FID. 

(Adapted from James Keeler lecture notes, University of Cambridge, http://www-

keeler.ch.cam.ac.uk/lectures/understanding/chapter_4.pdf) 

 

2.4.2 Post-Fourier transformation data processing 

After DFT the spectrum normally displays a phase error.  This is because the time-

domain signal is a complex signal as the sum of sine and cosine functions.  The DFT of 

this complex time domain results in a frequency domain comprising of real part 

(absorption) and an imaginary part (dispersion), shown in figure 2.20, which are out of 

phase. This results in their full width of the peak at half maximum no longer being the 

same for each part. 

 

 

 

 

A B 
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Figure 2.20 illustration showing the real (absorption) and imaginary part (dispersion) 

of a Lorentzian. 

 

 

Applying zero-order (frequency independent) correction will correct phasing at the 

chosen pivot point.  To correct remaining phase errors away from the pivot point, first 

order (frequency dependent) correction is applied.  A curved or rolling baseline makes it 

more difficult to pick peaks in a spectrum and is also a source of error in quantification. 

Baseline distortions are mainly caused by the corruption of the first few data points of an 

FID. Baseline correction methods fall into two categories, time domain correction 

methods that reconstruct the corrupted data points in the FID and frequency domain 

correction methods that construct baseline curves to fit the spectra directly then subtract 

these baseline curves to remove the distortion.  After adjusting the processing 

parameters to produce a well resolved spectrum, the data can be loaded into various 

programs for resonance assignment and production of NMR distance constraints (See 

chapter 4) 

   

2.5 Alternative to DFT processing 

Processing using Fourier transformation is a fast way of producing a frequency domain 

spectrum from a recorded FID.  The DFT, as shown above, introduces oscillation 

artifacts when the FID is truncated.  If strong window functions are applied to reduce 

these artifacts there is a reduction in resolution.  In the case of 3D NMR experiments 

where the indirect detected dimensions are truncated due to time constraints, various 

methods have been developed to overcome this problem.  For example, maximum 

entropy reconstruction (Sibisi et al, 1984), linear prediction (Barkhuijsen et al, 1985), 

maximum likelihood (Hoffman et al, 1989) and Multi-Dimensional Decomposition 

(Orekhov et al, 2003) .  Processing of the 3D data in this thesis was carried out using the 

maximum entropy reconstruction method. The maximum entropy reconstruction method 
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creates a trial frequency domain spectrum then inverse FT back to an FID to compare 

with the FID recorded on the spectrometer.  The software then adjusts the simulated 

frequency domain spectrum until the inverse FT matches the recorded FID.  The inverse 

FT will never exactly match the recorded FID since the simulated frequency domain is 

devoid of noise.  Noise can be introduced to the simulated frequency domain spectrum 

so that the inverse FT will match the recorded FID more closely.  Using maximum 

entropy reconstruction on truncated data will normally produce a frequency domain 

spectrum with improved resolution compared to the Fourier transformation spectrum.  

However, maximum entropy reconstruction does not produce spectra that are as resolved 

and distortion free as the Fourier transformation of an untruncated FID.      

 

2.6 important considerations for recording NMR spec tra 

Recording NMR spectra is not as simple as putting a protein sample in a tube and 

placing it in the NMR machine.  Various characteristics of the protein have to be taken 

into account in order to prolong the life of the sample enough to record the required data.  

Not only are conditions that suit the protein important but also conditions that result in 

good spectra. 

 

2.6.1 Temperature, pH and Salt 

Protein samples should be kept at the lowest temperature possible in order to prolong the 

life of the sample.  However, low temperatures are generally not suited to recording 

NMR spectra due to slower molecular tumbling, which leads to broader lines and lower 

sensitivity.  However, high temperatures can also increase the rate of exchange with 

water and broaden the line widths due to increased dynamics and will ultimately cause 

the denaturation of the protein.  Therefore a temperature must be chosen to give the best 

overall compromise of resolution and sample life.  Figure 2.21 shows the effect of 

temperature on the xDNMT1 CXXC domain in 5K steps from 283 K to 303K.  As we 

increase temperature, the resolution increases as lines narrow around the 8.75 to 9.5 ppm 

region.  The spectrum at 293K appears to present the best overall compromise conditions 

for adequate resolution.   

The optimum pH for protein NMR is pH 4.0-4.5 since amide proton exchange with 

water is slowest at this pH.  As you move away from this range, amide exchange 

increases which can result in fewer amide protons being visible.  This can be seen in the 
15N spectra of hMBD1 CXXC1 where NH of histidine 200 is not visible (p ).  However 

not all proteins are stable at low pH, or their catalytic activity may be altered due to 



                                                                                                                                              60 

altered protonation states of the active site residues. 

Sodium chloride is an important constituent of many protein chemistry buffers as it can 

prevent the protein from precipitating.  This prevention of precipitation may be due to  

solvent counter-ions migrating towards the protein resulting in a layer which repulses the 

co-ions left in solution.  However, as you increase NaCl concentration the conductivity 

of the solution also increases.  The increase in conductivity not only affects the effective 

radio frequency power felt by the sample but also by the receiver coils of the 

spectrometer used to record the RF signal.  Thus sensitivity is reduced.  The reduction in 

effective RF power can be partially corrected by increasing pulse width, but this results 

in pulses that are further from ideal with various consequences for the quality of the 

resulting spectrum. 
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Figure 2.21 1D 1H spectra of unlabelled xDNMT1 CXXCb (10mM deuterated tris 
(hydroxymethyl)aminomethane, 250mM NaCl, pH 7.0) at various temperatures.  Water 
suppression using the method of Hwang and Shaka (1995) 

 

 

283K 

288K 

293K 

298K 

303K 
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2.6.2 Protein size 

In solution NMR, amide 1H from any unstructured regions of a protein will appear in the 

7-8.5 ppm region of a 1D 1H spectrum, resulting in a decrease in peak dispersion and 

increase in the overlap of the cross peaks in the spectra.  Shortening of the domain at the 

N- and C- termini can have a pronounced effect on the spectra recorded since the termini 

of protein domains are often unstructured.  In the case of xDNMT1 CXXC domain, 

shortening the construct from both termini had a dramatic effect on the resolution of the 

recorded spectra.  Figure 2.22 shows the differences between the three constructs 

 

  CXXCa 506FFSEQIEKDAE                      DEDEEVEDVLPEMPSPKKILQGKKKKLE 600 
  CXXCb                               517                   DEDEEVEDVLPE584 
  CXXCc            517                           572 
 
      517 KENGIKRRRCGVCEVCQQPDCGQCKACQAMLKFGGAGRTKQACM 
       QRRCPNLAVKEA572  
 

Figure 2.22 Schematic showing the amino acid sequences of the three xDNMT1 

CXXC constructs.  The green box represents xDNMT1 CXXCc whose sequence is 

shown below 

 

NMR spectra for the three xDNMT1 CXXC constructs shown above are shown in figure 

2.23.  Both CXXCb and CXXCc show less peak overlap in the 7-8.5 ppm region when 

compared to CXXCa, with the 8.5 – 9.5 ppm region becoming better resolved as the size 

of the construct becomes smaller.  The peak around 0.6 ppm also becomes more intense 

relative to other peaks in the aliphatic region as the domain is shortened (this peak 

disappears when the protein is unstructured e.g. upon addition of EDTA to the sample).   

 

 

 

 

 

 

 

 

 



                                                                                                                                              63 

 

 

 

Figure 2.23 1D 1H spectra of unlabelled various xDNMT1 CXXC contructs (10mM 
deuterated tris (hydroxymethyl) aminomethane, 250mM NaCl, pH 7.0) Water 
suppression using the method of Hwang and Shaka (1995).  

 

 

 

 

 

 

xDNMT1 CXXCa 

xDNMT1 CXXCb 

xDNMT1 CXXCc 
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CHAPTER THREE 

 

SAMPLE PREPARATION & NMR SPECTROSCOPY of hMBD1 CXXC 1 
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3.1 Cloning of hMBD1 CXXC1 Domain 

This section describes the strategy used to design hMBD1 CXXC1 constructs, to express 

and purify the hMBD1 CXXC1.  The NMR experiments carried out are also described. 

 

3.1.1 Bacterial transformations 

All bacteria used were chemically competent.  Heat shock was therefore used to 

transform the DNA into the cells.  The bacteria were removed from –80˚C and 

immediately placed on ice to defrost before 1 µl (mini prep DNA) or 1.5 µl (DNA 

ligation) was added and gently stirred with the pipette tip.  The bacteria were incubated 

on ice for 2 minutes before being heat shocked at 42˚C for 30 seconds and then placed 

back on ice for a further 5 minutes.  300 µl 37˚C pre-warmed SOC media was added 

before the bacteria were incubated at 37˚C & 200 rpm for 1 hour.  For plasmid 

transformations 50, or  for ligations 350 µl of culture was spread onto pre-dried LB-agar 

containing the required selection antibiotics.  The culture was allowed to dry into the 

LB-agar (approximately 15 minutes) before being placed in a 37˚C incubator overnight.  

Single colonies could then be picked the next day for inoculation into LB for plasmid 

purification or protein expression. 

 

3.1.2 Agarose Gel Electrophoresis 

1 gram of multiple purpose agarose (Roche, Cat No. 1388991) was put into a 250 ml 

conical flask containing 100 ml TBE buffer.   The agarose was dissolved by heating in a 

900 W microwave for approx 90 s.  Ethidium bromide was added to the agarose to a 

final concentration of 10 µg/ml once it had cooled to approximately 50˚C.  It was then 

poured into the casting tray of the electrophoresis apparatus (BioRad, Cat No. 164-0310) 

containing a sample comb and allowed to solidify at room temperature.  Once the gel 

had set the comb was removed carefully and TBE buffer added to the tank in order to 

cover the gel by approx 5-6 mm.  DNA samples were mixed with 6x loading buffer 

(Promega, Cat No. G1881) then pipetted into the wells.  NEB 2-log ladder (Cat. No. 

N3200S) was added for size referencing before electrophoresis was carried out under 

conditions of constant voltage at 100V for as long as it was required to separate each 

specific sample (30-60 minutes).  Migration of the DNA was detected by fluorescence of 

ethidium bromide bound to DNA under UV illumination 

 

3.1.3 Considerations when choosing domain size to e xpress 

When studying a protein in solution, non-structured areas of a protein are more flexible 
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than the structured domains.  The flexible unstructured regions will tend to have no long 

range NOEs and when present at the N & C termini of a protein will not contribute any 

information to the overall structure of the protein.  Flexible N- & C- termini will also 

give rise to additional poorly resolved cross peaks in the NMR spectra making 

assignment more difficult.  Thus, it is important to express a domain with minimal N- & 

C-terminal overhangs if possible. 

 

3.1.4 PCR of hMBD1 CXXC1 Domain  

Using the sequence identified by Cross et al (1997) a BLAST search revealed an 

IMAGE clone that contained the cDNA required to amplify the hMBD1 CXXC1 

domain.  The clone containing the DNA sequence of interest, GENBANK accession 

number CF552871, was purchased from Geneservice Ltd (clone ID 30529682).  The 

cDNA had been cloned into pCMV SPORT (ampicillinR) which was transformed into 

chemically competent DH5α E.coli cells (Invitrogen, Cat No.18265-017).  A stock of 

plasmid was prepared by inoculating a single colony into 10 ml of Lauria Broth (LB) + 

100 µg LB and grown overnight at 37ºC in an orbital incubator at 200 rpm.  Plasmids 

were purified by alkali-lysis using a GenEluteTM plasmid mini prep kit (Promega, Cat 

No PLN-350).  PCR primers were designed based on the solution structure of the MLL 

CXXC domain (Allen et al, 2006) in order to minimize flexible non-structured N- & C- 

termini.  Allen et al assigned and calculated the structure for residues V1146 to K1214 

of the MLL CXXC domain but found that only residues R1150-P1201 adopted a well-

defined tertiary structure.  Based on their structure primers were designed to amplify the 

region from MBD1 encoding amino acids 166-222, to give the least amount of flexible 

N- & C- termini (figure 3.1).  The gene fragment was cloned into a pGEX-6P1 (GE 

healthcare, Cat No. 27-4597-01) expression vector containing an N-terminal PreScission 

protease site (Figure 3.2).  PreScission protease is a fusion protein of glutathione S-

transferase and human rhinovirus type 14 3C protease (Habig et al, 1974) allowing a one 

step cleavage/protein elution step when using a GST-resin for purification.   

 

 

Figure 3.1 Amino acid alignment of CXXC domains from MLL and hMBD1 

comparing the sequence used by Allen et al and the domain cloned for this study 
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Figure 3.2 Plasmid map and multiple cloning site of pGEX-6P1 showing the 

PreScission protease cleavage site (GST handbook, GE healthcare). 

 

The PCR primers (figure 3.3) included restriction sites to clone the PCR product into 

pGEX-6P1 so that the CXXC domain would be expressed in frame with the GST tag.    

 

hMBD1 CXXC1 fwd  5’ GGGATCCGAGCAGAGAATGTTTAAG 3’ 

hMBD1 CXXC1 rev 5’ CTCGAGTCAGCTCCTTTCCACAATC 3’  

 

Figure 3.3 Primers for the PCR amplification of hMBD1 CXXC1 domain.  The 

restriction sites used (fwd BamH1, rev Xho 1) are shown in bold with the stop codon 

underlined 

 

PCR primers were ordered from Sigma Genosys and diluted to a stock concentration of 

100 µM.  Amplification was carried out on a Techne TC-512 thermo cycler using 

PfuTurbo® DNA polymerase (Stratagene, Cat No. 600250) with the IMAGE clone 

30529682 as a template.  The DNA template was diluted 1:100 from a plasmid mini prep 

stock. PCR reaction mix was as follows: 

 

1 µl (0.5µg) DNA template 

1 µl of each primer (50µM stock) 

1 µl of dNTP mix (NEB, Cat No N0447S) 

0.5 µl (1.25 units) Pfu Turbo DNA polymerase 

5 µl 5x Pfu Turbo DNA polymerase buffer 

41.5 µl ultrapure water 
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35 cycles 

MBD1 CXXC1 
PCR 

As PfuTurbo is not a hotstart enzyme, it was added to the reaction after the initial 5 

minutes at 95ºC followed by  

1min 95ºC 

1min 60ºC 

1min 72ºC 

With a final extension of 10 mins at 72ºC producing a product 183bp long.   

 

To purify the DNA, the sample was subjected to agarose gel electrophoresis.  The PCR 

reaction was mixed with loading buffer (Promega, Cat No. G1881) and run on a 1% 

agarose gel (Roche, CAT No 1388991) prestained with 5µl ethidium bromide (stock 

10mg/ml) alongside 2-log DNA marker (NEB, Cat No N3200S) (fig 3.4).  The DNA 

was visualized by detection of ethidium bromide fluorescence upon exposure to ultra 

violet light and excised from the gel.  The DNA was purified from the gel slice using a 

QIAquick gel extraction kit (Qiagen, Cat No 28704) according to the manufacturer’s 

instructions and eluted in 30µl. 

 

 

 

Figure 3.4  Agarose gel electrophoresis negative image of the MBD1 CXXC1 PCR 

product.  M - 2-log DNA marker 

 

3.1.5 Cloning of PCR product into pGEM-T easy  

In order to clone the cDNA fragment into the pGEM-T easy vector (Promega, Cat No 

1360) adenine overhangs (A-tail) had to be created since Pfu Turbo is a proof reading 

enzyme and removes any overhangs.  Taq polymerase (NEB, Cat No M0273S) was used 

in the following reaction to add the A-tail to the PCR fragment.  The reaction was 

incubated for 15 mins at 72ºC. 

 

 

 

M 
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1 µl (5 units) Taq DNA polymerase 

1 µl dATP 4mM stock (Promega, Cat No. U1201) 

1 µl 10x Taq polymerase buffer 

7 µl gel purified DNA 

 

The A-tailed DNA was then cloned into pGEM-T easy according to the manufacturer’s 

instructions and transformed into chemically competent DH5α cells.  Positive clones 

were identified using blue/white selection (see appendix), inoculated into 10 ml LB + 

100 µg/ml ampicillin and grown overnight at 37ºC in an orbital incubator at 200 rpm.  

Plasmids were purified by alkali-lysis as described above.   Cloning into pGEM-T easy 

allowed the digestion of the construct with BamH1 (NEB, Cat No R0136S) & Xho1 

(Promega, Cat No R6161) to release the MBD1 CXXC1 fragment with sticky ends 

enabling ligation into pGEX-6P1.   pGEX-6P1 was digested with the same enzymes; the 

fragments were then separated by agarose gel electrophoresis and then excised from the 

gel (Fig. 3.5).   The restriction digest which included the following 

 

34µl DNA from standard mini prep elution 

4µl NEB BamH1 buffer 

1µl BSA (10mg/ml stock concentration) 

1µl of BamH1 (20 units) & Xho1 (10 units) enzymes 

 

was incubated for 90 minutes at 37ºC 
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3.1.6 Cloning of MBD1 CXXC1 into pGEX-6P1  

The MBD1 CXXC1 insert and pGEX-6P1 were ligated using NEB T4 Ligase (Cat No 

M202S) according to the manufacturer’s instructions, transformed into DH5α cells and 

spread onto LB agar plates containing 100 µg/ml ampicillin and grown overnight at 

37ºC.  Colonies were inoculated into 10 ml LB + 100 µg/ml ampicillin and grown 

overnight at 37ºC in an orbital incubator at 200rpm.  Plasmids were purified from the 

bacteria using alkali-lysis as described above and digested with restriction enzymes 

BamH1 & Xho1 to identify clones containing an insert of the expected size (fig 3.6).  

Correct clones were sent to Cogenics for sequencing.  Clones with the correct sequence 

were used for protein expression 

 

 

 

V I 

CXXC1 Fragment 

M1 M2 

Figure 3.5 Agarose gel electrophoresis of the digested pGEX-6P1 vector and  
pGEM-T CXXC1 construct. M1 1KB ladder NEB, M2 100bp ladder NEB V – pGEX-
6P1, I – pGEM-T CXXC1 
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 1           2           3            4          5           6          7           8 
 

 

Figure 3.6 Agarose gel electrophoresis of a selection of 8 putative pGEX6P1-

hMBD1CXXC1 clones digested with BamH1 and Xho1. The arrow 

indicates the expected position of the CXXC1 fragment. Clones 2, 5, 6 & 

8 show the expected fragment pattern.  M- NEB 2-log ladder. 

 

3.2 Protein Sample preparation 

The pGEX-6P1 system utilizes a GST (Glutathione S-Transferase) tag for purification of 

the target protein on a Glutathione sepharoseTM 4 fastflow resin (GE healthcare, Cat No. 

17-5132-01).  Cleavage of the GST tag from the target protein was achieved using 

PreScission Protease (GE Healthcare, Cat No. 27-0843-01). 

 

3.2.1 Expression of the hMBD1 CXXC1 domain 

Based on previous experience with the CXXC domain from xDNMT1 and the 

publication of the MLL CXXC structure (Allen et al, 2006) pGEX-6P1 CXXC1 was 

transformed into chemically competent TunerTM DE3 cells genotype F– ompT hsdSB (rB
– 

mB
–) gal dcm lacY1 (Novagen, Cat No 70623-4), spread onto LB plates containing 100 

µg/ml ampicillin and grown overnight at 37ºC.  Single colonies were inoculated into 50 

ml of LB containing 100 µg/ml ampicillin in a 250 ml conical flask then incubated 

overnight.   

 

The 50 ml cultures were pelleted by centrifugation at 4300 g for 5 mins at 5000 rpm.  

The supernatant was removed and the pellet resuspended in 5 ml LB which was used to 

inoculate 500 ml of LB containing 100 µg/ml ampicillin in a 2 L conical flask.  The 

bacteria were grown at 37ºC in an orbital shaker, 200 rpm, to an OD600 between 0.6-0.8 

before being cooled to 4ºC.  Protein expression was induced by the addition of 150 µl of 

IPTG (1 M stock) to give a final concentration of 300 µM.  The bacteria were placed 

back in the orbital incubator to express overnight at 13ºC.  For isotopically labelled 

M 
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protein, the bacteria were grown in 500 ml of M9 minimal media rather than LB.   

 

3.2.2 Purification of hMBD1 CXXC1 domain 

A typical preparation of 4-5 mg of protein required 2 L of bacteria grown in 4x500 ml 

lots.  The bacteria were pelleted by centrifugation for 10 minutes at 4300 g.  The 

supernatant was removed and the bacteria resuspended in phosphate buffered saline 

solution (PBS) pH 7.3 (10 ml per 1 L of culture) then frozen at -20ºC.  To lyse the cells, 

they were first defrosted and warmed to room temperature (RT) before 2 ml of 10x 

BugBusterTM (Novagen, Cat No 70921-5) and 125 units of benzonase® nuclease 

(Novagen, Cat No 70746-3) were added.  The sample was incubated on a roller mixer 

for 20 mins at room temperature (RT).  Soluble and insoluble material was separated by 

centrifugation for 25 mins at 19872 g.   An empty econo-pac column (Bio-Rad, Cat No 

732-1010) was filled with a 3 ml bed volume of FastFlowtm 4 glutathione sepharose and 

equilibrated by washing the resin with 5 bed volumes of PBS pH 7.3.  The supernatant 

was passed through the resin twice which was then washed with 5 bed volumes of PBS 

pH 7.3.  To remove the tag, 80 units of dialysed PreScission was mixed with 3 ml of 

PreScission protease buffer minus EDTA.  To remove EDTA from the PreScission 

protease it was dialysed against 1L 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM 

DTT using a Thermo Scientific Slide-A-Lyzer Dialysis Cassette 7000MWCO (Cat. No. 

66373).  Glycerol was added to the dialysed sample to a final concentration of 20%.  The 

PreScission protease was aliquoted and stored at –20˚CThis was then added to the 

column and the resin gently resuspended before being incubated at 4ºC overnight.  The 

cleaved MBD1 CXXC1 domain was eluted from the column by applying 20 ml of 

elution buffer (see appendix).  Samples of the soluble lysis fraction, the flow through, 

the resin and the elution were analysed by SDS-PAGE (Figure 3.7).  The samples were 

mixed with 4X NuPAGE LDS sample buffer (Invitrogen, Cat No. NP0007) prior to 

being loaded into pre-cast NuPAGE 4~12% bis-tris gels (Invitrogen, Cat No. 

NP0321BOX). The samples were heated to 85 0C for 10 min with 90 mM β-

Mercaptoethanol before loading. Protein markers (BioRad, Cat No. 161-0373) were 

diluted with two volumes of water and one volume of NuPAGE LDS sample buffer and 

10 µl was loaded. The gel was run at 200 V constant voltage for 35 minutes. The protein 

bands were visualized after staining the gel with approximately 100 ml of coomassie 

stain for 5 to15 min followed by destaining in 100 ml of destaining buffer overnight at 

room temperature 
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Using the conditions described above for expression and purification of the protein 

resulted in an approximate yield of 4-5 mg of purified soluble protein when measured by 

Bradford assay which could be concentrated and buffer exchanged (chapter 3.2.3).       

 

 

Figure 3.7 SDS-PAGE analysis of the expression and purification of MBD1 CXXC1 

domain expressed in TunerTM DE3 cells. The image has been edited to place lanes F, R 

and E together since they were spaced out on the original gel.    

 

3.2.3 Sample concentration and buffer exchange 

For NMR spectra to be recorded within a sensible time, the protein concentration within 

the NMR sample must be at least 0.5 mM.  Since experiments can take place at 

temperatures which make the protein more liable to go off (precipitation, protease 

digestion, unfolding) the shorter the experimental time taken the better.  More 

concentrated samples produce better signal to noise enabling this.  Using a vivaspin20 

5kDa molecular weight cut off spin concentrator (Sartorius Stedim, Cat No VS2012) it is 

possible to both buffer exchange and concentrate the sample to the appropriate volume 

(500 µl).  The concentrator was washed with water to remove the glycerol preservative 

before addition of the eluted protein.  The sample was concentrated to 500 µl by 

centrifugation at 3056 g and 10ºC.  NMR buffer was added slowly to a total volume of 

20 ml and the process repeated twice achieving a 1600 fold dilution of the original 

buffer.  The purification of MBD1 CXXC1 resulted in NMR samples of between 1-

1.25mM 

M S F R E 

M – Biorad prestained molecular weight 
marker 
S – 20 µl soluble lysis fraction 
F – 20 µl flow through fraction 
R – 20 µl of resin after washing 
E – 10 µl of eluted MBD1 CXXC1 protein 
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The concentrated sample was centrifuged at 13000 rpm for 5mins in a bench top 

microcentrifuge to remove any particles before 30 µl of D2O was added.  D2O provides a 

deuterium lock signal for the NMR spectrometer.   The sample was made up to 600 µl 

with ultrapure water before being gently pipetted into an NMR tube (Wilmad 535-pp or 

Novell S607)   

 

3.3 NMR spectroscopy  

Data was recorded on Bruker AVANCE 600 MHz & 800MHz NMR spectrometers, 

equipped with 5 mm TCI cryoprobes.  NMR experiments were carried out using 1 mM 

protein samples except for DNA titration (100 µM).  The experiments carried out are 

shown in table 3.1.  1D and 2D NOESY, TOSCY experiments unlabelled protein was 

used.  For COSY (and another 2D NOESY) experiment, NMR buffer was made with 

D20 in place H20.  3D TOCSY-HSQC and NOESY-HSQC, 15N labelled protein was 

expressed using M9 minimal media supplemented with 15N labelled ammonium 

chloride.  All experiments were carried out at a temperature of 293 K. 

 

3.3.1 DNA Titration of hMBD1 CXXC1 

A Palindromic DNA oligonucleotide of 12 bp length (12mer -GCTTACGTAAGC ) was 

purchased from Sigma Genosys (reverse phase HPLC purified).  The oligo was 

resuspended in nuclease free water (promega) to a concentration of 84 uM per ml.  

Annealing of the oligo was performed by heating the sample to 95˚C then allowing it to 

cool slowly to room temperature.  The 12mer was then aliquoted into 600 µl (50 µM) 

samples before being lyophilized.  This allowed the DNA to be mixed with the NMR 

sample without decreasing the concentration of the NMR sample.  An HSQC was 

carried out at protein:DNA concentration ratios 1:0, 1:0.5, 1:1, 1:3 to investigate the 

DNA binding ability of the hMBD1 CXXC domain 
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  Dimension 1   Dimension 2   Dimension 3     

Experiment Nuc TD SW Nuc TD SW Nuc TD SW 
RD 
ms 

NS WS 

100ms 
NOSEY 

1H 2048 8503 1H 2048 7001    1.0 32 ES 

200ms 
NOSEY 

1H 2048 8503 1H 2048 7001    1.0 32 ES 

100ms 
NOSEY* 

1H 2048 9615 1H 1024 9596    1.0 32 ES 

60 ms D2O 
NOSEY 

1H 2048 8503 1H 2048 7000    1.0 16 PS 

60 ms 
TOCSY 

1H 2048 8503 1H 2048 7001    1.0 32 ES 

COSY 1H 2048 8503 1H 2048 7001    1.0 32 WG 

D2O COSY 1H 2048 8503 1H 2048 6999    1.0 24  

HSQC* 1H 2048 12820 15N 128 1702    1.0 8 WG 

HSQC + 
DNA 

1H 2048 9615 15N 128 1277    1.0 32 WG 

HSQC-
NOSEY* 

1H 1024 11160 1H 512 11160 15N 128 1702 1.0 8 WG 

HSQC-
TOCSY* 

1H 1024 11160 1H 256 11160 15N 128 1702 1.0 8 WG 

 
Table 3.1 Acquisition parameters of NMR experiments (Bruker AVANCE 600 MHz unless * then Bruker AVANCE 800 MHz) used for resonance 
assignment and structural restraints collection. Nuc: Nucleus, TD: time domain points (complex), SW: sweep width in Hz, RD: relaxation delay, NS: 
number of scans, WS: water suppression, WG: water gate, ES: excitation sculpting, PS: presaturation, ms: milliseconds,  
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CHAPTER FOUR 

 

 

CHEMICAL SHIFT ASSIGNMENT AND STRUCTURE CALCULATION  OF 

hMBD1 CXXC1 
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4.1 NMR protein structure calculation 

This chapter shows how the chemical shifts of the resonances of hMBD1 CXXC were 

assigned using CcpNMR analysis software (Vranken et al, 2005), how distance 

restraints were derived from NOESY spectra and how ARIA (Ambiguous Restraints for 

Iterative Assignment) was used for structure calculations.    

 

4.2 Is the protein is structured? 

NMR experiments used to generate spectra for chemical shift assignment and to 

calculate NOE distance restraints takes significant time to complete.  Before such 

experiments are undertaken the sample must be checked to evaluate whether it is 

structured.  For an unlabeled sample, the observation of particular features in a 1D 1H 

spectrum is normally sufficient to suggest that a sample is structured.  The 1D 1H 

spectrum of unlabeled hMBD1 CXXC1 (figure 4.1) suggests that the protein sample is 

folded due to the overall dispersion of chemical shifts in the methyl (0-2ppm) and amide 

(8.5-10ppm) regions and the 1H line widths.    The 1D 1H experiment is relatively short, 

typically 8 seconds for a 0.5mM hMBD1 CXXC1 sample, therefore it is ideal to run, to 

be sure the sample has not unfolded or precipitated, between the longer 2D TOCSY, 

NOESY, COSY experiments. 

 

For larger proteins, >10kDa, the 1D 1H NMR experiment is not ideal due to potential 

overlap of chemical shifts and broader line widths.  In these situations isotopically 

labeled proteins are required due to increasing overlap in homonuclear 2-D spectra.    
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4.3 Sequence specific resonance assignment of hMBD1  CXXC1  

The relatively small size of the CXXC domain lends itself to structural determination 

though homonuclear NMR, thus not incurring the high cost associated with 13C & 15N 

labeling or problems of achieving sufficient quantity of protein from growth in M9 

minimal media. Sequence specific resonance assignment of hMBD1 CXXC1 was 

attempted using 2D NOESY & TOCSY spectra according to the method described by 

Wutrich et al, and although significant stretches of amino acids could be assigned, 

crucially the remaining resonances could not be assigned due to features of the spectrum 

as set out below.    

 

4.3.1 Overlapping regions make sequential assignmen t difficult 

The TOCSY and NOESY spectra for hMBD1 CXXC1 are mainly well dispersed except 

for a part for the Hα-HN correlation region where there is significant overlap (figure 4.2).  

This region, centered around 4.3, 8.3 ppm proved problematic for sequential assignment 

of the backbone HN to Hα atoms.  An example of the difficultly in assigning crosspeaks 

in overlapped spectra is shown in figure 4.3. Figure 4.3 shows the TOCSY Hα-HN and 

aliphatic-HN crosspeaks for arginines 169 & 173.  Arginines 169 & 173 share the same 

HN chemical shift which makes it difficult to distinguish which cross peak belongs to 

which amino acid.  It was also not possible to assign sidechain cross peaks to either of 

these arginines.   

 

Not only did it prove difficult to assign certain amino acids using only 2D spectra but it 

was also difficult to sequentially assign spin systems.  As previously described in 

chapter two (p49) side chains have characteristic crosspeak pattern and chemical shift 

patterns which allow spin systems to be assigned to an amino acid type.  This allows 

spins systems to be labelled as e.g. a cysteine or glycine without assigning it in 

sequence.  For example, the amino acid sequence of hMBD1 CXXC1 contains only one 

histidine. Therefore it was possible to identify which crosspeaks belonged to histidine 

200.  However, using only 2D homonuclear NOESY & TOCSY spectra is was not 

possible to assign the adjacent residues 199 and 201.           
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δ
 1H (ppm) 

 1H (ppm) 

δ
 1H (ppm)  

 

 

 

Figure 4.3 TOCSY strips for the partially assigned arginine 169 & 173 residues.  

Annotated with assignments made using 15N labelled protein   

 

4.3.2 Assignment of phenylalanine side chains 

Using D2O rather than H2O as the NMR sample solvent means the HN are replaced by a 

deuteron due to proton exchange with the solvent.  The DN no longer produces a 1H 

NMR signal and therefore there are no cross peaks in the HN region of the spectrum.  

However the cross peaks from aromatic sidechains remain visible (figure 4.4).  Of the 3 

types of aromatic protons in phenylalanine, only Hδ is expected to give strong NOESY 

cross peaks to Hα or Hβ, with Hε and Hζ showing weaker signals.  hMBD1 CXXC1 

only contains two phenylalanines.  Thus, with the sequence specific assignment of P207 

from C208 this allowed for the rapid assignment of P207 sidechain.  The remaining 

crosspeaks were therefore where assigned to P171.       

a) Hα- HN chemical shift region b) Aliphatic-HN chemical shift 
region 

δ
 1H 

(ppm) 
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Figure 4.4 Strips for the NOESY of hMBD1 CXXC1 recorded in D20 showing cross 

peaks of 171F & 207F.  A, D2O NOESY only (aqua) B, D2O NOESY overlaid with the 

NOESY experiment carried out in H2O (red). 

 

Because complete resonance assignment could not be achieved using solely 

homonuclear data, 15N hMBD1 CXXC1 was prepared and 3D HSQC-TOCSY & HSQC-

NOESY was recorded 

 

4.3.3 Assignment using 3D spectra 

Assignment of cross peaks in 2D spectra is a very labour intensive process.  Any one 

horizontal or vertical at a particular chemical shift can have cross peaks belonging to 

more than one amino acid as figure 4.3 shows. By moving through the nitrogen 

dimension in 3D HSQC-TOCSY & HSQC-NOESY spectra we can distinguish spin 

systems based on their nitrogen chemical shift.  For example, R169 and R173 that have 

very similar HN chemical shift, their spin systems could be more completely assigned 

δ 1H 
(ppm) 

 

δ 1H (ppm) 
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using 3D HSQC-TOCSY & HSQC-NOESY since they have different nitrogen chemical 

shifts (figure 4.5).  

 

 

Figure 4.5 15N HSQC of hMBD1 CXXC1 showing different nitrogen chemical shifts 

for R169 and R173 

 

Not only do isotopically labeled samples allow the use of 3D experiments to help resolve 

overlapped regions but it also allows the use of analysis’s (Vranken et al, 2005) semi 

automated linking of spin systems.  When assigning cross peaks to a particular amino 

acid or spin system we look for specific correlations in the NOESY spectrum to help 

qualify the assignments e.g. HN to Hα NOE cross peaks for i to i+1, NOE cross peaks 

between sidechain and HN for i to i+1.  The software can automatically look for possible 

matches.  For example, starting from C176 (figure 4.6), analysis will look for NOE cross 

peaks assigned to the HN of other spin systems which match the chemical shifts of the 

assigned C176 TOCSY cross peaks.  As the residue following C176 is G177 we can 

look for cross peaks at a particular chemical shift amongst the matching spin systems.  

For a glycine we would expect to see 2 TOCSY cross peaks correlating both Hα protons 

to the HN proton. Once the next amino acid is identified the software can then be used to 

search for the next spin system to match to it.   

 

 

δ
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δ
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Assignment of H-H cross peaks in the HSQC-TOCSY spectrum allows the assignment 

of the N-H cross peak in the 15N-HSQC.  The complete assignment of the hMBD1 

CXXC1 15N-HSQC is shown in figure 4.7 which shows well dispersed peaks for most 

amides as well as nitrogen bound proteins in the side chains of glutamines 168, 183, 197 

and arginines 213 & 214.  Amino acids G162, M170, and H200 are unassigned in the 

HSQC.  Although there are still overlapped peaks in the 8.25ppm 1H region there is 

sufficient dispersion in the 15N chemical shift around 120ppm to resolve the cross 

peaks.  Also present are cross peaks which can be assigned to a minor form of the 

protein.  The minor form of the protein may be due to proteolysis, loss of a zinc ion or 

an incorrectly folded version.  Although there are N-H correlations from the minor form 

there are no visible cross peaks in the 15N-HSQC-TOCSY or 15N-HSQC-NOESY 

spectra.  

 

Using NMR experiments listed in table 3.1 (p75) a near complete assignment of hMBD1 

CXXC1 was possible.  Resonances that could not be assigned to cross peaks are listed in 

table 4.1.  These amino acids are found in unstructured regions of the hMBD1 CXXC1 

domain.   

 

Amino acids Unassigned protons 

R 169 Nε Hε 

F 171 γ 

R 173 Nε Hε 

H 200 Nδ1 Nδ2 

R 212 Nε Hε 

R 214 Nε Hε 

R 221 Nε Hε 

 

Table 4.1 list of protons and their amino acids that could not be assigned 
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δ
 1H (ppm) 

 

 

 

 

Figure 4.6 Strips from 3D NOESY (blue) & TOCSY (green) spectra showing 

sequential assignment of amino acids C176 to C179 in hMBD1 CXXC1.  The dashed 

line shows the sequential links involving Hα, while the red arrows links NOE cross 

peaks correlating C176 Hβb to G176 HN and G177 HN 
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4.4 Structure calculation of hMBD1 CXXC1 using ARIA  

Since the majority of restraints for NMR structure calculations are provided by NOESY 

derived distance restraints, the cross peaks within the spectrum have to be assigned to a 

particular resonance.  However, due to the large population of protons within a protein 

many protons may share the same chemical shift so there may be several assignment 

possibilities for each NOE cross peak.  Manual assignment is a time consuming process 

which may not provide an accurate structure due to mis-assignment.  In order to speed 

up the process and reduce the risk of mis-assignment, structure calculations were carried 

out using the program ARIA 2.2 (Ambiguous Restraints for I terative Assignment) 

(Rieping et al, 2007).  ARIA does not perform the structure calculations itself but drives 

the calculation of structures through the use of ambiguous distance restraints 

(unassigned crosspeaks which may have more than one contributing resonance) in an 

iterative structure calculation scheme.   Structures are calculated using the program CNS 

(Crystallography & NMR System) (Brunger et al, 1998), ARIA then analyzes the 

conformers obtained in order to update the restraints and obtain a set of improved 

conformers.  During distance restraint generation, non-degenerate prochiral chemical 

shifts e.g. methylene protons or the methyl groups of valine & leucine are arbitrarily 

stereospecifically assigned.  This can result in errors if the wrong member of a prochiral 

pair is chosen for a particular restraint.  To work around this, ARIA applies a floating 

chiral assignment testing both alternatives during structure calculation.  The 

conformation with the lowest energy is accepted for each prochiral centre.     

 

Distance restraints derived from NOESY cross peaks can be generated in two ways: 

restraints can be generated by ARIA itself or restraints can be generated in Analysis and 

imported into ARIA.  Both methods were tried for structure calculations as ARIA cannot 

use spin diffusion correction with restraints generated in Analysis. 

 

4.4.1 Structure calculation using constraints gener ated by Analysis  

Ambiguous distance constraints were generated in Analysis using the shift match 

restraint function.  This function generates a constraint list based on user defined input 

data.  Since the structure of the hMLL CXXC (Allen et al, 2006) domain was known it 

was hypothesized that certain secondary structures present would also be seen within the 

structure of the hMBD1 CXXC1 domain.  Amino acids 1170-1173 of hMLL CXXC 

form an alpha helix incorporating two cysteines from the second CXXCXXC cluster.  

Since the corresponding residues in hMBD1 CXXC1, 187-190, had strong NHi to NHi+1 
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and weak NHi to Hαi+1 NOESY resonances suggesting it was likely to be an alpha helix.   

Since the average distance of N-H1i to N-Hi+1 in an alpha helix is 2.8Å, the average NOE 

intensity of N-Hi to N-Hi+1 cross peaks for amino acids 191-195 should approximately 

correspond to a distance of 2.8Å.  Reference NOE intensities for two 2D NOESY and 

one 3D HSQC-NOESY experiments were calculated.  Parameters used for generating 

constraints are set out in Table 4.2.  To calculate the distance constraints for 

unambiguous cross peaks the same parameters were used. 

 

Ref. Distance 2.8Å   

Distance function Intensity^ –1/6   

Intensity type Height   

Max ppm tolerance F1 0.05 F2 0.05 F3 0.4 

Min ppm tolerance F1 0.05 F2 0.05 F3 0.4 

 

Table 4.2 Parameters used for generating distance constraints using CcpNMR.   

Analysis software.  F1 – direct proton dimension, F2 – indirect proton dimension, F3 – 

Nitrogen Dimension 

 

The problem with this method of distant constraint generation is that it is not currently 

possible to subsequently use ARIA’s spin diffusion correction algorithms to recalibrate 

the restraints based on the calculated structure.  For structures calculated from these 

restraints NOE energies failed to dip below 180 kJ mol-1 and it was not possible to obtain 

structures without violations below 0.5Å.  Persistent violations above 0.5 Å included 

intra-residue Valine HN to methyl groups and Histidine HN to β hydrogens.  Currently 

ARIA 2.2 does not support spin diffusion correction (chapter 4.4.4 p87) when importing 

distance constraints generated in Analysis.   

 

4.4.2 Structure calculation using constraints gener ated by ARIA 

In order to use spin diffusion correction during structure calculation, the assigned 

chemical shift list and crosspeaks were imported from Analysis into ARIA for each of 

the NOESY spectra.   The tolerances for direct, indirect proton and heteronuclear 

dimensions were set to 0.025, 0.025 and 0.25 respectively.  These values differ from the 

tolerances used in analysis due to the way they are used.  In Analysis the tolerance is the 

total distance across the crosspeak where as in ARIA the tolerance is set from the centre 

of the cross peak.  Therefore if the same tolerances used in Analysis for generating 
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constraint lists were to be used in ARIA, ARIA would produce significantly more 

constraints.  This would likely result in the generation of poor structure ensembles. 

 

Spin diffusion correction requires the input spectrometer frequency, mixing time and 

molecule correlation time into the ARIA project for each spectrum.  Molecule 

correlation time was worked out using stokes law.  The hydrodynamic radius was 

estimated from molecular weight.  

 

4.4.3 Additional restraints used by ARIA during str ucture calculations 

In addition to the distance restraint information generated from the NOESY spectra, 

restraints specifically for the co-ordination of each of the zinc ions by 4 cysteine residues 

were included during structure calculations.  In order to use zinc co-ordination restraint 

information, one of the cysteines involved in each cluster was defined as residue type 

CZN (cysteine + zinc ion) and the remaining 3 cysteines CYS in Analysis.  This 

involved the addition of residue definition files and changing the residues from CYS to 

either CZN or CYS of the protein sequence located in the molecule description.  To 

proceed with the calculation, the ARIA CNS protocol file was modified by the addition 

of a code patch.  This patch, provided by the ARIA programmers, defined the bond 

lengths between the sulfur atoms of the cysteines and the zinc ion as well as the bond 

angles (table 4.3).  Structure calculations without the zinc co-ordination restraints were 

also carried out to verify which cystines clustered together.       

 

Atoms Bond Length Bond Angle 

S  Zn 2.3 Å  

Cα – Cβ - S  114.3558 

Cβ - S - Zn  109.5000 

Hβ - Cβ - S  107.9185 

S – Zn - S  109.5000 

 

Table 4.3 Additional restraints used by ARIA for zinc co-ordination by four 

cysteine residues.  S, sulfur; Zn, zinc. 

 

Restraints generated from residual dipolar couplings, J couplings, dihedral angles, and 

disulphide bridges, can also be used during structure calculations by ARIA in order to 

build a more refined structure that can be produced by NOESY distance restraints alone. 
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4.4.4 Spin diffusion 

The choice of mixing time in a NOESY experiment is governed by a number of facts.  A 

NOESY experiment with a long mixing time has the advantage of no zero-quantum 

peaks (artifacts present in the NOESY spectra from J-coupled peaks, such as ortho-

protons on a ring).  Long mixing times allow for multiple magnetization transfers which 

distort cross peak intensity to distance relationship.  This multiple magnetization 

transfer, known as spin diffusion, can affect cross peaks between pairs of protons both 

close and far apart in space.  Protons close in space can be affected by back transfer of 

magnetization I1→ I2→ I1 reducing the intensity of NOE cross peak that would normally 

result.  Protons far apart in space can be affected by an indirect transfer of magnetization 

I1→ I2→ I3, increasing the intensity of the cross peak that would normally result or 

create a cross peak that would not normally exist in the absence of spin diffusion.  

Therefore, the mixing time needs to be long enough to let the NOE build up and allow 

zero-quantum effects to decay but short enough to minimise the chance of spin diffusion. 

As discussed in section 2.2.1 (p44) the NOESY experiment utilises dipolar interactions 

between two spins ≤5 Å apart.  The intensity of these cross peaks is used for calculating 

distance restraints.  If left uncorrected, spin diffusion leads to inaccurate distance 

restraints between protons leading to overly constrained and incorrect protein structures. 

Spin diffusion correction in ARIA (Linges et al, 2004) is based on the calculation of a 

theoretical transfer matrix from the set of structures produced in each iteration. The 

theoretical intensity values are then used to calibrate the experimental intensities and to 

correct the distance target. The calibrated intensities can be then used to estimate the 

error. 

 

4.4.5 Iterative structure calculation scheme 

ARIA uses an iterative strategy for structure calculations (table 4.4).  For the structure 

calculation of hMBD1 CXXC1, unambiguous (manually assigned resonances) and 

ambiguous restraints were used from the start, iteration 0.   When structures have been 

calculated, a user defined subset from the ensemble is chosen on the basis of their 

potential energy.  These structures are used to filter the restraints (partial assignment 

filter) based on their contribution to the intensity of the crosspeak.  Restraints which are 

above the threshold, a percentage of the total contribution, are removed from the 

restraint list.  Restraints that are not filtered out are used to recalibrate the spectra based 

on their average distance chosen from the subset of structures.  The restraint list is 

checked again for violations using the new intensity - distance matrix.  In the next 
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iteration structures are calculated based on the new restraint list created at the end of the 

previous iteration.  Each iteration subsequently reduces the partial assignment filter 

threshold and violation tolerance.  This process is repeated for a user defined number of 

iterations.  In order to improve the recalibration of restraints, spin diffusion correction 

was included from iteration 3 using a distance cut off of 6 Å.  The cut off is used to filter 

the calculated intensities used for correction, by including only those corresponding to a 

distance smaller than the distance cutoff value.  Assignment statistics are carried out on 

a user defined number of structures in each iteration which are selected on the basis of 

having lowest total energy.  The number of structures chosen to be used depends on the 

number of structures calculated in each iteration and the range of total energies of the 

ensemble.  The greater the number of structures calculated the greater number can be 

used for analysis.  In the initial round of structure calculations where assignment 

mistakes and artifact peaks are likely to be present there is no advantage in generating a 

large number of structures during each iteration.  Structure calculation can be a time 

consuming process depending on the number of processors that can be accessed.  With 

this in mind the total number of structures in each iteration generated in the initial round 

of structure calculations was set to 20.  
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Iteration 
Restraints 

Partial 

Assignment 

Filter 

Spin 

diffusion 

Violation 

Tolerance 

Å 

No. of 

Structures 

 

No of 

structures 

used for 

analysis 

0 
Original 

restraints 
1.0 No 10000 20 7 

1 

Checked 

restraints from 

round 0 

0.999 No 5.0 20 7 

2 

Checked 

restraints from 

round 1 

0.99 No 3.0 20 7 

3 

Checked 

restraints from 

round 2 

0.99 Yes 1.0 20 7 

4 

Checked 

restraints from 

round 3 

0.99 Yes 1.0 20 7 

5 

Checked 

restraints from 

round 4 

0.96 Yes 1.0 20 7 

6 

Checked 

restraints from 

round 5 

0.93 Yes 0.3 50 7 

7 

Checked 

restraints from 

round 6 

0.9 Yes 0.3 100 7 

8 

Checked 

restraints from 

round 7 

0.9 Yes 0.3 200 20 

 

Table 4.4 Iterative strategy used for hMBD1 CXXC1 structure calculation using 

ARIA.   
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For speed, structures are typically calculated “in vacuum” which can result artifacts as a 

result of the simplified treatment of non-bonded forces and missing solvent contacts.  

ARIA provides the option of refining structures in a shell of water molecules for a 

defined number of structures from the final iteration with a full molecular dynamics 

force field incorporating electrostatics (Linge et al, 2003).  This refinement helps to 

avoid unrealistic side chain packing and unsatisfied hydrogen bond donors or receptors.  

To ensure there are no systematic differences that could influence validation results, the 

force fields used for water refinement (file PARALLHDG 5.3) are consistent with the 

force fields used for structure calculation and validation.      

 

4.4.6 Analysis and report files 

At the end of each iteration, ARIA generates various output files which report the 

analysis ARIA carried out for each iteration. 

 

1. noe_restraints.unambig & noe_restraints.ambig:  These files contain all the 

unambiguous and ambiguous restraints, noting the reference cross peak, the 

restraint bound, the distance found in the ensemble and the result of the violation 

analysis 

2. noe_restraints.violations: lists just the violated restraints containing the same 

detail as for 1. above 

3. noe_restraints.assignments: provides information on wither the assignments 

stem from fully, partially or unassigned cross peaks. 

4. noe_restraists.merged: lists all restraints discarded by the merging procedure. 

5. report: summarises analysis of the restraint lists and the structure ensemble. 

 

In addition to these reports, ARIA can export the last iteration of structures (and water 

refined structures) to Analysis, a peak list of the assignments (for each spectrum) and a 

list of violated restraints which were not used for structure calculation in the final 

iteration.  Ambiguous assignment of resonances by ARIA is not infallible since noise 

and artifact peaks can be assigned if they match the chemical shift data.  ARIA can also 

mis-assign ambiguous peaks if any manual assignments are incorrect.  This is due to 

manual assignment forcing ARIA to satisfy the distant restraint calculated from the NOE 

crosspeak driving structure calculations in a specific way.  After each round of structure 

calculation violated peaks were inspected and either manually assigned or removed from 

the peak list.  Noise and artifact peaks are removed while mis-assigned peaks were 
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corrected.  Mis-assignment can be a problem if the tolerances for automatic assignment 

are set too low (see chapter 4.4.6) which can for example allow intra-residue cross peaks 

to be assigned as inter-residue.     

 

Once calculations started to yield structures that have low energies then the number of 

structures calculated in iteration 8 was increased.  An increase in the number of 

structures calculated will increase the number of low energy structures within the 

ensemble.  For example, if 20 structures are calculated they may not all be statistically 

similar even though they fit the experimental data.  However, if 200 structures are 

calculated, then 25 structures of the ensemble maybe of significant similarity.  Once 

NOE energies had reached a sufficiently low level, < 100 kJ mol-1, water refinement was 

introduced to the calculation.  Since the water refinement step introduces new 

constraints, the overall energies of the ensemble tend to increase.  Therefore there is no 

advantage in introducing this step in earlier round of calculations when the structures are 

not near converging.   When calculation produced structures of significantly low NOE 

energies <50 kJ mol-1 and no more improvement could be made using the current 

restraints, analysis was carried out to verify the precision and accuracy of the structures. 

Using NMR to generate a unique three dimensional structure is not possible because 

multiple structures can be calculated that are consistent with restraints derived from 

experimental data.  This is compounded by less defined regions of protein structure 

which are dynamic in solution.  Thus an ensemble of structures with the lowest energies 

can be produced to show a meaningful representation of the structure consistent with the 

experimental data. 

 

 

 

.   
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STRUCTURE AND FUNCTIONAL ANALYSIS OF HMBD1 CXXC1 
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5.1 Overview 

This chapter reports the structure of hMBD1 CXXC1 and discusses its implications in 

relation to the other known CXXC structures.  The CXXC domains that have been 

shown to bind non-methylated CpG contain a conserved amino acid sequence 
361KFGG364 and other conserved residues (D358 & Q370) as found in hMBD1 CXXC3.  

hMBD1 contains, depending on alternative splicing, 2 (55kDa) or 3 (66kDa) CXXC 

domains (Fujita et al, 1999, Jørgensen et al, 2004) with only the third CXXC domain 

capable of binding non-methylated CpG (Fujita et al, 2000 & Jorgensen et al, 2004).  

Recently, the solution structure of the MLL CXXC domain in complex with DNA 

(Cierpicki et al, 2009) and the crystal structure of DNMT1 CXXC (Song et al, 2010) 

have been solved revealing the amino acids responsible for DNA contact.  Comparison 

of these structures to hMBD1 CXXC1 reveals why hMBD1 CXXC is unable to bind 

non-methylated CpG.      

  

5.1.1 The solution structure of hMBD1 CXXC1 

The hMBD1 CXXC1 ensemble, comprising 20 lowest energy of 25 water refined 

structures (figure 5.1), shows a well defined backbone region for residues 173-196 & 

208-218, with the N- & C- termini and residues 197-207 poorly defined. RMSD was 

calculated for each residue using CcpNMR Analysis.  Analysis uses singular value 

decomposition (SVD) to calculate an optimum rotation for two coordinate sets with co-

located centroids. Each atom is weighted, both for the SVD and centroid calculation. 

There are multiple rounds of superimposition to get the ensemble from pairwise model 

comparison and to better refine the weights. Initially the weights come from the atomic 

masses, but in the later stages of the alignment the weights come from the atomic 

RMSDs calculated in the earlier round. Accordingly, the dissimilar parts have  

Proportionately little influence on the final ensemble. Figure 5.2 shows the per residue 

RMSD for the hMBD1 CXXC1 ensemble and the number of inter-residue NOEs from 

the 15N NOSEY.  Only the 15N NOSEY was used because the peak list imported from 

ARIA has less ambiguouity than the 2D 1H NOESY giving a truer representation of 

NOEs used.  Comparison of the number of inter-residue NOEs and RMSD of each 

residue reveal that the defined structured regions of the ensemble are characterized by a 

high number of inter-residue NOEs per residue while the N- and C- termini have very 

few inter-residue NOEs that consist mainly of short range, sequential correlations 
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Figure 5.1 A stereo view of the ensemble of 20 lowest energy of 25 final hMBD1 

CXXC1 solution structures superposed on the Cα of residues in well-defined regions 

(residues 175 to 196 & 208 to 217).  The less well defined loop (residues 197 to 207) is 

blue with the two cysteine clusters coloured red and green (Figure prepared using 

PyMol) 
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Figure 5.2  A. Per residue backbone and all atom RMSD for the final 25 hMBD1 

CXXC1 structures.  Red bars, backbone; black bars, all atom.  RMSD calculated using 

CcpNMR Analysis 2.1.5. B. Number of per residue NOE assignments from 15N-NOESY 

generated by ARIA for structure calculations in iteration 8.   
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5.1.2 Precision of the ensemble of hMBD1 CXXC1 stru ctures 

To be confidant that the ensemble of structures is an accurate representation of the 

experimental data the similarity of the structures was assessed by calculation of the Root 

Mean Squared Deviation (RMSD) of the atomic coordinates of each structure.  It is 

possible to calculate the RMSD by superposition on a selected structure (biased) or by 

global minimization of all fits (complete intensity).  However, by using an unbiased 

mean the calculation of the RMSD is not forced on one structure which may not be the 

most accurate representation of the ensemble.   To calculate the unbiased mean structure, 

the unweighted mean program UWMN (Hartshorn and Caves, University of York) was 

used.  UWMN creates a matrix containing the average distances between atoms in the 

ensemble of structures.  Since this matrix cannot typically be projected into cartesian 

space perfectly, the matrix is projected into multi-dimensional space and orientated so 

that when it is projected back into three dimensions the mean structure is calculated with 

the least loss of structural information.  The differences between the mean and the 

structures are listed as well as the average RMSD to the unbiased mean of the ensemble 

which is listed in table 5.1 

 

 

RMSD to the unbiased mean structure (Å) 

 

Heavy atoms 

 
1.143 

 

Backbone atoms 

 
0.854 

 

Table 5.1  RMSD of the final structures in the ensemble calculated to an unbiased 

mean.  RMSD calculated for residues 175-196 & 208-217.   

 

5.1.3 Geometric analysis of the ensemble of hMBD1 C XXC1 structures 

The geometric quality of an NMR structure can be validated by the distribution of the 

backbone (φ and ψ) side chain (χ1) torsion angles (Morris et al, 1992).  The φ angle is 

the dihedral angle between the HN and Cα, the ψ angle is the dihedral angle between the 

Cα and carboxylic carbon. The geometric quality of a structure can be analysed the 

program using Procheck-NMR (Laskowski et al, 1996).  Procheck-NMR assesses the 

stereochemical quality of structures by comparing them with the known stereochemical 

properties of well refined, high resolution X-ray structures.  Therefore, Procheck 
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assesses how normal, or how unusual, the geometry of the residues in a given protein 

structure is.  This analysis is reliant on the reference structures having normal geometric 

quality.  The summary of Ramachandran statistics for the residues (excluding all 

prolines and glycine residues) of the ensemble of hMBD1 CXXC1 structures is shown in 

table 5.2 and the plots shown in appendix B. Greater than 90% of the residues fall within 

most favorable and additionally allowed regions.  This is indicative of a structure with a 

good geometric quality.  The contribution of unfavorable φ and ψ angles (Appendix B, 

figure b2a-c) in the unstructured N- (163-174) & C- (217-222) termini as well as the 

poorly defined loop region (197-207) results in higher than average number of residues 

in the disallowed region.  This is due to a lack of restraints to define these regions of the 

domain.  If the unstructured regions are removed from the Ramachandran analysis, the 

percentage of residues in the disallowed regions is significantly reduced.      

 

Regions of Ramachandran plot  % residues 

       Residues in most favoured regions 61.3% (77.7%) 

       Residues in additional allowed regions 32.3% (21.0 %) 

       Residues in generously allowed regions 3.3% (0.7%) 

       Residues in disallowed regions 3.1% (0.7%) 

 

Table 5.2 Summary of the Ramachandran statistics for the ensemble of 25 hMBD1 

CXXC1 structures.  Percentage in brackets indicates statistics for well defined regions 

only (residues 175-196:208-216) 

 

 

The geometric quality of a structure can also be analysed by the distribution of side 

chain torsion angles χ1.  This is the angle of N-Cα-Cβ-Xγ1 about the Cα-Cβ bond.   The 

distribution of side chains in hMBD1 CXXC are relatively well defined with no residue 

lying in unfavourable regions (appendix B2d-e). 

 

Table 5.3 lists the statistics of experimental restraints used for calculating the structure 

of hMBD1 CXXC1.  Total number of NOEs represents NOEs merged from the three 

NOESY spectra.  The constraint violations and R.M.S deviation data refers to 20 lowest 

energy structures from 25 water refined structures calculated.   
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NMR Dist NMR distance restraints 

Total NOE 1327 

       Ambiguous (main contributors) 593 

             Intra-residue 204 

             Inter-residue  

                  Sequential (i-j=1) 156 

                  Short range (i-j= >1 <4) 118 

                  Long range (i-j>5) 115 

       Unambiguous 734 

             Intra-residue 334 

             Inter-residue  

                  Sequential (i-j=1) 211 

                  Short range (i-j= >1 <4) 102 

                  Long range (i-j>5) 87 

Constraint Violations per structure  

       >0.5 Å (+/- SD) 0.10 (+/- 0.06) 

       >0.3 Å (+/- SD) 1.35(+/- 0.16) 

       >0.1 Å (+/- SD) 19.05 (+/- 0.81) 

R.M.S. deviations from the ideal geometry  

       Bond length (Å)   0.0038 (+/- 0.000023) 

       Bond Angle (º) 0.600 (+/- 0.05) 

       Improper angles (º) 1.476 (+/- 0.04) 

       Dihedrals (º) 42.17 (+/- 0.137) 

 

Table 5.3 Experimental restraint statistics for hMBD1 CXXC1 
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5.2 Structural features of the hMBD1 CXXC1 zinc bin ding motifs 

The solution structure of MBD1 CXXC1 adopts a crescent shape incorporating two zinc 

ions (figure 5.3).  Four cysteines provide the ligands for the coordination of each zinc 

ion, three from each CXXCXXC motif.  The main chain loops back 180º after the 

second CXXCXXC motif to providing the fourth cysteine in each case.  The overall 

structure of the domain is governed by the presence of the two zinc clusters.  The zinc 

clusters have similar structures to each other with a backbone RMSD of 0.86 Å over the 

CXXCXXC sequence (calculated using Superpose. Maiti et al, 2004) and form a small 

helical turn between the first and second cysteines followed by a single turn of alpha 

helix, that includes residues 180A-183Q cluster 1 (figure 5.4a) and 192S-196L cluster 2 

(figure 5.4b).  However, the two CXXCXXC motifs appear to differ with respect to their 

side chain χ1 dihedral angles (Figure 5.3c).  This is consistent over the ensemble.  The χ1 

dihedral angles could be determined from J couplings determined from an HNHB 

experiment:     

 

 

 

 

Figure 5.3 A stereo view of the representative structure of the closest to the mean 

structure of the 25 calculated hMBD1 CXXC1 solution structures.  The zinc atoms are 

shown as gray spheres; alpha helix are shown in red and green; N, N-terminus; C, C-

terminus (Figure prepared using PyMol).  

 

N 

C 
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Figure 5.4 Stereo representation of the two cysteine zinc clusters from hMBD1 

CXXC1 (A) First CXXCXXC motif, residues 176-183 & 215  (B) Second CXXCXXC,  

motif residues 188-194 & 210  (C) superposition of the two CXXCXXC motifs. Sulphur 

atoms, yellow; zinc atoms, white (Figure prepared using PyMol). 
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Figure 5.5 Stereo representation of the structural alignment of (A) hMBD1 CXXC1 

residues 176-183 & 215 (red) and hMLL CXXC residues 1155-1162 & 1194 (blue). (B) 

hMBD1 CXXC1 residues 188-194 & 210 (green) and the hMLL CXXC residues 1167-

1175 & 1189 (cyan).  White spheres, hMBD1 CXXC zinc atom; gray spheres, hMLL 

CXXC zinc atom. (Figure prepared using PyMol) 

 

The zinc clusters from hMBD1 CXXC1 have a fold which is very similar to the zinc 

clusters from hMLL CXXC (Figure 5.5).  Backbone RMSDs of 1.12 Å and 0.46 Å were 

calculated using Superpose (Maiti et al, 2004) for the first and second CXXCXXC 

motifs respectively.  A search of the structural data base http://www.ebi.ac.uk/pdbe-

site/pdbemotif/ for proteins that co-ordinate zinc by four cysteine residues revealed 62 

structures.  However, nine of these structures use two separated CXXC motifs to  

coordinate the zinc atom rather than the CXXCXXC motif found in hMBD1 CXXC1 

and MLL CXXC.  Alignment of the CXXC motifs found in the pdbe database to 

residues 179-182, 182-185, 188-191 and 191-194 hMBD1 CXXC1 reveals a highly 

similar backbone conformation with a pairwise RMSD 0.77 Å (±0.33).  Three structures 

A 

B 
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where found with a CXXCXXC motif: horse liver alcohol dehydrogenase (PDB - 1N8K) 

(Rubach & Plapp, 2003); E.coli RecQ helicase (PDB – 1OYW) (Bernstein et al, 2003) 

and the delta subunit of the clamp loader complex of E. coli DNA polymerase III (PDB 

– 1A5T) (Guenther et al, 1997).  The horse liver dehydrogenase has the fourth cysteine 

C-terminal to the CXXCXXC motif like hMBD1 CXXC1 and unlike the RecQ helicase 

and delta subunit of the clamp loader complex of E. coli DNA polymerase III in which it 

is N- terminal to the CXXCXXC motif.  Table 5.4 shows the pairwise RMSD for the 

CXXCXXC motifs of hMBD1 CXXC1 and the other CXXCXXC motifs described 

above.  Figure 5.7 shows the superposition of the CXXCXXC motifs from horse liver 

alcohol dehydrogenase, E.coli RecQ helicase, delta subunit of the clamp loader complex 

of E. coli DNA polymerase III and the second CXXCXXC motif from hMBD1 CXXC1  

 

 1N8K 97-103 1A5T 59-65 1OYW 397-403 

hMBD1 176-182 0.85 Å 0.98 Å 0.95 Å 

hMBD1 188-194 0.39 Å 0.49 Å 0.51 Å 

 

Table 5.4 Pairwise backbone RMSD of CXXCXXC motifs compared to the 

CXXCXXC motifs from hMBD1 CXXC1 domain. 1N8K, horse liver alcohol 

dehydrogenase; 1A5T, delta subunit of the clamp loader complex of E. coli DNA 

polymerase III; 1OYW, E.coli RecQ helicase. 

 

A common feature of all the CXXCXXC motifs of known structure is a glycine residue 

following the first cysteine.  Preference for glycine at this position may be due to the 

requirement for a positive phi angle following the first cysteine.  The CXXCXXC motif 

has a characteristic helical turn between the 1st and 2nd cysteines, similar to that of the 

single CXXC motif, before an alpha helix incorporating the 3rd cysteine (figure 5.6).  

Mutations of one of the zinc coordinating cysteines will destabilise the structure of the 

MLL CXXC domain (Allen et al, 2006. Cierpicki et al, 2009), MBD1 CXXC3 

(Stancheva et al, 2010) and CGBP (Skalnik et al, 2001) suggesting the CXXCXXC 

motifs are absolutely required for maintaining the structure of the domain. 
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Figure 5.7 Stereo view of the superposition of CXXCXXC motifs from hMBD1 

CXXC1 (red), horse liver dehydrogenase (black), E.coli RecQ helicase (blue), and the 

delta subunit of the clamp loader complex of E. coli DNA polymerase III (green).  

Cystine side chains shown as sticks, sulphur atoms in yellow.  

 

5.3 hMBD1 CXXC1 does not bind CpG DNA 

Previous DNA binding experiments (EMSA) have shown hMBD1 CXXC1 not to bind 

CpG DNA.  However, DNA titration by NMR would show weak binding that might not 

be observed by EMSA.  Although chemical shift perturbation analysis by 15N HSQC 

does not require the structure to be known, the assignment of spectrum crosspeaks is 

required to know which residues are affected by the titration of DNA.  When DNA is 

titrated into a protein sample a change in chemical shift will be recorded for any amino 

acid that is affected by the binding of the protein to DNA.  This change in chemical shift 

of a residue is due to an environmental change that may be due to direct interaction with 

the DNA or a resultant conformational change of the protein.     
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5.3.1 15N HSQC DNA titration of hMBD1 CXXC1 reveals no prot ein DNA 

interaction 

The titration of hMBD1 CXXC1 with DNA measured by 15N HSQC is shown in figure 

5.8.  There is little or no chemical shift perturbation with 3 fold excess DNA for the 

assigned resonances suggesting that hMBD1 CXXC1’s Kd for DNA is significantly 

above 150 µM.  However, small chemical shift perturbations are seen for the unassigned 

spin system 435 and the minor form A1203.  Resonance A1203 was assigned as the 

minor form of A203 as they share the same Hα and Hβ chemical shifts.  It is likely that 

resonance 435 is also from a minor form and since perturbation is only visible at the 3 

fold excess DNA concentration, this suggests non-specific DNA binding.  The minor 

form resonance A1203 is also only visible at the 3 fold excess DNA concentration.  This 

is likely due to unfolding or degradation of the protein during the course of the titration.  

Intensity differences are seen for glycine 165 and the side chain Nɛ of arginine 214.  

These highly solvent exchangeable resonances appear to be very sensitive to sample 

conditions since their intensities vary considerably from sample to sample.  It is 

therefore likely that the effect seen here is not  DNA-specific, but rather reflects small 

differences in ionic strength.  The lack of chemical shift perturbation that suggests no 

protein DNA interaction is consistent with the findings of Fujita et al (2000) and 

Jorgensen et al (2004) who observed no DNA shift in electrophoresis mobility shift 

assay experiments. 
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5.3.2 Why does hMBD1 CXXC1 not bind DNA? 

The MLL CXXC (Lee et al, 2001), MBD1 CXXC3 (Bird et al, 2004) , CGBP CXXC 

(Skalnik et al, 2001) and DNMT1 CXXC (Meehan et al, 2008., Pradhan et al, 2008.) 

have been shown to bind CpG DNA and therefore a comparison of the known DNA 

binding CXXC structures with that of hMBD1 CXXC1 should provide an insight as to 

why hMBD1 CXXC1 does not bind CpG DNA.  The solution structure of MLL CXXC 

(Cierpicki et al, 2008) and the X-ray crystal structure of DNMT1 CXXC (Song et al, 

2010) in complex with CpG containing DNA reveal that the positively charged face of 

the domain binds to the target DNA major groove.   

 

The MLL CXXC domain binds the CpG motif in the major groove though formation of 

hydrogen bonds to the CpG.  Using the terminology of Cierpicki et al (2009), the N4-

amine groups of the negative and positive stand cytosines hydrogen bond to the 

backbone oxygen of K1185 and K1186 respectively.  The side chain of K1186 forms 

hydrogen bonds to the negative strand guanine while the side chain amide of Q1187 

hydrogen bonds to positive strand guanine (Cierpicki et al, 2009).  Cierpicki et al (2009) 

also discovered weak NOEs between the side chains of R1150, S1152 and L1197 and 

the DNA minor groove and mutation of R1150 and L1197 to alanine resulted in a 5 and 

4 fold reduction in DNA binding affinity respectively.  DNA binding domains are 

generally evolved to contain positively charged amino acids though which they contact 

the negatively charged DNA phosphate backbone (Jones et al, 2003) while the shape of 

the DNA binding face is often complementary to the DNA duplex surface (Tsuchiya et 

al, 2004).   hMLL CXXC has made electrostatic interactions to the DNA and residues 

R1154, K1176, K1178, K1185, K1190, R1192, K1193.   

 

Table 5.5 show the corresponding residues from hMBD1 CXXC1 and xDNMT1 CXXC. 

hMBD1 CXXC1 differs from hMLL CXXC in many of the residues required for CpG 

DNA binding, not only in the residues that hydrogen bond to the CpG but also in 

residues involved in electrostatic interaction.  In addition to electrostatic interactions and 

hydrogen bonds, repulsive forces between the protein and DNA may reduce or 

ultimately abolish DNA binding.  Mutation of residue 1188 from a cysteine to an 

aspartate in hMLL CXXC is sufficient enough to abolish detectable DNA binding as 

mentioned by NMR.   
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hMLL CXXC hMBD1 CXXC1 xDNMT1 CXXC 

R1150 R161 E516 

S1152 A163 N518 

R1154 N165 I520 

K1176 Q197 M546 

K1178 P199 K548 

K1185 L206 T555 

K1186 F207 K556 

Q1187 C208 Q557 

K1190 E211 M560 

R1192 R213 R562 

K1193 R214 563 

L1197 I218 L567 

   

Table 5.5 List of residues involved in electrostatic interaction with DNA from 

hMLL CXXC1 (Cierpicki et al, 2009) and the corresponding residues in hMBD1 

CXXC1 and xDNMT1 CXXC. Residues mutated to alanine that abrogate DNA binding 

shown in bold, mutated residues that still bind DNA shown in blue.  

 

A surface charge plot of hMBD1 CXXC1 was produced using the Adaptive Poisson-

Boltzmann Solver (APBS) plugin in PyMol reveals a positive charge surrounding the 

first CXXCXXC motif while the second CXXCXXC motif and loop region has an 

overall negative charge.  This contrasts with the positive charged face of hMLL CXXC 

domain (figure 5.9).  In conclusion hMBD1 CXXC does not bind DNA because lacks 

the residues that are important for hydrogen bonding and has a slightly negative charged 

face compared to the strongly positively charged face of hMLL CXXC. 
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Figure 5.9 Stereo representation of the electrostatic surface potential of the hMBD1 

CXXC1 (A) and hMLL CXXC (B). Coloured using a linear colour ramp from -75.0 KT 

hMLL (red) to +75hMLL (blue).  (Figure prepared using the APBS plugin in PyMol) 

 

 

A 

B 
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5.4 Comparison of the loop region of hMBD1 CXXC1 an d hMLL CXXC 

Currently the RCSB protein data bank contains three CXXC domain structures which 

are those of the hMLL CXXC domain (Allen et al, 2006., Cierpicki et al, 2008) and the 

DNMT1 CXXC (Song et al, 2010).  Figure 5.10 illustrates the structural superposition of 

hMBD1 CXXC1 with hMLL CXXC (PDB ID 2J2S) that has a pair wise RMSD of 1.83 

Å over the well defined regions of hMBD1 CXXC (residues 175-196 & 208-217).  The 

loop region residues 197-207 is not well defined in the  hMBD1 CXXC1 ensemble due 

to a lack of long range NOEs, whereas the loop region in hMLL CXXC is well defined 

in the NMR ensemble.     

  

 

 

Figure 5.10 Structural superposition of hMBD1 CXXC1 R169-S221 (blue) and 

hMLL CXXC S1152-W1196 (green), PKFGG loop (pink); red spheres hMBD1 CXXC 

zinc; black spheres hMLL CXXC zinc.  N, N-terminal; C, C-terminal (Figure prepared 

using PyMol) 

 

N 

C 
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A motif conserved in CpG DNA binding CXXC domains but not present in hMBD1 

CXXC1 (or hMBD1 CXXC2) is the KFGG motif (figure 5.11).  In hMBD1 CXXC1 the 

corresponding sequence is PHDV which has a significant effect on the structure of the 

loop region since compared with the phenylalanine the histidine is less hydrophobic and 

partially positively charged it is not able to be tightly packed into the main chain. The 

kink in the backbone (figure 5.12) due to the presence of a proline preceding the H200 

does not allow the hydrophobic side chain to pack up against β protons of cysteine 194, 

where as the proline in hMLL CXXC is two residues before the phenylalaine.   In 

DNMT1 CXXC the KFGG sequence is preceded by a lysine rather than the proline in 

the MLL CXXC domain.   

 

 

 

Figure 5.11 Comparison of second CXXCXXC motif & N-terminus of the loop 

region of hMBD1 CXXC1 C188 to V202 (A) and hMLL CXXC C1176 to G1181 (B) 

residues. N, N-terminal; C, C-terminal (Figure prepared using PyMol) QLPHD 
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Figure 5.12 Stereo representation of the structural superposition of hMBD1 CXXC1 

C188-V202 and hMLL CXXC C1176-G1181. N, N-terminal; C, C-terminal (Figure 

prepared using PyMol) 

 

The solution structure ensemble of xDNMT1 CXXC (Thomson & Smith, unpublished) 

has a less well defined loop region than hMLL CXXC, therefore proline 1177 maybe 

required for loop stability.  Mutation of hMLL CXXC residues K1178 or F1179 to 

alanine significantly reduced the ability to bind a 12bp single CpG DNA in an EMSA 

(Allen et al, 2006).   These mutations of hMLL CXXC indicate that the precise, and 

ordered structure of this loop be required for efficient DNA binding. 

 

5.5 Conclusion 

The solution structure of hMBD1 CXXC1 presented in this thesis shows both 

similarities and differences to the known structures of hMLL CXXC (Allen et al, 2006) 

and DNMT1 CXXC (Song et al, 2010., Thomson & Smith, unpublished).  The two zinc 

coordinating cysteine clusters of the CXXCXXC domain form a common structure 

shared with both hMBD1 and DNMT1 CXXC.  This fold is highly likely to be common 

N 

C 

D201 

V198 

P199 
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to other CXXCXXC domains.   

However, hMBD1 CXXC1 lacks the KFGG motif which is present in the non-methyl 

CpG binding CXXCXXC domains.  The KFGG motif forms a small helix after the 

second CXXCXXC motif which appears to stabilise the DNA binding loop.  Mutations 

in this region have been shown to reduce DNA binding (Allen et al, 2006).  hMBD1 

CXXC1 also differs from other CXXCXXC domains by lacking residues important for 

DNA binding.  These differences not only change the surface charge of the loop thus not 

attracting the DNA through charge-charge interaction but lack the side chains to 

hydrogen bond to the DNA bases.  The function of hMBD1 CXXC1 is currently 

unknown although it has been shown to bind residues 250-337 of Ring1b (Min et al, 

2003).  Ring1b is a component of the Polycomb group (PcG) multiprotein PRC1 

complex (Min et al, 2003) which is required to maintain the transcriptionally repressive 

state of many genes.  Since hMBD1 CXXC3 does not interact with Ring1b that suggests 

the difference in the loop region of hMBD1 CXXC1 may be involved in the protein 

interaction with ring1b. 
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CHAPTER SIX 

 

NMR STUDY OF hMBD1 CXXC12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                              117 
 

6.1 Overview 

The first two MBD1 CXXC domains lack the consensus sequence DXXKFGG and have 

been shown not to bind CpG DNA (Jorgensen et al. 2004).  The function of this pair of 

domains is still unknown although it has been shown to bind AA 250-337 of Ring1b 

(Sakamoto et al, 2007) suggesting a role in recruitment of the polycomb repressor 

complex 1 (PRC1) to DNA for maintenance of transcriptional repression.  hMBD1 

CXXC12 has also been shown to interact with the HMT SETDB1 and CAF150 in 

association with the MBD and TRD (Sarraf & Stancheva, 2004)  

 

With the structure of the first MBD1 CXXC domain known, I wish to ask wither the 

presence of the second MBD1 CXXC domain affects the 3D structure of hMBD1 

CXXC1?  Should the two CXXC domains interact, we would expect to see chemical 

shift perturbation for residues whose environment has been affected by the presence of 

the second CXXC domain.  Changes in the extreme C-terminal region of CXXC1 are 

also likely since this area should be more structured in the presence of CXXC2.   There 

may also be chemical shift changes for resonances assigned to the loop or well defined 

regions of CXXC1 if the CXXC2 domains interact more extensively.  

 

6.2 Cloning, expression of hMBD1 CXXC12 

Using the previously described pGEX 6P1 expression and purification system, PCR 

amplification of DNA containing the CXXC1 & CXXC2 of hMBD1 was performed 

using the primers shown in table 6.1.  The resultant fragment was cloned into pGEM T-

easy vector and subcloned into pGEX 6P1 as previously described in chapter 2.   The 

PCR (Figure 6.1), cloning into pGEM T-easy (Figure 6.2) and subcloning into pGEX 

6P1 (Figure 6.3) are shown below. Plasmids were sequenced to make sure no errors 

were present. 

 

 
hMBD1 CXXC1 fwd  5’ GGGATCCGAGCAGAGAATGTTTAAG 3’ 

hMBD1 CXXC2 rev 5’  CCTCGAGTTCAGCGGGCATGTTTA 3’ 

 

Table 6.1 Primers used for the PCR amplification of hMBD1 CXXC12.   

Restriction enzyme sites shown in bold & stop codon underlined. 
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The amino acid sequence of the expressed hMBD1 CXXC12 construct is shown in table 

6.2 which has a predicted molecular weight of 11.8 kDa.   Based on the structured region 

of hMBD1 CXXC1 it is likely the two domains are separated by a small linker sequence.   

 

 

GSEQRMFKRVGCGECAACQVTEDCGACSTCLLQLPHDVASGLFCKCERRRCL 

RIVERSRGCGVCRGCQTQEDCGHCPICLRPPRPGLRRQWKCVQRRCLRGKHAR 

 

 

Table 6.2 Amino acid sequence of the cloned hMBD1 CXXC12 domain.  The structured 

domain of CXXC1 is shown in red, the CXXC2 sequence shown in blue with the 

putative linker sequence underlined.    

 

                        

                             M                 1 

Figure 6.1 Agarose gel electrophoresis image hMBD1 CXXC12 PCR product. M – 

100bp DNA marker NEB (N3231), 1 – hMBD1 CXXC12 arrow indicated band of 

interest 

 

500bp 
400bp 

300bp 
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500bp 

1 kb 

                            

Figure 6.2 Agarose gel electrophoresis of a selection of 2 putative pGEM-T hMBD1 

CXXC12 clones digested with BamH1 and Xho1. 1 - 1KB ladder NEB, 2 - 100bp ladder 

NEB, 3-4 putative pGEM-T hMBD1 CXXC12 clones.  Arrow indicates band of correct 

size for CXXC12 insert. Lane 4 show the expected fragment pattern 

 

                             

 

Figure 6.3  Agarose gel electrophoresis of a selection of 2 putative pGEX6P1-

hMBD1 CXXC12 clones digested with BamH1 and Xho1. The arrow indicates the 

expected position of the CXXC12 fragments. Clones 1 & 2 show the expected fragment 

pattern.  M- Bioline hyperladder 1 
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6.3 Purification of hMBD1 CXXC12 

Purification of hMBD1 CXXC12 was carried out using the method described in chapter 

2.  Figure 6.4 illustrates the purification of hMBD1 CXXC12.  The preparation of 

hMBD1 CXXC12 was hampered by precipitation of the purified protein during 

overnight cleavage of the tag.   The protein sample suffered further precipitation during 

buffer exchange and concentration thus making it difficult to produce sufficient quantity 

for isotopic labeling in an economic way. 

 

                

                   1          2    3     4        5         6                7 

Figure 6.4  SDS-PAGE analysis of the expression and purification of hMBD1 

CXXC12 domain expressed in TunerTM DE3 cells. 1 – NEB prestained protein marker 

(cat. No. P7708S) , 2 – 5µl whole cell fraction, 3 – 5µl of soluble fraction, 4 – 5µl of 

flow through, 5 – 20µl of resin before Pre-Scission protease treatment, 6 – 20 µl resin 

after Pre-Scission protease treatment, 7– 20µl elution of hMBD1 CXXC12 domain.    
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6.4 NMR studies of hMBD1 CXXC12 

During long NMR experiments hMBD1 CXXC12 would degrade & precipitate.  This 

coupled with the lack of economic viability to express isotopically labelled protein 

meant that at this time it was only possible to record homonuclear experiments.  Shown 

in table 6.3 are the NMR experimental parameters for the 2D 1H NOSEY experiment7 

 

 

Table 6.3 Acquisition parameter of NMR experiment on hMBD1 CXXC12 (Bruker 

AVANCE 600 MHz) used for resonance assignment and structural restraints collection. 

Nuc: Nucleus, TD: time domain points (complex), SW: sweep width in Hz, RD: 

relaxation delay, NS: number of scans, WS: water suppression, ES: excitation sculpting, 

ms: milliseconds, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  F1   F 2     

Experiment Nuc TD SW Nuc TD SW RDms NS WS 

100ms 
NOSEY 

1H 2048 8503 1H 1700 7001 1.0 32 ES 
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6.4.1 Is hMBD1 CXXC12 structured?  

To asses the quality of the CXXC12 sample, a 1D 1H experiment was carried out to 

investigate if the purified hMBD1 CXXC12 protein was structured.  The recorded 1D 1H 

spectrum of hMBD1 CXXC12 is shown in figure 6.5 

 

 

Figure 6.5 1D 1H spectrum of unlabeled hMBD1 CXXC12 (10mM dTris, 250mM 

NaCl, pH 7.5, 293K).  Water suppression using the method of Hwang and Shaka (1995) 

 

The 1D 1H spectrum of unlabeled hMBD1 CXXC12 suggests that the protein sample is 

folded due to the overall dispersion of chemical shifts and the 1H line widths.  The  

region of the spectrum around 10 ppm shows peaks clearly not present in the 1D 1H 

spectrum of CXXC1 while the peak around 0.5 ppm is still present.  Also the 6.5-8.5 

ppm region for CXXC12 is not as intense compared to the same region in CXXC1 

suggesting that fewer residues are in unstructured highly dynamic conformations.   
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6.4.2 Is CXXC1’s structure affected by the presence  of CXXC2? 

A 2D homonuclear NOESY experiment was carried out in order to compare the 

spectrum with the 2D NOESY of hMBD1 CXXC1.  Figure 6.6 shows the Hα-HN region 

of hMBD1 CXXC12 & CXXC1 with the overlaid HN-HN region in figure 6.7.  Since the 

sample precipitated during the course of the experiment further 2D spectra that would 

present a more complete analysis could not be recorded. 

 

 

 

 

Figure 6.6  HN-Hα region of the 2D homonuclear spectra of hMBD1 CXXC1 (black) 
and hMBD1 CXXC12 (pink) overlaid (10mM dTris, 250mM NaCl, pH 7.5, 293K).  
Examples of assigned crosspeaks which have changed chemical shifts are indicated. 
 

δ 1H (ppm) 

δ 1H 
(ppm) 
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Figure 6.7 HN-HN region of the 2D homonuclear spectra of hMBD1 CXXC1 (black) 

and hMBD1 CXXC12 (pink) overlaid (10mM dTris, 250mM NaCl, pH 7.5, 293K).  

Examples of assigned crosspeaks which have changed chemical shifts are indicated.   

 

However, from a comparison of the CXXC12 & CXXC1 spectra it is clear that certain 

CXXC1 amino acids have altered chemical shift in CXXC12.  The most notable changes 

are seen in the dynamic loop region of CXXC1with amino acids S204 and P207, while 

others such as C179, A190 & T193 show no chemical shift change.  These chemical 

shift changes indicate a change in environment of the loop region suggesting that it is 

possibly in close proximity to the second CXXC domain.  In the loop region there are 

changes between the two constructs with the Hβ protons of C208 no longer correlated to 

the Hγ of T193 in CXXC12 while previously strong cross peaks have reduced intensity 

e.g. E211 γ protons correlation to C191 β protons.  These NOE changes in the loop 

region suggest the second CXXC domain is changing the shape of the loop region.  

Residues C179, A190, & T193 are found within the zinc clusters and seem to be 

unaffected by the presence of the second CXXC domain.  Residues at the extreme C-

terminus, amino acids 219-222, are unstructured when hMBD1 CXXC1 is expressed on 

δ 1H (ppm) 

δ 1H 
(ppm) 
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its own.  However, in hMBD1 CXXC12, their NOE cross peaks shift or disappear. 

Certain clearly identifiable crosspeaks in the CXXC1 2D NOESY such as the Hγ-HN of 

E220 and the sequential HN - HN & HN -Hα cross peaks for residues V219-R222 are 

absent or significantly shifted in the CXXC12 spectrum.  The lack of these NOE 

crosspeaks means that the structure of this region has changed in the CXXC12 construct.   

 

6.5 Conclusions 

Initial NMR experiments have shown that the expressed hMBD1 CXXC12 domains are 

structured in solution.  However, to carry out 3D NMR experiments to facilitate 

assignment and eventually structure calculations, protein purification conditions must be 

further optimized.  Changes to pH are limited with the use of PreScission protease due to 

a narrow functional pH range, but NaCl concentration can be adjusted up to 1 M.  

Therefore, it would be possible to significantly alter the salt concentration of the 

purification and NMR buffer in an attempt to prevent precipitation of the protein. 

 

Although the NOE data recorded is not sufficient to fully assign and calculate the 

structure of hMBD1 CXXC12, it is possible to suggest the relative orientation of the two 

CXXC domains.  There are significant NOE differences in the loop region (201N-209K) 

in hMBD1 CXXC12 to suggest there is a change in environment.  This may be due to 

the close proximity of the second CXXC domain.  In hMBD1 CXXC1 residues 216L-

222S are poorly constrained resulting in a flexible free end.  Therefore, it is unsurprising 

that there are chemical shift changed in this region since in hMBD1 CXXC12 they form 

a small interconnecting bridge between the two domains.  Due to the observed NOE 

changes it is likely that the two domains are folded together in one structure rather than 

two independent domains.  In order to verify this theory, recording 15N relaxation data 

for both constructs would provide information as to the relative dynamics of the two 

domains domain.  If the structure of CXXC12 was as suggested by the homonuclear 

NOE data then the 15N relaxation parameters recorded for each of the two domains 

would be quite similar and the T1/T2 ratios for CXXC12 should be indicative of an 

~12kDa globular species rather than independently tumbling ~6kDa species.  Should the 

precipitation problem with hMBD1 CXXC12 be overcome it will be possible to 

isotopically label the protein and carry out 3D NMR experiments.  It will also be 

possible to investigate the protein-protein interactions with amino acid 250-337 domain 

of ring1b (Sakamoto et al, 2007) with MBD1 CXXC12 once the domain is isotopically 

labelled.            
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Appendix A Laboratory buffers and methods 

 

Bacterial Growth Media 

Appropriate selection antibiotics were added in all media prior to use. 

 

LB Medium  1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% NaCl (w/v)  

5XM9 stock 3.4% (w/v) Na2HPO4, 1.5% KH2PO4, 0.25% (w/v) NaCl, 

autoclaved prior to use 

M9 minimal medium for 500 ml; 100 ml 5XM9, 2 mM MgSO4, 0.1 mM CaCl2, 0.3% D-

glucose (w/v), 8 mM (NH4)2SO4, 0.004% thiamine (w/v) 

Labelled medium For 15N labelling, replace 8 mM (NH4)2SO4 with 16 mM 15NH4Cl 

(Isotec, 11186AE).  

 

GST purification buffers 

Lysis/binding buffer  10× PBS: 1.4 M NaCl, 27 mM KCl, 100 mM Na2HPO4, 18 mM 

KH2PO4, pH 7.3.  Use at 1x 

PreScission buffer 50 mM  Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM DTT 

Elution buffer  300 mM NaCl, 2.7 mM KCL, 10 mM Na2HPO4, 1.8mM KH2PO4, 

1 mM DTT, pH 7.3 

 

Bradford assay 

The protein concentration was measured using Bradford assay kit brought from Pierce 

(Product No. 23236). The measurement was performed according to the standard 

protocol in the manufacturer's instructions. 

 

SDS-PAGE 

Coomassie Stain 45% methanol, 45% dH2O, 10% acetic acid, 0.25% (w/v) 

coomassie R250  

Destain Buffer 5% methanol, 10% acetic acid, 85% dH2O  
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Appendix B  Ramachandran plots, χ1torsion angle distributions and 

average secondary structure for the final ensemble of hMBD1 CXXC 

structures.  Structural analysis by Procheck-NMR  

 

Figure B.1 Graphical summary of Ramachandran statistics for the 
final ensemble of 25 hMBD1 CXXC structures. 
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Figure B.2 Per-residue Ramachandran plots for the final ensemble of 20 hMBD1 

CXXC1 structures.  Yellow boxes indicated favourable and red boxes indicate 

unfavorable φ, ψ dihedral angle combinations.  
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Figure B.2b Per-residue Ramachandran plots for the final ensemble of 20 

hMBD1 CXXC1 structures.  Yellow boxes indicate favourable and red boxes 

indicates unfavorable φ, ψ dihedral angle combinations respectively.  
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Figure B.2c Per-residue Ramachandran plots for the final ensemble of 20 

hMBD1 CXXC1 structures.  Yellow boxes indicate favourable and red boxes 

indicates unfavorable φ, ψ dihedral angle combinations respectively. 
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Figure B.2d Per-residue X1 frequency plots for the final ensemble of 20 hMBD1 

CXXC1 structures.  Yellow boxes indicated favorable and red boxes indicates 

unfavourable φ, ψ dihedral angle combinations.  
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Figure B.2e Per-residue X1 frequency plots for the final ensemble of 20 hMBD1 

CXXC1 structures.  Yellow boxes indicated favorable and red boxes indicates 

unfavourable φ, ψ dihedral angle combinations.  
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Figure B.2d Average secondary structure and accessibility plot for the final ensemble of 

25 hMBD1 CXXC1 structures  
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Appendix C Chemical shift assignments of hMBD1 CXXC1.  Chemical shifts are given in p.p.m, no chemical shift indicates unassigned or 

unobserved resonances 

Residue H N NE NZ NH HA HB HG HD HE HZ 
163Pro - - - - - 4.46 1.92,2.30 1.99,1.99 3.56,3.56   
164Leu 8.6 122.72 - - - 4.34 1.57,1.59 1.66 0.87,0.91 - - 
165Gly 8.56 110.52 - - - 3.95,4.05 - - - - - 
166Ser 8.24 123.15 - - - 4.35 3.82,3.89 - - - - 
167Glu 8.62 122.8 - - - 4.2 1.95,2.02 2.26,2.20 - - - 
168Gln 8.28 120.76 112.84 - - 4.2 1.96,2.07 2.34,2.34 - 7.59,6.90 - 
169Arg 8.24 121.54 - - - 4.21 1.73,1.73 1.51,1.57 3.14,3.14 - - 
170Met 8.19 - - - - 4.38 1.91,1.92 2.47,2.39 - - - 
171Phe 8.17 121.09 - - - 4.59 3.12,2.96 - 7.19 7.3 - 
172Lys 8.15 122.49 - - - 4.21 1.75,1.67 1.37,1.31 1.63,1.63 2.93,2.94 - 
173Arg 8.24 122.47 - - - 4.31 1.81,1.75 1.57,1.62 3.15,3.15 - - 
174Val 8.24 121.19 - - - 4.2 2.09 0.94,0.94 - - - 
175Gly 8.34 111.29 - - - 4.06,4.14 - - - - - 
176Cys 9.36 126.38 - - - 4.48 2.80,3.25 - - - - 
177Gly 9.55 115.33 - - - 3.83,4.35 - - - - - 
178Glu 9.62 123.72 - - - 4.57 1.93,2.06 2.15,2.22 - - - 
179Cys 7.12 120.34 - - - 4.7 2.98,3.46 - - - - 
180Ala 8.84 120.15 - - - 3.95 1.42 - - - - 
181Ala 7.39 120.51 - - - 4.4 1.28 - - - - 
182Cys 8.57 120.38 - - - 4.05 2.92,2.95 - - - - 
183Gln 7.44 114.45 111.92 - - 4.11 1.88,1.87 2.34,2.25 - 7.02,6.69 - 
184Val 7.21 122.55 - - - 3.92 2.25 1.19,1.02 - - - 
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Appendix C Chemical shift assignments of hMBD1 CXXC1.  Chemical shifts are given in p.p.m, no chemical shift indicates unassigned or 

unobserved resonances 

Residue H N NE NZ NH HA HB HG HD HE HZ 
185Thr 8.57 116.22 - - - 4.37 4.42 1.19 - - - 
186Glu 7.1 119.02 - - - 4.6 1.96,1.77 1.99,2.16 - - - 
187Asp 8.78 124.9 - - - 4.5 2.42,3.47 - - - - 
188Cys 9.39 127.21 - - - 4.47 3.29,2.84 - - - - 
189Gly 9.52 115.74 - - - 4.19,3.89 - - - - - 
190Ala 9.95 127.56 - - - 4.61 1.35 - - - - 
191Cys 7.06 119.33 - - - 4.85 3.40,2.97 - - - - 
192Ser 9.01 114.78 - - - 4.81 3.99,4.03 - - - - 
193Thr 7.89 117.58 - - - 4.01 4.26 1.04 - - - 
194Cys 9.01 126.91 - - - 3.96 2.98,2.92 - - - - 
195Leu 8.03 116.75 - - - 4.08 1.63,1.62 1.46 0.70,0.80 - - 
196Leu 7.42 119.34 - - - 4.17 1.87,1.87 1.5 0.84,0.92 - - 
197Gln 7.92 117.57 112.73 - - 4.15 2.08,2.02 2.31,2.32 - 6.86,7.53 - 
198Leu 8.32 122.95 - - - 4.52 1.60,1.41 1.64 0.90,0.91 - - 
199Pro - - - - - 4.39 1.86,2.30 2.02,2.02 3.84,3.55 - - 
200His 8.45 - - - - 4.51 3.10,3.10 - 8.16 7.11 - 
201Asp 8.22 120.5 - - - 4.55 2.65,2.65 - - - - 
202Val 7.93 120.82 - - - 3.93 2.08 0.92,0.92 - - - 
203Ala 8.31 124.63 - - - 4.23 1.39 - - - - 
204Ser 7.98 113.35 - - - 4.32 3.89,3.86 - - - - 
205Gly 8.13 110.16 - - - 3.87,3.96 - - - - - 
206Leu 7.89 121.02 - - - 4.2 1.44,1.43 1.34 0.74,0.81 - 7.23 
207Phe 8.07 119.02 - - - 4.53 2.97,3.12 - 7.18 7.29 - 
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Appendix C Chemical shift assignments of hMBD1 CXXC1.  Chemical shifts are given in p.p.m, no chemical shift indicates unassigned or 

unobserved resonances 

 

Residue H N NE NZ NH HA HB HG HD HE HZ 
208Cys 8.13 120.23 - - - 4.38 2.71,2.78 - - - - 
209Lys 8.15 123.48 - - - 4.19 1.58,1.65 1.36,1.37 1.58,1.58 2.90,2.90 - 
210Cys 8.56 125.58 - - - 3.87 2.91,2.30 - - - - 
211Glu 9.31 112.13 - - - 3.8 2.27,2.10 2.48,2.70 - - - 
212Arg 9.09 119.51 - - - 4.35 2.06,2.11 1.83,1.83 3.29,3.24 - - 
213Arg 7.54 114.39 83.8 - - 4.66 1.42,2.38 1.91,1.29 3.11,3.11 6.83 - 
214Arg 6.77 120.46 84.52 - - 4.04 1.63,1.77 1.51,1.84 3.15,3.19 6.67 - 
215Cys 8.23 126.72 - - - 3.89 2.98,2.76 - - - - 
216Leu 9.08 110.46 - - - 4.31 1.78,1.84 2.11 0.98,1.15 - - 
217Arg 9.33 121.68 - - - 4.38 1.95,1.81 1.69,1.58 3.31,3.28 - - 
218Ile 7.54 121.04 - - - 4.15 1.85 1.12,1.50,0.85 0.82 - - 
219Val 8.17 124.39 - - - 4.1 2.02 0.89,0.90 - - - 
220Glu 8.47 124.99 - - - 4.29 1.92,2.01 2.20,2.25 - - - 
221Arg 8.35 122.82 - - - 4.39 1.75,1.88 1.62,1.62 3.17,3.17 - - 
222Ser 8.04 123.13 - - - 4.24 3.83,3.84 - - -  
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