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ABSTRACT

PolySNAP is a program used for analysis of higlegighput powder diffraction data. The
program matches diffraction patterns using PeaasmhSpearman correlation coefficients
to measure the similarity of the profiles of eaeltt@rn with every other pattern, which
creates a correlation matrix. This correlation mag then used to partition the patterns
into groups using a variety of cluster analysishuds. The original version could not
handle any data types other than powder X-ray &sffon. The aim of this project was to
expand the methods used in PolySNAP to allow @rtalyse other data types, in particular
Raman spectroscopy, differential scanning calomyngd infrared spectroscopy data.
This involves the preparation of suitable compountgh can be analysed using these
techniques. The main compounds studied are swdfaild, carbamazepine and piroxicam.
Some additional studies have been carried outloer alatasets, including a test on an
unseen dataset to test the efficacy of the methods.

The optimal method for clustering any unknown dettéisis also been determined.
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CHAPTER 1 BACKGROUND AND PREVIOUS WORK

1.1 HIGH THROUGHPUT DATA COLLECTION

High throughput data collection techniques are bbgaf collecting large amounts of data,
in excess of 500 powder diffraction patterns orcsige in a single day. These techniques
are useful in a variety of fields where large nursti samples are produced and need to
be analysed, for example the pharmaceutical ingugltere large numbers of potential
drug precursors need to be analysed, in searchesHonorphs or in chemical
manufacturing companies where samples are takemarggto test their purity. This
volume of data could not be practically analysedhagd in any reasonable timeframe so
methods have been developed to allow rapid anabysris data. These techniques were
initially * developed for X-ray powder diffraction data, hoaethe techniques can be
extended to other types of data in which high-tghqaut data can be collected, for
example Raman or infrared (IR) data. These datatgpa allow for further analysis of the
materials being studied and can prove useful fentiflying similarities between materials
should the X-ray analysis prove inconclusive.

This thesis will study the extension of the X-raalysis techniques to the additional
datatypes of Raman spectroscopy, infrared spedpgsdifferential scanning calorimetry

and thermal gravimetric analysis.

1.2 POLYSNAP

PolySNAP " ?°is a computer program used for the analysis di-tigoughput data
supplemented, if required, by numerical data. Tiogimm matches 1-dimensional
patterns, using the Pearson and Spearman corretatéfficients, to measure the similarity
of each pattern with every other pattern. Thiste®a correlation matrix which is then
used to partition the patterns into groups of similatterns using a variety of cluster
analysis methods. The program has two main fornfigradtionality: automatic analysis

mode and manual analysis mode.

1.2.1 AUTOMATIC ANALYSIS MODE FUNCTIONALITY

Automatic analysis mode is used to match a numbsaraples, minimum 3, maximum
2000, using up to four datatypes. The analysis atktbr automatic analysis mode works

as outlined in the flowchart in Figure 1.
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Similarity Matrix Distance Matrix — Correlation Matrix
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Dendrogram MMDS Plot Other Methods

Figure 1 - Flow Chart of PolySNAP methods

All patterns are first read in. The patterns thamehany requested pre-processing applied
to them (see Section 1.25), and for powder pattigare checked to see if they are
crystalline. The check for crystallinity occursfalows:

1. The background for each pattern is estimatedtandtensity integrated.

2. Non-background intensity is estimated

3. Diffraction peaks are located

4. The ratio of background to non-background intgns estimated. If it falls below 3%
then the material is determined to be non-crysillAlso if less than 3 peaks are located

then the material is determined to be non-crysiglli

All samples are then matched against all othertalyse samples, using two matching
methods: The first of these methods is the Pearson corelabefficient®, Equation 1,
where two diffraction patterns, each containingeasured points[(x1,y1),...(%.,Yn)], are
used, along with the mean of their intensities dkerfull diffraction pattern, to generate

the correlation coefficienty. Xandy are the means of the intensities taken over the fu

range of the diffraction pattern

2[5

= i=1 _y)

N

i=1 i=1

1/2

Equation 1- Pearson coefficient
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The second method uses the Spearman correlatifficze®® which is shown in

Equation 2, where two diffraction patterns, eachtamingn measured points,
N[(X,Y1),...(%n,Yn)], are transformed into rank(x) andR(y). These ranks are used to give
a correlation coefficientyy.

Ranking is a numerical transformation that candreied out on both numerical and non-
numerical data. When numbers are ranked they ptaced by the position they would
obtain if the numbers were to be sorted into nuca¢order. For example the numbers 2.8,
1.2, 4.5 and 2.9 would be replaced with 2, 1, 4&r8ly applying ranking to a dataset, it is
possible to convert a complex series of informatida a regular series, thus allowing

easier manipulations to be carried out.

S ROORY) " 1)

pf{iR(xl)z_ (ﬂ {ZR(y) () }

Equation 2 — Spearman rank order coefficient

A correlation matrix is a matrix containing all thie correlation coefficients from the
pattern matching. Correlation coefficients alwagséna value between -1.0 and 1.0. A
correlation of 1.0 means that the 2 patterns beiatzhed are identical, a correlation of 0.0
means that the patterns do not match in any walevahtorrelation of -1.0 means that the
peaks match but all have inverse intensity.

Figure 2 shows an example of each of these possibilitiee.&xample for Figure 2C was

created by inverting the data on a pattern andmrajdt against itself.
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Figure 2 - A - Correlation coefficient of +1 Betwer Powder Patterns, B - Correlation coefficient of 8

Between Powder Patterns, C - Correlation Coefficienof -1 Between Powder Patterns.

The correlation matrixp, is then converted to a distance matrixysing Equation 3.

d=0.501-p)

Equation 3 - Distance matrix equation

The elements of the distance matrix are alwaykerrange of 0.0 to 1.0. A correlation of
-1.0 will convert to a distance of 1.0 while a @tation of 1.0 will convert to a distance of
0.0. The smaller the distance value between twie et the more similar they are.

If two patterns have a high positive correlatioeffigient (towards 1.0) they are said to be
similar. If two patterns have a high negative clatien coefficient (towards -1.0) they are

said to be dissimilar. Equation 4 and 5 are usexdkzulate dissimilarity.

8, =1-d, /d,,,

Equation 4 - Similarity Matrix

Wherednax is the maximum distance in matdbetween two clusterj.

5”_ - qj /qjmax

Equation 5 - Dissimilarity Matrix Calculation

The distance matrix and the similarity matrix drert used to derive a variety of different
visualisation techniquesThe first such visualisation technique is the degcam as

shown in Figure 3.
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Figure 3 - PolySNAP Dendrogram

A dendrogram is a tree diagram, derived from sintiés, which shows similarity between
patterns based on the height of connecting linesd®n them. All patterns are placed at
the bottom of the dendrogram, with each of the bar@resenting a single pattern.
Initially, all patterns are classified as beindlifferent clusters; however they are linked
together, stepwise, by horizontal bars which a@kmnas tie bars. The height of these tie
bars will reflect how similar two patterns are ldhsa the distance matrix. Similar patterns
have low (near to the bottom and the samples)atie While patterns which are dissimilar
will have tie bars higher up the dendrogram. A lErsplid horizontal line, known as the
cut-level, runs horizontally across the dendrogréims distinguishes the different clusters
present in the dendrogram. The dotted lines abodébalow the cut-level represent the
confidence limits for the cut-level. The determioatof the positions of these lines will be
covered later. It is possible for the user to adijms cut-level up or down.

If two samples are linked by tie bars below theleutl, they are classed as being in the
same cluster. Two samples linked by tie bars abloweut-level are classed as being in
different clusters. In this dendrogram the sampkhessplit into seven clusters, each
assigned a different colour. If the cut-level wadgusted downwards, clusters would be
split as the tie bars linking them would now beabthe cut-level. Likewise if the cut-

level were adjusted upwards, clusters would be etkes the tie bars linking them would
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now lie below the cut-level. The new clustering Veblead to an updating of the cluster
colouring to reflect this.
When examining a dendrogram, it is sometimes pltessibdetermine if it is a ‘good’ or a

‘bad’ one. Figure 3 showed an example of a goodvdmte Figure 4 shows a bad one.

0.4

=
=

<~—~a——3—wn
e
Fald

Figure 4 - Example of a 'bad' Dendrogram

This dendrogram clearly shows an example of chginihere a sample is linked to the
succeeding sample by a slightly higher tie barsThen progresses along the dendrogram,
forming a stair like structure. A ‘bad’ dendrogramssess no distinct clusters and only
shows gradual changes between samples.
The dendrogram can be generated in many differagswWPolySNAP offers the following
methods

1. Single link
Complete link
Weighted average link
Centroid

o k& 0D

Group-Average link

When two clusterg j are combined, Equation 6 is used to calculateévedistance

between the cluster and an existing clukter

dk(i,j) =ad; +a; q<j +/”(ﬂ +V‘Q Igﬂ

Equation 6 - Distance calculation when combining disters
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Parameters;, o;, p andy vary dependent on which clustering method is u$kd. different

methods available are shown in Table 1.

Method a o p v
Single Link 1/2 0 -1/2
Complete Link -1/2 0 1/2
Weighted Average Link 1/2 0 0
2
Centroid ni(ni + r]) (ni * nj) 0
n nj
L+ N
Group-Average Link (n' N ) (n * nJ') 0 0

Table 1 - Variable parameters in eacHustering method

Although not normally used, the PolySNAP softwareapable of determining an optimal

clustering method. There are several methods ofioarthis out:

1. Minimum cluster overlap.

2. Mean intra-cluster distance.

3. Centroid cluster distances.
4. Combining all three.

The distance matrix can also be used to genemaetrzc multidimensional scaling

(MMDS) plot (Figure 5).
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Fit =0.95

Figure 5 - PolySNAP MMDS Plot

The functionality of MMDS, as described by Gofyattempts to define a setjpf
dimensions that will produce a Euclidean distanc&imal®®®, which is equivalent to the
distance matrixi® Matrix d°* has zero diagonal elements and so is classepasitave

semidefinite. A positive definitéd, can be calculated using Equation 7.

A:_l(ln _EI r! IHJD (I n__l' inlr‘lj
2 n n

Equation 7 - Equation for Matrix A Calculation

Wherel, is an(n x n)identity matrix,in is an(n x 1)vector of unities an® is a distance

squared matrix as defined in Equation 8.

D =0.251-p)’

Equation 8 - Distance-squared matrix calculation

Wherep is a correlation matrix as defined previously.

1. ..
Matrix (' n” H'J nj is a centering matrix, so called Asas been derived by centering the

rows and columns iD. The next step is to obtain the eigenvecters,, ... \ and their
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corresponding eigenvalugs 4, .../, A total ofp of the eigenvalues & are positive,
while (n - p),the remainder, are zero. A set of co-ordinateslafimed for the non-zero

values using the matriX(n x p) using Equation 9.

X =VAY2

Equation 9 - Matrix X calculation

A is the vector of the eigenvalues.

Since we are working in three dimensigrs 3 so, withX, each pattern can be plotted
onto a three-dimensional graph, the MMDS plot. Eoelidian matrix produces a 3-
dimensional matrix with every pattern assignedtaté, y, z)coordinates. These
coordinates can then be plotted in a 3-dimensiplal Each sample is represented in this
plot by a sphere.

A computed distance matrid®®° can be produced usid¢(n x 3) and compared with the
observed matrixi®®S The calculated and observed distance matrix @related, using
both Pearson and Spearman correlation coefficiantsthe mean correlation coefficient
from this is displayed in the upper-left cornehdled as ‘Fit’. This serves as a check of
the accuracy of the MMDS calculations. Ideally &rezof greater than 0.95 is desired, but
this figure reduces asincreases.

The MMDS plot also shows the most representativepsafor each cluster. This only
appears for clusters with three or more samplesepteand is represented by adding spikes
to the sphere which represents this sample in thD8 plot. The most representative
sample is the sample with the lowest mean disteme#t other samples in the cluster. The

method of calculating the mean average distansbds/n in Equation 10.

m
i=min| Y d, /m

=L

i,j0o

Equation 10 - Most Representative Sample

Wherei is the most representative sample in cludter
The principal components analysis (PCA) plot isthabpmeans of representing the data in

3 dimensions. A PCA plot is shown in Figure 6.
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Fit= 0.93 ¥y

Figure 6 - PolySNAP PCA plot

A three-dimensional score plot is produced by é¢agyut principal components analysis
on the correlation matrix. The PCA plot is thenvdnausing the score plot in a similar
method to the MMDS plot. The PCA plot, like the Mi8ylot, displays how good the
score plot matches with the observed distance xnamd displays this in the upper left
corner.

PolySNAP chooses whether the PCA plot or MMDS pleés the optimal display for

each dataset by comparing the fits from the twdéspdmd choosing the one with the highest
value.

A cell display (Figure 7) is generated using theutes from the dendrogram.
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Figure 7 - PolySNAP Cell Display

Each pattern is represented by a cell. The colgwfrthe cells represents the cluster or set
that a pattern is assigned to. Patterns with threesaolour have been determined to be
similar by the clustering methods. Cells are usedigh-throughput powder diffraction
experiments are typically run using well platese(€dapter 2), therefore it is useful to

have a display representing the layout of a weltel

The number of clusters present, and hence theqosit the cut-level, is determined using

a variety of different methods. Initially the folling two methods are used:

1. Eigenvalue analysis @f, A and a transformed version mf

2. Cluster analysis methods
The transformed version pfuses a standardized versmnwhere the rows and columns
have a mean and unit variance of zero. Matgxs computed and subjected to
eigenanalysis.
Cluster analysis is less commonly used in cryggadiphy than eigenvalue analysis. Based

on literaturé'®, three possible methods are available.

- Calinski and Harabasz (CH) t&st

2 A variant of Goodman and Kruskal’s test®

> The C test
These methods can be carried out on several ditfeeent dendrogram generation
methods in order to minimise the bias towards arg/ dassification schemes. The

following list shows all of the possible methods éietermining the number of clusters:
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1) Eigenvalue analysis @&

2) Eigenvalue analysis @f

3) Eigenvalue analysis of transformed

4) Calinski/Harabasz test on single linkage
5) v test on single linkage

6) C test on single linkage

7) Calinski/Harabasz test on group average linkages
8) v test on group average linkages

9) C test on group average linkages
10)Calinski/Harabasz test on centroid method
11)y test on centroid method

12)C test on centroid method
13)Calinski/Harabasz on complete linkages
14)y test on complete linkages

15)C test on complete linkages

Eigenvalue analysis is carried out by sorting tigervalues op, A and the transformed

version ofp in the correct matrix into descending order uafiixed percentage of the

variables, usually 95%, have been accounted fgurEi8 shows a plot, known as a scree

plot, of the eigenvalues from a data run.
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Figure 8 - Scree Plot
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The scree plot uses eigenvalues, generated frogotinelation matrix to determine how
many clusters are present. The point in the plare/it changes colour is the point where
95% of the variability has been accounted for drahs the estimated number of clusters
present in the dataset. As such the scree pldbeamewed as a one-dimensional
representation of the eigenvalue methods for cafityg the number of clusters present. A
scree plot should ideally show a steep initial dascchanging rapidly to a shallow
descent. One with a shallow or multiply steppetiahdescent may indicate poor
clustering.

Eigenvalue analysis @f andA uses matrices that have been previously definesleter
the transformeg@ matrix has not yet been defined. For this mairig standardised to give
ps, Where the rows and columns have zero mean andanmnce.

The CH test uses Equation 11.

CH(c)=[ B/(c-1)J/[ Wi( n- ¢]

Equation 11 - CH Test Equation

This method defines a centroid for each clusters ke total within-cluster sum of

squared distances across the cluster centBigsthe total between-cluster sum of squared
distances andis the number of clusters chosen to maximise guagon.

The Goodman and Kruskgalest uses the dissimilarity matrix as definedieaih

Equation 4.

All within-cluster dissimilarities are compared tvill between-cluster dissimilarities. If

the within-cluster dissimilarity is less than thetween-cluster dissimilarity the comparison
is said to be concordant. If the opposite is ttug discrepant. If they are equal they are

disregarded. These values are used with Equation 12

ve)=(S - 8)/( s+ 9

Equation 12 - Goodman and Kruskaly Test

Where S is the number of concordant comparisons ard the number of discordant
comparisons.
In the C test we choose a valuecafhich minimises Equation 13.
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C(¢)=[B(¢)~ Do J/( Dy~ D)

Equation 13 — The C Test

WhereD(c) is the sum of all within-cluster dissimilariielf r dissimilarities are present,
Dmin is the sum of the r smallest dissimilarities &g« the sum of the largest
dissimilarities.

The maximum and minimum values produced from thieeih methods appear as dotted
lines on the dendrogram, denoting the confidemod for the cluster estimation. A
weighted mean value of all the estimates is taltenresult of which appears as the initial
cut-level on the dendrogram.

A further method of constructing clusters is throdlge use of minimum spanning tree?®
as shown in Figure 9.

Figure 9 - Minimum Spanning trees

A spanning tree is graph where all of the verteesconnected by a set of lines. A vertex
can have multiple lines connected to it, but apamt can the lines form a loop. In a
minimum spanning tree, the lines are drawn sogbahat the minimum distance of lines
are used to connect all of the points. Multiple imitnm spanning trees can exist in a single
graph as, if a link is broken, two minimum spanrireges will now be present on either
side of the broken link.

This plot initially has all the samples tied togathvith a series of lines, a single minimum

spanning tree. Links are cut, in decreasing siderdoeginning with the longest line, until
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the estimated number of clusters from the screeiple@ached, and therefore the number
of minimum spanning trees is equal to the numbehwdters. Once the estimated number
of clusters has been reached, the user can choosanually decrease or increase the
number of links either creating new clusters orgimey further clusters. Previously broken
links can also be remade in increasing size okféen a link is broken the number of
clusters present will increase by one. When aiirflrmed two clusters, the two which are
closest to one another, will form into one largester.

It is also possible to supply PolySNAP with a ctatien matrix that has been generated
from an external source. The software will not gamt the initial steps of pre-processing
the data and correlating each pattern but willeiadtfollow the flowchart as shown in
Figure 10.

Similarity Matrix Distance Matrix  |«—| COTrSlation Matrix from
External source
Dendrogram MMDS Plot Other Methods

Figure 10 - Amended flowchart for correlation matrix input

All methods after the correlation matrix is readtbg software are unchanged.
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1.2.2 VALIDATION TECHNIQUES

1) Silhouettes
There are many methods built in which allow thestdting to be checked®® The first of

these methods is the silhouette. Figure 11 shosvsithouett&™ *?plot for each cluster.
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Figure 11 - Silhouettes

Silhouettes show, for each cluster as identifiethendendrogram, how well each pattern
fits into the cluster. Silhouettes are only displayor clusters with three or more patterns.
The values on the silhouette x-axis run from -1.t&ach member of a cluster is assigned a
silhouette. The first step in getting the silhoesttalue is to generate a dissimilarity

matrix. The equation for this has already been shiovEquation 5.

Two valuesg andb; (where i is the pattern being examined), mustdised before the

next step can be carried out. These values areatkiin equations 14 and 15.

a=29/n-1
I

Equation 14 - Definition for &

h=ng¢ip(25.j/@J

InC,

Equation 15 - Definition for b;

Both of these values are used to define the avetiagenilarity of pattern with respect to

the clustelC;. The silhouette for this pattern is defined udtgmation 16.
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h=(h-a)/ max a 9

Equation 16 - Value of Silhouette

The value oh; is in the rangel.0 <h < 1.0

The higher the value, the more likely a pattenoibelong to this cluster. Lower values
imply that either the sample belongs to anothesteluor that it is a mixture. In general,
samples with a value of greater than 0.5 can luktedie clustered correctly. Values
outside of this range should be examined to stif clustering has been determined
correctly. Any gaps between the different regiomsadso of interest as they can further

suggest that samples on either side of the gapddshe in different clusters.

2) Fuzzy Clustering
Figure 12 shows a representation of fuzzy clusyefirt* 2°
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Figure 12 - Fuzzy Clustering

Fuzzy clustering allows a sample to potentiallyriuded in more than one cluster.
Hitherto, cluster membership is expressed by a neeshipp matrixJ(n x c)in which
individual coefficientsui, represent the membership of patteimclusterk. Coefficients

are equal to unity if belongs ta and is otherwise zero, as shown in Equation 17

u0[0,(i=1..nk=1,..¢)

Equation 17 — Cluster Membership

These constraints can be relaxed as shown in Bagsati8, 19 and 20.

Osu, <1i=1..nk= 1.0

Equation 18 - Relaxed Cluster Memberships Constraits 1
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O<Zn:uik <n(k=1,...,9

i=1

Equation 19 - Relaxed Cluster Memberships Constraits 2

Equation 20 - Relaxed Cluster Memberships Constraits 3

0 B ¥where a

These relaxed constraints now allow for the pobsitaf fuzzy cluster
sample can belong to more than one cluster, fanglain mixtures.

The MatrixU is calculatedria two possible methods

1. Additive clustering wher® is determined by minimising the difference between
observed and calculated matrixes. The minimisedtion for this is shown in

Equation 21.

n; = i(sj -kZ;min(wk)j/Zn(%-‘s]

i#j=1 izj=1

Equation 21 - First Fuzzy Clustering Method Minimised Function

Where s is defined as

s=[1/n(n-1] Y (s)

i%j=1

Equation 22 - Definition
Wherea is a constant that scaleandU.
2. A general algorithm using aggregation operatorshasvn in Equation 23

J= Zc:{sj _gmi”(‘*’qk)}

i#j=1

Equation 23 - Second Fuzzy Clustering Method Minimged Function
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Both of these techniques need a starting valu&lfon PolySNAP the initial cluster
assignment from the dendrogram is used so if @patbelongs to a clustgru; = 0.8.
The value is otherwise given a random value scaledcordance with Equation 20.
The two methods minimise different functions andys@ different results. The second
method tends to give values with a wider range. Whg< 0.3, the value is usually

treated as zero.

1.2.3 VALIDATION EXAMPLE

The ‘multiple 1’ tutorial dataset (as distributediwthe PolySNAP software) will be used
as an example of each of the validation techniguestion. This dataset will be studied in
more detail in Chapter 4. The dataset consistsrektpolymorphs of sulfathiazole. The
dataset contains forty-eight samples, with eachimotph having multiple measurements.

The dendrogram and MMDS plot are shown in Figure 13
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Figure 13 — A -Validation Example Dendrogram, B — \dlidation Example MMDS Plot

The dendrogram shows three large groups with desmglier present (striped blue
cluster) which would be expected to be with théoyelcluster. The MMDS plot shows the
cluster to be clearly separated from one anothign, wany of the outliers lying close to
the yellow cluster.

The scree plot is shown in Figure 14.
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Figure 14 - Scree Plot Example

The scree plot shows the expected steep initigd dral suggests that there are five clusters
present. The minimum spanning tree is shown inreid5, along with the effect of
removing and adding one link. The changes to themim spanning trees are circled in

green.

Y S
Links: 36 4 | » Links: 37 < | » ¥ Links: 38 4 | »

Figure 15 - Minimum Spanning Tree

The central example shows a large interlinked haster with an interlinked yellow cluster
and interlinked blue cluster nearby. Breaking alsinink (the left most example) will split
a single sample off the bottom and form a purplstelr. Adding a single link (the right
most example) will merge the blue and red tree.

Figure 16 shows the silhouettes and Figure 17uheyfclusters
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Figure 16 - Silhouettes for Example

In the red cluster, sample 36-4 is a potentiallyp@umous sample, lying below 0.5. All of
the remaining bars, and therefore all remainingmes) lie above 0.5. There is also a
small gap between the region with sample 36-4 amd the remaining regions, suggesting
that it should be in a separate cluster.

For the striped green cluster, sample 22-2 and &k Dotentially ambiguous samples.
For the yellow cluster samples 31-3, 37-3, 39-334hd 48-3 are potentially ambiguous
samples. For the green cluster, all three samigldselow 0.5 and are therefore potentially

ambiguous.
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Figure 17 - Fuzzy Clustering for Example

The cluster memberships for the fuzzy clusterirggsdrown in Table 2.
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4

7

8

10

01-4

0.1

0.08

0.09

0.1

0.1

0.09

0.15

0.39

0.45

0.94

02-2

0.08

0.11

0.08

0.09

0.08

0.09

0.12

0.29

0.35

03-3

0.12

0.09

0.11

0.12

0.12

0.11

0.21

0.9

0.43

0.45

04-2

0.08

0.1

0.08

0.08

0.09

0.1

0.13

0.33

0.38

05-3

0.13

0.11

0.12

0.12

0.11

0.1

0.19

0.91

0.37

0.48

06-4

0.1

0.09

0.1

0.1

0.11

0.1

0.16

0.43

0.47

0.91

07-3

0.12

0.09

0.1

0.12

0.11

0.84

0.25

0.47

0.49

0.35

08-3

0.11

0.1

0.1

0.1

0.11

0.11

0.19

0.9

0.48

0.39

09-2

0.08

0.11

0.08

0.09

0.08

0.1

0.12

0.32

0.37

10-4

0.1

0.09

0.09

0.1

0.11

0.1

0.15

0.38

0.46

0.94

11-2

0.09

0.12

0.08

0.08

0.09

0.1

0.12

0.33

0.98

0.41

12-4

0.1

0.1

0.1

0.09

0.1

0.09

0.14

0.37

0.46

0.93

13-4

0.1

0.1

0.1

0.1

0.11

0.09

0.14

0.39

0.5

0.9

14-3

0.12

0.1

0.11

0.12

0.11

0.12

0.23

0.92

0.46

0.38

15-2

0.07

0.09

0.07

0.07

0.07

0.08

0.09

0.23

0.3

16-2

0.07

0.09

0.07

0.07

0.07

0.08

0.1

0.25

0.31

17-3

0.13

0.1

0.12

0.12

0.85

0.11

0.21

0.49

0.34

0.45

18-3

0.13

0.09

0.11

0.13

0.13

0.14

0.86

0.55*

0.41

0.42

19-4

0.09

0.09

0.09

0.1

0.11

0.09

0.14

0.37

0.55*

0.9

20-4

0.11

0.12

0.12

0.11

0.11

0.09

0.14

0.41

0.45

0.91

21-2

0.08

0.11

0.08

0.08

0.08

0.09

0.11

0.28

0.35

22-2

0.06

0.08

0.06

0.06

0.06

0.08

0.09

0.21

0.97

0.27

23-4

0.09

0.09

0.09

0.09

0.1

0.09

0.14

0.35

0.55*

0.91

24-4

0.1

0.09

0.09

0.1

0.11

0.11

0.18

0.4

0.5

0.91

25-3

0.14

0.1

0.12

0.85

0.12

0.11

0.22

0.51*

0.31

0.39

<==

26-3

0.12

0.1

0.86

0.12

0.11

0.09

0.18

0.45

0.26

0.38

27-2

0.11

0.84

0.11

0.1

0.09

0.09

0.12

0.36

0.60*

0.38

28-2

0.08

0.11

0.07

0.07

0.07

0.1

0.11

0.26

0.33

29-4

0.11

0.11

0.11

0.1

0.11

0.09

0.15

0.42

0.45

0.92

30-3

0.13

0.1

0.11

0.12

0.11

0.13

0.86

0.51*

0.38

0.33

31-3

0.12

0.11

0.1

0.1

0.1

0.1

0.19

0.89

0.42

0.34

32-2

0.08

0.11

0.07

0.08

0.08

0.09

0.11

0.29

0.34

33-2

0.08

0.09

0.08

0.09

0.08

0.11

0.14

0.34

0.97

0.36

34-3

0.12

0.09

0.11

0.11

0.11

0.11

0.2

0.91

0.44

0.4

35-2

0.09

0.1

0.09

0.09

0.09

0.11

0.15

0.42

0.91

0.37

36-4

0.1

0.11

0.1

0.09

0.09

0.09

0.12

0.33

0.42

0.9

37-2

0.12

0.11

0.12

0.11

0.1

0.09

0.17

0.9

0.39

0.38

38-2

0.08

0.1

0.07

0.08

0.08

0.09

0.11

0.29

0.99

0.34

39-3

0.1

0.07

0.09

0.1

0.1

0.11

0.19

0.91

0.37

0.33

40-3

0.1

0.09

0.1

0.1

0.1

0.1

0.17

0.91

0.39

0.34

41-2

0.07

0.1

0.07

0.08

0.08

0.1

0.12

0.28

1

0.35

42-2

0.08

0.12

0.08

0.08

0.08

0.09

0.11

0.3

1

0.35

43-3

0.12

0.09

0.11

0.12

0.12

0.12

0.23

0.92

0.42

0.41

44-3

0.13

0.09

0.11

0.12

0.12

0.13

0.86

0.53*

0.37

0.36

45-2

0.08

0.11

0.08

0.08

0.08

0.1

0.11

0.27

1

0.36

46-3

0.85

0.11

0.13

0.14

0.13

0.12

0.24

0.57*

0.31

0.41

<==

47-2

0.08

0.11

0.08

0.08

0.1

0.09

0.11

0.3

1

0.35

48-3

0.11

0.09

0.1

0.11

0.1

0.1

0.18

0.9

0.42

0.37

Table 2 — Fuzzy Clustering Numerical Values
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In the table, column 1 shows the sample name widesubsequent columns, the number
of these varies depending on how many clusterprasent, shows the correlations that the
sample has to each cluster. If a sample has nelations greater than 0.50 or has more
than one correlation greater than 0.50 then itlélimarked with <= = in the final column
of the table. For these samples, the cluster meshipewhich is determined to be optimal
is marked with an *. For this dataset no sample® lal correlations less than 0.5.

The fuzzy clustering contains several samples., 183, 30-3, 44-3 and 46-3 are present
in the first fuzzy clustering plot. The second mlohtains samples 19-4 and 25-3 in the
first bar and 27-2 in the second bar.

All of the patterns in this example that are mareduzzy clusters have more than one
membership of greater than 0.5. There are no samppésent in this dataset with all
correlations <0.5.

Figure 18 shows the parallel coordinate plot ferélxample.

Figure 18 — Parallel Coordinate Plot for Example

In the currently shown orientation, the first thodmensions show that the clusters are
clearly defined. Moving into dimension four, thdlges cluster spreads out but tightens up
again in the fifth and sixth dimension.

The dataset was well clustered initially; however validation methods assist in
determining that the clustering is optimal. The cadster in particular is well clustered
with just one sample in it being potentially amlogs according to the silhouettes. This
sample is not present in the fuzzy clustering &asta membership value of 0.9 with the

red cluster. The entire green cluster is markgub#entially ambiguous by the silhouettes,
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which is further reinforced by the fuzzy clusterimgo having all of the samples in this
cluster marked as ambiguous. This implies thagtken and yellow cluster should be
further inspected and possibly merged.

Further discussion on this dataset and its clusgambership can be found in Chapter 4.

1.2.4 INDIVIDUAL DIFFERENCES SCALING METHOD (INDSCAL)

The individual differences scaling method, INDSCAlcan be used to combine the
distance matrixes of two or more datasets intmglsidistance matrix. This new distance
matrix can then be used to generate a new denanogpanbining the clustering of all of
the input datasets. The method determines the aptiights to assign to each pattern
before combining them.

Combining two or more datasets is a useful tectenaguit allows for a further
confirmation of the results. In the case of a dattés which there is no expected result,
this can serve as an additional confirmation if¢hestering from the combined dataset is
similar to the clustering of the individual datasdh the case of a dataset for which a
certain result was expected, it can serve as alusefans of confirming that result. If one
of the datasets being combined is of poorer qudlityay also serve as a check of the
results if the results from combining this ‘pooreguality data with the second dataset gives
the clustering which was anticipated.

The automatic combination of distance matrixes fions as follows:

A group-average matrixz, is generated by either taking an average of theegaof the
input distance matrixes or by randomly generatingadrix. The distance matrixes are

converted into inner product form (Equation 24)

B,=-1/2( D ( )

Equation 24 — Inner product matrix form

Wherel is the identity matrix,N = 11'/N andDy is an ( x n) squared-distance matrix for
datatypek with K total datatypes.
The inner product form matrixes are now matchetthéoweighted form of the group

average matrix.

Equation 25 — weighted group average function
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whereWy is the weighted matrix. This function is minimissldW/ scaled so that

S
> W7 =KI

k=1

Equation 26 - weight matrices function

This equation is repeatedly cycled through by kegpine of the parameters fixed while
solving the other through least squares. The psosagpeated until a minimum value for
Sis obtained. The group-average matrix can be asedstandard distance matrix to
generate a dendrogram, MMDS plot, PCA plot etc.

A group-average method is preferable to simply ayeig the two matrices as a simple
average of the two is more likely to produce a mathich does not represent either of the
two initial matrices well.

The tutorial dataset ‘multiple 1’ will be used terdonstrate INDSCAL. This is the same
dataset that was used for the validation methodmele and will be looked at in greater
detail in Chapter Four. Three clusters are expeotd@ present in this dataset. The dataset
contains both PXRD and Raman data and all the dgraims and MMDS plots are shown
in Figure 19.
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Figure 19 — INDSCAL Example A — PXRD Dendrogram; B- PXRD MMDS Plot; C — Raman

Dendrogram; D — Raman MMDS Plot; E — INDSCAL Combined PXRD; F — INDSCAL Combined

MMDS Plot

The X-ray data, Figure 19-A, shows two clearly dedl clusters. An adjustment of the cut-

level upwards would unite many of the separatedpsesrin the centre into a third cluster.

The Raman data, Figure 19-C, has nearly all thgokemin a single cluster with little clear

difference being seen between these samples.

The combined dataset, Figure 19-E, clearly shovestheparate clusters, with two outliers

at the right of the dendrogram which would otheeali® expected to be in the red cluster.

This example clearly shows the benefits of usinp®CAL to combine two datasets. The
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INDSCAL dendrogram retains the three clusters dpgeared in the initial PXRD

dendrogram however it has far fewer outliers presen

1.2.5 DATA PRE-PROCESSING OPTIONS

There are many advanced options available whichbeaapplied to the data before pattern

matching occurs. These options are as follows:

1. Denoise patterns
This option allows the user to denoise, or smoa¢hpiattern using waveléfs'®via Stein’s
unbiased risk estimate threshold (SUREA wavelet is a wave which begins at zero, rises
to a maximum amplitude, then decreases to zero miace. For this method to function

we must first select a threshdldvia the wavelet coefficients at each wavelet lgv&his
allows the coefficients to be shrunk at each leTkis will allow an estimate f andf that

has a small mean square erig,a an estimate f that has a small risk, f ,f). Thisis

shown in Equation 27.
- 1S 4. . 2
R(f,f):E{H;(f(lln)—f(lln))}

Equation 27 — Estimate of Risk for Data

This can also be expressed as wavelet coefficenshown in Equation 28.

(.1)o Eh’:zk:(ejyk —Hj,k)ﬂ

Equation 28 — Estimate of Risk for Wavelets

For both of these equations E is the expected wakhieh is taken as an integral of the

estimato f .

This allows us to transform the data in the origpetterns or spectra into wavelet
coefficients. If the risk is minimised in wavel¢ken it is also minimised in the original
data.

The risk is calculated from the data using the SWiREhod. To minimise the risk, a
threshold value is first chosen for each wavel&iaa=or any observed dataset

(X1...Xn), the risk can be written as shown in Equation 29.
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SUREA; = d-204 K| g{s/]}+kzd:;min2(| 4 A)

:-d-zg¢{k:|>&|>/1}+; mir? (| x| A)

Equation 29 - SURE Risk Estimation

Where #S for set S gives the cardinality of thatwhich is defined as the number of
elements present in the set.

For large sample sizes the law of large numbeisgwdrantee that SURE gives close to
the true risk. The law of large numbers states thlaén an experiment with an expected
value as an output is repeated a large numbemesktithe average of the results will be
close to the expected value, hence if a large nuifimamples are used with the SURE

method, the resulting output should also be clogbé true risk.

2. Subtract background
Background subtraction removes the background faoh pattern in the dataset.
Background removal operateis nth order polynomial functions that are fitted te titata
and then subtracted to produce a flat baselineeél 8 domains are defined for this,

however more can be used if needed.

3. Check for amorphous samples
This option checks each sample in the datasettewrdne if it is amorphous. An
amorphous sample is said to be non-crystallin¢ lzesi only long range ordering of its
atomic positions. Amorphous samples are markesdiels in the dataset. A further option
is available through the menu which will remove aaynples listed as amorphous from the
dataset.
The amorphous samples are identified as follows:
The background for each sample is calculated aedsity is integrated, the non-
background intensity is then estimated. Diffractpmaks are located and the ratio of
background intensity to non-background intensitthen compared. If the value is less
than 3%, or a value set by the user, or if the remolb peaks is less than 3, or a value set
by the user, the sample is said to be amorphous.
Amorphous, or non-crystalline materials, are matenvhich lack long-range ordering of

the crystal structure. An example amorphous PXRitepais shown in Figure 20.
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Figure 20 - Amorphous PXRD pattern

4. Remove Cosmic Ray Spikes
This option checks each sample for cosmic ray spéikel removes them if present. This
option is only applicable to Raman data. This métisaequired as cosmic ray spikes,
spikes on the spectra produced by cosmic raysdpittie detector, give peaks which
should not otherwise be present in the spectrandmch will interfere with pattern
matching. These peaks are usually removed by gteument’s software, however as this

cannot be guaranteed to be the case the optiomxists here.

5. Mask specified regions
Up to three regions of the dataset can be spedifjatie user. These areas are ignored
when the patterns are being matched. This is usafuémoving unwanted peaks or areas
of a pattern that may be due to a reference mathathas been added or should the user

decide that this area should be disregarded foreamson.

6. Set matching range subset
Allows the user to ignore all but a specified regad the dataset. Only data within this
area is matched. All other points in the pattemignored. This is useful as it allows the
user to determine which areas of a spectra orrpadte most important and only match

that area.

1.2.6 SIGNAL TRANSFORMS

Signal transforms can be applied to the dataserégfattern matching is carried out. The

available options are as follows:

I. Fourier transform
Applies a Fourier transform to all patterns in ta¢aset then matches the patterns

produced from the Fourier transform.
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II. Derivative
Calculates a first or derivative of all patternghe dataset then matches the patterns
produced from the derivative. A derivative is a swgament of the rate of change iny
when compared to X. The user specifies the ordden¥ative applied to the dataset. The

derivative can be either first or second order.tRerfirst derivative

100 = lim[ f(x+ B = f( 3/ b

Equation 30 - First Derivative Equation

Where f is the function being studi¢f ' is the derivative of this function. If a tangemtdi
is taken through a curve on the graph so thatahgent does not meet transversally
(Figure 21), the initial point the line is passhtbtigh is point x and the second point is

x+h. For optimum resulth should be close to zero.

-1

Figure 21 - First Derivative
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1.2.7 QUANTITATIVE ANALYSIS MODE

Manual matching mode also matches patterns usengréviously described methods;
however it does not produce dendrograms and MMDBS plt is most useful as a tool for
guantitatively matching samples in a dataset, hewevalso useful when there are a small
number of samples in a dataset that need to beieadnm greater detail.

Quantitative analysis attempts to identify whatividbial components make up a mixture.
Assuming that a sample patte&3rnwhich is a mixture oN components with S consisting of
data points5...$...Sy and N database patterns making up fract®nsP;...Ry of the

pattern, a series of equations will be built uphwit; being the first point in pattern 1:

X R+t X, Bt xRt .t + R=§
X%1Ft %, Pt %Rt i+ R= §

¥R+ X Bt XoBt+ nt R= 3

Equation 31 - Linear Equation for Quantitative Analysis

These can be written in matrix form as shown indEqun 32.

X1 Xp Xz o Xy P, %
X1 X Xz ot Xy P, S

X X2 Xs 0 X/ Pu 3\1
Equation 32 — Matrix form of Quantitative Analysis Linear Equations

in matrix notation:

X.p=S

Equation 33 - Shortened form of Matrix Equation for Quantitative Analysis

A solution is sought where:

1 =|xp-o’

Equation 34 - Quantitative Analysis Sought Minimum

As N<<m, the method of least squares can be used.
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Least squares can have problems with matrixesatiegpboorly conditioned. A matrix is
conditioned by taking the ratio of the largest anwhllest value in its corresponding
diagonal matriXW. If this value is approaching infinity it is saiol be singular, otherwise it
is said to be poorly conditioned. Many powder pateespecially if the full profile is
taken, can be poorly conditioned. Poorly conditibn@atrixes can be dealt with by using
the singular value decomposition (SVD) metHod

SVD decomposes thematrix into constituent matrices to give:

p=V.diag( 1Ay )UTS

Equation 35 - SVD Decomposed Matrix X Solution

W has elements that are either positive or zemmol§t of these are small then mapixan
be approximated with a small number of term§ @éffectively producing the sample
pattern from a combination of a few database patjer

A variance-covariance matrix can be obtained froatrixV and the diagonal of matrix
W:

N(V.V.
COVGJ ):Z(—illvzlkJ

Equation 36 - Variance-Covariance Matrix

This allows the calculation of variation in the qooment percentages. The fractional
percentages in powder diffraction arise from theagonent mixtures scattering power,
pi-pn-the values op can be used to calculate the weight fraction fpadicular phase
provided that atomic absorption coefficents arevkmarT his requires the unit-cell
dimensions and cell contefftsThe formula for the weight fraction of componerin a

mixture ofN is?>:

C. = P K,

Equation 37 - General Formula for Weight Fraction
where

N
H =) CH
j=1

Equation 38 — Weight Fraction Calculations
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and

Hi=k /o,

Equation 39 - Weight Fraction Calculations

Wherey is the atomic X-ray absorption coefficient gids the density of component

The variance, or standard deviation, can be cakulasing

2

N ] 1|y, T
6)= g |y e | () () ()

j#n j#n

Equation 40 - Standard Deviation Calculation
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A quantitative matching example is shown in FigiPe
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Figure 22 - Quantitative Matching in Manual Analysis Mode

The dots on the pattern represent the points athwthie software has determined there to
be a significant peak. This example shows a mixtfiiulfathiazole form 2 and
carbamazepine form 3 in an 80:20 composition. Tedipted composition of 83.2:16.8

closely matches the actual composition.

1.3 OTHER PATTERN MATCHING SOFTWARE

At present the main alternative to PolySNAP is H&fore plus from PANalytical. This is
a similar piece of software in that it allows pattenatching of PXRD patterns however it
differs in a number of ways:
1. The software does not offer MMDS plots which haveven to be superior to PCA
plots.

2. The software cannot analyse any data beyond PXRD da
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CHAPTER 2 DATA MEASUREMENT TECHNIQUES USED

All of the following techniques include an examplehe type of pattern or spectra that
will be produced by the instrument collecting ttaad For consistency all of these patterns

are from sulfathiazole form 3. The structure ofathiiazole is shown in Figure 23.

Figure 23 - Sulfathiazole structure

Sulfathiazole form 3 has the following crystalloginic parameterd
Cell lengthsa 17.570(9A b 8.574(4)A ¢ 15.583(8)A

Cell angleso 90 p 112.93(1)y 90

Space group: R&

Z:8,27=2

2.1 POWDER X-RAY DIFFRACTION

2.1.1 X-RAY DIFFRACTION BACKGROUND

X-ray diffraction occurs when a beam of X-rays matds with a crystalline material. X-ray
diffraction can be described using the Bragg metdesteloped by W. L. Bragy* 12

which is shown in Figure 24.
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Figure 24 - Diffraction from Bragg lattice planes

The Bragg diffraction model is a geometric modelinich X-rays are diffracted off of
sets of parallel planes passing through the cry&tth plane is defined by three integers,
given the symbols, kandl, which define the planes orientation with resgedhe unit

cell edges. The spacing between the planes is gineesymboby as its value is
determined by the geometry of the crystal latfidee angle of incidence and reflection for
the X-ray beam are identical and are given the s}ytbReflection from adjacent planes
gives interference as it is unlikely that the beaviikstill be in phase. The wavelength of
the X-ray beam is given the symbiolThe Bragg equation (Equation 41) shows the

condition required for diffraction to occur:

nA =2d,, sind

Equation 41 - Bragg equation

All values have been previously defined exaepthich is an integer, usually 1.
The scattering of X-rays from a single crystal proeks a diffraction pattern. Figure 25 is

an example:
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Figure 25 - Diffraction pattern

2.1.2 SINGLE CRYSTAL DIFFRACTION

Single crystal x-ray diffraction is a non-destruetiechnique which is used to provide
information on a crystal structures internal la&tighis data includes the unit cell lengths,
bond lengths and bond angles.

For a 2-dimensional array of molecules, the crylstitice is defined by positioning a point
on the same position on every molecule in the egllt The resulting array of regularly
spaced points would give the lattice structurehefdrystal.

The unit cell is defined by taking 4 of these psiwhich form a parallelogram with 2 pairs
of identical sides, a and b and 1 included apglhis can be repeated in all directions to
build up a crystal. The ideal parameters for a calitare for the sides to be as short
possible (a ) and withy as close to 90° as possible. A representationaifiee structure
and 2 potential unit cells are shown in FigureR&init cell with the sides and angle

marked are shown in Figure 27.
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Figure 26 A — Lattice Structure Diagram. B — With potential unit cells drawn

Figure 27 - Unit cell

When moving up to 3 dimensions an additional sigés added as are two additional
angleso andp.

2.1.3 POWDER X-RAY DIFFRACTION

Powder X-ray diffraction (PXRD) data are measuracigpowder containing, ideally,
micro-crystals in every possible alignmént.'°As such, diffraction patterns should be
produced in every possible orientation. These patteill form rings, such as those in
Figure 28.
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Figure 28 - Powder Diffraction diagram A — Reflecton from a single crystal. B — Reflection from five
crystals. Each crystal has a different orientatiorC — Reflection from crystals with all possible
orientations. D — Complete powder diffraction patten. E — Method of measurement of a diffraction
pattern.

A single crystal with only one reflection would githe pattern shown in Figure 28—A.
Five of these crystals in different orientationsabgive the pattern shown in Figure
28-B. If this crystal is present in all orientatsothen the reflections will form circles,
shown in Figure 28—C. Full diffraction patternsiwilerge and form a series of concentric
rings such as those in Figure 28-D. A point detestpassed outwards from the centre of
the rings, cutting through each ring, as shownigufe 28—E. As the detector passes over
the rings (Line X in Figure 28-E), a PXRD pattesrgenerated. An example PXRD pattern

is shown in Figure 29.
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Figure 29 — Sulfathiazole Form 3 PXRD pattern

It is also possible to collect the data using aaatetector. An area detector will capture
part or all of the arc of rings produced during plewdiffraction rather than collecting data
along a single line across the rings. Each ringtban be integrated to produce a single
data point which can then be plotted as a 1D powd#ern. This can give a more accurate
result as it will minimise the effects of small ammtés of preferred orientation. If the
sample is suffering from large preferred orientaigsues it will not, however, fully

resolve them.
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2.1.4 PREFERRED ORIENTATION

Preferred orientation is a major problem in powdiéfraction. If the crystals in the powder
are not lying in all possible geometries, but ingtbave arranged themselves into a regular
configuration, certain peaks in the PXRD patterh daminate and will swamp the

pattern. Figure 30 shows an example of this wiéhréd line showing a pattern without
preferred orientation and the blue line showingX&P of the same material but with

preferred orientation. The preferred orientatioakpes circled.
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Figure 30 - Sulfathiazole Form 3 PXRD pattern withpreferred orientation

This regular configuration of crystals commonlysas due to the shape of the crystals
causing them to align in a common direction. Faregle, crystals that are flat plates will
prefer to stack on top of one another while neediigprefer to lie side by side. In general
the smaller the crystal, the less of a problemeagretl orientation is. As such preferred
orientation can be reduced by carefully grinding ¢hystals during preparation. There is
however a danger in grinding in that the heat geeerfrom it can induce phase changes
in the samples, resulting in a different polymorpheven a mixture of a different
polymorph and the original polymorph being preserhe ground samples than is present
in the original material.

The material can be prepared in capillaries, flatgs or well plates.

Flat plate samples can be used for either refleatiode, where the material is placed at an
angle such that the beams reflect from the powaldre detector or for transmission mode
where the material passes through the sample.tAlfite is prepared by placing the
material on a flat plate and smoothing the surta@nly. The plate is spun along the
vertical axis during collection. Flat plate sampes easier to prepare than capillaries,
however can suffer from severe preferred oriemgbimblems if the materials are
insufficiently ground as well as having poorer sijto noise ratios.

Well plates are similar to flat plates, howeveheatthan loading a plate and smoothing its
surface, a small well is filled with the materialdaits surface smoothed. Well plates are
used for high-throughput collection as a well platk contain many wells each of which
can contain a different material. Due to their amiiies to flat plate collection, well plates

can suffer from the same preferred orientation lgrol.
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Capillaries can only be used with transmission getoyn A capillary is loaded with the
material to be studied, the end is sealed andlted €apillary mounted on the instrument.
When loading a capillary, the material must be émhtb the correct height within the
capillary so that the material fully interacts witte x-ray beam. The material is spun along
the capillary axis during data collection to tryninimise the preferred orientation
problem. Capillaries are less sensitive to pretearentation problems than flat plates or

well plates however they are much more time consgrto prepare.

2.2 RAMAN SPECTROSCOPY

2.2.1 RAMAN BACKGROUND

All Raman spectroscopy data was collected usingtadMIpha 300 with a 300-785nm
laser and x10 objective lens, 0.25mm aperture &géhdn grate.
Raman spectroscopy’ * ‘operates using inelastic scattering of light whénteracts with
matter.
There are two possible outcomes for the interaaidight and matter

1. The light is absorbed

2. The light is scattered.

When absorption occurs, a photon is absorbed ierdadpromote a molecule to an excited
state. This occurs when the energy of the photaxhmea the energy gap between the
ground and excited state of the molecule.

There are two types of possible scattering - elastattering where the incident and
reflected beam have the same energy, referredRaggigh scattering and inelastic
scattering where the beams have different energy.

Inelastic scattering can occur by two methods. Ba¢thods begin with the absorption of a
photon, promoting the molecule to an excited stHbte. electron can then fall back down
to an excited state which is higher than the ihgfaund state, giving Stokes scattering, or
it can be promoted from an excited state and &dkldo the ground state giving anti-

Stokes scattering. Both types of scattering arevahio Figure 31.
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Figure 31 - Types of Raman Scattering
At room temperature, more electrons are likelyeddund in a non-excited state than an
excited state. This leads to Stokes scatteringapmemuch stronger than anti-Stokes

scattering. In general, only Stokes scatteringe®rded. An example Raman spectrum is

shown in Figure 32.
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Figure 32 - Sulfathiazole Form 3 Raman spectrum

The x-axis is measured in reciprocal centimetresjc

2.2.2 PROBLEMS WITH RAMAN DATA

A commonly encountered problem with Raman datahigh-throughput environment is
to have substantial regions of the spectra whiethaghly similar, or identical for each
sample.

Due to differences in the pattern background, ffleesa in Figure 33-A look to be
different, however, with background removal appliasl shown in Figure 33-B, the

similarities between the two patterns can be ofeseén.
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Figure 33 - A - Overlay off sulfathiazole forms 3 ad 4 spectra, B - Overlay of sulfathiazole forms 3

and 4 spectra with background removed

This high similarity makes it very difficult to diaguish between individual spectra. As
such it is not uncommon to have Raman datasetsevdligpatterns show a similarity of
greater than 90% as measured by correlation caaff

This problem can sometimes be resolved by proogsseandata into first or second
derivative form before pattern matching. First dative data shows much clearer
separation of peaks; however this comes with atadtlin that the clustering can be
dramatically different and the spectra can be raikier. An INDSCAL combination of
the original and derivative data can resolve botiblems by giving a dendrogram which
shows much clearer separation and often mainta@sltistering that is shown in the
original dataset. An example of a Raman spectrutin thie original data and first and

second derivatives is shown in Figure 34.
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Figure 34 - A - Original Raman Spectra, B - 1st Davative Raman Spectra, C — 2nd Derivative Raman

Spectra
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Applying a first derivative will give a noticeabilecrease in the tie bar heights in the

corresponding dendrogram between materials whesesasond derivative will give an

even larger increase in tie bar heights. The sedeniglative samples however show much

poorer clustering. Combining all three types ofadaging INDSCAL gives good clustering

with clear separation between samples.

An example of Raman combination, using the ‘mudtipl dataset will now be shown. This
dataset will be covered in more detail in Chaptdfigure 35 shows the original datasets
dendrogram, Figure 36 shows the dendrogram foifir$tederivative data; Figure 37 shows

the dendrogram for the second derivative data &uaté 38 shows the dendrogram for the

combined dataset.
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Figure 35

The original data shows clear separation of theafdrsamples with intermixing of the

form 3 and 4 samples. The form 2 samples cannoldaely differentiated from one

another as many tie bars are near 1.0.
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Figure 36 - First Derivative Raman Data

The first derivative data shows dendrogram chainimglying that the dendrogram is not

showing good clustering.
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Figure 37 - Second Derivative Raman Data

The second derivative data also shows chainingiedisas not showing any clear clusters.
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Figure 38 - INDSCAL Combined Raman

The combined data shows the form 2 samples clsaggrated with the forms 3 and 4

sample intermixed. This dendrogram however shoearel separation of the samples than

that seen in the original dataset, especiallylHerform 2 samples.
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2.2.3 RAMAN ANALYSIS

A new method for matching Raman spectra is beingldped which looks for significant
peaks in a pattern and gives these peaks prioréy less significant peaks during pattern

matching. Significant peaks are treated as beitigree groups.

1. Very significant peaks — a peak present in 1 pattert not in the other.

2. Significant peaks — A peak present in both patterriswith differing heights.

3. Insignificant peaks — A peak present in both pagevith the same height in both
patterns.

The following diagram (Figure 39) shows 2 exammé&grns which show all 3 types of
peak.

» The peaks marked as 1 in each pattern fall inte¢tend category.

* The peaks marked as 2 and 3 in each pattern falttie third category

* The peak marked as 4 falls into the first category

&
IS i

Figure 39 - Examples of Different Peak Types
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This will allow for clearer separation of clustaslarge areas of similarity, which would
increase the overall similarity of the spectra] W suppressed. This method is currently
carried out by examining the spectra by eye, deteng areas that are showing low
similarity, therefore allowing a determination betareas of high similarity, and setting the

software to only match the high similarity areas.

2.3 DIFFERENTIAL SCANNING CALORIMETRY

2.3.1 HEAT FLUX DSC BACKGROUND

All differential scanning calorimetry (DSC) datasweollected using a heat flux DSC
instrument Two types of instruments have been used, a TAunmsnts Q100 and TA
instruments Q1000.

Before measurement of sample data, the DSC instruimealibrated using a known
standard, for example, sapphire disks, which allthesinstrument to determine how much
energy is needed to raise the temperature of atygmap by a known amount, for example

10°C a minute. A schematic diagram of a DSC insémnins shown in Figure 40.

Constantan Body
Thermuocouple

Reference Sample

00,

Heaters

Figure 40 - Heat Flux DSC Schematic

The DSC experiment requires both a reference, wikialn empty aluminium pan, and a
sample, an aluminium pan containing a small amotitiite material being studied.
Typically 2-5mg is enough to produce a good DSGepat

The amount of energy required to heat the emptygpdme predetermined rate is supplied

to both pans using the heaters. The pan contathengample will heat at a different rate
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from the empty reference pan. This difference mgerature will allow heat to flow
through the body from the warmer pan to the copder. This heat flow is detected by the
thermocouple. Heat flow from the reference to ti@gle is indicative of the sample
melting, a process which requires a large intakenefrgy with very little change in
temperature. Heat flow from the sample to the eafee is indicative of a crystallisation
which produces a large amount of energy, resultingore rapid heating of the sample
pan.

The instrument has a large range of possible hpadites; however, 10 °C nins
commonly used. A slower heating rate allows peakstmore precisely positioned,
however it decreases the height of all peaks. & 8&tL0 °C mift gives a good balance
between peak position accuracy and peak heighexample DSC pattern is shown in

Figure 41.

Sample: SUTHAZO3 DSC File: E:\\Gordon\phd\32 dataset\DSC\original\s3.txt
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Exo Up Temperature (°C) Universal V4.1D

Figure 41 - Example DSC Pattern

The pattern in Figure 41 also shows that the nateridergoes degradation after 100°C.
The example pattern does not show any crystaltisgieaks. However the two peaks
present at 144-153°C and 193-202°C are examplegltihg peaks.

The melting points are measured from the point w/tlee initial downwards slope of the
peak begins to the tip of the peak. The returnesfopm peak tip to baseline does not

contain any data on the samples melting. For gtigopsmelting peaks always point
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downwards while crystallisation peaks always pajvards. For melting, this is due to

heat flowing from the hotter reference pan to theler sample pan as the sample takes in
energy to melt, thus giving a negative heat floar. the crystallisation peaks this is due to
heat being produced by the material crystallislogiing from the hotter sample pan to the

cooler reference pan.

2.4.2 PROBLEMS WITH DSC DATA

Dependent on the instrument, DSC data cannot allvayhrectly read by the PolySNAP
software due to issues with the file encoding @nitistrument. The output file from both
the Q100 and Q1000 instruments are encoded inaway that ever character in the file
is followed by a binary character. A program hasrberitten which allows these extra
characters to be stripped out. The code for tlognam can be found in Appendix II.

It is also possible for the DSC pattern to occaaigrshow a small loop where the
temperature cools slightly during a heating rantfps Tommonly occurs near the start of a
heating cycle, usually within the first 2°C of hiegt The program for stripping out the
excess binary characters also searches the datrgrsdout any data loops. An example

of the sort of small loops that can occur is shawRigure 42.

0.15

0.10

0.05

Heat Flow (W/g)

0.00

-0.05 —— 1 T ‘' T T ‘T T T T T T T T T T T T T T T T T T
27.55 27.60 27.65 27.70 27.75 27.80 27.85 27.90

Exo Up Temperature (°C) Universal V4.1D
Figure 42 - DSC Starting Loop

The pattern in which this loop occurred is showfrigure 43.
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Figure 43 - DSC Pattern

In the full pattern the loop, occurring over a vemgall range at the very start of the

pattern, is not visible.

2.4 THERMAL GRAVIMETRIC ANALYSIS

Thermal gravimetric analysis (TGA) is a techniqu@ck measures the change in the mass

of a sample as it is heated.

2.4.1 TGA BACKGROUND

A TGA schematic is shown in Figure 44.
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Figure 44 - TGA Schematic

An empty platinum-alumina pan is weighed in thdrun®ent at room temperature and the
pan has some of the material to be studied, tyipialOmg, added. The furnace is heated
at a pre-determined heating rate, typically 15°6 mAs the material is heated it melts,
resulting in a small decrease in mass due to vapsarand material decomposition and
eventually boils resulting in a large decrease a$snn the pan. The loss of mass is plotted

against temperature, as shown in Figure 45.

Sample: suthaz form3 TGA File: E:\\Gordon\phd\tga\suthaz form3.001
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Temperature (°C) Universal V4.1D

Figure 45 — Sulfathiazole Form 3 TGA pattern

This example does not show the result of the natedmpletely boiling away; however
the continual drop, starting around 199C, corredpdn the previously discussed
degradation of the material.
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2.5 INFRARED

2.5.1 IR BACKGROUND

All infrared data was collected using a Fouriensfarm infrared (FTIR) spectrometer.
Two types of instrument were used, the first iharadzu FTIR-8400S which uses a
technique called attenuated total reflectance (AfbR)llect the spectrum. The material is
placed on top of a small diamond window and prese®eh using an attached clamp. The
IR beam then passes through the sample, reflefctiseobase of the clamp, and returns to
down to the collector. The second type of instrumesed was a JASCO FT/IR 4100. For
this instrument the material is pressed into a digk potassium bromide (KBr) used to
give the material bulk. The IR beam is then pasisealigh the disk. Unlike the ATR
technique, the KBr one is destructive to the sample

Figure 46 is a schematic of a Michelson interfermmevhich was invented by Albert
Abraham Michelson in 1880.

Detectar

Sample
4 Beam splitter

Fixed Mirror

h J

e
Saurce

¥

Moveahle

rirrar I

Figure 46 — Optical Diagram of a Michelson interfeometer

The Michelson interferometer functions by takinigeam of light (the source) and splitting
it into two beams using a beam splitter. The beglittesr consists of a half silvered mirror
which lets half the light pass through towardsxadi mirror and reflects the other half
towards a moveable mirror. The beams are refldude#t towards the beam splitter, where

they are recombined and proceed onto a detector.
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If the two mirrors are equidistant from the bearittgp, the distance travelled by both
beams will be the same. This is known as the zatio gistance (ZPD). A mirror
displacement is produced by moving the mirror afvagn the ZPD which is given the
symbolA. Moving the mirror creates an optical path differe between the two beams

which is related to the mirror displacement byftiiwing equation

o= 2A

Equation 42 - Optical path difference equation

If the amplitudes of the two beams are in phasg Wik combine constructively and have
a high intensity. If they are out of phase theyl maimbine destructively and have a low
intensity. The detector measures the variatioigbt intensity with optical path difference.
When plotted this is known as an interferogram.ofplete interferogram is produced by
moving the mirror back and forth once, a processimas a scan. The signal-to-noise
ratio of a sample can be reduced by combing maliglerferograms. As such multiple
scans are carried out on each sample measurenieninférferogram can be Fourier
transformed into a spectrum.

The velocity of the movable mirror must be cargfualbntrolled and monitored to allow the
instrument to consistently produce a repeatabfertogram and allow experiments to be
repeated.

An example FTIR spectrum is shown in Figure 47.
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Figure 47 - Sulfathiazole form 3 IR spectra

An interpreted version of this IR spectrum can éensin Figure 48.
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Figure 48 - Interpreted sulfathiazole form 3 IR

Both the 5 and 6-membered rings are aromatic ane paaks in the aromatic regions of
the IR spectrum. These interpretations are neitbed nor required by PolySNAP for

analysis.

2.5.2 PROBLEMS WITH IR DATA

As with Raman data, a commonly encountered prob@mIR is the occurrence of

similar or identical regions found in all spectnsai dataset. The differences between these
spectra can be subtle as shown in Figure 49-A.

These patterns show a 98% similarity making iticlifit to differentiate between these two
patterns. If the long ‘tail’ after 1750¢his ignored, the patterns now show a similarity f
99%. This problem can be partly resolved by apglyrist derivative to the each pattern

before clustering them. The 1st derivative of theae patterns is shown in Figure 49-B.
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Figure 49 - A - Comparison of Sulfathiazole Forms and 4 IR Spectra, B - Comparison of

Sulfathiazole Forms 3 and 4 IR Spectra with 1st Dévative applied
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The patterns now show an 85% similarity making tleasier to differentiate from one
another.
A second problem encountered with Infrared spectpg is to have peaks which appear

to show the material having a transmittance of dw#)%, Figure 50.
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Figure 50 — Comparison of Carbamazepine Form 1 an8ulfathiazole Form 3 IR Spectra

The carbamazepine form 1 spectrum shows a lardegiempproximately 2350c This
peak is actually representing a transmittance 0PA.2This extra peak is not always
present in samples, however its presence can cesisss with the clustering of spectra and
so it must be removed. This peak is commonly cadsedo a re-emittance of absorbed

energy from other frequencies.

2.6 SAMPLE REUSABILITY

Depending on the quantity of sample possessed, sbthese techniques are more useful
than others. PXRD, Raman and IR using the ATR ntk#tre all non-destructive so the
sample can be reused multiple times. DSC and T@Aampletely destructive techniques
in that the material has melted and will have falraenew polymorph or mixture of
polymorphs on cooling or degraded entirely. If glfar DSC or TGA pattern must be
collected on the material a new sample must be. UBeaksing KBr is partially destructive
in that the material cannot be used for anythisg eince pressed into a disk, however if

the disk is retained an IR can be collected ogdiraat a later date.
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CHAPTER 3 DATASETS USED

3.1 POLYMORPHISM

Polymorphism is a process by which a material camfseveral different crystal structures
each of which is referred to as a polymorph. Amepde of two different crystal structures

from a single material is shown in Figure 81.

Figure 51 - Sulfathiazole Forms 2 and 4 unit cell

Sulfathiazole Sulfathiazole
Form 2 Form 4
Space group P2/c Space group P11 21/n
a8.235(4X b 8.550(4)A a10.867(3) A b 11.456(3) A
Cell lengths ¢ 15.558(8)A Cell lengths ¢ 8.543(2) A
Cellangles @ 90p 93.67(1)y 90 Cellangles a 90 90y 91.87(2)
Z 4 Z 4

Both of these polymorphs come from the crystaliisaof sulfathiazole, which is a well

studied antibiotic.

3.2 MATERIALS STUDIED

3.2.1 SULFATHIAZOLE

Sulfathiazole has 5 known polymorphs. Blagdelescribes the preparation of forms 1-4
while Hughed describes the preparation of form 5. Due to theyrdifferent numbering
technigues used across literature for these polghsithey are numbered based on the

Cambridge Structural Database (CSD) refcodes.
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* Form 1 - suthaz01
* Form 2 — suthaz

e Form 3 — suthaz02
* Form 4 — suthaz04

* Form 5 — suthaz05

The polymorphs were prepared as follows:

Form 1: Sulfathiazole (1g) was dissolved in isopanaol. The solution was sealed in
parafilm, some small holes were pierced into thafilen and it was then left until the
solvent had evaporated.

Form 2: sulfathiazole (1g) was dissolved in a hatsblution of nitro methane and ethanol.
The solution was left to cool to room temperatusealed in parafilm with some small
holes were pierced into it and it was then lefiluhe solvent had evaporated.

Form 3: sulfathiazole (1g) was dissolved in a lobatson of ammonia. The solution was
left to cool to room temperature, sealed with garafvith some small holes pierced into it
and left until the solvent had evaporated.

Form 4: sulfathiazole (1g) was dissolved in boilimater. The solution was left to cool to
room temperature, sealed with parafilm with somalkholes pierced into it and left until
the solvent had evaporated.

Form 5: sulfathiazole (1g) was dissolved in watdre solution was boiled dry and left in

an oven at 110°C to dry for 4 hours.

Forms 2, 3 and 4 were successfully prepared ubegetmethods. The form 1 preparation
resulted in crystals of form 2 while the form 5paeation resulted in crystals of form 3.
The crystals of the successfully prepared formsheaseen in Figure 52. The structure of

sulfathiazole can be seen in Figure 53—-A.

Figure 52 - Sulfathiazole crystals
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3.2.2 CARBAMAZEPINE

The structure of carbamazepine can be seen ind-BHB

Carbamazepine has four known polymorphs. Thesemmiyhs are prepared as described
by Lang?® Three of these crystallisations were attempted.

Form 1: Heated to 150°C with no solvent presenthaaid at this temperature for 3 hours.
Form 2: Carbamazepine (1g) was dissolved in ethan®0°C. The solution was left to
cool to room temperature, sealed with parafilm vgidme small holes pierced into it and
left until the solvent had evaporated.

Form 3: Carbamazepine (1g) was dissolved in ethdia solution was sealed with
parafilm with some small holes pierced into it deid until the solvent had evaporated.
Forms 1 and 3 were successfully produced usingtheethods. The form 2 preparation

consistently yielded form 3.

3.2.3 PIROXICAM

The structure of piroxicam can be seen in Figur&€53

Piroxicam has three known polymorphs. These polpim®are described by \&er? Only
the preparation of form 2 has been attempted.

Form 2: Piroxicam (1g) was dissolved in isoprodgbol. The solution was cooled to

room temperature, sealed in parafilm, and leftluhé solvent had evaporated.
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Figure 53 — Structure of A - Sulfathiazole, B - Capamazepine, C — Piroxicam

Figure 54 shows the packing of each of the polymeigiudied and Table 3 shows their

unit cell informatiofi™
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Figure 54 - Packing for A - Sulfathiazole Form 2, B Sulfathiazole Form 3, C - Sulfathiazole Form 4D
- Piroxicam Form 2, E - Carbamazpeine Form 1, F - @bamazepine Form 3
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Sulfathiazole Form 2 Sulfathiazole Form 3

Space group P2/c Space group P 2/c
a8.235(4)A b 8.550(4 A a17.570(9) A b 8.574(4) A
Cell lengths ¢ 15.558(8)A Cell lengths ¢ 15.583(8) A
Cellangles @ 90p 93.67(1)y 90 Cellangles a 90 112.93(1) y 90
Z 4 VA 8
Sulfathiazole Form 4 Piroxcam Form 2
Space group P 2;/n Space group P 2,/c
a10.7740(10) A b 8.4670(10) A a17.5877(4) A b 11.8592(3) A
Celllengths ¢ 11.3670 (10) A Celllengths ¢ 6.93840(10) A
Cellangles a 90 B 91.65(10) y 90 Cellangles a 90 97.5614(9) y 91.87(2)
Z 4 z 4
Carbamazepine Form 1 Carbamazepine Form 3
Space group P -1 Space group P 24/n
a5.1705(6) A b 20.574(2) A a7.537(1) A b 11.156(2) A
Cell lengths ¢ 22.245(2) A Celllengths ¢ 13.912(3) A
Cellangles a84.124(4) B 88.008(4) y 85.157(4) Cellangles a 90 92.86(2)y 91.87(2)
z 8 z 4

Table 3 — Crystallographic Information for Polymorphs of Sulfathiazole, Carbamazepine and

Piroxicam

3.3 DATASETS

3.3.1 SULFATHIAZOLE DATASET

The three successfully prepared polymorphs of gudaole were used in a sulfathiazole
only dataset. Three 16-well plates were preparechbgiomly choosing a material and
filling each well in turn. This was repeated usmlil wells were filled. The first 3 wells were
filled with one of each of the polymorphs to ensilvat each sample was used at least
once. For the remaining 45 wells, a sample wasarhasrandom and added to that well.

In total the following samples were present indagaset:
11 Form 4 samples

19 Form 3 samples

18 Form 2 samples
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A sixteen well plate is shown in Figure 55.

QOO0 0000 0O @G W
OO0 00 OO0 O OTF -Sideenwel plate

Figure 55 - Sixteen Well Plate

A sixteen-well plate is a glass slide with sixtesmall hollows, or wells, in it. Each well
can be filled with a different material. Well platare not restricted to sixteen wells, but
can contain any number of wells. For the dataseipbstudied, three such sixteen well

plates were used to give forty-eight wells in total

3.3.2 SULFATHIAZOLE/CARBAMAZEPINE DATASET

The sulfathiazole/carbamazepine dataset contaiteesi samples. The first five samples
are the three polymorphs of sulfathiazole andwwegolymorphs of carbamazepine. The
remaining eleven samples consist of mixtures as¢hmaterials. The full dataset, including

compositions of mixtures, by mass, is summarisetiable 4.

Sample Sample
Number| Sample ID | CompositiofNumber ~ Sample ID Composition
sulfathiazole carbamazeping
1 form 4 9 forms 1 + 3 72:27
sulfathiazole sulfathiazole
2 form 3 10 | form2+3+4| 53:18:28
sulfathiazole sulfathiazole 2 +
3 form 2 11 |carbamazepine|l 50:50
carbamazepine sulfathiazole 3 +
4 form 1 12 |carbamazepine|l 50:50
carbamazepine sulfathiazole 4 +
5 form 3 13 |carbamazepine|l 61:38
sulfathiazole sulfathiazole 2 +
6 forms 4 + 3 42:57 14 |carbamazepine|3 80:19
sulfathiazole sulfathiazole 3 +
7 forms 3 + 2 37:62 15 |carbamazepine|3 83:16
sulfathiazole sulfathiazole 4 +
8 forms 4 + 2 68:31 16 |carbamazepine|3 82:17

Table 4 - Sulfathiazole/Carbamazepine Dataset Compiions

8
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This experiment was set-up in order to providetasizt that contains polymorphs of
different materials as well as mixtures of differaraterials. The mixtures allow proper
testing of the manual analysis mode to be carnigds well as allowing further testing of

the automatic analysis mode in PolySNAP.

3.3.3 SULFATHIAZOLE/CARBAMAZEPINE/PIROXICAM DATASET

The sulfathiazole/carbamazepine/piroxicam datasesisted of the sixteen samples from
the sulfathiazole/carbamazepine dataset and tkeesixamples shown in Table 5. The

pure piroxicam polymorph was included along wiftefen mixtures.

Sample Sample
Number Sample ID Composition Number Sample ID Compositign
Carbamazepine forms 1 4
17 Piroxicam form 2 25 + sulfathiazole form 4 | 33:33:33
Piroxicam form 2 + Carbamazepine form 1 +
18 |carbamazepine form|1 12:88 26 sulfathiazole forms 2 + 3 26:32:42
Piroxicam form 2 + Carbamazepine form 1 +
19 |carbamazepine form(3 28:72 27 sulfathiazole forms 3 + 4 33:33:33
Piroxicam form 2 + Carbamazepine form 1 +
20 sulfathiazole form 2 22:78 28 sulfathiazole forms 2 + 4 33:33:3
Piroxicam form 2 + Carbamazepine form 3 +
21 sulfathiazole form 3 16:84 29 sulfathiazole forms 2 +3  15:46:39
Piroxicam form 2 + Carbamazepine form 3 +
22 sulfathiazole form 4 47:53 30 sulfathiazole forms 3 +4  24:66:1
Carbamazepine forms
1 + 3 + sulfathiazole Carbamazepine form 3 +
23 form 2 48:31:21 31 sulfathiazole forms 2 + 4 24:45:31
Carbamazepine forms
1 + 3 + sulfathiazole Piroxicam form 2 +
24 form 3 23:47:30 32 sulfathiazole forms 1 +3  12:66:22

Table 5 - Sulfathiazole/carbamazepine/piroxicam datset compositions
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3.3.4 BULK MATERIALS DATASET

The mixtures dataset includes the pure materiata Bix materials and various mixtures of

these materials. The pure materials are summainsgable 6.

Malonic acid

Methyl urea

Urea

salicylic acid

Oxalic acid dihydrate

o O ~f W N|

Zinc nitrate hexahydrate

Table 6 - Mixtures dataset pure materials

These materials were all chosen as they were &laila large quantities in the laboratory.
Due to time constraints, materials which were alyeavailable in the laboratory were used
for this dataset.

All possible 1:1 mixtures of these materials werepared, however due to reactions
occurring between the materials in some of thesg¢urgs, data were only collected on

certain mixtures. These mixtures are shown in T@ble

7 Methyl urea + urea

8 Methyl urea + salicylic acid

9 Methyl urea + zinc nitrate

10 Urea + salicylic acid

11 Urea + oxalic acid

12 Salicylic acid + Oxalic acid

13 Salicylic acid + zinc nitrate

14 Oxalic acid + zinc nitrate

Table 7 - Mixtures of Materials in Mixtures Dataset

The remaining potential mixtures were abandonedtdueactions occurring after mixing.

86



3.4 REFERENCES

1. D. S. Hughes, M. B. Hursthouse, T. Threlfall, Svai@er (1999). "A new
polymorph of sulfathiazole Acta CrystC55: 1831-1833.

2. F. Vreter, M. Vrbinc, A. Meden (2003). "Characterizatidnp@roxicam crystal
modification."International Journal of Pharmaceuti@s6 3-15.

3. M. Lang, J. K. Kampf, A. J. Matzger (2002). "Fori ¢f Carbamazepine.”
Journal of Pharmaceutical Scienc@¥4): 1186-1190.

4. N. Blagden, R. J. Davey, H. F. Lieberman, L. Witlig, R. Payne, R. Roberts, R.
Rowe (1998). "Crystal chemistry and solvent efféctgolymorphic systems -
sulfathiazole."J. Chem. Soc., Faraday Trar®gy(8): 1035-1044.

5. G. J. Kruger, G. Gafner (1970). "The Crystal stnoetof Sulphathiazole Il Acta
Crystallographica B27: 326-333.

6. G. J. Kruger, G. Gafner (1972). "The Crystal Stwes of Polymorphs | and Il of
Sulphathiazole.Acta Crystallographica B8 272-283.

7. T. Gelbrich, D. S. Hughes, M. B. Hursthouse, TThrelfall (2008). "Packing
similarity in Polymorphs of SulfathiazoleCrsytEngComniQO: 1328-1334.

8. J. N. Lisgarten, R. A. Palmer, J. W. Saldanha (L9&8%ystal and Molecular
Structure of 5-carbamyl-5H-dibenzo [b,fiburnal of Chemical Crystallography
19(4): 641-649.

9. P. Fernandes, K. Shankland, A. J. Florence, N. I8aad, A. Johnston (2007).
"Solving Molecular Crystal Structures from X-rayviater Diffraction Data: The
challenges posed hycarbamazepine and chlorothiazide N,N,-dimethyli@mmmde
(1/2) solvate.'Journal of Applied Crystallograph§6(5): 1192-1202.

10.A. R. Sheth, S. Bates, F. X. Muller, D. J. W. Grg@05). "Local Structure in
Amorphous Phase of Piroxicam from Powder X-ray agfometry."Crystal
Growth and Desigi(2): 571-578.

11.Allen, F. H. (2002). "The Cambridge Structural Dmtse: a quarter of a million
crystal structures and risingAtta Crystallographica Section $8: 380-388.

87



CHAPTER 4 THE 48 SAMPLE SULFATHIAZOLE DATASET

4.1 THE DATASET

The 48 sample sulfathiazole dataset contains pafyhsotwo, three and four of
sulfathiazole. This dataset has appeared in Chapderan example to show the
functionality of both the validation techniques @ahd INDSCAL method. Table 8

summarises the composition of this dataset.

Sample | Sample | Name in Sample | Sample | Name in
Number | ID PolySNAP Number | ID PolySNAP
1| form4 01-4 25 | form 3 25-3
2 | form 2 02-2 26 | form 3 26-3
3| form3 03-3 27 | form 2 27-2
4 | form 2 04-2 28 | form 2 28-2
5| form 3 05-3 29 | form 4 29-4
6 | form 4 06-4 30 | form 3 30-3
7 | form 3 07-3 31 | form 3 31-3
8 | form 3 08-3 32 | form 2 32-2
9 | form 2 09-2 33 | form 2 33-2
10 | form 4 10-4 34 | form 3 34-3
11 | form 2 11-2 35 | form 2 35-2
12 | form 4 12-4 36 | form 4 36-4
13 | form 4 13-4 37 | form 3 37-3
14 | form 3 14-3 38 | form 2 38-2
15 | form 2 15-2 39 | form 3 39-3
16 | form 2 16-2 40 | form 3 40-3
17 | form 3 17-3 41 | form 2 41-2
18 | form 3 18-3 42 | form 2 42-2
19 | form 4 19-4 43 | form 3 43-3
20 | form 4 20-4 44 | form 3 44-3
21 | form 2 21-2 45 | form 2 45-2
22 | form 2 22-2 46 | form 3 46-3
23 | form 4 23-4 47 | form 2 47-2
24 | form 4 24-4 48 | form 3 48-3

Table 8 - 48 sample sulfathiazole dataset compositi

The dataset contains eighteen form 2 samples,egndbrm 3 samples and eleven form 4

samples in total.
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For this dataset, PXRD data was collected on a@&@r@2 GADDS. Each sample was run
for two minutes over a 5-35° range . Raman data was collected on a Bruker
SENTINAL with a 532nm laser, integrated into theiBer C2, over a range of 250¢rto
2500cni™

4.2 DATASET CLUSTERING

It is expected that the eighteen form 2 samplekfariin a single cluster, the nineteen form
3 samples will form a second cluster and the eléoen 4 samples will form a third
cluster.

For each dendrogram in this and all subsequenseéista score will be given that is
determined by dividing the number of samples tiratiacorrectly clustered by the total
number of samples. This score will be on the soh®1 with the smaller the number, the

better the dendrogram matches the predicted cingter

4.2.1 PXRD DATA
The dendrogram and MMDS plot for the PXRD datastn@wn in Figure 56.

0.0, 0.0
-] ¥

sI]Z.. 10.2
i 1 @
m
I D.4. F " L0.4
a | L
r
i 0.6) L0.6
t
y

0.8 1 0.8

Figure 56 — PXRD dendrogram and MMDS Plot

The dataset does not give the expected clustekihthree materials are mixed together

and no contiguous groups of samples are visibles déndrogram has a score of 0.83.
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The MMDS plot does not show clear separation ofctbsters either. Many of the patterns
have problems with a high background (Figure 57e#gre suffering from preferred
orientation (Figure 57-B).
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Figure 57 -A - overlay of samples showing poor bagkound. B - Overlay of samples showing preferred
orientation

Re-running the dataset with background subtracmplied gives a small improvement to
the high background problem, however this is nlarge enough improvement to make a
major difference to the clustering. The dendrogeard MMDS plot for the removed
background run are shown in Figure 58.
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Figure 58 - Dendrogram for PXRD with Background Renoved

When the data is examined, it can be seen thdtapeaks in the PXRD patterns appear
above 14° as shown in Figure 59. This dendrograsratscore of 0.81, giving a very small

improvement over the non pre-processed dendrogram.
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Figure 59 - PXRD Peak Positions

By only matching data between 14° and 30°, imprasledtering may be produced. The
area below this will have correlations nearing 100Bich will skew the correlations for
the remainder of the patterns. The resulting degrdim and MMDS plot are shown in
Figure 60.
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Figure 60 — 14° to 30° Data PXRD Dendrogram and MMB Plot

The data still does not show any large contiguaasgs of similar samples.

The dendrogram has a score of 0.83, identicaleéstiore of the original PXRD run.

4.2.2 RAMAN DATA

The data was initially run with no pre-processipgleéed. As described in Chapter 2, the

data has a high similarity between samples (Figdde This results in datasets where all

the spectra are linked by low lying tie bars, mgkitndifficult to distinguish between

individual samples.
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Figure 61 - Overlay of Sulfathiazole Forms 3 and 4

Figure 62 shows the dendrogram produced from tipeosessed Raman data.
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Figure 62 - Dendrogram for Unprocessed Raman Data

The dendrogram is fairly well clustered with themio2 samples all clustered together in
the striped brown cluster and the yellow clustertaming all but three of the form 3
samples. The form 4 samples are split into threemg, with two of the groups separated
by the form 3 cluster and the other one separatddeoform 2 sample.

This dataset is significantly better clustered ttt@nPXRD ones with a score of 0.19.

By applying a first derivative to the dataset, tlifferences between individual patterns can

be enhanced; however this comes at the cost af clestering, as shown in Figure 63.
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Figure 63 — Dendrogram for First Derivative Raman [ata
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This dendrogram has a score of 0.45, clearly machgy than that of the original Raman
dendrogram.

By combining the distance matrixes from both ttedard and first derivative data using
the INDSCAL method (Figure 64), the best featurielsath datasets can be retained.
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Figure 64 — Combination Raman data dendrogram

This combined dendrogram has clearly distinguisdsdples and good clustering. The
only outliers belong to samples with poor qualipgstra. The dendrogram has a score of
0.1, giving it a small improvement over the origiRaman dataset and a substantial
improvement over the first derivative dendrogramgufe 65 shows a comparison of a
poorer quality Raman spectra (blue) and a bettalityuRaman spectra (red) for

sulfathiazole form 4.
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Figure 65 - Poorer Quality and Better Quality form4 Raman Spectra

The background wave is not as smooth in the ‘poorality dataset, making it harder to
see the smaller peaks. Larger peaks can stillée sasily however the smaller peaks are

swamped by the background causing the patternsttbenmatched with one another.
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Figure 66 shows a comparison of a poorer qualitm&aspectra (blue) and a better
guality Raman spectra (red) for sulfathiazole f&nThese samples are not re-runs, but are
actually samples present in different wells, therpoone being in well 36 and the better

one in well 24 in the well plate.
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Figure 66 - Poorer Quality and Better Quality form3 Raman Spectra

Once again the noisy background is rendering thalenpeaks difficult to see while the
larger peaks are still clearly visible.
The cut-level can be adjusted, by hand, to morigyestsow the form 3 and form 4 clusters.

The dendrogram and MMDS plot for this are showRigure 67.
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Figure 67 - Combined Dendrogram with Cut-level Adjwsted

Adjusting the cut-level in the combined dendrogisptits the form 2 samples into two
separate clusters but separates the form 4 and3@amples into two separate clusters.
The MMDS plot shows that although separated thelpwand blue clusters, which
represent the previously combined form 2 clusterglbse together. The form 3 samples,
in the yellow cluster and the form 4 samples, erdd cluster, also lie close together as is

expected due to the cut-level only having beingdi®d a small amount. The splitting of
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the form 2 samples affects the score of this degrdra when compared to the same
dataset without a cut-level adjustment. IT now &asore of 0.29

It is also possible to run the dataset with seaeri/ative pre-processing. The dendrogram
for this is shown in Figure 68.
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Figure 68 - Dendrogram for Second Derivative RamaiData

This gives an even more dramatic separation optaeiously closely tied samples over
the first derivative method; however this comethatcost of even poorer clustering. The

score has now risen to 0.69, clearly much pootan the first derivative dendrogram.

A combination, using INDSCAL, of the second denvatand original dataset is shown in
Figure 69.
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Figure 69 - Combined Second Derivative and OriginaDataset Dendrogram and MMDS Plot
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This dataset shows a small improvement over thebawed first derivative and original

dendrogram. One of the outliers is now clustereebg@ected, reducing the number of

outliers from five to four. This reduction in thetbers has caused the score to fall slightly

from the combined first derivative and original Remdataset run to 0.08.

Despite the slightly improved clustering over thstfderivative combined dataset, the

MMDS plot does not show as clear a separation leiwiee different clusters as the first

derivative runs MMDS plot shows.

The resulting dendrogram from a combination oft filsrivative, second derivative and the

original Raman data is shown in Figure 70.
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Figure 70 - Combined First Derivative, Second Deriative and Original Data Raman Dendrogram

This dendrogram shows poorer clustering than tegipus combined dendrograms.
Although only four outliers are present the forreadnples that were previously well
clustered are now split into two equal sized grdop$he form 3 samples. The score for

this dendrogram is 0.19.

4.2.3 TRIMMING RAMAN DATA

The dataset was examined for areas of high sinyilag described in section 2.2.3. When
the data is examined closely, it is revealed thaifahe patterns in the dataset have high

similarity in the area beyond 1750¢rtFigure 71).

250 500 750 1000 1250 1500

Figure 71 - Overlay of some Raman spectra showingrg 'tail' of similar data from 1750cm*

These areas, when matching occurs, have correlediefficients approaching 1.0. This

will raise the overall correlation coefficient ftive patterns towards 1.0.
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By ignoring this region and only carrying out pattenatching on the area from 250¢no
1750cm, a dendrogram with improved clustering over thiginal unprocessed run is

produced. Figure 72 shows the dendrogram and MMDS g@sulting from this run.
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Figure 72 - Cut-off Raman data dendrogram and MMDSPIot

The dendrogram shows clear separation of the fosan2ples with all such samples
grouped together in the yellow cluster. A singlemi@ sample is also present in this
cluster. The form 3 samples are, with two excesti@8-3 in the yellow cluster and 18-3
in the green cluster), clustered together whileftinen 4 samples are split into two groups,
one larger and one smaller, by the form 3 sampl#sansingle outlier. Two of the form 4
samples in the smaller group are joined to the nedes of the red cluster with a much
higher tie-bar. The dendrogram now has a scoreld @ small improvement over the non
cut-off datasets score of 0.19.

The MMDS plot is much more clearly defined tharitia PXRD example. With the
exception of a single outlier close to the red telyshe yellow cluster is clearly defined.
This sample is the lone form 3 sample among thm samples in the yellow cluster. The
red cluster is split into two larger groups withotautliers. The group closest to the origin
contains the form 3 samples while the other graugains the form 4 samples. The two

outliers from the red cluster are the form 4 sampléh the higher tie-bar.
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The PXRD pattern and Raman spectra for the twoesstpresent in the green cluster are

shown in Figure 73.
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Figure 73 — Outliers PXRD Pattern and Raman Spectra
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Figure 74 shows an overlay of the most represemtatamples of the red (sample 22-2)

and yellow (sample 07-3) clusters.
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4.2.4 CLUSTER VALIDATION

The silhouettes for this dataset are shown in [Eigi&r and the fuzzy clustering in Figure
76.
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Figure 75 - Silhouettes

The red cluster silhouette has the first of the taron 4 outliers (36-4) in a distinct region
just below 0.25. The bar above 0.25 contains therstone of these form 4 outliers (12-4)
and another form 4 outlier (20-4) which is presarthe more diffuse of the two red
clusters groups. The remaining silhouettes, wiéhethception of the two upmost
silhouettes, all refer to the samples in the mdffesk cluster.

The lone silhouette at 0.75 in the yellow cluseresents sample 48-3, which is the

outlier from this cluster in the MMDS plot.
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Figure 76 - Fuzzy Clustering
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The numerical values for the fuzzy clustering dreven in Table 9. For the cluster
assignments, cluster 1 is considered to be thengiester, cluster 2 the red cluster and

cluster 3 the yellow cluster.

1 2 3 1 2 3
01-4/0.24] 1 ]0.16 25-3/0.23|0.93]0.45
02-2/0.18]| 0.4 | 0.97 26-3| 0.2 | 0.9 ] 0.49
03-3|0.21|0.86 |0.54*| <== 27-210.180.42 | 0.97
04-210.17|0.42|0.97 28-210.18/0.43|0.96
05-3]0.220.89 |0.52*| <== 29-410.24/0.95|0.13
06-4]0.25|0.99|0.11 30-3]|0.23/0.92|0.48
07-3/0.24]0.95]0.41 31-3/0.23]/0.95]0.41
08-3/0.23]0.93|0.46 32-2|0.17]0.42 ] 0.97
09-2/0.18]0.42 | 0.96 33-2|0.19|0.43 ] 0.95
10-40.86 |0.62*| 0 |<== 34-310.26/0.94|0.33
11-2/0.18]0.41|0.96 35-2]10.17/0.43 | 0.96
12-410.070.83|0.35 36-4]0.07| 0.7 |0.53*| <==
13-4]0.25|0.96 | 0.07 37-210.23]/0.94|0.43
14-3]10.23/0.94]0.43 38-2/0.180.41]0.97
15-210.18|0.42 | 0.97 39-3/0.2410.94|0.43
16-2/0.180.42|0.96 40-3/0.230.93]0.46
17-3/0.24]0.93|0.46 41-210.180.42]0.96
18-3 | 0.88 |0.59*| 0.09 | <== 42-210.1810.41]0.97
19-41024| 1 ]0.23 43-310.24|0.92|0.48
20-410.26]0.92 | 0.07 44-310.25|0.95]0.39
21-210.17]0.42 | 0.96 45-210.18 | 0.43 | 0.96
22-210.18|0.42|0.96 46-3|0.17 | 0.86 |0.54*| <==
23-410.23]0.99|0.25 47-210.180.42]0.97
24-410.26]0.98 | 0.07 48-3|0.21 |0.67*| 0.78 | <==

Table 9 — Fuzzy Clustering Numerical Maes

The first fuzzy clustering group includes samplds3005-3, 36-4 and 46-3, all of which
are present in the red cluster. 36-4 is one ofwlzeoutliers from the red groups while the
remaining three samples are present in the mdnéytigrouped of the two groups.
Based on the numerical results:

» Sample 03-3 could potentially be present in eitherred or yellow clusters.

» Sample 05-3 could potentially be present in eitherred or yellow clusters.

» Sample 36-4 could potentially be present in eitherred or yellow clusters.

» Sample 46-3 could potentially be present in eitherred or yellow clusters.
The second of the fuzzy clustering groups showshiars. The smaller of these contains
sample 18-3, in the green cluster, while the laoyex contains sample 48-3, the yellow
cluster outlier, and sample 10-4, in the greentelus
Based on the numerical results:

» Sample 10-4 could potentially be present in eithergreen or red clusters.
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» Sample 18-3 could potentially be present in eithergreen or red clusters

» Sample 48-3 could potentially be present in eitherred or yellow clusters.

The minimum spanning trees, with the initial numbglinks, one link removed and one

added, are shown in Figure 77.

" Links: 4374 (R v Links: 44 « [ »| ¥ Links: 45 « | »

- -~ -
e e — :

o Q o

Figure 77 - Minimum Spanning Trees

Adding a link adds 12-4 to the red cluster fromgheen cluster while removing a link
takes 20-4 out of the red cluster. Sample 20-hé&sad the outliers previously noticed in
the silhouettes and fuzzy clustering.

The outlier from the yellow cluster, sample 48s3present in the fuzzy clustering' again
suggesting it could be may be more similar thardémedrogram is showing. The
appearance of this sample in a separate, lowed, ipaime silhouettes for the yellow
cluster also implies that cluster membership ctwalathanged easily. Overall the
validation techniques support the expected clusgesihile also showing the samples that

appear outside of the expected clusters as beitegflly ambiguous.

4.3 OPTIMAL RAMAN PRE-PROCESSING

The effects of different combinations of pre-prairg options on the data were
investigated to determine what gave the optimadteling. The results of this study are
shown in Table 10.
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Sulfathiazole
Sulfathiazole | Sulfathiazole Full Profile | Sulfathiazole
Full Profile Derivative Cut-off Derivative
Pre-processing Applied Score Score Score Cut-off Score
0.19
No Pre-processing 0.48 0.15 0.91
Remove Cosmic Ray
Spikes 0.19 0.5 0.19 0.54
Remove Cosmic Ray
Spikes and Denoise 0.13 0.31 0.10 0.42
Remove Cosmic Ray
Spikes, Denoise and
Remove Background 0.44 0.4 0.17 0.21
Denoise 0.13 0.4 0.1 0.25
Remove Background 0.42 0.5 0.23 0.46
Denoise and Remove
Background 0.35 0.35 0.19 0.42

Table 10 — Summary of Pre-Processing Options Applieto Raman Data

Removing cosmic ray spikes appears to make nordiftee on the original data with no
processing applied or with peak smoothing beindiegpln the original run, it is only

with background removal applied that any differebegins to appear, in that case it
degrades the clustering. In the derivative it &las a negative effect on the clustering. For
the cut-off dataset it produces improved clustevitngn combined with background
removal and has not effect when combined with #ekpsmoothing.

Two methods in both the full pattern match andrttach of the data with a cut-off give
optimal clustering. The preferred method is the ionghich the smallest amount of pre-
processing needs to be applied. Denoising thefofile pattern (dendrogram and MMDS
plot in Figure 78 and denoising the cut-off pattetendrogram and MMDS plot in Figure

80) are chosen as the optimal method for this reaso
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Figure 78 - Dendrogram and MMDS plot of Denoised Daset

The aquamarine cluster contains all the form 2 $asmnd one form 3 sample. The yellow
contains all but three of the form 3 samples, dedréd cluster contains all but three of the
form 4 samples.

The MMDS plot shows the aquamarine cluster, coirigithe form 2 samples, is tightly
grouped with a single outlier. The outlier in tgi®up is the single form 3 sample in this
cluster. The yellow cluster, containing the forma@nples, is tightly grouped. There is a
single outlier from this group which has a sligttigher tie-bar height than the remainder
of this cluster. The red cluster, containing therf@ samples, is tightly grouped with no
outliers. The remaining samples all contain ‘poogerlity data with noisier backgrounds.
The spectra for these samples are shown in Fidure 7
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Figure 79 - Spectra for Outliers
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Figure 80 - Dendrogram and MMDS Plot of Denoised Daset with Cut-off

This dendrogram has the form 2 samples once aflalustered together, this time in the
green cluster, with a single form 3 sample aga@s@nt in this cluster. The form 3 samples
are clustered together with two outliers and thenfd samples are clustered together with
three outliers.

Lowering the cut-level further splits the form Jddiorm 4 samples as shown in Figure 81.
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Figure 81 - Dendrogram and MMDS Plot of Denoised Diaset with Cut-off and Adjusted Cut-level

The form 2 samples are now all clustered togethéne blue cluster, with a single form 3

sample again present in this cluster. The formn3psas are clustered together in the
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yellow cluster with the exception of two outliersdathe form 4 samples are clustered
together in the red cluster with the exceptionhoéé outliers.

The clustering in the MMDS plot is much more clgatéfined than in the dataset which is
not cut-off. The blue cluster is tightly clustenedh a single outlier that is the lone form 3
sample in this cluster. Both the red and yellovstgdus also show tight clustering. The
remaining outliers all have problems with ‘poorguality data.

Overall denoising the pattern coupled with matchiaga below 1700cthis the optimal
method of data pre-processing and so is prefemedliffuture clustering.

The overlays of the poorly clustered samples apgvahin Figure 82 (form 4 samples) and
Figure 83 (form 3 samples).
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Figure 82 - Poorly Clustered Form 4 Samples

The poorly clustered form 4 samples, 10-4 in thepleucluster and 12-4 and 36-4 in the
green and aquamarine clusters, when overlaid Wwehnost representative sample from
the form 4 cluster (06-4) shows that there areraé@gerences in the background between
these patterns. The remaining form 4 samples dsuftgr from this higher background

problem.
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Figure 83 - Poorly Clustered Form 3 Samples

The poorly clustered form 3 sample (18-3), wherriawe with the most representative
sample from the form 4 cluster shows that thereckr@r differences in the background
between these patterns. The remaining form 3 santi@denot suffer from this higher
background problem.

The silhouettes are shown in Figure 84 and theyfahrstering in Figure 85. The
numerical data for the fuzzy clustering is in Table
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Figure 84 — Silhouettes

For the red cluster only sample 20-4 is found &isilhouette below 0.75.

For the blue silhouettes, the only sample thatdelsw 0.75 is 48-3, which is an outlier
from this cluster in the MMDS plot.

The silhouettes for the yellow cluster are all fd@bove 0.75 so no outliers are identified.
For the pink cluster sample 10-3 lies below 0.7%isTwas one of the poorly clustered form

3 samples previously examined.
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Figure 85 - Fuzzy Clustering
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1 2 3 4 5 6
01-4 0.18 0.26 0.13 0.15 0.63* 0.86 <==
02-2 0.09 1 0.12 0.11 0.4 0.13
03-3 0.15 0.58* 0.14 0.14 0.86 0.31 <==
04-2 0.09 1 0.13 0.11 0.41 0.13
05-3 0.16 0.54* 0.14 0.14 0.88 0.34 <==
06-4 0.19 0.23 0.12 0.14 0.62* 0.87 <==
07-3 0.17 0.43 0.14 0.15 0.91 0.4
08-3 0.16 0.48 0.14 0.15 0.9 0.37
09-2 0.1 1 0.12 0.11 0.41 0.14
10-4 0.87 0.04 0.07 0.08 0.52* 0.48 <==
11-2 0.1 1 0.12 0.11 0.4 0.13
12-4 0.07 0.37 0.18 0.83 0.60* 0.35 <==
13-4 0.21 0.2 0.11 0.13 0.60* 0.88 <==
14-3 0.17 0.45 0.14 0.15 0.91 0.39
15-2 0.1 1 0.13 0.11 0.41 0.13
16-2 0.1 1 0.12 0.11 0.41 0.14
17-3 0.17 0.48 0.14 0.14 0.9 0.38
18-3 0.87 0.19 0.08 0.08 0.5 0.42
19-4 0.17 0.33 0.14 0.15 0.63* 0.84 <==
20-4 0.22 0.21 0.1 0.12 0.58* 0.87 <==
21-2 0.09 1 0.13 0.11 0.4 0.13
22-2 0.1 1 0.13 0.11 0.41 0.14
23-4 0.17 0.35 0.14 0.15 0.64* 0.83 <==
24-4 0.21 0.19 0.11 0.13 0.61* 0.89 <==
25-3 0.17 0.46 0.14 0.15 0.9 0.39
26-3 0.14 0.51* 0.15 0.15 0.89 0.34 <==
27-2 0.1 1 0.12 0.11 0.4 0.13
28-2 0.1 1 0.13 0.11 0.41 0.14
29-4 0.2 0.27 0.12 0.13 0.60* 0.86 <==
30-3 0.17 0.5 0.14 0.14 0.89 0.37
31-3 0.17 0.43 0.14 0.15 0.91 0.4
32-2 0.09 1 0.13 0.11 0.41 0.13
33-2 0.1 1 0.12 0.11 0.4 0.14
34-3 0.2 0.37 0.12 0.13 0.91 0.42
35-2 0.09 1 0.13 0.11 0.41 0.14
36-4 0.06 0.61* 0.82 0.18 0.53* 0.23 <==
37-2 0.17 0.45 0.14 0.15 0.91 0.39
38-2 0.09 1 0.12 0.11 0.4 0.13
39-3 0.18 0.45 0.14 0.14 0.91 0.39
40-3 0.16 0.48 0.14 0.14 0.9 0.38
41-2 0.1 1 0.12 0.11 0.41 0.14
42-2 0.1 1 0.12 0.11 0.4 0.13
43-3 0.17 0.5 0.14 0.14 0.9 0.37
44-3 0.18 0.42 0.13 0.14 0.91 0.41
45-2 0.09 1 0.13 0.11 0.41 0.14
46-3 0.11 0.55* 0.15 0.15 0.86 0.29 <==
47-2 0.09 1 0.13 0.11 0.41 0.13
48-3 0.13 0.84 0.15 0.15 0.59* 0.31 <==

Table 11 - Fuzzy Clustering Numerical Data
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Cluster 1 is the purple cluster, cluster 2 is the lzluster, cluster 3 is the green cluster,

cluster 4 is the aquamarine cluster, cluster Basyellow cluster and cluster 6 is the red

cluster.

For the first fuzzy clustering plot, the lower bkttwo lines contains samples 10-4, 13-4,
20-4, 48-3 and 36-4 while the upper line refer81ed, 06-4, 12-4, 19-4, 23-4, 24-4 and

29-4,

For these samples:

Sample 01-4 could potentially be in the yellow ed cluster
Sample 06-4 could potentially be in the yellow ed cluster
Sample 10-4 could potentially be in the purple @itow cluster
Sample 12-4 could potentially be in the aguamaoimgellow cluster
Sample 13-4 could potentially be in the yellow ed cluster
Sample 19-4 could potentially be in the yellow ed cluster
Sample 20-4 could potentially be in the yellow ed cluster
Sample 23-4 could potentially be in the yellow ed cluster
Sample 24-4 could potentially be in the yellow ed cluster
Sample 29-4 could potentially be in the yellow ed cluster
Sample 36-4 could potentially be in the blue otoxlcluster
Sample 48-3 could potentially be in the blue otoxlcluster

The second plot contains two lines, the lower ofciwhrepresents samples 03-3, 05-3, 26-3

and 46-3 while the upper bar contains 36-4.

For these samples:

Sample 03-3 could potentially be in the blue otowlcluster
Sample 05-3 could potentially be in the blue otowlcluster
Sample 26-3 could potentially be in the blue otoxlcluster
Sample 46-3 could potentially be in the blue otoxlcluster
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4.3.1 COMBINED PXRD AND RAMAN DATA
By combining the PXRD data and the unprocessed Ratata using the INDSCAL

method, a new dendrogram and MMDS Plot (Figurea8é)generated which are a major

improvement over the PXRD dataset.

0.0, 0.0

Figure 86 - Combined PXRD and Raman Dendrogram

This dendrogram loses the contiguous clusteringeform 2 samples that was present in
the unprocessed Raman dendrogram. The sampldsoareyer, easier to distinguish
between than in the unprocessed dendrogram. The3and 4 samples are not as well
clustered as previously seen. This dendrogram lsasra of 0.5.

The MMDS plot shows three separated clusters, hewsame of the samples between the
red and yellow cluster could belong to either @fsi clusters.

The combination is re-run using the optimum Ram@agrocessing methods (dendrogram
and MMDS plot in Figure 87).
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Figure 87 - Combined PXRD and Raman Dendrogram Usim Optimum Raman Clustering
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The combined dendrogram suffers from the same pnolals the non-processed run. The

good clustering of the form 2 samples is still nmgsand the form 3 and 4 samples are

still scattered.

The MMDS plot is not as tightly grouped as in thegpRaman run. The yellow cluster is

very diffuse, however this can be explained asetlaee is a high tie bar linking the form 2

and form 3 groups found in this cluster.

Overall the clustering for the pre-processed IND&Gkndrogram is not noticeably

improved over the INDSCAL method which does not pise processing. With a score of

0.65 its clustering is actually slightly poorer.
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4.3.2 RE-RUN X-RAY DATA

The PXRD data was re-run in order to attempt tolwesthe dual problems of preferred
orientation and poor background. The crystals wegeound in the hopes of removing
both problems. The data has been collected ovesaime range, the same timeframe and

on the same instrument. The dendrogram for themedata is shown in Figure 88.
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Figure 88 - Re-run PXRD Dendrogram and MMDS Plot

The re-run did not show improved clustering over dhniginal data. No large contiguous
groups of forms are visible. Due to the poor clistewhen compared to previous runs,
this dataset has a score of 0.79.

The MMDS plot does not show clear separation betvgaenples.

The outliers that are not part of the large redtely when examined, are shown to have
some preferred orientation issues. These patteensh@wn in Figure 89.
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Figure 89 - re-run PXRD Patterns with Preferred Orientation
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4.3.3 SECOND X-RAY DATA RE-RUN

The problem of poor sample quality was determirmelde due to an alignment problem

with the instrument’s detector. The detector wadigaed and the dataset collected a third

time.
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Figure 90 — Second Re-run PXRD Dendrogram and MMD®Iot

The second re-run shows improved clustering whempewed to the previous two PXRD
runs. All but two of the form 2 samples are clustetogether. The form 3 samples are
clustered together with eight outliers and the fdrsamples are clustered together with
three outliers. The vastly improved clusteringhis tdataset when compared to the
previous PXRD datasets results in a score of 0.27.

The MMDS plot does not show clear separation betvgzenples.

There are a small number of outliers present irddrerogram. When examined they are
all revealed to have preferred orientation isstiesse patterns are shown overlaid in

Figure 91.
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Figure 91 - Overlay of Preferred Orientation Sample from Second X-ray Re-run

4.3.4 HIGHER RANGE X-RAY DATASET

The X-ray data were re-run over a higher range.ddtaset was still collected on a Bruker
C2 GADDS, however was now collected over a 15-45¢e as opposed to 5-35°. The
dendrogram and MMDS plot for the higher range menshown in Figure 92.

0.0, 0.0

0.2, 0.2

0.4 %3 ?9 * 0.4
g,

0.6

N e g g

=
-

Figure 92 — Higher Range Run PXRD Dendrogram

The data is well clustered, with all three materidearly separated. The red cluster
contains all of the form 4 samples, the yellow tdugsontains a large number of the form 3
samples, with the almost all of the remainder baemgad across the adjoining green,
aquamarine, blue, purple and striped brown clusiiére striped green cluster contains all
but one of the form 2 samples with the additiona being in the adjoining striped dark
green cluster. A small adjustment to the cut-levilimerge the green, aquamarine, blue,
purple and striped brown clusters into the yelldwster and the striped dark green cluster

into the striped green cluster. This will resulihbut one of the form 3 samples, located
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in the hashed blue cluster, being clustered asotegeln the current dendrogram, the large
separation of the samples into different clustessilits in a score of just 0.18 which is still
a significant improvement over previously seen PXdRIbdrogram. By raising the cut-
level to the point where the red and yellow clustae just about to merge this would
improve to 0.06, a vast improvement over all prasiolustering seen for PXRD data in
this dataset.

The MMDS plot shows clearly separated clusters withform 4 samples (red cluster) the
form 2 samples (hashed green clusters) and the 3mamples (remaining colours) all
clearly separated. Despite the differences in gredtbgram, the misclustered form 3
(hashed blue) is still positioned close to the f@&isamples. The

An overlay of this poorly clustered sample with thest representative form 3 sample is

shown in Figure 93.

oo (- n

A i -
AR AT NN Y (K W ARV o]
0,000 MMMWW Mw M% m

20.0 25.0 30.0 35.0 40.0

Figure 93 - Poorly clustered Form 3 sample overlay

The poorer quality sample is suffering from pregerprientation issues.
The dendrogram and MMDS plot produced from the doatibn of the PXRD and the

Raman dataset with no pre-processing applied anersin Figure 94.
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Figure 94 - Higher Range Run Combined Dendrogram ashMMDS Plot

The combined dendrogram has two of the form 4 sasipl an unexpected location. The
form 2 samples (green cluster) and the form 3 sasfylellow cluster) are all clustered as
expected.

The MMDS plot shows the clusters to be clearly miedi with the two outliers
(aquamarine) being positioned far from the remgrilusters. The score has now
improved to 0.04, an improvement even over thah se¢he good quality higher range X-
ray dataset.

The poorly clustered samples are overlaid withnttest representative form 4 sample (24-
4). The X-ray data were a good match, however to@d&h data showed some clear

differences which are shown in Figure 95.

Figure 95 - Overlay of Poorly Clustered Samples

The large difference in background between thes®kes accounts for them not being

clustered with the remainder of the form 4 samples.

117



The PXRD data was again combined with the Ramam &air this second combination,
the Raman data was run with the previously detegthoptimal pre-processing methods.

The dendrogram and MMDS plot are shown in Figure 96
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Figure 96 - Higher Range Run Combined Dendrogram

The clustering in this dataset is poorer than engrevious combination. Three form 4
samples and two form 3 samples are not clustered@ected. The form 2 samples are all
grouped together as expected.

The MMDS plot shows a clearly defined green clystentaining all the form 2 samples.
The red cluster is clearly separated from the yelituster, however contains some
outliers. The outlier marked with an arrow in thdiS plot is the lone form 3 samples in
this dataset.

The yellow cluster is clearly defined with thredlmus. The two uppermost ones represent
the two misplaced form 4 samples in this clustdriciv are also the only two misplaced
samples in the INDSCAL combination with no pre-gssing applied. The remaining
outlier is the lone form 3 sample in this clustettvthe higher tie-bar than the remaining
ones. The score has dropped slightly to 0.06,dhe&esas that seen for the PXRD data
alone.
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4.3.5 HIGHER RANGE RUN PXRD AND DERIVATIVE RAMAN
COMBINATION

The previously studied effects of combining deliv@aiRaman data with the original
Raman data produced good clustering in the comldeadrogram. Second derivative data
combined with the original data produced the bestlts from these combinations. The
effect of combining second derivative Raman d#a,driginal Raman data and the higher
range PXRD data will now be studied.

The dendrogram for this combination is shown iruFég97.
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Figure 97 - Combined Second Derivative and OriginaRaman and Higher Range PXRD Dendrogram

This dataset shows clearly separated form 2 samplbe green cluster. The form 3 and 4
samples are both present in the red cluster. Time 3osamples are clearly defined within
this cluster; however the form 4 samples are splialf by some form 3 samples. There
are four outliers from these clearly defined cluste

The two outliers in the aquamarine cluster haveipusly been revealed to be due to
poorer quality Raman data. This dataset has a s¢@45.

Figure 98 shows the resulting dendrogram whendiesivative and the original Raman

data are combined with the higher range PXRD data.
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Figure 98 - Combined First Derivative and OriginalRaman and Higher Range PXRD Dendrogram

The resulting dendrogram has four outliers howewdike the second derivative combined
dendrogram, the form 4 and form 3 samples are ptéseaeparate clusters. This dataset
has a score of 0.08.

The result of combining first derivative, secondickgtive and the original Raman data,
along with the higher range PXRD data, can be seé&igure 99.

The two outliers in the blue cluster have previgusen revealed to be due to poorer

quality Raman data.
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Figure 99 - All Raman Combined and Higher Range PXR Dendrogram
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This dataset shows very clear clustering. All f@msamples are present in the green
cluster. The yellow cluster contains all but on¢haf form 3 samples, the missing sample
being an outlier from the main clusters. The regsi@r contains all but three of the form 4
samples, with these three appearing as outlieesvblsre. In total four outliers are present,
with each of the major clusters containing no nmetuof different polymorphs. This
dendrogram has a score of 0.08.

All three of the major clusters are clearly sepegtdtom one another in the MMDS pilot.
The two outliers in the blue cluster have previgumsen discussed when it was revealed
that they were due to poorer quality Raman data.

The other two misclustered samples are again dRamoan data rather than the data. The
Raman spectra are shown, along with the most reptative form 3 and form 4 samples,
in Figure 100.
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Figure 100 - Overlay of Poorly Clustered Samples

The most representative samples (red and aquanisr@sg are revealed to have much
smoother baselines and lower backgrounds than ibeustered spectra.

If these outliers are removed and the datasetusteried, the resulting INDSCAL
combination of all four datatypes gives the dendrogand MMDS plot shown in Figure
101.
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Figure 101 - All Raman Combined and Higher Range PRD Dendrogram with Outliers Removed

The form 2 samples are all found in the aquamarinster. The form 3 samples are split

across the yellow cluster and the red cluster wigingle outlier in the blue cluster. The

red cluster also contains the majority over thenfdrsamples with a single outlier in the

blue cluster and two outliers in the green cludtes. possible to separate the form 4 and 3

samples in the red cluster by lowering the cutdiéaevever this will also split the form 2

samples into two separate clusters. This datased Isaore of 0.08.

Figure 102 shows the effects of applying the optijpna-processing to second derivative,

first derivative and original Raman data and themisining all of these with the higher
range PXRD data.
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Figure 102 - All Raman Combined with Pre-processingnd Higher Range PXRD MMDS
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The dataset is not as well clustered as the eanvaln without applied pre-processing.

There are still four outliers, however they are ramnbined into other clusters rather than

lying separately from the main clusters. In additio this the form 3 samples are no longer

clustered together into a single cluster but ali¢ isgo two clusters. The form 2 samples

also have been split into two clusters. The dendmghas a score of 0.19.
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4.4 FLOWCHART

The PXRD data was run without pre-processing arld erery possible combination of

pre-processing available. The results are showrabie 12.

Score

no pre-processing 0.06
denoise 0.06
background 0.1
background and denoise 0.1

Table 12 - Misplaced samples

No pre-processing and denoised only give identesiilts. Background removal and
background removal plus denoise also give identesults. As such the optimal

methodology for clustering this dataset is showRigure 103.

If bad

dendrogram
Run data with Run data with only

no pre-processing denoise applied

If bad
dendrogram

If dendrogram

If dendrogram Run data with

. is good
is good
g If dendrogra background removal
is good
If bad
dendrogram

Run with background

Optimal clustering found removal and denoise

A

Figure 103 - Flowchart for optimum PolySNAP clusteing

A dendrogram can be determined to be good or béallawss.
1. The dendrogram shows ‘chaining’ of the sampldsas no clear clustering
2. The scree plot does not show the charactestt&p initial drop before smoothing out

3. The maximum and minimum confidence on the degrdra shows a large separation.

If any of the above problems exist in a datasat the flowchart should be followed onto

the next step.
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4.5 CONCLUSION

The 48 sample dataset has successfully testedséhefiRaman data alongside
PXRD data in PolySNAP. Raman data can, with carsdlédction of the appropriate
pre-processing methods, give good results. The prainlem with Raman data,
that of high pattern similarity causing all patteto have similarities of greater
than 95%, can be overcome through the use ofdirsecond derivative pre-
processing of the data before pattern matchingrfopmed. Second derivative pre-
processing gives poorer clustering on its own, h@vegvhen combined with the
original data it can yield far better clusteringttseen from matching the original
data. A first derivative and original data combioatalso gives good clustering;
however this is not as good as the second dere/atvnbination.

INDSCAL combinations of PXRD and Raman data als@ gjood results. These
results appear to be less dependent on pre-pragessd can partially allow a poor
quality dataset to give reasonable results if dambined with a good quality one.
Combining derivative Raman data, the original Ramiata and PXRD data also
gives good results. The best results, for thissdfaome from a combination of
both first and second derivative Raman data wighatiginal Raman data and
PXRD data with no pre-processing applied.

The various re-runs of the PXRD data show thatoailgh the software can do a lot
to try and resolve some of the problems of poouality data, there is still no
substitute for having the best possible data qutdibegin with.

The optimal method for clustering, based on theesassigned to each
dendrogram from the mis-clustered samples, invohepre-processing or
denoising. No pre-processing is preferred as thislves applying no changes to

the dataset.
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CHAPTER 5 SULFATHIAZOLE/CARBAMAZEPINE
DATASET

5.1 THE DATASET

The sulfathiazole/carbamazepine (SUTHAZ/CBZ) ddtasatains polymorphs two, three
and four of sulfathiazole and polymorphs one ameédlof carbamazepine. Table 13
summarises the composition of this dataset.

For this dataset, PXRD data were collected on &&8rC2 GADDS with each sample
being run for two minutes over a 3-30° rangednRRaman data were collected on a Witec
alpha 300 with a 785nm laser and an x10 objectus ith 0.25 aperture and 300g/mm
grate. DSC data were collected on a TA Instrum@&ii80. IR data were collected on a
JASCO FT/IR 4100.

Sample Name in N
Sample ID Composition
Number PolySNAP
1 |[Sulfathiazole Form 4 s4
2  |Sulfathiazole Form 3 s3
3 |Sulfathiazole Form 2 s2
4  |Carbamazepine Form 1 cl
5 |Carbamazepine Form 3 c3
6 |Sulfathiazole Forms 3 and 4 s4+3 58:42
7  |Sulfathiazole Forms 2 and 3 s3+2 63:37
8 |Sulfathiazole Forms 2 and 4 s4+2 32:68
9 |Carbamazepine Forms 1 and 3 cl1+3 72:28
10 [(Sulfathiazole Forms 2, 3 and 4 S2+3+4 53:18:29
11 |Sulfathiazole Form 2 and Carbamazepine Form 1| s2+cl 50:50
12 |Sulfathiazole Form 3 and Carbamazepine Form 1| s3+cl 50:50
13 |[Sulfathiazole Form 4 and Carbamazepine Form 1| s4+cl 61:39
14 |Sulfathiazole Form 2 and Carbamazepine Form 3| s2+c3 80:20
15 |Sulfathiazole Form 3 and Carbamazepine Form 3| s3+c3 83:17
16 |Sulfathiazole Form 4 and Carbamazepine Form 3| s4+c3 82:18

Table 13 — Suthaz/Cbz dataset composition

The notation for PolySNAP is follows. A pure polymb takes the first letter of the

materials name and the number that has been addigtigat polymorph in previous
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literature to give a two character name, for exanspilfathiazole form 2 becomes s2. For
mixtures of different polymorphs of the same maiethe first letter of the materials name
is used at the start followed by the numbers ohgexdymorph present in the mixture, with
the numbers separated by pluses. For example ammiat polymorphs 2 and 3 of
sulfathiazole will be called s2+3. Finally for mixes of polymorphs of different materials,
the two character names for the relevant polymogphaused, separated by pluses. For
example mixtures of carbamazepine form 1 (cl) adfdthiazole form 3 (s3) will be

called c1+s3.

5.2 SIMULATED DATASET

5.2.1 SIMULATED DATA CLUSTERING

Simulated powder data for each of the pure matewals taken from the CSD and were
combined to produce the predicted patterns for esigture. For example the c1+3 pattern
was produced by combining the patterns of c1 anid @372:28 ratio. The resulting

dendrogram and MMDS plot are shown in Figure 104.
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Figure 104 — Dendrogram and MMDS Plot for Simulatedataset Clustering
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The red cluster contains samples c1+3, c1, s4f3jlsand s3+cl. The yellow cluster
contains sample s2+3+4, s3+2, s2 and s2+c3. Tles glaster contains samples s3+c3, s3
and s3. The aqua cluster contains samples s4+23 st s4 and the blue cluster contains

samples c3. The silhouettes are shown in Figure 105
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Figure 105 — Silhouettes for simulated dataset

All of the patterns in the silhouettes lie abovg. Che lower lying bar in the red clusters
silhouette represents sample s3+cl. The lower lgargn the yellow clusters silhouette

represents sample s2+c3.

5.3 FINDING THE OPTIMAL CLUSTERING

Minitab® has been used to generate optimal Pearson anch@peeorrelation matrixes as
a tool for the determination of optimal methodsdoalysing each dataset and to allow for
the development of a flowchart showing the optiolastering methods that can be used
with an unknown dataset.
The Minitab method was carried out as follows:
1) The Cambridge structural databHseas searched for the pure patterns of each
material studied.
2) These pure patterns were manually combined, imaties shown above, to
produce the mixture patterns.
3) All of these patterns were initially correlatedngiMinitab to produce a Pearson

correlation matrix.
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4) The patterns were ranked and again correlatedoupge a Spearman correlation
matrix.
5) Both correlation matrixes are imported into PolySNAs outlined in Chapter 1,

along with the collected data.

Figure 106 shows the dendrogram and MMDS plotHerRearson correlation matrix and

Figure 109 the dendrogram and MMDS plot for thegBpmn correlation matrix.
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Figure 106 - Dendrogram and MMDS plot for Pearson arrelation matrix using simulated data

The red cluster contains sample c1, c1+3, s4+clsamdl. The yellow cluster contains
sample s3+cl. The green cluster contains sampje®?$23, s2+3+4, and s3+2. The
aquamarine cluster contains samples s3, s3+c34a&1 $he blue cluster contains samples
s4, s4+c3 and s4+2 and the purple cluster consaimgle c3.

The silhouettes are shown in Figure 107.
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For the red cluster the lower bar, just below Oc@tains samples c1+3, s2+c1 and s4+cl.

All samples in the green cluster are present inglesbar. The aquamarine cluster has

sample s4+3 in the lower bar, present at 0.75.0lie cluster has sample s4+2 present in

the lower bar at 0.75.

Fuzzy clustering is not present for this dataset.

When the dendrogram for this dataset is comparéuetdendrogram for the simulated

dataset (Figure 102), it is revealed that the @dseare only differing by 1 sample. This can

be corrected by raising the cut-level to combireytallow and red cluster as shown in

Figure 108.
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Figure 108 — Adjusted dendrogram and MMDS plot forPearson correlation matrix
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The red cluster contains samples c1, c1+3, s2-4a;lsand s3+cl. The yellow cluster
contains sample c3. The green cluster containslsamn@, s2+3+4, s3+2, s2+c3, s3, s4+3,
s3+c3, s4, s4+2 and s4+c3.

The silhouettes are shown in Figure 110.
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Figure 110 - Spearman Silhouettes

For the red cluster all samples are present inglesbar. The green cluster has sample
s4+c3 in the lower bar just below 0.5. The bar gixive 0.5 contains samples s2, s4,
s2+c3 and s3+c3. The bar just below 0.75 containgptes s3, s3+2, s4+2 and s4+3. the
upper most bar contains sample s2+3+4.

The fuzzy clustering is shown in Figure 111.
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Figure 111 - Spearman Fuzzy Clustering

The table of fuzzy clustering results is shown &ble 14.
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For the table of results, column 1 represents thergcluster, column 2 represents the
yellow cluster and column 3 represents the redetu$he fuzzy clustering peak
corresponds to sample s3+cl in the red clustes Jdninple could appear in either the red
or green cluster.

As the PXRD data for the simulated dataset exawfljches the data from the Pearson
correlation coefficient, this will be consideree thptimal method for analysing the
dataset.

1 2 3

cl 0.01 0.01 0.77
c3 0.04 0.75 0.17
s2 0.27 0.27 0.17
s3 0.34 0.25 0.22
s4 0.22 0.34 0.19
cl1+3 0.04 0.06 0.77
s2+3+4 0.33 0.32 0.22
s2+cl 0.16 0.09 0.73
s2+c3 0.24 0.29 0.22
s3+2 0.33 0.27 0.22
s3+cl 0.75 0.06 0.56*
s3+c3 0.34 0.29 0.26
s4+2 0.27 0.34 0.21
s4+3 0.34 0.32 0.23
sd4+cl 0.13 0.07 0.77
s4+c3 0.22 0.34 0.19

Table 14 — Spearman Fuzzy clustering results

5.4 RAMAN AND IR DATASET ANALYSIS

The pure Raman data were compared to find aresigmificant peaks. Overlays of these

spectra are shown in Figure 112.
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Figure 112- Overlay of pure Raman data
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The red line shows sample s4, the blue line sastléhe green line sample s2, the
aquamarine line sample c1 and the purple line sactl The spectra between samples c1
and c3 can be seen to be nearly identical with%a Signilarity reported between the two.
This comes entirely from differences in the backaweh The largest difference between the
sulfathiazole samples comes from samples s3 anagitRa reported similarity of 85%.

The most notable differences between these twenpatcan be seen in the difference
between some of the peak heights. An overlay cfeheo patterns is shown in Figure

113.
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Figure 113 - Overlay of samples s2 and s3

Both spectra contain the same peaks however sothesd peaks, in particular at 600-
650cm?, 1100-1130cnrt and 1560-1600cthall have noticeable differences in peak height

and so can be classed as being of lower signife@etween the spectra.

A comparison between the sulfathiazole and carbapiae samples spectra reveals that
almost all areas of the spectra have differencegak positions. The only area that does
not differ between the sulfathiazole and carbamiaeegpectra is the region from 1750tm

to 2000cnit. As such this area will not be used during cluster

The IR dataset was also examined to try and fiedsof high similarity that can be
ignored in all future clustering. An overlay of theectra of the pure materials is shown in
Figure 114.
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Figure 114 - Overlay of pure IR materials

All of the spectra show a long ‘tail’ from 20003600 cni with no peaks present. The

largest area of dissimilarity can be seen in tiggorebefore 1750cthwith small
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differences occurring in the region from 3000-3580cAs such only the areas before
1750cn and from 3000-3500cthwill be used in the cluster analysis.

5.5 DATASET CLUSTERING

5.5.1 EXPECTED CLUSTERING

The PXRD patterns for the pure polymorphs were doatbto produce predicted patterns
for each of the mixtures. Unlike for the predictitaset from the CSD, this data was
created using data specifically collected for fhigject. These predicted patterns were
clustered and the dendrogram and MMDS plot are sHowrigure 115. This method of
determining the expected clustering is differenbfrthat used in Chapter 4 as this dataset
does not consist entirely of the pure polymorpha single material, making the expected

clustering harder to determine.
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Figure 115 - Dendrogram and MMDS Plot for simulateddata

The red cluster contains patterns c1, c1+3 andisZhtte yellow cluster contains the c3
patterns. The aguamarine cluster contains the s2rd3he s2 patterns and the green
cluster contains all the remaining patterns. Tleegrcluster could be easily split into two
smaller clusters by adjusting the cut-level dowrdgail he silhouettes are shown in Figure

116 and fuzzy clustering in Figure 117 with the muital results in Table 15.
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Figure 116 — Silhouettes

All of the patterns in the red and aquamarine eluls¢ well above 0.5. In the green cluster,
the bar just above 0.25 corresponds to patternls@hde the bar slightly below 0.5
corresponds to patterns s3+c3 and s3. All threébesfe patterns along with pattern s4+3,
are present in the second of the potential clustatscould be produced by manually

lowering the cut-level.
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Figure 117 - Fuzzy Clustering
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1 2 3 4
cl+3 0.24 0.96 0.27 0.54* <==
cl 0.21 0.96 0.25 0.52* <==
c3 0.89 0.34 0.27 0.51* <==
S2+3+4 0.22 0.33 0.32 1
s2+cl 0.22 0.96 0.31 0.63* <==
s2+c3 0.25 0.36 0.93 0.67* <==
s2 0.22 0.34 0.93 0.67* <==
s3+2 0.22 0.32 0.31 1
s3+cl 0.21 0.36 0.27 0.99
s3+c3 0.21 0.28 0.25 1
s3 0.18 0.25 0.24 1
s4+2 0.21 0.31 0.3 1
s4+3 0.21 0.28 0.27 1
s4+cl 0.22 0.36 0.3 1
s4+c3 0.22 0.3 0.29 1
s4 0.2 0.28 0.27 1

Table 15 - Fuzzy Clustering Numerical Values

Cluster 1 represents the yellow cluster, clustére2red cluster, cluster 3 the aquamarine
cluster and cluster 4 the green cluster.
The first bar in the fuzzy clustering plot, slighdbove 0.5, contains patterns c1+3, c1 and

c3. These patterns could all be potentially be gealuas follows:

e C1+3 could potentially be in either the red or grekuster

* C1 could potentially be in either the red or grekrster

¢ C3 could potentially be in either the yellow or gmnecluster.
The second bar corresponds to patterns s2+c1, shet82. These patterns could all
potentially be clustered as follows:

» S2+cl could potentially be in the red or greentelus

e S2+c3 could potentially be in the aguamarine oegreluster

* S2 could potentially be in the aguamarine or gredaster.
Due to the silhouette calculations, the cut-levaswadjusted to split the green cluster into
two separate clusters. The resulting dendrogramVév@®S for this are shown in Figure
118.
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Figure 118 — Dendrogram and MMDS Plot for ExpectedClustering using Simulated with Cut-level
Adjusted

The simulated dataset had the following clusteesnt:
1) cl1+3, cl, s4+cl, s2+cl and s3+cl
2) s2+3+4, s3+2, 52, s2+c3
3) s3+c3, s3, s4+3
4) s4+2, s4+c3, s4
5) c3

The expected clustering dataset has the followinstering:
1) cl1+3, cl and s2+cl
2) S2+3+4, s3+2, s4+2, s4, s4+c3 and s4+cl
3) s3+cl, s3+c3, s3 and s4+3
4) s2+c3 and s2
5) c3

By comparing the predicted and measured datasmtnibe seen that four samples have
moved to different cluster. As the simulated cletggives a better match to the Pearson
correlation coefficient, the expected clusterirgrrthe simulated dataset will be treated as
optimal. As such the expected clustering is a®vedl
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1) A cluster containing samples c1+3, c1, s4+cl, sarals3+cl
2) A cluster containing samples s2+3+4, s3+2, s2,32+c

3) A cluster containing samples s3+c3, s3, s4+3

4) A cluster containing samples s4+2, s4+c3, s4

5) A cluster containing sample c3

5.5.2 PXRD DATA

The PXRD data was run with no pre-processing agpbdat. The dendrogram and MMDS
plot are shown in Figure 119.
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Figure 119 - Suthaz/Cbz PXRD Dendrogram and MMDS PRIt

The PXRD data does not generate the expected Ghgt& he red cluster contains
samples s2 and s2+c3, which form predicted clistas well as samples s4 and s4+2
which are part of expected cluster 4, s2+3+4 wisgbart of expected cluster 2, s4+cl
which is part of expected cluster 1 and s3 whigbaig of expected cluster 3. The yellow
cluster contains sample s4+3 which is part of etquecluster 4, s3+c1 which is part of

expected cluster 1 and sample s3+2 which is patetficted cluster 2. The green cluster
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contains sample s2+c1 and the aquamarine clustéaios sample c1 which are both part
of predicted cluster 1. The blue cluster contaessample c1+3, which is part of predicted
cluster 1, as well as sample ¢3 which would be etgueto be clustered separately from all
other samples. The purple cluster contains san33e3 part of predicted cluster 3 and the
striped brown cluster contains sample s4+c3 wlsqtart of predicted cluster 4. This
dataset has a score of 0.56. As this equatesttoyes half of the samples being

misclustered the dataset is not currently givingdycesults.

5.5.3 RAMAN DATA

The Raman data dendrogram and associated MMD&u@athown in Figure 120. The
dataset did not have the area beyond 1750aciuded when matching the spectra.
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Figure 120 — Suthaz/Cbz Raman Dendrogram and MMDS IBt

The Raman dataset does not give the expected hgst&he red cluster contains samples
s2+3+4, s3+2, s2 and s2+c3 which make up preddteter 2, s3+c3, s3 and s4+3 which
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make up expected cluster 3, s4+2, s4+c3 and sqwhiake up expected cluster 4 as well
as sample s4+cl which makes up expected clusidrelyellow cluster contains samples
cl+3, c1, s2+cl and s3+cl1 which make up expectesderl 1 as well as sample ¢3 from
expected cluster 5. The Raman dendrogram has @ st0r5, equating to half of the

samples being misclustered. This is a small impram over the PXRD dataset.

5.5.4 DSC DATA

The DSC data dendrogram and MMDS plot are shovwkigare 121.
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Figure 121 —Suthaz/Cbz DSC Dendrogram

The DSC data does not closely match the expectestiecing. The red cluster contains
sample s4 which is part of expected cluster 4.ydilew cluster contains samples s3+2,
s2+3+4 and s2 which are part of predicted clusted22 which is part of expected cluster
3 and as well as samples s3 and s4+3 which ar@paxpected cluster 2. The green
cluster contains sample c1 which was in predictester 1. The aquamarine cluster
contains samples ¢3 which is predicted to be istelus on its own and c¢1+3 which is
predicted to be in cluster 1. The blue cluster aimstsamples s2+cl, s4+cl and s3+cl

which were predicted to be in cluster 1 and s3+b&kwvwere predicted to be in cluster 3,
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samples s4+c3 which are predicted to be in clystrd sample s2+c3 which was
predicted to be in cluster 2. The DSC data ha®eesaf 0.5, again equating to half of the
samples being misclustered.

It was discovered when examining the sulfathiatoien 4 sample that the peaks are all
significantly smaller than in other DSC sampleshiis dataset. This is shown in Figure
122.
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Figure 122 - Overlay of Sulfathiazole Form 3 (blueand Sulfathiazole Form 4 (red) DSC

As can be seen, the form 3 pattern has larger ahel\weaks than the form 4 pattern. The
problem will lie in the extra width present as thidl result in large correlation differences
between the two patterns. This can occur whenregtlsgnall amount of sample, or a slow
heating rate, are used. For this dataset all sangpéeheated at a rate of 10°C a minute so
the problem lay with too small a sample being addd. A small number of other samples
also had the same issue. All of these samples rgeotlected and the dataset re-run.

Two additional features visible in these specteathe large area in the blue spectra above
250C° which corresponds to a degradation of themahiand the initial drop at the
beginning of the blue spectra which is not pregethe red spectra. This initial drop is due
to the instrument beginning at a slightly lower parature than that specified so
preheating itself to the correct temperature. Téreddogram and MMDS plot for this re-

run are shown in Figure 123.
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Figure 123 - Suthaz/Cbz re-run DSC Dendrogram and MIDS Plot
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The red cluster contains all the pure sulfathianodgerials and sulfathiazole only
mixtures. The yellow and green clusters contaithelcarbamazepine samples and the
carbamazepine only mixture. The aquamarine anddsters contain the
sulfathiazole/carbamazepine mixtures. The expedtestering is not seen here. The

dataset now has a score of 0.69.
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5.5.5 IR DATA
The IR data is shown in Figure 124.
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Figure 124 - Suthaz/Cbz IR Dendrogram and MMDS Plot

The IR data does not give the expected clustefihg.red cluster contains samples s3, and
s4+3, which are part of predicted cluster 4, sampke+3+4 and s3+2 which are part of
predicted cluster 2 and samples s4+2 and s4 wiichaat of expected cluster 4. The
yellow cluster contains samples s2 and s2+c3 waielpart of expected cluster 2, as well
as samples s4+cl, s2+cl and s3+c1, which are fpaxpected cluster 1, s4+c3, part of
expected cluster 4 and s3+c3 which is part of ebgaecluster 3. The green cluster contains
samples c1 and c1+3 which are part of expectederldsas well as sample c3 which

would be expected to be clustered on its own.

The MMDS plot shows three distinct clusters. Theadat has a score of 0.5, again
equating to eight samples being misclustered.
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5.5.6 COMBINED DATA

The combined dataset, combining all four data tym#sg INDSCAL, is shown in Figure
125.
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Figure 125 — Combined Suthaz/Cbz Dataset Dendrograsnd MMDS Plot

The red cluster contains samples s2+3+4 and s3+¢hwalne part of expected cluster 2 and
s4+2 and s4, which are part of predicted clustdihé. yellow cluster contains samples
s4+c1 which is part of expected cluster 1, s4+cRwhre part of predicted cluster 4,

s2+c3 which is part of predicted cluster 2 and 83#hich is part of predicted cluster 3.

The green cluster contains samples s2+cl and s8hich are part of predicted cluster 1.
The aquamarine cluster contains samples c1 andwhich are part of predicted cluster 1
and c3 which was predicted to be clustered onvits. o

The MMDS plot shows a clearly separated red andiaguine cluster. The yellow cluster

is rather diffuse, as are the two outlying sampldase green cluster. One of those samples,

s2+cl, lies a lot closer to the yellow cluster thiaa other, however both lie too far away to

145



be reasonably included. The dataset has a sc@&@&fequating to just over half the

samples being misclustered.

5.6 DERIVATIVE DATA

The Raman dataset was re-run using both first aodrsl derivative processing. The
dendrogram and MMDS plot that results from applyariyst derivative to the data are

shown in Figure 126.
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Figure 126 - First Derivative Raman Dendrogram andMMDS Plot

The red cluster contains samples s2+3+4, s3+2)&22+c3 which are part of expected
cluster 2 samples s4 and s4+2, which were panteafipted cluster 4 and samples s3 and
s4+3 which are part of expected cluster 3. Theoyetlluster contains samples s4+cl
which is part of expected cluster 1, s4+c3 whiah@art of expected cluster 4 and sample
s3+c3 which is part of expected cluster 2. The gester contains samples s2+cl,
s3+cl, c1 and c1+3 which make up part of expedtester 1 and sample ¢3 which makes

up expected cluster 5.
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The MMDS plot shows three clearly defined clusté@itge red cluster is rather diffuse but

is clearly separated from the other two clusteh® @endrogram has a score of 0.56.

The dendrogram and MMDS plot for the second derkigaRaman data are shown in
Figure 127.

=
ok

o
0.0, o J 0.0
°® z JF 3
0.2 @ 0.2
P
S
}.:"-4- lo.a
i W -
i
i
1
Y

LO.E

o e

i EEEE[ D
1] 0 i} 4 0 L]
1 6 7 _ 3 8
-1
5 s 5 2 5 5
4 4 3 + 2 4
+ + [ +
3 2 3 2

wal Mo
=0l &=

=0 +wWwl M F

W =0 w=
wal ;s

=0 + Wl u.
woeno o[

5
s
3
+
C
3

i L PG
- e POW| -

Figure 127 - Second Derivative Raman Dendrogram anfMDS Plot

The red cluster contains sample s4 which is pagixpected cluster 4, s2+3+4, s3+2 and
s2+c3 which are expected to be in cluster 2 arahg3s4+3 which are expected to be in
cluster 3. The yellow cluster contains s2 whichxpected to be in cluster 2. The green
cluster contains sample s4+2 which is expectee tim leluster 4. The aquamarine cluster
contains samples c1, c1+3, s2+cl and s3+clwhicle mplpart of expected cluster 1 and
c3 which is the lone sample in expected clustdih®. blue cluster contains sample s4+cl
which is expected to be in cluster 1, sample s4#ui8h are expected to be in cluster 4
and sample s3+c3 which is expected to be in clidster the MMDS plot, the yellow and

green samples appear to be intermixed with thekester, showing poor separation of the
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clusters. The blue and aqua clusters are mordylkegparated. The dendrogram has a

score of 0.44.

The IR data was also re-run with both a first aacbsd derivative applied. The

dendrogram and MMDS plot for the first derivativmrare shown in Figure 128.
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Figure 128 - First Derivative IR Dendrogram

The first derivative IR run is not as well clustgigs the unprocessed Raman run. The red
cluster contains samples s2+3+4, s3+2, s2+c3 amthigh are expected to be in cluster 2,
s4+2, s4 and s4+c3 which are expected to be iteclds s4+cl, s2+cl and s3+cl which is
expected to be in cluster 1 and samples s3, s31t34+3 which were all expected to be
in cluster 3. The yellow cluster contains samplesied c1+3 which are part of expected
cluster 1 and c3 which is the lone sample in exggectuster 5. The MMDS plot shows that
the red cluster is very diffuse. The six red sample the six sulfathiazole/carbamazepine
mixtures. The remaining red samples clustered tdsvdre left of the plot are the pure

sulfathiazole and sulfathiazole only mixtures. Tesdrogram has a score of 0.8.
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Figure 129 shows the second derivative dendroguasniMMDS plot.
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Figure 129 - Second Derivative IR Dendrogram and MNDS Plot

The red cluster contains samples s4 from expedtsstec 4, s4+cl, s2+cl and s3+cl from
expected cluster 1, s3 and s4+3 from expectederl@sand s2 from expected cluster 2.
The yellow cluster contains samples s2+c3 from etquecluster 2, s3+c3 from expected
cluster 3 and s4+c3 from expected cluster 4. Teemgcluster contains samples s3+2 from
expected cluster 1, s4+2 from expected clusterd4s@n3+4 from expected cluster 3. The
aquamarine cluster contains sample c1 from expettester 1 and c¢3 from expected
cluster 5. The blue cluster contains sample cle® fexpected cluster 1.

The MMDS plot is very similar in appearance to et from the first derivative run. The

dendrogram still has a score of 0.8.
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5.7 TGA DATA

TGA data was collected for some of the samplehisidataset. Three samples, s3+cl,
sulfathiazole form 3 and s3+c3 and c3, are misBimg the dataset. These samples were
not collected due to a fault in the machine premgniurther data being collected. As there
are only thirteen samples for this dataset, theescawould appear different for what they
would be for a sixteen sample dataset. As suckdbees for the TGA will be scaled as if
they were from a sixteen sample dataset so thgtddue be better compared to the scores

for the other datatypes. The new dataset is sursathin Table 16.

Sample Name in N
Number Sample ID PolySNAP Composition
1 |Sulfathiazole Form 4 s4
2 |Sulfathiazole Form 3 s3
3 |Sulfathiazole Form 2 s2
4  |Carbamazepine Form 1 cl
5 |Carbamazepine Form 3 c3
6 |Sulfathiazole Forms 3 and 4 s4+3 58:42
7  |Sulfathiazole Forms 2 and 3 s3+2 63:37
8 |Sulfathiazole Forms 2 and 4 s4+2 32:68
9 |Carbamazepine Forms 1 and 3 cl1+3 72:28
10 [(Sulfathiazole Forms 2, 3 and 4 S2+3+4 53:18:29
11 |Sulfathiazole Form 2 and Carbamazepine Form 1| s2+cl 50:50
12 |Sulfathiazole Form 4 and Carbamazepine Form 1| s4+cl 61:39
13 |Sulfathiazole Form 2 and Carbamazepine Form 3| s2+c3 80:20

Table 16 — TGA Dataset

The Dendrogram and MMDS plot for this run are shawRigure 130.
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Figure 130 - TGA Dendrogram and MMDS Plot

The red cluster contains sample c1+3 which wasigiextito be in cluster 1. The yellow
cluster contains samples s2 and s3+2 which aragbeeldo be in cluster 2, s3+4 from
expected cluster 3 and samples s4+2 and s4 froecteghcluster 4 and ¢3 from expected
cluster 5. The green cluster contains carbamazépinel which is predicted to be in
cluster 1. The aquamarine cluster contains s2+3tidhs predicted to be in cluster 2,
sample s3 which is predicted to be in cluster Bya s2+c3 which is predicted to be in
cluster 2 and s2+c1 which is predicted to be istelul. The blue cluster contains sample
s4+cl which are predicted to be in cluster 1.

The dataset shows all samples to have a very imglasty, even more so than was seen
in the Raman dataset. The clustering is not asategdeThe dendrogram has a score of
0.76. This is higher than that seen for any prewgdata type in this dataset.

The dataset was re-run with both first and secartvatives applied, however this did not
affect the clustering. The problem with distingunghbetween TGA patterns lies in them
all consisting of a single downwards slope. Thegerature at which this slope begins
varies between samples; however this variatiomidarge enough to allow samples to be
clearly distinguished. Figure 131 shows an oveoliathe three pure sulfathiazole samples
TGA patterns.
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Figure 131 — Sulfathiazole TGA Pattern Overlay

The sulfathiazole form 2 and 4 patterns are clesiryilar. PolySNAP reports a 99.8%
correlation between these two patterns. The sudfatie form 3 pattern looks to be
substantially different from the remaining, howetles still equates to a 98.8% correlation
between the sulfathiazole form 2 and sulfathiatoie 3 patterns and a 98.9% correlation
between the sulfathiazole form 4 and sulfathiatoim 3 patterns. An overlay of

sulfathiazole form 4 and carbamazepine form 1 asvshin Figure 132.

Curve 1: suthaz form4 TGA File: E\Gordon\phdtga\suthaz form4.001
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Figure 132 - Sulfathiazole and Carbamazepine TGA Regern Overlay
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These patterns appear to be highly different; h@wvéwey still have a 97.5% similarity
according to PolySNAP.

Figures 130 and 131 both show that the TGA pattere no useful data below 175°C.
The dataset was re-run without the data in thia toesee if this improves the clustering.
The resulting dendrogram and MMDS plot are showhigure 133.
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Figure 133 - TGA Dendrogram and MMDS Plot with Cut-off at 175°C

Re-running the dataset with a cut-off does not owprthe clustering. The red cluster now
contains samples s4 and s4+2 from expected cldisg3+2 and s2 from predicted cluster
2, cl and c1+3 from expected cluster 1, c3 fromeetga cluster 5 and s3+4 from expected
cluster 3. The yellow cluster contains samples $2+8om expected cluster 2, s4+cl and
s2+cl from expected cluster 1, s2+c3 from expediegster 2 and s3 from expected cluster
5. The dendrogram now has as score of 0.66, gjilien than that seen for any data type
studied so far for this dataset.

The PolySNAP clustering techniques are not usefuttis type of data.
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5.8 FLOWCHART

All of the possible combinations of pre-processiveye applied to the PXRD dataset and
the results compared to the optimal clustering. ¢wes for these datasets are shown in
Table 17.

Score

no pre-processing 0.56
denoise 0.56
background 0.81
background and denoise| 0.81

Table 17 — Misplaced samples

As can be seen the no pre-processing and denaislgglatasets give similar results. The
background removal and background removal and deradso give similar results.
These results match that seen in section 4.4. [blehart for this dataset is shown in
Figure 134.

If bad
dendrogram
Run data with Run data with only

no pre-processing denoise applied

If bad
dendrogram

If dendrogram

If dendrogram Run data with

. is good
d
is goo If dendrogra background removal
is good
If bad
dendrogram

Run with background

Optimal clustering found removal and denoise

r

Figure 134 - Flowchart for optimal clustering detemination

This flowchart is unchanged from that shown in isect.4. The classification of a

dendrogram as ‘good’ or ‘bad’ is also unchangedfthis dataset.
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5.9 QUANTITATIVE ANALYSIS

The materials were compared using the PolySNAP adaanalysis mode. The results of
this are shown in Table 18. The data was compased) the SVD method.
The results, with pre-processing applied to tha,date shown in Table 19 and Table 20.
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PXRD | Samples | Actual Predicted | Difference | Raman | Samples | Actual Predicted | Difference | IR | Samples | Actual Predicted |Difference
s2+3 63:37 32.1:67.9 4.9 s2+3 63:37 52.2:47.8 10.8 s2+3 63:37 68.1:31.9 5.1
s2+4 32:68 8.5:191.5 235 s2+4 32:68 23.8:76.2 8.2 s2+4 32:68 16.5:83.5 15.5
s3+4 58:42 29.8:70.2 28.2 s3+4 58:42 61.7:38.3 3.7 s3+4 58:42 64.5:35.5 6.5

s2+3+4 | 53:18:29 | 14.1:83.8:2.0 46.9 s2+3+4 | 53:18:29 | 1.1:26.1:72.8 34.6 s2+3+4 | 53:18:29 |15.2:14.1:70.7| 28.1
cl+3 28:72 27:73 1 cl+3 72:28 81.4:18.6 9.4 cl1+3 72:28 29.6:70.4 42.4
s2+cl 50:50 66.7:33.3 16.7 s2+cl 50:50 19.6:80.4 30.4 s2+cl 50:50 52.4:47.6 24
s2+c3 80:20 83.2:16.8 3.2 s2+c3 80:20 98.4:1.6 18.4 s2+c3 80:20 90.2:9.8 10.2
s3+cl 50:50 85.2:14.8 35.2 s3+cl 50:50 2.7:97.3 47.3 s3+cl 50:50 25.3:74.7 24.7
s3+c3 83:17 5.9:94.1 111 s3+c3 83:17 64.5:35.5 18.5 s3+c3 83:17 68:32 15
s4+cl 61:39 22:78 39 s4+cl 61:39 72.9:27.1 11.9 s4+cl 61:39 60.1:39.9 0.9
s4+c3 82:18 69.8:30.2 12.2 s4+c3 82:18 55.9:44.1 26.1 s4+c3 82:18 92.9:7.1 10.9

Mean absolute difference  20.17 Mean absolute difference  19.94 Mean absolute difference  14.70
RMS difference 6.08 RMS difference 6.01 RMS difference 4.43
Max absolute difference 26.73 Max absolute difference 27.36 Max absolute difference 27.70
Min absolute difference 19.17 Min absolute difference 16.24 Min absolute difference 13.80

Table 18 — Data from Mixtures in Manual Analysis Male
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Processed Processed Processed

PXRD| Samples | Actual | Predicted 1 |Difference 1|Raman|Samples Actual Predicted 1 | Difference 1| IR |Samples| Actual Predicted 1 |Difference 1
s2+3 63:37 33.4:66.6 3.60 s2+3 63:37 49.7:50.3 13.30 s2+3 63:37 21.3:78.7 41.70
s2+4 32:68 10.2:89.8 21.80 s2+4 32:68 23.8:76.2 8.20 s2+4 32:68 22:78 10.00
s3+4 58:42 30.9:69.1 27.10 s3+4 58:42 57:43 1.00 s3+4 58:42 11.6:88.4 46.40
s2+3+4 | 53:18:29 |13.9:84.3:1.7 36.03 s2+3+4 53:18:29 |18.7:44.5:36.8 22.87 s2+3+4 | 53:18:29 | 19.6:6.5:73.9 29.93
cl+3 28:72 25.3:74.7 2.70 cl+3 28:72 34.9:65.1 37.10 cl+3 28:72 15.5:84.5 56.50
s2+cl 50:50 74.5:25.5 24.50 s2+cl 50:50 17.7:82.3 32.30 s2+cl 50:50 17.7:82.3 32.30
s2+c3 80:20 98.8:1.2 18.80 s2+c3 80:20 94.6:5.4 14.60 s2+c3 80:20 15.8:84.2 64.20
s3+cl 50:50 76.2:23.8 36.20 s3+cl 50:50 6.6:93.4 43.40 s3+cl 50:50 77.8:22.2 27.80
s3+c3 83:17 12.6:87.4 4.40 s3+c3 83:17 62.7:37.3 15.70 s3+c3 83:17 32:68 51.00
s4+cl 61:39 53.4:46.6 7.60 s4+cl 61:39 67.3:32.7 6.30 s4+cl 61:39 79.6:20.4 18.60
s4+c3 82:18 65.8:34.2 16.20 s4+c3 82:18 53.2:46.8 28.80 s4+c3 82:18 38.2:61.8 43.80

Mean absolute difference 18.08 Mean absolute difference 20.32 Mean absolute difference 38.38

RMS difference 5.45 RMS difference 6.13 RMS difference 1157

Max absolute difference 18.12 Max absolute difference 23.08 Max absolute difference 28.38

Min absolute difference 15.38 Min absolute difference 19.32 Min absolute difference 25.82

Processed Predicted 1 - background remove and smoothed

Table 19 - Data from Mixtures in Manual Analysis Made with Pre-processing Option 1
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Processed Predicted 2 - smoothed

Table 20 - Data from Mixtures in Manual Analysis Made with Pre-processing Option 2
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Processed Processed Processed

PXRD |Samples| Actual | Predicted 2 | Difference 2 | Raman | Samples Actual Predicted 2 | Difference 2| IR |Samples| Actual Predicted 2 |Difference 2
s2+3 37:63 32.1:67.9 4.90 s2+3 63:37 52.5:47.5 10.50 s2+3 63:37 25.2:74.8 37.80
s2+4 32:68 8.4:91.6 23.60 s2+4 32:68 26.3:73.7 5.70 s2+4 32:68 26.9:73.1 5.10
s3+4 58:42 29.7:70.3 28.30 s3+4 58:42 61.1:38.9 3.10 s3+4 58:42 10.9:88.1 47.10
s2+3+4 | 53:18:29 |25.2:70.6:4.1 35.10 s2+3+4 53:18:29 |1.7:25.4:72.9 34.20 s2+3+4 | 53:18:29 | 26.5:57:16.5 26.00
cl+3 28:72 27:73 1.00 cl+3 72:28 62.6:37.4 9.40 cl+3 72:28 0.3:99.7 71.70
s2+cl | 50:50 66.7:33.3 16.70 s2+cl 50:50 19.7:80.3 30.30 s2+cl 50:50 15.2:84.8 34.80
s2+c3 80:20 83.2:16.8 -3.20 s2+c3 80:20 97.9:2.1 17.90 s2+c3 80:20 19.3:80.7 60.70
s3+cl | 50:50 85.2:14.8 35.20 s3+cl 50:50 2.7:97.3 47.30 s3+cl 50:50 75:25 25.00
s3+c3 17:83 5.8:94.2 11.20 s3+c3 83:17 65.2:34.8 17.80 s3+c3 83:17 18.2:81.8 64.80
s4+cl | 61:39 56.9:43.1 4.10 s4+cl 61:39 73.7:26.3 12.70 s4+cl 61:39 81.2:18.8 20.20
s4+c3 82:18 72.1:27.9 9.90 s4+c3 82:18 56.4:43.6 25.60 s4+c3 82:18 37.4:62.6 44.60

Mean absolute difference 15.16 Mean absolute difference 19.50 Mean absolute difference 39.80

RMS difference 4.57 RMS difference 5.88 RMS difference 12.00

Max absolute difference 20.04 Max absolute difference 27.80 Max absolute difference 34.70

Min absolute difference 18.36 Min absolute difference 16.40 Min absolute difference 31.90



For PXRD, a predicted result is said to closelyahdhe actual values if the values are
within 10% of each other in either direction.

For the PXRD data, five of the non-processed ptrxfis closely match the actual results.
With background removal and smoothing applied, §aeples still closely match. With
just smoothing applied, five of the predictiondl slosely match the results.

For the Raman data, three of the non-processedctrddesults match the actual values.
Two samples match with smoothing and backgroundvwaiapplied. With smoothing
applied and no background removal there are abage tsamples closely matching. By
expanding the allowed variance to 15%, five sampiatch with the actual values when
no processing is applied, four match for the backgd and smoothed data and five
samples now match from the smoothed data with ¢heaaresult.

For the IR data, four of the samples closely matith the non-processed predicted results.
Two of the results, with smoothing and backgrousrdaval on, match the actual results.
With just smoothing applied four samples matchabieial results. By expanding the
margins of error to 15%, five of the samples maicthe unprocessed data, three of the
samples in the background removal and smoothintiemppun matches and five of the

samples match in the smoothing applied run.



5.10 CONCLUSIONS

The conclusions are as follows.

The sulfathiazole/carbamazepine dataset has stgltgs$ssted the use of both
DSC and IR data with PolySNAP alongside Raman atiPdata. It was initially
expected that DSC data would be difficult to conepas the patterns only have a
small number of peaks present within them. Thismdititurn out to be the case as
all peaks represent a melt or phase change arahsivawe radically different
positions between polymorphs.

Despite this ease of comparison the DSC data dutegive the expected clustering
in any of the datasets. It does show clear separagtween the clusters in the
MMDS plot however the contents of the clusters domatch with the expected
clustering.

IR data was expected to have the same problemglofsimilarity between
patterns that Raman data showed. This howeverduwuaenot to be the case and
different IR samples can be readily distinguishredif one another. When either
first or second derivatives were applied to thel#a, this causes degradation in
the clustering results. Overall the clustering friftrdata needs further work before
it can be used as readily as that of Raman and PX&&

INDSCAL combinations of all of the results give imped clustering.

The importance of choosing the optimal pre-processptions for composition
determination is shown here. For Raman data dewpand removing the
background seem to give the optimal result. Allayénvariance of 15% rather than
the standard 10% gives an improved result. Fordfa thcreasing the allowed
variance to 15% does not readily improve the maltie. optimal match for IR data
is to not pre-process it at all.

TGA data has been tested and found to be off litle with PolySNAP. The
patterns are all too similar for the software tcabée to distinguish any clear
difference between them. Due to these problemsiribdr studies of TGA data
will be carried out.

Running a dataset with no pre-processing initimllthe optimal way to determine
the clustering. Further runs with different pre-gassing should be carried out

depending on the quality of the dendrogram forritie pre-processed data.
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CHAPTER 6 SULFATHIAZOLE/CARBAMAZEPINE/
PIROXICAM DATASET

6.1 THE DATASET

The sulfathiazole/carbamazepine/piroxicam (SUTHAZZIPIROX) dataset contains
polymorphs two, three and four of sulfathiazoldypwrphs one and three of
carbamazepine and polymorph two of piroxicam. T@ilsummarises the composition of
this dataset.

For this dataset, PXRD data were collected on &&8rC2 GADDS. Each sample was run
for two minutes over a 3-30° range il. Raman data were collected on a Witec alpha 300
with a 785nm laser and an x10 objective lens wigb@&perture and 300g/mm grate. DSC
data were collected on a TA Instruments Q100. I daere collected on a Shimadzu
FTIR-8400S.
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Sample Name in .
Number Sample ID POlySNAP Composition

1 |Piroxicam Form 2 p
Piroxicam Form 2 and

2 |Carbamazepine Form 1 p2+cl 12:88
Piroxicam Form 2 and

3 |Carbamazepine Form 3 p2+c3 28:72
Piroxicam form 2 and

4 |sulfathiazole form 2 p2+s2 22:78
Piroxicam Form 2 and

5 |Sulfathiazole Form 3 p2+s3 16:84
Piroxicam Form 2 and

6 |Sulfathiazole Form 4 p2+s4 47:53
Carbamazepine Forms 1 and 3

7 |and Sulfathiazole Form 2 cl+c3+s2| 48:32:20
Carbamazepine Forms 1 and 3

8 |and Sulfathiazole Form 3 cl+c3+s3| 24:47:29
Carbamazepine Forms 1 and 3

9 |and Sulfathiazole Form 4 cl+c3+s4| 33:33:33
Carbamazepine Form 1 and

10 |Sulfathiazole Forms 2 and 3 cl+s2+s3| 26:32:42
Carbamazepine Form 1 and

11 |Sulfathiazole Forms 3 and 4 cl+s3+s4| 33:33:33
Carbamazepine Form 1 and

12 |Sulfathiazole Forms 2 and 4 cl+s2+s4| 33:33:33
Carbamazepine Form 3 and

13 |Sulfathiazole Forms 2 and 3 c3+s2+s3| 15:46:39
Carbamazepine Form 3 and

14 |Sulfathiazole Forms 3 and 4 c3+s3+s4| 24:66:10
Carbamazepine Form 3 and

15 |Sulfathiazole Forms 2 and 4 c3+s2+s4| 24:45:31
Piroxicam Form 2 and

16 |Carbamazepine Forms 1 and 3 |p2+cl+c3| 12:66:22

Table 21 - Sulfathiazole-carbamazepine-piroxicam Qtaset

6.2 SIMULATED DATASET

6.2.1 SIMULATED

Simulated powder data for each of the pure matewals taken from the CSD and were
combined to produce the predicted patterns for ea@gture. For example the p2+cl

pattern was produced by combining the patternsasigcl in a 12:88 ratio. The resulting

DATA CLUSTERING

dendrogram and MMDS plot are shown in Figure 135.
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Figure 135 - Dendrogram and MMDS Plot for SimulatedDataset Clustering

The red cluster contains samples c1+c3+s2, p+cipHad], c1+c3+s3, cl+c3+s4,
cl+s2+s3, c1l+s3+s4 and cl+s2+s4. The yellow clgstatains sample c3+s2+s3,
c3+s3+s4, p+s3, c3++s2+s4 and s2+c3. The greeteckmntains sample p+c3 and the

aqua cluster contains samples p+s4 and p. Theusittes are shown in Figure 136.
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Figure 136 - Silhouettes for simulated dataset

For the red cluster the lower bar, lying below @&ntains samples c1+c3+s3, c1+s2+s3
and p+cl. The central bar, just above 0.5, contansples c1+c3+s4, c1+s2+s4, c1+s3+s4
and p+cl+c3. The uppermost bar contains sample33k2c For the yellow cluster the
lower bar, lying just below 0.25 contains samplez+The second bar lying just above
0.25 contains sample c3+s2+s4 while the third yaagljust below 0.5 contains samples
c3+s3+s4 and p+s3. The uppermost bar contains satipk2+s3. For the aqua cluster the

lower bar, lying just below 0.5 contains p+s4 wiile upper bar just above 0.5 contains p.

6.3 FINDING THE OPTIMAL CLUSTERING

The dataset was run through PolySNAP along witidial correlation coefficients from
Minitab, as outlined in Section 5.3.
Figure 137 shows the dendrogram and MMDS plotHerRearson correlation matrix and

Figure 139 the dendrogram and MMDS plot for thegBpmn correlation matrix.
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Figure 137 - Pearson correlation dendrogram and MME3 plot

For the Pearson correlation the red cluster costsamples c1+c3+s2, p+cl, p+cl+c3,
cl+c3+s3, c1+c3+s4, cl+s2+s4 and cl1+s3+s4. Theweluster contains samples
cl+s2+s3, c3+s2+s3, c3+s3+s4 and p+s3. The grastecktontains sample c3+s2+s4 and
p+s2. The aguamarine cluster contains samples grd3he blue cluster contains samples
p and p+s4.

The silhouettes are shown in Figure 138.
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For the red cluster the lower bar, just above @@Besponds to sample c1+c3+s3. The

next bar, just below 0.5, corresponds to samples24s4, c1+s2+s4 and p+cl. The next

bar, just above 0.5 corresponds to sample c1+c3¥s4he yellow cluster the lower bar,

just below 0.75, corresponds to sample c1+s2+s8.miiddle bar, at 0.75, corresponds to

sample c3+s2+s4 and p+s3. For the green clustdovhes bar, just above 0.5, corresponds

to sample c3+s2+s4. For the blue cluster the |daerjust below 0.5, corresponds to

sample p+s4. There is no fuzzy clustering for tlataset as no samples have samples that

could potentially belong to more than one cluster.
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Figure 139 - Spearman correlation coefficient dendrgram and MMDS plot

The red cluster contains samples c1+s3+s2, c1+¢8t343+s3, p+cl, p+cl+c3,
cl+s2+s3, c1+s3+s4 and cl+s2+s4. The yellow clgstatains samples c3+s2+s3,
c3+s3+s4, p+s3 and c3+s2+s4. The green clusteaiogrgample p+c3. The aquamarine
cluster contains samples p and p+s4 while the dlluster contains sample p+s2.

The silhouettes are shown in Figure 140.
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Figure 140 - Spearman correlation silhouettes
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For the red cluster the lower bar, just below 8dntains sample c1+s2+s3 and p+cl. The

middle bar contains samples c1+s3+s3, c1+s2+s43364 and p+cl+c3. For the yellow

cluster the lower bar, just below 0.25, contaimaa c3+s2+s4. The middle bar just

above 0.25 contains sample p+s3. For the aquametieter the samples all lie within a

single bar. The fuzzy clustering is shown in Figlid with the numerical results in table
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Figure 141 - Spearman fuzzy clustering
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1 2 3 4 5

cl+c3+s2| 0.17 0.13 0.18 0.27 1
cl+c3+s3| 0.19 0.15 0.2 0.38 0.99

cl+c3+s4| 0.18 0.17 0.2 0.3 1

cl+s2+s3| 0.13 0.14 0.2 0.9 0.60* <==

cl+s2+s4| 0.13 0.15 0.21 0.31 0.99
cl+s3+s4| 0.13 0.15 0.18 0.37 0.98
c3+s2+s3| 0.18 0.2 0.29 0.99 0.39
c3+s2+s4| 0.21 0.23 0.92 0.42 0.44
c3+s3+s4| 0.19 0.2 0.25 0.98 0.4
p 0.17 0.92 0.21 0.21 0.18
p+cl 0.11 0.09 0.07 0.12 0.99

p+cl+c3 0.16 0.13 0.12 0.19 1
p+c3 0.9 0.28 0.25 0.31 0.43
p+s2 0.17 0.29 0.92 0.36 0.25
p+s3 0.16 0.25 0.25 0.96 0.28
p+s4 0.2 0.94 0.28 0.33 0.3

Table 22 — Spearman fuzzy clustering results

The fuzzy clustering contains one sample, cl+s2FaBthe numerical results, column 1
represents the green cluster, column 2 the aquaenalister, column 3 the yellow cluster,
column 4 the red cluster and column 5 the bluetetuSample c1+s2+s3 could potentially
appear in either the blue or red cluster.

Comparing the results for both the Pearson andr8eacorrelations to the predicted
results, it is again revealed that the Pearsoritrisshighly similar. A small adjustment of

the cut-level will allow the two dendrograms to otaexactly. This adjusted cut-level is

shown in Figure 142.
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Figure 142 - Pearson dendrogram and MMDS plot withradjusted cut-level

As the Pearson correlation again matches exactlty thé predicted result, the Pearson

correlation dendrogram will be treated as showiregdptimal clustering.

6.3 RAMAN AND IR REGIONS OF SIMILARITY

The Raman and IR datasets were examined to deteamnéas of similarity and therefore
which areas should be given priority when matchiregspectra. The Raman spectra for
the pure materials of sulfathiazole, carbamazegimepiroxicam are shown in Figure 143.
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Figure 143 - Raman spectra for pure materials
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As with the sulfathiazole and carbamazepine spestrgpeaks appear after 1750trmAs

such only the areas before 1750twmill be used when comparing the Raman spectra.

The IR spectra for the pure materials are showkigare 144.
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Figure 144 - IR spectra for pure materials

The areas of significance for IR spectra appeéietim the region before 1750¢hand
between 3000 and 35008mAs such these areas shall be used exclusivelggiur

matching of the IR spectra.
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6.4 DATASET CLUSTERING

6.4.1 EXPECTED CLUSTERING

As for the dataset in Chapter 5, the PXRD pattéonghe pure polymorphs were combined
to produce predicted patterns for each of the mesLiThe dendrogram and MMDS from
this are shown in Figure 145.
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Figure 145 - Expected Clustering

The red cluster contains patterns c1+c3+s2, p+clee8c3+s3, c1+c3+s4 and p+c3. The
yellow cluster contains patterns c1+s2+s3, c1+s3a834s3+s4, c1+s2+s4 and p+s3. The
green cluster contains patterns p+cl, p, p+s2 aad.[some of the tie bars lie close to the
cut-level so the silhouettes (Figure 146) and fudmgter (Figure 147 and Table 23) will
be analysed. For the fuzzy clustering clusterthesred cluster, cluster 2 is the yellow
cluster and cluster 3 is the green cluster.
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Figure 146 — Silhouettes

For the red cluster, all but one of the patteres below 0.5. The lowest region contains
pattern p+c3, which also has the highest tie b#inercluster, while the second region
corresponds to patterns p+cl+c3, c1+c3+s3 and ek#cFor the yellow cluster, three
patterns lie below 0.5. The lowest such region a@iostpattern p+s3 while the second, and
last region below 0.5, contains patterns c1+s2fsc8+s2+s4. The green cluster has one

pattern below 0.5, sample p+s2 which also has laatidying very close to the cut-level.
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Figure 147 - Fuzzy Clustering
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1 2 3
cl+c3+s2 1 0.52* 0.31 <==
cl+c3+s3| 0.99 0.60* 0.35 <==
cl+c3+s4| 0.99 0.60* 0.35 <==
cl+s2+s3 0.47 1 0.35
cl+s2+s4 0.48 1 0.35
cl+s3+s4| 0.46 1 0.34
c3+s2+s3| 0.48 1 0.37
c3+s2+s4| 0.49 1 0.37
c3+s3+s4 0.45 1 0.34
p+cl+c3 0.99 0.5 0.39
p+cl 0.34 0.31 0.99
p+c3 0.96 0.41 0.43
p+s2 0.45 0.55* 0.97 <==
p+s3 0.37 0.99 0.39
p+s4 0.41 0.51* 1 <==
p 0.32 0.29 0.99

Table 23 — Expected Fuzzy Clustering Nweric Data

The fuzzy clustering plot contains two regions afterns. The lower of these two bars
contains patterns cl+c3+s2, c1+c3+s3, p+s2 and g+&be patterns could be found in

the following clusters

e cl+c3+s2 could potentially be in either the regeafow cluster
* cl+c3+s3 could potentially be in either the regetow cluster
e p+s2 could potentially be in either the yellow oeen cluster

e p+s4 could potentially be in either the yellow oegn cluster.

The second region in the fuzzy clustering contgiisern c1+c3+s4. This pattern could
potentially be in either the red or yellow cluster.

Due to patterns p+c3 in the red cluster, p+s3eanyitllow cluster and p+s2 in the green
cluster having very low correlations to the remaindf their cluster, the cut-level shall be
lowered slightly to separate these patterns. Thelting dendrogram and MMDS plot

from this is shown in Figure 148.
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Figure 148 — Expected Clustering with Adjusted Cutevel

The simulated dataset had the following clusteesent:
1) cl+c3+s2, ptcl+c3, p+cl, cl+c3+s3, cl+c3+s4, c1sFA +s3+s4, cl+s2+s4
2) c3+s2+s3, c3+s3+s4, p+s3, c3+s2+s4, p+s2
3) p+c3
4) p+s4,p

The expected clustering dataset has the followinstering:
1) cl+c3+s2, p+tcl+c3, c1+c3+s3 cl+c3+s4
2) p+c3
3) cl+s2+s3, c1+s3+s4, c3+s2+s3, c3+s3+s4, cl+s2-85d3$2+54
4) p+s3
5) p+clandp
6) p+s2 and p+s4

By comparing the predicted and expected datasednibbe seen that several of the samples
have moved to different clusters. As the prediciedtering matched with the manually
calculated Pearson correlation coefficient, thils n@ treated as the optimal clustering. The

optimal clustering is as follows:
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1) A cluster containing samples c1+c3+s2, p+cl+c31pet+c3+s3, cl+c3+s4,
Cl+s2+s3, c1+s3+s4, c1+s2+s4

2) A cluster containing samples c3+s2+s3, c3+s3+s43 pa3+s2+s4, p+s2

3) A cluster containing samples p+c3

4) A cluster containing samples p+s4, p

6.4.2 PXRD DATA
The dendrogram and MMDS plot for the PXRD datasdn@wn in Figure 149.
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Figure 149 - PXRD Dendrogram and MMDS Plot
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The red cluster contains samples c1+c3+s2, p+ckide3;3+s3 and p+cl from expected
cluster 1. The yellow cluster contains sample cts43vhich is part of expected cluster 1.
The green cluster contains samples p+s2, c3+s21342+s3, p+s3 and c3+s3+s4 from
expected cluster 2, p+s4 from cluster 4 and c1s$43¢3+s2+s3 and cl+s2+s4 from
expected cluster 1.

The aquamarine cluster contains sample p+c3 frgpea®d cluster 3 and p from expected

cluster 4.



The PXRD data is not as poorly clustered as it &ppears. Half of expected cluster 1 is in
the red cluster with the other half in the grearstdr, intermixed with other samples. The
entirety of expected cluster 2 is in the greentelysagain intermixed with other samples.
The score for this dendrogram is 0.44, implying thare than half of the samples are

clustered as expected.

6.4.3 RAMAN DATA

The dendrogram and MMDS plot for the Raman datahosvn in Figure 150. The Raman

data was matched solely on data before 1750cm
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Figure 150 - Raman Dendrogram and MMDS plot

The red cluster contains samples c1+c3+s2, p+ei;3Hs3 and p+cl+c3 from expected
cluster 1 as well as sample p+c3 which is the karaple in expected cluster 3. The yellow
cluster contains sample c1+c3+s4, c1+s2+s3, c14s@rd c1+s3+s4 from expected
cluster 1, c3+s2+s4, c3+s2+s3, c3+s3+s4 and p+&hwane part of expected cluster 2.
The green cluster contains samples p+s3, whickpeaed to be cluster on its own in

cluster 4 and p+s4 and which make up expectedeel@stThis dendrogram has a score of
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0.44, the same as that for the PXRD dataset imgplfiat the dataset isn’t as poorly
clustered as initially appear.

6.4.4 DSC DATA
The dendrogram and MMDS plot for DSC data are shiovkigure 151.
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Figure 151 - DSC Dendrogram and MMDS Plot

The red cluster contains samples c1+c3+s2, c1+¢@4s23+s4 and p+cl+c3, which
make up part of predicted cluster 1, as well aspbauprc3, which makes up the entirety of
predicted cluster 4. The yellow cluster contaimagigs c3+s2+s4, c3+s2+s4 and
c3+s3+s4, which make up part of expected clust&h2.green cluster contains samples
cl+s2+s3 and cl1+s2+s4 which makes up part of expetster 1. The aquamarine
cluster contains p+c1 which is part of expectedtelul. The blue cluster contains sample

p which is part of excepted cluster 2. The purplster contains samples p+s2 which is
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part of expected cluster 2, p+s4 which make up ebegecluster 4 and p+s3 which makes
up part of expected cluster 1. The striped browstelr contains sample c1+s3+s4 which is
part of expected cluster 1.

This does not give the expected clustering. Thstehing is poorer for this dataset than in
the X-ray or Raman datasets with a score for thrgddogram of 0.5. This score still

equates to half of the samples being clusterecaecéed.

6.4.5 IR DATA
The dendrogram and MMDS plot for IR are shown iguiré 152.
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Figure 152 - IR Dendrogram and MMDS Plot

The red cluster contains samples c1+c3+s2, p+camdd+cl which are part of expected
cluster 1 and p+c3 which makes up the entiretyxpketed cluster 2. The green cluster
contains sample p which is part of expected cluatdihe yellow cluster contains the
remaining eleven samples in the dataset.

18C



The dataset is not as well clustered as that dfreen PXRD or Raman data. The
dendrogram has a score of 0.56, slightly poorear that of the DSC dendrogram and with

just over half of the samples incorrectly clustered

6.4.6 COMBINED DATA

The dendrogram and MMDS plot from the combined skttacombining all four data types
using INDSCAL, are shown in Figure 153.
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Figure 153 - Combined Dendrogram and MMDS Plot

The red cluster contains samples c1+c3+s2, c1+¢3p881l+c3 and p+cl which are part
of expected cluster 1 as well as sample p+c3 wimakes up expected cluster 3.

The yellow cluster contains samples cl1+c3+s4, cts32cl+s2+s4 and c1+s3+s4 which
are part of expected cluster 1 and c3+s2+s3, c34sadnd c3+s3+s4, which make up part

of expected cluster 4. The green cluster contats? pvhich is part of expected cluster 1.
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The aquamarine cluster contains p+s3 which makgreghicated cluster 3 and p+s4 which
is part of expected cluster 4. The blue clustetaos the pure piroxicam sample which is
part of expected cluster 1. The combined datasatrdgram has a score of 0.5, half of the

samples are clustered as expected.

6.5 DERIVATIVE DATA

The Raman and IR data is re-run with both first second derivatives applied.

6.5.1 RAMAN

The dendrogram and MMDS plot for the first derivatre-run are shown in Figure 154.
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Figure 154 - First Derivative Raman Dendrogram andViIMDS Plot

The red cluster contains samples c1+c3+s2, c1+¢®4323+s4, c1+s2+s3, c1+s2+s4,

p+cl, cl+s3+s4 and p+cl+c3, which make up parkpéeted cluster 1 and c3+s2+s4,
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which makes up part of expected cluster 2. Theoyetlluster contains c3+s2+s4 which
makes up part of expected cluster 2 and p+c3 wikite entirety of expected cluster 3.
The green cluster contains sample c3+s2+s3 whiphrisof expected cluster 2. The
aquamarine cluster contains sample p+s2 whichrisop&xpected cluster 2, p+s4 and p
which make up expected cluster 4 and p+s3 whicheshak part of expected cluster 2.
The dataset shows reasonable clustering, thougasngbod as that seen in the original
Raman run. The first derivative dendrogram hasoaesof 0.38 showing better clustering

than that seen in the original Raman dataset.

The second derivative Raman dendrogram and MMDSlaye/n in Figure 155.
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Figure 155 - Second Derivative Raman Dendrogram anfMDS Plot

The red cluster contains sample c1+c3+s2 whiclisqd expected cluster 1. The yellow

cluster contains sample c1+c3+s3 which is parkpeeted cluster 1. The green cluster

contains sample c1+c3+s4 which is part of expechaster 1. The aquamarine cluster

contains samples c1+s2+s3, c1+s2+s4, p+cl+c3, prdt1+s3+s4 which are part of
18¢<



expected cluster 1. The blue cluster contains seemg8+s2+s4 and c3+s3+s4 which are
part of expected cluster 2 and p+c3 which makesxpected cluster 3. The purple cluster
contains sample c3+s2+s3 which is part of expediester 2. The striped brown cluster
contains sample p+s2 which is part of expectedeiuis The striped light green cluster
contains sample p+s3 which make up cluster 2 asd psich is part of cluster 4. The
striped dark green cluster contains the pure piaori sample which is part of cluster 4.
Overall the dataset does not give good clusteflihg.dendrogram has a score of 0.44,

identical to that seen in the original Raman ddtase

6.5.2 INFRARED

The dendrogram and MMDS plot for the first derivatrun are shown in Figure 156.
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Figure 156 - First Derivative IR Dendrogram and MMDS Plot
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The red cluster contains sample c1+c3+s2 whiclatisqf expected cluster 1. The yellow
cluster contains samples p+cl1+c3 and p+clwhichrisgs expected cluster 1 and p+c3
which makes up expected cluster 3. The green clastdains samples c3+s3+s4, p+s3,
p+s2, c3+s2+s3 and c3+s2+s4 which make up expeltstér 2, c1+s3+s4, c1+c3+s3,
cl+c3+s4 and cl1+s2+s4 which make up part of exgexdtester 1 and p+s4 which make
up part of expected cluster 4. The aquamarineedusintains the pure piroxicam sample
which is part of expected cluster 4. The MMDS @iobws the clusters to be well defined.
The dendrogram here has a score of 0.44, an impreneover the 0.56 seen in the

original IR dataset.

The second derivative IR dendrogram and MMDS pletsnown in Figure 157.
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Figure 157 - Second Derivative Dendrogram and MMD®|ot
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The red cluster contains sample c1+c3+s2 whiclaisqf expected cluster 1. The yellow
cluster contains samples c1+c3+s3, c1+s2+s3, cB4s@nrd cl+c3+s4 which are part of
expected cluster 1, c3+s3+s4, p+s3, p+s2, c3+s28332+s4 and c3+s2+s4 which make
up expected cluster 2 and p+s4 which make up patpected cluster 4. The green cluster
contains sample p+cl+c3 and p+cl which makes uppaxpected cluster 1 and p+c3
which makes up expected cluster 3. The aguamaluiséec contains the pure piroxicam
sample which makes up part of expected clustehd.store for this dendrogram is 0.5.

6.6 FLOWCHART

All of the possible combinations of pre-processiveye applied to the PXRD dataset and
the results compared to the optimal clustering. Atm@aber of misplaced samples is shown
in Table 24.

Score

no pre-processing 0.43
denoise 0.43
background 0.5
background and denoise| 0.5

Table 24 - Misplaced samples

As can be seen no pre-processing and denoisingogiimal results. As no pre-processing
gives best results with least processing appliesthie preferred method.

The flowchart for this result is shown in Figure815
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Run data with
no pre-processing

If bad
dendrogram

If dendrogram
is good

h A

Optimal clustering found

L

Run data with
background removal

If bad
dendrogram

h J

F 3

Figure 158 - Flowchart for initial 16 samples

Run with background
removal and denoise

If bad
dendrogram

h 4

Run data with only
denoise applied

This flowchart is again the same as that previodsleloped for the datasets in Chapters 4

and 5. A bad dendrogram is again defined as orne tha

1. Shows ‘chaining’ of the samples or has no abdastering

2. The scree plot does not show the charactesst&p initial drop before smoothing out

3. The maximum and minimum confidences shows alagparation.



6.7 THIRTY-TWO SAMPLE DATASET

The sixteen samples from this dataset were combiridcthe sixteen from the
sulfathiazole-piroxicam dataset, as discussed ep@r 5. The 16 additional samples that
are being added to this dataset, as originallyistuish Chapter 5, are summarised in Table
25.

Sample Name in .
Number Sample ID PolySNAP Composition

1 Sulfathiazole Form 4 s4

2 Sulfathiazole Form 3 s3

3 Sulfathiazole Form 2 s2

4 Carbamazepine Form 1 cl

5 Carbamazepine Form 3 c3

6 Sulfathiazole Forms 3 and 4 s4+3 58:42

7 Sulfathiazole Forms 2 and 3 s3+2 63:37

8 Sulfathiazole Forms 2 and 4 s4+2 32:68

9 Carbamazepine Forms 1 and 3 cl1+3 72:28

10 Sulfathiazole Forms 2, 3 and 4 S2+3+4 53:18:29
Sulfathiazole Form 2 and Carbamazepine

11 Form 1 s2+cl 50:50
Sulfathiazole Form 3 and Carbamazepine

12 Form 1 s3+cl 50:50
Sulfathiazole Form 4 and Carbamazepine

13 Form 1 s4+cl 61:39
Sulfathiazole Form 2 and Carbamazepine

14 Form 3 s2+Cc3 80:20
Sulfathiazole Form 3 and Carbamazepine

15 Form 3 s3+c3 83:17
Sulfathiazole Form 4 and Carbamazepine

16 Form 3 s4+c3 82:18

Table 25 — Additional Sixteen Samples
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6.8 SIMULATED DATASET

6.8.1 SIMULATED DATA CLUSTERING

The simulated dataset from Chapter 5 was combinddthhe Chapter 6 simulated dataset
to give a 32 sample simulated dataset. The deraimognd MMDS plot for this are shown
in Figure 159.
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Figure 159 - Simulated 32 sample dataset

The red cluster contains sample c1+3, p+cl+c3, 2432, cl, p+cl, s4+cl, cl+s2+s3,
s3+cl, c1+s3+S4, cl+s2+s4, s2+cl, c1+c3+s3 andes4c The yellow cluster contains
samples c3+s2+s3, c3+s3+s4, c3+c3, p+s3, s3 ar®d $he green cluster contains
samples c3+s2+s4, s2+c3, p+s2, s2, s2+3+4 and $BeZaquamarine cluster contains
samples p+s4, s4+2, s4+c3 and s4. The blue clestgains samples ¢3 and p+c3 while
the purple cluster contains sample p2.

The silhouettes are shown in Figure 160.
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Figure 160 — 32 sample Predicted silhouettes

For the red cluster the lower bar, just above Oc@Btains sample c1+c3+s3. The second
bar, just below 0.5, contains sample c1+s2+s3.thine bar, just above 0.5, contains
samples c1+c3+s4, c3+s2+s4, c3+s3+s4, c1 and pecihe yellow cluster all samples

are present in one bar. For the green clusteotherlbar, just above 0.5, represents sample
c3+s2+s4. The middle bar represents samples p2s23snd s3+2. The blue cluster has
all samples in a single bar. For the aguamaringtetuihe lower bar, just above 0.5,

represents sample p+s4.
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The following samples are predicted as clusterggther
e C1+3, p+cl+c3, c1+c3+s2, cl, ptcl, s4+cl, cl+s2338;1, c1+s3+s4, c1+s2+s4,
s2+cl, c1+c3+s3 and cl+c3+s4
e C3+s2+s3, c3+s3+s4, s3+c3, p+s3, s3 and s4+3
o C3+s2+s4, s2+c3, p+s2, s2, s2+3+4 and s3+2
e pt+s4, s4+2, s4+c3 and s4
e c3and p+c3
. p2

6.9 FINDING THE OPTIMAL CLUSTERING

The dataset was run through PolySNAP along witidaal correlation coefficients, as
outlined in Chapter 3.
Figure 161 shows the dendrogram and MMDS plotHerRearson correlation matrix and

Figure 164 the dendrogram and MMDS plot for thegBpmn correlation matrix.
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Figure 161 - Pearson correlation coefficient dendigram and MMDS Plot
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The red cluster contains samples c1, p+cl, c1+81 483, c1+c3+s2, s4+cl, s2+cl and
cl+s2+s4. The yellow cluster contains samples €3 pcl+c3+s3 and c1+c3+s4. The
green cluster contains samples s2, p+s2, s2+c3;+g2+83+2, c3+s2+s3 and c3+s2+s4.
The aquamarine cluster contains samples s2, p3$83sc3+s3+s4, s4+3, s3+c1,
cl+s2+s3 and c1+s3+s4. The blue cluster contamplsea s4, s4+c3, s4+2 and p+s4 and
the purple cluster contains sample p.

The silhouettes for this dataset are shown in Eidit2.
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Figure 162 - Pearson correlation silhouettes

For the red cluster the lower bar, just above @presents sample c1+s2+s4. The next bar,
just below 0.75, represents sample s2+c1. The Hardat 0.75, represents samples c1,
cl+3, s4+cl and c1+c3+s2. The final bar represamtgples p+cl and p+cl+c3. For the
yellow cluster the lower bar just above 0.5 repnéssample c1+c3+s4. For the green
cluster the lower bar, just below 0.75, represeataples c3+s2+s3 and c3+s2+s4. For the
aquamarine cluster the lower bar, just above @frasents sample s3+cl while the middle

bar, just below 0.75, represents samples s4+3 26153 and c1+s3+s4. For the blue
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cluster the lower bar just below 0.75 representspéa p+s4 while the middle bar at 0.75
represents samples s4+2 and s4+c3.
The fuzzy clustering is shown in Figure 163 witk ttumerical results in Table 26.
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Figure 163 - Pearson Fuzzy Clustering derived fronCorrelation Coefficient

The first fuzzy clustering chart represents samgB3x1 and c1+c3+s4. The second chart
represents sample c3+s2+s3.

For the table of results, column 1 represents thiple cluster, column 2 the yellow cluster,
column 3 the blue cluster, column 4 the green elysoblumn 5 the aquamarine cluster and
column 6 the red cluster. The first samples, s3¢ofi|d potentially appear in either the
aquamarine or red cluster, the second sample, e58¢c8ould potentially appear in either
the yellow or red cluster. The third sample, c3®+€ould potentially appear in either the

green or aquamarine cluster.
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1 2 3 4 5 6
cl 0.03 0.07 0 0 0.1 0.88
c3 0.05 0.85 0.06 0.08 0.11 0.05
s2 0.06 0 0.04 0.83 0.16 0.16

s3 0.06 0.09 0.04 0.28 0.83 0
s4 0.03 0.08 0.87 0.09 0.14 0.04
cl1+3 0.05 0.26 0 0.01 0.15 0.84
S2+3+4 0.07 0.06 0.29 0.76 0.36 0.13
s2+cl 0.07 0.03 0.01 0.38 0.21 0.76
s2+c3 0.08 0.15 0.06 0.82 0.19 0.18
s3+2 0.07 0.04 0.05 0.77 0.44 0.11
s3+cl 0.06 0.13 0 0.15 0.67 0.55*

s3+c3 0.07 0.2 0.05 0.28 0.82 0
s4+2 0.05 0.05 0.79 0.37 0.21 0.11

s4+3 0.07 0.12 0.34 0.27 0.76 0
s4+cl 0.05 0.11 0.24 0.03 0.16 0.82
s4+c3 0.04 0.23 0.84 0.1 0.16 0.06
cl+c3+s2| 0.07 0.32 0.03 0.2 0.2 0.77
cl+c3+s3| 0.07 0.73 0.04 0.2 0.43 0.32
cl+c3+s4| 0.06 0.67 0.3 0.09 0.18 0.52*
cl+s2+s3| 0.08 0.08 0.03 0.41 0.69 0.38
cl+s2+s4| 0.08 0.07 0.33 0.38 0.24 0.67
cl+s3+s4| 0.07 0.15 0.29 0.17 0.64 0.48
c3+s2+s3| 0.07 0.2 0.06 0.66 0.55* 0.08
c3+s2+s4| 0.08 0.3 0.36 0.69 0.21 0.17
c3+s3+s4| 0.07 0.27 0.13 0.27 0.79 0.02

p 0.85 0.07 0.12 0.1 0.01 0
p+cl 0.06 0.08 0 0 0.11 0.87
p+cl+c3 0.09 0.25 0 0.02 0.15 0.84
p+c3 0.15 0.83 0.1 0.11 0.1 0.04
p+s2 0.15 0 0.08 0.82 0.15 0.15

p+s3 0.11 0.1 0.06 0.29 0.82 0
p+s4 0.24 0.12 0.77 0.14 0.11 0.03

Table 26 - Pearson Fuzzy Clustering derived from Reson coefficient
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Figure 164 - Spearman correlation coefficient dendrgram and MMDS plot

For the spearman correlation, the red cluster amtamples cl1, p+cl, c1+3, p+cl+c3,
cl+c3+s2, s2+cl, c1+s2+s4, s4+cl, s3+cl, c1+s81342+s3, c1+c3+s3 and cl+c3+s4.
The yellow cluster contains samples c¢3 and p+c8.drkeen cluster contains samples s2,
p+s2, s2+3+4, s3+2, s2+c3, c3+s2+s4, s3, s4+3, 38383, c3+s3+s4, c3+s2+s3, 54,
s4+2 and s4+c3. The aguamarine cluster containpleam and p+s4.

The silhouettes are shown in Figure 165.

19t



=
=

“nIaocoamm T
=

L il P

“nIncsaa-T
=
@

0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

=}
=

“oIaocaoaeoT
=

L il -

“noIocsam-T
=
n

0.0 T T T 0.0 T T T

T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Value Value

Figure 165 - Spearman correlation silhouettes derad from spearman correlation

For the red cluster the lower bar, just below Octhtains samples c1, c1+c3+s3,
cl+c3+s4, c1+s2+s3, c1+s2+s4, c1+s3+s4, p+cl acitte3. For the yellow cluster the
lower bar, just below 0.75, contains sample p+@B.tke green cluster the lower bar just
above 0.25 contains sample p+s2, the second Isaibglow 0.5 contains samples s2, s4
and s4+c3. The third bar, just above 0.5, contsamsples s3, s2+c3, s3+c3, c3+s2+s4,
c3+s3+s4 and p+s3. For the aquamarine clusteptierlbar, just above 0.25, contains
sample p+s4. The fuzzy clustering is shown in FegLB6 with the numerical results in
Table 27.
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Figure 166 - Spearman fuzzy clustering derived fronspearman correlation
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1 2 3 4
cl 0.46 0.55* 0.1 0 <==
c3 0 0.59 0.19 0.26
s2 0.07 0.02 0.19 0.77
s3 0.22 0.11 0.37 0.56* <==
s4 0.01 0.05 0.77 0.33
cl+3 0.44 0.63* 0.16 0.07 <==
S2+3+4 0.1 0.09 0.32 0.78
s2+cl 0.45 0.49 0.2 0.26
s2+c3 0.07 0.22 0.22 0.73
s3+2 0.12 0.06 0.23 0.79
s3+cl 0.46 0.5 0.26 0.26
s3+c3 0.21 0.25 0.39 0.54* <==
S4+2 0.04 0.05 0.72 0.46
s4+3 0.2 0.13 0.47 0.55* <==
s4+cl 0.45 0.52* 0.28 0.13 <==
s4+c3 0.01 0.19 0.74 0.32
cl+c3+s2| 041 0.61* 0.21 0.2 <==
cl+c3+s3| 0.19 0.75 0.23 0.3
cl+c3+s4 0.2 0.76 0.27 0.21
cl+s2+s3| 0.41 0.41 0.29 0.42
cl+s2+s4| 041 0.45 0.33 0.32
cl+s3+s4| 0.42 0.45 0.36 0.31
c3+s2+s3| 0.13 0.23 0.27 0.75
c3+s2+s4| 0.06 0.24 0.31 0.69
c3+s3+s4 0.2 0.28 0.41 0.54* <==
p 0.55 0 0.17 0.23
p+cl 0.49 0.57* 0.14 0.02 <==
p+cl+c3 0.45 0.61* 0.17 0.08 <==
p+c3 0.01 0.57 0.24 0.27
p+s2 0.12 0.02 0.19 0.72
p+s3 0.24 0.11 0.37 0.55* <==
p+s4 0.1 0.04 0.7 0.28

Table 27 - Spearman fuzzy clustering results

For the first plot the lower bar, just above 0.&ntains samples c1, s4+cl and p+cl. The
upper bar contains samples c1+3, c1+c3+s2 and g8cFor the second chart the single
bar represents samples s3, s3+c3, s4+3, c3+s3tg3+al.

For the table of results, column 1 represents ¢ua@arine cluster, column 2 the red
cluster, column 3 the green cluster and columredytiilow cluster.
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Sample c1 and s4+cl and p+cl show a low correlatiinthe red cluster, just above 0.5
and a low correlation with the aquamarine clugtest below 0.5. Samples ¢1+3, c1+c3+s2
and p+cl+c3 show a low correlation with the regtduand a low correlation with the
aqua cluster. Samples s3, s3+c3, s4+3, c3+s3+sp+@mBishow a low correlation with the
yellow cluster.

The Pearson dendrogram again closely matchesftkfa¢ predicted result.

6.10 THIRTY-TWO SAMPLE DATASET CLUSTERING

6.10.1 EXPECTED CLUSTERING

The ideal powder patterns were combined with tealigowder patterns from Chapter 5
and run through PolySNAP to determine the expechestering. The dendrogram and
MMDS plot for the expected clustering are showkigure 167.
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Figure 167 — Expected Clustering Dendrogram and MMI3 Plot

The red cluster contains patterns c1+3, c1+c3+821$c3, cl, s2+cl, c1+c3+s3 and

cl+c3+s4. The yellow cluster contains patternsrmeB@+c3. The green cluster contains

patterns c1+s2+s3, c1+s3+s4, s3+cl, c3+s2+s3, 4283+2, c3+s3+s4, s3+c3, s3, s4+3,
19¢



p+s3, c1+s2+s4, s4+cl, s4+2, s4, s4+c3, c3+s22%43sand s2. The aquamarine cluster
contains patterns p+cl and p. The blue clusteratmmpattern p+s2 and p+s4. The large
green cluster has several tie-bars lying closbdaut-level. As such the silhouettes and
fuzzy clustering for this dataset will be analyséde silhouettes are shown in Figure 168
and the fuzzy clustering in Figure 169 and Table 27
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Figure 168 — Silhouettes

The red cluster has no samples below 0.5. The gilester has three regions below 0.5.
The lowest of these bands, at 0.25, contains pat&2+c3 and s2. The next band contains
pattern p+s3 and the third, at just below 0.5, aimist patterns s3+cl and s2. The yellow
and aquamarine clusters have no patterns below Bebblue cluster has one band below

0.5, containing pattern p+s4.
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Figure 169 - Fuzzy Clustering
1 2 3 4 5
cl+3 0.16 0.22 0.94 0.54* 0.16 <==
cl+c3+s2| 0.17 0.23 0.93 0.58* 0.15 <==
cl+c3+s3| 0.18 0.24 0.87 0.68* 0.17 <==
cl+c3+s4| 0.19 0.22 0.88 0.70* 0.16 <==
c1+s2+s3 0.2 0.18 0.4 0.99 0.16
cl+s2+s4 0.2 0.18 0.44 0.97 0.16
cl+s3+s4 0.2 0.18 0.4 1 0.16
cl 0.15 0.17 0.92 0.52* 0.14 <==
c3+s2+s3| 0.21 0.21 0.39 1 0.17
c3+s2+s4| 0.22 0.23 0.41 0.97 0.17
c3+s3+s4| 0.19 0.19 0.33 1 0.16
c3 0.17 0.88 0.45 0.52* 0.18 <==
p+cl+c3 0.2 0.23 0.93 0.53* 0.22 <==
p+cl 0.26 0.22 0.26 0.38 0.93
p+c3 0.24 0.89 0.41 0.50* 0.28 <==
p+s2 0.86 0.21 0.36 0.67* 0.27 <==
p+s3 0.21 0.16 0.24 0.97 0.21
p+s4 0.87 0.22 0.29 0.62* 0.31 <==
p 0.26 0.21 0.24 0.35 0.93
s2+3+4 0.22 0.17 0.35 1 0.16
s2+cl 0.18 0.17 0.89 0.66* 0.15 <==
s2+c3 0.2 0.22 0.41 0.93 0.16
s2 0.19 0.16 0.34 0.94 0.14
s3+2 0.21 0.17 0.35 1 0.16
s3+cl 0.17 0.17 0.41 0.97 0.15
s3+c3 0.17 0.17 0.3 0.99 0.15
s2 0.16 0.13 0.24 1 0.14
s4+2 0.2 0.16 0.31 1 0.15
s4+3 0.19 0.15 0.29 1 0.15
s4+cl 0.19 0.18 0.41 0.98 0.15
s4+c3 0.2 0.19 0.33 0.99 0.16
s4 0.19 0.15 0.27 1 0.14

Table 28 - Fuzzy Clustering Numerical Values
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Cluster 1 is the blue cluster, cluster 2 is théoyelluster, cluster 3 is the red cluster,

cluster 4 is the green cluster and cluster 5 isatheamarine cluster.

The fuzzy clustering plot contains three regiortse Tirst of these regions corresponds to

patterns c1+3, c1+c3+s2, cl, c3, p+cl+c3 and pHe8se patterns could be clustered as

follows:

Pattern c1+3 could potentially be in the red oegreluster
Pattern c1+c3+s2 could potentially be in the redreen cluster
Pattern c1 could potentially be in the red or grelester
Pattern p+cl+c3 could potentially be in the redreen cluster

Pattern p+c3 could potentially be in the yellongogen cluster.

The second region corresponds to patterns c1+c®#s2, p+s4 and s2+cl. These

patterns could be clustered as follows:

Pattern c1+c3+s3 could potentially be in the redreen cluster
Pattern p+s2 could potentially be in the blue @egrcluster
Pattern p+s4 could potentially be in the blue @egrcluster

Pattern s2+c1 could potentially be in the red eegrcluster

The third region corresponds to pattern c1+c3+&ds pattern could potentially be in

either the red or green cluster.

The cut-level was adjusted downwards and produsedi€ndrogram and MMDS plot

shown in Figure 170.
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Figure 170 - Expected Clustering Dendrogram and MMI3 Plot with Adjusted Cut-Level

The predicted clustering had the following sampglestered together.
e C1+3, p+tcl+c3, c1+c3+s2, cl, ptcl, s4+cl, cl+s2338;1, c1+s3+s4, c1+s2+s4,
s2+cl, cl+c3+s3 and cl1+c3+s4
e C3+s2+s3, c3+s3+s4, s3+c3, p+s3, s3 and s4+3
e C3+s2+s4, s2+c3, p+s2, s2, s2+3+4 and s3+2
e pt+s4, s4+2, s4+c3 and s4
e c3and p+c3

Y

The expected clustering has the following sampliestered together
e cl1+43, cl+c3+s2, p+cl+c3, cl, s2+cl, c1+c3+s3 andAs4
e c3and p+c3
e Ccl+s2+s3, c1+s3+s4, s3+cl, c3+s2+s3, s2+3+4, §3+83+s4, s3+C3, S3, S4+3,
p+s3, cl+s2+s4, s4+cl, s4+2, s4, s4+c3
* C3+s2+s4, s2+c3 and s2
e ptclandp
* p+s2 and p+s4
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As the predicted clustering closely matches thahefPearson dendrogram it shall be used

as the optimal method. The following clusteringxpected.

1) A cluster containing samples c1+3, p+cl+c3, c1+23¢§, p+cl, s4+cl,
cl+s2+s3, s3+cl, cl+s3+s4, c1+s2+s4, s2+cl, cl3cB¥bcl+c3+s4

2) A cluster containing samples c3+s2+s3, c3+s3+s4;3J+s3, s3 and s4+3

3) A cluster containing samples c3+s2+s4, s2+c3, p33252+3+4 and s3+2

4) A cluster containing samples p+s4, s4+2, s4+c3sdnd

5) A cluster containing samples c3 and p+c3

6) A cluster containing sample p

6.10.2 PXRD DATA

The PXRD data were run with no pre-processing appiThe dendrogram and MMDS
plot are shown in Figure 171.
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The dendrogram does not show the expected clugtelire red cluster contains patterns
cl+3, c1+c3+s2, p+cl+c3 and cl+c3+s3 from expeagteder 1, ¢c3 from expected cluster
5 and s3+c3 from expected cluster 2. The yellowstelucontains samples c1+s3+s4 and cl
from expected cluster 1. The green cluster contsansples c1+c3+s4, s4+cl, c1+s2+s3
and cl1+s2+s4 from expected cluster 1, s4 and g2 éxpected cluster 4 and s2+3+4,
p+s2, s2 and s2+c3 from expected cluster 3 antbs3 éxpected cluster 2. The
aquamarine cluster contains samples c3+s2+s3, 483, c3+s3+s4 and c3+s2+s4 from
expected cluster 2, s3+c1 from expected clusterd1s&8+2 from expected cluster 3. The
blue cluster contains samples s2+c1 from expedtestes 1. The purple cluster contains
p+c3 from expected cluster 5 and p from expectestet 6. The striped brown cluster
contains p+s4 from expected cluster 4 and theestrgveen cluster contains s4+c3 from
expected cluster 4.

The MMDS plot does not show clear separation betvike clusters, in particular between
the aguamarine and green clusters. The dendrogaara bcore of 0.59, with more than
half of the samples being misclustered.

The silhouettes for this dataset are shown in [Eidifi2 and the fuzzy clustering in Figure

173 with its numeric data in Table 29.
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None of the clusters have any patterns with sillteuealues above 0.75.

The red cluster has two patterns with values bé&ldw The lowest one is sample s3+c3
and the upper one is c3. The first band above @hfams c1+c3 and cl+c3+s2. The upper
most band contains the remaining samples. The ldvaxl on the green cluster contains
only the s4+2. The next band up contains three Emng2+3+4, s2, c1+s2+s4. The
uppermost band, the only band above 0.5, represgatsamples; s4 and c1+s2+s3. The
remaining band, just below 0.5, contains the remgisamples. For the yellow cluster,
both of the samples are below 0.5. The lower opeegents c1+s3+s4 while the upper
band represents cl. The aquamarine cluster hasshreples appearing below 0.5. The
lowest of these bands contains just c3+s2+s3 Wwémext band containingc3+s3+s4 and
s4+3. The uppermost band contains the p+s3. Thainemg patterns lie in the large band
below this one. The purple cluster contains botitsopatterns in one band that lies just
over 0.5. None of the remaining clusters contawugh patterns for silhouettes to be

generated for them.
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Figure 173 - Fuzzy Clustering for PXRD Data
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1 2 3 4 5 6 7
c1+3 0.12 | 0.12 0.1 0.19 | 016 | 0.24 | 041
cl+c3+s2| 0.12 | 0.11 | 0.11 | 0.17 | 0.16 | 0.26 | 0.42
cl+c3+s3| 0.13 | 0.12 | 0.13 | 0.18 | 0.19 | 0.32 | 0.47 1
cl+c3+s4| 0.13 | 0.12 | 0.14 | 0.17 | 0.16 | 038 | 0.99 | 0.37
cl+s2+s3| 0.13 | 0.14 | 0.17 | 0.19 | 0.18 0.5 1 0.34
cl+s2+s4| 0.13 | 0.13 | 0.16 | 0.18 0.2 0.42 | 0.95 0.5 <==
cl+s3+s4| 0.14 | 0.15 | 0.14 0.9 0.17 | 0.39 | 0.61* | 044 | <==
cl 0.13 | 0.14 | 0.11 0.9 0.15 03 | 052 04 <==
c3+s2+s3| 0.12 | 0.12 | 0.13 | 0.16 | 0.19 | 094 | 0.52* | 0.32 | <==
c3+s2+s4| 0.12 | 013 | 0.15 | 0.17 | 0.16 | 0.99 | 0.61* | 0.29 | <==
c3+s3+s4| 0.11 | 0.11 | 0.12 | 0.13 | 0.16 | 0.99 | 0.42 | 0.22
c3 0.13 | 013 | 0.11 | 0.19 | 0.16 0.3 0.48 1
p+cl+c3| 0.13 | 0.11 | 0.14 | 0.18 | 0.21 | 0.27 | 0.43 1
p+cl 0.13 | 011 | 0.12 | 0.19 | 0.19 | 0.25 | 041 1
p+c3 012 | 011 | 0.16 | 0.16 | 092 | 0.38 | 044 | 042
p+s2 012 | 012 | 0.16 | 017 | 0.18 | 0.39 | 099 | 0.31
p+s3 0.12 | 013 | 0.15 | 0.17 | 0.18 | 0.99 | 0.58* | 031 | <==
p+s4 0.12 | 012 | 088 | 0.16 | 0.24 | 0.43 | 0.59* | 0.34 | <==
p 0.11 0.1 0.16 | 015 | 0.92 | 0.28 | 0.39 | 0.38
s2+3+4 | 0.12 | 0.15 | 0.13 | 0.18 | 0.13 | 0.38 | 0.99 0.3
s2+cl1 | 013 | 088 | 0.11 | 0.17 | 0.11 | 0.35 | 0.52* | 0.28 | <==
s2+¢3 | 013 | 013 | 0.12 | 017 | 0.13 | 0.34 1 0.3
s2 0.12 | 013 | 0.12 | 0.19 | 0.14 0.4 0.98 | 0.28
s3+2 0.11 | 013 | 0.13 | 0.14 | 0.12 | 0.99 0.5 0.22
s3+cl | 012 | 0.13 | 013 | 0.16 | 0.15 | 099 | 0.53* | 0.27 | <==
s3+c3 | 0.12 0.1 0.12 | 0.14 | 015 | 0.26 | 0.38 | 0.98
s3 0.12 | 013 | 0.14 | 0.17 | 0.12 | 0.38 1 0.24
s4+2 0.11 | 0.11 0.1 0.13 0.1 031 | 0.98 | 0.18
s4+3 0.12 | 013 | 0.13 | 0.15 | 0.12 | 0.97 | 0.56* | 0.24 | <==
s4+cl | 014 | 0.15 | 0.14 | 0.22 | 0.15 | 0.42 | 0.99 04
s4+c3 | 088 | 0.12 | 0.11 | 0.16 | 0.13 | 0.29 | 0.46 | 0.35

s4 014 | 015 | 014 | 0.18 | 0.13 | 041 1 0.28
Table 29 — PXRD Fuzzy Clusters Numeric Data

[T

For this dataset cluster 1 is the striped greestetucluster 2 is the blue cluster, cluster 3 is
the striped brown cluster, cluster 4 is the yeltuster, cluster 5 is the purple cluster,
cluster 6 is the aquamarine cluster, cluster lHesgreen cluster and cluster 8 is the red
cluster.

In the first plot the bar at 0.5 contains only s&er This could be present in either the
green or red cluster.

In the second plot, the upper most band, lying pesdw 0.75, contains two samples,

cl+s3+s4, c3+s2+s4. Both of these samples arernpriesne aquamarine cluster.

e Sample cl1+s3+s4 could potentially be in eithernygléow or green cluster

» Sample c3+s2+s4 could potentially be in eitheratpeamarine or green cluster
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The lower band, lying just above 0.5, containsgrattl from the yellow cluster, patterns
c3+s2+s3, p+s3, s3+cl and s4+3 from the aquamealuseer and p+s4 in the striped

brown cluster.
» Sample c1 could potentially be in yellow or greérster
e Sample c3+s2+s3 could potentially be in the aquarearr green cluster
e Sample p+s3 could potentially be in the aquamasingreen cluster
» Sample s3+cl could potentially be in the aguamarirgreen cluster
» Sample s4+3 could potentially be in the aquamasingreen cluster

» Sample p+s4 could potentially be in the stripedidr@r green cluster

Overall the PXRD dataset was not well clustered.

6.10.3 RAMAN DATA

The dendrogram and MMDS plot for the Raman datashosvn in Figure 174. The Raman
data was collected over the ranges determinedciinses. 3.
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Figure 174 — Thirty-Two Sample Raman Dendrogram andMDS Plot



The red cluster contains samples c1, s2+c1, s3rd¢TLh+3 from expected cluster 1 and
sample s3 from expected cluster 2.

The yellow cluster contains samples c1+c3+s2, petts2+s3, c1+s3+s4, cl+s2+s4,
cl+c3+s3, p+cl+c3 and cl+c3+s4 from expected clasteample p which makes up
expected cluster 6, sample p+s2 which makes umppantpected cluster 3 and p+s4 which
makes up part of expected cluster 4 and samplex2e38, c3+s3+s4 and c3+s2+s4 from
expected cluster 2.

The green cluster contains samples s2+3+4, s3ZraBdrom expected cluster 3, s4,
s3+2, s4+2, s2 and s4+c3 from expected clustet+B,s3+c3 from expected cluster 2 and
s4+cl from expected cluster 1.

The MMDS plot shows the clusters to be clearly sajeal from one another. The clusters
are however rather diffuse. The Raman dendrograralszore of 0.69, a particularly poor

result with over two thirds of the samples beingchistered.

The silhouettes for the Raman dataset are shoWigire 175.
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Figure 175 - Silhouettes for Raman Data
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Compared to the PXRD data run, the silhouettesaddave any samples below 0.5. In the
red cluster, the lowest samples, and only one b8ldW is s2+c1, which is the pattern that
appears a large distance from the remainder cfltister.

For the yellow cluster, three of the patterns alew 0.75. These are p+s3, p and p+cl.
The green cluster has no samples below 0.75.

The fuzzy clustering is shown in Figure 176. Theneuc data for fuzzy clustering is

shown in Table 30.
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Figure 176 - Fuzzy Clustering for Raman Data



1 2 3
c1+3 | 0.02 | 0.83 | 0.09
cl+c3+s2| 0.09 | 0.1 | 0.8
cl+c3+s3| 0.08 | 0.19 | 0.76
cl+c3+s4| 0.44 | 0.09 | 0.71
cl+s2+s3| 0.44 | 0.08 | 0.71
cl+s2+s4| 0.44 | 0.08 | 0.71
cl+s3+s4| 0.25 | 0.14 | 0.75
cl 0.02 | 0.82 | 0.09
c3+s2+s3| 0.51* | 0.02 | 0.67 | <==
c3+s2+s4| 0.45 | 0.07 | 0.71
c3+s3+s4| 0.31 | 0.12 | 0.73
c3 0.06 | 0.81 | 0.13
p+cl+c3 | 0.02 | 0.24 | 0.76
p+cl | 0.09 | 0.21 | 0.72
p+c3 0 | 021 | 078
p+s2 | 0.28 | 0.02 | 0.74

p+s3 0 0.12 | 0.73
p+s4 0 0.16 | 0.75
p 0.07 | 0.22 | 0.72

s2+3+4 | 0.79 | 0.08 | 0.19
s2+cl | 0.38 | 0.67 | 0.21
s2+c3 | 0.75 | 0.05 | 0.28

s2 0.77 | 0.05 | 0.26
s3+2 0.79 | 0.05 | 0.22
s3+cl | 0.04 | 0.82 | 0.09
s3+c3 | 0.68 | 0.35 | 0.18

s3 0.76 0.1 0.18
s4+2 0.8 0.06 | 0.22
s4+3 0.78 | 0.08 | 0.17
s4+cl | 0.76 | 0.24 | 0.19
s4+c3 | 0.68 | 0.38 | 0.17

s4 0.79 | 0.08 | 0.19
Table 30— Raman Fuzzy Clusters Numeric Data

Cluster 1 is the green cluster, cluster 2 is tloectaster and cluster 3 is the yellow cluster.
Samples c3+s2+s3 is the only sample representie ifuzzy clustering. This sample

could, according to the numerical data, potentib#jong to either green or yellow cluster.

21C



6.10.4 DSC DATA

The dendrogram and MMDS plot for the DSC data hoeve in Figure 177.
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Figure 177 - Thirty-Two Sample DSC Dendrogram and NMIDS Plot
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The red cluster contains samples c1 and c1+3 feqraated cluster 1, sample p from
expected cluster 6 and c3 from expected clust€hé&.yellow cluster contains samples
cl+c3+s2, c1+c3+s3 and cl+c3+s4 from expectederidsind p+c3 from expected
cluster 5. The green cluster contains samples ¢3823+s2+s4 and c3+s3+s4 from
expected cluster 2. The aquamarine cluster consaimgples c1+s2+s3, p+cl, c1+s2+s4,
s2+cl and s4+cl from expected cluster 1, s3+c3 éxpected cluster 2 and s4+c3 from
expected cluster 4 and s2+c3 from expected cl@st€he blue cluster contains samples
cl+s3+s4 and s3+cl from expected cluster 1, s288#43+2 from expected cluster 3,
s4+2 and s2 from expected cluster 4 and s4+3 afrdisBexpected cluster 2. The purple
cluster contains sample s4 from expected clustéhd.striped brown cluster contains
samples p+s2 from expected cluster 3 and p+s4 éxqmacted cluster 4 and p+s3 from
expected cluster 2. The DSC dendrogram has a e€6.€6, showing that two thirds of
the samples are not clustered as expected.
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The MMDS plot does not show clear separation ofdifferent clusters.

The silhouettes are shown in Figure 178.
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Figure 178 - DSC Silhouettes

The lowest band in the red cluster represents ssypand c1. The second band represents
c1+c3 and the uppermost, the only one above (pbesents c3.

The lowest band in the yellow cluster representslpt3. The middle band represents
cl+c3 +s2 while the uppermost band, again the oné/above 0.5, represents the
remaining samples.

The aquamarine cluster has all bands above 0.5uppermost band represents s3+c3 and
cl+s2+s3. The lower band represents the remaiaimples in the cluster.

The blue cluster has two bands above 0.5, withbemneg exactly on 0.75, and a third band
barely above 0. The band at O represents s3+c&.sEmple lies a long distance from any
other samples in the MMDS plot. The uppermost brapresents c1+s3+s4 and s3+2. The
middle band represents all remaining blue samples.

The green cluster has all samples above 0.75 sdhtauettes will not be examined in any
detail.

The striped brown cluster has two bands aboveThé .lower valued of these contains the

p+s2 and p+s4 samples with the upper valued oneicamg p+s3.
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The fuzzy clustering is shown in Figure 179 andritbmeric data in Table 31.
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1 2 3 4 5 6 7
c1+3 0 0.02 0.09 0.71 0.23 0 0.02
cl+c3+s2| 0.01 0 0.67 0 0.27 0.2 0.02
cl+c3+s3 0 0 0.7 0.01 0.09 0.1 0
cl+c3+s4 0 0 0.69 0.07 0.26 0.24 0.02
Ccl+s2+s3 0 0.24 0.04 0.06 0.67 0.19 0.22
cl+s2+s4 0 0.15 0.03 0.04 0.66 0.12 0.21
cl+s3+s4 0 0 0 0.02 0 0 0.73
cl 0 0.09 0.05 0.64 0.17 0.04 0
c3+s2+s3| 0.07 0.13 0.27 0.01 0.23 0.73 0.12
c3+s2+s4 0.1 0.15 0.24 0 0.14 0.75 0.11
c3+s3+s4| 0.06 0.14 0.24 0.03 0.26 0.73 0.09
c3 0 0.03 0.1 0.74 0.23 0 0.02
p+cl+c3 0 0 0.63 0.24 0.27 0.09 0
p+cl 0 0 0.23 0.25 0.62 0.01 0.12
p+c3 0 0 0.75 0.03 0.04 0.11 0
p+s2 0.05 0.73 0 0.13 0.08 0.06 0.13
p+s3 0.05 0.77 0 0.1 0.14 0.13 0.17
p+s4 0.06 0.7 0 0 0.09 0.1 0.05
p 0 0 0.06 0.63 0.21 0 0.11
s2+3+4 0.08 0.07 0 0 0.07 0.07 0.73
s2+cl 0.01 0.21 0.07 0.18 0.62 0.13 0.17
s2+c3 0 0 0.29 0.18 0.64 0.02 0
s2 0.14 0.12 0 0 0.03 0.08 0.73
s3+2 0.12 0.08 0 0 0.08 0.07 0.76
s3+cl 0 0.14 0.14 0.2 0.54* 0.09 0.32* <==
s3+c3 0 0.04 0.21 0.17 0.71 0.09 0
s3 0.1 0.06 0.01 0 0.13 0.09 0.75
s4+2 0.12 0.09 0 0 0.06 0.07 0.76
s4+3 0.07 0.05 0.01 0 0.1 0.08 0.75
s4+cl 0 0.24 0.05 0.19 0.62 0.14 0.28
s4+c3 0 0 0.31 0.08 0.65 0.2 0
s4 0.81 0 0 0 0 0 0.13

Table 31 - DSC Fuzzy Clusters Numeric Data
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For this dataset cluster 1 is the purple clustester 2 the striped brown cluster, cluster 3
the yellow cluster, cluster 4 the red cluster, ®©ud the aquamarine cluster, cluster 6 the
green cluster and cluster 7 the blue cluster

The only sample present in fuzzy clustering issBecl sample, which is present in the
blue cluster. This is present in both bars in huths.

The sample could potentially be present in eitheraquamarine or blue cluster.

6.10.5 IR DATA

The dendrogram and MMDS plot for the IR data isvain@n Figure 180. The dataset was
collected over the ranges determined in section 6.3
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Figure 180 - Thirty-Two Sample IR Dendrogram and MMDS Plot

The red cluster contains samples ¢1+3, c1, c1+¢3H32l and p+cl+c3 from expected
cluster 1 and samples c3 and p+c3 which make upoteg cluster 5.

The yellow cluster contains samples s2+c1 and s&oci expected cluster 1 and s3+2
from expected cluster 3.

The aquamarine cluster contains the pure piroxisample from expected cluster 6.
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All remaining samples are in the green cluster.

In the MMDS plot, the clusters are mostly diffu$ée yellow cluster lies close to the

green cluster, however is still clearly separafdte dendrogram has a score of 0.62, again

showing a particularly poor result.

The silhouettes for the IR dataset are shown inreid.81.
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Figure 181 - IR Silhouettes

In the red cluster two of the bands lie below h8 two above 0.5. The lowest band

contains c1+3 and cl. The next band contains c®&ndl. The first band above 0.5

contains cl+c3+s2 and p+c3, while the last bandagos p+cl+c3.

The green cluster has no bands below 0.5. Oneedfdihds is exactly on 0.75. The lower

band contains s3+c3, s4+2 and p+s4. The seconddusmains samples cl1+c3+s4,

cl+c3+s3, cl+s2+s4, p+s2, p+s3, s2+c3, s2, s3, s4+81, s4+c3 and s4. The remaining

peak is over 0.75 so will not be discussed.

The yellow cluster has all samples over 0.75 andiaot be discussed.

No samples have been found for this dataset witbtet memberships less than 0.5 so no

fuzzy clustering plot or information will be shown.

Overall the dataset is better clustered than thR[PXRaman or DSC datasets.
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6.10.6 COMBINED CLUSTERING

The combined dendrogram, combining all four dageesyusing INDSCAL, is shown in
Figure 182.
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Figure 182 — Combined Dendrogram

The red cluster contains samples s2+cl, c1+3, s8rdk1 from expected cluster 1 and c3
from expected cluster 5. The yellow cluster corgaamples s2+3+4, s2, s2+c3 and s3+2
from expected cluster 3, s3, s3+c3 and s4+3 fropeeted cluster 2, s4, s4+c3 and s4+2
from expected cluster 4 and s4+cl from expectesteiul. The green cluster contains
samples c1+c3+s2, c1+c3+s3, p+cl and p+cl+c3 fsgracted cluster 1, p from expected
cluster 6 and p+c3 from expected cluster 5. Theaguine cluster contains sample
c3+s2+s4, c3+s3+s4 and c3+s2+s3 from expectedeclBst1+c3+s4, cl+s2+s4,
cl+s2+s3 and c1+s3+s4 from expected clusterl as8 ard p+s2 from expected cluster
3.

The MMDS plot shows the green and aquamarine clusi® being clearly separated. The

red and yellow cluster appear to be close togettwvever if the plot is reoriented they
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can be seen to be clearly separate. The dendrdmaara score of 0.66, again showing two
thirds of the samples to be poorly clustered.

The combined dataset shows improved clustering tveprevious methods. Itis a
massive improvement over the PXRD and DSC methodshows a small improvement
over the Raman and IR dataset.

6.11 THIRTY-TWO SAMPLE DERIVATIVES

The first and second derivative runs for the faltaet were also studied.

6.11.1 FIRST DERIVATIVE RAMAN DATASET

The first derivative Raman dendrogram and MMDS @athown in Figure 183.
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Figure 183 - Thirty-Two Sample Dataset Raman FirsDerivative Dendrogram and MMDS Plot

The red cluster contains samples c1+3, s3+cl, s@rdkl from expected cluster 1 and c3
from expected cluster 5. The yellow cluster cordaamples s2+3+4, s2 and s3+2 from

expected cluster 3, s3 and s3+c3 from expectetecldss4, s4+3 and s4+2 from expected
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cluster 4, s3+c3 and s4+c3 from expected clusterd3p+cl from expected cluster 5. The
green cluster contains samples c1+c3+s2, c1+s21342+s3, c1+s3+s4, c1+c3+s3,
cl+c3+s4 and p+cl+c3 from expected cluster 1 amd2854, c3+s2+s4 and c3+s2+s3
from expected cluster 2. The aquamarine clustetagon samples p+s2 from expected
cluster 3, p+s4 from expected cluster 4, p fromeexgd cluster 6 and p+s3 from expected
cluster 2.

The MMDS plot shows clear separation of the différdusters.

The dendrogram has a score of 0.72. The scorethimnulataset shows poorer clustering

that that seen in the original Raman dataset.

6.11.2 SECOND DERIVATIVE RAMAN DATASET

The second derivative Raman dendrogram and MMDSGigkhown in Figure 184.
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Figure 184 - Thirty-Two Sample Raman Second Derivate Dendrogram and MMDS Plot

At first glance, the second derivative Raman datagpears to be much poorer clustered
than any of those previously studied.
The red cluster contains samples c1, s2+c1, s3rd¢Lh+3 from expected cluster 1 and c3

from expected cluster 5. The yellow cluster sampgisc3 from expected cluster 2, s4+cl
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from expected cluster 1 and s4+c3 from expectesteiul. The green cluster contains
samples s2+3+4 and s3+2 from expected cluster @)d34+3 from expected cluster 2
and s4 from expected cluster 4. The aquamaringéeclaentains samples s2+c3 from
expected cluster 3. The blue cluster contains sesrgf2 from expected cluster 3. The
purple cluster contains samples 4+2 from expediestar 4. The striped brown, striped
light green, striped dark green cluster containsdlsamples that are part of expected
cluster 1. The striped blue cluster contains samplers2+s3, c1+s2+s4, c1+s3+s4 and
p+cl+c3 from expected cluster 1. The striped puchlster contains sample p+cl from
expected cluster 1. The striped red cluster costsample c3+s2+s4 and c3+s3+s4 from
expected cluster 2 and p+c3 from expected clust€hé& orange cluster contains sample
c3+s2+s3 from expected cluster 2. The pale yellmster contains sample p+s2 from
expected cluster 3 while the pale green clustetatas sample p+s4 from expected cluster
4 and p+s3 from expected cluster 3. The pale aquaenéluster contains the lone
piroxicam sample from expected cluster 2.

The MMDS plot appears poorly resolved however,lesady stated; raising the cut-level
will merge many of these into larger clusters. $Shere for this dataset is 0.69, signifying a
small improvement over the first derivative Ramatedet.

Although this dataset appears to be poorly cludtatés not as bad as it initially appears.
Raising the cut-level will merge many of the clustand give a result similar to the

original and first derivative Raman datasets. Thishown in Figure 185.
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Figure 185 - Thirty-Two Sample Raman Second Derivate Dendrogram and MMDS Plot with
Adjusted Cut-Level

The red cluster now contains samples c1+3, c1,l5Z#+cl and s3+cl from expected
cluster 1, sample s3+c3 from expected cluster 2sdnd3 from expected cluster 4. The
yellow cluster now contains samples s2+3+4, s2¢32nd s3+2 from expected cluster 3,
s3 and s4+3 from expected cluster 2, s4 and s4f2 &xpected cluster 4. The green
cluster now contains samples cl1+c3+s2, c1+c3+s3;3#Hs4, c1+s2+s3, c1+s2+s4,
c1+s3+s4 and p+cl+c3 from expected cluster 1, c8and c3+s2+s4 from expected
cluster 2 and sample p+c3 from expected clust&€h®&.aquamarine cluster contains
sample c3+s2+s3 from expected cluster 2. The bligter contains samples p+s2 from
expected cluster 3, p+s4 from expected clustet43 from expected cluster 2 and p from
expected cluster 6.

The dendrogram now appears to be much more cldafiged with the newly merged
green cluster in particular being much clearer. dtmmbination of many of the smaller
clusters results in an improvement in the dendmgsaore which now lies at 0.53, a much
improved results with almost half of the samplew h@ing clustered as expected.
Overall the clustering is not as good as that gedme first derivative or original Raman

data.
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6.11.3 FIRST DERIVATIVE IR DATASET

The first derivative IR dendrogram and MMDS plo¢ ahown in Figure 186.

2
0.0, 0.0
® (]
y -]
%y J)OOO I
. __(ﬂ %
J
0.2 “ﬁ l0.2
@
® 2 %o
5
i
m -4 L0.4
i
|
a L
r
I OO OOt oy USRS SRR U NPT PRORRUSOTRPRIN BUSURORRRPR
t
0.6 L0.6
il
0.8
1.0 .
F
| iy | ]
c C T ¢ 1 3 1T 1 1 3 3 1 s § § § 5§ § § § § S5 S5 5 8§
13EEE+1+++++++EE+22422344233344p
+ c c c ¢ C S € S § S § § § § § + + + + 0+ + + O+ o+
3 1 3 1 3 3 3 3 3 2 2 2 3 2 2 43 2 ¢ c c 2 ¢cc ¢ 3
+ + + 0+ + + O+ O+ 0+ + + 3 31 1T 3 1
[ s 5 5 5§ S5 § 5 § s 4
3 2 3 4 4 4 3 3 A4 4

Figure 186 - Thirty-Two Sample First Derivative IR Dendrogram and MMDS Plot

The red cluster contains sample c1+3 from expedtester 1 while the yellow cluster
contains sample c3 from expected cluster 5. Thergctuster contains sample p+cl+c3
and p+cl from expected cluster 1 and p+c3 from ebgokecluster 5. The aquamarine
cluster contains sample cl1+c3+s2 from expectedaridsand the blue cluster contains
sample c1 from expected cluster 1. The purple efustintains samples c1+c3+s3,
cl+s3+s4, cl+s2+s3, cl+s2+s4 and cl+c3+s4 fronceegbeluster 1, samples c3+s3+s4,
p+s3 and c3+s2+s4 from expected cluster 2 and fres2expected cluster 3. The striped
brown cluster contains samples s2+3+4, s2+c3 aifieRexpected cluster 3, s4+2, s4+c3
and s4 from expected cluster 4 and s3 from expeadtster 2. The striped light green
cluster contains samples s2+c1, s4+cl and s3+oldxpected cluster 1, s3+2 from
expected cluster 3 and s3+c3 and s4+3 from expetister 2. The striped dark green

cluster contains the pure piroxicam sample fromeeigd cluster 6.
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The MMDS plot shows clear separation of the clissteowever the striped light green
cluster is rather diffuse.

The dendrogram now has a score of 0.69, worsdliadl.62 seen for the original IR
result.

6.11.4 SECOND DERIVATIVE IR DATASET

The second derivative IR dendrogram and MMDS pletslnown in Figure 187.
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Figure 187 - Thirty-Two Sample Second Derivative IRDendrogram and MMDS Plot

The red cluster contains samples c1+3, s3+c1, sdndk2+cl from expected cluster 1
and s3+2 from expected cluster 3 and s3+c3 and §dtrBexpected cluster 2. The yellow
cluster contains samples s2+3+4, s2+c3 and s2dpgracted cluster 3, s4+2 and s3 from
expected cluster 2 and s4 from expected clust€énd green cluster contains sample s4+c3
from expected cluster 4 while the aquamarine ciustatains sample c1+c3+s2 from
expected cluster 1. The blue cluster contains sl +c3+s3, c1+c3+s4, c1+s2+s3,
cl+c3+s4 and cl+s2+s4 from expected cluster 1,238 p+s3 and c3+s2+s4 from
expected cluster 2, p+s4 from expected clusterdpais2 from expected cluster 3. The
purple cluster contains samples p+cl+c3 and p+ofh &xpected cluster 1 and p+c3 from

expected cluster 5. The striped brown cluster ¢ostide pure piroxicam sample from
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expected cluster 6, the striped light green clustetains sample c1 from expected cluster
1 and the striped dark green cluster contains sag$from expected cluster 5.

The MMDS shows the blue and yellow clusters toifhetlty grouped. The red cluster is
much more diffuse. The dendrogram now has a sddde/@, a worse result than that seen

for either the first derivative or original IR dats.

6.12 FLOWCHART

All of the possible combinations of pre-processiveye applied to the PXRD dataset and
the results compared to the optimal clustering. Atm@ber of misplaced samples is shown
in Table 32.

Score

no pre-processing 0.40
denoise 0.44
background 0.48
background and denoise 0.48

Table 32 - Misplaced samples for 32 samples datt

As can be seen no pre-processing, gives the optesalt with denoise following with two
more misplaced samples. Remove background and eebamkground and denoise both
have equal number of misplaced samples.

The flowchart for this result is shown in Figure818

228



If bad
Run data with dendrogram Run data with only
denoise applied

no pre-processing

If bad

If dendrogram dendrogram

is good

h A h J

Run data with
background removal

Optimal clustering found

F 3

If bad
dendrogram

Run with background
removal and denoise

Figure 188- Flowchart for 32 sample dataset

This flowchart again shows that running a datastt mo pre-processing applied gives
optimal results however if a ‘bad’ dendrogram, lasaaly defined, is the result then the

flowchart should again be preceded through.

6.13 QUANTITATIVE ANALYSIS

The materials were compared using the PolySNAP alaanalysis mode. The results of
this are shown in Table 33. The data was compasidihe SVD method.
The results, with pre-processing applied to the,datshown in Table 34 and 35.
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PXRD | Samples | Actual Predicted |Difference| Raman | Samples | Actual Predicted |Difference| IR | Samples Actual Predicted Difference
p+cl 13:87 52:48 39.00 p+cl 13:87 63.9:36.1 50.90 p+cl 13:87 72.9:27.1 58.90
p+c3 28:72 82.4:17.6 54.40 p+c3 28:72 85.8:14.2 56.80 p+c3 28:72 73.7:26.3 45.70
p+s2 22:78 31.6:68.4 9.60 p+s2 22:78 16.8:83.2 5.20 p+s2 22:78 75.7:24.3 53.70
p+s3 16:84 30.3:69.7 14.30 p+s3 16:84 57.4:42.6 41.40 p+s3 16:84 74.6:25.4 58.60
p+s4 47:53 37.1:62.9 6.00 p+s4 47:53 63.2:36.8 16.20 p+s4 47:53 77.1:22.9 30.10

cl+c3+s2| 48:32:22 | 3.4:88.9:7.7 38.60 cl+c3+s2| 48:32:22 |140.9:47.5:11.7) 14.30 cl+c3+s2 48:32:22 67:18.7:14.3 13.33
cl1+c3+s3| 23:47:29 {1.9:76.5:21.6| 50.67 cl+c3+s3| 23:47:30 | 50.3:47.4:2.2 | 18.97 cl+c3+s3 23:47:29 14.4:19.6:65.9 24.30
cl+c3+s4| 33:33:33 | 6:8.9:85.2 33.87 cl+c3+s4| 33:33:33 | 45.7:43:11.3 14.80 cl+c3+s4 33:33:33 36.9:0.8:62.3 21.80
cl+s2+s3| 26:31:41 {0.4:35.4:64.2| 17.73 Ccl+s2+s3| 26:31:41 | 4.7:67.6:27.8 | 25.37 cl+s2+s3 26:31:41 17.9:43.7:38.5 7.77
cl+s3+s4| 33:33:33 | 43.4:32.6:24 6.60 cl+s3+s4| 33:33:33 | 7.8:36.5:55.6 | 17.10 cl+s3+s4 33:33:33 8.1:35.8:56.1 9.23
cl+s2+s4| 33:33:33 [20.9:32.6:55.5| 11.67 cl+s2+s4| 33:33:33 | 5.6:60.4:34.1 | 18.97 cl+s2+s4 33:33:33 11.4:50.9:37.6 14.70
c3+s2+s3| 15:46:39 | 14.9:64.1:21 | 12.07 c3+s2+s3| 15:46:39 | 3.6:67.5:28.9| 14.33 c3+s2+s3 15:46:39 19.5:77:3.4 23.7
Cc3+s3+s4| 24:66:10 | 3.4:35.2:61.5| 34.30 c3+s3+s4| 24:66:10 | 5.3:38.9:55.8 | 24.53 c3+s3+s4 24:66:10 10.9:33.9:55.2 13.47
Cc3+s2+s4| 24:45:31 | 0.2:43.2:56.6 | 16.73 c3+s2+s4| 24:45:31 | 4.6:36.7:58.8 | 18.50 c3+s2+s4 24:45:31 2.5:12.9:84.6 35.73
p+cl+c3 | 12:66:22 | 33.9:9.4:56.8| 39.77 p+cl+c3 | 12:66:22 |10.8:46.3:42.9| 13.93 p+cl+c3 12:66:22  |48.7:33.7:17.6| 24.47
Mean absolute difference 25.69 Mean absolute difference 23.42 Mean absolute difference 29.03
RMS difference 6.63 RMS difference 6.05 RMS difference 7.50
Max absolute difference 28.71 Max absolute difference 33.38 Max absolute difference 29.87
Min absolute difference 19.69 Min absolute difference 18.22 Min absolute difference 21.27

Table 33 — Data from Mixtures in Manual Analysis Male
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Processed Processed Processed

PXRD| Samples | Actual Predicted 1 |Difference 1|Raman| Samples | Actual Predicted 1 |Difference 1| IR | Samples | Actual Predicted 1 | Difference 1
p+cl 13:87 50.2:49.8 37.20 p+cl 13:87 34.3:65.7 21.30 p+cl 13:87 34.3:65.7 21.30
p+c3 28:72 77.3:22.7 49.30 p+c3 28:72 62:38 34.00 p+c3 28:72 62:38 34.00
p+s2 22:78 22.2:77.8 0.20 p+s2 22:78 0.6:99.4 21.40 p+s2 22:78 0.6:99.4 21.40
p+s3 16:84 22.9:77.1 6.90 p+s3 16:84 53.2:46.8 37.20 p+s3 16:84 53.2:46.8 37.20
p+s4 47:53 36:64 11.00 p+s4 47:53 57:43 10.00 p+s4 47:53 57:43 10.00
cl+c3+s2| 48:32:22 | 14.3:79.9:5.8 32.60 cl+c3+s2| 48:32:22 | 6.7:44.6:48.2 26.70 cl+c3+s2| 48:32:22 | 6.7:44.6:48.6 41.50
cl+c3+s3| 23:47:29 | 1.1:71.7:17.2 19.47 cl+c3+s3| 23:47:29 | 51.4:48.6:0 17.67 cl+c3+s3| 23:47:29 | 49.9:47.8:2.3 18.13
cl+c3+s4| 33:33:33 | 4.9:8.9:86.2 35.13 cl+c3+s4| 33:33:33 | 50.9:48.2:0.9 21.73 cl+c3+s4| 33:33:33 | 50.9:58.2:0.9 36.07
cl+s2+s3| 26:31:41 | 3.2:34.5:62.4 15.90 cl+s2+s3| 26:31:41 | 64.9:26:9.1 25.27 cl+s2+s3| 26:31:41 | 64.3:26:9.1 25.07
cl+s3+s4| 33:33:33 |38.7:36.8:24.5 6.00 cl+s3+s4| 33:33:33 | 57.2:4.4:38.4 19.40 cl+s3+s4| 33:33:33 | 57.2:4.4:38.4 19.40
cl+s2+s4| 33:33:33 |17.1:30.4:52.5 12.67 cl+s2+s4| 33:33:33 |41.8:34.6:23.6 6.60 cl+s2+s4| 33:33:33 |41.8:34.6:23.6 6.60
c3+s2+s3| 15:46:39 | 1.4:76.5:22 20.37 c3+s2+s3| 15:46:39 | 39:20.6:40.4 16.93 c3+s2+s3| 15:46:39 | 39:20.6:40.4 16.93
c3+s3+s4| 24:66:10 | 4.9:36.1:59 32.67 Cc3+s3+s4| 24:66:10 |41.8:13.8:44.4 34.80 Cc3+s3+s4| 24:66:10 |41.8:44.4:13.8 14.40
Cc3+s2+s4| 24:45:31 | 7:38.6:54.4 15.60 Cc3+s2+s4| 24:45:31 {45.9:35.3:18.9 14.57 c3+s2+s4| 24:45:31 {45.9:35.3:18.9 14.57
p+cl+c3 | 12:66:22 | 33.9:9.4:56.8 37.77 p+cl+c3 | 12:66:22 | 5.2:48.8:46 16.00 p+cl+c3 | 12:66:22 | 5.2:48.8:46 12.03

Mean absolute difference 22.18 Mean absolute difference 21.57 Mean absolute difference 21.91

RMS difference 5.73 RMS difference 5.57 RMS difference 5.66

Max absolute difference 27.12 Max absolute difference 15.63 Max absolute difference 19.59

Min absolute difference 21.98 Min absolute difference 14.97 Min absolute difference 15.31

Processed Predicted 1 - background remove and smoothed

Table 34 - Data from Mixtures in Manual Analysis Made with Pre-processing 1
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Processed Processed Processed

PXRD| Samples | Actual Predicted 2 |Difference 2| Raman | Samples | Actual Predicted 2 |Difference 2| IR | Samples | Actual Predicted 2 | Difference 2
p+cl 13:87 52:48 39.00 p+cl 13:87 63.7:36.3 51.70 p+cl 13:87 36.3:63.7 23.30
p+c3 28:72 82.4:17.6 54.40 p+c3 28:72 85.7:14.3 57.70 p+c3 28:72 73.8:26.2 45.80
p+s2 22:78 31.6:68.4 9.60 p+s2 22:78 16.6:83.4 5.40 p+s2 22:78 75.8:24.2 53.80
p+s3 16:84 30.3:69.7 14.30 p+s3 16:84 57.2:42.8 41.20 p+s3 16:84 74.6:25.4 58.60
p+s4 47:53 37.1:62.9 9.90 p+s4 47:53 63.1:36.9 16.10 p+s4 47:53 77.1:22.9 30.10
cl+c3+s2| 48:32:22 | 9.8:68.8:3.4 31.20 cl+c3+s2| 48:32:22 (41.6:47.6:10.8| 11.07 cl+c3+s2| 48:32:22 |67.3:18.4:14.3 13.53
cl+c3+s3| 23:47:29 | 1.9:76.5:21.6 19.33 cl+c3+s3| 23:47:29 | 50.3:47.4:2.2 18.17 cl+c3+s3| 23:47:29 | 14.6:19.4:66 24.33
cl+c3+s4| 33:33:33 | 4:8.9:85.2 34.80 cl+c3+s4| 33:33:33 | 45.6:43:11.4 14.73 cl+c3+s4| 33:33:33 | 37.1:0.5:62.4 22.15
cl+s2+s3| 26:31:41 | 0.4:35.4:64.2 17.73 cl+s2+s3| 26:31:41 | 4.7:68.1:27.2 24.07 cl+s2+s3| 26:31:41 |21.2:39.5:39.3 5.00
Ccl+s3+s4| 33:33:33 | 43.4:32.6:24 6.60 cl+s3+s4| 33:33:33 | 7.8:36.5:55.7 17.13 Ccl+s3+s4| 33:33:33 |10.2:34.6:55.1 15.50
cl+s2+s4| 33:33:33 |20.9:23.6:55.5 14.67 cl+s2+s4| 33:33:33 | 5.6:60.7:33.7 18.60 cl+s2+s4| 33:33:33 |11.3:52.5:36.2 14.80
c3+s2+s3| 15:46:39 | 14.9:64.1:21 12.07 c3+s2+s3| 15:46:39 | 3.7:68:28.3 14.67 c3+s2+s3| 15:46:39 | 18.7:80.6:0.7 25.53
c3+s3+s4| 24:66:10 | 3.4:35.1:61.5 34.33 c3+s3+s4| 24:66:10 | 5.2:38.9:55.9 30.60 c3+s3+s4| 24:66:10 |10.8:34.1:55.1 30.07
c3+s2+s4| 24:45:31 | 0.2:43.1:56.7 17.13 c3+s2+s4| 24:45:31 | 4.6:59.1:36.3 12.87 Cc3+s2+s4| 24:45:31 | 4:6.2:89.8 59.87
p+cl+c3 | 12:66:22 | 38.9:3.4:57.7 41.73 p+cl+c3 | 12:66:22 |10.9:46.3:42.8 13.87 ptcl+c3 | 12:66:22 | 56.6:35:8.5 29.70

Mean absolute difference 23.79 Mean absolute difference 23.19 Mean absolute difference 30.14

RMS difference 6.14 RMS difference 5.99 RMS difference 7.78

Max absolute difference 30.61 Max absolute difference 3451 Max absolute difference 29.73

Min absolute difference 17.19 Min absolute difference 17.79 Min absolute difference 25.14

Processed Predicted 2 - smoothed

Table 35 - Data from Mixtures in Manual Analysis Made with Pre-processing 2
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For PXRD, a predicted result is said to closelyahdhe actual values if the values are
within 10% of each other in either direction.

For the PXRD data, two samples (p+s2 and c1l+s3edgly match the actual results. By
applying smoothing and removing the background ithireases to four samples (p+s2,
p+s3, p+s4 and c1+s3+s4). With only smoothing a&ppliwo samples (p+s2, p+s4) now
match.

For the Raman data, one of the samples (p+s2) emtthbackground removal and
smoothing are applied, this increases to two sasr(pies4 and c1l+s2+s4). Sample p+s2 no
longer matches, and indeed is now reported as ladmngst entirely pure sulfathiazole

form 2. With just smoothing applied, one samples@matches. If the allowed variance is
extended to 15%, five samples now match (p+s2, 8ts2, c1+c3+s4, c3+s2+s3 and
p+cl+c3) when no pre-processing is applied. Witbatming and background removal
applied, samples p+s4, c1+s2+s4 and c3+s2+s4 métichhe actual result. With only
smoothing applied, sample p+s2 once again matthestual composition along with
samples c1+c3+s2, c1+c3+s4, c3+s2+s3, c3+s2+sp-arid-c3. The two pre-processing
options also highlight the massive difference tratkground removal can make to
composition prediction. Sample p+s2 has already logscussed, however samples
cl+s2+s3, c1+s3+s4, cl+s2+s4, c3+s2+s3, c3+s3+tkd3ts3+s4 all exhibit similar large
shifts in their calculated compositions.

The IR data initially has two samples (c1+s2+s3 @hes3+s4) which match the actual
composition. For the first pre-processing optiompkes p+s4 and c1+s2+s4 match. For
the second pre-processing option, sample cl+s2ew3matches. If the allowed variance
is extended to 15%, five samples (c1+c3+s2, c1+3235+s3+s4, cl+s2+s4 and
c3+s3+s4) now match for the unprocessed datapfiviee samples now match for the first
pre-processing option (p+s4, c1+s2+s4, c3+s3+s4s284 and p+cl+c3). For the second
pre-processing option, cl+c3+s2, c1+c3+s3 and cidsssdre the only samples which
closely match. As with the Raman data, the IR dbgarly highlights the effect that

background removal can have on the compositionigiied.
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6.14 CONCLUSIONS

The sulfathiazole/carbamazepine/piroxicam datazegfiven further confirmation
that IR and DSC data can be successfully usedRathSNAP alongside PXRD
data. The usefulness of Raman data has also bebarfaonfirmed as a valuable
technique to be used in conjunction with PXRD data.

The DSC data has again been shown to not matcélgladth the expected
clustering.

For this dataset the use of INDSCAL to combine skettahas also been proven to
be effective as it yielded an improved result dat shown in the individual
datasets, even when these combinations includeabieer PXRD and DSC
datasets.

The importance of choosing the optimal pre-procegeptions for composition
determination is shown here. For Raman data rergati@ background appears,
for this dataset, to give optimal results. For BReda variance of 15% rather than
the 10% as used for PXRD data is preferable asiigeither background removal
or smoothing on the dataset.

For the smaller dataset background removal withititrout denoising and applying
no pre-processing both yield the optimal clustering

For the larger dataset no pre-processing givesytimal clustering.



CHAPTER 7 BULK MATERIAL DATASET

7.1 THE DATASET

The bulk materials dataset contains six pure nageand a further eight mixtures of these
materials. The dataset composition is summarisdaébie 36.

For this dataset, PXRD data was collected on alipared X'pert Pro, flat plate, over a
range of 5-35°. A different instrument was usedhasoriginal was not accessible at that
time. Raman data was collected on a Witec alphaxdtDa 785nm laser and an x10
objective lens with 0.25 aperture and 300g/mm gia&C data was collected on a TA
Instruments Q100. IR data was collected on a JAGTAR 4100.

Sample Name In
Number Sample Name PolySNAP
1 Malonic acid MA
2 Methyl urea MU
3 Urea U
4 salicylic acid SA
5 Oxalic acid dihydrate OA
6 Zinc nitrate hexahydrate ZN
7 Methyl urea + urea MU+U
8 Methyl urea + salicylic acid MU+SA
9 Methyl urea + zinc nitrate MU+ZN
10 Urea + salicylic acid U+SA
11 Urea + oxalic acid dihydrate U+OA

Salicylic acid + oxalic acid
12 dihydrate SA+OA
13 Salicylic acid + zinc nitrate SA+ZN
Oxalic acid dihydrate + zinc
14 nitrate OA+ZN

Table 36 — Bulk Material Diaset
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7.2 DATASET CLUSTERING

7.2.1 EXPECTED CLUSTERING

Ideal mixture patterns were again created by comdithe pure patterns in the correct

ratio. The dendrogram and MMDS plot for this arevsh in Figure 189.
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Figure 189 - Dendrogram and MMDS Plot for ExpectedClustering

The red cluster contains sample MA while the yeltduster contains sample U. The green
cluster contains samples MU+SA, SA, U+SA, SA+ZN &#d-OA. The aquamarine
cluster contains samples MU+U and MU. The bluetelusontains samples MU+ZN and
ZN. The purple cluster contains samples OA+ZN, @A Bl+0A.

The silhouettes for this dataset are shown in Eidi@0.
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Figure 190 - Silhouettes

None of the regions in the silhouettes are beldw Dhere is no fuzzy clustering for the
dataset so the initial clustering shall be usec fBiowing clustering is therefore expected
to be as follows:

1) A cluster containing sample MA

2) A cluster containing sample U

3) A cluster containing samples MU+SA, SA, U+SA, SA+ZNd SA+OA

4) A cluster containing samples MU+U and MU

5) A cluster containing samples MU+ZN and ZN

6) A cluster containing samples OA+ZN, OA and U+OA
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7.2.2 PXRD DATA
The dendrogram and MMDS Plot are shown in Figurk 19
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Figure 191 - Bulk Dataset PXRD Dendrogram and MMDSPlot

The red cluster contains the pure malonic acid $ampich was expected to be alone in
cluster 1. The yellow cluster contains sample MUclhs in expected cluster 4 and
MU+SA which is in expected cluster 3. The greerstducontains sample MU+U which is
in expected cluster 4, U+SA which is in expectegstdr 3 and U which is predicted to be
alone in expected cluster 1. The aquamarine clastaiains sample OA+ZN which is
predicated to be in expected cluster 6. The blustet contains samples OA and U+OA
which are predicted to be in cluster 6. The pughlster contains samples SA+OA and SA
from expected cluster 3. The striped brown clustertains sample SA+ZN from expected
cluster 3 and ZN from expected cluster 5. The strigreen cluster contains MU+ZN from
expected cluster 5.

The MMDS plot shows the clusters to be very diffuBlee green cluster, despite all of its

tie-bars being outside the limits of the numbeestimated clusters, is particularly diffuse.
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The score for this dendrogram is 0.43, showing &lpgtroximately two fifths of the dataset

is incorrectly clustered.

The silhouettes for this dataset are shown in Eidi92.
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Figure 192 - PXRD Silhouettes

All but the blue clusters silhouettes have the damall present in a single band. The blue
cluster has the pure oxalic acid sample presetemand below 0.5 and the urea/oxalic
acid mixture present in the band above 0.5. Thexaa fuzzy clusters for the dataset. This
lack of fuzzy clusters, combined with only one s&meing in a separate region in its

silhouette, implies that the clustering is unambiggifor this dataset.
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7.2.3 PXRD RE-RUN

Some of the samples have noticeable preferredtatien peaks present, for example

samples MU, U+OA and U+SA as shown in Figure 193.
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Figure 193 - PXRD Preferred Orientation

These peaks have been manually reduced in sizesthe other peaks are not
overwhelmed by them to see what effect this hatherdatasets clustering.
The re-run PXRD dendrogram and MMDS plot, with pred¢d orientation peaks manually

removed, are shown in Figure 194.
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Figure 194 - Bulk Dataset PXRD Dendrogram and MMDSPlot re-run
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The red cluster contains the pure malonic acid $amvhich is expected to be alone in
predicted cluster 1. The yellow cluster contaimagia@ MU+SA which was expected to
appear in predicted cluster 3. The green clustetaiios samples MU+U and MU which
are predicted to make up cluster 4. The aquamatirséer contains the pure urea sample
which is expected to appear alone in cluster 2.[dlhe cluster contains sample OA+ZN
which is expected to appear in cluster 6. The lpurfuster contains sample OA which is
expected to appear in cluster 6. The striped browster contains sample U+OA from
expected cluster 6. The striped green cluster amnsamples SA+OA, SA and U+SA
from expected cluster 3. The striped dark greestefucontains sample SA+ZN from
expected cluster 3 and ZN from expected clust@hg. striped blue cluster contains the
methyl urea/zinc nitrate mixture from expected wHus.

The MMDS plot shows the clusters to again be défusth some intermixing between the
light and dark striped green clusters. The rerurddegram has a score of 0.21, showing a

substantial improvement in clustering over thanseehe original PXRD dendrogram.
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7.2.4 RAMAN DATA
The dendrogram and MMDS Plot for the Raman dataslaoe/n in Figure 195.
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Figure 195 - Bulk Dataset Raman Dendrogram and MMD%lot
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The red cluster contains the pure malonic acid $afnpm expected cluster 1. The yellow
cluster contains samples MU+SA, SA, SA+OA, SA+ZN &i+SA which all make up
expected cluster 3, U+OA and OA+ZN from expectesier 6, MU+ZN and ZN from
expected cluster 5 and MU from expected clustdihé. green cluster contains sample OA
from expected cluster 6 while the aquamarine ctugiatains the pure urea sample which
was expected to be alone in expected cluster 2bltgecluster contains sample MU+U
from expected cluster 4.

The MMDS plot is much more tightly clustered thhe bne for the PXRD plot. This is,
however, a common occurrence for Raman datase¢sR@man dendrogram has a score
of 0.29, a small decline in clustering correctriess that seen in the rerun PXRD

dendrogram.



The silhouettes for this dataset are shown in Eidi96.
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Figure 196 — Raman Silhouettes

As the yellow cluster is the only cluster to contaiore than one sample, it is also the only
cluster to have silhouettes.

The lowest band, at 0.25, contains the zinc nisataple. The second band, slightly lower
than 0.5, contains the methyl urea sample, sati@did/zinc nitrate and the urea/oxalic

acid sample. The uppermost band contains the rémgasamples in the yellow cluster.
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7.2.5 DSC DATA
The DSC dendrogram and MMDS plot are shown in FEdL87.
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Figure 197 - Bulk Dataset DSC Dendrogram and MMDS Bt

The red cluster contains sample MA from expectedtel 1, U from expected cluster 2,
SA, SA+OA and U+SA from expected cluster 3 and @48 B+OA from expected cluster
6. The yellow cluster contains samples MU+ZN andfehin expected cluster 5, MU from
expected cluster 4, OA+ZN from expected clusten® 8A+ZN from expected cluster 3.
The green cluster contains sample MU+SA from exgiectuster 3 while the aguamarine
cluster contains sample MU+U from expected cluéter

The MMDS plot shows the first three samples (regqdift to right in the MMDS plot) in
the yellow cluster to be tightly grouped with tleerainder diffuse. The red cluster is
highly diffuse. The DSC dendrogram has a score®EBowing half of the samples being
misclustered.

The silhouettes are shown in Figure 198.
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Figure 198 - DSC Silhouettes

For the red cluster the lowest band, which lieewed.25, contains the pure oxalic acid
and the urea/oxalic acid mixture. The band thatdie 0.25 contains the pure salicylic acid
sample, with the remaining red cluster samplesgogirthe final band.

For the yellow cluster, the lowest band, immediatdove 0, contains the salicylic
acid/zinc nitrate mixture. The next band contalrespiure zinc nitrate sample while the
band which lies just above 0.25 contains the pwthgh urea sample. The remaining
yellow cluster samples are present in the finadban

No samples have been found for this dataset withiet memberships less than 0.5 so no
fuzzy clustering plot or information will be shown.

The cut-level for this dendrogram was adjusted deands. The resulting dendrogram and

MMDS plot can now be seen in Figure 199.
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Figure 199 - Bulk Dataset DSC Dendrogram and MMDS Bt

The red cluster contains sample MA from expectedtel 1, U from expected cluster 2
and SA from expected cluster 3. The yellow clustartains samples SA+OA and U+SA
from expected cluster 3 and U+OA from expectedtelus. The green cluster contains
sample OA from expected cluster 6. The aquamaltimster contains samples MU+ZN
from expected cluster 5, MU from expected clustand OA+ZN from expected cluster 6.
The blue cluster contains sample ZN from expechlaster 5. The purple cluster contains
sample SA+ZN from expected cluster 3. The strip@avib cluster contains sample
MU+SA from expected cluster 3 while the stripedegreluster contains sample MU+U
from expected cluster 4. The adjustment of theleust did not cause any change in the

score for this dendrogram, leaving it at 0.5.

7.2.6 IR DATA
The dendrogram and MMDS plot for the IR data a@aghin Figure 200.
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Figure 200 - Bulk Dataset IR Dendrogram and MMDS Rbt

The red cluster contains the pure malonic acid $ampich was expected to be alone in
cluster 1. The yellow cluster contains samples MA;+SA, U+SA, SA+ZN and SA+OA
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from expected cluster 3. The green cluster contsansples MU+U and MU from expected
cluster 4, sample U from expected cluster 2, MU+hn expected cluster 5 and OA+ZN
from expected cluster 6. The aquamarine clustetagas the pure zinc nitrate sample from
expected cluster 5. The blue cluster contains sesnPA and U+OA from expected cluster
6.

The MMDS plot shows each cluster to be clearly sstpd from one another, with the
samples within the clusters being tightly groupBEte IR dendrogram has a score of 0.29,
the same as that seen in the Raman dendrogram.

The silhouettes are shown in Figure 201.
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Figure 201 - IR Silhouettes

The yellow cluster has the salicylic acid/zinc aiiér sample in the lower band, present just
below 0.75, with the upper band containing all renmg yellow cluster members. The
green cluster has the oxalic acid/zinc nitrate danmpthe lower band, below 0.5, with the
band immediately on 0.5 contains the pure urea Eanfipe upper band contains the
remaining green cluster sample. The blue clusteosétte has one band with both samples

presentin it.
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7.2.7 COMBINED DATASETS

The PXRD, Raman, DSC and IR datasets were comhisied INDSCAL. The resulting
dendrogram and MMDS plot are shown in Figure 20% PXRD data with preferred

orientation peaks removed is used for this comhmnat
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Figure 202 - Bulk Dataset Combined Dendrogram and MIDS Plot

The red cluster contains sample MA from expectedtel 1 and sample U+SA from
expected cluster 3. The yellow cluster containsaiU+SA from expected cluster 3,
OA+ZN from cluster 6, MU+ZN from expected clustead MU from expected cluster 4.
The green cluster contains samples OA and U+OA f&gpected cluster 6, SA+ZN from
expected cluster 3 and ZN from expected clustdihg.aquamarine cluster contains
samples SA+OA and SA from expected cluster 3. The tuster contains samples U and
MU+U from expected cluster 4.
The MMDS plot shows the clusters to be clearly safea from one another. Within the
clusters, in particularly the yellow and green aheye is some highly noticeable spreading
out of the samples. The combined dendrogram hesra sf 0.43, a substantial decline
from that seen in preceding datasets with the diaepf the DSC dataset.
As a means of testing if this large decline in t@ugag correctness was due to the presence
of the particularly poor DSC data the PXRD, Ramad BrR datasets were combined
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without the DSC dataset. The resulting dendrograchMMDS plot for this are shown in
Figure 203.
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Figure 203 - Combined PXRD, Raman and IR Bulk datast

This combined dendrogram has a score of 0.21 ealsie improvement over the 0.43 seen
in the previous combined dendrogram. This implies,tfor this dataset, DSC data is a

particularly poor choice of data type.
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7.3 DERIVATIVE DATA

7.3.1 RAMAN

The first derivative Raman dendrogram and MMDS plet shown in Figure 204.
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Figure 204 - First Derivative Raman Dendrogram andVIMDS Plot

The red cluster contains the malonic acid samplehlis expected to be in cluster 1 on its
own. The yellow cluster contains samples MU+SA, 8t SA, U+SA, SA+ZN and
SA+OA which make up expected cluster 3. The grdesier contains sample U+OA from
expected cluster 6. The aquamarine cluster contatexalic acid sample from expected
cluster 6. The blue cluster contains sample MU-+dunflexpected cluster 4. The purple
cluster contains sample MU from expected clustédié striped brown cluster contains
sample MU+ZN from expected cluster 5 and sample ZM#om expected cluster 6. The
light green cluster contains sample ZN from expectaster 5 and the dark green cluster

contains sample U from expected cluster 2.
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The MMDS plot shows some intermixing of the clustérhe first derivative Raman
dendrogram has a score of 0.29, showing reasoohlsering despite the poor appearance

of the dendrogram.

The second derivative Raman dendrogram and MMDGapéoshown in Figure 205.
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Figure 205 — Second Derivative Raman Dendrogram andiMDS Plot

The red cluster contains the malonic acid samplietwis the lone sample in cluster 1. The
yellow cluster contains sample MU+SA from expeatkcster 3. The green cluster
contains samples SA+OA, SA and SA+ZN from expectadter 3. The aguamarine
cluster contains sample U from expected clusterd2lt+SA from expected cluster 3. The
blue cluster contains sample U+OA from expectedteiu6é while the purple cluster
contains sample MU+U from expected cluster 4. Tthpexd brown cluster contains the
sample OA+ZN from expected cluster 6. The stripglligreen cluster contains sample
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MU+ZN from expected cluster 5 and the striped dgden cluster contains sample ZN
from expected cluster 5. The striped blue sampfains sample MU from expected
cluster 4 and the striped purple sample OA froneexgd cluster 6.

The MMDS plot shows the green, aquamarine and ¢ddiusters to be well separated. The
remaining clusters are closely grouped. The sedenigative Raman dendrogram has a

score of 0.5, a much poorer result than that ferfifst derivative dendrogram.

7.3.2 1R
The first derivative IR dendrogram and MMDS plo¢ ahown in Figure 206.

0.0, 0.0

Z_
‘;—-ﬂ___\ *
0.2] s 2 o

=
F-

0.6

<~—ms——3—mn
=
hadd

0.8

c+cx
o
>z

L] B B A
0 z M
A N u
+ +
£ d
N ]

M S U S
u A + A
+ + S +
S 0 A Z
A A N

Figure 206 - First Derivative IR Dendrogram and MMDS Plot

The red cluster contains samples MU+SA, SA, U+SA+ZN and SA+OA from expected

cluster 3 and OA from expected cluster 6. The yeltuster contains sample OA+ZN

from expected cluster 6. The green cluster contsansple ZN from expected cluster 5.

The aquamarine cluster contains sample MU+U fropeeted cluster 4 and U from

expected cluster 2. The blue cluster contains sesriptOA from expected cluster 6. The

purple cluster contains sample U+OA from expectadter 6. The striped brown cluster
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contains sample MU from expected cluster 4. Thpeddrgreen cluster contains sample
MA from expected cluster 1.

The MMDS plot shows the clustering to be highlyfuse. The lone blue sample and the
aquamarine cluster, although appearing very clogether, are actually diffuse when
viewed along the x-axis. The first derivative IRndeogram has a score of 0.21, an

improvement on the 0.29 seen for the original IRaslat.

The second derivative IR dendrogram and MMDS pletsnown in Figure 207.
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Figure 207 - Second Derivative IR Dendrogram and MNDS Plot

The red cluster contains the pure malonic acid $amvpich is expected to form expected
cluster 1. The yellow cluster contains samples MA+SA, U+SA, SA+ZN and SA+OA
from expected cluster 3, sample ZN from expectedtel 5 and sample OA from expected
cluster 6. The green cluster contains the mettgdiurea sample from expected cluster 4.
The aquamarine cluster contains sample MU from ebepecluster 4 and U from expected
cluster 2. The blue cluster contains MU+ZN fromested cluster 5. The purple cluster
contains samples OA+ZN and U+OA from expected elust
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The MMDS plot shows the clusters, especially tmgdayellow one, to be highly diffuse.
The dendrogram has a score of 0.21, the same ta®thhe first derivative IR dendrogram

and a small improvement over the result seen ®otiginal IR dendrogram.

7.4 FLOWCHART

All of the possible combinations of pre-processivege applied to the PXRD dataset and
the results compared to the optimal clustering. Atm@ber of misplaced samples is shown
in Table 37.

Score

no processing 0.21
denoise 0.24
background 0.29
background and denoise 0.21

Table 37 — Score for PXRD pre-processing options

As can be seen no pre-processing and backgrourmvedmnd denoise both give the
optimal clustering with denoise being marginallyoper and background removal only
slightly poorer than denoise.

The flowchart for this result is shown in Figure820



Run data with
no pre-processing

If bad
dendrogram

If dendrogram
is good

h A

Optimal clustering found

Run data with only
denoise applied

If bad
dendrogram

h J

F 3

Figure 208 - Flowchart for 32 sample dataset

Run data with
background removal

If bad
dendrogram

h 4

Run with background
removal and denoise

As the differences are small, only 2 samples diffiee between no pre-processing and

denoise, denoise is given second priority due itoviblving the least pre-processing. A

‘bad’ dendrogram is as previously defined.

7.5 QUANTITATIVE ANALYSIS

The materials are compared using the PolySNAP ga#iné analysis mode. The results of
this are shown in Table 37. For the PXRD datagdtitaset with the preferred orientation

peaks shortened is used. The data were compamggithel SVD method. The results, with

pre-processing applied to the data, are shown leT28 and 39.
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PXRD | Samples | Actual Predicted | Difference |Raman| Samples | Actual Predicted | Difference| IR | Samples Actual Predicted |Difference
MU+U 50:50 71.2:28.8 21.20 MU+U 50:50 2377 27.00 MU+U 50:50 14.4:85.6 35.60
MU+SA | 50:50 85.2:14.8 35.20 MU+SA | 50:50 23.1:76.9 26.90 MU+SA 50:50 10.1:89.9 39.90
MU+ZN 50:50 57.4:42.6 7.40 MU+ZN 50:50 49.5:50.5 0.50 MU+ZN 50:50 53:47 3.00
U+SA 50:50 51.2:48.8 1.20 U+SA 50:50 34:66 16.00 U+SA 50:50 5.6:944 44.40
U+OA 50:50 68.6:31.4 18.60 U+OA 50:50 36.2:63.8 13.80 U+OA 50:50 56.4:43.6 6.40
SA+OA 50:50 60.9:39.1 10.90 SA+OA 50:50 91.1:8.9 41.10 SA+OA 50:50 90.9:9.1 40.90
SA+ZN 50:50 37.5:62.5 12.50 SA+ZN 50:50 94.5:5.5 44.50 SA+ZN 50:50 62.9:37.1 12.90
OA+ZN 50:50 85.4:14.6 35.40 OA+ZN 50:50 80.2:19.8 30.20 OA+ZN 50:50 54.2:45.8 4.20

Mean absolute difference 17.80 Mean absolute difference 25.00 Mean absolute difference 2341

RMS difference 6.29 RMS difference 8.84 RMS difference 8.28

Max absolute difference 17.60 Max absolute difference 24.50 Max absolute difference 20.99

Min absolute difference 16.60 Min absolute difference 19.50 Min absolute difference 20.41

Table 38 — Data from Mixtures in Manual Analysis Male
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Processed Processed Processed
PXRD| Samples | Actual | Predicted 1 | Difference 1 | Raman |Samples| Actual Predicted 1 |Difference 1| IR |Samples| Actual Predicted 1 | Difference 1
MU+U 50:50 76.4:23.6 26.40 MU+U 50:50 71.1:28.9 21.10 MU+U 50:50 20.1:79.9 29.90
MU+SA | 50:50 91.2:8.8 41.20 MU+SA | 50:50 9.3:90.7 40.70 MU+SA | 50:50 32.9:67.1 17.10
MU+ZN 50:50 61.3:38.7 11.30 MU+ZN | 50:50 38.4:61.6 11.60 MU+ZN 50:50 22.3:77.7 27.70
U+SA 50:50 50.1:49.9 0.10 U+SA 50:50 31.6:68.4 18.40 U+SA 50:50 1.8:98.2 48.20
U+OA 50:50 15.2:84.8 34.80 U+OA 50:50 12.9:87.1 48.67 U+OA 50:50 83.5:16.5 33.50
SA+OA | 50:50 61:39 11.00 SA+OA | 50:50 99.7:0.3 49.70 SA+OA | 50:50 98.6:1.4 48.60
SA+ZN 50:50 37.6:62.4 12.40 SA+ZN 50:50 71:29 21.00 SA+ZN 50:50 62:38 12.00
OA+ZN 50:50 95.2:4.8 45.20 OA+ZN | 50:50 64.5:35.5 14.50 OA+ZN 50:50 28.4:78.6 21.60
Mean absolute
difference 22.80 Mean absolute difference 28.21 Mean absolute difference 29.83
RMS difference 8.06 RMS difference 9.97 RMS difference 10.54
Max absolute difference 22.70 Max absolute difference 21.49 Max absolute difference 18.78
Min absolute difference 22.40 Min absolute difference 16.61 Min absolute difference 17.83

Processed Predicted 1 - background remove and smoothed

Table 39 - Data from Mixtures in Manual Analysis Made with Pre-processing 1
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Processed Processed Processed
PXRD [Samples| Actual Predicted 2 | Difference 2 | Raman | Samples | Actual Predicted 2 |Difference 2| IR |Samples| Actual Predicted 2 | Difference 2

MU+U 50:50 71.2:28.8 21.20 MU+U 50:50 42.4:57.6 7.60 MU+U 50:50 14.4:85.6 35.60
MU+SA| 50:50 85.2:14.8 35.20 MU+SA | 50:50 23.1:76.9 26.90 MU+SA | 50:50 10.1:89.9 39.90
MU+ZN| 50:50 57.5:42.5 7.50 MU+ZN 50:50 49.5:50.5 0.50 MU+ZN 50:50 73.7:26.3 23.70
U+SA 50:50 51.1:48.9 1.10 U+SA 50:50 34:66 16.00 U+SA 50:50 5.6:94.4 44.40
U+OA 50:50 31.5:68.5 18.50 U+OA 50:50 36.2:63.8 13.80 U+OA 50:50 56.4:43.6 6.40
SA+OA| 50:50 61:39 11.00 SA+OA | 50:50 91.1:8.9 41.10 SA+OA | 50:50 90.9:9.1 40.90
SA+ZN | 50:50 37.5:62.5 12.50 SA+ZN 50:50 94.5:5.5 44.50 SA+ZN 50:50 62.9:37.1 12.90
OA+ZN | 50:50 85.1:14.9 35.10 OA+ZN 50:50 80.2:19.8 30.20 OA+ZN 50:50 45.8:54.2 4.20

Mean absolute difference 5.92 Mean absolute difference 22.58 Mean absolute difference 26.00

RMS difference 2.09 RMS difference 7.98 RMS difference 9.19

Max absolute difference 29.28 Max absolute difference 22.08 Max absolute difference 21.80

Min absolute difference 4.82 Min absolute difference 21.93 Min absolute difference 18.40

Processed Predicted 2 - smoothed

Table 40 - Data from Mixtures in Manual Analysis Made with Pre-processing 2
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For PXRD, a predicted result is said to closelyahdhe actual values if the values are
within 10% of each other in either direction.

For the PXRD data two of the samples (U+SA and MN}iitially match the prediction.
With the first pre-processing method applied, U+4S&he only sample to match and for
the second pre-processing method, samples U+SMaheZN both again match

For the Raman data sample MU+ZN is the only santpieatch. No patterns match when
the background is removed and peak smoothing ieabpVith just smoothing applied
sample MU+ZN again matches. If the allowed diffeeis increased to 15% MU+ZN and
U+OA now match with no processing applied. Withkzround removal applied sample
MU+ZN again matches. With smoothing applied samMés+tZN, U+OA and MU+U

now match.

For the IR data samples MU+ZN, U+OA and OA+ZN maigtith the first processing
option applied no samples match and with the se€@&€ZN and U+OA are the only
samples to match. With the allowed difference iasea to 15% MU+ZN, U+OA and
OA+ZN match. With background removal and smootlapglied only sample SA+ZN

matches and with just smoothing applied U+SA andr2i are the only ones to match.

7.6 CONCLUSIONS

* The bulk materials dataset offers further evideme& how the combined usage of
Raman, DSC and IR data can offset the effectsFofRD dataset with preferred
orientation problems.

» The results from DSC are particularly poor for ttié&gaset. This however is due to
their being additional complexities as one of thetemnals is a hydrate. This can
also be due to the presence of acids and baseh wiaig react on heating the
mixtures.

« The huge effects that pre-processing options caa ba the determination of
composition of datasets is also further demonstrdter Raman data, allowing a
variance of 15% rather than the 10% and colledtiegdata with smoothing
applied gives the optimal results. For IR the dptas equivalent results at both 10

and 15% allowed variance and does best with ndebprocessing.
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CHAPTER 8 AN UNKNOWN DATASET

8.1 THE DATA

The unknown dataset was a dataset, consisting ROPa¥nd Raman data, supplied by
Professor Chris Frampton at Pharmorphix. This walina test with the data being
supplied without any information as to what eactigua represented. The dataset contains
48 samples, of which the identity of each sampbe twas unknown. It was known that
each sample is from a pure material, with no medgwf these materials present. The
number of different materials present was unkndvawever it is known that each
material can be present more than once. The X-a#g was collected on a Bruker C2
GADDS and was collected three times. The firstemiibn, henceforth referred to as X-ray
1, was collected over a range of 7-35°, the secloelgeforth referred to as X-ray 2, was
collected over a range of 3-30° and the third, béorth referred to as X-ray 3, was
collected over a range of 16-44°. The Raman datacolected on a Bruker SENTINEL,
integrated into the Bruker C2, and was collecteer @/range of 250-2300¢m

Table 40 shows the file name that was assigneddb sample when the dataset was
delivered, along with the new name that was asdigmeach sample to allow ease of use
with PolySNAP.
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Sample Name in | Sample Name in
Number| Sample Name |PolySNAP [Number| Sample Name | PolySNAP
1 CSF-135-20-1-A1 01 25 |CSF-135-20-2-B1 25
2 |CSF-135-20-1-A2 02 26 |CSF-135-20-2-B2 26
3 CSF-135-20-1-A3 03 27 |CSF-135-20-2-B3 27
4  |CSF-135-20-1-A4 04 28 |CSF-135-20-2-B4 28
5 CSF-135-20-1-A5 05 29 |CSF-135-20-2-B5 29
6 |CSF-135-20-1-A6 06 30 |CSF-135-20-2-B6 30
7 CSF-135-20-1-A7 07 31 |CSF-135-20-2-B7 31
8 |CSF-135-20-1-A8 08 32 |CSF-135-20-2-B8 32
9 CSF-135-20-1-B1 09 33 |CSF-135-20-3-Al1 33
10 |CSF-135-20-1-B2 10 34 |CSF-135-20-3-A2 34
11 |CSF-135-20-1-B3 11 35 |CSF-135-20-3-A3 35
12 |CSF-135-20-1-B4 12 36 |CSF-135-20-3-A4 36
13 |CSF-135-20-1-B5 13 37 |CSF-135-20-3-A5 37
14 |CSF-135-20-1-B6 14 38 |CSF-135-20-3-A6 38
15 |CSF-135-20-1-B7 15 39 |CSF-135-20-3-A7 39
16 |CSF-135-20-1-B8 16 40 |CSF-135-20-3-A8 40
17 |CSF-135-20-2-Al1 17 41 |CSF-135-20-3-B1 41
18 |CSF-135-20-2-A2 18 42 |CSF-135-20-3-B2 42
19 |CSF-135-20-2-A3 19 43 |CSF-135-20-3-B3 43
20 |CSF-135-20-2-A4 20 44  |CSF-135-20-3-B4 44
21 |CSF-135-20-2-A5 21 45 |CSF-135-20-3-B5 45
22 |CSF-135-20-2-A6 22 46 |CSF-135-20-3-B6 46
23 |CSF-135-20-2-A7 23 47 |CSF-135-20-3-B7 47
24 |CSF-135-20-2-A8 24 48 |CSF-135-20-3-B8 48

Table 41 - Unknown Dataset
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8.2 DATASET CLUSTERING

As this is an unseen dataset there were no prjgecations for what clustering should

appear.

8.2.1 PXRD DATASETS
The dendrogram and MMDS plot for the X-ray 1 datase shown in Figure 205.
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Figure 209 - X-ray 1 Dataset Dendrogram and MMDS Rit

The dendrogram suggests that there are sevenetiffaraterials present in the dataset.
Sample 01, appearing in the red cluster, appedrs the only instance of this material
included within the dataset. Samples 06, 09, 1329231, 38, 44, 45 and 46 are all
present in the yellow cluster, suggesting that thay all be the same material. Samples
03,11, 12, 16, 17, 25, 26, 27, 32, 34 and 48 lamesent in the green cluster, suggesting
that they are all the same material. Samples 1432339, 42 and 43 are all present in the

in the aquamarine cluster, suggesting that they atidye of the same material. Samples 02
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and 10 are likely to be both of the same matesdhay are all present in the blue cluster.
Samples 04, 15, 20, 21, 35, 36, 37 and 47 ar&alyIto be the same material as they are
all present in the purple cluster. Finally sam@Bs07, 08, 18, 19, 24, 28, 33, 40 and 41
are present in the striped brown cluster suggestieg are all similar.

The MMDS plot shows the samples to be clearly sepdr The lone sample in the red
cluster appears to be lying close to the blue elustowever rotating the MMDS plot
reveals this to not be the case.

The dendrogram and MMDS plot for the X-ray 2 datase shown in Figure 206.
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Figure 210 - X-ray 2 Dataset Dendrogram and MMDS Rit

The yellow cluster contains samples 04, 15, 2038136, 37 and 47, which were all
clustered together in the purple cluster in datAsety 1. The green cluster contains
samples 05, 07, 08, 18, 19, 24, 28, 33, 40 andhdhmvere all clustered together in the
striped brown cluster in dataset X-ray 1. The acarame cluster contains samples 03, 11,
12, 16, 17, 25, 26, 27, 32, 34 and 48 which wdrelastered together in the green cluster
in dataset X-ray 1. The blue cluster contains samf@P and 10 which were also present in
the blue cluster in dataset X-ray 1. The purplsteucontains samples 14, 23, 30, 39, 42
and 43, which were all clustered together in theaagarine cluster in dataset X-ray 1. As
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all of these samples are unchanged between da¥saisl and X-ray 2 it is highly
probable that the materials present within eadihede clusters will be the same as one
another within each cluster.
The only change for this dataset comes in the Iestar, which contains a combination of
the red cluster, containing sample 01 and the wetloister, containing samples 06, 09, 13,
22, 29, 31, 38, 44, 45 and 46. These samples caagagated again by lowering the cut-
level, without affecting any of the other clustarsl also while staying within the
calculated upper and lower limits for the numbeclokters. There are three theories for
why this has occurred.
1) The first theory is that sample 01 is a poorer iguphttern in the first of the two
datasets studied so far and is actually the santeriaeas the second cluster.
2) The second theory is that sample 01 is of a paprality in the second dataset and
is indeed different as suggested in dataset X-ray 2
3) The third theory is that neither pattern is of aqeo quality, but that the patterns
are highly similar due to sample 01 being a diffiei@olymorph of the material that
is present in the second cluster.
Normally two different polymorphs of the same matiewill have different PXRD
patterns, thus discounting theory 3. The earlierkvam sulfathiazole however has shown
that in some cases two polymorphs can have sippdterns. For the sulfathiazole dataset
this was clearly demonstrated by polymorphs 2 arid 8rder to confirm which of these
theories is correct, the sample 01 pattern wilkktmpared to the most representative
sample in the second cluster in each of the twasads so far.
For the X-ray 1 dataset, sample 01 was comparddsainple 44, which is the most

representative sample in the second cluster. Tedayis shown in Figure 207.
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Figure 211 - Overlay of Samples 44 and 01 from Dagat X-ray 1

Neither of the two patterns appears to be of poality, suggesting that the first theory is
incorrect.
For the X-ray 2 dataset, the cut-level is adjusteseparate these samples into two separate

clusters; sample 44 is given as the most representample of the new cluster that
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appears. As such it has been overlaid with samble @llow a comparison of the two

materials PXRD patterns. The overlay is shown guFg 208.
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Figure 212 - Overlay of Samples 44 and 01 from Dagat X-ray 2

Neither of the patterns appears to be of poorelitgisaiggesting that the second theory is
incorrect.

As both sets of overlays contain good quality datel some noticeable differences are
present between the two patterns in both databetsty 3 — where sample 01 is believed
to be a different polymorph of the material presarthe second cluster, is believed to be
correct. This hypothesis will be further testedhia remaining datasets.

The X-ray 3 dataset dendrogram and MMDS plot acevshin Figure 209.
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Figure 213 - X-ray 3 Dataset Dendrogram and MMDS Rit

The red cluster contains sample 01. This sampleb&iexamined in further detail. The
yellow cluster contains samples 04, 15, 20, 2138537 and 47 which have previously
been grouped together. The green cluster contamples 02 and 10, which have been
grouped together in both of the previous data3éts.aquamarine cluster contains samples
03, 11, 12, 16, 17, 25, 26, 27, 32, 34 and 48, whave been clustered together in both of
the previous datasets. The blue cluster contamglkes 06, 09, 13, 22, 29, 31, 38, 44, 45
and 46. These samples were clustered togethetaseatax-ray 1 and with sample 01 in
dataset X-ray 2 so further study of this datasall §fe carried out. The purple cluster
contains samples 14, 23, 30, 39, 42 and 43 whieh peeviously been clustered together.
The striped brown cluster contains samples 0508,/18, 19, 24, 28, 33, 40 and 41 which
have been clustered together in the previous datase

As sample 01 is closely tied to a different cluskem in the previous dataset it shall be
compared to the most representative sample ircthster, which is sample 36. Figure 210

shows an overlay of these.

261



—

L] l
L]
LAl

I

#
L M A
LB AT P i B, SN
ANT AT S TN A T A

o o 2 2 =
n o o

=

Figure 214 - Overlay of Samples 36 and 01 from Dagat X-ray 3

The overlay shows these two samples to be cledfbrent.
Figure 211 shows an overlay of samples 01 and thst representative sample from the

cluster that it has previously been most closelgdd to, sample 44.
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Figure 215 - Overlay of Samples 44 and 01 from Dagat X-ray 3

Once again sample 01 has a clearly different paftem sample 44. Due to the clusters
not being closely tied, the hypothesis that it oiymorph off the materials present in the

second cluster cannot be confirmed at this time.

The optimal dataset from all three x-ray dataspfears to be dataset X-ray 1 as this
shows clear separation between the clusters wielsamples within each cluster all show
clear similarities. A large change in the cut-leweluld be required to either separate the

samples within the clusters or merge any of thetehs.
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8.2.2 RAMAN DATASET
The dendrogram and MMDS plot for the Raman dashasvn in Figure 212.
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Figure 216 - Raman Data Dendrogram and MMDS Plot

The red cluster contains samples 09, 13, 22, 288144, 45 and 46 as well as sample 01.
This time sample 01 cannot be separated by a eet-deljustment. This will again be
studied in more detail. The yellow cluster contaamples 04, 15, 20, 21, 35, 36, 37 and
47 which have previously been clustered togetrem@es 02 and 10, which have
previously been clustered together, are now inrsépa&lusters. These clusters can be
merged by raising the cut-level without affectinty ather cluster. These samples will
again be studied in further detail. The blue clustatains samples 05, 07, 08, 18, 19, 24,
28, 33, 40 and 41 which have previously been graupgether. The purple cluster
contains samples 14, 23, 30, 39, 42 and 43 whigh peeviously been grouped together.
The striped brown cluster contains samples 0312116, 17, 25, 26, 27, 32, 34 and 48
which have previously been grouped together.

As it is not possible to separate sample 01 froardd cluster, sample 44, which has
previously been the most representative samplép@itompared to sample 01. The

overlay of this is shown in Figure 213.
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Figure 217 - Overlay of Samples 44 and 01 from RameDataset
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All of the major bands match closely between thasesamples. This suggests that the

theory of sample 01 being a polymorph of the matgniesent in the remainder of this

cluster is correct.

The comparison of samples 02 and 10 is shown iar€igl14.
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Figure 218 — Overlay of Samples 02 and 10 from Ramaataset
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These spectra again appear to be match closely, dtninbined with these samples being

clustered together in the previous three datasetgests that the materials are the same.
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8.2.3 RAMAN DERIVATIVES

The Raman data has both first and second derigasigplied to it. The dendrogram for the

first derivative is shown in Figure 215.
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Figure 219 - First Derivative Raman Dendrogram

The clustering appears to be poor; however an agrg of the cut-level upwards, while
staying within the upper and lower estimate of neamdf clusters, yields a familiar result.

This is shown in Figure 216.
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Figure 220 - Dendrogram and MMDS Plot for First Deiivative Data with Adjusted Cut-level

The red cluster now contains samples 01, 06, 022,329, 31, 38, 44, 45. Sample 01 is
once again being grouped with the materials whichelieved to be a different
polymorph of. The yellow cluster contains samfilés15, 20, 21, 35, 36, 37 and 47 which
have previously been grouped together. The graesterl contains samples 02 and 10
which have previously been clustered together. dqweamarine cluster contains samples
03, 11, 12, 16, 17, 25, 26, 27, 32, 34 and 48 whale previously been grouped together.
The blue cluster contains samples 05, 07, 08,9824, 28, 33, 40 and 41 which have
previously been clustered together. The purpletefuontains samples 14, 23, 30, 39, 42
and 43 which have previously been grouped together.

The dendrogram and MMDS plot for the second dekigaRaman data are shown in
Figure 217.
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Figure 221 - Second Derivative Raman Dendrogram anfMDS Plot

This dendrogram is not as good as that previowesyn sThe only large clusters present are
the pink cluster which contains samples 14, 2333042 and 43 and the lighter striped
brown cluster which contains samples 03, 11, 1217625, 26, 27, 32, 34 and 48. These
samples have been grouped in these respectiverdustall datasets previously examined.
No information can be gleaned about the remaintldreodatasets clustering due to the
large number of separate clusters. It is not ptessibcombine these clusters while still

remaining within the upper and lower cluster estena



8.2.4 COMBINED DATASET

The INDSCAL dendrogram, combining all three X-ragtakets and the Raman dataset, is
shown, along with the corresponding MMDS plot, igufe 218.
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Figure 222 — INDSCAL Combined Dendrogram and MMDS Rot

The red cluster contains samples 01, 02, 10, 143@339, 42 and 43. This is a mixture of
three of the previously occurring clusters. Thdogelcluster contains samples 05, 07, 08,
18, 19, 24, 28, 33, 40 and 41 which have previohiebn clustered together. The green
cluster contains samples 04, 15, 20, 21, 35, 36n8l747 which have previously been
clustered together. The aguamarine cluster consaimgples 06, 09, 13, 22, 29, 31, 38, 44,
45 which have previously been clustered togethdrtha blue cluster contains samples 03,
11,12, 16, 17, 25, 26, 27, 32, 34 and 48 whiclelmeviously been clustered together.
The three combined clusters in the red clusteteaseparated by lowering the cut-level as

shown in Figure 219.
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Figure 223 — INDSCAL Combined Dendrogram and MMDS ot with Lowered Cut-level

With the new red cluster containing sample 01 &ednew yellow cluster containing

sample 02 and 10, the clustering exactly matchagsstiown in the initial X-ray runs.

8.3 DATASET COMPOSITION

It was reported to Professor Frampton that samiple3, 30, 39, 42 and 43 are all of the
same material, that samples 04, 15, 20, 21, 35326&nd 47 cluster together and are most
probably of the same material, that samples 0508718, 19, 24, 28, 33, 40 and 41 cluster
together and are likely to be the same matertat samples 03, 11, 12, 16, 17, 25, 26, 27,
32, 34 and 48 cluster together and are off the saaterial and that samples 02 and 10
cluster together and are off the same materiatalt also reported that samples 06, 09, 13,
22, 29, 31, 38, 44, 45 and 46 always cluster tageihd so are off the same materials and
that, as sample 01 is sometimes clustered with gir@nsometimes without, that it is likely
to be a different polymorph of the materials irstgroup.

He replied with the list of what materials wereusdly present in each well in the well

plate. This is summarised in Table 41.



Sample Actual Sample|Sample Actual Sample

Number [Sample Name Name Number |Sample Name Name
1 CSF-135-20-1-A1 |Ketoprofen_2 25 CSF-135-20-2-B1 |Allopurinol
2 CSF-135-20-1-A2 |Ibuprofen 26 CSF-135-20-2-B2 |Allopurinol
3 CSF-135-20-1-A3 |Allopurinol 27 CSF-135-20-2-B3 |Allopurinol
4 CSF-135-20-1-A4 |Flurbiprofen 28 CSF-135-20-2-B4 |Acetominophen
5 CSF-135-20-1-A5 |Acetominophen 29 CSF-135-20-2-B5 |Ketoprofen
6 CSF-135-20-1-A6 |Ketoprofen 30 CSF-135-20-2-B6 |Piroxicam
7 CSF-135-20-1-A7 |Acetominophen 31 CSF-135-20-2-B7 |Ketoprofen
8 CSF-135-20-1-A8 |Acetominophen 32 CSF-135-20-2-B8 |Allopurinol
9 CSF-135-20-1-B1 |Ketoprofen 33 CSF-135-20-3-A1 |Acetominophen
10 CSF-135-20-1-B2 |Ibuprofen 34 CSF-135-20-3-A2 |Allopurinol
11 CSF-135-20-1-B3 |Allopurinol 35 CSF-135-20-3-A3 |Flurbiprofen
12 CSF-135-20-1-B4 |Allopurinol 36 CSF-135-20-3-A4 |Flurbiprofen
13 CSF-135-20-1-B5 |Ketoprofen 37 CSF-135-20-3-A5 |Flurbiprofen
14 CSF-135-20-1-B6 |Piroxicam 38 CSF-135-20-3-A6 |Ketoprofen
15 CSF-135-20-1-B7 |Flurbiprofen 39 CSF-135-20-3-A7 |Piroxicam
16 CSF-135-20-1-B8 |Allopurinol 40 CSF-135-20-3-A8 |Acetominophen
17 CSF-135-20-2-A1 |Allopurinol 41 CSF-135-20-3-B1 |Acetominophen
18 CSF-135-20-2-A2 |Acetominophen 42 CSF-135-20-3-B2 |Piroxicam
19 CSF-135-20-2-A3 |Acetominophen 43 CSF-135-20-3-B3 |Piroxicam
20 CSF-135-20-2-A4 |Flurbiprofen 44 CSF-135-20-3-B4 |Ketoprofen
21 CSF-135-20-2-A5 |Flurbiprofen 45 CSF-135-20-3-B5 |Ketoprofen
22 CSF-135-20-2-A6 |Ketoprofen 46 CSF-135-20-3-B6 |Ketoprofen
23 CSF-135-20-2-A7 |Piroxicam 47 CSF-135-20-3-B7 |Flurbiprofen
24 CSF-135-20-2-A8 |Acetominophen 48 CSF-135-20-3-B8 |Allopurinol

Ketoprofen_2
Ketoprofen
Ibuprofen
Allopurinol
Acetominophen
Flurbiprofen

Piroxicam

1

6,9,13,22,29,31,38,44,45,46

2,10

3,11,12,16,17,25,26,27,32,34,48

5,7,8,18,19,24,28,33,40,41
4,15,20,21,35,36,37,47

14,23,30,39,42,43

Table 42 - Unseen Dataset Actual Composition

The predictions for the unseen dataset match 10QBotle actual composition.
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8.4 CONCLUSION

PolySNAP has successfully analysed an unknown efatase which consists of
both PXRD and Raman data and correctly estimasecbinposition. The software
has successfully detected the more noticeablerdiftees of two materials which
are completely different as well as the smallefedénces between two highly
similar polymorphs.

The blind test provides clear validation for thefuiness of the Raman techniques
that have been included as well as for the INDS@#dthodology. The INDSCAL
in particular has proven to be useful as it acelyatetermined the correct cluster

membership.
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK

9.1 CONCLUSION

The effectiveness of pattern matching PXRD datablegs further reinforced by datasets
previously shown. When moderate or good quality PXfata is supplied good clustering
is normally produced. This is particularly noticksatvith the higher range dataset in
Chapter 4 and the X-ray data in Chapter 8. Poarelitfy PXRD data can give good results
however it is preferable to look at this sort ofedalongside another datatype. This is most

clearly demonstrated by the lesser quality X-rajadeom Chapter 4.

Raman data can be used successfully alongside R¥®Din PolySNAP or on its own.
The Raman data in Chapter 4 and in the unseened@aShapter 8 show this particularly
well. The pure Raman data has problems of highlaiityi, however this can be overcome,
with a small loss of the correctness of the clustgby taking a first or second derivative
of the Raman data and matching these, as showhapt€r 4. The higher the derivative
taken, the larger the difference in similaritiestm®es, however this does result in larger
losses of clustering correctness. For optimal Raraanlts, an INDSCAL combination of
the original and derivative Raman data can be uBeid.gives clearer differences between
pattern similarities without losing clustering ceeiness.

Good quality Raman data can be a very useful td@nwsed in conjunction with poorer

quality PXRD data, as shown in Chapter 4.

DSC data can be used with PolySNAP however thdtseste not always good. The
success of DSC pattern matching depends on matgrdabat arise in the collection of
the patterns, for example mass of material analgseicheating rate used during collection.

Further work would be required to perfect this teghe with PolySNAP.

IR data can be used with other data types or cowits This dataset has some similarity
problems however these are not as high as theip &aman data. This dataset is not
currently as useful as Raman data however, wittemark; it could prove to be equally

as useful a tool as Raman data has been shown to be

The INDSCAL methods themselves have proven to beeéul technique as they can allow

datasets with problems such as preferred orient&tidoe combined with datasets that do

not have these problems to produce a combinatioohndives the expected clustering.
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This can also be used to combine two good quatitgskts to check if the combination is
still giving the same results.

INDSCAL can also successfully combine multiple data of different data types and still
give produce good clustering. Currently INDSCAL w®particularly well with Raman
and PXRD data however could in the future be usg@ky well with DSC and IR data.

TGA is not a viable technique to use with PolySN#&Rhis time, was shown in Chapter 5.
There are very few regions of significant differerietween the patterns and so all patterns
tend to have high similarities, even if they a@nircompletely different materials. TGA
could potentially be useful if two materials apptmabe similar in the other data types but

it is believed that they should not be. If theywladear differences in their melting point

then a TGA pattern would pick up on this and caléhrly separate them.

Four flowcharts have been produced over the caafrdge work in an attempt to produce a
scheme that can be followed to derive the optirhedtering from any dataset. All of these
flowcharts have been identical so the optimal floart has been determined to be as

follows:

273



If bad

Run data with dendrogram
no pre-processing

If dendrogram
If dendrogram is good
is good

v If dendrogram
is good

Run data with only
denoise applied

If bad
dendrogram

h J

Optimal clustering found

F 3

If dendrogra
is good

Figure 224 - Flowchart for devising optimal clusteing

The recommended method is to begin with no pregssiag applied. If the dendrogram is

good, showing no examples of chaining, then thexatclustering has been found. If the

Run data with
background removal

If bad
dendrogram

h 4

Run with background
removal and denoise

If bad
dendrogram

Consider recollecting
data

dendrogram is not good then the dataset shouldro@ mwith denoising applied. If the

dendrogram is good with this result then the opttirasult has been found otherwise the

data should be rerun with background removal agplieghe dendrogram is still showing

signs of chaining then it should be rerun agaimwackground removal and denoising

applied. If it is still showing chaining then IND@C combinations of the earlier methods

can be attempted however it is best to recollextitaset as there may be problems of

poor quality data being present.

The methods for determining if a dendrogram is goodad are as follows:

274



1. The dendrogram shows ‘chaining’ of the samptdsas no clear clustering

2. The scree plot does not show the charactesst&p initial drop before smoothing out
3. The maximum and minimum confidence limits oa ¢lendrogram have a large
separation.

This finalised method was developed after the studito the unseen dataset described in
Chapter 9. It should be noted however that thexagitclustering from that dataset was

obtained using a dataset with no pre-processintieabp

9.2 FUTURE WORK

The following areas could still be explored witke tRolySNAP project:

e Although only Raman, IR and DSC were studied is thork, there is no reason
that other solid state techniques couldn’t be ukedxample solid state NMR.
This is not a high-throughput technique howeverRb/SNAP methods should
still work with the dataset.

¢ A quality assessment of PXRD could be carried outyt and determine what sort
of quality of PXRD data is required in order to guoe consistently good results.

» Further analysis can be carried out on TGA to Eteere are any ways to resolve
the high pattern correlation problems. Initial sésdwere carried out into using
derivative of TGA data however this did not givey aroticeable improvement to
the clustering. This is an area which could be $ecuon further to see if any
improvements can be made.

« DSC data does not give good results when compartdetother techniques. This
is likely due to DSC data including much less daten PXRD, Raman and IR data.
Further work can be carried out on this to attetopinprove the matching for DSC
data.

« IR data can give good results on occasion howewdndr work would be required
to perfect this technique.

» Rather than carrying out an analysis of the RanmanlR spectra by hand to
determine which areas are dissimilar and therefanagld be best used in pattern
matching, a program could be developed which canllyse each pattern in the
dataset, determine what areas are showing lartgretices and only supply those
areas to PolySNAP. Some initial work has been edrout to try and devise a

method to automate this and the pseudo code ismexsin appendix 1.
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The methodology for determining if a dendrogrargaod’ or ‘bad’ could be
automated to allow the software to calculate tliedince between the upper and
lower confidence limits in the dendrogram. If tleere dataset was run four times
with different pre-processing in each run, for epdarrun 1 — no pre-processing,
run 2 — denoise, run 3 — remove background and m@move background and
denoise, the software could calculate a scoretermdne which of these had the
optimal gap between these limits. One possible atetf calculating this score is

shown in Equation 43.

1- Avggap
maxgap

Equation 43 - Possible method for determining optiral Dendrogram gap

Further work would be required to refine the oplima&thod of calculating this

score.
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APPENDIX | RAMAN AND IR MATCHING PSEUDOCODE

The following pseudo code would work for a datasetitaining two files. Additional

arrays can be added for existing files.

OPEN FIRST FILE

STORE X-AXIS DATA INTO ARRAY 1.1

STORY Y-AXIS DATA INTO ARRAY 1.2

OPEN SECOND FILE

STORE X-AXIS DATA INTO ARRAY 2.1

STORY Y-AXIS DATA INTO ARRAY 2.2

CHECK THAT BOTH X-AXIS ARRAYS ARE ON THE SAME SCALEAND START
POINT

STARTING FROM IDENTICAL START POINT ON EACH ARRAY OMPARE Y-
AXIS RESULTS

IF RESULTS IDENTICAL OR HIGHLY SIMILAR — DISCARD

IF RESULTS LARGELY DISSIMILAR — ADD TO ARRAY OF SIGIFICANT
POINTS

REPEAT UNTIL FILES FULLY COMPARED



APPENDIX Il DSC PRE-PROCESSING PROGRAM

The following program, written in Java, strips thee binary characters present within TA
instruments DSC files and allows PolySNAP to resaftles.

CLASS MAIN

public class Main {
[** Creates a new instance of Main */
public Main() {

}

[

* @param args the command line arguments

*/

public static void main(String[] args) {
dscframe d = new dscframe();
d.setSize(600,300);
d.setVisible(true);

CLASS DSC FRAME

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.filechooser.FileFilter;
import java.io.*;

import java.util.*;

public class dscframe extends JFrame implemenisidstener {
/IGUI components
JButton load,process;
JTextField text,num;
JTextArea info;
JLabel lab,sortlab, ramplab, typelab;
JPanel |,p,te,nm,mid,bottom,upbot,lowbot,lasstéa,r,tyla,ty;

JMenuBar mb;
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JMenu file;
JMenultem loadmenu,procmenu,exitmenu;

JComboBox sort, ramp, type;

/IFile read and write tools
String path;

JFileChooser ch;
FileReader f;
BufferedReader b;
FileWriter fw;
StringTokenizer st;

String comp, comp2, comp3, header, fin, fin@3f
String dir = "Up";

String run = "Heat";
String inst = "Q100";

int sect =1;

int active=1;

int filename = 1,

String sl1,el,s2,e2,s3,e3;
boolean firstfound = false;
File folder,current;

File[] filelist;

/larrays for storing two lines of data for campon
String [] rowl = new String[4];

String [] row2 = new String[4];

String [] altrowl = new String[5];

String [] altrow2 = new String[5];

[** Creates a new instance of dscframe */

public dscframe() {
this.setDefaultCloseOperation(EXIT_ON_CLOQSE
this.buildFrame(); }

/**Builds the GUI for the program*/



private void buildFrame() {

Container pane = this.getContentPane();

/ltop panel contains menubar.

mb = new JMenuBar();

file = new JMenu("File™);

loadmenu = new JMenultem("Load");
loadmenu.addActionListener(this);
procmenu = new JMenultem("Process");
procmenu.addActionListener(this);
procmenu.setEnabled(false);
exitmenu = new JMenultem("Exit");
exitmenu.addActionListener(this);
file.add(loadmenu);
file.add(procmenu);
file.add(exitmenu);

mb.add(file);

/Imiddle panel contains text area for iafofile processing and text

/ffield to display currently selected file.

info = new JTextArea();
info.setEditable(false);

JScrollPane scroll = new JScrollPane(info);
text = new JTextField(20);
text.setEditable(false);

te=new JPanel();

te.add(text);

mid = new JPanel();
mid.setLayout(new BorderLayout());
mid.add(te,BorderLayout. NORTH);
mid.add(scroll,BorderLayout. CENTER);

/Ibottom panel contains buttons and testtffor column selection.

load = new JButton("Load");
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load.addActionListener(this);

I=new JPanel();

l.add(load);

process = new JButton("Process");
process.addActionListener(this);
process.setEnabled(false);

p=new JPanel();

p.add(process);

lab = new JLabel("Select Column(defaulz)§;
la = new JPanel();

la.add(lab);

num = new JTextField(2);

nm = new JPanel();

nm.add(num);

typelab= new JLabel("Instrument Type");
type = new JComboBox();
type.addActionListener(this);
type.additem("Q100");
type.additem("Q2000");

tyla=new JPanel();

tyla.add(typelab);

ty=new JPanel();

ty.add(type);

sortlab = new JLabel("Data Direction™);
sort = new JComboBox();
sort.addActionListener(this);
sort.addlitem("Up");
sort.addltem("Down");

sla=new JPanel();

s=new JPanel();

sla.add(sortlab);

s.add(sort);

ramplab = new JLabel("Heat Method");
ramp = new JComboBox();

ramp.addActionListener(this);
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ramp.additem("Heat");
ramp.additem("Heat-Cool");
ramp.additem("Heat-Cool-Heat");

rla = new JPanel();

rla.add(ramplab);

r = new JPanel();

r.add(ramp);

upbot=new JPanel();
upbot.setLayout(new GridLayout(1,4));
upbot.add(l);

upbot.add(p);

upbot.add(la);

upbot.add(nm);

lowbot=new JPanel();
lowbot.setLayout(new GridLayout(1,6));
lowbot.add(tyla);

lowbot.add(ty);

lowbot.add(sla);

lowbot.add(s);

lowbot.add(rla);

lowbot.add(r);

bottom=new JPanel();
bottom.setLayout(new GridLayout(2,1));
bottom.add(upbot);
bottom.add(lowbot);

/lassemble panels into overall gui.
pane.add(mb,BorderLayout. NORTH);
pane.add(mid,BorderLayout. CENTER);
pane.add(bottom,BorderLayout. SOUTH);

/**
* Handles button clicks. Clicking load calletld method. Clicking
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* process calls the process method.
*/

public void actionPerformed(ActionEvent e) {

if(e.getSource()==load) {
this.ld();

}

if(e.getSource()==process) {
this.process();

}

if(e.getSource()==loadmenu) {
this.Id();

}

if(e.getSource()==procmenu) {
this.process();

}

if(e.getSource()==exitmenu) {
System.exit(0);}}

/**

*Called when the load button is clicked. Cesaa FileChooser and allows
*the user to select the file to be loaded pratessed.
*/

private void Id() {

firstfound = false;

int sect =1;

int active=1;

int filename = 1,

ch = new JFileChooser();

ch.setFileSelectionMode(JFileChooser.DIRB&TES_ONLY);

int returnVal = ch.showOpenDialog(dscfratiis);

if(returnVal == JFileChooser. APPROVE_OPTION
path = ch.getSelectedFile().getName();
text.setText(path);
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info.append("Opened "+path+"\n");
process.setEnabled(true);

procmenu.setEnabled(true);} }

/**

* Called when the process button is clickerkates a file reader and

* reads the specified file and stores the d#taa temporary string

* until "StartOfData" found. When this is fodithe following rows are

* read two at a time and compared to eachrofffee value input into the
* num text box allows the corresponding coluimeach of the two rows.
* If the selected value in row 2 is higherrilthe value in row 1 then

* row 2 is written to the output file. The raszdumped if this doesn not
* hold true. If the column to be checked fallgside to the range of 1-4
* then the vale us set to 2 by default. If'vadue is entered the value is

* also set to 2.When the file has been fullgd the temporary string

* s written to a new file (old file name apypked by _proc). Each line of
* the file is read character at a time to remany extra characters added
* by the binary header.

*/

private void getinput()
{
folder = ch.getSelectedFile();
filelist = folder.listFiles();
for(int i = O;i<filelist.length;i++)
{
if(filelist[i].isFile()){
current = filelist[i];
/[call the data checking method
this.typesort();
/Icall the output method.
this.output();} }}
private void process() {
dir = (String) sort.getSelectedltem();

run = (String)ramp.getSelecteditem();
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inst = (String)type.getSelectedltem();
this.getinput(); }

public void typesort()

{
/lcheck if data is of a type produced Y00
if(inst.compareTo("Q100")==0)

{
comp=null;
header=null;

int value=2; //set column to be read to ydefault value)
try {
[*
*check if a value has been input ithte 'num’ text box and if it
*is on the correct range
*/
try {
value = Integer.parselnt(hum.gat{)g
if(value>4) {
value =2;}
if(value<0) {
value=2; }
} catch(NumberFormatException nfe) {}
value--; //set column value to a cqosgling array value
/lread marked file
f = new FileReader(current);
b = new BufferedReader(f);
} catch(FileNotFoundException nfe) {
info.append("Error with file\n");}
boolean endOfFile = false;//end of file cke
boolean datafound = false;//start of déuack
boolean firstline = true;//first line praesed check
while (lendOfFile) {
/lread data from file.

try {
String data = b.readLine();
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/Icheck for end of file.
if (data==null) {
endOfFile=true;
}else {
/[Following code removes exinaary info characters
int dlen = data.length();//¢entgth of file
String data2 = new String(etligp new string for trimmed data
for(int z=0;z<dlen;z++) {
char c1 = data.charAt(eg¢#d string character at a time
if((int)c1>0) {//check ifharacter is above 0 in ASCII table
data2+= c1,//if so addist}}
if(data2.length()>1) {//chedknew string has length greater than 1
data = data2;//if so alltmbe output
} else//otherwise repeat fomrlae of program
{data = b.readLine();//get line
dlen = data.length();//ckhéength
data2 = new String();//wigheta2
for(int z=0;z<dlen;z++) {
char c1 = data.charjt(ead amd check char
if((int)c1>0) {//chegkcharacter is above 0 in ASCII table
data2+= c1;//outpbar}}
data = data2;//load trimntied to data.
}
/1if start of data not founetthadd straight to output file.
if(datafound==false) {
header=header+"\n"+data;}
/lcheck if current line is dtaf data.
if(data.compareTo("StartOfData=0) {
System.out.printin("fountars");
comp=header;
fin=null;
datafound=true;
}if(datafound==true) {
/lcheck if firstline of @ahas been processed yet.
if(firstline==true) {
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firstline=false;

data = b.readLine();

/IFollowing code remewxtra binary info characters

dlen = data.length@et/ length of file

data2 = new Stringggtup new string for trimmed data

for(int z=0;z<dlen;z+{)
char cl = data.éti@);//read string character at a time
if((int)c1>0) {//elek if character is above 0 in ASCII table

data2+= c1;#df add to list} }

if(data2.length()>1)dheck if new string has length greater than 1
data = data2;/éifalow to be output
} else//otherwise repfea new line of program
{data = b.readLine@gl! line
dlen = data.lenyti¢heck length
data2 = new Strindlipe data2
for(int z=0;z<dlem+) {
char c1 = deltarAt(z);//read amd check char
if((int)c1>0)/¢heck if character is above 0 in ASCII table
data2+=/fdytput char}}
data = data2;//laachmed line to data.
sl=data;}
st=new StringTokenizat@a);
int arraynum=0;
while (st.hasMoreTok@nh$
rowl[arraynum] sr&xtToken();
arraynum-++;}
/lIread a second linelafa to match against line 1
/lsaves a second ldwpugh the cycle after the
/ffirst line is loaded.
data = b.readLine();
/IFollowing code remewxtra binary info characters
dlen = data.length@et/ length of file
data2 = new Stringéetup new string for trimmed data
for(int z=0;z<dlen;z+{+)
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char c1 = data.etiéa);//read string character at a time
if((int)c1>0) {//ekek if character is above 0 in ASCII table
data2+= c1;4d add to list} }
if(data2.length()>1)dheck if new string has length greater than 1
data = data2;/dfallow to be output
} else//otherwise repfea new line of program
{
data = b.readLinéggt line
dlen = data.lenytigheck length
data2 = new Strjndfipe data2
for(int z=0;z<dlen:) {
char cl = deltarAt(z);//read amd check char
if((int)c1>0)/€heck if character is above 0 in ASCII table

data2+=/fdytput char}}
data = data2;//leachmed line to data.
1
st=new StringTokenizer(data

int arraynum=0;

while (st.hasMoreTokeng())

String val = st.nextBok);
if(val.compareTo("-2D")==0) {
System.out.printhr€re™);
String val2 = sixtieoken();
System.out.printli{d val "+val2);
String val3 = sixtieoken();
System.out.printBrd val "+val3);

if(val3.compareTe000000")==0) {
String val4 tnextToken();
System.out.gri(f'4th val "+val4);
if(val4.compa”0.000000")==0) {

System.puttin(active);
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if(activeb)
comp2aler;
fin23hp
if(active2{
compg&sler;
fin33hp
active++;
sect++;}}
} else {
row2[arraynum] =,va
arraynum++; }}
if(active==1)
{el=data;}
if(active==2)
{e2=data;}
if(active==3)
{e3=data;}
/%
*Check if the data typeset to heat, heat-cool or
* heat-cool-heat and chet® appropriate method
*/
[*
*if heat - check if dagarunnning in the up or down
*direction (input tab) atieen check the data is
*running in the correctelition.
*/
if(run.compareTo("Heat")3#0eat run
{ if(dir.compareTo("Up")H{
if(Double.parseDouble(rowl[value])<Double.mdouble(row2[value]))
comp=comp+"\data;}
if(dir.compareTo("Dows=0) {
if(Double.parseDouble(rowl[value])>Double.parse De@tow2[value]))
comp=comp+"\data;
}System.arraycopy(ro@;2ow1,0,4);}
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/%
*if heat-cool - check dégaunning in the upward
*direction until the markis encountered.
*When this encounteredrdto downward direction.
*Output both as 2 sepefigs.
*/
if(run.compareTo("Heat-C9sk0) {//heat-cool run
if(active == 1) {
if(Double.parseDouble(rowl[value])<Double.parseDie@ow2[value])) {
comp=comp+"\data;
if(firstfoundfalse)
{ s1 =data;
firstfound x&;
Hif(active == 2)

if(Double.parseDouble(rowl[value])>Double.parse Ded@tow2[value])) {
comp2=comp2+Adata;
if(firsttoundfadse)
{s1 = data;
firstfound u&; }} }
System.arraycopy(rowiy®1,0,4);}

/%
*if heat-cool-heat - chegtéta is running in the upward
*direction until the firetarker is encountered.

*When this encounteredrd@to downward direction
*until the second markereached. When this occurs
*switch back to upwardsedtion.

*Qutput all 3 seperateil

*/

if(run.compareTo("Heat-Cdétdat")==0) {//heat-cool-heat run
if(active == 1) {

if(Double.parseDouble(rowl[value])<Double.parseble(row2[value])) {
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comp=comp+"\data; }}
if(active == 2) {
if(Double.parseDouble(rowl[value])>Double.parseDed@tow2[value])) {
comp2=comp2+Adata;}}
if(active ==3) {
if(Double.parseDouble(rowl[value])<Double.parseDie@ow2[value])) {
comp3=comp3+hdata; }}
System.arraycopy(rowy®1,0,4);
11} catch(IOException iod}} }

/lcheck if data is of a type produced Y2000
else if(inst.compareTo("Q2000")==0)

{
comp=null;
header=null;

int value=2; //set column to be read to @ydefault value)
try {
I
*check if a value has been input itte 'num’ text box and if it
*is on the correct range
*/
try {
value = Integer.parselnt(num.getl)e
if(value>5) {
value =2;
}
if(value<0) {
value=2;
}
} catch(NumberFormatException nfe) {}
value--; //set column value to a cqomewding array value
/lread marked file
f = new FileReader(ch.getSelectedRile()
b = new BufferedReader(f);
} catch(FileNotFoundException nfe) {
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info.append("Error with file\n");
}
boolean endOfFile = false;//end of file cke
boolean datafound = false;//start of déuack
boolean firstline = true;//first line praesed check
while (!endOfFile) {
/lread data from file.
try {
String data = b.readLine();
/Icheck for end of file.
if (data==null) {
endOfFile=true;
}else {
/[Following code removes exinaary info characters
int dlen = data.length();//¢entgth of file
String data2 = new String(etligp new string for trimmed data
for(int z=0;z<dlen;z++) {
char c1 = data.charAt(zg¢#d string character at a time
if((int)c1>0) {//check ifharacter is above 0 in ASCII table
data2+= c1,//if so addist}}
if(data2.length()>1) {//chedkniew string has length greater than 1
data = data2;//if so alltmbe output
} elsel//otherwise repeat fowrime of program
{data = b.readLine();//get line
dlen = data.length();//chéength
data2 = new String();//wigheta2
for(int z=0;z<dlen;z++) {
char c1 = data.charjt(ead amd check char
if((int)c1>0) {//chedkcharacter is above 0 in ASCII table
data2+= c1;//outpbar } }
data = data2;//load trimntieé to data.}
//if start of data not foungkthadd straight to output file.
if(datafound==false) {
header=header+"\n"+data;}

/Icheck if current line is dtaf data.
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if(data.compareTo("StartOfData0) {
System.out.printin("founars");
comp=header;
fin=null;
datafound=true;}
if(datafound==true) {
/lcheck if firstline of dahas been processed yet.
if(firstline==true) {
firstline=false;
data = b.readLine();
/[Following code remewextra binary info characters
dlen = data.length@et/'length of file
data2 = new Stringéetup new string for trimmed data
for(int z=0;z<dlen;z+{+)
char c1 = data.etiéa);//read string character at a time
if((int)c1>0) {//ekek if character is above 0 in ASCII table
data2+= c1;4df add to list
3}
if(data2.length()>1)deck if new string has length greater than 1
data = data2;/éifalow to be output
} else//otherwise repfa new line of program
{
data = b.readLinéggt line
dlen = data.lenyti¢heck length
data2 = new Strjndfipe data2
for(int z=0;z<dlem:+) {
char cl = delterAt(z);//read amd check char
if((int)c1>0)/¢heck if character is above 0 in ASCII table
data2+=/@dytput char

I3
data = data2;//leachmed line to data.
sl=data;}

st=new StringTokeniziaxt@);
int arraynum=0;
while (st.hasMoreTok@h$
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altrowl[arraynumktnextToken();
arraynum++; }
/lIread a second linelafa to match against line 1
/lsaves a second ldwpugh the cycle after the
Iffirst line is loaded.
data = b.readLine();
/IFollowing code remewextra binary info characters
dlen = data.length@et/ length of file
data2 = new Stringéetup new string for trimmed data
for(int z=0;z<dlen;z+{)
char c1 = data.etiéa);//read string character at a time
if((int)c1>0) {//elek if character is above 0 in ASCII table
data2+= c1;#df add to list} }
if(data2.length()>1) {//check if new string hasidgh greater than 1
data = data2;/éifalow to be output
} else//otherwise repfea new line of program
{
data = b.readLingéggt line
dlen = data.lenjyiti¢heck length
data2 = new Strjndfipe data2
for(int z=0;z<dlem:+) {
char cl = deltarAt(z);//read amd check char
if((int)c1>0)/€heck if character is above 0 in ASCII table
data2+=/fdytput char}}
data = data2;//laachmed line to data.}}
st=new StringTokenizer(data
int arraynum=0;
while (st.hasMoreTokeng())
String val = st.nextBok);
if(val.compareTo("-20D")==0) {
System.out.printh€re");
String val2 = sixtieoken();
System.out.printEr{d val "+val2);
String val3 = sitiBoken();
System.out.printBrd val "+val3);

294



if(val3.compareT@000000")==0) {
String val4 tnextToken();
System.out.gri(f'4th val "+val4);
if(val4.comp@n"0.000000")==0) {
String vadsst.nextToken();
if(val5.cpareTo("0.000000")==0)
{
System.puintin(active);
if(active)
comp2saler;
fin23hp
if(active2{
compégsler;
fin33hp
active++;
sect++;}}Blse {
altrow2[arraynumysal;

arraynum-++;}}

if(active==1)
{el=data;}
if(active==2)
{e2=data; }
if(active==3)
{e3=data;}
[*

*Check if the data typeses to heat, heat-cool or

* heat-cool-heat and cleotige appropriate method
*/

/%

*if heat - check if dagarunnning in the up or down
*direction (input tab) atien check the data is
*running in the correcteition.

*/

if(run.compareTo("Heat")3#0eat run
{if(dir.compareTo("Up")==Q)
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if(Double.parseDouble(altrowl[value])<Double.parseble(altrow2[value]))
comp=comp+"\d&ta;
Yif(dir.compareTo("Dowp=0) {
if(Double.parseDouble(altrowl[value])>Double.pouble(altrow2[value]))
comp=comp+"\d&ta;
} System.arraycopy@t2,0,altrow1,0,4); }
/%
*if heat-cool - check daaunning in the upward
*direction until the markis encountered.
*When this encounteredradeto downward direction.
*Output both as 2 sepefigs.
*/
if(run.compareTo("Heat-C9ek0) {//heat-cool run
if(active == 1) {
if(Double.parseDouble(altrowl[valisdDouble.parseDouble(altrow2[value])) {
comp=comp+"\d&ta;
if(firstfoundfalse)

sl = data;
firstfound wé;
Hif(active == 2)

if(Double.parseDouble(altrowl[value])>Double.parseble(altrow2[value])) {
comp2=comp2+Hhdata;
if(firsttoundfadse)
{ sl =data;
firstfound =é;
}} System.arraymg(row2,0,rowl,0,4);}

/%
*if heat-cool-heat - chat&ta is running in the upward
*direction until the firetarker is encountered.

*When this encounteredrd@to downward direction
*until the second markereached. When this occurs

*switch back to upwardsedtion.
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*Output all 3 seperatesil
*/
if(run.compareTo("Heat-Cdétdat")==0) {//heat-cool-heat run
if(active == 1) {
if(Double.parseDouble(altrowl[value])<Double.parseble(altrow2[value])) {
comp=comp+"\data;
1
if(active == 2) {
if(Double.parseDouble(altrowl[value])>Double.parseble(altrow2[value])) {
comp2=comp2+HAdata;
Hif(active ==3) {

if(Double.parseDouble(altrowl[value])<Double.parseble(altrow2[value])) {
comp3=comp3+hdata;
}}System.arraycogitfow2,0,altrowl,0,4);}}}
} catch(IOException ioe) {

i

/**

*This method, called by the process methothuts the data after the file has been
checked.

*Three different output methods are possit@pahding on the Method (Sort combo
box) selected.
*/
private void output()
{
try {
filename=1;
sect=1,
if(active>3)
{active=3;}
String name = current.getPath();
int namel = name.length();
String namen = name.substring(namelealagramel-4);

info.append("Number of sections = "#s8mn");

297



if(active==1) {

}

name = namen+"_proc_"+filename+";tx
info.append("Processing completegghved as "+name+"\n");
fw = new FileWriter(name);

fw.write(comp);

fw.close();

if(active == 2) {

}

name = namen+"_proc_"+filename+";tx

info.append("Processing of parbinpleted.\nSaved as "+name+"\n");
fw = new FileWriter(hame);

fw.write(comp);

fw.close();

filename++,

name = namen+"_proc_"+filename+";tx

info.append("Processing of parothpleted.\nSaved as "+name+"\n");
fw = new FileWriter(name);

fw.write(comp2);

fw.close();

if(active == 3) {

name = namen+"_proc_"+filename+";tx

info.append("Processing of parbinpleted.\nSaved as "+name+"\n");
fw = new FileWriter(hame);

fw.write(comp);

fw.close();

filename++;

name = namen+"_proc_"+filename+";tx

info.append("Processing of parotpleted.\nSaved as "+name+"\n");
fw = new FileWriter(name);

fw.write(comp?2);

fw.close();

filename++,

name = namen+"_proc_"+filename+";tx

info.append("Processing of parofpleted.\nSaved as "+name+"\n");
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fw = new FileWriter(name);
fw.write(comp3);
fw.close();

}
} catch(IOException ioe) {

1
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