
 
 
 
 
 
Hurson, Catherine Eileen (2011) Expression and function of the atypical 
chemokine receptor CCX-CKR. PhD thesis 
 
http://theses.gla.ac.uk/2718/
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given. 

 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/2718/


 

 

 

Expression and Function of the Atypical Chemokine 

Receptor CCX-CKR 

 

Catherine Eileen Hurson 

 

 

 

A thesis submitted to the College of Medicine, Veterinary and Life Sciences, 
University of Glasgow in fulfillment of the requirements for the degree of 

Doctor of Philosophy 
 

 
 
 

June 2011 
 
 
 
 
 
 
 
Institute of Infection, Immunity and Inflammation 
University of Glasgow 
120 University Place 
Glasgow 
G12 8TA 



2 

Summary 

The ability to clear infections and repair injury is dependent on the coordinated migration 

of immune cells, or leukocytes. These cells can directly destroy invading pathogens and 

also produce a variety of bioactive factors that promote pathogen clearance. Interactions 

between immune cells occur both at the site of inflammation and in specialised lymphoid 

organs throughout the body. The efficiency and specificity of these interactions relies on 

the production of a family of molecules called chemotactic cytokines, or chemokines, that 

drive leukocyte migration. Cells express specific profiles of chemokine receptors to ensure 

they are directed to the appropriate location to exert their immunological function. The 

field of chemokine biology, already complex, has been further complicated by the 

discovery of a subfamily of receptors, the atypical chemokine receptors. These molecules 

lack the ability to couple to signal transduction pathways used by the other chemokine 

receptors, and are proposed to act as chemokine scavengers or transport molecules. 

The atypical chemokine receptor CCX-CKR was discovered more than a decade ago but 

its function in vivo remains unclear. At the beginning of my project, information about this 

molecule was very limited. The murine receptor binds the CC chemokines CCL19, CCL21 

and CCL25, which have well-characterised and critical roles in the development and 

homeostasis of the immune system as well as in the immune response to infection. Thus, 

identification of this new receptor, which unlike classical receptors does not induce cell 

migration in response to ligand binding, presented some exciting possibilities as to how 

these processes might be regulated in vivo. Reports describing the pattern of expression of 

CCX-CKR have thus far provided only limited and sometimes contradictory information. 

Additionally, while in vitro studies from our lab have provided some important clues as to 

the potential role of the receptor, published in vivo studies were, at the time of 

commencing this work, limited to one report describing an unvalidated EGFP reporter 

knock-in transgenic mouse and a conflicting online resource detailing data generated using 

a LacZ reporter mouse. To understand the true function of this molecule, it is critical to 

know where it is expressed in vivo and to explore its function on these cells. In this project 

I set out with the aim of identifying murine tissues and cells expressing CCX-CKR, as well 

as examining its potential as an in vivo scavenger of chemokine. Related to this, I hoped to 

uncover any impact of deletion of CCX-CKR on lymphoid tissue cellularity and/or 

function, both in resting and inflamed conditions.  

In chapter 3, I present data that identify lymphoid tissues and “barrier” tissues as sites of 

robustly detectable CCX-CKR mRNA expression. I describe how I have established a 
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novel fluorescent chemokine tetramer-based protocol for the detection of CCL19 receptors, 

with emphasis on the application of this protocol to identify CCX-CKR activity on specific 

cell subsets. Using this method, I present evidence that some CD11b+ CD11c+ myeloid 

subsets in the inguinal lymph node exhibit CCX-CKR dependent internalisation of 

chemokine. I also describe attempts to fractionate tissues to identify cell populations 

responsible for the detected whole-tissue expression of CCX-CKR mRNA.  

The results described in chapter 4 provide support for the hypothesis that CCX-CKR 

regulates levels of its ligands in vivo, with alterations in chemokine levels in serum and 

inguinal lymph nodes in the absence of CCX-CKR. I also present evidence demonstrating 

that deletion of the receptor can influence mRNA levels of the related receptor CCR7. 

Following on from this, chapter 5 details my analysis of the impact of CCX-CKR on the 

cellularity of various lymphoid compartments. I present evidence that CCX-CKR 

influences lymphocyte populations in the peritoneal cavity, with both innate-like and 

conventional lymphocytes significantly overrepresented in this compartment. The 

cellularity of the inguinal lymph node, but not the spleen, is subtly altered by deletion of 

the receptor. Splenic leukocyte cellularity is not affected, either in number or in 

localisation.  

In chapter 6, I turn my attention to the possible role of CCX-CKR during the inflammatory 

response by examining various experimental parameters during a short-term model of 

induced cutaneous inflammation. This study shows that CCX-CKR deletion alters the 

cellularity of the myeloid compartment in the draining lymph node and again highlights 

myeloid subsets as displaying CCX-CKR dependent chemokine internalisation. Finally, I 

present preliminary data suggesting a protective effect of CCX-CKR deletion during a 

long-term model of inflammation-driven tumorigenesis.  

Taken together, my data provide tentative support for the theory that CCX-CKR acts as a 

chemokine scavenger in vivo. They further indicate that CCX-CKR is involved in 

regulating cellularity of various lymphoid compartments both at rest and during induced 

inflammation. In chapter 7 I discuss in detail the implications of my findings in the context 

of work published since my project began, and highlight growing evidence to suggest a 

role for CCX-CKR in regulating immune function.  
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CXCL  CXC chemokine ligand 

CXCR  CXC chemokine receptor 

CX3CL CX3C chemokine ligand 

CX3CR CX3C chemokine receptor 

Cys  cysteine 

DAG  diacyl glycerol 

DAMPs danger-associated molecular patterns 

DARC  Duffy antigen/receptor for chemokines 

°C  degrees Celsius 

DC  dendritic cell 

DMBA 7,12-Dimethylbenz(a)anthracene 

DN  double negative 

DNA  deoxyribonucleic acid 

DP  double positive 
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DPBS  Dulbecco’s phosphate buffered saline 

DTH  delayed type hypersensitivity 

E  embryonic day 

EAE  experimental autoimmune encephalitis 

EBI1  Epstein-Barr virus induced receptor-1 (CCR7) 

EBV  Epstein-Barr virus 

E. coli   Escherichia coli 

EDTA  ethylenediaminetetraacetic acid 

e.g.   exempli gratia 

EGFP  enhanced GFP 

ELC  EBI1-ligand chemokine (CCL19) 

ERK  extracellular-signal regulated kinase 

EST  expressed sequence tag 

FACS  fluorescence activated cell sorting 

FAE  follicle-associated epithelium 

FCS  foetal calf serum 

FDCs  follicular dendritic cells 

FITC  fluorescein isothiocyanate 

FLT3  Fms-like Tyrosine kinase 3 

FLT3L  FLT3-ligand 
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FRC  fibroblastic reticular cell 

FRET  fluorescence resonance energy transfer 

FSC  forward scatter 

GAG  glycosaminoglycan 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GC  germinal centre 

GDP  guanosine diphosphate 

GFP  green fluorescent protein 

Glu  glutamic acid 

gMFI  geometric mean fluorescence intensity 

GPCR  G-protein coupled receptor 

GPR-9-6 G-protein coupled receptor 9-6 (CCR9) 

GRK  G-protein coupled receptor kinase 

GTP  guanosine triphosphate 

h  human 

HA  haemagglutinin 

HBSS  Hanks Balanced Salt Solution 

HEC  high endothelial cell 

HEK  human embryonic kidney 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
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het  heterozygous 

HEV  high endothelial venule 

hi  high 

HSCs  Haematopoietic stem cells 

HSV  Herpes simplex virus 

HVEM  Herpes virus entry mediator 

ICAM  intercellular adhesion molecule 

IC50  half-maximal inhibitory concentration 

ID2  inhibitor of DNA binding 2 

i.e.   id est 

IFN  interferon 

Ig  immunoglobulin 

IL  interleukin 

ILF  isolated lymphoid follicle 

ILN  inguinal lymph node 

int  intermediate 

IP3  inositol triphosphate 

JAK  Janus kinase 

KO  knock-out 

LC  Langerhans cell 
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Leu  leucine 

LFA1  leukocyte function-associated antigen 1 

LIGHT homologous to lymphotoxins, exhibits inducible expression, and competes 

with HSV glycoprotein D for HVEM, a receptor expressed by T 

lymphocytes 

LN   lymph node 

LPCs  Lymphoid progenitor cells 

LPS  lipopolysaccharide 

LT  lymphotoxin 

LTβR  LTβ  receptor 

LTi  lymphoid tissue inducer 

m  mouse 

MACS  magnetic activated cell sorting 

MAdCAM1 mucosal addressin cell adhesion molecule 1 

MALT  mucosa-associated lymphoid tissue 

MAP  mitogen activated protein 

M cells  microfold cells 

MDCK Madin-Darbin canine kidney 

med  medium 

MIP-3β macrophage inflammatory protein-3β  (CCL19) 

µg  microgram 
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µl  microlitre 

µM  micromolar 

MGB  minor groove binder 

MHC  major histocompatibility complex 

mL  millilitre 

MLN  mesenteric lymph node 

mM  millimolar 

MMP  matrix metalloproteinase 

mRNA  messenger RNA 

MZ  marginal zone 

NaCl  sodium chloride 

NETs  neutrophil extracellular traps 

NF  nuclear factor 

NFQ  non-fluorescent quencher 

ng  nanogram 

NK cells natural killer cells 

NK T cells CD1d-restricted natural killer-like T cells 

nM  nanomolar 

NTC  no template control 

ORF  open reading frame 
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OVA  ovalbumin 

p  probability 

PALS  periarteriolar lymphoid sheath 

PAMPs pathogen-associated molecular patterns 

PC  phosphorylcholine 

PCR  polymerase chain reaction 

pDC  plasmacytoid DC 

PE  phycoerythrin 

PerCP  peridinin-chlorophyll-protein 

pers. comm. Personal communication 

PGC  primordial germ cell 

PIP2  phosphatidylinositol biphosphate 

PI3K  phosphatidylinositol-3-kinase 

PKA  protein kinase A 

PKC  protein kinase C 

P. knowlesi Plasmodium knowlesi 

PLN  peripheral lymph node 

plt  paucity of lymph node T cells 

PNAd  peripheral node addressin 

PP  Peyer’s patch 
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PRR  pattern recognition receptors 

Ptx  pertussis toxin 

QPCR  quantitative PCR 

RA  retinoic acid 

RALDH retinal dehydrogenase 

RET  rearranged during transfection 

RNA  ribonucleic acid 

RORγt  retinoic acid-related orphan receptor-γt 

RPMI  Roswell Park Memorial Institute 

RQ  relative quantity 

RT  reverse transcriptase 

RT-PCR reverse transcriptase polymerase chain reaction 

SCC  squamous cell carcinoma 

SCM  subcapsular macrophage 

SCS  subcapsular sinus 

SCZ  subcapsular zone 

SD  standard deviation 

SDF-1  stromal derived factor-1 

SDS  sodium dodecyl sulphate 

SED  subepithelial dome 
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SEM  standard error of the mean 

Ser  serine  

siRNA  small interfering RNA 

SLC  secondary lymphoid tissue chemokine (CCL21) 

SLE  systemic lupus erythematosus 

SP  single positive 

S1P  sphingosine-1-phosphate 

S1P1  S1P receptor 1 

SSC  side scatter 

STAT  signal transducer and activator of transcription 

Str  streptavidin 

TCA-4  thymus-derived chemotactic agent-4 (CCL21) 

TCM  central memory T 

TCR  T cell receptor 

TECK  thymus expressed chemokine 

TEM  effector memory T 

TFH  T follicular helper 

TH  T helper 

TNF  tumour necrosis factor 

TNFR  TNF receptor 
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TPA  12-O-tetradecanoylphorbol-13-acetate 

TRAF6 TNF-receptor-associated factor 6 

TRANCE TNF-related activation induced cytokine 

TRANCER TRANCE receptor 

Treg  regulatory T 

Tyr  tyrosine 

U  units 

VCAM1 vascular cell adhesion molecule 1 

VEGF  vascular endothelial growth factor 

WT  wild-type 

XCL  XC chemokine ligand 

XCR  XC chemokine receptor 

x g  times gravity 

XLA  X-linked agammaglobulinemia 
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1  Introduction 

1.1  General Introduction 

Throughout life, animals are constantly challenged by invaders that can parasitize or 

overwhelm the host in their quest for a niche to flourish within. At the same time, there are 

a myriad of injuries to be repaired as well as dying or dysregulated cells to be removed or 

developing cancerous growths to be eliminated. The host must be able to clear dead cells, 

repair injury, remove tumours and combat infection to remain healthy and fully functional. 

The ability to survive these numerous challenges requires a fully functional immune 

system, a complex and highly organised system of cells and organs that has evolved over 

time to protect the host from invasion and repair injury. Physical barriers, such as the skin 

and mucosa, protect the body from initial injury and infection, while mechanical reflexes 

like sneezing and coughing further prevent foreign organisms from adhering to and 

colonising the host, thereby hampering the development and spread of infection. In 

addition to these basic defences, the mammalian immune system has evolved to allow both 

immediate, low-specificity responses to invasion or injury (innate immunity) and longer 

term, highly specific responses to infection by foreign organisms (adaptive/acquired 

immunity). These adaptations allow eradication of infectious agents that circumvent the 

initial barriers, and then help facilitate the repair of tissue damage to the host. However, 

although it provides invaluable protection, the immune system has inherent flaws that can, 

under some circumstances, lead to pathology and even fatality. Allergic reactions, 

autoimmune diseases (like systemic lupus erythematosus (SLE)) and immunodeficiency 

syndromes (e.g. X-linked agammaglobulinemia (XLA)) are the result of dysregulated 

immune responses or defective or disrupted development of the immune system (Chan et 

al., 1999, Conley et al., 1994, Finkelman, 2010, Murphy et al., 2010). Thus, tight 

regulation of the immune response is critical to ensure the survival and continuing health 

of the host. 

1.2 The immune response  

The effectiveness of the immune system lies in its multifaceted approach to combating 

infection. By employing both the rapid but transient innate response and the slower but 

long-lasting adaptive response, and by linking these together through a variety of “innate-

like” leukocytes and direct interaction between “innate” and “adaptive” cells, the ability to 

respond to infection and provide long-term protection against re-infection is 
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comprehensive and efficient. Indeed, there is considerable overlap between the two arms, 

and many cells make important contributions to both.  

The rapid influx of immune cells to the site of infection that typifies the innate immune 

response contributes to the classic hallmarks of inflammation; calor, dolor, rubor et tumor 

(heat, pain, redness and swelling). Recognition of pathogens by inflammatory cells occurs 

via pattern recognition receptors (PRRs), which recognise damage- or pathogen-associated 

molecular patterns (DAMPs or PAMPs, respectively). Upon recognition of an invading 

pathogen, tissue-resident macrophages secrete cytokines and other inflammatory mediators 

that precipitate the rapid accumulation of innate immune cells in the infected tissue. Some 

of the mediators released trigger vasodilation, i.e. an increase in the diameter of 

surrounding blood vessels, thereby increasing the number of leukocytes in the area. The 

slowing of blood flow caused by blood vessel dilation, in combination with the induction 

of expression of adhesion molecules by endothelial cells lining the blood vessels, allows 

leukocytes to exit circulation and enter the infected tissue (Murphy et al., 2010). Of 

particular interest to this thesis are the subfamily of cytokines that induce the directed 

migration of leukocytes, in this case into the infected tissue. These chemotactic cytokines, 

or chemokines, comprise an extensive family of ligands that are recognised by receptors on 

the surface of leukocytes and trigger their migration towards the source of the chemokine.  

At the site of infection various cells, both leukocytic and non-leukocytic, secrete an array 

of chemokines that attract an initial wave of neutrophils, closely followed by monocytes 

that rapidly differentiate into macrophages and DCs, with other immune cells also arriving 

at later stages of infection (Murphy et al., 2010). Neutrophils are highly phagocytic and 

granular, producing a range of antimicrobial molecules as well as various inflammatory 

mediators that promote recruitment of other leukocytes to the site of infection. They also 

produce “neutrophil extracellular traps” (NETs), which comprise extracellular fibres 

composed of granule proteins and chromatin that bind, neutralise and kill bacteria within 

the infected tissue (Brinkmann et al., 2004, Soehnlein and Lindbom, 2010). Neutrophils 

are typically short-lived in circulation, although cytokines produced by endothelial cells at 

the site of inflammation can promote their survival (Coxon et al., 1999). Cytokines 

produced by these cells also contribute to the activation of recruited macrophages and DCs 

at the inflamed site and can influence the programming of macrophages towards a pro- or 

anti-inflammatory phenotype depending on context (Bennouna et al., 2003, Nathan, 2006). 

Macrophages, too, are highly phagocytic, engulfing invading microbes and destroying 

them, as well as clearing dead neutrophils from the site of inflammation. They can produce 

a variety of bactericidal molecules, in addition to production of chemokines and other 
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inflammatory mediators. They can also present antigen to T cells, albeit less efficiently 

than DCs, thereby providing a link between innate and adaptive responses (Kalupahana et 

al., 2005, Murphy et al., 2010). Other granulocytes, such as eosinophils, are also involved 

in release of microbicidal products and clearance of infection, and are recruited in the later 

stages of the inflammatory response (Murphy et al., 2010).    

These initial stages, characterised by vasodilation and increased “leakiness” of blood 

vessels, recruitment of phagocytic and granular cells, and production of anti-microbial 

factors, provide instant, non-specific protection against infection by pathogens. The 

involvement of “innate-like” lymphocytes is believed to span the period between this 

initial burst of activity and the subsequent, more specific adaptive response. (Bendelac et 

al., 2001, Lopes-Carvalho and Kearney, 2004). These “innate-like” cells, which are poorly 

understood but coming under increasing scrutiny, include γδ T cells, CD1d-restricted 

natural killer-like T cells (NK T cells), B1 B cells and marginal zone (MZ) B cells. Like 

the archetypal innate cells described above, these innate-like lymphocytes recognise 

conserved patterns rather than the practically endless array of specific antigens recognised 

by “classical” lymphocytes, with their highly restricted T cell receptor (TCR) and B cell 

receptor (BCR) repertoires. Innate-like lymphocytes are typically resident in peripheral 

tissues, unlike classical lymphocytes that are normally found in lymph nodes and in 

circulation, and have specialised functions including secretion of natural antibody (in the 

case of innate-like B cells) and production of inflammatory cytokines (Bendelac et al., 

2001). Some innate-like lymphocytes have been shown to act as antigen presenting cells 

(APCs), strengthening their claim to act as a link to the adaptive response (Brandes et al., 

2009, Brandes et al., 2005). 

The induction of the primary adaptive immune response principally involves DCs, T cells 

and B cells. Immature DCs patrol the body and preferentially home to the site of infection 

in response to inflammatory chemokine production, which they recognise through surface 

receptors. They become loaded with antigen and mature, altering their chemokine receptor 

expression profile to facilitate homing to the adjacent lymph node. There they can interact 

with T lymphocytes to promote pathogen specific responses such as B cell activation and 

the generation of effector T cells. Free antigen also drains to the lymph node where it is 

recognised by B cells, eventually leading to antibody production and generation of 

memory B cells. Activated T cells migrate to the site where their specific antigen was 

detected, where they combine with the innate mechanisms already in place to help shape 

the inflammatory response and eradicate the infection. Plasma cells migrate to the spleen 

and bone marrow where they reside and maintain circulating antibody titres over long 
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periods. Memory cells are generated to enhance the capacity for a rapid specific response 

should the infectious agent be encountered again. The tissues and molecules involved in 

the adaptive immune response are presented in greater detail below, with emphasis on the 

importance of chemokines and their receptors throughout the process. For a general text on 

the immune system see Murphy and colleagues (Murphy et al., 2010).  

1.3 Lymphoid tissue – development, structure and function 

The ability of the adaptive immune system to respond rapidly and specifically to infection 

lies in its highly organised system of lymphoid organs. Within primary lymphoid organs 

such as the bone marrow and thymus, immune cells are produced and develop, while 

secondary lymphoid organs, such as lymph nodes and spleen, have well-defined 

compartments that promote efficient interactions of immune cells to facilitate production 

of antibody-secreting cells and effector and memory lymphocytes (Campbell et al., 2003, 

Cyster, 2005). Mammals lacking properly developed or organised lymphoid tissue have 

been shown to have defective immune responses.  

Lymphoid organs are important for a number of functions within the immune system. 

Leukocytes are produced and mature in primary lymphoid organs such as the bone marrow 

and thymus, with T cell development in the thymus critical for development of central 

tolerance. Secondary lymphoid organs, which include lymph nodes, Peyer’s patches and 

spleen, play an important role in peripheral immune tolerance and are where adaptive 

immune responses are initiated. Other secondary lymphoid tissues include smaller 

lymphoid aggregates, such as cryptopatches and other mucosa-associated lymphoid tissue 

(MALT), including isolated lymphoid follicles (ILF) prominent in the intestine. The major 

body cavities, i.e. the pleural and peritoneal cavities, also contribute to the function of the 

immune system, containing substantial populations of lymphocytes that protect these sites 

from invasive pathogens, produce large amounts of “natural” antibody and contribute to 

immune responses in adjacent organs. The main lymphoid organs of direct relevance to 

this thesis are the spleen and peripheral lymph nodes. The lymphocyte populations of the 

peritoneal cavity have also been studied in detail. Therefore, I will provide a brief 

summary of the structure and function of primary lymphoid organs, followed by a more 

detailed account of the development, structure and function of secondary lymphoid tissues. 

I will also discuss the development and function of a major lymphocyte population in the 

peritoneal cavity, the innate-like B cells. 



31 

1.3.1 Primary lymphoid organs  

Haematopoiesis, i.e. the generation of new blood cells, takes place in the foetal liver early 

in gestation and then transfers to the bone marrow (BM), with some overlap between the 

two in late foetal development (Lee et al., 2011, Ueno and Weissman, 2010). 

Haematopoietic stem cells (HSCs), which can differentiate into each different type of 

blood cell, seed the BM from the foetal liver. There, cells that are involved in bone 

development are also believed to be involved in maintaining the HSCs that reside in the 

BM, and may play a role in their enduring proliferative capacity. Cultured osteoblasts 

(mesenchymal/stromal cells involved in bone formation) from both human and mouse 

produce cytokines that promote HSC proliferation in vitro, and in vivo studies have shown 

a link between increased osteoblast numbers and increased numbers of HSCs in BM (Calvi 

et al., 2003, Taichman and Emerson, 1998, Zhang et al., 2003). HSCs also interact with 

BM sinusoidal endothelial cells (BMECs) that express adhesion molecules such as E-

selectin and vascular cell adhesion molecule 1 (VCAM1), the CXC chemokine ligand 

(CXCL)12 (also known as stromal derived factor-1, or SDF-1) and other cytokines. 

Interaction of HSCs with stromal cells in the BM allow proliferation and differentiation of 

the stem cells, through stromal production of growth factors and through cell-cell contact 

(Avecilla et al., 2004, Rafii et al., 1997). While T cell precursors from the BM travel to the 

thymus to mature, B cell maturation occurs predominantly in the BM. A variety of factors 

involved in B cell development and believed to be produced by BM stromal cells have 

been identified. These include CXCL12, TNF-related activation induced cytokine 

(TRANCE, also called RANKL and OPGL), interleukin (IL)-7 and FLT3-ligand (FLT3L) 

(Dougall et al., 1999, Egawa et al., 2001, Kong et al., 1999, Namen et al., 1988, Sitnicka et 

al., 2003, Sitnicka et al., 2002). Interaction of B cell precursors with the BM stroma 

promotes immunoglobulin (Ig) gene rearrangement and proliferation, while BM stromal 

cells also present antigen to facilitate deletion or editing of self-reactive B cells that 

recognise the self-antigen (Gay et al., 1993, Hardy and Hayakawa, 2001, Tiegs et al., 

1993). Mature B cells that do not recognise self-antigens are released into circulation and 

can traffic to various sites throughout the body, with some further maturation occurring in 

the spleen. A subset of B cells, the B1 B cells, develop in a way that is largely independent 

of the BM, and will be discussed later. Following activation of mature B cells in the 

periphery, resulting plasma cells can return to the bone marrow, where they can reside for 

at least several months, allowing maintenance of antibody levels in circulation (Hardy and 

Hayakawa, 2001, Manz et al., 1997).  
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The earliest steps of thymus development occur between embryonic day (E)10 and E13.5, 

with thymic/parathymic epithelial primordium expanding from the pharyngeal endoderm 

and growing into surrounding mesenchymal cells, likely neural crest cells. The primordium 

separates from the pharynx and develops into both the thymus and the parathyroid glands, 

which are distinguishable by E13.5 (Gill et al., 2003, Manley, 2000, Manley and 

Blackburn, 2003). Lymphoid progenitor cells (LPCs) can be detected in the thymus around 

E11.5, and are thought to cross the mesenchymal layer of the developing thymus that, at 

this point, lacks vasculature (Wilkinson et al., 1999). Interactions with these cells are 

involved in the development of the thymic epithelium, which, in the adult thymus, includes 

cortical, medullary and subcapsular epithelium (Boyd et al., 1993). The thymic epithelium 

also appears to play a role in regulating the development of LPCs within the thymus and 

controlled interactions between the two cell types may lead to signals that the thymus is 

“mature” and ready to promote thymocyte development (Manley, 2000). HSCs from the 

bone marrow (or, in early embryogenesis, the foetal liver) seed the thymus, losing the 

ability to differentiate into other cell types and becoming committed to the T cell lineage. 

In the adult thymus, migration into the thymus is believed to occur through post-capillary 

venules at the cortico-medullary junction (Gill et al., 2003, Prockop and Petrie, 2000). The 

signals governing the entry of HSCs into the thymus include expression of various 

chemokines by thymic epithelial cells (Champion et al., 1986, Liu et al., 2005, Wilkinson 

et al., 1999). Once within the thymus, thymocytes migrate through the cortex to the 

subcapsular region, where they undergo rearrangement of their TCR. They then return 

through the cortex to the medulla, undergoing selection to remove self-reactive T cells, and 

leave the thymus as mature, self-tolerant T cells (Gill et al., 2003, Smith et al., 1989). The 

processes involved in thymocyte development, leading to generation of functional CD4+ 

and CD8+ T cells, are covered in more detail later in this chapter, with particular reference 

to the involvement of chemokines and their receptors.  

1.3.2 Secondary lymphoid tissue  

The major secondary lymphoid tissues, including lymph nodes (LN), spleen and Peyer’s 

patches (PP), develop prenatally, while other secondary lymphoid tissue, such as 

cryptopatches in the intestine, develop after birth. Here, I will provide an overview of our 

current understanding of secondary lymphoid tissue development, highlighting the critical 

roles played by certain chemokines and their receptors. I will first discuss the 

organogenesis of LN and PP, which share a number of developmental features, and will 

provide a brief description of splenic development. The structure and function of LN and 

spleen will also be discussed. I will also briefly discuss the peritoneal cavity and the 
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innate-like B cells that reside there. This is relevant for some of the results described in this 

thesis.    

1.3.2.1 Lymph node and Peyer’s patch development 

Development of LN has been shown to occur from E10.5 (Wigle and Oliver, 1999). The 

development of various distinct LN occur in a sequential manner in the mouse, with 

mesenteric lymph nodes (MLN) developing first, followed by, in order, brachial, axillary, 

inguinal and popliteal lymph nodes. PP develop subsequent to these lymph nodes (Rennert 

et al., 1996). A number of molecules involved in the early stages of lymph node 

development have been reported. In 1994, de Togni and colleagues described a role for the 

tumour necrosis factor (TNF) superfamily cytokine lymphotoxin (LT) in lymph node 

development, with LTα-deficient mice lacking all lymph nodes and PP (De Togni et al., 

1994). Subsequently, LTβ-receptor (LTβR)-/- mice were shown to similarly lack all lymph 

nodes and PP (Fütterer et al., 1998). While LTβR signalling can be induced by both 

LTα1β2 and LIGHT (another member of the TNF family), peripheral lymph nodes (PLN) 

of LIGHT-deficient mice develop normally, although MLN development appears sensitive 

to deletion of this ligand in combination with LTβ deletion (Scheu et al., 2002). This 

indicates LTα1β2 as the main LTβR ligand involved in LN organogenesis, with a possible 

role for LIGHT in MLN development.  

LTβR is expressed by stromal organiser cells, mesenchymal cells that are precursors to a 

variety of stromal cells found within lymphoid organs (Cupedo et al., 2004). LTα1β2 is 

expressed by lymphoid tissue inducer (LTi) cells, which aggregate with stromal organiser 

cells to form the nascent LN (Mebius et al., 2001, van de Pavert and Mebius, 2010). 

Signalling through LTβR induces the expression of adhesion molecules, including 

VCAM1, and of chemokines, including CXCL13, CC chemokine ligand (CCL)19 and 

CCL21, through nuclear factor (NF)-κB (Cuff et al., 1999, Dejardin et al., 2002). These 

factors are all involved in the development of LN and PP. LTi cells express integrins such 

as α4β1 (which binds VCAM1) and blocking either VCAM1 or β1 integrin inhibits PP 

formation (Finke et al., 2002). Deletion of CXC chemokine receptor (CXCR) 5, the 

receptor for CXCL13, or CXCL13 itself disrupts formation of most PLN, likely through 

disruption of LTi clustering, which is required for LN development. CCL21 has also been 

shown to be involved in development of some PLN (Ansel et al., 2000, Luther et al., 2003, 

Ohl et al., 2003, van de Pavert et al., 2009). LTi cells express both CXCR5 and CCR7, and 

deletion of both receptors (or of the ligands for both) leads to a more severe phenotype 
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than single deletion mutants, suggesting the two receptors and their ligands play partially 

overlapping roles in lymphoid tissue development (Luther et al., 2003, Ohl et al., 2003). 

Another important factor in development of the lymphoid tissue is connection of the 

forming structure to the lymphatic vasculature. This may be mediated through expression 

of vascular endothelial growth factor (VEGF)-C, a lymphangiogenic factor that is 

produced by mesenchymal cells following LTi cell-induced LTβR signalling (Vondenhoff 

et al., 2009).  

As one might expect from the above observations, LTi cell development is crucial for 

formation of LN and PP.  LTi cells are derived from IL-7Rα+ cells from the foetal liver 

that can also give rise to various leukocyte subsets, including T cells, B cells and DCs 

(Mebius et al., 2001). They require expression of inhibitor of DNA binding 2 (ID2), which 

suppresses the expression of proteins that promote differentiation of the progenitor cells 

into B cells. In the absence of ID2, LTi cells are not present and LNs do not form (Boos et 

al., 2007). LTi cells also express the retinoic acid-related orphan receptor (ROR)-γt, which 

has been shown to be required for formation of LN and PP. RORγt-/- animals are devoid of 

LTi cells and fail to develop LN or PP (Kurebayashi et al., 2000, Sun et al., 2000).  

LN formation is also dependent on signalling of TRANCE through its receptor, 

TRANCER. Deletion of either ligand or receptor results in a complete absence of LN, 

although PP form normally (Kim et al., 2000, Kong et al., 1999). Deletion of TNF-

receptor-associated factor 6 (TRAF6), which is involved in TRANCER signalling, also 

results in loss of LN formation (Naito et al., 1999). TRANCER signalling induces LTα1β2 

expression on LTi cells, which express both TRANCE and TRANCER, providing at least 

one likely role for these molecules in lymphoid tissue development (Kim et al., 2000, 

Vondenhoff et al., 2009, Yoshida et al., 2002). 

PP development, while similar to LN formation, does have some distinct features. It 

involves recruitment of not only LTi cells, which are CD45+ IL-7Rα+ CD4+ CD3-, but also 

a subset of precursors that are CD45+ IL-7Rα- CD4- CD3- CD11c+ and that can be found 

distributed throughout the small intestine at E15.5. They require expression of a receptor 

tyrosine kinase, RET, to form the lymphoid aggregates that will develop into PP (Veiga-

Fernandes et al., 2007). RET ligands, expressed in the gut, appear to induce LTα1β2 

expression, suggesting a possible explanation for the ability of PP to form in the absence of 

TRANCE/TRANCER signalling (Kim et al., 2000, Veiga-Fernandes et al., 2007). 



35 

A fascinating development emerging in the story of lymphoid tissue organogenesis is that 

of the involvement of retinoic acid (RA) and retinal dehydrogenase (RALDH) 2, and the 

suggestion that neuronal RA expression may be the primary signal for development of 

lymphoid tissues. This is believed to initiate the aggregation of stromal organiser and LTi 

cells and lead to the expression and interaction of the various factors described above, 

ultimately resulting in the formation of LN and PP. RA is required for the expression of 

CXCL13 by stromal organiser cells, a process that is LT-independent. The expression of 

CXCL13 initiates the clustering of LTi cells, with CCL21 also involved subsequent to the 

initiation of aggregation (van de Pavert et al., 2009). It has been suggested that neurons 

that lie adjacent to LN anlagen are the source of RA in this process, and indeed these cells 

do produce RA and CXCL13 expression can be induced in the gut following vagal nerve 

stimulation (van de Pavert et al., 2009). Data supporting this theory has recently been 

reviewed by van de Pavert and Mebius (van de Pavert and Mebius, 2010). The steps 

believed to be involved in LN formation are summarised in Figure 1.1. 

 
Figure 1.1: Lymph node development. (A) Mesenchymal cells are induced to express CXCL13 in 
response to retinoic acid (RA), possibly produced by nearby neurons. The CXCL13 is recognised 
by lymphoid tissue inducer (LTi) cell precursors, and it induces extravasation of these LTi 
precursors from the blood towards the mesenchymal cells. Clustering of the LTi precursors 
promotes TRANCE-induced signalling through TRANCER. (B) This signalling induces expression 
of lymphotoxin (LT)-α1β2 on the LTi precursors, which mature into LTi cells. This maturation is 
dependent on expression of ID2 (not shown). LTi cells interact with LTβR on stromal organiser cells 
(derived from mesenchymal cells) via LTα1β2. The stromal organiser cells then express a variety of 
chemokines (including CXCL13, CCL19 and CCL21) as well as adhesion molecules, including 
VCAM1, MAdCAM1 and ICAM1 (not shown). (C) The production of these various factors promote 
recruitment of more haematopoietic cells, leading to development of the mature lymph node. Figure 
adapted from van de Pavert and Mebius, 2010.  
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1.3.2.2 Spleen development 

The spleen has a number of functions, including filtering the blood, removing old or 

damaged erythrocytes, and acting both as a site of B cell maturation and as a secondary 

lymphoid organ. “Transitional” B cells that migrate to the spleen from the BM mature into 

either classical follicular B cells that traffic around the body or innate-like marginal zone B 

cells that remain resident in the splenic marginal zone (Allman and Pillai, 2008). Removal 

of the spleen greatly increases the risk of sepsis, identifying the spleen as an important 

organ in fighting bacterial infections. A number of factors involved in this increased 

susceptibility to bacterial infection have been suggested, including defects in T cell 

function, impaired antibody production and loss of specialised macrophages that line the 

marginal zone of the spleen, allowing detection and removal of blood-borne bacteria 

(Brendolan et al., 2007). In asplenic mice a subset of innate-like B cells, the B1a B cells, is 

absent (Wardemann et al., 2002). These cells are involved in production of natural 

antibody, mainly IgM, as well as acting as precursors to a high proportion of IgA-

producing plasma cells in the intestinal mucosa (Kroese et al., 1993, Kroese et al., 1989a). 

Human IgM memory B cells, which are found in the marginal zone of the spleen as well as 

in circulation, are generated in and/or maintained by the spleen and are absent from 

patients lacking the organ (Kruetzmann et al., 2003, Weller et al., 2004). The loss of these 

cells has been linked to defective immune responses to encapsulated bacterial pathogens 

and associated with the sepsis common in splenectomised patients (Kruetzmann et al., 

2003). 

In the mouse, the spleen begins to develop at E11.5, with mesodermal cells that express the 

homeobox gene Hox11 accumulating on the dorsal region of the developing stomach, 

where they form a ridge of mesenchymal cells detectable at E12.5 (Roberts et al., 1994). A 

number of cells involved in the early development of the spleen have been identified, 

although specific roles for many remain unclear. For a review describing the early stages 

of spleen development, see Brendolan et al., 2007. Lymphoid progenitor cells can be found 

in the developing spleen at E12.5-13.5 (Godin et al., 1999, Mebius et al., 1997), and 

haematopoietic cells are readily detected at E15.5 (Sasaki and Matsumura, 1988). The 

mechanisms controlling the initial migration of cells to the spleen are unclear but once 

populated with leukocytes, similar processes to those that occur in lymph nodes and other 

lymphoid tissues regulate the organisation of the white pulp in the spleen (Mebius, 2003).  
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1.3.2.3 Structure and function of the secondary lymphoid organs 

Lymphoid tissue is highly organised and structured to maximise capacity for interaction 

between leukocytes, allowing effective scanning of tissues for infection or injury and 

supporting the efficient generation of adaptive immune responses. The factors involved in 

organisation of lymphoid tissues are, in the main, common to LNs and splenic white pulp 

and include a variety of adhesion molecules and cytokines. In this section, I will describe 

the structure of these tissues with reference to how this influences their function. In 

subsequent sections, I will provide detail of how chemokines are particularly required for 

the appropriate organisation and function of lymphoid tissues.  

Lymph nodes 

Lymph nodes contain two main regions – the cortex, which holds the B cell follicles (and 

germinal centres, following antigen encounter) and T cell zones (in the paracortex), and the 

medulla, which contains a network of lymphatic sinuses through which lymphocytes exit 

the LN. Afferent lymph enters the LN and flows through the subcapsular sinus (SCS), 

which lies directly beneath the fibrous capsule of the LN, surrounding the LN parenchyma, 

and through trabecular sinuses (which traverse the LN parenchyma), to the medullary 

sinuses and out of the LN via the efferent lymphatic vessel. Naïve lymphocytes enter the 

LN through high endothelial venules (HEVs) that are found in the T cell zone (von 

Andrian and Mempel, 2003). The basic structure of the LN is shown in Figure 1.2.  

To enter the LN via HEVs, lymphocytes must be directed to extravasate from the blood at 

the appropriate point. This involves the coordinated expression and interaction of 

numerous molecules on the lymphocytes and the endothelial cells of the HEVs. These 

molecules include intergrins and selectins, chemokines and chemokine receptors, 

addressins and cell adhesion molecules as well as possibly glycosaminoglycans (GAGs). 

Lymphocytes expressing L-selectin weakly bind to endothelial cells expressing peripheral 

node addressin (PNAd), which causes them to roll along the endothelial cell surface, in the 

direction of bloodflow through the venule (Arbonés et al., 1994, Streeter et al., 1988b, 

Tang et al., 1998). Chemokines expressed and/or presented by the endothelial cells bind to 

receptors on the lymphocyte surface and induce upregulation of leukocyte function-

associated antigen 1 (LFA1), an integrin that interacts with intercellular adhesion molecule 

(ICAM)-1 (and possibly ICAM2) on the endothelial cell surface (Andrew et al., 1998, 

Baekkevold et al., 2001, Hamann et al., 1988, Stein et al., 2000). This leads to firm 

adhesion of the lymphocyte to the endothelial cell and prompts extravasation, via either a 

transcellular or a paracellular route. This process is summarised in Figure 1.3.  
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Figure 1.2: Structure of a lymph node. The LN is surrounded by a fibrous capsule, beneath 
which lymph flows through the subcapsular sinus, as well as through the trabecular sinuses. These 
connect to the medullary sinus. Direction of lymph flow from afferent (entering) to efferent (exiting) 
lymphatic vessels is indicated by purple arrows. B cell follicles (B) are shown in blue, surrounded 
by T cell zones (T) in green. High endothelial venules (HEVs), through which naïve lymphocytes 
enter the LN, are found in the T cell zone, as indicated. Adapted from von Andrian and Mempel, 
2003.  

In mucosal LNs (e.g. MLN), HEVs express mucosal addressin cell adhesion molecule 1 

(MAdCAM1), which binds α4β7 integrin expressed by naïve lymphocytes. This interaction 

allows for lymphocyte rolling on the HEV in the absence of L-selectin, and lymphocyte 

homing to MLN in L-selectin deficient mice is less disrupted than that to PLN (Arbonés et 

al., 1994, Bargatze et al., 1995, Berlin et al., 1993, Streeter et al., 1988a). In PP, HEVs 

express MAdCAM1 but not PNAd, and homing of lymphocytes to this tissue is lost in the 

absence of β7 integrin (Wagner et al., 1996). Once within the lymph node, lymphocytes 

rely heavily on chemokine signals to migrate to the appropriate area, as well as to allow 

interaction in the event of antigen encounter. A more detailed account of the role of 

chemokines in these processes will be provided later in this chapter. 
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Figure 1.3: Lymphocyte extravasation into lymph nodes. Migration of lymphocytes from the 
blood into LNs is a multi-step process involving a number of different molecules. (A) A lymphocyte 
expressing selectins (e.g. L-selectin on naïve lymphocytes) and chemokine receptors initially 
makes contact with an addressin (e.g. peripheral node addressin, or PNAd, on high endothelial 
venules (HEVs)). This slows the cells progress through the blood and causes it to “roll” along the 
endothelial layer. (B) The chemokine receptor comes into contact with its ligand, presented on 
endothelial cells by glycosaminoglycans (GAGs). GAGs may also facilitate transport of chemokine 
across the endothelial layer. (C) The interaction between receptor and chemokine leads to a 
change in conformation of surface integrins on the lymphocyte, which are then capable of binding 
cell adhesion molecules (e.g. intercellular adhesion molecule 1, or ICAM1). This causes firm 
adhesion of the lymphocyte to the endothelium. This is followed by extravasation through either (D) 
paracellular or (E) transcellular routes. Figure adapted from Handel et al., 2005 and Förster et al., 
2008. 

The other route of entry into the LN is via lymphatics, which drain interstitial fluid from 

tissues throughout the body. Tissue-derived DCs use this route in both steady-state and 

antigen-driven migration, and free antigen can also enter LNs via the lymph (Banchereau 

and Steinman, 1998, Lutz and Schuler, 2002, Ohl et al., 2004, Sainte-Marie and Peng, 

1986, Wilson et al., 2003).  Again, chemokines are heavily involved in the migration of 

DCs to and within LN and I will discuss this process in depth later in this Introduction. DC 

interaction with naïve T cells within LNs is required for induction of appropriate responses 

to antigen presented in the LN – for instance, activation of T cells and promotion of 

effector functions against invading pathogens versus induction of tolerance or anergy 

(where the T cell can no longer be activated) towards self-antigen (von Andrian and 

Mempel, 2003). DCs migrating under steady-state conditions can induce antigen-specific 

tolerance in T cells and are suggested to act to maintain peripheral tolerance by presenting 

self- or harmless antigen in the absence of costimulatory molecules (Hawiger et al., 2001, 
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Steinman et al., 2003, Steinman and Nussenzweig, 2002). Hawiger and colleagues showed 

that, in a model where DCs targeted with a DC specific antibody could induce tolerogenic 

T cells, the addition of an agonistic antibody for CD40 induced upregulation of CD40 and 

CD86 (costimulatory molecules) on the DCs and led to T cell activation (Hawiger et al., 

2001). This capacity of DCs to induce peripheral tolerance complements and supplements 

the central tolerance induced in the thymus during T cell development, which provides 

wide, but incomplete, protection against autoreactivity (Bouneaud et al., 2000). 

The ability of DCs to induce T cell activation and initiate adaptive immune responses is 

one of the central features of the immune system. Upon recognition of foreign, or 

“harmful”, antigen in the periphery, DCs internalise the antigen, upregulate costimulatory 

molecules and modify their chemokine receptor expression profile to migrate to the LN via 

the lymphatic system. There they enter T cell zones and present processed antigen to T 

cells, which become activated following recognition of their cognate antigen and 

interaction with co-stimulatory molecules and migrate towards the B cell follicle 

(Banchereau et al., 2000, Garside et al., 1998).  

B cells also require antigen encounter and activation to take part in the immune response. 

In contrast to T cells, B cells recognise intact antigen, which enters the LN via the lymph 

and is presented to B cells by stromal cells called follicular dendritic cells (FDCs). As their 

name suggests, FDCs are found in the follicular compartment of the LN and express the 

chemokine CXCL13, which is involved in homing of B cells to B cell follicles (see below 

for more detail). They can trap and present immune complexes of complement and “free” 

antigen to B cells. Upon recognition and uptake of their cognate antigen, B cells alter their 

chemokine receptor expression profile to migrate to the boundary of the B cell follicle and 

T cell zone. There, B and T cells interact, with B cells presenting processed antigen to T 

cells and receiving activation signals that induce germinal centre formation, antibody 

production and proliferation (Clark and Ledbetter, 1994, Cyster et al., 2000, Garside et al., 

1998).  

Interestingly, recent work has demonstrated a role for macrophages that line the SCS of the 

LN in presenting immune complexes containing cognate antigen to B cells that reside in 

the B cell follicles adjacent to the SCS (Phan et al., 2007). B cells were also able to act as 

antigen-transporting cells, using complement receptors to collect immune complexes 

containing non-cognate antigen from the surface of SCS macrophages and transfer them to 

FDCs residing deeper within the follicle (Phan et al., 2007). This macrophage population is 

incompletely understood, although it has long been known to differ from classical 
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macrophages in its poor phagocytic capacity and ability to retain surface presentation of 

immune complexes over a long period (Szakal et al., 1983).  

Spleen 
The spleen is composed of red pulp and white pulp, with the latter comprising lymphoid 

tissue that is organised into B cell follicles and T cell zones reminiscent of LNs. The red 

pulp contains macrophages that phagocytose old erythrocytes and are involved in the 

recycling of iron, both from the dying erythrocytes and through scavenging of circulating 

haemoglobin (Mebius and Kraal, 2005). These macrophages are also involved in 

responding to blood-borne bacterial pathogens, in part through production of molecules 

that inhibit the uptake of iron by bacteria and thus limit their growth (Flo et al., 2004). 

Additionally, antibody-producing cells (plasmablasts and plasma cells) can be found in the 

red pulp. Their migration to the red pulp from the white pulp is linked to alteration in 

chemokine receptor expression and is believed to occur to provide rapid delivery of 

antibody into the bloodstream (Hargreaves et al., 2001, Mebius and Kraal, 2005).  

As mentioned above, the white pulp of the spleen shares some organisational similarities 

with LNs. However, there are some specialised features of the splenic white pulp that are 

specific to this particular lymphoid tissue. The white pulp surrounds arterial vessels 

entering the spleen, with the T cell zone forming the periarteriolar lymphoid sheath 

(PALS) and B cell follicles organised near the marginal zone (MZ) of the white pulp 

(Figure 1.4). Lymphocytes enter from the bloodstream via the MZ, migrating into the 

white pulp through a layer of cells that line the marginal sinus. The MZ contains some 

specialised leukocyte subsets, including MZ metallophilic macrophages, which lie directly 

below the marginal sinus-lining cells, MZ macrophages, which are dispersed among the 

reticular fibroblasts of the MZ and form an outer ring of macrophages around the white 

pulp, and MZ B cells, which are also distributed throughout the MZ (Kang et al., 2003, 

Koppel et al., 2008, Martin and Kearney, 2002, Mebius and Kraal, 2005). Interactions 

between MZ macrophages and MZ B cells have been shown to be required for responses to 

some bacterial infections (Koppel et al., 2008). Leukocytes migrating to the red pulp can 

also be detected in the marginal zone. B cells are thought to be required for correct 

localisation of macrophage populations in the MZ, and chemokines involved in the 

organisation of B cell follicles and T cell zones are also involved in MZ organisation (Ato 

et al., 2004, Mebius and Kraal, 2005, Nolte et al., 2004). Additionally, sphingosine-1-

phosphate (S1P), a sphingolipid involved in retention of T cells in the thymus and LN, also 

plays a role in B cell migration to and residence within the marginal zone, with B cells 
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deficient in S1P1 (a receptor for S1P) unable to localise to the MZ (Cinamon et al., 2004, 

Matloubian et al., 2004).  

The white pulp is largely a site of adaptive immune response generation, through processes 

shared with LN. However, the MZ can be involved in both innate and adaptive immune 

responses. MZ macrophages produce molecules that promote internalisation and 

degradation of bacterial pathogens (Geijtenbeek et al., 2002, Kang et al., 2004), as well as 

being involved in clearance of viruses (Oehen et al., 2002). MZ B cells, which have a 

distinct surface marker phenotype to follicular B cells, are also important in the response to 

blood-borne pathogens (Lopes-Carvalho and Kearney, 2004, Martin and Kearney, 2002). 

Upon encounter with pathogens, they can either differentiate into IgM-producing plasma 

cells or act as antigen-presenting cells, migrating into the white pulp where they are potent 

activators of CD4+ T cells (Attanavanich and Kearney, 2004, Martin and Kearney, 2002). 

These various features of specialised MZ cells may explain why splenectomised patients 

fail to respond effectively to many bacterial infections and require prophylactic antibiotic 

treatment for life (Mebius and Kraal, 2005).  

 

Figure 1.4: Structure of the spleen. The spleen is divided into red pulp and white pulp, as 
indicated. The white pulp consists of the periarteriolar lymphoid sheath (PALS; green), which 
contain the T cells (T) and B cell follicles (B; blue) and is surrounded by the marginal zone (MZ; 
purple). The marginal zone is separated from the white pulp by the marginal sinus (see inset). MZ 
metallophilic macrophages lie beneath sinus-lining cells in the white pulp, while MZ macrophages 
and MZ B cells are found interspersed between reticular fibroblasts of the marginal zone. Adapted 
from Mebius and Kraal, 2005.  
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Innate-like B cells of the peritoneal cavity 

The peritoneal cavity contains a large number of leukocytes, and is home to a sizeable and 

heterogeneous population of innate-like B cells, the B1 B cells. Originally identified as a 

CD5 (Ly-1)-expressing subset of B cells, CD5- B1 B cells have also been defined (B1b 

cells). In the peritoneal cavity, these cells, as well as the “original” B1 B subset, B1a cells, 

express CD11b (Hayakawa et al., 1986, Hayakawa et al., 1983, Stall et al., 1992). 

However, a CD5+ CD11b- population can also be identified in the peritoneal cavity (B1c 

cells). This subset may be a precursor to CD11b+ B1 cell subsets, as transfer experiments 

have shown that, in contrast to CD11b+ subsets, B1c cells can reconstitute both their own 

and B1a and B1b populations (Ghosn et al., 2008, Hastings et al., 2006a). Indeed, early 

experiments reported that B1 B cells are self-renewing and distinct from “classical” B2 

cells, arising from distinct lineages that cannot be recapitulated in irradiated mice by 

transferred adult bone marrow but are reconstituted with the transfer of peritoneal cavity 

lavage cells or foetal or neonatal liver, spleen or bone marrow cells (Hayakawa et al., 

1985). Since then, a B1 B cell precursor has been reported that is abundant in foetal liver 

but much less prevalent in adult bone marrow (Montecino-Rodriguez et al., 2006). 

Additionally, it has been suggested that B1b cells may in fact be derived from B2 B cell 

precursors, rather than the proposed separate lineage of other B1 B cells (Alugupalli et al., 

2004). Regardless of these differences, B1 B cells share a number of common traits, and in 

fact it has been suggested that residence in the peritoneal cavity may have a significant 

impact on the characteristics exhibited by all its B cells, with B2 cells from this site 

distinguishable from splenic B2 cells and exhibiting B1b-like characteristics in some 

settings (Berberich et al., 2007, Hastings et al., 2006b). However, recent work from our lab 

and others has indicated that the markers used to define “B2” cells in this work may be too 

restricted, as many CD11b- B cells in the peritoneal cavity are more correctly defined as 

B1 cells according to a variety of criteria (Hansell et al., 2011b). B1 B cells can also be 

found in the spleen, and are rare but present in other tissues, including MLN, intestinal 

lamina propria and blood. However, they are distinct from those found in the peritoneal 

cavity and constitute a very low proportion of total lymphocytes in these compartments 

(Tumang et al., 2004). Unlike splenic MZ B cells, B1 B cells have been shown to be 

capable of recirculation throughout the body, with a demonstrated role for chemokines and 

their receptors in this process (Ansel et al., 2002, Ha et al., 2006). 

One of the common properties of innate-like B cells is the limited diversity of their BCR 

repertoire. Unlike classical B2/follicular B cells predominating in spleen and LN, B1 B 

cells do not enter germinal centres to undergo somatic hypermutation to increase the 

antigen specificity of their BCR and class-switching is limited (Bendelac et al., 2001). 
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They recognise conserved structures in both self- and foreign antigens, such as 

phosphorylcholine (PC) on pathogenic bacteria, and produce antibodies that recognise 

apoptotic cells, presumably binding lipids that are not normally exposed on healthy cells 

(Bendelac et al., 2001). Like marginal zone B cells, B1 B cells express high levels of IgM, 

and they are believed to act as a major source of IgA-secreting plasma cells typically found 

in the lamina propria of the gut (Hayakawa et al., 1986, Kroese et al., 1989a, Kroese et al., 

1989b). They are a major source of “natural” IgM, i.e. IgM present in serum in the absence 

of pathogen/foreign antigen stimulus, and can also contribute to production of “immune” 

IgM, i.e. IgM produced as part of an immune response (Briles et al., 1981, Ehrenstein and 

Notley, 2010, Haas et al., 2005). These properties have identified a role for B1 B cells, and 

innate-like B cells generally, in providing early protection against infection, prior to 

establishment of a strong adaptive immune response.   

1.4 Chemokines 

Chemokines are small, mainly secreted, peptides about 8-12 kDa in size that are required 

for the correct mobilization and migration of immune cells. They have a variety of critical 

roles in the immune system including development and maintenance of immune structures, 

transient response to infection, wound healing, etc. They are also known to play a part in a 

number of diseases, including a range of autoimmune diseases and cancers. Outside of 

their role as immune molecules, they are also required for a variety of essential functions, 

some of which overlap with their immunological effects. These include stem cell 

mobilization, development, angiogenesis and cell proliferation, survival and 

differentiation. Their structure is broadly similar at the tertiary level, although they can 

vary considerably in amino acid sequence (Allen et al., 2007, Rossi and Zlotnik, 2000). 

1.4.1 Systematic nomenclature 

Originally named for the properties observed when each was first discovered, the 

explosion in the number of defined chemokines that followed the advent of bioinformatics 

has required a new, standardized method of naming chemokines to avoid confusion in 

publication. The current system is based on the order in which the relevant gene was 

reported – therefore, CCL1 was the first CC chemokine gene to be cloned. Characterized 

by a conserved cysteine (Cys) motif based usually on 4 Cys residues, chemokines can be 

classified based on the arrangement of these residues in the primary sequence – thus there 

are four subfamilies; CXC/α chemokines, CC/β chemokines, XC/γ chemokines and 
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CX3C/δ chemokines (Murphy et al., 2000, Rossi and Zlotnik, 2000). Members of these 

families are listed in Table 1.1. 

CXC chemokines have a single, non-conserved amino acid between the first two Cys 

residues in their Cys motif. CC chemokines, the largest of the four described chemokine 

subfamilies, have two adjacent Cys residues at the beginning of their Cys motif. XC 

chemokines, of which only two have been described, are without one of the first and third 

Cys residues in their motif (Kennedy et al., 1995, Yoshida et al., 1995), while CX3CL1, the 

sole described member of the CX3C chemokine subfamily, has three non-conserved amino 

acids between the first and second of its Cys residues (Comerford and Nibbs, 2005, Rossi 

and Zlotnik, 2000). The Cys residues contribute to the regularity of structure to be found in 

the chemokine family, as disulphide bonding between the first and third residues and 

second and fourth residues respectively is responsible for stabilizing the tertiary structure 

of the proteins (Rossi and Zlotnik, 2000).  

CXC/α  Chemokine Family 

Systematic Nomenclature Alternative name(s) Receptor(s) 
CXCL1 GROα, KC CXCR1, CXCR2 
CXCL2 GROβ, MIP-2 CXCR2 
CXCL3 GROγ, DCIP-1 CXCR2 
CXCL4 PF4 CXCR3B 
CXCL5 ENA-78, GCP-2, LIX CXCR2 
hCXCL6 GCP-2 CXCR1, CXCR2 
hCXCL7 NAP-2 CXCR2 
hCXCL8 IL-8 CXCR1, CXCR2 
CXCL9 Mig CXCR3, CCR3 
CXCL10 IP-10 CXCR3, CCR3 
CXCL11 I-TAC CXCR3, CXCR7, CCR3 
CXCL12 SDF-1 CXCR4, CXCR7 
CXCL13 BCA-1, BLC CXCR5 
CXCL14 BRAK, Bolekine unknown 
mCXCL15 Lungkine, WECHE unknown 
CXCL16 SCYB16, SR-PSOX CXCR6 

 
CC/β  Chemokine Family 

Systematic Nomenclature Alternative name(s) Receptor(s) 
CCL1 I-309, TCA-3 CCR8 
CCL2 MCP-1, MCAF, JE CCR2 
CCL3 MIP-1αS, MIP-1α CCR1, CCR5 
hCCL3L1 MIP-1αP, MIP-1α CCR1, CCR3, CCR5 
CCL4 MIP-1β CCR5 
CCL5 RANTES CCR1, CCR3, CCR5 
mCCL6 C10, MRP-1 CCR1 
CCL7 MCP-3, MARC CCR1, CCR2, CCR3, CCR5 
CCL8 MCP-2 CCR2, CCR3 
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mCCL9 MIP-1γ, MRP-2, CCF18 CCR1 
mCCL10 MIP-1γ, MRP-2, CCF18 CCR1 
CCL11 Eotaxin CCR3, CXCR3 
mCCL12 MCP-5 CCR2 
hCCL13 MCP-4 CCR2, CCR3 
hCCL14 HCC-1 CCR1 
hCCL15 HCC-2, Lkn-1, MIP-1δ CCR1, CCR3 
hCCL16 HCC-4, LEC, LCC-1 CCR1, CCR2, CCR5 
CCL17 TARC CCR4 
hCCL18 DC-CK1, PARC unknown 
CCL19 ELC, MIP-3β, exodus-3 CCR7 
CCL20 MIP-3α, LARC, exodus-1 CCR6 
CCL21 SLC, 6Ckine, exodus-2 CCR7 
CCL22 MDC, STCP-1, ABCD-1 CCR4 
hCCL23 MPIF-1 CCR1 
CCL24 Eotaxin-2, MPIF-2 CCR3 
CCL25 TECK CCR9 
CCL26 Eotaxin-3 CCR1, CCR2, CCR3, CCR5, CX3CR1 
CCL27 C-TACK, PESKY, Eskine CCR10 
CCL28 MEC CCR3, CCR10 

 
XC/γ Chemokine Family 

Systematic Nomenclature Alternative name(s) Receptor(s) 
XCL1 Lymphotactin, SCM-1α XCR1 
hXCL2 SCM-1β XCR1 

 
CX3C/δ Chemokine Family 

Systematic Nomenclature Alternative name(s) Receptor(s) 
CX3CL1 Fractalkine, neurotactin CX3CR1 

Table 1.1: Systematic nomenclature for chemokines. Chemokine names as per systematic 
nomenclature are shown, with previous/alternative name(s) and receptor(s). Chemokines present 
only in humans are prefixed with ‘h’. Chemokines present only in mice are prefixed with ‘m’. 
Adapted from (Murphy et al., 2000) and (Comerford and Nibbs, 2005). 

1.4.2 Chemokine function in vivo 

As mentioned above, chemokines have a highly conserved tertiary structure. The N 

terminus contains signalling and receptor binding domains, and proteolytic cleavage of the 

N terminus can influence the agonistic or antagonistic interaction of chemokines with their 

receptors (Clark-Lewis et al., 1995, Gong and Clark-Lewis, 1995, Jarnagin et al., 1999). In 

particular, matrix metalloproteinases (MMPs) are involved in modification of numerous 

chemokines, and can either cause a change from agonist to antagonist or block activity 

altogether (McQuibban et al., 2001, McQuibban et al., 2002, McQuibban et al., 2000, 

Parks et al., 2004), while CD26 proteolytic cleavage of two N-terminal residues from 

CCL4 influences its binding affinity for CCR1 and CCR2 but not CCR5 (Guan et al., 

2004, Guan et al., 2002, Van Damme et al., 1999). Most chemokines are secreted although 
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CXCL16 and CX3CL1 are expressed in a membrane-bound form, with mucin-like stalks 

attached to transmembrane domains anchoring them to the cell surface. These can be 

cleaved and shed from the cell surface through the activity of proteases, allowing them to 

act like other soluble chemokines (Allen et al., 2007, Garton et al., 2001, Gough et al., 

2004). It is believed that, at least for CX3CL1, the surface-anchored expression of the 

chemokine mediates adhesion of cells bearing the relevant chemokine receptor (Chapman 

et al., 2000, Haskell et al., 2000). The N terminus also contains an “N-loop” that has been 

highlighted as an important region for receptor binding, although other parts of the 

chemokine may also be required (Campanella et al., 2003, Clark-Lewis et al., 1995, 

Hemmerich et al., 1999, Pakianathan et al., 1997, Skelton et al., 1999).  

Chemokines fall broadly into two functional groups - the constitutive or homeostatic 

chemokines and the inducible or inflammatory chemokines - and carry out their function 

through G-protein coupled receptors on the surface of immune cells (Rossi and Zlotnik, 

2000). Chemokines are produced throughout the body either continuously (constitutive) or 

in response to stimulus such as infection or injury (inflammatory). They may be present as 

monomers, dimers or higher order oligomers and may form homo- or hetero-oligomeric 

structures, which can be required for function in vivo (Koenen et al., 2009, Nesmelova et 

al., 2008, Proudfoot et al., 2003, Thelen et al., 2010). Presentation of chemokines on cell 

surfaces is intrinsic to their function, particularly in promoting extravasation of leukocytes 

into tissue. Implicated in this presentation are the glycosaminoglycans (GAGs), which 

decorate the surface of most mammalian cells and have been shown to bind chemokines, as 

described below. 

1.4.2.1 Glycosaminoglycans and chemokine presentation 

The involvement of GAGs in chemokine function has been demonstrated in studies where 

mutagenised chemokines with disrupted GAG binding sites lack functionality in vivo 

(Proudfoot et al., 2003, Severin et al., 2010). GAGs are composed of negatively charged 

polysaccharide chains that can vary in composition depending on the site of expression. 

This variability has been suggested to contribute to the specificity of leukocyte homing, 

with chemokines binding to specific subsets of GAGs (Witt and Lander, 1994). Although 

GAG binding sites are often distinct from receptor binding sites, they can overlap in some 

cases (Campanella et al., 2003, Severin et al., 2010, Skelton et al., 1999). The sugar chains 

of many GAGs are attached to a core protein to form a proteoglycan structure capable of 

interacting with a variety of proteins and tethering them to the cell surface (Handel et al., 

2005). It has been suggested that binding to GAGs can facilitate oligomerisation and 
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presentation of chemokine, providing appropriate signals to migrating leukocytes to allow 

adherance to and extravasation through endothelial cell layers. They may also be involved 

in transcytosis of chemokine from the basal to apical endothelial cell surface (Hoogewerf 

et al., 1997, Middleton et al., 1997, Salanga and Handel, 2011, Wang et al., 2005b). The 

presentation of chemokine on endothelial cell surfaces promotes firm adhesion of rolling 

leukocytes along vasculature, allowing the leukocytes to extravasate and enter tissue sites 

requiring their presence. This model has been discussed in a number of reviews (Förster et 

al., 2008, Ley et al., 2007, Parish, 2006, Salanga and Handel, 2011, Weninger and von 

Andrian, 2003) and shares the general properties of naïve lymphocyte entry into LNs, 

shown in Figure 1.3.  

1.4.2.2 Chemokines in homeostasis and inflammation 

Although useful to provide an overview of when and why particular chemokines are 

produced, the classification of chemokines as either “homeostatic” or “inflammatory” is 

often rather inaccurate - in practice, many chemokines can serve in either role. In general, 

however, chemokines described as homeostatic are continuously produced and facilitate 

the development and maintenance of lymphoid tissues, as well as being involved in the 

continuous migration of leukocytes around resting tissues. “Inflammatory” chemokines are 

induced during an immune response to direct cells to the affected site in the body – their 

expression peaks rapidly and subsides to allow clearance of the leukocytic infiltrate from 

the inflamed site (Rossi and Zlotnik, 2000). 

Homeostatic chemokine activity is exemplified by CXCL12, acting through its receptor 

CXCR4. It is constitutively produced by BM stroma, promoting B cell progenitor 

proliferation, and directs haematopoietic precursors to the BM during embryogenesis 

(Aiuti et al., 1999, Aiuti et al., 1997, D'Apuzzo et al., 1997). Mice lacking either CXCL12 

or CXCR4 die perinatally, i.e. at or around birth, and exhibit marked defects in B 

lymphopoiesis, myelopoiesis, cardiac development and cerebellar development (Ma et al., 

1998, Nagasawa et al., 1996, Tachibana et al., 1998, Zou et al., 1998). The ligand/receptor 

pair may also be involved in early T cell development (Hernández-López et al., 2002) and 

are involved in B and T cell homing to LN and Peyer’s patches (Okada et al., 2002). 

However, it has also been shown to be involved in neutrophil recruitment and survival in a 

model of lung inflammation, and is also known to be involved in metastasis of a variety of 

tumours (Raman et al., 2011, Yamada et al., 2011, Zlotnik, 2006). Other examples of 

“homeostatic” chemokines include CCL19 and CCL21, which signal through CCR7, and 
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CCL25, which signals through CCR9. These chemokine/receptor pairings are particularly 

relevant to this thesis and will be explored in depth later in this Introduction.  

There are a plethora of examples of “inflammatory” chemokines, expressed during the 

early response to infection. The complexity and exquisite regulation of leukocyte 

movement through chemokine/chemokine receptor interactions is apparent in the array of 

chemokines upregulated during inflammation to direct the required cell to the affected 

tissue at the appropriate stage of the response. Expression of a variety of CXC chemokines, 

including CXCL1, CXCL2, CXCL5 and CXCL8, attracts neutrophils into infected tissue, 

with MMP cleavage involved in increasing the potency of many of these chemokines and 

amplifying the level of neutrophil influx (Soehnlein and Lindbom, 2010, Tester et al., 

2007, Van den Steen et al., 2000). Monocytes are directed into the inflamed tissue by 

production of CC chemokines such as CCL2-4, CCL6-9, CCL15 and CCL20, as well as 

CXCL8, where they differentiate into macrophages and DCs (Berahovich et al., 2005, 

Soehnlein and Lindbom, 2010, Soehnlein et al., 2009). Immature DCs are also recruited to 

inflamed tissue by many of these chemokines (Luster, 1998, Olson and Ley, 2002). When 

activated, they alter their chemokine receptor profile to home to the draining lymph node, 

as described later in this chapter. Tissue-specific inflammatory responses are also mediated 

by distinct patterns of chemokine expression – for example, expression of CCR3 ligands 

induces recruitment of basophils into lungs during allergy-induced inflammation, and 

CCL2 and CCL5 expressed in the lungs are believed to induce basophil and mast cell 

degranulation during asthma (Lukacs and Tekkanat, 2000, Olson and Ley, 2002).  

1.5 Chemokine receptors  

Chemokine receptors are members of the super-family of G-protein coupled receptors, 

forming part of the rhodopsin family of GPCRs, the largest of five GPCR families 

described (Oldham and Hamm, 2008). GPCRs are membrane-associated receptors and 

comprise the largest family of such molecules described to date. They share a common 

structure of seven transmembrane domains, an extracellular amino-terminus, an 

intracellular carboxy-terminus, three extracellular loops and three intracellular loops. 

Important features of chemokine receptors, which are around 40kDa in size, include the 

DRY motif of the second intracellular loop, which is common to members of the rhodopsin 

family of GPCRs, and the various phosphorylation sites at the C-terminus. Both features 

are involved in coupling to G proteins for ligand-induced signalling (Murphy et al., 2000, 

Oldham and Hamm, 2008). Additionally, chemokine receptors, and other GPCRs, have 

been shown to homo- and hetero-oligomerise, with this capacity thought to influence 
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signalling events following ligand binding (Liu et al., 1998, Milligan, 2004, Thelen et al., 

2010). Importantly, some “atypical” chemokine receptors have been described that do not 

appear to signal upon ligand binding, and these will be described in detail later in this 

Introduction. 

1.5.1 Signalling through GPCRs. 

Classical GPCR signalling involves transmission of a signal (such as that provided by 

ligand binding to receptor) through G protein heterotrimer activation. The heterotrimer 

consists of a complex of α, β and γ subunits. Guanosine diphosphate (GDP) bound to the 

Gα subunit renders the complex inactive until the associated receptor binds its ligand. The 

resulting conformational change in the receptor leads to release of GDP from the Gα 

subunit and formation of a stable complex between the receptor and G protein. This high 

affinity interaction is then destabilized by rapid binding of guanosine triphosphate (GTP), 

which is abundant in the cell, to the Gα subunit. The activated Gα-GTP subunit and Gβγ 

subunit (composed of Gβ and Gγ bound together) can now interact with various 

downstream targets to bring about the desired changes in the cell authorized by the initial 

receptor-ligand binding event. The signal ends with the hydrolysis of GTP to GDP by the 

Gα subunit, which contains a GTPase domain (Oldham and Hamm, 2008). The Gα-GDP 

subunit reforms its complex with the Gβγ subunit, forming an inactive G protein complex 

that is now available to interact with receptors once more. These events are summarized in 

Figure 1.5. 

It is difficult to provide a clear overview of the mechanisms involved in chemokine 

receptor signalling, as the pathways induced and outcomes generated are context, cell type, 

receptor and ligand-dependent. However, some studies have provided important insights 

into the specific mechanisms of chemokine receptor signalling. Members of both the CCR 

and CXCR families have been shown to associate with members of the Janus kinase/signal 

transducer and activator of transcription (JAK/STAT) family, in both transfected cells and 

in vivo (Mellado et al., 1998, Mellado et al., 2001, Rivas-Caicedo et al., 2009, Rodríguez-

Frade et al., 2001, Soriano et al., 2002, Soriano et al., 2003, Stein et al., 2003, Vila-Coro et 

al., 1999, Wong and Fish, 1998). It is thought that ligand binding leads to activation of 

JAK proteins, possibly through receptor oligomerisation, which phosphorylate tyrosine 

(Tyr) residues in the cytoplasmic loops and C-terminal tail of the receptor. For example, 

JAK2 is believed to phosphorylate the Tyr residue of the DRY motif of CCR2, with 

phosphorylation of this residue critical for subsequent signalling in transfected cells 



51 

(Mellado et al., 1998). Similarly, CCR5 in transfected cells couples to JAK1 upon binding 

of CCL5 and is Tyr phosphorylated, followed by binding of STAT-5b to the receptor, with 

the STAT protein becoming Tyr phosphorylated and activated (Rodríguez-Frade et al., 

1999, Wong and Fish, 1998, Wong et al., 2001). CXCL12 binding to CXCR4 prompts 

JAK1 and JAK2 activation and association with the receptor, with subsequent 

phosphorylation and activation of various STAT proteins that associate with the receptor 

(Vila-Coro et al., 1999, Zhang et al., 2001). In the case of CCR2, blocking the action of 

JAK2 prevents Gαi association with the receptor and disrupts subsequent signalling, 

suggesting that JAK activity is important in chemokine receptor signalling (Mellado et al., 

1998).  

 

Figure 1.5: Receptor-ligand binding leads to G protein activation and downstream signalling 
events. (A) In the resting state, the G protein heterotrimer is associated with the membrane-
spanning receptor. GDP is bound to the Gα subunit. (B) Upon ligand binding, GDP is released from 
the Gα subunit and the G protein heterotrimer forms a stable complex with the receptor. (C) This 
complex is rapidly disrupted when GTP binds to the Gα subunit, leading to (D), the activation of G 
protein subunits Gα-GTP and Gβγ and their subsequent activity on downstream effector proteins. 
Gα-GTP may re-associate with the receptor in a JAK-dependent manner (not shown). (E) E the Gα 
subunit, which contains a GTP-ase domain, hydrolyses GTP to GDP and rebinds a Gβγ subunit, 
forming the inactive G protein heterotrimer that can again form a complex with a membrane-
spanning receptor. Not shown – internalisation of the receptor/ligand complex and recycling of the 
receptor to the cell surface (believed to occur in chemokine/receptor interactions).  

Of the four G protein subtypes (Gs, Gi/o, Gq/11 and G12/13), cell migration is primarily 

facilitated through Gi/o activation, although other subtypes have also been implicated, and 

cell type and oligomerisation state are thought to influence the subtype engaged (al-

Aoukaty et al., 1996, Arai and Charo, 1996, Cotton and Claing, 2009, Rodríguez-Frade et 

al., 2001, Tan et al., 2006). The various α subunits of this G protein subtype are all 
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susceptible to pertussis toxin (Ptx), which causes an irreversible block to receptor coupling 

to the α subunit (Cotton and Claing, 2009, Kaslow and Burns, 1992) and thereby disrupts 

signalling through the receptor. This feature has provided a useful tool for chemokine 

biologists trying to unravel the mechanism by which chemokines and their receptors 

mediate immunological events. In the case of chemokine-induced cell migration, signalling 

through the Gi subtype is, again, not clear-cut. Migration of a CXCR4-expressing cell line 

in response to CXCL12 has been shown to be dependent on Gi proteins, which activate 

phosphatidylinositol-3-kinase (PI3K) following CXCL12 binding to CXCR4 (Curnock et 

al., 2003, Dutt et al., 1998). PI3K activity has a demonstrated role in chemotaxis in 

response to chemokines, and leads to the generation of phospholipids that accumulate at 

the leading edge of motile cells and are involved in activation of Rho GTPases and other 

downstream effectors (Curnock et al., 2003, Fischer et al., 2004, Mellado et al., 2001, 

Rickert et al., 2000, Sotsios et al., 1999). However, study of mice lacking either Gαi2 or 

Gαi3, which are both present in T cells, has shown that, while Gαi2 is required for CXCR3-

mediated T cell migration, Gαi3 appears to inhibit migration, with T cells deficient in Gαi3 

exhibiting a marked increase in migration to CXCR3 ligands (Thompson et al., 2007). 

Therefore, the precise steps involved in Gi-dependent chemokine-triggered cell migration 

remain to be elucidated.  

As mentioned earlier, chemokine receptor signalling does not occur solely through Gi 

proteins. Signalling through the Gs subtype leads to adenylate cyclase activation and 

cAMP production, while signalling through Gq leads to phospholipase C activation and the 

generation of inositol tri-phosphate (IP3) and diacyl glycerol (DAG) from membrane 

phosphatidyl inositol biphosphate (PIP2). This in turn leads to increased intracellular 

calcium levels through IP3 receptor binding and phosphorylation of calmodulin and other 

downstream effector molecules through DAG-mediated protein kinase C (PKC) activation. 

Both subtypes have been implicated in cell migration, albeit not through chemokine 

receptor signalling (Cotton and Claing, 2009). Signalling through G12/13 leads to 

modulation of the actin cytoskeleton through activation of small GTP-binding proteins, and 

has been shown to be involved in directional migration of cells in response to CXCL12 

binding to CXCR4 (Cotton and Claing, 2009, Tan et al., 2006).  

1.5.2 Internalisation and desensitisation of chemokine receptors 

Following activation of a GPCR through ligand binding, the receptor is typically 

internalised and either recycled back to the cell surface, where it can again interact with its 

ligand, or targeted for lysosomal degradation. The fate of the receptor following 
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internalisation plays a pivotal role in deciding the strength and duration of the signal 

received. Desensitisation can also include downregulation of receptor synthesis, leading to 

a drop in surface expression of the receptor (Claing et al., 2002, Grady et al., 1997). 

Different ligands can induce very different responses through the same receptor, as 

described for CCR7 later in this chapter (Bardi et al., 2001, Byers et al., 2008).  

Receptor phosphorylation is an important feature of desensitization. Receptors are 

phosphorylated either by intracellular second messenger regulated kinases (such as protein 

kinase A (PKA) or PKC) or by G protein coupled receptor kinases (GRKs). The former 

class of kinases can act either to desensitize the activated receptor itself, i.e. “homologous” 

desensitization, or to desensitize another, inactive receptor, i.e. “heterologous” 

desensitization. GRKs, on the other hand, phosphorylate only ligand-bound receptors, 

which in itself is not sufficient to cause desensitization. Instead the phosphorylation event 

creates high affinity sites to which arrestins can bind and block future interactions with G 

proteins (Claing et al., 2002, Cotton and Claing, 2009, Gainetdinov et al., 2004, Hausdorff 

et al., 1990, Vroon et al., 2006). Of the four members of the arrestin family, the two 

identified β-arrestins (β-arrestin1/arrestin-2 and β-arrestin2/arrestin-3) are thought to be 

those most involved in this form of receptor desensitization, as well as playing a role in 

internalisation of receptors. They are recruited to the plasma membrane following GRK 

phosphorylation of ligand-bound receptors, with which they co-localise (Claing et al., 

2002, Cotton and Claing, 2009, Gainetdinov et al., 2004).  

The two best characterized internalisation pathways for GPCRs are via either clathrin-

coated pits or caveolae, and are generally β-arrestin-dependent and independent 

respectively. β-arrestins interact with clathrin both directly through its heavy chain and via 

the clathrin adaptor protein AP-2 (Claing et al., 2002, Laporte et al., 2000, Wolfe and 

Trejo, 2007). Whether these interactions bring about formation of clathrin-coated pits, or 

occur with preformed pits is unclear. However, it is believed that the interaction with AP-2 

mediates initial targeting of the receptor to clathrin-coated pits, where direct interaction 

between β-arrestins and clathrin may serve to stabilize the complex within the forming 

vesicle (Claing et al., 2002). β-arrestins also interact with various other endosomal 

components and the avidity of β-arrestin binding to the GPCR can influence the length of 

time taken for the receptor to be recycled to the cell surface (Lefkowitz and Shenoy, 2005). 

To complete the formation of the vesicle, dynamin is recruited. This large GTPase forms a 

“collar” around the neck of the budding vesicle and constricts it, followed by GTP 

hydrolysis, dissociation of the dynamin oligomer and complete fission of the vesicle 
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membranes (Pawlowski, 2010). The clathrin-coated vesicle then fuses with endosomal 

vesicles, leading to one of two outcomes for the ligand-bound receptor - either dissociation 

of the ligand from the receptor, followed by receptor dephosphorylation and recycling to 

the cell surface, or targeting of the receptor to the lysosomal compartment, where it is 

degraded. In the case of recycling to the cell surface, as mentioned above, the rate at which 

this occurs varies between receptors. The fate of the receptor may depend on C-terminal 

sequences in the receptor itself (Claing et al., 2002, Lefkowitz and Shenoy, 2005).  

The best characterized clathrin-independent internalisation pathway occurs via caveolae. 

Caveolae are flask-shaped, lipid-rich invaginations in the plasma membrane that contain 

cholesterol-binding proteins called caveolins (Nichols and Lippincott-Schwartz, 2001, 

Parton and Simons, 2007, Pelkmans and Helenius, 2002). These oligomeric membrane 

proteins appear to cause formation of and/or stabilize caveolae at the cell surface (Nichols 

and Lippincott-Schwartz, 2001, Pelkmans et al., 2004, Thomsen et al., 2002). Caveolae 

also contain dynamin, the GTPase involved in budding of clathrin-coated vesicles, 

although some studies suggest this is a transient association. Dynamin appears to play a 

similar role in caveolae as in clathrin-coated vesicles, “pinching” closed the neck of the 

caveosome (Henley et al., 1998, Nichols and Lippincott-Schwartz, 2001, Parton and 

Simons, 2007, Pelkmans and Helenius, 2002). While less common as a mode of GPCR 

internalisation, caveolae have nevertheless been shown to be used by a number of 

chemokine receptors in addition to clathrin-mediated pathways, including CCR2, CCR4 

and CCR5 as well as the atypical chemokine receptors, Duffy antigen receptor for 

chemokines, or DARC, and CCX-CKR (Borroni et al., 2010, Chaudhuri et al., 1997, 

Comerford et al., 2006, Pruenster et al., 2009). An important caveat of these findings, and 

of our knowledge of chemokine receptor internalisation and desensitization in general, is 

that, in the main, they rely on data from transfected cell lines and may therefore provide a 

restricted view of the potential complexity of chemokine receptor regulation in vivo. 

1.5.3 Chemokine/receptor interactions 

Chemokine receptors, like chemokines, can be broadly grouped as constitutive or 

inflammatory, based on when and where they are active. There is a high degree of 

promiscuity in the chemokine/receptor interactions, with most receptors capable of binding 

a range of chemokines and most chemokines interacting with more than one receptor (see 

Table 1.1). This is particularly the case for inflammatory chemokines and their receptors – 

for example, CCR5 binds at least 9 CC chemokines, while one of its ligands, CCL5, also 

binds CCR1 and CCR3 as well as the “atypical” receptors D6 and DARC, which are 
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discussed below (Hansell et al., 2011a). While most chemokines bind receptors within 

their own “class”, i.e. CC chemokines bind CCRs, CXC chemokines bind CXCRs, etc., 

there are a number of exceptions to this, with some chemokines and receptors capable of 

binding more than one class. For example, as shown in Table 1.1, CCR3, which binds 

multiple CC chemokines, also binds CXCL9-11 while CCL11 and CXCL9-11 are all 

capable of binding CXCR3. CCL26, which binds CCR1-3 and CCR5, has recently been 

shown to also bind CX3CR1 (Loetscher et al., 2001, Nakayama et al., 2010, Pan et al., 

2000, Xanthou et al., 2003). Thus, there is a high level of complexity in the interactions of 

chemokine and their receptors. While some have taken this to indicate redundancy in the 

system, a view supported by many in vitro studies, there are suggestions that in vivo it 

points towards an incredibly fine-tuned and exquisitely regulated system of directed cell 

migration, both in the immune system and throughout development (Devalaraja and 

Richmond, 1999, Johnson et al., 2005, Mantovani, 1999). 

In comparison to this tangle of interactions by inflammatory chemokines and receptors, 

constitutive chemokine receptors bind only one or two constitutive chemokines, which in 

turn are relatively faithful to this pairing. For example, CCL19 and CCL21 bind to CCR7 

and are its only known ligands (Cyster, 2005, Förster et al., 2008), while CCL25 has been 

shown to bind only one classical receptor, CCR9, which in turn binds no other ligands 

(Cyster, 2005). However, for all three of these ligands an “atypical” receptor has been 

identified called CCX-CKR, which binds each ligand without apparent subsequent 

intracellular signalling in transfected cells (Gosling et al., 2000, Townson and Nibbs, 

2002). This receptor, and the pattern and purpose of its expression, is the focus of my 

thesis.  

1.6 Identification and early characterisation of CCR7, CCR9 and 
their ligands  

To enable the reader to understand the context in which CCX-CKR was discovered and is 

believed to function, it is necessary to describe the ligands it binds and the receptors they 

are known to signal through. In the mouse, CCX-CKR has three known ligands; CCL19 

and CCL21, which signal through CCR7; and CCL25, which signals through CCR9. In 

humans, CCX-CKR also binds weakly to CXCL13, the ligand for CXCR5. However, as 

the work in this thesis is related to the murine receptor, I will describe in this section the 

discovery and expression of CCR7 and CCR9 and their ligands, followed by, in section 

1.7, a description of how these receptor/ligand partners are believed to function in the 
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immune system. I will then present an overview of our current understanding of “atypical” 

chemokine receptors, the loosely related family to which CCX-CKR belongs, before 

describing what was known about CCX-CKR prior to this project, including its discovery 

and potential activity, as uncovered through in vitro studies. 

1.6.1 CCR7 identification and expression 

CCR7 was first identified in the early 1990s as an Epstein-Barr virus (EBV)-induced G 

protein coupled receptor, as predicted from its nucleotide sequence. It was identified 

following a screen of genes upregulated in cultured Burkitt’s lymphoma cells after EBV 

infection, and was designated EBI1 until the introduction of systematic nomenclature for 

chemokine receptors. It was cloned shortly after its discovery, and posited to act as a 

chemokine receptor, as it shared gene structure and sequence features with other known 

chemokine receptors and the human gene was encoded in the same chromosomal region as 

various other CC chemokine receptors (Birkenbach et al., 1993, Schweickart et al., 1994). 

It remained an “orphan” receptor until the discovery of its chemokine ligands CCL19 and 

CCL21. The first studies investigating expression of the receptor found it to be restricted to 

lymphoid tissues and B- and T-lymphocyte cell lines (Birkenbach et al., 1993, Schweickart 

et al., 1994). Subsequent work determined that CCR7 is expressed by naïve B and T 

lymphocytes, with T cell entry into LN almost completely ablated in CCR7 deficient mice 

and B cell entry also decreased, albeit to a lesser degree (Förster et al., 1999). Studies with 

transgenic mice expressing a specific antigen receptor revealed that the receptor is 

upregulated on activated B cells and promotes their interaction with T cells through 

migration towards the T cell zone of lymphoid tissue (Reif et al., 2002). CCR7 expression 

also distinguishes central memory T (TCM) cells from effector memory T (TEM) cells - 

antibody staining revealed that TCM cells express the receptor and traffic through secondary 

lymphoid tissues like naïve T cells until restimulated, while TEM cells do not express CCR7 

and home to inflamed tissues to exert their effector functions (Sallusto et al., 1999a). 

Regulatory T cells have been shown to express high levels of CCR7 mRNA and migrate to 

CCL19 and CCL21 in transwell chemotaxis assays (Szanya et al., 2002). CCR7 is also 

found on thymocyte subsets, depending on their stage of development (described later) 

(Misslitz et al., 2004), and is expressed at the mRNA level by mature DC, which exhibit 

calcium flux upon stimulation with CCR7 ligands, indicating surface protein expression 

also (Sallusto et al., 1998). It has also been shown to be responsible for migration of “semi-

mature” DCs from skin to the LN, with CCR7-deficient mice lacking this population in the 

skin-draining LN (Ohl et al., 2004). More recent work using immunohistochemistry and 

Western blotting with anti-CCR7 antibody has indicated that the receptor is expressed by 
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astrocytes, and is upregulated during inflammation (Gomez-Nicola et al., 2010). It has also 

been reported to be expressed by a subset of neutrophils from both humans and mice, as 

shown by antibody staining and flow cytometry. In mice, this subset migrates to the lymph 

node in a CCR7-dependent manner following induction of inflammation, where they may 

influence the adaptive immune response through interaction with DCs and/or T cells 

(Beauvillain et al., 2011). CCR7 is also expressed by other non-immune cells, including 

tumour cells, which are believed to use the receptor to mediate metastasis to LN (Förster et 

al., 2008, Shields et al., 2007). Constitutive mRNA and protein expression of CCR7 by 

mesangial cells in the glomerulus of the human kidney has been demonstrated, suggesting 

a role in the homeostatic function of the kidney (Banas et al., 2002). Thus, CCR7 plays a 

central role in the development and homeostatic function of the immune system, as well as 

being required for efficient adaptive immune responses and potentially homeostatic 

functions of non-immune tissues.  

1.6.2 CCL19 and CCL21 – identification, expression and interaction with 

CCR7 

Human CCL19 and CCL21 were both identified from expressed sequence tag (EST) 

database mining in 1997, four years after the discovery of CCR7 (Nagira et al., 1997, Rossi 

et al., 1997, Yoshida et al., 1997). Rossi and colleagues found mRNA for the chemokine 

now known as CCL19 to be expressed in lymph node, thymus and appendix. It was 

expressed by activated monocytes and was designated macrophage inflammatory protein 

(MIP)-3β (Rossi et al., 1997). Yoshida and colleagues also found it to be highly expressed 

in lymph node and thymus, with intermediate level expression in colon, trachea and spleen 

and low-level expression in a variety of tissues, including kidney, lung and small intestine. 

Using purified tagged CCL19, they also found that it was a ligand for CCR7, or EBI1, as it 

bound preferentially to cells transfected with this but not other chemokine receptors. It also 

induced calcium flux and chemotaxis in CCR7-transfected cells. They therefore named it 

EBI1-ligand chemokine, or ELC (Yoshida et al., 1997). Murine ELC/CCL19 was 

identified shortly after and found to act as a potent chemoattractant to CD8+ T cells and 

naïve CD4+ T cells, as well as being weakly attractive to memory CD4+ T cells and naïve 

B cells. At concentrations of 100ng/ml, CCL19 caused transwell migration of 60-80% of 

input CD8+ and naïve CD4+ T cells, compared to 20-30% of B cells and memory CD4+ T 

cells (Ngo et al., 1998). Upon stimulation with anti-IgM or LPS, B cells became more 

responsive to the chemokine, with an increase in migrating cells from about 20% of input 

to about 40%. This study also used in situ hybridisation, Northern blot analysis and RT-

PCR to demonstrate that CCL19 was expressed by DCs in secondary lymphoid tissues, 
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including LN, Peyer’s patches and spleen, but not in other leukocytes or in HEVs. Calcium 

flux assays with transfected cells showed that, as in humans, murine CCL19 was a 

functional ligand of CCR7 (Ngo et al., 1998). Further examination of chemokine 

expression by human DCs, using RT-PCR, found CCL19 was only expressed in LPS-

activated DCs at late timepoints, but not by immature DCs (Sallusto et al., 1999b). Luther 

and colleagues found expression of the murine chemokine in splenic stroma (i.e. cells 

positive for gp38 expression) as well as in DCs, particularly CD8+ DCs. The same study 

used in situ hybridization to demonstrate that HEVs did not express CCL19, although they 

did express CCL21, suggesting that CCL19 was not involved in recruitment of leukocytes 

into LNs from the blood (Luther et al., 2000). However, a subsequent study showed that 

CCL19 protein was transcytosed from its site of expression in the lymph node to the lumen 

of HEVs and promoted recruitment of T cells into the LN. This same study found that 

CCL19 injected into the murine footpad drained to the LN and was presented by HEVs 

there, and intracutaneous injection of CCL19 into plt/plt (paucity of lymph node T cells) 

mice, which lack LN-expressed CCR7 ligands, restored migration of T cells to the draining 

LN (Baekkevold et al., 2001). One recent study has suggested that CCL19 is also a ligand 

for a newly described atypical chemokine receptor, CRAM-B, with similar affinity as for 

CCR7, a finding that merits further investigation (Leick et al., 2010). Current knowledge 

of the expression and function of CRAM will be discussed later in this chapter. 

Nagira and colleagues described the mRNA of human CCL21 as encoding a protein 

predicted to contain not only the four definitive Cys residues of the CC chemokine family, 

but also a further two Cys residues in its carboxy (C)-terminus (Nagira et al., 1997). They 

found high levels of mRNA expression in spleen, lymph node and appendix, and 

demonstrated that the recombinant protein served as a strong chemoattractant to 

lymphocytes freshly isolated from human peripheral blood. The novel chemokine was 

designated secondary lymphoid tissue chemokine, or SLC (Nagira et al., 1997). Hedrick & 

Zlotnik, separately describing the same chemokine, found it to be highly conserved 

between humans and mice, and found a similar mRNA expression pattern in humans as 

described by Nagira et al. The mRNA expression pattern in mice was somewhat different, 

with high levels found in spleen and lung as well as robust expression in kidney, testis, 

heart and liver (Hedrick and Zlotnik, 1997). In their hands, the recombinant chemokine 

was chemoattractant for thymocytes and IL-2-activated T cells but not for other 

leukocytes, including B cells, “resting” T cells (i.e. unstimulated primary cells cultured 

overnight in media) and macrophages. The reason for this is unclear, as subsequent studies 

have found that naïve T cells in particular are highly responsive to CCL21. However, it 

may reflect the importance of specific post-translational modification of the protein, as the 
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recombinant protein used in this study was expressed in Escherichia coli (E. coli). It may 

alternatively point to the importance of appropriate presentation of chemokine for receptor 

binding or activation (see above for the role of GAGs in chemokine presentation). They 

named the protein 6Ckine, in reference to its unusual six Cys residues, and hypothesized 

that the extra two Cys residues, found in the extended C terminus of both the human and 

mouse protein, were involved in stabilizing the tertiary structure of the C-terminal tail 

(Hedrick and Zlotnik, 1997). In another separate study reported in the same year, Tanabe 

and colleagues described a novel murine chemokine that was highly expressed in thymus, 

which was designated thymus-derived chemotactic agent (TCA)-4. Northern blotting 

showed high levels of mRNA expression in thymus, with expression also found in spleen, 

kidney, heart and lung. This chemokine, now known to be murine CCL21, contained six 

Cys residues as described in the human chemokine and an extended, highly basic C-

terminal tail (Tanabe et al., 1997). Two forms of the gene have been described in the 

mouse, encoding two forms of the chemokine differing by one amino acid (Vassileva et al., 

1999). CCL21 mRNA expression has been reported in various secondary lymphoid tissues 

in humans (Willimann et al., 1998) and was found in high endothelial venules (HEVs) of 

lymph nodes and Peyer’s patches in mice, as well as in T cell zones of murine secondary 

lymphoid tissue and in lymphatic endothelium in liver and small intestine (Gunn et al., 

1998). Further investigation of the two murine CCL21 proteins described has shown that 

CCL21-ser, which has a serine residue at position 65, is expressed in lymphoid tissues, 

while CCL21-leu, which carries a leucine residue at this position, is found in non-

lymphoid tissue including heart, stomach, colon and lung (Luther et al., 2000, Vassileva et 

al., 1999). This analysis was facilitated by investigation of a spontaneous mutant mouse 

strain named plt/plt, described in more detail below. CCL21 was shown to bind to and 

signal through CCR7, albeit with lower affinity than CCL19, leading to early proposals 

that both chemokines might, through CCR7, be involved in homeostatic lymphocyte 

recirculation (Campbell et al., 1998, Willimann et al., 1998, Yoshida et al., 1998). 

Campbell and colleagues also refer to the unpublished observation by A. Zlotnik of 

potential signalling by CCL21 through CXCR3, which is expressed on T helper (TH)1 

cells. Soto and colleagues subsequently reported the induction of calcium flux in CXCR3-

transfected human embryonic kidney (HEK) cells by murine CCL21. The affinity of 

CCL21 for CXCR3 was lower than that of the CXCR3 ligands CXCL9 and CXCL10, 

which could desensitise cells to CCL21, whereas CCL21 could only partially desensitise 

responsiveness to these ligands (Campbell et al., 1998, Soto et al., 1998). This finding has 

been supported by subsequent studies suggesting CCL21 can trigger activation and 

chemotaxis of human and murine microglia through CXCR3 (Campbell et al., 1998, de 
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Jong et al., 2005, Dijkstra et al., 2004, Rappert et al., 2002). A more recent study also 

describes a role for CCL21 in CXCR3-mediated astrocyte activation in the mouse (van 

Weering et al., 2010). This may indicate an alternative means for CCL21 to exert its 

influence in the brain. However, other work has shown that human CCL21 does not 

function as a ligand for CXCR3, indicating possible species specificity of the reported 

interaction and leaving the possible function of such a ligand/receptor pairing unclear (Jenh 

et al., 1999). 

Comparison of human CCL19 and CCL21 show that the two ligands only share about 32% 

amino acid identity, with CCL21 containing an extended C-terminal tail of approximately 

32-35 residues (Tanabe et al., 1997, Yoshida et al., 1998). This unusual extension of the C-

terminal tail of CCL21 is believed to promote binding to GAGs to facilitate appropriate 

presentation of the chemokine to cells. CCL21 binds much more strongly to GAGs than 

CCL19, and truncation of the C terminus of the protein resulted in failure of the chemokine 

to bind normally to chondroitin sulfate, a GAG shown to bind avidly to full-length CCL21. 

This truncation did not diminish the ability of CCL21 to signal through CCR7, as 

determined by calcium flux (de Paz et al., 2007, Hirose et al., 2002). An elegant recent 

study has shown that full-length CCL21 that was immobilized, either in sections of murine 

LN or in a synthetic system, activated integrin-mediated adhesion of DCs, followed by 

haptokinesis (i.e. random adherent migration) along the surface on which the chemokine 

was immobilized. Directional migration of both adhered and non-adhering cells was 

promoted by soluble chemokine, either CCL19 or a cleaved form of CCL21 that lacked the 

extended C terminus. This cleaved form of CCL21 was generated by mature DCs 

following interaction with full-length CCL21, but not by other leukocytes, including B and 

T cells. These findings provide some insight into the requirement for both an immobilized 

and a soluble ligand for CCR7 in the LN (Schumann et al., 2010). 

The binding affinity for CCR7 is approximately similar for the two human chemokines, 

with CCL19 showing marginally higher affinity binding to the receptor on transfected cells 

(Ott et al., 2006). Binding of CCR7 by the two ligands leads to some differences in 

outcome. While both induce calcium flux and chemotaxis in CCR7+ cells, CCL19 causes 

rapid internalisation of the receptor and desensitizes it to further stimulation by either 

ligand on human peripheral blood leukocytes, transfected HEK cells and H9 cells 

expressing endogenous CCR7 (Bardi et al., 2001, Kohout et al., 2004). This desensitization 

has been attributed to receptor phosphorylation and the recruitment of β-arrestins, at least 

in transfected HEK cells (Kohout et al., 2004). In contrast, CCL21 does not strongly 

induce receptor internalisation and resensitisation of cells occurs readily (Bardi et al., 
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2001). Internalisation was induced at much lower concentrations of CCL19 than CCL21, 

and was found to be clathrin dependent (Byers et al., 2008, Otero et al., 2006). The 

endocytosed receptor is recycled to the cell surface, although this occurs more rapidly after 

CCL21 ligation than CCL19 binding (Byers et al., 2008, Otero et al., 2006). Internalised 

CCL19 was shown to be directed to lysosomes for degradation (Otero et al., 2006). Murine 

CCL19 has also been shown to induce more receptor internalisation and desensitization of 

murine CCR7 than CCL21 on primary mouse leukocytes (Britschgi et al., 2008). The 

observed differences in ligand effect on the receptor, combined with variation in 

expression patterns of the two ligands, suggests that CCL19 and CCL21 may carry out 

distinct, non-redundant functions through CCR7 ligation. The recent work by Schumann 

and colleagues supports this notion, while also presenting the possibility that soluble (i.e. 

cleaved) CCL21 might act more like CCL19 than full-length CCL21 (Schumann et al., 

2010). Additionally, CCL19 has been shown to have a role in T cell homeostasis, one that 

is not compensated for by CCL21. When prevented from entering LN, T cell survival is 

diminished. Generation of a CCL19-deficient mouse showed that, in the absence of 

CCL19, homeostasis of naïve T cells is disrupted. CCL19 was shown to be coexpressed 

with IL-7 by fibroblastic reticular cells (FRCs) of the T cell zone, and the two proteins 

(CCL19 and IL-7) had similar effects on T cell survival in vitro. However, the effect of IL-

7 was more profound in vivo, leaving the precise role of CCL19 in T cell homeostasis 

unclear (Link et al., 2007). 

1.6.3 Lacking CCR7 ligands – plt/plt mice 

In 1993, Nakano et al described a spontaneous mutant mouse strain that had notably 

reduced lymph node cellularity (Nakano et al., 1993). Further investigation of the 

phenotype of these mice revealed that T cell numbers in lymph nodes were markedly 

reduced, especially in peripheral lymph nodes. B cell numbers were somewhat reduced in 

peripheral lymph nodes but were unaffected elsewhere. T cell numbers in spleen and 

peripheral blood were increased, while Peyer’s patch T cell numbers were unchanged 

(Nakano et al., 1997). The ability of T cells to adhere to HEVs, known to be their point of 

entry into the lymph node, was not disrupted, with L-selectin and PNAd expressed and 

functioning as normal. The effect was determined to be due to a defect in stromal cells 

rather than in the lymphocytes themselves, and recruitment rather than retention of T cells 

was disrupted (Nakano et al., 1997). The defect was mapped to a single genomic location, 

later reported to be the locus carrying the genes encoding CCL19 and CCL21 (Gunn et al., 

1999, Nakano et al., 1997).  
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Subsequent analysis of these mice led to demonstration that CCL21 mRNA was absent 

from lymphoid tissue of plt/plt mice, as well as showing decreased CCL19 expression. A 

defect in DC homing to LNs was also observed – the importance of CCL19, CCL21 and 

CCR7 in DC migration to LN is discussed in detail later in this chapter (Gunn et al., 1999). 

The reported absence of CCL21 from plt/plt mice was later found to be due to a lack of one 

of the two forms of CCL21 expressed in mice, specifically the CCL21-ser form found 

predominantly in lymphoid tissue of normal mice, while the other, predominantly non-

lymphoid form was still present (Vassileva et al., 1999). Work by Luther and colleagues 

showed that functional CCL19 mRNA was also absent from plt/plt mice, with previous 

detectable levels of mRNA for this chemokine attributed to non-functional pseudogenes 

(Luther et al., 2000). For over a decade, this mouse strain has proven an invaluable tool in 

dissecting the role of CCR7 and its ligands in immune system development and function, 

and these studies are discussed below. 

1.6.4 CCR9 and CCL25 

Searches of murine cDNA libraries for novel chemokine sequences led to the identification 

of a CC chemokine that was strongly expressed in thymus, with high levels in small 

intestine and some expression in liver. Expression was also detected in spleen after LPS 

treatment. Named thymus-expressed chemokine (TECK), the human homolog was isolated 

soon after, with a similar expression pattern as observed in mice (Vicari et al., 1997). The 

study used in situ hybridisation, RT-PCR on purified cells and immunohistochemistry to 

identify thymic dendritic cells as the main source of the chemokine in the thymus, with 

bone-marrow derived DCs not found to express it. It was also suggested that the 

chemokine was likely to be involved in T cell development, given its expression pattern 

(Vicari et al., 1997). Two years later, a report identifying an orphan receptor GPR-9-6 as 

the receptor for TECK (CCL25) and designating it CCR9 was published, with both human 

and murine equivalents identified (Zaballos et al., 1999). Expression of CCR9 RNA was 

found to be strong in thymus and only weak expression was detected in spleen and lymph 

nodes, and both immature and mature thymocytes were found to express the receptor, 

further suggesting a role for CCR9/CCL25 in thymocyte development (Zaballos et al., 

1999).  
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1.7 CCR7 and CCR9 in immune system development and 

function 

As one might expect from the expression patterns of these receptors and their ligands, 

CCR7 and CCR9 are critical to a variety of processes of the immune system. In this section 

I will discuss their roles in thymocyte development, including the development of 

tolerance; the homing of lymphocytes and DCs to and within lymph nodes and spleen; and 

leukocyte homing to the small intestine. Where appropriate, I will also outline the roles of 

other key chemokines and chemotactic molecules in these processes.  

1.7.1 Thymocyte development 

As described earlier, haematopoietic stem cell derived precursors enter the thymus via 

blood vessels at the cortico-medullary junction (CMJ). These cells are CD4- and CD8- and 

are therefore termed double-negative (DN) cells. They also lack CD25, the α-chain of the 

IL2 receptor, but express high levels of CD44, a cell adhesion molecule (Nitta et al., 2008). 

The signals involved in the process of “seeding” the thymus are still under investigation – 

however, a number of molecules required for the process have been reported. CCL21 and 

CCL25 have both been shown to play a role in attracting thymic precursors into the 

thymus, with neutralizing antibodies to either chemokine shown to disrupt the process (Liu 

et al., 2005). In plt/plt mice, where CCL21-ser and CCL19 are absent, a marked defect in 

colonization of the thymus is made more pronounced by treatment with anti-CCL25 

antibody, indicating that the three chemokines feature prominently in this process (Liu et 

al., 2005). Complementary studies, using single- and double-deficient mice, have shown 

that the classical receptors for these chemokines, namely CCR7 and CCR9, are both 

involved in thymic seeding. Numerous groups have indicated a role for CCR9 in the 

process, through investigation of the CCR9 deficient mouse, competitive adoptive transfer 

of WT and CCR9 deficient cells, and chemotaxis assays with purified thymocyte 

subpopulations (Liu et al., 2005, Schwarz et al., 2007, Scimone et al., 2006, Svensson et 

al., 2008, Wurbel et al., 2006). Liu and colleagues showed that both CCR7 and CCR9 are 

involved in seeding the foetal thymus (Liu et al., 2006), while the involvement of both 

receptors in recruitment of precursors to the adult thymus has also been reported, again 

through analysis of CCR7 and CCR9 single- and double-deficient mice (Krueger et al., 

2010, Zlotoff et al., 2010).  

Within the thymus, both receptors, along with CXCR4 and its ligand CXCL12, are 

required for proper development of maturing thymocytes, by regulating the correct 
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migration of maturing T cells from the cortex to the medulla (Davalos-Misslitz et al., 

2007b, Kwan and Killeen, 2004, Misslitz et al., 2004) and for promoting exit of mature T 

lymphocytes from the thymus in newborn mice, a process that also involves S1P (Allende 

et al., 2004, Ueno et al., 2002). CCL19 and CCL21 are detectable in both the cortex, the 

CMJ and the medulla of the adult thymus, and CCL25 is ubiquitously expressed 

throughout the thymus by stromal cells of the medulla and cortex (Förster et al., 2008, 

Misslitz et al., 2004).  

Development of DN thymocytes is divided into four stages, termed DN1-4 (see Figure 

1.6), which can be distinguished based on expression of CD25 and CD44. DN1 cells 

(CD25- CD44hi) become DN2 cells (CD25+ CD44hi) cells, passing through a proposed 

intermediate stage called DN1-DN2 (CD25int CD44hi) (Misslitz et al., 2004). This 

maturation from DN1 to DN2 occurs as the cells migrate from the CMJ to the mid-cortex, 

and may involve CCR7, which is expressed on approximately half of the DN1-DN2 cells 

compared to expression on only very low proportions of all other DN subsets. Indeed, lack 

of CCR7 leads to an accumlation of this cell type in the thymus and a delay in progression 

to DN2 (Förster et al., 2008, Misslitz et al., 2004). Lack of CCR7 also leads to reduced 

numbers of DN3 (CD25hi CD44low) cells, presumably through disruption of maturation 

from earlier stages (Misslitz et al., 2004). CCR9 does not appear to be strongly expressed 

prior to the DN3 stage, and is present on both DN3 and DN4 cells, with CCR9 expression 

by DN3 cells shown to be important for development to DN4 and subsequent stages 

through competitive transfer of WT and CCR9 deficient BM to reconstitute irradiated mice 

(Wurbel et al., 2006). These experiments also indicated that CCR9 expression is important 

at some earlier timepoint, since earlier subsets were also disrupted, even though they 

themselves did not display CCR9 expression (Wurbel et al., 2006).  

From the DN4 stage, thymocytes migrate back toward the medulla, developing into 

double-positive (DP) cells that are CD4+ CD8+ CD69-. These cells are exposed to major 

histocompatibility (MHC) molecules associated with self peptides, which are expressed on 

thymic epithelial cells and thymic DCs. Depending on the strength of interaction with their 

TCR they are either selected for survival (weak interactions – positive selection) or 

deletion (strong interactions – negative selection) (Nitta et al., 2008, Smith et al., 1989). 

The importance of this stage in the development of central tolerance is discussed below. 

Positively selected DP cells then migrate to the medulla to undergo further maturation into 

single-positive (SP) cells, cells that are either CD4+ or CD8+ (Förster et al., 2008, Nitta et 

al., 2008). CCR9 is suggested to be involved in allowing cells to leave the subcapsular 

zone (SCZ) of the cortex and migrate back towards the medulla (Wurbel et al., 2006). 
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CCR7 is also expressed on a subset of DP cells, suggesting a role for this receptor in 

migration of these cells (Davalos-Misslitz et al., 2007b, Förster et al., 2008). SP cells 

mature during migration through the medulla, with immature SP cells expressing very little 

if any CCR7. Expression of the receptor increases as the cells mature and is required for 

the appropriate migration of matured thymocytes into the medulla, with fully mature CD4+ 

and CD8+ cells both expressing high levels of the receptor (Davalos-Misslitz et al., 2007b, 

Förster et al., 2008, Ueno et al., 2004). By contrast, CCR9 is not expressed by naïve CD4+ 

cells but is present on naïve CD8+ T cells, at least in the mouse (Wurbel et al., 2006). In 

humans, CCR9 expression by T cells is largely restricted to gut-homing memory CD4+ and 

CD8+ T cells (Kunkel et al., 2000, Zabel et al., 1999). The involvement of CCR7 and 

CCR9 in thymocyte development is outlined in Figure 1.6. 

 
Figure 1.6: CCR7 and CCR9 in thymocyte development. Haematopoietic stem cell derived 
precursor cells enter the thymus via blood vessels in the cortico-medullary junction (CMJ), using 
CCR7 and CCR9. They migrate as double-negative (DN) cells towards the subcapsular zone, with 
a subpopulation of DN1-DN2 cells expressing CCR7 in the mid-cortex. DN3 cells begin to express 
CCR9, which is thought to facilitate the migration of the maturing thymocytes from the subcapsular 
zone (SCZ) through the cortex to the CMJ and medulla. Double-positive (DP) cells and immature 
single-positive (SP) cells interact with self-peptides and are either positively selected to mature 
further or deleted (negatively selected). SP cells start to upregulate CCR7 as they reach full 
maturity, with both CD4+ and CD8+ (SP) T cells expressing the receptor. CCR9 is only expressed 
by CD8+ T cells, as denoted by *. Adapted from Förster et al., 2008. 
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S1P is a byproduct of sphingolipid turnover, and as such is thought to be produced by all 

cells during this process. It has been shown to be involved in the egress of mature 

thymocytes from the thymus. S1P1, a receptor for S1P, is upregulated in mature 

thymocytes and egress of these cells from the thymus is disrupted in mice that specifically 

lack the receptor on T cells (Allende et al., 2004). In addition, Matloubian and colleagues 

used fetal liver chimeras and adoptive transfer of S1P1 deficient lymphocytes to 

demonstrate that this receptor is required for egress of T cells from thymus and lymph 

nodes (Matloubian et al., 2004).  

As described in this section and below, CCR7 and its ligands are crucial for appropriate 

directed migration of leukocytes during development, homeostasis and immune response. 

Unsurprisingly therefore, these molecules are central to the appropriate development of 

immunological tolerance, both central and peripheral. Although a detailed discussion of 

current knowledge of tolerance mechanisms is beyond the scope of this Introduction, I will 

provide a brief overview of the induction of central and peripheral tolerance before 

describing the importance of CCR7 and its ligands in tolerance induction.  

As described above, on their journey through the cortex back to the medulla, developing 

DP T cells interact with complexes of self-peptide and MHC molecules presented by 

thymic dendritic cells and thymic epithelial cells. Those thymocytes that fail to interact or 

have very low affinity for the complexes die by neglect, failing to receive survival signals 

– approximately 90% of thymocytes die by this mechanism (Palmer, 2003). Thymocytes 

that are weakly reactive to self-peptide:MHC complexes are positively selected, that is, 

they are prompted to mature further into SP T cells. Thymocytes that are highly reactive to 

self-peptide:MHC complexes could lead to autoimmunity by targeting host tissues/cells 

and must therefore either be deleted or altered to remove this possibility. The main 

mechanism of this negative selection described is that of clonal deletion, where highly 

reactive T cells die by apoptosis. Alternatives to this mechanism include the induction of 

anergy, where the reactive T cell survives but cannot be stimulated to react to its cognate 

antigen, or receptor editing, as occurs with B cells (Hogquist et al., 2005). Some 

thymocytes that react too strongly to self-antigen are induced to differentiate into 

regulatory T (Treg) cells, which are involved in suppression of autoreactivity in the 

periphery (Workman et al., 2009). Animals that carry a defective autoimmune regulator 

(AIRE) gene, or lack the gene entirely, develop multi-organ autoimmunity and clonal 

deletion is severely disrupted. AIRE is expressed by thymic epithelial cells in the medulla, 

as well as by some cells in lymph nodes and spleen and is involved in the expression of 

tissue-specific self-peptides that are presented to maturing thymocytes (Heino et al., 1999, 
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Metzger and Anderson, 2011). It has recently been suggested that AIRE is involved in the 

expression of CCL19 and CCL21 in the thymic medulla to induce appropriate migration 

and egress of developing and fully developed thymocytes (Laan et al., 2009).  

While central tolerance induction is of critical importance, the ability to induce tolerance in 

the periphery is required to prevent excessive or aberrant reactivity to tissue-specific 

antigens not seen in the thymus (although AIRE is thought to be involved in the expression 

of some such antigens by medullary thymic epithelial cells) as well as to non-harmful 

antigens such as food, commensal bacteria, pollen, etc. There are a variety of mechanisms 

by which this peripheral tolerance can be induced and mediated. Factors such as the 

steady-state migration of DCs that present peripheral antigen in the absence of co-

stimulatory molecules are believed to be involved (see below), as is the exclusion of naïve 

T cells from non-lymphoid tissues. Extravasation from the blood requires a specific 

combination of chemokine, integrin, adhesion molecule and other signals (see above) that 

are specific to lymphoid tissues, allowing “ignorance” of naïve T cells to tissue-specific 

antigen that might be encountered in non-lymphoid peripheral tissues. Lymph node stroma 

has also been implicated in the presentation of tissue specific antigen to naïve T cells in a 

tolerising context, leading to deletion of reactive cells (Lee et al., 2007), and various 

subsets of Treg cells can be induced outside the thymus, through as yet poorly understood 

mechanisms (Vignali et al., 2008). Specialised DC subsets in the gut are believed to be 

important in the development of oral tolerance, whereby the host is tolerised to harmless 

food antigens and commensal gut flora that, as “non-self” antigens, would otherwise 

induce an inflammatory response. For reviews on the induction of central and peripheral 

tolerance, see Mowat, 2003, Mueller, 2010, Workman et al., 2009.  

As described above, the development of thymocytes is defective in CCR7-deficient mice, 

and Misslitz and colleagues have shown that the architecture of the thymus is severely 

disrupted in the absence of CCR7 (Misslitz et al., 2004). Mice deficient in CCR7 develop 

generalised autoimmunity, with aberrant infiltration of lymphocytes into various peripheral 

non-lymphoid organs, including stomach, lung, liver and pancreas. Auto-reactive 

antibodies are also common, another hallmark of autoimmune disease (Davalos-Misslitz et 

al., 2007a). Also, as I will describe in section 1.7.3, CCR7 and its ligands facilitate steady-

state trafficking of DCs from the periphery to LNs, promoting peripheral tolerance. Thus 

CCR7 and its ligands are of crucial importance to the development of both central and 

peripheral tolerance.   
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1.7.2 Lymphocyte migration to, within and from lymph nodes 

As discussed in section 1.3, entry of naïve lymphocytes into lymph nodes via HEVs is a 

highly complex and tightly regulated process involving various adhesion molecules, 

integrins, selectins, chemokines and chemokine receptors (see Figure 1.3). Of the latter, 

CCR7 has been shown to be critically required for naïve and central memory T lymphocyte 

entry into lymph nodes, under both homeostatic and inflammatory conditions, as well as 

being involved to a lesser degree in the entry of B lymphocytes into these organs (Förster 

et al., 1999, Gunn et al., 1999, Okada et al., 2002). Forster and colleagues used 

immunofluorescent staining of tissue sections and flow cytometry to show that CCR7 

deficient mice have a 2-6 fold increase in CD4+ T cells in peripheral blood, spleen and 

BM, with a concomitant decrease in these cells in LN and PP – CCR7 deficient mice had 

approximately 30-50% the number of CD4+ T cells in MLN and peripheral LN compared 

to WT, and approximately 75% the number of CD4+ T cells in PP compared to WT. The 

majority of the displaced T cells expressed L-selectin (CD62L), marking them as naïve T 

cells (Förster et al., 1999). Using adoptive transfer of WT and CCR7 deficient cells into 

WT and CCR7 deficient animals, Forster and colleagues further demonstrated that the 

defect was lymphocyte-based rather than a defect in stromal cells. The transfer of CCR7 

deficient lymphocytes into WT recipients revealed that only 5-25% of CCR7 deficient T 

cells and 20-50% of CCR7 deficient B cells entered LN and PP compared to transferred 

WT lymphocytes. However, WT lymphocytes transferred into CCR7 deficient animals 

were able to populate these tissues as normal (Förster et al., 1999). Consistent with this, 

plt/plt mice, which lack CCL21-ser and CCL19, show marked defects in lymph node 

cellularity, as observed above (Gunn et al., 1999, Nakano et al., 1997, Nakano et al., 1993). 

Nakano and colleagues reported that the expression of and interaction between L-selectin 

and PNAd was intact in these mice, indicating that the involvement of CCR7 and its 

ligands occurred at a later stage than this initial step. CCL21, which is expressed by HEVs, 

was subsequently shown to trigger LFA1-dependent firm adhesion of T cells to HEVs, 

prompting their extravasation into LN (Nakano et al., 1997, Stein et al., 2000). Stein and 

colleagues also showed that CCL21 injected intracutaneously could be presented by HEVs, 

having entered lymphatics and drained to the LN. This process was subsequently shown to 

also occur for CCL19, which is not expressed by HEVs and had therefore been supposed 

not to be involved in the extravasation of lymphocytes into LN (Baekkevold et al., 2001, 

Stein et al., 2000). It should be noted that CCL19 deficient mice exhibit normal homing of 

naïve T cells to LN, and have normal secondary lymphoid tissue structure, indicating that 

CCL21 is sufficient to mediate the CCR7-dependent entry of lymphocytes into LN (Link et 

al., 2007). CXCR4 and its ligand CXCL12 have been shown to have a role in B cell entry 
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into LN, with entry of CXCR4 deficient B cells but not CXCR4+ B cells suppressed in 

plt/plt mice – transferred CXCR4+ cells entered LN and PP of plt/plt mice to the same 

extent as transferred WT cells, while CXCR4 deficient cells did not (Okada et al., 2002). 

Interestingly, this study also suggested that the requirement for CCR7 in T cell entry into 

LN was slightly reduced in C57Bl6 animals than BALB/c animals, although it was still an 

important element in this process.  

CCR7 is also involved in the organisation of secondary lymphoid organs, which contain 

characteristic B cell follicles and T cell zones (see Figure 1.7), allowing controlled, 

efficient interactions of these lymphocytes with each other as well as with other cells, 

particularly DCs. In the absence of CCR7, these distinct zones are severely disrupted. 

Immunofluorescent imaging showed that lymphocytes from LNs of CCR7 deficient mice 

are distributed throughout the tissue, with some T cells abberantly localized to the marginal 

sinus. FDCs do not appear to be affected. PP architecture is also abnormal in these mice, 

with no distinct T cell zones, but rather a small “border” of T cells found at the edge of the 

B cell follicle. In the spleen of the CCR7 deficient mouse, T cells are not largely confined 

to the PALS as they are in WT spleen, but are instead found accumulated in clusters in the 

red pulp and marginal sinuses. Those that are found in the PALS of CCR7 deficient spleen 

are mainly memory T cells, with naïve T cells mostly found outside this region. This defect 

in splenic organisation was demonstrated both by immunofluorescence and by adoptive 

transfer. Additionally, WT B cells can normally be detected within the PALS as well as in 

follicles of WT spleen, but adoptively transferred CCR7 deficient B cells are not in the 

PALS of WT mice 5 hours after transfer. They can be found at earlier timepoints, 

indicating a potential role for CCR7 in retention of B cells within the PALS for a time 

following entry into the spleen (Förster et al., 1999).  

Following entry into LNs, naïve B cells become more responsive to CXCR5 ligands and as 

a result migrate to B cell follicles within the node (Ansel et al., 2000, Cyster, 2005). 

Förster and colleagues reported that CXCR5 deficient mice have severely disrupted splenic 

architecture with enlarged MZs and a failure of primary B cell follicles and germinal 

centres to form properly. These data suggest a requirement for CXCR5/CXCL13 in 

organisation of the B cell compartment of lymphoid tissue (Förster et al., 1996). Ansel and 

colleagues subsequently reported that deletion of either CXCR5 or CXCL13 led to 

impaired LN and PP development and disruption of B cell follicle architecture in LN and 

spleen, with primary follicle FDCs absent in CXCL13 deficient mice (Ansel et al., 2000).  
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Naïve T cells remain responsive to CCR7 ligands in the T cell zone, which promotes 

retention and migration of T cells and activated DCs within this area and enables their 

efficient interactions to initiate adaptive immune responses (Förster et al., 1999, Ohl et al., 

2004). As discussed above, CCR7 deficient mice have severe defects in T cell localisation 

within lymphoid tissues. CCL19 and CCL21 are both expressed by FRCs in the T cell zone 

of LNs, with CCL21 also expressed by endothelial cells (Link et al., 2007). The interaction 

of DCs and T cells within the LN has been shown to involve the random migration of T 

cells within the T cell zone, which allows frequent interaction with DC dendrites, and the 

speed of T cell movement within the node is enhanced by CCR7 ligands (Miller et al., 

2004, Worbs et al., 2007). Adoptive transfer of either CCR7 deficient T cells into WT 

animals or WT T cells into plt/plt mice showed that intranodal T cell motility was 

decreased compared to WT T cells within WT LNs. This decreased motility could be 

rescued by intravenous administration of CCL21. Additionally, subcutaneous injection of 

CCL19 into the hind paw led to abberant accumulation of T cells within the SCS of the 

draining LN, corresponding to CCL19 draining to the LN via the lymph (Worbs et al., 

2007). As discussed above, DCs have been shown to adhere to and randomly migrate along 

fibres coated with full-length CCL21, which they can then cleave to a soluble form that 

provides directional cues (Schumann et al., 2010). This may facilitate the efficient 

interaction of DCs and T cells by increasing the level of T cell motility in the immediate 

vicinity of the DC.  

When T and B cells need to interact (e.g. for an antibody response requiring T cell help), 

they modify their chemokine receptor expression pattern to allow migration to the 

boundary between T and B cell areas (the “B/T cell boundary”) where they can interact 

with their cognate T cell, leading to antibody production, memory cell generation, etc 

(Cyster, 2005, Förster et al., 1999, Reif et al., 2002). Subsets of activated T cells, referred 

to as T follicular helper cells (TFH), increase CXCR5 expression and migrate to B cell 

follicles, as demonstrated by Ansel and colleagues. They showed that antigen-specific 

CD4+ T cells had increased CXCR5 expression (determined by flow cytometry) following 

immunisation that corresponded to their increased migration to B cell follicles, as shown 

by immunohistochemistry. These activated CXCR5-expressing T cells also exhibited 

reduced chemotaxis to CCR7 ligands compared to cells from non-immunised mice (Ansel 

et al., 1999). The importance of CCR7 in the induction of an adaptive immune response 

was demonstrated by Förster and colleagues, who showed that CCR7 deficient mice have 

impaired primary T cell responses, with both contact sensitivity and delayed type 

hypersensitivity (DTH) responses impaired in these mice. They also exhibit a defect in the 
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induction of the primary humoral response, with antigen-specific antibody production 

delayed in CCR7 deficient mice compared to WT (Förster et al., 1999). 

Casamayor-Pallejà and colleagues reported that ligation of the BCR of human tonsillar B 

cells led to increased chemotaxis to CCL19 and transiently decreased chemotaxis to 

CXCL13, followed by a sharp increase in migration to this chemokine (Casamayor-Pallejà 

et al., 2002). Reif and colleagues showed that activated B cells upregulated CCR7 

expression while CXCR5 expression remained constant, and this mediated migration of the 

B cells towards the T cell zone. This migration of activated B cells was lost in plt/plt mice 

and in CCR7 deficient B cells. CXCR5 is not required for activated B cell migration from 

the follicle but does influence the retention of activated B cells in the B/T cell boundary, 

with CXCR5 deficient cells aberrantly distributed following activation. This study also 

showed that CCR7 over-expression prompted B cell migration into the T cell zone, 

particularly along the B/T cell boundary, in the absence of activation, with localisation to 

the B/T cell boundary again dependent on expression of CXCR5. CXCR5 over-expression 

prevented the exclusion of activated B cells from the follicle (Reif et al., 2002). 

Complementing this study, Okada and colleagues used two-photon microscopy to 

demonstrate the CCR7-dependent migration of antigen-activated B cells to the B/T cell 

boundary, where they interact with T cells. Interactions with non-specific T cells (i.e. T 

cells that do not recognise the antigen presented by the B cell) are short-lived, while 

antigen-specific interactions last for more than 10 minutes, sometimes continuing for up to 

an hour (Okada et al., 2005). Following interaction with their cognate T cell, the now fully 

activated B cells return to the primary B cell follicle to establish secondary B cell follicles. 

These comprise a “mantle” of naïve B cells and germinal centres (GCs), where activated B 

cells proliferate rapidly. GCs become segregated into dark and light zones, a division 

dependent on CXCR4 and CXCR5 expression (Allen et al., 2004). Dark zones contain 

proliferating centroblasts, which are B cells whose BCRs are undergoing somatic 

hypermutation to increase antigen-specificity. Light zones contain the progeny of these 

centroblasts, which are called centrocytes. This is where class switching of 

immunoglobulin occurs, promoting the generation of specific, antigen-appropriate 

antibody. These increases in antigen-specificity are facilitated by interaction with antigen-

presenting FDCs (Klein and Dalla-Favera, 2008). CXCL12 is abundant in GC dark zones, 

and centroblasts are CXCR4+. In CXCR4-deficient mice, segregation of GCs does not 

occur, while CXCR4-deficient cells fail to enter WT dark zones. Similarly, CXCR5 

deficient mice and CXCL13 deficient mice both exhibit abberant organisation of GCs, and 

perturbed localisation of the GC light zone (Allen et al., 2004).  
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Lymphocytes are retained in the LN for a specific period (approximately 8-12 hours for T 

cells and 24 hours for B cells) after which, if they have not encountered their cognate 

antigen, they leave and recirculate throughout the body to optimise the probability of 

antigen encounter. The egress of lymphocytes from LN has been shown to be dependent on 

S1P and its receptor S1P1. Small molecule agonists of S1P receptors (of which there are at 

least 5) induce sequestration of murine lymphocytes within lymph nodes by inhibiting their 

ability to cross the endothelial barrier between the LN paracortex and the marginal sinus 

(Mandala et al., 2002). T and B cells express at least two S1P receptors, S1P1 and S1P4. 

Work by Matloubian and colleagues, described above, showed a requirement for S1P1 

specifically in T cell egress from LN, and in B cell recirculation and egress from lymphoid 

tissue. This same study also showed that retention of antigen-activated T cells within 

lymph nodes is caused by downregulation of S1P1 (Matloubian et al., 2004). Exposure to 

S1P, which is high in peripheral blood, leads to internalisation of S1P1, rendering cells 

unresponsive to S1P and enabling their extravasation into S1Plow tissues, such as LN 

(Schwab and Cyster, 2007). Schwab and colleagues showed that lymphocyte production of 

S1P lyase, an S1P-degrading enzyme, controls the level of S1P within secondary lymphoid 

organs, maintaining an S1Plow environment within the organs in contrast to the high levels 

of S1P found in blood and lymph. When S1P lyase activity is inhibited, lymphoid tissue 

levels of S1P increase and lymphocyte egress from lymph nodes is blocked, with exposure 

to S1P leading to a decrease in surface S1P1 expression (Schwab et al., 2005). 

Haematopoietic cells, particularly erythrocytes, are believed to produce the majority of 

S1P detected in blood, while the source of S1P in lymph is unclear but may come from 

lymphatic endothelial cells (Schwab and Cyster, 2007). Interestingly, S1P/S1P1 is also 

involved in localisation of MZ B cells to the MZ of the spleen, in combination with 

CXCL13/CXCR5, indicating the critical role of this molecule and its receptor in regulating 

immune cell migration (Cinamon et al., 2004).  
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Figure 1.7: Chemokine-dependent lymph node organisation. Lymphocytes enter the lymph 
node in a CCR7-dependent manner. T cells remain in the CCL19/21-rich T cell zone while B cells 
downregulate CCR7 and migrate into the CXCL13-rich B cell follicle. S1P lyase produced by 
lymphocytes maintains an S1Plow environment in these regions, allowing retention of the 
lymphocytes for several hours. Lymphocytes that fail to engage their cognate antigen upregulate 
S1P and leave the LN via the lymph. B and T cells that become activated by antigen encounter 
alter their chemokine responsiveness and migrate to the B/T cell boundary (see boxed cells) to 
interact with their cognate lymphocyte partner and initiate adaptive immune responses (see text).  

1.7.3 DC migration to lymph nodes 

Under resting conditions, most DCs are resident in tissues throughout the body, acting as 

“sentinels” at sites such as the skin and mucosa (Banchereau and Steinman, 1998, Bell et 

al., 1999, Förster et al., 2008). These immature DCs are extremely efficient in internalising 

and processing antigen from their surroundings, enabling them to very rapidly detect any 

sign of infection or injury in the tissue (Banchereau and Steinman, 1998, Bell et al., 1999). 

A number of immature DCs also patrol the body, circulating through the bloodstream and 

expressing chemokine receptors such as CCR1, CCR2, CCR5 and CXCR1 as well as other 

molecules that allow rapid extravasation into inflamed tissues if required (Randolph et al., 

1998, Sallusto et al., 1998, Sánchez-Sánchez et al., 2006, Sozzani et al., 2000, Sozzani et 

al., 1995). 

As described above, immature or “semi-mature” DCs from peripheral tissues appear to 

constitutively traffic to lymphoid organs even under resting conditions and constitute a 

large proportion of DCs identified there. They are believed to present harmless “self” 

antigens and contribute to maintenance of immune tolerance by inducing anergy or death 
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of autoreactive T cells (Banchereau and Steinman, 1998, Lutz and Schuler, 2002, Ohl et 

al., 2004, Wilson et al., 2003). CCR7 is believed to be involved in this process, with the 

ability of Langerhans cells (LCs; a specialised subset of skin DCs) to constitutively 

migrate to LNs attributed to transient expression of the receptor (Ohl et al., 2004). This 

ability is retained in plt/plt mice, which lack CCL19 and CCL21-ser in lymphoid tissues 

but retain expression of CCL21-leu in lymphatic endothelium, suggesting that this ligand is 

involved in the homing process (Gunn et al., 1999). However, upon reaching the lymph 

nodes, the ability of DCs to correctly position themselves within T cell areas is severely 

impaired in these mice, and in CCR7-/- mice, indicating a role for the receptor and its 

ligands in this process (Gunn et al., 1999, Ohl et al., 2004). The importance of this 

migration of “tolerising” DCs was made apparent in a study showing that while innocuous 

antigen can reach the lymph nodes of CCR7-deficient mice, tolerance to it is not 

established as a result of the impaired steady-state migration of DCs (Hintzen et al., 2006). 

Similarly, in the absence of CCR7 and steady-state DC migration oral tolerance is not 

established (Worbs et al., 2006), confirming a key role for the receptor and its ligands in 

this crucial immunological process.  

During inflammation, DCs undergo rapid and extensive changes. They become activated, 

lose their high endocytic capacity, down-regulate inflammatory chemokine receptors and 

upregulate CCR7, which directs them to draining lymphatics and on to the draining lymph 

node. They also upregulate MHC class II molecules and various co-stimulatory molecules, 

which are involved in appropriately activating T cells in the lymph node (Förster et al., 

2008, Martín-Fontecha et al., 2003, Sallusto et al., 1998, Sánchez-Sánchez et al., 2006, 

Wilson et al., 2003). The ability of mature DCs to migrate to the draining lymph node is 

lost in CCR7-/- animals, and in plt/plt mice, those cells that do migrate through afferent 

lymphatics accumulate in the subcapsular sinus of the lymph node, rather than continuing 

to their normal destination in the T cell zone. As with steady-state migration of DCs, this 

suggests that CCL21-leu is involved in directing mature DCs to, but not further into, 

draining lymph nodes (Förster et al., 1999, Gunn et al., 1999, Ohl et al., 2004). 

Additionally, in plt/plt mice, the number of migrating DCs is reduced, indicating that 

CCL21-ser and/or CCL19 produced in the lymph node may also be involved in DC 

migration (Gunn et al., 1999). CCL19 has also been shown to play a role in maturation of 

DCs in vitro, with exposure to the ligand also leading to increased ability to stimulate T 

cell proliferation (Marsland et al., 2005). In the plt/plt mouse, migrating activated DCs 

exhibit lower levels of co-stimulatory molecules than normal fully matured DCs, lending 

further credence to a DC maturation role for CCR7 ligands in vivo (Marsland et al., 2005). 

The ligands also caused increased endocytosis of exogenous antigen in mature DCs 
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(Yanagawa and Onoé, 2003). A previous study by Yanagawa and Onoé also highlighted a 

potential requirement for expression of both CCL21 and CCL19 in DC migration and 

function, as well as a potential explanation for their overlapping but not equivalent 

distribution. They showed that CCL19, which is highly expressed in the T cell zone by 

DCs themselves, induces the rapid extension of dendrites on the cells, allowing increased 

opportunity for interaction with T cells. Conversely, CCL21, found in lymphatics as well 

as within the node, blocks this activity, potentially skewing the morphology in favour of a 

migratory form (Yanagawa and Onoé, 2002). These data demonstrate a clear requirement 

for CCR7 in the normal function of DCs in tolerance induction and adaptive immunity.  

1.7.4 Leukocyte homing to the small intestine 

The intestinal immune system is the largest section of the immune system as a whole, and 

is the main site of antigen encounter in the body. It has recognised critical functions in the 

development of tolerance to harmless antigens, as well as being required to detect and 

promote immunity to harmful or invasive pathogens. Failure to successfully balance these 

two opposing functions leads to disease, either through infection or through overreaction to 

harmless antigens such as dietary protein or commensal bacteria (Mowat, 2003). 

Chemokines are intimately involved in the immune function of the small intestine and 

CCR7 and CCR9 and their ligands play important roles in the migration of leukocytes to 

and within this compartment of the immune system.  

A number of organised lymphoid structures can be identified in the intestine, including 

MLN, PP and ILFs, which resemble microscopic PP. Cryptopatches, which are small, 

loosely organised cellular compartments found at the base of intestinal epithelial crypts, 

contain LTi cells and are thought to be precursors to the formation of ILFs (Mowat, 2003, 

Newberry and Lorenz, 2005). The MLN are the largest and earliest forming of all lymph 

nodes in the body. As described earlier, they have distinct developmental requirements 

from those of PPs or peripheral lymph nodes, forming in the absence of factors such as 

tumour necrosis factor (TNF) and its receptor (TNFR), LTα1β2 or LTβR. The ability of 

lymphocytes to accumulate in the MLN depends on adhesion molecules usually involved 

in lymphocyte migration to peripheral (L-selectin) or mucosal (α4β7 integrin) tissues (see 

Figure 1.3) (Mowat, 2003, Newberry and Lorenz, 2005). Peyer’s patches are aggregates of 

leukocytes situated at infrequent intervals along the wall of the small intestine. They share 

some features of other lymphoid organs, with their organised structure of B cell follicles 

and T cell zones, but lack afferent lymphatics. The route of entry for antigens from the 

small intestine is instead through microfold (M) cells that are located in the follicle-



76 

associated epithelium (FAE), situated above the lymphoid area of the Peyer’s patch. 

Antigen is passed from the M cells to DCs residing in the subepithelial dome (SED), which 

lies between the FAE and the lymphoid areas. The DCs can then either interact with T and 

B cells in the Peyer’s patch or migrate to the MLN via lymphatic vessels, using CCR7 and 

its ligands (Jang et al., 2006, Mowat, 2003). These DCs, as well as DCs that migrate to the 

MLN from the lamina propria, are capable of constitutive homing to the MLN using 

CCR7, a process believed to be important in induction of tolerance to harmless antigens 

such as food and commensals. Lamina propria-derived DCs, which express CCR7 and 

migrate in response to CCL21, are markedly reduced in the MLN of plt/plt mice and CCR7 

deficient mice (Jang et al., 2006). T cells that are activated by gut-derived DCs in PP or 

MLN are primed to home to the small intestine again by maintenance of CCR9 and 

induction of α4β7-integrin expression. CCR9+ cells migrate in response to CCL25, which is 

constitutively expressed by epithelial cells in the small intestine (Kunkel et al., 2000). 

Using T cells expressing an ovalbumin (OVA)-specific TCR detectable by antibody 

staining, Campbell and Butcher reported that, following intraperitoneal challenge with 

OVA plus lipopolysaccharide (LPS) as an adjuvant, activated CD4+ T cells isolated from 

peripheral LNs had increased P-selectin ligand expression, while those isolated from 

MLNs had increased α4β7 integrin expression. They also showed that the activated T cells 

isolated from MLN were much more responsive to CCL25 than those isolated from 

peripheral LN, indicating higher CCR9 expression in T cells actvated in the MLN 

(Campbell and Butcher, 2002). Subsequently, Mora and colleagues isolated DC subsets 

from spleen, peripheral LN and PP and showed that CD8+ T cells stimulated by PP DCs 

displayed similar levels of a variety of activation markers but expressed higher levels of 

α4β7 integrin that CD8+ T cells stimulated by DCs from the other tissues. They further 

showed that, although all stimulated cells showed a lower propensity to migrate in 

response to CCL25 compared to naïve CD8+ T cells, those activated by PP DCs had a 

significantly higher chemotactic index to the chemokine than those stimulated by spleen or 

peripheral LN DCs (Mora et al., 2003). Corresponding to this, competitive transfer of 

naïve CD8+ T cells with CD8+ T cells activated by either PP or peripheral LN DCs showed 

that PP DC-stimulated cells preferentially homed to PP while LN DC-stimulated cells 

homed to the PLN, although naïve T cells trafficked more readily to LN and PP than 

activated T cells of either type. When PP DC-stimulated CD8+ T cells and LN DC-

stimulated CD8+ T cells were competitively transferred together, those stimulated by PP 

DCs showed enhanced ability to home to small intestine (but not colon), as well as to PP 

and MLN, although this difference was more modest than the contrast in small intestine 

homing. The ability to home specifically to the gut was shown to correlate with α4β7 
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expression and responsiveness to CCL25 (Mora et al., 2003). This finding concurred with a 

previous report from Svensson and colleagues, who used OVA-specific CD8+ T cells to 

show that activated CD8+ T cells in the MLN, but not PLN, expressed CCR9 following 

challenge with OVA+LPS. This study also demonstrated the importance of intestinal 

CCL25 expression in directing activated T cells to the small intestine. They demonstrated 

that the increase in number of specifically activated T cells in the lamina propria of the 

small intestine seen during normal response to challenge was dramatically reduced when 

neutralising anti-CCL25 antibody was administered subsequent to intraperitoneal challenge 

with OVA+LPS (Svensson et al., 2002). Surprisingly, CCR9 deficient mice have normal 

numbers of T cells in the lamina propria, although Pabst and colleagues showed that CCR9 

deficiency leads to a defect in plasma cell homing to the lamina propria (Pabst et al., 

2004). However, when transferred in competition with WT cells, activated CD4+ T cells 

from CCR9 deficient mice exhibited a defect in lamina propria homing, with residual 

homing suggested to be due to increased CCR5 expression by the CCR9 deficient cells 

(Stenstad et al., 2006). The ability of IgA-producing plasma cells to home to the gut using 

CCR9, as demonstrated by Pabst and colleagues, is required for appropriate induction of 

specific antibody responses to oral antigens, with CCR9 deficient mice lacking OVA-

specific antibody following challenge with OVA plus cholera toxin (CT). Interestingly, 

IgA+ plasma cells do not express CCR9 within the lamina propria suggesting that, once 

they have reached their destination, other factors are involved in keeping them there (Pabst 

et al., 2004).  

The induction of gut-homing markers (i.e. CCR9 and α4β7 integrin) on lymphocytes 

depends upon retinoic acid (RA), which is produced by gut DCs, as well as by lamina 

propria macrophages and intestinal epithelial cells (Mora and von Andrian, 2009). It has 

long been known that vitamin A deficiency contributes to impaired localisation of 

adoptively transferred radiolabelled MLN-derived lymphocytes to the gut in rats 

(McDermott et al., 1982). In 2004, Iwata and colleagues neatly demonstrated that RA, a 

metabolite of vitamin A, could induce a gut-homing phenotype in primary T cells that had 

been stimulated in vitro in the absence of other cell types. Addition of RA to the cultures 

led to upregulation of α4β7 integrin and increased expression of CCR9, along with 

improved migratory capacity to CCL25 and decreased expression of molecules involved in 

homing to other secondary lymphoid organs. Competitive adoptive transfer of RA-treated 

and untreated activated T cells showed an increased propensity for treated cells to migrate 

to MLN, PP and lamina propria, with reduced ability to home to peripheral LN. The group 

further demonstrated that DCs from PP and MLN strongly expressed retinal 
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dehydrogenase (RALDH), an enzyme involved in RA synthesis, whereas only weak 

expression of RALDH was detected in DCs from peripheral LN. Inhibition of RALDH 

activity led to decreased ability of MLN- and PP-derived DCs to imprint a gut-homing 

phenotype on T cells (Iwata et al., 2004). Following this report, Mora and colleagues 

showed a similar requirement for RA in the homing of IgA-secreting plasma cells to the 

small intestine. PP-derived DCs or exogenous addition of RA to media were able to induce 

α4β7 integrin expression and maintain CCR9 expression on activated B cells in vitro while 

peripheral LN-derived DCs or RA-free media could not. This study also showed that 

vitamin A-deficient mice lacked intestinal IgA-secreting cells, and that, while RA was 

required for homing of these cells to the gut, it was also involved in the induction of IgA 

secretion, in synergy with IL-5 and/or IL-6 (Mora et al., 2006). These studies show that 

RA, which I earlier described as an intrinsic element of lymphoid tissue organogenesis, has 

an ongoing role in the development and maintenance of appropriate immune responses in 

the gut through regulation of α4β7 integrin and CCR9 expression on gut-homing 

lymphocytes. Interestingly, CCR9 is also involved in the homing of plasmacytoid DCs 

(pDCs) to the gut, under both steady state and inflamed conditions (Wendland et al., 2007). 

These specialised DCs are believed to be involved in tolerance induction (Matta et al., 

2010), as well as anti-viral activity through type I interferon (IFN) production (Marshall et 

al., 2006). Toll-like receptor (TLR)7, which is expressed by pDCs, is involved in 

recognition of viruses (McKenna et al., 2005). CCR9 deficient animals lack pDC in the 

lamina propria and, unlike WT animals, are unable to efficiently mobilise lamina propria 

DC to MLN in response to orally administered R848, an agonist of TLR7/8. Adoptive 

transfer of WT pDCs into CCR9 deficient animals prior to challenge with oral R848 

rescued this defect (Wendland et al., 2007).  

Taken together, these reports demonstrate that CCR7 and CCR9 and their ligands are 

crucial in both the induction of gut-specific immune responses and the development and 

maintenance of tolerance to oral antigens. At the start of my project, another student in the 

lab had recently embarked on an investigation of the ability of CCX-CKR to modulate 

intestinal immune responses and induction of oral tolerance. Her findings will be discussed 

in chapter 7.  

1.8 Atypical chemokine receptors  

Within the chemokine receptor biology field, a small subsection stands apart. The area of 

atypical chemokine receptor research is one that has grown rapidly in the last decade or so, 

with at least five identified atypical chemokine receptors now under investigation. These 
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receptors are characterised by an inability to induce signalling upon ligand binding through 

pathways used by other “classical” chemokine receptors when exogenously expressed in 

vitro. This apparent lack of signalling is associated with an inability to mediate chemotaxis 

in response to environmental chemokine. Of the atypical receptor family, the best known 

and best characterised are the Duffy antigen receptor for chemokines (DARC) and D6, 

both of which bind inflammatory chemokines and are proposed to act as “decoy”, transport 

or scavenging receptors. Of particular interest for this thesis is the atypical receptor CCX-

CKR, which binds only three constitutive chemokines in mouse, as mentioned above. 

Finally, more recent work has identified some novel receptors, namely CXCR7, which 

binds CXCL11 and CXCL12, and CCRL2, or CRAM, which is thought to bind CCL19 

and a chemo-attractant called chemerin. In this section I will provide an overview of our 

current understanding of the role of DARC and D6 in the immune system, followed by a 

brief description of the newest members of this small family, namely CXCR7 and CCRL2. 

Lastly, I will detail what is known about the receptor that is the focus of this work, CCX-

CKR, presenting work leading up to this project.  

1.8.1 DARC 

First identified in 1950, the Duffy blood group antigen was later shown to be an 

erythrocyte receptor for the malaria parasite Plasmodium vivax, with Duffy-negative 

individuals resistant to infection (Cutbush et al., 1950, Miller et al., 1975). It was later 

shown to act as a chemokine binding protein for both CC and CXC chemokines on 

erythrocytes, including CXCL1, CXCL8, CCL2 and CCL5. Horuk and colleagues have 

demonstrated that preincubation of Duffy-positive erythrocytes with CXCL1 or CXCL8 

could block almost all Duffy-dependent infection by P. knowlesi, a simian malarial parasite 

that can use the human receptor for entry (Darbonne et al., 1991, Horuk et al., 1993, Neote 

et al., 1993). The demonstrated ability of the receptor to bind chemokines led to its being 

designated the Duffy antigen/receptor for chemokines, or DARC. It has been suggested 

that the receptor acts as a “sink” or reservoir for plasma chemokines, and in a recent 

review my colleagues and I described a proposed mechanism by which erythrocyte-

expressed DARC could buffer chemokine levels during and after inflammation (see Figure 

1.1) (Darbonne et al., 1991, Dawson et al., 2000, Hansell et al., 2011a). This is suggested 

as a means of regulating leukocyte responsiveness to chemokines, preventing inappropriate 

extravasation of leukocytes into tissues (Hansell et al., 2011a).  
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Figure 1.8: Proposed activity of erythrocyte DARC as a buffering system for blood-borne 
chemokine. (A) During homeostasis, a proportion of erythrocyte-expressed DARC will be occupied 
by constitutively expressed chemokine such as CXCL5 and CCL2. Under these circumstances, 
these chemokines will be in dynamic equilibrium with free chemokine (A1), the levels of which will 
be maintained by release of DARC-bound chemokine. The plasma chemokine can then be 
subjected to posttranslational modification and removed by DARC-independent mechanisms. 
Platelets contain high levels of CXCL5 that is released upon activation. (B) Induction of low-level 
inflammation will lead to a transient rise in plasma chemokine levels through release of DARC 
ligands from platelets, endothelial cells, etc., disrupting the homeostatic equilibrium and leading to 
“loading” of chemokine onto DARC molecules (B1). This will prevent sharp rises in plasma 
chemokine levels and limit the induced inflammation. (C) Induction of high-grade inflammation will 
lead to substantial release of chemokine, overwhelming the “sink” provided by DARC. (D) 
Clearance of plasma chemokines during resolution of inflammation will lead to a return to 
equilibrium, with release of chemokine from erythrocyte DARC (D1) blunting the rate of chemokine 
clearance from the blood. Figure and text adapted from Hansell et al., 2011a. 

Evidence for activity of DARC as a chemokine “sink” comes from studies with both 

humans and mice. Mayr and colleagues conducted a study comparing plasma and 

erythrocyte-associated chemokine levels between humans who express DARC normally 

(“Duffy positive”) and those lacking erythrocytic DARC (“Duffy-null”). Untreated Duffy-

null patients exhibited altered plasma chemokine levels and reduced erythrocyte-associated 
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CXCL1 and CCL2. Treatment of both patient groups with intravenous LPS led to a sharp 

increase in erythrocyte-associated chemokine, including CXCL1, CXCL8 and CCL2, in 

Duffy-positive but not Duffy-null patients (Mayr et al., 2008). Complementing this, mice 

lacking DARC have been shown to have lower resting levels of plasma CCL2 and CCL11, 

while intravenously administered CCL11 and CXCL1 was cleared more rapidly from 

DARC deficient mice than WT (Fukuma et al., 2003). 

The receptor is also expressed at a number of sites other than erythrocytes, and individuals 

whose erythrocytes are Duffy negative tend to retain expression of DARC at these 

disparate sites. Other sites of expression include blood vessel endothelial cells of 

postcapillary venules, high endothelial venules of lymph nodes and tonsils, lymphatic 

endothelial cells of skin lymphatic pre-collectors, inflamed synovial endothelium, some 

epithelial cells in lung and kidney, and Purkinje neurons (Chaudhuri et al., 1997, Girard et 

al., 1999, Hadley et al., 1994, Hansell et al., 2011a, Kashiwazaki et al., 2003, Lee et al., 

2003, Middleton et al., 1997, Patterson et al., 2002). It has been detected in caveolae of 

endothelial and epithelial cells, and has been postulated to act as a chemokine transporter, 

with caveolae vesicles commonly associated with transcytosis of proteins (Chaudhuri et 

al., 1997, Pelkmans and Helenius, 2002, Rot, 2005). By tracking the path taken by 

radiolabelled chemokines across rabbit and human skin, Middleton and colleagues showed 

that chemokines were rapidly transcytosed via caveolin-containing vesicles to the lumen of 

the endothelium following intravenous injection (Middleton et al., 1997). While the GAG 

heparan sulfate was postulated to play a role in this transcytosis, the “fingerprint” of 

chemokine binding to endothelial cells suggested a specific role for DARC in the process. 

Pruenster and colleagues showed that DARC co-localised with injected chemokines in 

human skin, while Madin-Darbin canine kidney (MDCK) cells transfected with DARC 

showed increased propensity to transcytose chemokine from the basolateral to apical 

surface compared to mock-transfected cells (Pruenster et al., 2009). The same study also 

showed that transgenic mice overexpressing DARC on blood vessel endothelium exhibited 

increased neutrophil extravasation in response to CXCL1 compared to WT mice (Pruenster 

et al., 2009). 

Duffy-null humans are reported to display reduced resting numbers of neutrophils and 

monocytes compared to their Duffy-positive counterparts (Mayr et al., 2008). This defect 

is not observed in DARC deficient mice. Zarbock and colleagues reported a slight but 

significant decrease in total leukocyte count, but also slightly elevated neutrophil numbers 

in resting DARC deficient mice compared to WT (Zarbock et al., 2010). Another study 
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found no difference in peripheral blood leukocyte numbers between DARC deficient and 

WT mice (Luo et al., 2000).  

The ability of DARC to bind a number of chemokines known for their angiogenic 

properties has been highlighted during investigation of the effect of DARC expression on 

tumour development. Shen and colleagues reported that in a murine model of prostate 

cancer, tumours from DARC deficient mice had increased levels of angiogenic chemokines 

such as CXCL1 and CXCL8, as well as increased intratumoral vasculature and improved 

growth compared to those from WT (Shen et al., 2006). Additionally, Addison and 

colleagues showed that a human lung cancer cell line transfected with DARC produced 

less angiogenic chemokine in culture compared to untransfected cells, and, in vivo, 

transfected cells developed into larger but more necrotic tumours that were poorly 

metastatic and had reduced vasculature compared to untransfected cells (Addison et al., 

2004).  

DARC has also been implicated in the neutrophil response to infection and injury, with a 

number of models reporting reduced neutrophil infiltrate into affected tissues of DARC 

deficient mice following challenge (Dawson et al., 2000, Luo et al., 2000, Zarbock et al., 

2007). Using a model of acute kidney failure, Zarbock and colleagues suggested that a 

defect in endothelial cell presentation of chemokine in DARC deficient mice was the cause 

of reduced neutrophil recruitment following challenge (Zarbock et al., 2007). The same 

group also reported that transfer of DARC deficient neutrophils into WT mice was 

sufficient to confer protection from acid-induced lung injury, a model in which DARC 

deficient mice were protected and neutrophil recruitment into injured lungs did not occur 

in the absence of the receptor (Zarbock et al., 2010). These data suggest that DARC can 

influence disease progression both through regulation of local chemokine levels and by 

influencing neutrophil function, a theory supported by the neutrophil defect observed in 

Duffy-null humans. 

1.8.2 D6 

D6 was first cloned in 1997. Nibbs and colleagues used radioligand binding and 

competition with unlabelled chemokines to identify it as a highly promiscuous receptor for 

CC chemokines (Nibbs et al., 1997a, Nibbs et al., 1997b). Generation of anti-human D6 

antibody and in situ hybridisation has been used to show that D6 is expressed in lymphatic 

endothelium of the gut, skin and lungs, although it is absent from lymphatics of other 

organs (Nibbs et al., 2001). It is also found in human trophoblasts, hepatocytes, mast cells 
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and macrophages (Hansell et al., 2011a, Madigan et al., 2010, Nibbs et al., 2001). Using a 

chemokine internalisation assay, D6 receptor activity has recently been shown to be 

detectable on murine innate-like B cells, including splenic MZ B cells and B1 cells from 

various tissues (Hansell et al., 2011b), while mRNA for the receptor is detectable in a 

number of non-lymphoid tissues (Hansell et al., 2011a, Madigan et al., 2010, Nibbs et al., 

2001).  

The human D6 receptor has been shown to bind CCL2-5, CCL7-8, CCL11, CCL13-14, 

CCL17-18, CCL22, CCL24, CCL26 and CCL3L1, does not bind CCL1, CCL15, CCL19-

20 and CCL23, and has not been tested for affinity to other CC chemokines (R. Kinstrie, 

pers. comm., Hansell et al., 2011a). It does not bind CXC chemokines (R. Kinstrie, pers. 

comm.) and has not been shown to bind chemokines of any other class, although not all 

have been tested. The binding profile of murine D6 is less well characterised, although 

published work has shown that CCL2-5, CCL11-12, CCL17 and CCL22 are ligands for the 

murine receptor (Hansell et al., 2011b, Nibbs et al., 1997a). This profile distinguishes D6 

as a receptor for mainly pro-inflammatory chemokines. It lacks the capacity to signal 

conventionally, with exogenously expressed D6 binding ligands without induction of 

calcium flux or chemotaxis in vitro (Fra et al., 2003). Ligand binding by endogenously 

expressed D6 similarly fails to induce classical signalling responses on primary B cells 

(Hansell et al., 2011b). This may be due to an altered DRYLAIV motif common to 

classical chemokine receptors – in D6, the sequence is altered to DKYLEIV (Nibbs et al., 

1997b). Mutation of the glutamic acid (Glu – E) to alanine (Ala – A) introduces weak 

calcium flux potential through D6, and mutation of DRYLA in CCR5 to DYKLE blocks 

signalling through this receptor (R. Nibbs, unpublished data). The DRYLAIV sequence, 

found in the second intracellular loop of normal receptors, is involved in coupling to G-

proteins (see above). In transfected HEK293 cells, the vast majority of the receptor is 

detected inside the cell, with less than 5% of the expressed protein found on the cell 

surface, as demonstrated by immunofluorescent staining of D6 transfectants with anti-D6 

antibody and imaging of D6-GFP transfectants. In these cells, the intracellular localisation 

of D6 is due to the constitutive cycling of the receptor to and from the cell surface, which 

is independent of ligand binding (Weber et al., 2004). Internalisation of D6 is facilitated 

through clathrin-coated pits, although the exact mechanics of this activity are still under 

investigation. Early reports indicated a requirement for β-arrestins in the internalisation 

process, but this finding has been contradicted by subsequent work from our group 

showing that β-arrestin involvement is dispensible for constitutive internalisation of D6 

(Galliera et al., 2004, McCulloch et al., 2008, Weber et al., 2004). Knock-down of 
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endogenous D6 expression in BeWo cells, a trophoblast-derived choriocarcinoma cell line, 

disrupts in vitro chemokine depletion by this cell line (Madigan et al., 2010). Thus, D6 is 

able to rapidly and efficiently internalise ligands in vitro without the requirement for 

signalling found with most conventional chemokine receptors. Internalised chemokines are 

subsequently targeted for degradation. This property, along with effects on murine 

chemokine levels in vivo (see below), has led to the hypothesis that the function of D6 is to 

act as a decoy receptor to modulate chemokine levels and inflammatory responses in vivo 

(Bonecchi et al., 2004, Fra et al., 2003, Hansell et al., 2011a, Weber et al., 2004), although 

other potential functions have not been ruled out. An inability to mediate efficient transport 

of radiolabelled CCL2 across cultured murine lymphatic endothelial cells and failure to 

transport CCL3L1 across confluent BeWo cells indicated that D6 is unlikely to act as a 

mechanism for chemokine transcytosis, as has been suggested for DARC (Fra et al., 2003, 

Martinez de la Torre et al., 2007). However, recent evidence from our lab has hinted at a 

role for D6 in indirect modulation of responses to chemokines other than those directly 

bound by D6. B1 B cell migration to CXCL13, the ligand for CXCR5, is enhanced in the 

absence of D6, although the mechanism of this dysregulation is unclear (Hansell et al., 

2011b). 

Analysis of D6 deficient mice has provided some evidence to support its hypothesised role 

as a scavenger or decoy. Jamieson and colleagues used a model of cutaneous skin 

inflammation to examine the proposed role of D6 in resolution of inflammation through 

chemokine scavenging. This model uses repeated topical application of TPA, a phorbol 

ester irritant, to induce inflammation in the skin, leading to rapid infiltration of leukocytes 

into the skin and increased DC migration to the draining LN. Local TNFα production 

induces the production of inflammatory chemokines that drives leukocyte infiltration, 

which in WT mice resolves approximately 4-6 days after ceasing application of TPA. The 

study showed that the absence of D6 leads to prolonged and exaggerated reponses, with 

higher levels of inflammatory CC chemokines detected in the skin of D6 deficient mice 

(Jamieson et al., 2005). Inflammation of D6 deficient skin is more severe and much longer 

lasting with a psoriatic pathology, suggesting a pivotal role for D6 in resolution of 

inflammation (Jamieson et al., 2005). Aberrant inflammatory responses were observed in 

another model of skin inflammation induced by subcutaneous injection of complete 

Freund’s adjuvant (CFA). In this study, D6 deficient animals were much more prone to 

development of cutaneous lesions in response to CFA injection, with almost 65% of D6 

deficient animals developing moderate to severe lesions compared to less than 10% of WT 

mice. This model also showed an increase in cellularity and inflammatory chemokine level 
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in the draining lymph node of D6 deficient animals compared to WT (Martinez de la Torre 

et al., 2005). Previous work has shown that CCL2 produced in inflamed skin of WT mice, 

or injected intracutaneously into CCL2 deficient mice, drains to the LN via lymphatics and 

is presented on HEVs where it mediates directed migration of inflammatory monocytes 

into the LN (Palframan et al., 2001). The observations of Martinez de la Torre and 

colleagues suggest that, by limiting the level of chemokine at the site of induced 

inflammation, D6 could influence the level of chemokine draining to the LN, thus 

regulating the influx of leukocytes to this tissue and modulating the adaptive immune 

response. If, as is the case in humans, murine D6 is expressed on lymphatic endothelial 

cells, there may also be a direct role for D6 in limiting the level of chemokine that makes it 

through lymphatic vessels to the LN.  

The investigation of the role of D6 in regulating skin inflammatory responses has been 

expanded to analysis of tumour induction in D6 deficient mice. D6 has been shown to 

affect the formation of papillomas in a TPA/DMBA model of tumourigenesis. In this 

model, DMBA, a mutagen, is applied topically to shaved dorsal skin, followed by repeated 

application of TPA several times a week over a number of weeks. Our lab showed that 

deletion of D6 led to the formation of papillomas in a formerly resistant strain of mice 

(C57Bl6/129 mice), while in a susceptible strain (FVB mice), lack of D6 led to increased 

tumour burden (Nibbs et al., 2007). The report also examined oral squamous cell 

carcinomas (SCCs) from humans, which develop in a similar way to the papillomas of the 

mouse model described above. SCCs tend to develop after repeated exposure to mutagenic 

and inflammatory factors, such as those found in tobacco smoke. D6 expression was found 

to be associated with SCCs, with increased lymphatic endothelial cell expression of the 

receptor around and contacting the tumours. This was taken as an indication of a role for 

D6 in regulating the inflammatory chemokine environment during development of these 

tumours, possibly in an attempt to limit tumour growth (Nibbs et al., 2007). 

Complementing the knock-out data described above, Nibbs and colleagues also showed 

that transgenic overexpression of the receptor in keratinocytes led to reduced inflammation 

and increased resistance to tumour formation in susceptible strains. Transgenic murine D6, 

under the control of the keratinocyte-specific promoter K14, was expressed specifically in 

the keratinocyte layer of the epidermis of transgenic mice, and cultured keratinocytes 

expressing D6 successfully and efficiently depleted biotinylated CCL3 from culture media 

while WT keratinocytes did not. Phorbol-ester induced cutaneous inflammation was 

resolved more rapidly in the transgenic mice, and papilloma formation following 

DMBA/TPA treatment was reduced compared to WT. These phenotypes were linked to 

increased or decreased inflammatory chemokine levels in the absence or overexpression of 
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the receptor respectively, indicating an important role for chemokine production in tumour 

formation (Nibbs et al., 2007).  

D6 has also been implicated in the progression of a variety of other inflammatory disease 

models, including allergic lung inflammation, Mycobacterium tuberculosis infection and 

acute liver damage. Increased inflammatory infiltrate and elevated inflammatory 

chemokine levels were associated with more severe disease in D6 deficient mice in each 

case (Berres et al., 2009, Di Liberto et al., 2008, Whitehead et al., 2007). Conflicting 

reports as to the involvement of D6 in the development of dextran sodium sulphate (DSS)-

induced colitis have left the requirement for the receptor in this disease model unclear. 

Vetrano and colleagues reporting increased leukocyte infiltrate and more severe disease in 

D6 deficient mice compared to WT, while Bordon and colleagues demonstrated reduced 

disease severity in D6 deficient mice, which was linked to increased IL-17A levels due to 

elevated numbers of IL-17A-secreting γδ T cells in D6 deficient inflamed colons compared 

to WT (Bordon et al., 2009, Vetrano et al., 2010).  

Taken together, the data presented above provide some support for the current favoured 

model of D6 as a scavenging chemokine receptor that regulates inflammatory responses 

and mediates resolution of inflammation. However, as outlined in our recent review, there 

are some unresolved issues to be clarified before this paradigm can be fully accepted 

(Hansell et al., 2011a). Interpretation of murine in vivo data in the context of human 

expression studies ignores the lack of robust information available on the expression 

pattern of D6 in the mouse. Work from our lab has demonstrated functional D6 expression 

(i.e. D6-mediated chemokine internalisation) by innate-like B cells, and has provided 

indications that D6 may influence chemokine signalling through other receptors (Hansell et 

al., 2011b). However, although it has been assumed that D6 will be expressed on lymphatic 

endothelial cells in the mouse, as it is in humans, this has yet to be conclusively proven. 

Additionally, increased chemokine protein levels in the absence of D6 have been taken as 

indication of a distinct scavenging role for this receptor. However, Cardona and colleagues 

have reported that deletion of conventional chemokine receptors, such as CCR2, CXCR2 

and CX3CR1, leads to increased circulating levels of their chemokine ligands even in 

resting unchallenged mice, suggesting that in fact, these receptors can themselves control 

levels of chemokine in vivo (Cardona et al., 2008). The designation of D6 as a “non-

signalling” receptor has been largely based on limited in vitro analysis of transfected cells 

and as such may not reflect the true extent of in vivo complexity. Therefore, much work 

remains to be carried out before a complete understanding of D6 function is gained.  
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1.8.3 CXCR7 

During a study aimed at characterising the role of CXCR4 in development, comparison of 

CXCR4 deficient and WT fetal liver cells showed that, unexpectedly, CXCL12 bound with 

equal affinity to both. Similarly, some tumour cell lines that did not exhibit CXCR4 

expression when analysed with anti-CXCR4 antibody were shown to bind CXCL12 

without induction of calcium flux or migration. These data suggested the existence of 

another receptor for the chemokine, which had previously been thought to bind exclusively 

to CXCR4. Burns and colleagues identified CXCR7 as a high affinity receptor for 

CXCL12, the ligand for CXCR4. Binding of CXCL12 to CXCR7 but not to CXCR4 was 

inhibited by addition of CXCL11, a ligand for CXCR3, but not by CXCL9 or CXCL10 

(other ligands for CXCR3). Additionally, ligand binding by CXCR7 did not lead to 

calcium mobilisation or cell migration. Thus, CXCR7 was identified as an atypical 

receptor for CXCL11 and CXCL12 (Burns et al., 2006). Expression of CXCR7 mRNA 

was quite widespread, with Northern blot analysis revealing expression in various tissues 

including heart, brain, lung, spleen, testes and ovary. However functional protein 

expression, as determined by radioligand binding and antibody staining, was reported to be 

limited. Surface protein expression of the receptor was detected on various tumour cell 

lines, activated endothelial cells and fetal liver cells (Burns et al., 2006). Sierro and 

colleagues reported mRNA expression of CXCR7 on human and mouse leukocyte subsets, 

including T cell subsets, NK cells, human memory B cells and murine MZ B cells. They 

generated CXCR7 deficient mice, of which most died at birth due to heart defects. 

Conditional deletion of endothelial CXCR7 mimicked complete knockout of the receptor, 

highlighting this expression site as important in heart development. Interestingly, although 

CXCR7 did not mediate calcium flux or cell migration in transfected cells upon ligand 

binding, Sierro and colleagues reported increased signalling upon CXCL12 binding when 

CXCR7 was co-expressed in HEK cells with CXCR4, compared to CXCR4 expression 

alone. This intriguing aspect of the biology of these two receptors was attributed to their 

heterodimerisation, as detected by fluorescence resonance energy transfer (FRET), and 

may provide a mechanism by which CXCR7 could modulate CXCR4 activity in vivo. 

Although preliminary, this finding provides support for the theory (discussed above) that 

receptor dimerisation may be an important aspect of chemokine biology (Sierro et al., 

2007). However, in spite of the reported mRNA expression of CXCR7 on leukocytes, 

Berahovich and colleagues recently reported that CXCR7 protein was not detectable on 

peripheral blood leukocytes from adult human or mouse using anti-CXCR7 antibodies in 

flow cytometry and immunohistochemistry and competition with unlabelled CXCL11, 

CXCL12 and small molecule CXCR7 antagonists for radiolabelled CXCL12 binding 
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(Berahovich et al., 2010). In addition to the reported heart defects, CXCR7 has recently 

been suggested to have an important role in primordial germ cell (PGC) migration during 

zebrafish development, possibly indicating a general role for the receptor in mediating 

appropriate positioning of cells during embryonic development. The influence of CXCR7 

on PGC migration is not a cell autonomous effect, as PGCs themselves do not appear to 

express the receptor. Rather, it is expression of the receptor by somatic cells, and its role in 

sequestering CXCL12 along the route of PGC migration during development that is 

thought to be important for appropriate embryonic development (Boldajipour et al., 2008). 

In vitro, the receptor has been shown to efficiently internalise CXCL11 and CXCL12 

without saturation in mammalian cells, and constitutively cycles to and from the surface of 

both mammalian and zebrafish cells regardless of ligand binding. It also lacks the 

canonical DRYLAIV motif associated with chemokine receptor signalling, and ligand 

binding does not induce conventional signalling responses, such as calcium flux. However, 

Zabel and colleagues have reported association with β-arrestins upon ligand binding, 

followed by internalisation, at least in transfected Chinese hamster ovary (CHO) cells 

(Naumann et al., 2010, Zabel et al., 2009). A recent publication by Rajagopal and 

colleagues suggested that CXCR7 could in fact induce intracellular signalling through β-

arrestins, independent of G protein activation. They reported that incubation with CXCL11 

or CXCL12 led to β-arrestin-mediated mitogen activated protein (MAP) kinase activation 

(as assessed by induction of extracellular-signal regulated kinase (ERK) phosphorylation) 

in HEK cells transiently transfected with CXCR7. This was complemented by the finding 

that both ligands induce rapid recruitment of β-arrestin to the plasma membrane upon 

binding. However, CXCL12-induced recruitment of β-arrestin was followed by 

localisation to cytoplasmic vesicles, while CXCL11 binding led to recruitment of β-

arrestins that remained localised to the plasma membrane at later timepoints. This suggests 

that CXCR7 may respond differently to its two ligands (Rajagopal et al., 2010). 

Interestingly, ERK phosphorylation was not detected upon ligand exposure in rat vascular 

smooth muscle cells, which endogenously express CXCR7. However, these cells did 

migrate in response to CXCL11, and this migration was inhibited by addition of CXCR7 

small molecule antagonists. It also relied on β-arrestins, as knock-down of β-arrestin2 by 

small interfering RNA (siRNA) inhibited migration, but treatment with pertussis toxin had 

no such inhibitory effect, eliminating the possibility that Gi signalling was required 

(Rajagopal et al., 2010). 
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These recent findings provide an intriguing avenue for investigation of other “atypical” 

receptors, and it will be interesting to see how the story of CXCR7 develops, especially in 

terms of its capacity to signal and directly modulate signalling through other receptors. As 

suggested for D6 above, the suggestion that atypical chemokine receptors can induce 

intracellular signals independent of G protein coupling is a field worthy of much more 

detailed examination.   

1.8.4 CCRL2 

One of the most recent additions to the atypical chemokine receptor family is CCRL2, also 

known as CRAM. CCRL2 is reported to act as a receptor for CCL19 and CCL5, as well as 

the non-chemokine chemoattractant chemerin, which also binds the chemokine-like 

receptor (CMKLR)-1, alternatively known as ChemR23. ChemR23 is expressed by human 

pDCs and may be involved in their migration into inflamed tissue (Vermi et al., 2005, 

Zabel et al., 2005). Human CCRL2 mRNA is detectable in activated astrocytes, microglia 

and macrophages, as well as being constitutively expressed by bronchial epithelium. The 

human protein is detectable on a variety of human leukocytes, including T cells, mast cells, 

neutrophils, monocytes, macrophages and DCs (Zabel et al., 2008). It has also been 

reported on human B cells (Hartmann et al., 2008). CCRL2 ligand binding has been 

reported to occur without internalisation or signalling in a conventional manner. In a study 

by Hartmann and colleagues, CCL5-induced ERK phosphorylation was attributed to 

CCRL2 expression on Nalm6 cells (a cultured human pre-B cell line) in the absence of 

expression of conventional CCL5 receptors. However, exposure to CCL5 did not induce 

calcium flux or cell migration (Hartmann et al., 2008). Zabel and colleagues identified 

chemerin as a ligand for CCRL2 initially through chance observation of the ability of 

chemerin to inhibit labelling of mast cells with anti-CCRL2 antibody. They confirmed the 

interaction of chemerin and CCRL2 by conducting radioligand binding assays with 

radiolabelled chemerin, which bound to CCRL2-transfected cells but not untransfected 

cells. The affinity was found to be slightly higher than that of chemerin for ChemR23 

(Zabel et al., 2008). Exposure of murine peritoneal mast cells, which naturally express 

CCRL2, or CCRL2-transfected cell lines to chemerin did not induce calcium flux or cell 

migration. Additionally, chemerin was not internalised by CCRL2 but was bound on the 

cell-surface, prompting speculation that CCRL2 acts to concentrate and present chemerin 

to cells expressing ChemR23 (Zabel et al., 2008). One recent study has suggested that 

CCL19 may also be a ligand for CCRL2, with radiolabelled CCL19 able to bind to 

CCRL2-transfected cells. Interestingly, the level of binding increased with addition of 

CCL5, supporting the suggestion that CCL5 induces upregulation of CCRL2 surface 
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expression. Internalisation of radiolabelled CCL19 by CCRL2-transfected CHO cells was 

demonstrated by comparison of cells incubated at either 4°C or 37°C (to allow 

internalisation) followed by acid-wash or PBS wash. Transfectants incubated at 37°C had 

significantly increased levels of cell-associated radioactivity compared to either 

untransfected cells or those incubated at 4°C (Leick et al., 2010).  

While these early studies have provided some interesting indications of CCRL2 function, 

at least in vitro, study of this receptor is in its infancy and much work remains to be carried 

out before a fuller understanding of its role is reached.   

1.8.5 Identification and preliminary characterisation of CCX-CKR 

A novel human chemokine receptor was identified in 2000 (Gosling et al., 2000, Khoja et 

al., 2000, Schweickart et al., 2001, Schweickart et al., 2000), from analysis of EST 

databases. The receptor was a 350 amino acid protein named CCX-CKR, for 

ChemoCentryx Chemokine Receptor (in reference to the company that was among the 

first to clone it – it is also referred to in the literature as CCR11 and CCRL1). It is highly 

homologous to a bovine gustatory receptor, PPR1, which was used in one study as an entry 

point to mining of EST databases in search of human chemokine receptors (Gosling et al., 

2000). CCX-CKR also displays a high level of sequence homology at the amino acid level 

with other CC chemokine receptors, notably CCR7 and CCR9 (Khoja et al., 2000, 

Townson and Nibbs, 2002). Khoja and colleagues failed to determine the ligand binding 

profile for CCX-CKR, despite assaying a variety of ligands, including CCL3, CCL16, 

CCL18-20, CXCL3, CXCL8-10 and CXCL12. However, their approach relied on 

detecting the induction of calcium signalling following ligand binding, a property lacking 

in atypical chemokine receptors (Khoja et al., 2000). Gosling and colleagues successfully 

identified the major ligands for the receptor using a novel approach where cells were 

transfected with CCX-CKR and then passed over glass slides carrying immobilized 

chemokine presented on stalk-like structures (referred to as “stalkokines”). This identified 

human and murine CCL19, CCL21 and CCL25 as high affinity ligands for CCX-CKR, 

with a half-maximal inhibitory concentration (IC50) <15nM, based on displacement of 

radiolabelled CCL19 binding. Human CXCL13 and a virally-encoded chemokine, vMIP-

II, demonstrated lower, but detectable binding (IC50 <150nM). A panel of more than 80 

purified chemokines, both human and murine, were assessed with minimal or no binding 

affinity detected for any other ligands (Gosling et al., 2000). 
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In 2002, Townson and Nibbs successfully identified murine CCX-CKR and showed that 

radiolabelled human CCL19 bound to CCX-CKR transfected HEK cells but not 

untransfected cells. Using displacement of radiolabelled CCL19 binding as a measure of 

affinity, they demonstrated that murine CCX-CKR shared the same high affinity ligands as 

its human counterpart, i.e. mCCL19, mCCL21 and mCCL25. Affinity for mCCL19 was 

highest (IC50 ~3nM), with slightly lower affinity for mCCL21 and mCCL25 (IC50 ~10nM). 

Unlike the human receptor, murine CXCL13 binding was not found to occur for the 

murine receptor. As with human CCX-CKR, ligand binding by murine CCX-CKR did not 

lead to subsequent intracellular signalling as measured by calcium flux, nor was any CCX-

CKR-dependent MAP kinase phosphorylation observed (Townson and Nibbs, 2002). This 

ligand binding profile, as well as the reported failure to induce calcium flux in response to 

ligand binding was confirmed by Heinzel and colleagues in 2007 (Heinzel et al., 2007).  

The expression profile of CCX-CKR has been examined at the mRNA level for both the 

human and the murine receptor. The expression pattern of human CCX-CKR mRNA was 

determined by RT-PCR analysis of RNA from various tissues and by human cDNA 

analysis (Gosling et al., 2000). Expression was found in monocyte-derived immature DCs, 

T cells, spleen and lymph node. It was also detected in a variety of non-lymphoid tissues 

including heart, kidney, placenta, trachea and brain. However, it should be noted that 

controls for genomic contamination, such as assessment of samples lacking reverse 

transcriptase, were not reported to be included (Gosling et al., 2000). Townson and Nibbs 

used Northern blotting and RT-PCR to analyse expression of the murine receptor. They 

reported expression in a variety of murine tissues, both lymphoid and non-lymphoid, 

including heart, lung, testis, spleen and skeletal muscle. Lymph nodes, Peyer’s patches and 

peripheral blood showed only low levels of CCX-CKR mRNA expression. Northern blot 

analysis of human CCX-CKR mRNA expression was also conducted and expression was 

detected in heart, lung, small intestine, brain, colon and skeletal muscle, but not in 

leukocytes, contrary to previous reports (Gosling et al., 2000, Townson and Nibbs, 2002). 

Southern blotting of human genomic DNA revealed the existence of two forms of the 

human gene that differ in sequence by three nucleotides, found at positions 85, 152 and 

669 (Townson and Nibbs, 2002). 

Another, more recent study, addressed the question of where the protein was expressed. 

Heinzel and colleagues generated CCX-CKR1-EGFP knock-in mice and looked for EGFP 

expression in heterozygous animals (which were phenotypically indistinguishable from 

wild-type). They found that CCX-CKR-driven EGFP expression was not detectable by 

flow cytometry on haematopoietic cells from a variety of sources. However, using confocal 
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microscopy, they did detect expression by non-haematopoietic cells in various tissues, 

including thymus, lymph node, epidermis and intestine. Contrary to the reported pattern of 

mRNA expression, they did not detect EGFP in heart, kidney, spleen or brain, nor did they 

find it in liver (Heinzel et al., 2007). However, this study failed to confirm the expression 

profile of the knocked-in gene as being a true reflection of CCX-CKR expression. 

Moreover, a LacZ reporter knock-in generated at Deltagen Inc. showed a different 

expression profile, with expression detected in keratinocytes, hair follicles and heart 

pericardium, but not in any lymphoid tissues examined, including lymph node and thymus 

(expression data available through the Mouse Genome Informatics website, at 

http://www.informatics.jax.org/ - search “Ccrl1” – choose Ccrl1tm1Dgen – choose 

Expression – assay results). These conflicting data leave the true cellular source of murine 

CCX-CKR expression unclear.  

The discovery of this receptor, with its atypical attributes, prompted speculation that it may 

play a role in limiting or otherwise regulating constitutive chemokine levels. Comparing 

CCX-CKR transfected HEK293 cells with cells transfected with CCR7, our group have 

shown, in vitro, that cells expressing exogenous transfected CCX-CKR can uptake CCL19 

rapidly, retaining and eventually degrading the chemokine. This study also showed that the 

ability of CCX-CKR to sequester the chemokine was increased when exposed to 

chemokine (Comerford et al., 2006), in contrast to CCL19-induced desensitization of 

CCR7. These in vitro data have suggested that CCX-CKR may play a regulatory role, 

preventing prolonged/over-stimulation of lymphocytes by “mopping up” excess 

chemokines. It may also regulate the migration of various leukocyte subsets that are known 

to be dependent on CCR7 and CCR9 ligands by controlling the bioavailability of the 

ligands. Heinzel and colleagues reported that deletion of CCX-CKR leads to perturbation 

of dendritic cell migration to skin-draining lymph nodes under resting conditions, with a 

reduced number of MHCIIhigh CD11c+ DCs found in CCX-CKR deficient LNs compared 

to WT. They also found that, while thymocyte maturation and migration appears normal in 

CCX-CKR-deficient mice, transgenic over-expression of CCX-CKR in thymic epithelial 

cells (where they had previously detected CCX-CKR-dependent EGFP expression) led to a 

defect in thymic precursor homing to the thymic anlage at embryonic day 12.5 (Heinzel et 

al., 2007). If CCX-CKR is acting as a scavenger, as is suggested by the in vitro data 

presented above, this defect could be due to aberrant clearance of CCX-CKR ligands from 

the thymus, disrupting thymocyte precursor homing to this tissue (see above for the 

importance of CCR7, CCR9 and their ligands in thymic development and function). 

Heinzel and colleagues did not find any difference in CCL25 protein localisation in the 

thymus of transgenic mice overexpressing CCX-CKR compared to WT. However, 
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attempts to quantify levels of bioavailable CCL25 in either mouse were unsuccessful 

(Heinzel et al., 2007). 

While current evidence favours the “scavenging” hypothesis, there are other possible roles 

that this receptor could play. One potential function involves activity as a transporter of 

chemokines, rather like the functions proposed for DARC, for example transcytosing them 

from the site of production in lymph nodes across high endothelial cells (HECs) to be 

displayed to passing peripheral lymphocytes. This would fit with current knowledge of 

how one CCR7 ligand, CCL19, is presented to T cells on the luminal surface of HEVs, 

facilitating T cell recruitment into lymph nodes (Baekkevold et al., 2001). Also, CCX-

CKR uses caveolins to mediate chemokine internalisation, rather than the β-arrestin 

dependent clathrin-coated pits used by classical chemokine receptors (Comerford et al., 

2007). Caveolins are often associated with transcytosis (Pelkmans and Helenius, 2002), 

lending further credence to this hypothesis. However, demonstration of this capacity, either 

in vitro or in vivo, remains to be reported.  

As described above, when my project began, information about the expression pattern or 

possible function of CCX-CKR in vivo was extremely limited. Previous studies had 

provided indications of which tissues expressed the receptor at the mRNA level but had not 

provided quantification of this expression. Conflicting reports examining protein 

expression of the receptor have left the site of CCX-CKR protein expression unclear. In 

vitro studies had suggested a potential for scavenging by the receptor, and a previous 

student had generated CCX-CKR deficient mice to examine the effect of deletion of this 

receptor and to provide a tool for accurate identification of cells expressing CCX-CKR. 

Another student in the lab had begun analysing the intestinal compartment of the CCX-

CKR deficient mouse, so I began my project with the broad aim of identifying cells 

expressing CCX-CKR and uncovering a role for CCX-CKR in secondary lymphoid tissues 

and other peripheral tissues. As there were no commercially available antibodies to CCX-

CKR, a novel approach needed to be adopted to circumvent this difficulty, and I developed 

and optimised a protocol to facilitate this aim. These experiments are detailed in chapter 3. 

In light of in vitro data suggesting a scavenging function for the receptor, I also wished to 

investigate the potential for CCX-CKR to regulate chemokine levels in vivo. Chapter 4 

reports my findings in this regard. Given the potential for CCX-CKR to affect chemokine 

levels, as well as the reported defect in DC homing to LN under resting conditions, a 

detailed analysis of any defects in lymphoid tissue cellularity attributable to CCX-CKR 

deletion was also desirable, and experiments addressing this question are detailed in 

chapter 5. I also wanted to examine the potential for CCX-CKR to affect inflammatory 



94 

responses. There was limited information available on the role of CCX-CKR in the 

immune response at the start of my PhD, with only preliminary analysis of the CCX-CKR 

deficient mouse carried out prior to my project. Therefore, I carried out an analysis of 

CCX-CKR involvement in induced short-term cutaneous inflammation as well as in a 

model of tumorigenesis involving chronic inflammation, described in chapter 6. The 

interpretation and discussion of the data from these experiments, as well as further 

information that emerged throughout the course of my investigations, are discussed in 

chapter 7.  
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2 Materials and Methods 

2.1 Animals  

CCX-CKR deficient mice were generated by I. Comerford and R. Nibbs (Comerford et al., 

2010) and backcrossed for 11 generations onto a C57Bl/6 genetic background (CD45.1- 

CD45.2+ H-2b).  These animals were bred and maintained under specific pathogen free 

conditions in the Central Research Facility, University of Glasgow. Wild-type (WT) 

C57Bl/6 mice, originally littermates of the CCX-CKR deficient mice, were bred and 

maintained under the same conditions in this facility. CCX-CKR deficient and WT mice on 

an FVB background were generated from the original CCX-CKR deficient C57Bl/6 mice 

detailed above by backcrossing with WT FVB for 6 generations. After genotyping tail tip 

biopsies by PCR, separate WT and CCX-CKR deficient colonies were established and bred 

and maintained under the same conditions as the C57Bl/6 in the Central Research Facility. 

All procedures were carried out in accordance with United Kingdom Home Office 

regulations under the auspices of appropriate Project and Personal Licences.    

 

2.2 Genotyping 

Animals were periodically genotyped by polymerase chain reaction (PCR) to ensure the 

deletion or presence of the CCX-CKR gene in CCX-CKR deficient (KO) or WT mice 

respectively. Primers used for genotyping were synthesised by VH Bio, Gateshead, UK. 

Sequences are listed in Table 2.1. The primers were designed to allow identification of 

WT, KO and heterozygous (het) animals – 11com5 binds to both WT and KO alleles while 

the others bind either WT (11wt5) or KO (3IRES), as shown in Table 2.1. The primers 

were stored at a stock concentration of 100µM in water at -20°C. 

Primer Sequence Specificity 

11wt5 AAT CGC CAC AAC TAC GGA GTT C WT 

11com5 TGC TGG TGA GCT CTG GGT TC WT and KO 

3IRES CCC TAG ATG CAT GCT CGA CG KO 

Table 2.1: Primers used for genotyping. Primers were synthesised by VH Bio and used as 
described in the text.  

 

These primers were used to make a “primer mix”, with each stock primer present in the 

following amounts: 
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11wt5  10µl  

 11com5 10µl  

 3IRES  2.5µl  

Nuclease-free water (Applied Biosystems, Warrington, UK) was added to a total volume of 

100µl.  

 

Animal tailtips were incubated in 100µl lysis buffer containing 100mM Tris-HCl (pH 8.5; 

Sigma, Poole, Dorset, UK), 5mM ethylenediaminetetraacetic acid (EDTA; Sigma), 

0.2% sodium dodecyl sulphate (SDS; Sigma) and 200mM sodium chloride (NaCl; Sigma), 

at 55°C overnight. Lysed samples were incubated at 96°C for 5 minutes and then diluted in 

400µl water. Cell debris was removed by centrifugation at 15000 x g for 5 minutes and the 

supernatant used as template in a standard PCR reaction. ABgene 1.1X Prealiquoted 

Reddymix™ PCR master mix 50µl reaction tubes (Applied Biosystems, Warrington, UK), 

containing 45µl of PCR master mix, were used to carry out the PCR reaction. For each 

sample, 2.5µl of template DNA plus 2.5µl of primer mix was added to a Reddymix™ tube. 

The PCR reaction was carried out in a PTC-200 Peltier Thermal Cycler (MJ Research, 

Massachusetts, USA) using the following conditions: 

 

94°C  5 min 

 94°C  15 sec 

 60°C  30 sec        x 35 

 72°C  45 sec 

 72°C  10 min 

 4°C  ∞ 

 

PCR products were electrophoresed on a 2% agarose gel containing SYBR® Safe 

(Invitrogen, Paisley, UK), as per manufacturer’s instructions, at 100V and visualised using 

a transilluminator. Product size was determined by comparison with HyperLadder™ I 

(Bioline, London, UK), with WT samples yielding a product of 610 base pairs (bp) and 

CCX-CKR-/- samples yielding a product of 420 bp.  Heterozygotes will have both bands 

present. Figure 2.1 shows an example of a genotyping gel.  
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Figure 2.1: Genotyping wild-type and CCX-CKR deficient mice. Tail-tips from wild-type (WT) 
and CCX-CKR deficient (KO) samples were lysed and used to generate template genomic DNA. 
Template DNA was used in a standard PCR reaction using primers 11wt5, 11com5 and 3IRES 
(see main text), with water used as a negative control. The products of this reaction were 
electrophoresed on a 2% agarose gel containing SYBR®Safe and visualised using a 
transilluminator. WT products are 610 bp in size, KO products are 420 bp in size. HyperLadder™ I 
was used to determine product size, size of bands in ladder are indicated. 

2.3 Isolation of cells from primary tissue 

Age-matched males aged between 6 and 10 weeks were used for all experiments.  Animals 

were sacrificed by cervical dislocation or CO2 inhalation either under resting conditions or 

subsequent to procedures described later in this section. Tissues were immediately 

dissected and either placed in Roswell Park Memorial Institute (RPMI)-1640 medium 

(Sigma) supplemented with 10% heat-inactivated foetal calf serum (Invitrogen), 10 U/ml 

penicillin/streptomycin (Invitrogen) and 0.2 mM L-glutamine (Sigma) (referred to 

hereafter as “complete RPMI”), or RNAlater™ RNA Stabilisation Reagent (RNAlater™; 

Qiagen, West Sussex, UK), or snap-frozen in liquid nitrogen. Peritoneal cavity lavage was 

harvested for flow cytometry and QPCR by injecting 2 x 5ml cold Dulbecco’s phosphate 

buffered saline (DPBS) containing 2mM EDTA into the cavity and retrieving the lavage 

using 5ml syringes with 18-gauge needles. Total lavage for each individual (approximately 

10ml, pooled) was stored on ice in 10ml complete RPMI until processed. Whole blood was 

collected into tubes with or without heparin (Sigma). For tubes with heparin, 200-300µl of 

heparin was added to each tube, tubes were flicked to coat sides with heparin and excess 

heparin was decanted. Whole blood was harvested from the inferior vena cava using 

heparinised needles and syringes where appropriate to prevent clotting.  

 

Single cell suspensions were prepared from peripheral lymph nodes, spleen, whole blood 

and peritoneal cavity. Lymph node and spleen samples were minced and incubated at 37oC 

with collagenase D (Roche, Hertfordshire, UK; 1 mg/ml) in Hanks Balanced Salt Solution 

(HBSS) medium (Invitrogen), for 45 minutes with shaking on either a Thermomixer 

comfort (Eppendorf, Cambridge, UK) or an Innova® 44 Incubator Shaker (New 
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Brunswick Scientific, Cambridge, UK), except where indicated. Collagenase-treated 

samples and untreated secondary lymphoid organs were mashed through 50µm nitex 

(Cadisch, London, UK) or cell strainers (BD, Oxford, UK) in complete RPMI. Red blood 

cells in spleen and peritoneal cavity lavage samples were lysed using red blood cell lysing 

buffer (Sigma), according to manufacturer’s instructions. Whole blood was incubated at a 

1:11 dilution in ammonium chloride solution (StemCell Technologies, Grenoble, France) 

to lyse red blood cells. Single cell suspensions from each tissue were washed twice in 

complete RPMI by centrifugation at 350 x g for 5 minutes at 4°C, resuspended in complete 

RPMI and counted using a haemocytometer with an inverted microscope. Viability was 

determined based on brightness and morphology.  

 

2.4 Antibodies and chemokines 

Antibodies labelled with fluorescein isothiocyanate (FITC), phycoerythrin (PE), peridinin-

chlorophyll-protein (PerCP) or PE conjugated to cyanine 5.5 (PE-Cy5.5), as well as 

biotinylated CCL19 (BioCCL19 – Almac, Craigavon, UK) and streptavidin labelled with 

either PE (StrPE) or allophycocyanin (StrAPC), both from Invitrogen, were used for FACS 

and/or immunofluorescent staining. ViaProbe (BD) was used where described to determine 

viability. All antibodies were stored in original vials at 4°C and used at final concentrations 

between 1-5µg/ml. All fluorescent antibodies used are listed in Table 2.2.  

Antigen Clone name Supplier Isotype control 

CD45 30-F11 BD Rat IgG2b 

CD5 53-7.3 BD Rat IgG2a 

CD19 1D3 BD Rat IgG2a 

CD3 145-2C11 BD Hamster IgG1 

CD21/CD35 7G6 BD Rat IgG2a 

CD23 B3B4 BD Rat IgG2a 

F4/80 BM8 Caltag* Rat IgG2a 

CD11b M1/70 BD Rat IgG2b 

CD11c N418 eBioscience** Armenian Hamster IgG 

IgM Polyclonal Invitrogen none 

Table 2.2: List of fluorescently labelled antibodies used in the experiments described in this 
thesis. *Caltag, Buckingham, UK; ** eBioscience, Hatfield, UK.  

BioCCL19/StrAPC tetramers were formed by mixing 6µg BioCCL19 with 100µg StrAPC 

per ml in PBS  (except where stated) and then incubating the mixture in darkness for 45 
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minutes at room temperature. Controls lacking BioCCL19 were made with the 

corresponding concentration of StrAPC in PBS and incubated in the same way. 

Recombinant chemokines were used in competition assays. Unlabelled murine MIP-3β 

(CCL19) and unlabelled murine Exodus-2 (CCL21) were from PeproTech EC, London, 

UK. Unlabelled purified PM2 - a non-aggregating mCCL3 derivative with the same 

bioactivity as wild-type (Graham et al., 1994) - was provided by R. Nibbs. These 

chemokines were resuspended to a stock concentration of 0.1mg/ml in endotoxin-free 

water (Invitrogen) and stored at -20°C.  

 

2.5 Internalisation and binding assays 

Equal numbers of cells (ranging from 0.5-2 x 106/sample, depending on experiment) were 

harvested by centrifugation at 4oC at 400 x g and resuspended in 50µl binding buffer 

(complete RPMI plus 20mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

(HEPES; Invitrogen), pH 7.4), with or without fluorescently labelled CCL19 tetramers or 

StrAPC alone, prepared as described above. Fluorescent tetramers or StrAPC in PBS were 

added to samples to a final concentration of 0.6ng/µl BioCCL19 and 10ng/µl StrAPC, 

except where stated. Samples were then incubated at 37oC (internalisation) or 4oC 

(binding) for 1 hour in darkness, with occasional agitation to keep cells in suspension. 

Cells were then stained at 4°C with antibodies for leukocyte markers, described below. 

 

2.6 Competition assays 

Competition assays were carried out as for the internalisation/binding assays except with 

the addition of a ten-fold molar excess of unlabelled chemokine (i.e. 300ng/sample) 

directly prior to addition of fluorescently labelled CCL19 tetramers (30ng/sample). After 

incubation at 4°C or 37°C as above, cells were then stained with fluorescent antibodies for 

leukocyte markers. 

 

2.7 Antibody staining     

Freshly isolated cells or cells from internalisation/binding/competition assays were 

harvested by centrifugation for 5 minutes at 4oC at 400 x g and resuspended in chilled Fc 

block (BD) for 15 minutes on ice. They were then incubated with fluorescently-labelled 

antibodies or isotype controls in fluorescence-activated cell sorting (FACS) buffer 

(phosphate buffered saline (PBS) plus 1% heat inactivated foetal calf serum, 0.02% sodium 

azide (Sigma), 5mM EDTA) on ice for 15 minutes. Samples were washed twice with 1ml 

chilled FACS buffer, with cells pelleted by centrifugation at 400 x g at 4°C and 
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resuspended in a final volume of 200µl of either FACS buffer or 2% paraformaldehyde 

(PFA – fixative; Sigma). Stock PFA was prepared from powdered PFA to a concentration 

of 4% w/v in PBS, with stirring on a hotplate until dissolved. 

 

2.8 Flow cytometry 

Stained cells with and without fixative were analysed using a FACSCalibur flow cytometer 

(BD) and CELLQuest software (BD). Acquisition parameters were established using 

unstained and single-stained cells, i.e. cells with no or only one fluorescent antibody stain 

included. Data were analysed subsequent to acquisition using FlowJo software from 

Treestar Inc. (Ashland, OR, USA), using unstained and single-stained samples to set gates.   

 

2.9 Cell sorting using the FACSAria 

Cells (1-2 x 107/ml) were isolated and stained with fluorescently-labelled antibodies (see 

section 2.6), using MACS Buffer (DPBS without calcium or magnesium (Invitrogen), 

supplemented with 1% bovine serum albumin (Sigma) and 2mM EDTA (Invitrogen)), in 

place of FACS Buffer. Cells were then passed through a 40 µm cell strainer (BD) and 

sorted using the BD FACSAria™ cell sorter (BD). Parameters were established using 

unstained and single-stained samples, as for FACS. Set-up, calibration and sorting were 

carried out by, and/or under the supervision of, A. Gilmour (University of Glasgow). Cells 

were sorted into RPMI-1640 medium supplemented with 20% heat-inactivated FCS, 10 

U/ml penicillin/streptomycin and 0.2 mM L-glutamine. Sorted populations were then 

pooled according to subtype and retrieved by centrifugation at 450 x g, washed with 

complete RPMI, and resuspended in 1ml of complete RPMI. Cells were pelleted, 

supernatant removed and cell pellets stored at -80°C for subsequent RNA isolation, as 

described in section 2.11 below. 

 

2.10 Isolation of RNA from whole tissues 

Individual tissues were dissected from mice and stored in RNAlater™ (Qiagen) for 24 

hours, then removed and stored at -80°C. Frozen tissues were ground up in liquid nitrogen 

using a pestle and mortar. Ground up tissue was transferred while frozen to a 15ml Falcon 

tube, 1 ml of TRIzol™ (Invitrogen) was added and RNA was extracted according to 

TRIzol™ manufacturer’s instructions. Briefly, ground up tissue was incubated in TRIzol™ 

at room temperature for 5 minutes then transferred to RNase-free microfuge tubes (Applied 

Biosystems), and 0.2 ml chloroform (Sigma) was added. Samples were shaken vigorously, 

incubated at room temperature for 2-3 minutes and spun down at 12000 x g for 15 minutes 
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at 4°C. The aqueous phase was transferred to a fresh RNase-free tube, and 0.5 ml 

isopropanol was added to precipitate nucleic acid. Samples were inverted gently to mix, 

incubated at room temperature for 10 minutes and then spun down at 12000 x g for 10 

minutes at 4°C. Supernatant was removed and the RNA pellet was washed with 1 ml of 

75% ethanol before being dissolved in 100µl of nuclease-free water (Applied Biosystems). 

This sample was then cleaned using the “RNA Clean-up” protocol in the Qiagen RNeasy® 

Mini Kit, including an on-column DNase digestion step using the Qiagen RNase-Free 

DNase Set. The RNA concentration of each sample was determined using a ThermoFisher 

Nanodrop 1000™ spectrophotometer. Each sample was stored at -80°C prior to further 

DNase treatment (see section 2.12).  

 

2.11 Isolation of RNA from single cell suspensions  

Cells were isolated from tissues and either whole tissue mixed isolates or sorted 

populations were resuspended in 1ml complete RPMI. Samples were spun down at 450 x 

g, supernatant was removed completely and each sample was resuspended in 100-350 µl 

RLT Buffer for storage at -80°C. RNA was then isolated following the Qiagen RNeasy® 

Mini Kit instruction manual. This included the optional on-column DNase digestion step 

using the Qiagen RNase-Free DNase Set. The RNA concentration of each sample was 

determined using a ThermoFisher Nanodrop 1000™ spectrophotometer. Each sample was 

stored at -80°C prior to further DNase treatment (see section 2.12).  

 

2.12 DNase treatment of RNA 

RNA was treated with Promega RQ1 RNase-free DNase (Promega, Hampshire, UK) 

according to manufacturer’s instructions. Briefly, at least 1 unit of DNase/µg of RNA was 

added to up to 4.5µg of RNA in nuclease-free water plus 1µl of 10x Reaction Buffer, made 

up to a final volume of 10µl with nuclease-free water in nuclease-free 0.2ml tubes. This 

reaction was incubated at 37°C for 30 minutes, at which time 1µl of RQ1 DNase Stop 

Solution was added. The reaction was then incubated at 65°C for 10 minutes to inactivate 

the DNase. The RNA concentration of each sample was determined using a ThermoFisher 

Nanodrop 1000™ spectrophotometer. 

 

2.13 Synthesis of cDNA from RNA 

Complementary DNA (cDNA) was reverse-transcribed from RNA using AffinityScript™ 

Multiple Temperature cDNA Synthesis Kits (Agilent, Edinburgh, UK), according to 

manufacturer’s instructions. Briefly, equal µg amounts (300ng-1µg, depending on 
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experiment) of starting RNA for each sample were made up to 14.7 µl with nuclease-free 

water and 1 µl of oligo(dT) primer (0.5 µg/µl) was added. Samples were then incubated at 

65°C for 5 minutes to remove any secondary structures in the RNA and then at 21°C for 10 

minutes to allow primers to anneal to the RNA. To each sample, a 4.3 µl mix of the 

following components (final concentrations) was added: 1X AffinityScript RT Buffer, 

2mM dNTP mix (0.5mM of each dNTP), 20U RNase Block Ribonuclease Inhibitor, and 

1µl AffinityScript Multiple Temperature reverse transcriptase (RT; 1µl nuclease-free water 

was added in place of RT to -RT controls). Samples were incubated at 42ºC for 5 minutes 

to initiate the reaction, 55ºC for 1 hour to extend the products and then 70ºC for 15 minutes 

to terminate the reaction. Reactions were then stored at either 4°C or -20°C until they were 

used for QPCR.  

 

2.14 Measuring relative mRNA expression by quantitative polymerase chain 
reaction (QPCR) 

Synthesised cDNA was used to determine the expression of various chemokines and 

receptors at the level of mRNA. Briefly, equal amounts of cDNA were added to a 96-well 

or 384-well MicroAmp® Fast Optical Reaction Plate (Applied Biosystems) in triplicate 

per biological sample with: 1X TaqMan® Universal PCR Master Mix, No AmpErase® 

UNG (Applied Biosystems), 1X appropriate probe (either target-specific inventoried 

assays or endogenous control assays, as defined in the text – see Table 2.3; Applied 

Biosystems), and nuclease-free water.  

Target gene Assay ID 

Ccrl1 (CCX-CKR) * Mm02620636_s1 

Ccr7 * Mm01301785_m1 

Ccr9 * Mm02620030_s1 

Ccl19 * Mm00839967_g1 

Ccl25 * Mm00436443_m1 

Gapdh ** 4352932E 

Table 2.3: Taqman®  probes used for QPCR assays. All assays from Applied Biosystems. Assay 
type indicated as follows: * = Taqman® Gene Expression Assay, Inventoried; ** = Mouse GAPD 
(GAPDH) Endogenous Control. All assays contain sequence-specific unlabeled primers plus a 
Taqman® probe labeled with a fluorescent FAM™ dye and minor groove binder (MGB) on the 5’ 
end and a non-fluorescent quencher (NFQ) on the 3’ end.  

Plates were loaded into a 7900HT Fast Real-Time PCR System machine (Applied 

Biosystems) and incubated at 95°C for 10 minutes followed by 40 cycles of incubation at 
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95°C for 15 seconds, then 60°C for 1 minute. Data produced was analysed using RQ 

Manager software (Applied Biosystems) to give relative quantity (RQ) values for each 

sample, relative to selected calibrator samples given an RQ value of 1. Samples with poor 

technical replicate values or Ct values higher than 38 were excluded from analysis.  

 

2.15 Preparing samples for chemokine measurement 

Tissues to be analysed were immersed in homogenisation solution (T-PER Tissue Protein 

Extraction Reagent (Thermo Scientific) with cOmplete, Mini, EDTA-free Protease 

Inhibitor Cocktail Tablets (Roche) dissolved in water and added at the appropriate 

concentration (see manufacturers’ instructions)).  The tissues were homogenised in this 

solution using an IKA® T8 basic ULTRA TURRAX® homogenizer with S8N-5G 

dispersing tool  (VWR, Leicestershire, UK). Tissue debris was removed by centrifugation 

at 10000 x g for 5 minutes and supernatants retrieved for analysis. Whole blood was 

retrieved from the posterior vena cava and allowed to clot at room temperature for 30 

minutes. Serum was separated from blood by centrifugation at 13000 x g for 20 minutes. 

Peritoneal cavity lavage was carried out with 2ml saline. Cells were pelleted by 

centrifugation at 400 x g and supernatants retrieved for analysis. All processed samples 

were stored at -20°C until they were analysed. Where required, tissue supernatants were 

diluted prior to analysis in homogenization solution. The total protein content of these 

preparations was determined using a Bicinchoninic acid (BCA) assay kit (Pierce, 

Loughborough, UK) according to the manufacturer’s guidelines and using serial dilutions 

of BSA (Pierce) as standards. 

 

2.16 Measuring chemokine concentrations by Enzyme-linked 
Immunosorbent Assays (ELISAs) 

CCL19 and CCL21 protein levels were measured using specific DuoSet ELISA 

development kits (R&D Systems, Abingdon, UK). Immulon-4 ELISA plates (Corning, 

Amsterdam, the Netherlands) were coated overnight at room temperature with 100µl per 

well of specific capture antibodies at 2µg/ml (CCL19) or 4µg/ml (CCL21) in PBS. Plates 

were washed at least 3 times with PBS + 0.05% Tween and then blocked with 300µl of 

Reagent Diluent (1% BSA in PBS; R&D Systems) for 1 hour at room temperature. 

Meanwhile, standards (included in kits) were prepared as per manufacturer’s instructions. 

Plates were washed as before and 100 µl sample or standards were added in duplicate and 

the plates incubated for 2 hours at room temperature. Plates were washed as before and 

100µl of specific detection antibodies added at 100ng/ml (CCL19) or 50ng/ml (CCL21) in 



104 

Reagent Diluent. This was incubated for a further 2 hours at room temperature. Plates were 

washed as before and 100µl of Streptavidin-HRP (included in kits) diluted in Reagent 

Diluent as per manufacturer’s instructions was added to each well. Plates were incubated at 

room temperature for 20 minutes in the dark. Plates were washed as before and 100µl of 

Substrate Solution (R & D Systems) was added to each well and incubated at room 

temperature for 20 minutes in the dark. 50 µl of Stop Solution (R & D Systems) was added 

to each well and the optical density read on a Sunrise™ microplate absorbance reader 

(Tecan, Reading, UK) using Magellan™ software (Tecan). Sample chemokine 

concentrations were calculated from the standard curve obtained, using Magellan™ 

software. Sample concentrations falling outside the standard curve were deemed invalid, 

with these samples re-analysed in a separate ELISA following dilution in homogenization 

solution.  

 

2.17 Embedding tissues for sectioning 

Dissected tissues were either fixed into formalin at room temperature for paraffin 

embedding or placed into Shandon Cryomatrix™ (ThermoFisher) and snap frozen in liquid 

nitrogen for frozen sections. Frozen spleen sections were cut to a thickness of 7µm onto 

PolyFrost® microscope slides (ThermoFisher) by C. Nixon at the Beatson Institute for 

Cancer Research, Glasgow and stored at -80°C. Formalin-fixed tissues were processed 

using a Shandon Citadel 1000 tissue processor (ThermoFisher) and embedded in paraffin 

wax using a Shandon Histocentre 3 (ThermoFisher) for subsequent sectioning using a 

Shandon Finesse 325 (ThermoFisher). Sections were cut at 6-10 µm thickness and floated 

on distilled water at 40°C in a Tissue Floatation Bath (ThermoFisher) to stretch and 

remove any wrinkles/folds from the section. Sections were then adhered to Polysine® 

microscope slides (VWR) and dried on a Hotplate (ThermoFisher) at 60°C for at least an 

hour.  

 

2.18 Haemotoxylin and eosin staining  

Paraffin-embedded sections were incubated at 60°C on a Hotplate (ThermoFisher) for at 

least 35 minutes to soften the paraffin wax. They were then incubated in xylene 

(ThermoFisher) for 3 minutes to remove the wax, followed by repeated short immersions 

in 100% ethanol, repeated short immersions in 70% ethanol and immersion in running tap 

water for 1 minute.  Frozen sections were brought to room temperature from -80°C and 

then fixed in ice-cold acetone for 20 minutes, air-dried and immersed in running tap water 

for 1 minute. All slides were then stained as follows: immersion in haemotoxylin (Sigma) 
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for 2 minutes; immersion in running tap water until water runs clear; repeated short 

immersions in 1% acid/alcohol (ThermoFisher); rinse in running tap water; immersion in 

Scotts Tap Water Substitute (CellPath, Powys, UK) for 30 seconds; rinse in running tap 

water; immersion in eosin (Sigma) for 2 minutes; rinse in running tap water; immersion in 

70% ethanol for 30 seconds; immersion in 90% ethanol for 1 minute; immersion in 100% 

ethanol for 3 minutes x 2; immersion in xylene for 3 minutes x 2. Slides were then allowed 

to air-dry before glass coverslips were mounted onto the sections using DPX mountant 

(VWR). Sections were visualized using an Axiostar plus microscope (Zeiss, Hertfordshire, 

UK) and analysed using Axiovision software (Zeiss). 

 

2.19 Immunofluorescent staining of frozen sections 

Frozen sections of mouse tissue that had been stored wrapped in foil at -80°C were brought 

to room temperature by incubating them at room temperature still wrapped in foil for 20 

minutes, followed by unwrapping and incubating at room temperature for a further 10 

minutes. Sections were then fixed in ice-cold acetone for 20 minutes in an ice-cold staining 

jar and air-dried at room temperature. Sections were delineated on each slide using an 

ImmEdge™ Hydrophobic Barrier Pen (Vector Laboratories, Peterborough, UK). Sections 

were then washed three times with 0.5% BSA in PBS for 5 minutes each, followed by 

incubation in permeabilisation solution (0.2% saponin (Sigma); 0.03M sucrose (Fisher 

Scientific, UK); and 1% BSA (Sigma) in PBS) for 5 minutes. Sections were then washed 

once with 0.5% BSA in PBS for 5 minutes, followed by blocking with 5% normal goat 

serum in PBS for 15 minutes to prevent non-specific labeling by antibody. Sections were 

then washed once with 0.5% BSA in PBS for 5 minutes, followed by incubation with 

appropriate antibodies or isotypes in PBS for one hour at room temperature in darkness. 

Sections were then washed three times with 0.5% BSA in PBS for 5 minutes each, then 

once with PBS alone. Coverslips were mounted onto the sections using Vectashield® 

Hard-Set™ Mounting Medium with DAPI (Vector Laboratories), which was allowed to 

harden overnight at 4°C before analysis using a Zeiss LSM 510 Confocal microscope and 

Carl Zeiss AIM software (Zeiss).   

 

2.20 Induction of skin inflammation 

Mice were shaved dorsally 24 hours prior to painting dorsally with 150µL of 50µM 12-O-

tetradecanoylphorbol-13-acetate (TPA; Invitrogen) in acetone. TPA painting was carried 

out on 3 consecutive days. Animals were sacrificed 3 and 6 days later and tissues harvested 

for subsequent analysis by FACS, immunohistochemistry and QPCR.  
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2.21 Tumorigenesis 

This protocol was established in the lab by Dr Mairi Clarke and carried out in collaboration 

with her. Mice were shaved dorsally 24 hours prior to painting dorsally with 25µg 7,12-

dimethylbenz(a) anthracene (DMBA; Sigma) in 200µL acetone. Seven days post-DMBA 

paint, mice were painted dorsally with 150µL of 50µM TPA in acetone. TPA procedure 

was repeated twice weekly for 26 weeks or until an animal reached the end point of the 

experiment. Tumour burden was scored weekly. Tissues were retrieved and stored at -80°C 

for subsequent analysis by QPCR. 

 

2.22 Statistical analysis  

Data were analysed using GraphPad Prism software (San Diego, CA) applying appropriate 

statistical tests as described in figure legends. Normality was tested where appropriate 

using a D’Agostino and Pearson omnibus normality test. Probability values of p<0.05 were 

considered statistically significant.  
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3 Expression and activity of CCX-CKR in resting 
mice 

3.1 Quantifying expression of CCX-CKR mRNA in whole tissue 

The aim of this project was to identify cells expressing CCX-CKR in vivo; to investigate 

its activity and function on these cells; and to examine whether CCX-CKR plays any role 

in regulating immune and inflammatory responses. Prior to this study, only limited 

analyses of sites of expression of CCX-CKR had been carried out (Gosling et al., 2000, 

Heinzel et al., 2007, Townson and Nibbs, 2002), with no information available on the 

relative expression of CCX-CKR in various tissues or on the specific cells responsible for 

expression in these tissues. It was decided that a quantitative polymerase chain reaction 

(QPCR) assay approach would be the best way to acquire this information. Taqman® 

Gene Expression Assays, from Applied Biosystems, provide an efficient and highly 

specific method for measuring relative quantities of expression of specific mRNA species 

in tissues and cells.  

The assay chosen for this study was designed to amplify a small region of 146 base pairs 

(bp) within exon 3 of the Ccrl1 gene (Figure 3.1A). This exon contains the open reading 

frame (ORF) that encodes CCX-CKR. Choosing this type of assay eliminates the 

possibility that expression of some but not all splice variants may be detected, a problem 

that can occur when primers span an exon-exon junction. This is a possibility for CCX-

CKR, the gene for which contains multiple exons in both human and mouse (Townson and 

Nibbs, 2002). Expression analysis from collaborators using intron-spanning primers 

suggested the main site of expression of CCX-CKR mRNA was in the thymus, with 

expression at other sites very low in comparison (R. Nibbs, pers. comm.), a result 

contradicted by published RT-PCR expression data that shows robust expression in a 

variety of tissues, both lymphoid and non-lymphoid (Townson and Nibbs, 2002). By 

choosing an assay that is not intron-spanning, it should be possible to detect all relevant 

mRNA species with the capacity of generating functional protein. It does, however, 

introduce the risk of false positive results due to genomic contamination of the sample, as 

the assay will not be able to distinguish between genomic DNA and complementary DNA 

(cDNA). This possibility was minimised by DNase treatment of each RNA sample. To 

verify that there was no genomic DNA contamination in the samples, “-RT” controls were 

used, in which the reverse transcriptase (RT) was left out of the cDNA synthesis mix. The 

region amplified by the assay is also outwith any exons of the Acad11 gene, which runs 
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antisense to the Ccrl1 gene (Townson and Nibbs, 2002), eliminating the possibility of the 

assay detecting mRNA from this gene and producing false positive results. All data shown 

have been generated from experiments in which no specific CCX-CKR amplification was 

detected in -RT controls.  

It was important to verify that the assay was capable of detecting CCX-CKR mRNA 

expression in wild-type (WT) but not CCX-CKR deficient tissue before using it as a means 

to quantify expression levels of this product in various WT tissues. Thymus samples were 

used to test this, as the thymus has been identified as a site of CCX-CKR expression 

(Heinzel et al., 2007, Townson and Nibbs, 2002). As well as an endogenous control assay 

for GAPDH expression, an assay specific for CCR7 was included to demonstrate that 

chemokine receptor mRNA was detectable in both WT and CCX-CKR deficient samples 

by this method. As shown in Figure 3.1B, CCX-CKR expression was only robustly 

detected in the WT sample. The low level amplification seen in the CCX-CKR deficient 

sample was comparable to that seen in no template controls. CCR7 was detectable in both 

the WT and CCX-CKR deficient samples, as expected. A standard PCR was also run on 

cDNA from WT spleen and LN samples, using the Ccrl1 assay as the primer mix. This 

showed that the amplified fragment corresponded to the expected amplicon size of 146 bp 

(Figure 3.1C). Thus the assay amplifies the correct DNA fragment and provides reliable 

detection of CCX-CKR.  

To directly compare multiple tissues, I established and optimised a QPCR assay using 384-

well plates. This is now routinely used in the lab for this type of analysis when sample 

numbers exceed the capacity of commonly used 96 well plates. Using the inventoried assay 

for Ccrl1 (CCX-CKR) it was possible to detect mRNA for CCX-CKR in all lymphoid 

tissue tested, as well as in some non-lymphoid tissues (Figure 3.2). Skin and small intestine 

showed similar levels of expression of CCX-CKR, compared to lymphoid tissue, while 

liver and peritoneal wall displayed minimal levels of expression (p<0.001 compared to 

thymus; Figure 3.2). Peritoneal wall was included to accompany subsequent planned 

experiments analysing peritoneal cavity lavage cells. These data, combined with 

unpublished RT-PCR data that suggested B cells expressed CCX-CKR (R. Nibbs, pers. 

comm.), and the distribution of expression seen by Heinzel and colleagues, led us to 

investigate whether CCX-CKR was expressed by, and active on, leukocytes. Although this 

assay does not provide absolute quantification of mRNA expression and comparison 

between genes is therefore not quantitatively valid using this assay, Taqman assays are 

designed to provide equivalent amplification efficiencies. Therefore, it is interesting to 



109 

note that CCX-CKR amplification yielded higher Ct values in most tissues than CCR7, 

suggesting a lower expression level of CCX-CKR compared to CCR7.  

3.2 Towards the identification of cells expressing functional 
CCX-CKR 

3.2.1 Optimisation of an assay for detecting CCL19 receptor “activity” 

Antibodies against chemokine receptors have proven to be unreliable at detecting native 

receptor expression. They are difficult to generate, particularly against murine receptors, 

since the mouse is the usual animal of choice for inoculation to produce effective 

monoclonal antibodies. Also, many receptor antibodies are generated against peptides 

rather than the receptor in its native conformation. While useful in assays where the protein 

is denatured, such as in Western immunoblotting, this type of antibody is usually of limited 

use in detecting the protein in its native, folded conformation, as the epitope recognised by 

the antibody may be partly or completely unavailable. At the time of these experiments, 

there was no commercially available antibody to CCX-CKR, and those that have 

subsequently been generated fail to detect exogenous mouse CCX-CKR on transfected 

cells (R. Nibbs, pers. comm.). Moreover, a widely used commercial antibody against 

CCR7 only detected high levels of expression of this receptor (data not shown). The 

absence of suitable antibodies, combined with evidence that another atypical receptor, D6, 

is present mainly internally rather than at the cell surface (Madigan et al., 2010, Weber et 

al., 2004), suggested that detection of surface-expressed CCX-CKR might be difficult. 

However, CCX-CKR and D6 internalise using different pathways and thus may not share 

this property (see Introduction). Efforts to minimise problems of detectability required the 

development of a highly sensitive assay that would allow distinction between not only 

CCX-CKR activity and CCR7 activity, but also between cells with no CCX-CKR 

expression and cells with only low CCX-CKR activity. Therefore a novel approach was 

adopted whereby cells under investigation were incubated at 37°C with fluorescently-

labelled CCL19 tetramers and subsequently analysed by flow cytometry. The methodology 

is outlined in Figure 3.3. In theory, this method should allow the detection of receptors that 

are “active”, i.e. capable of internalising ligand. We reasoned that if CCX-CKR acts as a 

chemokine scavenger, as has been proposed from in vitro studies (Comerford et al., 2006), 

it should be particularly sensitive to detection by this approach. By comparison of WT 

cells with cells from CCX-CKR-deficient mice, it should be possible to distinguish CCX-

CKR-mediated internalisation of the fluorescent CCL19 tetramers from that mediated by 
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other receptors (e.g. CCR7). This approach is broadly similar to one used successfully in 

the lab to detect D6 activity on primary murine leukocytes (Hansell et al., 2011b). We also 

included unlabelled chemokines as competitors to aid confirmation of the likely receptor(s) 

responsible for internalisation, as described below. Additionally, we predicted that, using 

this approach, we might be able to improve the detectability of CCR7 beyond that 

achievable with existing anti-mouse CCR7 antibodies. Moreover, human chemokines often 

bind chemokine receptors from other species, so the assay may be readily applicable to the 

analysis of CCL19 receptors in species other than mice where anti-chemokine receptors are 

even less commonly available. In this regard, it is interesting to note that ongoing work in 

our lab has shown that fluorescent human CCL2 and human CXCL8 provide sensitive 

detection of chemokine receptors on rat leukocytes, and these reagents are now being 

applied to other species, including birds. The fluorescent chemokine assay is arguably less 

suited to detection of “inactive” receptors, i.e. receptors that may bind but not internalise 

chemokine. A modified version of the assay, where cells are incubated with chemokine at 

4°C, allows binding of fluorescently labelled chemokine to surface-expressed receptors – 

however, the fluorescence associated with this is much weaker than that seen after 

incubation at 37°C. Internalisation allows for accumulation of fluorescence within the cell, 

vastly increasing the potential level of fluorescence associated with the presence of the 

receptor. Due to the nature of the assay, the term “receptor activity” is used throughout this 

thesis when referring to cells capable of mediating chemokine internalisation.  

As mentioned above, the protocol was modified from an assay developed in the lab for 

detection of D6 on primary cells, using directly conjugated fluorescently-labelled 

chemokine (CCL2 or CCL22). Like CCX-CKR, D6 expression by primary mouse cells is 

not detectable by any other means to date. Our protocol also drew on related assays used in 

the lab to detect CCX-CKR activity on transfected cells, using biotinylated or radiolabelled 

chemokine (Comerford et al., 2006, Hansell et al., 2011b). The assay was optimised for 

detection of CCL19 receptors, using fluorescent CCL19 tetramers prepared as described in 

detail in Materials and Methods (chapter 2) and outlined in Figure 3.3.  

Successful detection of chemokine receptors using this method requires use of sufficient 

fluorescent chemokine over a long enough period to allow detectability over background 

levels of fluorescence. Therefore, before initiating the study, titration and timecourse 

assays were carried out to determine the optimal conditions of the assay. WT splenocytes 

were chosen to test the assay for a number of reasons. Firstly, the spleen contains a large 

number of easily isolated cells, allowing minimal animal usage for an experiment requiring 

a large number of samples. Secondly, WT spleen has readily detectable expression of 
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CCX-CKR mRNA, as determined by QPCR (see Figure 3.2). Finally, the spleen also 

contains a large number of lymphocytes, including T cells, which express CCR7. This 

provides an internal control to show that the assay is technically successful and the 

fluorescent chemokine tetramers are being internalised.  

Live cells were gated based on size and granularity characteristics (forward scatter (FSC) 

and side scatter (SSC)). As shown in Figure 3.4, the level of fluorescence detectable was 

directly related to the initial concentration of fluorescent chemokine to which the cells 

were exposed. Even relatively low concentrations were enough to allow detectable 

internalisation, with the shift in fluorescence increasing with increasing concentrations of 

fluorescent chemokine (Figure 3.4b, left panel). However, this increase in fluorescence did 

not appear to increase markedly over time (Figure 3.4b, right panel), suggesting that, for 

splenocytes, the majority of internalisation occurred in the first 5-15 minutes of exposure 

to ligand.  

These experiments suggested that the majority of chemokine internalisation activity might 

be down-regulated very early. Alternatively, there may be a threshold of intracellular 

chemokine concentration beyond which the chemokine gets degraded, meaning the 

chemokine could continue to be internalised without a corresponding increase in 

fluorescence. However, down-regulation of chemokine internalisation makes sense in light 

of in vitro data that shows down-regulation of CCR7-dependent ligand internalisation 

through exposure to CCL19 (Britschgi et al., 2008, Comerford et al., 2006). Data from 

Comerford et al. showed that, at least in vitro, CCX-CKR does not display this sensitivity 

to ligand exposure. CCX-CKR transfected cells were capable of continuous internalisation 

of chemokine from media, and in fact internalisation through CCX-CKR appeared 

upregulated upon exposure to CCL19 (Comerford et al., 2006). Therefore, the majority of 

fluorescence detected, which plateaus over time, is likely due to CCR7-mediated 

internalisation. However, one might expect that exposing cells to fluorescent chemokine 

for longer than 15 minutes, i.e. beyond the timeframe of CCR7 desensitisation, might 

enhance the detectability of CCX-CKR-dependent ligand internalisation when comparing 

WT and KO tissues. Thus, in all subsequent internalisation assays, 1-2 x 106 cells 

(depending on the experiment) were exposed to 30 ng biotinylated CCL19 plus 500 ng 

streptavidin-APC for 30 minutes at 37°C, except where stated.   

To allow use of this method to detect CCL19 receptors, it was necessary to ensure that the 

fluorescent CCL19 tetramers were not being internalised non-specifically by cells. To do 

this, binding and internalisation assays were carried out on splenocytes in the presence or 
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absence of a ten- or twenty-fold molar excess of various chemokines to confirm the 

specificity of the interaction of the fluorescent CCL19 tetramers with receptor (Figure 3.5). 

Non-specific internalisation, for example through pinocytosis, would not be expected to be 

inhibited by excess unlabelled chemokine, while CCR7/CCX-CKR-mediated 

internalisation should be blocked, at least to some extent, by CCL19 or CCL21, but not by 

other chemokines that are not ligands for these receptors.  

Binding of the fluorescent chemokine to lymphocytes at 4oC gave small increases in cell-

associated fluorescence above controls and this was slightly, but significantly reduced in 

the presence of both unlabelled CCL19 and unlabelled CCL21 (Figure 3.5). PM2, a non-

aggregating form of mouse CCL3 (Graham et al., 1994), was included as a negative 

control, as it does not bind to CCL19 receptors and should not compete for binding or 

internalisation of CCL19. As expected, PM2 did not reduce the binding of fluorescent 

CCL19 to splenocytes (Figure 3.5). When cells were allowed to internalise the chemokine 

at 37oC, there was a large increase in cell-associated fluorescence compared to experiments 

carried out at 4oC. PM2 did not impair internalisation of the fluorescent CCL19 tetramers, 

as expected. However, uptake of the fluorescent CCL19 tetramers was almost completely 

abolished in the presence of excess unlabelled CCL19 and was also significantly reduced 

in the presence of CCL21, although the effect seen in the presence of CCL21 was 

significantly less pronounced. CCL21 was included in both 10-fold and 20-fold excess to 

investigate whether this loss of competition might be due to lack of availability of the 

chemokine. CCL21 is known to be relatively “sticky” in comparison to other chemokines, 

due to an extended C-terminal tail (see Introduction), and this property may cause it to 

adhere to the plates used to carry out the assay. However, there was no significant 

reduction in binding or internalisation of fluorescent CCL19 in the presence of a 20-fold 

excess of unlabelled CCL21 compared to 10-fold excess. 

Collectively, these data suggest that some binding, and the majority of internalisation, of 

fluorescently labelled CCL19 tetramers by splenocytes occurred specifically through 

CCL19 receptors.  

 

3.2.2 Investigating CCX-CKR expression in the spleen 

Having optimised the internalisation assay for detection of CCL19 receptors, the next 

experiments aimed to identify CCX-CKR expressing cells. The first tissue interrogated was 

the spleen. QPCR data presented previously shows easily detectable levels of CCX-CKR 

mRNA expression in whole spleen. Additionally, the spleen is easily disrupted and yields 
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large numbers of cells, providing ample material for analysis by flow cytometry. Due to 

conflicting evidence with regard to which cells might be the main source of active CCX-

CKR (Gosling et al., 2000, Heinzel et al., 2007, Townson and Nibbs, 2002), a number of 

lineages were investigated. The nature of the assay allowed for investigation into potential 

effects of CCX-CKR on CCR7 activity as well, and observations in relation to this are also 

discussed here. 

3.2.2.1 Expression of CCL19 receptors on T and B cells in the spleen 

The first major cell types investigated were T cells, defined as CD3+ (or CD5+ CD19- in 

some experiments) and B cells, defined as CD19+ (or B220+ in some experiments). These 

lymphocyte populations make up the vast majority of CD45+ cells in the spleen. Both cell 

types, but particularly T cells, require CCR7 for normal trafficking to and within lymphoid 

organs and for interactions during an immune response (see Introduction; Förster et al, 

2008). Additionally, previous work in the lab, using RT-PCR from sorted cell samples, had 

indicated possible expression of CCX-CKR mRNA by B cells (R. Nibbs, pers. comm.). 

Therefore it was hypothesised that lymphocytes might be candidates for expression of 

CCX-CKR, which could act to allow cell autonomous regulation of responsiveness to 

CCR7 (and CCR9) ligands. This type of function has recently been suggested for another 

atypical receptor, D6, which is expressed by innate-like B cells and suppresses the 

migration of these cells (Hansell et al., 2011b). 

 

The internalisation assay described previously in this chapter was used to investigate 

whether T and/or B cells showed any CCX-CKR activity. As shown in Figure 3.6, by 

comparing internalisation by WT and CCX-CKR deficient cells, it was clear that neither 

population displayed any detectable CCX-CKR activity, although both exhibited CCL19-

dependent internalisation, presumably due to CCR7 activity. Data from competition 

experiments described above are consistent with this. The level of internalisation was the 

same between WT and KO samples, suggesting that CCR7-mediated internalisation was 

unaffected by the absence of CCX-CKR on these cells. Supporting this theory, T cells 

displayed a significantly higher level of fluorescence compared to B cells (Figure 3.6), 

indicative of their higher level of CCR7 expression. T cells use CCR7 and its ligands to 

correctly position themselves within lymphoid organs, while B cells are less reliant on 

these chemokines and their receptor (Förster et al., 1999).  

 

Pre- and co-incubation with fluorescent chemokine was carried out on these subsets to 

determine whether CCX-CKR activity might be triggered by either stimulus, as well as to 
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verify the specificity of the internalisation (Figure 3.7). As discussed in the Introduction, 

our group has previously shown that, in vitro, CCX-CKR-mediated internalisation of 

CCL19 is increased upon exposure to the ligand, while CCR7-mediated internalisation is 

downregulated (Comerford et al., 2006). Additionally, work from our lab investigating D6 

and other receptors for pro-inflammatory chemokines has shown that pre-incubation with 

various chemokines can augment fluorescent chemokine internalisation in both cultured 

and primary cells (M. Clarke, C. Hansell, R. Nibbs, pers. comm.). Therefore, it was 

hypothesised that pre-incubation with CCL19 might allow detection of internalisation 

through CCX-CKR while also reducing background fluorescence caused by CCR7-

mediated internalisation. Both treatments led to an almost complete abolition of 

internalisation, particularly in T cells (Figure 3.7B and C), consistent with downregulation 

of CCR7 activity. Neither cell type displayed any detectable CCX-CKR-dependent CCL19 

internalisation.  

Innate-like B cells in the spleen include MZ B cells and B1 cells. These cells are rare in 

comparison to the relative abundance of classical follicular B cells found in most lymphoid 

tissues and in circulation. As described in the Introduction, they are believed to be involved 

in bridging the gap in immune defence between the innate and adaptive responses (Allman 

and Pillai, 2008). Recent work from our lab has shown that another atypical chemokine 

receptor, D6, is present on these cells, but not on classical follicular B cells (Hansell et al., 

2011b). Given the demonstrated expression of D6 and CXCR7 by these cells (Hansell et 

al., 2011b, Sierro et al., 2007), and the sensitivity of these cells to CCR7 deletion in other 

anatomical locations (Höpken et al., 2004), it was hypothesised that they might also 

express CCX-CKR to regulate migration in response to homeostatic ligands. However, 

when these cells were analysed using the internalisation assay, no CCX-CKR-dependent 

internalisation was detected (Figure 3.8). There were some differences in the level of 

CCL19 internalisation between the different cell types, i.e. MZ B cells (defined as CD19+ 

CD21+ CD23-/low) and B1 B cells (CD19+ CD5+ CD23-). These are likely due to varying 

levels of CCR7 activity.  

Taking these data together with the data for overall T and B cell populations in the spleen, 

it was concluded that CCX-CKR expression in the spleen is unlikely to be due to 

lymphocyte expression of this receptor. Therefore, other leukocyte subsets were 

investigated to try to define CCX-CKR-expressing populations in the spleen.  
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3.2.2.2 CCL19 tetramer internalisation by myeloid cells in the spleen 

The spleen contains a variety of myeloid cell subsets, including DCs, macrophages and 

neutrophils. Cells of the myeloid lineage are involved in both the innate and the adaptive 

arms of the immune response, with roles ranging from pathogen recognition and 

presentation of antigen to ingestion of whole organisms or cytotoxic activity against 

invading and/or diseased cells (Murphy et al., 2010). They are highly responsive to, and 

producers of, chemokines that allow localised orchestration of an effective and efficient 

immune response. As such, it was hypothesised that they might use an atypical chemokine 

receptor such as CCX-CKR to control their own immediate microenvironment, or to direct 

the migration and activation of other cells, through modulation of the chemokine 

environment within the tissue or in circulation.  

These cells were identified on the basis of their expression of various standard myeloid 

markers, including F4/80, CD11b and CD11c. While these markers are typically used to 

define distinct lineages (e.g. CD11c is used to define DCs, F4/80 is used to define 

macrophages), there is a high level of overlap in these markers (e.g. CD11b+ CD11c+ 

DCs), and variation in level of expression of each marker, as well as some debate among 

researchers about appropriate definitions for myeloid subsets. Therefore, in this section, 

cells are described by their marker expression profile to avoid inaccurate definitions (for 

gating, see Figure 3.9). Cells negative for all three markers are not included in this analysis 

as the vast majority of these are T and B cells, which have been analysed previously. These 

cells demonstrated expected internalisation profiles for lymphocytes (data not shown), 

indicating that the assay was technically successful and results were reproducible. 

Using the internalisation assay, no CCX-CKR dependent internalisation was detected by 

any of the cell types analysed (Figure 3.10). There was some clear inter-subset variation in 

the level of chemokine internalisation, possibly attributable to variation in CCR7 activity 

between different cell types.  

To investigate the possibility that these cells might upregulate CCX-CKR in the presence 

of high levels of CCL19, pre- and co-incubation experiments were also carried out as 

before. This should also, as before, disrupt CCR7-mediated internalisation, allowing easier 

detection of CCX-CKR activity, as well as providing information on the specificity of the 

CCL19 internalisation seen in the previous experiment (Figure 3.10). No CCX-CKR 

dependent internalisation was identified as a result (Figure 3.11). The level of knockdown 

of internalisation varied between cell types for both pre- and co-incubation, consistent with 
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the non-specific internalisation capacity of phagocytic cells such as macrophages. 

Internalisation of particles through pinocytosis can take place independent of receptor 

stimulation (Pratten and Lloyd, 1986, Rogers and Basu, 2005). This raises questions as to 

the level of requirement for CCR7 in this internalisation of fluorescent CCL19 tetramers 

on these cells. However, in the absence of biotinylated CCL19 (i.e. in StrAPC alone 

controls), fluorescence was decreased, suggesting a significant degree of specific 

internalisation, that is, the internalisation was chemokine dependent. These cells may 

therefore use a mechanism for clearance/internalisation of CCL19 that is both CCR7- and 

CCX-CKR-independent. Interestingly, CD11blow F4/80- (population C) cells from CCX-

CKR deficient spleen exhibited a small but statistically significant increase in 

internalisation of fluorescent CCL19 tetramers compared to WT (Figure 3.11, bottom left 

panel). Additionally, for some CCX-CKR deficient populations, specifically the CD11bhigh 

F4/80low (population B) and CD11blow F4/80- (population C) populations, there is a 

difference in the level of knock-down of internalisation observed between pre- and co-

incubation conditions (Figure 3.11). This is not seen in the corresponding WT samples. 

Similarly, internalisation of fluorescent CCL19 tetramers by CCX-CKR deficient 

CD11blow/med F4/80med (population D) cells is not significantly decreased by co-incubation 

with unlabelled CCL19, but pre-incubation with the chemokine does cause a drop in 

internalisation, whereas both treatments cause a decrease in internalisation in the WT 

population (Figure 3.11). The differences are slight, and may simply be a product of 

variation between samples. However, it is tempting to speculate that in the absence of 

CCX-CKR, CCR7 activity and/or interaction with its ligand is in some way altered on 

these cells.  

3.2.2.3 CCL19 tetramer internalisation by CD45- cells in the spleen 

Having demonstrated that CCX-CKR was not detectable on leukocyte subsets using the 

internalisation assay, focus turned to CD45- cells, which are mainly stromal cells. Stromal 

cells are the structural component of the tissue and are known to produce a variety of 

factors that influence cell viability and growth as well as acting as a network upon which 

leukocytes can migrate. They can produce chemokines to influence the migration of 

leukocytes, both during the initial development of lymphoid organs and during normal 

immune system function in the adult (Bajénoff et al., 2006, Cyster, 2000, Cyster et al., 

2000, van de Pavert and Mebius, 2010).  It was theorised that stromal cells might use 

CCX-CKR either as a transport or presentation mechanism, as has been suggested for 

DARC (Chaudhuri et al., 1997, Hansell et al., 2011a, Rot, 2005). Alternatively, CCX-CKR 
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on these cells could act as a scavenger to buffer chemokine levels and allow maintenance 

of an appropriate microenvironment within the tissue.  

As shown in Figure 3.12, CD45- cells do not detectably internalise fluorescent CCL19. 

CD45+ cells (leukocytes) internalisation was normal (indicated by dashed line on graph, 

Figure 3.12C), acting as an internal positive control to demonstrate the technical success of 

the assay. This was reproducible in repeated experiments (not shown). To determine the 

specificity of internalisation by WT and CCX-CKR deficient cells, cells were co-incubated 

with a 10-fold excess of unlabelled CCL19 (Figure 3.12). Pre-incubation with a 10-fold 

excess of CCL19 was also carried out (Figure 3.12), to determine whether the same 

desensitisation phenomenon seen in vitro could be detected ex vivo in stromal cells 

(Comerford et al., 2006). However, there is no increase in fluorescence observed in CD45- 

cells following either treatment.  

3.2.3 Searching for CCX-CKR expressing cells in inguinal lymph nodes 

Having demonstrated that leukocytes in the spleen did not use CCX-CKR to internalise 

fluorescent CCL19 tetramers, attention focussed on peripheral lymph nodes, specifically 

the inguinal lymph nodes (ILNs). Migration to and within these tissues is tightly regulated 

and relies heavily on CCR7 and its ligands (Förster et al., 2008), as described in the 

Introduction. T cells, B cells and DCs all rely on CCR7 and its ligands to allow them to 

patrol the body and efficiently and precisely respond to and resolve infections or other 

injuries (Förster et al., 2008). In both CCR7-deficient mice and in plt/plt mice, which lack 

CCL19 and lymphoid tissue CCL21 (but not peripheral/lymphatic CCL21), T and B cell 

populations are substantially disrupted (Förster et al., 2008). This is particularly true for T 

cells, which rely heavily on these ligands to direct them around the body and into and 

around lymphoid tissue (Nakano et al., 1997). Significantly, CCR7 is more important in 

leukocyte entry into lymph nodes than the spleen (Förster et al., 1999). It was therefore 

hypothesised that cells entering, residing within or exiting lymph nodes might use CCX-

CKR to finely regulate the response to CCL19 and CCL21. This might occur through 

expression on leukocytes, either to modulate their own response to chemokine or to 

influence the fate of cells in the vicinity. The receptor might also be used by stromal cells, 

either as a mechanism for presentation of chemokine or as a sink to create haptotactic or 

chemotactic gradients within the tissue to direct leukocytes to the appropriate location. A 

study by Heinzel and colleagues reported that CCX-CKR expression was found in lymph 

nodes but not in spleen, using a CCX-CKR-EGFP knock-in reporter mouse. The reporter 

was not detected in haematopoietic cells by FACS, although this method may not be 
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sensitive enough to detect low levels of receptor expression. Confocal imaging showed 

cells positive for CCX-CKR-EGFP expression in the subcapsular region of the lymph node 

(Heinzel et al., 2007). These cells were reported as stromal cells, although there are a 

number of cell types, both haematopoietic and stromal, that can be found in this region, 

including macrophages and lymphocytes (Heinzel et al., 2007, Phan et al., 2009). Analysis 

of leukocyte subsets and stromal cells was carried out using the fluorescent CCL19 

tetramer internalisation assay. 

3.2.3.1 CCL19 tetramer internalisation by cells in the inguinal lymph nodes 

The internalisation assay revealed no CCX-CKR dependent internalisation, although it did 

show that, as in the spleen, the level of internalisation by B cells is much lower than that of 

T cells (Figure 3.13), reflecting their different levels of reliance on CCR7 and its ligands. 

Notably, the extent to which the two cell types differ is more dramatic in the ILN than in 

the spleen (Figure 3.6). This reflects the greater dependence of T cells on CCR7 for 

entering the LN compared to the spleen, and supports the notion that the majority of 

internalisation detected is CCR7-dependent. It also revealed a small but statistically 

significant increase in fluorescence in CCX-CKR deficient B cells, as compared to WT 

(Figure 3.13).  

Taking into account these data, as well as the extensive characterisation carried out for 

splenic lymphocytes, it was considered unlikely that pre- or co-incubation experiments 

would reveal CCX-CKR expression on these leukocytes.  

As in the spleen, various myeloid cells were investigated in the ILN, and were identified 

based on staining for expression of CD11b, F4/80 and CD11c (Figure 3.14). Most 

populations did not show any CCX-CKR dependent CCL19 internalisation (Figure 3.14B 

and C). However, CD11bhigh F4/80- CD11c+ (A+) cells and CD11bint/high F4/80low CD11c+ 

(B+) cells from CCX-CKR deficient animals showed small but significant reductions in 

internalisation of fluorescent CCL19 tetramers compared to WT (Figure 3.14C), 

potentially identifying them as a source of CCX-CKR expression in the ILN. This 

possibility will be discussed in chapter 7. 

CD45- cells make up less than 1% of total live cells retrieved from ILNs, making analysis 

difficult and somewhat variable. However, as in the spleen, CD45- cells in the ILN showed 

no internalisation of fluorescent CCL19 tetramers (Figure 3.15), while CD45+ cells in the 

same experiment readily internalised the chemokine (see graph, Figure 3.15). Competition 
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and pre-incubation with unlabelled CCL19 did not reveal any CCX-CKR-dependent 

internalisation of fluorescent CCL19 tetramers (not shown).  

3.2.4 Investigating CCL19 tetramer internalisation by leukocytes in other 
compartments – analysis of whole blood and peritoneal lavage 

Leukocyte movement through other compartments is influenced by CCR7 and its ligands, 

including extravasation of leukocytes from the blood and entry and exit of leukocytes to 

and from the peritoneal cavity (Förster et al., 2008, Höpken et al., 2004, Höpken et al., 

2010). Additionally, peritoneal B1 cells have been shown to express D6, which appears to 

moderate responses to chemokines on these cells (Hansell et al., 2011b). Therefore, 

leukocytes from peripheral blood and peritoneal lavage from both WT and CCX-CKR 

deficient animals were analysed to determine whether CCX-CKR might be expressed there 

to modulate responses to its ligands.  

Lymphocytes were focussed on as the main leukocyte population in the blood. T and B 

cells, identified based on expression of CD5 or CD19 respectively, were shown to lack 

CCX-CKR-dependent internalisation of fluorescent chemokine (see Figure 3.16). As in 

spleen and ILN, peripheral blood T cells display significantly more internalisation of 

fluorescent CCL19 tetramers than B cells (Figure 3.16). 

Peritoneal lavages were carried out and the retrieved leukocytes were analysed for CCX-

CKR-dependent CCL19 internalisation. Cells were identified using size and granularity 

characteristics, as well as lineage markers. Populations identified included T cells (CD5+ 

CD11b- CD19-) and B cells (CD11blow/neg CD19+), as shown in Figure 3.17. B cells were 

separated into B1a, B1b and B1c cells as well as “classical” B2 cells, based on CD5 and 

CD11b expression, as shown in Figure 3.17 (Hansell et al., 2011b). The peritoneal cavity 

also contains a substantial macrophage population that makes up the majority of the large 

FSClow SSCmed-high population observed Figure 3.17. These cells were fractionated based on 

expression of CD11b. Conjugates (CD11b+ CD19+ cells and CD19+ CD5high cells) were 

excluded from the analysis, as were CD11bhigh CD19- cells in the “lymphocyte” gate, 

which were likely macrophages. None of the analysed populations showed any CCX-CKR 

dependent CCL19 internalisation (Figure 3.18). On the contrary, T cells from CCX-CKR 

deficient peritoneal cavity lavage showed a significant increase in internalisation. The 

histogram shown in Figure 3.18 shows a loss of a CCL19low population of T cells from the 

CCX-CKR deficient peritoneal cavity. Notably, in contrast to spleen, ILN and peripheral 

blood, WT peritoneal cavity T and B cells displayed the same overall level of 
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internalisation of fluorescent CCL19 tetramers. Thus it would appear that CCR7 levels are 

similar between T and B cells in the spleen. 

3.3 Attempts to identify cells expressing CCX-CKR mRNA in the 
spleen by cell fractionation 

Having extensively characterised the internalisation profile of leukocytes as well as CD45- 

cells in a variety of lymphoid tissues, in circulation and in the peritoneal cavity, a small 

proportion of myeloid cells in the LN displayed CCX-CKR-dependent internalisation of 

fluorescent CCL19 tetramers. No other cells, from LN, spleen, PerC or blood demonstrated 

likely CCX-CKR expression, although many other cells readily internalised the 

chemokine, most likely through CCR7. This did not correspond to the QPCR data that 

showed easily detectable and comparable expression of CCX-CKR mRNA in various 

tissues, including those tested in the internalisation assays. Therefore, a more molecular 

approach was decided upon, whereby cells were isolated from tissues, sorted by FACS and 

analysed by QPCR for expression of CCX-CKR mRNA.  

Single cell suspensions were prepared as for internalisation assays. They were then stained 

with antibodies against various lineage markers and sorted using a BD FACSAria (Figure 

3.19). The initial group of antibodies was chosen to allow isolation of CD45- cells (e.g. 

stromal cells), T cells (CD45+ CD3+ cells), B cells (CD45+ CD19+ cells) and other, mainly 

myeloid cells (CD45+ CD3- CD19- cells). These cells were then washed and pelleted. RNA 

was extracted using an RNeasy Mini kit (see Materials and Methods).  

Extracting RNA from purified CD45- cells proved difficult, and not enough good quality 

RNA was retrieved to allow subsequent QPCR analysis. This may be because the isolation 

and sorting procedure causes a high level of death in these cells. When cells were counted 

after sorting, less than 10% of cells were found to be alive based on Trypan Blue exclusion 

(data not shown). This contrasted with each CD45+ population isolated, where at least 50% 

of cells were viable after sorting (data not shown). This issue, in combination with low 

yields of CD45- cells (less than 3% of total; Figure 3.19) meant these cells were not 

analysed by QPCR.  

Early attempts to isolate RNA from the healthier CD45+ populations were unsuccessful. 

However, some optimisation of the protocol lead to successful isolation of enough RNA to 

analyse RNA from 1-2 samples per cell type, allowing a pilot study of CCX-CKR 

expression in these cells (Figure 3.20). Whole spleen, which had already been shown to 
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contain readily detectable CCX-CKR mRNA expression (Figure 3.2), was used as a 

positive control. Comparing this to the isolates of CD45+ populations, CD19- CD3- cells 

were negative, expression in T cells was at the limit of detectability and expression in B 

cells was very low. This level of expression was approximately 40-fold lower than that 

seen in whole spleen, suggesting that CD45+ cells are not responsible for the majority of 

expression seen in this tissue.  

Bearing in mind the difficulty in purifying viable CD45- cells, it was decided that an 

analysis of the isolation procedure be carried out to ensure that CCX-CKR mRNA 

expression was still detected in disrupted spleen. Samples were taken at various stages of 

the isolation procedure (see Table 3.1) to try to identify at which point, if any, expression 

was lost. This was to allow modification, if possible, of the purification procedure to allow 

optimal detection of CCX-CKR expression. As seen in Figure 3.21, expression drops 

dramatically once the tissue is disrupted, in both the filtered fraction, which is mainly 

leukocytes, and in the fraction that does not pass through the filter. Expression is 

undetectable in the majority of other fractions. Expression analysis of CCR7 was included 

as a control, demonstrating that whatever effect of disruption is causing the decrease in 

detectable CCX-CKR mRNA expression does not similarly affect this related receptor. On 

the contrary, expression of this receptor increased with progression through the isolation 

procedure. This may be due to an increased proportion of leukocytes in later samples, or 

increased activation of leukocytes in these samples. However, this would need to be 

repeated for verification. 

These data, while based on individual samples and requiring repetition to be verified, 

provide a possible explanation for the difficulties experienced in detecting CCX-CKR in 

sorted cells. It may also provide an explanation for the lack of CCX-CKR activity detected 

in internalisation assays, since the time between initial disruption of each tissue and its 

incubation with fluorescent chemokine is at least 4-5 hours in most cases. Depending on 

how CCX-CKR is regulated at the protein level, this might provide a long enough window 

for down-regulation of the receptor through disruption of mRNA expression. However, it 

should also be noted that peritoneal cavity lavage cells, which are largely leukocytic and 

easily and rapidly isolated, do not express any detectable CCX-CKR mRNA in this assay 

(data not shown), suggesting that, at least at this site, leukocytes do not express this 

receptor.  
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3.4 Summary  

1. CCX-CKR mRNA is expressed in spleen, inguinal and mesenteric lymph nodes, 

thymus, Peyer’s patches, small intestine and skin, but not liver or peritoneal wall.  

2. Binding and internalisation of fluorescent CCL19 tetramers by splenocytes is 

readily detectable by FACS and is competable by excess unlabelled CCR7 ligands, 

CCL19 and CCL21, but not by excess unlabelled CCL3. 

3. Primary splenocytes do not exhibit CCX-CKR-dependent internalisation of 

fluorescent CCL19 tetramers.  

4. Primary splenic T cells internalise almost twice as much fluorescent CCL19 

tetramer as primary splenic B cells. Internalisation by both cell types is disrupted 

by pre- or co-incubation with excess unlabelled CCL19.  

5. Primary splenic B1 B cells internalise significantly more fluorescent CCL19 

tetramer than primary splenic MZ B cells.  

6. Primary splenic myeloid cells internalise fluorescent CCL19 tetramers to varying 

degrees and with varied specificity. CD11blow F4/80- cells from CCX-CKR 

deficient spleens internalise more of the tetramers than those from WT spleens, and 

in both cases internalisation is disrupted by pre- and co-incubation with excess 

unlabelled CCL19.  

7. Preincubation of CD11bhigh F4/80low and CD11blow F4/80- cells from CCX-CKR 

deficient spleens with excess unlabelled CCL19 leads to decreased internalisation 

of fluorescent CCL19 tetramers compared with co-incubation of the same cell 

subsets with excess unlabelled CCL19. This is not seen with the same subsets from 

WT spleens.  

8. CD45- cells from spleen and ILN do not internalise fluorescent CCL19 tetramers.  

9. CD11bhigh F4/80- CD11c+ cells and CD11bint/high F4/80low CD11c+ cells from CCX-

CKR deficient ILNs display decreased internalisation of fluorescent CCL19 

tetramers compared to the same cells from WT ILNs. This reduction is not 

consistently observed in any other cell type in the CCX-CKR deficient ILN.  
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10. Primary ILN T cells exhibit approximately four times as much fluorescence 

following incubation with fluorescent CCL19 tetramers as primary ILN B cells. B 

cells from CCX-CKR deficient ILNs internalise slightly more fluorescent CCL19 

tetramers than those from WT ILNs.  

11. Primary T cells from peripheral blood exhibit approximately twice as much 

fluorescence following incubation with fluorescent CCL19 tetramers as primary B 

cells from peripheral blood. Neither cell type exhibits CCX-CKR-dependent 

internalisation of the tetramer.  

12. Primary peritoneal cavity T cells from WT animals internalise the same amount of 

fluorescent CCL19 tetramer as primary WT B cells from the peritoneal cavity. 

Overall, peritoneal cavity T cells from CCX-CKR deficient animals internalise 

more fluorescent CCL19 tetramer than those from WT animals, possibly due to loss 

of a CCL19low population of T cells from the CCX-CKR deficient peritoneal cavity. 

Peritoneal B cells from CCX-CKR deficient animals internalise the same level of 

fluorescent CCL19 tetramer as those from WT. 

13. Splenic expression of CCX-CKR mRNA decreases upon disruption of the spleen. 

These findings suggest subtle effects of CCX-CKR deletion on CCR7 activity (i.e. CCR7-

dependent internalisation of fluorescent CCL19 tetramers) and suggest ILN CD11bhigh 

F4/80- CD11c+ cells and CD11bint/high F4/80low CD11c+ cells as possible sites of CCX-CKR 

expression.  
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Figure 3.1: Detection of CCX-CKR mRNA expression using a Taqman®  Gene Expression 
Assay. (A) Alignment map showing the region containing the primers used in the Taqman® Gene 
Expression Assay for Ccrl1 (CCX-CKR) from Applied Biosystems (specific primer sequences are 
not provided by the company). The Ccrl1 gene is shown anti-sense to the Acad1 gene. Ccrl1 exons 
(ex) are shown as green boxes. The open reading frame (ORF) is indicated by a blue box. Purple 
arrows indicate the region that contains the target sequence amplified by the assay. Adapted from 
Applied Biosystems website. (B) RNA was isolated from whole thymus (Thy) from one wild-type 
(WT) and one CCX-CKR deficient (KO) mouse. Levels of CCX-CKR mRNA were determined by 
QPCR using the Gene Expression Assay described above. A Gene Expression Assay for CCR7 
was also used, to verify the presence of other intact mRNA in the KO sample. GAPDH was used as 
an endogenous control to calculate relative quantities (RQ) of mRNA. For both CCX-CKR and 
CCR7, the WT sample was given an RQ value of 1. (C) The size of the amplicon (146 bp) 
produced using the CCX-CKR assay was verified by using cDNA from spleen and lymph node (LN) 
samples as templates and the assay as the primer mix in a standard PCR.  
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Figure 3.2: Detection of CCX-CKR mRNA expression in whole tissue. RNA was isolated from 
tissues from resting WT animals. Equal amounts of RNA per sample were used to synthesise 
cDNA, which formed the template for a QPCR reaction using a Taqman Gene Expression Assay 
for Ccrl1, with GAPDH expression used as an endogenous control. One of the thymus samples 
was given an RQ value of 1, with CCX-CKR expression in all other tissues expressed relative to 
this. Green dashed line indicates approximate RQ value of KO thymus sample (data from Figure 
3.1B). The data shown represent one of two experiments showing the same pattern of expression. 
n = 3 except for ILN samples, n = 2. Data were analysed by 1-way ANOVA with Bonferroni post-
test, comparing all samples to Thymus, **p<0.01.  
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Figure 3.3: Designing an assay to detect CCL19 receptors using fluorescent CCL19 
tetramers. (A) Tetrameric fluorescent CCL19 is formed by incubating biotinylated CCL19 with 
fluorescently-labelled streptavidin at room temperature in darkness. The labelled chemokine 
tetramers are then incubated with a single cell suspension from the tissue of choice at either 4°C 
(binding/surface staining) or 37°C (internalisation/activity). Samples are subsequently stained with 
fluorescently labelled antibodies to cell surface markers and analysed using flow cytometry. In 
theory, comparison of cells from wild-type (WT) and CCX-CKR deficient (KO) animals enables 
identification of the receptor responsible for internalisation of the chemokine. (B) Example 
histograms show expected possible profiles in the case of some, all or none of the CCL19 
internalisation being CCX-CKR dependent. All experiments used allophycocyanin (APC)-labelled 
streptavidin (StrAPC) except where otherwise specified. StrAPC alone was used as a control for 
background fluorescence caused by chemokine-independent internalisation or binding of the 
labelled streptavidin. 
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Figure 3.4: Optimisation of internalisation assay conditions. (A) Total splenocytes were 
exposed to a range of biotinylated CCL19/streptavidin-PE mixes, where the concentration of both 
biotinylated chemokine (CCL19) and PE-labelled streptavidin (Str) was varied. They were 
incubated with the fluorescent chemokine for between 5 and 45 minutes before being analysed by 
flow cytometry. Live cells were gated based on size and granularity characteristics. Bars show 
mean fluorescence of duplicate samples, gMFI = geometric mean fluorescence intensity. (B) 
Representative histograms showing cells exposed to increasing levels of fluorescent chemokine for 
45 minutes (left panel) or to 100 ng CCL19 plus 3000 ng PE-labelled streptavidin (StrPE) for 
increasing lengths of time (right panel). Similar results were obtained using APC-labelled 
streptavidin.  
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Figure 3.5: Binding and internalisation of fluorescent CCL19 tetramers is significantly 
reduced in the presence of CCR7 ligands. (A) Cells isolated from WT spleens were incubated 
with fluorescent CCL19 tetramers (BioCCL19/StrAPC) for 30 minutes at either 4°C (binding; left 
panels) or 37°C (internalisation; right panels), in the presence or absence of a 10-20 fold excess of 
unlabelled chemokine. Figure shows representative histograms of binding or internalisation in the 
presence or absence of indicated unlabelled chemokines. (B) Quantitative representation of data 
from (A). Data are mean of three biological replicates. Data were analysed using 1-way ANOVA 
with Bonferroni post-test. Stars directly above columns indicate differences relative to uncompeted 
samples (i.e. “BioCCL19/StrAPC”), stars with black lines indicate differences between indicated 
samples. *** = p<0.001, **p<0.01, * = p<0.05, ns = not significant. gMFI = geometric mean 
fluorescence intensity.  
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Figure 3.6: T and B cells in the spleen do not exhibit CCX-CKR-dependent internalisation of 
fluorescent CCL19 tetramers. (A) Gating strategy – dead cells were excluded at the acquisition 
stage based on size and granularity. Cells are defined as T cells or B cells based on antibody 
staining for CD5 and CD19 respectively. (B) Representative histograms - wild-type (WT) and CCX-
CKR deficient (KO) cells were incubated with fluorescent CCL19 tetramers (BioCCL19 + StrAPC; 
WT = green line, KO = purple line) or StrAPC alone (WT = black line, KO = grey fill) for 30 minutes, 
stained with fluorescent antibodies for lineage markers and then analysed for internalisation by 
FACS. (C) Quantitative representation of pooled data from two experiments. Data are mean of 
values for six biological replicates, n=3 per experiment. Data were analysed by 2-way ANOVA with 
Bonferroni post-test, ***p<0.001. Error bars represent standard deviation from the mean. gMFI = 
geometric mean fluorescence intensity.  
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Figure 3.7: Pre-incubation or co-incubation with unlabelled CCL19 does not lead to 
detectable CCX-CKR-dependent internalisation of fluorescent CCL19 tetramers in splenic T 
and B cells. (A) The internalisation of fluorescent CCL19 tetramers by WT and KO cells with or 
without co-incubation with a 10-fold excess of unlabelled CCL19. (B) The internalisation of 
fluorescent CCL19 tetramers by WT and KO cells with or without pre-incubation with a 10-fold 
excess of unlabelled CCL19. In representative histograms in (A) and (B), dark green (WT) and dark 
purple (KO) lines show internalisation in the absence of unlabelled CCL19 (“internalisation”). Black 
(WT) and grey (KO) lines show internalisation of StrAPC alone. In (A), light blue (WT) and pink 
(KO) lines show internalisation in the presence of excess unlabelled CCL19 (“competed”). In (B), 
dark blue (WT) and red (KO) lines show internalisation following pre-incubation with unlabelled 
CCL19 (“preincubated”). (C) Quantitative representation of data from (A) and (B). For each 
condition, n=3 except for StrAPC alone controls, n=1. gMFI = geometric mean fluorescence 
intensity. Data were analysed by 2-way ANOVA with Bonferroni post-test, ***p<0.001. Stars 
indicate comparison to Internalisation samples (WT samples compared to “WT – internalisation”, 
KO samples compared to “KO – internalisation”). No differences were observed between WT and 
KO samples for each condition.  
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Figure 3.8: B1 cells and marginal zone B cells in the spleen do not exhibit CCX-CKR-
dependent internalisation of CCL19. (A) Gating strategy – dead cells were excluded at the 
acquisition stage based on size and granularity. Cells are defined as B cells based on CD19 
positivity. “PE” stain in representative gating plot is anti-CD5 PE staining, “B cells” gate was the 
same for plots with anti-CD21 PE and anti-CD19 PerCP (MZ B cell staining). B1 cells or marginal 
zone (MZ) B cells were defined based on staining for CD5 and CD23 (B1 cells; CD5+ CD23-) or 
CD21 and CD23 (MZ B cells; CD21+ CD23-). (B) Representative histograms - wild-type (WT) and 
CCX-CKR deficient (KO) cells were incubated with fluorescent CCL19 (BioCCL19 + StrAPC; WT = 
green line, KO = purple line) or StrAPC alone (WT = black line, KO = grey fill) for 30 minutes, 
stained with fluorescent antibodies for lineage markers and then analysed for internalisation by 
FACS. (C) Quantitative representation of data from (B). Data are mean of values for three 
biological replicates. Error bars represent standard deviation from the mean. Data were analysed 
by 2-way ANOVA with Bonferroni post-test, ***p<0.001. gMFI = geometric mean fluorescence 
intensity.  
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Figure 3.9: Gating strategy to identify myeloid cells in the spleen. Splenocytes were incubated 
with or without fluorescent chemokine tetramers at 37°C and then stained with antibodies 
recognising CD11b, F4/80 and CD11c. Live cells, identified based on forward and side scatter 
properties (and ViaProbe staining, where applicable), were then defined based on expression of 
these surface molecules as described above. Where experiments did not include antibodies 
recognising CD11c (see text and figure legends), cells were identified as in the first panel 
(populations A-E). 
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Figure 3.10: Myeloid cells in the spleen do not exhibit CCX-CKR-dependent CCL19 
internalisation. Cell subsets (A/1-D) were gated as shown in Figure 3.9, with live cells identified 
by forward and side scatter characteristics. (A) Representative histograms - wild-type (WT) and 
CCX-CKR deficient (KO) cells were incubated with fluorescent CCL19 (BioCCL19 + StrAPC; WT = 
green line, KO = purple line) or StrAPC alone (WT = black line, KO = grey fill) for 30 minutes, 
stained with fluorescent antibodies for lineage markers and then analysed for internalisation by 
FACS. (B) Quantitative representation including data from (A). Data are mean of values for 
triplicate samples. Error bars represent standard deviation from the mean. gMFI = geometric mean 
fluorescence intensity.  
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Figure 3.11: Pre-incubation or co-incubation with unlabelled CCL19 does not lead to 
detectable CCX-CKR-dependent internalisation of fluorescent CCL19 in splenic myeloid 
cells. Cells were incubated with fluorescent CCL19 as described in Materials and Methods, 
followed by antibody staining for lineage markers associated with myeloid cells. Cells were gated 
based on CD11b and F4/80 staining – see Figure 3.9. For each condition, n=3 except for StrAPC 
alone controls, n=1. gMFI = geometric mean fluorescence intensity. Data were analysed by 2-way 
ANOVA with Bonferroni post-test, ***p<0.001, **p<0.01, *p<0.05, ns = not significant. Error bars 
represent standard deviation from the mean. Stars directly above bars indicate comparison to 
Internalisation samples (WT samples compared to WT internalisation, KO samples compared to 
KO internalisation), stars with black lines indicate differences between indicated samples.  
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Figure 3.12: CD45+ and CD45- cells in the spleen do not exhibit CCX-CKR-dependent 
internalisation of CCL19 with or without pre- or co-incubation with excess unlabelled 
CCL19. (A) Gating strategy – live cells are defined based on size and ViaProbe negativity. Live 
cells are defined as CD45+ and CD45- based on antibody staining for CD45. (B) The internalisation 
of fluorescent CCL19 by WT and KO cells with or without co-incubation (left panel) or pre-
incubation (right panel) with a 10-fold excess of unlabelled CCL19. In representative histograms, 
dark green (WT) and dark purple (KO) lines show internalisation in the absence of unlabelled 
CCL19 (“internalisation”). Black (WT) and grey (KO) lines show internalisation of StrAPC alone. 
Pale blue (WT) and pink (KO) lines show internalisation in the presence of excess unlabelled 
CCL19 (“competed”). Dark blue (WT) and red (KO) lines show internalisation following pre-
incubation with unlabelled CCL19 (“preincubated”). (C) Quantitative representation of data from 
(B). For each condition, n=3 except for StrAPC alone controls, n=1. gMFI = geometric mean 
fluorescence intensity. Dashed green line indicates average gMFI of CD45+ cells in the same 
experiment (n = 3).  
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Figure 3.13: T and B cells in the inguinal lymph nodes do not exhibit CCX-CKR-dependent 
internalisation of CCL19. (A) Gating strategy – dead cells were excluded at the acquisition stage 
based on size and granularity. Cells are defined as T cells or B cells based on antibody staining for 
CD5 and CD19 respectively. (B) Representative histograms - wild-type (WT) and CCX-CKR 

deficient (KO) cells were incubated with fluorescent CCL19 (BioCCL19 + StrAPC; WT = green line, 
KO = purple line) or StrAPC alone (WT = black line, KO = grey fill) for 30 minutes, stained with 
fluorescent antibodies for lineage markers and then analysed for internalisation by FACS. (C) 
Quantitative representation of data from (B), n=3 per sample. Error bars represent standard 
deviation from the mean. gMFI = geometric mean fluorescence intensity. Data were analysed by 2-
way ANOVA with Bonferroni post-test, ***p<0.001, *p<0.05. 
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Figure 3.14: Myeloid cells within the inguinal lymph node exhibit some CCX-CKR dependent 
internalisation of CCL19. (A) Gating strategy. Live cells were defined based on size and 
granularity at the acquisition stage. Cells were further defined based on their CD11b, CD11c and 
F4/80 staining as shown. (B) Representative histograms for populations defined based on CD11b 
and F4/80 - wild-type (WT) and CCX-CKR deficient (KO) cells were incubated with fluorescent 
CCL19 (BioCCL19 + StrAPC; WT = green line, KO = purple line) or StrAPC alone (WT = black line, 
KO = grey fill) for 30 minutes, stained with fluorescent antibodies for lineage markers and then 
analysed for internalisation by FACS. (C) Quantitative representation of data from (B), with further 
division of cells based on CD11c staining (as in (A), right panel). Error bars represent standard 
deviation from the mean, n=3 per sample. gMFI = geometric mean fluorescence intensity. Data 
were analysed by 2-way ANOVA and Bonferroni post-test, ** = p<0.01, * = p<0.05. 
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Figure 3.15: CD45- cells in the inguinal lymph node do not exhibit CCX-CKR-dependent 
internalisation of CCL19. (A) Gating strategy – live cells are defined based on size and ViaProbe 
negativity. Live cells are defined as non-leukocytes/stromal cells (CD45-) based on antibody 
staining for the common leukocyte antigen CD45. (B) Representative histogram - wild-type (WT) 
and CCX-CKR deficient (KO) cells were incubated with fluorescent CCL19 (BioCCL19 + StrAPC; 
WT = green line, KO = purple line) or StrAPC alone (WT = black line, KO = grey fill) for 30 minutes, 
stained with fluorescent antibodies for lineage markers and then analysed for internalisation by flow 
cytometry. (C) Quantitative representation of data from (B). WT internalisation samples, n=4; KO 
internalisation samples, n=3. Error bars represent standard deviation from the mean. Data were 
analysed by unpaired t-test. gMFI = geometric mean fluorescence intensity. Dashed green line 
indicates mean gMFI of WT CD45+ cells from the same experiment. 

  

!"

#"

$"

CD45-

Ungated

Forward Scatter

V
ia

P
ro

b
e

live

live

CD45 FITC

#
 C

e
ll
s

CD45+CD45-

BioCCL19 + StrAPC

%
 o

f 
M

a
x

Internalisation of fluorescent CCL19 
by CD45- cells in the ILN

KO - StrAPC alone

WT - StrAPC alone

KO2 - internalisation

WT - internalisation

Internalisation of fluorescent CCL19

by CD45- cells in the ILN

WT KO
0

2

4

6

8

10

12

14
WT

KO



139 

 

 

Figure 3.16: T and B cells in the blood do not exhibit CCX-CKR-dependent internalisation of 
CCL19. (A) Gating strategy – dead cells were excluded at the acquisition stage based on size and 
granularity. Cells are defined as T cells or B cells based on antibody staining for CD5 and CD19 
respectively. (B) Representative histograms - wild-type (WT) and CCX-CKR deficient (KO) cells 
were incubated with fluorescent CCL19 (BioCCL19 + StrAPC; WT = green line, KO = purple line) 
or StrAPC alone (WT = black line, KO = grey fill) for 30 minutes, stained with fluorescent antibodies 
for lineage markers and then analysed for internalisation by FACS. (C) Quantitative representation 
of data from (B), n=3 per group. Data were analysed by 2-way ANOVA with Bonferroni post-test, 
***p<0.001. Error bars represent standard deviation from the mean. gMFI = geometric mean 
fluorescence intensity. 
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Figure 3.17: Gating of peritoneal cavity lavage cells. Cells were defined as macrophages or 
lymphocytes based on size and granularity (top left panel). Macrophages were then defined as 
either CD11b+ or CD11b- (bottom left panel). Lymphocytes were categorised based on their CD11b 
and CD19 staining (top middle panel), and T cells were defined as CD5+ CD11b- CD19- (bottom 
middle panel. Doublets of B and T cells were excluded from the B cell gate (top right panel) and B 
cells (CD5neg/intCD11bneg/intCD19+) were defined as B1a, B1b, B1c or B2 cells based on their CD5 
and CD11b staining.  
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Figure 3.18: Cells isolated from peritoneal lavage do not exhibit CCX-CKR-dependent 
internalisation of fluorescent CCL19.  Cells were gated as per Figure 3.17. Wild-type (WT) and 
CCX-CKR deficient (KO) cells were incubated with fluorescent CCL19 (BioCCL19 + StrAPC; WT = 
green line, KO = purple line) or StrAPC alone (WT = black line, KO = grey fill) for 30 minutes, 
stained with fluorescent antibodies for lineage markers and then analysed for internalisation by flow 
cytometry. (A) Quantitative representation of data from four pooled experiments, n=3 per 
experiment. Error bars represent standard deviation from the mean. gMFI = geometric mean 
fluorescence intensity. Data were analysed by two-way ANOVA with Bonferroni post-test,  
*** = p<0.001, ns = not significant. (B) Representative histograms of T cell internalisation of CCL19.  
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Figure 3.19: Gating strategy for sorting cells from the spleen. Cells were isolated from 
spleens, stained with antibodies against various lineage markers (CD45, CD3 and CD19) and 
sorted using a BD FACSAria. Cell populations were defined as CD45- or CD45+. The CD45+ 
fraction was further subdivided into CD19+ CD3-, CD19- CD3+ or CD19- CD3- based on surface 
expression of these markers as shown. Each population was collected in separate tubes, pooled, 
washed and pelleted, before RNA was extracted.  
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Figure 3.20: Expression of CCX-CKR mRNA by sorted CD45+ cells in the spleen.  Whole 
spleen was used as a control. Cells were isolated, antibody-stained and sorted as described in 
Materials and Methods. RNA was extracted and used to make cDNA, which was analysed by 
QPCR. B cells are CD45+ CD19+ CD3-, T cells are CD45+ CD19- CD3+. ND = not detected. n = 1 
except for B cells, n = 2.  
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Table 3.1: Stages of spleen disruption. Whole spleens were harvested into ice-cold complete 
media. Half of one spleen was mashed through nitex, and the isolate that passed through the nitex 
collected (sample 1) as well as the capsule etc that remained on the nitex (sample 2). All other 
spleen samples were minced and incubated in HBSS containing 1 mg/ml collagenase D for 30 
minutes. A sample was taken after this (sample 3) and the rest passed through a 50 µm cell 
strainer (BD). Capsule and cells remaining on the filter were collected (sample 4), as was a sample 
of the cells that had passed through (sample 5). Of the cells remaining that had passed through the 
strainer, one sample was incubated with FACS buffer on ice for 20 minutes, to mimic antibody 
staining (sample 6). The rest of the fraction was incubated with red blood cell lysis buffer for 1 
minute to remove erythrocytes. A sample was taken after this treatment (sample 7) and the rest of 
the cells were incubated with FACS buffer on ice for 20 minutes (sample 8). RNA was extracted 
from each sample and used to make cDNA, which was subsequently analysed by QPCR.  
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Figure 3.21: Expression of CCX-CKR and CCR7 mRNA in disrupted spleen. Samples were 
taken at various stages of spleen disruption (see Table 3.1). RNA was isolated and used to 
synthesise cDNA, which was analysed by QPCR using Taqman assays for CCX-CKR (A) and 
CCR7 (B). Whole spleen (whole) was used as a positive control, and expression levels in each 
sample are expressed relative to whole spleen, which is given an RQ value of 1. Water was used 
as a negative/no template control (NTC). n = 1.  
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4 Effect of CCX-CKR deletion on expression of its 

ligands and related receptors 

Experiments detailed in the previous chapter have provided insight into which tissues and 

cell types do, or do not, express CCX-CKR at the mRNA level, although they present only 

limited indications as to which cells express the protein. They have also provided some 

interesting information about CCR7 and how its “activity” varies between tissues as well 

as cell types, verifying data already published about this receptor and providing further 

information about its expression and activity throughout the immune system. Additionally, 

internalisation experiments in the previous section have shown that CCX-CKR influences 

internalisation of fluorescent CCL19 tetramers by peritoneal T cells, probably through 

CCR7. This may be through affecting expression at the mRNA and/or protein level or 

through altering the activity of the receptor.  

In this chapter, expression of CCR7, as well as CCR9, at the mRNA level is analysed, in 

an attempt to clarify how deletion of CCX-CKR impacts these receptors. Additionally, the 

effect of deletion of CCX-CKR on the abundance of some of its ligands in various tissues 

is investigated. This was done to test the hypothesis that CCX-CKR is acting as a 

chemokine scavenger in vivo. This has been investigated at the protein level, but mRNA 

for these chemokines has also been quantified in tissues from WT and CCX-CKR deficient 

mice to control for possible differences in chemokine production between these strains. 

4.1 Expression of CCR7 and CCR9 mRNA in the CCX-CKR 

deficient mouse 

At the time these experiments were performed, information about phenotypic differences 

in the CCX-CKR deficient animal was scarce, with only subtle alterations in cellularity 

reported in some tissues (Heinzel et al., 2007). It was hypothesised that other related 

receptors, such as CCR7 and CCR9, might be altered to compensate for the deletion. This 

has been shown to occur for other chemokine/receptor deletion mutants (see Introduction, 

section 1.7). Indications that CCR7 expression and/or activity are altered on some cells in 

the absence of CCX-CKR were provided in the previous section, where T cell 

internalisation of fluorescent CCL19 tetramers increased in the CCX-CKR deficient ILN 

compared to WT (see chapter 3). It is also possible that, in the absence of CCX-CKR, 

migration of leukocytes is disrupted, possibly through altered chemokine levels or 
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chemokine receptor expression. Again, data from the peritoneal cavity suggests that T cell 

migration to/from the peritoneal cavity may be aberrant in the absence of CCX-CKR, with 

loss of a CCL19low population from CCX-CKR deficient peritoneal cavity lavage compared 

to WT. Therefore, CCR7 and CCR9 expression was investigated by QPCR in whole tissue 

to assess whether deletion of CCX-CKR, which shares these receptors’ ligands, affected 

these receptors at the level of mRNA expression.  

CCR7 mRNA is expressed in lymphoid tissues such as spleen, lymph nodes and thymus. 

CCX-CKR mRNA is also expressed in these tissues (Figure 3.2), as well as in some non-

lymphoid “barrier” tissues, i.e. skin and small intestine. It was hypothesised that CCX-

CKR may be involved in the regulation of CCR7, possibly through indirect effects, e.g by 

altering extracellular chemokine levels. Deletion of CCX-CKR might therefore affect 

CCR7 mRNA levels in these tissues. CCR7 mRNA expression in WT and CCX-CKR 

deficient tissues was measured by QPCR. In Figure 4.1, each tissue is calibrated to the 

same WT spleen sample, except for ILNs, which were analysed in a separate experiment 

and are calibrated to a WT lymph node sample. Interestingly, CCR7 mRNA was found to 

be significantly increased in the spleen in the absence of CCX-CKR (Figure 4.1). 

Conversely, CCR7 expression was reduced in the ILN in the absence of CCX-CKR, but 

unchanged in the mesenteric lymph nodes (Figure 4.1). Expression in the thymus and 

Peyer’s patches was also unaffected (Figure 4.1). The expression pattern observed, where 

CCR7 mRNA expression is highest in MLN and spleen and lower in thymus and Peyer’s 

patches, is likely due to the composition of these tissues. T cells, which typically express 

high levels of CCR7, constitute a high proportion of cells in the spleen and MLN, whereas 

Peyer’s patches contain a relatively low proportion of T cells and have more B cells, which 

typically have lower CCR7 in comparison to T cells (see Introduction, section 1.7). Clean 

dissection of Peyer’s patches is technically demanding, thus epithelium and lamina propria 

from the small intestine could potentially be present in the samples analysed, diluting the 

number of CCR7+ cells in the sample. In the thymus, while CCR7 is expressed on some 

thymocytes the vast majority are CCR7-negative (Worbs and Förster, 2007). 

The effect of CCX-CKR deletion on CCR7 expression at the mRNA level was also 

examined in skin and in small intestine (from which Peyer’s patches had been removed) 

(Figure 4.2). As described in the Introduction (section 1.7), CCR7 is expressed by DCs in 

the skin and small intestine to facilitate trafficking to the draining lymph node under both 

resting and inflamed conditions (Förster et al., 2008, Gunn et al., 1999, Ohl et al., 2004). 

Interestingly, CCX-CKR is expressed in resting skin (see chapter 3, Figure 3.2), correlating 

with a report that homing of DCs from the skin of resting CCX-CKR deficient mice to the 
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lymph node is impaired (Heinzel et al., 2007). Levels of CCX-CKR expression in the small 

intestine are similar to those of the lymphoid tissues tested (Figure 3.2). In skin and small 

intestine, the level of CCR7 detected was very low in comparison to spleen (RQ > 0.02 for 

each sample where WT spleen RQ = 1, not shown). Therefore, samples were calibrated to 

a WT skin sample, because using a spleen sample as a calibrator prohibited accurate 

analysis of potential variation between WT and CCX-CKR deficient tissues. Samples from 

three WT and three CCX-CKR deficient mice were analysed, with no significant 

differences in CCR7 mRNA expression observed (Figure 4.2). 

CCR9 mRNA expression was also examined by QPCR in these tissues, and in liver, which 

contains pDCs that can express CCR9 (Figure 4.3 and Figure 4.4). Naïve CD8+ T cells and 

pDCs express CCR9, as described in the Introduction, and gut-homing T cells are 

“programmed” in the MLN and Peyer’s patches to migrate to the small intestine through 

induction of CCR9. The expression pattern in WT tissues was consistent with previous 

reports, with relatively low levels in most tissues but high levels of expression detected in 

thymus (Carramolino et al., 2001). Most other tissues displayed comparable levels of 

expression, although some small intestine and Peyer’s patch samples exhibited very high 

expression of CCR9 mRNA. The reason for this is unclear. Other genes were not affected 

in this way for the same samples, suggesting the RNA was reliable. Expression of CCR9 in 

skin and liver was extremely low, as expected (Kunkel et al., 2000, Papadakis et al., 2000). 

There was no variation in CCR9 expression levels in CCX-CKR deficient tissues 

compared to WT. 

These data suggest that CCX-CKR deletion alters the expression of CCR7, but not CCR9, 

in some tissues, possibly through disrupted migration of leukocytes. This theory will be 

investigated in the next chapter.  

4.1.1 Expression of CCR7 by peritoneal cavity lavage cells is increased in 
the absence of CCX-CKR 

In light of observed increases in internalisation of fluorescent CCL19 tetramers by CCX-

CKR deficient peritoneal T cells compared to WT (see chapter 3, Figure 3.18), CCR7 

mRNA expression in cell lysates from peritoneal cavity lavage was also examined by 

QPCR. Cells were harvested from lavage samples by centrifugation and lysed for RNA 

extraction. cDNA synthesis and QPCR was carried out as for whole tissue samples (see 

Materials and Methods).  Interestingly, CCR7 mRNA was significantly increased in 

peritoneal lavage cells when CCX-CKR was absent, p = 0.0199 (Figure 4.5). CCR9 
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expression was also analysed in these samples. Expression was very low, with no CCR9 

mRNA detectable in several samples assayed (no amplification was detected above 

negative control levels; not shown), and there was no difference in expression between WT 

and CCX-CKR deficient cells with detectable CCR9 mRNA (Figure 4.6). 

These data demonstrate that deletion of CCX-CKR leads to increased relative expression 

of CCR7 mRNA by peritoneal lavage cells, which may be due to loss of a T cell 

population that exhibit low internalisation of fluorescent CCL19 tetramers (see chapter 3). 

CCX-CKR mRNA is not expressed by WT peritoneal lavage cells (not shown). 

Experiments described in the next section explored the impact of CCX-CKR deletion on 

the cellularity of this body cavity. 

4.2 The impact of CCX-CKR deletion on ligand expression and 
availability 

Previous work from our lab showed that, in vitro, exogenous CCX-CKR efficiently and 

constitutively internalises CCL19 into transfected cell lines, supporting the hypothesis that 

the receptor could act as a scavenger in vivo and modulate chemokine levels or distribution 

within tissues (Comerford et al., 2006). To investigate whether CCX-CKR could be 

playing a scavenger role in vivo, the protein levels of CCL19 and CCL21 were analysed by 

ELISA in various tissues. An important caveat of these assays was that, in solid tissue 

samples, they would detect total, rather than just “bioavailable”, chemokine (i.e. the 

extracellular chemokine available for scavenging), as the samples were homogenised 

during preparation. Therefore, significant changes in bioavailable chemokine level through 

CCX-CKR sequestration could be masked due to high levels of intracellular chemokine 

being released during the processing of samples. This is not the case for serum and 

peritoneal samples, where chemokines were measured following removal of cells by 

centrifugation. 

The mRNA expression of a CCR7 ligand, CCL19, and the CCR9 ligand, CCL25, were also 

investigated using QPCR in whole tissue. Work from our lab, in collaboration with Prof. 

A. Mowat (University of Glasgow), indicated that commercially-available murine CCL25 

ELISA kits readily reported high CCL25 protein levels in tissues from CCL25-deficient 

mice, thus rendering this reagent unreliable. Therefore, this assay was not carried out in 

this project. Similarly, a Taqman QPCR assay for murine CCL21 was not commercially 

available during this project and time constraints prevented development and optimisation 

of a custom-made assay.  
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4.2.1 Dysregulation of CCL19 protein in CCX-CKR deficient mice 

CCL19 has been shown to be efficiently internalised by CCX-CKR in vitro (Comerford et 

al., 2006). Here, spleen and ILNs from WT and CCX-CKR deficient mice were analysed 

(Figure 4.7), as well as blood and peritoneal lavage (Figure 4.8) and a range of other 

tissues, both lymphoid (Figure 4.7) and non-lymphoid (Figure 4.9). Although CCL19 is 

mainly found in lymphoid tissues, some reports have indicated expression of CCL19 

mRNA at a number of non-lymphoid sites (Alt et al., 2002, Yoshida et al., 1997). Tissues, 

serum and peritoneal lavage samples were prepared as described in Materials and Methods.  

CCL19 was found to be undetectable in WT serum and peritoneal cavity lavage (Figure 

4.8). Peritoneal cavity total protein concentrations were low (0.5-0.71 mg/ml), with only 

one CCX-CKR deficient peritoneal cavity lavage sample having any detectable CCL19, 

and this was at a very low level (less than 0.6pg/mg total protein). Further to this, CCL19 

was also undetectable in WT serum. Interestingly, however, all serum samples from CCX-

CKR deficient mice had significantly elevated CCL19 levels, with more than 5 pg of 

CCL19 detectable per mg total protein. CCL19 was also found to be elevated in ILNs of 

CCX-CKR deficient mice (Figure 4.7), although levels of the chemokine were unchanged 

between WT and CCX-CKR deficient mesenteric lymph nodes, thymus and spleen. 

Intriguingly, CCL19, which was unexpectedly high in several non-lymphoid tissues, was 

also elevated in the brain and kidney of CCX-CKR deficient mice (Figure 4.9), while 

levels in skin and heart samples were unchanged (Figure 4.9).  

These data show that there are elevated levels of CCL19 in serum, ILNs, brain and kidney 

of CCX-CKR deficient mice, with CCL19 levels unchanged in a variety of other tissues. 

This supports the hypothesis that CCX-CKR can act as a scavenger of chemokine in vivo 

to limit the abundance of CCL19 in some tissues.  

4.2.2 Subtle alterations in CCL21 protein levels in CCX-CKR deficient mice 

I next investigated the effect of CCX-CKR deletion on CCL21 protein levels in these 

tissues. CCL21was undetectable in both serum and peritoneal cavity lavage of WT and 

CCX-CKR deficient mice (Figure 4.10), and there were no differences in the levels of 

CCL21 in either spleen or mesenteric lymph nodes (Figure 4.11). CCL21 levels also 

remained unchanged in kidney, skin, brain and heart homogenates prepared from WT and 

CCX-CKR deficient mice (Figure 4.12). Intriguingly, CCL21 levels in the CCX-CKR 

deficient thymus were increased compared to WT, suggesting a role for CCX-CKR in 
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regulating CCL21 abundance in this tissue (Figure 4.11). In contrast, CCL21 was slightly, 

but significantly, reduced in ILNs of CCX-CKR deficient mice (Figure 4.11). While this 

indicates dysregulation of chemokine in the absence of CCX-CKR, it is difficult to 

reconcile this result with the hypothesised role of CCX-CKR as a scavenger. It is possible 

that, while acting as a scavenger in some settings, CCX-CKR has a number of functions in 

the regulation of chemokine in lymphoid tissues.  

It is interesting to note that CCL21 was much more abundant in lymphoid tissue than 

CCL19, with approximately 40-50 fold more CCL21 in LNs, similar to previous reports 

(Luther et al., 2002), and almost 200-fold more in thymus than CCL19. There was also 

approximately 10 times more CCL21 than CCL19 in spleen. By contrast, although CCL21 

was consistently more abundant in non-lymphoid tissues, the differences were generally 

not as pronounced. This and other findings presented above are discussed in chapter 7.  

4.2.3 Expression of CCL19 and CCL25 mRNA 

The increase in ligand seen in a number of disparate tissues supports the idea that, as 

indicated by in vitro data (Comerford et al., 2006), CCX-CKR may act as a scavenger in a 

variety of locations and situations, with deletion of the receptor leading to an accumulation 

of chemokine. However, chemokine levels could also be affected at the level of mRNA 

expression, possibly through dysregulation of signalling events controlling chemokine 

production. To test this hypothesis, the expression of CCL19 and CCL25 mRNA was 

investigated in a number of WT and CCX-CKR deficient tissues.  

CCL19 protein expression has been shown in various tissues (section 4.2.1 above) and in 

previous work, and mRNA expression has been demonstrated for various tissues also (Alt 

et al., 2002, Baekkevold et al., 2001, Bleul and Boehm, 2000, Cyster, 2000, Förster et al., 

2008, Luther et al., 2000, Yoshida et al., 1997). There were no differences in expression of 

CCL19 in any of the tissues analysed (Figure 4.13 and Figure 4.14). Additionally, mRNA 

for CCL19 could not be detected in peritoneal lavage cells (not shown). CCX-CKR 

deletion did not affect expression of CCL25 at the mRNA level in various solid tissues 

(Figure 4.15 and Figure 4.16). Thus, any observed changes in CCL19 protein abundance in 

CCX-CKR deficient mice cannot be attributed to changes in mRNA levels.  
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4.3 Summary  

In this chapter I investigated the effect of CCX-CKR deletion on the expression of related 

receptors and ligands, using QPCR and ELISA to investigate mRNA and protein levels 

respectively. My hypothesis was that, in the absence of CCX-CKR, the expression of 

CCR7, CCR9 and/or their ligands would be disrupted. This was supported by evidence 

from internalisation studies (described in chapter 3) that showed that peritoneal cavity T 

cells from CCX-CKR deficient mice internalised more fluorescent CCL19 tetramers than 

their WT counterparts. It also built on in vitro studies from our group that indicated a 

scavenging role for CCX-CKR on transfected cells (Comerford et al., 2006). The main 

findings presented in this chapter are as follows:  

1. CCR7 mRNA expression is increased in CCX-CKR deficient whole spleen and 

peritoneal cavity lavage cells compared to WT, but decreased in CCX-CKR 

deficient ILNs. It is unchanged in thymus, MLN and Peyer’s patches, skin and 

small intestine. CCR9 mRNA expression is unaffected by the absence of CCX-

CKR.  

2. CCL19 protein is increased in CCX-CKR deficient serum, ILN, kidney and brain 

compared to WT; unchanged in spleen, MLN, thymus, skin and heart samples; and 

undetectable in peritoneal cavity lavage.  

3. CCL21 protein is decreased in CCX-CKR deficient ILN and increased in CCX-

CKR deficient thymus compared to WT. It is undetectable in serum and peritoneal 

cavity lavage and unaffected by CCX-CKR deletion in all other tissues 

investigated.  

4. CCL19 and CCL25 mRNA expression is the same in CCX-CKR deficient and WT 

mice in all tissues investigated.  

These data indicate a role for CCX-CKR in regulation of chemokine levels and chemokine 

receptor expression in various tissues. The implications of these observations are discussed 

in subsequent chapters, and in detail in chapter 7.  
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Figure 4.1: Expression of CCR7 mRNA in wild-type and CCX-CKR deficient lymph nodes, 
spleen, thymus and Peyer’s patches. Homogenates of each tissue were analysed by QPCR to 
determine the level of CCR7 mRNA present in the presence (WT) or absence (KO) of CCX-CKR. 
Each sample was calibrated to either a wild-type (WT) spleen or WT ILN (LN) sample as indicated. 
Lines represent the mean, black filled squares represent WT, grey filled squares represent KO. 
Data were analysed by unpaired t-test, * = p<0.04, ** = p<0.004, n=4-6 per group, RQ = relative 
quantity.  
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Figure 4.2: Expression of CCR7 mRNA in wild-type and CCX-CKR deficient skin and small 
intestine. Homogenates of each tissue were analysed by QPCR to determine the level of CCR7 
mRNA present in the presence or absence of CCX-CKR. Each sample was calibrated to a wild-
type (WT) skin sample. Lines represent the mean, black filled squares represent WT, grey filled 
squares represent CCX-CKR deficient (KO). n=3 per group, RQ = relative quantity.  
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Figure 4.3: Expression of CCR9 mRNA in wild-type and CCX-CKR deficient lymph nodes, 
spleen and thymus. Homogenates of each tissue were analysed by QPCR to determine the level 
of CCR9 mRNA present in the presence or absence of CCX-CKR. Each sample was calibrated to a 
wild-type (WT) spleen sample. Lines represent the mean, black filled squares represent WT, grey 
filled squares represent CCX-CKR deficient (KO). Data were analysed by unpaired t-test, n=4-6 per 
group, RQ = relative quantity. 
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Figure 4.4: Expression of CCR9 mRNA in wild-type and CCX-CKR deficient skin, liver, 
Peyer’s patches and small intestine. Homogenates of each tissue were analysed by QPCR to 
determine the level of CCR9 mRNA present in the presence or absence of CCX-CKR. Each 
sample was calibrated to a wild-type (WT) spleen sample (see Figure 4.3). Lines represent the 
mean, black filled squares represent WT, grey filled squares represent CCX-CKR deficient (KO). 
Data were analysed by unpaired t-test, n=5-6 per group, RQ = relative quantity. 
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Figure 4.5: Expression of CCR7 mRNA in wild-type and CCX-CKR deficient peritoneal lavage 
cells. Peritoneal cells were analysed by QPCR to determine the level of CCR7 mRNA present in 
the presence or absence of CCX-CKR. Each sample was calibrated to a wild-type (WT) sample. 
Lines represent the mean, black filled squares represent WT, grey filled squares represent CCX-
CKR deficient (KO). Data were analysed by unpaired t-test, *p<0.02, n=4-5 per group, RQ = 
relative quantity.
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Figure 4.6: Expression of CCR9 mRNA in wild-type and CCX-CKR deficient peritoneal lavage 
cells. Peritoneal cells were analysed by QPCR to determine the level of CCR9 mRNA present in 
the presence or absence of CCX-CKR. Each sample was calibrated to a wild-type (WT) sample. 
Lines represent the mean, black filled squares represent WT, grey filled squares represent CCX-
CKR deficient (KO). n=4-5 per group, RQ = relative quantity. 
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Figure 4.7: CCL19 protein levels in wild-type and CCX-CKR deficient lymph nodes, spleen 
and thymus. Wild-type (WT) and CCX-CKR deficient (KO) tissues were snap-frozen in liquid 
nitrogen, homogenised and supernatants recovered as described in Materials and Methods. 
CCL19 protein levels were determined by ELISA and total protein levels were determined by BCA 
assay. Data were analysed using unpaired t-tests, n = 4, * = p<0.05.  
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Figure 4.8: CCL19 protein in wild-type and CCX-CKR deficient serum and peritoneal cavity 
lavage. Wild-type (WT; black filled circles) and CCX-CKR deficient (KO; grey filled circles) 
peritoneal cavity lavage was retrieved, cells pelleted and supernatant harvested as described in 
Materials and Methods. Whole blood was harvested from the posterior vena cava, and serum 
isolated as described in Materials and Methods. CCL19 protein levels were determined by ELISA 
and total protein levels were determined by BCA assay. Data were analysed using unpaired t-tests, 
n = 4, *** = p≤0.0002, ND = not detected. All peritoneal cavity samples but one had undetectable 
CCL19, making statistical analysis unfeasible. 
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Figure 4.9: CCL19 protein levels in wild-type and CCX-CKR deficient kidney, skin, brain and 
heart. Wild-type (WT) and CCX-CKR deficient (KO) tissues were snap-frozen in liquid nitrogen, 
homogenised and supernatants recovered as described in Materials and Methods. CCL19 protein 
levels were determined by ELISA and total protein levels were determined by BCA assay. Data 
were analysed using unpaired t-tests, n = 4, * = p<0.05, ** = p<0.004.  
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Figure 4.10 CCL21 protein in wild-type and CCX-CKR deficient serum and peritoneal cavity 
lavage. Wild-type (WT) and CCX-CKR deficient (KO) serum and cells from peritoneal cavity lavage 
were isolated as before. CCL21 protein levels were determined by ELISA and total protein levels 
were determined by BCA assay. Statistical analysis was not feasible as CCL21 was not detected in 
any samples tested, n = 4, ND = not detected.  
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Figure 4.11: CCL21 protein levels in wild-type and CCX-CKR deficient lymph nodes, spleen 
and thymus. Wild-type (WT) and CCX-CKR deficient (KO) tissues were snap-frozen in liquid 
nitrogen, homogenised and supernatants recovered as described in Materials and Methods. 
CCL21 protein levels were determined by ELISA and total protein levels were determined by BCA 
assay. Data were analysed using unpaired t-tests, n = 3-4, * = p<0.05, ** = p<0.01. 
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Figure 4.12: CCL21 protein levels in wild-type and CCX-CKR deficient kidney, skin, brain and 
heart. Wild-type (WT) and CCX-CKR deficient (KO) tissues were snap-frozen in liquid nitrogen, 
homogenised and supernatants recovered as described in Materials and Methods. CCL21 protein 
levels were determined by ELISA and total protein levels were determined by BCA assay. Data 
were analysed using unpaired t-tests, n = 4. 
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Figure 4.13: Expression of CCL19 mRNA in wild-type and CCX-CKR deficient lymph nodes, 
spleen and thymus. Homogenates of each tissue were analysed by QPCR to determine the level 
of CCL19 mRNA present in the presence or absence of CCX-CKR. Each tissue group was 
calibrated to a wild-type (WT) sample. Lines represent the mean, black filled squares represent 
WT, grey filled squares represent CCX-CKR deficient (KO). n=5-6 per group, RQ = relative 
quantity.  
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Figure 4.14: Expression of CCL19 mRNA in wild-type and CCX-CKR deficient skin, liver, 
Peyer’s patches and small intestine. Homogenates of each tissue were analysed by QPCR to 
determine the level of CCL19 mRNA present in the presence or absence of CCX-CKR. Each tissue 
group was calibrated to a wild-type (WT) sample. Lines represent the mean, black filled squares 
represent WT, grey filled squares represent CCX-CKR deficient (KO). n=5-6 per group, RQ = 
relative quantity. 
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Figure 4.15: Expression of CCL25 mRNA in wild-type and CCX-CKR deficient lymph nodes, 
spleen and thymus. Homogenates of each tissue were analysed by QPCR to determine the level 
of CCL25 mRNA present in the presence or absence of CCX-CKR. Each tissue group was 
calibrated to a wild-type (WT) sample. Lines represent the mean, black filled squares represent 
WT, grey filled squares represent CCX-CKR deficient (KO). n=4-6 per group, RQ = relative 
quantity. 
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Figure 4.16: Expression of CCL25 mRNA in wild-type and CCX-CKR deficient skin, liver, 
Peyer’s patches and small intestine. Homogenates of each tissue were analysed by QPCR to 
determine the level of CCL25 mRNA present in the presence or absence of CCX-CKR. Each tissue 
group was calibrated to a wild-type (WT) sample. Lines represent the mean, black filled squares 
represent WT, grey filled squares represent CCX-CKR deficient (KO). n=4-6 per group, RQ = 
relative quantity. 
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5 Effect of CCX-CKR deletion on cellularity, cell 
distribution and microarchitecture of resting 
secondary lymphoid tissues 

As described in the Introduction, CCR7 is involved in the development and seeding of 

lymphoid tissues; the recirculation of leukocytes and homing to lymph nodes; and the 

positioning of cells within lymphoid tissues. Although CCX-CKR activity was barely 

detectable on cells from spleen and lymph nodes using the fluorescent CCL19 tetramer 

internalisation assay, these tissues clearly express CCX-CKR mRNA. Moreover, deletion 

of CCX-CKR alters the expression of CCR7 in spleen and ILNs, and by peritoneal cavity 

lavage cells, as well as changing the levels of CCL19 and CCL21 in various tissues and, 

notably, causing a significant increase in serum CCL19 levels. Therefore, it was 

hypothesised that deleting CCX-CKR might alter the cellularity and/or structure of 

immune compartments, either by affecting the ability of cells to enter or exit the site, or by 

changing the positioning of cells within tissues.  

To assess cellularity, cells were isolated as described in Materials and Methods and stained 

with fluorescent antibodies against various lineage markers to allow identification of 

different cell types. The abundance of a particular cell type was analysed both as a 

proportion of the total live cells recovered from each site and, where possible, in absolute 

numbers of retrieved cells. The total number of cells retrieved from WT and CCX-CKR 

deficient tissues were also compared to ascertain whether there was any evidence of hypo- 

or hypercellularity in the absence of CCX-CKR. Spleen, ILN, blood and peritoneal cavity 

were all investigated, because all displayed alterations in CCR7 mRNA expression and/or 

chemokine protein levels.  

While flow cytometry provides some valuable insights into the effect of CCX-CKR 

deletion on the cellularity of various immune compartments, it cannot elucidate the role the 

receptor may play in positioning of cells within tissues. Additionally, some tissues are 

extremely difficult to examine using flow cytometry – although some attempts were made 

to analyse the cellularity of skin by this method, this process is technically demanding with 

a high level of cell death, and the results were not encouraging. Therefore, a histological 

comparison of WT and CCX-CKR deficient tissues was also carried out and preliminary 

results from spleen (in this chapter) and skin (chapter 6) are presented. Other tissues, such 
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as lymph node, thymus and small intestine are under investigation in our lab and 

elsewhere.  

5.1 Cellularity in the spleen 

The total number of cells retrieved from WT and CCX-CKR deficient spleens was not 

significantly different (Figure 5.1). The first cell types analysed were B and T cells. 

Lymphocytes are the main cell type retrieved from the spleen (see chapter 3) and are 

known both to express CCR7 and to respond to its ligands (see Introduction). Since CCR7 

mRNA expression is increased in the spleen (see previous chapter), it was hypothesised 

that this might affect the migration of these cells into or out of the spleen. However, T and 

B cells in the CCX-CKR deficient spleen were present in the same proportions and 

absolute numbers as in the WT spleen (Figure 5.2). This was also true for B1 cells and 

marginal zone B cells in this tissue (Figure 5.3). Myeloid cells were then analysed to 

determine the effect of CCX-CKR deletion on these cells in the spleen. None of the cell 

types analysed showed any difference in proportion or absolute number between WT and 

CCX-CKR deficient spleen (Figure 5.4).  

5.2 Microarchitecture of the CCX-CKR deficient spleen 

The data presented above suggest that CCX-CKR deletion does not significantly influence 

cell abundance in the spleen, although they do not provide any information on the 

positioning of cells within the tissue. Therefore, histological analysis of WT and CCX-

CKR deficient spleens was carried out to provide some insight into whether CCX-CKR 

could influence the microarchitecture of this tissue. As detailed in the Introduction, the 

CCX-CKR ligands CCL19 and CCL21 are crucially important for correct positioning of 

leukocytes within lymphoid tissues, including the spleen. While previous experiments 

showed no difference in overall splenic levels of these chemokines, differences in their 

presentation or availability due to deletion of CCX-CKR cannot be ruled out at this stage.  

Initial experiments, using haemotoxylin and eosin (H&E) staining, were designed to reveal 

any gross abnormalities in splenic structure in the CCX-CKR deficient mouse. Frozen 

spleen sections were stained with H&E to reveal the general architecture of the spleen, 

with white pulp areas visible as darker, more densely populated areas surrounded by 

lighter, less cell-rich red pulp regions (Figure 5.5). Using Axiovision software, the area of 

white pulp present in single fields of view at 100x magnification (i.e. using a 10x 

objective) was measured from the spleens of four individuals from both groups (WT and 
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CCX-CKR deficient). Representative images are shown in Figure 5.5, with graphical 

representation of white pulp area shown below. These data indicate that there is no 

difference in the general architecture of the spleen in the absence of CCX-CKR.  

Following on from this, immunofluorescent staining was carried out to investigate whether 

there was a defect in the positioning of specific types of cells. Frozen spleen sections were 

stained with fluorescently-labelled antibodies against IgM and CD3, to identify B and T 

cells respectively, with sections from at least 4 individuals per group analysed per 

experiment in two separate experiments. Figure 5.6 shows a representative image from 

both a WT and a CCX-CKR deficient spleen. B cell localisation appeared intact, as did T 

cell localisation, with no obvious defects observed. Bright red cells in the red pulp are 

likely IgM+ plasma cells. This supports the flow cytometry data shown above in suggesting 

that CCX-CKR deletion does not lead to gross abnormalities in the organisation and 

structure of the spleen. 

5.3 Cellularity in the inguinal lymph nodes 

ILNs showed decreased CCR7 mRNA expression in the absence of CCX-CKR, as well as 

altered chemokine protein levels (see previous section). Interestingly, they also had 

increased total cell numbers compared with WT mice (Figure 5.7). Therefore it was 

theorised that deletion of CCX-CKR could alter the cellularity of the lymph nodes, either 

by affecting the ability of cells to migrate to or reside within the nodes. ILN myeloid cells 

demonstrated CCX-CKR-dependent internalisation of fluorescent CCL19 tetramers (see 

chapter 3). Additionally, Heinzel and colleagues reported defects in DC homing from the 

skin to the draining lymph nodes. Therefore, these cells were investigated to determine 

whether there were any obvious defects in their proportions or numbers in the ILN. Most 

myeloid cell populations in the ILNs were unaffected by deletion of CCX-CKR (Figure 

5.8). However, there was a significant reduction in the proportion of CD11blow F4/80- 

CD11c+ cells (gated as in Figure 3.14, chapter 3) but this did not coincide with any change 

in absolute numbers of these cells in the tissue (Figure 5.8). These data contrast with 

reported effects of CCX-CKR deletion on steady-state homing of DCs to the draining 

lymph node from skin, where CD11c+ MHC IIhigh DCs were reduced in the lymph nodes of 

CCX-CKR deficient mice. However, this may be due to variations between experiments – 

Heinzel and colleagues investigated the effect of CCX-CKR deletion on CD11c+ MHC 

IIhigh populations in samples pooled from axial, brachial and ILNs, while my work 

examined ILNs alone and did not include MHC II staining (Heinzel et al., 2007). Given the 



172 

low proportion of ILN cells that are of myeloid lineage, it is unlikely that this compartment 

is responsible for the increase in total cellularity observed. 

As B and T cells are the main populations in ILNs, it was considered likely that the 

increased cellularity observed was due to alterations in one or both subsets. B cells were 

not significantly affected by deletion of CCX-CKR (Figure 5.9), either proportionally or in 

absolute numbers. The proportion of T cells was slightly increased in CCX-CKR deficient 

ILNs compared to WT, as a percentage of total cells (Figure 5.9). However, absolute 

numbers of T cells were consistent between WT and CCX-CKR deficient ILNs (Figure 

5.9). It is important to note that, due to the level of variation in total cellularity between 

samples, differences in lymphocyte numbers between individuals may be slight, and 

differences between strains might only become apparent with analysis of a higher number 

of individuals. These data were generated from only three individuals from each group, 

whereas total cellularity data was generated from many more animals.  

5.4 Deletion of CCX-CKR increases lymphocyte abundance in 

the peritoneal cavity 

CCR7 expression was increased in some peritoneal cavity lavage cells retrieved from 

CCX-CKR deficient mice compared with WT. This was apparent in both the fluorescent 

CCL19 tetramer internalisation assay (see chapter 3, Figure 3.18) and at the mRNA level 

by QPCR (see chapter 4, Figure 4.5). Given the reported function of this receptor in 

regulating the migration of leukocytes to and from the peritoneal cavity (Höpken et al., 

2004, Höpken et al., 2010), it was hypothesised that the cellularity of the cavity might be 

altered in the CCX-CKR deficient animal. Indeed, as in the ILNs, the total cell numbers 

retrieved from the peritoneal cavity were significantly elevated in the absence of CCX-

CKR (Figure 5.10). When leukocyte subsets were specifically investigated, it was 

discovered that there was a significant increase in the proportion of B1b and B2 B cells and 

T cells in the CCX-CKR deficient peritoneal cavity compared to WT (Figure 5.11). This 

corresponded to an increase in the absolute number of each of these cell types retrieved 

from the cavity, and in fact B1a and B1c B cell numbers were also significantly increased 

(Figure 5.11).  

The peritoneal cavity also contains a large population of FSClow SSCmed-high cells, mainly 

macrophages, which can be divided into CD11b+ and CD11b- populations (see chapter 3, 

Figure 3.17). These populations were proportionally decreased in the CCX-CKR deficient 

peritoneal cavity, although absolute numbers remained consistent with WT (Figure 5.12). 
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This suggests the decrease in proportion of these cells reflects the overall increase of other 

cells, i.e. B and T cell populations, rather than a direct effect of CCX-CKR deletion on the 

macrophage population. These data suggest that CCX-CKR specifically regulates the 

abundance of lymphocytes in the peritoneal cavity.  

5.5 Summary  

Previous experiments have shown that CCX-CKR deficient animals have altered 

chemokine and chemokine receptor expression in a number of tissues. Therefore, 

experiments in this chapter were designed to assess the impact of deletion of CCX-CKR on 

cellularity in lymphoid compartments. Cellularity and gross microarchitecture of the CCX-

CKR deficient spleen was no different from WT, and lymphocyte proportions in peripheral 

blood were similarly unchanged (data not shown). Interestingly, total cellularity in both 

ILNs and peritoneal cavity was increased in the absence of the receptor. The specific cell 

population affected in the ILN has yet to be uncovered. However, in the peritoneal cavity, 

there is a clear role for CCX-CKR in regulating the lymphocyte compartment. All major 

lymphocyte subsets present (i.e. B1a, B1b, B1c and B2 B cells and T cells) were 

overrepresented. The molecular basis for this phenotype is unclear. Neither CCX-CKR 

mRNA nor CCL19 tetramer internalisation mediated by this receptor were detected on 

peritoneal lavage cells, and CCX-CKR was not expressed by the lining of the peritoneal 

cavity (Figure 3.2). Possible explanations for, and implications of, this phenotype are 

discussed in Chapter 7.  
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Figure 5.1: Total cell numbers retrieved from wild-type and CCX-CKR deficient spleens. Cells 
were isolated from wild-type (WT) and CCX-CKR deficient (KO)  spleens as described in Materials 
and Methods and counted using a haemocytometer. Data are pooled from numerous experiments, 
n ≥ 3 per group per experiment, line represents the mean.  
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Figure 5.2: B and T cell cellularity in the spleen. Cells from wild-type (WT) and CCX-CKR 

deficient (KO) spleens were gated as in Figure 3.6. B cells are defined as CD19+ CD5low/-. T cells 
are defined as CD5+ CD19low/-. Graphs show B and T cells as both a proportion of total cells 
isolated from the spleen (top panels) and as absolute numbers of cells isolated. Error bars indicate 
standard deviation, n = 3. Data were analysed by unpaired t-tests, with no significant differences 
observed. 
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Figure 5.3: Proportions and numbers of B1 and marginal zone B cells in the spleen. Cells 
from wild-type (WT) and CCX-CKR deficient (KO) spleens were gated as in Figure 3.8. B1 B cells 
were defined as CD19+ CD23- CD5low, while marginal zone (MZ) B cells were defined as CD19+ 
CD23- CD21low/-. Graphs show B1 and MZ B cells as both a proportion of total cells isolated from 
the spleen (top panels) and as absolute numbers of cells isolated. Error bars indicate standard 
deviation, n = 3. Data were analysed by unpaired t-tests, with no significant differences observed. 
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Figure 5.4: Proportions and numbers of myeloid cells in the spleen. Cells from wild-type (WT) 
and CCX-CKR deficient (KO) spleens were gated as in Figure 3.9 and defined as detailed in the 
table (bottom panel). Graphs show myeloid cells as both a proportion of total cells isolated from the 
spleen (top panel) and as absolute numbers of cells isolated (middle panel). Error bars indicate 
standard deviation, n = 3. Data were analysed by unpaired t-tests, with no significant differences 
observed. 
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Figure 5.5: Area of white pulp in wild-type and CCX-CKR deficient spleens. Paraffin-
embedded sections from wild-type (WT) and CCX-CKR deficient (KO) spleens were prepared and 
stained with haemotoxylin and eosin as described in Materials and Methods. Slides were visualised 
using an AxioStar Plus microscope with 10x objective. Analysis was carried out using Axiovision 
software. Graph (bottom panel) shows area of white-pulp (indicated in images, top panel) for WT 
and KO sections. Line represents the mean, n = 4-5. Data were analysed by unpaired t-test, with 
no significant differences observed.  
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Figure 5.6: Immunofluorescent staining of B and T cells in wild-type and CCX-CKR deficient 
spleen. Sections from wild-type (WT) and CCX-CKR deficient (KO) spleens were processed as 
described in Materials and Methods. Images are representative of at least 4 replicates per group 
per experiment, and of 2 separate experiments. Sections were stained with anti-mouse IgM AF555 
(red; to label B cells) and anti-mouse CD3 FITC (green; to label T cells). Sections were visualised 
using a Zeiss LSM 510 Confocal microscope with 20x objective and analysed using Carl Zeiss AIM 
software. White line indicates scale.  
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Figure 5.7: Total cell numbers retrieved from wild-type and CCX-CKR deficient inguinal 
lymph nodes. Cells were isolated from wild-type (WT) and CCX-CKR deficient (KO) ILNs as 
described in Materials and Methods and counted using a haemocytometer. Data are pooled from 
numerous experiments, n ≥ 3 per group per experiment, line represents the mean. Data were 
analysed using an unpaired t-test, **p=0.0016.  
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Figure 5.8: Proportions and numbers of myeloid cells in the inguinal lymph nodes. Cells from 
wild-type (WT) and CCX-CKR deficient (KO) ILNs were gated as in Figure 3.14 and defined as in 
the table shown (bottom panel). Graphs show myeloid cells as both a proportion of total cells 
isolated from the ILNs (top panel) and as absolute numbers of cells isolated (middle panel). Error 
bars indicate standard deviation, n = 3. Data were analysed by unpaired t-tests, *p<0.02. 
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Figure 5.9: B and T cell cellularity in the inguinal lymph nodes. Cells from wild-type (WT) and 
CCX-CKR deficient (KO) ILNs were gated as in Figure 3.13. B cells are defined as CD19+ CD5low/-. 
T cells are defined as CD5+ CD19-. Graphs show B and T cells as both a proportion of total cells 
isolated from the ILNs (top panels) and as absolute numbers of cells isolated. Error bars indicate 
standard deviation, n = 3. Data were analysed by unpaired t-tests, *p<0.035. 
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Figure 5.10: Total cell numbers retrieved from wild-type and CCX-CKR deficient peritoneal 
cavity lavage. Cells were isolated from wild-type (WT) and CCX-CKR deficient (KO) peritoneal 
cavity as described in Materials and Methods and counted using a haemocytometer. Data are 
pooled from numerous experiments, n ≥ 3 per group per experiment, line represents the mean. 
Data were analysed using an unpaired t-test, **p=0.0044. 
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Figure 5.11: B and T cell cellularity in the peritoneal cavity. Cells from wild-type (WT) and 
CCX-CKR deficient (KO) peritoneal cavity were gated as in Figure 3.17. B1a cells are defined as 
CD19+ CD5low CD11b+. B1b cells are defined as CD19+ CD5- CD11b+. B1c cells are defined as 
CD19+ CD5low CD11b-. B2 cells are defined as CD19+ CD5- CD11b-. T cells are defined as CD5+ 
CD11b- CD19-. Graphs show B1a, B1b, B1c, B2 and T cells as both a proportion of total cells 
isolated from the peritoneal cavity (top panels) and as absolute numbers of cells isolated. Error 
bars indicate standard deviation, n = 12, pooled from 4 separate experiments where n = 3 per 
experiment. Data were analysed by unpaired t-tests (top panel B1a, B1b, B2 and T populations; 
B1b population in bottom panel) or Mann-Whitney test (top panel, B1c population; bottom panel, 
B1a, B1c, B2 and T populations), based on results from D’Agstino and Pearson omnibus normality 
test, stars indicate p values as shown.  
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Figure 5.12: Macrophage cellularity in the peritoneal cavity. Cells from wild-type (WT) and 
CCX-CKR deficient (KO) peritoneal cavity were gated as in Figure 3.17. Graphs show myeloid cell 
subsets as both a proportion of total cells isolated from the peritoneal cavity (top panels) and as 
absolute numbers of cells isolated. . Error bars indicate standard deviation, n = 12, pooled from 4 
separate experiments where n = 3 per experiment. Data were analysed by unpaired t-tests except 
bottom right panel, analysed by Mann-Whitney test. 
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6 Effect of CCX-CKR deletion on the inflammatory 

response 

Previous chapters have shown that CCX-CKR mRNA can be detected in a range of tissues, 

although identifying the cells responsible for this expression has proven very difficult (see 

chapter 3). In addition, deletion of the receptor has been shown to affect expression of 

CCR7 mRNA in various tissues and lead to the dysregulation of chemokine protein levels 

(see chapter 4). Of particular interest are the skin-draining ILNs. CCX-CKR mRNA was 

readily detectable in both skin and ILNs of resting WT mice (see chapter 3).  Expression of 

CCR7 and its ligands were affected by CCX-CKR deletion, and there was a small increase 

in cell number observed in CCX-CKR deficient ILNs. Data from Heinzel and colleagues 

also suggested that these lymph nodes might contain altered numbers of DCs (Heinzel et 

al., 2007), although this was not apparent in my analysis of mice housed in our animal 

facility. As described in the Introduction, CCR7 and its ligands are intimately linked to 

leukocyte homing to and within lymph nodes, under both resting and inflamed conditions. 

Upon induction of cutaneous inflammation in WT mice, DCs are driven from the skin in a 

CCR7-dependent fashion, and there are substantial increases in the size and cellularity of 

the ILNs through CCR7-dependent recruitment of lymphocytes from the blood and 

decreased lymphocyte departure through inhibition of S1P1-mediated egress (see 

Introduction). In fact, DC migration from the periphery may directly influence lymph node 

size and cellularity (Martín-Fontecha et al., 2003).  

Thus, it was hypothesised that, through its regulation of CCR7 and its ligands, the impact 

of CCX-CKR on lymph node cellularity may become more apparent during the induction 

of cutaneous inflammation. In addition, since DC migration into lymphatic vessels requires 

CCR7, it was possible that the cutaneous inflammatory response might be aberrant in the 

absence of CCX-CKR. Moreover, since inflammation can be used to drive the 

development of papillomas from mutagenised skin (Kinoshita and Gelboin, 1972), it was 

considered that CCX-CKR deletion might affect susceptibility to these tumours. The next 

series of experiments were designed to explore these possibilities. Throughout these 

experiments, we were also interested in examining how the expression of CCX-CKR was 

modulated.  

A model of skin inflammation was chosen in which 12-O-tetradecanoylphorbol-13-acetate 

(TPA) is applied to shaved dorsal skin for three consecutive days, as described in Materials 
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and Methods and outlined in Figure 6.1 (Jamieson et al., 2005). Jamieson and colleagues 

showed that TPA-induced inflammation in WT skin is driven by production of 

inflammatory chemokines, which peaks at around 12 hours following a single application 

of the irritant. Using this protocol, chemokines are typically cleared by about 24 hours 

post-TPA application. Multiple applications of TPA (on 2 or 3 consecutive days) lead to 

increased and protracted production of inflammatory chemokines. Following triple 

application of TPA (i.e. on three consecutive days) the characteristic moderate infiltration 

of inflammatory cells to WT skin peaks around day 3 and subsides rapidly. By day 6 post-

TPA application, skin appears histologically normal in WT animals (Jamieson et al., 2005). 

In the absence of the atypical chemokine receptor D6, TPA-induced inflammation is 

protracted and exaggerated, and D6-deficient mice show increased susceptibility to 

papilloma formation (Jamieson et al., 2005, Nibbs et al., 2007). Additionally, work by a 

previous student in our lab showed that this protocol led to epidermal thickening by day 3 

post-TPA application in female WT C57BL/6 mice, which had begun to resolve by day 5 

and had fully resolved by day 7 post-TPA (Comerford, 2005). This work also showed that 

WT ILNs were enlarged at day 3 and day 5 post-TPA application, but had returned to near 

normal size and cellularity by day 7 (Comerford, 2005). Therefore, day 3 post-TPA 

application was chosen to represent the peak of skin inflammation in WT mice and day 6 

post-TPA application was chosen to represent the point of resolution of skin inflammation 

in these animals. It was hypothesised that these timepoints would allow distinction of any 

lag in either development or resolution of skin inflammation in CCX-CKR deficient mice 

compared to WT, and would allow any differences in ILN cellularity to be defined. In 

parallel, expression of CCX-CKR and related genes was investigated at the site of 

inflammation (i.e. the dorsal skin) and in the draining ILNs at the mRNA level. In 

collaboration with Dr Clarke in the Nibbs group, we also explored CCX-CKR expression 

in TPA-promoted skin tumours, and the impact of CCX-CKR deletion on the development 

of these tumours. CCR7 has been linked to tumour formation, lymph node metastasis and 

cancer progression in a number of studies (Fang et al., 2008, Wang et al., 2005a, Zlotnik, 

2006). 

6.1 CCX-CKR in a model of cutaneous inflammation 

6.1.1 Histology of wild-type and CCX-CKR deficient inflamed skin 

WT and CCX-CKR deficient animals were shaved and treated dorsally with TPA as per 

Figure 6.1. Paraffin-embedded skin sections were stained with haemotoxylin and eosin as 

described in Materials and Methods to allow visualisation of skin architecture (Figure 6.2). 
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No obvious structural differences were observed between WT and CCX-CKR deficient 

skin under resting (i.e. skin untreated after shaving) or inflamed conditions or at the 

resolution of inflammation. Epidermal thickness was measured in these sections as an 

indicator of the proliferative status of the epidermis and the level of inflammatory infiltrate 

into the skin. In resting skin, as well as at day 3 and day 6 post-TPA application, there 

were no significant differences in epidermal thickness observed between WT and CCX-

CKR deficient samples (Figure 6.2). At day 3, the skin of both WT and CCX-CKR 

deficient mice was clearly inflamed, with a significant increase in epidermal thickness in 

both strains. By day 6, both WT and CCX-CKR deficient skin had resolved and was 

similar to untreated controls, indicating that CCX-CKR deletion was not associated with a 

protracted period of inflammation.  

6.1.2 Expression of CCX-CKR and related receptors in inflamed skin  

Samples of treated and resting skin were isolated into RNALater and processed to isolate 

RNA for cDNA synthesis, as described in Materials and Methods. CCX-CKR mRNA 

expression was assessed by QPCR, with no dramatic or statistically significant changes 

found over the course of the inflammatory model (Figure 6.3). It should be noted that, in 

the first experiment, statistical comparison of resting levels of expression compared to 

inflamed or resolving skin was not possible as the resting group only contained 2 

individuals. In the second experiment, statistical analysis was possible but increased 

variation between samples compared to the first experiment weakened the statistical power 

of the analysis. Therefore, while there may be a non-significant trend towards reduced 

expression of CCX-CKR in inflamed skin compared to non-inflamed, further analysis with 

increased sample sizes would be required to clarify this.  

Expression of CCR7 and CCR9 mRNA was also assessed to determine the impact of CCX-

CKR deletion on these receptors in resting and inflamed skin during a cutaneous 

inflammatory response. Both receptors were detectable at low levels, as before (see chapter 

4), and although sample size was low, no significant effect of CCX-CKR deletion on the 

expression of these receptors was observed (Figure 6.4). CCR7 expression was unchanged 

over time and CCR9 expression likewise showed no significant changes throughout the 

model.  

These data demonstrate that the induction and resolution of TPA-induced cutaneous 

inflammation in the skin is not substantially affected by CCX-CKR deletion, although 
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increased group sizes would be desirable in a repetition of this model, to allow detection of 

potential minor changes masked by sample variability. 

6.1.3 No impact of CCX-CKR deletion on the draining lymph node cellularity 
during skin inflammation 

CCX-CKR mRNA is present in ILNs (chapter 3, Figure 3.2), and previous chapters have 

shown that deletion of CCX-CKR alters chemokine and chemokine receptor expression in 

resting ILNs. It was hypothesised that deletion of CCX-CKR might disrupt the migration 

of cells to and/or from the tissue and therefore impact the cellularity of the draining lymph 

nodes. It was also theorised that CCX-CKR-deficient ILNs might exhibit altered 

chemokine receptor expression compared to WT, as is found in resting ILNs.  

Cellularity data for resting ILN has already been presented (chapter 5), with a slight 

increase in cellularity of CCX-CKR deficient ILNs compared to WT. In contrast to resting 

mice, no significant difference in the total number of cells retrieved was observed between 

WT and CCX-CKR deficient tissues (Figure 6.5). However, the numbers of cells retrieved 

were approximately three-fold higher than those retrieved from resting WT ILNs (see 

chapter 5, Figure 5.7), at both day 3 and day 6. 

ILNs from resting and treated mice were processed for QPCR as described in Materials 

and Methods. CCX-CKR mRNA expression was reduced in the inflamed WT ILN relative 

to resting ILNs, and appeared to be returning to resting levels by day 6 post-TPA 

application, with expression at this time point not found to be significantly different from 

expression seen in either resting or inflamed ILNs (Figure 6.6). The level of expression at 

day 3 post-TPA treatment is approximately half that of resting ILNs. In light of the three-

fold increase in cellularity (see above), it is possible that this is masking an increase in the 

absolute quantity of CCX-CKR mRNA being produced in the inflamed ILN. If the cells 

entering do not express CCX-CKR they will dilute the relative quantity of CCX-CKR 

mRNA in the tissue, and in the absence of increased CCX-CKR expression the level of 

“dilution” seen should match the increase in cellularity observed. As this is not the case, it 

is likely that either cells resident in the ILN increase their expression of CCX-CKR mRNA 

or that cells entering the ILN are expressing the receptor, or both. Absolute quantification 

could be used to confirm this hypothesis, preferably using both whole tissue and purified 

cell populations. CCR7 and CCR9 mRNA abundance was also analysed in these tissues. 

CCR7 mRNA expression in the ILN was not significantly altered in this experiment 

(Figure 6.7, top panel), either by induction of inflammation or by deletion of CCX-CKR. 
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Previous experiments showed a significant decrease in CCR7 mRNA expression in resting 

CCX-CKR deficient ILNs compared to WT (see chapter 4, Figure 4.1). Variation within 

the small number of resting CCX-CKR deficient ILN samples in this experiment may have 

been responsible for the lack of statistically significant difference observed in this instance. 

CCR9 mRNA was present at the same level in WT and CCX-CKR deficient ILNs 

throughout this model (Figure 6.7, bottom panel). However, there was a significantly lower 

amount of CCR9 mRNA present in both WT and CCX-CKR deficient ILNs at day 3 post-

TPA application compared to resting control samples (Figure 6.7, bottom panel). There 

was also significantly lower expression of CCR9 in CCX-CKR deficient samples at day 6 

post-TPA treatment compared to resting control CCX-CKR deficient samples, a difference 

not seen between equivalent WT samples. 

6.1.3.1 Lymphocytes in the draining lymph node of CCX-CKR deficient mice 

Single cell suspensions from ILNs of treated animals (i.e. at day 3 and day 6) were stained 

with lineage markers and analysed by flow cytometry, as described in Materials and 

Methods. The proportion of B and T cells remained constant between WT and CCX-CKR 

deficient lymph nodes at both day 3 post-TPA and day 6 post-TPA (Figure 6.8, top panels). 

There was also no difference in absolute numbers of B or T cells retrieved (Figure 6.8, 

bottom panels). The proportion of B cells increased in inflamed ILNs compared to resting 

tissue, from about 30% of total cells in resting WT ILNs to approximately 45% at day 3 

post-TPA application. The total number of B cells was approximately three-fold higher in 

inflamed ILNs compared to resting numbers (see chapter 5, Figure 5.9, and Figure 6.8). 

Concurrently, the proportion of T cells dropped from approximately 60% of total cells in 

the resting WT ILNs to about 50% in the inflamed ILN, although absolute numbers were 

almost doubled in the inflamed ILN compared to resting. By day 6, the proportional 

difference between B and T cells in the ILN was returning, with T cells comprising just 

over 50% of the total cellularity, and B cells comprising just over 40% (see chapter 5, 

Figure 5.9, and Figure 6.8). As shown in Figure 6.9, T and B cells did not display any 

CCX-CKR dependent internalisation of fluorescent CCL19 tetramers, nor did the level of 

CCR7 activity appear to be affected by cutaneous inflammation, with levels of 

internalisation remaining comparable to cells from resting ILNs. These data, together with 

the cellularity data above, indicate that CCX-CKR deletion does not affect the cellularity, 

or CCR7 expression and “activity”, of skin-draining ILNs during cutaneous inflammation.  
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6.1.3.2 Myeloid cells in the draining lymph node of CCX-CKR deficient mice 

Internalisation experiments detailed in chapter 3 indicated that CCX-CKR is expressed by 

some myeloid subsets in WT ILNs, specifically CD11bhigh F4/80neg CD11c+ cells and 

CD11bint/high F4/80low CD11c+ cells, although CCX-CKR deletion had no significant 

impact on their abundance (see chapter 3, Figure 3.14). In addition, as mentioned 

previously, chemokine and receptor expression is altered in resting CCX-CKR deficient 

ILN compared to WT. Therefore, it was hypothesised that migration of myeloid cells to the 

ILN, and/or their internalisation of chemokine would be altered by the absence of CCX-

CKR during inflammation. Supporting this hypothesis, analysis of myeloid cell subsets 

revealed a number of defects in cellularity in the absence of CCX-CKR. CD11bhigh 

F4/80neg cells, both CD11c+ and CD11c-, were proportionally increased in the CCX-CKR 

deficient ILN compared to WT at day 3 post-TPA application (Figure 6.10, top left). 

CD11cint/high F4/80low CD11c- cells also constituted a significantly increased proportion of 

total cells at this timepoint, while CD11blow F4/80neg CD11c+ were significantly decreased 

in the knock-out (Figure 6.10, top left). There were, however, no differences in absolute 

numbers of these cells at this timepoint (Figure 6.10, bottom left). The reason for this 

disparity is unclear. Some of the populations that showed a difference in proportion, 

including CD11bhigh F4/80neg CD11c+ cells, CD11bhigh F4/80neg CD11c- cells and 

CD11bint/high F4/80low CD11c- cells showed a trend towards a similar difference in absolute 

number, so it is possible that increased replicates would bring these potential differences to 

statistical significance.  

At day 6 post-TPA application, the differences in myeloid cell populations between WT 

and CCX-CKR deficient ILNs became more apparent. At this time point, CD11bhigh 

F4/80neg CD11c+ cells were still significantly increased in proportion, as were CD11bint/high 

F4/80low CD11c- cells (Figure 6.10, top right), but notably, both of these populations were 

present in significantly elevated absolute numbers as well (Figure 6.10, bottom right). 

Specifically, there were nearly three-fold more CD11bhigh F4/80neg CD11c+ cells in the 

CCX-CKR deficient ILNs compared with WT, and CD11bint/high F4/80low CD11c- cells 

were increased about two-fold. CD11blow F4/80neg CD11c+ cells were also proportionally 

increased and CD11blow F4/80neg CD11c- cells were decreased (Figure 6.10, top right), 

although neither was significantly altered in terms of absolute numbers at day 6 post-TPA 

application (Figure 6.10, bottom right).  

In light of these subtle, but intriguing, effects observed in myeloid cellularity in the 

absence of CCX-CKR, as well as the CCX-CKR mediated internalisation observed in 



192 

resting ILN cells, we were eager to assess the ability of myeloid ILN cells to internalise 

fluorescent CCL19 tetramers during inflammation in the absence of CCX-CKR. At day 3 

post TPA application, there was a significant decrease in fluorescent CCL19 tetramer 

internalisation by CCX-CKR deficient CD11bhigh F4/80neg CD11c+ cells and CD11bint/high 

F4/80low CD11c+ cells when compared with WT counterparts (Figure 6.11b, left panel). 

These are the same cell types that displayed significantly reduced internalisation of 

fluorescent CCL19 tetramers under resting conditions (see chapter 3, Figure 3.14), 

suggesting these cells may express CCX-CKR both under resting conditions and during 

cutaneous inflammation. It is also interesting to note that, compared to WT, one of these 

cell types, CD11bhigh F4/80neg CD11c+, was consistently over-represented in the CCX-

CKR deficient ILN draining TPA-inflamed skin (Figure 6.10). All other myeloid cells 

showed no significant difference in internalisation of fluorescent CCL19 at day 3 post-TPA 

application and at day 6 post-TPA application there was no observed impact of CCX-CKR 

deletion on the ability of myeloid cells to internalise fluorescent CCL19 tetramers in the 

draining lymph node (Figure 6.11b, right panel).  

Collectively, these data indicate a role for CCX-CKR in regulating the abundance of 

certain populations of myeloid cells in the ILN during inflammation, as well as suggesting 

that these cells are a site of expression of CCX-CKR in the inflamed WT ILN. A further in 

depth discussion of these findings can be found in chapter 7. 

6.2 CCX-CKR in a model of tumour formation 

The tumorigenesis model described at the beginning of this chapter (and in detail in 

Materials and Methods) explores the impact of chronic inflammation in promoting skin 

papilloma formation. C57Bl6 mice, which are used in all other experiments throughout this 

thesis, are highly resistant to papilloma formation, making them unsuitable for this type of 

study. Instead, WT and CCX-CKR deficient mice backcrossed onto an FVB background 

for 6 generations were used in this study. As noted above, CCR7 has been implicated in 

tumour development and lymph node metastasis. Taking into account the effect of CCX-

CKR on ILN cellularity and its expression in both skin and ILNs, it was hypothesised that 

CCX-CKR might alter the development of papillomas and metastasis to LNs. This model, 

which involved a single topical application of the carcinogen DMBA, followed by a twice-

weekly schedule of TPA application for up to 26 weeks, was optimised from a widely used 

protocol (Stenbäck, 1978). A fuller description of the protocol can be found in Materials 

and Methods. The protocol was established in our lab by one of the post-doctoral 

researchers (Dr. Mairi Clarke) who carried out the protocol on my behalf, with assistance 



193 

from me. Interestingly, as shown in Figure 6.12, CCX-CKR deletion was associated with a 

significant reduction in the average number of papillomas that form on the dorsal skin of 

treated animals. The papillomas that form on WT animals showed reduced expression of 

CCX-CKR mRNA, relative to unaffected adjacent skin, but increased expression of CCR7 

mRNA (Figure 6.13 and Figure 6.14). This increase in CCR7 expression was also seen in 

CCX-CKR deficient papillomas. Notably, CCX-CKR deletion also had a significant effect 

on the size of ILNs draining the DMBA/TPA-induced papillomas (Figure 6.15), such that 

they were were approximately two-fold larger in WT mice than CCX-CKR deficient mice 

by the end of the protocol.  

Unfortunately, time constraints meant it was not possible to undertake further experiments. 

Clearly, a more detailed analysis is required to clarify the precise nature of the skin and 

ILN phenotypes apparent in this model, and to dissect the mechanisms responsible. 

Nonetheless, the existing data do suggest that CCX-CKR plays a role in enhancing skin 

tumour formation, and may enhance the ability of cells from these tumours to metastasise 

to local draining lymph nodes. 

6.3 Summary  

Previous chapters have shown that, in resting mice, CCX-CKR deletion produces a number 

of subtle but significant changes in chemokine levels, chemokine receptor expression and 

activity, and cellularity in various tissues. In particular, the ILN is altered in terms of 

chemokine and chemokine expression and activity. In this chapter, I tested the hypothesis 

that CCX-CKR plays a role in the response to cutaneous inflammation induced by TPA, as 

well as in the development and progression of DMBA/TPA-induced papilloma formation. 

The results of this work are summarised below:   

1. CCX-CKR mRNA expression in the skin was not altered during TPA-induced 

inflammation. However, it was significantly reduced in ILN at day 3 post-TPA 

treatment. Epidermal thickening in response to TPA was unaffected by CCX-

CKR deletion.  

2. CCR7 and CCR9 mRNA expression in skin was not significantly altered either 

by CCX-CKR deletion or by induction of inflammation. CCR7 expression in 

the ILN was unchanged throughout the induced inflammatory response. CCR9 

was reduced at day 3 post-TPA compared to resting controls, in both CCX-

CKR deficient and WT ILN, and remained reduced at day 6 post-TPA treatment 



194 

compared to resting controls in CCX-CKR deficient samples, but not in 

equivalent WT samples. 

3. Total numbers of cells retrieved from ILNs, and the lymphocyte populations 

within these organs, were unaffected by CCX-CKR deletion.  

4. Proportions of several myeloid cell subsets were altered between WT and CCX-

CKR deficient ILNs at both day 3 and day 6 post-TPA treatment. More 

significantly, compared to WT, the absolute numbers of CD11bhigh F4/80- 

CD11c+ and CD11bint/high F4/80low CD11c- cells were substantially increased in 

CCX-CKR deficient ILNs at day 6 post-TPA treatment.  

5. As observed for resting mice, internalisation of fluorescent CCL19 tetramers by 

CD11bhigh F4/80- CD11c+ cells and CD11bint/high F4/80low CD11c+ cells was 

reduced in CCX-CKR deficient samples compared to WT at day 3 post-TPA 

application. 

6. In a model of inflammation-driven tumorigenesis, CCX-CKR deletion was 

associated with a reduction in papilloma susceptibility, and a marked reduction 

in the size of ILNs draining tumour-bearing skin. WT papillomas had less 

CCX-CKR mRNA than normal adjacent skin. In both WT and CCX-CKR 

deficient samples, CCR7 expression was increased in papillomas compared to 

normal adjacent skin.  

Although further studies are required, these data indicate that CCX-CKR (i) regulates 

myeloid subsets in LNs during TPA-induced cutaneous inflammation, (ii) enhances 

inflammation-driven papilloma formation, and (iii) may promote metastasis of skin 

tumour cells to draining ILNs. The implications of these results, along with data from 

previous chapters, are discussed in depth in Chapter 7.  
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Figure 6.1: Induction of skin inflammation. Mice were shaved dorsally 24 hours prior to initial 
application of 150 µl of 50 µM TPA. This application (“Paint”) was repeated at 24 hour intervals for 
a total of three applications. Mice were sacrificed and tissues harvested at day 3 and day 6 after 
the final application.  

 

 

!"#$%&
'(")*&

+,&(& &-&."/0&+,&(& +,&(& &-&."/0&

1"2)*0%&1"2)*0%&



196 

 

 

Figure 6.2: Epidermal thickness of wild-type and CCX-CKR deficient skin during TPA-
induced inflammation. Wild-type (WT) and CCX-CKR deficient (KO) mice were shaved dorsally 
and TPA applied to the skin as described in Materials and Methods (see Figure 6.1), with skin 
removed to formalin at harvest. Skin samples were then embedded in paraffin wax and H&E 
stained as described in Materials and Methods. Images were taken with a 20x objective using an 
Axiostar plus microscope and Axiovision software. Epidermal thickness was determined by taking 5 
random measurements of epidermis (E) in a single field of view per sample and plotting the 
average of each sample on the graph shown. Lines represent the mean, n = 3. Data were analysed 
using 2-way ANOVA with Bonferroni post-test, ***p<0.001, **p<0.01, *p<0.05.   
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Figure 6.3: Expression of CCX-CKR in the skin during TPA-induced inflammation. Mice were 
shaved dorsally and TPA applied to the skin as described in Materials and Methods. mRNA was 
extracted from the skin of resting control mice (“Control”), mice at day 3 after the final application 
(“Day 3 post”) and mice at day 6 after the final application (“Day 6 post”). This was used to 
generate cDNA and analysed by QPCR. Graphs represent data from two separate experiments, 
where n = 2-4 per group. Lines represent the mean RQ (relative quantity). Data were analysed by 
one-way ANOVA with Bonferroni post-test with no significant differences observed.  
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Figure 6.4: Expression of CCR7 and CCR9 in the skin during TPA-induced inflammation. 
Wild-type (WT) and CCX-CKR deficient (KO) mice were shaved dorsally and TPA applied to the 
skin as described in Materials and Methods. mRNA was extracted from the skin of resting control 
mice (“Control”), mice at day 3 after the final application (“Day 3”) and mice at day 6 after the final 
application (“Day 6”). This was used to generate cDNA and analysed by QPCR. Graphs represent 
data from individual experiments where n = 2-3 per group. Lines represent the mean RQ (relative 
quantity). Data were analysed by 2-way ANOVA with Bonferroni post-test, with no significant 
differences observed. 
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Figure 6.5: Total numbers retrieved from wild-type and CCX-CKR deficient draining inguinal 
lymph nodes during a model of skin inflammation. Wild-type (WT) and CCX-CKR deficient 
(KO) mice were shaved dorsally and TPA applied over 3 consecutive days as described in 
Materials and Methods. Draining ILNs were harvested at day 3 or day 6 post-TPA application. Cells 
were isolated and counted using a haemocytometer before use in internalisation or cellularity 
assays. Line represents the mean, n = 9-12, data were analysed by unpaired t-tests with no 
significant differences observed.  
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Figure 6.6: Expression of CCX-CKR in the inguinal lymph node during TPA-induced 
inflammation. Mice were shaved dorsally and TPA applied to the skin as described in Materials 
and Methods. mRNA was extracted from the ILNs of resting control mice (“Control”), mice at day 3 
after the final application (“Day 3”) and mice at day 6 after the final application (“Day 6”). This was 
used to generate cDNA and analysed by QPCR. Data are representative of two separate 
experiments, n = 3-4 per group. Lines represent the mean RQ (relative quantity). Data were 
analysed by one-way ANOVA with Bonferroni post-test, **p<0.01.  
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Figure 6.7: Expression of CCR7 and CCR9 in the draining inguinal lymph node during TPA-
induced inflammation. Wild-type (WT) and CCX-CKR deficient (KO) mice were shaved dorsally 
and TPA applied to the skin as described in Materials and Methods. mRNA was extracted from the 
ILNs of resting control mice (“Control”), mice at day 3 after the final application (“Day 3”) and mice 
at day 6 after the final application (“Day 6”). This was used to generate cDNA and analysed by 
QPCR. Graphs represent data from individual experiments where n = 3-4 per group. Lines 
represent the mean RQ (relative quantity). Data were analysed by 2-way ANOVA with Bonferroni 
post-test, ***p<0.001, **p<0.01, *p<0.05. 
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Figure 6.8: Proportions and numbers of B and T cells in the draining inguinal lymph node 
during a model of skin inflammation. Wild-type (WT) and CCX-CKR deficient (KO) mice were 
shaved dorsally and TPA applied over 3 consecutive days as described in Materials and Methods. 
Draining ILNs were harvested at day 3 or day 6 post-TPA application. Cell isolates were stained at 
4°C with antibodies against lineage markers. Cells were defined as B or T cells based on anti-CD3 
and anti-CD19 staining as shown in Figure 6.9A. Graphs show T and B cells as both a proportion 
of total cells isolated from the draining ILN (top panels) and as absolute numbers of cells isolated, 
at day 3 (left) and day 6 (right) post-TPA application. Error bars indicate standard deviation, n = 3. 
Data were analysed by 2-way ANOVA with Bonferroni post-test, ***p<0.001. 
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Figure 6.9: Internalisation of CCL19 by wild-type and CCX-CKR deficient T and B cells in the 
draining lymph node in a model of skin inflammation. Wild-type (WT) and CCX-CKR deficient 
(KO) mice were shaved dorsally and TPA applied over 3 consecutive days as described in 
Materials and Methods. Draining ILNs were harvested at day 3 or day 6 post-TPA application. Cell 
isolates were incubated at 37°C with fluorescent CCL19 tetramers followed by staining at 4°C with 
antibodies against lineage markers. (A) Cells were defined as B or T cells based on anti-CD3 and 
anti-CD19 staining as shown. (B) Graphs show gMFI (geometric fluorescence intensity) values for 
fluorescent CCL19 in WT and KO lymphocytes at day 3 (left panel) and day 6 (right panel), which 
were analysed in separate experiments. Bars indicate standard deviation, n = 3. Dashed lines 
indicate average gMFI for combined WT and KO resting samples (n = 1) that were included in each 
experiment as a control. Green dashed line indicates resting T cell gMFI, purple dashed line 
indicates resting B cell gMFI. Data are representative of two separate experiments for each 
timepoint.  
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Figure 6.10: Proportions and numbers of myeloid cell subsets in the draining inguinal lymph 
node during a model of skin inflammation. Wild-type (WT) and CCX-CKR deficient (KO) mice 
were shaved dorsally and TPA applied over 3 consecutive days as described in Materials and 
Methods. Draining ILNs were harvested at day 3 or day 6 post-TPA application. Cell isolates were 
stained at 4°C with antibodies against lineage markers. Cells were defined as shown in Figure 
6.11 using anti-CD11b, anti-F4/80 and anti-CD11c antibodies. Graphs show myeloid cell subsets 
as both a proportion of total cells isolated from the draining ILN (top panels) and as absolute 
numbers of cells isolated, at day 3 (left) and day 6 (right) post-TPA application. Error bars indicate 
standard deviation, n = 3. Data were analysed by unpaired t-tests, *p<0.05, **p<0.01, ***p≤0.001. 
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Figure 6.11: Internalisation of fluorescent CCL19 by myeloid cells in the draining lymph 
node in a model of skin inflammation. Wild-type (WT) and CCX-CKR deficient (KO) mice were 
shaved dorsally and TPA applied over 3 consecutive days as described in Materials and Methods. 
Draining ILNs were harvested at day 3 or day 6 post-TPA application. Cell isolates were incubated 
at 37°C with fluorescent CCL19 tetramers followed by staining at 4°C with antibodies against 
lineage markers. (A) Cells were defined as as shown using anti-CD11b, anti-F4/80 and anti-CD11c 
antibodies. (B) Graphs show gMFI (geometric fluorescence intensity) values for fluorescent CCL19 
in WT and KO myeloid cells at day 3 (left panel) and day 6 (right panel), which were analysed in 
separate experiments. Bars indicate standard deviation, n = 3. Data were analysed by unpaired t-
tests, *p<0.05. (C) Marker profile of myeloid subsets.  
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Figure 6.12: Development of papillomas by wild-type and CCX-CKR deficient mice during a 
model of tumourigenesis. Wild-type (WT) and CCX-CKR deficient (KO) mice were shaved 
dorsally and DMBA and TPA applied to the skin as described in Materials and Methods. Mice were 
monitored and papillomas measured and counted throughout the protocol. Graph shows average 
numbers of papillomas greater than 3mm in diameter formed during treatment. Green boxes 
indicate WT and blue triangles indicate KO, n = 15. Error bars indicate standard error of the mean. 
Data were analysed by 2-way repeated measures ANOVA, p=0.0003. Graph provided by M. 
Clarke.  
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Figure 6.13: Expression of CCX-CKR in papillomas and normal adjacent skin during a model 
of tumourigenesis. Mice were shaved dorsally and DMBA and TPA applied to the skin as 
described in Materials and Methods. mRNA was extracted from papillomas and normal adjacent 
skin of treated mice. This was used to generate cDNA and analysed by QPCR. Lines represent the 
mean RQ (relative quantity), n = 7. Data were analysed by unpaired t-tests, ***p=0.0001. 
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Figure 6.14: Expression of CCR7 in papillomas and normal adjacent skin during a model of 
tumourigenesis. Wild-type (WT) and CCX-CKR deficient (KO) mice were shaved dorsally and 
DMBA and TPA applied to the skin as described in Materials and Methods. mRNA was extracted 
from papillomas and normal adjacent skin of treated mice. This was used to generate cDNA and 
analysed by QPCR. Lines represent the mean RQ (relative quantity), n = 7-9. Data were analysed 
by 2-way ANOVA with Bonferroni post-test, *p<0.05. 
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Figure 6.15: CCX-CKR deficient mice exhibit reduced inguinal lymph node size compared to 
WT following DMBA/TPA-induced papilloma formation. Wild-type (WT) and CCX-CKR deficient 
(KO) mice were treated with DMBA and TPA as described in Materials and Methods. At the end of 
the protocol, animals were sacrificed and their ILNs removed and weighed. Data were analysed by 
Mann-Whitney test, n = 9-14, line represents the mean, ***p<0.001. Graph provided by M. Clarke.  
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7 Discussion 

7.1 Introduction 

Chemokines and their receptors are critically important in the development, maintenance 

and function of the immune system. For some homeostatic chemokines and receptors, the 

relative faithfulness of their pairing suggests that the role they play in the body is not one 

that can easily be reprised in their absence. For example, some of the ligands and receptors 

that form the focus of this thesis, such as CCL19, CCL21 and CCR7, or CCL25 and 

CCR9, are known to be absolutely crucial for the correct development of the immune 

system, particularly in the thymus, and are essential in promoting and facilitating a rapid 

and effective immune response to infection or injury. Their specialisation and proven 

importance in the immune system makes the discovery and ligand specificity of the related 

receptor CCX-CKR all the more intriguing. Based primarily on in vitro studies, the starting 

point for this project was the hypothesis that the principal function of cells expressing 

CCX-CKR is to rapidly internalise its ligands (CCL19, CCL21 and CCL25) in vivo and 

that this scavenging activity regulates the microenvironment of lymphoid and non-

lymphoid tissues to ensure optimal migration of leukocytes into, within and/or from these 

tissues. However, prior to this project, very little was known about when or where CCX-

CKR was expressed in vivo or how it might function to influence CCR7- and CCR9-

mediated migration. Identifying CCX-CKR-expressing cells in vivo was considered an 

important objective because it was hoped that this would not only provide a source of 

primary cells that could be used to explore the true function of this receptor, but would also 

help determine when, where and how CCX-CKR might be functionally significant.  

7.2 Expression of CCX-CKR in resting tissues 

Prior to this project, there were very few published reports detailing CCX-CKR expression, 

in either human or mouse. Those that did provide information on mRNA expression of the 

receptor did not provide quantification of expression to indicate the relative level of 

expression in tissues, nor did they indicate which cells might be responsible for the 

expression detected. There was also some conflict as to which tissues expressed mRNA for 

the receptor. Therefore, as detailed in chapter 3, I investigated where CCX-CKR is 

expressed at the mRNA level using a QPCR approach. This revealed that CCX-CKR is 

readily detectable in spleen, inguinal and mesenteric LN, thymus, PP, skin and small 

intestine, but not in liver. Thus, all lymphoid tissues displayed robust expression of the 
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receptor while the “barrier tissues” investigated, i.e. skin and small intestine, also displayed 

similar levels of CCX-CKR mRNA expression. CCL19 and CCL21 are both involved in 

the migration of leukocytes to and within thymus, spleen, LN and PP, with CCL25 also 

involved in regulating leukocyte movement into and within thymus, and from MLN and PP 

to the small intestine. Additionally, CCR7 is critical for the steady-state and inflammation-

driven migration of DCs from skin to LN. Therefore, all the tissues that express CCX-CKR 

have been shown to rely on signals from one or more of its ligands for normal immune 

function. The leukocyte populations in the liver have not been reported to be disrupted in 

resting CCR7 or CCR9 deficient mice, suggesting that these receptors are dispensible for 

homeostatic leukocyte trafficking to this tissue. Clearly, these data do not exclude the 

possibility that the receptor is expressed elsewhere in the body in other non-lymphoid 

tissues, and published data suggests that the heart may surprisingly be a source of CCX-

CKR transcripts. However, having established that all lymphoid tissues examined 

contained readily detectable CCX-CKR mRNA, and bearing in mind the critical roles 

played by CCR7 and/or CCR9 in these tissues, I decided that they would be ideal organs in 

which to attempt to identify CCX-CKR-expressing cells and provide an indication of how 

and where CCX-CKR functioned within lymphoid tissues.  

7.2.1 Detecting CCL19 receptors with CCL19 tetramers 

Most studies reporting on the location and level of protein expression of a chemokine 

receptor make use of monoclonal antibodies, investigating expression by either 

immunohistochemistry or by flow cytometry. However, at the time of these experiments, 

no such antibody was commercially available for murine (or human) CCX-CKR, and those 

produced subsequently were unable to detect exogenous CCX-CKR on transfected cells 

(R. Nibbs, pers. comm.), rendering them unsuitable for this type of analysis. Therefore, a 

novel approach was required to allow investigation of this receptor on primary mouse cells. 

Building on experiments from our lab investigating D6 expression on primary cells 

(Hansell et al., 2011b) and CCX-CKR activity in vitro (Comerford et al., 2006), I 

established and optimised a protocol to assess CCL19 receptor activity, as defined by 

internalisation of fluorescent CCL19 tetramers, on primary cells. Theoretically, this assay 

allowed assessment of not only CCX-CKR expression by primary cells, but also their 

CCR7 expression and activity on these cells, which could potentially be disrupted by CCX-

CKR deletion. I will first discuss how I optimised the assay and the information gained 

from this process, before discussing the implications of results pertaining to CCX-CKR 

expression/activity. I will also discuss the potential for further modification of the assay to 

increase stringency and improve detection of low-level chemokine internalisation. In 
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section 7.3, I will discuss the analysis of CCR7 expression as determined both by the 

internalisation assay and by QPCR. 

The assay was optimised using splenocytes and, as expected, lymphocytes efficiently 

internalised the fluorescent CCL19 tetramers. To demonstrate specificity, and eliminate the 

possibility that this internalisation was by pinocytosis or some other mechanism not 

involving a CCL19 receptor, unlabelled competitor chemokines were included in 

incubations. Only CCL19 and CCL21 could block CCL19 tetramer internalisation. This 

was much more pronounced in the presence of excess unlabelled CCL19 than in the 

presence of excess unlabelled CCL21. There are a number of potential explanations for 

this. First, CCL19 is known to bind human CCR7 with slightly higher affinity than CCL21 

(Britschgi et al., 2008), so internalisation of fluorescent CCL19 might occur preferentially 

to internalisation of CCL21. Second, CCL21 is a much “stickier” protein than CCL19, due 

to its extended C-terminus. This may have limited its ability to gain access to CCL19 

receptors in the assays. Third, CCL19 is a more potent stimulator of CCR7 internalisation 

than CCL21, in both human leukocytes and in cells transfected with CCR7, and binding of 

CCL19, but not CCL21, causes desensitisation of CCR7, preventing further internalisation 

(Britschgi et al., 2008). This agreed with titrated timecourse analysis of internalisation of 

the CCL19 tetramers by primary murine splenocytes, which showed that while increased 

starting concentrations of the fluorescent CCL19 tetramers led to a marked increased in 

fluorescence, increasing incubation times had a much less remarkable effect. Thus, it 

appears as though most tetramer internalisation into lymphocytes occurs within the first 5-

15 minutes of exposure to tetramers. It is likely that the reduction in fluorescence seen in 

samples co-incubated with excess CCL21 is due to some level of CCL21 bound to receptor 

at the point of internalisation, blocking complete occupancy of receptors by the fluorescent 

chemokine. Subsequent internalisation of fluorescent CCL19 tetramers could then cause 

desensitisation of CCR7 and prevent the “competed” samples from reaching similar levels 

of fluorescence to “uncompeted” samples. Notwithstanding these differences between 

CCL19 and CCL21, the ability of both these chemokines to diminish internalisation of the 

fluorescent CCL19 tetramers suggested that the majority of internalisation was CCR7- or 

CCX-CKR-dependent. The inclusion of CCL25 as a competitor was also considered. 

CCL25 should only be able to compete with CCL19 for binding to CCX-CKR, but not 

CCR7, so theoretically it could have helped identify CCX-CKR-expressing cells. 

However, assays using recombinant CCL25 are technically challenging (pers. comm. E. 

Anderson), and the extended C-terminus makes it “sticky” and prone to aggregation. 

Instead, comparisons of fluorescent CCL19 tetramer internalisation between equivalent 
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populations of WT and CCX-CKR deficient cells were undertaken, making use of CCX-

CKR deficient mice generated by a previous student in the lab (Comerford et al., 2010).  

A caveat of this experimental design is that it may not be possible to distinguish between 

specific binding or internalisation of chemokine tetramers and non-specific binding of 

biotinylated protein linked to streptavidin. As discussed below, some fluorescence is 

detected, particularly by myeloid cells, that is not diminished using excess unlabelled 

competitor chemokine, but is also not observed in StrAPC only controls. Therefore, 

inclusion of an “irrelevant” biotinylated protein linked in the same way to StrAPC as the 

BioCCL19 may allow distinction of chemokine specific versus biotinylation-dependent 

binding. However, care must be taken to ensure that this protein does not itself bind 

specifically to the cells and thus cause background or yield false positive results.  

7.2.2 Which cells express CCX-CKR in lymphoid tissues? 
Using fluorescent CCL19 tetramers, I carried out a detailed analysis of resting lymphoid 

compartments, including spleen, inguinal lymph nodes, peritoneal cavity lavage and whole 

blood, investigating various leukocyte subsets as well as stromal cells where appropriate. I 

have clearly shown that splenic leukocytes and stromal cells do not internalise fluorescent 

CCL19 tetramers in a CCX-CKR-dependent manner in this assay, presumably due to either 

a lack of CCX-CKR expression by these cells or an undetectable level of CCL19 

internalisation through this receptor. Peripheral blood lymphocytes did not display CCX-

CKR dependent internalisation of fluorescent CCL19 tetramers, although they did exhibit 

some internalisation of the chemokine, presumably through CCR7. This suggests that 

CCX-CKR is unlikely to be expressed by these cells. In the peritoneal cavity, none of the 

leukocyte populations investigated demonstrated CCX-CKR dependent internalisation of 

fluorescent CCL19 tetramers. Likewise, inguinal lymph node lymphocytes, which require 

CCR7 for appropriate migration to and within the lymph node, do not exhibit any CCX-

CKR dependent internalisation of fluorescent CCL19 tetramers, nor do CD45- cells of the 

ILN or most myeloid subsets in this tissue. Interestingly, however, CD11bhigh F4/80- 

CD11c+ and CD11bint/high F4/80low CD11c+ cells do demonstrate some CCX-CKR-

dependent internalisation of the chemokine, suggesting that either all cells within these 

populations express the receptor under resting conditions, or a subset of CCX-CKR+ or 

CCR7+ cells is lost from both populations in the CCX-CKR deficient animal. Heinzel and 

colleagues reported that DC populations in the resting LN were disrupted in the absence of 

CCX-CKR, so lack of CCX-CKR may exclude a subset of DCs from the LN or prohibit 

their retention there. It is also possible that CCR7 expression or activity is altered on these 

cells in the absence of CCX-CKR. However, I found no such defect in resting CCX-CKR 
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deficient ILNs. Effects of CCX-CKR deletion on cellularity will be discussed later. 

Heinzel and colleagues also reported that CCX-CKR was expressed on cells that line the 

subcapsular region of the inguinal lymph nodes (Heinzel et al., 2007), concluding, 

apparently based on their positioning, that this expression was stromal rather than 

hematopoietic. However, a population of macrophages called SCMs are known to reside 

just below the capsule of the lymph node, lining the SCS (Phan et al., 2009). These SCMs 

are believed to be involved in the capture of antigen from draining lymph and its 

presentation to B cells just underneath the subcapsular sinus, as well as the transfer of 

antigen to FDCs for presentation to B cells (Phan et al., 2009). Phan and colleagues have 

identified these cells as being CD11b+ F4/80neg CD11clow, as well as expressing CD169. It 

is therefore possible that the cells I have identified as potentially being CCX-CKR+ include 

SCMs. This presents an intriguing possibility as to the identity of CCX-CKR-expressing 

cells in the LN and the function of the receptor on these cells. CCX-CKR expressed by 

SCMs might modulate the chemokine environment to allow efficient interactions between 

SCMs and B cells, control the migration of SCMs between the outer subcapsular sinus and 

the border of the B cell follicle, or regulate leukocyte survival and/or interaction within the 

LN cortex. A model showing how CCX-CKR might modulate the LN chemokine 

environment is shown in Figure 7.1.  

SCMs are also believed to be capable of migration into the follicle to deliver immune 

complexes to FDCs (Phan et al., 2007) and CCX-CKR could promote this activity by 

“scavenging” CCR7 ligands from the SCM microenvironment, rendering the cells more 

responsive to CXCL13 or other cues. It would be interesting to examine the kinetics of 

CCL19 accumulation and eventual dispersal or depletion from this area in WT and CCX-

CKR deficient mice, perhaps by employing the same model of footpad or subcutaneous 

injection of fluorescent chemokine as has been used previously (Baekkevold et al., 2001) 

and using two-photon microscopy to follow the accumulation and depletion of the 

chemokine in the draining LN SCS over time. It is worth noting that SCM from the LN and 

MZ metallophilic macrophages of the spleen are thought to play similar roles, with SCM 

“filtering” the lymph that enters the LN and MZ metallophilic macrophages doing the 

same for blood flowing through the spleen (Bajénoff and Germain, 2009). I did not identify 

any cells exhibiting CCX-CKR dependent internalisation of the fluorescent CCL19 

tetramers in the spleen and preliminary confocal staining of WT and CCX-CKR deficient 

spleen with MOMA-1 (a marker for MZ metallophilic macrophages) did not uncover any 

obvious aberrations in positioning of the cells (data not shown). However, more detailed 

and specific analysis of macrophage subsets from the spleen should provide a more 
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definitive answer as to the possibility of their expressing CCX-CKR, and may yield 

interesting insights into the in vivo function of this receptor. 

An alternative possibility is that CCX-CKR is expressed by some DC subsets entering the 

LN via the lymph. DCs entering from the periphery are known to rely on CCR7, using 

CCL21 expressed in lymphatics to guide them from peripheral tissue to LNs during both 

resting and inflamed states. CCL19 and CCL21 also facilitate the migration of arriving DC 

within the lymph node to the T cell zone, enabling DC/T cell antigen-specific interactions. 

CCX-CKR might be present on DCs to regulate migration to and/or residence time within 

the lymph node. It could also influence the localisation of DCs within the ILN. As 

mentioned above, Heinzel and colleagues have reported a reduction in the number of 

CD11c+ MHCIIhigh DCs in peripheral LN of CCX-CKR-deficient mice (Heinzel et al., 

2007), so it is possible that a subset of these cells express CCX-CKR and in its absence 

cannot migrate to or reside within the LN as normal. Again, it must be noted that my 

analysis revealed no defect in DC cellularity in the ILN, so further investigation of this 

phenomenon would be desirable. More advanced multicolour flow cytometry equipment 

now available in the lab could facilitate a more detailed analysis of LN cellularity in future 

projects, allowing investigation of specific subsets of LN DCs using markers such as CD8, 

CD11b, CD11c and MHCII as well as fluorescent CCL19 tetramer internalisation. This, in 

combination with confocal microscopy of LN sections from WT and CCX-CKR deficient 

mice, could provide a more complete set of data relating to the specific impact of CCX-

CKR deletion on LN DC populations. 

Given the paucity of functional CCX-CKR detectable in most cell populations examined 

using the internalisation assay, I attempted to identify cells from the spleen that expressed 

CCX-CKR mRNA by purifying various populations by FACS sorting and isolating RNA 

from these populations for QPCR. However, isolating RNA from primary cells proved 

technically challenging, with only a small RNA yield from most samples. The preliminary 

data I was able to generate suggests that leukocytes do not express the receptor. This would 

point towards stromal cells as the main CCX-CKR+ population in the spleen. However, I 

further investigated the effect of cell isolation on the expression of CCX-CKR mRNA by 

spleen samples and found that any mechanical disruption of the tissue seemed to severely 

reduce the level of CCX-CKR mRNA recovered. It is unclear why this might occur, since 

CCR7 mRNA was not affected in this way in the same samples. While it might be 

expected from the preliminary data above that removal of stromal cells would decrease the 

relative amount of CCX-CKR mRNA in a sample, one would then expect that samples 

where stromal cells were not removed (e.g. samples consisting of debris remaining on 
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nitex/cell strainers, or unmashed collagenase-treated samples) should retain expression and 

in fact exhibit a relative increase in mRNA level, but this was not the case. It is possible 

that CCX-CKR is downregulated on stromal cells during an inflammatory response, which 

may be induced in cells during the isolation process. This might be designed to alter 

chemokine levels or bioavailability in the presence of inflammatory signals. However, this 

data is very preliminary and requires further investigation to reveal the cause of this 

apparent downregulation of CCX-CKR mRNA expression.  

These data have shown that most cells in the tissues analysed do not express CCX-CKR 

capable of mediating CCL19 internalisation. However, I have identified subpopulations of 

myeloid cells in the ILN that do exhibit CCX-CKR dependent internalisation, with some 

intriguing possibilities as to the nature and function of these cells. However, further 

analysis will be required to define the source of CCX-CKR mRNA expression in lymphoid 

tissues, and development of a protocol to do the same in “barrier” tissues may provide 

some further clues as to the role of the receptor at these sites. Continued optimisation of 

RNA isolation from sorted cell populations may yield some clues, and in situ hybridisation 

could be used to show the distribution of CCX-CKR mRNA expression within tissues. 

Additionally, recent work by our collaborators has shown that a recently described 

antibody against human CCX-CKR (Takatsuka et al., 2010) also detects the murine 

receptor (I. Comerford, pers. comm.), which may allow more conventional analysis of 

tissues by immunofluorescence, flow cytometry and immunohistochemistry. The CCX-

CKR deficient mouse represents an excellent control for false positive detection of the 

receptor in WT tissues, both in in situ hybridisation and with use of anti-CCX-CKR 

antibodies.  

7.3 CCX-CKR influences the expression and activity of CCR7 in 
resting tissues 

As alluded to previously, the internalisation assay, while designed with the purpose of 

identifying CCX-CKR-expressing cells, also provides insights into the expression and 

internalising activity of CCR7 on primary leukocytes. As one might expect, splenic T cells 

internalised the fluorescent CCL19 tetramers more readily than B cells, likely through 

CCR7. This feature was shared by lymphocytes from blood and ILN but not by 

lymphocytes from the peritoneal cavity, where CCL19 internalisation was similar between 

T cells and the various B cell populations found there. This might reflect differing 

requirements for CCR7 in B and/or T cell migration to and from these sites, or might be 
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related to the unique nature of the B cell population in the peritoneal cavity compared to 

other tissues (discussed below). Internalisation of fluorescent CCL19 tetramers by T cells 

from the spleen was completely abolished by pre- and co-incubation with excess 

unlabelled CCL19, consistent with reports that CCL19 down-regulates surface expression 

of CCR7 (Britschgi et al., 2008). Internalisation by splenic B cells was also significantly 

reduced under these conditions. Investigation of B cell subsets in the spleen revealed that 

within the B cell compartment there are further distinctions to be made based on the 

capacity for CCL19 internalisation. In a resting WT mouse, B1 cells internalise more 

fluorescent CCL19 tetramers than MZ B cells (see chapter 3) and splenic follicular B cells 

(not shown), while MZ B cell internalisation is equivalent to that of follicular B cells (not 

shown). This may be due to the different roles played by these subsets, and/or their 

positioning within the spleen. MZ B cells are resident in the marginal zone of the spleen, 

where their positioning is dependent on receptors for S1P (S1P1 and S1P3) and CXCL13 

(CXCR5) (Cinamon et al., 2004, Cinamon et al., 2008), and follicular B cells, which make 

up the majority of total splenic B cells, rely mainly on CXCR5 for positional cues, 

although they have been suggested to be prompted by CCR7 to “pause” in the PALS after 

entry into the spleen before entering the follicle (Förster et al., 1999). B1 cells may use 

CCR7 to remain in the PALS, and interestingly they are known to have the capacity to act 

as antigen presenting cells for activation of naïve T cells, at least in vitro (Cinamon et al., 

2008, Martin and Kearney, 2001). Splenic B1 cells also appear to be less dependent on 

CXCR5 than other B1 cells and unlike B1 cells in the peritoneal cavity, splenic B1 cell 

numbers are unaffected by CXCL13 deletion (Ansel et al., 2002). However, detecting B1 

cells as they move through the body is difficult due to their inconstant immunophenotype. 

Most publications identify them by multi-colour flow cytometry rather than 

immunohistochemistry, and information about their likely position within tissues is scarce. 

It is interesting to note that in the WT peritoneal cavity, where T and B cells display a 

similar capacity to internalise CCL19, the “B2” cell compartment, which would 

correspond most closely to splenic follicular B cells, is likely to contain substantial 

numbers of B1 cells that cannot be distinguished by the markers used in this study (Hansell 

et al., 2011b). Therefore it is possible that in fact true B2 cells in this cavity have a low 

CCL19 internalisation capacity similar to classical B2 cells from other tissues, but that this 

is masked by the high level of internalisation of fluorescent CCL19 tetramers by these B1 

cells. Alternatively, the peritoneal lymphocyte requirement for CCR7 expression to 

mediate egress, as described below, could potentially explain uniformly high levels of 

expression suggested by the observed internalisation profile. 
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Myeloid cells in the spleen displayed varied capacity to internalise the fluorescent CCL19 

tetramers. While this may reflect differences in CCR7 expression, pre- and co-incubation 

experiments showed that internalisation of the chemokine by many of these cells is only 

slightly reduced, if at all, in the presence of unlabelled CCL19. This indicates a potential 

method of receptor-independent internalisation of CCL19 by these cells. Strangely, 

however, internalisation did seem dependent on the presence of chemokine in the 

tetramers, as exposure to StrAPC alone did not lead to the same level of cell-associated 

fluorescence, and it is currently unclear how CCL19 tetramers are internalised by these 

cells. It is interesting to note the difference in effect of pre- versus co-incubation of these 

cells with unlabelled CCL19. Internalisation of fluorescent CCL19 tetramers by CD11bhigh 

F4/80low cells was not altered by co-incubation with unlabelled CCL19, but does decrease 

slightly following pre-incubation with the unlabelled chemokine. This could suggest that 

CCR7 acts differently on these cells to other cell types, perhaps being more resistant to 

desensitisation, although eventually being down-regulated after continuous ligand 

exposure. Alternatively, it could suggest CCL19-induced down-regulation of non-specific 

chemokine uptake, or that prolonged CCL19 exposure is inducing other cells in the sample 

to produce factors that trigger downregulation of CCL19 internalisation by these cells. 

CCX-CKR deficient samples appear more sensitive to this difference, with some cell types 

exhibiting significant differences in internalisation between pre- and co-incubated samples 

from CCX-CKR deficient but not WT spleen. Further examination of this effect could 

provide interesting insights into how CCR7 activity and/or CCL19 internalisation is 

controlled on these cells. Splenic CD45- cells, which are mainly stromal, do not internalise 

fluorescent CCL19 tetramers, regardless of incubation with or without unlabelled CCL19. 

Likewise, CD45- cells in the inguinal lymph node do not display CCR7-dependent 

internalisation of fluorescent CCL19 tetramers. Since CCR7 is not known to be expressed 

by stromal cells, this is unsurprising.  

In the absence of CCX-CKR, B cells from the ILN appeared to slightly increase their 

ability to internalise fluorescent CCL19 tetramers, perhaps due to aberrant CCR7 

expression or activity on these cells in the CCX-CKR deficient animal. However the 

observed increase is very small and, with only a small number of samples analysed, 

interpretation of this difference is difficult. The relative level of CCR7 mRNA expression 

was also analysed to try to elucidate whether observed changes in CCL19 internalisation 

could be due to altered expression of the receptor at the mRNA level. Surprisingly, in the 

spleen, CCR7 mRNA levels were significantly increased in the absence of CCX-CKR, 

although no difference in CCL19 internalisation had been observed. In the ILN of CCX-

CKR deficient mice, where a slight increase in B cell internalisation of CCL19 and a 



219 

decrease in internalisation by some myeloid subsets were observed, CCR7 mRNA levels 

were slightly decreased. This may mean that the drop in internalisation of CCL19 by 

myeloid subsets was due to altered CCR7 expression rather than CCX-CKR expression by 

these cells. Alternatively, changes in CCR7 mRNA expression may be due to altered 

ligand levels within these tissues – an increase or decrease in CCR7 ligands caused by 

deletion of CCX-CKR could influence the level of CCR7 mRNA expressed by cells via 

signalling through CCR7 itself. This possibility will be examined later in this section. The 

reason for the contrasting effects on CCR7 mRNA expression in spleen and ILN is unclear, 

but may be due to the different requirement for CCR7 in these tissues. In CCR7 deficient 

mice, T cells are significantly impaired in their ability to enter lymph nodes, while they 

maintain the ability to enter the spleen but are not properly localised within it (Förster et 

al., 1999). If CCX-CKR is an important factor in facilitating the entry of cells into 

lymphoid organs, for example via its hypothesised function of presentation of chemokine 

on high endothelial venules (HEVs) and/or lymphatics, its absence may alter the cellularity 

of the tissues. This potential for altered cellularity is addressed in section 7.5 below. 

T cells from the peritoneal cavity displayed a higher capacity to internalise CCL19 

tetramers in CCX-CKR deficient samples compared to WT. Absence of a CCL19low 

population of T cells (which may therefore be CCR7low) appears to be the cause of this 

disparity between the two strains. CCR7 mRNA expression by peritoneal cavity cells was 

also significantly increased in CCX-CKR deficient mice, which may in part be caused by 

this shift in T cell phenotype. However, as discussed below, there are more lymphocytes in 

the CCX-CKR deficient peritoneal cavity: this may account for the elevated CCR7 mRNA. 

It is unclear what has happened to the CCL19low T cells. They may represent a subset of T 

cells that are absent from the CCX-CKR deficient peritoneal cavity, or they may have 

somehow increased their CCR7 expression in the absence of CCX-CKR. Interestingly, 

CCR7 has recently been shown to be involved in egress of lymphocytes from the 

peritoneal cavity. Höpken and colleagues have shown that T cells and B2 cells accumulate 

in the peritoneal cavity in the absence of CCR7, while B1 cell numbers are reduced 

(Höpken et al., 2004, Höpken et al., 2010). By comparing the ability of adoptively 

transferred biotinylated splenocytes from WT and CCR7 deficient animals to traffic from 

the peritoneal cavity (where they were introduced) to peripheral LNs, Höpken and 

colleagues showed that CCR7 was required for lymphocytes to recirculate from the 

peritoneal cavity to LNs. They further showed that the observed defect in recirculation was 

caused by an inability of CCR7 deficient lymphocytes to exit the peritoneal cavity by 

carrying out a competitive adoptive transfer. In this experiment, differentially labelled 

splenocytes from WT and CCR7 deficient mice were introduced into the peritoneal cavity 
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in a 1:1 ratio. Subsequent analysis of the peritoneal cavity showed that, at 2.5 days post-

transfer, there was a four- to five-fold increase in the proportion of CCR7 deficient 

splenocytes present in the peritoneal cavity compared to transferred WT splenocytes 

(Höpken et al., 2010). It is possible that CCX-CKR is involved in regulating the 

lymphocyte cellularity of the peritoneal cavity by influencing CCR7-mediated responses. 

This could occur by limiting or inducing influx of cells or controlling the rate of egress, 

and similar adoptive transfer experiments in CCX-CKR deficient mice could verify or 

refute such a role for the receptor. The effect of CCX-CKR deletion on peritoneal cavity 

cellularity is discussed further below. 

7.4 Regulation of chemokine levels in resting tissue by CCX-

CKR 

In addition to the possibility that CCR7 expression was being affected by CCX-CKR 

dependent changes in chemokine levels, work from our lab has shown that, in vitro, CCX-

CKR that is exogenously expressed on HEK cells efficiently scavenges CCL19 from the 

media, while CCR7 is downregulated by exposure to its ligand (Comerford et al., 2006). 

Therefore, it was hypothesised that CCX-CKR might have a scavenging function in vivo, 

and that deletion of the receptor would lead to altered chemokine levels in the mouse. 

Strikingly, while CCL19 could not be detected in WT serum, it was consistently detected 

in serum from CCX-CKR deficient mice. This suggests that CCX-CKR is involved in 

controlling serum levels of this chemokine, although the exact mechanism is unclear. 

CCX-CKR has also been reported to suppress serum levels of CCL21 (Comerford et al., 

2010), but this could not be repeated in our lab, by myself or others. Also in contrast to my 

findings, this study failed to detect CCL19 in either WT or CCX-CKR deficient serum. 

The reason for these differing results is unclear but may reflect slight variation in the 

assays performed, although the antibodies used in both studies came from the same 

supplier. Nonetheless, serum chemokine dysregulation is a consistent feature of CCX-CKR 

deficient mice. 

Compared to WT, CCL19 was also elevated in CCX-CKR deficient ILN, in agreement 

with Comerford and colleagues who found elevated CCL19 in pooled homogenates of 

inguinal, axillary and brachial LNs (Comerford et al., 2010). However, I found CCL21 to 

be slightly decreased in the ILN in the absence of CCX-CKR, with a previous student 

finding a similar, though not significant trend (Anderson, 2011). In contrast, Comerford 

and colleagues found a significant increase in the level of this chemokine in pooled 



221 

peripheral LNs. Again, it is unclear why these results are not in agreement, although it is 

possible that they reflect the variation in samples assessed. It is also possible that the 

CCL21 detected by one study differs slightly from the other – for example, one study may 

detect both cleaved and full-length CCL21 (Schumann et al., 2010) while the other detects 

only the full-length form. Also, the numbers of samples investigated by Comerford and 

colleagues were consistently greater than 10 per group, while my data was generated from 

groups of four animals. Therefore, higher sample numbers might alter the trend observed. 

In any case, CCX-CKR seems to influence the level of chemokine within the ILN, 

although its mode of action is unclear. A possible explanation for the results presented in 

this thesis is depicted in Figure 7.1. 

 

Figure 7.1: A model for CCX-CKR function in the resting lymph node. (1) CCX-CKR 
expressed by cells lining the subcapsular sinus of the LN (such as subcapsular macrophages; 
SCM) binds CCL19 and CCL21, either degrading them or transporting them to the afferent 
lymphatics for presentation to entering leukocytes. (2) In the absence of CCX-CKR, CCL19 levels 
within the LN rise, leading to increased motility, and possibly increased viability, of T cells, 
increasing their interaction with DCs. (3) DCs are then prompted to reduce their production of 
CCL21, causing a drop in intranodal levels of this chemokine.  

CCL21 protein levels were also elevated in the thymus of CCX-CKR deficient mice, 

although CCL19 was unaffected. As described in the Introduction, CCR7 and CCL21 are 

involved in controlling the directed migration of maturing thymocytes and CCX-CKR may 

play a role in regulating the localised expression of the chemokine to facilitate this 
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migration. It is possible that CCX-CKR is expressed by strategically positioned cells to 

scavenge CCL21 and prevent its attraction of thymocytes. It would be very interesting to 

assess whether thymocytes development or migration is perturbed in the thymus, or if 

thymic architecture is disrupted in the absence of CCX-CKR. Indeed, unpublished work by 

our collaborators has indicated that the structure of the thymus is perturbed in CCX-CKR 

deficient mice and the numbers of all thymocytes subsets analysed are altered (I. 

Comerford, pers. comm.). This indicates an important role for CCX-CKR in the 

development of T cells. It remains to be seen whether these disruptions have any effect on 

the development of central tolerance or Treg generation. A previous student in the lab has 

shown that tolerance to orally administered antigen is defective in the absence of CCX-

CKR, as measured by DTH and antibody responses, suggesting a role for CCX-CKR in the 

development of peripheral tolerance (Anderson, 2011). CCR7 has already been shown to 

have an important role in the development of both central and peripheral tolerance (see 

Introduction), and it would be interesting to learn whether CCX-CKR could be involved in 

regulating these critical elements of the immune response.   

Interestingly, CCL19 and CCL21 protein were both easily detectable in non-lymphoid 

tissues, including heart, liver, kidney and brain. The reason for this is unclear. While 

CCL21 is likely to be expressed in lymphatic vessels in some non-lymphoid tissues, 

CCL19 is usually expressed by stromal cells in T cell areas of lymphoid tissues, although it 

can also be expressed by DCs. As there is no evidence of naïve lymphocyte influx into 

non-lymphoid tissues, it is unlikely that the chemokine detected is functioning to attract 

these cells, as is the case in LNs. CCL19 is also believed to be involved in promoting 

survival and proliferation of T cells within the LN, so it may have been co-opted to play a 

similar role for other cells in non-lymphoid tissue. Expression of CCL19 mRNA has 

previously been reported in the kidney (Yoshida et al., 1997), and it may be involved in 

regulating kidney function. Such a role has been postulated for CCR7 and CCL21, which 

are expressed in the glomeruli of the kidney and have been proposed to be involved in the 

homeostasis and proliferation of cells within these structures (Banas et al., 2002, Banas et 

al., 2004). CCL19 protein was elevated in the kidney in the absence of CCX-CKR while 

CCL21 protein levels were unchanged. CCX-CKR mRNA has been detected in the kidney 

(Townson and Nibbs, 2002), and may be involved in regulating chemokine levels to 

modulate cell proliferation or activity. Further work characterising the function of CCX-

CKR and CCL19 in the kidney is required to clarify the potential role or roles for these 

molecules in this tissue.  
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CCL19 protein levels are also slightly elevated in the CCX-CKR deficient brain. CCL19 

has been shown to be expressed in normal resting brain at the blood-brain barrier, and it, 

along with CCL21 and their receptor CCR7, has been shown to be involved in 

development of experimental autoimmune encephalitis (EAE), an animal model 

resembling multiple sclerosis (Alt et al., 2002). Comerford and colleagues have recently 

reported a role for CCX-CKR in delaying the onset of EAE, with elevation of CCL21 in 

the CNS during EAE much greater in the CCX-CKR deficient mouse than WT (Comerford 

et al., 2010). Therefore, CCX-CKR may be linked to the maintenance of an appropriate 

chemokine milieu in the brain, both under resting and challenged conditions, helping to 

prevent aberrant inflammatory responses at this immunologically privileged site.  

7.5 CCX-CKR influences lymph node and peritoneal cavity 
cellularity 

An interesting finding of this project was that CCX-CKR deletion significantly alters the 

cellularity of both the ILN and the peritoneal cavity. The spleen was unaffected, both in 

cellularity and in gross microarchitecture. By contrast, total cell numbers in both ILNs and 

peritoneal cavity were slightly increased in the CCX-CKR deficient mouse compared to 

WT. While fractionation of leukocyte subsets in the ILN failed to reveal the affected cell 

type (or types), it is likely that this was due to insufficient sample numbers. Lymphocytes 

are the most probable candidates for causing an increase in ILN cellularity, as they 

comprise the vast majority of cell retrieved from this organ. The cause of such an increase 

is unclear. The elevated CCL19 levels seen in the absence of CCX-CKR could increase the 

proliferation and/or survival of T cells in the ILN, since CCL19 is known to be important 

in these processes (Link et al., 2007). It is possible that a defect in a DC or macrophage 

subset in the ILN, as suggested by the reduction in internalisation of CCL19 by two 

myeloid subsets described above, might lead to knock-on effects in terms of the ability to 

provide survival signals to lymphocytes upon priming, but again the exact cell types likely 

to be involved are unclear. Notably, in female mice on the same genetic background as 

those primarily used in this study (i.e. C57Bl6) no significant difference in cellularity of 

MLN, ILN or spleen was observed by a previous student (E. Anderson, pers. comm.), 

while another student found that female CCX-CKR deficient mice on an FVB background 

showed a small but significant decrease in total ILN cellularity compared to WT 

(Comerford, 2005). Additionally, Comerford and colleagues reported no difference in 

cellularity between ILNs from resting WT and CCX-CKR deficient resting female C57Bl6 

mice (Comerford et al., 2010). These conflicting results may reflect gender or strain-
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specific differences in the activity of CCX-CKR, albeit differences currently without 

explanation. Alternatively, it is possible that variation between samples causes the slight 

differences observed – all three studies found varying degrees of overlap in total cell 

number between WT and CCX-CKR deficient mice, regardless of genetic background or 

gender. Thus, this defect in ILN cellularity requires further investigation before we will 

have a clear understanding of the role played by CCX-CKR in its regulation.  

One of the most striking effects of CCX-CKR deletion uncovered by my work is the effect 

on peritoneal cavity lymphocyte cellularity. Intriguingly, total cellularity of the peritoneal 

cavity was slightly elevated in the CCX-CKR deficient peritoneal cavity compared to that 

of the WT. When analysed further it transpired that this corresponded to a significant and 

highly reproducible defect in lymphocyte cellularity in particular. All lymphocyte subsets 

examined (B1a-c and B2 B cells, and T cells) were significantly elevated in number in the 

CCX-CKR deficient peritoneal cavity. Myeloid cell subsets examined were unaffected in 

terms of absolute numbers, although proportions were skewed, presumably due to the 

lymphocyte defect. CCR7 and CXCR5 have been shown to play an important role in 

regulating the lymphocytic cellularity of the peritoneal cavity, with CCR7 being 

specifically involved in egress, as discussed above. Interestingly, B1 B cells and B2 B cells 

of the peritoneal cavity are differently affected by deletion of CCR7, with B1 B cell 

numbers decreased in the CCR7 deficient cavity while B2 cells are increased in number. 

Overall, total peritoneal cavity cellularity is increased in the absence of CCR7 and 

decreased in the absence of CXCR5 (Ansel et al., 2002, Höpken et al., 2004, Höpken et al., 

2010). In light of these findings, therefore, what could CCX-CKR be doing that its absence 

causes a significant increase in all subsets examined? It is possible that B1 cells (and 

perhaps T cells), which express high levels of CCR7, use both CCR7 and CXCR5 for entry 

into the peritoneal cavity and CCR7 for egress, while B2 cells rely mainly on CXCR5 for 

entry and CCR7 for egress. The absence of CCR7 would lead to a reduction in B1 cells 

(through failure to enter the peritoneal cavity) but an increase of B2 cells that remain 

capable of entering but failing to leave. Interestingly, in the absence of CCX-CKR, the 

most substantial difference in cellularity is observed in the B2 B cell population. 

Therefore, perhaps CCX-CKR reduces the ability of peritoneal leukocytes to respond to 

CCR7 ligands, either through affecting the availability of these ligands or through direct 

effects on the cell signalling induced through CCR7. This might lead to a slight defect in 

B1 B cell (and perhaps T cell) entry into the peritoneal cavity that is nevertheless still 

intact to the point that a failure to exit the cavity leads to an overall increase in the presence 

of these subpopulations within the cavity. B2 cells on the other hand would have no such 

defect in entry, making a failure to exit result in a much more pronounced increase in 



225 

cellularity. Again, it must be noted that work carried out subsequent to these experiments 

has shown that due to the limited number of surface markers used in this analysis, the “B2” 

cell population identified in this thesis may in fact include a substantial number of B1 B 

cells (Hansell et al., 2011b). Therefore, the difference in effect on B1 and B2 B cells may 

be even more pronounced than this analysis shows. A more in depth analysis of this 

phenotype would be very interesting. The effects of CCX-CKR deletion on the production 

of natural IgM (a product of B1a B cells), responses to intraperitoneal challenge, responses 

to bacterial infection, and other markers of B1 B cell activity have yet to be carried out and 

may uncover a role for CCX-CKR in regulating the innate-like B cell compartment in 

immune responses.  

7.6 CCX-CKR during the induction of cutaneous inflammation 

Experiments investigating the role of CCX-CKR in the resting murine immune system 

showed that its deletion alters chemokine levels in a variety of tissues, including ILNs, 

thymus and serum, as well as cellularity at these sites, most strikingly in the peritoneal 

cavity but also in the ILN. In addition, subsets of myeloid cells were also identified that 

exhibited CCX-CKR-dependent internalisation in the WT ILN. These findings, combined 

with QPCR expression analysis demonstrating mRNA expression of the receptor in the 

skin and ILNs, suggested CCX-CKR might be involved in the response to cutaneous 

inflammation. A short-term model of TPA-induced skin inflammation routinely used in the 

lab was employed to investigate a possible role for CCX-CKR in cutaneous inflammatory 

responses. Furthermore, a model of DMBA/TPA-induced tumorigenesis, where papilloma 

formation is triggered by mutagen application and promoted by induction of chronic 

inflammation, was used to assess the possible role of CCX-CKR in long-term 

inflammation and tumour development and progression.  

A number of potential roles for CCX-CKR were considered. First, as discussed above, the 

phenotype of the myeloid subsets identified as displaying CCX-CKR dependent 

internalisation of CCL19 led to speculation that they might in fact be SCMs. These cells 

line the inside of the LN, lying just below the capsule and acting as “gatekeepers”, 

monitoring cells and lymph-borne antigens and proteins entering the LN. This would 

provide an alternative interpretation for the expression pattern reported by Heinzel and 

colleagues, which they attributed to stromal cells (Heinzel et al., 2007). Expression of 

CCX-CKR by these cells could have a number of functions. As proposed above, CCX-

CKR expression could control subcapsular movement of cells, including SCMs 

themselves, by regulating chemokine levels in the SCS. Chemokine from the periphery 
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drains to LNs via the lymph, while CCR7 ligands are highly expressed within the 

paracortex of the LN. SCMs line the boundary of the SCS and the B cell follicle, 

presenting or transferring antigen arriving from the lymph to B cells or FDCs respectively. 

Migration of SCMs themselves into the follicle is rare, with antigen delivery believed to be 

mediated by projection of long processes into the B cell follicle (Phan et al., 2009). This 

localisation could be controlled by tight regulation of the microenvironment of these cells. 

CCX-CKR expression on SCMs could be used to limit responsiveness to CCR7 ligands 

either from lymph or from T cell zones. DCs migrating to LNs via the lymph are trapped in 

the SCS in plt/plt mice, due to a lack of LN-expressed CCR7 ligands. Therefore, SCM 

could use CCX-CKR to locally regulate their chemokine environment and prevent aberrant 

migration from the SCS. Interestingly, at day 3 post-TPA application, the same subsets of 

cells displayed CCX-CKR-dependent internalisation of CCL19 as those in the resting ILN, 

but this was not apparent at day 6 post-TPA. This would suggest that, whatever the role of 

this putative CCX-CKR on these cells, it is involved at rest and during early stages of the 

inflammatory response but does not function in the same way at later stages. Figure 7.2 

presents a model of CCX-CKR function during an immune response. 

Intriguingly, the abundance of one of the affected subsets (CD11bhigh F4/80neg CD11c+) 

was substantially increased in the CCX-CKR deficient ILN at day 6 post-TPA treatment, 

with a similar, but not statistically significant trend observed at day 3 post-TPA. This 

population generally has lower CD11c expression than the other myeloid population 

exhibiting CCX-CKR dependent internalisation of CCL19 (CD11bint/high F4/80low CD11c+ 

cells) and is therefore more likely to include SCMs (defined as CD11b+ F4/80neg CD11clow, 

see above). However, it is important to note that this population may also include 

migratory DCs. It would be interesting to dissect this population further, preferably using 

an increased repertoire of lineage markers, to examine whether a specific subset within this 

population is responsible for either the CCX-CKR-dependent internalisation or the 

increased cellularity or both. In the case of migratory DCs, it is possible that CCX-CKR 

expression in the skin is involved in their retention at this site, possibly by limiting 

inflammation-driven increases in CCL21 expression, with deletion of the receptor leading 

to dysregulation of migration upon induction of inflammation. 

Another potential role for CCX-CKR expression in the SCS, either by SCM or stroma, 

could be to control the entry of DCs and other cells from the periphery. As discussed in the 

Introduction, CCR7 and its ligands are important in the entry of DCs and possibly 

neutrophils from peripheral tissues into LN via the lymph, as well as having crucial roles in 

the correct positioning of leukocytes within the LN (Beauvillain et al., 2011, Förster et al., 
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2008). By controlling the chemokine environment in the SCS, CCX-CKR may facilitate 

the directed migration of DCs, for example, into the paracortex to interact with T cells. 

Notably, the scavenging function of CCX-CKR in vitro has only been demonstrated for 

CCL19, so it is possible that CCX-CKR does not internalise CCL21 in the same way. It is 

known that full-length CCL21 does not induce the same rate of receptor internalisation and 

level of desensitisation through CCR7 as the more soluble CCL19. Additionally, recent 

work has shown that DCs can cleave full-length CCL21 into a soluble form that acts much 

like CCL19 through CCR7 (Schumann et al., 2010). Perhaps CCX-CKR in the SCS 

removes soluble CCL19 (and potentially cleaved CCL21) while full-length immobilised 

CCL21 remains available to CCR7+ cells, thus allowing random motility of entering DCs 

that only becomes directed once soluble CCR7 ligand from the paracortex is detected. My 

finding that CCL19 is increased in the CCX-CKR deficient ILN while CCL21 is slightly 

decreased suggests that CCX-CKR may respond to these two chemokines differently 

(although it should be noted that Comerford and colleagues found both chemokines to be 

elevated in the ILN in the absence of CCX-CKR (Comerford et al., 2010)). If CCX-CKR 

does indeed function to scavenge soluble CCL19 (and CCL21), in its absence the 

ubiquitous presence of these chemokines in both the SCS and the paracortex could impair 

the directional migration of these cells and decrease the efficiency of their interaction with 

T cells. It would be interesting to investigate whether DC localisation within the LN is 

perturbed in resting and/or inflamed LNs of CCX-CKR deficient animals. Histological 

analysis of these tissues should provide some clarity in this matter by allowing 

visualisation of cell positioning, and adoptive transfer of labelled DCs from WT or CCX-

CKR deficient mice into WT or CCX-CKR deficient recipients would provide a useful 

method of investigating the effect of CCX-CKR deletion on their behaviour and 

localisation. 

As I have observed above, CD11bint/high F4/80low CD11c+ cells were also identified as 

displaying CCX-CKR dependent internalisation of CCL19 in WT ILN, both in resting and 

inflamed ILN, although it was not observed at day 6 post-TPA treatment. This population 

likely includes DCs entering from the periphery that need to respond to CCR7 ligands to 

direct their migration into the T cell zone. Why then would these cells express CCX-CKR? 

Since only a small proportion of CCL19 internalisation appeared to be CCX-CKR 

dependent, it is possible that only a subset of these DCs express the receptor in the ILN, 

such as those that have recently entered the ILN. The cellularity of a second subset of 

myeloid cells was also affected during inflammation, namely CD11bint/high F4/80low CD11c- 

cells. These cells were present in roughly equivalent proportions and numbers in resting 

mice, but were significantly increased in proportion in CCX-CKR deficient ILNs at both 
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day 3 and day 6 post-TPA treatment. More importantly, the absolute number of these cells 

was significantly increased in CCX-CKR deficient ILNs at day 6 post-TPA treatment, with 

a similar trend observed at day 3, albeit one that failed to reach statistical significance. This 

population clearly requires further characterisation but it may include neutrophils, which 

have been reported to use CCR7 to migrate to draining LNs from peripheral sites 

(Beauvillain et al., 2011). It is possible that, as suggested for DC subsets above, 

neutrophils in inflamed skin express CCX-CKR to mediate their retention at the site of 

inflammation until they receive a signal to downregulate the receptor and migrate to the 

ILN. In the absence of CCX-CKR they would have no such retention signal and might 

aberrantly migrate to the ILN upon induction of inflammation. Although there was no 

gross defect in skin inflammation as assessed by H&E staining, specific enumeration of 

neutrophils (and indeed DCs) in inflamed skin, either by flow cytometry or by 

immunohistochemistry could help to verify or refute this hypothesis. The proposed role of 

CCX-CKR in the inflammatory response in skin and draining LN is illustrated in Figure 

7.2. 

7.1 CCX-CKR influences papilloma development during a model 

of inflammation-driven tumorigenesis 

With subtle effects of CCX-CKR deletion observed in the short-term model of cutaneous 

inflammation described above, and in light of the demonstrated role for CCR7 and its 

ligands in tumour development and metastasis to LNs, it was hypothesised that deletion of 

CCX-CKR might alter the progression of inflammation-driven papilloma development. 

Using a model already established in the lab, a post-doctoral researcher (Dr. Mairi Clarke) 

and I carried out a lengthy protocol to investigate this possibility. Due to time constraints 

and the prolonged nature of the protocol, the findings presented in this thesis are 

preliminary, but do provide some interesting insights into a potential role for CCX-CKR in 

papilloma development. Firstly, CCX-CKR deficient mice developed significantly fewer 

tumours than WT mice over the course of the experiment, with this difference becoming 

more pronounced as the model progressed. Papillomas from WT mice had less relative 

expression of CCX-CKR mRNA than normal adjacent skin, while the relative level of 

CCR7 mRNA was increased, in line with an increased proportion of leukocytes within 

papillomas. There was no difference in CCR7 mRNA level between WT and CCX-CKR 

deficient papillomas nor between WT and CCX-CKR deficient normal adjacent skin. This 

may be a preliminary indication that the papillomas that do form are likely to contain a 

similar leukocyte infiltrate in the presence or absence of CCX-CKR, although extensive  
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Figure 7.2: A proposed role for CCX-CKR during short-term induced cutaneous 
inflammation. In the skin, CCX-CKR+ cells (currently unidentified) regulate resting levels of 
CCL21, preventing aberrant migration of DCs to lymph nodes. During inflammation, CCL21 
expression is elevated beyond the internalisation limit of the CCX-CKR-expressing cells, allowing 
rapid directed migration of activated cells to the draining lymph node. As inflammation resolves, 
CCX-CKR-expressing cells clear excess CCL21 from the skin until resting levels are reached and 
maintained. In the draining LN, CCL19 (and possibly CCL21) from the LN are presented to entering 
DCs, increasing directed migration into the T cell zone. During the early stages (day 3) of 
inflammation, this is maintained, perhaps even increased. By day 6, when skin inflammation is 
resolving, CCX-CKR expression is downregulated to limit the transfer of chemokine to entering 
DCs and reduce the level of migration, allowing the immune response to be resolved.  

characterisation of papilloma cellularity, either by flow cytometry or 

immunohistochemistry, or both, would be necessary to confirm this. The decrease in 

papilloma formation in the CCX-CKR deficient mouse was matched by decreased ILN size 

and weight in CCX-CKR deficient tumour-burdened mice compared to their WT 

counterparts. Again, further characterisation of this difference is required, but it may 
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indicate less metastasis in the absence of CCX-CKR, possibly due to the indirect effect of 

reduced papilloma numbers. The role of CCX-CKR in papilloma development is uncertain, 

and with limited data generated thus far, theories as to how it may function are largely 

speculative. However, based on the subtle influence of CCX-CKR on short-term 

inflammation, it is possible that alterations in skin cellularity in the absence of the receptor 

lead to a less tumorigenic environment. See Figure 7.3 for a proposed mechanism by which 

CCX-CKR deletion might negatively influence papilloma formation. If, in the absence of 

CCX-CKR, inflammation more readily induces migration of neutrophils and DCs to 

draining LNs, then over time the deficit of such cells may become more pronounced. 

Inflammatory chemokines produced by neutrophils and other cells in the skin may be 

reduced as a result, leading to a decreased rate of inflammatory cell infiltrate and reduced 

numbers of tumours developing. The smaller size of ILN from CCX-CKR deficient 

papilloma-bearing mice compared to WT may also reflect not only a reduced response 

correlating with reduced tumour development, but also reduced capacity for tumour cell 

migration from skin to LN or a less efficient activation of cells within the LN in response 

to tumour antigens. These findings are intriguing and require much more extensive and 

detailed analysis to clarify the role of CCX-CKR during tumorigenesis.  

7.1 Conclusions and future directions 

What have we learned about the immunological role of CCX-CKR since this project 

began? The receptor clearly modulates chemokine levels in vivo, both in lymphoid and 

non-lymphoid tissues. The extent of this modulation and the mechanism by which it occurs 

is as yet unknown, although in vitro data provides some interesting suggestions. Cellularity 

is affected by deletion of CCX-CKR in some, but not all compartments. Particularly, the 

peritoneal cavity lymphocyte compartment is significantly disrupted. The impact this may 

have on response to infection, intraperitoneal challenge or natural antibody levels is 

unclear and experiments to examine this should provide some interesting insights into the 

role of CCX-CKR in immunity. Work by a previous student, Dr. E. Anderson, has 

uncovered a defect in intestinal immune responses in the CCX-CKR deficient mouse, 

which lacks the ability to develop oral tolerance to OVA and has enhanced oral priming 

following OVA/CT immunisation (Anderson, 2011). As peritoneal B1 cells are believed to 

be a major source of IgA-producing cells in the small intestine, it would be interesting to 

see if there could be a link between the altered peritoneal cellularity of the CCX-CKR 

deficient mouse and its aberrant intestinal immune responses. B cell populations have not  
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Figure 7.3: A proposed mechanism for reduced papilloma formation in the CCX-CKR 
deficient mouse. In resting WT skin CCX-CKR regulates the level of CCL21, limiting the steady-
state migration of DCs to the draining LN. Treatment with DMBA leads to a mutation in the H-ras 
oncogene. Subsequent sustained inflammation induced by continuous TPA treatment causes 
transformation of cells with a H-ras mutation and promotes development of papilloma and 
metastasis of tumor cells to the draining LN. In the absence of CCX-CKR, CCL21 levels are 
elevated in the skin, potentially increasing the kinetics of DC immunosurveillance and leading to 
more rapid response to cell damage/mutation. Inflammation drives papilloma formation but this is 
reduced, perhaps due to an earlier response to and clearance of some mutated cells. Reduced 
papilloma formation may lead to reduced metastasis and therefore reduced LN size in the CCX-
CKR deficient animal.  

been examined in detail in the small intestine of the CCX-CKR deficient mouse and such 

an analysis might uncover further defects in the B cell compartment in the absence of 

CCX-CKR. Preliminary reports from Dr. E. Anderson in our lab show a decrease in B cell 

numbers in the CCX-CKR deficient small intestine (E. Anderson, pers. comm.). Another 

interesting finding by Anderson was that pDCs were less abundant in the absence of CCX-

CKR. Specifically, she found that pDCs were largely absent from the CCX-CKR deficient 

MLN and reduced in the ILN, with no difference in splenic pDC numbers observed. 

Adoptively transferred CCX-CKR deficient pDCs appeared less efficient in entering WT 

MLN than transferred WT pDCs, although this work was preliminary and requires further 

confirmation (Anderson, 2011). Nonetheless, these findings suggest pDCs as a possible 

site of expression of the receptor. Alternatively, as pDCs enter LNs via HEVs using CCR7, 

there may simply be a defect in CCR7 ligand availability in the CCX-CKR deficient mouse 
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that affects the pDC population, although why it would not similarly affect naïve 

lymphocytes, which use the same route of LN entry, is unclear. The loss of pDCs could 

instead indicate a defect in survival of these cells. Further work investigating this 

phenomenon will hopefully provide some clarity as to its cause.  

The influence of CCX-CKR on short-term induced cutaneous inflammation is limited, 

although there are some indications that it may control leukocyte migration from the skin 

to the LN. Analysis of chemokine protein levels in skin and LN during this protocol could 

provide insights into how this might occur. Deletion of the receptor has a more dramatic 

effect on the progression of inflammation-driven papilloma development, but again, this 

work needs to be continued and the phenomenon investigated in much more detail before 

we can understand the role of CCX-CKR in this process. Interestingly, Comerford and 

colleagues have recently described a role for CCX-CKR in suppressing the development of 

EAE. They showed that deletion of CCX-CKR leads to an earlier onset of, and more 

severe disease in EAE (Comerford et al., 2010). This phenotype can be reversed by 

administering neutralising anti-CCL21 antibodies, indicating that increased levels of 

CCL21, possibly in the central nervous system, may be responsible for the altered 

progression of disease (Comerford et al., 2010). The same study also showed that CCX-

CKR deficient mice have increased levels of IL-23 in the spleen, corresponding to the 

observed enhancement of T cell priming in the spleen, and skewing of CD4+ T cell 

responses from Th1 to Th17 (Comerford et al., 2010).  CCL19 and CCL21 are reported to 

be involved in IL-23 production by dendritic cells and expansion of Th17 cells (Kuwabara 

et al., 2009), and it is reasonable to hypothesise that dysregulation of CCL21 

bioavailability by CCX-CKR deletion underpins the observed cytokine and T cell 

phenotypes. These data strongly support a role for CCX-CKR in fine regulation of the 

immune response through regulation of chemokine bioavailability.  

Together, these studies indicate that CCX-CKR is involved in regulating the immune 

system, potentially by controlling chemokine levels in vivo, but much still needs to be 

done. The receptor continues to be investigated both by our group and others, and it is 

hoped that further study of CCX-CKR deficient mice will yield a more complete picture of 

the role of this receptor in shaping immune responses and pathology.  
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