
 
 
 
 
 
MacKenzie, Kirsty Faye (2011) Partnerships and phosphorylation of 
cyclic AMP phosphodiesterase-4A5. PhD thesis 
 
http://theses.gla.ac.uk/2719/
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given. 

 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/2719/


Addendum to thesis 
 
Some image panels in chapters 3 and 5 were duplicated accidentally and should 
be disregarded.  
 
Chapter 3 
Loading controls in panels 3.7a and 3.12a are duplicated. 
Loading controls in panels 3.9a, 3.10a, 3.11a are duplicated. 
Loading controls in panels 3.10a, 3.12a are duplicated. 
 
Chapter 5 
Figure 5.3 (2nd image) and 5.6 are duplicated. 
 
Some images in chapter 4 are duplicated or erroneously altered and should be 
disregarded. 
 
Chapter 4 
Images in panels 4.9a, 4.10c, 4.11b and 4.12a are erroneously altered. 
Loading controls in panels 4.7a, 4.7c and 4.7c are duplicated and erroneously 
altered.  
 



 1 

Partnerships and Phosphorylation 

of Cyclic AMP 

Phosphodiesterase-4A5 

 

 
 

Kirsty Faye MacKenzie 
 

2011 

 
A thesis for the degree of Doctor of Philosophy 

at 

University of Glasgow 

 
Department of Neuroscience and Molecular Pharmacology 

Wolfson Link Building 

University of Glasgow 

University Avenue 

Glasgow 

G12 8QQ 



 2 

Abstract 

 
Phosphodiesterase 4 enzymes hydrolyse the second messenger cyclic AMP and 

therefore are set to play an important role in cell signaling. In this thesis I investigate the 

phosphorylation and protein-protein interactions of the cAMP hydrolyzing 

phosphodiesterase isoform, PDE4A4/5.  

In the first of my studies I show that PDE4A4/5 can be phosphorylated by 

MAPKAPK2 (MK2) the downstream kinase of the p38 MAPK signalling pathway. This 

phosphorylation reaction attenuates the degree of activation of PDE4A5 elicited through 

phosphorylation by Protein Kinase A. I also show that MAPKAPK2 can bind directly to 

PDE4A4/5 and map the two binding sites required by peptide array technology.  

In the second of my studies I show that PDE4A4/5 interacts with the low affinity 

neurotrophin receptor, p75NTR.  This interaction inhibits normal fibrin breakdown in an 

in vitro model. I also show that phosphorylation of PDE4A5 by MAPKAPK2 enhances 

the inhibition of fibrin breakdown and increases PDE4A5:p75NTR complex formation.  

In the final study described in this thesis I show that long form PDE4 isoforms 

contain a potential multi-functional docking site where several partner proteins are able 

to bind.  

In conclusion, the work described in this thesis provides a valuable insight into 

PDE4A4/5, its interacting proteins, phosphorylation status and the potential for 

exploitation of this novel information therapeutically. 
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Chapter 1              Introduction 
 

 

Understanding how cells communicate with each other in health and disease is a 

major topical issue that will impact considerably on human health. The mechanisms that 

underpin signal transduction in cells are complex and unravelling them provides a major 

challenge. 

 

With the exception of steroid hormones, most hormones and neurotransmitters 

cannot penetrate the cell membrane and must therefore elicit their response within the 

cell via signal transduction pathways that traverse the cell plasma membrane, radiate 

through the cell interior and, where appropriate, into intracellular organelles such as the 

nucleus. This process involves the conversion of an extracellular biological signal to an 

intracellular response. Initiation of this pathway begins through activation of a cell-

surface receptor by an agonist.  

 

The second messenger concept was developed through studies on the 3’, 5’ 

cyclic adenosine monophosphate (cyclic AMP or cAMP) signalling system [Beavo and 

Brunton, 2002]. The receptor-mediated stimulation of cAMP generation (Figure 1.1) 

[Beavo and Brunton, 2002] envisages that when an agonist binds to a G Protein Coupled 

Receptor (GPCR) it is able to associate with a specific G-Protein, called Gs. This causes 

activation of Gs through GDP/GTP exchange, with the release of GTP-bound γ-subunit 

of Gs and a αβ complex. The GTP-bound, Gs γ-subunit, in turn, activates the membrane 

bound enzyme adenylyl cyclase, which leads to the production of cAMP from ATP and 

therefore an increase in intracellular levels of cAMP. Cyclic AMP can then activate 

important proteins like Protein Kinase A (PKA), Exchange Protein Activated by cAMP 

(EPAC) and cyclic nucleotide gated ion channels. This confers regulation on a myriad of 

fundamental cellular processes such as transcription, proliferation, cardiac function, 

learning and memory and apoptosis [Tasken and Aandahl, 2004].  
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Cyclic nucleotide phosphodiesterases, which degrade cAMP to 5’-AMP, are 

pivotal to signal transduction, not only as regards signal termination and therefore 

negative regulation of cAMP within the cell, but also in shaping gradients of cAMP for 

compartmentalised cAMP signalling [Houslay. 2010]. 

 

 

 

 

 
 

 

 

Figure 1.1 -  cAMP cascade (adapted from Prof Miles Houslay). 
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1.1 G-Protein Coupled Receptors  

 

For the cAMP signalling pathway to be fully understood each of its components 

must be looked at in depth. Signalling is initiated by an agonist binding to G-Protein 

Coupled Receptors. GPCRs are the widest and most diverse family of cell surface 

receptors [Fredholm et al., 2007]. Structurally they consist of seven transmembrane α-

helices that span the plasma membrane. These seven α-helices are linked by alternate 

intracellular and extracellular loops. They can vary in length and can be subjected to N-

linked glycosylation at their extracellular surface [Hollmann et al., 2005]. The third 

transmembrane domain contains an amino acid essential for ligand specificity, which is 

situated C-terminally to a conserved cysteine residue [Yin et al., 2004]. If the ‘ligand 

specificity’ amino acid is basic the agonist binding the GPCR will most likely be a 

peptide but if the ‘ligand specificity’ amino acid is acidic then the agonist will most 

likely be an amine [Simon, Strathmann and Gautam, 2001]. The C terminal region of a 

GPCR consists of approximately 50 amino acids that are reasonably conserved through 

most GPCRs. The second and third cytoplasmic loop work in conjunction with the C-

terminal to confer ligand binding specificity [Simon, Strathmann, Gautam, 2001]. 

 

G-Protein Coupled Receptors are now widely thought to form dimers which 

confer important functional attributes such as signal transduction and plasma membrane 

localisation [Milligan, 2004]. 

 

 

1.1.1  Desensitisation of GPCRs 

 

Continuous exposure of GPCRs to their ligand causes a profound and rapid 

desensitization of signalling [Kohout and Lefkowitz, 2003].  Desensitization occurs as a 

result of phosphorylation of the C-terminal by G-protein coupled receptor kinases 

(GRK). Indeed, GRK activity can itself be regulated by PKA and Extracellular-signal 

Regulated Kinase (ERK) phosphorylation. The functional consequence of 
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phosphorylation by GRK is to trigger the binding of cytosolic β-arrestin to the 

membrane-localised GPCR, which sterically blocks its G-protein coupling, causing a 

rapid desensitization [Li et al., 2006]. In cells where the cAMP degrading PDE4D5 

isoform is present then a complex of this isoform together with β-arrestin can be 

delivered to an agonist-activated GPCR, thus delivering an active cAMP degrading 

system to the site of cAMP synthesis at the plasma membrane [Houslay, 2010]. This can 

form an additional part of the desensitization mechanism for cAMP signalling in cells. 

 

Receptor internalisation can lead to long-term desensitisation. This works 

through a similar mechanism involving β-arrestin but in this case the binding of β-

arrestin causes localisation of the GPCR to clatherin coated vesicles. Through 

interaction with clatherin and AP-2 this then leads to endocytosis of the complex. The β-

arrestin-bound GPCR can then either become de-phosphorylated via Protein 

Phosphatase 2 (PP2) in the early endosomes, after which it is recycled and returned to 

the cell surface or sent for degradation in lysosomes, with concomitant down-regulation 

of cell surface receptor levels and signalling [Hollmann et al., 2005]. Certain processes 

within the cell can prevent receptor recycling, such as palmitoylation, which involves 

the covalent attachment of palmitic acid to appropriate cysteine residues in the GPCR. 

Other means of regulation involve ubiquitination, which is the attachment of ubiquitin 

peptides to the GPCR, affecting its recycling and facilitating its degradation. 

 

 

1.2 G-Proteins 

 

The second step in the cAMP signalling pathway comes in the form of G-

Proteins. G-proteins are guanine nucleotide binding proteins [Cabrera-Vera et al, 2003]. 

These interact with the second and third intracellular loops and the C-terminal of 

GPCRs. There are four major classes; Gs, Gi/o, Gq/11 and G12/13. G-proteins are 

heterotrimeric and are composed of three subunits; Gα, Gβ and Gγ. In the inactive state 

the Gα unit is bound to GDP, which facilitates binding to a Gβ-Gγ complex that keeps 

the G-protein bound to the plasma membrane [Hollmann et al., 2005]. Activation of the 
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GPCR leads to a conformational change in its intracellular loops causing activation of 

the guanine exchange factor, which results in GTP being substituted for GDP at the Gα 

subunit. This causes dissociation of Gα from the Gβ-Gγ complex, which leads to 

reduction of agonist binding [Hollmann et al., 2005]. 

 

Each of these classes demonstrates an affinity for particular partner GPCRs. The 

classes of G-proteins can bind GPCRs out with their partners but with a much lower 

affinity. However this low affinity can be increased through phosphorylation and 

palmitoylation. For example, when the β2-adrenoceptor is phosphorylated by protein 

kinase A (PKA) this reduces its affinity for its partner G-protein Gs but increases its 

affinity for the G-protein Gi/o [Hollmann et al., 2005]. 

 

 

1.3 Adenylyl Cyclases 

 

Following on from G-Proteins in the signalling cascade are the membrane-bound 

adenylyl cyclases. Adenylyl cyclases are a group of membrane-associated glycoprotein 

enzymes that convert ATP to cyclic AMP [Taskén and Aandahl, 2004]. There are 10 

adenylyl cyclase isoforms that all exhibit individual tissue specific patterns of 

localisation and specific means of regulation. 

 

They have two trans-membrane helical domains which cause membrane 

targeting and two cytosolic domains which become the catalytic site when they are in 

the correct conformation. Regulation of these active sites is controlled by the G-proteins 

upstream of them. 
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1.4 cAMP signalling 

 

 

When cyclic AMP was first proposed to be a second messenger eliciting signals 

from within the cell the theory of its role was controversial. It was not understood how 

one small molecule could play a role in so many different, independent, physiological 

roles [Beavo and Brunton, 2002]. However it is now understood that when cAMP is 

produced, by different adenylyl cyclase isoforms, it is diffused throughout the cell into 

distinct compartmentalised pools restricted by effector proteins such as AKAPs, PKA 

and PDEs [Baillie, 2009; Zaccolo et al., 2002; Houslay, 2010]. cAMP has a basal 

concentration of 1 µM in resting cells but this can rise to 10-20 µM in milliseconds to 

elicit a response. If it was left uncontrolled within the cell this would lead to disruption 

of compartmentalisation and uniform distribution which would result in an inappropriate 

response from the cell.  

 

 

1.4.1  Protein Kinase A 

 

The first cAMP effector identified, PKA is a Ser/Thr protein kinase that 

phosphorylates a wide range of target proteins at the consensus site Arg-Arg-Xaa-

[Ser/Thr]-Xhydrophobic. It is a heterotetramer with two regulatory and two catalytic 

domains. These are differentially expressed in different PKA holoenzymes on a cell type 

specific basis.  Four genes encode the regulatory domains; RIα, RIβ, RIIα, RIIβ. RI 

encodes PKA for subcellular cytosolic localisation whereas RII encodes it for targeting 

to AKAPs. The differences in these two forms are in the N-terminal portion of the 

regulatory subunits. The catalytic domain of PKA is encoded by three genes; Cα, Cβ, 

Cγ. PKA activation occurs when cAMP binds to the two regulatory subunits (2 cAMP 

molecules per subunit), causing dissociation and activation of the catalytic subunits 

allowing for phosphorylation of target proteins [Taskén and Aandahl, 2004]. However 
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the catalytic domains are subject to interactions with the PKA inhibitor PKI that 

replaces PKA at the active site and abolishes PKA activity. 

1.4.2  EPAC 

 

When cAMP signalling was first being investigated it was initially thought that 

its only effectors were PKA and cAMP-gated ion channels. However now it is widely 

appreciated the cAMP also targets an exchange protein known as Epac (exchange 

protein directly activated by cAMP). This protein was initially identified through 

database screening of an RT-PCR product to explain the PKA-independent activation of 

Rap, a small G protein, through cAMP activation [de Rooij et al., 1998]. Subsequently 

two isoforms of Epac were discovered, Epac 1 and Epac 2 [Kawasaki et al., 1998]. 

Structurally they are multi-domain proteins containing and N-terminal regulatory 

domain, a C-terminal exchange factor domain and linking these a Ras-assocation 

domain [ de Rooij et al., 2000]. Both isoforms are present in most tissues with different 

expression levels. Epac 1 is most abundant in adipose tissue, blood vessels, and the 

ovaries to name but a few, whereas Epac 2 is most abundant in the central nervous 

system and pancreas [Kawasaki et al., 1998].  

 

Functionally Epac proteins act as guanine exchange factors (GEFs) for the Rap 

family of small G-proteins. Their role is to catalyse the exchange of GDP to GTP on 

these G-proteins and therefore activate them [de Rooij et al., 2000]. Various effectors 

proteins downstream of Rap have been identified and it has been shown that Epac plays 

roles in cardiac function, insulin secretion, cerebral function and even immune response 

[Gloerich and Bos, 2010]. 

 

 

1.4.3  AKAPs 

 

AKAPs are A-Kinase (PKA) Anchoring Proteins [Langeberg and Scott, 2005] 

which, despite not being direct cAMP effectors play a very important role in cAMP 

signalling. To date more than 50 members of the AKAP family have been identified 
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[Wong and Scott. 2004] and these are thought to play a key role in compartmentalisation 

and precision of cAMP signal transduction through binding of PKA into spatial specific 

areas throughout the cell [Carnegie et al., 2009]. Despite a lack of primary sequence 

homology between the AKAP isoforms they have been identified through the presence 

of three common features: an anchoring PKA domain, their ability to bind other 

signalling enzymes (such as phosphodiesterases) and their ability to target these 

enzymes and kinases to specific sites within the cell [Wong and Scott, 2004]. The first 

of these features, the anchoring site for PKA, has been widely studied. The majority of 

AKAPs bind PKA through its RII regulatory subunit [Carnegie et al., 2009] however 

dual specificity AKAPs which bind both RII and the other regulatory component of 

PKA the RI subunit have also been identified [Huang et al., 1997]. This R subunit 

binding configures PKA to a specific site within the cell, near other cAMP regulating 

components such as PDEs and allows for compartmentalisation of signalling [Baillie. 

2009]. A small 24mer peptide, Ht31, has been developed that binds the PKA binding 

site on AKAPs with nanomolar affinity and this is now being used in disruption studies 

to help identify the cellular and physiological function of AKAPs [Carr et al., 1992]. 

Indeed at a cellular level this has already been used to highlight the role of AKAPs in 

regulation of L-type calcium channels [Johnson et al., 1994] where when Ht31 is used 

cAMP regulation of the receptor is lost, most likely due to a lack of cAMP 

compartmentalisation. 

 

Despite these advances in the identification of a large number of AKAPs and the 

elucidation of their ability to anchor PKA, their physiological role is not greatly 

understood. Studies on Drosophila melanogaster have now shown that AKAPs play a 

role in learning and memory [Terman and Kolodkin, 2004]. However the development 

of knockout mice models for AKAPs has been less successful due to high levels of 

embryonic lethality or conversely lack of an obvious phenotype [Carnegie et al., 2009]. 
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1.5 Cyclic Nucleotide Phosphodiesterases 

 

Cyclic Nucleotide Phosphodiesterases (PDEs) play a major role in cell signalling 

by hydrolysing the cyclic nucleotides cAMP and cGMP into their 5’ mononucleotides. 

Due to their diversity they are found in many locations throughout the cell such as the 

cytosol, the plasma membrane, the cytoskeleton and the nucleus [Houslay and Adams, 

2003]. The PDE super-family is represented by 11 gene families (PDE1-11). However 

the occurrence of mRNA splicing and multiple genes within various families leads to 

the potential for a large number of PDE isoforms being expressed. Some PDE families 

specifically hydrolyse cAMP (PDE4, 7, 8) some both cAMP and cGMP (PDE1, 2, 3, 10, 

11) and others which can hydrolyse only cGMP (PDE5, 6, 9) [Conti and Beavo, 2007; 

Lugnier, 2006]. The structure of the catalytic units of various PDEs has been solved 

recently and this has identified the cyclic nucleotide binding pocket and given insight 

into the catalytic mechanism [Zhang et al., 2004]. Structural studies have also given 

insight into the basis of selectivity of active site targeted competitive PDE inhibitors and 

aided in the development of more potent and selective inhibitors [Ke and Wang, 2007; 

Zhang et al., 2004; Card et al., 2005]. Use of these inhibitors has then given an insight 

into the functional role of specific PDEs within the body and led to the development of 

several therapeutics. Examples of these are the selective PDE4 inhibitors in 

development for treating inflammatory diseases [Houslay et al., 2005], PDE3 inhibitors 

that are used to treat intermittent claudication [Thompson et al., 2007] and, of course, 

the most famous PDE inhibitor to date, namely Sildenafil (Viagra), which is a PDE5 

specific inhibitor used to treat erectile dysfunction and infant and, more recently, adult 

pulmonary hypertension [Francis and Corbin, 2005; Huddleston et al., 2009; Singh, 

2010]. Along with the therapeutic advances developed through research into PDE 

isoforms, research into PDE4 enzymes in particular has helped to develop the 

understanding of compartmentalisation of cAMP signalling and the role of PDEs in 

cross-talk between signalling pathways [Houslay and Adams, 2003; Houslay, 2010].  
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Table 1.1: Classification of PDE enzyme super-family. 
 

Substrates 
PDE Genes 

cAMP cGMP 
Regulation 

Regulatory 

Domains 

1 A, B and C √ √ 
Ca2+/CaM 

PKA and CaMK 

 

Ca2+/CaM 

Binding 

2 A √ √ 
Activated by cGMP 

Phosphorylated by PKC 

 

GAF-A, GAF-

B 

3 A and B √ x 

Inhibited by cGMP 

Phosphorylated by PKA, 

PKB/Akt & PI3-K 

 

4 
A, B, C and 

D 
√ x 

Phosphorylated by PKA 

and ERK1/2 

 

UCR1, UCR2 

5 A x √ 
Binds cGMP 

Phosphorylated by PKA 

and PKG 

GAF-A, GAF-

B 

6 A, B and C x √ 
Activated by Rhodopsin 

and Transducin (Gt) 

 

GAF-A, GAF-

B 

7 A and B √ x  

 

 

 

8 A √ x 

 

 

 

PAS 

9 A √ √ 
 

 

 

REC 
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10 A √ √ 
Inhibited by cAMP 

 

 

GAF-A, GAF-

B 

11 A √ √ 
 

 

 

GAF-A, GAF-

B 
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1.5.1  Phosphodiesterase 1 

 

Phosphodiesterase 1 (PDE1) enzymes are encoded by 3 genes (A-C), expressed 

as multiple splice variants [Wang et al., 1990]. They can hydrolyse both cAMP and 

cGMP but have a lower Km value for cGMP and therefore shows higher affinity for it 

than for cAMP (Km values = 1-100 µM for cAMP and 1-5 µM for cGMP) [Francis et 

al., 2001]. Structurally PDE1 enzymes consist of two paired Ca2+ calmodulin domains 

(CaM) which, with the binding of four calcium ions, cause activation of enzymatic 

activity [Huang et al., 1981].  This means that increased intracellular calcium levels 

generate a fall in cAMP/cGMP levels by activating PDE1, thus providing a point of 

cross talk. Regulation of PDE1 enzymes is thought to occur through phosphorylation by 

PKA and CaM kinase II which down-regulate its action by attenuating CaM binding 

[Sharma, 1991; Sharma & Wang, 1986].  

 

PDE1 isoforms are differentially expressed in cells; with particularly high levels 

found in the central nervous and cardiac systems [Yan et al., 1994; Miller et al., 2009]. 

In the central nervous system the enzymes exists in an auto-inhibited state but can also 

be inhibited by vinpocetine and nicardipine [Yan et al., 1996; Lefievre et al., 2002]. In 

recent years specific PDE1 inhibitors have been developed with the hope of 

development of a potential therapeutic for Parkinsons disease however the results of this 

work are as yet inconclusive [Laddha and Bhatnagar, 2009]. In the cardiac system a role 

for the PDE1A isoform has been implied to regulate pathological cardiomyocyte 

hypertrophy through a cGMP/PKG dependent mechanism. This demonstrates cross-talk 

between cGMP and Ca2+ signalling pathways during cardiac hypertrophy [Miller et al., 

2009]. 
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1.5.2  Phosphodiesterase 2 

 

Phosphodiesterase 2 (PDE2) enzymes are encoded by one gene and have 3 splice 

variants [Francis et al., 2001]. They can hydrolyse both cAMP and cGMP and are 

unique in that they are activated by a decrease in Km rather than an increase in Vmax as 

is usually observed in the other members of the PDE family [Erneux et al., 1981]. The 

Km value is 15-30 µM for both cAMP and cGMP [Erneux et al., 1981]. 

 

Structurally PDE2 enzymes have paired cGMP-binding GAF domains [Ho et al., 

2000]. The GAF acronym is derived from the names of the first 3 classes of proteins 

recognized to contain this domain, namely cGMP-binding PDEs, Anabaena adenylyl 

cyclases and Escherichia coli (FhlA) [Aravind and Ponting, 1997]. There are now more 

than 1400 proteins in the non-redundant database that are predicted to contain a GAF 

domain [Zoraghi et al., 2004]. These GAF domains promote hydrolysis of cAMP in a 

positively homotrophic/ cooperative fashion with a hill coefficient of >1 [Erneux et al., 

1981]. This means, therefore, that small increases in intracellular cGMP concentration 

can lead to a decrease in intracellular cAMP concentration in cells or compartments 

where PDE2 is located [Martinez et al., 2002; Mongillo et al., 2006]. However, higher 

levels of cGMP will then compete out cAMP for binding to the PDE2 active site and 

thus inhibit cAMP hydrolysis by this enzyme.  

 

PDE2 is expressed in many different parts of the body with the main sites of 

expression being the adrenal medulla, heart, liver and brain [Yanaka et al., 2003; 

Coudray et al., 1999]. It is essentially a soluble, cytosolic enzyme. However, alternative 

mRNA splicing yields isoforms with N-terminal regions that confer membrane 

association.  

 

PDE2 is thought to play a major feedback role for cyclic nucleotides under 

hormonal regulation and plays an important role in feedback between cAMP and cGMP. 

Two PDE2 selective inhibitors are EHNA (erythro-9-(hyroxy-3-nonyl) adenite) and Bay 
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60-7550. EHNA binds to both the catalytic and the regulatory sites of PDE2 [Michie et 

al., 1996]. However, EHNA also acts as an adenosine deaminase inhibitor. Recently it 

has been discovered that PDE2 may play an important role in cardiac inotrophy 

[Mongillo et al., 2006] and mediating angiogenesis through Rac1 and NADPH oxidase, 

providing a potential new therapeutic target for endothelial dysfunction, oxidative stress, 

vascular proliferation and angiogenesis [Diebold et al., 2009]. 

 

 
1.5.3  Phosphodiesterase 3 

 

Phosphodiesterase 3 (PDE3) enzymes are encoded by 2 different genes [He et 

al., 1998]. They specifically hydrolyse cAMP but this hydrolysis can be competitively 

inhibited by cGMP [Lugnier, 2006]. The Km value of hydrolysis of both cAMP and 

cGMP is 0.1-0.8 µM however cAMP has a higher Vmax value for hydrolysis [Francis, 

2001]. This therefore means that PDE3 enzymes provide a means by which increased 

intracellular cGMP can lead to increased intracellular cAMP by selective inhibition of 

PDE3. 

 

PDE3 enzymes play a key role in metabolic signalling, specifically in adipocytes 

and hepatocytes [Meacci et al., 1992; Wechsler et al., 2002]. Here it mediates the 

functional consequences of insulin on cAMP concentration [Zhao et al., 2002]. Insulin 

triggers Protein Kinase B (PKB/Akt) to phosphorylate and activate PDE3, thereby 

decreasing cAMP concentration and inhibiting lipolysis, gluconeogenesis, and 

glycogenolysis [Geoffroy et al., 2001] where it is critical in underpinning insulin action 

adipocytes, counteracting action of adrenaline. 

 

Another important role for PDE3 has been found in the cardiac system. Here 

PDE3 has been shown to play several roles including control of myocyte contraction 

and relaxation through regulation of cAMP at L-type Ca2+ channels and through 

modulating calcium current by facilitating the constitutive association of SERCA2 with 

PI3 Kinase [Kakkar et al., 1999]. 
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Selective inhibitors of PDE3 have been generated and these have been shown to 

exert a marked effect on cardiac function [Moos et al., 1987]. These inhibitors were 

originally developed as positive ionotropic agents for treating congestive heart failure 

[Bristol et al., 1984]. The compound milrinone in particular is a moderately selective, 

first generation PDE3 inhibitor with a Ki value of 0.5 µM [Mongillo et al., 2004]. 

Milrinone, however, was withdrawn from clinical use due to side effects, namely 

arrhythmias, probably because it also could exert effects on other PDEs, including 

PDE4.  However, the pure PDE3 selective inhibitor cilostazol is now considered safe 

and used clinically to treat intermittent claudication by inhibiting platelet aggregation 

[Liu et al., 2001]. 

 

 

1.5.4  Phosphodiesterase 4 

 

This family of cAMP specific enzymes is discussed in detail below (see Section 

1.6). 

 

 

1.5.5  Phosphodiesterase 5 

 

Phosphodiesterase 5 (PDE5) enzymes are encoded by one gene which has 5 

splice variants [Lin et al., 2002]. They specifically hydrolyses cGMP and are most 

commonly known as the target for Viagra (Sildenafil) used to treat Erectile Dysfunction 

[Coquil et al., 1980; Boolell et al., 1996]. Structurally they have two paired GAF 

domains that are a site for cGMP binding with a Km of 5-20 µM [Francis et al., 2001]. 

This binding initially alters activation and conformation of PDE5 and is also thought to 

influence phosphorylation by PKA and Protein Kinase G [Francis et al., 2002].  

 

PDE5 is expressed throughout the body with highest expression levels seen in 

the lungs, heart, blood vessels and brain [Giordano et al., 2001]. The most famous 

inhibitor of PDE5, Viagra, promotes smooth muscle relaxation and increases the blood 
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flow to the corpus cavernosum by preventing the PDE5 hydrolysis of cGMP [Lin et al., 

2003]. More recently it has also been used to treat infantile and severe adult pulmonary 

hypertension [Huddleston et al., 2009; Singh, 2010]. 

 

 

1.5.6  Phosphodiesterase 6 

 

Phosphodiesterase 6 (PDE6) enzymes are encoded by three genes with multiple 

splice variants [Gillespie & Beavo, 1989]. PDE6 specifically hydrolyses cGMP with a 

Km value of 5-20 µM [Miki et al., 1975]. Structurally they contain two paired GAF 

domains and appear to be a tetramer with one alpha catalytic subunit, one beta catalytic 

subunit and two gamma regulatory (inhibitory) subunits [Gillespie & Beavo, 1989].  

 

PDE6 is membrane bound and found exclusively in the rods and cones of the 

eyes [Francis et al., 2001 and Houslay, 2001]. PDE6 is light activated via rhodopsin, 

which couples to the G-protein, transducin [Chabre et al., 1988]. Rod PDE6 enzymes 

consist of one α, one β, two γ subunits whereas cone PDE6 enzymes consist of two α 

and two γ subunits [Artemyev et al., 1996]. Rhodopsin absorbs a photon of light, which 

then physically interacts with transducin causing an exchange of GDP for GTP. The 

GTP-bound transducin undergoes a conformational change such that it interacts with 

and activates, membrane bound PDE6 by triggering the release of the inhibitory gamma 

subunits from this enzyme [Morin et al., 2001; Pugh & Lamb, 1990]. The consequential 

increase hydrolyses cGMP to GMP allowing the closure of cGMP-gated channels 

located in the plasma membrane of photoreceptors [Beavo, 1995]. 

 

Recently a potential role for PDE6 in retinal malignant melanoma has been 

identified. In these melanoma cells activation of PDE6 through the Wnt5a–Frizzled-2-

transducin cascade leads to a decrease in cGMP allowing for a build-up of calcium 

which in turn can regulate the metabolism of the melanoma cells [Bazhin et al., 2010]. If 

this pathway occurs in cells out with the eyes inhibition of PDE6 may provide a 

potential non-invasive therapeutic for malignant melanoma. 
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1.5.7  Phosphodiesterase 7 

 

Phosphodiesterase 7 (PDE7) enzymes are encoded by two genes, one of which 

has splice variants [Beavo, 1995]. They are specific for cAMP for which they have been 

shown to have an extremely low Km value of 0.01-0.05 µM [Michaeli et al., 1993]. 

PDE7A is ubiquitously expressed throughout the body but is particularly well expressed 

in the pro-inflammatory and immune system [Smith et al., 2003] whereas PDE7B is 

expressed throughout the heart, skeletal and brain tissues but its expression is lower than 

PDE7A in the immune system [Hetman et al., 2000].  

 

The majority of PDE7 research has focussed on the role of PDE7A. In T-cells in 

particular a functional role for PDE7A has been proposed where it is envisaged that 

PDE7 may regulate T-cell proliferation and activation. In T-cells the main PDE 

isoforms present in resting cells are PDE3 and PDE4, however it was shown that upon 

T-cell activation PDE7A is up-regulated and if this is up-regulation of PDE7 is inhibited 

there is a loss of T cell proliferation [Li et al., 1999; Smith et al., 2003]. As a result of 

this discovery several PDE7 inhibitors have been developed. These include several 

unnamed pyrimidine inhibitors shown that selectively inhibit PDE7A and have been 

shown to have some effect in vitro on T cell proliferation [Guo et al., 2009] and 

ASB16165, a novel inhibitor for PDE7A, that suppresses IL-12-induced IFN-γ 

production by mouse activated T lymphocytes in vitro [Kadoshima-Yamaoka et al., 

2009]. However it should be noted that studies using knock-out animals have not 

supported the notion of any particular role of PDE7 inhibitors as regulators of T-cell 

functional and potential as anti-inflammatory agents and PDE7 selective inhibitors have 

no shown any particular promise as anti-inflammatory agents [Guo et al., 2009; Yang et 

al., 2003].  

 

Despite PDE7B only having low level expression in the immune system in 

normal circumstances its expression has been found to be up-regulated in B cells and 

peripheral blood mononuclear cells in chronic lymphocytic leukaemia, the most 

common form of adult leukaemia. It has also been shown that inhibition of PDE7 in 
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these leukaemia cells leads to apoptosis in vitro, providing a potential therapeutic target 

for treatment of this form of leukaemia [Zhang et al., 2008]. 

 

 

1.5.8  Phosphodiesterase 8 

 

Phosphodiesterase 8 enzymes are encoded by two genes and many splice 

variants [Fisher et al., 1998; Hayashi et al., 1998]. They are specific for cAMP with a 

very low Km value of 0.06 µM [Francis et al., 2001]. They are one of the only known 

PDE subfamily members that are insensitive to inhibition by IBMX 

(isobutylmethylxanthine) [Hayashi et al., 1998; Lavan et al., 1989]. Structurally they 

contain a single Per-ARNT-Sim (PAS) domain that has been shown in other proteins to 

mediate protein-protein interaction so may regulate PDE8’s intracellular distribution 

[Wang et al., 2001]. Expression of PDE8 is highest in the testis [Soderling et al., 1998] 

but it has also been shown to be involved in regulation of T-cell activation and 

chemotaxis of activated lymphocytes [Glavas et al., 2001; Dong et al., 2006].  

 

Unfortunately until recently purification of PDE8 was not possible therefore its 

crystal structure could not be solved and in turn selective PDE8 inhibitors have not been 

developed. However recent structural studies may help solve this problem and lead to 

the development of inhibitors [Wang et al., 2008]. This may be of major potential 

therapeutic benefit as a recent clinical study has shown that PDE8 is up-regulated in the 

hippocampus of end stage patients with Alzheimers Disease [Perez-Torres et al., 2003]. 

 

 

1.5.9  Phosphodiesterase 9 

 

Phosphodiesterase 9 (PDE9) enzymes are encoded by one gene but it is thought 

to be a rather complicated isoform as up to 20 splice variants have been identified 

[Rentero and Puigdomenech, 2006]. They are cGMP specific and have the lowest Km 

value for cGMP known to date at 0.07 µM [Fisher et al., 1998]. Structurally they are not 
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thought to contain GAF domains but may contain REC domains instead [Lugnier, 

2006]. CheY-like phosphoacceptor (or receiver (REC)) domain is a common module in 

a variety of response regulators of the bacterial signal transduction systems. REC 

domains have a propensity to regulate dimerisation and protein-protein interactions 

[Galperin, 2006]. Thus they may be involved in either targeting of PDE9 or regulation 

by dimerisation.  

 

PDE9A isoforms are expressed in several regions of the brain where it has been 

implied to play a role in cognition [Reyes-Irisarri et al., 2007] and has also been 

proposed to play a role in diabetes as PDE9 knockout mice developed an diabetes like 

phenotype when placed on a high fat diet [DeNinno et al., 2009]. PDE9 isoforms are 

insensitive to IBMX but their actions are attenuated by zaprinast and SCH 51866 

[Soderling et al., 1998]. Few selective PDE9 inhibitors have been developed. However 

of those that have the novel selective PDE9 inhibitor BAY 73-6691 has been shown to 

improve learning and memory in rodents [van der Staay et al., 2008]. 

  

 

1.5.10  Phosphodiesterase 10 

 

PDE10 enzymes are encoded by one gene and have been indicated to have many 

splice variants [Kotera et al., 1999; O’Connor et al., 2004]. They can hydrolyse both 

cAMP and cGMP with Km values of 0.05-0.26 µM and 3-7.2 µM respectively and a 

Vmax value 5 times higher for cAMP than cGMP [Lugnier, 2006]. Structurally they 

have two paired GAF domains but so far there is no evidence that these can bind cGMP 

[Lugnier, 2006]. IBMX, dipyridamole and zaprinast all inhibit PDE10.   

 

It is ubiquitously expressed throughout all human tissues [Soderling et al., 1999] 

but its unique distribution of expression in the brain has lead to a great amount of 

research. In the brain PDE10 expression is very high in the caudate putamen, nucleus 

accumbens, and the olfactory tubercle, however expression is minimal in cortex, 

hippocampus, and cerebellum [Kelly and Brandon, 2009]. This distribution has lead to a 
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great deal of interest in the potential role of PDE10 in schizophrenia. In PDE10A 

knockout mice a decrease in basal locomotor activity and impaired learning of a 

conditioned avoidance task was observed which is consistent with a model of 

schizophrenia [Siuciak et al., 2008]. These mice also show increased sensitivity to 

indirect dopaminergic agonists [Siuciak et al., 2008]. Indeed it has also been shown that 

selective PDE10 inhibitors developed by Wyeth modulate the dopamine striatal 

pathways and can improve both the positive and negative symptoms of schizophrenia 

[Grauer et al., 2009]. 

 

 

1.5.11  Phosphodiesterase 11 

 

PDE11 enzymes are encoded by just one gene and have 4 splice variants 

[Hetman et al., 2000]. It exhibits dual specificity in a similar way to PDE10 but has a 

Km value of about 0.75 µM for both cAMP and cGMP [Francis et al., 2001]. Only some 

of its isoforms express two paired GAF domains in a way that is similar to the 

expression of UCR domains in PDE4. The presence of these GAF domains may allow 

for regulation by PKA and PKG phosphorylation [Yuasa et al., 2000].  

 

The range of tissues that express this enzyme is controversial and little is 

understood about its function. Studies into its expression in the brain have shown that 

expression is limited but through knockout mice models it has been shown to play a 

vital role in brain function with lack of this enzyme leading to hyperactivity and loss of 

social function [Kelly et al., 2010]. Other research using PDE11 knockout mice has 

shown that these mice exhibit reduced sperm concentration and live spermatozoa after 

ejaculation implying that this isoform plays an important role in reproduction [Wayman 

et al., 2005]. 
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Figure 1.2 - Modular structure of PDE enzyme super-family.  
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1.6 Phosphodiesterase 4 
 

 

PDE4 enzymes specifically hydrolyse cAMP.  They are encoded by four genes 

(PDE4A, PDE4B, PDE4C and PDE4D), which are located on three chromosomes in 

humans [Houslay et al., 1998; Houslay and Adams, 2003; Houslay, 2010].  The genes 

for both PDE4A and PDE4C, are located at 19p13.2 and 19p13.1, respectively, on 

chromosome 19 [Milatovich et al., 1994 and Sullivan et al., 1999].  The PDE4B and 

PDE4D genes are located on chromosomes 1p31 and 5q12 respectively [Milatovich et 

al., 1994 and Szpirer et al., 1995]. These four PDE4 genes in turn encode upwards of 20 

different isoforms each of which is characterised by a unique N-terminal region 

[Houslay and Adams, 2003].  The N-terminal region of each isoform is encoded by 

unique 5’ exons. As well as this unique N-terminal region, PDE4 isoforms exhibit two 

Upstream Conserved Regions (UCR1 and UCR2), a conserved catalytic unit and a C-

terminal region that is unique to each of the four PDE4 subtypes. The two UCR regions 

are joined together by regions known as Linker Region 1 (LR1) and Linker Region 2 

(LR2). Figure 1.3 details the encoding of these exons. 

 

 

 
 

Figure 1.3: Structure and encoding of PDE4 Isoforms (Houslay and Adams, 2003). 
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1.6.1  N-Terminal 

 

One of the most important roles of the unique N-terminal region in PDE4 is to 

confer intracellular targeting of the isoforms leading to compartmentalisation within the 

cell. It invariably confers the ability of the PDE4 isoform to interact specifically with 

other signalling complexes [Houslay, 2010]. One example of this is the interaction of 

PDE4A4/5 with the Src tyrosyl kinase Lyn [McPhee et al., 1999], which will be 

discussed in detail later and another is the binding of PDE4D5 to the signalling 

scaffolds, RACK1 and β-arrestin [Bolger et al., 2006]. 

 

 

1.6.2  UCR1 and UCR2 

 

As seen in Figure 1.3, PDE4 isoforms can be sub-grouped into long, short, 

super-short and dead-short forms depending on the presence of the regulatory UCR1 and 

UCR2 regions and, in the case of dead-short variants, a severe C-terminal truncation 

[Houslay, 2001; Houslay and Adams, 2003; Houslay et al., 2007]. Long forms have 

both UCR1 and UCR2 present as well as linker regions LR1 and LR2 that, respectively, 

connect UCR1 to UCR2 and UCR2 to the catalytic unit whereas short forms possesses 

an intact UCR2 but lack UCR1 and LR1. Super-short forms also lack UCR1 and LR1 

but possess a truncated version of UCR2.  The dead short forms lack both regulatory and 

linker regions and are both N and C-terminally truncated into the catalytic units such 

that they are uniquely enzymatically inactive and, as such may have a scaffolding 

function [Johnston et al., 2004]. 

  

UCR1 and UCR2 can interact with each other to form a regulatory module that 

interacts with and regulates the catalytic domain [Beard et al, 2000]. As recent structural 

data shows, this is achieved by the binding of UCR2 alongside and across the active site 

of the catalytic unit [Houslay and Adams, 2010; Burgin et al., 2010]. 
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1.6.3  Catalytic Domain 

 

The catalytic unit of all PDE4 isoforms consists of 17 α-helices, which form 3 

distinct sub-domains. These sub-domains comprise of eight, four and six helices 

respectively and a short β-hairpin [Houslay and Adams, 2003 and Xu et al., 2000]. 

UCR2 is known to exhibit an auto-inhibitory effect on the core catalytic domain 

although the structural reason for this remained unclear until recently. Thus the recent 

elucidation of the UCR2-bound catalytic region greater insight into the function of this 

region has been discovered [Burgin et al., 2010]. In this structure an α-helical sequence 

within UCR2 was shown to bind across the catalytic pocket, thereby forming a gate 

controlling substrate and inhibitor access to it [Burgin et al., 2010]. Uncapping of this 

UCR2 ‘gate’ allows cAMP to bind to the PDE.  

 

Hydrophobic residues and residues with negatively charged side chains form a 

cAMP-binding pocket between the three sub-domains [Houslay, 2001]. This pocket 

contains two divalent cation binding sites. The first binding site tightly binds a Zn2+, 

which is co-ordinated by four amino acids (His-238, His-274, Asp-275 and Asp-392) 

The second site usually binds Mg2+ but may also bind either Zn2+ or Mn2+ [Houslay and 

Adams, 2003]. This binding is co-ordinated by five amino acids (His-274, Glu-304, His-

307, Thr-345 and Asp-392). The nine amino acids involved in the binding of these metal 

ions are highly conserved across all 11 members of the PDE family. The metal ions are 

essential for cAMP hydrolysis [Laliberté et al., 2002].  Interestingly, it is changes in the 

side-chain orientation of a single amino acid within the active site of different PDE 

families that confers selectivity between cAMP and cGMP [Wang et al., 2007].  

 

Recent structure studies have helped give greater insight into how inhibitors of 

PDE4 bind and help to explain their somewhat complicated inhibitor kinetics. Certain 

inhibitors such as RS25344 interact favourably with the gating sequence of UCR2, 

stabilizing the UCR2 into the capped state whereas inhibitors like Roflumilast, which 

has recently gained approval in Europe for treating COPD, interact less favourably with 

the capped UCR2 and instead preferentially occupies the uncapped catalytic pocket. 
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Interestingly the more complicated PDE4 inhibitors, in terms of the range of affinities 

shown for enzyme preparations from different tissues, such as Rolipram are now 

understood to have affinity for the catalytic pocket in both the UCR2 capped and 

uncapped states. This may explain why the action of inhibitors like rolipram can be 

altered by PKA phosphorylation of long forms and by protein-protein interactions 

involving PDE4 [Burgin et al., 2010; Houslay and Adams, 2010]. 

 

 

1.6.4  C-terminal 

 

The C-Terminal domain of PDE4 isoforms is differs somewhat between each of 

the four sub-families. The functional significance of this is unknown, although recent 

structural studies suggest that the C-terminal portion of the catalytic unit can, like, 

UCR2, cap the active site. This may point to a potential regulatory role for the C-

terminal [Burgin, 2010].  Interestingly the C-Terminal domain of PDE4B, C and D, but 

not PDE4A, shows conservation between mammalian species and the significance of 

this divergence for PDE4A remains to be elucidated [Hoffmann et al., 1998].  

 

 

 

1.7 Phosphodiesterase 4 Isoforms 

 

 

1.7.1  Phosphodiesterase 4A 
 

PDE4A has several different isoforms some of the most notable being PDE4A4 

[Huston et al., 1996], 4A5 [McPhee et al., 1995], 4A8 [Huston et al., 2000; MacKenzie 

et al., 2008], 4A10 [Rena et al., 2001] and 4A11 [Wallace et al., 2005]. The function of 

this group of enzymes is only recently being uncovered as they are present at 

notoriously low levels endogenously, there are no selective inhibitors and genetically 

modified (KO) animals have not been generated. The PDE4A isoforms are unusual 
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amongst the PDE4 gene families because their C-terminal regions are not conserved 

across humans and rats [Houslay and Adams, 2003]. A good example of this is that 

PDE4A4 is expressed in humans and is the homologue of the rat enzyme PDE4A5 

[Terry et al., 2003].  Both of these isoforms are long form phosphodiesterases with 

similar molecular weights (99kDa and 94kDa respectively [Huston et al., 1996 and 

McPhee et al., 1995]), however the rat homologue has a significantly lower cytosolic 

Vmax value than the human homologue [Houslay and Adams, 2003]. 

 

PDE4A8 is expressed in rats and humans and is a long isoform of 88kDa 

[MacKenzie et al., 2008; Bolger et al., 1996]. PDE4A10 and 4A11 are also long 

isoforms, with a molecular weight of 93kDa but these are expressed in both humans and 

rats [Wallace et al., 2005]. 

 

 

1.7.1.1 PDE4A Brain Distribution Patterns 

 

PDE4A isoform brain expression has been studied [McPhee et al., 2001] in 

relation to the two long form isoforms, PDE4A5 and PDE4A10 and the short for 

PDE4A1. PDE4A5 and PDE4A10 expression was shown to be highest in the olfactory 

bulb and both displayed a very similar distribution pattern throughout the brain except 

for in the major island of Calleja where only PDE4A10 is present. This suggests that the 

two long forms may have similar promoter regions but are likely to have distinct 

functional roles within the cells. The short PDE4A1 isoform was shown to be 

distributed highest in the olfactory bulb, the cerebellum and the paraflocculus [McPhee 

et al., 2001]. More recent work has also shown that the long PDE4A8 isoform is also 

distributed throughout the brain, in particular in the cortex, spinal cord and cerebellum 

[MacKenzie et al., 2008]. 

 

Several partner proteins have been identified for the different PDE4A isoforms. 

These are described in detail below. 
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1.7.1.2 PDE4A aggregation and p62 (sequestosome1, SQSTM1) 
 
 

Chronic challenge of PDE4A4 with rolipram causes it to form reversible 

intracellular aggregates. These aggregates are not stress processing bodies or stress 

granules as they do not contain the regulating proteins necessary to make these 

complexes. PDE4A4 aggregates have also been shown to not be autophagosomes or 

aggresomes. However microtubule disruptors do prevent the aggregates from forming. 

Instead it has been shown that PDE4A4 interacts with p62 protein (sequestosome1, 

SQSTM1) in these aggregates, and loss of p62 from this complex, via the mTor 

inhibitor rapamycin, prevents aggregation from occurring. The purpose for this is 

proposed to be a novel regulatory mechanism where a sub-population of p62-interacting 

PDE4A4 aggregates form in a rapid, reversible manner which is thought to be used to 

sequester the PDE4A4 away from its important functional site within the cell [Christian 

et al., 2010]. 

 

 

1.7.1.3 PDE4A and Src Homology 3 binding domains  

 

The Src Homology 3 (SH3) binding domain is a distinct small protein domain of 

roughly 60 amino acids which are self-folding. It allows protein-protein interaction by 

binding to proline rich motifs on acceptor proteins. It is found in a variety of families of 

proteins such as the Src tyrosyl family kinases [Pawson, 1995]. Certain PDE4A 

isoforms (PDE4A4B and PDE4A5) contain proline- and arginine-rich sites for 

interaction with SH3 domains. The Src family tyrosyl kinases interact with PDE4A5 

through SH3 domain binding in PDE4A5s N-terminal region [O’Connell et al., 1996]. 

The SH3 domain of the Src tyrosyl kinase Lyn has also been shown to interact with the 

human homologue of PDE4A5 which is PDE4A4B. This interaction occurs at a proline 

and arginine rich motif (RPRPSQP) within the LR2 region of the enzyme [McPhee et 

al., 1999]. PDE4A4B can exhibit two different sensitivities for the PDE4 specific 

inhibitor rolipram dependent on where it is located in the cell. When it is located in the 
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cytoplasm it exists in a low affinity rolipram binding state (LARBS) whereas if it is 

membrane bound it exists in a high affinity rolipram binding state (HARBS) which is 

approximately 60 times more sensitive to rolipram [Huston et al., 1996]. Interestingly 

interaction of the SH3 domain of Lyn with PDE4A4B mimics HARBS throughout the 

cell [McPhee et al., 1999]. This is now thought that this may be because Lyn can still 

interact with, and elicit its effect on PDE4A4B even when the inhibitor rolipram is 

bound to the catalytic site of the enzyme [Burgin et al., 2010; Houslay and Adams, 

2010].  

 

 

1.7.1.4  PDE4A and the immunophilin XAP2 

 

XAP2/Ara9 is an immunophilin that was first identified as a protein that interacts 

with the X protein of the hepatitis B virus [Kuzhandaivelu et al., 1996]. It is 38kDa long 

and contains an N-terminal immunophilin homology domain and a C-terminal 

tetratricopeptide repeat (TPR) domain. It has been shown to interact with heat shock 

protein 90 (Hsp90), the aryl hydrocarbon receptor and certain phosphodiesterases, 

specifically PDE4A5 [Bolger et al., 2003].   

 

PDE4A5 has a highly conserved TPR domain in its UCR2 region which allows 

for binding to XAP2 along with another binding region in its unique N-terminal domain 

[Bolger et al., 2003]. This is the only PDE isoform that XAP2 can interact with in this 

way except for its human orthologue, PDE4A4, which has the same binding residues 

conserved within its sequence. Although XAP2 doesn’t bind directly to the catalytic site 

of PDE4A5 it inhibits its enzymatic activity. It therefore must be working as a non-

competitive inhibitor. XAP2 association also results in a marked increase in sensitivity 

to inhibition which indicates that its presence, although not directly on the catalytic 

domain, is causing altered conformation of the catalytic unit [Bolger et al., 2003].  

 

Interestingly although XAP2 has only been found to associate with these two 

closely related isoforms of PDE4 it has very recently been found to associate with 
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PDE2A [de Oliveira et al., 2007]. In this enzyme it binds to a site located within the 

GAF-B regulatory domain although this site appears to show no similarity to the site of 

binding in UCR2, which suggests a different mode of binding. The association of XAP2 

with PDE2A also differed from its association with PDE4A5 in that it does not altered 

the enzymatic activity of PDE2A but does appear to guide it towards the aryl 

hydrocarbon receptor complex [de Oliveira et al., 2007]. 

 

 

1.7.2  Phosphodiesterase 4B 

 

There are four known phosphodiesterase 4B isoforms, PDE4B1, 4B2, 4B3 and 

4B4. Unlike the PDE4A enzymes their endogenous expression in cells is higher so they 

can be detected more easily. Phosphodiesterase 4B1 and 4B3 are both long isoforms 

with a molecular weight of 83kDa [Huston et al., 1997] whereas PDE4B2 is a short 

isoform with a molecular weight of only 64 kDa [Bolger et al., 1994]. PDE4B4 is the 

most recently cloned and characterised member of this family, it is found in the rat and 

has a molecular weight of 73kDa [Shepherd et al., 2003]. 

 

 

1.7.2.1 PDE4B knockout mice 

 

The development of PDE4B knockout mice has given a huge insight into the 

functional purpose of this PDE4 sub-family. It has in particular highlighted the 

importance role of PDE4B isoforms in the immune response. In mouse peritoneal 

macrophages from PDE4B knockout mice it has been shown that loss of this PDE4 

isoform impacted LPS TLR signalling and TNFα production [Jin et al., 2005]. In 

neutrophil studies it has also been shown that knockout of PDE4B leads to an inhibition 

of neutrophil migration [Ariga et al., 2004]. In addition to the role in the immune 

system, knockout mice studies have also highlighted behavioural and neurochemical 

phenotypes that appear to be PDE4B dependent. In PDE4B knockout mice it was 

observed that spontaneous locomotive activity was decreased when compared to wild 
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type [Siuciak et al., 2008], and that these knockout mice also exhibited depression and 

anxiety like behaviour [Zhang et al., 2008]. 

 

 

1.7.2.2 PDE4B and DISC1 

 

Perhaps one of the most important discoveries made in relation to PDE4B is its 

potential role in schizophrenia. The disrupted in schizophrenia 1 (DISC1) gene locus 

was first identified as a disrupted gene in a large Scottish family presenting with 

schizophrenia and bipolar disorder [Blackwood et al., 2001]. It has subsequently been 

shown that DISC1, the scaffold protein encoded by the DISC1 gene, can interact with 

the UCR2 domain of the PDE4B isoform PDE4B2 [Millar et al., 2005]. It was then 

proposed that this interaction lead to DISC1 sequestering PDE4B2 in resting cells and 

releases it in an activated state to deal with elevated cAMP levels [Millar et al., 2005]. It 

is proposed that disruption of this DISC1-PDE4B complex may be involved in the 

molecular mechanism of schizophrenia and therefore could provide a therapeutic target 

for treatment of schizophrenia [Millar et al., 2007]. In addition to this work it has 

subsequently been shown that other PDE4 isoforms can bind to DISC1 [Murdoch et al., 

2007]. 

 

 

1.7.3  Phosphodiesterase 4C 

 

Like the PDE4A gene family PDE4C isoforms exist at very low endogenous 

expression levels in the cell. Due to this there has not been much work done on 

members of this gene family. However, three long isoforms of this enzyme, PDE4C1, 

4C2 and 4C3 have been identified [Bolger et al., 1993; Swinnen et al., 1989].  

Distribution in the human brain of PDE4C is restricted to the cortex, thalamic 

nuclei and cerebellum whereas in monkeys distribution is seen in the olfactory bulb 

[Perez-Torres et al., 2000]. 
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1.7.4  Phosphodiesterase 4D 

 

The PDE4D gene family is probably the best studied out of all of the PDE4 

enzymes. There are thought to be 11 isoforms PDE4D1 to 4D11. The most notable of 

these are PDE4D3, 4D4 and 4D5 which are all long isoforms with molecular weights 

between 77kDa and 91kDa [Bolger et al., 1997]. PDE4D3 and PDE4D5 are both 

expressed at relatively high levels endogenously. The short form PDE4Ds, PDE4D1 and 

PDE4D2 have a more limited expression pattern [Vicini and Conti, 1997]. Little, 

however, is known about the more recently discovered PDE4D6-11 species, although 

the PDE4D7 gene locus has been linked to stroke [Houslay, 2005].  

 

 

1.7.4.1 PDE4D knockout mice 

 

In a similar way to PDE4B, a great deal of the functional role of PDE4D has 

been elucidated through the generation of PDE4D knockout mice. Neurological studies 

have shown that PDE4D knockout mice presented an anti-depressant like phenotype 

(measured through mobility in response to stress tests) and this is thought to imply that 

PDE4D is the essential mediator of the antidepressant-like effects of rolipram [Zhang et 

al., 2002]. In further neurological studies it has also been shown that there may be a role 

for PDE4D in long term memory formation [Rutten et al., 2008]. However PDE4D 

knockout models have shown far wider ranging effects than just within the neurological 

system, for example within the airway smooth muscle it has been shown that PDE4D 

plays a key role in balancing relaxation of contraction of smooth muscle, playing a role 

in controlling airway tone [Mehats et al., 2003]. In addition to this PDE4D knockout has 

been shown to have a small but still significant effect on neutrophil migration within the 

immune system while also reducing chemotaxis in response to the cytokines KC and 

MIP2 [Ariga et al., 2004]. 
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1.7.4.2 PDE4D and β-arrestin 

 

G-protein coupled receptors (GPCRs) couple to Gs, upon activation, and activate 

adenylyl cyclase to produce cAMP. Desensitisation of these GPCRs involves 

phosphorylation by G-protein coupled receptor kinases (GRKs) and subsequent 

recruitment of cytosolic signalling scaffold proteins, β-arrestins [Lefkowitz and Shenoy, 

2005]. The presence of β-arrestin then blocks further GPCR coupling to Gs. β-arrestin 

has been shown to interact with all isoforms of PDE4 regardless of whether they are 

long, short or super-short through a region in their catalytic domain [Perry et al., 2002]. 

Binding occurs through the N-terminal and C-terminal regions of β-arrestin [Baillie et 

al., 2007]. Interaction of β-arrestin with PDE4 seems to recruit the enzymes to the site of 

agonist occupied, GRK phosphorylated GPCRs where they regulate PKA 

phosphorylation of the receptor by lowering the local level of cAMP. 

 

However the PDE4 isoform PDE4D5 shows greater affinity for β-arrestin than 

all other PDE4 isoforms [Bolger et al., 2006; Bolger et al., 2003; Lynch et al., 2005; Li 

et al., 2006]. This is due to two separate factors: the presence of an extra β-arrestin 

binding domain located at amino acids 70-88 within its unique N-terminal region [Perry 

et al., 2002; Baillie et al., 2007] and ubiquitination of PDE4D5 by Mdm2 guiding it to 

bind more β-arrestin [Li et al., 2009]. These interactions do not affect the enzymatic 

activity of PDE4D5.  

 

Recently it has also been discovered that the binding site on the N-terminal 

overlaps with the binding site of RACK1 for PDE4D5 [Bolger et al., 2006]. 

 

 

 

1.7.4.3 PDE4D and RACK1 

 

Receptor for activated C-Kinase 1 (RACK1) is a 36 kDa protein which has a 

high affinity for partner protein binding. It has a seven bladed propeller like structure 
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composed of β-sheets which allow it to scaffold Protein Kinase C (PKC) [McCahill et 

al., 2002]. RACK1 can interact with proteins in two different ways: constitutively or 

stimulus dependent. The individual blades of its propeller structure have multiple sites 

for protein interactions which would indicate that it has the ability to associate with 

many different proteins classes. 

 

RACK1 specifically interacts with the PDE4 isoform PDE4D5 through two sites. 

This first site is a RACK1 interaction domain (RAID1) in the unique N-terminal of 4D5 

[Yarwood et al., 1999, Bolger et al., 2006]. The functional reason for this association is 

yet unknown but it is thought that it may be to alter the sensitivity of RACK1 

surrounding proteins to PKA phosphorylation [McCahill et al., 2002]. The second 

interaction site is found in the third sub-domain of the catalytic region of PDE4D. While 

this site is essential for PDE4D5 binding it is not a strong enough binding site itself to 

elicit binding of RACK1 without the N-terminal. This is why, despite the presence of 

this catalytic site across the other PDE4 isoforms no RACK1 binding is observed 

[Bolger et al., 2006]. It has also been proposed that RACK1 and β-arrestin partner 

PDE4D5 in a mutually exclusive fashion therefore if one of these scaffolding proteins is 

knocked out of the cell it allows for the other to bind [Bolger et al., 2006]. The 

functional reason for the interaction of PDE4D5 and RACK1 has been proposed in the 

past few months where it has been shown that RACK1 may serve as the molecular 

bridge linking FAK to the recruitment of PDE4D5. The FAK/RACK1/PDE4D5 

complex then acts as a novel 'direction-sensing' complex that acts to recruit specific 

components of the cAMP second-messenger system to the leading edge of polarizing 

cells [Serrels et al., 2010]. 
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1.7.4.4 PDE4D and its genetic link to disease states 

 

Two major gene studies have been carried out in relation to the PDE4D gene and 

disease states. The first of these studies looked at the role of the PDE4D gene in bone 

mineral density [Reneland et al., 2005]. In this study it was show that variants in the 

gene that encodes PDE4D accounts for some of the genetic contribution to bone mineral 

density variations observed in humans. This work corresponds well with the fact that 

PDE4 inhibitors have been shown to increase bone mass in mouse studies [Reneland et 

al., 2005]. The second of these studies was carried out across a wide-ranging population 

and uncovered the role of the PDE4D gene in asthma-susceptibility through a series of 

different mutations and SNPs [Himes et al., 2009].  

 

 

 

1.8 PDE4 Phosphorylation 

 

 

One of the main modes of control of PDE4 activity is through its 

phosphorylation. The main kinases that can phosphorylate PDE4 are PKA and ERK and 

both of these kinases have different resultant effects.  

 

 

1.8.1  Protein Kinase A 

 

Long isoforms of PDE4 can all be phosphorylated by PKA, which leads to 

activation [Sette and Conti, 1996; Hoffmann et al., 1998; MacKenzie et al., 2002]. This 

phosphorylation occurs at a single conserved serine residue in UCR1 which is contained 

in the PKA consensus RRES*F [MacKenzie et al., 2002].  This phosphorylation 

increases PDE4 activity in cells by around 60% but it appears that PDE4A4 and 4D3 

show the greatest increase in activation [Laliberte et al., 2002; Sette and Conti, 1996; 

MacKenzie et al., 2002], although the reason for this is unknown. 
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In PDE4D3 two sites for PKA phosphorylation, the conserved one at Ser54 in 

UCR1 together with another one at Ser13, that is located within its unique N-terminal 

region [Hoffmann et al., 1998; Sette and Conti, 1996]. The N-terminal site has no effect 

on activity, but is involved in targeting, increasing the association of PDE4D3 with 

mAKAP [Carlisle Michel et al., 2004] and reducing its interaction with the scaffold 

protein, Ndel1 [Collins et al., 2008]. 

 

Interestingly PKA-phosphorylated forms of both PDE4A4 and 4D3 show 

enhanced sensitivity to stimulation by Mg2+, a cation found in the catalytic site which is 

necessary for PDE activity [Oki et al., 2000; Perry et al., 2002]. It has recently been 

shown [Burgin et al., 2010] that in the absence of UCR1 phosphorylation of PDE4 by 

PKA the UCR2 domain adopts a ‘closed’ conformation over catalytic pocket. However 

when PKA phosphorylation occurs the interactions between UCR1 and UCR2 are 

altered causing the UCR2 helix to move into an ‘open’ active conformation, activating 

the enzyme and increasing its Vmax without affecting Km.  

 

 

1.8.2  Extra-cellular Signal Regulated Kinase (ERK) 

 

The Mitogen-Activated Protein (MAP) Kinase signalling cascade is a pivotal 

signalling pathway where growth factors, cytokines and hormones [Pearson et al., 2001] 

exert crucial effects on cell survival and growth. ERK1 and ERK 2 are members of the 

MAPK family. All PDE4 enzymes, except for PDE4A species, contain a consensus 

motif for ERK binding (Pro-Xaa-Ser-Pro) in their catalytic unit within which a serine 

can be phosphorylated [MacKenzie et al., 2000]. However for ERK binding to occur 

there must be the presence of ERK docking sites at either side of the consensus motif. 

These consist of a kinase interaction motif (KIM) which is found approximately 135 

amino acids N-terminal of the consensus site and a Phe-Xaa-Phe (FQF) motif found 

approximately 16 amino acids C-terminal of the consensus site. The presence of these 

two docking sites allows for specificity of ERK1/2 phosphorylation over other kinase 

phosphorylations that can occur here, such as c-Jun N-terminal kinase (JNK) 
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phosphorylation [Sharrocks et al., 2000]. These recognition/binding sites have been 

identified in PDE4 and shown to be functional as regards being essential for PDE4 to be 

phosphorylated by ERK in cells [MacKenzie et al., 2000]. 

 

ERK phosphorylation exerts different effects on PDE4 enzymes which are 

dependent on whether the enzyme is long or short form. In short form PDE4s it leads to 

activation of the PDE4 enzymes with an increase in intracellular activity of 40% 

[MacKenzie et al., 2000 and Baillie et al., 2000]. In contrast to this, in long form PDE4s 

then phosphorylation by ERK causes inhibition of enzymatic activity by around 40%. 

However, this is a transitory effect that can be overcome if ERK inhibition of PDE4 

long forms cause cAMP levels to rise enough to activate PKA, which can then 

phosphorylate the long form and overcome the ERK inhibitory effect, leading to a net 

activation [Houslay and Kolch, 2000 and Baillie at al., 2000]. This inhibition is now 

understood to be caused by the ERK phosphorylated serine on the C-terminus of the 

enzyme interacting directly with the UCR2 region stabilising it in a ‘closed’ 

conformation over the catalytic pocket [Burgin et al., 2010]. 

 

 
 

 
1.9 New partner proteins for PDE4A 

 

 

The work detailed in this thesis will introduce two new partner proteins for the 

long form PDE4A isoform PDE4A5 and will highlight the presence of a potential multi-

functional docking domain on this, and other long form PDE4 isoforms.  

 

 

1.9.1  MAPKAPK2 

 

The p38 MAPK pathway is a key signal transduction pathway involved in the 

control of cellular immune, inflammatory and stress responses [Hommes et al., 2003]. 
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One of its downstream effectors is the kinase mitogen-activated protein kinase-activated 

protein kinase 2 (MAPKAPK2). In chapter 3 is it described how MAPKAPK2 interacts 

with PDE4A5.  

 

 

1.9.2  p75NTR 

 

Another important protein shown to interact with PDE4A5 in chapter 4 of this 

thesis is the low affinity neurotrophin receptor p75NTR. This 75 kDa neurotrophin 

receptor is pivotal in neuronal signalling and inflammatory responses. It gets its name 

from its ability to bind several different neurotrophins at a low affinity [Barker, 2009]. 

This protein will be discussed in more detail in Chapter 4.  
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Chapter 2         Materials and Methods 
 

 

2.1  Materials 

 

 All materials, chemicals and equipment were supplied by Sigma-Aldrich® 

unless otherwise stated. 

 

2.2 Plasmid Preparation 

 

 All plasmid work was carried out in a sterile environment and all buffers used 

were molecular biology grade. Buffers were sterilised by sterile filtration or autoclaving.  

 

 

2.2.1 Transformation of Competent Cells 

 

 Competent cells are bacterial cells that can incorporate foreign DNA plasmids. 

Not all cells have this ability but can often be manipulated to be electrically or 

chemically competent. Most competent cells have an optimal transformation protocol, 

often provided by the manufacturers, but these protocols all follow same general 

principle. Competent cells were stored at -80oC and thawed on ice. 1-10ng of DNA was 

added to 50µL of competent cells and incubated on ice for 15 mins, although longer 

incubation periods generally have no effect on transfection efficiency. The cells were 

then heat shocked at 42oC for 45-90s before being returned to ice for 2 mins.  450µL of 

pre-warmed L-Broth media (1% (w/v) bacto-tryptone, 0.5% (w/v) bacto-yeast extract 

and 170mM NaCl) was then added to the cells and incubated shaking at 37oC for one 

hour. Agar plates were produced using L-Broth media and 1.5% (w/v) agar. This 

solution was autoclaved and cooled to less then 50oC then the appropriate antibiotic for 

the plasmid was added (commonly used antibiotics and their concentrations are shown 

in Table 2.1) before being poured out and set in 90mm plates. 50-250µL of 

transformation mix was then spread on the agar plates and incubated at 37oC for 14-18 
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hours. Colony growth indicated successful cell transformation. Plates were stored at 4oC 

for up to one month before being discarded.  

 

Antibiotic Stock Concentration Storage Working Concentration 

Ampicillin 100mg/ml in H2O -20oC 100 µg/ml 

Kanamycin 10mg/ml in H20 -20oC 50 µg/ml 

Zeocin (Invitrogen) 100mg/ml in HEPES -20oC 25 µg/ml 

 

Table 2.1 – Concentrations of commonly used antibiotics. 

 

2.2.2 Isolation of Plasmid DNAs 

 

 From agar plates single colonies were picked and grown overnight in 5mL L 

Broth media containing the appropriate antibiotic in an orbital shaker at 37oC. 1ml of the 

bacterial culture was saved for production of a glycerol stock (see section 2.2.3). The 

remaining bacterial stock was used for plasmid isolation using the QIAGEN® 

QIAprep® Miniprep Kit.  Alternatively, the 5 ml overnight bacterial culture was used to 

inoculate a larger L Broth media culture of 500 ml, supplemented with the appropriate 

antibiotic, for overnight growth and isolation of significantly greater plasmid DNA 

concentrations and volumes using the QIAGEN® QIAprep® Maxiprep Kit.  For in-

depth details of the plasmid DNA isolation protocols please refer to the manufacturers 

instructions. Purified plasmid DNA was stored at 4oC, if eluted in 10mM Tris-Cl; pH 

8.5, and –20oC, if eluted in sterile water. 

 

2.2.3 Storage of Plasmid DNAs 

 

 To produce a glycerol stock 1ml of overnight culture (see section 2.2.2 above) 

was removed and mixed with 500µl sterile filtered glycerol in a sterile cryo-vial. This 

was then snap-frozen on dry ice and stored at -80oC until required. Generally the E.Coli 

bacterial strain JM109 was used for storage as long-term glycerol stocks.   
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Glycerol stocks were used to inoculate culture media (L Broth) by scrapping the 

frozen stock with a sterile pipette tip, which is then transferred into 5ml of sterile L 

Broth media containing the appropriate antibiotic for the plasmid in which they were 

cultured or the bacterial host strain. This culture was then incubated in an orbital shaker 

overnight at 37oC. The plasmid isolation can then be carried out as described in Section 

2.2.2 and 2.3.  

 

2.2.4 Analysis of Plasmid DNA 

 

2.2.4.1    Agarose Gel Electrophoresis 

 

 Agarose gel electrophoresis is a method used to analyse DNA molecules by size. 

This is achieved by moving negatively charged nucleotides through an agarose matrix 

with an electric field. Shorter molecules migrate faster than larger molecules and DNA 

is resolved into fragments between 0.5-10 kilobases with 20-500ng of DNA per band. 

1% agarose was dissolved in 40mM Tris-Cl; pH 8.5, 0.114% (v/v) glacial acetic acid 

and 2mM EDTA (TAE) by heating in a microwave oven until the agarose dissolved. 

The 1% agarose solution was cooled to 55oC and 0.5µg/ml ethidium bromide was 

added. The solution was then poured into the Bio-Rad® Sub-Cell GT gel apparatus, 

with the well comb in place, and allowed to set.  For more details about the Bio-Rad® 

Sub-Cell GT gel apparatus please consult the manufacturers instructions. Once set for 

30-40 min the comb was removed and the gel was placed in a gel tank with 1x TAE 

buffer (40mM Tris, 20mM Acetic Acid, 1mM EDTA) to a level of 1mm above the gel. 

1kb DNA ladder was also loaded to an appropriate well of the gel to allow the size of 

the DNA plasmid or fragment within the sample to be determined. For DNA samples 6x 

loading buffer (0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol FF and 40% 

(w/v) sucrose) was diluted 1:6 into the DNA solution and mixed gently. The gels were 

then run at 100V for approximately one hour and were then removed from the tank and 

analysed under ultra violet light where ethidium bromide stained DNA can be 

visualised. Images of the gels were then captured using an ultra violet light box. 
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2.2.4.2  Quantification of DNA Concentration  

 

 The concentration of purified DNA was determined using the Nanodrop 2000 

spectrophotometer from Thermo Scientific which measures DNA concentration at 

absorbance of 260 nm. 

 

2.2.4.3  DNA Sequencing 

  

DNA samples for sequencing were sent to the University of Dundee Sequencing 

Service (www.dnaseq.co.uk) where sequencing of 500bp lengths of DNA was carried 

out using standard or custom primers. Analysis of DNA sequencing was carried out 

using Gene Jockey Version 2.2 or Geneious computer software programs.  

 

2.2.5 Site-Directed Mutagenesis of Plasmid DNA 

 

 Site-directed mutagenesis of plasmid DNA was carried out using the 

QuikChange® Site-Directed Mutagenesis Kit. In short, Polymerase Chain Reaction 

(PCRs) samples were set up in 10x reaction buffer containing various concentrations of 

purified, template DNA (5-50ng). Primer pairs used for site directed mutagenesis were 

designed using Gene Jockey or Genious computer software and manufactured by 

Thermo Bioscience. 125ng of each primer and 1µl of deoxynucleotide tri-phosphate 

(dNTP) mix were added to the PCR reaction and it was made up to a total volume of 

50µl with RNAase, DNAase free water. 1µl of Pfu Turbo polymerase was added to each 

reaction. PCR was then carried out using the MJ Research Peltier Thermal Cycler 200 

with conditions set as 95oC for 30s, and 18 cycles of 95oC for 30s, 55oC for 1min, and 

68oC for 1min per kb of the plasmid length. Once this reaction is complete 1-4µl of the 

Dpn I restriction enzyme was added to each reaction and incubated at 37oC for 1h. 1µl 

of the Dpn I-treated DNA was used to transform 50µl of XL-Blue super-competent cells 

as described above and plasmid DNA was then isolated from single colonies on agar 

plates, cultured, purified and sequenced as described above to assess whether site 
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directed mutagenesis was successful. I wish here to thank Mrs Irene Gall, who carried 

out all the site-directed mutagenesis for this project. 

 

2.3 Expression and Purification of Recombinant Fusion Proteins 

 

 

2.3.1 Maltose Binding Protein (MBP) Fusion Proteins 

 

 Competent E.coli BL21 cells were transformed, as described in Section 2.2.1, 

with the appropriate pMAL plasmid, as described in Table 2.2, and grown in 30ml or 

sterile L-Broth media, supplemented with 100µg/ml ampicillan, overnight in an orbital 

shaker at 37oC. 450ml of L-Broth media, containing 100µg/ml ampicillan was then 

inoculated with the 30ml overnight culture and grown in the orbital shaker at 37oC for a 

further 1-2 hours. A 1ml sample of the culture was taken at regular intervals, placed in a 

plastic cuvette and its optical density was measured at 600nm (OD600) against an 

uncultured L-Broth media control. Once this density reached a value of between 0.6 and 

1 expression of the fusion protein was induced with 0.2mM isopropyl-β-D-

thiogalactopyranoside (IPTG). An OD600 at this level ensured that the culture was in 

the logarithmic phase, where bacteria will grow exponentially. The culture was then 

grown for a further 4 hours in an orbital shaker set at 30oC. Hourly 1ml samples were 

removed to monitor protein expression. These samples (including the samples used for 

OD600 measurement) were centrifuged at 13000rpm, the supernatant was discarded and 

the pellet was re-suspended in 100µl SDS sample buffer for analysis by SDS-PAGE and 

Coomassie staining as described in Section 2.7. The cells from the 450ml culture were 

then harvested by centrifugation at 4000rpm for 10 min. The cells were re-suspended in 

12ml of 50mM Tris-HCl; pH 8.0, 10mM NaCl and 10mM β-mercaptoethanol containing 

a 1x solution of Roche Diagnostics protease inhibitor cocktail tablets. The re-suspended 

cells were then frozen at -80oC overnight. Cells were thawed on ice and lysozyme was 

added at a final concentration of 1mg/ml and the cell suspension subjected to sonication 

to ensure sufficient cell lysis occurred. A final concentration of 0.05% NP-40 was added 

to aid cell lysis and the cells were centrifuged at 13000rpm for 15 min to remove cell 
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debris. 1ml of amylose resin (New England BioLabs) was pre-equilibrated with re-

suspension buffer containing 0.05% NP-40. The cell supernatant was applied to the pre-

equilibrated resin and incubated end-over-end at 4oC for 1h to bind the expressed fusion 

protein. The resin was the collected by centrifugation at 2000rpm for 2min and washed 

three times with 1ml of re-suspension containing 0.05% NP-40. The fusion protein was 

eluted from the amylose resin with 500µl of 10mM maltose, 50mM Tris-HCL; pH8.0 by 

incubation end over end for 20 min at 4oC. This was repeated up to three times, if 

necessary. The eluted fractions were pooled and dialysed using Pierce®  Slide-A-

Lyser® dialysis cassettes against three 750ml volumes of 100mM NaCl, 50mM Tris-

HCL; pH 8.0 and 5% glycerol for 1h each at 4oC. The purified fusion protein was frozen 

on dry ice, and stored as aliquots of 25µl at -80oC. The expression time-course and final 

purification products were analysed by SDS-PAGE and Coomassie® staining, described 

in Section 2.7. 

 

2.3.2 Glutathione-S-Transferase (GST) Fusion Proteins 

 

 The E.coli expression and purification of recombinant GST fusion proteins is 

extremely similar to the purification of MBP protein described above in Section 2.3.1. 

Competent E.coli BL21 cells were transformed, as described in Section 2.2.1, with the 

appropriate pGEX plasmid, as described in Table 2.2.  Cultures were grown, induced, 

harvested and lysed as described above however for the purification of GST fusion 

proteins glutathione sepharose resin (Amersham Biosciences) was used and elution 

required an elution buffer composed of 10mmM glutathione, 50mM Tris-HCl; pH 8.0. 

The expression time-course and final purification products were analysed by SDS-

PAGE and Coomassie® staining, described in Section 2.7. 

 

2.3.3 Histidine (His) Fusion Proteins 

 

 The E.coli expression and purification of recombinant His fusion proteins is 

extremely similar to the purification of MBP and GST protein described above in 

Section 2.3.1 and Section 2.3.2. Competent E.coli BL21 cells were transformed, as 
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described in Section 2.2.1, with the appropriate (pEX-His) plasmid, as described in 

Table 2.2.  Cultures were grown, induced, harvested and lysed as described above 

however for the purification of His fusion proteins nickel resin (Qiagen) was used and 

elution required an elution buffer composed of (6M Urea, 20mM Tris pH 7.5, 100mM 

NaCl); pH 8.0. The expression time-course and final purification products were 

analysed by SDS-PAGE and Coomassie® staining, described in Section 2.7. 

 

2.4 Mammalian Cell Culture 

 

 All cell culture techniques were carried out in a class two hood using aseptic 

techniques and reagents had been filter sterilised or autoclaved to ensure sterilisation.  

 

2.4.1 Maintenance of Cell Lines 

 

 Cells of a low passage number were stored at -200oC, in cryovials containing 

freezing cell media (70% serum, 10% DMSO), to ensure their long-term integrity.  To 

revive cells from the temperature individual vials were quickly thawed and added 

directly to 10ml of growth media pre-warmed to 37oC, under sterile conditions. Once 

the cell line is established and confluent, further aliquots of cells were re-suspended in 

freezing cell media and initially frozen at -80oC before being transferred to -200oC for 

long-term storage.  

 

2.4.1.1  COS1 Cells 

  

COS1 cell lines are derived from African green monkey kidney cells and have 

been transformed with the SV40 virus. The cells were propagated in growth media 

containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 0.1% 

penicillin/streptomycin (10000U/ml), 2mM glutamine and 10% foetal bovine serum 

(FBS). The cell line was maintained at 37oC in an atmosphere of 95% air and 5% CO2. 

The cells were passaged when approximately 70-90% confluence was reached. To 

passage the cells the growth media was removed and 5ml of sterile pre-warmed 



 61 

phosphate buffer saline (PBS) was added to gently wash the cells. The PBS was 

removed and 5ml of trypsin-EDTA solution was added and cells were incubated for 5 

min at 37oC. The cells were vigorously agitated and then analysed under the microscope 

to ensure complete cell detachment. 5ml of growth media was then added to inactivate 

the trypsin-EDTA solution. The cells were collected by centrifugation at 10,000rpm for 

3 min at room temperature. The growth media and trypsin-EDTA solution was removed 

and the cell pellet was re-suspended in 5ml of fresh growth media. Once fully re-

suspended 1ml of cells were added to fresh growth media in sterile flasks, 100mm or six 

well plates. The cells were incubated at 37oC in an atmosphere of 95% air and 5% CO2 

until required or confluent.  

 

2.4.1.2  HEK293 Cells 

 

 The human embryonic kidney 293, (HEK293) cell line has epithelial 

morphology. These cells were maintained as described in Section 2.4.1.1 for COS1 

cells. 

 

2.4.1.3  NIH3T3 Cells 

 

 NIH3T3 cells are fibroblasts from Swiss mouse embryo tissue with the ‘3T3’ 

designation referring to the abbreviation of “3-day transfer, inoculum 3 x 105 cells”. 

These cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 0.1% penicillin/streptomycin (10000U/ml), 2mM glutamine and 

10% newborn calf serum (NCS) and maintained as described in Section 2.4.1.1. A stable 

NIH3T3 cell line expressing p75NTR-GFP was provided by the laboratory of Dr 

Katerina Akassoglou (Gladstone Research Institute, San Francisco, USA). These cells 

were maintained in the same manner as above with the growth media supplemented with 

100µg/ml Hygromycin B. These cells were maintained as described in Section 2.4.1.1 

for COS1 cells. 
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2.4.1.4  Mouse Embryonic Fibroblasts (MEFs) 

 

 Mouse Embryonic Fibroblasts (MEFs) are fibroblast cells isolated from the 

bodies of c57 black mouse embryos. The cells were propagated in growth media 

containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 0.1% 

penicillin/streptomycin (10000U/ml), 2mM glutamine and 10% foetal bovine serum 

(FBS). The cell line was maintained at 37oC in an atmosphere of 95% air and 5% CO2.  

These cells were maintained as described in Section 2.4.1.1 for COS1 cells. PDE4A (-/-) 

and PDE4B (-/-) MEFs were a generous gift from Dr Marco Conti (UC San Francisco, 

USA).  

 

2.5 Mammalian Cell Transfection of Plasmid DNA 

 

 A list of DNA plasmids used for the transfection of the mammalian cell lines are 

described in Table 2.2. 

 

2.5.1 PolyFect® Transient Transfection 

 

 The PolyFect® the method of mammalian cell transfection, from QIAGEN®, 

was used for transfection of COS1, HEK293 and NIH3T3 cell lines. Flasks of confluent 

cells were passaged the day prior to transfection and plated to ensure 40-80% 

confluency on the day of transfection. These plates were incubated overnight at 37oC in 

an atmosphere of 95% air and 5% CO2. The amount of DNA required for each plate 

was dependent on the cell line and number of cells to be transfected and should be 

scaled accordingly. The protocol described is accurate for 100mm plates of 40-80% 

confluent cells in 6ml growth media. See manufacturers instructions for the amount of 

DNA required for different plate sizes. 4µg of the desired DNA plasmid for the 

transfection of COS1 or NIH3T3 cells was diluted in antibiotic and serum free DMEM 

to a final volume of 300µl. 8µg of the desired DNA plasmid for the transfection of 

HEK293 cells was diluted in antibiotic and serum free DMEM to a final volume of 

300µl. 25µl of PolyFect® Transfection Reagent was added to the DNA solution for 
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COS1 and NIH3T3 cell transfections whereas 80µl was required for efficient 

transfection of HEK293 cells.  The transfection reagents were incubated at room 

temperature for 5-10min to allow complex formation.  Where co-transfection of two 

DNA plasmids was required the amount indicated above of each plasmid was diluted in 

300µl of antibiotic and serum free DMEM before the addition of the specific volume of 

PolyFect® Transfection Reagent indicated above for the cell type. During the incubation 

period the growth media was removed and replaced with 6ml of fresh DMEM 

supplemented with 0.1% penicillin/streptomycin (10000U/ml), 2mM glutamine and the 

relevant serum for the cell line. Following incubation, 1ml of supplemented DMEM 

containing the antibiotics and serum was added to the DNA-DMEM- PolyFect® 

complex. This was mixed gently and added directly to the appropriate transfection plate. 

The plates were then incubated for 24-72 hrs at 37oC in an atmosphere of 95% air and 

5% CO2 prior to any cell treatments and harvesting. Details of ligands and inhibitors 

used for cell treatments post-transfection are described in Table 2.3. 

 

2.5.2  Nucleofector Transfection 

 

 Transfection of MEF cells cannot be successfully carried out using Polyfect 

transient transfection therefore Amaxa Nucleofector nucleoporation transfection was 

instead carried out using their MEF transfection kit according to manufacturers 

instructions. 
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Vector Construct 

pcDNA PDE4A5 – Wild Type 

pcDNA PDE4A5 – Ser147Ala 

pcDNA PDE4A5 – Ser147Asp 

pcDNA PDE4A5 – Ser161Ala 

pcDNA p75NTR – Wild Type 

pcDNA PDE4D3 – Wild Type 

pcDNA PDE4D3 – Ser61Ala 

pcDNA PDE4D3 – Ser61Asp 

pcDNA PDE4A4 – Wild Type 

pcDNA PDE4A1 – Wild Type 

pcDNA PDE4A10 – Wild Type 

pcDNA PDE4A11 – Wild Type 

pMAL PDE4A5 MBP 

pMAL PDE4A4 MBP 

pMAL PDE4A1 MBP 

pMAL PDE4A10 MBP 

pMAL PDE4A11 MBP 

pGEX p75NTR GST 

pGEX MAPKAPK2 GST 

pGEX Lyn GST 

pGEX UBC9 GST 

pGEX GST alone 

pGEX β-Arrestin GST 

pGEX ERK GST 

pEX-His p75NTR 

 

Table 2.2  List of Plasmids 
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Agonists/ 

Inhibitors 

Role Concentration Reference   

Anisomycin p38 MAPK activator 10 µg/ml Cuenda et al., 

1995 

TNFα TNFα signalling 

cascade activator 

p38 MAPK activator 

10 µM Winston et al., 

1997 

SB203580 p38 MAPK cascade 

inhibitor 

25 µM Cuenda et al., 

1995 

Forskolin Adenylate cyclase 

activator 

100 µM Seamon et al., 

1981 

IBMX Broad spectrum PDE 

inhibitor 

100 µM Essayan, 2001 

Rolipram PDE4 inhibitor 10 µM Watchel, 1982 

 

Table 2.3 – Agonists and Inhibitors. 

 

 

2.6 Preparation of Cell Lysates 

 

2.6.1 Whole Cell Lysate 

 

 Confluent cells were harvested at 4oC using buffers that had been previously 

chilled to minimise protein degradation. The culture media was aspirated and the cells 

were washed three times with ice cold sterile PBS. The cell plates were drained 

thoroughly and an appropriate volume of cell lysis buffer was added. For a 100mm plate 

500µl of lysis buffer was used whereas for a 6 well plate 300µl was added to each well. 

For the production of whole cell lysate 3T3 lysis buffer was used. This composed of 

25mM HEPES-OH: pH 7.5, 50mM NaCl, 10% glycerol, 1% Triton, 50mM NaF, 30mM 

Na pyrophosphate, 5mM EDTA and 1x solution of Roche Diagnostics (Mannheim, 
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Germany) protease inhibitor cocktail tablets. The cells were incubated for 5 min on ice 

then scraped using a disposal scraper. The lysate was then collected into a 1.5ml 

Eppendorf tube. The cell lysates were centrifuged in a refrigerated, bench-top at 

13.000rpm at 4oC and the supernatant was retained. The cell lysates were then snap 

frozen in dry ice and stored at -80oC until required. 

 

2.6.2 Sub-cellular Fractionation 

 

 Confluent cells were harvested at 4oC using buffers that had been previously 

chilled to minimise protein degradation. The culture media was aspirated and the cells 

were washed three times in ice cold PBS. The cell plates were drained thoroughly and 

an appropriate volume of cell lysis buffer was added. For a 100mm plate 500µl of lysis 

buffer was used whereas for a 6 well plate 300µl was added to each well. For the 

production of sub-cellular fractions, 500µl sterile 50mM KCl, 50mM HEPES; pH 7.2, 

10mM EGTA, 1.92mM MgCl2, 1mM dithiolthreitol  (DTT) and 1x solution of Roche® 

Diagnostics (Mannheim, Germany) protease inhibitor cocktail tablets  (KHEM) was 

added to the cells and incubated at 4oC for 5 min. The lysate was then collected into a 

1.5ml Eppendorf tube. The cells were homogenised on ice by drawing through a 26G 

needle and 1 ml syringe, approximately 20 times, and centrifuged at 2,000rpm in a 

refrigerated, bench-top centrifuge at 4oC for 10 min. The pellet formed was the P1 

fraction (unbroken cells and nuclei). The supernatant was transferred to a plastic ultra-

centrifuge tube and centrifuged at 75,000rpm in a Beckman TLA-100 ultra-centrifuge 

for 30 min at 4oC. The pellet formed at this stage was the P2 fraction (plasma 

membrane, Golgi vesicles, endoplasmic reticulum, endosomes and lysosomes). The 

supernatant from this fraction was retained as the S fraction (enriched cytosolic proteins) 

and the volume noted. P1 and P2 fractions were both washed twice in 500µl if KHEM.  

The P1 fraction was washed at 2,000rpm for 10 min and the P2 fraction at 75,000rpm 

for 30 min. The pellets were then re-suspended in an appropriate volume of KHEM 

buffer. To asses sub-cellular distribution of a given protein in each fraction they were 

subjected to SDS-PAGE and Western-immuno-blotting as described in section 2.7. 
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2.6.3 Determination of Protein Concentration 

 

 The protein concentration of cell lysates and purified recombinant proteins was 

determined using bovine serum albumin (BSA) in a standard spectrophotometric, 

Bradford assay [Bradford, 1976]. The assays were undertaken in 96-welll micro-titre 

plates. As standard curve of know BSA concentrations between zero and 5µg was 

generated diluted in sterile water to a final volume of 50µl in triplicate. The protein 

sample of interest was assayed at various dilutions (1:100, 1:50, 1:25) in a final volume 

of 50µl to ensure it was within the range of the standard curve. Bradford reagent from 

Bio-Rad (Hemel Hempstead, U.K.) was diluted 1:5 with sterile water and 200µl was 

added to each well of the micro-titre plate. The 96-well plate was analysed with a 

590nm test filter using a Dynex MRX micro-titre plate reader controlled through Dynex 

Revelation, Version 3.04 computer software. The intensity of the colour change (brown 

to blue) is directly proportional to protein concentration and this was determined by 

plotting the standard curve and using least squared regression analysis to obtain the line 

of best fit. The equation of the line was used to determine the concentration of the 

protein samples. This concentration was then adjusted to account for any dilution factor. 

 

 

2.7  Protein Analysis 

 

2.7.1 SDS-PAGE 

 

 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) is a 

method used to separate proteins by virtue of their molecular weight. Protein samples of 

1-100µg were denatured and reduced by dilution in 10% SDS, 300mM Tris-Cl; pH6.8, 

0.05% bromophenol blue, 50% glycerol and 10% B-mercaptoethanol (5x SDS Hannah 

sample buffer). The samples were boiled for 3 min and then loaded directly to an 

Invitrogen (Paisley, U.K.) NuPAGE 4-12% Bis-Tris polyacrylamide gel immersed in 

Invitrogen NuPAGE MES or MOPS SDS running buffer. 5µl of Bio-Rad pre-stained 
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molecular weight protein marker was loaded to the first well of the gel, to assess the 

molecular weight of proteins being analysed, and protein sample were loaded to the 

subsequent wells. The gel was then run at 200V for 1.5 hours. For more details of the 

Invitrogen Nu-PAGE pre-cast gels and associated X-Cell II apparatus please consult the 

manufacturer’s instructions (http://www.invitrogen.com/site/us/en/home/Products-and-

Services/Applications/Protein-Expression-and-Analysis/Protein-Gel-

Electrophoresis.html). 

 

2.7.2 Coomassie Staining 

 

 Proteins separated by SDS-PAGE can be visualised by a variety of methods. For 

Coomassie staining gels were removed from the pre-cast gel cassette and washed in 

sterile water to remove residual running buffer. Coomassie stain consists of 1.25g 

Coomassie Brilliant Blue R250, 444ml methanol, 56ml acetic acid in a final volume of 

1,000ml sterile water. 50ml of stain was added to the gel and placed gently shaking at 

room temperature for 2h. The Coomassie stain was then removed and replaced with 

Coomassie de-stain, 444ml methanol and 56ml acetic acid in a final volume of 1,000ml 

sterile water. The gel was then incubated with de-stain for 6h after which was replaced 

with fresh de-stain for another 6h. This removed all residual Coomassie background 

staining, leaving the remaining stain bound to the proteins showing detection of all 

proteins present in the sample. Proteins were then be measured against the molecular 

weight marker to determine their identity. The gel was then washed in sterile water with 

10% glycerol to aid the prevention of gel cracking following drying. 

 

2.7.3 Western Immuno-Blotting 

 

 Proteins separated by SDS-PAGE can be visualised by a variety of methods. 

Western-blotting allows the detection of individual proteins using specific anti-sera. The 

proteins separated by SDS-PAGE were transferred to a nitrocellulose membrane using 

Invitrogens X-Cell II blotting modular and Nu-PAGE transfer buffer containing 20% 

methanol. The proteins were transferred with an applied voltage of either 25V for 2h or 
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10V for 15h. Full transfer of the pre-stained molecular weight marker onto the 

nitrocellulose membrane indicated successful transfer of the proteins.  Following 

transfer the nitrocellulose membrane was incubated or “blocked” in 5% milk powder 

(Marvel) re-constituted in 20 m< Tris-Cl; pH 7.6, 150mM NaCl and 0.1% Tween20 

(TBST), for 1h at room temperature with gentle agitation. Primary antibody, for the 

protein wishing to be detected, was then added at the appropriate dilution (general 

dilution range 1:100 to 1:10,000) to a 1% milk powder TBST solution. Details of the 

primary antibodies used as show in Table 2.4. The nitrocellulose membrane was then 

sealed in and airtight plastic carrier containing 10ml of the primary antibody TBST 

solution. This was then incubated at either room temperature for 2h or overnight at 4oC 

both with vigorous agitation. The membrane was then removed from the plastic carrier 

and washed 3 times in TBST for 5 min at room temperature. The appropriate 

horseradish peroxidase (HRP) conjugated anti-immunoglobulin G (IgG) secondary 

antibody diluted 1:5,000 in 1% milk powder TBST solution in a sealed, airtight plastic 

carrier. This was then incubated for 1h at room temperature with vigorous agitation. The 

membrane was washed again 3 times with TBST before employing the Amersham 

Biosciences (Little Chalfont, U.K.) enhanced chemiluminescence (ECL) Western 

Immuno-blotting kit as the visualisation protocol for detecting bound antibodies. In 

brief, the bound antibodies were detected by exposure of the membrane, following 

washing in ECL solution, to blue-light sensitive autoradiography film and developed 

using the Kodak X-Omat Model 2000 processor.  
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Protein Specificity Type Dilution* Source Supplier 

Human PDE4A 

Conserved C-terminal 

region of human 

PDE4A isoforms 

Serum 1:5000 Goat In-house 

Rat PDE4A 

Conserved C-terminal 

region of rat PDE4A 

isoforms 

Serum 1:2500 Rabbit In-house 

PDE4B 

Conserved C-terminal 

region of PDE4B 

isoforms in all species 

Serum 1:2500 Goat In-house 

PDE4D 

Conserved C-terminal 

region of PDE4D 

isoforms in all species 

Serum 1:5000 Goat In-house 

PKA 

phosphorylated 

PDE4 

Phosphorylated Ser 

residue in RRES*F 

motif in UCR1 of all 

PDE4 long isoforms 

Serum 1:1000 Rabbit In-house 

MAPKAPK2 

phosphorylated 

PDE4 

Phosphorylated Ser 

residue in LYRSDS* 

motif in UCR1 of all 

PDE4 long isoforms 

Polyclonal 1:1000 Rabbit 

Custom – 

Cambridge 

Research 

Biochemicals 
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Protein Specificity Type Dilution* Source Supplier 

p38 MAPK 
Endogenous levels of 

p38 MAPK 
Polyclonal 1:1000 Rabbit 

Cell Signaling 

Technology® 

Activated p38 

MAPK 

Endogenous levels of 

phosphorylated p38 

MAPK at Thr180 & 

Tyr182 

Polyclonal 1:1000 Rabbit 
Cell Signaling 

Technology® 

MAPKAPK2 
Endogenous levels of 

MAPKAPK2 
Polyclonal 1:1000 Rabbit 

Cell Signaling 

Technology® 

Activated 

MAPKAPK2 

Endogenous levels of 

phosphorylated 

MAPKAPK2 at 

Thr334 only & not 

Thr25, Thr222 & 

Ser272 

Polyclonal 1:1000 Rabbit 
Cell Signaling 

Technology® 

p75NTR 

Endogenous levels of 

p75NTR. Targetted to 

the c-Terminal end. 

Polyclonal 1:1000 Mouse Santa-Cruz 

GST 
Recognises GST-tag 

fusion proteins 
Polyclonal 1:1000 Rabbit In-house 

VSV 

Recognises an epitope 

containing the five C-

terminal amino acids 

of VSV glycoprotein 

Monoclonal 1:5000 Mouse 
Sigma-

Aldrich® 

FLAG 

Recognises an epitope 

containing 

DYKDDDDK 

Monoclonal 1:5000 Mouse 
Sigma-

Aldrich® 

 

Table 2.4 – Anti-sera used for Western immuno-blotting. 
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*Dilution factor is correct for Western immuno-blotting.  Antibody titrations should be 

undertaken for immuno-precipitation and immuno-histochemistry. 

 

2.8 Fusion Protein Interactions 

 

 

2.8.1 Pull-down Assays 

 

 The expression and purification of GST fusion proteins in E.coli was undertaken 

as described in Section 2.3. COS1 cells were transfected to transiently express specific 

PDE4A isoforms as described in Section 2.5 and subjected to sub-cellular fractionation 

as described in Section 2.6. Assessment of the interaction of PDE4A isoforms with GST 

fusion proteins has been described previously [McPhee et al., 1999, Huston et al., 2000 

and Rena et al., 2001].  Briefly, 400µg of the GST fusion protein, or GST alone as a 

control, was immobilised on a 40µl bed volume of Amersham Biosciences (Little 

Chalfont, U.K.) glutathione sepharose resin.  The resin was pelleted by centrifugation at 

2500rpm for 5min at 4oC using a refrigerated bench-top centrifuge.  The supernatant 

was discarded.  The pellets were then re-suspended in 500µl (approximately 200µg of 

protein) of cytosolic, or S fraction, produced from COS1 cells expressing equal 

immuno-reactive amounts of PDE4A isoforms, as determined by Western immuno-

blotting with a PDE4A C-terminal specific anti-serum.  The protein samples were 

diluted in KHEM, the buffer used for sub-cellular fractionation of mammalian cells.  

The immobilised fusion protein and cytosol were incubated together for 1h end-over-

end at 4oC.  The glutathione sepharose resin was then collected by centrifugation at 

2500rpm for 5min at 4oC.  The supernatant was retained for Western immuno-blotting to 

measure the extent of PDE4A remaining unbound to the GST fusion protein.  The beads 

were washed three times with 500µl of KHEM by centrifugation at 2500rpm for 5min at 

4oC.  The supernatant was discarded and the beads re-suspended in 40µl of SDS sample 

buffer to elute the bound proteins.  Protein samples of PDE4A expressed in cytosolic 

cell lysate, PDE4A bound to GST, PDE4A unbound to the GST fusion protein and 

PDE4A bound to the GST fusion protein were analysed by SDS-PAGE, as described in 
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Section 2.7, and immuno-probed for PDE4A using a C-terminal, species and sub-family 

specific anti-serum, as described in Section 2.7. 

 

2.8.2 Peptide Arrays 

 

 Peptide arrays are Whatman® 50 cellulose membranes on which peptide 

sequences are directly synthesised [Reineke et al., 2001 and Frank, 2002].  These 

peptide arrays are able to bind purified recombinant proteins and provide evidence for 

direct protein interaction and the elucidation of the critical domains and residues 

involved [Espanel and Hooft van Huijsduijnen, 2005 and Bolger et al., 2006].  The 

peptide arrays used in the experiments detailed in this thesis were kindly produced by 

Dr. E. Klussmann (Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany) 

using the Intavis Bioanalyical Instruments (Köhn, Germany) AutoSpot-Robot ASS 222 

and utilising Fmoc-chemistry.  Recombinant GST fusion proteins were produced to 

homogeneity, as described in Section 2.3. The peptide arrays were activated by 

immersion in 100% ethanol and then washed in TBST for 10min at room temperature on 

an orbital shaker.  The peptide arrays were then incubated or blocked with 5% milk 

powder (Marvel®), re-constituted in 20mM Tris-Cl; pH 7.6, 150mM NaCl and 0.1% 

Tween20 (TBST) for 1h at room temperature with vigorous agitation.  3-10µg/ml of 

recombinant GST fusion protein, or GST alone as a control, was then diluted in 1% milk 

powder TBST solution and incubated with the peptide array in an airtight plastic carrier 

overnight at 4oC with vigorous agitation.  The peptide array was then subjected to three 

10min washes in TBST.  The recombinant GST fusion protein was then detected for 

direct binding to the peptide array by probing with a specific primary anti-serum or an 

anti-serum specific for GST.  As a general rule the primary anti-sera were used at two-

fold less than the recommended dilution for Western immuno-blotting.  Details of the 

primary antibodies used in the experiments described in this thesis are shown in Table 

2.4.  The membrane was then washed several times with TBST before application of the 

appropriate horseradish peroxidase (HRP) conjugated anti-immunoglobulin G (IgG) 

secondary antibody diluted 1:5000 in 1% milk powder TBST solution in a sealed, 

airtight plastic carrier.  Similarly, this was incubated for 1h at room temperature, or 
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overnight at 4oC, with vigorous agitation.  The membrane was again washed several 

times with TBST before employing the Amersham Biosciences (Little Chalfont, U.K.) 

enhanced chemiluminescence (ECL) Western immuno-blotting kit as the visualisation 

protocol for detecting bound antibodies.  Briefly, the bound antibodies were detected by 

exposure of the peptide array, following washing in ECL solution, to blue-light sensitive 

autoradiography film and developed using the Kodak® X-Omat Model 2000 processor.  

For a more detailed description of this kit or the autoradiography film processor please 

consult the manufacturers instructions.  The resolution of spots, distinct from the GST 

control peptide array, on the autoradiography film were indicative of a positive 

interaction of the recombinant fusion protein with the peptide array and the critical 

sequences were analysed for putative consensus sites or binding motifs.              

 

2.8.3 Co-immunoprecipitation 

 

 Mammalian cell lines were co-transfected, as described above in Section 2.5 and 

cell lysates were produced by sub-cellular fractionation as described above in Section 

2.6.  The protein concentrations of the cytosolic, or S fractions were determined, as 

described above, and the concentrations equalised for all samples to contain 

approximately 250µg of protein in a 500µl volume of ice-cold KHEM.  A 30µl sample 

of the diluted lysate was removed for Western immuno-blotting to determine the relative 

immuno-reactive inputs of the co-expressed proteins for the co-immuno-precipitation 

experiment.  Anti-FLAG or anti-VSV agarose beads were pre-equilibrated in ice-cold 

KHEM to produce a 50% slurry.  60µl of the slurry was added to each 500µl protein 

sample and these were incubated end-over-end for 2h at 4oC.  The samples were 

centrifuged at 13000rpm for 5min at 4oC using a bench-top refrigerated centrifuge.  30µl 

of supernatant was removed to screen for unbound proteins.  The agarose resin was 

washed three times in 500µl of ice-cold KHEM and once in 500µl of ice-cold PBS by 

centrifugation at 13000rpm for 1min at 4oC.  Bound proteins were then eluted in SDS 

sample buffer and subjected to SDS-PAGE and Western immuno-blotting, as described 

previously.  The quantification, by densitometry, of the immuno-reactive amounts of the 

co-expressed proteins, in both the initial cell lysate and following co-immuno-
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precipitation, was determined using The Discovery Series™ Quantity One® 1-D 

Analysis Software, Version 4.4.0.  These data were used to compare the interaction 

efficiency of the two proteins and assess conditions that may facilitate modulation of the 

specific interaction.  Control immuno-precipitations were undertaken in a similar 

manner with cell lysates produced from cells singly transfected with the protein that was 

to be co-immuno-precipitated to screen for non-specific binding to the chosen agarose 

bead conjugate. 

 

2.9  Cell Based Assays 

 

2.9.1  Phosphodiesterase Activity Assay 

 

To measure PDE activity a radioactive cAMP hydrolysis assay was employed.  

This procedure has been described previously [Marchmont and Houslay, 1980] and is a 

modification of a historical two-step procedure [Thomson and Appleman, 1971].  PDE 

enzymes hydrolyse cAMP, which results in the formation of 5’ AMP.  In this assay, 

both [8-3H] adenosine 3’, 5’- cyclic mono-phosphate from Amersham Biosciences 

(Little Chalfont, U.K.) and adenosine 3’, 5’- cyclic monophosphate are hydrolysed.  

Addition of Snake Venom from Ophiophagus Hannah prevents re-circularisation of 

uncharged 5’ AMP by further hydrolysis to adenosine and the Dowex slurry binds 

charged, un-hydrolysed cAMP. 

 

2. 9.1.1 Activation of Dowex 1x8-400 Anion Exchange Resin 

 

Dowex 1x8-400 was prepared and activated by dissolving 400g of Dowex resin 

in 4l of 1M NaOH.  The solution was stirred for 15min at room temperature and the 

resin allowed to settle.  The supernatant was removed and the Dowex resin extensively 

washed thirty times with 4l of distilled water and allowed to settle after each wash.  

After thirty washes the resin was washed with 4l of 1M HCl for 15min at room 

temperature and allowed to settle.  The resin was then washed a further 5 times with 

distilled water and stored at 4oC as 1:1 slurry with distilled water.  Following this 



 76 

procedure generally produced approximately 1l of Dowex slurry.  This Dowex slurry 

was utilised in the PDE assay as a 2:1 solution of slurry to 100% ethanol.           

 

 

2.9.1.2 Assay Procedure 

 

The entire assay procedure was undertaken using 1.5ml Eppendorf® tubes per 

reaction.  The cAMP substrate solution for the assay was composed of 2µl of 1mM 3’, 

5’ cyclic adenosine mono-phosphate and 3µl of [8-3H] 3’, 5’ cyclic adenosine mono-

phosphate per millilitre of 20mM Tris-Cl; pH 7.4 and 10mM MgCl2.  The appropriate 

volume of purified protein or cell extract was diluted to a final volume of 50µl in 20mM 

Tris-Cl; pH 7.4.  50µl in 20mM Tris-Cl; pH 7.4 was used as the blank control.  The 

exact volume of purified protein or cell extract required in the assay was pre-determined 

in a pilot assay using increasing concentrations of protein samples.  50µl of cAMP 

substrate was added to 50µl of the PDE containing sample, mixed, and these were then 

incubated in a water bath at 30oC for 10min.  The samples were then placed in a boiling 

bath for 2min to inactivate the PDE and stop the reaction.  The tubes were then cooled 

on ice for a minimum of 15min.  25µl of 1mg/ml snake venom from Ophiophagus 

Hannah was then added to the reaction tubes, mixed, and incubated for a further 10min 

at 30oC.  400µl of Dowex/ethanol solution was added to each reaction tube, mixed, and 

incubated on ice for a further 15min.  Following incubation the tubes were then mixed 

again and centrifuged at 13,000rpm for 3min at 4oC in a refrigerated bench-top 

centrifuge.  1ml of Opti-Flow SAFE 1 scintillant was added to fresh 1.5ml Eppendorf® 

tubes.  150µl of supernatant from the reaction tubes was added to an individual tube 

containing scintillant with 50µl of cAMP substrate solution added to a scintillant vial to 

determine total counts per minute for the assay.  All tubes containing scintillant were 

mixed and hydrolysed 3’, 5’ cyclic adenosine mono-phosphate and [8-3H] 3’, 5’ cyclic 

adenosine mono-phosphate was measured using a Wallac® 1409 Liquid Scintillation 

Counter. 
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2.9.1.3  Determination of Phosphodiesterase Activity 

 

To determine specific PDE activity contained within any reaction tube the 

following formula was applied, 2.61 x (value – blank / average total) x 10-11 x 1012 x 

(1000 / µg protein) resulting in PDE activity in ρmoles/min/mg protein.  To assess the 

effect of PDE inhibition, the activity of samples containing inhibitor were directly 

compared to an uninhibited control reaction and was expressed as the percentage of the 

aforementioned uninhibited control. 

 

2.9.2  Thermal Stability Assays 

 

Twenty assay tubes were set-up for a PDE activity assay, as described in Section 

2.10.1.  Each tube contained a pre-determined volume of cell extract, expressing the 

desired PDE4A, in a final volume of 50µl in 20mM Tris-Cl; pH 7.4.  The assay tubes 

were placed in a 55oC water bath and one assay tube was removed to ice every 30s until 

none were remaining.  50µl of cAMP substrate was then added to 50µl of the de-natured 

PDE sample and the activity assay continued as described above.  The log10 residual 

PDE activity was determined against a control cell extract and the thermal stability 

profile plotted as a function of time, with the half-life (t1/2) determined as the time in 

which 50% of the activity remained. 

 

2.9.3  cAMP assay 

 

Intracellular cAMP was determined by using the ‘Cyclic AMP Competitive 

ELISA’ kit (Product: EMSCAMPL; ThermoFisher/Pierce). 

 

2.9.4  Fibrin Breakdown Assay 
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Fibrin matrices were prepared by addition of 0.1 U/mL thrombin to a mixture of 

2.5 U factor XIII, 2 mg fibrinogen, 2 mg Na-citrate, 0.8 mg NaCl, and 3 µg plasminogen 

per mL DMEM medium. 300 µL of this mixture was added to each well of a 12 well 

plate. After clotting at room temperature, the fibrin matrices were soaked with 0.5 mL 

DMEM supplemented with 10% NCS, and penicillin/streptomycin. NIH3T3 and MEF 

cells were seeded at high density to obtain confluent monolayers cultured in DMEM 

without indicator supplemented with 10% NCS, 2 mmol/L L-glutamine and 

penicillin/streptomycin. Incubations were for 8 to 12 days, and test compounds were 

added together with fresh medium where appropriate. The medium was collected and 

replaced every 2 to 3 days along with new test compounds. Invading cells in the three-

dimensional fibrin matrix were analyzed by phase contrast microscopy. To quantify the 

amount of fibrin degradation, the supernatant was aspirated and the remaining gel 

weighed using an analytical balance. The decrease in gel weight corresponds to the 

increase in fibrin degradation. 
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Chapter 3            Phosphorylation of PDE4A5 by MAPKAPK2 
 

 

3.1 Introduction 

 

 

3.1.1  Mitogen-Activated Protein Kinases 

 

Mitogen activated protein kinases (MAP Kinases or MAPKs) were discovered 

approximately 20 years ago and provide among the most extensive means of cell 

regulation [Avruch, 2007; Kyriakus and Avruch, 2001]. MAPKs form phosphorylation 

cascades that control various cellular functions such as cell differentiation, cell 

proliferation, cell death, embryogenesis and immune and inflammatory responses 

[Pearson et al., 2001]. Their role in such a diverse range of functions has led to their 

being implicated in a wide range of diseases, such as asthma, COPD, cancer, cardiac 

hypertrophy and rheumatoid arthritis [Pearson et al., 2001; Dong et al., 2002]. 

 

The basic components of all MAP Kinase cascades are three core members, the 

mitogen activated protein kinase kinase kinases (MAPKKK), the mitogen activated 

protein kinase kinases (MAPKK) and the mitogen activated protein kinases (MAPK). 

The first stage in the phosphorylation cascade is activation of the MAPKKK proteins 

through exposure to a mitogen. This results in threonine and tyrosine phosphorylation in 

the kinase domain of MAPKKK. The MAPKKK is then able to phosphorylate specific 

serine and threonine residues in the MAPKK kinase domain, leading to activation of this 

downstream protein kinase. Activated MAPKK then, in turn, is able to phosphorylate 

the MAPK kinase domain at serine and tyrosine residues in a conserved Ser-Xaa-Tyr 

region (where Xaa is any amino acid), leading to its activation and the furtherance of 

downstream signalling [Kyriakus and Avruch, 2001]. Within the super-family of MAPK 

proteins there are three members, p38 MAPK, c-Jun N-terminal kinase (JNK) and extra-

cellular signal-regulated protein kinase (ERK). The difference in specificity between 

these three MAPKs is conferred by the Xaa in the phosphorylation site motif, as 
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described above. In the case of p38 MAPK this amino acid is a glycine, in the case of 

JNK it is a proline and in the case of ERK it is a glutamate. The signal specificity arising 

from this comes into play when p38 MAPK is activated by MAPKK3 and MAPKK6, 

JNK is activated by MAPKK4 and MAPKK7 and ERK is activated by MAPKK1 and 

MAPKK2. However, despite this linear specificity, crosstalk between the p38 MAPK 

and JNK pathways can occur upon activation of MAPKK4, which can activate both 

pathways [Pearson et al., 2001]. 

 

Once the MAPK components of the phosphorylation cascades have been 

activated they can go on to have a diverse range of downstream effects through a diverse 

range of final substrates. These substrates can be anything from other protein kinases, 

transcription factors and scaffold proteins to enzymes such as PDE4 [Dong et al., 2002]. 

Critically, these potent signalling effects are, however, reversible and this is achieved by 

dephosphorylation that is mediated by the actions of a family of protein phosphatases 

[Lang, 2006].   

 

 

3.1.2 p38 Mitogen Activated Protein Kinase. 

 

The p38 mitogen activated protein kinase signalling cascade plays a key role in 

inflammation and is sometimes known as a stress-activated protein kinase cascade. In 

this, its main activating stimuli are stress factors such as cytokines, heat shock, osmotic 

shock, oxidative stress and ultra-violet radiation [Avruch, 2007].  

 

There are four different isoforms of p38, namely p38α, p38β, p38δ and p38γ. 

p38α was the first of these isoforms to be discovered, is thought to be primarily 

responsible for regulation inflammation and is ubiquitously expressed. p38β is also 

ubiquitously expressed and shares more than 70% sequence homology with p38α 

[Zhang et al., 2006]. The biological roles of p38δ and p38γ are less well understood 

although these isoforms are thought to be tissue specific with p38δ predominantly found 
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in skeletal muscle and p38γ found in the small intestines, testes and pancreas [Schindler 

et al., 2007]. 

 

 

3.1.2.1 Activation and Inhibition of p38 MAP Kinase 

 

The p38 MAP kinase can be activated by many different extracellular factors, as 

stated above and listed in Table 3.1. Stimulation by these factors works through various 

MAPKKKs to elicit activation of MAPKK3, MAPKK4 or MAPKK6, which go on to 

activated p38. MAPKK3 and MAPKK6 show the highest levels of activity towards p38, 

with MAPKK3 favouring the α and β isoforms, whereas MAPKK6 can activate all four 

isoforms [Enslen et al., 2000]. MAPKK4 has also, somewhat curiously, been shown to 

activate p38 under certain cellular conditions. This is unusual and is still being 

questioned as MAPKK4 is a component of the JNK pathway and was, originally, 

thought to only operate on this pathway [Brancho et al., 2003]. Pharmacologically the 

p38 MAP Kinase pathway can be activated by Anisomycin. Anisomycin is an antibiotic 

that inhibits protein synthesis and activates the stress activated protein kinase pathways, 

including p38 MAPK, which may be through actions on Rac and Cdc42 [Grollman, 

1967; You et al., 2005]. Its structure is shown in Figure 3.3. Similarly TNFα can 

activate the p38 MAPK cascade through the TNFα receptor and recruitment of its signal 

scaffold proteins RIP and TRAF [Wajant and Scheurich, 2001]. Both of these activation 

pathways are shown in Figure 3.1. Inhibitors of the p38 MAPK pathway have been 

widely studied with limited clinical success [Cohen, 2009]. Pyridinyl imidazole 

inhibitors contributed to the discovery and characterisation of p38 MAPK through their 

ability to inhibit the p38 MAPK cascade and now provide the most common 

experimentally used p38 inhibitors, of which one example is SB203580, whose structure 

is shown in Figure 3.3 [Zhang et al., 2007]. 
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3.1.2.2  Downstream Effects of p38 MAP Kinase 

 

Once p38 MAPK has been activated it can then go on to activate downstream 

effectors which, when activated, transduce signals to target proteins in the cell that are 

not directly targeted by the MAP kinase. Downstream effectors of p38 MAPK tend to be 

protein kinases, with the most prominent group of these being the mitogen activated 

protein kinase activated protein kinases or MAPKAPKs. Three such isoforms can be 

activated by p38 MAPK, namely MAPKAPK2, MAPKAPK3 and MAPKAPK5 [Clifton 

et al., 1996; Ni et al., 1998]. Other protein kinases targeted downstream of the p38 

MAPK pathway include the MAPK signal-integrating kinases (MNKs), and mitogen- 

and stress-activated protein kinases (MSKs) [Roux, 2004; Arthur, 2008].  

 

The MAPKAPK family is a curious one as, despite its members having 

overlapping structural properties and substrate spectrums, they do not appear to have a 

common function. Of the three isoforms activated by p38 MAPK, MAPKAPK2 and 

MAPKAPK3 are activated directly by the p38α and β isoforms of the MAPK. However 

MAPKAPK5, also known as the p38-regulated and activated kinase (PRAK), is 

activated by both ERK and p38 MAPK 

 

MAPKAPK2 is the most investigated substrate of p38 MAPK. Structurally it 

consists of an N-terminal proline-rich domain, a catalytic domain and contains both a 

putative nuclear localisation signal (NLS) and a nuclear export signal (NES) within its 

C-terminal domain [Meng et al., 2002]. Upon stimulation of the p38 MAPK cascade, 

p38 MAPK becomes activated and phosphorylates MAPKAPK2 at Thr222 and Ser272 

in the catalytic domain and at Thr334 in the C-terminal domain [Gaestel, 2006; Lukas et 

al., 2004]. In resting cells an inactive, auto-inhibitory complex of p38α-MAPKAPK2 is 

found in the nucleus where the nuclear localisation signal on MAPKAPK2 is functional. 

Under stress stimulation MAPKK6 activates p38α that, in turn, phosphorylates 

MAPKAPK2. This phosphorylation, in particular the phosphorylation of Thr334, leads 

to “unmasking” of the nuclear export signal of the protein and allows for translocation 



 84 

of the p38α-MAPKAPK2 complex out of the nucleus, allowing a population of active 

p38α-MAPKAPK2 to accrue in the cytoplasm [Engel et al., 1998].  

 

Functionally, MAPKAPK2 has been implicated in a wide variety of roles within 

the cell. These are located both within the nucleus and within the cytoplasm, such as 

post-transcriptional regulation, actin remodelling, cell migration and cell cycle 

regulation. When activated MAPKAPK2 is situated in the nucleus it is believed to play 

a role in post-transcriptional regulation. There, MAPKAPK2 is thought to be 

responsible for stabilisation of the AU-rich elements through phosphorylation of mRNA 

binding proteins such as tristetraprolin (TTP), K homology-type splicing regulatory 

protein (KSRP) and heterogeneous nuclear ribonucleoprotein (hnRNP). This regulation 

leads to gene expression of cytokines such as IL-6, IL-8 and TNFα [Gaestal, 2006]. 

Another MAPKAPK2 phosphorylation target in the nucleus is considered to be the 

transcription factor CREB (cAMP Responsive Element Binding protein), although this 

action is not unequivocal and it is has been suggested that MSK1 may actually be the 

kinase responsible for CREB phosphorylation and activation under conditions of 

activation of the p38 MAPK pathway [Delghandi et al., 2005; Tan et al., 1996]. Once 

MAPKAPK2 is translocated out of the nucleus, following activation, it is able to act on 

a plethora of phosphorylation targets. One notable group of substrates are small heat 

shock proteins (Hsps), with Hsp25 and Hsp27 being identified as major targets for 

MAPKAPK2. In the case of Hsp25, MAPKAPK2 has been identified as the main kinase 

responsible for its activation. Phosphorylation of Hsp25, by MAPKAPK2, results in 

release from its role as a chaperone inhibiting actin polymerisation and thus acts to 

trigger actin remodelling and for actin polymerisation to occur [Benndorf et al., 1994]. 

Hsp27 exists as oligomers that act as ATP-independent chaperones and keep unfolded 

proteins in a “folding-ready” state in preparation for processes such as actin 

remodelling. MAPKAPK2 phosphorylation of Hsp27 is thought to be responsible for 

the heat shock protein’s oligomerisation and may also regulate its chaperone properties 

[Rogalla et al., 1999].  
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Recently a new role for MAPKAPK2 has been identified as a checkpoint protein 

in the cell cycle [Reinhardt et al., 2009]. The phosphatase family Cdc25 removes 

inhibitory phosphate residues from the cyclic dependent kinases (Cdks), a major driving 

force in the cell cycle, thereby controlling progression of the cell cycle [Strausfeld et al., 

1991]. All three Cdc25 isoforms, Cdc25A, Cdc25B and Cdc25C have recently been 

shown to be substrates for MAPKAPK2. Within the cell cycle Cdc25A plays a role in 

the G1-S checkpoint, with Cdc25B and Cdc25C having a role in G2 phase. During DNA 

damage, MAPKAPK2 is activated; it then phosphorylates Cdc25B and Cdc25C causing 

arrest of the cell cycle [Lammer et al., 1998]. In addition to this, MAPKAPK2 can 

phosphorylate and activate the ubiquitin ligase HDM2, which degrades the tumour 

suppressor protein p53 [Weber et al., 2005]. p53 is responsible for cell cycle regulation 

at G1/S and entry into apoptosis therefore through this MAPKAPK2 may play another 

role in cell cycle regulation. All of these roles of MAPKAPK2 throughout the cell show 

how multifaceted and important a downstream effector of p38 MAPK it is.  

 

The biological functions of both MAPKAPK3 and MAPKAPK5 are poorly 

understood compared to MAPKAPK2. MAPKAPK3 is structurally most similar to 

MAPKAPK2 and may have its nuclear localisation regulated in a similar way 

[Zakowski 2004]. Little is known about its functionality, however it is thought to play a 

role in chromatin remodelling through phosphorylation of polycomb group protein 

BMI1 [Voncken et al., 2005]. MAPKAPK5 lacks the proline rich N-terminal region 

present in both MAPKAPK2 and MAPKAPK3. Again, little is known about its cellular 

function, however MAPKAPK5 knockout mice are more susceptible to skin cancer than 

wild type mice and thus it has been suggested that MAPKAPK5 may have a role as a 

tumour suppressor [Sun et al., 2007].  

 

Two other families of kinases that are downstream effectors of the p38 MAPK 

pathway, and less well understood, are the serine threonine kinases, MAPK interacting 

kinases (MNKs) and the mitogen and stress-activated protein kinases (MSKs). In the 

case of MNKs there are two isoforms, MNK1 and MNK2, and stimulation of either the 

p38 MAPK pathway or the ERK pathway can lead to their activation thus, possibly, 
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providing an example of a source of convergence for these two key pathways. 

Structurally these kinases are similar to MAPKAPK1, MAPKAPK2 and MAPKAPK3 

proteins but with an additional basic N-terminal structure designed to determine their 

intracellular targeting [Waskiewicz et al., 1997]. Although these kinases have not been 

widely studied, recent investigations of these proteins has shown that they are auto-

inhibited in the absence of p38 and ERK phosphorylation [Jauch et al., 2006] and that, 

when activated, they provide the only kinases to phosphorylate Ser209 of eIF4E, the 

cap-binding protein, which increases translation [Mahalingam and Cooper, 2001]. They 

have also been implied in regulation of the innate immune response in macrophages 

through TNFα control [Andersson and Sundler, 2006].  

 

In the MSK family there are two isoforms; MSK1 and MSK2. These enzymes 

share approximately 50% homology with MAPKAPK1 and, of the two, MSK1 is most 

widely studied [Arthur and Cohen, 2000]. MSK1 plays a role in phosphorylation and 

activation of the transcription factors CREB and, closely related, activating transcription 

factor 1, ATF1 [Deak et al., 1998]. Recent research has indicated that both MSK1 and 

MSK2 could play an important role in limiting the production of pro-inflammatory 

cytokines in response to stimulation of primary macrophages. This provides a negative 

feedback system that is able to limit toll-like receptor-mediated inflammation [Ananieva 

et al., 2008]. 

 

 

3.1.3 The Immune and Inflammatory Role of p38 MAP Kinase. 

 

p38 MAPK plays a key role in regulation of the immune and inflammatory 

response to pathogens. p38α was the first p38 MAPK to be shown to play a role in 

inflammation. When pyridinyl imidazoles were first discovered it was thought that they 

had their anti-inflammatory effect through inhibition of 5-lipoxygenase and 

cyclooxygenase [Han et al., 1994]. However, further studies using the acute monocytic 

leukaemia cell line, THP-1, identified two 38 kDa protein kinases, namely p38α and 

p38β, as being responsible for cytokine suppression and loss of inflammation [Lee et al., 
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1994]. Since then the p38 MAPK signalling cascade has been shown to play a pivotal 

role in the activation and production of several pro-inflammatory cytokines such as 

TNFα, interleukin 1, interleukin 6 and interleukin 8 [Lee at al., 1994]. In addition to its 

role in pro-inflammatory cytokine production it has also been established that p38 

MAPK plays a key role in inducing enzymes such as COX2, which trigger eicosanoid 

production at sites of inflammation, and also iNOS, which triggers nitric oxide 

production at the site of inflammation [Dean et al., 1999].  

 

To establish the roles of the different p38 MAPK isoforms in inflammation, 

knockout mice systems have been used. This approach showed that when p38A 

knockout mice were produced they had very low cytokine production [Beardmore et al., 

2005]. It has also been reported that T helper cells, Th1, deficient in p38α did not 

produce interferon-γ when stimulated by interleukins 12 and 18, causing a lack of 

inflammatory response [Berenson et al., 2006]. However when a knockout mouse 

system of p38β was produced these mice were found to have normal LPS induced 

cytokine production and, counter-intuitively, there was even an increase in inflammation 

in some systems such and the bowels and joints [Beardmore et al., 2005]. Nevertheless, 

these knockout studies clearly show that p38α MAPK is the main p38 isoform involved 

in control of inflammatory system. However as the roles of p38δ and p38γ are not fully 

established, no firm conclusion can be made about their overall importance to immune 

system function. It should also be noted that knockout mice studies have also been 

carried out to ablate the key downstream effector of the p38 MAPK pathway, namely 

MAPKAPK2 [Kotlyarov et al., 1999]. Mice generated in this way exhibited a marked 

decreases in Il-6 and TNFα in response to LPS showing that this downstream kinase 

obviously plays a role in p38α MAPKs control of inflammation.  

 

The control of pro-inflammatory cytokines is particularly important 

therapeutically as their over-production is seen in many disease states such as asthma, 

Crohns disease and rheumatoid arthritis [Russo and Polosa, 2005]. They are also 

implicated in playing roles in other diseases like heart failure and insulin resistant 

diabetes [Pomerantz et al., 2001, Takeda et al., 2005]. Due to this, blockage of their 
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production and/or actions is obviously a key target for therapeutic development and 

because of this several pharmaceutical companies have developed a series of p38α 

MAPK and MAPKAPK2 inhibitors. In the case of the p38α MAPK inhibitors only a 

few inhibitors have made it to the advanced stages of clinical trials. For example, Scios 

and Johnson and Johnson have the p38α MAPK inhibitor, SCIO 323 in phase II clinical 

trials to treat rheumatoid arthritis [Lee and Dominguez, 2005]. Somewhat less 

successfully, BIRB 796, developed by Boeringer Ingelheim, although it gave promising 

results in initial trials it was subsequently found to have limited effect in Crohn’s disease 

and caused dangerously high increases in liver enzyme synthesis [Schreiber et al., 

2006]. Similarly Amgen produced AMG 548, which exhibited a high rate of inhibition 

of pro-inflammatory cytokines in healthy males, however these trials had to be 

suspended as it was also shown to elevate the levels of liver enzyme synthesis [Lee and 

Dominguez, 2005]. Due to these liver complications, and the tendency of p38α MAPK 

inhibitors to put the patient at risk of infection, the focus of many companies has shifted 

from inhibitors of p38α MAPK to development of inhibitors of downstream effectors of 

the pathway such as MAPKAPK2. Development of these inhibitors is still in the very 

early stages and it was originally thought that the lack of availability of the crystal 

structure of the enzyme has precluded rational drug design. However since the crystal 

structure of unphosphorylated MAPKAPK2 was discovered in 2002, and showed that 

the kinase domain existed in an exposed, semi-activated state, and a selective inhibitor 

has still not been developed [Meng et al., 2002]. 

 

 

3.1.4 Phosphorylation of PDE4 enzymes by MAPKAPK2 

 

Phosphodiesterase-4 enzymes are subject to phosphorylation at distinct sites with 

subsequent catalytic activity regulation by ERK1/2 [Hoffmann et al., 1999; MacKenzie 

et al., 2000; Baillie et al., 2001], PKA [Sette and Conti, 1996; MacKenzie et al., 2002], 

and an unknown protein kinase thought to be part of the PI-3K signalling pathway and 

activated by reactive oxygen species (ROS) [MacKenzie et al., 1998]. These 

phosphorylation events have been discussed previously in detail in Chapter 1.   
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The p38 MAPK signalling pathway plays a fundamental role in the immune and 

inflammatory response. Previous unpublished work from the Houslay lab suggested that 

PDE4 may be a phosphorylation target for a downstream effector of this pathway, 

namely MAPKAPK2. The aim of this chapter was to corroborate this and so identify 

whether PDE4 enzymes could indeed be phosphorylated and regulated through 

activation of MAPKAPK2 and elucidate the functional significance of the integration of 

cross talk between p38 MAPK and cAMP signalling.        
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Figure 3.1 – Schematic representation of the p38 MAPK signalling pathway. 
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3.2 Results  

 

 

Analysis of the amino acid sequence for PDE4A5 reveals two putative 

MAPKAPK2 phosphorylation sites with the consensus motif of Ø-X-Arg-X-X-Ser-Ø, 

where Ø are hydrophobic amino acids and X is any amino acid. [Stokoe et al., 1993; 

Rousseau et al., 2005]. Both of these regions are found within Upstream Conserved 

Region 1 as shown in Figure 3.2. The first potential site is serine 147, which lies within 

the sequence Leu-Tyr-Arg-Ser-Asp-Ser-Asp, and the second site is serine 161, within 

the motif Val-Ser-Arg-Ser-Ser-Ser-Val.  

 

Unpublished work from the Houslay laboratory by Dr Elaine Hill and Dr Derek 

Wallace has shown that a purified PDE4A5 MBP fusion protein, generated by 

expression in E.coli, could be phosphorylated in vitro by recombinant MAPKAPK2, but 

not by recombinant p38 MAP Kinase [E.V. Hill, D.A. Wallace and M.D. Houslay, 

unpublished observations].   

 

 

3.2.1 In vivo phosphorylation of PDE4A5 by MAPKAPK2 

 

Previous phosphorylation experiments were carried out in vitro and so it is 

important to determine whether MAPKAPK2 could phosphorylate PDE4A5 in vivo in 

living cells. In order to achieve this a cell system had to be used where the p38 MAP 

Kinase cascade could be successfully activated and PDE4A5 manipulated. To achieve 

this COS1 cells were treated with either the p38 MAP Kinase activator anisomycin, the 

structure of which is shown in Figure 3.3 or the inflammatory cytokine, TNFα.  

 

Figure 3.4(a) (work performed by Dr Derek Wallace) shows that endogenous 

p38 MAPK activity, indicated as dual phosphorylation of the kinase at Thr-180 and Tyr-

182, was low in the basal state, and that it was activated in a potent, time dependent 

manner by anisomycin. The activation of p38 MAPK reached at maximum at 20min and 
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was sustained up to at least 60 min. Figure 3.4(b) shows that anisomycin also activated 

MAPKAPK2, indicated by phosphorylation at Thr-334, in a time dependent manner 

reaching a maximum at 30min and was sustained up to at least 60min. Figure 3.5 shows 

that TNFα also activates both p38 MAPK and MAPKAPK2 in a time dependent manner 

with p38 MAPK activation reaching a maximum at 5min and is sustained until 10 min 

where activity decreases but has still not returned to basal activity over a period of 25 

min studied here.MAPKAPK2 activation reaches a maximum at 5min and an activated 

state is sustained up until at least 25 min albeit at a lower level (Figure 3.5). As a 

routine, I chose to use anisomycin for activation of p38 MAPK and MAPKAPK2 in the 

majority of experiments as it provided consistent and substantial levels of activation 

over an experimentally accessible time course.  

 

In previous work performed by Dr Elaine Hill and Dr Derek Wallace PDE4A5 

was transiently over-expressed in COS1 cells, which were grown in phosphate-free cell 

media that was supplemented with [32P]-orthophosphate.  The cells were treated with 

anisomycin or anisomycin plus the p38 MAPK inhibitor SB203580 (structure shown in 

Figure 3.3). Lysates were produced, PDE4A5 was immuno-precipitated and 

phosphorylation levels analysed as shown in Figure 3.6(a). This showed that anisomycin 

treatment resulted in increased phosphorylation of PDE4A5 to 172 +/- 8% and 

SB203580 ablated this phosphorylation to 124 +/- 4%, which proves that anisomycin is 

induction phosphorylation of PDE4A5 through the p38 MAP Kinase pathway.   

 

However as it has been previously shown (unpublished work from the Houslay 

lab; E.V. Hill, D.A. Wallace) that PDE4A5 has two putative p38 MAPK 

phosphorylation sites it is important to establish if this phosphorylation is due to 

MAPKAPK2 phosphorylation or p38 MAPK phosphorylation of the PDE. To do this 

the two putative phosphorylation sites for MAPKAPK2 on PDE4A5 were mutated to 

alanine giving the two mutant PDE4A5 constructs S147A and S161A. These were 

transfected into COS1 cells grown in phosphate-free cell media that was supplemented 

with [32P]-orthophosphate and were treated with anisomycin. Again, lysates were 

produced, PDE4A5 was immuno-precipitated and phosphorylation levels analysed as 
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shown in Figure 3.6(b). This showed that anisomycin is indeed phosphorylating 

PDE4A5 through MAPKAPK2 as it is acting at the phosphorylation site S147A. 

PDE4A5 was used as a standard and density of phosphorylation on the phospho-blot 

marked as 100%.  When compared to this S161A gives a phosphorylation level of 90% 

+/- 2%, whereas S147A gives a phosphorylation level of 40% +/- 2%. Successful 

generation of a custom made antibody that targets this specific serine 147 

phosphorylation site of PDE4A5 allowed cell lysates of COS1 cells, grown in normal 

cell media and transiently transfected with PDE4A5 treated with an anisomycin time 

course, to be probed for MAPKAPK2 specific phosphorylation as shown in Figure 

3.6(c).These results confirmed that PDE4A5 is phosphorylated at serine 147 by 

MAPKAPK2. 
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Figure 3.2 – Schematic representation of the basic structure of PDE4A5. 

 
Schematic representation of the basic structure of PDE4A5. UCR = Upstream 

Conserved Region, LR = Linker Region and CT= C-Terminus. The PKA 

phosphorylation site (Ser 140) and the two potential MAPKAPK2 phosphorylation sites 

(Ser 147 and Ser 161) highlighted in the Upstream Conserved Region 1.  
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Figure 3.3 - Chemical structures of anisomycin and SB203580.

SB203580 
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Figure 3.4 – Anisomycin time course of p38 MAPK and MAPKAPK2 activation in 

COS1 cells.   

 

COS1 cells were treated with anisomycin (10µg/ml) at the indicated time points (0-

60min).  Total cell extract was produced and the lysates immuno-probed with anti-sera 

specific for the respective kinase activation.  (a), top panel, is a Western blot probed 

with anti-sera able to detect endogenous levels of the dual phosphorylated (Thr-180 and 

Tyr-182), and activated, p38 MAPK.  (a), bottom panel, is the same Western blot re-

probed with an anti-serum to detect total endogenous p38 MAPK.  (b), top panel, is a 

Western blot of phosphorylated, and activated, MAPKAPK2, as indicated by the 

detection of the mono phosphorylated (Thr-334) form.  (b), bottom panel, is the same 

(a) 

    0          5        10        20        30        60 

    Time with anisomycin (min) 

Phosphorylated p38 MAPK 

Total p38 MAPK 
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    0          5        10        20        30        60 
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Phosphorylated MAPKAPK2 

Total MAPKAPK2 
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Western blot re-probed for total endogenous MAPKAPK2, using a specific anti-serum.  

All Western blots are representative blots of at least three separate experiments. 

 

This work was performed by Dr Derek Wallace. 
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Figure 3.5 – TNFα time course of p38 MAPK and MAPKAPK2 activation in COS1 

cells.   
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COS1 cells were treated with TNFα (10µM) at the indicated time points (0-25min).  

Total cell extract was produced and the lysates immuno-probed with anti-sera specific 

for the respective kinase activation.  (a), top panel, is a Western blot probed with anti-

sera able to detect endogenous levels of the dual phosphorylated (Thr-180 and Tyr-182), 

and activated, p38 MAPK.  (a), bottom panel, is the same Western blot re-probed with 

an anti-serum to detect total endogenous p38 MAPK.  (b), top panel, is a Western blot of 

phosphorylated, and activated, MAPKAPK2, as indicated by the detection of the mono 

phosphorylated (Thr-334) form.  (b), bottom panel, is the same Western blot re-probed 

for total endogenous MAPKAPK2, using a specific anti-serum.  All Western blots are 

representative blots of at least three separate experiments. 
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Figure 3.6 – PDE4A5 is phosphorylated by MAPKAPK2 at Serine 147. 

 

COS1 cells were transiently transfected to over-express PDE4A5.  The cells were grown 

in phosphate-free cell media that was supplemented with [32P]-orthophosphate 

overnight.  The cells were treated with anisomycin (10µg/ml) for 60min, to activate the 

p38 MAPK phosphorylation cascade, or anisomycin plus the p38 MAPK inhibitor 

SB203580 (10µM) for 60min respectively. Total cell lysate was produced.  PDE4A5 

was immuno-precipitated using an anti-PDE4A antibody conjugated to Protein G 

agarose with un-conjugated Protein G agarose used as a control immuno-precipitation. 

The immuno-precipitated proteins were separated by SDS-PAGE and transferred to a 

nitrocellulose membrane where the radioactive proteins were resolved using phosphor 

image screen technology.  (a), top panel, is a scanned phosphor image screen of the 

phosphorylated PDE4A5 immuno-precipitated following treatment with anisomycin 

plus or minus SB203580.  (a), bottom panel, is a Western blot of the same nitrocellulose 

membrane probed with the anti-PDE4A antibody to determine the relative immuno-

precipitation of PDE4A5 from the three samples. COS1 cells were then transiently 

transfected to over-express either PDE4A5, Ser147Ala-PDE4A5 mutant or Ser161Ala-

PDE4A5 mutant. The cells were grown in phosphate-free cell media that was 

supplemented with [32P]-orthophosphate overnight.  The cells were treated with 

p-PDE4A5 

  PDE4A5 

  b  IP  b  IP  b  IP  b  IP  b  IP  b  IP  

  0      10    20     40    60     SB       Time (min) 
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anisomycin (10µg/ml) for 60min, to activate the p38 MAPK phosphorylation cascade. 

Total cell lysate was produced.  PDE4A5 was immuno-precipitated using an anti-

PDE4A antibody conjugated to Protein G agarose with un-conjugated Protein G agarose 

used as a control immuno-precipitation. The immuno-precipitated proteins were 

separated by SDS-PAGE and transferred to a nitrocellulose membrane where the 

radioactive proteins were resolved using phosphor image screen technology.  (b), top 

panel, is a scanned phosphor image screen of the phosphorylated PDE4A5, Ser147Ala-

PDE4A5 mutant and Ser161Ala-PDE4A5 mutant forms were immuno-precipitated 

following treatment with anisomycin.  (b), bottom panel, is a Western blot of the same 

nitrocellulose membrane probed with the anti-PDE4A antibody to determine the relative 

immuno-precipitation of PDE4A5 from the three samples. Immuno-precipitation of 

PDE4A5 was then carried out after various time points of treatment with anisomycin 

(10µg/ml) over a 60 min time course and the IP products produced were probed with a 

PDE4A4 Phospho-Ser147 specific antibody, (c). This work was performed by Dr 

Elaine Hill and Dr Derek Wallace. 
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3.2.2 Functional Effects of PDE4A5 Phosphorylation 

 

PDE4 enzymes are known to be subject to regulation by three different kinases; 

PKA, ERK1/2 and an unknown kinase downstream of PI3 Kinase, as discussed 

previously. All long form PDE4 enzymes contain a conserved PKA phosphorylation site 

within the UCR1 region that upon phosphorylation induces a 2-fold increase in PDE4 

activity [Houslay, 2001]. ERK has a conserved docking site on all PDE4 isoforms in the 

catalytic domain however it only has a functional effect on PDE4B, 4C and 4D isoforms 

as PDE4A isoforms lack the phosphorylation site for ERK [Baillie et al., 2000].  In long 

form PDE4B, 4C and 4D ERK2 phosphorylation leads to an inhibition of PDE activity, 

which can be overcome by PKA phosphorylation. PDE4A4/5 can also be 

phosphorylated by an unidentified downstream component of the PI3K pathway 

[MacKenzie et al., 1998; MacKenzie and Houslay, 2000] although the specific kinase 

responsible is yet to be identified.  

 

 

3.2.2.1 Phosphorylation of PDE4A5 

 

As stated above, PDE4A5 is able to be phosphorylated by PKA. A model system 

was set up to demonstrate this using COS1 cells transiently transfected to over-express 

PDE4A5. PKA was first activated by increasing intracellular cAMP levels. This was 

done using treatment with both IBMX, to block all PDE determined cAMP degradation, 

and the direct activator of adenylyl cyclase, the diterpene forskolin. This treatment 

induced PKA phosphorylation of PDE4A5, which was detected using a custom made 

antibody targeted to Ser140, the PKA phosphorylation site in UCR1 [MacKenzie et al., 

2002] as shown in Figure 3.7(a). Quantification of the phosphorylation showed that the 

level of PKA phosphorylation of PDE4A5 gradually increased, reaching a maximum 

some 10-20min after forskolin challenge Figure 3.7(b).  

 

As the identified site for MAPKAPK2 phosphorylation on PDE4A5 and the 

PKA phosphorylation site (Ser 147 for MAPKAPK2 and Ser 140 for PKA) are 
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extremely close together within UCR1 it was important to establish whether 

MAPKAPK2 phosphorylation was having an effect on the phosphorylation status of the 

PKA site. Again using the cell model of COS1 cells transiently transfected to over-

express PDE4A5, anisomycin treatment was used to activate the p38 MAPK cascade 

and therefore activate MAPKAPK2. In this case, using the PKA phosphorylation site 

antibody, no PKA phosphorylation of PDE4A5 was detected, above the basal rate as 

shown in Figure 3.8(a). The level of phosphorylation was quantified using densitometry 

and it was confirmed that PKA phosphorylation levels remained at a low basal rate 

throughout treatment, Figure 3.8(b). This shows that MAPKAPK2 phosphorylation of 

PDE4A5 does not directly affect Ser140 of PDE4A5. It was, however, also important to 

establish whether MAPKAPK2 phosphorylation was altering PKA’s ability to act at its 

target site within the long PDE4A5 isoform. As this site is in close proximity to the 

MAPKAPK2 site it is possible that steric hindrance caused by a conformational might 

prevent one kinase phosphorylate its target sites subsequent to the action of the other. 

Certainly the close proximity of these sites would prevent simultaneous phosphorylation 

by these two kinases due to steric hindrance, so phosphorylation by one kinase would 

always be expected to precede phosphorylation by the other. Using the model system 

with COS1 cells transfected to transiently express PDE4A5, these cells were pre-treated 

with anisomycin to activate MAPKAPK2 and this treatment was followed by activating 

PKA by treatment with forskolin together with IBMX. Doing this I noted that PKA 

phosphorylation of PDE4A5 ensued with similar kinetics and magnitude to that 

observed when cells were challenged with IBMX and forskolin and no pre-treatment 

with anisomycin (Fig. 3.9). Thus Ser140 phosphorylation levels gradually increased 

from 0-10 min reaching a sustained maximum at 10-20 min, Figure 3.9. This, therefore, 

shows that despite the close proximity of the phosphorylation sites of PKA and 

MAPKAPK2 on UCR1 there is no steric interference between the two kinases in the 

process of phosphorylation. 

 

The phosphorylation studies were then repeated with the PDE4A5 Ser147Ala 

mutant for the MAPKAPK2 phosphorylation site, transiently over-expressed in COS1 

cells, to establish whether mutation of the MAPKAPK2 target site had any effect on 



 103 

PKA phosphorylation. As with the wild type PDE4A5 it was shown that increasing 

PKA phosphorylation occurred in a time dependent manner after PKA activation, Figure 

3.10. No PKA phosphorylation above basal level was observed after activation of the 

p38 MAPK cascade. Figure 3.11, and lastly that activation of the p38 MAPK cascade 

did not affect the ability of PKA to phosphorylate PDE4A5 upon stimulation of adenylyl 

cyclase, Figure 3.12. 
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(a) Wild Type PDE4A5 
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(b)

Figure 3.7 – Phosphorylation and activation of rat PDE4A5 by PKA.   
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COS1 cells were transfected to transiently express wild type rat PDE4A5.  The 

transfected cells were pre-treated for 10min with the non-specific PDE inhibitor, IBMX 

(100µM) before challenge, 0-20min, with the adenylyl cyclase activator, forskolin 

(100µM).  (a), top panel, is a Western blot probed with a rat PDE4A C-terminal specific 

anti-serum to provide both loading and PDE4A5 expression controls. (a), bottom panel, 

is the same Western blot re-probed with the phospho-UCR1 specific anti-serum to the 

PKA phosphorylated serine (S*) residue within the RRES*F consensus motif 

[MacKenzie et al., 2002]. (b) shows the densitometry of the phospho-UCR1 time course, 

corrected for PDE4A5 expression. All data shown are representative Western blots of 

three separate transfections and experiments +/- standard deviation.  

 

 

 

 



 106 

(a) Wild Type PDE4A5 
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Figure 3.8 – Phosphorylation and activation of rat PDE4A5 by MAPKAPK2.   
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COS1 cells were transfected to transiently express wild type rat PDE4A5.  The 

transfected cells were treated for 60min with the p38 MAP Kinase activator, anisomycin 

(10µg/ml). (a), top panel, is a Western blot probed with a rat PDE4A C-terminal specific 

anti-serum to provide both loading and PDE4A5 expression controls. (a), bottom panel, 

is the same Western blot re-probed with the phospho-UCR1 specific anti-serum to the 

PKA phosphorylated serine (S*) residue within the RRES*F consensus motif 

[MacKenzie et al., 2002]. (b) shows the densitometry of the phospho-UCR1 time course, 

corrected for PDE4A5 expression. All data shown are representative Western blots of 

three separate transfections and experiments +/- standard deviation. 
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(a) Wild Type PDE4A5 
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(b)

Figure 3.9 – Phosphorylation and activation of rat PDE4A5 by PKA and 

MAPKAPK2.   
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COS1 cells were transfected to transiently express wild type rat PDE4A5.  The 

transfected cells were pre-treated for 30min with the p38 MAP Kinase activator, 

anisomycin (10µg/ml), then treated with 10min with the non-specific PDE inhibitor, 

IBMX (100µM) before challenge, 0-20min, with the adenylyl cyclase activator, 

forskolin (100µM).  (a), top panel, is a Western blot probed with a rat PDE4A C-

terminal specific anti-serum to provide both loading and PDE4A5 expression controls. 

(a), bottom panel, is the same Western blot re-probed with the phospho-UCR1 specific 

anti-serum to the PKA phosphorylated serine (S*) residue within the RRES*F 

consensus motif [MacKenzie et al., 2002]. (b) shows the densitometry of the phospho-

UCR1 time course, corrected for PDE4A5 expression. All data shown are representative 

Western blots of three separate transfections and experiments +/- standard deviation. 
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(a) PDE4A5 S147A mutant 

 
          0          1          2.5        5        10        20 

 

        Time with Fsk (min) after IBMX pre-treatment 

 

(b) 

 

 
Figure 3.10 – Phosphorylation and activation of rat PDE4A5 S147A by PKA.   
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COS1 cells were transfected to transiently express rat PDE4A5 with a mutation to 

alanine at serine 147, the predicted MAPKAPK2 phosphorylation site. The transfected 

cells were pre-treated for 10min with the non-specific PDE inhibitor, IBMX (100µM) 

before challenge, 0-20min, with the adenylyl cyclase activator, forskolin (100µM).  (a), 

top panel, is a Western blot probed with a rat PDE4A C-terminal specific anti-serum to 

provide both loading and PDE4A5 expression controls. (a), bottom panel, is the same 

Western blot re-probed with the phospho-UCR1 specific anti-serum to the PKA 

phosphorylated serine (S*) residue within the RRES*F consensus motif [MacKenzie et 

al., 2002]. (b) shows the densitometry of the phospho-UCR1 time course, corrected for 

PDE4A5 expression. All data shown are representative Western blots of three separate 

transfections and experiments +/- standard deviation. 
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(a) PDE4A5 S147A mutant 
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(b)

Figure 3.11 – Phosphorylation and activation of rat PDE4A5 S147A by 

MAPKAPK2.   
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COS1 cells were transfected to transiently express rat PDE4A5 with a mutation to 

alanine at serine 147, the predicted MAPKAPK2 phosphorylation site. The transfected 

cells were treated for 60min with the p38 MAP Kinase activator, anisomycin (10µg/ml). 

(a), top panel, is a Western blot probed with a rat PDE4A C-terminal specific anti-serum 

to provide both loading and PDE4A5 expression controls. (a), bottom panel, is the same 

Western blot re-probed with the phospho-UCR1 specific anti-serum to the PKA 

phosphorylated serine (S*) residue within the RRES*F consensus motif [MacKenzie et 

al., 2002]. (b) shows the densitometry of the phospho-UCR1 time course, corrected for 

PDE4A5 expression. All data shown are representative Western blots of three separate 

transfections and experiments +/- standard deviation. 
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(a) PDE4A5 S147A mutant 
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Figure 3.12 – Phosphorylation and activation of rat PDE4A5 S147A by PKA and 

MAPKAPK2.  
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COS1 cells were transfected to transiently express rat PDE4A5 with a mutation to 

alanine at serine 147, the predicted MAPKAPK2 phosphorylation site. The transfected 

cells were pre-treated for 30min with the p38 MAP Kinase activator, anisomycin 

(10µg/ml), then treated with 10min with the non-specific PDE inhibitor, IBMX 

(100µM) before challenge, 0-20min, with the adenylyl cyclase activator, forskolin 

(100µM).  (a), top panel, is a Western blot probed with a rat PDE4A C-terminal specific 

anti-serum to provide both loading and PDE4A5 expression controls. (a), bottom panel, 

is the same Western blot re-probed with the phospho-UCR1 specific anti-serum to the 

PKA phosphorylated serine (S*) residue within the RRES*F consensus motif 

[MacKenzie et al., 2002]. (b) shows the densitometry of the phospho-UCR1 time course, 

corrected for PDE4A5 expression. All data shown are representative Western blots of 

three separate transfections and experiments +/- standard deviation. 
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3.2.2.2 Enzymatic Effect of MAPKAPK2 phosphorylation of PDE4A5. 

 

As it has been established above that MAPKAPK2 phosphorylation of PDE4A5 

has no effect on PKA phosphorylation of the enzyme it was then essential to establish 

whether phosphorylation had an effect on the function of the enzyme. To establish 

functionality of PDE4A5 the cell model of PDE4A5 transiently over expressed in COS1 

cells was utilised again. Basal PDE4A5 enzymatic activity was established in 

unstimulated (resting) cells and taken as an activity level of 100% for further analysis, 

Figure 3.13. PKA was activated by pre-treatment with both IBMX, to block all PDE 

controlled cAMP degradation, plus the adenylyl cyclase activator, forskolin. PKA 

phosphorylation of PDE4A5 resulted in an increase in its enzymatic activity which, in a 

similar manner to that seen for the phosphorylation of PDE4A5, reached a plateau some 

10-20 min after forskolin challenge with activity after 10 min challenge being some 266 

+/- 5% above the control basal level and, at 20 min, some 280 +/- 4 % above the control 

basal level (mean ± SD; n= 3).  

 

Phosphorylation of PDE4A5 by MAPKAPK2 was elicited by anisomycin 

treatment of transfected COS1 cells. This phosphorylation of PDE4A5 caused no change 

in PDE4A5 enzymatic activity above the basal level of 100%. However, perhaps most 

interestingly, when MAPKAPK2 phosphorylation of PDE4A5 was followed by PKA 

phosphorylation, the enzymatic activity was increased, showing that PKA 

phosphorylation can activate the MAPKAPK2-phosphorylated PDE4A5. However, the 

magnitude of activation by PKA was at a much lower level that seen with PKA 

phosphorylation alone, only ever reaching levels of 160 +/- 2% at 10 min and 174 +/- 

4% at 20 min (mean ± SD; n=3) compared to the activity of non-PKA phosphorylated 

PDE4A5. This is significantly different to PKA phosphorylation alone with a p value of 

0.021.  These data suggest that, while MAPKAPK2 phosphorylation alone does not 

affect PDE4A5 activity, it acts to ablate the PKA phosphorylation induced increase in 

PDE4A5 activity. 
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Once again to establish that the effect of MAPKAPK2 was due to 

phosphorylation at Ser147 of PDE4A5 the Ser147Ala mutant and, additionally, a 

phosphorylation mimetic Ser147Asp mutant, were each transiently over expressed in 

COS1 cells and their enzymatic activity determined, Figure 3.14. Both mutants had a 

similar basal level of enzymatic activity to PDE4A5 wild type at 97 +/- 5% and 97 +/- 

5% (mean ± SD; n=3) compared to wild-type PDE4A5. For subsequent comparative 

analyses then note that these were set to a relative activity level of 100%.  

 

 PKA phosphorylation of PDE4A5 Ser147Ala resulted in an increase in 

enzymatic activity, which reached a plateau at 10-20 min with activity at 20 min being 

290 +/- 6% above the control (mean ± SD; n=3), untreated basal level. MAPKAPK2 

phosphorylation of PDE4A5 Ser147Ala, like the wild type, showed no difference in 

enzymatic activity from the basal rate. However, in the case of prior MAPKAPK2 

phosphorylation followed by PKA phosphorylation, the enzymatic activity was 

increased in a similar manner to that observed with PKA phosphorylation alone, 

attaining the same high rate of 287 +/- 4% at 20 min (mean ± SD; n=3), Figure 3.14(a).  

 

Conversely PKA phosphorylation of PDE4A5 Ser147Asp resulted in a much 

slower increase in enzymatic activity, which reached plateau at the much lower level of 

190 +/- 4% (mean ± SD; n=3) compared to the non-PKA phosphorylated form of this 

mutant enzyme. Strikingly, this reduction level of activation was similar to that observed 

upon PKA phosphorylation of the wild-type PDE4A5 that had been prior 

phosphorylated by MAPKAPK2 phosphorylation, which reached a plateau of activation 

at 183 +/- 7% (mean ± SD; n=3). Again no effect on the activity of the wild-type 

PDE4A5 was seen with MAPKAPK2 phosphorylation alone, Figure 3.14(b). These data 

suggest that, MAPKAPK2 is indeed phosphorylating PDE4A5 through Ser147, as when 

this site is mutated to alanine, which cannot be phosphorylated, then even when 

MAPKAPK2 and PKA are both activated in cells, PDE4A5 activity was increased to its 

maximal PKA phosphorylated state. Conversely, if Ser147 was mutated to the 

phosphorylation mimetic aspartate then, under conditions of PKA activation alone, 

PDE4A5 activity never rose to its full activation rate (Figure 3.14 (b)). Instead it rose to 
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only to approximately half of this, thereby mimicking the affect of pre-treatment of cells 

expressing wild-type PDE4A5 with anisomycin so as to MAPKAPK2 phosphorylate 

PDE4A5 prior to its phosphorylation by PKA.  

 

 
 

Figure 3.13 – Phosphorylation and activation of rat PDE4A5 by PKA and 

MAPKAPK2. 

   

COS1 cells were transfected to transiently express wild type rat PDE4A5.  The 

transfected cells were subjected to three different treatments. They were either pre-

treated for 10 min with the non-specific PDE inhibitor, IBMX (100µM) before 

challenge, 0-20 min, with the adenylyl cyclase activator, forskolin (100µM). Or they 
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were treated for 60 min with the p38 MAP Kinase pathway activator, anisomycin 

(10µg/ml). Or they were pre-treated for 30 min with anisomycin (10µg/ml), and then 

treated for 10 min with IBMX (100µM) before challenge, 0-20 min, with forskolin 

(100µM). The figure above shows the effect of PKA phosphorylation, MAPKAPK2 

phosphorylation and MAPKAPK2 phosphorylation prior to PKA phosphorylation on 

PDE4A5 enzymatic activity.  Assays were done using 1µM cAMP as substrate with 

COS1 cell lysates expressing equal immuno-reactive amounts of PDE4A5, as 

determined by the quantification of PDE4A5 expression.  All data shown are mean data 

+/- standard deviation of the three separate transfections and experiments. 
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Figure 3.14 – Phosphorylation and activation of rat PDE4A5 S147A and S147D by 

PKA and MAPKAPK2. 

   

COS1 cells were transfected to transiently express rat PDE4A5 with a mutation to either 

alanine or aspartate at serine 147, the predicted MAPKAPK2 phosphorylation site.  The 

transfected cells were subjected to three different treatments. They were either pre-

treated for 10 min with the non-specific PDE inhibitor, IBMX (100 µM) before 

challenge, 0-20 min, with the adenylyl cyclase activator, forskolin (100 µM). Or they 

were treated for 60 min with the p38 MAP Kinase pathway activator, anisomycin (10 

µg/ml). Or they were pre-treated for 30min with anisomycin (10 µg/ml), and then 

treated for 10min with IBMX (100uM) before challenge, 0-20min, with forskolin (100 

µM). (a) shows the effect of PKA phosphorylation, MAPKAPK2 phosphorylation and 

MAPKAPK2 phosphorylation prior to PKA phosphorylation on PDE4A5 S147A 

enzymatic activity.  Assays were done using 1µM cAMP as substrate with COS1 cell 

lysates expressing equal immuno-reactive amounts of PDE4A5 S147A, as determined 

by the quantification of PDE4A5 S147A expression. (b) shows the effect of PKA 
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phosphorylation, MAPKAPK2 phosphorylation and MAPKAPK2 phosphorylation prior 

to PKA phosphorylation on PDE4A5 S147D enzymatic activity.  Assays were done 

using 1 µM cAMP as substrate with COS1 cell lysates expressing equal immuno-

reactive amounts of PDE4A5 S147D, as determined by the quantification of PDE4A5 

S147D expression.  All data shown are mean data +/- standard deviation of the three 

separate transfections and experiments. 

 

 

 

3.2.3 Cellular Response to MAPKAPK2 Phosphorylation of PDE4A5. 

 

After establishing the effect of MAPKAPK2 phosphorylation on PDE4A5 it was 

important to understand how this might affect cellular metabolism of cAMP in the cell 

as a whole. This was done by measuring whole cell cAMP concentration in COS1 cells 

transiently over-expressing PDE4A5; a system that was used as a paradigm (Figure 

3.15). In these experiments the diterpene, forskolin was used to activate adenylyl 

cyclase directly and, to allow comparison, cAMP levels within cells expressed as a 

percentage of resting cell level (taken as 100%). Doing this, intracellular cAMP reached 

a maximum of 236 +/- 9% at 5 min and returned to resting levels, 96 +/- 3%, by 15 min 

(mean ± SD; n=3). The transient nature of this rise is thought to be due to cAMP levels 

being raised in the cell and causing the activation of PKA which then phosphorylates 

and activates PDE4A5, leading to increased cAMP breakdown and a subsequent 

decrease in intracellular cAMP levels. To confirm that PKA activation plays a major 

factor influencing the transience fo this effect and so stimulating a decrease in cAMP 

concentration back to a basal level experiment were then performed with addition of the 

PKA inhibitor, KT5720 that was added prior to forskolin treatment. KT5720 pre-

treatment resulted in a peak cAMP concentration of 246 +/- 2% occurring at 5 minutes 

however this level remained sustained for up to 15 min where it was 221 +/- 6% (mean 

± SD; n=3). This shows that PKA activation plays a vital role in the regulation of 

cellular cAMP concentration after a period of 5 min, working as negative feedback 

regulator through activation of PDE4A5.  
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With this basic model of cellular cAMP concentration ascertained it was then 

crucial to discover if MAPKAPK2 phosphorylation plays a role regulating intracellular 

cAMP levels. Using the same cell model, anisomycin pre-treatment was carried out to 

activate the p38 MAPK cascade and cause PDE4A5 phosphorylation; this was followed 

by adenylyl cyclase activation through forskolin. Again cAMP concentration reached a 

peak level of 240 +/- 7% at 5 minutes however after 15 min, despite some lowering of 

cellular cAMP levels, the overall cAMP level only fell to 153 +/- 4% and not back to the 

basal steady-state level (mean ± SD; n=3). To confirm that this effect was due to 

activation of the p38 MAPK cascade an additional pre-treatment was done, in this case 

with SB203580, a specific p38 MAPK inhibitor. When this was carried out, forskolin 

challenge now showed peak cAMP concentration of 243 +/- 5% at 5 min and a return to 

basal rate of 97% +/- 7% after 15 min, mimicking the effect seen by simply challenging 

with forskolin alone (mean ± SD; n=3). These data show that activation of the p38 

MAPK cascade within this cell system leads to a profound attenuation of the transient 

nature of cAMP accumulation subsequent to adenylyl cyclase activation. This appears to 

be achieved by it re-mapping the nature of the feed-back inhibition process driven by 

PKA activation of PDE4A5. It was then important to confirm if this was occurring 

through MAPKAPK2 phosphorylation of PDE4A5 as the experimental work above 

would imply.  

 

Two cell models were created using COS1 cells, one transiently over-expressing 

the Ser147Ala-PDE4A5 MAPKAPK2 phosphorylation null mutant, Figure 3.16(a), and 

one transiently over-expressing the Ser147Asp-PDE4A5 MAPKAPK2 phosphorylation 

mimetic mutant, Figure 3.16(b). These models were both subjected to (i) forskolin 

treatment alone, to activate adenylyl cyclase and raise cAMP levels; (ii) KT5720 pre-

treatment followed by forskolin treatment, to inhibit PKA activation and raise cellular 

cAMP and (iii) anisomycin pre-treatment followed by forskolin treatment, to activate 

the p38 MAPK cascade and raise cAMP levels.  

 

In the case of the Ser147Ala-PDE4A5 mutant, when adenylyl cyclase was 

activated cAMP concentration in the cell reached a maximum of 256 +/- 5% at 5 min 
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and returned fully to resting rate 93 +/- 7% by 15 min (mean ± SD; n=3) . Then using 

the PKA inhibitor KT5720 before forskolin treatment, peak cAMP concentration of 260 

+/- 2% occurs at 5 min and this level remained sustained up to 15 min where it was 230 

+/- 3% (mean ± SD; n=3). This implies that in cell model expressing Ser147Ala-

PDE4A5 cAMP concentration is controlled similarly to the wild type PDE4A5 in that 

adenylyl cyclase raises cellular cAMP concentration and PKA operates a negative 

feedback loop of this through Ser147Ala-PDE4A5. However when the p38 MAPK 

cascade was activated prior to raising cAMP levels cellular cAMP level rose to 248 +/- 

8% at 5 min and fell back to basal rate of 87 +/- 7% after 15 min (mean ± SD; n=3) . 

This lack of effect implies that in the wild type PDE4A5 system the p38 MAPK cascade 

is exhibiting its effect through MAPKAPK2 phosphorylation of PDE4A5. This concept 

is confirmed using the Ser147Asp-PDE4A5 phosphorylation mimetic mutant where 

under adenylyl cyclase activation alone cAMP concentration rises to 251 +/- 2% but 

after 15 min only falls to 157 +/- 7%, not the basal level (mean ± SD; n=3).  

 

These data show that MAPKAPK2 phosphorylation of PDE4A5 acts to attenuate 

the PKA phosphorylation induced activation of PDE4A5. This has a functional 

consequence in cells in re-mapping the functionality of the feedback cycle focused on 

PDE4A5 and mediated by PKA. This changes the profound transience of cAMP 

accumulation to one where a sustained increase in cellular cAMP levels is evident.  
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Figure 3.15 – Cellular cyclic AMP concentration in PDE4A5 expressing cells 

following Phosphorylation by PKA and MAPKAPK2. 

 

COS1 cells were transfected to transiently express wild type rat PDE4A5. The 

transfected cells were subjected to one of four pre-treatments: pre-treated with 

anisomycin (10 µg/ml) for 30 min to activate MAPKAPK2. Pre-treated with KT5720 

(10 µM) for 30 min to block PKA activation. Pre-treated with SB203580 (25 µM) to 

inhibit the p38 MAP kinase pathway for 30 min followed by anisomycin (10µg/ml) 

treatment for 30 min to activate MAPKAPK2. And lastly, without pre-treatment. The 

cells were then subjected to a 0-15 min time course with Forskolin (100 µM) to activate 

PKA. The figure above shows cAMP concentration in cells following these treatments. 

cAMP concentration within the cell was measured using a commercial cAMP 
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competitive ELISA assay kit. cAMP concentration is measured as a percentage of 

resting cell cAMP concentration. All data shown are mean data +/- standard deviation of 

three separate transfections and experiments.  
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Figure 3.16 – Cellular cyclic AMP concentration in PDE4A5 S147A and S147D 

expressing cells following Phosphorylation. 

 

COS1 cells were transfected to transiently express rat PDE4A5 with a mutation to either 

(a) alanine or (b) aspartate at Ser147, the predicted MAPKAPK2 phosphorylation site. 

The transfected cells were subjected to one of three pre-treatments: pre-treated with 

anisomycin (10 µg/ml) for 30 min, pre-treated with KT5720 (10 µM) for 30 min or 

without pre-treatment. The cells were then subjected to a 0-15 min time course with 

Forskolin (100 µM). The figure above shows cAMP concentration in cells following 

these treatments. cAMP concentration within the cell was measured using a commercial 

cAMP competitive ELISA assay kit. cAMP concentration is measured as a percentage 

of resting cell cAMP concentration. All data shown are mean data +/- standard deviation 

of three separate transfections and experiments.  
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3.2.4 Rolipram Inhibition of MAPKAPK2 Phosphorylated PDE4A5  

 

As previously mentioned PDE4A5 can exhibit two binding states for rolipram 

[Jacobitz et al., 1996], the normal Low Affinity Rolipram Binding State (LARBS) and 

the higher sensitivity state, High Affinity Rolipram Binding State (HARBS).  It was 

therefore important to establish if MAPKAPK2 phosphorylation of PDE4A5 altered its 

level of inhibition, and therefore binding affinity, of the PDE4 inhibitor rolipram. A cell 

model of COS1 cells transiently transfected to express PDE4A5 was exposed to 

MAPKAPK2 phosphorylation alone, PKA phosphorylation alone and MAPKAPK2 

phosphorylation prior to PKA phosphorylation (all treatments as described previously), 

Figure 3.17(a). PDE enzymatic activity was then measured in a basal state and in the 

presence of rolipram. This showed that using 10 µM of rolipram for non-phosphorylated 

PDE4A5, PDE activity was inhibited by 50 +- 5% (mean ± SD; n=3). Similarly this was 

the case for MAPKAPK2 phosphorylated PDE4A5 where PDE activity at the basal rate 

was 99 +/- 3% and 47 +/- 7% in the rolipram inhibited state, PKA phosphorylated 

PDE4A5 where PDE activity at the basal rate was 265 +/- 4% and 137 +/- 3% in the 

rolipram inhibited state and MAPKAPK2 and PKA phosphorylated PDE4A5 where 

PDE activity at the basal rate was 160 +/- 2% and 85 +/- 4% in the rolipram inhibited 

state. These data show that PKA phosphorylation, MAPKAPK2 phosphorylation and a 

combination of both do not affect the ability of rolipram to inhibit PDE4A5. To confirm 

mutations at the MAPKAPK2 mutation site Ser147 had no affect on rolipram inhibition 

either the above experiment was repeated with COS1 cells transiently expressing 

Ser147Ala-PDE4A5 (Figure 3.17(b)) and Ser147Asp-PDE4A5 (Figure 3.17(c)) 

respectively. This showed that using the optimal EC50 concentration of rolipram for non-

phosphorylated PDE4A5, PDE activity was inhibited by 50 +- 5%. Similarly this was 

the case for MAPKAPK2 phosphorylated Ser147Ala-PDE4A5 and Ser147Asp-

PDE4A5, where PDE activity at the basal rate was 94 +/- 4% and 41 +/- 4%; and 102 

+/- 4% and 48 +/- 2% respectively in the rolipram inhibited state, PKA phosphorylated 

Ser147Ala-PDE4A5 and Ser147Asp-PDE4A5, where PDE activity at the basal rate was 

275 +/- 6% and 143 +/- 4%; and 162 +/- 5% and 79 +/- 7%, respectively, in the rolipram 

inhibited state and MAPKAPK2 and PKA phosphorylated Ser147Ala-PDE4A5 and 
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Ser147Asp-PDE4A5, where PDE activity at the basal rate was 275 +/- 6% and 136 +/- 

4%; and 164 +/- 3% and 81+/- 4% respectively in the rolipram inhibited state. These 

data show that mutation of PDE4A5 at Ser147 to either alanine or aspartate does not 

affect the ability of rolipram to inhibit the enzyme.  All data are mean ± SD; n=3. 
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Figure 3.17 – Inhibition of rat PDE4A5 wild type, S147A and S147D mutants 

activity by rolipram, following phosphorylation by PKA and MAPKAPK2. 

   

COS1 cells were transfected to transiently express either (a) wild type rat PDE4A5, (b) 

PDE4A5 with a mutation to alanine at Ser147, or (c) PDE4A5 with a mutation to 

aspartate at Ser147. The transfected cells were subjected to three different treatments. 

They were either pre-treated for 10min with the non-specific PDE inhibitor, IBMX (100 

µM) before 20 min challenge with the adenylyl cyclase activator, forskolin (100 µM), 

treated for 60 min with the p38 MAP Kinase pathway activator, anisomycin (10 µg/ml). 

Or they were pre-treated for 30min with anisomycin (10 µg/ml), and then treated for 

10min with IBMX (100 µM) before 20min challenge with forskolin (100 µM). 

Phosphodiesterase activity assays were carried out under resting cell conditions and in 

presence of the PDE4 inhibitor Rolipram (10uM). Assays were done using 1µM cAMP 

as substrate with COS1 cell lysates expressing equal immuno-reactive amounts of (a) 

PDE4A5 wild type, (b) PDE4A5 Ser147Ala or (c) PDE4A5 Ser147Asp as determined 
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by the quantification of expression.  All data shown are mean data +/- standard deviation 

of the three separate transfections and experiments. 

 

 

 

3.2.5 Thermo-stability of PDE4A5 after Phosphorylation 

 

At this juncture I wished to try and gain evidence that MAPKAPK2 

phosphorylation of PDE4A5 caused a conformational change in PDE4A5 that might be 

consistent with my observation that it caused a decrease in the ability of PKA to activate 

PDE4A5. As shown previously this was not due to hindrance of PKA phosphorylation. 

Thus as far as activity changes occur, any such conformational change caused by 

MAPKAPK2 phosphorylation is effectively silent until the enzyme is PKA 

phosphorylated.  Conformational changes can, however, be expected to affect the 

stability of proteins.  This can very simply be assessed using a thermal inactivation 

procedure.  The denaturation of proteins by heat occurs as a first-order process that, in 

the case of enzymes, can be followed by analysis of the exponential decay in their 

catalytic activity. A semi-log plot of the log % activity remaining against time thus 

allows for a determination of the half-life of inactivation (t1/2).  

 

Using a cell model of COS1 cells over-expressing PDE4A5 subjected to the 

various conditions described previously, treatment at 55°C causes the inactivation of 

PDE4A5 as a single exponential, Figure 3.18. From the data it is shown that wild type 

PDE4A5 reaches a half-life of inactivation at approximately 7.5 min. However if cells 

expressing PDE4A5 are subjected to forskolin treatment to increase intracellular cAMP 

levels and activate PKA and PDE4A5 taken for thermal inactivation studies then a half-

life of inactivation is not reached until approximately 12 minutes. This shows that PKA 

phosphorylation of PDE4A5 results in an increase in structural stability of the enzyme. 

When MAPKAPK2 phosphorylation of PDE4A5 using the p38 MAPK activator was 

elicited then the half-life of inactivation of the enzyme decreased slightly from the wild-

type non-phosphorylated enzyme, to a level of approximately 6.5 min implying that 
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MAPKAPK2 phosphorylation of PDE4A5 is responsible for decreased structural 

stability of the enzyme. This result was confirmed to be due to the p38 MAPK pathway 

through use of the p38 MAPK inhibitor SB203580, which took the half-life of 

inactivation back to approximately 7.5 min, a similar rate to that of wild type non-

phosphorylated PDE4A5.  

 

I then set out to see how MAPKAPK2 phosphorylation in combination with 

PKA phosphorylation affected the stability of PDE4A5. Pre-treatment with anisomycin 

followed by adenylyl cyclase activation by forskolin resulted in the half-life of 

inactivation of approximately 4.5 min. This is significantly lower than the half-lives 

seen for the non-phosphorylated wild type PDE4A5, for PKA phosphorylated PDE4A5 

and for MAPKAPK2 phosphorylated PDE4A5. This implies that dual phosphorylation 

of PDE4A5 by PKA and MAPKAPK2 leads to a distinct change in structure, seen here 

as a loss of thermal stability. This is consistent with my data showing that after these 

phosphorylation events, MAPKAPK2 phosphorylation has a functional effect on 

PDE4A5 in attenuating its ability to be activated by PKA.  
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Figure 3.18 – Thermo-stability of PDE4A5.   

 

Recombinant PDE4A5 was transiently expressed in COS1 cells. The transfected cells 

were subjected to one of four treatments: treated with anisomycin (10 µg/ml) for 60 min 

to activate MAPKAPK2, treated for 10min with IBMX (100 µM) before 20 min 

Forskolin (100 µM) challenge to activate PKA, pre-treated with anisomycin (10 µg/ml) 

for 30min then treated for 10min with IBMX (100 µM) before 20min Forskolin 

(100µM) challenge to activated MAPKAPK2 prior to PKA activation, or pre-treated 

with SB203580 (25 µM) to 30 min followed by anisomycin (10 µg/ml) treatment for 30 

min, to block them stimulate activation of MAPKAPK2 through the p38 MAPK 

cascade. Total cell lysate was produced.  Lysates were incubated at 55oC for the 

indicated times and then assayed for PDE4 activity using 1 µM cAMP as substrate.  The 

log% residual activity was calculated and plotted as a function of increasing time.  The 

half-life (t1/2) was determined as the time at which 50% of the total PDE4 activity at 

time zero remained.  Data shown are from three separate experiments using fractions 
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from three separate transfections and are expressed as mean values +/- standard 

deviation. 

 

 

 

3.2.6 PDE4D3 is Phosphorylated by MAPKAPK2. 

 

Now that the role of MAPKAPK2 phosphorylation in PDE4A5 function and 

activity has been established it raises question as to whether PDE4A5 is the only long 

form PDE4 that undergoes these phosphorylation events. As stated previously PDE4A5 

plays an important role in inflammation along with the p38 MAP Kinase cascade 

[Schieven, 2005] but its expression levels are low in most cell systems where the 

PDE4D family are the largest expressed PDE4 group. Under analysis of sequence line 

ups of PDE4A5 and all other long form PDE4 isoforms consensus is seen between the 

UCR1 phosphorylation sites of the enzymes. Indeed PDE4D3 contains a consensus 

MAPKAPK2 phosphorylation site identical to that found in PDE4A5, namely Leu-Tyr-

Arg-Ser-Asp-Ser-Asp. This sequence fits exactly the MAPKAPK2 phosphorylation 

consensus motif previously discovered: Ø-X-Arg-X-X-Ser-Ø, where Ø are hydrophobic 

amino acids and X is any amino acid. [Stokoe et al., 1993; Rousseau et al., 2005]. To 

confirm if PDE4D3 is phosphorylated by MAPKAPK2 enzymatic activity studies were 

carried out, similar to those shown above with PDE4A5.  To establish functionality of 

PDE4D3 the cell model of PDE4D3 transiently over expressed in COS1 cells was 

utilised again. Basal PDE4D3 enzymatic activity was established in unstimulated cells 

and taken as an activity level of 100% for further analysis, Figure 3.19(a). PKA 

phosphorylation of the enzyme resulted in an increase in enzymatic activity of PDE4D3, 

which reaches a plateau at 10-20 min with activity at 10min being 240 +/- 7% and at 20 

min being 269 +/- 15%, above the control basal level. MAPKAPK2 phosphorylation of 

PDE4D3 showed no altering in enzymatic activity above the basal level of 100%. Then 

when MAPKAPK2 phosphorylation of PDE4D3 was followed by PKA 

phosphorylation, the enzymatic activity was increased, as with PKA phosphorylation 

alone, but the increase occurred at a slower rate and plateaus at a much lower level only 
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ever reaching levels of 174 +/- 3% at 10 min and 182 +/- 4% at 20 min. These data 

suggest that PDE4D3 undergoes phosphorylation by MAPKAPK2 resulting in similar 

enzymatic effects in that, while MAPKAPK2 phosphorylation alone does not affect 

PDE4D3 activity, it acts to ablate the PKA phosphorylation induced increase in 

PDE4D3 activity. (mean ± SD; n=3) 

 

To confirm this effect of MAPKAPK2 was due to its phosphorylation of 

PDE4D3 mutants of the potential MAPKAPK2 phosphorylation site on PDE4D3 were 

made. This site was, from the sequence line up data, Ser61 on PDE4D3 and mutations 

were made at this site to alanine, to act as a MAPKAPK2 phosphorylation null mutant 

and to aspartate a phosphorylation mimetic mutant. These were separately transiently 

over expressed in COS1 cells and their enzymatic activity established, Figure 3.19(b) 

and (c). Both mutants had a similar basal level of enzymatic activity to PDE4D3 wild 

type (80 +/- 5 %; n= 3) and were set to activity level of 100% for comparative analyses. 

PKA phosphorylation of Ser61Ala-PDE4D3 resulted in an increase in enzymatic 

activity, which reaches a plateau at 10-20 min with activity at 20 min being 264 +/- 6% 

above the control basal level. MAPKAPK2 phosphorylation of Ser61Ala-PDE4D3, like 

the wild type, showed no difference in enzymatic activity from the basal rate but in the 

case of MAPKAPK2 phosphorylation followed by PKA phosphorylation, the enzymatic 

activity was increased, as with PKA phosphorylation alone, to the same high rate of 257 

+/- 5% at 20 min, Figure 3.19(b). Conversely PKA phosphorylation of Ser61Asp-

PDE4D3 resulted it was at a slower increase in enzymatic activity, which reaches 

plateau at the much lower level of 186 +/- 3%. This level was similar to MAPKAPK2 

phosphorylation followed by PKA phosphorylation of Ser61Asp-PDE4D3, which 

reaches its plateau at 190 +/- 2%. Again no effect on activity was seen with 

MAPKAPK2 phosphorylation alone, Figure 3.19(c). These data suggest that, 

MAPKAPK2 is indeed phosphorylating PDE4D3 through Ser61 giving highly similar 

results to those shown with PDE4A5 Ser147 mutants. These data indicate that some 

otherPDE4 long forms can be phosphorylated by MAPKAPK2 resulting in ablation of 

PKA phosphorylation induced increase in PDE4 activity. (mean ± SD; n=3) 
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Figure 3.19 – Phosphorylation and activation of rat PDE4D3 wild type, S61A and 

S61D by PKA and MAPKAPK2. 

   

COS1 cells were transfected to transiently express rat PDE4D3 wild type, or with a 

mutation to either alanine or aspartate at Ser61, the predicted MAPKAPK2 

phosphorylation site.  The transfected cells were subjected to three different treatments. 

They were either pre-treated for 10 min with the non-specific PDE inhibitor, IBMX (100 

µM) before challenge, 0-20 min, with the adenylyl cyclase activator, forskolin (100 

µM). Or they were treated for 60min with the p38 MAP Kinase pathway activator, 

anisomycin (10 µg/ml). Or they were pre-treated for 30min with anisomycin (10 µg/ml), 

and then treated for 10 min with IBMX (100 µM) before challenge, 0-20 min, with 

forskolin (100 µM). (a) shows the effect of PKA phosphorylation, MAPKAPK2 

phosphorylation and MAPKAPK2 phosphorylation prior to PKA phosphorylation on 

PDE4D3 enzymatic activity.  Assays were done using 1µM cAMP as substrate with 

COS1 cell lysates expressing equal immuno-reactive amounts of PDE4D3, as 

determined by the quantification of PDE4D3 expression. (b) shows the effect of PKA 
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phosphorylation, MAPKAPK2 phosphorylation and MAPKAPK2 phosphorylation prior 

to PKA phosphorylation on PDE4D3 Ser61Ala enzymatic activity.  Assays were done 

using 1µM cAMP as substrate with COS1 cell lysates expressing equal immuno-reactive 

amounts of PDE4D3 Ser61Ala, as determined by the quantification of PDE4D3 S61A 

expression.  (c) shows the effect of PKA phosphorylation, MAPKAPK2 

phosphorylation and MAPKAPK2 phosphorylation prior to PKA phosphorylation on 

PDE4D3 S61D enzymatic activity.  Assays were done using 1µM cAMP as substrate 

with COS1 cell lysates expressing equal immuno-reactive amounts of PDE4D3 

Ser61Asp, as determined by the quantification of PDE4D3 S61D expression.   All data 

shown are mean data +/- standard deviation of the three separate transfections and 

experiments. 
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3.3  Discussion 

 

 

The p38 MAP Kinase phosphorylation cascade plays an important role in 

regulation of immune and inflammatory systems in response to injury, infection and 

tissue damage [Schindler, 2007]. p38 MAPK has this effect by regulating the function of 

many immune and inflammatory cells including macrophages, monocytes, T-

lymphocytes and mast cells, as well as regulating cell cytokine expression, adhesion and 

migration [Dong et al., 2002]. It has therefore been hypothesized that inhibition of the 

p38 MAPK cascade may be useful therapeutically in diseases of excessive immune of 

inflammatory reactions, such as COPD, asthma and rheumatoid arthritis [Cuenda and 

Rousseau, 2007]. 

 

Activation of p38 MAPK and subsequently MAPKAPK2 in most cells can be 

induced with anisomycin or TNFα. Anisomycin activates the cascade by synergistically 

acting with growth factors through stimulation of the G-proteins, Rac and Cdc42 

(Figures 3.1 and 3.4) [Cahill et al., 1996]. It should be noted that anisomycin leads to 

delayed onset of MAPKAPK2 activation. For faster activation the pro-inflammatory 

cytokine TNFα could be used for p38 MAPK and MAPKAPK2 activation (Figure 3.5). 

TNFα has its affect through the TNF receptor, recruitment of TRAF2, and activation of 

ASK (Figure 3.4) [Ichijo et al., 1997 and Nishitoh et al., 1998]. Initial work from the 

Houslay laboratory has shown that there may be potential signalling cross talk between 

the p38 MAPK cascade and the regulation of intra-cellular cAMP concentrations 

[MacKenzie and Houslay, 2000]. These effects are consistent with the wealth of 

published data that implicates both PDE4 [Jin and Conti, 2002, Houslay et al., 2005 and 

Zhang et al., 2005] and p38 MAPK inhibition as potential ways of lowering pro-

inflammatory cytokine production and the overall inflammatory response.  

 

Analysis of the primary amino acid sequence of phosphodiesterase 4A5 shows 

that it contains two potential MAPKAPK2 phosphorylation consensus sequences. The 

consensus sequence, Ø-Xaa-Arg-Xaa-Xaa-Ser*-Ø where Ø represents a hydrophobic 
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amino acid, was seen at serine 147 and serine 161 within PDE4A5.  Serine 161 (Val-

Ser-Arg-Ser-Ser-Ser*-Val) is surrounded by optimal residues for MAPKAPK2 

phosphorylation, whereas serine 147 (Leu-Tyr-Arg-Ser-Asp-Ser*-Asp) contains a 

hydrophilic C-terminal aspartic acid residue at a site indicated to be hydrophobic in the 

consensus sequence [Rousseau et al., 2005].  However the requirement for a C-terminal 

hydrophobic residue, and indeed even the requirement for an optimal consensus motif, 

has been recently questioned so both Ser147 and Ser161 are possible MAPKAPK2 

phosphorylation target sites based on our current knowledge [Stokoe et al., 1993, 

Rousseau et al., 2005].  

 

Previous unpublished work from the Houslay lab showed that recombinant MBP 

fusion protein of PDE4A5 could undergo in vitro phosphorylation with recombinant, 

active MAPKAPK2. This provided initial evidence that PDE4A5 was substrate of 

MAPKAPK2. These initial experiments alluded to PDE4A5 being phosphorylated at 

Ser147 by MAPKAPK2.  This study was followed on using an in vivo phosphorylation 

system in which COS1 cells over-expressing PDE4A5, in the presence of [32P]-

orthophosphate were treated with anisomycin to trigger the p38 MAPK cascade.  This 

confirmed that PDE4A5 undergoes phosphorylation by MAPKAPK2 in a cell system. 

Additionally it was shown that phosphorylation did occur at Ser147 but other sites may 

also be available because the level of phosphorylation was not completely ablated with 

the Ser147Ala mutant form of PDE4A5.  However, as with all in vivo protein kinase 

phosphorylation assays there is a tendency for background or indiscriminate 

phosphorylation to occur [Berwick and Tavaré, 2004]. 

 

Proving that proteins are genuine substrates for specific protein kinases is very 

difficult given the promiscuous nature of in vitro phosphorylation assays, and the 

complexity and integration of cell signalling pathways.  To address such concerns 

certain criteria should be satisfied to formally identify protein kinase substrates 

[Berwick and Tavaré, 2004].  The work previously done in the Houslay lab satisfied 

these criteria by showing that (1) the recombinant in vitro phosphorylation of the 

proposed substrate and reduction of phosphorylation using site-specific alanine 
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mutant(s), (2) proving that the phosphorylation can occur in intact cells to a stimuli that 

activates the protein kinase in a stimulus and concentration-dependent time course 

(Figure 3.4), (3) matching the phosphorylation site in vivo to the phosphorylation site in 

vitro (Figures 3.2 and 3.6) and (4) ablating, or at least attenuating, the phosphorylation 

using specific inhibitors (Figures 3.6) [Berwick and Tavaré, 2004].  As PDE4A5 

satisfies each of these criteria for MAPKAPK2 phosphorylation it was concluded that 

PDE4A5 is a bone fide substrate of MAPKAPK2 in cells, with phosphorylation 

occurring at a single serine residue (Serine 147). 

 

As described previously PDE4 enzymes are phosphorylated by a cAMP-

dependent protein kinase, known to as PKA [Sette et al., 1994].  Further work identified 

a conserved single serine residue (Ser54 in PDE4D3 and Ser140 in PDE4A5) within the 

Upstream Conserved Region 1 (UCR1) as the phosphorylation target for PKA and 

showed that phosphorylation at this site conferred enzyme activation [Sette and Conti, 

1996, Hoffman et al., 1998 and MacKenzie et al., 2002].  This was the first evidence 

that the UCR1 domain participates in the regulation of catalytic activity, and therefore 

must interact with the catalytic unit in some way.  PKA phosphorylation is proposed to 

stop an inhibitory constraint placed upon the catalytic machinery by Upstream 

Conserved Region 2 through disruption of the intra-molecular interactions between 

UCR1 and UCR2 [Lim et al., 1999 and Beard et al., 2000].  It is thought that resolution 

of the crystal structure of the UCR domains of full-length PDE4 isoforms may provide 

insight into how these domains regulate the catalytic unit and the effect of PKA 

phosphorylation on this but, unfortunately, this structure has yet to be solved. 

 

PDE4A5 enzyme activity is greatly enhanced following PKA phosphorylation 

(Figure 3.7) [MacKenzie et al., 2002 and Bolger et al., 2003].  Conversely, MAPKAPK2 

phosphorylation of PDE4A5 has no overt functional effect upon catalytic activity 

(Figure 3.8).  As UCR1 is conserved across the PDE4 gene families, it might be 

expected that MAPKAPK2 phosphorylates all PDE4 long isoforms. The MAPKAPK2 

phosphorylation site (Ser147) is located 7 amino acid residues upstream of the PKA 

phosphorylation site (Ser140).  It was hypothesised that phosphorylation by 
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MAPKAPK2 may not confer an overt functional effect on its own but may play a role in 

controlling the effect of PKA on PDE4A5. It was shown that MAPKAPK2 

phosphorylation did not alter the ability of PKA to phosphorylated PDE4A5 (Figure 

3.9), however it did delay both the onset and amplitude of PKA induced activity of the 

phosphodiesterase (Figure 3.10). This was confirmed through mutation of the Ser147 

phosphorylation site to alanine (Figures 3.11, 3.12, 3.13 and 3.14), which exhibited full 

PDE4A5 activation despite activation of the p38 MAPK-MAPKAPK2 pathway and 

through use of a phospho-mimetic mutant where Ser147 was mutated to aspartate 

(Figure 3.14), which exhibited delay in onset and attenuated level of enzyme activation.  

This study was repeated using the long form phosphodiesterase, PDE4D3 to see if this 

result was specific to PDE4A5 or likely to be a pan PDE4 long isoform phenomenon. 

The results seen for PDE4D3 followed the same trend as PDE4A5 (Figure 3.19) 

indicating that this effect is likely to be a pan PDE4 long isoform wide effect with a 

MAPKAPK2 consensus phosphorylation site conserved in all long form PDE4s. 

 

This indicates that in cells where the p38 MAPK-MAPKAPK2 signalling 

pathway is active, activation of PKA in a negative feedback system to control local 

cAMP concentrations through PDE4 long isoforms is likely to be attenuated due to 

active MAPKAPK2. To demonstrate this intracellular cAMP levels were monitored 

following p38 MAPK-MAPKAPK2 activation in a system containing over-expressed 

PDE4A5, (Figure 3.15). The normal response of this system to raising cAMP, using an 

activator such as forskolin, is activation of PKA that, in turn, leads phosphorylation and 

activation of the long PDE4 leading to a decrease in cAMP levels back to resting rate. 

This effect can most easily be captured experimentally in transfected systems where a 

PDE4 long isoforms is over-expressed and provides the dominant (>98%) cAMP PDE 

activity in these cells. However, this serves as a paradigm for compartments in cells 

where PDE4 long isoforms are sequestered and similarly provide the dominant PDE 

activity in that locality.   

 

When PKA activity was pharmacologically inhibited prior to increasing 

intracellular cAMP levels with forskolin then such a feedback loop is cancelled out as 
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there is no mechanism to phosphorylate and activate PDE4. Under such circumstances 

the transient nature of the rise in intracellular cAMP to forskolin challenge is lost and a 

sustained increase in cAMP occurs due to a new steady state rate of cAMP generation 

and hydrolysis being reached due to the combined action of forskolin-activated adenylyl 

cyclase and active, but not activated, PDE4. While activation of the p38 MAPK-

MAPKAPK2 pathway alone has no effect of steady state, resting intracellular cAMP 

levels due to its inability to affect PDE4 activity per se it now in attenuating activation 

of PDE4 by PKA, reprograms the negative feedback effect and thus severely 

compromises the transient nature of the cAMP increase, allowing for a sustained 

increase in cAMP levels, which do not returning to basal levels within a 20 min time 

frame.   

 

As with treatment with SB203580, mutation of the MAPKAPK2 

phosphorylation site in PDE4A5, namely Ser147 to alanine, ablated this effect of 

anisomycin, confirming that MAPKAPK2 phosphorylation at this site is the responsible 

phosphorylation site for this reaction (Figure 3.16).  

 

These experiments fully support the hypothesis that when PKA is activated in a 

negative feedback system to control local cAMP concentration, activation of the p38 

MAPK-MAPKAPK2 signalling pathway attenuates phosphodiesterase activation by 

PKA through MAPKAPK2 phosphorylation at a site in UCR1. 

 

Phosphorylation of PDE4D3 by PKA conferred both activation of 

phosphodiesterase activity and increased sensitivity to rolipram inhibition [Hoffmann et 

al., 1998]. In all other long PDE4 isoforms the activation is exhibited but no altered 

rolipram inhibition is presented [MacKenzie et al., 2002]. In addition to this PDE4A4, 

the human homolog of PDE4A5 has been shown previously to exhibit altered rolipram 

inhibition states, thought to be due to protein interaction with the phosphodiesterase 

[Jacobitz et al., 1996]. However use of the MAPKAPK2 phosphorylation site mutant 

Ser147Ala and Ser147Asp in PDE4A5, along with in cell p38 MAPK-MAPKAPK2 

activation shows that MAPKAPK2 phosphorylation did not alter PDE4A5 sensitivity to 
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rolipram inhibition (Figure 3.17). This, however, may not be the case for PDE4D3 and 

the application of a MAPKAPK2 phospho-mimetic mutant may yield different results 

and would have to be fully studied before any conclusions about its activity could be 

made.  

 

Although it had been successfully concluded that the attenuating effect of 

MAPKAPK2 phosphorylation on PDE4A5 is not due to hindrance of PKA acting at its 

phosphorylation site or affecting its inhibition state, it is still unclear how MAPKAPK2 

phosphorylation is altering PDE4A5’s activity. To resolve this the full 3D structure of 

the PDE enzyme would have to be considered. In the case of the PKA phosphorylated 

PDE4A5 when the conformational status of the enzyme was evaluated using a 

thermostability assay it was shown that the PKA phosphorylated and activated enzyme 

was more structurally stable and less easily denatured by thermal inactivation than the 

non-phosphorylated enzyme (Figure 3.18). MAPKAPK2 phosphorylation of PDE4A5 

alone slightly lowered the stability of the enzyme to below the level seen in the 

unactivated (basal state) enzyme, as evident from its faster thermal inactivation. It 

should, however, be noted that this decrease appears to be stimuli dependent as this 

effect is seen more prominently when anisomycin was used to activate the p38 MAPK-

MAPKAPK2 pathway than when TNFα was used (Figure 3.18). This may be due to the 

two treatments acting through different signalling pathways or may be purely due to the 

fact that anisomycin is used for a prolonged period of time so with 1h treatment optimal 

phosphorylation will be reached. However with TNFα activation of the signalling 

pathway the window for activation is much shorter, being between 5 and 10 min so it 

would be easy for the optimal phosphorylation of PDE4A5 to be missed. This effect 

needs to be investigated in more detail before a full conclusion can be made. 

Interestingly, when phosphorylation of PDE4A5 occurs by both PKA and MAPKAPK2 

stability of the enzyme is drastically altered with enzyme being denatured at a much 

faster rate than the non-activated enzyme (Figure 3.18). This implied that MAPKAPK2 

phosphorylation is causing a dominant conformational change as evidenced by the 

decrease stability of the enzyme in its PKA activated state. This result explains the 

dominant functional effect that MAPKAPK2 phosphorylation exerts on PDE4A5 
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activity seen as an attenuated, PKA mediated, activation state of PDE4A5 under 

MAPKAPK2 phosphorylation.   

 

This alteration in activation state may be playing a role in modifying the 

negative feedback loop usually controlled by PKA. In this loop in response to rising 

cAMP levels PKA is activated, this phosphorylates and activates a long PDE4 

phosphodiesterase, which, in turn, lowers the cellular levels of cAMP back to basal. 

However when the p38 MAPK-MAPKAPK2 pathway is activated MAPKAPK2 

phosphorylates the long PDE4, lowering its ability to be activated by PKA, leading it 

into reduced activation, and therefore not allowing cAMP levels to return as quickly to 

basal. As has been previously described MAPKAPK2 is thought to play a vital role in 

increasing TNFα and Il-6 production upon inflammatory stimulus. Conversely, cAMP is 

known to block the action of pro-inflammatory mediators [Barber et al., 2004]. 

Inhibition of PDE4 leads to elevation in intracellular cAMP concentration and a 

reduction in inflammatory response.  Therefore it is proposed that MAPKAPK2 may be 

phosphorylating long PDE4 isoforms, attenuating their activation by PKA, as a 

protective feedback system to prevent over-load of the inflammatory system. This would 

mean that when the p38 MAPK-MAPKAPK2 signalling pathway was activated and 

causing release of pro-inflammatory cytokines, if cAMP levels were raised its PKA 

dependent feedback system would not be fully activated, due to MAPKAPK2 

phosphorylation of PDE4, keeping cAMP from returning to its basal levels. 

Subsequently this would mean that inflammatory responses would not be activated by 

low cAMP levels, and there would not be two separate pathways invoking an 

inflammatory response causing the system to become overloaded.  

 

This may be interesting therapeutically as it raises the question of whether 

inhibiting PDE4 fully during this process would prevent an excessive inflammatory 

response as is seen in diseases such as asthma and rheumatoid arthritis. This may also 

explain why p38α MAPK and MAPKAPK2 inhibition has had limited success as 

although inhibiting these kinases blocks pro-inflammatory cytokine release it leaves the 
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cyclic AMP pathway uncontrolled, allowing cAMP levels to be kept at a low rate 

through PDE4 action and creating another inflammatory response.  

 

 In conclusion MAPKAPK2 phosphorylated PDE4A5, and possibly other PDE4 

isoforms, leading to attenuation of PKA mediated activation following an increase in 

intracellular cAMP concentration.  
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Chapter 4          Interaction of PDE4 with p75NTR 

       and their role in Fibrinolysis 
 
 
 
4.1 Introduction 
 
 

4.1.1  Neurotrophins 
 
 The family of growth factor proteins, neurotrophins play an important role in 

influencing several important cellular activities such as proliferation, differentiation and 

cell growth [Levi-Montalcini et al., 1995]. The neurotrophin family consists of four 

members in humans: brain-derived neurotrophic factor (BDNF), neurotrophin 3, 

neurotrophin 4/5 together with the most commonly occurring and the most commonly 

investigated species, namely nerve growth factor (NGF) [Dechant & Neumann, 2002]. 

Structurally these important proteins are all similar, existing as homodimers and having 

a duplicate site for binding to receptors [Cowan et al., 2001]. Occasionally a fifth 

protein is included in this family, namely novel neurotrophin 1 (NNT-1). However 

NNT-1 is, technically, a cytokine and as it bears no structural resemblance to the other 

family members [Senaldi et al., 1999] it will not be discussed here.  

 

 Nerve growth factor was the first of the neurotrophins to be identified. It is 

composed of 2 chains of 118 amino acids containing 3 disulfide bonds arranged in a 

cysteine knot, which is essential for its activity [Silverman & Bradshaw, 1982; 

Wiesmann & de Vos, 2001]. Functionally NGF was originally established as playing a 

vital role as a growth factor in nerve proliferation and survival [Levi-Montaclcini et al., 

2005]. However it was then also found to play an important role as a mediator in airway 

inflammation [Frossard et al., 2004]. A precursor to NGF has also been reported, 

namely proNGF [Ibanez, 2002]. ProNGF is an important component of mature NGF 

folding, production and secretion. ProNGF has been shown to be the dominant form of 

NGF in the brain [Rattenholl et al., 2001; Fahnestock et al., 2001]. 
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 Originally identified in the brain, brain derived neurotrophic factor was the 

second neurotrophin to be discovered [Leibrock et al., 1989]. It was initially thought to 

only be expressed in nerve tissue but has since been shown to be produced in a wide 

variety of immune cells such as macrophages, T cells and B cells [Kerschensteiner et al., 

1999].  

 

The next neurotrophin to be discovered was neurotrophin 3. This neurotrophin 

acts on certain neurons in the peripheral and central nervous system to help support 

survival and differentiation of neurons [Maisonpierre et al., 1990].  

 

The last, and most recently discovered neurotrophin in this family is 

neurotrophin 4/5. This neurotrophin has not been studied as widely as the others. 

However it is considered to act similarly to BDNF [Patapoutian & Reichardt, 2001]. 

 

4.1.2  Neurotrophin Receptors 

 

There are four different types of known receptors for neurotrophins [Chao, 

2003]. Three of these belong to the tyrosine kinase receptor family (Trk receptors) and 

bind neurotrophins with high affinity. In marked contrast to this, the fourth receptor for 

neurotrophins is a low affinity receptor that is known as the p75 neurotrophin receptor 

(p75NTR) [Rodriguez-Tebar et al., 1990]. 

 

4.1.2.1 TrkA 

 

The TrkA receptor is expressed throughout the central and peripheral nervous 

systems, as well as being expressed in non-neuronal cells such as immune and structural 

cells [Muragaki et al., 1995; Levi-Montalcini et al., 1995]. Each of the Trk receptors has 

a preferred ligand and in the case of TrkA receptor it is NGF, which it binds with high 

(picomolar) affinity, however it also shows some interaction with neurotrophin 3 [Sutter 

et al., 1979; Clary and Reichardt., 1994].  
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Structurally TrkA is a 140kDa glycoprotein [Weier et al., 1995]. Several 

isoforms have been identified, all of which consist of an extracellular neurotrophin 

binding region, a unique transmembrane helix and an intracellular domain with tyrosine 

kinase activity [Wiesmann & de Vos., 2001; Windisch et al., 1995]. The model of ligand 

binding and subsequent autophosphorylation of the receptor occurs in a conserved 

manner throughout all of the Trk receptor isoforms [Heldin. 1995]. In the case of TrkA, 

NGF binds to the D5 extracellular domain of the receptor through two areas [Wiesmann 

& de Vos, 2001]: a specificity patch that confers ligand specificity, and a conserved 

binding patch that is found in all Trk receptors [Wiesmann et al., 1999; McInnes & 

Sykes, 1997]. NGF binding leads to dimerisation of the receptor, resulting in activation 

of its intrinsic tyrosyl kinase activity through trans-phosphorylation of tyrosine residues 

670, 674, 675 (in the activation loop of the kinase domain) and, subsequently, tyrosines 

490, 751, 785 (outside the kinase domain), which result in activation of downstream 

signalling pathways [Jing et al., 1992; Heldin, 1995;].  

 

Taking a more in-depth look at the phosphorylation sites outside the kinase 

domain gives an insight into how downstream signalling pathways are triggered. In the 

case of tyrosine 490, when this tyrosine becomes phosphorylated it interacts with the src 

homology 2 (SH2) domain of the adaptor protein shc2, resulting in its phosphorylation 

and subsequent binding and phosphorylation of Grb2. Grb2 can then go on to bind Sos 

leading to activation of the Ras/Raf pathway resulting in downstream processes such as 

proliferation and survival [McCormick, 1995, Nimnual et al., 1998; Stephens et al., 

1994]. Similarly, phosphorylated tyrosine 785 confers binding to the SH2 domain of 

phospholipase C-γ which then becomes tyrosine phosphorylated and activated, leading 

to PIP2 breakdown and the generation of DAG and IP3. The generated DAG allows for 

activation of protein kinase C and the MKK pathways that play a role in cell 

proliferation and survival [Stephens et al., 1994; York et al., 2000]. The phosphorylation 

of tyrosine 751 allows binding to the SH2 domain of PI3 Kinase, activating the Akt and 

MKK pathways, resulting in neuroprotective downstream effects [Ohmichi et al., 1992].  
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4.1.2.2  TrkB 

 

The TrkB receptor is ubiquitously expressed throughout both the central and 

peripheral nervous system as well as playing an important role in other areas such as the 

respiratory system [Klein et al., 1990; Nassenstein et al., 2006]. The main ligand for this 

receptor is BDNF. However it has also been shown to interact with neurotrophin 4, 

which may be a result of this protein having similarity to BDNF [Klein et al., 1991; 

Klein et al., 1992]. 

 

Structurally TrkB is similar to TrkA in that, despite there being three known 

isoforms, these all consist of a basic set structure: an extracellular BDNF (or NT-4) 

binding domain, a transmembrane domain and an intracellular domain [Barbacid, 1995; 

Strohmaier et al., 1996]. The intracellular domains differ between different isoforms 

with one isoform having tyrosine kinase activity while the other two, lesser known and 

little understood, isoforms tightly bind the Rho displacement factor Rho-GDI and 

facilitates the release of prenylated RhoA [Fryer et al., 1996; Yamashita et al., 2003]. 

Activation of the TrkB receptor occurs in a similar manner to activation of TrkA as 

described previously in that BDNF binds to the D5 extracellular domain of the TrkB 

receptor leading to dimerisation and resulting in activation of kinase activity through 

phosphorylation of tyrosine residues in the activation loop of kinase domain and also 

tyrosine residues outside the kinase domain that recruit proteins (e.g. PLC-γ, PI3K) that 

subsequently allow activation of various downstream signalling pathways [Jing et al., 

1992; Heldin, 1995]. 

 

The “long”, tyrosine kinase form of the TrkB receptor signals cell survival and 

synaptic plasticity downstream through tyrosine phosphorylation in a similar manner as 

TrkA [Nonomura et al., 1996; Zirrgiebel et al., 1995; Glass et al., 1991]. While the 

“short” Rho-GDI form is found mostly located in the human brain and while its function 

is not fully understood, it is thought to play a role in signalling that regulates cell 

morphology and calcium influx [Fryer et al., 1996; Kryl & Barker, 2000]. 
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4.1.2.3 TrkC 

 

The TrkC receptor is the least studied of the Trk family of receptors. It is 

ubiquitously expressed throughout the brain, with its mRNA levels being highest in the 

hippocampus, an area important for learning and memory processes [Lamballe et al., 

1994]. The ligand for this receptor is neurotrophin 3 [Lamballe et al., 1994]. 

 

Structurally it is similar to both TrkA and Trk B in that it consists of an 

extracellular NT-3 binding domain, a transmembrane domain and an intracellular 

domain. The intracellular domain has tyrosine kinase activity similar to that described in 

TrkA, playing a role in cell survival and synaptic plasticity. However it has also been 

shown to have potentially important role in cellular stress response [Faure et al., 2006]. 

 

4.1.3  p75NTR 

 

4.1.3.1  Ligands, Structure and Activation 

 

p75NTR was the first of the neurotrophin receptors to be identified and was 

originally shown to act as a low affinity receptor for NGF. Since then it has been shown 

to be able to bind all members of neurotrophin family and it is generally accepted that 

all neurotrophins are bound with similar (low) affinity with a fast dissociation rate 

[Barker, 2007]. 

 

Structurally, like the Trk receptors, p75NTR is a 75 kDa, highly conserved, type 

I transmembrane protein. It consists of four extracellular cysteine rich domains (CRDs), 

a transmembrane domain and an intracellular region (ICD) containing a death domain 

(DD). Unusually the receptor itself does not contain a catalytic region, such as the SH1 

tyrosyl kinase domain found in members of the Trk receptor family, but instead is 

thought to sequester other signalling molecules to elicit downstream effects. Ligands for 

p75NTR bind electrostatically through interaction between the negative amino acids on 

to specific regions of the receptor (site 1: in the junction of the CRD1-CRD2 regions 
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and site 2: in the junction of the CRD3-CRD4 regions) and positive amino acids on the 

neurotrophins. Interestingly the p75NTR receptor can also bind pro-neurotrophins and 

this is thought to occur with a higher affinity than mature neurotrophin binding [Lee at 

al., 2001].  

 

4.1.4 p75NTR Signalling Pathways 

 

Classically p75NTR is thought to have four main downstream phenotypic 

actions: these are effects on cell survival, cell death, neurite outgrowth and fibrinolysis 

[Dechant & Barde, 2002; Sachs et al., 2007]. 

 

 4.1.4.1 Cell Survival 

 

In the case of cell survival, the binding of a neurotrophin, such as NGF, to 

p75NTR results in activation of NF-κB, which, in turn, induces activation of inhibitors 

of apoptosis (IAPs) through three separate pathways. The first of these is through 

recruitment of the receptor interacting protein 2 (RIP-2) to the intracellular portion 

(ICD) of the p75NTR receptor [Khursigara et al., 2001]. The second is through 

recruitment of TRAF and activation of the Il-1 receptor associated kinase (IRAK) and 

atypical PKC [Khursigara et al., 1999]. The third is through activation of PI3 Kinase 

and, subsequently, Akt/PKB [Roux et al., 2001].  

 

It has also been suggested that p75NTR may play a role in cell survival through 

p75NTR directly interacting with TrkA with TrkA/p75NTR acting as co-receptors for 

NGF [Yoon et al., 1998; Lachyankar et al., 2003]. The precise mechanism of this 

interaction is, as yet, unknown but it has been suggested that this occurs through 

interaction of all 3 domains of each receptors (i.e., the extracellular, juxtamembrane and 

intracellular domains of TrkA and p75NTR all interact with their counterparts). 

However this hypothesis remains controversial as other studies have not confirmed this 

view. It has, however, been suggested that the nucleoporin p62, the TNF Receptor 

Associated Factor, TRAF6 and/or the neurotrophin receptor homologue NRH2 may be 
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working as adaptor proteins, binding the 2 receptors into a complex [Chao, 2003; 

Wehrman et al., 2007]. The downstream effect of the interaction between these 

receptors has been proposed to prevent any apoptotic signal via the DD of p75NTR and 

redirect p75NTR signalling towards those allowing for cell survival such as the MAPK 

pathways. This suggests that the NF-κB pathway controlled by the p75NTR receptor 

and the MAPK pathways controlled by the Trk receptors could be working 

synergistically to promote survival [Chao, 2003; Yoon et al., 1998].  

 

 4.1.4.2 Cell Death 

 

p75NTR has also been shown to play a role in cell death. It is thought that the 

receptor can influence programmed cell death through several routes. The two principal 

routes are, firstly p75NTR interaction with adaptor proteins and secondly ceramide 

synthesis [Roux & Barker, 2002]. 

 

In the case of adaptor protein interaction, several different potential interacting 

adaptor proteins have been identified. These include the neurotrophin receptor 

interacting factor (NRIF) that binds to the death and juxtamembrane domains of 

p75NTR, resulting in downstream JNK MAPK pathway activation [Casademunt et al., 

1999]. Neurotrophin receptor associated cell death executor (NADE) works in a similar 

manner, interacting with p75NTR and promoting activation of the JNK MAPK pathway 

[Mukai et al., 2000]. In both of these cases activated JNK then goes on to phosphorylate 

the pro-apoptotic proteins p53, Bad and Bax leading to release of cytochrome C and 

caspase activation, resulting in apoptotic cell death [Roux & Barker, 2002]. 

 

In ceramide synthesis-mediated apoptosis, p75NTR seemingly induces activation 

of the sphingomyelinase group of enzymes. These cleave sphingomyelin into ceramides, 

which then go on to activate JNK that, in turn, results in apoptotic cell death in the way 

described above [Blochl & Blochl, 2007]. 

 



 153 

One other proposed way in which p75NTR is thought to lead to apoptosis is 

through interaction with its co-receptor, Sortilin. However, this mechanism is not yet 

fully understood. It has been suggested, however, that the role of TrkA and role or 

sortilin as co-receptors may be mutually exclusive with one co-receptor controlling cell 

death and one controlling cell survival [Bronfman & Fainzilber, 2004]. 

 

4.1.4.3 Functional Regulation 

 

p75NTR has also been shown to play a role in functional regulation outside of 

cell survival and cell death. In one example of this, the Nogo receptor forms a complex 

with p75NTR, which results in neurite outgrowth [Wang et al., 2002]. This works 

through activation of the p75NTR/NOGO-R complex by growth inhibitor proteins 

allowing p75NTR to bind Rho-GDI (Rho-GDP Dissociation Inhibitor) and act as a 

displacement factor for RhoA release triggering concomitant neurite outgrowth 

[Yamashita & Tohyama, 2003]. Another example is the functional role p75NTR plays in 

fibrinolysis, which will be described in more detail later in section 4.1.6. 

 

4.1.5  The role of p75NTR in respiratory inflammation 

 

 Although p75NTR is most commonly known for its role in the nervous system it 

has also been shown to play a role in inflammation of the respiratory system [Freund-

Michel & Frossard, 2008].  

 

For this to be fully appreciated then the expression pattern of p75NTR and its 

regulation throughout the respiratory system must be fully understood. The first, and 

most obvious site of p75NTR expression in this system is in the sensory neurons that 

innervate the lungs [Levi-Montaclini, 1987]. In mice with excess NGF it has been 

shown that there is hyper-innervation of these nerves, which increases neuronal growth 

and survival [Hoyle et al., 1998] and leads to inflammation. B lymphocytes have also 

been shown to express p75NTR [Torcia et al., 1996]. In these cells the neurotrophin, 

NGF is thought to have an autocrine effect [Lambiase et al., 1997] with activation of 
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p75NTR resulting in release of immunoglobins and differentiation and proliferation of B 

lymphocytes [Ehrhard et al., 1994] enhancing inflammation. 

 

p75NTR is also expressed in eosinphils in the lungs of asthma patients following 

allergen attack [Nassenstein et al., 2003] but not in peripheral systems. This again 

implies that p75NTR plays a role in airway inflammation, in this instance possibly 

through promoting the survival of eosinophila and of their ability to release Il-1 and Il-3 

[Chevalier et al., 1994]. 

 

Basophils have also been shown to express p75NTR and activation of the 

receptor in these cells causes IL-13 and histamine release. Interestingly Il-13 levels have 

been shown to be up-regulated in asthmatic patients [Burgi et al., 1996], suggesting a 

potential role of p75NTR. Finally, structural cells such as human pulmonary fibroblasts 

have also been shown to express p75NTR with a potential role in fibrosis and this will 

be discussed in detail later [Olgart & Frossard, 2001]. 

 

With the details of p75NTR expression throughout this system now beginning to 

be understood, several studies have been carried out looking at the overall effect of 

p75NTR in inflammation. Initial studies into this showed that NGF induces 

inflammation of the respiratory system largely through its binding to p75NTR. These 

studies were carried out using p75NTR knock-out mice and p75NTR antibodies in 

asthmatic inflammation model systems and showed that in the absence of p75NTR 

inflammation was reduced [Kerzel et al., 2003; Tokuoka et al., 2001]. However, studies 

using p75NTR knock-out mice showed that bronchial hyper-responsiveness does not 

occur in response to irritant stimuli like capsaicin [Kerzel et al., 2003]. From this it 

would seem that p75NTR plays an important role in the response of the bronchii to 

irritation. 

 

 

 

 



 155 

4.1.6  The role of p75NTR in fibrinolysis and its potential role in inflammation 

 

In spinal cord injury models it has been shown that p75NTR expression is 

increased at the site of injury with an increase in fibrin deposition also observed [Stark 

el al., 2001]. In work carried out in collaboration between the Houslay laboratory in the 

University of Glasgow and the Akassoglou laboratory at University of California San 

Diego, USA (now at the Gladstone Institute in San Francisco, USA) the role of p75NTR 

in fibrinolysis and importance of cAMP signalling to this has been uncovered. This 

research showed that p75NTR plays an important role in proteolytic activity and results 

in a decrease in fibrin degradation. The pathway in which this was shown to work is 

shown in Figure 4.1. This shows that when p75NTR interacts with cAMP 

phosphodiesterase, PDE4A5, this confers a localised decrease in cyclic AMP around 

p75NTR. This localised decrease in cAMP negates inhibitory regulation of p75NTR by 

cAMP and leads to its activation causing a reduction in expression of tissue 

Plasminogen Activator and an increase in Plasminogen Activator Inhibitor-1. This 

results in a reduction of plasmin and plasmin-dependent extracellular proteolysis and, 

therefore, promotes reduced fibrin degradation and ECM remodelling. Some of work 

that elucidated this is shown here. This discovery is likely to be of physiological 

significance as defects in fibrinolysis have been seen in lung inflammation [Renz et al., 

2004] and PDE4A isoforms are also known to play a very important role in respiratory 

disorders as PDE4A4, the human homologue of rodent PDE4A5 is up-regulated in the 

lungs of COPD patients [Barber et al., 2004] and also binds to p75NTR.  
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Figure 4.1 – Schematic model of the role of p75NTR in cAMP-mediated 

plasminogen activation. 

 

The proposed model is that PDE4A5 interacts with the p75 Neurotrophin Receptor 

resulting in degradation of cAMP. Decrease in cAMP reduces expression of tissue 

Plasminogen Activator and increases Plasminogen Activator Inhibitor-1. This results in 

reduction of plasmin and plasmin-dependent extracellular proteolysis, resulting in 

reduced fibrin degradation and ECM remodelling.  
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4.2 Results 

 

4.2.1  The p75 neurotrophin receptor interacts with Phosphodiesterase 4A 

 

In a previous study in which I was a co-author [Sachs et al, 2007] it has been 

demonstrated that p75NTR can interact with the long PDE4A isoforms, PDE4A5. 

Figure 4.1 is modified from this publication. In this work our collaborators showed that 

when p75NTR was co-immunoprecipitated from NIH3T3 fibroblast cells stably 

expressing p75NTR, then probing this immunoprecipitate with anti-PDE4A antisera 

identified an endogenous PDE4A species migrating at approximately 100 kDa, the size 

of PDE4A5, figure 4.2(a). The afore mentioned stably transfected NIH3T3 cell line was 

used as a model from then on and referred to here as NIH3T3-p75NTR. The next logical 

step was to establish the functional consequence of this interaction. This was done by 

our collaborators who generated a genetically modified A-kinase activity reporter 

(AKAR2) to contain a membrane-targeted fluorescence reporter of PKA activity (pm-

AKAR2.2), allowing for measurement of fluorescence resonance energy transfer 

(FRET) measurement of PKA phosphorylation in living cells. In wild type NIH3T3 cells 

there is a dramatic emission ratio change for pm-AKAR2.2 in response to forskolin, 

figure 4.2(b). However in NIH3T3-p75NTR cells there was an attenuated response to 

forskolin compared to in the wild type. These results seemed to indicate that there was 

reduced PKA activity at the plasma membrane upon expression of p75NTR. This 

implies that p75NTR targets cAMP degradation to the membrane, which is consistent 

with the notion that p75NTR sequesters a cAMP-degrading phosphodiesterase. 

 

It was then important to establish the specificity of the interaction of p75NTR 

with phosphodiesterase-4. A series of mapping studies were carried out using truncated 

mutants of p75NTR. The forms used were full length (FL) p75NTR, and mutants 

missing the distal 3 amino acids, Δ3, the distal 62 amino acids Δ62, the distal 83 amino 

acids, Δ83 and finally missing the distal 151 amino acids, Δ151 (figure 4.2(c)). Of these 

five forms only Δ151 did not co-immunoprecipitate with PDE4A, suggesting that 
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interaction between p75NTR and PDE4A must occur somewhere in the juxtamembrane 

region of p75NTR, with the required amino acid regions being between amino acids 275 

and 343, figure 4.2(c). Now that the region of interaction of the PDE4A on p75NTR had 

been shown the next logical step was to establish the region of interaction on the 

phosphodiesterase.  

 

This work then lead to our laboratory’s role in the collaboration. As the PDE4 

family contains several consensus sites in its difference isoforms it had to be elucidated 

whether interaction between PDE4 and p75NTR was specific to one family. To establish 

this, Dr George Baillie purified recombinant proteins of typical long form 

phosphodiesterases, namely PDE4A4, PDE4A5 and PDE4D5. These were individually 

incubated with purified recombinant p75NTR and examined for the ability to be co-

immunoprecipitated. Both PDE4A4 and PDE4A5 were shown to interact with p75NTR 

in this way, however PDE4D5 did not (Figure 4.2(d)).  At this point the publication 

states that interaction between p75NTR and PDE4A4/5 is specific to those isoforms. 

However although these data may imply that this is a PDE4A specific effect, it does not 

actually show that it is specific to the PDE4A4/5 isoforms rather than the PDE4A family 

as a whole. Following on from this I began my role in this collaboration. I transfected 

PDE4A isoforms into NIH3T3-p75NTR cells for co-immunoprecipitation studies to be 

carried out. This showed that various PDE4A long form isoforms, namely PDE4A5, 

PDE4A5, PDE4A10 and PDE4A11, as well as the PDE4A1 short isoform, interact with 

p75NTR within the cell. This indicates that p75NTR interaction is not specific to 

PDE4A4/5 as originally thought [Sachs et al., 2007] but is a ‘pan’ PDE4A isoform 

interaction, figure 4.3. It should, however, be noted that studies using an isoform-

specific antisera have shown that the PDE immuno-precipitated endogenously with 

p75NTR in NIH3T3 cells is indeed PDE4A5. However, my studies indicate that PDE4A 

isoforms other than just PDE4A4/5 may interact endogenously with p75NTR in various 

other cell types.  

 

My preliminary peptide array mapping technology was then used to try and 

elucidate specific regions of PDE4A5 where p75NTR binds, figure 4.4. These data 
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showed that there are five potential binding regions for p75NTR on PDE4A5. One is 

located in the N-terminal at amino acids 16-60, one in UCR2 at amino acids 251-276, 

two in the catalytic region at amino acids 396-420 and 666-700 and one in the C-

terminus at amino acids 801-830. It should be noted, however, that extensive mutation 

studies and peptide competition studies need to be carried out for the involvement of 

such possible interaction sites to be confirmed. 
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Figure 4.2 - p75NTR interacts with PDE4A5 [Sachs et al, 2007].  
 
This figure is modified from Sachs et al, 2007, an article in which I am a co-author. (a) 

Co-immunoprecipitation of p75NTR with endogenous PDE4A5 in NIH3T3 fibroblast 

cells that stably express p75NTR. Immunoprecipitation was carried out with anti-

p75NTR and probed with anti-PDE4A or anti-p75NTR.  (b) FRET emission ratio 

change of NIH3T3 and NIH3T3 p75NTR stable cells for the cytoplasmic FRET PKA 

sensor (pm-AKAR2.2) in response to forskolin. FRET change represents membrane 

activation of PKA (c) Mapping of the p75NTR sites required for interaction with 

PDE4A5 using truncation of p75NTR. Schematic diagram of HA-tagged p75NTR 

(a) (b) 

(c) 

(d) 
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intracellular deletions. TM, transmembrane domain; DD, death domain.  Truncates were 

transiently transfected into NIH3T3 cells. Lysates were immunoprecipitated with an 

anti-HA antibody and probed with anti-PDE4A or anti-p75NTR. (d) Co-

immunoprecipitation of purified, recombinant p75NTR with purified, recombinant 

PDE4A4, PDE4A5 and PDE4D3. Immunoprecipitation was carried out with 

Glutathione Sepharose beads and probed with anti-GST or anti-MBP. 

 
 
 

Figure 4.3 – p75NTR co-immunoprecipitates with long form PDE4A isoforms in 

transiently transfected NIH3T3 cells.   

 
NIH3T3 cells were transiently transfected with HA-tagged p75NTR and long form 

PDE4A isoforms, PDE4A1, PDE4A4, PDE4A5 and PDE4A11.  BEADS = beads alone, 

L = lysate input control, IP = immunoprecipitate output. Total cell extract was produced 

and the lysates immunoprecipitated with HA anti-sera conjugated agarose beads. These 

IPs were then probed with anti-PDE4A (top panel) and anti-p75NTR (bottom panel) 

anti-sera. All Western blots are representative blots of at least three separate 

experiments. 
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Figure 4.4 – Peptide Array mapping of p75NTR’s binding sites on PDE4A5. 
 
Five amino acid overlapping 25mer peptides representing the sequence of PDE4A5 

were spotted onto nitrocellulose membrane. Purified, recombinant His-tagged p75NTR 

was overlaid onto this and anti-His anti-sera was used to detect binding. The schematic 

shows structural areas of binding along with their sequence. All peptide array blots are 

representative of at least three separate experiments. 

 

 

 

4.2.2  Functional effect of p75NTR interaction with PDE4A5. 

 

As previously mentioned, there was reduced PKA activity (thought to be a result 

of lowered cAMP levels) at the plasma membrane upon expression of p75NTR. This 

indicates that p75NTR, through binding of the cAMP hydrolysing enzyme PDE4, may 

lead to compartmentalised cAMP degradation to the membrane. It was important to 

attain whether this effect was purely due to the location of PDE4 at the membrane, due 
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to an overall increase in PDE levels or if the PDE interaction with p75NTR is somehow 

making the enzyme more basally active leading to increased levels of hydrolysis. The 

protein expression level of PDE4A was not different when I compared levels in wild 

type NIH3T3 cells and NIH3T3-p75NTR (Fig. 4.5 (a)).  These data indicate that 

expression levels of PDE4A are not affected by expression of p75NTR in these cells. 

This disproves the notion that p75NTR increases local cAMP degradation by altering 

PDE4A expression level and, instead is consistent with it sequestering PDE4A5. To 

study whether PDE4 interaction with p75NTR increases the basal activity levels of the 

PDE4 enzyme wild type NIH3T3 cells were transiently transfected to over-express 

PDE4A5, lysates were collected and these were incubated with varying concentrations 

of purified recombinant p75NTR before cAMP PDE activity assays were carried out. 

This showed that p75NTR interaction with PDE4A5 did not alter the activity of this 

enzyme and also did not alter its ability to be inhibited by the PDE4 inhibitor rolipram, 

figure 4.5 (b). This disproves the notion that interaction of p75NTR with PDE4A5 is 

increasing its enzymatic activity therefore showing that the decrease in PKA activity at 

the plasma membrane is not due to increased enzymatic activity of PDE4A5 but is rather 

due to the increased presence of PDE4A5 located to p75NTR.  

 

 

(a) 

 

 
 

80 kDa 
 
66 kDa 



 164 

 

 

(b) 

 
 

Figure 4.5 – PDE4 expression in NIH3T3 cells and Phosphodiesterase activity of 

PDE4A5 following p75NTR interaction. 

   
(a) Total cell extract of NIH3T3 cells and NIH3T3 p75NTR stable cells were collected 

and immuno-blotted for PDE4A expression levels using an anti-PDE4A specific anti-

sera. The band at approximately 100 kDa corresponds to PDE4A5 whereas the lower to 

bands at approximately 80 and 66 kDa correspond to lower forms such at PDE4A1 and 

PDE4A7.  (b) NIH3T3 cells were transfected to transiently express rat PDE4A5.  Total 

cell lysate was collected and incubated at 4oC with three different concentrations of 
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p75NTR (2.5 µg, 5 µg and 10 µg) for 3 hours. An enzymatic activity assay was then 

carried out on the samples along with a PDE4A5 alone control lysate. A second 

enzymatic activity assay was carried out on the same samples with the PDE4-specific 

inhibitor, Rolipram (10 µM). Assays were done using 1 µM cAMP as substrate with 

NIH3T3 cell lysates expressing equal immuno-reactive amounts of PDE4A5, as 

determined by the quantification of PDE4A5 expression.  All data shown are mean data 

+/- standard deviation of the three separate transfection experiments. 

 

 

 

4.2.3  PDE4A5 controls p75NTRs role in fibrinolysis and this is in turn mediated 

by MAPKAPK2. 

 

p75NTR is known to play a role in the control of fibrin degradation. In the 

presence of p75NTR the process of fibrinolysis is inhibited. This is evident in figure 4.6 

where I compared wild type NIH3T3 cells to NIH3T3-p75NTR cells in a 3D fibrin gel 

model, used to assess quantitatively fibrin breakdown. In this system, after 9 days, the 

wild type cells exhibited 58 % +/- 3 % fibrin degradation whereas the cells stably 

expressing p75NTR only exhibited 19 % +/- 2 % fibrin degradation, this was a 

significant difference with a p value of 0.002. Interestingly, when this experiment was 

repeated in the presence of the PDE4 inhibitor rolipram (10 µM) fibrin degradation in 

the wild type cells was unaffected with degradation being 60 % +/- 3 % whereas in the 

NIH3T3-p75NTR cells fibrin degradation dramatically increased to 51 % +/- 9 % with a 

p value of 0.02 when compared to untreated cells.  

 

This implies that PDE4 plays an important role in p75NTR’s control of 

fibrinolysis and that disruption of this interaction results in alteration of fibrin 

degradation. Indeed in Sachs et al., 2007 it is described how this interaction is thought to 

play a role in fibrin degradation and Figure 4.1 provides a modified description of this. 

In short, p75NTR interacts with PDE4A, this interaction leads to reduced local cyclic 

AMP levels and therefore low levels of PKA activation. This decreased level of 
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cAMP/PKA reduces expression of tissue Plasminogen Activator and increases 

Plasminogen Activator Inhibitor-1. This results in reduction of plasmin and plasmin-

dependent extracellular proteolysis, leading to reduction in fibrin degradation.  It should 

be noted that it is not known how, presumably, locally activated PKA inhibits p75NTR 

functioning and allows fibrin breakdown. One possibility is that p75NTR is thought to 

signal through Rho [Yamashita et al., 2003] and as PKA can phosphorylate and inhibit 

the functioning of Rho-GTPases then this might be one possible route [Qiao et al., 

2003].  

 

In previous chapters it has been mentioned that PDE4 can be phosphorylated by 

MAPKAPK2 and I set out to see if this might affect the interaction of PDE4A5 with 

p75NTR and the role of this receptor in fibrinolysis. Co-immunoprecipitation studies in 

NIH3T3-p75NTR showed that after stimulation of MAPKAPK2 through activation of 

p38MAPK using either anisomycin or TNFα, then an increased amount of endogenous 

PDE4A5 is pulled down with p75NTR (figure 4.7). When MAPKAPK2 activation is 

inhibited using SB203580 this increase was negated. It is known that p75NTR does not 

contain a phosphorylation site for MAPKAPK2 so, presumably, this increase in 

interaction was occurring through the MAPKAPK2 phosphorylation of PDE4A5. To 

gain insight into this, NIH3T3-p75NTR cells were transiently transfected to over-

express PDE4A5 S147A, a mutant form of PDE4A5 that cannot be phosphorylated by 

MAPKAPK2. In co-immunoprecipitation studies using this mutant it was shown that 

upon MAPKAPK2 stimulation there was no longer an increase in interaction between 

p75NTR and PDE4A5, implying that the previous increase in interaction seen was 

indeed due to MAPKAPK2 phosphorylation of PDE4A5. 

  

However what still remained unclear was what, if any, role this increased 

interaction would play in p75NTR and PDE4 mediated fibrinolysis. To test this, as 

previously, wild type NIH3T3 cells were compared to NIH3T3-p75NTR cells both of 

which had been seeded into 3D fibrin gel matrices. The cell-matrices were exposed to 

treatment with anisomycin (10 mg/ml) and fibrin degradation was studied after 9 days, 

figure 4.8. In the wild type NIH3T3 cells no significant difference was seen when 
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comparing fibrin degradation of no treatment 58 % +/- 4 % to anisomycin treatment 57 

% +/- 3 % with a p value of 0.43. However when comparing the two treatments in the 

NIH3T3-p75NTR cells a significant difference is seen with no treatment giving 19 % 

+/- 2 % fibrin degradation whereas anisomycin treatment resulted in 1.4 % +/- 1.1 % 

degradation with a p value of 0.004.  

 

This profound loss of fibrin degradation in anisomycin-treated NIH3T3-p75NTR 

cells was hypothesised to be due to the increased sequestration of PDE4A by p75NTR, 

further lowering local cAMP levels and thereby further inhibiting the fibrinolysis 

pathway through the pathway elucidated by Sachs et al 2007. To confirm that this effect 

was due to activation of the p38MAPK pathway, and not due to anisomycin having any 

other ‘off-target’ cellular effect, the experiment was repeated with the p38 MAPK 

inhibitor SB203580 along with anisomycin. Results for these treatments of NIH3T3-

p75NTR show a marked difference between the anisomycin plus SB203580 treated 

cells, at 18 % +/- 2 % fibrin degradation compared to anisomycin treatment alone at 1.4 

% +/- 1.1 %, with a p value of 0.005. This shows that the loss of fibrin degradation is 

due to activation of the p38MAPK pathway. In addition to this, I also carried out a 

treatment with both anisomycin and rolipram added together in the NIH3T3-p75NTR 

cells. This led to a level of fibrin degradation of 35 % +/- 3 %, which is a level of 

degradation that lies between that observed upon treatment with rolipram alone and with 

anisomycin alone. This suggests that the effects of p38MAPK pathway activation and 

PDE4 inhibition are competing with each other. 



 168 

(a) 

 
 
 
(b) 

 
Figure 4.6 – Expression of p75NTR regulates fibrinolysis in NIH3T3 fibroblasts 

and is PDE4 dependent. 

Treatment 

Fi
br

in
 d

eg
ra

da
tio

n 
(%

 lo
ss

 o
f i

ni
tia

l g
el

 
w

ei
gh

t) 



 169 

   
NIH3T3 cells and NIH3T3 p75NTR stable cells were seeded into 3-Dimensional fibrin 

gels and incubated at 37oC for 9 days. Cells were either left untreated or subjected to 

prolonged treatment with the PDE4-specific inhibitor, rolipram (10 µM) for 8 days. (a) 

is 10X magnification images of fibrin gels and lytic zones. (b) is quantification of 

degradation of the 3D fibrin gels calculated by weighing after 9 days. All data shown are 

representative mean data +/- standard deviation of three separate experiments. 

 

 
 
(a) 
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(b) 

 
 

(c) 

 
 

Figure 4.7 – MAPKAPK2 phosphorylation of PDE4A5 increases the level of 

PDE4A5 that co-immunoprecipitates with p75NTR. 

 
 (a) NIH3T3 p75NTR stable cells were either; left untreated, challenged for 10min with 

the p38 MAP Kinase activator, TNFα (10 µg/ml), or pre-treated with SB203580 (25 
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µM) to inhibit the p38 MAP kinase pathway for 30min followed by 10min TNFα  (10 

µg/ml) challenge. Total cell extract was produced and the lysates immunoprecipitated 

with anti-p75NTR anti-sera bound to agarose beads. These IPs were then probed with 

anti-PDE4A for endogenous PDE4A (top panel) and anti-p75NTR (bottom panel) anti-

sera. (b) NIH3T3 p75NTR stable cells were transitently transfected to express rat 

PDE4A5. The transfected cells were either; left untreated, challenged for 60min with the 

p38 MAP Kinase activator, anisomycin (10 µg/ml), or pre-treated with the p38 MAP 

Kinase inhibitor, SB203580 (25 µM) for 30min followed by 60min anisomycin (10 

µg/ml) challenge. Total cell extract was produced and the lysates immunoprecipitated 

with anti-p75NTR anti-sera bound to agarose beads. These IPs were then probed with 

anti-PDE4A (top panel) (NB transfection was done using a PDE4A5-VSV construct 

here however immuno-blotting was carried out with PDE4A specific antisera, it is 

assumed that the doublet band seen represents endogenous PDE4A5 as well as the 

PDE4A5-VSV transfected construct) and anti-p75NTR (bottom panel) anti-sera. (c) 

NIH3T3 p75NTR stable cells were transiently transfected to express the null 

MAPKAPK2 phosphorylation mutant of rat PDE4A5 (S147A). The transfected cells 

were either; left untreated, challenged for 60min with the p38 MAP Kinase activator, 

anisomycin (10 µg/ml), or pre-treated with SB203580 (25 µM) to inhibit the p38 MAP 

kinase pathway for 30min followed by 60min anisomycin (10 µg/ml) challenge. Total 

cell extract was produced and the lysates immunoprecipitated with anti-p75NTR anti-

sera bound to agarose beads. These IPs were then probed with anti-PDE4A (top panel) 

and anti-p75NTR (bottom panel) anti-sera. All Western blots are representative blots of 

at least three separate experiments. 
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(a)

 
 
(b) 

 
Figure 4.8 – MAPKAPK2 Phosphorylation regulates p75NTR mediated 

fibrinolysis in NIH3T3 fibroblasts and is PDE4 dependent. 
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NIH3T3 cells and NIH3T3 p75NTR stable cells were seeded into 3-Dimensional fibrin 

gels and incubated at 37oC for 9 days. Cells were either; left untreated, subjected to 

prolonged treatment with the p38 MAP Kinase activator anisomycin (1 µg/ml) for 8 

days, pre-treated with SB203580 (25 µM) to inhibit the p38 MAP kinase pathway for 

one day followed by prolonged treatment with both SB203580 and the p38 MAP Kinase 

activator anisomycin (1 µg/ml) for 8 days, or pre-treated with the PDE4-specific 

inhibitor, rolipram (10 µM) for one day followed by prolonged treatment with both 

rolipram and the p38 MAP Kinase activator anisomycin (1 µg/ml) for 8 days. (a) is 10X 

magnification images of fibrin gels and lytic zones. (b) is quantification of degradation 

of the 3D fibrin gels calculated by weighing after 9 days. All data shown are 

representative mean data +/- standard deviation of three separate experiments. 

 

 

 

Having identified a novel role for the p38MAPK pathway in modulating 

regulation of fibrin breakdown through the p75NTR/PDE4A system in a model cell 

system it was important to establish whether this effect could be shown in a primary cell 

system. To do this Mouse embryonic Fibroblast cells (MEFs) were used. Wild type 

MEFs were obtained from both c57 black mice and, in addition, from c57 black mice 

developed by Prof Marco Conti’s Laboratory (UCSF, San Francisco, USA) to have 

PDE4A knocked out by deletion of a catalytic unit encoding exon, referred to hereafter 

as PDE4A (-/-).  Initial tests were performed on these MEFs to confirm that they 

expressed both p75NTR and PDE4A (in the wild type) and lacked PDE4A expression 

(in the PDE4A (-/-) knockout), data not shown. Phosphodiesterase activity assays were 

also performed to compare overall PDE and PDE4 activity levels in the wild type MEFs 

and those from the PDE4A-/- knockout. These results showed that knocking out PDE4A 

has only a very small effect on total cAMP phosphodiesterase activity. These data 

confirm what has been previously shown in the Houslay lab (unpublished) where 

PDE4A has very low expression level in many non-neuronal cell types. 
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I found that I could use this primary cell system to perform fibrin degradation 

assays as described above. Thus both wild type MEFs and PDE4A (-/-) MEFs were 

seeded into 3D fibrin gel matrices and degradation studied after 9 days, figure 4.9. 

Comparison between the wild type and the PDE4A (-/-) cells showed that while wild 

type cells had a level of fibrin degradation of 20 % +/- 1.7 %, the PDE4A (-/-) MEFs 

cells showed a significantly higher level of degradation at 66 % +/- 9 % with a p value 

of 0.009. This is consistent with a role for PDE4A in regulating p75NTR functioning in 

inhibiting fibrin degradation [Sachs et al., 2007]. It also is consistent with my studies 

showing that pan PDE4 inhibition with rolipram treatment potentiating fibrin breakdown 

in the NIH3T3-p75NTR cell model.  

 

Consistent with this finding, I noted that when wild type MEFs were treated with 

the PDE4 inhibitor rolipram (10 µM) then fibrin degradation rose to 57 % +/- 3 %, 

showing that loss of ‘pan’ PDE4 activity in the fibrin degradation pathway leads to an 

increase in fibrinolysis. However, I was able to show that loss of PDE4A alone is 

responsible for this change of fibrinolysis in that when the PDE4A (-/-) MEFs were 

treated with rolipram then fibrin degradation was unchanged from untreated cells, being 

some 60 % +/- 6 % after 9 days. These results show no significant difference to that of 

untreated PDE4A (-/-) MEFs, with a p value of 0.23, figure 4.9. This shows that 

inhibition of the PDE4B and PDE4D isoforms still present in PDE4A (-/-) MEF cells 

does not affect fibrin degradation indicating the regulatory effect of p75NTR involves 

purely PDE4A, presumably through its specific sequestration to the p75NTR. 

 

The next stage in investigating the role of PDE4A in the inhibitory effect of 

p75NTR on fibrin degradation in MEFs was to establish if MAPKAPK2 

phosphorylation of PDE4A5 due to activation of the p38MAPK pathway played a role 

in alteration of fibrinolysis, figure 4.9. Comparison of the wild type MEF cells and the 

PDE4A-/- MEF cells, in fibrin degradation assays, showed that prolonged exposure to 

anisomycin (10mg/ml) resulted in 3 % +/- 2 % degradation in the wild type, whereas 59 

% +/- 5 % was shown in the PDE4A (-/-) cells. When these data were compared to the 

results for degradation in the absence of added anisomycin, the PDE4A (-/-) cells 
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showed no significant difference %, p value of 0.25, to the untreated degradation level 

of 66 % +/- 10 observed.  However, in marked contrast to this when using the wild type 

MEFs a significant difference was seen, in that under anisomycin challenge fibrin 

degradation in wild type MEFs is fully ablated. The anisomycin experiment was then 

repeated in the presence of the p38 MAP Kinase inhibitor SB203580, which is shown to 

have no effect on the level of fibrin degradation in the PDE4A (-/-) MEFs but, in the 

case of the wild type MEFs, it returns the degradation level back to ones that are similar 

to the level seen upon no treatment, namely 20 % +/- 5 %, confirming that this effect 

was indeed due to activation of the p38 MAP Kinase signalling cascade and not any off-

target effect of anisomycin on these cells. 

 

Although this confirmed that the p38 MAP Kinase pathway seems to play a role 

in loss of fibrin degradation I needed to design experiments to determine whether the 

observed effects were due to PDE4A phosphorylation by MAPKAPK2 or not, figure 

4.10. To do this PDE4A (-/-) MEFs were efficiently transfected (> 65-80%) using 

Amaxa® technology to express either PDE4A5 or the MAPKAPK2 phosphorylation 

null mutant of PDE4A5, namely S147A-PDE4A5, figure 4.10. Such transfected cells 

were seeded into 3D fibrin gel matrices and exposed to a series of treatments, as was 

done previously. Re-introduction of PDE4A5 into the knockout MEFs was shown to 

“rescue” (recapitulate) the effect seen in wild type cells with degradation levels of 22 % 

+/- 9 % under no stimulation and, indeed, a similar level of degradation (23 % +/- 7 %) 

was seen in the cells re-expressing the MAPKAPK2 phosphorylation null S147A-

PDE4A5 mutant, which I have shown previously (Chapter 3) to have similar cAMP-

degrading PDE activity to wild-type PDE4A5. Cells transfected with either of these two 

constructs showed a similar increase in fibrin degradation upon rolipram challenge with 

wild-type PDE4A5 transfected cells having a level of 58 % +/- 10 % and S147A-

PDE4A5 transfected cells having a level of 62 % +/- 9 %. However a significant 

difference is seen between the MEFs transfected with these two cell constructs in the 

case of anisomycin challenge where wild-type PDE4A5 transfected cells show reduced 

fibrin degradation, 4 % +/- 3 % (p value of 0.031) when compared to untreated cells 

whereas the S147A-PDE4A5 transfected cells do not show any significant difference 



 176 

compared to untreated cells, with degradation remaining at a level of 25 % +/- 4 % (p 

value of 0.37). Challenge with the p38 MAPK inhibitor SB203580 ablated the effect of 

anisomycin in wild-type PDE4A5 transfected cells (Figure 4.10 c). These data indicate 

that the loss of fibrin degradation seen in wild type MEFs upon anisomycin stimulation 

is likely to be due to the MAPKAPK2 phosphorylation of PDE4A5.  

 

To confirm the role of functionality of PDE4A5 in this system the PDE4A (-/-) 

MEF cells were transfected to express a catalytically inactive form of PDE4A5, figure 

4.11. This construct D591A-PDE4A5 has a single alanine mutation of an essential 

Asp591 that is located deep in the catalytic pocket which renders it catalytically inactive 

[McCahill et al., 2005]. In the case of PDE4A (-/-) MEFs transfected with this construct, 

then in the fibrin degradation assay, fibrinolysis levels were unchanged by transfection, 

being at a high level of 65 % +/- 5 %.  Additionally there was no significant difference 

seen in this level upon challenge with either rolipram alone, anisomycin alone or 

anisomycin + SB203580.  This shows that catalytically active PDE4A must be 

transfected in for it to have an effect on p75NTR-mediated inhibition of fibrinolysis.  

 

These data all indicate that PDE4A plays a critical role in the ability of p75NTR 

to inhibit fibrin degradation. In order to explore this further I set out to investigate 

whether removing an isoform PDE4 from a different sub-family would an effect of 

fibrin degradation. To do this PDE4B (-/-) MEFs were seeded into 3D fibrin gel 

matrices and degradation was compared with that of wild-type MEFs, figure 4.12. This 

showed that both wild type and PDE4B (-/-) MEFs had a similar level of fibrin 

degradation of 20 % +/- 2 % and 17 % +/- 5 %, respectively, with a p value of 0.18. This 

shows that loss of PDE4B does not affect p75NTR mediated inhibition of fibrin 

degradation. I also showed that under challenge with either rolipram alone or 

anisomycin alone or anisomycin + SB203580 there was no significant difference 

between the data obtained using wild type MEFs compared to the PDE4B (-/-) MEFS.  
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(|a)

 
 
(b) 

Figure 4.9 – MAPKAPK2 Phosphorylation regulates p75NTR mediated 

fibrinolysis in Mouse Embryonic Fibroblasts and is PDE4A dependent. 

   

Treatment 

Fi
br

in
 d

eg
ra

da
tio

n 
(%

 lo
ss

 o
f i

ni
tia

l 
ge

l w
ei

gh
t) 



 178 

Mouse Embryonic Fibroblasts (MEFs) and PDE4A knock-out (4A-/-) mouse embryonic 

fibroblasts were seeded into 3-Dimensional fibrin gels and incubated at 37oC for 9 days. 

Cells were either; left untreated, subjected to prolonged treatment with the PDE4-

specific inhibitor, rolipram (10 µM) for 8 days, subjected to prolonged treatment with 

the p38 MAP Kinase activator anisomycin (1 µg/ml) for 8 days, or pre-treated with 

SB203580 (25 µM) to inhibit the p38 MAP kinase pathway for one day followed by 

prolonged treatment with both SB203580 and the p38 MAP Kinase activator 

anisomycin (1 µg/ml) for 8 days. (a) is 10X magnification images of fibrin gels and lytic 

zones. (b) is quantification of degradation of the 3D fibrin gels calculated by weighing 

after 9 days. All data shown are representative mean data +/- standard deviation of three 

separate experiments. 
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(b) 
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(d)

 
 

Figure 4.10 – MAPKAPK2 Phosphorylation of PDE4A5 regulates p75NTR 

mediated fibrinolysis in Mouse Embryonic Fibroblasts. 

   
PDE4A knock-out, PDE4A (-/-), mouse embryonic fibroblasts were transiently 

transfected to express PDE4A5 and the null MAPKAPK2 phosphorylation mutant of rat 

PDE4A5 (S147A). (a) and (b) shows western blots of lysates of these cells, immuno-

probed with a PDE4A specific antibody. They were then seeded into 3-Dimensional 

fibrin gels and incubated at 37oC for 9 days. Cells were either; left untreated, subjected 

to prolonged treatment with the PDE4-specific inhibitor, rolipram (10 µM) for 8 days, 

subjected to prolonged treatment with the p38 MAP Kinase activator anisomycin (1 

µg/ml) for 8 days, or pre-treated with SB203580 (25 µM) to inhibit the p38 MAP kinase 

pathway for one day followed by prolonged treatment with both SB203580 and the p38 
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MAP Kinase activator anisomycin (1 µg/ml) for 8 days. (c) is 10X magnification images 

of fibrin gels and lytic zones. (d) is quantification of degradation of the 3D fibrin gels 

calculated by weighing after 9 days. All data shown are representative mean data +/- 

standard deviation of three separate experiments. 

 

 

 
(a) 

 
 
(b) 
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(c)

 
 

Figure 4.11 – PDE4A5 function regulates p75NTR mediated fibrinolysis in Mouse 

Embryonic Fibroblasts. 

   
PDE4A knock-out PDE4A (-/-) mouse embryonic fibroblasts were transiently 

transfected to express PDE4A5 and catalytically inactive mutant of rat PDE4A5 

(PDE4A5-CI), western blot of PDE4A5 catalytically inactive reintroduction is shown in 

(a), blots were probed with a PDE4A specific antibody. They were then seeded into 3-

Dimensional fibrin gels and incubated at 37oC for 9 days. Cells were either; left 

untreated, subjected to prolonged treatment with the PDE4-specific inhibitor, rolipram 

(10 µM) for 8 days, subjected to prolonged treatment with the p38 MAP Kinase 

activator anisomycin (1 µg/ml) for 8 days, or pre-treated with SB203580 (25 µM) to 

inhibit the p38 MAP kinase pathway for one day followed by prolonged treatment with 
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both SB203580 and the p38 MAP Kinase activator anisomycin (1 µg/ml) for 8 days. (b) 

is 10X magnification images of fibrin gels and lytic zones. (c) is quantification of 

degradation of the 3D fibrin gels calculated by weighing after 9 days. All data shown are 

representative mean data +/- standard deviation of three separate experiments. 
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(a)

 
 
 
(b) 

Figure 4.12 – Fibrinolysis in mouse embryonic fibroblasts and is not PDE4B 

dependent. 
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Mouse Embryonic Fibroblasts (MEFs) and PDE4B knock-out, PDE4B (-/-) mouse 

embryonic fibroblasts were seeded into 3-Dimensional fibrin gels and incubated at 37oC 

for 9 days. Cells were either; left untreated, subjected to prolonged treatment with the 

PDE4-specific inhibitor, rolipram (10 µM) for 8 days, subjected to prolonged treatment 

with the p38 MAP Kinase activator anisomycin (1 µg/ml) for 8 days, or pre-treated with 

SB203580 (25 µM) to inhibit the p38 MAP kinase pathway for one day followed by 

prolonged treatment with both SB203580 and the p38 MAP Kinase activator 

anisomycin (1 µg/ml) for 8 days. (a) is 10X magnification images of fibrin gels and lytic 

zones. (b) is quantification of degradation of the 3D fibrin gels calculated by weighing 

after 9 days. All data shown are representative mean data +/- standard deviation of three 

separate experiments. 

 
 
 
 
 
4.3 Discussion 
 
 
 

Inappropriate fibrin deposition after injury and in disease states is a major 

pathological condition which is largely untreatable clinically [Adams et al., 2004]. 

Understanding the molecular means through which fibrin breakdown is inhibited is 

important in understanding molecular pathologies and identifying new therapeutic 

targets. The p75 neurotrophin receptor is up-regulated in injury and many fibrotic 

disease states and can markedly inhibit fibrin breakdown. In this study and through 

collaboration with the Akassoglou lab at UCSD we have shown that to achieve this 

inhibitory action of p75NTR, it needs to sequester PDE4A5 [Sachs et al., 2007]. 

Interestingly many PDE4 selective inhibitors have already been developed to treat 

inflammatory lung disease, where fibrosis is a major issue. A key part of the efficacy of 

these drugs relates to their being potent inhibitors of the action of TNFα [Houslay et al., 

2005; Spina, 2008]. TNFα is already known to have potent pro-fibrotic actions, the 

molecular basis of this is poorly understood. It is however known that a key signalling 
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pathway activated by TNF– α [Itatsu et al., 2009] is the stress-activated, p38 MAP 

kinase cascade [Dent et al., 2003; Uhlik et al., 2003; Xu et al., 2006], which plays a 

fundamental role in regulating the immune and inflammatory response to infection and 

tissue injury [Dong et al., 2002]. 

 

MAPKAPK2 is an important downstream protein kinase in the p38 MAPK 

pathways. It is phosphorylated and activated by p38 MAPK [Ben-Levy et al., 1998; 

Meng et al., 2002; Stokoe et al. 1992]. Relatively few substrates for MAPKAPK2 have 

been identified to date limiting the understanding of the consequences of its activation. 

In chapter 3 it was shown that MAPKAPK2 can phosphorylate PDE4A5, leading to 

attenuation of its activation through PKA phosphorylation.  

 

Using NIH3T3 cells as a model system and MEFs as a primary cell system, I 

have shown that in cells containing both p75NTR and PDE4A5 there was only a very 

low level of fibrin degradation, consistent with the hypothesis that PDE4A5 activity and 

p75NTR play a role in inhibiting fibrin breakdown. This is further proved through the 

use of the PDE4 specific inhibitor, Rolipram and MEF 4A (-/-) knockout cells where I 

showed that fibrin degradation is greatly enhanced. However, I also observed that 

anisomycin treatment, and therefore activation of MAPKAPK2, profoundly decreases 

fibrin breakdown in wild-type cells whilst it fails to inhibit the enhanced fibrin 

breakdown seen in PDE4A (-/-) knockout MEFs. This indicates that anisomycin is 

exerting its inhibitory effect through PDE4A5, which is confirmed by anisomycins 

inability to inhibit the amplified rate of fibrin breakdown seen in wild-type MEFs 

treated with rolipram to pharmacologically ablate PDE4 activity. These results were 

recapitulated through transfection of PDE4A5 back in to the PDE4A (-/-) knockout 

MEFs, with this experiment resulting in restoration of the loss of fibrin degradation seen 

in wild type MEFs. Demonstration of a role for MAPKAPK2 in this regulatory system 

was shown by transfection of the MAPKAPK2 phosphorylation-defective Ser147Ala-

PDE4A5 mutant into PDE4A (-/-) knockout MEFs. Whilst this mutant PDE4A5, which 

has identical activity to wild-type PDE4A5 led to a similar decrease in fibrin breakdown 

as seen with the wild-type PDE4A5, now anisomycin failed to cause any inhibition of 
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fibrin breakdown in cells transfected with this MAPKAPK2-phosphorylation defective 

mutant PDE4A5.   

 

I propose that phosphorylation of PDE4A5 by MAPKAPK2 causes a 

conformational change in PDE4A5 of which one functional, phenotypic output is an 

enhanced ability to interact with p75NTR and consequent decrease in fibrin breakdown 

in fibroblasts expressing these species. This novel regulatory mechanism may provide 

an important contributor to the pro-inflammatory and pro-fibrotic actions associated 

with activation of the p38 MAPK/MAPKAPK2 phosphorylation cascade by TNFα and 

other inflammatory activating species. It may also provide and explanation as to why 

PDE4 inhibitors can reduce not only the progression of fibrosis but also aid remodelling 

by facilitating fibrin breakdown [Cortijo et al., 2009; de Visser et al., 2008; Videla et al., 

2006].  
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Chapter 5                 Multi-functional Docking Domains  

                                                             On PDE4A5  
 

5.1 Introduction 

 

With completion of the human genome project giving us a greater insight into 

disease the requirement for a quick, effective method of peptide screening, for the 

development of new peptide therapeutics (biologics), has become of increasing 

importance. Several high throughput techniques for doing this have been developed 

recently. One interesting technique for high throughput analysis of potential therapeutic 

targets is the SPOT-synthesis peptide library method. This method uses combinatorial 

chemistry to simultaneously create a number of different peptides in a library for use in 

screening specific targets for defining protein-protein interaction surfaces, peptide 

agonists/antagonists and peptides binding to enzymes as substrates, inhibitors and 

regulators [Frank, 2002].  

 

In this technique short peptide chains are synthesized on a cellulose membrane 

where, for example, they can be overlaid with a tagged purified recombinant protein to 

elucidate whether interaction of the peptide and protein can occur or treated with an 

enzyme, such as a protein kinase to determine if they act as either a substrate or inhibitor 

[Kofler et al., 2005; Baillie et al., 2007; Sachs et al., 2007]. In the case of the work done 

in the study described here, peptides 25 amino acids in length, each overlapping by 5 

residues, were synthesized to span the entire sequence of proteins such as PDE4A5. This 

peptide array was then overlaid with the potential interacting protein of interest and, in 

combination with analysis of 3D protein structures, the putative location of interaction 

sites can be elucidated [Bolger et al., 2006]. The role of individual amino acids within 

these potential linear binding epitopes can then be investigated by the creation of 

scanning amino acid substitution arrays. In these, every amino acid in a 25mer sequence 

is replaced by alanine, in turn, to create a library of ‘mutant’ peptides from the parent 

interacting peptide. Using this one can establish if binding is altered with a particular 
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amino acid substitution and, therefore, identify the potential importance of specific 

amino acids in the native peptide sequence in binding of the interacting protein. Once 

potentially important individual amino acids are elucidated through this technique they 

can then, once more, be altered to various other amino acids to allow optimization of 

protein binding through increasing affinity and selectivity [Gold et al., 2006]. Following 

this, membrane permeable peptides can be made to try and disrupt specific protein-

protein interactions within the cell. These offer the potential for developing smaller 

peptides and peptidomimetics for potential therapeutic use in particular instances.   

 

Despite this technique providing a highly specific, detailed way to establish the 

nature of protein-protein interactions it should be noted that it must be used with 

caution. Using small length peptides does not take in to account the steric chemistry of 

the proteins and therefore could give false positive results or miss detecting binding 

involving a number of amino acids that are far separated in the linear sequence but 

coalesce to form a complex binding site within the 3-D protein structure. To eliminate 

false positive interactions other biological techniques, such as co-immunoprecipitation, 

site-directed mutagenesis and bioinformational analyses, must be used in parallel with 

this technique. 

 

Through use of SPOT-synthesis technology binding sites on PDE4 isoforms for 

beta-arrestin, RACK1 [Bolger et al., 2006], DISC1 [Murdoch et al., 2007] and Nudel 

[Collins et al., 2008] have been identified. Here I have identified a potential 

multifunctional docking site on the conserved catalytic unit of PDE4 isoforms. In other 

systems it has been suggested that proteins can contain multifunctional docking sites 

that allow them to bind a host of rapidly exchanging signaling molecules and potentially 

act as a scaffold for signaling [Ponzetto et al., 1994]. Examples of this have been 

identified in c-Kit, a pro-oncogenic stem cell factor receptor that can associate with 

three different members of the Src family through two separate multifunctional docking 

sites [Wollberg et al., 2003] and in the hepatocyte growth factor receptor where a 

multifunctional binding site has been shown to interact with various SH2 containing 

signal transducers [Ponzetto et al., 1994]. 
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The discovery of a multifunctional docking site on PDE4 enzymes may allow for 

a deeper understanding in the role of these enzymes in signal scaffolding, provide a 

means of fidelity that constrains the number of partner proteins that a PDE4 isoform can 

engage with at any one time, may help untangle the issue of complicated side effects 

associated with therapeutic PDE inhibitors and may offer a new means of designing 

therapeutics using agents that modulate interaction at such sites.   

 

 

 

5.2 Results 

 

With the discovery of peptide array mapping technology the identification of potential 

sites of interaction between proteins has become easier. Interestingly, the fidelity and 

efficiency of phosphorylation of proteins, including certain PDE4 species, by the MAPK 

signaling pathway-related kinase, ERK requires docking sites in addition to the 

consensus recognition site surrounding the target serine [Sharrocks et al., 2000]. These 

KIM and FQF sites greatly facilitate phosphorylation by allowing ERK to dock onto the 

target molecule.  As stated in previous chapters (Chapter 3) the kinase, MAPKAPK2 has 

been shown to phosphorylate PDE4. Clearly MAPKAPK2 has to interact directly with 

PDE4A5 to phosphorylate it. Here I set out to see if PDE4A5 and MAPKAPK2 bind to 

each other and be co-immunoprecipated and also to see if interaction sites could be 

identified using scanning peptide array technology.  

 

5.2.1  A Potential Multifunctional Docking Domain 

 

Previous work has shown that long form PDE4s contain an FQF binding motif 

that has been observed to play a critical role in its ability to bind several important 

regulatory proteins, such as ERK and beta-arrestin [Bolger et al., 2006] for example. To 

confirm whether this region is also critical for the interaction of MAPKAPK2 and other 

binding partners to PDE4A5, 5-residue overlapping 25-mer peptide arrays were made 
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with amino acid sequences representing this area for both PDE4A5 and PDE4D5 (amino 

acids 667-716 on PDE4A5 and amino acids 651-700 on PDE4D5). The PDE4A5 arrays 

were probed with purified recombinant GST alone and purified recombinant versions of 

two interactors known to bind to PDE4A5, namely the Src family tyrosyl kinase Lyn 

and MAPKAPK2, figure 5.2(a). Previously it had been shown that the SH3 domain of 

Lyn binds to the unique N-terminal domain of PDE4A5 [Beard et al., 2002]. These 

results showed that both full-length Lyn and MAPKAPK2 bind at the general site of the 

FQF motif, whereas GST alone does not. This identifies then a new binding site for Lyn 

on PDE4A5, namely within the FQF region, adding it to the growing number of proteins 

that bind to PDE4 isoforms at >1 interaction site.   

 

The PDE4D5 arrays were probed with purified recombinant GST alone and 

purified recombinant versions of the known interactors, the sumo-conjugating enzyme 

UBC9, ERK and beta-arrestin, figure 5.2(b). These results showed that UBC9, ERK and 

beta-arrestin all bind at the general site of the FQF motif, whereas again GST alone does 

not. To confirm that this was due to the FQF portion of this region alanine scans were 

produced of the FQF region and its surrounding amino acids in both PDE4A5, figure 

5.3(a) and PDE4D5, figure 5.3(b). These were overlaid with the same proteins 

mentioned above and all five of the proteins showed decreased binding when either of 

the phenylalanines of the FQF motif were mutated to alanine. 
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Figure 5.1 – Sequence alignments of Phosphodiesterase 4 Long Isoforms 
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Figure 5.2 – Various proteins bind to a conserved region in the catalytic domain of 

long form PDE4s. 

 

Peptide arrays were generated for the catalytic domain sequence of A.A. 667-716 on 

PDE4A5 and A.A. 651-700 on PDE4D5. These were probed with different purified 

recombinant proteins. (a) PDE4A5 was overlaid with GST alone, GST tagged Lyn 
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which is a protein tyrosine kinase and GST tagged MAPKAPK2. GST-specific anti-sera 

was then used to detect the areas of binding to the membrane. (b) PDE4D5 was overlaid 

with GST alone, GST tagged UBC9 which is an E2 ligase enzyme, GST tagged β-

arrestin which is a signal scaffold protein and GST tagged extracellular regulated kinase 

(ERK). GST-specific anti-sera was then used to detect the areas of binding to the 

membrane. All peptide arrays are representative arrays of at least three separate 

experiments.  

 

 
 

 

 
 
 

Figure 5.3 – Alanine Scanning of PDE4A5 and PDE4D5 sequences surrounding the 

FQF motif.  

 
Peptide array technology was used to synthesise alanine scanning arrays of PDE4A5 and 

PDE4D5 on a Whatman 50 membrane. This was done using specific sequences 

highlighted in Figure 5.6. These are amino acids 687-706, in PDE4A5 and amino acids 

664-685 in PDE4D5. A control spot was created with each sequence the each amino 

acid in turn was mutated to alanine. The membrane was probed with purified 

recombinant GST-tagged Lyn or MAPKAPK2 for PDE4A5 or GST-tagged ERK, B-



 195 

Arrestin or UBC9. GST-specific anti-sera was then used to detect the areas of protein 

binding to the membrane. Highlighted are the main amino acids where conversion to 

alanine ablates binding. All peptide arrays are representative arrays of at least three 

separate experiments. 

 

 

 

5.2.2 Phosphodiesterase-4 may interact with MAPKAPK2 

 

To further test the hypothesis that PDE4 isoforms might sequester MAPKAPK2 co-

immunoprecipitation studies were carried out. These experiments were performed using 

HEK293 cells, figure 5.4(b), (c) and (d), for PDE4B, PDE4C and PDE4D isoforms and 

using COS1 cells transiently transfected to express PDE4A5, as PDE4A isoforms exist 

in such low levels endogenously they cannot be easily detected, figure 5.4(a). Lysates 

were made and endogenous MAPKAPK2 was immunoprecipitated using Protein G 

beads coupled to a commercially available MAPKAPK2 antibody. Western blots were 

then run and probed with antibodies specific for PDE4A, PDE4B, PDE4C and PDE4D. 

These results showed that long form versions from all PDE4 subtypes could co-

immunoprecipitate with MAPKAPK2. 
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Figure 5.4 – MAPKAPK2 interacts with PDE4 long form isoforms in HEK293 

cells. 

 

HEK293 cells were transiently transfected with PDE4A5, (a). Total cell extract was 

produced and the lysates immunoprecipitated with MAPKAPK2 anti-sera conjugated to 

Protein G agarose beads. This IP was then probed with anti-PDE4A anti-sera and 

MAPKAPK2 anti-sera (data not shown). (b), (c) and (d) Total cell extract was produced 

from untransfected wild type HEK293 cells. The lysates were immunoprecipitated with 

MAPKAPK2 conjugated to Protein G agarose beads and resultant IPs probed with 

PDE4B, PDE4C and PDE4D anti-sera respectively and MAPKAPK2 anti-sera (data not 

shown). All Western blots are representative blots of at least three separate experiments. 

 

 

 

(a)                                                                  (c) 
 
 
 
 
 
 

(b)                                                                  (d) 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5.2.3 Phosphodiesterase 4A5 directly interacts with MAPKAPK2 at four specific 
sites 

 

Further studies into the interaction of PDE4 with MAPKAPK2 were focused on 

PDE4A5 as this has been the focus of my studies as described in previous chapters. In 

these I showed that MAPKAPK2 has a functional link in regulating PDE4A5.  

A full-length peptide array of PDE4A5 was made. This consisted of peptide 

“spots” of 25 amino acids that overlapped by five amino acids, making up the entire 

PDE4A5 sequence. This array was then overlaid with purified recombinant GST tagged 

MAPKAPK2 and the location of binding sites established by probing with GST specific 

anti-sera and processed in a similar fashion to a western blot. The results showed that 

when spots previously shown to bind GST alone were discounted; four potential binding 

sites for MAPKAPK2 on PDE4A5 were identifiable, figure 5.5. These sites were amino 

acids 131-155 within UCR1, amino acids 582-606 and 647-671 within the catalytic 

region and amino acids 682-702 within the C-terminal region.  

 

To gain further insight into particular amino acids that were important in each of 

these regions and to confirm the fidelity of interaction at such sites, alanine scanning 

peptide arrays were created for each region. These alanine scan arrays were then probed 

with purified recombinant GST tagged MAPKAPK2 and probed as described 

previously, figure 5.6. These data show that in the first region identified, in UCR1, 

mutation of amino acids phenylalanine 141, leucine 142 and tyrosine 143 to alanine 

ablated binding. This suggests that such residues may play a crucial role in the 

interaction of PDE4A5 with MAPKAPK2. In the first catalytic region sequence, 

potentially important amino acids identified as required for binding were Trp 591, Thr 

592, Ile 595, Glu 598 and Phe 599. In the second catalytic region sequence potentially 

important amino acids that were identified as required for binding were Ile 654, Leu 

655, Asp 656, Trp 664, Tyr 665, His 666, Ser 667, Ile 669 and Gln 671. Finally in the 

C-terminal region the amino acids Phe 693, Gln 694, Phe 695, Thr 698, Leu 699, Glu 

700, Glu 701, Glu 702 and Glu 703 were shown to be potentially important amino acids 

required for binding.  

 



 198 

Surface exposure of these potentially important residues was then evaluated 

using molecular modeling on PDE4A4, the human orthologue of PDE4A5, as the 

structure of this human isoform is known [Terry et al., 20003] and the sequence of their 

catalytic units is highly conserved. This analysis showed that amino acids Phe 141, Leu 

142 and Tyr 143; Ile 654, Leu 655 and Asp 656; Trp 664, Tyr 665, His 666 and Ser 667; 

Phe 693, Gln 694, Phe 695 and Thr 698, Leu 699, Glu 700, Glu 701, all were well 

exposed at surface and so could potential interact with MAPKAPK2, Figure 5.7.  

 
 

Figure 5.5 – MAPKAPK2 binds to specific regions of PDE4A5 on a full length 

overlapping Peptide Array. 

 
Peptide array technology was used to synthesise a full-length array of PDE4A5 on a 

Whatman 50 membrane. This consisted of 25 amino acid spots that overlapped by 5 
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amino acids. The membrane was probed with purified recombinant GST-tagged 

MAPKAPK2. GST-specific anti-sera was then used to detect the areas of MAPKAPK2 

binding to the membrane. Highlighted are the four main regions of most intense binding 

and their sequences. All peptide arrays are representative arrays of at least three separate 

experiments. 

  

 
 
 

 
 
 



 200 

 
 

Figure 5.6 – Alanine Scanning of specific PDE4A5 sequences highlights regions of 

MAPKAPK2 binding. 

 
Peptide array technology was used to synthesise alanine scanning arrays of PDE4A5 on 

a Whatman 50 membrane. This was done using specific sequences highlighted in Figure 

5.5. These are amino acids 131-155, 582-606, 647-671, 682-702. A control spot was 

created with each sequence the each amino acid in turn was mutated to alanine. The 

membrane was probed with purified recombinant GST-tagged MAPKAPK2. GST-

specific anti-sera was then used to detect the areas of MAPKAPK2 binding to the 

membrane. Highlighted are the main amino acids where conversion to alanine ablates 

binding. All peptide arrays are representative arrays of at least three separate 

experiments. 



 201 

 
 
 

 
 

 



 202 

Figure 5.7 – Molecular model of PDE4A5 with potential MAPKAPK2 binding 
regions highlighted 
 
This figure was generated in Rasmol by Dr David Adams, University of Strathclyde and 

is of the PDE4A catalytic unit [Wang et al., 2007]. It shows a molecular model of 

potential MAPKAPK2 binding regions, identified using peptide arrays, on the PDE4A 

catalytic unit and can be used to highlight whether they show surface exposure or not. 

 

Site directed mutagenesis was then used to mutate groups of these amino acids to 

alanine in a mammalian expressing pcDNA vector of PDE4A5. Such mutated forms of 

PDE4A5 were then subjected to co-immunoprecipitation studies with MAPKAPK2 after 

over-expression of the mutants in COS1 cells, Figure 5.8. These data showed that 

mutation of the cluster of Phe 141, Leu 142 and Tyr 143, to alanine, in UCR1 almost 

completely disrupted binding to a level of 3.0 % +/- 3.8 % whereas mutations at the 

other sites did not elicit such a dramatic reduction in the interaction of with 

MAPKAPK2. Thus mutation of the cluster of Ile 654, Leu 655 and Asp 656 to alanine 

lowered interaction to 88 % +/- 5%, while mutation of the cluster of Trp 664, Tyr 665, 

His 666 and Ser 667 to alanine in PDE4A5 lowered interaction with MAPKAPK2 to 80 

% +/- 7 %, and mutation of the cluster of Phe 693, Gln 694 and Phe 695 to alanine 

lowered interaction with MAPKAPK2 to 63 % +/- 2 % and mutation of the cluster of 

Tyr 698, Leu 699, Glu 700 and Glu 701 to alanine lowering interaction with 

MAPKAPK2 to 67 % +/- 4 %.   

 

These data show that, to some extent, all of the areas predicted from the scanning 

peptide array analysis to be necessary for the interaction of PDE4A5 with MAPKAPK2 

do indeed appear to play a contributory role, with the Phe-Leu-Tyr motif or, as I term it, 

the ‘FLY’ site in UCR1 region seemingly being most vital. It is also apparent that 

several of these sites are conserved between several species of long form PDE4 as 

shown in the line-up detailed in figure 5.1. 

 

To confirm whether this ‘FLY’ site was indeed a real docking domain a full 

length overlapping 25mer peptide array was made for another known MAPKAPK2 
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substrate TSC2, (Tuberous Sclerosis 2) and this was overlaid with MAPKAPK2-GST, 

Figure 5.9. One main region of binding was shown on this array from amino acids 1236-

1271. This contained amino acids 1248-Ala-Leu-Tyr-Lys-Ser-Leu-Ser-1255 somewhat 

similar to the binding site seen on PDE4. 

 

 
 
 

100 kDa 

100 kDa 

      IP                 Lysate 

(a) 
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Figure 5.8 – MAPKAPK2 interaction with PDE4A5 mutants in HEK293 cells. 

 

Mutations of PDE4A5 were created where specific binding sites highlighted in peptide 

arrays were mutated to alanine. These were F141, L142 and Y143 to triple alanine, I654, 

L655 and D656 to triple alanine, W664, Y665, H666 and S667 to quadruple alanine, 

F693, Q694 and F695 to triple alanine and T698, L699, E700 and E701 to quadruple 

alanine. HEK293 cells were transiently transfected with PDE4A5. Total cell extract was 

produced and the lysates immunoprecipitated with MAPKAPK2 anti-sera conjugated to 

Protein G agarose beads. (a) This IP was then probed with anti-PDE4A anti-sera and 

MAPKAPK2 anti-sera (data not shown). (b) Percentage difference in binding compared 

to the control was then calculated using densitometry. All Western blots are 

representative blots of at least three separate experiments.
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Figure 5.9 – MAPKAPK2 binds to specific regions of TSC2 on a full length 

overlapping Peptide Array. 

 
Peptide array technology was used to synthesise a full-length array of TSC2 on a 

Whatman 50 membrane. This consisted of 25 amino acid spots that overlapped by 5 

amino acids. The membrane was probed with purified recombinant GST-tagged 

MAPKAPK2. GST-specific anti-sera was then used to detect the areas of MAPKAPK2 

binding to the membrane. Highlighted are the four main regions of most intense binding 

and their sequences. All peptide arrays are representative arrays of at least three separate 

experiments. 

 

 

 

5.3 Discussion 

 

There are many complex interactions in signaling pathways. However, in recent 

years it has become clear that signaling cascades do not work in isolation but, instead, 

many different signaling cascades can interact so as to functionally integrate their 

output. The fundamental question now being posed is not only the temporal control of 

such interactions but whether these may indeed be controlled spatially.  
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It has been hypothesized that signaling systems may be controlled spatially 

through the presence of protein recognition ‘modules’ or ‘motifs’ that control the 

targeting of specific proteins, such as kinases, phosphatases and phosphodiesterases, to 

distinct sites in cells [Sharrocks et al., 2000; Scott and Pawson, 2009; Houslay, 2010]. 

The ERK signaling cascade provides an exemplar of this notion as aberrant activation of 

this pathway can lead to uncontrolled proliferation and, thereby, cancer. One way of 

controlling this pathway is to keep critical components spatially separate in the cell and 

control functional interactions. Additionally, interactions between proteins in this 

pathway are used to enhance signaling, ensuring fidelity of action and potential for 

maximizing action.  This latter point is particularly pertinent for the action of protein 

kinases to be defined to specific substrates for not only can there be consensus substrate 

motifs that direct phosphorylation to target amino acids but it appears that fidelity and 

efficiency of action of certain kinases can be driven by additional docking and substrate 

specificity motifs that are spatially discrete from the site of phosphorylation. The 

exemplar of this is the interaction between the ERK and JNK kinases with authentic 

substrates where two such binding motifs have been identified in addition to the proline-

directed substrate motif that surrounds the phosphorylation target. These are the kinase 

interacting motif (KIM docking motif) that has been shown to act as a target site for 

both ERK and JNK with the consensus motif Val-Xaa-Xaa-Lys-Lys-Xaa6-Leu-Leu-

Leu-Xaa122-phosphoSer and the Phe-Xaa-Phe specificity site (FxF docking motif) that 

until now was thought to only confer specificity with regards to ERK action [Sharrocks 

et al., 2000].   

 

 

5.3.1 Kinase Interaction Motif 

 

The presence of these KIM and FxF docking sites have been described on a 

small number of signaling proteins. The KIM docking motif has been shown to be 

present on the p90 ribosomal S6 protein kinase (RSK), where it targets ERK to the 

kinase allowing for kinase activation via ERK phosphorylation [Smith et al., 1998]. It is 
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also present on the protein tyrosine phosphatase PTP-SL where it allows for ERK 

targeting to the enzyme and also confers ERK phosphorylation of this enzyme [Pulido et 

al., 1998]. It should be noted, however, that ERK is not the only MAP kinase which can 

be targeted to the KIM docking motif, indeed JNK can also be targeted here. In the case 

of the transcription factor c-Jun, JNK is targeted to its KIM motif, binds, phosphorylates 

and allows for transcriptional activity to occur [Karin, 1995]. 

 

5.3.2 Phe-Xaa-Phe docking motif 

 

The FxF docking site is similar in function to the KIM site in that originally it 

was thought to target for ERK specifically. Its presence was originally identified in the 

transcription factor LIN-1 where it was shown to target for ERK to allow for efficient 

phosphorylation of the factor and for transcriptional activity to occur [Jacobs et al., 

1998]. The transcription factor Elk-1 also has an FxF motif where ERK interacts [Jacobs 

et al., 1999]. It has been hypothesized that this motif contributes to the binding affinity 

of ERK although it is unclear whether this docking motif actually works in a ‘classical’ 

direct binding manner like the KIM motif or if it works through some other mechanism 

[Jacobs et al., 1999]. Indeed here it has been shown that ERK is not the only protein that 

can bind to this site in certain cases (other protein binders include RACK1 and DISC1 

for examples [Bolger et al., 2006; Murdoch et al., 2007] implying that this site works in 

a much more complicated multi-functional manner which will be discussed further later.  

 

5.3.3 Docking motifs on Phosphodiesterase PDE4D 

 

Phosphodiesterases are a prime example of signaling proteins that are involved 

in signaling cascade cross-talk indeed some ‘docking motifs’ on these have already been 

identified [Houslay and Adams, 2003; Houslay 2010]. 

 

The phosphodiesterase isoform, PDE4D3 was the first PDE4D long form to be 

isolated and, as such, has been routinely studied by many investigators. Studies on this 

enzyme looking for binding motifs have shown that PDE4D3 contains both a KIM 
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binding motif, on the β-hairpin loop of its catalytic domain and an FxF binding motif on 

an exposed α-helix of the catalytic domain [MacKenzie et al., 2000; Houslay and 

Adams, 2003]. In the case of this long form phosphodiesterase, the targeted binding of 

ERK to these two motifs allows for phosphorylation of the enzyme at Ser579, leading to 

inhibition of enzymatic activity [Hoffmann et al., 1999]. The importance of these 

docking/specificity sites was shown through mutation studies where mutation of the key 

binding residues to alanine in either the KIM or the FxF motif led to a loss of ERK 

interaction and a loss of ERK regulated inhibition of the enzyme in intact cells 

[MacKenzie et al., 2000].  

 

5.3.4 Phe-Xaa-Phe is a binding domain for many proteins on PDE4 

 

During the binding motif studies on PDE4D3 it was highlighted [MacKenzie et 

al., 2000] that both the KIM and FxF binding sites were not only present on this isoform 

of PDE4 but are conserved throughout all of the long form family members as shown 

here in the sequence alignment in Figure 5.1.  

 

To my surprise, peptide array mapping studies of the kinase MAPKAPK2 on the 

PDE4A isoform PDE4A5 identified, for the first time, that this MAPK kinase family 

member can also bind at the same FxF site where ERK is able to bind (Figure 5.2). 

Indeed, subsequent to this, we set out to determine whether other known interacting 

partners of PDE4 might also interact with PDE4D3 at this site (Figure 5.3). The results 

of this identified that the Src tyrosyl kinase Lyn, the sumo-conjugating enzyme UBC9 

and the signaling scaffolding protein b-arrestin can all also potentially bind at this motif. 

This work implies that instead of the FxF being an ERK specific, or even MAP Kinase 

specific binding site it may instead provide a multi-functional docking domain for 

several partner proteins of PDE4.  

 

Functionally it is not yet fully clear what effect this may have in vivo but it can 

by hypothesized that the presence of a multi-functional docking site like this may lead 

aid in the fidelity of compartmentalization of signaling through PDE4 species in the cell. 
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In doing this such a site may confer fidelity of functionality by only allowing one 

partner from such a pool using this multi-functional docking site to be engaged with a 

PDE4 enzyme at any one specific time. This would serve to prevent several conflicting 

signaling events to be triggered simultaneously and might also minimize any potential 

for forming aggregates. For example, it could be surmised that, targeting of 

MAPKAPK2 to the motif, allowing for MAPKAPK2 phosphorylation of the PDE 

enzyme would prevent binding of other protein interactors of the enzyme, such as β-

Arrestin, which may cause a conformational change in the enzyme or ERK which may 

inhibit the enzymes activity. Indeed the purpose of this docking motif may be to provide 

a simple mechanism for spatial regulation of PDE4 isoform function throughout the cell.  

 

 

5.3.5 Does MAPKAPK2 have a docking motif? 

 

Discovery of this apparent multi-functional docking motif in the catalytic region 

of PDE4 highlighted the potential for further docking motifs in this enzyme. Using 

MAPKAPK2, the functional interaction of which is discussed in Chapter 3, as a model 

then potential binding sites for this kinase on PDE4 were mapped using peptide arrays 

and mutagenesis, Figure 5.5. Through this study it was shown that mutagenesis of only 

one of the five potential binding sites for MAPKAPK2 on PDE4 fully ablated 

interaction between these two proteins. This site was Phe-Leu-Tyr referred to here as the 

FLY domain. While, functionally, the significance of this is not yet known, it provides 

interest as a potential docking domain for MAPKAPK2 due to its obvious crucial role in 

determining PDE4:MAPKAPK2 interaction. However, might other MAPKAPK2 

substrates exhibit this motif? Indeed when further MAPKAPK2 substrates were studied 

some key substrates were shown to contain a similar motif. The well-established 

MAPKAPK2 substrate TSC2 [Li et al., 2003] appears to contain a similar sequence to 

this that lies between amino acids 1236-1271 (Figure 5.9). However in this sequence the 

phenylalanine is replaced with alanine, giving a sequence of Ala-Leu-Tyr. While at first 

sight this sequence may not immediately seem similar to the docking site of 

MAPKAPK2 on PDE4 on closer inspection, and with expansion to look at the sequence 
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surrounding this binding site, similarities become more apparent. While in PDE4, 

MAPKAPK2 binding involves a region with the sequence 141-Phe-Leu-Tyr-Arg-Ser-

Asp-Ser-147, in the case of TSC2 binding is seen at the sequence 1248-Ala-Leu-Tyr-

Lys-Ser-Leu-Ser-1255.This seems to suggest that while it was initially thought that a 

FLY domain was responsible for the interaction of MAPKAPK2 with its targets perhaps 

it would be more accurate to suggest that MAPKAP2 requires a Xaa-Leu-Tyr-Xaa-Ser-

Xaa-Ser motif for catalytic binding. It would thus be interesting to see if mutating this 

sequence in TSC2 altered its interaction with, and ability to be phosphorylated by, 

MAPKAPK2. 

5.3.6 Significance of Binding Motifs 

 

Here it is clearly demonstrated that there are potential multi-functional docking 

motifs present on Phosphodiesterase-4 enzymes. This discovery, together with the 

identification of potential docking motifs on other signaling proteins [Holland and 

Cooper, 1999], may imply that multi-functional docking domains have an important 

undiscovered role in cell signaling. However it still remains unclear the precise 

functional importance of these domains and a great deal of work needs to be down to 

elucidate what control these sites may have. Indeed it would be interesting to uncover 

whether the sites play a functional role themselves or if they may play a larger 

scaffolding role in compartmentalization of cellular signaling. Certainly in the case of 

MAPKAPK2 it would be very interesting to discover the real function of this site as this 

kinase plays a wide-ranging role in a number of cells and it would be interesting to 

ascertain whether its role could be controlled through manipulation of these sites.  
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Chapter 6             Final Discussion 
 

Phosphodiesterase-4 enzymes hydrolyse the second messenger cyclic 3’5’ AMP 

to 5’-AMP and so inactivate this critical second messenger. As PDEs provide the only 

way the cell has to break down cAMP, therefore members of the ubiquitously expressed 

PDE4 family are set to play an important role in cell signaling. In the worked described 

in this thesis I have investigated the phosphorylation and protein-protein interactions of 

the cAMP phosphodiesterase isoform, PDE4A4/5.  Here I showed that PDE4A4/5 can 

be phosphorylated by the p38 downstream kinase, MAPKAPK2. This phosphorylation 

attenuates the activation of this phosphodiesterase through Protein Kinase A 

phosphorylation. I then went on to show that PDE4A4/5 interacts with the low affinity 

neurotrophin receptor, p75NTR and that this interaction inhibits normal fibrin 

breakdown in an in vitro model. I also show that phosphorylation of PDE4A5 by 

MAPKAPK2 enhances the inhibition of fibrin breakdown. In the final section of this 

thesis I have also shown that long form PDE4 isoforms contain a potential multi-

functional docking site where several partner proteins can bind. The implications of this 

body of work are wide ranging and here I set out to discuss why these may have a 

significant impact on the development of PDE4A directed therapeutics, particularly in 

the case of inflammatory disease directed therapeutics. 

 

6.1  The Role of Phosphodiesterase-4 in Inflammatory Disease 

 

 One of the main focuses of the role of PDE4s in a disease state has been 

the investigation of its role in inflammatory diseases [Spina, 2008]. PDE4 provides the 

primary means of cAMP degradation in cells of inflammatory response, such as 

macrophages, eosinophils, neutrophils, T cells and B cells [Saetta et al., 1993; Riise et 

al., 1995; Vassallo et al., 2008]. Due to this, inflammatory diseases such as chronic 

obstructive pulmonary disease (COPD), asthma, multiple sclerosis and rheumatoid 

arthritis all are thought to have PDE4 isoenzymes playing a key role in their pathology 

[Houslay et al., 2005].  
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cAMP plays a crucial part in the regulation of primary activating pathways such 

as the cytokine release pathway in T cells and macrophages [Kanda & Watanabe, 2001; 

Duan et al., 2010]. It is therefore thought that if PDE4 is inhibited, leading to an increase 

in intracellular cAMP levels, an attenuation of the pro-inflammatory response in the 

cells may occur. Indeed in macrophages it has been shown that increased intracellular 

cAMP levels, in combination with stimulation of the Toll Like Receptor pathways, leads 

to suppression of the generation and release of the pro-inflammatory cytokine, TNFα 

and the induction of the anti-inflammatory cytokine interleukin 10 [Wall et al., 2009]. 

 

Interestingly, different PDE4 isoforms appear to have different actions in airway 

function. Thus, the specific inhibition of PDE4B has been shown to reduce the release of 

pro-inflammatory cytokines such as TNFα in primary macrophages in response to toll 

like receptor signalling [Jin et al., 2005], whereas PDE4D inhibition has been shown to 

promote airway smooth muscle relaxation [Mehats et al., 2003 and Jin and Conti, 2002]. 

It would therefore appear that inhibition of both PDE4 isoforms leads to relief of some 

of the symptoms of COPD in different cell types. 

 

In a clinical context it has been shown that PDE4A4 is up-regulated in BAL 

macrophages from patients suffering from Chronic Obstructive Pulmonary Disease 

(COPD), and PDE4B2 has been shown to be up-regulated in peripheral blood 

monocytes of smokers [Barber et al., 2004]. These findings, in combination with the in 

vitro discoveries described above, would seem to indicate that PDE4 targeted inhibitors 

might indeed provide therapeutic relief of COPD. Interestingly it has also been shown 

that PDE4A4/5 is also up-regulated in sleep deprivation and can cause cognitive defects 

[Vecsey et al., 2009] and, indeed, in inflammatory conditions such as COPD patients 

exhibit sleep deprivation due to constriction of the airways. It would be interesting to 

see if there is a link between these levels of up-regulation within the two conditions and 

perhaps to see if any of the other, non-lung targeted effects of COPD also may be 

occurring as a result of up-regulated PDE4A. Indeed certain forms of heart disease have 

been found to be more prominent in patients suffering from COPD [Rabe et al., 2007]. 

Could it be that use of phosphodiesterase 4 inhibitors in a condition such as COPD 
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might provide a multi-faceted therapeutic, relieving not just the obvious prominent lung-

centred symptoms of the disease but also exert beneficial actions elsewhere in the body 

at the same time? 

 

6.2  PDE4 Inhibitors 

 

 Due to the obvious role of phosphodiesterase 4 in inflammatory disease a lot of 

work has been carried out in the pharmaceutical industry to develop successful PDE4 

inhibitors as therapeutics for inflammatory diseases. However until now there has been 

limited success in this research until recently [Spina, 2008; Pages et al., 2009; Houslay 

et al., 2005]. 

 

Non-selective phosphodiesterase inhibitors such as theophylline have been used 

for decades to treat bronchial asthma but have always presented problems with major 

side effects like cardiac dysrhythmmia and nausea [Page, 1999]. The PDE4 selective 

inhibitor Rolipram was originally developed as an anti-depressant [Wachtel, 1982] and, 

subsequently, for the treatment of COPD [Barnette & Underwood, 2000]. However, 

major side effects, namely nausea, vomiting and enhanced gastric acid secretion 

precluded its clinical use for either indication [Hebenstreit et al., 1989].  

 
It therefore became necessary to develop more specific drugs that did not exhibit 

such severe side effects. So following on from these developments a second generation 

of PDE4 inhibitors was created that included Cilomilast and Roflumilast [Spina, 2009] 

that have shown reduced side effects in animal models. Cilomilast, developed by 

GlaxoSmithKline, underwent extensive Phase III clinical trials [Houslay et al., 2005; 

Rennard et al., 2006]. Despite strong initial results this drug failed to show any 

significant improvements in a final clinical trial of COPD patients and was therefore 

denied approval by the Food and Drug Administration (FDA) in the USA [Rennard et 

al., 2008]. Roflumilast is one of the most potent oral PDE4 inhibitors with a longer half 

life than Cilomilast [Houslay et al., 2005]. It was also recently denied approval by the 

FDA although, excitingly, it has very recently been approved within Europe as a once-a-
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day treatment for COPD patients with chronic bronchitis under the trade name Daxas 

[Rabe, 2010; Pages et al., 2009;  

http://www.nycomed.com/en/Menu/Media/News+releases/ Nycomed press release].  

 

 Several other generations of isoform specific PDE4 inhibitors are also in 

development , although phase 3 clinical trials have either yet to be performed for these 

or they have not given clinically significant results in phase 2 studies [Spina, 2008; 

Pages et al., 2009]. One ‘new’ generation PDE4 inhibitor which is currently being 

passed through Phase 2 clinical trials is Apremilast which, unlike many other PDE4 

inhibitors, is being developed for the treatment of psoriasis and arthritis, where it shows 

potential therapeutic efficacy [Schafer et al., 2010; McCann et al., 2010]. Indeed 

development, and the so far success, of PDE4 inhibitors like Apremilast may imply that 

the pharmaceutical industry has been putting too much emphasis on the development of 

PDE4 inhibitors for COPD alone. This emphasis is understandable because COPD is the 

sixth leading cause of death in the world and is proposed to move up to the fourth 

leading cause of death worldwide by 2030 [Mather and Loncar, 2006]. However with 

advances in PDE4 inhibitors for the treatment of COPD being limited perhaps it is time 

that the development of these therapeutics shifted to focus on other disease states where 

PDE4 is implicated to play an important role, such as the inflammatory disorders just 

mentioned (arthritis and psoriasis) and even CNS diseases whether PDE4s have been 

shown to have a role [Sachs et al., 2007; Millar et al., 2007].  

 

 

 

 

6.3  A potential Role for My Findings in the Development of Novel Therapeutics 

 

 As the development of PDE4 inhibitors has been a complicated and challenging 

task perhaps a better understand of the enzymes phosphorylation states and protein 

interaction may open up new opportunities for therapeutic development.  
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6.3.1  PDE4 and MAPKAPK2 in therapeutic development 

 

As I have shown in Chapter 3 of this thesis PDE4A5 can be phosphorylated by 

MAPKAPK2, a downstream kinase of the p38 MAP Kinase pathway. This 

phosphorylation leads to attenuation of activation of the PDE through PKA 

phosphorylation. Therefore in the presence of p38 MAP Kinase signaling pathway 

activation I have shown that there is a sustained, instead of transient, increase in 

intracellular cyclic AMP levels. 

 

Interestingly inhibition of the p38 MAPK pathway, like PDE4, has also been 

investigated as a potential therapeutic target for inflammatory diseases as it plays a 

fundamental role in the inflammatory response (see Chapter 3.1.3). Thus, it may be that 

activation of the p38 MAPK-MK2 pathway in the inflammatory response will not only 

promote the expression of pro-inflammatory mediators but may simultaneously also 

increase cAMP levels through PDE4 phosphorylation, which creates a form of negative 

feedback leading to suppression of this pro-inflammatory response and increased 

induction of anti-inflammatory cytokines such as interleukin 10. Indeed this would be 

in-keeping with previous studies mentioned above which showed that stimulation of the 

cAMP pathway in combination with the Toll Like Receptor pathways (that have been 

shown to activate p38 MAPK downstream), leads to negative feedback of the pro-

inflammatory cytokine response in macrophages and promotion of the anti-

inflammatory response [Wall et al., 2009].  

 

This discovery poses interesting questions about the development of current 

therapeutics p38 MAPK inhibitors [Cohen, 2009]. While it is thought that blocking the 

p38 MAPK pathway or MAPKAPK2 should lead to loss of pro-inflammatory response 

[Cohen, 2009; Duraisamy et al., 2008], the influence of these inhibitors on cAMP 

response may now have to be taken into account. Indeed if MAPKAPK2 is inhibited and 

therefore is no longer available to phosphorylate PDE, this may allow for full activation 

of the phosphodiesterase enzyme, leading to a decrease in intracellular cAMP levels and 
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a loss of the anti-inflammatory response seen in response to TLR stimulation. Indeed in 

these circumstances the most logical therapeutic to be developed would be a selective 

PDE4 inhibitor as this would allow for promotion of the anti-inflammatory response. 

Therefore, while the discovery of the interaction between PDE4 and MAPKAPK2 may 

not directly aid in the development of more specific, effective PDE4 inhibitors 

therapeutically, it may provide a valuable insight into understanding the downfall of p38 

MAPK pathway-based inhibitor studies [Cohen, 2010; Hendriks et al., 2010].  

 
6.3.2  PDE4 and p75NTR in therapeutic development 

 
p75NTR has also been shown to play a role in inflammatory disease (see 

Chapter 4.1.5) with it being recently proposed that it may, particularly, have a role in 

fibrosis in inflammatory conditions [Sachs et al., 2007]. Indeed p75NTR can markedly 

inhibit fibrin breakdown (leading to tissue scarring). However here I have shown in 

Chapter 4 that for this to occur it needs to sequester PDE4A5. As stated above PDE4 

selective inhibitors have been developed to treat inflammatory diseases, where fibrosis 

is a major issue and as stated previously a key part of the efficacy of these inhibitors 

relates to their ability to inhibit TNFα  [Houslay et al., 2005; Spina, 2008; Wall et al., 

2009]. TNFα is thought to have a potent pro-fibrotic action [Zhang et al., 2007]. The 

molecular basis of this is not fully understood but it is known that the key signaling 

cascade activated by TNFα is the p38 MAPK pathway [Dent et al., 2003; Uhlik et al., 

2003; Xu et al., 2006]. Here I have shown that MAPKAPK2 can phosphorylate 

PDE4A5 which in a fibrin model system leads to an almost total loss of fibrin 

breakdown.  

 

Inappropriate fibrin build up may be responsible for tissue scarring of the lungs 

in COPD and asthma [Nakstad et al., 1990]. From what I have shown in this thesis it 

could be implied that disruption of the interaction of PDE4A5 and p75NTR may 

decrease this inappropriate loss of fibrin breakdown. Indeed small molecules targeted to 

disrupt this interaction may provide a more specific therapeutic for the treatment of 

certain aspects of COPD, without the potential side effects seen in PDE4 inhibitors. 

However a great deal of research into this still needs to be carried out as disruption of 
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this interaction may have significant effects elsewhere in the body.  In this context it 

may also be appropriate for inhibitors of the p38 MAPK pathway to be employed as 

they may also help enhance fibrin breakdown through loss of PDE4 phosphorylation. 

 

6.3.3  The effect of a multifunctional docking domain on therapeutic 
development 

 
In the final study described within this thesis I discovered a potential 

multifunctional docking domain on PDE4 long isoforms. The significance of this still 

remains unclear and much more research is needed into this before full conclusions can 

be made. It may be however that the presence of a multi-docking site like this plays 

some role in the adverse effects of PDE4 inhibitors as such inhibitors may be affecting 

the interaction of PDE4 with several partner proteins, not just ones involved in target 

reactions. Indeed it may also be altering compartmentalization of the PDE4 enzymes 

allowing for uncontrolled, unregulated distribution throughout the cell. 

In the context of the work I have done here, and with the development of peptide 

array mapping technology, it would be interesting to speculate what small molecule 

disruption of the complexes described throughout this thesis would result in 

functionally. Small molecule disruption targeting MAPKAPK2s interaction with the 

FLY domain of PDE4A5 may not be an ideal therapeutic target as it would appear that 

disruption of this interaction would lead to increased PDE4 activity, decreased cAMP 

levels and therefore a loss of anti-inflammatory action. However, small molecular 

disruption of the specific interaction sites for p75NTR with PDE4A5 may have more 

potential as a therapeutic. Indeed it could be speculated that disruption of this complex 

would lead to increased fibrin breakdown, potentially relieving fibrin scarring exhibited 

in conditions such as COPD and spinal cord injury where inappropriate fibrin deposition 

is an issue [Beattie et al., 2002; Sachs et al., 2007].  

 

 

 

6.4  Final Conclusion 
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 In conclusion, here I have identified new aspects of Phosphodiesterase-4 

interaction and regulation. This gives an insight into how this enzyme may function in 

the inflammatory system however its precise mechanism of action appears to be very 

complicated and further research is required to decode its precise role throughout this 

system.  

Issues that I think need to be addressed globally, how my work can help solve these and 

how I would continue this research: 

• In my opinion the development of PDE4 inhibitors as a therapeutic target is 

currently too broad ranging. Focusing on PDE4 as one single target is clearly not 

working as this research has been ongoing for many years and still too many side 

effects are observed with these inhibitors. Instead perhaps a better option would 

be to focus on very specific PDE4 isoforms and their partner proteins in specific 

disease states. Disruption of individual interactions like these may provide 

highly specific therapeutics lacking adverse side effects. For example, here I 

have shown that interaction between PDE4A4/5 and p75NTR occurs at specific 

sites. If I had more time to further this work it would be interesting to see if these 

sites could be manipulated to produce a small disruptor molecule to stop this 

interaction. This could then be used in cell system models to see how it affects 

fibrin breakdown and, with ethical approval, could then be used in whole animal 

studies to see the effects that this molecule would have on COPD animal models 

and spinal cord injury animal models. 

• I also think progression of the work on PDE4 and MAPKAPK2 phosphorylation 

may give an interesting insight into the complex inflammatory feedback system 

in the immune system. Indeed if I had time to further this work I would use a 

primary cell system such as Bone Marrow Derived Macrophages (BMDMs) to 

observe how loss of PDE4A (through knock-out) affects the inflammatory 

response of these cells in response to activation of the p38 MAPK pathway. 

Indeed PDE4A, MAPKAPK2 double knockout mice could also be engineered to 

study the effects on inflammation upon loss of both of these signaling pathways. 

I would hypothesise that in PDE4A (-/-) BMDMs there would be an increase in 

the anti-inflammatory response from these cells, counteracting the pro-
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inflammatory surge and indeed in a MAPKAPK2/PDE 4A double knock-out 

system the anti-inflammatory response would be increased as well as the pro-

inflammatory response decreasing. This process could however be complicated 

as knock-out of two important signaling enzymes such as PDE4A and 

MAPKAPK2 in one mouse model may not be viable.  
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