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Summary

In recent years, under the new terminology of generative anddiscriminative classifiers, research

interest in classical statistical approaches to discriminant analysis has re-emerged in the ma-

chine learning community. In discriminant analysis, observations with featuresx measured are

classified into classes labelled by a categorical variabley. Generative classifiers, also termed

the sampling paradigm, such as normal-based discriminant analysis and the naı̈ve Bayes clas-

sifier, model the joint distributionp(x, y) of the measured featuresx and the class labelsy

factorised in the formp(x|y)p(y), wherep(x|y) is a data-generating process (DGP), and learn

the model parameters through maximisation of the likelihood with respect top(x|y)p(y). Dis-

criminative classifiers, also termed the diagnostic paradigm, such as logistic regression, model

the conditional distributionp(y|x) of the class labels given the features, and learn the model

parameters through maximising the conditional likelihoodbased onp(y|x).

In order to exploit the best of both worlds, it is necessary tofirst compare generative and

discriminative classifiers and then combine them. In this thesis, we first performed some em-

pirical and simulation studies to provide extension of and make comments on a highly-cited re-

port (Ng and Jordan, 2001), which compared the naı̈ve Bayes classifier or normal-based linear

discriminant analysis (LDA) with linear logistic regression (LLR). Then we studied extensively

two hybrid-learning techniques, namely the hybrid generative-discriminative algorithm (Raina

et al., 2003) and the generative-discriminative tradeoff (GDT) approach (Bouchard and Triggs,

2004), for combining the generative and discriminative classifiers. Based on our results from

these studies, we proposed a joint generative-discriminative modelling approach to classifica-

tion. In addition, we extended our investigation to generative and discriminative hidden Markov

models, the latent variable models for structured data. We also developed discriminative ap-

proaches for a specific application, that of histogram-based image thresholding.

The contributions of this thesis are the following.
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First, Ng and Jordan (2001) claimed that there exist two distinct regimes of performance

between the generative and discriminative classifiers withregard to the training-set size; how-

ever, our empirical and simulation studies, as presented inChapter 2, suggest that it is not

so reliable to claim such an existence of the two distinct regimes. In addition, for real world

datasets, so far there is no theoretically correct, generalcriterion for choosing between the dis-

criminative and the generative approaches to classification of an observationx into a classy;

the choice depends on the relative confidence you have in the correctness of the specification

of eitherp(y|x) or p(x, y). This can be to some extent a demonstration of why Efron (1975)

and O’Neill (1980) prefer LDA but other empirical studies may prefer LLR instead. Further-

more, we suggest that pairing of either LDA assuming a commondiagonal covariance matrix

(LDA-Λ) or the naı̈ve Bayes classifier and LLR may not be perfect, andhence it may not be re-

liable for any claim that was derived from the comparison between LDA-Λ or the naı̈ve Bayes

classifier and LLR to be generalised to all generative and discriminative classifiers.

Secondly, in Chapter 3, we present the interpretation and asymptotic relative efficiency

(ARE) of the GDT approach for linear and quadratic normal discrimination without model

mis-specification, and compare its ARE with those of its generative and discriminative coun-

terparts. The classification performance of the GDT is compared with those of LDA and LLR

on simulated datasets. We argue that the GDT is a generative model integrating both dis-

criminative and generative learning. It is therefore sensitive to model mis-specification of the

data-generating process and, in practice, its discriminative component may behave differently

from a truly discriminative approach. Amongst the three approaches that we compare, the

asymptotic efficiency of the GDT is lower than that of the generative approach when no model

mis-specification occurs. In addition, without model mis-specification, LDA performs the best;

with model mis-specification, the GDT may perform the best atan optimal tradeoff between its

discriminative and generative components, and LLR, a trulydiscriminative classifier, in general

performs well when the training-sample size is reasonably large.

Thirdly, in Chapter 4, we interpret the hybrid algorithm from three perspectives, namely

class-conditional probabilities, class-posterior probabilities and loss functions underlying the

model. We suggest that the hybrid algorithm is by nature a generative model with its parame-

ters learnt through both generative and discriminative approaches, in the sense that it assumes

a scaled data-generation process and uses scaled class-posterior probabilities to perform dis-

crimination. Our suggestion can also be applied to its multi-class extension. In addition, using
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simulated and real-world data, we compare the performance of the normalised hybrid algo-

rithm as a classifier with that of the naı̈ve Bayes classifier and LLR. Our simulation studies

suggest in general the following: if the covariance matrices are diagonal matrices, the naı̈ve

Bayes classifier performs the best; if the covariance matrices are full matrices, LLR performs

the best. Our studies also suggest that the hybrid algorithmmay provide worse performance

than either the naı̈ve Bayes classifier or LLR alone.

Fourthly, based on our studies presented in Chapters 2, 3 and4, we propose in Chapter 5

a joint generative-discriminative modelling (JGD) approach to classification, by partitioning

variables into two subsets based on statistical tests of theDGP. Our JGD approach adopts

statistical tests, such as normality tests, of the assumed DGP for each variable to justify the

use of generative approaches for the variables which satisfy the tests and of discriminative

approaches for other variables. Such a partition of variables and a combination of generative

and discriminative approaches are derived in a probabilistic rather than a heuristic way. We

have concentrated on particular choices for the generativeand discriminative components of

our models, but the overall principle is quite general and can accommodate many other special

versions. Of course, we must ensure that the assumptions underlying the resulting generative

classifiers can be tested statistically. Numerical resultsfrom real UCI and gene-expression data

and from simulated data demonstrate promising performanceof this new approach for practical

application to both low- and high-dimensional data.

Fifthly, in Chapter 6, we study the assumption of “mutual information independence”,

which is used by Zhou (2005) for deriving the so-called discriminative hidden Markov model

(D-HMM). We suggest that the mutual information assumption(6.6) results in the D-HMM,

while another mutual information assumption (6.12) results in its generative counterpart, the

G-HMM. However, in practice, whether or not the assumptionsare reasonable and how the

corresponding HMMs perform can be data-dependent; research efforts to explore an adaptive

switching between or combination of these two models may be worthwhile. Meanwhile, we

suggest that the so-called output-dependent HMMs could be represented in a state-dependent

manner, and vice versa, essentially by application of Bayes’ theorem.

Finally, in Chapter 7, we present discriminative approaches to histogram-based image

thresholding, in which the optimal threshold is derived from the maximum likelihood based

on the conditional distributionp(y|x) of y, the class indicator of a grey levelx, givenx. The

discriminative approaches can be regarded as discriminative extensions of the traditional gen-
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erative approaches to thresholding, such as Otsu’s method (Otsu, 1979) and Kittler and Illing-

worth’s minimum error thresholding (MET) (Kittler and Illingworth, 1986). As illustrations,

we develop discriminative versions of Otsu’s method and METby using discriminant func-

tions corresponding to the original methods to representp(y|x). These two discriminative

thresholding approaches are compared with their original counterparts on selecting thresholds

for a variety of histograms of mixture distributions. Results show that the discriminative Otsu

method consistently provides relatively good performance. Although being of higher computa-

tional complexity than the original methods in parameter estimation, its robustness and model

simplicity can justify the discriminative Otsu method for scenarios in which the risk of model

mis-specification is high and the computation is not demanding.
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Glossary of Abbreviations

AIC: Akaike Information Criterion

AER: Asymptotic Error Rate

ARE: Asymptotic Relative Efficiency

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm

Criterion-H: classification Criterion corresponding to the normalised Hybrid algorithm

DGP: Data-Generating Process

D-HMM: Discriminative Hidden Markov Model

ER: misclassification Error Rate

GAM: Generalised Additive Model

GDT: Generative-Discriminative Tradeoff method

G-HMM: Generative Hidden Markov Model

HMM: Hidden Markov Model

HMMSDO: Hidden Markov Models with States Depending on Observations

IRLS: Iteratively Reweighted Least Squares algorithm (also known as IWLS, or the Fisher

scoring algorithm)

JDG: Joint Generative-Discriminative modelling

LDA: normal-based Linear Discriminant Analysis
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LDA- Λ: LDA with a common diagonal covariance matrix

LDA- Σ: LDA with a common full covariance matrix

LL: Logarithmic Loss

LLR: Linear Logistic Regression

MAP: Maximum A Posteriori

MET: Kittler and Illingworth’s Minimum Error Thresholding

MLE: Maximum Likelihood Estimate

NBC: Naı̈ve Bayes Classifier

QDA: normal-based Quadratic Discriminant Analysis

QDA-Λg: QDA with unequal diagonal covariance matrices

QDA-Σg: QDA with unequal full covariance matrices

rpart: recursive partitioning and regression trees

DAG: Directed Acyclic Graph

dO: threshold obtained from discriminative Otsu method

tO: threshold obtained from Otsu’s method

dM : threshold obtained from discriminative MET

tM : threshold obtained from MET
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Chapter 1

Introduction to Generative and

Discriminative Classifiers

1.1 Generative and Discriminative Classifiers

1.1.1 Definitions

In discriminant analysis, observations with measured features x are classified into classes

labelled by a categorical variabley. The most commonly adopted discriminant rule is the

maximum a posteriori (MAP) criterion: for a given observation x, the allocated class iŝy =

argmaxy p(y|x;α), wherex is in general ap-variate random vector andα denotes a column

vector of the parameters of the conditional distributionp(y|x). In practice,α is unknown but

can be estimated from a training set ofn labelled observations(x1:n, y1:n) = {(xi, yi)}n
i=1.

Dawid (1976) divided the statistical modelling and learning (or parameter estimation) ap-

proaches to discrimination into two paradigms, namely, thesampling paradigm and the diag-

nostic paradigm. In recent years, these have re-emerged in the machine learning community

under the new terminology of generative (informative) and discriminative approaches, respec-

tively (Rubinstein and Hastie, 1997; Ng and Jordan, 2001; Raina et al., 2003; Bouchard and

Triggs, 2004; McCallum et al., 2006; Bishop and Lasserre, 2007; Bouchard, 2007).

The discriminative approaches (or the approaches corresponding to the diagnostic paradigm)

modelp(y1:n|x1:n;α), without modelling the so-called data-generating process(DGP)p(x|y; θg),

whereθg is the parameter vector ofp(x|y); α is then estimated through maximisation of the

conditional likelihood,i.e., α̂ = argmaxα p(y1:n|x1:n;α), which is in practice further simpli-

1
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fied by the assumption of certain conditional-independencestructure such thatp(y1:n|x1:n;α) =
∏n

i=1 p(yi|xi;α). Thus onlyp(y|x, α) needs to be modelled. Hereafter, we refer to such a

model and learning procedure as adiscriminative modelanddiscriminative learning, respec-

tively. A typical discriminative classifier is logistic regression.

The generative approaches (or the approaches corresponding to the sampling paradigm)

modelp(y1:n|π) andp(x1:n|y1:n; θg), whereπ is the parameter vector ofp(y). Then, in general,

θ = (πT , θT
g )T is estimated through maximum likelihood,i.e., θ̂ = argmaxθ p(x1:n, y1:n; θ),

which is in practice further simplified by assuming certain conditional-independence structure

such thatp(x1:n, y1:n; θ) =
∏n

i=1 p(xi, yi; θ). Thus onlyp(y|π) andp(x|y; θg) need to be

modelled. Hereafter, we refer to such a model and learning procedure as agenerative model

andgenerative learning, respectively. Typical generative classifiers include normal-based dis-

criminant analysis and the naı̈ve Bayes classifier.

As concisely characterised by Rubinstein and Hastie (1997), the generative classifiers learn

the class densities, while the discriminative classifiers learn the class boundaries (i.e., p(y|x, α)

in our setting) without regard to the underlying class densities.

From Bayes’ Theorem, which gives

p(y|x;α) =
p(y|π)p(x|y; θg)
∫

y
p(y|π)p(x|y; θg)

,

two observations can be made. First, there is a mappingα(θ) betweenθ andα such that the

generative approaches can lead toα̂, and thereby provide working classifiers for discrimina-

tion. Secondly, the generative model is more informative than the corresponding discriminative

model, and thus discriminative learning techniques can be used with a generative model. The

first observation is a basic characteristic of classical generative classifiers, and the second has

led to increasing research interest recently (Rubinstein,1998; Raina et al., 2003; Bouchard and

Triggs, 2004; McCallum et al., 2006).

1.1.2 Discriminant Functions

This thesis will focus on two-class discriminant analysis,wherey is a binary variable. Suppose

a populationC contains two sub-populationsC1 (with y = 1) and C0 (with y = 0), with

respective proportionsπ1 andπ0 = 1−π1; the existence of these two sub-populations requires

π1 ∈ (0, 1), an open interval. In addition, the training set{(xi, yi)}n
i=1 containsn randomly,

independently collected and labelled individuals fromC.
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In the sense of minimum classification error rate, an optimaldiscriminant function for

classifying a new individualx into eitherC1 or C0 is g(x, α) = log p(y=1|x)
p(y=0|x) , the logarithm

of the ratio of two posterior probabilities of the sub-population indicatory given the observed

feature vectorx; i.e., the new individual will be classified intoC1 if g(x, α) > 0.

The most widely used discriminant functions are the linear discriminant function,g(x, α) =

β0 + βTx, whereβ0 is a scalar,β is a p-dimensional parameter vector,αT = (β0, β
T ) and

xT = (x(1), . . . , x(p)), and the quadratic discriminant function,g(x, α) = β0 + βTx + xT Γx,

whereΓ is ap-by-p matrix (usually symmetric) andαT = (β0, β
T , (vech(Γ))T ). The notation

vech(Γ) indicates a vector of distinct elements of the matrixΓ. If Γ is diagonal with diagonal

components{γi,i}p
i=1, theng(x, α) = β0 + βT x +

∑p
i=1 γi,i(x

(i))2.

The training set{(xi, yi)}n
i=1 is used to learn the parametersα of g(x, α). In general, the

learning is performed by either discriminative approachesor generative approaches.

1.1.3 Discriminative Learning

From the definition of the discriminant function, it followsthat

p(C1|x) = p(y = 1|x) =
eg(x,α)

1 + eg(x,α)
, p(C0|x) = p(y = 0|x) = 1 − p(C1|x) , (1.1)

so that the likelihoodL and the log-likelihoodℓ based onp(y|x) are, respectively,

Ld(α) =
n
∏

i=1

p(yi|xi) =
n
∏

i=1

eg(xi,α)yi

1 + eg(xi,α)
,

ℓd(α) = logLd(α) =
n
∑

i=1

g(xi, α)yi −
n
∑

i=1

log(1 + eg(xi,α)).

Asymptotic theory suggests that maximisation ofℓd(α), with respect toα, leads to an

estimatorα̂ of α such that the distribution of
√

n(α̂ − α) is asymptoticallyN (0,Σd(α̂)); that

is
√

n(α̂ − α) ∼ AN (0,Σd(α̂)), say, for certainΣd(α̂), which is a function ofα for the

estimatorα̂.

It is natural to estimateα by such discriminative learning; however, the estimation is hin-

dered by computational complexity related to
∑n

i=1 log(1 + eg(xi,α)). Traditionally, generative

learning is more commonly used.
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1.1.4 Generative Learning

Generative learning uses the likelihoodL and log-likelihoodℓ based onp(x, y), which are,

respectively,

Lg(θ) =

n
∏

i=1

p(xi, yi) =

n
∏

i=1

p(yi)p(xi|yi) =

n
∏

i=1

(π1p(xi|C1))
yi(π0p(xi|C0))

1−yi ,

ℓg(θ) = logLg(θ) =

n
∑

i=1

yi log(π1p(xi|θ1)) +

n
∑

i=1

(1 − yi) log(π0p(xi|θ0)) ,

wherep(xi|θ1) = p(xi|C1), p(xi|θ0) = p(xi|C0), θ1 andθ0 are parameters ofp(x|C1) and

p(x|C0) for the two sub-populationsC1 andC0, respectively, andθ is the vector of distinct

elements within{π1, θ1, θ0}.

Similarly, maximization ofℓg(θ), with respect toθ, leads to an estimator̂θ of θ with
√

n(θ̂−
θ) ∼ AN (0,Σg(θ̂)), for certainΣg(θ̂). However, we need to derive a generative estimatorα̂

of α with
√

n(α̂−α) ∼ AN (0,Σg(α̂)). The covariance matrixΣg(θ̂) (or Σg(α̂)) is a function

of θ (or α) for the estimator̂θ (or α̂).

By Bayes’ Theorem,g(x, α) = log p(y=1|x)
p(y=0|x) = log π1p(x|θ1)

π0p(x|θ0)
, and thus the mappingα(θ)

and the relationship between(α̂ − α) and(θ̂ − θ) can be constructed. For example,

• if x|θ1 ∼ N (µ1,Σ), x|θ0 ∼ N (µ0,Σ), then

g(x, α) = β0 +βTx = log
π1

π0
− 1

2
(µT

1 Σ−1µ1−µT
0 Σ−1µ0)+ (µ1−µ0)

T Σ−1x ; (1.2)

• if x|θ1 ∼ N (µ1,Σ1), x|θ0 ∼ N (µ0,Σ0), then

g(x, α) = β0 + βTx + xT Γx = log
π1

π0
− 1

2
(µT

1 Σ−1
1 µ1 − µT

0 Σ−1
0 µ0) −

1

2
log

|Σ1|
|Σ0|

+

(µT
1 Σ−1

1 − µT
0 Σ−1

0 )x − 1

2
xT (Σ−1

1 − Σ−1
0 )x . (1.3)

The estimation ofθ and thusα is hindered by potential mis-specification of sub-population

densities.

1.2 Comparison between Generative and Discriminative Classi-

fiers

For the generative classifiers, although maximum likelihood based onp(x, y; θ) will lead to

an asymptotically unbiased and efficient estimatorθ̂ and consequentlŷα, it can only be jus-

tified if p(x, y) is correctly specified. Similarly, for the discriminative classifiers, although
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maximum likelihood based onp(y|x;α) will lead to an asymptotically unbiased and efficient

estimatorα̂, it can only be justified ifp(y|x) or, for example for the case of two classesy1

andy2, the corresponding discriminant function,g(x, α) = log p(y1|x)
p(y2|x) , is correctly specified.

Different p(x, y; θ)’s may lead to the same discriminant functiong(x, α), which indicates that

the discriminative classifiers may be less sensitive than the generative classifiers to the mis-

specification ofp(x, y; θ).

Comparison of generative and discriminative classifiers isan ever-lasting topic (Efron,

1975; O’Neill, 1980; Titterington et al., 1981; Rubinsteinand Hastie, 1997; Ng and Jordan,

2001). In practice, commonly used discriminative and generative classifiers are logistic regres-

sion and normal-based discriminant analysis, respectively. Numerous theoretical, simulated

and empirical comparisons between these two approaches have been investigated; see for ex-

ample Efron (1975) and Titterington et al. (1981).

In general, the performance of such approaches depends on the correctness of the mod-

elling, the bias, efficiency and consistency of the learning, and the reliability of the training

data. For instance, when the modelling ofp(y|π) andp(x|y; θg) is correct, normal-based linear

discriminant analysis (LDA) can be more efficient than linear logistic regression (LLR) (Efron,

1975). However, the latter can perform better than the former whenx|y is not normally dis-

tributed, because the latter does not necessarily assume the Gaussian form ofp(x|y; θg); for

instance, the modelling of the latter is valid under generalexponential family assumptions on

p(x|y; θg) (Efron, 1975).

Ng and Jordan (2001) presented some theoretical and empirical comparisons between LLR

and the naı̈ve Bayes classifier, a generative approach equivalent to LDA, when statistically

independent and normally distributed featuresx within classesy are assumed. Their results

suggested that, between the two approaches, there were the two distinct regimes of discrimi-

nant performance with respect to the training-set size. More precisely, they proposed that the

discriminative classifier had lower asymptotic error rate while the generative classifier may

approach its (higher) asymptotic error rate much faster. Inother words, the discriminative clas-

sifier performs better with larger training sets while the generative classifier does better with

smaller training sets. Chapter 2 of this thesis will provideextension of and make comments on

their study.
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1.3 Combination of Generative and Discriminative Classifiers

If we consider the pros and cons of both discriminative and generative approaches (Efron,

1975; Titterington et al., 1981; Rubinstein and Hastie, 1997; Ng and Jordan, 2001), it is nat-

ural to exploit the best of both worlds. In this direction, many interesting proposals of hybrid

learning techniques have emerged for combining the generative and discriminative approaches,

such as the mixed discriminants (Rubinstein, 1998), the hybrid generative-discriminative al-

gorithm (Raina et al., 2003; Fujino et al., 2007), the mixed log-likelihood (or the generative-

discriminative tradeoff) (Rubinstein, 1998; Bouchard andTriggs, 2004), multi-conditional learn-

ing (McCallum et al., 2006) and a Bayesian blending (Bishop and Lasserre, 2007). Since the

generative approaches can model unlabelled observationsx1:m = {xj}m
j=1 while the discrimi-

native approaches do not, some of the above generative-discriminative combinations have been

applied to semi-supervised learning scenarios (Suzuki et al., 2007; Druck et al., 2007; Bishop

and Lasserre, 2007; Bouchard, 2007).

1.3.1 Hybrid Learning

Rubinstein (1998) presented the method of mixed discriminants, which involved constructing

a discriminant̂p(y|x) by combining two posterior probabilitiesp(y|x) obtained from a gener-

ative approach and a discriminative approach, respectively, as

p̂(y = 1|x) = λ
exp(g(x, α̂g))

1 + exp(g(x, α̂g))
+ (1 − λ)

exp(g(x, α̂d))

1 + exp(g(x, α̂d))
,

whereλ ∈ [0, 1], andα̂g andα̂d are the generative and discriminative estimators ofα, respec-

tively. Sinceα̂g andα̂d can be estimated separately, this procedure is by nature similar to the

construction of a new likelihoodLλ(α, θ) as a linear combination of two likelihoodsLd and

Lg asLλ(α, θ) = λLg(θ) + (1− λ)Ld(α), which may make the relationship betweenα andθ

fail to comply with Bayes’ Theorem.

McCallum et al. (2006) introduced the multi-conditional learning framework, one case

of which defined a new log-likelihoodℓMC(θ) = λ1ℓx|y(θ) + λ2ℓy|x(θ), whereℓx|y(θ) and

ℓy|x(θ) are log-likelihoods based onp(x|y) andp(y|x), respectively, as functions of a common

parameter vectorθ. As pointed out by McCallum et al. (2006), this model is sensitive to the

values ofλ1 and λ2. With both p(x|y; θ) and p(y|x; θ) derived from the joint distribution

p(x, y; θ), this model is a generative model with hybrid learning ofθ.
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Bishop and Lasserre (2007) provided a constructive Bayesian perspective to accommodate

both the generative learning and discriminative learning of a generative model. This perspective

adopted two parameter vectorsθd andθm to describe the likelihoodLg(θd, θm) based on the

joint distributionp(x, y; θd, θm):

Lg(θd, θm) = p(θd, θm)Ly|x(θd)Lx(θm) ,

whereθd andθm are parameters of a conditional distributionp(y|x) and a mixturep(x), re-

spectively. This model implies thatp(y|x; θd, θm) = p(y|x; θd) andp(x; θd, θm) = p(x; θm).

Meanwhile, bothp(y|x; θd) andp(x; θm) are derived fromp(x, y; θd, θm). Whenθd = θm = θ

and the priorp(θd, θm) is uniform, this model corresponds to classical generativelearning with

Lg(θ).

As a result of its representation ofp(x, y) in terms ofp(y|x) andp(x), such a Bayesian

blending can be naturally employed for semi-supervised learning, where the labelled observa-

tions are used forLy|x(θd) and the unlabelled observations forLx(θm) (Bishop and Lasserre,

2007). For semi-supervised learning but derived from the multi-conditional learning frame-

work, Druck et al. (2007) proposed a related model, which uses a commonθ to define a new

log-likelihood ℓMC∗(θ) = λ1ℓx(θ) + λ2ℓy|x(θ). Considering the non-convexity ofℓx(θ) and

the difference between the scales ofℓx(θ) andℓy|x(θ), the model is also sensitive to the deter-

mination ofλ1 andλ2. In addition, Druck et al. (2007) provided empirical comparison between

their model and that of Bishop and Lasserre (2007).

Raina et al. (2003) and Fujino et al. (2007) proposed the hybrid generative-discriminative

algorithm, which partitions the feature vectorx into multiple partial vectors with different

weightsθd. This leads to a parameter vector(θT , θT
d )T , whereθ is estimated generatively

while θd is estimated discriminatively. It can be regarded as a generative model using both

generative and discriminative learning, in the sense that it assumes a scaledp(x|y; θ, θd) and

the discriminative learning ofθd is based on the estimation ofθ (see Chapter 4 for details).

The focus of Chapter 3 of this thesis is on an alternative hybrid learning method, the

generative-discriminative tradeoff approach (GDT, or themixed log-likelihood method) (Ru-

binstein, 1998; Bouchard and Triggs, 2004). The GDT constructs a new log-likelihood as a

weighted average of the log-likelihoodsℓg(θ) for generative learning andℓd(α) for discrimina-

tive learning, given byℓλ(θ, α) = λℓg(θ) + (1 − λ)ℓd(α), for 0 < λ < 1. In order to couple

the two separate estimations ofθ̂ andα̂, eitherθ should be rewritten as a functionθ(α) of α, or
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α as a functionα(θ) of θ. In general,p(y|x) can be derived fromp(x, y), but not vice versa,

and the dimension ofθ is larger than that ofα, as with LDA. Therefore, it is more feasible to

useα(θ) and thus only the parameter vectorθ remains in the new log-likelihood:

ℓλ(θ) = λℓg(θ) + (1 − λ)ℓy|x(θ) ,

where, as defined earlier,ℓg(θ) =
∑n

i=1 log p(xi, yi), while

ℓy|x(θ) =

n
∑

i=1

log p(yi|xi) =

n
∑

i=1

log
πyi

p(xi|yi; θyi
)

π1p(xi|θ1) + π0p(xi|θ0)
,

a discriminative log-likelihood, but as a function ofθ rather thanα.

As with other hybrid learning techniques, the GDT is modelled throughp(y|π) andp(x|y; θg)

and thus is by nature a generative model with hybrid learning, learning the commonθ within

both likelihoods. The GDT has, through combination with thehybrid generative-discriminative

algorithm (Raina et al., 2003), also been used for semi-supervised learning (Suzuki et al., 2007).

All these hybrid learning techniques demonstrated in practice that their classification per-

formance could be superior to the generative component or the discriminative component alone.

1.4 Generative and Discriminative Hidden Markov Models

Amongst the latent (hidden) variable models for structureddata such as time series, hidden

Markov models (HMMs) for discrete-valued hidden states andstate-space models (SSMs) for

continuous-valued hidden states are widely used.

Traditionally, an HMM is generative because it models a distribution P (On
1 |Sn

1 ), the DGP

of the observed output sequence,On
1 = o1, . . . , on, given the hidden state sequence,Sn

1 =

s1, . . . , sn, and thusP (On
1 |Sn

1 ), a state-dependent term, is included in the criterion for de-

termining a stochastic optimal sequence of hidden states. Recently, Zhou (2005) proposed

a discriminative hidden Markov model (D-HMM), which includes output-dependent terms

P (st|On
1 ), t = 1, . . . , n, in the criterion, based on an assumption of “mutual information inde-

pendence”. Meanwhile, Li (2005) presented the so-called “hidden Markov models with states

depending on observations” (HMMSDO), which assume that thecurrent statest depends not

only on the last statest−1 but also on the last outputot−1, so that output-dependent terms

P (st|st−1, ot−1) are included in the criterion.

Both the D-HMM and HMMSDO show superior performance in determining the opti-

mal state sequence for certain applications. Zhou (2005) shows that the D-HMM outperforms



9

the corresponding generative hidden Markov model (G-HMM) for part-of-speech tagging and

phrase chunking; Li (2005) shows that HMMSDO outperforms the standard HMM for predic-

tion of protein secondary structures when the training set is large enough.

Chapter 6 will study the assumption of “mutual information independence” and will extend

it to derive generative (state-dependent) representations of these two discriminative (output-

dependent) HMMs.

1.5 Generative Approaches to Image Thresholding

Image thresholding is a simple and widely-used technique for segmentation, partitioning a

grey-level image into segments corresponding to differentclasses (Sahoo et al., 1988; Pal and

Pal, 1993; Sezgin and Sankur, 2004), given that the classes to some extent can be distinguished

by their grey levels. Most thresholding approaches are proposed for two-class binarisation and

are based on the grey-level histogram of an image (Sahoo et al., 1988; Sezgin and Sankur,

2004; Glasbey, 1993; Trier and Jain, 1995). Two of the most popular approaches are Otsu’s

method (Otsu, 1979) and Kittler and Illingworth’s minimum error thresholding (MET) (Kittler

and Illingworth, 1986).

Kurita et al. (1992) show that Otsu’s method is equivalent tomaximisation of the log-

likelihood based on the conditional distributionp(x|y), wherex is the grey level andy ∈ {0, 1}
is the class indicator corresponding tox, under the assumption that the grey level within each

class (denoted byx|y) follows a normal distributionsN (µy, σ
2
y) andσ2

0 = σ2
1. Kurita et al.

(1992) also shows that MET is equivalent to maximisation of the log-likelihood based on the

joint distribution p(x, y), under the assumption thatx|y ∼ N (µy, σ
2
y) andσ2

0 6= σ2
1 . Since

p(x, y) = πyp(x|y), whereπy = p(y), Otsu’s method is also equivalent to maximisation of

the log-likelihood based onp(x, y) with π0 = π1 = 0.5. In this sense, both Otsu’s method

and MET assume a DGPp(x, y); therefore, we call such approaches generative thresholding

approaches. As with Fisher’s linear discriminant, the Otsu’s original method does not assume

normally distributed classes or thatσ2
0 = σ2

1; therefore, hereafter we refer, as Otsu’s method, to

the generative method to which it is equivalent, shown in Kurita et al. (1992). In Chapter 7, we

will propose discriminative extensions of the traditionalgenerative approaches to thresholding.
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1.6 Contributions of this Thesis

The contributions of this thesis are the following.

First, Ng and Jordan (2001) claimed that there exist two distinct regimes of performance

between the generative and discriminative classifiers withregard to the training-set size; how-

ever, our empirical and simulation studies, as presented inChapter 2, suggest that it is not

so reliable to claim such an existence of the two distinct regimes. In addition, for real world

datasets, so far there is no theoretically correct, generalcriterion for choosing between the dis-

criminative and the generative approaches to classification of an observationx into a classy;

the choice depends on the relative confidence you have in the correctness of the specification

of eitherp(y|x) or p(x, y). This can be to some extent a demonstration of why Efron (1975)

and O’Neill (1980) prefer LDA but other empirical studies may prefer LLR instead. Further-

more, we suggest that pairing of either LDA assuming a commondiagonal covariance matrix

(LDA-Λ) or the naı̈ve Bayes classifier and LLR may not be perfect, andhence it may not be re-

liable for any claim that was derived from the comparison between LDA-Λ or the naı̈ve Bayes

classifier and LLR to be generalised to all generative and discriminative classifiers.

Secondly, in Chapter 3, we present the interpretation and asymptotic relative efficiency

(ARE) of the GDT approach for linear and quadratic normal discrimination without model

mis-specification, and compare its ARE with those of its generative and discriminative coun-

terparts. The classification performance of the GDT is compared with those of LDA and LLR

on simulated datasets. We argue that the GDT is a generative model integrating both dis-

criminative and generative learning. It is therefore sensitive to model mis-specification of the

data-generating process and, in practice, its discriminative component may behave differently

from a truly discriminative approach. Amongst the three approaches that we compare, the

asymptotic efficiency of the GDT is lower than that of the generative approach when no model

mis-specification occurs. In addition, without model mis-specification, LDA performs the best;

with model mis-specification, the GDT may perform the best atan optimal tradeoff between its

discriminative and generative components, and LLR, a trulydiscriminative classifier, in general

performs well when the training-sample size is reasonably large.

Thirdly, in Chapter 4, we interpret the hybrid algorithm from three perspectives, namely

class-conditional probabilities, class-posterior probabilities and loss functions underlying the

model. We suggest that the hybrid algorithm is by nature a generative model with its parame-
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ters learnt through both generative and discriminative approaches, in the sense that it assumes

a scaled data-generation process and uses scaled class-posterior probabilities to perform dis-

crimination. Our suggestion can also be applied to its multi-class extension. In addition, using

simulated and real-world data, we compare the performance of the normalised hybrid algo-

rithm as a classifier with that of the naı̈ve Bayes classifier and LLR. Our simulation studies

suggest in general the following: if the covariance matrices are diagonal matrices, the naı̈ve

Bayes classifier performs the best; if the covariance matrices are full matrices, LLR performs

the best. Our studies also suggest that the hybrid algorithmmay provide worse performance

than either the naı̈ve Bayes classifier or LLR alone.

Fourthly, based on our studies presented in Chapters 2, 3 and4, we propose in Chapter 5

a joint generative-discriminative modelling (JGD) approach to classification, by partitioning

variables into two subsets based on statistical tests of theDGP. Our JGD approach adopts

statistical tests, such as normality tests, of the assumed DGP for each variable to justify the

use of generative approaches for the variables which satisfy the tests and of discriminative

approaches for other variables. Such a partition of variables and a combination of generative

and discriminative approaches are derived in a probabilistic rather than a heuristic way. We

have concentrated on particular choices for the generativeand discriminative components of

our models, but the overall principle is quite general and can accommodate many other special

versions. Of course, we must ensure that the assumptions underlying the resulting generative

classifiers can be tested statistically. Numerical resultsfrom real UCI and gene-expression data

and from simulated data demonstrate promising performanceof this new approach for practical

application to both low- and high-dimensional data.

Fifthly, in Chapter 6, we study the assumption of “mutual information independence”,

which is used by Zhou (2005) for deriving the so-called discriminative HMM (D-HMM). We

suggest that the mutual information assumption (6.6) results in the D-HMM, while another

mutual information assumption (6.12) results in its generative counterpart, the G-HMM. How-

ever, in practice, whether or not the assumptions are reasonable and how the corresponding

HMMs perform can be data-dependent; research efforts to explore an adaptive switching be-

tween or combination of these two models may be worthwhile. Meanwhile, we suggest that

the so-called output-dependent HMMs could be represented in a state-dependent manner, and

vice versa, essentially by application of Bayes’ theorem.

Finally, in Chapter 7, we present discriminative approaches to histogram-based image
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thresholding, in which the optimal threshold is derived from the maximum likelihood based

on the conditional distributionp(y|x) of y, the class indicator of a grey levelx, givenx. The

discriminative approaches can be regarded as discriminative extensions of the traditional gen-

erative approaches to thresholding, such as Otsu’s method and Kittler and Illingworth’s MET.

As illustrations, we develop discriminative versions of Otsu’s method and MET by using dis-

criminant functions corresponding to the original methodsto representp(y|x). These two

discriminative thresholding approaches are compared withtheir original counterparts on se-

lecting thresholds for a variety of histograms of mixture distributions. Results show that the

discriminative Otsu method consistently provides relatively good performance. Although be-

ing of higher computational complexity than the original methods in parameter estimation, its

robustness and model simplicity can justify the discriminative Otsu method for scenarios in

which the risk of model mis-specification is high and the computation is not demanding.



Chapter 2

Comparison between Generative and

Discriminative Models

In this chapter, we first replicate and extend experiments onthe 15 real-world datasets used

by Ng and Jordan (2001), for empirical comparison between LDA-Λ or the naı̈ve Bayes clas-

sifiers and linear logistic regression (LLR). Then, as Ng andJordan (2001) claim that there are

two distinct regimes of performance with regard to the training-set size, we clarify such a claim

further through commenting on the reliability of the two regimes and the parity between the

compared classifiers.

2.1 Introduction

Comparison of generative and discriminative classifiers isan ever-lasting topic (Efron, 1975;

O’Neill, 1980; Titterington et al., 1981; Rubinstein and Hastie, 1997; Ng and Jordan, 2001).

Ng and Jordan (2001) presented some theoretical and empirical comparisons between lin-

ear logistic regression and the naı̈ve Bayes classifier. Thenaı̈ve Bayes classifier is a generative

classifier, which assumes statistically independent featuresx within classesy and thus diago-

nal covariance matrices within classes; it is equivalent tonormal-based linear (for a common

diagonal covariance matrix) or quadratic (for unequal diagonal within-class covariance matri-

ces) discriminant analysis, whenx is assumed normally distributed for each class. The results

in Ng and Jordan (2001) suggested that, between the two classifiers, there were two distinct

regimes of discriminant performance with respect to the training-set size. More precisely, they

13
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proposed that the discriminative classifier had lower asymptotic error rate while the genera-

tive classifier may approach its (higher) asymptotic error rate much faster. In other words, the

discriminative classifier performs better with larger training sets while the generative classifier

does better with smaller training sets.

The setting for the theoretical proof and empirical evidence in Ng and Jordan (2001) in-

cludes a binary class labely, e.g., y ∈ {1, 2}, ap-dimensional feature vectorx and the assump-

tion of conditional independence amongstx|y, the features within a class.

In the case of discrete features, each featurexi, i = 1, . . . , p, independent of other features

within x, is assumed within a class to be a binomial variable such thatits valuexi ∈ {0, 1}
within each class. We observe, however, this may not guarantee the discriminant function

λ(α) = log{p(y = 1|x)/p(y = 2|x)}, whereα is a parameter vector, to be linear; therefore,

the naı̈ve Bayes classifier may not be a partner of linear logistic regression as a generative-

discriminative pair.

In the case of continuous features,x|y is assumed to follow Gaussian distributions with

equal covariance matrices across the two classes,i.e., Σ1 = Σ2 and, in view of the conditional

independence assumption, both covariance matrices are equal to a diagonal matrixΛ. All of

the observed values of the features are rescaled so thatxi ∈ [0, 1].

Based on such a setting, Ng and Jordan (2001) compared two so-called generative-discriminative

pairs: one is for the continuous case, comparing LDA assuming a common diagonal covariance

matrix Λ (denoted by LDA-Λ hereafter) vs. linear logistic regression, and the other isfor the

discrete case, comparing the naı̈ve Bayes classifier vs. linear logistic regression.

The conditional independence amongst the features within aclass is a necessary condi-

tion for the naı̈ve Bayes classifier and LDA-Λ, but it is not a necessary condition for linear

logistic regression. Therefore, the generative-discriminative pair of LDA with a common full

covariance matrixΣ (denoted by LDA-Σ hereafter) vs. linear logistic regression also merits

investigation. In addition, a comparison of quadratic normal discriminant analysis (QDA) with

unequal diagonal matricesΛ1 andΛ2 (denoted by QDA-Λg hereafter) and unequal full covari-

ance matricesΣ1 andΣ2 (denoted by QDA-Σg hereafter) with quadratic logistic regression

may provide an interesting extension of the work of Ng and Jordan (2001).

Ng and Jordan (2001) reported experimental results on 15 real-world datasets, 8 with only

continuous and binary features and 7 with only discrete features, from the UCI machine learn-

ing repository (Asuncion and Newman, 2007); this repository stores more than 100 datasets
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contributed and widely used by the machine learning community, as a benchmark for empir-

ical studies of machine learning approaches. As pointed outin Ng and Jordan (2001), there

were a few cases (2 out of 8 continuous cases and 4 out of 7 discrete cases) that did not support

the better asymptotic performance of the discriminative classifier, primarily because of the lack

of large enough training sets. However, it is known that the performance of a classifier varies

to some extent with the features selected.

In this context, we first replicate experiments on these 15 datasets, with and without step-

wise variable selection being performed on the full linear logistic regression model using all the

observations of each dataset. In the stepwise variable selection process, the decision to include

or exclude a variable is based on the calculation of the Akaike information criterion (AIC).

Furthermore, in the 8 continuous cases, both LDA-Λ and LDA-Σ are compared with linear lo-

gistic regression. Then we will extend the comparison to between QDA and quadratic logistic

regression for the 8 continuous UCI datasets and finally to simulated continuous datasets.

The implementations in R (http://www.r-project.org/) of LDA and QDA are rewritten from

a Matlab functioncda for classical linear and quadratic discriminant analysis (Verboven and

Hubert, 2005). Logistic regression is implemented by an R functionglm from a standard pack-

agestats in R, and the naı̈ve Bayes classifier is implemented by an R functionnaiveBayesfrom

a contributed packagee1071for R.

In addition, similarly to what was done by Ng and Jordan (2001), for each sampled training-

set sizem, we perform 1000 random splits of each dataset into a training set of sizem and a

test set of sizeN −m, whereN is the number of observations in the whole dataset, and report

the average of the misclassification error rates over these 1000 test sets. The training set is

required to have at least 1 sample for each of the two classes,and, for discrete datasets, to have

all the levels of the features presented by the training samples, otherwise the prediction for the

test set may be asked to predict on some new levels for which noinformation has been provided

in the training process.

Meanwhile, we observe that, in order to have all the coefficients of predictor variables in

the model estimated in our implementation of logistic regression byglm, the numberm of

training samples should be larger than the numberp̃ of predictor variables, wherẽp = p for the

continuous cases if allp features are used for the linear model. More attention should be paid to

the discrete cases with multinomial features in the model, where more dummy variables have

to be used as the predictor variables, with the consequence that p̃ could be much larger thanp,
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e.g., p̃ = 3p for the linear model if all the features have 4 levels. In other words, although we

may report misclassification error rates for logistic regression with smallm, it is not reliable

for us to base any general claim on those ofm smaller thañp, the actual number of predictor

variables used by the logistic regression model.

2.2 Linear Discrimination On Continuous Datasets

For the continuous datasets, as was done by Ng and Jordan (2001), all the multinomial features

are removed so that only continuous and binary featuresxi are kept and their valuesxi are

rescaled into[0, 1]. Any observation with missing features is removed from the datasets, as is

any feature with only a single value for all the observations.

In addition, before carrying out the classification, we perform the Shapiro-Wilk test for

within-class normality for each featurexi|y and Levene’s test for homogeneity of variance

across the two classes. Levene’s test is less sensitive to deviations from normality than is the

Bartlett test, another test for homogeneity of variance. For the following datasets, the signifi-

cance level is set at0.05, and we observe that null hypotheses of normality and homogeneity

of variance are mostly rejected by the tests at that significance level.

Dataset N0 N p pAIC pSW pL 1{2R−Λ} 1{2R−Σ}

Pima 768 768 8 7 8 5 1 0

Adult 32561 1000 6 6 6 4 1 1

Boston 506 506 13 10 13 12 1 1

Optdigits 0-1 1125 1125 52 5 52 45 1 1

Optdigits 2-3 1129 1129 57 9 57 37 1 0

Ionosphere 351 351 33 20 33 27 1 1

Liver disorders 345 345 6 6 6 1 1 1

Sonar 208 208 60 37 59 16 1 1

Table 2.1: Description of continuous datasets.

A brief description of the continuous datasets can be found in Table 2.1, which lists, for

each dataset, the total numberN0 of the observations, the numberN of the observations that we

use after the pre-processing mentioned above, the total numberp of continuous or binary fea-
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tures, the numberpAIC of features selected by AIC, the numberpSW of features for which the

null hypotheses were rejected by the Shapiro-Wilk test and the corresponding numberpL for

Levene’s test, the indicator1{2R−Λ} ∈ {1, 0} of whether or not the two regimes are observed

between LDA-Λ and linear logistic regression and the indicator1{2R−Σ} ∈ {1, 0} with regard

to LDA-Σ. Note that, for some large datasets such as “Adult” (and “Sick” in Section 2.4), in

order to reduce computational complexity without degrading the validity of the comparison

between the classifiers, we randomly sample observations with the class prior probability kept

unchanged.

Our results are shown in Figure 2.1. Since with variable selection by AIC the results

conform more to the claim of two regimes by Ng and Jordan (2001), we show such results if

they are different from those without variable selection. Meanwhile, in the figures hereafter

we use the same annotations of the vertical and horizontal axes and the same line type as those

in Ng and Jordan (2001). All the observations from these figures are only valid form > p,

with the intercept inλ(α) taken into account.

In general, our study of these continuous datasets suggeststhe following conclusions.

1. In the comparison of LDA-Λ vs. linear logistic regression, the pattern of our results can

be said to be similar to that of Ng and Jordan (2001).

2. The performance of LDA-Σ is worse than that of LDA-Λ when the training-set sizem is

small, but better than that of the latter whenm is large.

3. The performance of LDA-Σ is better than that of linear logistic regression whenm is

small, but is more or less comparable with that of the latter whenm is large.

4. Pre-processing with variable selection can reveal the distinction in performance of gen-

erative and discriminative classifiers with fewer trainingsamples.

5. Therefore, considering LDA-Λ vs. linear logistic regression, there is strong evidence to

support the claim that the discriminative classifier has lower asymptotic error rate while

the generative classifier may approach its (higher) asymptotic error rate much faster.

However, considering LDA-Σ vs. linear logistic regression, the evidence is not so strong,

although the claim may still be made.
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Figure 2.1: Plots of misclassification error rate vs. training-set sizem (averaged over 1000

random training/test set splits) on the continuous UCI datasets, with regard to linear discrimi-

nation.
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2.3 Quadratic Discrimination On Continuous Datasets

As a natural extension of the comparison between LDA-Λ (with a common diagonal covari-

ance matrixΛ across the two classes), LDA-Σ (with a common full covariance matrixΣ) and

linear logistic regression that was presented in Section 2.2, this section presents the comparison

between QDA-Λg (with two unequal diagonal covariance matricesΛ1 andΛ2), QDA-Σg (with

two unequal full covariance matricesΣ1 andΣ2) and quadratic logistic regression.

Using the 8 continuous UCI datasets, all the settings are thesame as those in Section 2.2

except for the following aspects.

First, considering that in the quadratic logistic regression model there arep(p − 1)/2 inter-

action terms between the features in ap-dimensional feature space, a large number of interac-

tions when the dimensionalityp is high, the model is constrained to contain only the intercept,

thep features and theirp squared terms, so as to make the estimation of the model more feasible

and interpretable.

Secondly, for the same reason as explained at the end of Section 2.1, in the reported plots

of misclassification error rate vs.m without variable selection, only the results form > 2p are

reliable for comparison since there are2p predictor variables in the quadratic logistic regression

model.

Thirdly, the datasets are randomly split into training setsand test sets 100 times rather

than 1000 times for each sampled training-set sizem because of the higher computational

complexity of the quadratic models compared with that of thelinear models.

In general, our study of these continuous datasets, as shownin Figure 2.2, suggests quite

similar conclusions to those in Section 2.3, through substituting QDA-Λg for LDA-Λ, QDA-Σg

for LDA-Σ, and quadratic logistic regression for linear logistic regression.

2.4 Linear Discrimination On Discrete Datasets

For the discrete datasets, as was done by Ng and Jordan (2001), all the continuous features

are removed and only the discrete features are used. The results are entitled ‘multinomial’ in

following figures if a dataset includes multinomial features, and otherwise are entitled ‘bino-

mial’. Meanwhile, any observation with missing features isremoved from the datasets, as is

any feature with only a single value for all the observations.
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Figure 2.2: Plots of misclassification error rate vs. training-set sizem (averaged over 100

random training/test set splits) on the continuous UCI datasets, with regard to quadratic dis-

crimination.
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Dataset N0 N p pAIC 1{2R−NB}

Promoters 106 106 57 7 0

Lymphography 148 142 17 10 0

Breast cancer 286 277 9 4 0

Voting recorders 435 232 16 11 1

Lenses 24 24 4 1 0

Sick 2800 500 12 4 1

Adult 32561 1000 5 5 1

Table 2.2: Description of discrete datasets.

A brief description of the discrete datasets can be found in Table 2.2, which includes the

indicator 1{2R−NB} ∈ {1, 0} of whether or not the two regimes are observed between the

naı̈ve Bayes classifier and linear logistic regression. Ourresults are shown in Figure 2.3. All

the observations from these figures are only valid form > p̃, with dummy variables taken into

account for the multinomial features.

In general, our study of these discrete datasets suggests that, in the comparison of the naı̈ve

Bayes classifier vs. linear logistic regression, the pattern of our results can be said to be similar

to that of Ng and Jordan (2001).

2.5 Linear Discrimination On Simulated Datasets

In this section, 16 simulated datasets are used to compare the performance of LDA-Λ, LDA-Σ

and linear logistic regression. The samples are simulated from bivariate normal distributions,

bivariate Student’st-distributions, bivariate log-normal distributions and mixtures of 2 bivari-

ate normal distributions, with 4 datasets for each of these 4types of distribution. Within each

dataset there are 1000 simulated samples, which are dividedequally into 2 classes. The sim-

ulations from the bivariate log-normal distributions and normal mixtures are based on an R

functionmvrnormfor simulating from a multivariate normal distribution from a contributed R

packageMASS, and the simulation from the bivariate Student’st-distribution is implemented

by an R functionrmvt from a contributed R packagemvtnorm . Differently from the UCI

datasets, the simulated data are not rescaled into the range[0, 1] and no variable selection is
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Figure 2.3: Plots of misclassification error rate vs. training-set sizem (averaged over 1000 ran-

dom training/test set splits) on the discrete UCI datasets,with regard to linear discrimination.
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used since the feature space is only of dimension two.

2.5.1 Normally Distributed Data

Four simulated datasets are randomly generated from two bivariate normal distributions,N (µ1,Σ1)

andN (µ2,Σ2), whereµ1 = (1, 0)T , µ2 = (−1, 0)T andΣ1 andΣ2 are subject to four differ-

ent types of constraint specified as having equal diagonal orfull covariance matricesΣ1 = Σ2

and having unequal diagonal or full covariance matricesΣ1 6= Σ2.

Similarly to what was done for the UCI datasets, for each sampled training-set sizem, we

perform 1000 random splits of the 1000 samples of each simulated dataset into a training set

of sizem and a test set of size1000 − m, and report the average misclassification error rates

over these 1000 test sets. The training set is required to have at least 1 sample from each of the

two classes. In such a way, LDA-Λ and LDA-Σ are compared with linear logistic regression,

in terms of misclassification error rate, with the followingresults shown in Figure 2.4.

The dataset for the top-left panel of Figure 2.4 hasΣ1 = Σ2 = Λ with a diagonal matrix

Λ = Diag(1, 1), such that the data satisfy the assumptions underlying LDA-Λ. The dataset

for the top-right panel hasΣ1 = Σ2 = Σ with a full matrix Σ =





1 0.5

0.5 1



, such that

the data satisfy the assumptions underlying LDA-Σ. The dataset for the bottom-left panel has

Σ1 = Λ1,Σ2 = Λ2 with diagonal matricesΛ1 = Diag(1, 1) andΛ2 = Diag(0.25, 0.75), such

that the homogeneity of the covariance matrices is violated. The dataset for the bottom-right

panel hasΣ1 =





1 0.5

0.5 1



 andΣ2 =





0.25 0.5

0.5 1.75



, such that both the homogeneity

of the covariance matrices and the conditional independence (uncorrelatedness) of the features

within a class are violated.

2.5.2 Student’st-Distributed Data

Four simulated datasets are randomly generated from two bivariate Student’st-distributions,

both distributions with degrees of freedomν = 3. The values of class meansµ1 andµ2, the

four types of constraint onΣ1 andΣ2, and other settings of the experiments are all the same as

those in Section 2.5.1.

The results are shown in Figure 2.5, where for each panel the constraint with regard to

Σ1 andΣ2 is the same as the corresponding one in Figure 2.4, except fora scalar multiplier
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Figure 2.4: Plots of misclassification error rate vs. training-set sizem (averaged over 1000

random training/test set splits) on simulated bivariate normally distributed data for two classes.
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Figure 2.5: Plots of misclassification error rate vs. training-set sizem (averaged over 1000 ran-

dom training/test set splits) on simulated bivariate Student’s t-distributed data for two classes.
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ν/(ν − 2).

2.5.3 Log-normally Distributed Data

Four simulated datasets are randomly generated from two bivariate log-normal distributions,

whose logarithms are normally distributed asN (µ1,Σ1) andN (µ2,Σ2), respectively. The

values ofµ1 and µ2, the four types of constraint onΣ1 and Σ2, and other settings of the

experiments are all the same as those in Section 2.5.1.

By definition, if ap-variate random vectorx ∼ N (µ(x),Σ(x)), then ap-variate vector

x̃ of the exponentials of the components ofx follows ap-variate log-normal distribution,i.e.,

x̃ = exp(x) ∼ logN (µ(x̃),Σ(x̃)), where thei-th elementµ(i)(x̃) of the mean vector and the

(i, j)-th elementΣ(i,j)(x̃) of the covariance matrix,i, j = 1, . . . , p, are

µ(i)(x̃) = eµ(i)(x)+
Σ(i,i)(x)

2 ,

Σ(i,j)(x̃) = (eΣ(i,j)(x) − 1)eµ(i)(x)+µ(j)(x)+
Σ(i,i)(x)+Σ(j,j)(x)

2 .

It follows that, if the components of its logarithmx are independent and normally distributed,

the components of the log-normally distributed multivariate random variablẽx are uncorre-

lated. In other words, ifx ∼ N (µ(x),Λ(x)), thenx̃ = exp(x) ∼ logN (µ(x̃),Λ(x̃)). How-

ever, as shown by the equations above,Λ(x̃) is determined by bothµ(x) andΛ(x), so that

Σ1(x) = Σ2(x) may not meanΣ1(x̃) = Σ2(x̃). Therefore, considering in our casesµ1 6= µ2,

it can be expected that the pattern of performance of the classifiers for the datasets with equal

covariance matricesΣ1 = Σ2 in the underlying normal distributions could be similar to that

for the datasets with unequal covariance matricesΣ1 6= Σ2, since in both cases the covariance

matrices of the log-normally distributed variables are in fact unequal. In this context, it makes

more sense to compare the classifiers in situations with diagonal and full covariance matrices of

the underlying normally distributed data, respectively, rather than those with equal and unequal

covariance matrices.

The results are shown in Figure 2.6, where for each panel the constraint with regard toΣ1

andΣ2 is the same as the corresponding one in Figure 2.4.

2.5.4 Normal Mixture Data

Compared with the normal distribution, the Student’st-distribution and the log-normal distri-

bution used in Sections 2.5.1, 2.5.2 and 2.5.3 for the comparison of the classifiers, the mixture
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Figure 2.6: Plots of misclassification error rate vs. training-set sizem (averaged over 1000

random training/test set splits) on simulated bivariate log-normally distributed data for two

classes.
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of normal distributions is a better approximation to real data in a variety of situations. In

this section, 4 simulated datasets, each consisting of 1000samples, are randomly generated

from two mixtures, each of two bivariate normal distributions, with 250 samples from each

mixture component. The two components,A andB, of the mixture for Class 1 are normally

distributed with distributionsN (µ1A,Σ1) andN (µ1B ,Σ1), respectively, whereµ1A = (1, 0)T

andµ1B = (3, 0)T ; and the two components,C andD, of the mixture for Class 2 are nor-

mally distributed with probability density functionsN (µ2C ,Σ2) andN (µ2D,Σ2), respec-

tively, whereµ2C = (−1, 0)T andµ2D = (−3, 0)T . In such a way, whenΣ1 andΣ2 are

subject to the four different types of constraint with regard to Σ1 andΣ2 as previously dis-

cussed, the covariance matrices of the two mixtures will be subject to the same constraints.

Other settings of the experiments are all the same as that in Section 2.5.1.
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Figure 2.7: Plots of misclassification error rate vs. training-set sizem (averaged over 1000

random training/test set splits) on simulated bivariate 2-component normal mixture data for

two classes.
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The results are shown in Figure 2.7, where for each panel the constraint with regard toΣ1

andΣ2 is the same as the corresponding one in Figure 2.4.

2.5.5 Summary of Linear Discrimination on Simulated Datasets

In general, our study of these simulated continuous datasets suggests the following conclusions.

1. When the data are consistent with the assumptions underlying LDA-Λ or LDA-Σ, both

methods can perform the best among them and linear logistic regression, throughout the

range of the training-set sizem in our study; in these cases, there is no evidence to

support the claim that the discriminative classifier has lower asymptotic error rate while

the generative classifier may approach its (higher) asymptotic error rate much faster.

2. When the data violate the assumptions underlying the LDAs, linear logistic regression

generally performs better than the LDAs, in particular whenm is large; in this case,

there is strong evidence to support the claim that the discriminative classifier has lower

asymptotic error rate, but there is no convincing evidence to support the claim that the

generative classifier may approach its (higher) asymptoticerror rate much faster.

3. When the covariance matrices are non-diagonal, LDA-Σ performs remarkably better

than LDA-Λ and more remarkably whenm is large; when the covariance matrices are

diagonal, LDA-Λ performs generally better than LDA-Σ and more so whenm is large.

2.6 Comments on Comparison of Discriminative and Generative

Classifiers

Based on the theoretical analysis and empirical comparisonbetween LDA-Λ or the naı̈ve Bayes

classifiers and linear logistic regression, Ng and Jordan (2001) claim that there are two distinct

regimes of performance with regard to the training-set size. Such a claim can be clarified

further through commenting on the reliability of the two regimes and the parity between the

compared classifiers.
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2.6.1 On the Two Regimes of Performance regarding Training-Set Size

Suppose we have a training set{(y(i)
tr ,x

(i)
tr )}m

i=1 of m independent observations and a test set

{(y(i)
te ,x

(i)
te )}N−m

i=1 of N − m independent observations, wherex(i) = (x
(i)
1 , . . . , x

(i)
p )T is the

i-th observedp-variate feature vectorx, andy(i) ∈ {1, 2} is its observed univariate class la-

bel. Let us also assume that each observation{(y(i),x(i))} follows an identical distribution

so that the testing based on the training results makes sense. In order to simplify the nota-

tion, letxtr denote{(x(i)
tr )}m

i=1, and similarly definexte, y
tr

andy
te

. Meanwhile, a discrimi-

nant functionλ(α) = log{p(y = 1|x)/p(y = 2|x)}, which is equivalent to a Bayes classifier

ŷ(x) = argmaxy p(y|x), is used for the 2-class classification.

Discriminative classifiers estimate the parameterα of the discriminant functionλ(α) through

maximising a conditional probabilityargmaxα p(y
tr
|xtr, α); such an estimation procedure can

be regarded as a kind of maximum likelihood estimation withp(y
tr
|xtr, α) as the likelihood

function. It is well known that, if the0 − 1 loss function is used so that the misclassification

error rate is the total risk, the Bayes classifiers will attain the minimum error rate. This im-

plies that, under such a loss function, the discriminative classifiers are in fact using the same

criterion to optimise the estimation of the parameterα and the performance of classification.

In this context, the following claims, supported by the simulation study in Section 2.5, can

be proposed.

• If the same dataset is used to train and test,i.e., xtr as xte and y
tr

as y
te

, then the

discriminative classifiers should always provide the best performance, no matter how

large the training-set sizem is.

• If m is large enough to make(y
tr

,xtr) representative of all the observations includ-

ing (y
te

,xte), then the discriminative classifiers should also provide the best prediction

performance on(y
te

,xte), i.e., with the best asymptotic performance.

• We note that all of the above claims are based on the premise that the modelling of

p(y|x, α), such as the linearity ofλ(α), is correctly specified for all the observations,

and thus the only work that remains is to estimate accuratelythe parameterα.

• If m is not large enough to make(y
tr

,xtr) representative of all the observations, and

(y
te

,xte) is not exactly the same as(y
tr

,xtr), then the discriminative classifiers may
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not necessarily provide the best prediction performance on(y
te

,xte), even though the

modelling ofp(y|x, α) may be correct.

Generative classifiers estimate the parameterα of the discriminant functionλ(α) through

first maximising a joint probabilityargmaxθ p(y
tr

,xtr|θ) to obtain a maximum likelihood es-

timate (MLE) θ̂ of θ, the parameter of the joint distribution of(y,x), and then calculatêα as a

functionα(θ) at θ̂. Under some regularity conditions, such as the existence ofthe first and sec-

ond derivatives of the log-likelihood function and the inverse of the Fisher information matrix

I(θ), the MLE θ̂ is asymptotically unbiased, efficient and normally distributed. Accordingly,

by the delta method,̂α is also asymptotically normally distributed, unbiased andefficient, given

the existence of the first derivative of the functionα(θ).

Therefore, the following claims, supported by the simulation study in Section 2.5, can be

proposed.

• Asymptotically, the generative classifiers will provide the best prediction performance on

(y
te

,xte). However, this is dependent on the premise thatp(y,x|θ) is correctly specified

for all the observations.

• If m is large enough to make(y
tr

,xtr) representative of all the observations including

(y
te

,xte), then the generative classifiers should also provide the best prediction perfor-

mance on(y
te

,xte), i.e., with the best asymptotic performance.

• We note that all of the above claims are based on the premise that thatp(y,x|θ) is cor-

rectly specified for all the observations.

• If m is not large enough to make(y
tr

,xtr) representative of all the observations, then

the generative classifiers may not necessarily provide the best prediction performance on

(y
te

,xte).

In summary, it is not so reliable to claim the existence of thetwo distinct regimes of per-

formance between the generative and discriminative classifiers with regard to the training-set

sizem. For real world datasets such as those demonstrated in Sections 2.2 and 2.4, there is no

theoretically correct, general criterion for choosing between the discriminative and the gener-

ative classifiers; the choice depends on the relative confidence we have in the correctness of

the specification of eitherp(y|x) or p(y,x). This can be to some extent a demonstration of
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why Efron (1975) and O’Neill (1980) prefer LDA but other empirical studies may prefer linear

logistic regression instead.

2.6.2 On the Pairing of LDA-Λ/Näıve Bayes and Linear Logistic Regression/GAM

As mentioned in Section 2.1, first, the naı̈ve Bayes classifier cannot guarantee the linear for-

mulation of the discriminant functionλ(α) = log{p(y = 1|x)/p(y = 2|x)}, and, secondly,

the conditional independence amongst the multiple features within a class is a necessary con-

dition for the naı̈ve Bayes classifier and LDA-Λ with a diagonal covariance matrixΛ but not

for linear logistic regression, although in the latter the discriminant functionλ(α) is modelled

as a linear combination of separate features. Therefore, the comparison between a generative-

discriminative pair of LDA-Λ/naı̈ve Bayes classifier vs. linear logistic regression should be

interpreted with caution, in particular when the data do notsupport the assumption of condi-

tional independence ofx|y that may shed unfavourable light on the simplified generative side,

LDA-Λ and the naı̈ve Bayes classifier.

In this section, we will illustrate such pairing of two generative-discriminative pairs: one is

LDA-Λ vs. linear logistic regression (Ng and Jordan, 2001), and the other is the naı̈ve Bayes

classifier vs. generalised additive model (GAM) (Rubinstein and Hastie, 1997).

2.6.2.1 LDA-Λ vs. Linear Logistic Regression

Consider a feature vectorx = (x1, . . . , xp)
T and a binary class labely = 1, 2.

Linear logistic regression, one of the discriminative classifiers that do not assume any dis-

tribution p(x|y) of the data, is modelled directly with a linear discriminantfunction as

λdis(α) = log
p(y = 1|x)

p(y = 2|x)
= log

π1

π2
+ log

p(x|y = 1)

p(x|y = 2)
= β0 + βT x ,

wherep(y = k) = πk, αT = (β0, β
T ) andβ is a parameter vector ofp elements. By “linear”,

we mean a scalar-valued function of a linear combination of the featuresx1, . . . , xp of an

observed feature vectorx.

In contrast, LDA-Λ, one of the generative classifiers, assumes that the data arise from two

p-variate normal distributions with different means but thesame diagonal covariance matrix

such that(x|y = k; θ) ∼ N (µk,Λ), k = 1, 2, whereθ = (µk,Λ); this implies an assumption

of conditional independence between any two featuresxi|y andxj |y, i 6= j, within a class. The
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density function of(x|y = k; θ) can be written as

p(x|y = k; θ) =
{

eµT
k

Λ−1
x

}

{

1
√

(2π)p|Λ|
e−

1
2
µT

k
Λ−1µk

}

{

e−
1
2
x

T Λ−1
x

}

,

which leads to a linear discriminant function

λgen(α) = log
p(y = 1|x)

p(y = 2|x)
= log

π1

π2
+ log

A(θ1, η)

A(θ2, η)
+ (θ1 − θ2)

T x ,

whereθk = µT
k Λ−1, η = Λ−1 andA(θk, η) = 1√

(2π)p|Λ|
e−

1
2
µT

k
Λ−1µk .

Similarly, by assuming that the data arise from twop-variate normal distributions with

different means but the same full covariance matrix such that (x|y = k; θ) ∼ N (µk,Σ),

k = 1, 2, we can obtain the same formula asλgen(α) but with θk = µT
k Σ−1, η = Σ−1 and

A(θk, η) = 1√
(2π)p|Σ|

e−
1
2
µT

k
Σ−1µk , which leads to the linear discriminant function of LDA-Σ.

Therefore, we could rewriteθ asθ = (θk, η), whereθk is a class-dependent parameter vector

while η is a common parameter vector across the classes.

It is clear that the assumption of conditional independenceamongst the features within a

class is not a necessary condition for a generative classifier to attain a linearλgen(α). In fact, as

pointed out by O’Neill (1980), if the feature vectorx follows a multivariate exponential family

distribution with the density or probability mass functionwithin a class being

p(x|y = k, θk) = eθT
k
xA(θk, η)h(x, η), k = 1, 2 ,

the generative classifiers will attain a linearλgen(α).

2.6.2.2 Näıve Bayes vs. Generalised Additive Model (GAM)

As with logistic regression, a GAM does not assume any distribution p(x|y) for the data; it is

modelled directly with a discriminant function as a sum ofp functionsf(xi), i = 1, . . . , p, of

thep featuresxi separately (Rubinstein and Hastie, 1997); that is

λdis(α) = log
p(y = 1|x)

p(y = 2|x)
= log

π1

π2
+

p
∑

i=1

f(xi) .

Meanwhile, besides the assumption of the distribution of(x|y), a fundamental assumption

underlying the naı̈ve Bayes classifier is the conditional independence amongst thep features

within a class, so that the joint probability isp(x|y) =
∏p

i=1 p(xi|y). It follows that the

discriminant functionλ(α) is

λgen(α) = log
p(y = 1|x)

p(y = 2|x)
= log

π1

π2
+

p
∑

i=1

log
p(xi|y = 1)

p(xi|y = 2)
.
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It is clear, as pointed out by Rubinstein and Hastie (1997), that the naı̈ve Bayes classifier

is a specialised case of a GAM, withf(xi) = log{p(xi|y = 1)/p(xi|y = 2)}. Furthermore,

GAMs may not necessarily assume conditional independence.

One sufficient condition that leads to another specialised case of a GAM (we call it Q-

GAM) is that p(x|y) = q(x)
∏p

i=1 q(xi|y), whereq(x) is common across the classes but

cannot be further factorised into a product of functions of individual features as
∏p

i=1 q(xi).

In such a case, the assumption of conditional independence betweenxi|y andxj |y, i 6= j, is

invalid but we still havef(xi) = log{q(xi|y = 1)/q(xi|y = 2)}, whereq(xi|y) is different

from the marginal probabilityp(xi|y) that is used by the naı̈ve Bayes classifier.

In summary, considering the parity betweenλgen(α) andλdis(α) and thus that, between

two pairs, LDA-Σ vs. linear logistic regression and Q-GAM vs. GAM in terms of classifica-

tion, neither classifier assumes conditional independenceof x|y amongst the features within

a class, which is an elementary assumption underlying LDA-Λ and the naı̈ve Bayes classifier.

Therefore, it may not be reliable for any claim that is derived from the comparison between

LDA-Λ or the naı̈ve Bayes classifier and linear logistic regression to be generalised to all the

generative and discriminative classifiers.



Chapter 3

On the Generative-Discriminative

Tradeoff Approach

In this chapter, we first briefly introduce the generative-discriminative tradeoff method (GDT) (Ru-

binstein, 1998; Bouchard and Triggs, 2004; Bouchard, 2007)and present its interpretation, then

compare its asymptotic efficiency with those of its generative and discriminative counterparts

for linear and quadratic normal discrimination when there is no model mis-specification, and

finally compare the performance of the GDT, LDA and LLR methods for two-class discrimi-

nation using simulated datasets.

3.1 Introduction

The GDT constructs a new log-likelihood as a weighted average of the log-likelihoodsℓg(θ)

for generative learning andℓd(α) for discriminative learning, given byℓλ(θ, α) = λℓg(θ) +

(1− λ)ℓd(α), for 0 < λ < 1. In order to couple the two separate estimations ofθ̂ andα̂, either

θ should be rewritten as a functionθ(α) of α, or α as a functionα(θ) of θ. In general,p(y|x)

can be derived fromp(x, y), but not vice versa, and the dimension ofθ is larger than that ofα,

as with LDA. Therefore, it is more feasible to useα(θ) and thus only the parameter vectorθ

remains in the new log-likelihood:

ℓλ(θ) = λℓg(θ) + (1 − λ)ℓy|x(θ) ,

35
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where, as defined earlier,ℓg(θ) =
∑n

i=1 log p(xi, yi) andyi ∈ {0, 1}, while

ℓy|x(θ) =

n
∑

i=1

log p(yi|xi) =

n
∑

i=1

log
πyi

p(xi|yi; θyi
)

π1p(xi|θ1) + π0p(xi|θ0)
,

a discriminative log-likelihood, but as a function ofθ rather thanα.

As with other hybrid learning techniques, the GDT is modelled throughp(y|π) andp(x|y; θg)

and thus is by nature a generative model with hybrid learning, learning the commonθ within

both likelihoods.

From a probabilistic point of view, if there exists a distribution

p(x, y; θ, λ) = c(λ)p(x, y; θ)λp(y|x; θ)1−λ ,

then

argmax
θ

ℓλ(θ) = argmax
θ

n
∑

i=1

log p(xi, yi; θ, λ) .

To justify that the GDT can be derived from a well-defined model, Bouchard (2007) provides

a joint distribution

Q({(xi, yi)}n
i=1; θ, λ) = (1 − ς(λ))

n
∏

i=1

p(yi|xi; θ)U(xi) + ς(λ)

n
∏

i=1

p(xi, yi; θ) ,

whereU(xi) is not necessarily equal top(xi), andς(λ) is a function satisfying

argmax
θ

ℓλ(θ) = argmax
θ

Q({(xi, yi)}n
i=1; θ, λ) .

Some algebra shows thatℓy|x(θ) = ℓg(θ)− ℓx(θ), whereℓx(θ) =
∑n

i=1 log(π1p(xi|θ1) +

π0p(xi|θ0)) is the log-likelihood of a 2-component mixture. It follows that, first,ℓλ(θ) =

ℓg(θ) + (λ − 1)ℓx(θ), which indicates that the GDT can be viewed as regularised generative

learning; secondly,ℓλ(θ) = ℓy|x(θ)+λℓx(θ), which indicates that the GDT can also be viewed

as regularised discriminative learning; both regularisation penalties are determined by mixture

data (Rubinstein, 1998). Furthermore, withp(y) known andλ2 = 1−λ1, the multi-conditional

learning framework (McCallum et al., 2006) can be equivalent to the GDT with regard to

parameter estimation.

Maximization ofℓλ(θ), with respect toθ, leads to an estimator̂θ of θ with
√

n(θ̂ − θ) ∼
AN (0,Σλ(θ̂)), say, for certainΣλ(θ̂). Based on this, as in the generative approaches, we can

derive the estimator̂α of α with
√

n(α̂ − α) ∼ AN (0,Σλ(α̂)), for certainΣλ(α̂).

In addition, encouraging results from two simulation experiments in Bouchard and Triggs

(2004), in which the GDT assumes for the sub-populations twonormal distributions with a
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common diagonal covariance matrixΛ, imply, in the sense of minimum logistic loss, the fol-

lowing conclusions.

1. Without mis-specification, the generative component alone, withλ = 1, which in fact

corresponds to LDA with a commonΛ (hereafter denoted by LDA-Λ), has the best per-

formance while the discriminative component alone, withλ = 0, has the worst perfor-

mance.

2. With mis-specification, the performance of the discriminative component alone, with

λ = 0, improves as the training-set sizen increases, starting from being worse than that

of the generative component alone to being better.

3. With mis-specification, the GDT, with0 < λ < 1, has the best performance, for certain

λ.

We make the following observations: implication (1) conforms to the results of Efron

(1975) and O’Neill (1980) that a generative model (LDA) enjoys better asymptotic classifi-

cation performance than its discriminative counterpart (LLR); implication (2) conforms to the

results of Ng and Jordan (2001); while implication (3) conforms at an abstract level to those of

other hybrid learning techniques. In this chapter, we provide some theoretical support for im-

plication (1), from the perspective of asymptotic relativeefficiency (ARE) in terms of misclas-

sification error rate, for linear and quadratic normal discrimination. Bouchard (2005) provided

some asymptotic results in terms of logistic loss; nevertheless, for classification, the error rate

is of more practical use than the logistic loss.

3.2 Asymptotic Efficiency of GDT

3.2.1 Asymptotic Relative Efficiency (ARE)

Given no mis-specification of the two sub-population densities, namelyp(x|θ1) andp(x|θ0),

the optimal boundary for classification should beg(x, α) = log π1p(x|θ1)
π0p(x|θ0)

= 0, with a misclas-

sification error rate given by

ER(α) = π1

∫

g(x,α)≤0
p(x|θ1)dx + π0

∫

g(x,α)>0
p(x|θ0)dx .
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The boundary actually used isg(x, α̂) = 0, with a misclassification error rate given by

ER(α̂) = π1

∫

g(x,α̂)≤0
p(x|θ1)dx + π0

∫

g(x,α̂)>0
p(x|θ0)dx ≥ ER(α) .

Under some regularity conditions, O’Neill (1980) proved that, given that
√

n(α̂ − α) ∼
AN (0,Σ(α̂)), the distribution of the random variablen(ER(α̂) − ER(α)) converges to the

distribution of the random variableξTBξ, say:

n(ER(α̂) − ER(α)) → ξTBξ in distribution,

whereξ ∼ N (0,Σ(α̂)), and

B =
1

4

∫

D

|∇xg(x, α)|−1[∇αg(x, α)][∇αg(x, α)]T p(x)dmD , (3.1)

in whichD = {x : g(x, α) = 0}, mD is Lebesgue measure onD,∇α and∇x are vector partial

differential operators corresponding to differentiationwith respect toα andx, |∇xg(x, α)| is

the L2-norm (also termed the Euclidean norm) of the vector∇xg(x, α), andp(x) = π1p(x|θ1)+

π0p(x|θ0).

Subsequently, Efron (1975) and O’Neill (1980) defined the asymptotic error rate (AER) as

AER(α̂) = lim
n→∞

E{n(ER(α̂) − ER(α))} ,

which can be rewritten as

AER(α̂) = E{ξT Bξ} = tr(E{ξT Bξ}) = tr(BE{ξξT }) = tr(BΣ(α̂)).

Since ER(α̂) ≥ ER(α), the AER is actually a measure of an increased error rate because the

estimated boundary is different from the optimal boundary.

Furthermore, Efron (1975) and O’Neill (1980) defined the AREbetween two learning tech-

niques as, for example,

ARE(α̂d, α̂g) =
AER(α̂g)

AER(α̂d)
=

tr(BΣg(α̂))

tr(BΣd(α̂))
.

If ARE(α̂d, α̂g) < 1, then generative learning provides estimatorsα̂g with lower asymptotic

error rate with regard to the optimal discrimination coefficient α, i.e., with less asymptotic

misclassification error, than does discriminative learning; if ARE(α̂d, α̂g) > 1, then the relative

performance of these two techniques reverses.
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3.2.2 Theoretical Calculation of ARE

To calculate ARE for the discriminative, generative and GDTapproaches, we need first to

obtainB, Σd(α̂), Σg(α̂) andΣλ(α̂).

For discriminative learning of the LLR estimatorα̂, its asymptotic variance matrixΣd(α̂)

was proved by O’Neill (1980) to be

Σ−1
d (α̂) =

∫

x

p(C1|x)p(C0|x)[∇αg(x, α)][∇αg(x, α)]T p(x)dx . (3.2)

It follows that, giveng(x, α) (as in Equations (1.2) and (1.3) for linear and quadratic normal

discrimination) and based on Equations (1.1), (3.1) and (3.2), B andΣd(α̂) can be obtained.

As mentioned in Section 1.1.4, in order to obtainΣg(α̂) andΣλ(α̂), we need first to derive

Σg(θ̂), Σλ(θ̂) and the relationship betweendα = (α̂ − α) anddθ = (θ̂ − θ).

Asymptotic properties of maximum likelihood estimators suggest the following results.

First,
√

n(θ̂ − θ) ∼ AN (0,Σg(θ̂) = nI−1
g (θ)), whereIg(θ) is the Fisher information

matrix,

Ig(θ) = E

{

∂ℓg(θ)

∂θ

∂ℓg(θ)

∂θT

}

= E

{

−∂2ℓg(θ)

∂θ∂θT

}

.

Secondly,

√
n(θ̂ − θ) ≃ √

n

[

E

{

−∂2ℓλ(θ)

∂θ∂θT

}]−1

· ∂ℓλ(θ)

∂θ
∼ AN (0,Σλ(θ̂)) ,

whereℓλ(θ) = λℓg(θ) + (1 − λ)ℓy|x(θ), andΣλ(θ̂) = nI−1
λ (θ)Vλ(θ)I−1

λ (θ), in which, since

E
{

∂ℓλ(θ)
∂θ

}

= 0 andℓg(θ) = ℓy|x(θ) + ℓx(θ),

Iλ(θ) = E

{

−∂2ℓλ(θ)

∂θ∂θT

}

= λIg(θ) + (1 − λ)Iy|x(θ) ,

Vλ(θ) = Cov

(

∂ℓλ(θ)

∂θ

)

= E

{

(

∂ℓλ(θ)

∂θ

)2
}

= λ2Ig(θ) + (1 − λ2)Iy|x(θ) .

After some algebra, we obtain

1

n
Iy|x(θ) =

∫

x

p(C1|x)p(C0|x)

[

∂ log r(θ, π;x)

∂θ

] [

∂ log r(θ, π;x)

∂θ

]T

p(x)dx ,

with r(θ, π;x) = π1p(x|θ1)
π0p(x|θ0)

andp(x) = π1p(x|θ1) + π0p(x|θ0).

Meanwhile, based on ag(x, α) such as those defined in Equations (1.2) and (1.3) for

linear and quadratic normal discrimination, we can obtaindα = Mdθ and thusΣg(α̂) =

MΣg(θ̂)MT andΣλ(α̂) = MΣλ(θ̂)MT .
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Since a linear transformation ofx into a + Ax does not change the misclassification er-

ror rates, the above-mentioned calculation of asymptotic variance matrices can be simplified

by a workable transformation. For example, for linear normal discrimination withx|θ1 ∼
N (µ1,Σ) andx|θ0 ∼ N (µ0,Σ), Efron (1975) suggested a new, linearly transformedx sat-

isfying x|θ1 ∼ N (∆
2 e1, I), x|θ0 ∼ N (−∆

2 e1, I), where∆ =
√

(µ1 − µ0)T Σ−1(µ1 − µ0),

the Mahalanobis distance between the means of the two sub-populations, and, in addition, it is

required that∆ 6= 0 to make the two sub-populations nonidentical;I is the identity matrix and

eT
1 = (1, 0, 0, . . . , 0). Another example is a linear transformation suggested by O’Neill (1980)

for univariate quadratic normal discrimination.

The details of theoretical calculations and numerical evaluation of ARE for linear and

quadratic normal discrimination can be found in the appendices of this thesis, as well as the

corresponding details for the two examples suggested by Efron (1975) and O’Neill (1980),

respectively.

3.2.3 Numerical Evaluations of ARE for Linear Normal Discrimination

The ARE between two learning techniques, with regard to estimatorsα̂1 andα̂2 of the coeffi-

cients of the discriminant function, is defined in Section 3.2.1 as ARE(α̂2, α̂1) = tr(BΣ(α̂1))/tr(BΣ(α̂2)).

For the example suggested by Efron (1975), theoretical derivation suggests thatΣg(α̂),

Σλ(α̂), Σd(α̂) andB are all symmetric block-diagonal matrices, represented by

Σ(α̂) =











Σ
(α̂)
1,1 Σ

(α̂)
1,2

Σ
(α̂)
1,2 Σ

(α̂)
2,2

Σ
(α̂)
3,3 Ip−1











, B =
π1φ(τ − ∆

2 )

2∆











1 τ

τ τ2

Ip−1











,

whereφ(·) denotes the density of the univariate standard normal distribution,p is the dimension

of x andτ = − 1
∆ log π1

π0
. It follows that

tr(BΣ(α̂)) =
π1φ(τ − ∆

2 )

2∆







tr









1 τ

τ τ2









Σ
(α̂)
1,1 Σ

(α̂)
1,2

Σ
(α̂)
1,2 Σ

(α̂)
2,2







+ tr(Σ(α̂)
3,3 Ip−1)







=
π1φ(τ − ∆

2 )

2∆

{

Σ
(α̂)
1,1 + 2Σ

(α̂)
1,2 τ + Σ

(α̂)
2,2 τ2 + (p − 1)Σ

(α̂)
3,3

}

.

Therefore,

ARE(α̂2, α̂1) =
tr(BΣ(α̂1))

tr(BΣ(α̂2))
=

Σ
(α̂1)
1,1 + 2Σ

(α̂1)
1,2 τ + Σ

(α̂1)
2,2 τ2 + (p − 1)Σ

(α̂1)
3,3

Σ
(α̂2)
1,1 + 2Σ

(α̂2)
1,2 τ + Σ

(α̂2)
2,2 τ2 + (p − 1)Σ

(α̂2)
3,3

.
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Here we present numerical evaluations of ARE as an index of comparison between the

generative, discriminative and GDT approaches, for the case of linear normal discrimination

under conditions (1)x|θ1 ∼ N (∆
2 e1, I), x|θ0 ∼ N (−∆

2 e1, I), (2) ∆ ∈ [0.25, 4.75], (3)

π1 ∈ [0.05, 0.95] and (4)λ ∈ [0, 1].

3.2.3.1 Discriminative vs. Generative

Efron (1975) represented ARE(α̂d, α̂g) in terms of

Q1 = π1π0

{

[Σg(α̂)]1,1 + 2[Σg(α̂)]1,2τ + [Σg(α̂)]2,2τ
2
}

,

Q2 = π1π0

{

[Σg(α̂)]3,3

}

,

Q3 = π1π0

{

[Σd(α̂)]1,1 + 2[Σd(α̂)]1,2τ + [Σd(α̂)]2,2τ
2
}

,

Q4 = π1π0 {[Σd(α̂)]3,3} ,

Effp=1 = Q1/Q3, Effp→∞ = Q2/Q4,

and hence

Effp = ARE(α̂d, α̂g) =
Q1 + (p − 1)Q2

Q3 + (p − 1)Q4
=

Q3

Q4
Effp=1 + (p − 1)Effp→∞

Q3

Q4
+ (p − 1)

.
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Figure 3.1: The ARE between the generative approach and the discriminative approach for

linear normal discrimination: left-hand panel gives Effp=1, middle panel gives Effp→∞, right-

hand panel gives Effp=1 − Effp→∞.

Numerical evaluations of Effp=1, Effp→∞ and their difference are shown in Figure 3.1. We

make the following observations.
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1. Both Effp=1 and Effp→∞ are less than 1, indicating that asymptotically the generative

approach will provide better classification accuracy than the discriminative approach.

2. Both Effp=1 and Effp→∞ decrease as the Mahalanobis distance∆ increases; this implies

that, for two well-separated sub-populations, the generative approach is much better than

the discriminative approach; in other words, the latter maybe an acceptable alternative

to the former only when the two sub-populations are poorly separated, with∆ < 2.

3. Sometimes Effp=1 can be smaller than Effp→∞; however, in agreement with Efron

(1975), it is more likely that Effp=1 ≥ Effp→∞; this implies that, when we use the dis-

criminative approach as an alternative to the generative approach for high-dimensional

data, it is more likely to lower the classification accuracy,in particular when the Maha-

lanobis distance∆ > 2.

3.2.3.2 GDT vs. Generative

Similarly, we defineQ5 andQ6 by

Q5 = π1π0

{

[Σλ(α̂)]1,1 + 2[Σλ(α̂)]1,2τ + [Σλ(α̂)]2,2τ
2
}

,

Q6 = π1π0 {[Σλ(α̂)]3,3} ,

so that

Eff(λ)
p=1 = Q1/Q5, Eff(λ)

p→∞ = Q2/Q6 ,

and hence

Eff(λ)
p = ARE(α̂λ, α̂g) =

Q1 + (p − 1)Q2

Q5 + (p − 1)Q6
=

Q5

Q6
Eff(λ)

p=1 + (p − 1)Eff(λ)
p→∞

Q5

Q6
+ (p − 1)

.

Numerical evaluations of Eff(λ)
p=1, Eff(λ)

p→∞ and their difference are shown in Figure 3.2, for

λ = 0, 0.25, 0.5 and0.75, respectively. We make the following observations.

1. For all these values ofλ, both Eff(λ)
p=1 and Eff(λ)

p→∞ are less than 1, indicating that asymp-

totically the generative approach will provide better classification accuracy than the

GDT.

2. Whenλ = 0, the GDT contains its discriminative component alone. For such a case,

similarly to the ARE between the discriminative approach and the generative approach
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Figure 3.2: The ARE between the generative approach and the GDT with λ = 0, 0.25, 0.5 and

0.75, respectively, for linear normal discrimination: first column gives Eff(λ)
p=1, second column

gives Eff(λ)
p→∞, third column gives Eff(λ)

p=1 − Eff(λ)
p→∞.



44

(as shown in Figure 3.1), both Eff(λ=0)
p=1 and Eff(λ=0)

p→∞ in general decrease as the Maha-

lanobis distance∆ increases. This implies bad classification accuracy of the GDT with

λ = 0.

However, this is not the case for other values ofλ, where both Eff(λ)
p=1 and Eff(λ)

p→∞

fluctuate as∆ increases, since the GDT contains a generative component. The minima

of Eff(λ=0.25)
p=1 and Eff(λ=0.25)

p→∞ are both larger than0.64. This implies that, even though

the generative component only has a small weight, the GDT canact as an acceptable

alternative to the generative approach.

3. Whenλ = 0, we have Eff(λ)
p=1 ≥ Eff(λ)

p→∞; for other values ofλ, this inequality usually

holds for most settings of∆ andπ1. This implies that, when the GDT is used as an

alternative to the generative approach for high-dimensional data, it usually lowers the

classification accuracy.

4. Apparently, whenλ increases so that the generative component of the GDT gains more

weight, then the ARE, namely Eff(λ)
p , is closer to 1, in which case the GDT equates to

the generative approach.

3.2.3.3 Discriminative vs. GDT

The ARE between the discriminative approach and the GDT is simply the ratio of the AREs

between them and the generative approach, described in Sections 3.2.3.1 and 3.2.3.2. That is,

ARE(α̂d, α̂λ) =
ARE(α̂d, α̂g)

ARE(α̂λ, α̂g)
=

Effp

Eff(λ)
p

=
Q5 + (p − 1)Q6

Q3 + (p − 1)Q4
=

Q3

Q4

Effp=1

Eff(λ)
p=1

+ (p − 1)
Effp→∞

Eff(λ)
p→∞

Q3

Q4
+ (p − 1)

,

where
Effp=1

Eff(λ)
p=1

=
Q5

Q3
,

Effp→∞

Eff(λ)
p→∞

=
Q6

Q4
.

If ARE(α̂d, α̂λ) < 1, then the GDT performs better than the discriminative approach, in

terms of the asymptotic misclassification error; if ARE(α̂d, α̂λ) > 1, then the discriminative

approach performs better.

Lemma 3.2.1 Whenλ = 1, we have ARE(α̂d, α̂λ) = Effp; Whenλ = 0, we have
Effp→∞

Eff(λ=0)
p→∞

=

[Σλ(α̂)]3,3

[Σd(α̂)]3,3
≡ 3.
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Lemma 3.2.1 shows that the ARE between the discriminative approach and the GDT with

λ = 0 converges to 3 whenp → ∞. This implies that, for high-dimensional data, the discrim-

inative approach, compared to the GDT’s discriminative component, converges to a threefold

improvement in the classification performance as measured by the misclassification error rate.

In addition, after some algebra, we have the following lemma, which implies that, for balanced

data, a discriminative approach is favoured, rather than the GDT’s discriminative component.

Lemma 3.2.2 Whenπ1 = π0 = 1
2 , we have

Effp

Eff(λ=0)
p

=
[Σλ(α̂)]1,1 + (p − 1)[Σλ(α̂)]3,3

p[Σd(α̂)]3,3

=
1

p

(

1 +
2∆2A0

4A2 + ∆2A0

)

+
3(p − 1)

p
=

1

p

( −8A2

4A2 + ∆2A0

)

+ 3 ≥ 1.

Numerical evaluations ofEffp=1

Eff(λ)
p=1

, Effp→∞

Eff(λ)
p→∞

and their difference are shown in Figure 3.3, for

λ = 0, 0.25, 0.5 and0.75, respectively. We make the following observations.

1. Whenλ = 0, Effp=1

Eff(λ=0)
p=1

≥ 1 and Effp→∞

Eff(λ=0)
p→∞

≡ 3, indicating that asymptotically the discrimi-

native approach will provide better classification accuracy than the GDT’s discriminative

component alone. However, asλ increases, bothEffp=1

Eff(λ)
p=1

and Effp→∞

Eff(λ)
p→∞

reduce in value to be

less than 1 for increasingly many settings of∆ andπ1, indicating a reverse of the relative

performance of the two approaches.

2. Whenλ = 0, it is more likely that Effp=1

Eff(λ=0)
p=1

<
Effp→∞

Eff(λ=0)
p→∞

, while, for other values ofλ, it is

more likely thatEffp=1

Eff(λ)
p=1

>
Effp→∞

Eff(λ)
p→∞

.

3. Apparently, whenλ increases so that the GDT’s generative component gains moreweight,

then the ARE, namelyEffp

Eff(λ)
p

, approaches Effp (as shown in Figure 3.1), as Eff(λ)
p → 1.

3.3 Simulation Study on Classification Performance of GDT

3.3.1 Implementation

The hybrid learning can be viewed as an optimisation problemfor multi-classifiers. The opti-

misation of the GDT is based on a new log-likelihood,ℓλ(θ), based on the common parameter

vectorθ. Here, for generalisation to the case of multi-groups, we re-write ℓλ(θ) as

ℓλ(θ) = λℓg(θ) + (1 − λ)ℓy|x(θ) = ℓg(θ) − (1 − λ)ℓx(θ) , with
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Figure 3.3: The ARE between the GDT and the discriminative approach withλ = 0, 0.25, 0.5

and0.75, respectively, for linear normal discrimination: first column givesEffp=1

Eff(λ)
p=1

, second col-

umn givesEffp→∞

Eff(λ)
p→∞

, third column givesEffp=1

Eff(λ)
p=1

− Effp→∞

Eff(λ)
p→∞

.
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ℓg(θ) = log

n
∏

i=1

p(xi, yi; θ) = log

n
∏

i=1

πyi
p(xi|yi; θyi

) ,

ℓy|x(θ) = log

n
∏

i=1

p(yi|xi) = log

n
∏

i=1

πyi
p(xi|yi; θyi

)
∑K

k=1 πkp(xi|y = k; θk)
,

ℓx(θ) = log
n
∏

i=1

p(xi) = log
n
∏

i=1

{

K
∑

k=1

πkp(xi|y = k; θk)

}

.

in which πyi
= p(y = yi), yi ∈ {1, . . . ,K}, K is the number of groups (K = 2 in our

study), andθ consists ofπk andθk, k = 1, . . . ,K, a parameter vector of the joint distribution

p(x, y; θ). As seen fromℓλ(θ), the GDT becomes a pure generative approach whenλ = 1

while the weight of its discriminative component increasesasλ decreases from1 to 0.

We use a general-purpose optimization based on the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm, a quasi-Newton method, implemented by anR function optim from the

standard packagestats in R. Meanwhile, in order to investigate the performance discrepancy

between the discriminative component of the GDT and a truly discriminative approach, we

compared the GDT atλ = 0 with LLR. Here LLR is implemented by an R functionlog-

itreg (Venables and Ripley, 2002), also using the BFGS algorithm.

In order to implement a GDT, the conditional distributionp(x|y) has to be specified; as

was done in the simulation study by Bouchard and Triggs (2004), we assume that(x|y) fol-

lows multivariate normal distributionsN (µk,Λ) with a common diagonal covariance matrixΛ

across the groups. However, we do not assume equal prior probabilities πk but estimate them

from the training samples instead.

For the assumed Gaussian model with a common diagonal covariance matrixΛ across

theK groups, the parameter vectorθ is composed ofK − 1 prior probabilities{πk}K−1
k=1 , K

p-dimensional mean vectors{µk}K
k=1 and thep diagonal components{Λj,j}p

j=1 of Λ.

First, the derivatives ofℓλ(θ) with respect to{πk}K−1
k=1 can be written as

∂ℓλ(θ)

∂πk
=

n
∑

i=1

{

1{yi=k} − (1 − λ)p(y = k|xi)

πk
−

1{yi=K} − (1 − λ)p(y = K|xi)

πK

}

,

where, as in Bouchard and Triggs (2004),

p(y = k|xi) =
πkp(xi|y = k; θk)

∑K
l=1 πlp(xi|y = l; θl)

.

Secondly, the derivatives ofℓλ(θ) with respect to{µk}K
k=1, unique for each group, can be
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written as

∂ℓλ(θ)

∂µk
=

n
∑

i=1

{

{

1{yi=k} − (1 − λ)p(y = k|xi)
} ∂ log p(xi|y = k; θk)

∂µk

}

,

where, for the assumed Gaussian model withΛ,

∂ log p(xi|y = k; θk)

∂µk

= Λ−1(xi − µk) .

Thirdly, the derivatives ofℓλ(θ) with respect toΛ, common for all the groups, can be written

as

∂ℓλ(θ)

∂Λ
=

K
∑

k=1

n
∑

i=1

{

{

1{yi=k} − (1 − λ)p(y = k|xi)
} ∂ log p(xi|y = k; θk)

∂Λ

}

,

where, for the assumed Gaussian model withΛ,

∂ log p(xi|y = k; θk)

∂Λ
=

1

2

{

−Λ−1 + Λ−1(xi − µk)(xi − µk)
T Λ−1

}

.

The above formulae can be rewritten with matrix representations so as to facilitate the com-

putation by matrix-based software like Matlab and R. A simple example of this is that, if

p(y = k|xi) and, for eachΛj,j,
∂ log p(xi|y=k;θk)

∂Λj,j
are assembled into twoK ×n matricesA and

B, respectively, then

K
∑

k=1

n
∑

i=1

p(y = k|xi)
∂ log p(xi|y = k; θk)

∂Λj,j
= trace(ATB) .

In our study, four datasets are simulated; one of them, arising from two normal distributions

with a common identity covariance matrixI which exactly satisfies the modelling assumptions

about the data-generating processp(x|y), is also used by Bouchard and Triggs (2004), and

the other three are all from two normal distributions but with either a common full covariance

matrix or two unequal diagonal covariance matrices or two unequal full covariance matrices,

respectively. All of the latter three datasets violate the modelling assumptions aboutp(x|y),

and all the distributions are4-dimensional,i.e., all the data are of two groups with four features.

Meanwhile, in order to investigate how the classification performance depends on both the

training-set sizen and the weightλ, n is sampled within[50, 250] in steps of25, andλ is

sampled within[0, 1] in steps of0.1; the test set size is103 since at this size our results for the

logistic loss are at a similar level to those reported in Bouchard and Triggs (2004). Within the

range[0, 1] of λ, we use the same optimisation procedure to estimate the parameter vectorθ
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with LDA-Λ equivalent to the GDT atλ = 1, while the results obtained from LLR are recorded

and plotted atλ = −0.1 so as to be neighbours of those of the discriminative component of

the GDT atλ = 0 for comparison only, whereλ = −0.1 has no meaning in terms of physical

weight. For each sampledn, the103 observations are randomly split inton training samples

and103 − n test samples with 100 replicates; from them, the medians of the logistic losses

and misclassification error rates are recorded and plotted.Sample proportions and moments

are used as the initial values for BFGS optimisation.

Along with the logistic loss used by Bouchard and Triggs (2004), we also use the traditional

misclassification error rate (ER) to measure the performance of the classifiers, defined as usual

by the number of misclassified observations over the total number of observations for binary

discrimination. For the dataset used by both Bouchard and Triggs (2004) and ourselves, our re-

sults about the logistic loss in general lead to similar observations to those reported in Bouchard

and Triggs (2004). Therefore, in the following, we only report the results about the ER.

3.3.2 Normally Distributed Data

Four simulated datasets are used in this section, each consisting of103 samples that are ran-

domly generated from two4-variate normal distributions,N (µ1,Σ1) andN (µ2,Σ2), based on

500 samples from each distribution. As in Bouchard and Triggs (2004),µ1 = (1.25, 0, 0, 0)T

andµ2 = (−1.25, 0, 0, 0)T , whereµ2 only differs fromµ1 in one of the four dimensions; other

values ofµ1 andµ2 can be linearly transformed to these two values so that thereis no loss of

generality. Meanwhile,Σ1 andΣ2 are subject to four different types of constraint, specifiedas

follows.

1. Equal diagonal covariance matrices:Σ1 = Σ2 = Λ = I.

2. Equal full covariance matrices: Σ1 = Σ2 = Σ while Σ 6= Λ, with Σ =

















1 c c c

c 1 c c

c c 1 c

c c c 1

















with c = 0.25.

3. Unequal diagonal covariance matrices:Σ1 = Λ1, Σ2 = Λ2 with Λ1 6= Λ2, where

Λ1 = I andΛ2 = Diag(0.25, 0.75, 1.25, 1.75).
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4. Unequal full covariance matrices: Σ1 6= Λ1, Σ2 6= Λ2 andΣ1 6= Σ2, with Σ1 =
















1 c c c

c 1 c c

c c 1 c

c c c 1

















andΣ2 =

















0.25 c c c

c 0.75 c c

c c 1.25 c

c c c 1.75

















with c = 0.25.

3.3.3 Results
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Figure 3.4: Simulated normally distributed data with equaldiagonal covariance matrices. Plots

of classification performance measured by ER vs. training-set sizen andλ (λ = −0.1 corre-

sponds to LLR,λ ∈ [0, 1] corresponds to GDT andλ = 1 corresponds to LDA-Λ), obtained

from 100 experiments on test sets of size103. Left-hand panel: ER vs.λ for n = 50, 100 and

200; right-hand panel: ER vs.n for LDA-Λ, λ = 0.5, 0 and LLR.

Our results are shown in Figures 3.4, 3.5, 3.6 and 3.7, respectively, for the four simulated

datasets. Each figure consists of two plots of the ER vs.λ and the ER vs.n, respectively; from

them, we observe the following patterns.

1. For the first dataset in which no mis-specification of the assumed Gaussian model withΛ

occurs except for there being a finite number of observationsin the training set, as shown

in Figure 3.4, LDA-Λ in general performs the best.

2. When there is mis-specification, such as those cases shownin Figures 3.5-3.7, at some

optimal values ofλ ∈ (0, 1) the GDT can perform better than atλ = 0 andλ = 1.
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Figure 3.5: Simulated normally distributed data with equalfull covariance matrices.
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Figure 3.6: Simulated normally distributed data with unequal diagonal covariance matrices.
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Figure 3.7: Simulated normally distributed data with unequal full covariance matrices.

3. When there is mis-specification and the training-set sizen is large, our results show

that the performance of LLR, a discriminative classifier, issuperior to that of LDA-Λ, a

generative one.

4. Our results support the claim made by Bouchard (2005) that, under our assumption of

common diagonal covariance matrices, the discriminative component of the GDT (with

λ = 0) performs the same as LLR does, as they optimise the same objective function.

Nevertheless, our results also show that, when there is mis-specification andn is small,

practical optimisation with regard to different parameterisations may either converge at

different values or even stop iteration without convergence.

3.4 Conclusions

The conclusions from our study are three-fold.

First, the GDT is a generative model integrating both discriminative and generative learn-

ing, so that it is also subject to model mis-specification of the data-generating processp(x|y; θg),

or otherwise of the joint distributionp(x, y; θ).

Secondly, amongst the three approaches that we compare, theasymptotic efficiency of the

GDT is lower than that of generative learning when there is nomodel mis-specification.

Thirdly, when there is no model mis-specification, LDA performs the best; when there
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is model mis-specification, the GDT may perform the best at anoptimal tradeoff between its

discriminative and generative components, and LLR, a trulydiscriminative classifier, in general

performs well when the training-sample sizen is reasonably large.



Chapter 4

On the Hybrid

Generative/Discriminative Algorithm

The so-called hybrid generative/discriminative algorithm assigns different weights to par-

tial feature vectors ofx, learning most parameters generatively but the weights discrimina-

tively (Raina et al., 2003). In this chapter, we first interpret the hybrid algorithm from three

perspectives, namely class-conditional probabilities, class-posterior probabilities and loss func-

tions underlying the model, and then discuss one of its multi-class extensions (Fujino et al.,

2007). Finally, by using simulated and real-world data, we compare its classification perfor-

mance with that of the naı̈ve Bayes classifier and linear logistic regression.

4.1 Interpretation of the Hybrid Algorithm

Consider classifying an observation withh features into one ofK groups by a classifier̂y,

which was trained by using the observed features and group labels ofm other so-called training

observations. In this chapter, the dimension of features isdenoted byh instead ofp. We use

anh-variate random vectorx = (x1, . . . , xh)T to represent theh features of the observation

and a random categorical variabley ∈ {1, . . . ,K} to represent the group label. We denote a

classifier ofx by ŷ(x) and the loss function of misclassifyingx, which arises from the group

y, into the group̂y(x) is L(y, ŷ(x)).

54
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4.1.1 Class-conditional Probabilities

For binary classification, whereK = 2, based on Bayes’ Theorem, the Bayes discriminant

criterion (i.e., ŷ(x) = argmaxy p(y|x)) of the generative classifiers for classifyingx into the

groupy = 1 can be written asp(x, y = 1) ≥ p(x, y = 2), or equivalentlyp(y = 1)p(x|y =

1) ≥ p(y = 2)p(x|y = 2). In addition, specific generative classifiers, such as linear normal-

based discriminant analysis with a common diagonal covariance matrix (denoted by LDA-Λ)

and the naı̈ve Bayes classifier, assume that theh features are conditionally independent given

the group labely, i.e., p(x|y) =
∏h

i=1 p(xi|y).

In the normalised hybrid and the unnormalised hybrid algorithms proposed by Raina et al.

(2003), the feature vectorx is divided intoR partial feature vectorsx1, . . . ,xR, because they

suggest different levels of importance for different partitions, or partial feature vectors; for

example,x1 may represent the message subject of an email whilex2 represents the message

body. As with Raina et al. (2003), we focus onR = 2, such thatx = (x1T ,x2T )T , x1 =

(x1, . . . , xh1)
T , x2 = (xh1+1, . . . , xh)T andh2 = h − h1, and assume that the discriminant

criterion of the generative classifiers can be rewritten as

p(y = 1)p(x1|y = 1)p(x2|y = 1) ≥ p(y = 2)p(x1|y = 2)p(x2|y = 2) .

Thus, givenp(x, y) 6= 0, the corresponding discriminant functionλG(x) = log p(y=1|x)
p(y=2|x) can be

expressed in terms of likelihood ratios as

λG(x) = log
p(y = 1)

p(y = 2)
+ log

p(x1|y = 1)

p(x1|y = 2)
+ log

p(x2|y = 1)

p(x2|y = 2)
.

Such a representation can be obtained by assuming the generative DGP

p(x|y) = w(x1,x2)p(x1|y)p(x2|y) ,

wherew(x1,x2) can be regarded as a normalisation factor. However, if, for all y, p(x1|y) and

p(x2|y) are proper marginal distributions derived fromp(x|y) (i.e., p(x1|y) =
∑

x2 p(x|y),

p(x2|y) =
∑

x1 p(x|y) and
∑

x
p(x|y) =

∑

x1 p(x1|y) =
∑

x2 p(x2|y) = 1), thenw(x1,x2) ≡
1, given that there existsx = x such thatp(x|y = 1) 6= p(x|y = 2). In other words,

it leads to assuming conditional independence between partial feature vectorsx1|y andx2|y
such thatp(x|y) = p(x1|y)p(x2|y). In addition, to some extent, for a simple implementation

in practice, Raina et al. (2003) further assume thatp(x1|y) =
∏h1

j=1 p(xj |y) andp(x2|y) =
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∏h
j=h1+1 p(xj|y); these imply the conditional independence of the elements within x1 andx2

giveny, respectively.

Raina et al. (2003) introduce two additional parametersθ1 and θ2 into the discriminant

criterion, leading to different weights for different partial feature vectors in the discrimination.

Two ways of weighting are proposed by Raina et al. (2003): onecorresponds to assigningx to

the groupy = 1 if

p(y = 1)p(x1|y = 1)
θ1
h1 p(x2|y = 1)

θ2
h2 ≥ p(y = 2)p(x1|y = 2)

θ1
h1 p(x2|y = 2)

θ2
h2 ,

which is the criterion (denoted byCriterion-H) corresponding to the normalised hybrid algo-

rithm; the other gives

p(y = 1)p(x1|y = 1)θ1p(x2|y = 1)θ2 ≥ p(y = 2)p(x1|y = 2)θ1p(x2|y = 2)θ2 ,

which is the criterion corresponding to the unnormalised hybrid algorithm. Without loss of

generality, in this chapter we focus on the normalised hybrid algorithm.

Let us writeθ = (θ1, θ2)
T . Then the hybrid algorithm can be derived from

pθ(x|y) = wθ(x
1,x2)p(x1|y)

θ1
h1 p(x2|y)

θ2
h2 andpθ(x, y) = p(y)pθ(x|y) ,

wherewθ(x
1,x2) is independent of groupsy so that it is cancelled out fromCriterion-H, but

it is not necessarily further factorised aswθ(x
1,x2) = w1

θ(x
1)w2

θ(x
2). However, in order

to maintainpθ(x|y) as a proper probability distribution (so thatCriterion-H is derived from

a proper probabilistic model), with the marginal distributions p(x1|y) =
∑

x2 pθ(x|y) and

p(x2|y) =
∑

x1 pθ(x|y), it is required that, for ally,

∑

x2

wθ(x
1,x2)p(x2|y)

θ2
h2 = p(x1|y)

1− θ1
h1 ,

∑

x1

wθ(x
1,x2)p(x1|y)

θ1
h1 = p(x2|y)

1− θ2
h2 .

In some cases, it might be difficult to validate the existenceof such awθ(x
1,x2), e.g., when

θ1
h1

= 1 while θ2
h2

6= 1 or vice versa, as the sums, in terms ofx, on the left-hand sides of

the above equations have to become independent ofy. In other cases, further assumptions

might be needed to guarantee the existence. We illustrate this by assuming thatwθ(x
1,x2)

can be further factorised in terms ofwθ(x
1,x2) = w1

θ(x
1)w2

θ(x
2); in other words, we assume

conditional independence betweenx1|y andx2|y. It follows that

pθ(x|y) = w1
θ(x

1)p(x1|y)
θ1
h1 w2

θ(x
2)p(x2|y)

θ2
h2 ,
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which also leads toCriterion-H. One option forwθ(x
1,x2) is, for all y,

w1
θ(x

1) = q(y)p(x1|y)
1− θ1

h1 , w2
θ(x

2) =
1

q(y)
p(x2|y)

1− θ2
h2 ,

where q(y) is a non-zero function used to cancel out terms iny within p(x1|y)
1− θ1

h1 and

p(x2|y)
1− θ2

h2 . If such awθ(x
1,x2) cannot be found,Criterion-H is not a Bayes discriminant

criterion derived from a proper probabilistic model; nevertheless, in practice it can still be used

as a criterion for discrimination, although in this case thehybrid algorithm is no longer a true

Bayes classifier and, under a0 − 1 loss function, it cannot provide a minimum Bayes error.

UnderCriterion-H, we classifyx into y = 1 if pθ(x, y = 1) ≥ pθ(x, y = 2). Given

pθ(x, y) 6= 0, the discriminant functionλH(x) of the hybrid algorithm can be expressed in

terms of weighted likelihood ratios as

λH(x) = log
p(y = 1)

p(y = 2)
+

θ1

h1
log

p(x1|y = 1)

p(x1|y = 2)
+

θ2

h2
log

p(x2|y = 1)

p(x2|y = 2)
.

Therefore,λH(x) can be viewed as a “weighted” version of the discriminant functionλG(x) of

the generative classifier; however, as mentioned above, in theory the hybrid algorithm should

satisfy some conditions about the marginal distributions in order to make the underlying model

probabilistically valid. In addition, as withλG(x), most parameters, such as those forp(x1|y)

andp(x2|y), in λH(x) are learnt by using a generative approach; only a few parameters, such

as the two weightsθ1 and θ2, are then learnt by using a discriminative approach based on

the learning results (aboutp(x1|y) andp(x2|y)) from the generative approach. Therefore, the

hybrid algorithm can be regarded as a generative classifier since it assumes the DGPp(x|y)

and thusp(x, y).

With the assumption of conditional independence betweenx1|y andx2|y, it follows that

the two class-conditional probabilities,p(x|y) andpθ(x|y), are related by

pθ(x|y) = p(x|y)

{

wθ(x
1,x2)p(x1|y)

θ1
h1

−1
p(x2|y)

θ2
h2

−1
}

.

This indicates that, in practice, the hybrid algorithm assumes a scaled DGPpθ(x|y) which

scales the generative DGPp(x|y) by a function not only of the group labely but also of the

feature vectorx.
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4.1.2 Class-posterior Probabilities

The second perspective for interpreting the hybrid algorithm is via its modelling of class-

posterior probabilities:

pθ(y|x) =
pθ(x, y)

pθ(x)
=

p(y)wθ(x
1,x2)p(x1|y)

θ1
h1 p(x2|y)

θ2
h2

pθ(x)
=

p(y)p(x1|y)
θ1
h1 p(x2|y)

θ2
h2

pθ(x)/wθ(x1,x2)
,

wherepθ(x) =
∑

y pθ(x, y) = pθ(x, y = 1) + pθ(x, y = 2). According to Bayes’ The-

orem, the class-posterior probabilities in terms of the generative DGPp(x|y) arep(y|x) =

p(y)p(x|y)/p(x); it follows that

pθ(y|x) = p(y|x)

{

wθ(x
1,x2)p(x1|y)

θ1
h1

−1
p(x2|y)

θ2
h2

−1 p(x)

pθ(x)

}

.

This indicates that the normalised hybrid algorithm assumes scaled class-posterior probabilities

pθ(y|x) which scale the posterior probabilitiesp(y|x) by a function not only of the feature

vectorx but also of the group labely.

4.1.3 Loss Functions

In order to find the best classifier, one of the optimal criteria is to minimize the so-called

unconditional or total risk:

R(ŷ) = Ey

[

Ex|y [L (y, ŷ(x))]
]

= Ex

[

Ey|x [L (y, ŷ(x))]
]

.

Such a criterion suffices to minimize the Bayes error, also called Bayes risk,

Ey|x [L (y, ŷ(x))] =
K
∑

y=1

p(y|x)L(y, ŷ(x)) .

A simple and widely used loss function is a0− 1 loss such thatL(y, ŷ(x)) = 1 if ŷ 6= y and0

otherwise. This leads to a Bayes classifier,ŷ(x) = argmaxy p(y|x).

Since there are many loss functions that can lead to the normalised hybrid algorithm, here

we only present one loss function, fixingL(y, ŷ(x)) = 0 if ŷ = y.

Proposition 4.1.1 If the number of groups isK ≥ 2, and it is assumed that, giveny, L(y, ŷ(x)) =

Ly is independent of̂y(x) if ŷ 6= y, then the hybrid algorithm proposed in Raina et al. (2003)

can be obtained through minimising the Bayes error with a loss functionL(y, ŷ(x)) such that

L(y, ŷ(x)) = Ly if ŷ 6= y and0 otherwise, where

Ly =
p(x1|y)

θ1
h1 p(x2|y)

θ2
h2

p(x|y)
,
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in whichh1 andh2 are the dimensions ofx1 andx2, andx = (x1T ,x2T )T . A generalisation

of such a loss function isLy = pθ(x|y)
p(x|y) .

Proof The Bayes error for a classifier̂y(x) with such a loss functionL(y, ŷ(x)) is minimised

by

ŷ(x) = argmin
ŷ

∑

y 6=ŷ

p(y|x)Ly = argmin
ŷ

∑

y 6=ŷ

p(x1|y)
θ1
h1 p(x2|y)

θ2
h2 p(y)

= argmin
ŷ

−p(x1|ŷ)
θ1
h1 p(x2|ŷ)

θ2
h2 p(ŷ) = argmax

y
p(x1|y)

θ1
h1 p(x2|y)

θ2
h2 p(y) ,

which is Criterion-H. The proof for the generalisation ofLy can be obtained similarly by

replacingp(x1|y)
θ1
h1 p(x2|y)

θ2
h2 with pθ(x|y).

From Proposition 4.1.1, we observe that the loss from misclassification by the hybrid algorithm

depends on the accuracy of the approximation of the true DGPp(x|y) by the assumed one,

pθ(x|y) say. The closerpθ(x|y) is to p(x|y), the closer canL(y, ŷ(x)) be approximated by a

0 − 1 loss function. Furthermore, in contrast to the0 − 1 loss,Ly is dependent onx.

4.1.4 A Multi-class Extension

Fujino et al. (2007) present the result of a multi-class and multi-partition extension of the hybrid

algorithm by maximising a conditional entropy ofp(y|x) under certain constraints associated

with joint distributionp(x, y) and class-conditional probabilitiesp(xr|y) for each partial fea-

ture vectorxr, r = 1, . . . , R, as

p(y|x) =
eµy
∏R

r=1 p(xr|y)λr

∑

y eµy
∏R

r=1 p(xr|y)λr

,

whereλr andµy are Lagrange multipliers. This result is equivalent to a straightforward exten-

sion of the hybrid algorithm, in whichλr = θr/hr andµy = log p(y) + log wθ(x).
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4.2 Parameter Estimation, Implementation and Evaluation of the

Classifiers

4.2.1 Discriminative Learning ofθ

By “hybrid”, the normalised hybrid algorithm proposed in Raina et al. (2003) means to use a

discriminative approach to the estimation ofθ such that

θ̂ = argmax
θ

m
∑

i=1

log pθ(y
(i)|x(i)) = argmax

θ

m
∑

i=1

log
pθ(x

(i), y(i))
∑

y pθ(x(i), y)
,

wherem is the number of independent training observations
{(

x(i), y(i)
)}m

i=1
, in which

(

x(i)
)T

=
(

(

x1,(i)
)T

,
(

x2,(i)
)T
)

. If y is a binary variable such thaty ∈ {1, 2}, pθ(y = 1|x) can be writ-

ten in a way similar to that of logistic regression:

pθ(y = 1|x) =
exp(λH(x))

1 + exp(λH(x))
,

whereλH(x), as defined in Section 4.1.1, is the discriminant function corresponding toCriterion-

H. As with linear logistic regression,λH(x) is a linear function ofθ1 andθ2.

Instead of using maximisation, we minimise the negative loglikelihood−ℓH to estimateθ1

andθ2, where

−ℓH = −
m
∑

i=1

log pθ(y
(i)|x(i))

=
m
∑

i=1

{

1{y(i)=1} log
(

1 + e−λH(x(i))
)

+ 1{y(i)=2} log
(

1 + eλH (x(i))
)}

.

ConcerningλH(x) , in order to estimate the parameters in the same discriminative way

as that of linear logistic regression, Raina et al. (2003) redefineθ asθ = (θ0, θ1, θ2)
T , where

θ0 = log p(y=1)
p(y=2) , similar to the intercept in a linear logistic regression model, is estimated dis-

criminatively, i.e., log p(y=1)
p(y=2) is not calculated by using generative estimators ofp(y = 1) and

p(y = 2) but is directly estimated by a discriminative approach. Except for that,log p(x1|y=1)
p(x1|y=2)

andlog p(x2|y=1)
p(x2|y=2)

are estimated by a generative approach.

Considering that the discriminative estimator ofθ uses outputs from the generative esti-

mator ofp(x|y) as inputs while both estimators use the same training set, Raina et al. (2003)

suggest that the discriminative estimator ofθ is biased. Consequently, they use a “leave-one-

out” strategy as follows:

θ̂−i = argmax
θ

m
∑

i=1

log pθ,−i(y
(i)|x(i)) = argmax

θ

m
∑

i=1

log
pθ,−i(x

(i), y(i))
∑

y pθ,−i(x(i), y)
,
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wherepθ,−i(x
(i), y) andpθ,−i(x

(i), y(i)) are obtained from the data with thei-th observation

removed. However, when the training set sizem is large enough, there is little difference

between̂θ−i andθ̂, and thus such a bias can be ignored. Therefore, in our study,we do not use

the “leave-one-out” strategy to estimateθ.

4.2.2 Implementation of the Classifiers

In order to evaluate the discrimination performance of the hybrid algorithm, we compare it

with two widely-used discriminative and generative classifiers, linear logistic regression and

the naı̈ve Bayes classifier, using simulated continuous anddiscrete data.

The naı̈ve Bayes classifier is implemented by an R functionnaiveBayesfrom a contributed

packagee1071for R. As with Raina et al. (2003), for discrete data, we use Laplace (add-one)

smoothing. For simulated continuous data, the naı̈ve Bayesclassifier, which assumes normal

distributions for class-conditional probabilitiesp(x|y), corresponds to LDA-Λ when the co-

variance matrixΣ1 of the groupy = 1 is equal to the covariance matrixΣ2 of the groupy = 2,

and corresponds to quadratic normal discriminant analysiswith a common diagonal covari-

ance matrix (QDA-Λ) whenΣ1 6= Σ2. The naı̈ve Bayes classifier assumes the conditional

independence of allh features given the group labely, such thatp(x|y) =
∏h

j=1 p(xj |y); its

discriminant functionλG(x) can be written as

λG(x) = log
p(y = 1)

p(y = 2)
+

h
∑

j=1

log
p(xj |y = 1)

p(xj |y = 2)
.

The implementation of parameter estimation for the hybrid algorithm withλH(x) consists

of two steps: in the first step, by use of the R functionnaiveBayes, p(xj|y), j = 1, . . . , h, are

generatively estimated and thuslog p(x1|y=1)
p(x1|y=2)

andlog p(x2|y=1)
p(x2|y=2)

can be calculated; in the second

step,θ is estimated discriminatively by use of an R functionglm (from a standard packagestats

in R) with log p(x1|y=1)
p(x1|y=2)

andlog p(x2|y=1)
p(x2|y=2)

as predictor variables. The hybrid algorithm assumes

conditional independence within the partial feature vectors, such thatp(x1|y) =
∏h1

j=1 p(xj |y)

andp(x2|y) =
∏h

j=h1+1 p(xj |y).

Linear logistic regression is implemented by the R functionglm which uses an iteratively

reweighted least squares algorithm (IRLS, or IWLS, also known as the Fisher scoring algo-

rithm) to fit the model. The discriminant functionλD(x) of linear logistic regression can be



62

written as

λD(x) = β0 +

h
∑

j=1

βjxj ,

which does not necessarily imply that the conditional independence assumption holds.

4.2.3 Evaluation of the Classifiers

To evaluate the performance of the three classifiers, we use the misclassification error rate

(ER) and logarithmic loss (LL). The ER is defined as usual by the number of misclassified

observations over the total number of observations; it is based on a0 − 1 loss function and is

independent of the observed valuex.

In contrast, the LL is dependent onx. The LL, also referred to as the logistic loss for

logistic regression, is based on a loss functionL(y, ŷ(x)) = − log p(y|x), wherep(y|x) is

determined by the classifier̂y(x), and thus defined by

LL =

t
∑

i=1

{

− log p(y(i)|x(i))
}

,

wheret is the number of test observations. It can be easily recognised that the LL is in fact the

negative of the log-likelihood ofp(y|x), and therefore the estimates obtained by the discrim-

inative classifiers provide the best classification for the training observations if the minimum

LL is used to measure the performance.

Consider two groupsy ∈ {1, 2} with the discriminant functionλ(x) = log p(y=1|x)
p(y=2|x) . Then

the LL can be rewritten as

LL =
t
∑

i=1







(

− log
eλ(x(i))

1 + eλ(x(i))

)

1
{y(i)=1}

(

− log
1

1 + eλ(x(i))

)

1
{y(i)=2}







,

where1{y(i)=k} is an indicator function of the subset{y(i) = k}. A simple notation for the LL

used by the machine learning community for two groups such that y ∈ {−1, 1} is

LL =

t
∑

i=1

{

− log
1

1 + e−y(i)λ(x(i))

}

=

t
∑

i=1

{

log
(

1 + e−y(i)λ(x(i))
)}

.

4.3 Numerical Studies

4.3.1 Simulation Studies

Twelve datasets are simulated here, of which 6 are composed of h continuous features and the

other 6 are composed ofh discrete features. In each continuous dataset, the data arise from
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two h-variate normal distributions; in each discrete dataset, the data arise from twoh-variate

Bernoulli distributions.

Each dataset consists ofN = 103 observations, which are equally categorised into two

groups by a group labely ∈ 1, 2. Amongst them,m/2 observations from each of the two

groups are used as training observations;m is sampled within[100, 400] in steps of25. For

each sampledm, theN observations are randomly split intom training observations andt =

N − m test observations with400 replicates; from them, the medians of the ERs and LLs are

recorded and plotted. In each dataset, we seth = 4 and the feature vectorx = (x1, x2, x3, x4)
T

is composed of 2 partial feature vectorsx1 = (x1, x2)
T andx2 = (x3, x4)

T , i.e., h1 = h2 = 2.

Amongst the 12 datasets, 6 datasets (3 continuous and 3 discrete) haveΣ1 = Σ2, i.e., the

two groups have a common covariance matrixΣ. In addition, there are 4 datasets (2 contin-

uous and 2 discrete) with diagonal covariance matrices, andthus for them the assumption of

conditional independence of allh features ofx giveny underlying the naı̈ve Bayes classifier

is satisfied. There are also 4 datasets with block-diagonal covariance matrices of two blocks,

where one block consists of theh1 features ofx1 and the other consists of theh2 features of

x2, and thus for them the assumption of conditional independence betweenx1 andx2 giveny

is satisfied. The other 4 datasets have full covariance matrices such that each of theh features

of x giveny is dependent on the others.

As our results for the simulated discrete data showed similar patterns to those for the sim-

ulated continuous data, only the latter are presented below. The former can be found in the

appendices of this thesis.

4.3.1.1 Continuous Data with a Common Covariance MatrixΣ

The first 3 datasets contain simulated continuous data arising from two4-variate normal dis-

tributions: x ∼ N (µ1,Σ1) for the group withy = 1 andx ∼ N (µ2,Σ2) for y = 2, with

µ1 = (1.5, 0, 0.5, 0)T , µ2 = (−1.5, 0,−0.5, 0)T , Σ1 = Σ2 = Σ andΣ is
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Figure 4.1: Simulated normally distributed data with equalcovariance matrices. Plots of clas-

sification performance measured by ER and by LL vs. training set sizem.
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with c = 0.25, giving a diagonal, a block-diagonal and a full covariance matrix, respectively,

for the 3 datasets.

Medians of the ERs and LLs are obtained from400 replicates; the medians are plotted

against the training set sizem in Figure 4.1, of which each row represents the results for one

dataset.

4.3.1.2 Continuous Data with Unequal Covariance MatricesΣ1,Σ2

The structure of the second set of 3 datasets is similar to that of the first set in Section 4.3.1.1,

except thatΣ1 6= Σ2 andΣ2 is
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while Σ1 is the same asΣ shown in Section 4.3.1.1, respectively for these 3 datasets. The

results for these 3 datasets are shown in Figure 4.2.

4.3.2 Empirical Studies

For empirical studies, six continuous datasets in the UCI machine learning repository (Asun-

cion and Newman, 2007) are used here. The 6 UCI datasets are “Breast cancer Wisconsin

(diagnostic)”, “Breast cancer Wisconsin (prognostic)”, “Connectionist bench (sonar)”, “Ecoli

(cp vs. pp)”, “Pima Indians diabetes” and “Wine (1 vs. 2)”.

Raina et al. (2003) used newsgroups data, reasonably dividing a messagex into a message

subjectx1 and a message bodyx2 and obtaining very promising results from the hybrid al-

gorithm. However, for these UCI datasets, there might not besuch an apparently reasonable

division. As a random division ofx may break down the required connection of the features

within either of thexr and thus lead to a bias disfavouring the hybrid algorithm, wesimply took

the first half of the features asx1 and the others asx2. Such a simple division may preserve the

connection between features, as similar features are in general next to each other in the order

measured.

Similarly to the training-test split of the simulated datasets, for each group we randomly

choseρ% of the observations as training data and the remaining(100−ρ)% as test data, where
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Figure 4.2: Simulated normally distributed data with unequal covariance matrices. Plots of

classification performance measured by ER and by LL vs. training set sizem.
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Figure 4.3: UCI datasets. Plots of classification performance measured by ER vs.ρ.
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ρ = 20(10)80, such that the group proportion is preserved for training. For each value ofρ, we

generated 100 such random partitions to assess classifier performance; medians of the ERs for

these 100 replicates are shown in Figure 4.3, those of the LLsshowing similar patterns.

4.3.3 Conclusions of Numerical Studies

Based on the results shown in Figure 4.1, 4.2 and 4.3, our numerical studies suggest the fol-

lowing conclusions.

First, with the simulated datasets, in general, in terms of both performance measures,

namely ER and LL, if both the covariance matricesΣ1 andΣ2 are diagonal matrices, the naı̈ve

Bayes classifier performs the best; if both the covariance matricesΣ1 andΣ2 are full matrices,

linear logistic regression performs the best, in particular when the training set sizem is large.

The superior performance of the naı̈ve Bayes classifier can be attributed to the fact that the

simulated data satisfy the assumption of conditional independence underlying the classifier;

the superior performance of linear logistic regression canbe attributed to its robustness when

the assumptions underlying other classifiers are violated.

Secondly, the hybrid algorithm performs the best for 3 of thesix UCI datasets while either

the naı̈ve Bayes classifier or linear logistic regression performs the best for the others.

Therefore, with these datasets, our studies suggest that the hybrid algorithm may provide

worse performance than either the naı̈ve Bayes classifier orlinear logistic regression alone.



Chapter 5

Joint Generative-Discriminative

Modelling Based on Statistical Tests

for Classification

5.1 Introduction

The objective of statistical pattern classification is to classify an observationX into a group

y, whereX can be represented by ap-variate data vector(x1, . . . , xp) of its p measured vari-

ables andy is a categorical variable. The classification is based on a model, of which pa-

rameters are in general estimated from a training set ofn labelled observationsX = {Xi =

(xi1, . . . , xip)}n
i=1 with their labelsY = {yi}n

i=1.

Based on our studies presented in Chapters 2, 3 and 4, in this chapter, we present a joint

generative-discriminative modelling (JGD) approach to classification. This approach was also

inspired by a suggestion, made but not developed in Rubinstein and Hastie (1997), that a

promising hybrid approach is to ‘partition the feature (variable) space into two. Train an infor-

mative model on those dimensions for which it seems correct,and a discriminative model on

the others.’ In other words,X is partitioned into two sub-vectorsXG andXD, wherep(XG|y)

may be correctly modelled butp(XD|y) not, such that a generative approach is applied toXG

for p(XG|y)p(y) and a discriminative approach is applied toXD for p(y|XD). Therefore, a

key factor underlying the performance of such a classifier isthe correctness of the partition of

X, where confidence inp(XG|y) but notp(XD|y) should be based on the observedX andY.
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The partition of variables into two subsets in our approach is based on statistical tests of the

within-group distributionsp(xp|y) of the variablesxp involved.

Closely-related work by Kang and Tian (2006) constructed aniterative partition ofX, by

starting with an emptyX(0)
D (i.e., X(0)

G = X \ X
(0)
D is X), then, in thet-th iteration, moving

from X
(t−1)
G into X

(t−1)
D a single variablexj , namely the variable that can provide a classifier,

which is based onX(t)
G andX

(t)
G , with the highest improvement of classification performance

over the classifier that is based onX
(t−1)
G andX

(t−1)
G ; the procedure is continued till no such

variable can be found. In each iteration, the classifier has to be appliedp(t−1)
G times, where

p
(t−1)
G is the number of variables remaining inX(t−1)

G , in order to select a within-loop winner.

In contrast to that of Kang and Tian (2006), the partition in our approach follows Rubinstein

and Hastie (1997)’s suggestion that it should be based on different degrees of confidence we

have in the distributions ofXG|y andXD|y. In addition, we do not partition variables in a

heuristic or iterative way and thus only perform classification once rather than the many times

(of the order ofp(p+1) times) necessary to compare the remaining variables inXG. Therefore,

our approach is much less intensive in computation, in particular for high-dimensional data.

We focus on two-group classification, in whichy is a binary variable such thaty ∈ {0, 1}
and the observations in the sampleX are independent. The generalisation of our approach

to multi-group scenarios is determined by the generalisation of corresponding generative and

discriminative approaches involved.

5.2 Methodology

5.2.1 Models

A joint distributionp(X, y) can be factorised intop(X, y) = p(y|X)p(X), leading to discrimi-

native approaches which assume the form of posterior probabilities p(y|X) for classification, or

into p(X, y) = p(X|y)p(y), leading to generative approaches which assume a data-generating

process (DGP)p(X|y) for each group.

Suppose we know that, for the distributionp(XG|y), normality cannot be rejected, but, for

p(XD|y), normality is rejected. GivenX = (XD,XG), it follows that there are several ways

of factorisingp(X, y).



71

The first factorisation is

p(X, y) = p(XD,XG)p(y|XD,XG) , (5.1)

which leads to a discriminative model for classification, which does not model the DGPp(XG|y),

although we know that normality ofXG|y cannot be rejected and therefore is plausible. One

example of such a discriminative model is linear logistic regression (LLR).

The second factorisation isp(X, y) = p(XD,XG|y)p(y), which gives

p(X, y) = p(y)p(XG|y)p(XD|XG, y) , (5.2)

the right-hand side of which includes a group distributionp(y), a DGPp(XG|y) and a con-

ditional DGPp(XD|XG, y), leading to a generative model. The factorp(y) can be assumed

multinomial.

Based on different specifications forp(XG|y) andp(XD|XG, y), many special cases can

be derived of this generative model; one of them includes an assumption of conditional inde-

pendence betweenXD andXG giveny such thatp(XD|XG, y) = p(XD|y). Equation (5.2)

then simplifies to

p(X, y) = p(y)p(XG|y)p(XD|y) , (5.3)

and can then lead to a block-wise generalisation of the naı̈ve Bayes classifier (NBC); however,

as either we know little aboutp(XD|y) or our hypothesis about the nature ofp(XD|y), such

as normality, is rejected, the NBC can be wrong in its model specification and thus the esti-

mation ofp(XD|y) is not correct, in particular for continuousXD. This motivates the third

factorisation ofp(X, y).

By exchangingXD andy in (5.2), we obtain the third factorisation ofp(X, y) as

p(X, y) = p(XD)p(y|XD)p(XG|XD, y) , (5.4)

the right-hand side of which includes a to-be-ignored distribution p(XD), a discriminative ele-

mentp(y|XD) and a conditional DGPp(XG|XD, y), leading to a joint generative-discriminative

model. This model also includes many special cases, based ondifferent specifications of

p(y|XD) andp(XG|XD, y). For example, ifXD is categorical, then bothp(y|XD) andp(XG|XD, y)

can be accommodated by the NBC, or the former by logistic regression and the latter by the

NBC.
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5.2.2 Our JGD Approach

We focus on the scenario in which bothXD andXG contain only continuous variables and the

model is represented by equation (5.4). Although for such a scenario in theory we could assume

that the distributionp(XG|XD, y) is, for example, a Gaussian distribution, it is in practice hard

to test this. For simplicity, we assume conditional independence such thatp(XG|XD, y) =

p(XG|y); this leads to the simplified version

p(X, y) = p(XD)p(y|XD)p(XG|y) . (5.5)

However, it can still be computationally expensive to test this assumption in practice for high-

dimensional data in order to implement the partition ofX into (XD,XG). Therefore, as usual,

p(XG|y) is assumed to be normal, mainly for convenience, although itis still not easy to test

such multivariate distributions.

The classification-related difference between equations (5.3) and (5.5) is equivalent to the

difference betweenp(y)p(XD|y) and p(y|XD), which has been extensively studied before,

mainly under the assumption that the model specification ofp(XD|y) is correct. Here we

concentrate on the case in which such a model specification, such as the normality ofp(XD|y),

has been rejected by statistical tests and thereby model mis-specification has occurred. In fact,

this is why the partitioning ofX into XG andXD is important.

In this context, our JGD approach can be described as follows.

First, we test the null hypothesis of normality of each variable xj of X, and incorporatexj

in XG if normality is not rejected at a prescribed significance level α and intoXD otherwise.

Therefore, the partition ofX into XD andXG is achieved by performing a univariate normality

testp times. We use the univariate Shapiro-Wilk test for normality and setα = 0.01. As α

increases, the normality of more and more variables will be rejected and, consequently, the

dimension ofXG will decrease. For low-dimensional data sets, such as some presented in

Section 5.3,XG may become empty with certain high values ofα, such as0.05 or higher. When

eitherXD or XG turns out to be empty, the JGD approach degenerates to eithera generative or

a discriminative approach.

Secondly, when neitherXD norXG is empty, based on Bayes’ theorem and equation (5.5),

we use the following classification rule: a new observationZ = (ZD, ZG) is classified into

groupy = 1 if

log

[{

p(y = 1|ZD)

p(y = 0|ZD)

}{

p(ZG|y = 1)

p(ZG|y = 0)

}]

> 0 , (5.6)
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andy = 0 otherwise.

The left-hand side of equation (5.6) is the sum of two terms.

One is a discriminative term,log{p(y = 1|ZD)/p(y = 0|ZD)}. It is the logit function

of the posterior probabilityp(y = 1|ZD), and thus, if the LLR model is adopted, it can be

represented byβ0 +
∑pD

j=1 βjzDj , wherepD is the dimension ofZD, zDj are the variables in

ZD andβj are the coefficients corresponding tozDj.

The other is a generative term,log{p(ZG|y = 1)/p(ZG|y = 0)}. It is the log-likelihood

ratio of ZG between the two groups, and thus corresponds to normal-based linear/quadratic

discriminant analysis (L/QDA) with equal/unequal covariance matrices across the two groups,

given equal priors for the two groups.

If, as in Kang and Tian (2006), we further assume that the variables withinXG are con-

ditionally independent, such thatp(XG|y) =
∏pG

j=1 p(xGj|y), wherexGj are the variables in

XG andpG is the dimension ofXG, then this generative term corresponds to L/QDA with

equal/unequal diagonal covariance matrices, or the NBC. Inother words, such an assumption

justifies the use of the NBC forXG. For high-dimensional data, such an assumption of inde-

pendence may provide better classification results than using a full covariance structure (Bickel

and Levina, 2004; Fan and Fan, 2007), with variable selection taken into account.

In this context, equation (4) can be re-written as

β0 +

pD
∑

j=1

βjzDj +

pG
∑

j=1

{

log
σGj0

σGj1
− (zGj − µGj1)

2

2σ2
Gj1

+
(zGj − µGj0)

2

2σ2
Gj0

}

> 0 , (5.7)

whereβ0 andβj can be estimated by applying, for example, the method of iteratively reweighted

least squares to the subset ofX determined byXD; µGj1, µGj0, σGj1 andσGj0 are means and

standard deviations of groupsy = 1 andy = 0, respectively, and can be estimated by applying

maximum likelihood estimation to the subset ofX determined byXG.

For high-dimensional data such thatp ≫ n, variable selection is commonly used before

classification is performed (Fan and Fan, 2007; Hall et al., 2008). Variable selection can, on

the one hand, make many traditional classification algorithms feasible, and, on the other hand,

remove noisy, irrelevant variables and thus improve the classification performance.

If k variables withk ≤ n are selected, then classical methods such as the NBC and LLR,

which were established for low-dimensional scenarios suchthatp ≤ n, can be used effectively

and this is also the case with our JGD approach.
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5.3 Numerical Studies

5.3.1 UCI Data with p ≤ n and Gene Expression Data withp ≫ n

We apply our JGD approach to 6 datasets with continuous variables in the UCI machine learn-

ing repository (Asuncion and Newman, 2007) and 3 gene-expression datasets. The 6 UCI

datasets, satisfyingp ≤ n (p ≤ 100, 100 ≤ n ≤ 1000), are “Breast cancer Wisconsin (di-

agnostic)”, “Breast cancer Wisconsin (prognostic)”, “Connectionist bench (sonar)”, “Ecoli”,

“Haberman’s survival” and “Wine”.

The 3 gene-expression datasets are “Colon Cancer” (Alon et al., 1999), “Leukemia” (Golub

et al., 1999) and “Prostate Cancer” (Singh et al., 2002). TheColon Cancer dataset consists of

p = 2000 genes forn = 62 observations (40 tumour and 22 normal colon-tissue vectors). The

Leukemia dataset consists ofp = 7129 genes forn = 72 observations (47 acute lymphoblas-

tic leukemia (ALL) and 25 acute myeloid leukemia (AML) data vectors). In the case of the

Prostate Cancer dataset, there arep = 12600 genes forn = 136 observations (77 prostate

tumours and 59 non-tumour prostate vectors).

For the gene-expression datasets, we first preprocess the data as did Dudoit et al. (2002),

and then, based on training sets of observations, selectk variables (genes) by using a tilting

method proposed by Hall et al. (2008);k is set at 30, so thatk < n. The preprocessing includes

the following steps: truncating and censoring intensitiesto the interval[100, 16000]; removing

genes which showed little variation in intensity across allthe observations; transforming in-

tensities to base-10 logarithms; and standardising each observation to have zero mean and unit

variance.

Similarly to Kang and Tian (2006), in terms of misclassification error rate, we compare

the JGD approach with the NBC, LLR and recursive partitioning and regression trees (rpart)

methods. As Kang and Tian (2006) discretised all the continuous variables into ten equal-length

intervals whereas we use continuous variable without discretisation, it may not be appropriate

to compare our results with theirs. Nevertheless, our empirical and simulation studies, for low-

or high-dimensional real and simulated data, can be regarded as a complement to their results

on other UCI datasets.

The NBC and rpart methods are implemented by the R packagese1071andrpart, respec-

tively; LLR is implemented by an R functionlogitreg (Venables and Ripley, 2002), using the

BFGS algorithm.
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Data n(n0, n1) p(p̃G) JGD NBC LLR rpart p-v (J-N) p-v (J-L) p-v (J-r)

Bcwd 569(357,212) 30(2) 0.035 0.070 0.035 0.088 0.008 1 0.016

Bcwp 194(148,46) 32(8) 0.264 0.300 0.308 0.325 0.016 0.445 0.203

Sonar 208(111,97) 60(2) 0.269 0.293 0.333 0.262 0.539 0.7730.945

Ecoli 195(143,52) 5(2) 0 0.025 0.025 0.051 1 1 0.625

Haber 306(225,81) 3(1) 0.250 0.246 0.250 0.295 0.812 1 0.344

Wine 130(59,71) 13(7.5) 0 0 0.038 0.077 1 0.125 0.031

Colon 62(40,22) 30(20) 0.071 0.143 0.200 0.243 1 0.031 0.016

Leuke 72(47,25) 30(5) 0 0 0 0.134 1 1 0.031

Prost 136(59,77) 30(4) 0.077 0.154 0.154 0.113 0.473 0.094 1

Table 5.1: Description of the real datasets, medians of ER obtained from 10-fold cross-

validation of our JGD approach, the NBC, LLR and rpart methods, andp-values for the

Wilcoxon signed-rank test for pairs of our approach with each of the other classifiers. No-

tation: n(n0, n1): the numbers of observations in the whole dataset, and for groupsy = 0 and

y = 1, respectively;p: the number of variables inX; p̃G: the median number of variables in

XG; Bcwd: Breast cancer Wisconsin (diagnostic); Bcwp: Breastcancer Wisconsin (prognos-

tic); Sonar: Connectionist bench (sonar); Ecoli: Ecoli (cpvs. pp); Haber: Haberman’s survival;

Wine: Wine (1 vs. 2); Colon: Colon Cancer; Leuke: Leukemia; Prost: Prostate Cancer.
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The description of the datasets, medians of misclassification error rates (ER) obtained from

10-fold cross-validation of the compared classifiers and the p-values for the Wilcoxon signed-

rank test for pairs made up of our approach with each of the other classifiers are listed in

Table 5.1. For each fold of the 10-fold cross-validation,XG andXD can be different from those

obtained in other folds, as can, for the high-dimensional gene-expression data, the selectedk

variables.

5.3.2 Simulated Data with Independent Normal and Gamma Distributions

As we know, two normally distributed groups of data can lead to a linear discriminant func-

tion if the two within-group covariance matricesΣ1 andΣ0, for groupsy = 1 andy = 0

respectively, are equal, satisfying the assumption underlying LLR, and to a quadratic function

otherwise. The normal-based NBC here assumes thatΣ1 6= Σ0 and thus assumes a quadratic

discriminant function; however, it can provide a linear function for the case withΣ1 = Σ0,

given that the estimated covariance matrices are approximately equal.

The Gamma distribution has, forx ≥ 0, probability density functionG(x;α, η) = xα−1ηαe−ηx/Γ(α),

where the shape parameterα > 0 and the inverse scale parameter (also called the rate)η > 0.

It follows that, if variables inXD are conditionally independent giveny, a discriminative term

can be derived fromlog{p(y = 1|XD)/p(y = 0|XD)} in the form

log
p(y = 1|XD)

p(y = 0|XD)
= β0 +

pD
∑

j=1

βjxDj +

pD
∑

j=1

γj log xDj , (5.8)

where, with parameters for groupy denoted byαjy andηjy,

β0 = log
p(y = 1)

p(y = 0)
+

pD
∑

j=1

{

αj1 log ηj1 − αj0 log ηj0 + log
Γ(αj0)

Γ(αj1)

}

, (5.9)

βj = −(ηj1 − ηj0) , γj = αj1 − αj0 . (5.10)

Therefore, this represents a linear discriminative term that satisfies the assumption underlying

LLR if αj1 = αj0 and otherwise does not. In addition, it violates the assumption underlying

the NBC which is based on normal distributions in our study.

To explore different scenarios involving satisfaction or violation of the underlying assump-

tions, we simulated 4 datasets, for combinations of normally distributed data (asXG) with

equal/unequalΣ1 andΣ0 and data (asXD) from Gamma distributions with equal/unequalαj1

andαj0, respectively.
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Data XG|y = 0,XG|y = 1 XD|y = 0,XD|y = 1 JGD NBC LLR

Sim1 N(−1, 9), N(1, 9) G(2, 1/4), G(2, 1/2) X X

Sim2 N(−1, 9), N(1, 9) G(3, 1/4), G(2, 1/2)

Sim3 N(−1, 9), N(1, 36) G(2, 1/4), G(2, 1/2) X

Sim4 N(−1, 9), N(1, 36) G(3, 1/4), G(2, 1/2)

Table 5.2: Description of the simulated datasets. Notation: N(µ, σ2); G(α, η); X indicates

cases in which the underlying assumptions are satisfied.

Data JGD NBC LLR p-v (J-N) p-v (J-L)

Sim1 0.350 0.350 0.350 0.984 1

Sim2 0.225 0.200 0.200 0.562 0.250

Sim3 0.275 0.375 0.425 0.062 0.008

Sim4 0.200 0.250 0.250 0.438 0.375

Table 5.3: Medians of ER obtained from 10-fold cross-validation of our JGD approach, the

NBC and LLR, andp-values for the Wilcoxon signed-rank test for pairs made up of our ap-

proach with each of the other classifiers.
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For simplicity, for each simulated dataset, we setpG = pD = 1 andn = 200 with 100

observations from each group. The structure of the 4 datasets is shown in Table 5.2 and results

about the corresponding ER obtained from 10-fold cross-validation are listed in Table 5.3. The

specification of the class-conditional distributions in Table 5.2 is such that, within each simula-

tion, the variances of the Gamma distributions closely match those of the normal distributions.

5.3.3 Summary of Numerical Studies

From the classification results shown in Tables 5.1 and 5.3, we observe the following.

First, our results for continuous UCI and gene-expression datasets demonstrate that the

classification performance of the JGD approach is in generalslightly superior to that of the

NBC, LLR and rpart methods. Its lack of statistically significant superiority may be either due

to imbalance between the numbers of variables ofXG andXD or due to the small number of

pairs (10 pairs from 10-fold cross-validation) in the Wilcoxon signed-rank tests.

Secondly, the results for “Sim2”, “Sim4” and “Sim1” indicate that, when the underlying

assumptions for each method are either violated or largely satisfied, the JGD, NBC and LLR

approaches show similar performance.

Thirdly, the results for “Sim3” show that, when only its own underlying assumptions are

satisfied, the JGD approach can perform significantly betterthan the NBC and LLR methods.

5.4 Conclusions

The JGD classification approach partitioned variables intotwo subsets based on statistical tests

about within-group distributions of the variables, and then used generative approaches for the

variables which passed the tests and discriminative approaches for the other variables. Such a

statistical partition of variables and a probabilistic combination of generative and discriminative

approaches led to promising classification performance of this approach for both low- and high-

dimensional data, as demonstrated by our numerical studiesfor empirical and simulated data.

As explained at the end of Section 5.1, our approach is much more economical in terms

of computation time than that by Kang and Tian (2006). We haveconcentrated on particular

choices for the generative and discriminative components of our models, but the overall prin-

ciple is quite general and can accommodate many other special versions. Of course, we must

ensure that the assumptions underlying our generative components can be tested statistically.



Chapter 6

On Generative and Discriminative

Hidden Markov Models

In this chapter, we study the assumption of “mutual information independence”, which is used

by Zhou (2005) for deriving an output-dependent hidden Markov model, the so-called discrim-

inative HMM (D-HMM), in the context of determining a stochastic optimal sequence of hidden

states. The assumption is extended to derive its generativecounterpart, the G-HMM. In addi-

tion, state-dependent representations for two output-dependent HMMs, namely HMMSDO (Li,

2005) and D-HMM, are presented.

6.1 Introduction

Amongst the latent (hidden) variable models for structureddata such as time series, hidden

Markov models (HMMs) for discrete-valued hidden states andstate-space models (SSMs) for

continuous-valued hidden states are widely used.

Traditionally, an HMM is generative because it models a distribution P (On
1 |Sn

1 ), the data

generation process (DGP) of the observed output sequence,On
1 = o1, . . . , on, given the hidden

state sequence,Sn
1 = s1, . . . , sn, and thusP (On

1 |Sn
1 ), a state-dependent term, is included in the

criterion for determining a stochastic optimal sequence ofhidden states. Recently, Zhou (2005)

proposed a discriminative hidden Markov model (D-HMM), which includes output-dependent

termsP (st|On
1 ), t = 1, . . . , n, in the criterion, based on an assumption of “mutual information

independence”. Meanwhile, Li (2005) presented the so-called “hidden Markov models with

79
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states depending on observations” (HMMSDO), which assume that the current statest depends

not only on the last statest−1 but also on the last outputot−1, so that output-dependent terms

P (st|st−1, ot−1) are included in the criterion.

Both the D-HMM and HMMSDO show superior performance in determining the opti-

mal state sequence for certain applications. Zhou (2005) shows that the D-HMM outperforms

the corresponding generative hidden Markov model (G-HMM) for part-of-speech tagging and

phrase chunking; Li (2005) shows that HMMSDO outperforms the standard HMM for predic-

tion of protein secondary structures when the training set is large enough.

6.2 Generative HMM

Following the notation used by Zhou (2005), the definition ofthe optimal hidden state sequence

Sn
1 based on the observed output sequenceOn

1 is that of the maximum a posteriori (MAP)

estimatorS∗ of Sn
1 :

S∗ = argmax
Sn

1

{log P (Sn
1 |On

1 )} . (6.1)

The G-HMM rewrites the criterion (6.1) through applying Bayes’ theorem and ignoring the

item determined purely byOn
1 as

S∗ = argmax
Sn

1

{log P (Sn
1 ) + log P (On

1 |Sn
1 )} ,

which is further factorised as

S∗ = argmax
Sn

1

{

log P (Sn
1 ) + log

(

P (o1|Sn
1 )

n
∏

k=2

P (ok|Ok−1
1 , Sn

1 )

)}

.

In order to make this formulation tractable, an assumption that On
1 is conditionally inde-

pendent givenSn
1 is in general introduced as, for allk ∈ {2, . . . , n},

P (ok|Ok−1
1 , Sn

1 ) = P (ok|Sn
1 ) , (6.2)

and thus, based on such a conditional independence assumption, the MAP estimator for the

G-HMM is simplified to

S∗ = argmax
Sn

1

{

log P (Sn
1 ) +

n
∑

i=1

log P (oi|Sn
1 )

}

. (6.3)

The G-HMM is regarded as being generative because it directly models the DGPP (oi|Sn
1 ) of

the observedoi from the hiddenSn
1 .
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In practice, as for the standard HMM, the assumption (6.2) isfurther simplified to

P (ok|Ok−1
1 , Sn

1 ) = P (ok|Sn
1 ) = P (ok|sk) , (6.4)

and thus the MAP estimator of the standard HMM is

S∗ = argmax
Sn

1

{

log P (Sn
1 ) +

n
∑

i=1

log P (oi|si)

}

. (6.5)

6.3 Discriminative HMM from Mutual Information Independen ce

The D-HMM rewrites the criterion (6.1) through applying Bayes’ theorem, but not ignoring

the item determined purely byOn
1 , as

S∗ = argmax
Sn

1

{

log P (Sn
1 ) + log

P (Sn
1 , On

1 )

P (Sn
1 )P (On

1 )

}

.

To make this formulation tractable, an assumption that the mutual information (MI (Sn
1 , On

1 ) =

log
P (Sn

1 ,On
1 )

P (Sn
1 )P (On

1 ) ) betweenSn
1 andOn

1 is independent with respect to each hiddensi was intro-

duced by Zhou (2005) as

MI(Sn
1 , On

1 ) =
n
∑

i=1

MI(si, O
n
1 ) , (6.6)

or, in more detail,

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n
∑

i=1

log
P (si, O

n
1 )

P (si)P (On
1 )

=
n
∑

i=1

log
P (si|On

1 )

P (si)
. (6.7)

Based on such a representation, the MAP estimator for the D-HMM is simplified as (Zhou,

2005)

S∗ = argmax
Sn

1

{

log P (Sn
1 ) +

n
∑

i=1

log P (si|On
1 ) −

n
∑

i=1

log P (si)

}

. (6.8)

The D-HMM is regarded as being discriminative because the criterion (6.8) includes directly

the discriminative processP (si|On
1 ), representing an output-dependence of a hidden statesi

on all the observed outputsOn
1 .

We shall make four observations about the D-HMM.

First, it is noted that the criterion (6.8) is simultaneously to maximise the maximum pos-

terior marginal (MPM) estimator
∑n

i=1 log P (si|On
1 ) of log P (Sn

1 |On
1 ) and to maximise the

distance between the state transition modellog P (Sn
1 ) and its independence-based counterpart

∑n
i=1 log P (si).
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Secondly, in order to satisfy the assumption (6.7) underlying the D-HMM, it is required

that
n
∏

k=2

P (sk|Sk−1
1 , On

1 )

P (sk|Sk−1
1 )

=

n
∏

k=2

P (sk|On
1 )

P (sk)
.

Since this is valid for any value ofsk, it follows that, for allk ∈ {2, . . . , n},

P (sk|Sk−1
1 , On

1 )

P (sk|Sk−1
1 )

=
P (sk|On

1 )

P (sk)
. (6.9)

Thirdly, the assumption (6.7) can be rewritten as

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n
∑

i=1

log
P (si, O

n
1 )

P (si)P (On
1 )

=

n
∑

i=1

log
P (On

1 |si)

P (On
1 )

. (6.10)

Based on such a representation, the MAP estimator (6.8) for the D-HMM can be rewritten,

with the term
∑n

i=1 log P (On
1 ) determined purely byOn

1 being ignored, as

S∗ = argmax
Sn

1

{

log P (Sn
1 ) +

n
∑

i=1

log P (On
1 |si)

}

. (6.11)

Therefore, the D-HMM can also be represented as being generative because the criterion (6.11)

includes a generative-like processP (On
1 |si), representing a state-dependence of all the ob-

served outputsOn
1 on a hidden statesi.

Fourthly, it can be seen that, when the assumption (6.6) of mutual information indepen-

dence develops from independence between pairs(si, O
n
1 ) into that between local pairs(si, oi)

such thatMI(Sn
1 , On

1 ) =
∑n

i=1 MI(si, oi), the criteria (6.11) and (6.8) degenerate into the

criterion (6.5), indicating that the D-HMM degenerates into the standard HMM.

6.4 Generative HMM from Mutual Information Independence

Furthermore, similarly to the assumption (6.6) proposed byZhou (2005), an assumption that

mutual information betweenSn
1 andOn

1 is independent with respect to each observedoi can be

introduced here as

MI(Sn
1 , On

1 ) =
n
∑

i=1

MI(Sn
1 , oi) , (6.12)

or, in more detail,

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n
∑

i=1

log
P (Sn

1 , oi)

P (Sn
1 )P (oi)

=
n
∑

i=1

log
P (oi|Sn

1 )

P (oi)
. (6.13)
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Based on such a representation, we can obtain another generative model and its MAP estimator,

with the term
∑n

i=1 log P (oi) determined purely byOn
1 being ignored, as

S∗ = argmax
Sn

1

{

log P (Sn
1 ) +

n
∑

i=1

log P (oi|Sn
1 )

}

. (6.14)

This estimator is in fact the estimator (6.3) of the G-HMM,i.e., the G-HMM can be derived

under the assumption (6.12), a type of mutual information independence.

Similarly, we shall make three observations about this G-HMM, which is derived from

mutual information independence.

First, in order to satisfy the assumption (6.13) of the G-HMM, it is required that, for all

k ∈ {2, . . . , n},
P (ok|Ok−1

1 , Sn
1 )

P (ok|Ok−1
1 )

=
P (ok|Sn

1 )

P (ok)
. (6.15)

Therefore, under the MAP criterion (6.1), the conditions (6.15) and (6.2) have the same effect

on determining the optimal hiddenSn
1 .

Secondly, the assumption (6.13) can be rewritten as

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n
∑

i=1

log
P (Sn

1 , oi)

P (Sn
1 )P (oi)

=

n
∑

i=1

log
P (Sn

1 |oi)

P (Sn
1 )

. (6.16)

Based on such a representation, the MAP estimator (6.14) forthe G-HMM can be rewritten,

with the terms related tolog P (Sn
1 ) being combined, as

S∗ = argmax
Sn

1

{

(1 − n) log P (Sn
1 ) +

n
∑

i=1

log P (Sn
1 |oi)

}

. (6.17)

Therefore, in this sense, the G-HMM can also be represented as being discriminative because

the criterion (6.17) includes a discriminative-like process P (Sn
1 |oi), representing an output-

dependence of all the hidden statesSn
1 on an observed outputoi.

Thirdly, it can be seen that, when the assumption (6.12) of mutual information indepen-

dence develops from independence between pairs(Sn
1 , oi) into that between local pairs(si, oi)

such thatMI(Sn
1 , On

1 ) =
∑n

i=1 MI(si, oi), the criteria (6.17) and (6.14) degenerate into the

criterion (6.5), indicating that the G-HMM degenerates into the standard HMM.
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6.5 Equivalence between G-HMM and D-HMM

Once we assume a fully independent mutual information between any state-output combination

(si, oj) as

MI(Sn
1 , On

1 ) =

n
∑

i=1

n
∑

j=1

MI(si, oj) , (6.18)

or, in more detail,

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n
∑

i=1

n
∑

j=1

log
P (si, oj)

P (si)P (oj)

=

n
∑

i=1

n
∑

j=1

log
P (oj |si)

P (oj)
=

n
∑

i=1

n
∑

j=1

log
P (si|oj)

P (si)
,

(6.19)

this assumption results in two criteria, one generative andthe other discriminative, with the

MAP estimators as

S∗ = argmax
Sn

1

{log P (Sn
1 ) +

n
∑

i=1

n
∑

j=1

log P (oj |si)} , (6.20)

S∗ = argmax
Sn

1







log P (Sn
1 ) +

n
∑

i=1

n
∑

j=1

log P (si|oj) −
n
∑

i=1

{n log P (si)}







, (6.21)

respectively. These two criteria are equivalent.

In the context of determining an optimal sequence of hidden states, apart from the equiv-

alence above, up to now, we find two occurrences of equivalence between a discriminative

representation of the MAP criterion and its generative counterpart: one is for the D-HMM be-

tween the criteria (6.8) and (6.11), the other is for the G-HMM between the criteria (6.17) and

(6.14).

We shall further illustrate such equivalence with two simple but related HMMs: one is a

generative-like state-dependent model, which assumes that the current outputot depends not

only on the current statest but also on the last statest−1; the other is a discriminative-like

output-dependent model, the so-called HMMSDO (Li, 2005), which assumes that the current

statest depends not only on the last statest−1 but also on the last outputot−1.

The joint distribution of the first generative-like state-dependent model is

P (Sn
1 , On

1 ) = P (s1)P (o1|s1)
n
∏

i=2

P (si|si−1)P (oi|si, si−1) . (6.22)
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This distribution can be rewritten as

P (Sn
1 , On

1 ) = P (o1, s1)

n
∏

i=2

P (si, oi|si−1)

= P (o1)P (s1|o1)

n
∏

i=2

P (oi|si−1)P (si|si−1, oi) ,

(6.23)

which leads to a discriminative-like output-dependent part P (si|si−1, oi) in the distribution.

In fact, the only difference between the probabilistic directed acyclic graphs (DAGs) corre-

sponding to the joint distributions (6.22) and (6.23) is that directions of edges fromsi to oi are

reversed.

Similarly, the joint distribution of the discriminative-like output-dependent HMMSDO,

with P (si|si−1, oi−1) included, is (Li, 2005)

P (Sn
1 , On

1 ) = P (s1)P (o1|s1)

n
∏

i=2

P (si|si−1, oi−1)P (oi|si) . (6.24)

This distribution can be rewritten as

P (Sn
1 , On

1 ) = P (s1)P (on|sn)

n
∏

i=2

P (si, oi−1|si−1)

= P (s1)P (on|sn)
n
∏

i=2

P (si|si−1)P (oi−1|si, si−1) ,

(6.25)

which leads to a no-longer discriminative-like output-dependence in the distribution. In fact,

the difference between the DAGs corresponding to the joint distributions (6.24) and (6.25)

is only in that directions of edges fromsi to oi−1 are reversed. In practice, whether or not

P (oi−1|si, si−1) is reasonable needs to be justified, because it means that thecurrent output

depends on the next state.

6.6 Conclusions

We suggest that the mutual information assumption (6.12) results in the G-HMM, while another

mutual information assumption (6.6) results in the D-HMM. However, in practice, whether or

not the assumptions are reasonable and how the corresponding HMMs perform can be data-

dependent; research efforts to explore an adaptive switching between or combination of these

two models may be worthwhile. Meanwhile, we suggest that theso-called output-dependent

HMMs could be represented in a state-dependent manner, and vice versa, essentially by appli-

cation of Bayes’ theorem.



Chapter 7

On Generative and Discriminative

Image Thresholding

In this chapter, we present discriminative approaches to histogram-based image thresholding, in

which the optimal threshold is derived from the maximum likelihood based on the conditional

distributionp(y|x) of y, the class indicator of a grey levelx, givenx. The discriminative ap-

proaches can be regarded as discriminative extensions of the traditional generative approaches

to thresholding, such as Otsu’s method and Kittler and Illingworth’s minimum error threshold-

ing (MET).

7.1 Introduction

Image thresholding is a simple and widely-used technique for segmentation, partitioning a

grey-level image into segments corresponding to differentclasses (Sahoo et al., 1988; Pal and

Pal, 1993; Sezgin and Sankur, 2004), given that the classes to some extent can be distinguished

by their grey levels. Most thresholding approaches are proposed for two-class binarisation and

are based on the grey-level histogram of an image (Sahoo et al., 1988; Sezgin and Sankur,

2004; Glasbey, 1993; Trier and Jain, 1995). Two of the most popular approaches are Otsu’s

method (Otsu, 1979) and Kittler and Illingworth’s minimum error thresholding (MET) (Kittler

and Illingworth, 1986).

Given an image ofN pixels, Otsu’s method selects the optimal thresholdt∗ as

t∗ = argmin
t∈[0,T−1]

σ2
w(t) = π0(t)σ

2
0(t) + π1(t)σ

2
1(t) ,
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where[0, T ] is the range of grey level, andπ0(t) andσ0(t) are respectively the proportion of

and standard deviation within classC0(t), whereC0(t) includes all the pixels with grey levels

x less thant, i.e.,C0(t) = {i : 0 ≤ xi ≤ t, 1 ≤ i ≤ N}; π1(t), σ1(t) andC1(t) are defined

similarly for the remaining pixels, and thusσ2
w(t) is called within-class variance. The MET

method selectst∗ as

t∗ = argmin
t∈[0,T−1]

π0(t) log
σ0(t)

π0(t)
+ π1(t) log

σ1(t)

π1(t)
,

whereπy 6= 0, y = 0, 1, and in practiceσy is nonzero. Research efforts have been made to

unify these two approaches (Kurita et al., 1992; Yan, 1996).

Kurita et al. (1992) show that Otsu’s method is equivalent tomaximisation of the log-

likelihood based on the conditional distributionp(x|y), wherex is the grey level andy ∈ {0, 1}
is the class indicator corresponding tox, under the assumption that the grey level within each

class (denoted byx|y) follows a normal distributionN (µy, σ
2
y) andσ2

0 = σ2
1 . Kurita et al.

(1992) also show that MET is equivalent to maximisation of the log-likelihood based on the

joint distribution p(x, y), under the assumption thatx|y ∼ N (µy, σ
2
y) andσ2

0 6= σ2
1 . Since

p(x, y) = πyp(x|y), whereπy = p(y), Otsu’s method is also equivalent to maximisation of

the log-likelihood based onp(x, y) with π0 = π1 = 0.5. In this sense, both Otsu’s method and

MET assume a data-generating process (DGP)p(x, y); therefore, we call such approaches gen-

erative thresholding approaches. As with Fisher’s linear discriminant, Otsu’s original method

does not assume normally distributed classes or thatσ2
0 = σ2

1 ; therefore, hereafter we refer, as

Otsu’s method, to the generative method to which it is equivalent, shown in Kurita et al. (1992).

Sincep(x, y) = p(x)p(y|x) ∝ p(y|x), the MET method is also equivalent to minimi-

sation of the logistic loss, which is based on− log p(y|x). Meanwhile, under the assump-

tion of normal distributions, both Otsu’s method and MET areequivalent to minimisation

of the expected misclassification error rate. In other words, both methods seekt∗ such that

p(C1(t
∗)|x = t∗) = p(C0(t

∗)|x = t∗), leading to alternative iterative implementations by

solving

log{p(C1(t)|x)/p(C0(t)|x)} = 0

for x and then updatingt, p(C1(t) andp(C0(t) in each iteration (Kittler and Illingworth, 1986;

Gonzalez and Woods, 2002).

For both Otsu’s method and MET, the grey-level histogram is assumed to be an empirical

realisation of a two-component normal mixture. However, such an assumption often cannot
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be guaranteed for real images, leading to a major potential risk of model mis-specification

when generative thresholding is applied. In two-class discrimination, there are discrimina-

tive approaches which do not assume any DGP and which can be less sensitive to model

mis-specification than are corresponding generative approaches (Rubinstein and Hastie, 1997;

Ng and Jordan, 2001). Therefore, in this chapter, we presentdiscriminative approaches to

histogram-based image thresholding. The optimal threshold is derived from the maximum log-

likelihood based on the conditional distributionp(y|x). The discriminative approaches can be

regarded as discriminative extensions of the traditional generative approaches to thresholding,

such as Otsu’s method and MET.

7.2 Discriminative Thresholding

For two-class discrimination, in terms of minimum misclassification error rate, an optimal

discriminant criterion for classifying an observationx into classC1 with y = 1 (or C0 with

y = 0) is a discriminant functiong(x, α) = log{p(C1|x)/p(C0|x)} > 0 (or≤ 0). For a pixel in

grey-level images,x is in general its grey level as a scalar. The most widely used discriminant

functions are a linear functiong(x, α) = β0 + β1x, whereα = (β0, β1)
T , and a quadratic

functiong(x, α) = β0 + β1x + β2x
2, whereα = (β0, β1, β2)

T .

Theg(x, α) can be derived from a generative classifier, such as normal-based linear/quadratic

discriminant analysis whereN (µy, σ
2
y) is assumed as the DGP for classy and where it is as-

sumed thatσ2
0 = σ2

1 for the linear case andσ2
0 6= σ2

1 for the quadratic case. It can also be

derived from a discriminative classifier, such as linear/quadratic logistic regression, in which

no DGP is assumed.

Here we derive a discriminative thresholding approach frommaximisation of the log-

likelihood based on the conditional distributionp(y|x), which can be represented as a function

of g(x, α).

As g(x, α) = log{p(y = 1|x)/p(y = 0|x)}, after some algebra we obtain

p(y = 1|x) = eg(x,α)/
(

1 + eg(x,α)
)

, p(y = 0|x) = 1/
(

1 + eg(x,α)
)

.

It follows that, for an image ofN pixels{(xi, yi)}N
i=1, wherexi andyi are the grey level and

class indicator of thei-th pixel, the log-likelihoodℓ(α) based onp(yi|xi) is

ℓ(α) =
N
∑

i=1

g(xi, α)yi −
N
∑

i=1

log
(

1 + eg(xi,α)
)

.
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Let h(x), x = 0, . . . , T , denote the grey-level histogram constructed from theN pixels.

For histogram-based thresholding, a thresholdt partitionsh(x) into two sets of grey levels

and thus partitions the image into two classes of pixels, denoted byC0(t) andC1(t), such that

yi = 0 if xi ≤ t andyi = 1 otherwise. Asyi changes witht, and the parameterα of g(x, α) is

estimated from{(xi, yi)}N
i=1 by maximisation ofℓ(α), we writeg(x, α) asg(x, α(t)) andℓ(α)

can be rewritten as

ℓ(α(t)) =

T
∑

x=t+1

h(x)g(x, α(t)) −
T
∑

x=1

h(x) log
(

1 + eg(x,α(t))
)

.

In this context, the optimal thresholdt∗ can be determined discriminatively as

t∗ = argmax
t

ℓ(α̂(t)) ,

whereα̂(t), estimated fromC0(t) andC1(t), is the maximum-likelihood estimator ofα for a

thresholdt. Estimation ofα(t) proceeds similarly to that for logistic regression models,using

C0(t) andC1(t) as the training set. As there is no convenient analytical solution forα, discrim-

inative thresholding is of higher computational complexity than generative thresholding.

The multi-threshold extensions of the discriminative thresholding approaches can be ob-

tained by using the log-likelihood for a multinomial logit model, which is the multi-class gen-

eralisation of logistic regression.

When the DGP is known, a generative approach is to be preferred in general. However,

for real-world application, the DGP is always unknown, in which case a generative approach

has to assume a specific DGP. For different assumptions of theDGP, a generative approach

can have different variants. For example, variants of MET include those for Poisson (Pal and

Bhandari, 1993), Rayleigh (Xue et al., 1999), Nakagami-Gamma, Weibull and log-normal dis-

tributions (Moser and Serpico, 2006).

In contrast to generative thresholding, a discriminative approach to thresholding assumes

the discriminant functiong(x, α) rather than the DGP, and this may lead to more robust per-

formance against the model mis-specification. As parameterestimation within discriminative

approaches is in general harder than that in generative approaches (Rubinstein and Hastie,

1997), the computational complexity of discriminative thresholding is in general higher than

that of generative thresholding, as in our implementation below.

For illustration, we present two discriminative thresholding approaches, which have the

same formula but differentα for g(x, α) as those for Otsu’s method and MET, respectively.
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As Otsu’s method corresponds to a linear discriminant function and MET corresponds to a

quadratic, we define the discriminative Otsu method as

t∗ = argmax
t

ℓ(α̂(t)) with g(x, α(t)) = β0(t) + β1(t)x ,

and the discriminative MET as

t∗ = argmax
t

ℓ(α̂(t)) with g(x, α(t)) = β0(t) + β1(t)x + β2(t)x
2 .

7.3 Experiments with Discriminative Thresholding

In this section, we compare the performance of generative and discriminative versions of Otsu’s

method and MET. Comparison of approaches to image thresholding requires an appropriate

evaluation method, and numerous methods have been developed based on various criteria (Sa-

hoo et al., 1988; Sezgin and Sankur, 2004; Zhang, 1996; Zhanget al., 2007). Roughly speaking,

supervised evaluation is subjective, requiring a pre-segmented image as ground-truth; unsuper-

vised evaluation is objective but prefers an approach appropriate for the underlying evaluation

criteria.

As with Kittler and Illingworth (1986) and Kurita et al. (1992), we compare the thresh-

olding approaches by using histograms constructed from simulated data. The data for each

class are simulated from normal, Poisson, log-normal and two-component normal mixture dis-

tributions. Normal distributions are, as used for Otsu’s method and MET (Kurita et al., 1992),

the most-commonly used distributions in image processing;Poisson distributions are justi-

fied based on a theory of image formation (Pal and Bhandari, 1993); log-normal distributions

are used as heavy-tailed adaptions of Rayleigh distributions for the thresholding of synthetic

aperture radar (SAR) amplitude images (Moser and Serpico, 2006); and, compared to normal,

Poisson and log-normal distributions, a normal mixture canbe a better approximation to the

distribution of a class in the histogram.

Although, in our scenario, the underlying distributions for the simulated data are known,

they are unknown for real images. Therefore, we do not compare discriminant thresholding ap-

proaches versus a generative thresholding approach developed for a specific distribution, such

as MET for Poisson distributions in Pal and Bhandari (1993) or for log-normal distributions

in Moser and Serpico (2006).
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For Otsu’s method and MET, normally distributed classes cansatisfy the underlying as-

sumptions, while neither Poisson nor log-normally distributed data satisfy the assumptions.

For discriminant thresholding, as normal distributions are exponential families in canonical

form, they satisfy the linear or quadratic formulation ofg(x, α(t)). Although Poisson distribu-

tions are also exponential families in canonical form, because of the equivalence of mean and

variance, they only satisfy the linear formulation ofg(x, α(t)). Log-normal distributions are

exponential families but not in canonical form; hence, theyand normal mixture distributions

satisfy neither the linear nor the quadratic formulation ofg(x, α(t)).

For Otsu’s method and MET, the estimator of the parameterθ = (πy, µy, σ
2
y)

T is the

maximum-likelihood estimator based onp(x, y), which can be calculated directly from the

histogram as in Otsu (1979), Kittler and Illingworth (1986)and Kurita et al. (1992). The

thresholds obtained are denoted bytO andtM , respectively.

For discriminant thresholding, as for logistic regression, the estimator of the parameterα is

implemented by an R functionglm (from a standard packagestats), which uses an iteratively

re-weighted least squares algorithm to fit the model. The thresholds obtained are denoted by

dO anddM , respectively.

We make following comments about our implementation. First, in order to avoidσy = 0,

which may cause failure of MET, we only search for thresholdswithin the [1, 99] percentile

range of histograms. Secondly, since grey levels are in range of [0, T ], we left-truncate and

right-censor the simulated data into that range.

We simulate six datasets, each with10, 000 pixels, and setT = 255 as for 8-bit grey-level

images. The datasets for normal distributions are unbalanced in terms of class proportions,

while others are balanced. The setting of our simulated datais as follows.

The two datasets for normal distributions are the same as those used by Kurita et al. (1992):

one hasπ1 = 0.05, µ1 = 50, µ2 = 150 andσ1 = σ2 = 18; the other hasπ1 = 0.25, µ1 = 38,

µ2 = 121, σ1 = 8 andσ2 = 40.

As a Poisson distribution can be well approximated by a normal distribution when its mean

is larger, such as10, as with Pal and Bhandari (1993), we simulate pixels with lowgrey levels.

The dataset for Poisson distributions hasµ1 = 5, µ2 = 20. As the mean is equal to the variance

for Poisson distributions, the two classes have unequal variances.

The dataset for log-normal distributions has logarithms having µ1 = 2, µ2 = 4, σ1 = 1/2

andσ2 = 1/4.
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One of the two datasets for normal mixture distributions hasfour components, two for each

class with equal mixing weights. The two componentsN (µ1,a, σ
2
1) andN (µ1,b, σ

2
1) for the

first mixture are specified withµ1,a = 60 andµ1,b = 80; and the two componentsN (µ2,a, σ
2
2)

andN (µ2,b, σ
2
2) for the second mixture are specified withµ2,a = 120 andµ2,b = 140. In

addition,σ2
1 = σ2

2 = 10, and hence the two classes have equal variances. The other dataset for

normal mixture distributions is the same as the previous onebut withσ2
1 = 5 andσ2

2 = 15, and

hence the two classes have unequal variances.

The thresholding results for these six datasets are shown inFigure 7.1. We observe the

following.

For the datasets from normal distributions, where the histograms are themselves normal

mixtures, the discriminative Otsu method (dO) gives almost the same results as MET (tM ),

which is better than the Otsu’s original method (tO) (Kurita et al., 1992) and the discrimina-

tive MET (dM ). The same phenomenon appears for the Poisson dataset. For the other three

datasets, all the four methods of study show the similar thresholds and thus comparable perfor-

mance.

Note that, for all six datasets, although the discriminative MET does not provide satisfac-

tory results, the discriminative Otsu method consistentlyprovides relatively good performance,

compared to the original methods. In terms of the level of computational complexity, that of

the discriminative Otsu method, which corresponds to a linear discriminant function, is lower

than that of the discriminative MET, which corresponds to a quadratic, whereas those of both

discriminative approaches are higher than those of the original approaches in parameter esti-

mation.

7.4 Conclusions

The discriminative approach to histogram-based image thresholding proposed in this chapter is

based on maximum likelihood corresponding to the conditional distributionp(y|x), rather than

p(x, y) as in the case of the traditional generative thresholding. For our simulated datasets,

results show that the discriminative Otsu method consistently provides relatively good perfor-

mance. Considering its robustness and model simplicity, wesuggest the use of the discrimina-

tive Otsu method for scenarios in which Otsu’s original method and MET do not perform well

due to model mis-specification and in which the computation is not demanding.
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Figure 7.1: Thresholding results for 6 simulated datasets.HeretO, tM , dO anddM are thresh-

olds from Otsu’s method, MET and their discriminative counterparts, respectively.



Chapter 8

Summary, Conclusions, Discussion

and Future Work

8.1 Summary of the Thesis

Classification is a ubiquitous problem tackled in statistics, machine learning, pattern recog-

nition and data mining (Hand, 2006). The sampling and diagnostic paradigms for classifica-

tion (Dawid, 1976; Titterington et al., 1981; Hand and Yu, 2001), studied before in the statistics

community both theoretically and empirically, re-emergedin the machine learning community

under the new terminology of generative and discriminativeclassifiers (Ng and Jordan, 2001),

in particular with some hybrid modelling and learning techniques (Raina et al., 2003; Bouchard

and Triggs, 2004; McCallum et al., 2006; Bishop and Lasserre, 2007) to exploit the best of both

paradigms.

The purpose of this thesis was to investigate the degree of innovation and performance

improvement made with these hybrid classifiers, and in the end, based on the investigation, to

develop our own philosophy and techniques for classification.

The main approach used in the thesis towards its goal was to consider the hybrid classifiers

together with some widely-used statistical classifiers, figuring out the underlying statistical

assumptions and the connections between them, implementing simulation or empirical studies

for them and comparing the corresponding results thereby obtained.

In Chapter 2, we performed some empirical and simulation studies to provide extension of

and make comments on a highly-cited report (Ng and Jordan, 2001) which compared the naı̈ve

94
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Bayes classifier (NBC) or normal-based linear discriminantanalysis (LDA) with linear logistic

regression (LLR) and claimed that there exist two distinct regimes of performance between the

generative and discriminative classifiers, depending on the training-set sizem. However, our

studies suggested that it is not so reliable to claim existence of the two distinct regimes and that

pairing of either LDA assuming a common diagonal covariancematrix (LDA-Λ) or the NBC

and LLR may not be perfect. Hence, it may not be reliable for any claim that was derived from

the comparison between LDA-Λ or the NBC and LLR to be generalised to all generative and

discriminative classifiers.

In Chapters 3 and 4, we studied extensively two hybrid-learning techniques, namely the hy-

brid generative-discriminative algorithm (Raina et al., 2003) and the generative-discriminative

tradeoff (GDT) approach (Bouchard and Triggs, 2004). We argued that both the GDT and the

hybrid algorithm are by nature generative models integrating both discriminative and genera-

tive learning. They are therefore still sensitive to model mis-specification of the data-generating

process (DGP).

8.2 Conclusions

Based on the results from above investigations, our conclusions were as follows.

First, there was no universal winner amongst the generative, discriminative and hybrid

classifiers; the performance is data-dependent, as shown inChapters 2, 3 and 4.

This led to our second argument: it was recommended to first explore the data in order

to validate the assumptions underlying candidate classifiers and then to decide to use either

generative, discriminative or hybrid classifiers.

We developed such an argument by proposing, in Chapter 5, a joint generative-discriminative

modelling (JGD) approach to classification, by partitioning variables into two subsets based on

statistical tests of the DGP. Our JGD approach adopts statistical tests, such as normality tests, of

the assumed DGP for each variable to justify the use of generative classifiers for the variables

which satisfy the tests and of discriminative classifiers for the other variables. Such a parti-

tion of variables and a combination of generative and discriminative classifiers were derived in

a probabilistic rather than a heuristic way, and also demonstrated promising performance for

practical application to both low- and high-dimensional data.

Our third conclusion was that, considering the pairing of generative and discriminative
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models, we could develop a discriminative counterpart for an existing generative approach and

vice versa, as shown in Chapters 6 and 7. However, within sucha pair, two models have in

general different underlying assumptions, explicitly or implicitly; therefore, whether or not the

assumptions are reasonable and how the corresponding pairsperform are again data-dependent.

8.3 Some Further Discussion

First, as discussed in Chapter 2, Ng and Jordan (2001) claimed that there exist two distinct

regimes of performance between the generative and discriminative classifiers with regard to

the training-set sizem. They came to that conclusion by comparing the normal-basedNBC

and LLR, of which the NBC performs better with smallerm and LLR with largerm. A similar

pattern of two distinct regimes with regard tom was also reported by Perlich et al. (2003), based

on the performance of logistic regression (LR) and tree induction; they found that LR performs

better with smallerm and tree induction with largerm. Therefore, although tree induction and

LR are not a pair of generative and discriminative classifiers, it could be interesting to explore

such a pattern for other pairs of classifiers.

Secondly, one of the key points of the hybrid algorithm in Raina et al. (2003) is to assign

weights to the class-conditional distributions of subsetsof variablesx; the subsets were ob-

tained by partitioningx. The extremes of such a block-wise NBC are either the independence

model investigated by Titterington et al. (1981) and Hand and Yu (2001), assigning a com-

mon weight, or a more sophisticated model, assigning different weights to the distributions of

different variables. In addition, it may not be necessary touse a hybrid strategy to estimate

parameters, as the weights can be also estimated in a generative way.

Thirdly, although the hybrid classifiers, such as the GDT andthe hybrid algorithm, offered

good empirical results, our results showed that simpler generative classifiers like NBC and dis-

criminative classifiers like LLR could offer comparable performance to the hybrid classifiers.

This conformed to an argument made by Hand (2006) that simpleclassifiers typically yield

performance that is almost as good as more sophisticated classifiers. Meanwhile, a generally-

valid empirical evaluation of classifiers is always an important but difficult problem (Hand,

2006). Our setting of simulation and empirical studies in general followed or extended those

of the original papers, such as in Chapters 2, 3 and 7, if practically possible. However, a more

comprehensive comparative study may benefit from the theoryof experimental design, after
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investigation of the underlying assumptions of the classifiers under study.

Finally, some good performance of hybrid classifiers, such as the hybrid algorithm (Raina

et al., 2003) and the NBC-based independence model (Titterington et al., 1981; Hand and Yu,

2001), may be the consequence of bias-variance trade-off, as they are in general biased models.

8.4 Potential Future Work

Based on the results presented in this thesis, several directions for future work merit investiga-

tion.

First, we could use resampling methods for high-dimensional low-sample-size data, such

as bagging or boosting of simple classifiers like NBC which has shown good performance for

high-dimensional data (Hand and Yu, 2001).

Secondly, we could compare generative and discriminative models for problems where the

distribution of training samples is different from that of test samples, and then develop a hybrid

classifiers for such a scenario.

Thirdly, one well-studied model corresponding to equation(5.2) is the general location

model for mixed categorical and continuous data (Krzanowski, 1983), in whichXG contains

categorical variables andXD contains continuous variables. For such a model, corresponding

to traditional generative approaches to its parameter estimation based in general on normal

distributions, we could develop and validate discriminative modelling and learning approaches.

Finally, when causal, effect and background variables are candidate predictors for an out-

come of response, such as in medical statistics with symptomatological, aetiological and pa-

tient’s background variables, it could be better to select only causal variables as the predictors,

as suggested by Ni Bhrolchain (1979). Approaches to achieving this may include weighting

each variable (or their class-conditional distributions), or doing causality-based variable selec-

tion beforehand, although the latter could be a challengingtask, which is beyond the topic of

this thesis.



Appendix A

Appendix for Chapter 3

A.1 Asymptotic Efficiency of GDT for Linear Normal Discrimin a-

tion

A.1.1 Linear Normal Discrimination

We assume that, within each sub-population, the feature vector x arises from one of two

multivariate normal distributions with different means but the same covariance matrix,i.e.,

x|θ1 ∼ N (µ1,Σ), x|θ0 ∼ N (µ0,Σ), and that no mis-specification occurs. In this context, a

linear discriminant function is derived, as in Section 1.1.4:

g(x, α) = log
π1

π0
− 1

2
(µT

1 Wµ1 − µT
0 Wµ0) + (µ1 − µ0)

T Wx = β0 + βTx ,

whereW = Σ−1, so thatαT = (β0, β
T ), θT = (π1, µ

T
1 , µT

0 , (vech(W ))T ).

A.1.2 Estimation ofΣg(θ̂)

Asymptotic properties of maximum likelihood estimators suggest that
√

n(θ̂−θ) ∼ AN (0,Σg(θ̂) =

nI−1
g (θ)), whereIg(θ) is the Fisher information matrix,

Ig(θ) = E

{

∂ℓg(θ)

∂θ

∂ℓg(θ)

∂θT

}

= E

{

−∂2ℓg(θ)

∂θ∂θT

}

.

After some algebra, we can obtain the following results:
√

n(π̂1 − π1) ∼ AN (0, π1π0) ,
√

n(µ̂1 − µ1) ∼ AN (0, 1
π1

Σ) ,
√

n(µ̂0 − µ0) ∼ AN (0, 1
π0

Σ) ,
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√
n(vech(Ŵ ) − vech(W )) ∼ AN (0, nI−1

g (vech(W ))) , where

{

Ig(vech(W ))
}

Wi,j ,Wk,l
= E

{

− ∂2ℓg(θ)

∂Wi,j∂Wk,l

}

=
n(Σi,kΣl,j + Σi,lΣk,j)

(1 + δi,j)(1 + δk,l)
,

in whichΣi,j andWi,j are the(i, j)-th components ofΣ andW , respectively.

It follows that Σg(θ̂) is a block-diagonal matrix composed of a scalarΣg(π̂1) = π1π0,

two p × p matricesΣg(µ̂1) = 1
π1

Σ and Σg(µ̂0) = 1
π0

Σ, and a p(p+1)
2 × p(p+1)

2 matrix

Σg(vech(Ŵ )) = nI−1
g (vech(W )).

A.1.3 Estimation ofΣλ(θ̂)

Asymptotic properties of maximum likelihood estimators suggest that

√
n(θ̂ − θ) ≃ √

n

[

E

{

−∂2ℓλ(θ)

∂θ∂θT

}]−1

· ∂ℓλ(θ)

∂θ
∼ AN (0,Σλ(θ̂)) ,

whereℓλ(θ) = λℓg(θ) + (1 − λ)ℓy|x(θ), andΣλ(θ̂) = nI−1
λ (θ)Vλ(θ)I−1

λ (θ), in which, since

E
{

∂ℓλ(θ)
∂θ

}

= 0 andℓg(θ) = ℓy|x(θ) + ℓx(θ),

Iλ(θ) = E

{

−∂2ℓλ(θ)

∂θ∂θT

}

= λIg(θ) + (1 − λ)Iy|x(θ) ,

Vλ(θ) = Cov

(

∂ℓλ(θ)

∂θ

)

= E

{

(

∂ℓλ(θ)

∂θ

)2
}

= λ2Ig(θ) + (1 − λ2)Iy|x(θ) .

Here, after some algebra, we obtain

1

n
Iy|x(θ) =

∫

x

p(C1|x)p(C0|x)

[

∂ log r(θ, π;x)

∂θ

] [

∂ log r(θ, π;x)

∂θ

]T

p(x)dx ,

with r(θ, π;x) = π1p(x|θ1)
π0p(x|θ0)

andp(x) = π1p(x|θ1) + π0p(x|θ0).

Lemma A.1.1 Whenλ = 1, we haveIλ(θ) = Vλ(θ) = Ig(θ), and thusΣλ(θ̂) = nI−1
g (θ);

whenλ = 0, we haveIλ(θ) = Vλ(θ) = Iy|x(θ), and thusΣλ(θ̂) = nI−1
y|x(θ).

With regard to each component ofθ, we obtain

∂ log r(θ, π;x)

∂π1
=

1

π1π0
,

∂ log r(θ, π;x)

∂µ1
= W (x− µ1) ,

∂ log r(θ, π;x)

∂µ0
= −W (x− µ0) ,

[

∂ log r(θ, π;x)

∂W

]

i,j

=

[

−(x − µ1)(x − µ1)
T + (x− µ0)(x − µ0)

T
]

i,j

1 + δi,j
.
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A.1.4 Relationship betweendα = (α̂ − α) and dθ = (θ̂ − θ)

With g(x, α) = log π1
π0

− 1
2 (µT

1 Wµ1 − µT
0 Wµ0) + (µ1 − µ0)

T Wx = β0 + βT x, after some

algebra, we obtain

∂β0

∂π1
=

1

π1π0
,

∂β0

∂µT
1

= −µT
1 W ,

∂β0

∂µT
0

= µT
0 W ,

∂β0

∂Wi,j
=

[

−µ1µ
T
1 + µ0µ

T
0

]

i,j

1 + δi,j
,

∂β

∂π1
= 0 ,

∂β

∂µT
1

= W ,
∂β

∂µT
0

= −W ,
∂β

∂Wi,j
=

[Ji,j + Jj,i] (µ1 − µ0)

1 + δi,j
,

whereJi,j is the single-entry matrix with 0 everywhere except for 1 at the(i, j)-th position.

Using the above differentiation results, combined withΣg(θ̂) as derived in Section A.1.2

andΣλ(θ̂) as derived in Section A.1.3, we can obtain the(p+1)× (p+1) matricesΣg(α̂) and

Σλ(α̂), respectively.

A.1.5 Estimation ofΣd(α̂)

As mentioned earlier in Section A.1.3, for the discriminative component in the GDT, we have

1

n
Iy|x(θ) =

∫

x

p(C1|x)p(C0|x)

[

∂ log r(θ, π;x)

∂θ

] [

∂ log r(θ, π;x)

∂θ

]T

p(x)dx .

Similarly, for discriminative learning of the LLR estimator α̂, its asymptotic variance matrix

Σd(α̂) was proved by O’Neill (1980) to be

Σ−1
d (α̂) =

∫

x

p(C1|x)p(C0|x)

[

∂g(x, α)

∂α

] [

∂g(x, α)

∂α

]T

p(x)dx

=

∫

x

eg(x,α)

[1 + eg(x,α)]2





1

x





(

1 xT
)

p(x)dx .

A.1.6 Estimation ofB

To calculate AER and ARE, such as

ARE(α̂d, α̂g) =
tr(BΣg(α̂))

tr(BΣd(α̂))
,

we need to deriveB, which was defined in Section 3.2.1.

Forg(x, α) = β0 + βTx, x|θ1 ∼ N (µ1,Σ), x|θ0 ∼ N (µ0,Σ), we have

B =
1

4
√

βT β

∫

D





1

x





(

1 xT
)

p(x)dmD ,

whereD = {x : g(x, α) = 0} andmD is Lebesgue measure onD.
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A.1.7 Simplified Estimation by Linear Transformation of x

Since a linear transformation ofx into a + Ax does not change the misclassification error

rates, the above mentioned estimation of asymptotic variance matrices can be simplified by a

workable transformation. (Hereafter we still usex to denote the new feature vector obtained

from transformation.)

Efron (1975) suggested a new, linearly transformedx satisfying: x|θ1 ∼ N (∆
2 e1, I),

x|θ0 ∼ N (−∆
2 e1, I), where∆ =

√

(µ1 − µ0)T W (µ1 − µ0), the Mahalanobis distance be-

tween the means of the two sub-populations, and, in addition, it is required that∆ 6= 0 to make

the two sub-populations nonidentical;I is the identity matrix andeT
1 = (1, 0, 0, . . . , 0). In such

a case,
∂β0

∂Wi,j
=

[

−µ1µ
T
1 + µ0µ

T
0

]

i,j

1 + δi,j
= 0,

∂β

∂Wi,j
=

∆ [Ji,j + Jj,i] e1

1 + δi,j
.

This suggests separating(vech(W ))T into (ηT
1 , ηT

2 ), whereηT
1 = (W1,1,W1,2, . . . ,W1,p) and

ηT
2 = (W2,2,W2,3, . . . ,Wp,p), so that, after some algebra,∂β

∂η1
= ∆I, ∂β

∂η2
= 0.

Through simplification, we obtaindα = Mdθ, whereM =





1
π1π0

−∆
2 eT

1 −∆
2 eT

1 0 0

0 I −I ∆I 0



.

Since the last column of the block matrixM is all zeros, and all the components ofθ are asymp-

totically uncorrelated, we can ignore the asymptotic covariance matrix of the vectorη2 for the

computation ofΣg(α̂) andΣλ(α̂).

A.1.7.1 Re-calculation ofIg(θ), Σg(θ̂) and Σg(α̂)

If x|θ1 ∼ N (∆
2 e1, I) andx|θ0 ∼ N (−∆

2 e1, I), we can obtain
√

n(π̂1 − π1) ∼ AN (0, π1π0) ,
√

n(µ̂1 − µ1) ∼ AN (0, 1
π1

I) ,
√

n(µ̂0 − µ0) ∼ AN (0, 1
π0

I) ,
√

n(η̂1 − η1) ∼ AN (0, nI−1
g (η1)), where

[

1
n
Ig(η1)

]

j,l
=

I1,1Il,j+I1,lI1,j

(1+δ1,j )(1+δ1,l)
, so that

√
n(η̂1 −

η1) ∼ AN (0,J1,1 + I) .

It then follows that

Σg(θ̂) = Block-Diag(Σg(π̂1),Σg(µ̂1),Σg(µ̂0),Σg(η̂1),Σg(η̂2))

= Block-Diag(π1π0,
1

π1
I,

1

π0
I,J1,1 + I,£) ,
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where£ is ignored, and the(p + 1) × (p + 1) symmetric matrixΣg(α̂) is (Efron, 1975)

Σg(α̂) = MΣg(θ̂)M
T =











[Σg(α̂)]1,1 [Σg(α̂)]1,2

[Σg(α̂)]2,1 [Σg(α̂)]2,2

[Σg(α̂)]3,3Ip−1











=
1

π1π0











1 + ∆2

4
∆(π1−π0)

2

∆(π1−π0)
2 1 + 2∆2π1π0

(1 + ∆2π1π0)Ip−1











.

Lemma A.1.2 Whenπ1 = π0 = 1
2 , we have a diagonal matrixΣg(α̂) = Diag(4 + ∆2, 4 +

2∆2, (4 + ∆2)Ip−1); i.e., in this case, there exists a linear transformation ofx that can make

the generative estimateŝα = α̂g of the coefficients of the linear discriminant functiong(x, α)

asymptotically uncorrelated.

A.1.7.2 Re-calculation ofIy|x(θ), Σλ(θ̂) and Σλ(α̂)

After some algebra, we can obtain

1
n
Iy|x(π1) = A0

π1π0
,

1
n
Iy|x(µ1) = π1π0Diag(A2 − ∆A1 + ∆2

4 A0, A0, . . . , A0) ,

1
n
Iy|x(µ0) = π1π0Diag(A2 + ∆A1 + ∆2

4 A0, A0, . . . , A0) ,

1
n
Iy|x(η1) = π1π0∆

2Diag(A2, A0, . . . , A0) ,

where, withφ(x) denoting the density of the univariate standard normal distribution,

Ai =

∫ ∞

−∞

e−
∆2

8 xiφ(x)

π1e
∆
2

x + π0e
−∆

2
x
dx, i = 0, 1, . . . .

Lemma A.1.3 For all k = 0, 1, . . ., A2k ≥ 0, and A2k is even-symmetric whileA2k+1 is

odd-symmetric aboutπ1 = 1
2 (so thatA2k+1 = 0 if π1 = π0 = 1

2 ).

Lemma A.1.4 When∆ → 0, we have thatAi, i = 0, 1, . . ., is thei-th moment of the univariate

standard normal distributionN (0, 1) so thatA0 = 1, A1 = 0, A2 = 1, . . ..

With Iy|x(θ) andIg(θ) as given in Section A.1.7.1, we can first deriveIλ(θ) andVλ(θ)

through






Iλ(θ) = λIg(θ) + (1 − λ)Iy|x(θ)

Vλ(θ) = λ2Ig(θ) + (1 − λ2)Iy|x(θ) ,
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and then deriveΣλ(θ̂) andΣλ(α̂) through






Σλ(θ̂) = nI−1
λ (θ)Vλ(θ)I−1

λ (θ)

Σλ(α̂) = MΣλ(θ̂)MT .

More precisely,Σλ(θ̂) is a block-diagonal matrix composed of a scalarΣλ(π̂1), threep×p

diagonal matricesΣλ(µ̂1), Σλ(µ̂0) andΣλ(η̂1), and a matrix of no interestΣλ(η̂2), where

Σλ(π̂1) = π1π0
λ2 + (1 − λ2)A0

[λ + (1 − λ)A0]2
,

Σλ(µ̂1) =





[Σλ(µ̂1)]1,1

[Σλ(µ̂1)]2,2Ip−1



 =
1

π1







λ2+(1−λ2)π0(A2−∆A1+
∆2

4
A0)

[λ+(1−λ)π0(A2−∆A1+
∆2

4
A0)]2

λ2+(1−λ2)π0A0

[λ+(1−λ)π0A0]2
Ip−1






,

Σλ(µ̂0) =





[Σλ(µ̂0)]1,1

[Σλ(µ̂0)]2,2Ip−1



 =
1

π0







λ2+(1−λ2)π1(A2+∆A1+
∆2

4
A0)

[λ+(1−λ)π1(A2+∆A1+
∆2

4
A0)]2

λ2+(1−λ2)π1A0

[λ+(1−λ)π1A0]2
Ip−1






,

and

Σλ(η̂1) =





[Σλ(η̂1)]1,1

[Σλ(η̂1)]2,2Ip−1



 =





1
2
λ2+(1−λ2)π0π1∆2A2

[ 1
2
λ+(1−λ)π0π1∆2A2]2

λ2+(1−λ2)π0π1∆2A0

[λ+(1−λ)π0π1∆2A0]2
Ip−1



 .

Therefore, we have

Σλ(α̂) =











[Σλ(α̂)]1,1 [Σλ(α̂)]1,2

[Σλ(α̂)]2,1 [Σλ(α̂)]2,2

[Σλ(α̂)]3,3Ip−1











,

where

[Σλ(α̂)]1,1 = (
1

π0π1
)2Σλ(π̂1) +

∆2

4
([Σλ(µ̂1)]1,1 + [Σλ(µ̂0)]1,1) ,

[Σλ(α̂)]1,2 = [Σλ(α̂)]2,1 =
∆

2
(−[Σλ(µ̂1)]1,1 + [Σλ(µ̂0)]1,1) ,

[Σλ(α̂)]2,2 = [Σλ(µ̂1)]1,1 + [Σλ(µ̂0)]1,1 + ∆2[Σλ(η̂1)]1,1 ,

[Σλ(α̂)]3,3 = [Σλ(µ̂1)]2,2 + [Σλ(µ̂0)]2,2 + ∆2[Σλ(η̂1)]2,2 .

Lemma A.1.5 Whenπ1 = π0 = 1
2 , according to Lemma A.1.3, we haveΣλ(µ̂1) = Σλ(µ̂0)

and thus[Σλ(α̂)]1,2 = [Σλ(α̂)]2,1 = 0, leading to a diagonal matrixΣλ(α̂); i.e., in this

case, there exists a linear transformation ofx that can make the GDT estimatesα̂ = α̂λ

asymptotically uncorrelated.
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A.1.7.3 Re-calculation ofΣd(α̂)

Efron (1975) showed that

Σ−1
d (α̂) = π1π0











A0 A1

A1 A2

A0Ip−1











,

whereAi is as defined in Section A.1.7.2. It follows that

Σd(α̂) =











[Σd(α̂)]1,1 [Σd(α̂)]1,2

[Σd(α̂)]2,1 [Σd(α̂)]2,2

[Σd(α̂)]3,3Ip−1











=
1

π1π0











A2

A0A2−A2
1

−A1

A0A2−A2
1

−A1

A0A2−A2
1

A0

A0A2−A2
1

1
A0

Ip−1











.

Lemma A.1.6 Whenπ1 = π0 = 1
2 , according to Lemma A.1.3, we have a diagonal matrix

Σg(α̂) = Diag( 4
A0

, 4
A2

, 4
A0

Ip−1); i.e., in this case, there exists a linear transformation ofx

that can make the discriminative estimatesα̂ = α̂d asymptotically uncorrelated.

A.1.7.4 Re-calculation ofB

Forg(x, α) = β0 +βTx, x|θ1 ∼ N (∆
2 e1, I), x|θ0 ∼ N (−∆

2 e1, I), ∆ > 0, we have that, after

some algebra,β0 = log π1
π0

, βT = ∆eT
1 , soβT β = ∆2, and

g(x̃, α) = 0 ⇔ x̃T = (τ = − 1
∆ log π1

π0
, x2, . . . , xp), wherex2, . . . , xp are any real numbers. It

follows that

B =
π1φ(τ − ∆

2 )

2∆











1 τ

τ τ2

Ip−1











.

A.2 Asymptotic Efficiency of GDT for Quadratic Normal Discri m-

ination

A.2.1 Quadratic Normal Discrimination

Now we assume that, within each sub-population, the featurevectorx arises from one of two

multivariate normal distributions with different covariance matrices,i.e., x|θ1 ∼ N (µ1,Σ1),

x|θ0 ∼ N (µ0,Σ0), whereΣ1 6= Σ0. In addition, no mis-specification occurs. In this context,

a quadratic discriminant function is derived, as in Section1.1.4, to be

g(x, α) = β0 + βTx + xT Γx =
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log
π1

π0
− 1

2
(µT

1 W1µ1 − µT
0 W0µ0) −

1

2
log

|W0|
|W1|

+ (µT
1 W1 − µT

0 W0)x − 1

2
xT (W1 − W0)x ,

whereW1 = Σ−1
1 , W0 = Σ−1

0 , so thatΓ is a symmetric matrix,αT = (β0, β
T , (vech(Γ))T )

andθT = (π1, µ
T
1 , µT

0 , (vech(W1))
T , (vech(W0))

T ).

A.2.2 Estimation ofΣg(θ̂)

By calculating the Fisher information matrix and after somealgebra, as with linear normal

discrimination, we obtain that
√

n(π̂1 − π1) ∼ AN (0, π1π0) ,
√

n(µ̂y − µy) ∼ AN (0, 1
πy

Σy), y = 0, 1 ,
√

n(vech(Ŵy) − vech(Wy)) ∼ AN (0, nI−1
g (vech(Wy))) , wherey = 0, 1, where

{

Ig(vech(Wy))
}

[Wy]i,j ,[Wy]k,l
= E

{

− ∂2ℓg(θ)

∂[Wy]i,j∂[Wy]k,l

}

= πy
n([Σy]i,k[Σy]l,j + [Σy]i,l[Σy]k,j)

(1 + δi,j)(1 + δk,l)
.

It follows that Σg(θ̂) is a block-diagonal matrix composed of a scalarΣg(π̂1) = π1π0,

two p × p matricesΣg(µ̂1) = 1
π1

Σ1 andΣg(µ̂0) = 1
π0

Σ0, and twop(p+1)
2 × p(p+1)

2 matrices

Σg(vech(Ŵ1)) = nI−1
g (vech(W1)) andΣg(vech(Ŵ0)) = nI−1

g (vech(W0)).

A.2.3 Estimation ofΣλ(θ̂)

The way to estimateΣλ(θ̂) is similar to that in Section A.1.3, based on the calculationof Iλ(θ)

andVλ(θ), or, more concretely, on the calculation ofIg(θ) (see Section A.2.2) andIy|x(θ). In

order to calculateIy|x(θ), we derive

∂ log r(θ, π;x)

∂π1
=

1

π1π0
,

∂ log r(θ, π;x)

∂µ1
= W1(x − µ1),

∂ log r(θ, π;x)

∂µ0
= −W0(x − µ0) ,

[

∂ log r(θ, π;x)

∂Wy

]

i,j

=

[

−(x− µy)(x − µy)
T + Σy

]

i,j

1 + δi,j
(−1)1−y , y = 0, 1 .



106

A.2.4 Relationship betweendα = (α̂ − α) and dθ = (θ̂ − θ)

Consideringβ0 = log π1
π0

− 1
2(µT

1 W1µ1 − µT
0 W0µ0) − 1

2 log |W0|
|W1| , βT = µT

1 W1 − µT
0 W0 and

Γ = −1
2(W1 − W0), after some algebra, we obtain that

∂β0

∂π1
=

1

π1π0
,

∂β0

∂µT
1

= −µT
1 W1 ,

∂β0

∂µT
0

= µT
0 W0 ,

∂β0

∂[W1]i,j
=

[

−µ1µ
T
1 + Σ1

]

i,j

1 + δi,j
,

∂β0

∂[W0]i,j
= −

[

−µ0µ
T
0 + Σ0

]

i,j

1 + δi,j
,

∂β

∂π1
= 0 ,

∂β

∂µT
1

= W1 ,
∂β

∂µT
0

= −W0 ,

∂β

∂[W1]i,j
=

[Ji,j + Jj,i] (µ1)

1 + δi,j
,

∂β

∂[W0]i,j
=

[Ji,j + Jj,i] (−µ0)

1 + δi,j
,

and
∂Γi,j

∂π1
= 0 ,

∂Γi,j

∂µT
1

= 0 ,
∂Γi,j

∂µT
0

= 0 ,

∂Γ

∂[W1]i,j
= −1

2

[Ji,j + Jj,i]

1 + δi,j
,

∂Γ

∂[W0]i,j
=

1

2

[Ji,j + Jj,i]

1 + δi,j
.

Using the above differentiation results, combined withΣg(θ̂) as derived in Section A.2.2

andΣλ(θ̂) as derived in Section A.2.3, we can obtainΣg(α̂) andΣλ(α̂).

A.2.5 Estimation ofΣd(α̂)

Similarly to that in Section A.1.5, the asymptotic variancematrix Σd(α̂) for quadratic normal

discrimination is

Σ−1
d (α̂) =

∫

x

eg(x,α)

[1 + eg(x,α)]2
[∇αg(x, α)][∇αg(x, α)]T p(x)dx ,

where∇αg(x, α) =
(

1 xT sx
T
)T

, in whichsx = vech(2xxT − Diag(xxT )).

A.2.6 Estimation ofB

Forg(x, α) = β0 + βTx + xT Γx, x|θ1 ∼ N (µ1,Σ1), x|θ0 ∼ N (µ0,Σ0), we have

|∇xg(x, α)|2 =

p
∑

k=1

(

∂g

∂xk

)2

=

p
∑

k=1



βk + 2xkγk,k +

p
∑

i=1,i6=k

2xiγk,i





2

.

We may then calculateB based on its definition in Section 3.2.1.
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A.2.7 Simplified Estimation by Linear Transformation of x

Here we consider a univariate case used by O’Neill (1980),i.e., assumingp = 1, x|θ1 ∼
N (µ1, σ

2
1), x|θ0 ∼ N (µ0, σ

2
0), so that

θT = (π1, µ1, µ0, η1, η0), whereη1 = 1/σ2
1 , η0 = 1/σ2

0 andπ1 ∈ (0, 1)

andg(x, α) = β0 + βx + γx2, αT = (β0, β, γ) .

Furthermore, O’Neill (1980) suggested a linearly transformedx satisfyingx|θ1 ∼ N (µ, 1),

x|θ0 ∼ N (0, ρ), ρ < 1, which may further simplify the computation. However, the following

derivations in this paper are valid for0 < ρ < 1 andρ > 1; note thatρ 6= 1 is necessary to pre-

vent the quadratic normal discrimination from degenerating into linear normal discrimination,

which has been discussed in Section A.1.

Through the simplification, fordα = Mdθ, we have

M =











1
π1π0

−µ1η1 µ0η0
−µ2

1+ 1
η1

2

µ2
0− 1

η0
2

0 η1 −η0 µ1 −µ0

0 0 0 −1
2

1
2











=











1
π1π0

−µ 0 −µ2+1
2 −ρ

2

0 1 −1
ρ

µ 0

0 0 0 −1
2

1
2











.

In addition, since the distributions ofx|θ1 andx|θ0 are symmetric about their corresponding

means,µ1 and µ0, respectively, it is expected that an index of misclassification error, such

as AER and ARE, ought to be invariant either to the symmetric change ofµ1 aboutµ0 into

µ′
1 = 2µ0 − µ1 or to the symmetric change ofµ0 aboutµ1 into µ′

0 = 2µ1 − µ0. After the

above-mentioned simplification, as a specific instance, it can be illustrated that both AER and

ARE are invariant to the symmetric change ofµ into µ′ = −µ.

A.2.7.1 Re-calculation ofIg(θ), Σg(θ̂) and Σg(α̂)

Consideringx|θ1 ∼ N (µ, 1), x|θ0 ∼ N (0, ρ), θT = (π1, µ1, µ0, η1, η0), αT = (β0, β, γ), we

can obtain that
√

n(π̂1 − π1) ∼ AN (0, π1π0),
√

n(µ̂1 − µ1) ∼ AN (0, 1
π1η1

= 1
π1

),
√

n(µ̂0 − µ0) ∼ AN (0, 1
π0η0

= ρ
π0

),
√

n(η̂1 − η1) ∼ AN (0,
2η2

1
π1

= 2
π1

),
√

n(η̂0 − η0) ∼ AN (0,
2η2

0
π0

= 2
π0ρ2 ).

It then follows that

Σg(θ̂) = Diag(Σg(π̂1),Σg(µ̂1),Σg(µ̂0),Σg(η̂1),Σg(η̂0)) = Diag(π1π0,
1

π1
,

ρ

π0
,

2

π1
,

2

π0ρ2
) ,
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and

Σg(α̂) = MΣg(θ̂)M
T =

1

π1π0











π0µ4+3
2 −π0µ

3 π0µ2−π0−π1
ρ

2

−π0µ
3 ρπ0(1+2µ2)+π1

ρ
−π0µ

π0µ2−π0−π1
ρ

2 −π0µ
π0+

π1
ρ2

2











.

We note that our results for[Σg(α̂)]1,1, [Σg(α̂)]1,3, [Σg(α̂)]3,1 and[Σg(α̂)]3,3 are different from

those in O’Neill (1980), which appear to be contain minor errors.

A.2.7.2 Re-calculation ofIy|x(θ), Σλ(θ̂) and Σλ(α̂)

After some algebra, we can obtain that

1
n
Iy|x(π1) = H0

π1π0
,

1
n
Iy|x(µ1) = π1π0(H2 − 2µH1 + µ2H0), 1

n
Iy|x(µ0) = π1π0

H2
ρ2 ,

1
n
Iy|x(η1) = π1π0

4 (H4 − 4µH3 + (6µ2 − 2)H2 − 4µ(µ2 − 1)H1 + (µ2 − 1)2H0),

1
n
Iy|x(η0) = π1π0

4 (H4 − 2ρH2 + ρ2H0),

whereHi =
∫∞
−∞

p(x|θ1)p(x|θ0)xi

p(x) dx, i = 0, 1, . . .. More precisely,Hi can be evaluated numer-

ically as

Hi =

∫ ∞

−∞

1√
2πρ

e−
x2

2ρ xi

π1 + π0
1√
ρ
e

(x−µ)2ρ−x2

2ρ

dx, i = 0, 1, . . . .

Lemma A.2.1 H2k ≥ 0, k = 0, 1, . . ., and H2k is even-symmetric whereasH2k+1 is odd-

symmetric aboutµ = 0.

As with Section A.1.7.2, usingIy|x(θ) and Ig(θ) (Section A.2.7.1), we can first derive

Iλ(θ) andVλ(θ) and then deriveΣλ(θ̂) andΣλ(α̂), leading to

Σλ(θ̂) = Diag(Σλ(π̂1),Σλ(µ̂1),Σλ(µ̂0),Σλ(η̂1),Σλ(η̂0)) ,

where

Σλ(π̂1) = π1π0
λ2 + (1 − λ2)H0

[λ + (1 − λ)H0]2
,

Σλ(µ̂1) =
1

π1

λ2 + (1 − λ2)π0(H2 − 2µH1 + µ2H0)

[λ + (1 − λ)π0(H2 − 2µH1 + µ2H0)]2
,

Σλ(µ̂0) =
1

π0

λ2 1
ρ

+ (1 − λ2)π1
H2
ρ2

[λ1
ρ

+ (1 − λ)π1
H2
ρ2 ]2

,

Σλ(η̂1) =
π1
2 λ2 + (1 − λ2)π0π1

4 (H4 − 4µH3 + (6µ2 − 2)H2 − 4µ(µ2 − 1)H1 + (µ2 − 1)2H0)

[π1
2 λ + (1 − λ)π0π1

4 (H4 − 4µH3 + (6µ2 − 2)H2 − 4µ(µ2 − 1)H1 + (µ2 − 1)2H0)]2
,
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and

Σλ(η̂0) =
π0ρ2

2 λ2 + (1 − λ2)π0π1
4 (H4 − 2ρH2 + ρ2H0)

[π0ρ2

2 λ + (1 − λ)π0π1
4 (H4 − 2ρH2 + ρ2H0)]2

.

Thus, we obtain

Σλ(α̂) =











[Σλ(α̂)]1,1 [Σλ(α̂)]1,2 [Σλ(α̂)]1,3

[Σλ(α̂)]2,1 [Σλ(α̂)]2,2 [Σλ(α̂)]2,3

[Σλ(α̂)]3,1 [Σλ(α̂)]3,2 [Σλ(α̂)]3,3











,

where

[Σλ(α̂)]1,1 = (
1

π0π1
)2Σλ(π̂1) + µ2Σλ(µ̂1) + [

1 − µ2

2
]2Σλ(η̂1) + (

ρ

2
)2Σλ(η̂0) ,

[Σλ(α̂)]1,2 = [Σλ(α̂)]2,1 = −µΣλ(µ̂1) +
µ(1 − µ2)

2
Σλ(η̂1) ,

[Σλ(α̂)]1,3 = [Σλ(α̂)]3,1 = −1 − µ2

4
Σλ(η̂1) −

ρ

4
Σλ(η̂0) ,

[Σλ(α̂)]2,2 = Σλ(µ̂1) + (
1

ρ
)2Σλ(µ̂0) + µ2Σλ(η̂1) ,

[Σλ(α̂)]2,3 = [Σλ(α̂)]3,2 = −µ

2
Σλ(η̂1) ,

[Σλ(α̂)]3,3 =
1

4
Σλ(η̂1) +

1

4
Σλ(η̂0) .

A.2.7.3 Re-calculation ofΣd(α̂)

Since∇αg(x, α) =
(

1 x x2
)T

, after some algebra, we obtain

Σ−1
d (α̂) = π1π0











H0 H1 H2

H1 H2 H3

H2 H3 H4











, π1π0W ,

whereHi is as defined earlier in Section A.2.7.2. It follows that

Σd(α̂) =
1

π1π0 det (W)











H2H4 − H2
3 H2H3 − H1H4 H1H3 − H2

2

H2H3 − H1H4 H0H4 − H2
2 H1H2 − H0H3

H1H3 − H2
2 H1H2 − H0H3 H0H2 − H2

1











,

wheredet (W) = H0(H2H4 − H2
3 ) + H1(H2H3 − H1H4) + H2(H1H3 − H2

2 ).
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A.2.7.4 Re-calculation ofB

For g(x, α) = β0 + βx + γx2, x|θ1 ∼ N (µ, 1), x|θ0 ∼ N (0, ρ), whereρ ∈ (0, 1) ∪ (1,∞).

After some algebra, we obtainβ0 = log π1
π0

+ log ρ−µ2

2 , β = µ, γ = 1−ρ
2ρ

, so |∇xg(x, α)| =

|β + 2γx|, ∇αg(x, α) = (1 x x2)T , and

g(x̃, α) = 0 ⇔ x̃ =
−β±

√
β2−4β0γ

2γ
.

Let ∆̃ =
√

β2 − 4β0γ, x̃1 = −β+∆̃
2γ

, x̃2 = −β−∆̃
2γ

. Then, given∆̃ ∈ [0,∞), since

∇xg(x, α)|x=x̃i
= β + 2γx̃i = ±∆̃, p(x̃i|θ1) = φ(x̃i − µ) = φ

(

−β ± ρ∆̃

1 − ρ

)

, i = 1, 2,

O’Neill (1980) showed that

B =
π1

2∆̃























1

x̃2

x̃2
2





















1

x̃2

x̃2
2











T

φ

(

−β − ρ∆̃

1 − ρ

)

+











1

x̃1

x̃2
1





















1

x̃1

x̃2
1











T

φ

(

−β + ρ∆̃

1 − ρ

)













.

A.2.8 Numerical Evaluations of ARE

We can representΣg(α̂), Σλ(α̂) andΣd(α̂) in a general notation as

Σ(α̂) =











Σ
(α̂)
1,1 Σ

(α̂)
1,2 Σ

(α̂)
1,3

Σ
(α̂)
1,2 Σ

(α̂)
2,2 Σ

(α̂)
2,3

Σ
(α̂)
1,3 Σ

(α̂)
2,3 Σ

(α̂)
3,3











.

Along with B as derived in Section A.2.7.4, it follows that

tr(BΣ(α̂)) =
π1

2∆̃

[

ζ
(α̂)
2 φ

(

−β − ρ∆̃

1 − ρ

)

+ ζ
(α̂)
1 φ

(

−β + ρ∆̃

1 − ρ

)]

,

whereζ
(α̂)
1 = Σ

(α̂)
1,1 + 2x̃1Σ

(α̂)
1,2 + x̃2

1

(

2Σ
(α̂)
1,3 + Σ

(α̂)
2,2

)

+ 2x̃3
1Σ

(α̂)
2,3 + x̃4

1Σ
(α̂)
3,3 andζ

(α̂)
2 = Σ

(α̂)
1,1 +

2x̃2Σ
(α̂)
1,2 + x̃2

2

(

2Σ
(α̂)
1,3 + Σ

(α̂)
2,2

)

+ 2x̃3
2Σ

(α̂)
2,3 + x̃4

2Σ
(α̂)
3,3 . Therefore,

ARE(α̂2, α̂1) =
tr (BΣ(α̂1))

tr (BΣ(α̂2))
=

ζ
(α̂1)
2 φ

(

−β−ρ∆̃
1−ρ

)

+ ζ
(α̂1)
1 φ

(

−β+ρ∆̃
1−ρ

)

ζ
(α̂2)
2 φ

(

−β−ρ∆̃
1−ρ

)

+ ζ
(α̂2)
1 φ

(

−β+ρ∆̃
1−ρ

) .

Numerical evaluations of the ARE between the the generative, discriminative and GDT

approaches for the quadratic normal discrimination are carried out under the conditions (1)

x|θ1 ∼ N (µ, 1), x|θ0 ∼ N (0, ρ), (2) π1 = 0.5, (3) ρ ∈ [0.1, 2.0], (4) µ ∈ [−5, 5] and (5)

λ ∈ [0, 1].
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A.2.8.1 Discriminative vs. Generative

SubstitutingΣg(α̂) for Σ(α̂1) in ζ
(α̂1)
1 andζ

(α̂1)
2 , and substitutingΣd(α̂) for Σ(α̂2) in ζ

(α̂2)
1 and

ζ
(α̂2)
2 , we have ARE(α̂d, α̂g) and denote it hereafter by qEffp=1.

Lemma A.2.2 qEffp=1 is even-symmetric aboutµ = 0.

0.5

1.0

1.5

2.0

−4

−2

0

2

4

0.0

0.2

0.4

0.6

0.8

1.0

qEffp=1(π1 = 0.5, µ0 = 0, σ0
2 = ρ, µ1 = µ, σ1

2 = 1)

ρ
µ

Figure A.1: The ARE between the generative approach and the discriminative approach for

quadratic normal discrimination: qEffp=1 is the ARE for one-dimensional data. In the plot the

gap is forρ = 1 where the quadratic discrimination degenerates into a linear one.

The numerical evaluation of qEffp=1 is shown in Figure A.1; we can make similar obser-

vations about qEffp=1 to those we made about Effp=1 in Section 3.2.3.1.

A.2.8.2 Trade-off vs. Generative

SubstitutingΣg(α̂) for Σ(α̂1) in ζ
(α̂1)
1 andζ

(α̂1)
2 , and substitutingΣλ(α̂) for Σ(α̂2) in ζ

(α̂2)
1

andζ
(α̂2)
2 , we have ARE(α̂λ, α̂g) and denote it hereafter by qEff(λ)

p=1.

Lemma A.2.3 qEff(λ)
p=1 is even-symmetric aboutµ = 0.

Numerical evaluations of qEff(λ)
p=1, with λ = 0, 0.25, 0.5 and0.75 respectively, are shown

in Figure A.2; we can make similar observations about qEff(λ)
p=1 to those we made about Eff(λ)

p=1

in Section 3.2.3.2.
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(a) qEff(λ=0)
p=1
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(b) qEff(λ=0.25)
p=1
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(c) qEff(λ=0.5)
p=1
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(d) qEff(λ=0.75)
p=1

Figure A.2: The ARE between the generative approach and the GDT with λ = 0, 0.25, 0.5 and

0.75 respectively, for quadratic normal discrimination.
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A.2.8.3 Discriminative vs. Trade-off

The ARE between the discriminative approach and the GDT is simply

ARE(α̂d, α̂λ) =
ARE(α̂d, α̂g)

ARE(α̂λ, α̂g)
=

qEffp=1

qEff(λ)
p=1

.

Lemma A.2.4 ARE(α̂d, α̂λ) is even-symmetric aboutµ = 0.

Numerical evaluations of
qEffp=1

qEff(λ)
p=1

, for λ = 0, 0.25, 0.5 and0.75, respectively, are shown in

Figure A.3; we can make similar observations about
qEffp=1

qEff(λ)
p=1

to those we made aboutEffp=1

Eff(λ)
p=1

in

Section 3.2.3.3.
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(a) qEffp=1/qEff(λ=0)
p=1

0.5

1.0

1.5

2.0

−4

−2

0

2

4

0.2

0.4

0.6

0.8

1.0

qEffp=1 qEffp=1
(λ=0.25)(π1 = 0.5, µ0 = 0, σ0

2 = ρ, µ1 = µ, σ1
2 = 1)

ρ
µ
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Figure A.3: The ARE between the GDT and the discriminative approach withλ = 0, 0.25, 0.5

and0.75 respectively, for quadratic normal discrimination.



Appendix B

Appendix for Chapter 4

B.1 Results for Simulated Discrete Data

B.1.1 With a Common Covariance Matrix Σ

The third set of 3 datasets contains simulated discrete dataarising from two4-variate Bernoulli

distributions: x ∼ B(p) for the group withy = 1 and x ∼ B(q) for y = 2, where

p = (p1, p2, p3, p4)
T = (0.2, 0.3, 0.4, 0.5)T , q = (q1, q2, q3, q4)

T = (0.8, 0.7, 0.6, 0.5)T .

In this context, the two groups have a common covariance matrix Σ but different means

(µ1 = E{x|y = 1} = p andµ2 = E{x|y = 2} = q). Σ is a diagonal, block diagonal

and full covariance matrix, respectively for these 3 datasets.

For the first dataset, each of the4 features{xj}4
j=1 is conditionally independent of the

others given the group labely. In order to achieve this, we set all the elements ofp andq such

that the covariance matrices for the two groups are diagonalmatrices:

Σy=1 = diag(V1,1, V2,2, V3,3, V4,4) , Σy=2 = diag(V ′
1,1, V

′
2,2, V

′
3,3, V

′
4,4) ,

where, fori = 1, . . . , 4,

Vi,i = pi (1 − pi) , V ′
i,i = qi (1 − qi) .

In order to haveΣy=1 = Σy=2 = Σ, we setqi = 1 − pi.

For the second dataset,x1 is conditionally independent ofx2 given the group labely. In or-

der to achieve this, we set onlyp1, p3, q1, q3 and conditional probabilitiesp2|1(1), p2|1(0), p4|3(1), p4|3(0)

andq2|1(1), q2|1(0), q4|3(1), q4|3(0), wherepi|j(v) andqi|j(v) denote the success probabilitiespi
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andqi of xi givenxj = v, v ∈ 0, 1. It follows that

p2 = p1p2|1(1) + (1 − p1)p2|1(0) , q2 = q1q2|1(1) + (1 − q1)q2|1(0) ,

p4 = p3p4|3(1) + (1 − p3)p4|3(0) , q4 = q3q4|3(1) + (1 − q3)q4|3(0) ,

and the covariance matrices for the two groups are block diagonal, symmetric matrices:

Σy=1 =

















V1,1 V1,2 0 0

V1,2 V2,2 0 0

0 0 V3,3 V3,4

0 0 V3,4 V4,4

















, Σy=2 =

















V ′
1,1 V ′

1,2 0 0

V ′
1,2 V ′

2,2 0 0

0 0 V ′
3,3 V ′

3,4

0 0 V ′
3,4 V ′

4,4

















,

where, fori = 1, . . . , 4,

Vi,i = pi (1 − pi) , V ′
i,i = qi (1 − qi) ,

V1,2 = p1

(

p2|1(1) − p2

)

, V ′
1,2 = q1

(

q2|1(1) − q2

)

,

V3,4 = p3

(

p4|3(1) − p4

)

, V ′
3,4 = q3

(

q4|3(1) − q4

)

.

In order to haveΣy=1 = Σy=2 = Σ, we set

q1 = 1 − p1 , q3 = 1 − p3 ,

q2|1(1) = 1 − p2|1(0) , q2|1(0) = 1 − p2|1(1) , and

q4|3(1) = 1 − p4|3(0) , q4|3(0) = 1 − p4|3(1) .

For the third dataset, each of the4 features{xj}4
j=1 is dependent on the others given

the group labely. In order to achieve that, we set onlyp1, q1 and conditional probabilities

pi|1(1), pi|1(0) andqi|1(1), qi|1(0), for i = 2, 3, 4. It follows that, fori = 2, 3, 4,

pi = p1pi|1(1) + (1 − p1)pi|1(0) , qi = q1qi|1(1) + (1 − q1)qi|1(0) ,

and the covariance matrices for the two groups are full symmetric matrices:

Σy=1 =

















V1,1 V1,2 V1,3 V1,4

V1,2 V2,2 V2,3 V2,4

V1,3 V2,3 V3,3 V3,4

V1,4 V2,4 V3,4 V4,4

















, Σy=2 =

















V ′
1,1 V ′

1,2 V ′
1,3 V ′

1,4

V ′
1,2 V ′

2,2 V ′
2,3 V ′

2,4

V ′
1,3 V ′

2,3 V ′
3,3 V ′

3,4

V ′
1,4 V ′

2,4 V ′
3,4 V ′

4,4

















,
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where

Vi,i = pi (1 − pi) , V ′
i,i = qi (1 − qi) , i = 1, . . . , 4 ;

V1,i = p1

(

pi|1(1) − pi

)

, V ′
1,i = q1

(

qi|1(1) − qi

)

, i = 2, 3, 4 ;

and, fori, j = 2, 3, 4,

p(xi = 1, xj = 1) = p1pi|1(1)pj|1(1) + (1 − p1)pi|1(0)pj|1(0) ,

q(xi = 1, xj = 1) = q1qi|1(1)qj|1(1) + (1 − q1)qi|1(0)qj|1(0) ,

such that

Vi,j = p(xi = 1, xj = 1) − pipj , V ′
i,j = q(xi = 1, xj = 1) − qiqj .

In order to haveΣy=1 = Σy=2 = Σ, we set

q1 = 1 − p1 ,

qi|1(1) = 1 − pi|1(0) , andqi|1(0) = 1 − pi|1(1) , i = 2, 3, 4 .

B.1.1.1 Diagonal Covariance MatrixΣ

For the first dataset, we setµ1 = p = (0.2, 0.3, 0.4, 0.5)T , µ2 = q = 1−p = (0.8, 0.7, 0.6, 0.5)T

such that the common covariance matrixΣ is a diagonal matrix, diag(0.16, 0.21, 0.24, 0.25).

B.1.1.2 Block Diagonal Covariance MatrixΣ

For the second dataset, we set

p1 = 0.2 , q1 = 1 − p1 = 0.8 ,

p3 = 0.4 , q3 = 1 − p3 = 0.6 ;

p2|1(1) = 0.7 , p2|1(0) = 0.2 ,

q2|1(1) = 1 − p2|1(0) = 0.8 , q2|1(0) = 1 − p2|1(1) = 0.3 ;

p4|3(1) = 0.8 , p4|3(0) = 0.3 ,

q4|3(1) = 1 − p4|3(0) = 0.7 , andq4|3(0) = 1 − p4|3(1) = 0.2 .
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It follows thatµ1 = p = (0.2, 0.3, 0.4, 0.5)T , µ2 = q = 1−p = (0.8, 0.7, 0.6, 0.5)T , and

Σ is a block diagonal matrix

















0.16 0.08 0 0

0.08 0.21 0 0

0 0 0.24 0.12

0 0 0.12 0.25

















.

B.1.1.3 Full Covariance Matrix Σ

For the third dataset, we set

p1 = 0.2 , q1 = 1 − p1 = 0.8 ;

p2|1(1) = 0.7 , p2|1(0) = 0.2 ,

q2|1(1) = 1 − p2|1(0) = 0.8 , q2|1(0) = 1 − p2|1(1) = 0.3 ;

p3|1(1) = 0.8 , p3|1(0) = 0.3 ,

q3|1(1) = 1 − p3|1(0) = 0.7 , q3|1(0) = 1 − p3|1(1) = 0.2 ;

p4|1(1) = 0.9 , p4|1(0) = 0.4 ,

q4|1(1) = 1 − p4|1(0) = 0.6 , andq4|1(0) = 1 − p4|1(1) = 0.1 .

It follows thatµ1 = p = (0.2, 0.3, 0.4, 0.5)T , µ2 = q = 1−p = (0.8, 0.7, 0.6, 0.5)T , and

Σ is a full matrix

















0.16 0.08 0.08 0.08

0.08 0.21 0.04 0.04

0.08 0.04 0.24 0.04

0.08 0.04 0.04 0.25

















.

The results for these 3 datasets are shown in Figure B.1.

B.1.2 With Unequal Covariance MatricesΣ1, Σ2

The settings of the last 3 datasets are similar to those of thethird set in Section B.1.1, except

thatΣ1 6= Σ2 andq is different amongst these 3 datasets.

B.1.2.1 Diagonal Covariance MatricesΣ1,Σ2

For the first dataset, the setting is the same as that in Section B.1.1.1 except thatq = p +

0.4 rather thanq = 1 − p. That is, we setµ1 = p = (0.2, 0.3, 0.4, 0.5)T , µ2 = q =

(0.6, 0.7, 0.8, 0.9)T such thatΣ1 = diag(0.16, 0.21, 0.24, 0.25) andΣ2 = diag(0.24, 0.21, 0.16, 0.09).
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Figure B.1: Simulated Bernoulli data with equal covariancematrices. Plots of classification

performance measured by ER and by LL vs. training set sizem.



120

B.1.2.2 Block Diagonal Covariance MatricesΣ1,Σ2

For the second dataset, the setting is the same as that in Section B.1.1.2 except thatq1 =

p1+0.4, q3 = p3+0.4 rather thanq1 = 1−p1, q3 = 1−p3, respectively. That is, we haveµ1 =

p = (0.2, 0.3, 0.4, 0.5)T , µ2 = q = (0.6, 0.6, 0.8, 0.6)T , Σ1 =

















0.16 0.08 0 0

0.08 0.21 0 0

0 0 0.24 0.12

0 0 0.12 0.25

















andΣ2 =

















0.24 0.12 0 0

0.12 0.24 0 0

0 0 0.16 0.08

0 0 0.08 0.24

















.

B.1.2.3 Full Covariance MatricesΣ1,Σ2

For the third dataset, the setting is the same as that in Section B.1.1.3 except thatq1 = p1 +0.4

rather thanq1 = 1 − p1. That is, we haveµ1 = p = (0.2, 0.3, 0.4, 0.5)T , µ2 = q =

(0.6, 0.6, 0.5, 0.4)T , Σ1 =

















0.16 0.08 0.08 0.08

0.08 0.21 0.04 0.04

0.08 0.04 0.24 0.04

0.08 0.04 0.04 0.25

















andΣ2 =

















0.24 0.12 0.12 0.12

0.12 0.24 0.06 0.06

0.12 0.06 0.25 0.06

0.12 0.06 0.06 0.24

















;

they are symmetric, positive-definite matrices.

The results for these 3 datasets are shown in Figure B.2.
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Figure B.2: Simulated Bernoulli data with unequal covariance matrices. Plots of classification

performance measured by ER and by LL vs. training set sizem.
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