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Summary

In recent years, under the new terminology of generativedssaliminative classifiers, research
interest in classical statistical approaches to discamiranalysis has re-emerged in the ma-
chine learning community. In discriminant analysis, okations with features measured are
classified into classes labelled by a categorical varigbl&enerative classifiersalso termed
the sampling paradigm, such as normal-based discrimimatysis and the naive Bayes clas-
sifier, model the joint distributiom(x, y) of the measured featuresand the class labelg
factorised in the formp(x|y)p(y), wherep(x|y) is a data-generating process (DGP), and learn
the model parameters through maximisation of the likelthadth respect to(x|y)p(y). Dis-
criminative classifiersalso termed the diagnostic paradigm, such as logisti@ssgrn, model
the conditional distributiom(y|x) of the class labels given the features, and learn the model
parameters through maximising the conditional likelih@aded om(y|x).

In order to exploit the best of both worlds, it is necessarfirki compare generative and
discriminative classifiers and then combine them. In thésidy we first performed some em-
pirical and simulation studies to provide extension of armkencomments on a highly-cited re-
port (Ng and Jordan, 2001), which compared the naive Bdgssifier or normal-based linear
discriminant analysis (LDA) with linear logistic regressi(LLR). Then we studied extensively
two hybrid-learning techniques, namely the hybrid gemezadiscriminative algorithm (Raina
et al., 2003) and the generative-discriminative trade®fT) approach (Bouchard and Triggs,
2004), for combining the generative and discriminativessiffers. Based on our results from
these studies, we proposed a joint generative-discrimmeatodelling approach to classifica-
tion. In addition, we extended our investigation to geneeadnd discriminative hidden Markov
models, the latent variable models for structured data. M developed discriminative ap-
proaches for a specific application, that of histogram-thasege thresholding.

The contributions of this thesis are the following.
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First, Ng and Jordan (2001) claimed that there exist twardistegimes of performance
between the generative and discriminative classifiers keifiard to the training-set size; how-
ever, our empirical and simulation studies, as presentgdhipter 2, suggest that it is not
so reliable to claim such an existence of the two distincimmeg. In addition, for real world
datasets, so far there is no theoretically correct, geeitation for choosing between the dis-
criminative and the generative approaches to classifitatian observatiox into a classy;
the choice depends on the relative confidence you have inotinectness of the specification
of eitherp(y|x) or p(x,y). This can be to some extent a demonstration of why Efron (1975
and O’Neill (1980) prefer LDA but other empirical studiesyraefer LLR instead. Further-
more, we suggest that pairing of either LDA assuming a comdiagonal covariance matrix
(LDA-A) or the naive Bayes classifier and LLR may not be perfecthande it may not be re-
liable for any claim that was derived from the comparisoweein LDA-A or the naive Bayes
classifier and LLR to be generalised to all generative anctidignative classifiers.

Secondly, in Chapter 3, we present the interpretation agohpt®tic relative efficiency
(ARE) of the GDT approach for linear and quadratic normatuisination without model
mis-specification, and compare its ARE with those of its gatiee and discriminative coun-
terparts. The classification performance of the GDT is caegpavith those of LDA and LLR
on simulated datasets. We argue that the GDT is a generatigelnmtegrating both dis-
criminative and generative learning. It is therefore dresto model mis-specification of the
data-generating process and, in practice, its discrimvmabmponent may behave differently
from a truly discriminative approach. Amongst the threerapphes that we compare, the
asymptotic efficiency of the GDT is lower than that of the gatiee approach when no model
mis-specification occurs. In addition, without model mieafication, LDA performs the best;
with model mis-specification, the GDT may perform the bestradptimal tradeoff between its
discriminative and generative components, and LLR, a tlidgriminative classifier, in general
performs well when the training-sample size is reasonatstyel.

Thirdly, in Chapter 4, we interpret the hybrid algorithmrrdhree perspectives, namely
class-conditional probabilities, class-posterior ptilities and loss functions underlying the
model. We suggest that the hybrid algorithm is by nature &ggive model with its parame-
ters learnt through both generative and discriminative@gghes, in the sense that it assumes
a scaled data-generation process and uses scaled cléssepgzrobabilities to perform dis-

crimination. Our suggestion can also be applied to its rulétss extension. In addition, using
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simulated and real-world data, we compare the performahdkeeonormalised hybrid algo-
rithm as a classifier with that of the naive Bayes classifiel bLR. Our simulation studies
suggest in general the following: if the covariance magriaee diagonal matrices, the naive
Bayes classifier performs the best; if the covariance negtraze full matrices, LLR performs
the best. Our studies also suggest that the hybrid algonittay provide worse performance
than either the naive Bayes classifier or LLR alone.

Fourthly, based on our studies presented in Chapters 2, 3,and propose in Chapter 5
a joint generative-discriminative modelling (JGD) apmtodo classification, by partitioning
variables into two subsets based on statistical tests oDtBB. Our JGD approach adopts
statistical tests, such as normality tests, of the assunt&l for each variable to justify the
use of generative approaches for the variables which gatisf tests and of discriminative
approaches for other variables. Such a partition of vaggmbhd a combination of generative
and discriminative approaches are derived in a probabilisther than a heuristic way. We
have concentrated on particular choices for the generatidediscriminative components of
our models, but the overall principle is quite general andaacommodate many other special
versions. Of course, we must ensure that the assumptioresiyimg) the resulting generative
classifiers can be tested statistically. Numerical re$udta real UCI and gene-expression data
and from simulated data demonstrate promising performahites new approach for practical
application to both low- and high-dimensional data.

Fifthly, in Chapter 6, we study the assumption of “mutualomfation independence”,
which is used by Zhou (2005) for deriving the so-called dimorative hidden Markov model
(D-HMM). We suggest that the mutual information assump(ie:®) results in the D-HMM,
while another mutual information assumption (6.12) resintits generative counterpart, the
G-HMM. However, in practice, whether or not the assumptiars reasonable and how the
corresponding HMMs perform can be data-dependent; rdsediarts to explore an adaptive
switching between or combination of these two models may behwhile. Meanwhile, we
suggest that the so-called output-dependent HMMs coulépesented in a state-dependent
manner, and vice versa, essentially by application of Baiiesrem.

Finally, in Chapter 7, we present discriminative approactee histogram-based image
thresholding, in which the optimal threshold is derivednirthe maximum likelihood based
on the conditional distributiop(y|z) of y, the class indicator of a grey leve| givenz. The

discriminative approaches can be regarded as discrim@aktensions of the traditional gen-
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erative approaches to thresholding, such as Otsu’s me®id,(1979) and Kittler and Illing-
worth’s minimum error thresholding (MET) (Kittler and Higworth, 1986). As illustrations,
we develop discriminative versions of Otsu’s method and MigTusing discriminant func-
tions corresponding to the original methods to repres¢ntz). These two discriminative
thresholding approaches are compared with their origioahterparts on selecting thresholds
for a variety of histograms of mixture distributions. Reswdhow that the discriminative Otsu
method consistently provides relatively good performaddghough being of higher computa-
tional complexity than the original methods in parameténesion, its robustness and model
simplicity can justify the discriminative Otsu method faesarios in which the risk of model

mis-specification is high and the computation is not demandi
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Chapter 1

Introduction to Generative and

Discriminative Classifiers

1.1 Generative and Discriminative Classifiers

1.1.1 Definitions

In discriminant analysis, observations with measuredufeatx are classified into classes
labelled by a categorical variableg The most commonly adopted discriminant rule is the
maximum a posteriori (MAP) criterion: for a given obsereatix, the allocated class i =
argmax, p(y|x; @), wherex is in general g-variate random vector and denotes a column
vector of the parameters of the conditional distributigp|x). In practice,« is unknown but
can be estimated from a training setolabelled observationski.,,, y1.n) = {(%i, ¥i) }1'.

Dawid (1976) divided the statistical modelling and leagn{or parameter estimation) ap-
proaches to discrimination into two paradigms, namely,sém@pling paradigm and the diag-
nostic paradigm. In recent years, these have re-emergée iméachine learning community
under the new terminology of generative (informative) arstiiminative approaches, respec-
tively (Rubinstein and Hastie, 1997; Ng and Jordan, 2001ndat al., 2003; Bouchard and
Triggs, 2004; McCallum et al., 2006; Bishop and Lasserr®728ouchard, 2007).

The discriminative approaches (or the approaches comespugpto the diagnostic paradigm)
modelp(y1.,|x1:n; ), without modelling the so-called data-generating pro(@§sP)p(x|y; 0g),
wherefy is the parameter vector @{x|y); « is then estimated through maximisation of the

conditional likelihood,i.e., & = argmax,, p(y1.n|X1.n; @), Which is in practice further simpli-
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fied by the assumption of certain conditional-independatieeture such that(y ., |X1.n; @) =

[T p(yilxi; ). Thus onlyp(y|x, «) needs to be modelled. Hereafter, we refer to such a
model and learning procedure asliacriminative modeanddiscriminative learning respec-
tively. A typical discriminative classifier is logistic regssion.

The generative approaches (or the approaches corresgotadthe sampling paradigm)
modelp(yi.,,|7) andp(x1.,|y1:n; 0g), Wherer is the parameter vector pfy). Then, in general,
0 = (x7,0%)7T is estimated through maximum likelihooide., 6 = argmaxg p(x1:n, y1:n; 0),
which is in practice further simplified by assuming certaamditional-independence structure
such thatp(x1.n, y1:0;0) = [ p(xi,v:;6). Thus onlyp(y|r) andp(x|y; 69) need to be
modelled. Hereafter, we refer to such a model and learninggalure as generative model
andgenerative learningrespectively. Typical generative classifiers includenmadrbased dis-
criminant analysis and the naive Bayes classifier.

As concisely characterised by Rubinstein and Hastie (198&)generative classifiers learn
the class densities, while the discriminative classifieasr the class boundarie( p(y|x, «)
in our setting) without regard to the underlying class digi

From Bayes’ Theorem, which gives

x: o) = p(ylm)p(xly; bg)
pylx; ) I, p(ylm)p(xly; 0g) °

two observations can be made. First, there is a mapp{Ag betweerd and« such that the
generative approaches can leaditcand thereby provide working classifiers for discrimina-
tion. Secondly, the generative model is more informatiamtthe corresponding discriminative
model, and thus discriminative learning techniques cansiee with a generative model. The
first observation is a basic characteristic of classicabgaive classifiers, and the second has
led to increasing research interest recently (Rubinsi€ifi8; Raina et al., 2003; Bouchard and

Triggs, 2004; McCallum et al., 2006).

1.1.2 Discriminant Functions

This thesis will focus on two-class discriminant analysibgrey is a binary variable. Suppose

a populationC contains two sub-populations; (with y = 1) andCy (with y = 0), with
respective proportions; andr, = 1 — 7y; the existence of these two sub-populations requires
m € (0,1), an open interval. In addition, the training gék;, y;)}_, containsn randomly,

independently collected and labelled individuals frém
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In the sense of minimum classification error rate, an optidistriminant function for

classifying a new individuak into eitherC; or Cy is g(x,a) = log E;’ é}xg the logarithm
of the ratio of two posterior probabilities of the sub-patidn indicatory given the observed
feature vectok; i.e. the new individual will be classified int6; if g(x,a) > 0.

The most widely used discriminant functions are the linésgréminant functiong(x, o) =
Bo + BTx, wheref, is a scalar,3 is ap-dimensional parameter vectar! = (3o, 37) and
xT = (M, ..., z), and the quadratic discriminant functiof(x, o) = £y + 87x + x'T'x,
wherel is ap-by-p matrix (usually symmetric) and” = (5o, 57, (vechI"))T). The notation
vechT") indicates a vector of distinct elements of the mattixf I" is diagonal with diagonal
components~; ;}7_,, theng(x,a) = By + BTx + 30, 7ii(z)2.

The training sef(x;,v;) }I- is used to learn the parameterf g(x, ). In general, the

learning is performed by either discriminative approaabregenerative approaches.

1.1.3 Discriminative Learning

From the definition of the discriminant function, it followisat

g(x,a)

p(Cilx) = ply = 1|x) = » p(Colx) =ply = 0x) =1=p(C1lx),  (L.1)

1 —|— eg(x,a)

so that the likelihood® and the log-likelihood based om(y|x) are, respectively,

g ( ) 10g ‘Cd Zg Xi, )Y — Zlog(l 4+ eg(xiva))'
1=1

Asymptotic theory suggests that maximisationfgfc), with respect tox, leads to an
estimatora of « such that the distribution of/n(& — «) is asymptoticallyV (0, Xq4(&)); that
is vn(ad — a) ~ AN(0,%4(&)), say, for certaintq(&), which is a function ofa for the
estimatora.

It is natural to estimate: by such discriminative learning; however, the estimat®hin-
dered by computational complexity relatedd®”_, log(1 + i), Traditionally, generative

learning is more commonly used.



1.1.4 Generative Learning

Generative learning uses the likelihogdand log-likelihood? based orp(x, y), which are,

respectively,

Ly(0) = Hp(xz»yi) = H p(xilyi) = H (m1p(xi]C1))Y" Wop(xz‘co))l—yi 7
=1 i=1 =1

lg(0) = log Lg(0) = Z yi log(mip(xil61)) + Z (1 — yi) log(mop(x:[60)) ,
i=1 i=1
wherep(x;|01) = p(xi|C1), p(x:|6p) = p(x;|Co), 61 and by are parameters gf(x|C;) and

p(x|Cp) for the two sub-population§; and(Cy, respectively, and is the vector of distinct
elements within{ry, 61,6y }.

Similarly, maximization ofy(#), with respect t@, leads to an estimatdrof 6 with /n(6—
0) ~ AN(0,%4(8)), for certainyq(). However, we need to derive a generative estimator
of a with \/n(& — a) ~ AN(0, %4(a)). The covariance matriXy() (or X4(&)) is a function
of 8 (or ) for the estimatod (or &).

By Bayes’ Theoremg(x, a) = log 2U=1X) — 1o T2XI9) “ang thus the mapping(6)

p(y=0[x) ~— mop(x|60)
and the relationship betweén — o) and( — 6) can be constructed. For example,

o if X|91 ~ N(,ul, E), X|90 ~ ./\/(,u(), E) then
g(x,a) = Bo+ 1% = log — - 5( IS — = o) + (1 — po) ' x 5 (1.2)

o if X’Ql ~ N(,ul, 21), X’QO ~ N(,UQ, 20), then

T 1 _ _ 1
g(x,0) = o+ fTx + x"Tx = log — — = (u] X7 1 — pd g o) — 5 log L
™0 2 2 ’EO’

1 _ _
(ulsyt — pd=ghHx — §XT(21 Toyohx. (1.3)

The estimation ofl and thusx is hindered by potential mis-specification of sub-popolati

densities.

1.2 Comparison between Generative and Discriminative Clas-
fiers
For the generative classifiers, although maximum likelthbased orp(x, y; 0) will lead to

an asymptotically unbiased and efficient estima#ta@nd consequently, it can only be jus-

tified if p(x,y) is correctly specified. Similarly, for the discriminativéassifiers, although
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maximum likelihood based op(y|x; «) will lead to an asymptotically unbiased and efficient

estimatora, it can only be justified ifp(y|x) or, for example for the case of two classgs

andys,, the corresponding discriminant functiof(x, o) = log ggg;}ig is correctly specified.
Different p(x, y; #)'s may lead to the same discriminant functigfx, ), which indicates that
the discriminative classifiers may be less sensitive thangdgmerative classifiers to the mis-
specification ob(x, y; 0).

Comparison of generative and discriminative classifieransever-lasting topic (Efron,
1975; O’Neill, 1980; Titterington et al., 1981; Rubinstand Hastie, 1997; Ng and Jordan,
2001). In practice, commonly used discriminative and gativer classifiers are logistic regres-
sion and normal-based discriminant analysis, respegtivdumerous theoretical, simulated
and empirical comparisons between these two approachesblean investigated; see for ex-
ample Efron (1975) and Titterington et al. (1981).

In general, the performance of such approaches dependsattectness of the mod-
elling, the bias, efficiency and consistency of the learnengd the reliability of the training
data. For instance, when the modellingo6f| ) andp(x|y; f4) is correct, normal-based linear
discriminant analysis (LDA) can be more efficient than linlegistic regression (LLR) (Efron,
1975). However, the latter can perform better than the fowvteenx|y is not normally dis-
tributed, because the latter does not necessarily asswr@abssian form op(x|y; 6g); for
instance, the modelling of the latter is valid under genexrglonential family assumptions on
p(x|y; bg) (Efron, 1975).

Ng and Jordan (2001) presented some theoretical and ealgicmparisons between LLR
and the naive Bayes classifier, a generative approachadenivto LDA, when statistically
independent and normally distributed featurewithin classesy are assumed. Their results
suggested that, between the two approaches, there wengdhdidtinct regimes of discrimi-
nant performance with respect to the training-set size.eMwecisely, they proposed that the
discriminative classifier had lower asymptotic error rateilevthe generative classifier may
approach its (higher) asymptotic error rate much fastesthier words, the discriminative clas-
sifier performs better with larger training sets while theative classifier does better with
smaller training sets. Chapter 2 of this thesis will provéaéension of and make comments on

their study.



1.3 Combination of Generative and Discriminative Classifies

If we consider the pros and cons of both discriminative andeggtive approaches (Efron,
1975; Titterington et al., 1981; Rubinstein and Hastie,7199g and Jordan, 2001), it is nat-
ural to exploit the best of both worlds. In this direction, mpanteresting proposals of hybrid
learning techniques have emerged for combining the genematd discriminative approaches,
such as the mixed discriminants (Rubinstein, 1998), theitiydenerative-discriminative al-
gorithm (Raina et al., 2003; Fujino et al., 2007), the mixaegtlikelihood (or the generative-
discriminative tradeoff) (Rubinstein, 1998; Bouchard andgs, 2004), multi-conditional learn-
ing (McCallum et al., 2006) and a Bayesian blending (Bishog basserre, 2007). Since the
generative approaches can model unlabelled observatigns= {xj}gnzl while the discrimi-
native approaches do not, some of the above generativerdiisative combinations have been
applied to semi-supervised learning scenarios (Suzuki,e2@07; Druck et al., 2007; Bishop

and Lasserre, 2007; Bouchard, 2007).

1.3.1 Hybrid Learning

Rubinstein (1998) presented the method of mixed discrim@avhich involved constructing
a discriminanti(y|x) by combining two posterior probabilitiegy|x) obtained from a gener-
ative approach and a discriminative approach, respegtiasl

exp(g(x, &a))
1+ exp(g(x, aq))

s — 1) — o OXP9(x: dg)) B
PO =100 = A T gt gy T

)

where) € [0, 1], andag andéag are the generative and discriminative estimators,alespec-
tively. Sinceag andag can be estimated separately, this procedure is by naturustomthe
construction of a new likelihood y(«, §) as a linear combination of two likelihood% and
LgasLy(a,0) = ALg(0) + (1 — X\)Lg(a), which may make the relationship betweeandd

fail to comply with Bayes’ Theorem.

McCallum et al. (2006) introduced the multi-conditionahieing framework, one case
of which defined a new log-likelihoodvc(0) = Ailx)y(0) + A2y x(0), wherely, (0) and
¢,x(0) are log-likelihoods based grix|y) andp(y|x), respectively, as functions of a common
parameter vectof. As pointed out by McCallum et al. (2006), this model is sevesito the
values ofA\; and Ao. With both p(x|y; #) and p(y|x;#) derived from the joint distribution

p(x,y;80), this model is a generative model with hybrid learning of
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Bishop and Lasserre (2007) provided a constructive Baygmespective to accommodate
both the generative learning and discriminative learnirmgenerative model. This perspective
adopted two parameter vectdtg and 6y, to describe the likelihood y(f4, Om) based on the

joint distributionp(x, y; 04, Om):
‘Cg(edv Om) = p(0u, 9m)£y|x(9d)£x(9m) )

wherefy and 6, are parameters of a conditional distributipfy|x) and a mixturep(x), re-
spectively. This model implies tha(y|x; 64, 0m) = p(y|x;0q) andp(x; by, Om) = p(x; Om).
Meanwhile, bothp(y|x; 64) andp(x; 6m) are derived fromp(x, y; 04, Om). Whend,; = 0, = 6
and the priop(6q, 6m) is uniform, this model corresponds to classical generdgiaeing with
Lg(0).

As a result of its representation pfx, y) in terms ofp(y|x) andp(x), such a Bayesian
blending can be naturally employed for semi-superviserhirg, where the labelled observa-
tions are used foc,(f4) and the unlabelled observations ¥ (6m) (Bishop and Lasserre,
2007). For semi-supervised learning but derived from thdtiroonditional learning frame-
work, Druck et al. (2007) proposed a related model, whicts aseommorg to define a new
log-likelihood lyc- (0) = A1lx(0) + A2fyx(0). Considering the non-convexity éf(¢) and
the difference between the scales/ft/) and/,,(¢), the model is also sensitive to the deter-
mination of\; and\,. In addition, Druck et al. (2007) provided empirical cormpan between
their model and that of Bishop and Lasserre (2007).

Raina et al. (2003) and Fujino et al. (2007) proposed theithymmerative-discriminative
algorithm, which partitions the feature vectarinto multiple partial vectors with different
weightsfy. This leads to a parameter vect@r , 01)7, whered is estimated generatively
while 64 is estimated discriminatively. It can be regarded as a gginermodel using both
generative and discriminative learning, in the sense thedsumes a scaledx|y; 6, 64) and
the discriminative learning dfy is based on the estimation &é{see Chapter 4 for details).

The focus of Chapter 3 of this thesis is on an alternative ilylsarning method, the
generative-discriminative tradeoff approach (GDT, or tiged log-likelihood method) (Ru-
binstein, 1998; Bouchard and Triggs, 2004). The GDT conttra new log-likelihood as a
weighted average of the log-likelihoodg(§) for generative learning art(«) for discrimina-
tive learning, given by, (0, o) = Mg(0) + (1 — X)lg(c), for 0 < X < 1. In order to couple

the two separate estimationsfb&nda, eitherg should be rewritten as a functidtia) of «, or
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a as a functiomy(0) of 4. In generalp(y|x) can be derived fromp(x, y), but not vice versa,
and the dimension df is larger than that ofy, as with LDA. Therefore, it is more feasible to

use«(d) and thus only the parameter vectoremains in the new log-likelihood:
Ex(0) = Mg(0) + (1 = M)y (),

where, as defined earlidiy(0) = > ; log p(x;, yi), while

Yy X |y2a Yi )
log p(yi|x; log o7 N —
y\x Z ilxi) Z m1p(x4]01) + mop(x4]00)

a discriminative Iog-Ilkellhood, but as a functlon @father tham.

As with other hybrid learning techniques, the GDT is modkti@oughp(y|7) andp(x|y; fg)
and thus is by nature a generative model with hybrid learHeeyning the commo# within
both likelihoods. The GDT has, through combination withhlgbrid generative-discriminative
algorithm (Raina et al., 2003), also been used for semirsigsel learning (Suzuki et al., 2007).

All these hybrid learning techniques demonstrated in pradhat their classification per-

formance could be superior to the generative componentdatiticriminative component alone.

1.4 Generative and Discriminative Hidden Markov Models

Amongst the latent (hidden) variable models for structuwlath such as time series, hidden
Markov models (HMMs) for discrete-valued hidden states statk-space models (SSMs) for
continuous-valued hidden states are widely used.

Traditionally, an HMM is generative because it models aritistion P(O7|ST), the DGP
of the observed output sequencg; = o1, ...,0,, given the hidden state sequenéd, =
S1,--.,Sn, and thusP(O7|ST), a state-dependent term, is included in the criterion for de
termining a stochastic optimal sequence of hidden statecemly, Zhou (2005) proposed
a discriminative hidden Markov model (D-HMM), which inclesl output-dependent terms
P(s]O7),t =1,...,n, inthe criterion, based on an assumption of “mutual infdiomainde-
pendence”. Meanwhile, Li (2005) presented the so-calledidén Markov models with states
depending on observations” (HMMSDO), which assume thatthreent states; depends not
only on the last state; ; but also on the last output_;, so that output-dependent terms
P(s¢|s¢—1,0¢—1) are included in the criterion.

Both the D-HMM and HMMSDO show superior performance in detieing the opti-

mal state sequence for certain applications. Zhou (200 shhat the D-HMM outperforms
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the corresponding generative hidden Markov model (G-HMi)dart-of-speech tagging and
phrase chunking; Li (2005) shows that HMMSDO outperformesstandard HMM for predic-
tion of protein secondary structures when the trainingssktrge enough.

Chapter 6 will study the assumption of “mutual informatiodeépendence” and will extend
it to derive generative (state-dependent) representatdrthese two discriminative (output-

dependent) HMMs.

1.5 Generative Approaches to Image Thresholding

Image thresholding is a simple and widely-used techniqueségmentation, partitioning a
grey-level image into segments corresponding to diffectatses (Sahoo et al., 1988; Pal and
Pal, 1993; Sezgin and Sankur, 2004), given that the classesrie extent can be distinguished
by their grey levels. Most thresholding approaches arequeg for two-class binarisation and
are based on the grey-level histogram of an image (Sahoo, &t9%&88; Sezgin and Sankur,
2004; Glashey, 1993; Trier and Jain, 1995). Two of the mopufas approaches are Otsu’s
method (Otsu, 1979) and Kittler and Illingworth’s minimuma thresholding (MET) (Kittler
and lllingworth, 1986).

Kurita et al. (1992) show that Otsu’'s method is equivalenm@aximisation of the log-
likelihood based on the conditional distributipfi|y), wherex is the grey level ang € {0,1}
is the class indicator correspondingatounder the assumption that the grey level within each
class (denoted by|y) follows a normal distributions\V (1., 07) andog = of. Kurita et al.
(1992) also shows that MET is equivalent to maximisationhef fog-likelihood based on the
joint distribution p(z,y), under the assumption thaty ~ N (u,,07) andog # of. Since
p(x,y) = myp(x|y), wherer, = p(y), Otsu’s method is also equivalent to maximisation of
the log-likelihood based op(z,y) with 7y = m; = 0.5. In this sense, both Otsu’s method
and MET assume a DGRz, y); therefore, we call such approaches generative threstapldi
approaches. As with Fisher’s linear discriminant, the @tetiginal method does not assume
normally distributed classes or tha} = o%; therefore, hereafter we refer, as Otsu’s method, to
the generative method to which it is equivalent, shown initéwat al. (1992). In Chapter 7, we

will propose discriminative extensions of the traditiogeherative approaches to thresholding.
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1.6 Contributions of this Thesis

The contributions of this thesis are the following.

First, Ng and Jordan (2001) claimed that there exist twadrdistegimes of performance
between the generative and discriminative classifiers keigiard to the training-set size; how-
ever, our empirical and simulation studies, as presentgdhapter 2, suggest that it is not
so reliable to claim such an existence of the two distincinneg. In addition, for real world
datasets, so far there is no theoretically correct, geeitation for choosing between the dis-
criminative and the generative approaches to classifitatian observatiox into a classy;
the choice depends on the relative confidence you have inotinectness of the specification
of eitherp(y|x) or p(x,y). This can be to some extent a demonstration of why Efron (1975
and O’Neill (1980) prefer LDA but other empirical studiesyraefer LLR instead. Further-
more, we suggest that pairing of either LDA assuming a comdiagonal covariance matrix
(LDA-A) or the naive Bayes classifier and LLR may not be perfecthande it may not be re-
liable for any claim that was derived from the comparisowieein LDA-A or the naive Bayes
classifier and LLR to be generalised to all generative anctidiénative classifiers.

Secondly, in Chapter 3, we present the interpretation agchpt®tic relative efficiency
(ARE) of the GDT approach for linear and quadratic normatmiisination without model
mis-specification, and compare its ARE with those of its gatie and discriminative coun-
terparts. The classification performance of the GDT is caegbavith those of LDA and LLR
on simulated datasets. We argue that the GDT is a generatidelnmtegrating both dis-
criminative and generative learning. It is therefore dresto model mis-specification of the
data-generating process and, in practice, its discrimvmabmponent may behave differently
from a truly discriminative approach. Amongst the threerapphes that we compare, the
asymptotic efficiency of the GDT is lower than that of the getiee approach when no model
mis-specification occurs. In addition, without model mieaification, LDA performs the best;
with model mis-specification, the GDT may perform the bestradptimal tradeoff between its
discriminative and generative components, and LLR, a tlidgriminative classifier, in general
performs well when the training-sample size is reasonaiyyel.

Thirdly, in Chapter 4, we interpret the hybrid algorithmrrdhree perspectives, namely
class-conditional probabilities, class-posterior philities and loss functions underlying the

model. We suggest that the hybrid algorithm is by nature &igdive model with its parame-
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ters learnt through both generative and discriminative@gghes, in the sense that it assumes
a scaled data-generation process and uses scaled cléssepgzrobabilities to perform dis-
crimination. Our suggestion can also be applied to its ruldtss extension. In addition, using
simulated and real-world data, we compare the performahdkeeonormalised hybrid algo-
rithm as a classifier with that of the naive Bayes classifiel L R. Our simulation studies
suggest in general the following: if the covariance magriaee diagonal matrices, the naive
Bayes classifier performs the best; if the covariance negtraze full matrices, LLR performs
the best. Our studies also suggest that the hybrid algonittay provide worse performance
than either the naive Bayes classifier or LLR alone.

Fourthly, based on our studies presented in Chapters 2, 3,and propose in Chapter 5
a joint generative-discriminative modelling (JGD) apmtodo classification, by partitioning
variables into two subsets based on statistical tests oDtBB. Our JGD approach adopts
statistical tests, such as normality tests, of the assunt&l for each variable to justify the
use of generative approaches for the variables which gatisf tests and of discriminative
approaches for other variables. Such a partition of vaggmbhd a combination of generative
and discriminative approaches are derived in a probdbilisther than a heuristic way. We
have concentrated on particular choices for the generatidediscriminative components of
our models, but the overall principle is quite general andaacommodate many other special
versions. Of course, we must ensure that the assumptioresiyimg) the resulting generative
classifiers can be tested statistically. Numerical re$udta real UCI and gene-expression data
and from simulated data demonstrate promising performahites new approach for practical
application to both low- and high-dimensional data.

Fifthly, in Chapter 6, we study the assumption of “mutualomfation independence”,
which is used by Zhou (2005) for deriving the so-called disarative HMM (D-HMM). We
suggest that the mutual information assumption (6.6) tesalthe D-HMM, while another
mutual information assumption (6.12) results in its getnsgacounterpart, the G-HMM. How-
ever, in practice, whether or not the assumptions are rebto@nd how the corresponding
HMMs perform can be data-dependent; research efforts tlmexpn adaptive switching be-
tween or combination of these two models may be worthwhileaMvhile, we suggest that
the so-called output-dependent HMMs could be representadstate-dependent manner, and
vice versa, essentially by application of Bayes’ theorem.

Finally, in Chapter 7, we present discriminative approactee histogram-based image
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thresholding, in which the optimal threshold is derivednirthe maximum likelihood based
on the conditional distributiop(y|z) of y, the class indicator of a grey leve| givenz. The

discriminative approaches can be regarded as discriméneatitensions of the traditional gen-
erative approaches to thresholding, such as Otsu’s metib&ittler and lllingworth’s MET.

As illustrations, we develop discriminative versions os@$ method and MET by using dis-
criminant functions corresponding to the original methéaisepreseni(y|z). These two

discriminative thresholding approaches are compared thitlr original counterparts on se-
lecting thresholds for a variety of histograms of mixturstdbutions. Results show that the
discriminative Otsu method consistently provides re&dtivgood performance. Although be-
ing of higher computational complexity than the originalthogls in parameter estimation, its
robustness and model simplicity can justify the discrirtireaOtsu method for scenarios in

which the risk of model mis-specification is high and the catafion is not demanding.



Chapter 2

Comparison between Generative and

Discriminative Models

In this chapter, we first replicate and extend experimentthernl5 real-world datasets used
by Ng and Jordan (2001), for empirical comparison betweeA4Dor the naive Bayes clas-
sifiers and linear logistic regression (LLR). Then, as Ng dordlan (2001) claim that there are
two distinct regimes of performance with regard to the irgjrset size, we clarify such a claim
further through commenting on the reliability of the two irags and the parity between the

compared classifiers.

2.1 Introduction

Comparison of generative and discriminative classifienigver-lasting topic (Efron, 1975;
O’Neill, 1980; Titterington et al., 1981; Rubinstein anddtie, 1997; Ng and Jordan, 2001).

Ng and Jordan (2001) presented some theoretical and ealgidmparisons between lin-
ear logistic regression and the naive Bayes classifiernaha Bayes classifier is a generative
classifier, which assumes statistically independent featuwithin classes; and thus diago-
nal covariance matrices within classes; it is equivalenidonal-based linear (for a common
diagonal covariance matrix) or quadratic (for unequal died within-class covariance matri-
ces) discriminant analysis, whenis assumed normally distributed for each class. The results
in Ng and Jordan (2001) suggested that, between the twdfdessthere were two distinct

regimes of discriminant performance with respect to thimitng-set size. More precisely, they

13
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proposed that the discriminative classifier had lower aggtigperror rate while the genera-

tive classifier may approach its (higher) asymptotic erabe much faster. In other words, the
discriminative classifier performs better with largertiag sets while the generative classifier
does better with smaller training sets.

The setting for the theoretical proof and empirical evigeimtNg and Jordan (2001) in-
cludes a binary class labgle.g, y € {1, 2}, ap-dimensional feature vectarand the assump-
tion of conditional independence amongsy, the features within a class.

In the case of discrete features, each feaiyré =1, ..., p, independent of other features
within x, is assumed within a class to be a binomial variable suchithatluez; € {0, 1}
within each class. We observe, however, this may not gueeatiite discriminant function
Ma) = log{p(y = 1|x)/p(y = 2|x)}, wherea is a parameter vector, to be linear; therefore,
the naive Bayes classifier may not be a partner of lineastiogiegression as a generative-
discriminative pair.

In the case of continuous featuregy is assumed to follow Gaussian distributions with
equal covariance matrices across the two classesy; = X5 and, in view of the conditional
independence assumption, both covariance matrices aet tega diagonal matrixA. All of
the observed values of the features are rescaled se ka0, 1].

Based on such a setting, Ng and Jordan (2001) compared tealled-generative-discriminative
pairs: one is for the continuous case, comparing LDA assgiamitommon diagonal covariance
matrix A (denoted by LDAA hereafter) vs. linear logistic regression, and the othésrishe
discrete case, comparing the naive Bayes classifier rlingistic regression.

The conditional independence amongst the features withlilass is a necessary condi-
tion for the naive Bayes classifier and LD®-but it is not a necessary condition for linear
logistic regression. Therefore, the generative-disarative pair of LDA with a common full
covariance matrix. (denoted by LDAX hereafter) vs. linear logistic regression also merits
investigation. In addition, a comparison of quadratic nalrciscriminant analysis (QDA) with
unequal diagonal matrice's; andA, (denoted by QDAA, hereafter) and unequal full covari-
ance matrice&; and>, (denoted by QDAY hereafter) with quadratic logistic regression
may provide an interesting extension of the work of Ng andidor(2001).

Ng and Jordan (2001) reported experimental results on 15vadd datasets, 8 with only
continuous and binary features and 7 with only discreteufeat from the UCI machine learn-

ing repository (Asuncion and Newman, 2007); this repogitiores more than 100 datasets
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contributed and widely used by the machine learning comtyuas a benchmark for empir-
ical studies of machine learning approaches. As pointedrodig and Jordan (2001), there
were a few cases (2 out of 8 continuous cases and 4 out of &tlistases) that did not support
the better asymptotic performance of the discriminatiassifier, primarily because of the lack
of large enough training sets. However, it is known that teggzmance of a classifier varies
to some extent with the features selected.

In this context, we first replicate experiments on these 1&sdas, with and without step-
wise variable selection being performed on the full linegidtic regression model using all the
observations of each dataset. In the stepwise variablet&glgrocess, the decision to include
or exclude a variable is based on the calculation of the Akaikormation criterion (AIC).
Furthermore, in the 8 continuous cases, both LDAnd LDA-Y are compared with linear lo-
gistic regression. Then we will extend the comparison tavbeh QDA and quadratic logistic
regression for the 8 continuous UCI datasets and finallynmksited continuous datasets.

The implementations in R (http://www.r-project.org/) dDA and QDA are rewritten from
a Matlab functioncda for classical linear and quadratic discriminant analystrifoven and
Hubert, 2005). Logistic regression is implemented by aniRtionglm from a standard pack-
agestatsin R, and the naive Bayes classifier is implemented by an &ifumnaiveBaye$rom
a contributed packagel071for R.

In addition, similarly to what was done by Ng and Jordan (30fak each sampled training-
set sizem, we perform 1000 random splits of each dataset into a trgisét of sizen and a
test set of siz€V — m, wherelV is the number of observations in the whole dataset, andtrepor
the average of the misclassification error rates over th666 fest sets. The training set is
required to have at least 1 sample for each of the two clagsdsfor discrete datasets, to have
all the levels of the features presented by the training $snptherwise the prediction for the
test set may be asked to predict on some new levels for whigiforonation has been provided
in the training process.

Meanwhile, we observe that, in order to have all the coefiisi®f predictor variables in
the model estimated in our implementation of logistic regien byglm, the numbem of
training samples should be larger than the nungoefrpredictor variables, wheg= p for the
continuous cases if glifeatures are used for the linear model. More attention shioipaid to
the discrete cases with multinomial features in the modeEere more dummy variables have

to be used as the predictor variables, with the consequéatg ¢ould be much larger than
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e.g, p = 3p for the linear model if all the features have 4 levels. In otlverds, although we
may report misclassification error rates for logistic regien with smallm, it is not reliable

for us to base any general claim on thoserofmaller tharp, the actual number of predictor

variables used by the logistic regression model.

2.2 Linear Discrimination On Continuous Datasets

For the continuous datasets, as was done by Ng and Jordal) (20@he multinomial features
are removed so that only continuous and binary featufesre kept and their values; are
rescaled intd0, 1]. Any observation with missing features is removed from thtasets, as is
any feature with only a single value for all the observations

In addition, before carrying out the classification, we perf the Shapiro-Wilk test for
within-class normality for each feature |y and Levene’s test for homogeneity of variance
across the two classes. Levene’s test is less sensitiveviatidas from normality than is the
Bartlett test, another test for homogeneity of variance. the following datasets, the signifi-
cance level is set @05, and we observe that null hypotheses of normality and homeitye

of variance are mostly rejected by the tests at that signifiedevel.

Dataset No N p paric psw pL lpr-ay lpr-n
Pima 768 768 8 7 8 5 1 0
Adult 32561 1000 6 6 6 4 1 1
Boston 506 506 13 10 13 12 1 1
Optdigits 0-1 1125 1125 52 5 52 45 1 1
Optdigits 2-3 1129 1129 57 9 57 37 1 0
lonosphere 351 351 33 20 33 27 1 1
Liver disorders 345 345 6 6 6 1 1 1
Sonar 208 208 60 37 59 16 1 1

Table 2.1: Description of continuous datasets.

A brief description of the continuous datasets can be foanthble 2.1, which lists, for
each dataset, the total numkéy of the observations, the numh®rof the observations that we

use after the pre-processing mentioned above, the totaberof continuous or binary fea-
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tures, the number 4 ;o of features selected by AIC, the numbeyy of features for which the
null hypotheses were rejected by the Shapiro-Wilk test aedcorresponding numbey;, for
Levene’s test, the indicatdrj;r_4y € {1,0} of whether or not the two regimes are observed
between LDAA and linear logistic regression and the indicatgs_x; € {1,0} with regard

to LDA-X. Note that, for some large datasets such as “Adult” (andk'Sit Section 2.4), in
order to reduce computational complexity without degrgdime validity of the comparison
between the classifiers, we randomly sample observaticihsting class prior probability kept
unchanged.

Our results are shown in Figure 2.1. Since with variablectiele by AIC the results
conform more to the claim of two regimes by Ng and Jordan (208#& show such results if
they are different from those without variable selectionedviwhile, in the figures hereafter
we use the same annotations of the vertical and horizontal amxd the same line type as those
in Ng and Jordan (2001). All the observations from these éguare only valid form > p,
with the intercept im\(«) taken into account.

In general, our study of these continuous datasets sugiesfsilowing conclusions.

1. In the comparison of LDA vs. linear logistic regression, the pattern of our resudis ¢

be said to be similar to that of Ng and Jordan (2001).

2. The performance of LDAs is worse than that of LDAA when the training-set size is

small, but better than that of the latter whenis large.

3. The performance of LDAs is better than that of linear logistic regression whens

small, but is more or less comparable with that of the latteenvn is large.

4. Pre-processing with variable selection can reveal tsindtion in performance of gen-

erative and discriminative classifiers with fewer trainsamples.

5. Therefore, considering LDA-vs. linear logistic regression, there is strong evidence to
support the claim that the discriminative classifier hasgloasymptotic error rate while
the generative classifier may approach its (higher) asytopéoror rate much faster.
However, considering LDA:= vs. linear logistic regression, the evidence is not so gtron

although the claim may still be made.
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Figure 2.1: Plots of misclassification error rate vs. tragrset sizem (averaged over 1000
random training/test set splits) on the continuous UCIsitg with regard to linear discrimi-

nation.
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2.3 Quadratic Discrimination On Continuous Datasets

As a natural extension of the comparison between LDAwith a common diagonal covari-
ance matrixA across the two classes), LDB<with a common full covariance matriX) and
linear logistic regression that was presented in Sectidnlis section presents the comparison
between QDAA , (with two unequal diagonal covariance matri¢gsandA,), QDA-X, (with
two unequal full covariance matricés andX;) and quadratic logistic regression.

Using the 8 continuous UCI datasets, all the settings arsdhee as those in Section 2.2
except for the following aspects.

First, considering that in the quadratic logistic regressnodel there arg(p — 1)/2 inter-
action terms between the features ip-dimensional feature space, a large number of interac-
tions when the dimensionalityis high, the model is constrained to contain only the intet,ce
thep features and thejy squared terms, so as to make the estimation of the model easibfe
and interpretable.

Secondly, for the same reason as explained at the end ob8é&xti, in the reported plots
of misclassification error rate vg: without variable selection, only the results far> 2p are
reliable for comparison since there &gepredictor variables in the quadratic logistic regression
model.

Thirdly, the datasets are randomly split into training satsl test sets 100 times rather
than 1000 times for each sampled training-set sizbecause of the higher computational
complexity of the quadratic models compared with that oflitiear models.

In general, our study of these continuous datasets, as simoligure 2.2, suggests quite
similar conclusions to those in Section 2.3, through stisig QDA-A, for LDA- A, QDA-Y,

for LDA-X, and quadratic logistic regression for linear logisticresgion.

2.4 Linear Discrimination On Discrete Datasets

For the discrete datasets, as was done by Ng and Jordan (200the continuous features
are removed and only the discrete features are used. THesraseientitled ‘multinomial’ in
following figures if a dataset includes multinomial featrand otherwise are entitled ‘bino-
mial’. Meanwhile, any observation with missing featuresamoved from the datasets, as is

any feature with only a single value for all the observations
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Figure 2.2: Plots of misclassification error rate vs. tragaset sizen (averaged over 100
random training/test set splits) on the continuous UCI skt with regard to quadratic dis-

crimination.
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Dataset No N p parc 1lpr-nNB)
Promoters 106 106 57 7 0
Lymphography 148 142 17 10 0
Breast cancer 286 277 9 4 0
\oting recorders 435 232 16 11 1
Lenses 24 24 4 1 0
Sick 2800 500 12 4 1
Adult 32561 1000 5 5 1

Table 2.2: Description of discrete datasets.

A brief description of the discrete datasets can be foundallel2.2, which includes the
indicator 1;,r_yp) € {1,0} of whether or not the two regimes are observed between the
naive Bayes classifier and linear logistic regression. r@sults are shown in Figure 2.3. All
the observations from these figures are only valid#or- p, with dummy variables taken into
account for the multinomial features.

In general, our study of these discrete datasets suggestintthe comparison of the naive
Bayes classifier vs. linear logistic regression, the paiéour results can be said to be similar

to that of Ng and Jordan (2001).

2.5 Linear Discrimination On Simulated Datasets

In this section, 16 simulated datasets are used to compapetformance of LDAA, LDA-X
and linear logistic regression. The samples are simulaited bivariate normal distributions,
bivariate Student’s-distributions, bivariate log-normal distributions andktares of 2 bivari-
ate normal distributions, with 4 datasets for each of thesgds of distribution. Within each
dataset there are 1000 simulated samples, which are diegeally into 2 classes. The sim-
ulations from the bivariate log-normal distributions armatmal mixtures are based on an R
function mvrnormfor simulating from a multivariate normal distribution froa contributed R
packageMASS, and the simulation from the bivariate Studenttistribution is implemented
by an R functionrmvt from a contributed R packagmvtnorm. Differently from the UCI

datasets, the simulated data are not rescaled into the fdngeand no variable selection is
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Figure 2.3: Plots of misclassification error rate vs. tragaset sizen (averaged over 1000 ran-

dom training/test set splits) on the discrete UCI dataséth, regard to linear discrimination.
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used since the feature space is only of dimension two.

2.5.1 Normally Distributed Data

Four simulated datasets are randomly generated from tvaoiéfe normal distributionsy (111, 1)
andN (p2, X2), wherep; = (1,0)7, pup = (—=1,0)7 andX; andX; are subject to four differ-
ent types of constraint specified as having equal diagoralllarovariance matrice®; = X
and having unequal diagonal or full covariance matrices .

Similarly to what was done for the UCI datasets, for each $adhjpaining-set sizen, we
perform 1000 random splits of the 1000 samples of each statlildataset into a training set
of sizem and a test set of sizB)00 — m, and report the average misclassification error rates
over these 1000 test sets. The training set is required @ dideast 1 sample from each of the
two classes. In such a way, LDA-and LDA-Y are compared with linear logistic regression,
in terms of misclassification error rate, with the followiregsults shown in Figure 2.4.

The dataset for the top-left panel of Figure 2.4 higs= ¥, = A with a diagonal matrix

A = Diag(1, 1), such that the data satisfy the assumptions underlying ADAFhe dataset

1 05
for the top-right panel has; = Y, = X with a full matrix ¥ = , such that

05 1
the data satisfy the assumptions underlying LRAThe dataset for the bottom-left panel has

Y1 = Ay, 39 = Ay with diagonal matriceg\; = Diag(1, 1) andA, = Diag(0.25,0.75), such
that the homogeneity of the covariance matrices is violalidte dataset for the bottom-right

1 05 0.25 0.5 _
panel hast; = andX, = , such that both the homogeneity

05 1 0.5 1.75
of the covariance matrices and the conditional indeperel@mcorrelatedness) of the features

within a class are violated.

2.5.2 Student’st-Distributed Data

Four simulated datasets are randomly generated from tvaridite Student’$-distributions,
both distributions with degrees of freedam= 3. The values of class meaps and ., the
four types of constraint oll; andX,, and other settings of the experiments are all the same as
those in Section 2.5.1.
The results are shown in Figure 2.5, where for each paneldhst@int with regard to

31 andX:, is the same as the corresponding one in Figure 2.4, exceptgoalar multiplier
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Figure 2.4: Plots of misclassification error rate vs. tragaset sizem (averaged over 1000

random training/test set splits) on simulated bivariaterradly distributed data for two classes.
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Figure 2.5: Plots of misclassification error rate vs. tragpget sizen (averaged over 1000 ran-

dom training/test set splits) on simulated bivariate Stiide-distributed data for two classes.
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v/(v—2).

2.5.3 Log-normally Distributed Data

Four simulated datasets are randomly generated from tvasiéie log-normal distributions,
whose logarithms are normally distributed &%:1, 1) and NV (ug, 32), respectively. The
values ofuq and s, the four types of constraint oR; and Y5, and other settings of the
experiments are all the same as those in Section 2.5.1.

By definition, if ap-variate random vectax ~ N (u(x), X (x)), then ap-variate vector
x of the exponentials of the componentsxofollows a p-variate log-normal distribution,e.,

exp(x) ~ log N (u(%X), X(X)), where the-th elemeniu(¥) (%) of the mean vector and the

X
(1, 7)-th element (%) (%) of the covariance matrix, j = 1,...,p, are

509 (x)
2 )

p (%) = I+

. . . , (i:4) (.9)
Z(Z’j)(f{) _ (ez(w)(x) _ 1)6M(Z)(X)+M(’)(X)+W

It follows that, if the components of its logarithsnare independent and normally distributed,
the components of the log-normally distributed multivegisandom variable are uncorre-
lated. In other words, ik ~ N (u(x), A(x)), thenx = exp(x) ~ log V' (u(X), A(X)). How-
ever, as shown by the equations aboX€x) is determined by both(x) and A(x), so that
Y1 (x) = ¥a(x) may not meart; (X) = X,(Xx). Therefore, considering in our cages # jo,
it can be expected that the pattern of performance of thaifirs for the datasets with equal
covariance matrices; = Y, in the underlying normal distributions could be similar bat
for the datasets with unequal covariance matricesz Yo, since in both cases the covariance
matrices of the log-normally distributed variables aredatfunequal. In this context, it makes
more sense to compare the classifiers in situations witlodelgnd full covariance matrices of
the underlying normally distributed data, respectivedgher than those with equal and unequal
covariance matrices.

The results are shown in Figure 2.6, where for each panelahst@int with regard t&;

and>; is the same as the corresponding one in Figure 2.4.

2.5.4 Normal Mixture Data

Compared with the normal distribution, the Studetdisistribution and the log-normal distri-

bution used in Sections 2.5.1, 2.5.2 and 2.5.3 for the coisgranf the classifiers, the mixture
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Figure 2.6: Plots of misclassification error rate vs. tragaset sizem (averaged over 1000

random training/test set splits) on simulated bivariag-riormally distributed data for two

classes.
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of normal distributions is a better approximation to reafadim a variety of situations. In
this section, 4 simulated datasets, each consisting of $86tples, are randomly generated
from two mixtures, each of two bivariate normal distribuso with 250 samples from each
mixture component. The two componentsand B, of the mixture for Class 1 are normally
distributed with distributions\ (114, 1) andN (u1 5, X1), respectively, wherg, 4 = (1,0)7
andu1p = (3,0)7; and the two componentg; and D, of the mixture for Class 2 are nor-
mally distributed with probability density function&(usc, ¥2) and N (u2p, X2), respec-
tively, wherepsc = (—1,0)T anduep = (—3,0)T. In such a way, whei; and ¥, are
subject to the four different types of constraint with rebéw 3, and >, as previously dis-
cussed, the covariance matrices of the two mixtures will iigest to the same constraints.

Other settings of the experiments are all the same as thataimos 2.5.1.
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Figure 2.7: Plots of misclassification error rate vs. tragrset sizen (averaged over 1000

random training/test set splits) on simulated bivariateo2yponent normal mixture data for

two classes.
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The results are shown in Figure 2.7, where for each panelahst@int with regard t&;

and>; is the same as the corresponding one in Figure 2.4.

2.5.5 Summary of Linear Discrimination on Simulated Datasés

In general, our study of these simulated continuous datasggests the following conclusions.

1. When the data are consistent with the assumptions umagidlypA- A or LDA-Y, both
methods can perform the best among them and linear logigiession, throughout the
range of the training-set siz& in our study; in these cases, there is no evidence to
support the claim that the discriminative classifier hasaloasymptotic error rate while

the generative classifier may approach its (higher) asytiomoor rate much faster.

2. When the data violate the assumptions underlying the L. DAsar logistic regression
generally performs better than the LDAs, in particular whens large; in this case,
there is strong evidence to support the claim that the discative classifier has lower
asymptotic error rate, but there is no convincing evidecsupport the claim that the

generative classifier may approach its (higher) asympéotior rate much faster.

3. When the covariance matrices are non-diagonal, BDAerforms remarkably better
than LDA-A and more remarkably whem is large; when the covariance matrices are

diagonal, LDAA performs generally better than LDA&-and more so whem is large.

2.6 Comments on Comparison of Discriminative and Generati®

Classifiers

Based on the theoretical analysis and empirical compalistmeen LDAA or the naive Bayes

classifiers and linear logistic regression, Ng and Jorda@ipclaim that there are two distinct
regimes of performance with regard to the training-set.si®ech a claim can be clarified
further through commenting on the reliability of the two irags and the parity between the

compared classifiers.
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2.6.1 Onthe Two Regimes of Performance regarding Trainingset Size

Suppose we have a training s{éygi),xgi))}?ll of m independent observations and a test set
{(D xD)}N"m of N — m independent observations, whet® = (z\, ... z{")T is the
i-th observedp-variate feature vectax, andy®) € {1,2} is its observed univariate class la-
bel. Let us also assume that each observafigh), x(V))} follows an identical distribution
so that the testing based on the training results makes.séms@der to simplify the nota-
tion, letx,, denote{(xﬁf}) i=1, and similarly define,,, y, andy, . Meanwhile, a discrimi-
nant function\(«) = log{p(y = 1|x)/p(y = 2|x)}, which is equivalent to a Bayes classifier
9(x) = argmax, p(y|x), is used for the 2-class classification.

Discriminative classifiers estimate the parametef the discriminant function\(«) through
maximising a conditional probabilityrgmax,, p(gtr |x,,, &); such an estimation procedure can
be regarded as a kind of maximum likelihood estimation with, |x;,,) as the likelihood
function. It is well known that, if th& — 1 loss function is used so that the misclassification
error rate is the total risk, the Bayes classifiers will attdie minimum error rate. This im-
plies that, under such a loss function, the discriminatiessifiers are in fact using the same
criterion to optimise the estimation of the parametend the performance of classification.

In this context, the following claims, supported by the diation study in Section 2.5, can

be proposed.

e If the same dataset is used to train and test, x,. asx,, andy, asy, , then the
discriminative classifiers should always provide the bestggmance, no matter how

large the training-set size is.

e If m is large enough to makgy, ,x;.) representative of all the observations includ-
ing (y, . %), then the discriminative classifiers should also providetiast prediction

performance otfy, ,x,.), i.e, with the best asymptotic performance.

e We note that all of the above claims are based on the premadetitea modelling of
p(y|x, ), such as the linearity ok(«), is correctly specified for all the observations,

and thus the only work that remains is to estimate accur#telyarameted:.

e If m is not large enough to mal(g”,gtr) representative of all the observations, and

(y,.:Xse) is not exactly the same dg, . x,,), then the discriminative classifiers may
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not necessarily provide the best prediction performanc(agger;gte), even though the

modelling ofp(y|x, «) may be correct.

Generative classifiers estimate the parametef the discriminant function\(«) through
first maximising a joint probabilityirgmax, p(gtr,gtTW) to obtain a maximum likelihood es-
timate (MLE)é of 6, the parameter of the joint distribution @f, x), and then calculaté as a
function«(9) atd. Under some regularity conditions, such as the existentieedirst and sec-
ond derivatives of the log-likelihood function and the irse of the Fisher information matrix
1(0), the MLE @ is asymptotically unbiased, efficient and normally distténl. Accordingly,
by the delta method is also asymptotically normally distributed, unbiased effi¢gient, given
the existence of the first derivative of the functio(?).

Therefore, the following claims, supported by the simolatstudy in Section 2.5, can be

proposed.

e Asymptotically, the generative classifiers will provide thest prediction performance on
(Qte’ x,. ). However, this is dependent on the premise thigt x|0) is correctly specified

for all the observations.

e If m is large enough to mak@w&r) representative of all the observations including
(¥,.» %), then the generative classifiers should also provide thepgesiction perfor-

mance on(y ot X, ), I.€., With the best asymptotic performance.

e We note that all of the above claims are based on the premasehttp(y, x|6) is cor-

rectly specified for all the observations.

e If m is not large enough to makg, ,x,,) representative of all the observations, then

the generative classifiers may not necessarily providedblegrediction performance on

(Y,0r Xte)-

In summary, it is not so reliable to claim the existence oftthe distinct regimes of per-
formance between the generative and discriminative €lasssiwith regard to the training-set
sizem. For real world datasets such as those demonstrated iroBge&i2 and 2.4, there is no
theoretically correct, general criterion for choosingwmstn the discriminative and the gener-
ative classifiers; the choice depends on the relative cordaeve have in the correctness of

the specification of eithep(y|x) or p(y,x). This can be to some extent a demonstration of
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why Efron (1975) and O’Neill (1980) prefer LDA but other empal studies may prefer linear

logistic regression instead.

2.6.2 Onthe Pairing of LDA-A/Naive Bayes and Linear Logistic Regression/GAM

As mentioned in Section 2.1, first, the naive Bayes classiianot guarantee the linear for-
mulation of the discriminant function(a) = log{p(y = 1|x)/p(y = 2|x)}, and, secondly,
the conditional independence amongst the multiple featwithin a class is a necessary con-
dition for the naive Bayes classifier and LDAwith a diagonal covariance matrix but not
for linear logistic regression, although in the latter tilcdminant function\(«) is modelled
as a linear combination of separate features. Therefaeezdmparison between a generative-
discriminative pair of LDAA/naive Bayes classifier vs. linear logistic regressiorukhbe
interpreted with caution, in particular when the data dosugport the assumption of condi-
tional independence of|y that may shed unfavourable light on the simplified genesatide,
LDA- A and the naive Bayes classifier.

In this section, we will illustrate such pairing of two geative-discriminative pairs: one is
LDA- A vs. linear logistic regression (Ng and Jordan, 2001), ardther is the naive Bayes

classifier vs. generalised additive model (GAM) (Rubinstand Hastie, 1997).

2.6.2.1 LDA-A vs. Linear Logistic Regression

Consider a feature vectar= (z1,...,,)T and a binary class labgl= 1, 2.
Linear logistic regression, one of the discriminative sifisrs that do not assume any dis-

tribution p(x|y) of the data, is modelled directly with a linear discrimin&mction as

ply = 11x) ( )

X s
Adis(@) = log 72:)( = log W—; + logz

= 6o+ B'x,

xly=1
p(y ) (xly =2)
wherep(y = k) = m,, o’ = (8o, 37) and3 is a parameter vector gfelements. By “linear”,
we mean a scalar-valued function of a linear combinationhef featuresey, ..., z, of an
observed feature vectar.
In contrast, LDAA, one of the generative classifiers, assumes that the datafesin two
p-variate normal distributions with different means but Hzne diagonal covariance matrix
such that(x|y = k;60) ~ N (ug, A), k = 1,2, whered = (u, A); this implies an assumption

of conditional independence between any two featurgsandz;|y, i # j, within a class. The
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density function of x|y = k; @) can be written as

i G T i (S

which leads to a linear discriminant function

ply =1lx) T A(01,7) .
)\ 062107:10 —+10 +9_9 x7
gen( ) g p(y _ 2|X) g o g A(QQ,U) ( 1 2)
wherefy, = pf A, n = A=t and A(0y, 1) = = 1)P|A\e_%M£A71”k.

Similarly, by assuming that the data arise from tywariate normal distributions with
different means but the same full covariance matrix such thyy = £;0) ~ N(ug,X),
k = 1,2, we can obtain the same formula &gn(a) but with 8, = pZx~1, n = ©=! and
A, m) = me—%ﬁiz”ﬂk, which leads to the linear discriminant function of LDA-
Therefore, we could rewrité asf = (0x,n), wherefy, is a class-dependent parameter vector
while n is a common parameter vector across the classes.

It is clear that the assumption of conditional independearoengst the features within a
class is not a necessary condition for a generative classifagtain a lineangen(«r). In fact, as

pointed out by O’Neill (1980), if the feature vectarfollows a multivariate exponential family

distribution with the density or probability mass functiithin a class being
p(xly = k,04) = " A(O, mh(x,n).k = 1,2,

the generative classifiers will attain a lin€ggen(«).

2.6.2.2 Naéve Bayes vs. Generalised Additive Model (GAM)

As with logistic regression, a GAM does not assume any Oistion p(x|y) for the data; it is
modelled directly with a discriminant function as a sunpdtinctions f (z;),i = 1,...,p, of
thep featuresr; separately (Rubinstein and Hastie, 1997); that is
Adis(@) = log ply = 1x) = log LES Zp: f(zi) .
ply =2[x) T
Meanwhile, besides the assumption of the distributiofxd#), a fundamental assumption
underlying the naive Bayes classifier is the conditiondkependence amongst thdeatures
within a class, so that the joint probability igx|y) = []._; p(zs]y). It follows that the

discriminant functiom\(«) is

Ager() = log AL = LX) :10gﬂ+zp:loglw_
° p(y = 2[x) o < 7 p(xily =2)

1=
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It is clear, as pointed out by Rubinstein and Hastie (1994t the naive Bayes classifier
is a specialised case of a GAM, wif{x;) = log{p(x;ly = 1)/p(zi|ly = 2)}. Furthermore,
GAMs may not necessarily assume conditional independence.

One sufficient condition that leads to another specialisesk ©f a GAM (we call it Q-
GAM) is that p(x|y) = q(x) [T5_; ¢(z:]y), whereg(x) is common across the classes but
cannot be further factorised into a product of functionsnufividual features a$[?_, g(z;).

In such a case, the assumption of conditional independegiveebnz;|y andz;|y, i # j, is
invalid but we still havef (z;) = log{q(zi|ly = 1)/q(x;|ly = 2)}, whereq(xz;|y) is different
from the marginal probability(z;|y) that is used by the naive Bayes classifier.

In summary, considering the parity betwekgn(«) and \gis(«) and thus that, between
two pairs, LDAY vs. linear logistic regression and Q-GAM vs. GAM in terms (afssifica-
tion, neither classifier assumes conditional independefisgy amongst the features within
a class, which is an elementary assumption underlying LAD&ad the naive Bayes classifier.
Therefore, it may not be reliable for any claim that is detiveom the comparison between
LDA- A or the naive Bayes classifier and linear logistic regrestide generalised to all the

generative and discriminative classifiers.



Chapter 3

On the Generative-Discriminative

Tradeoff Approach

In this chapter, we first briefly introduce the generativeediminative tradeoff method (GDT) (Ru-
binstein, 1998; Bouchard and Triggs, 2004; Bouchard, 280d)present its interpretation, then
compare its asymptotic efficiency with those of its geneeaind discriminative counterparts
for linear and quadratic normal discrimination when ther@é model mis-specification, and
finally compare the performance of the GDT, LDA and LLR methéa two-class discrimi-

nation using simulated datasets.

3.1 Introduction

The GDT constructs a new log-likelihood as a weighted aweighe log-likelihoods/y(#)
for generative learning antl(«) for discriminative learning, given by, (6,a) = Mg(0) +
(1 —A)lg(c), for 0 < A < 1. In order to couple the two separate estimation$ afida;, either
6 should be rewritten as a functidtic) of «, or « as a functiom(#) of 6. In generalp(y|x)
can be derived from(x, y), but not vice versa, and the dimensiorda$ larger than that o,
as with LDA. Therefore, it is more feasible to us€?) and thus only the parameter vectbr

remains in the new log-likelihood:

EA(0) = Mg(0) + (1 = M)y x(0) ,

35
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where, as defined earligly(0) = >, log p(x;, y;) andy; € {0, 1}, while

™ i X ’y ) L)
y\x Zlogp yz’xz Zl bl RV 7y,

— 7 mp(x4]01) + mop(xilfo)

a discriminative log-likelihood, but as a function éfather than.

As with other hybrid learning techniques, the GDT is modkti@oughp(y|7) andp(x|y; 0g)
and thus is by nature a generative model with hybrid learriggyning the commo# within
both likelihoods.

From a probabilistic point of view, if there exists a distriion

p(x,y: 0, ) = c(N)p(x, y; 0) p(y|x; 0)

then

argmax £ (6) = argmaxz log p(x4, yi; 0, ) .
0 o =
To justify that the GDT can be derived from a well-defined mpBeuchard (2007) provides

a joint distribution

n

QU (xi,yi) 136, 0) = (1 = <(\) [ [ p(wslis O)U (x:) + < (\) [ [ (i, 935 6)
1=1

i=1

whereU (x;) is not necessarily equal jgx;), ands(A) is a function satisfying
argmax £ () = argmax Q({(xi, yi) }i=1;6, ) .
0 0

Some algebra shows thgj, (6) = £g(0) — £x(6), wherely (0) = >, log(mip(x4]61) +
mop(x;]00)) is the log-likelihood of a 2-component mixture. It followsat, first,¢,(6) =
ly(0) + (A — 1)€x(8), which indicates that the GDT can be viewed as regulariseergéve
learning; secondly;y () = £,«(0) + Ax(0), which indicates that the GDT can also be viewed
as regularised discriminative learning; both regulaiosepenalties are determined by mixture
data (Rubinstein, 1998). Furthermore, witly) known and\s = 1 — )4, the multi-conditional
learning framework (McCallum et al., 2006) can be equivakenthe GDT with regard to
parameter estimation.

Maximization ofZ,(6), with respect td, leads to an estimatar of 6 with /n(6 — 6) ~
AN(0,%,(h)), say, for certair, (A). Based on this, as in the generative approaches, we can
derive the estimataf of « with /n(& — ) ~ AN(0, X, (&)), for certainy (&).

In addition, encouraging results from two simulation expents in Bouchard and Triggs

(2004), in which the GDT assumes for the sub-populations nenal distributions with a
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common diagonal covariance matrkx imply, in the sense of minimum logistic loss, the fol-

lowing conclusions.

1. Without mis-specification, the generative component@lavith A = 1, which in fact
corresponds to LDA with a commah (hereafter denoted by LDA.), has the best per-
formance while the discriminative component alone, witk= 0, has the worst perfor-

mance.

2. With mis-specification, the performance of the discriamive component alone, with
A = 0, improves as the training-set sizéncreases, starting from being worse than that

of the generative component alone to being better.

3. With mis-specification, the GDT, with < A < 1, has the best performance, for certain

A

We make the following observations: implication (1) comfsrto the results of Efron
(1975) and O’'Neill (1980) that a generative model (LDA) aigdoetter asymptotic classifi-
cation performance than its discriminative counterpaltR); implication (2) conforms to the
results of Ng and Jordan (2001); while implication (3) carie at an abstract level to those of
other hybrid learning techniques. In this chapter, we mledome theoretical support for im-
plication (1), from the perspective of asymptotic relatfficiency (ARE) in terms of misclas-
sification error rate, for linear and quadratic normal disgration. Bouchard (2005) provided
some asymptotic results in terms of logistic loss; nevéei for classification, the error rate

is of more practical use than the logistic loss.

3.2 Asymptotic Efficiency of GDT

3.2.1 Asymptotic Relative Efficiency (ARE)

Given no mis-specification of the two sub-population déesjtnamelyp(x|6;) andp(x|6p),

the optimal boundary for classification should Jie, o) = log :égg}z;; = 0, with a misclas-

sification error rate given by

ER(a) = m / p(x]601)dx + 770/ p(x]6p)dx .
9(x,0)<0 g(x,0)>0
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The boundary actually usedg$x, &) = 0, with a misclassification error rate given by

ER@) =m [ pxb)dxtm [ plxlfu)ix > ERa)
9(x,&)<0 g(x,&)>0

Under some regularity conditions, O’Neill (1980) proveatthgiven that,/n(& — a) ~
AN (0,%(a)), the distribution of the random variablg ER(&) — ER(«)) converges to the

distribution of the random variable/ B¢, say:
n(ER(&) — ER()) — ¢TB¢ in distribution
whereé ~ N (0,%(&)), and

B= i / Vg, )| ™ [Vag(x, @)][Vag(x, a)] p(x)dmp , 3.1)
D

inwhichD = {x : g(x,a) = 0}, mp is Lebesgue measure én V, andVy are vector partial
differential operators corresponding to differentiatisith respect tax andx, |Vxg(x, )| is
the L2-norm (also termed the Euclidean norm) of the veBteg(x, «), andp(x) = mip(x|01)+
mop(x|6o).
Subsequently, Efron (1975) and O’Neill (1980) defined thargstotic error rate (AER) as
AER(&) = lim E{n(ER(&) — ER(a))},

n—oo

which can be rewritten as
AER(4) = E{¢"B¢} = tr(E{¢"BEY) = tr(BE{&ET}) = tr(BX(a)).

Since ER&) > ER(«), the AER is actually a measure of an increased error rateusedae
estimated boundary is different from the optimal boundary.
Furthermore, Efron (1975) and O’Neill (1980) defined the Aftveen two learning tech-

niques as, for example,

. AER(d4g) tr(BZ4(a))
ARE(aq, Gg) = AER(a:) B tr(BE:(d)) '

If ARE (G4, dg) < 1, then generative learning provides estimatdgswith lower asymptotic
error rate with regard to the optimal discrimination coédiit «, i.e., with less asymptotic
misclassification error, than does discriminative leagnihARE(dyq, &g) > 1, then the relative

performance of these two techniques reverses.
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3.2.2 Theoretical Calculation of ARE

To calculate ARE for the discriminative, generative and Gapproaches, we need first to
obtainB, X4(&), Xg(&) andXy(&).
For discriminative learning of the LLR estimat6r its asymptotic variance matri¥q(&)

was proved by O’Neill (1980) to be

S3'(a) = / p(C11x)p(Co[x)[Vag(x, a)][Vag(x, o)) p(x)dx . (3.2)

It follows that, giveng(x, «) (as in Equations (1.2) and (1.3) for linear and quadratienabr
discrimination) and based on Equations (1.1), (3.1) arig) (B andX4(&) can be obtained.
As mentioned in Section 1.1.4, in order to obtag(&) andX, (&), we need first to derive
%4(A), £2(#) and the relationship betweeln = (& — «) anddd = (6 — 6).
Asymptotic properties of maximum likelihood estimatorggest the following results.
First, /n(6 — 0) ~ AN(0,%4(0) = nlg'(6)), wherely(6) is the Fisher information

matrix,

0Ly(6) %(9)} ~F {_a;;géfr)} '

Secondly,

A~ 2 _1 A~
Vi -0y = vir [ { -G 25~ ax0.510).

wherel, (0) = Mg(6) + (1 — M€, x(0), andS,(0) = nI; ' (0)VA(6)I; (), in which, since
E { 26(9) } — 0 andfy(6) = £,x(6) + £x(6),

2
E {_% ;géi) } = Mg(0) + (1 N)I,ye(6)

2
V3(6) = Cov (%g”) _E { (WSQQ)) } = A2T4(6) + (1 — N2)I,(6) -

After some algebra, we obtain

1,(0) =

1 alogr(e,ﬂ';x)] {8logr(9,7r;x

T
L) = [ p(Cs i) | ZET 52 pxgax.

with (0, m;x) = :(l)igigég andp(x) = mp(x|01) + mop(x|6o).
Meanwhile, based on a(x,«) such as those defined in Equations (1.2) and (1.3) for
linear and quadratic normal discrimination, we can obt&in= Mdf and thusyy(a) =

MYg(0)MT andxy (&) = MEy () MT.
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Since a linear transformation a&f into a + Ax does not change the misclassification er-
ror rates, the above-mentioned calculation of asymptaitance matrices can be simplified
by a workable transformation. For example, for linear ndrdiscrimination withx|6; ~
N(u1,%) andx|0y ~ N (uo, ), Efron (1975) suggested a new, linearly transfornxesht-
isfying x|01 ~ N(5e1,1), x| ~ N(—5er,I), whereA = /(1 — 110)TE (1 — o),

the Mahalanobis distance between the means of the two quidgtions, and, in addition, it is

required thatA # 0 to make the two sub-populations nonidentidais the identity matrix and
= (1,0,0,...,0). Another example is a linear transformation suggested ed!’'(1980)
for univariate quadratic normal discrimination.
The details of theoretical calculations and numerical wisdn of ARE for linear and
quadratic normal discrimination can be found in the appasgiof this thesis, as well as the
corresponding details for the two examples suggested bynEft975) and O’Neill (1980),

respectively.

3.2.3 Numerical Evaluations of ARE for Linear Normal Discrimination

The ARE between two learning techniques, with regard toregbrsa; andé, of the coeffi-

cients of the discriminant function, is defined in SectidhBas AREds, &) = tr(BX(aq))/tr(BX(Ae

For the example suggested by Efron (1975), theoreticavaksn suggests thaty(a),
Y (&), X4(&) andB are all symmetric block-diagonal matrices, represented by
DI T
. &) wle mo(T — 3)
X(a) = 2&72) 2(2) A , B= A |7 72 )
Zz(’,a?zlp—l I

)

)

whereg(-) denotes the density of the univariate standard normallaigion, p is the dimension

ofxandr = —= log ﬂ It follows that
_A 1 5(8) 52 (@)
w(Bx@) - 0T =2) )y N e B 10 ] Ay
oA r o] 59

Therefore,

ARE(Go, 6] r(BE(a) S + 2857 + 50072 4 (p - )5y
2,1 ) = ~ - ~ N —~ .
r(BZ(d42)) =% 1 28%r 4+ 212 4 (p - 1=

))-
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Here we present numerical evaluations of ARE as an index wipapison between the
generative, discriminative and GDT approaches, for the chdinear normal discrimination

under conditions (1|61 ~ N(Sei,I), x|y ~ N(—Sei,I), (2) A € [0.25,4.75], (3)
m € [0.05,0.95] and (4)\ € [0, 1].

3.2.3.1 Discriminative vs. Generative

Efron (1975) represented ARy, Gg) in terms of
mimo { [Sg(@)]11 + 2[Sg(@)1,27 + [Sg(@)]227° }

Q) =
Q2 = mmo {[Sg(@)]3,3} ,
Qs = mmo {[Za(@)]11 + 2[Sa(d)]127 + [La(d)]227°}
Qq = mmo{[Xa(d)]3,3} ,
Effpm1 = Q1/Qs3, Effymoo = Q2/Q4,
and hence
Eff, = ARE(d, dg) = g; j: Ei: Bgi - %Eﬁp:g_lzi(zg__lf &

Effpes

<SS SRS “$ :Q;\
BSSIIIEIRNN
0“‘:\\ IRN

Figure 3.1: The ARE between the generative approach andisigndinative approach for
linear normal discrimination: left-hand panel gives,Eff, middle panel gives Eff. ., right-

hand panel gives Eff; — Eff,_..

Numerical evaluations of Eff |, Eff,_.. and their difference are shown in Figure 3.1. We

make the following observations.
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1. Both Eff,_; and Eff,_ ., are less than 1, indicating that asymptotically the geierat

approach will provide better classification accuracy thendiscriminative approach.

2. Both Eff,—; and Eff,_,., decrease as the Mahalanobis distafdacreases; this implies
that, for two well-separated sub-populations, the geiverapproach is much better than
the discriminative approach; in other words, the latter in@yan acceptable alternative

to the former only when the two sub-populations are poorhasated, withA < 2.

3. Sometimes Eff.; can be smaller than Eff...; however, in agreement with Efron
(1975), it is more likely that Eff-; > Eff,_..; this implies that, when we use the dis-
criminative approach as an alternative to the generatipeoggh for high-dimensional
data, it is more likely to lower the classification accurdanyparticular when the Maha-

lanobis distancé\ > 2.
3.2.3.2 GDT vs. Generative
Similarly, we definel; andQ¢ by
Qs = mmo {[SA(@)]11 + 2[BA(@)]1,27 + [EA(@)]227°}

Qs = mmo {[Ea(4)]33}
so that
EFY, = Q1/Qs, EFN . = Q2/Qs
and hence

5 A A
Qi p-1)Q _ GEMY 4 (- DEMY
Qs+ (p—1)Qs %4-(19_1)

Eff) = ARE(&y, dg)

Numerical evaluations of Eﬁfﬁl, Eff}ﬁoo and their difference are shown in Figure 3.2, for

A =10,0.25,0.5 and0.75, respectively. We make the following observations.

1. For all these values df, both Eftﬁf:)l and Eféf_),oo are less than 1, indicating that asymp-
totically the generative approach will provide better sifisation accuracy than the

GDT.

2. When)\ = 0, the GDT contains its discriminative component alone. Fmhsa case,

similarly to the ARE between the discriminative approach dre generative approach
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Figure 3.2: The ARE between the generative approach andiEiev@th A = 0,0.25,0.5 and

A)

—00

0.75, respectively, for linear normal discrimination: first anin gives Eff:)l, second column
gives Efﬁ_))oo, third column gives Efj\z)l - Effl(,
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(as shown in Figure 3.1), both [%f‘lo) and Eféf_i?(? in general decrease as the Maha-
lanobis distance\ increases. This implies bad classification accuracy of thd @ith

A=0.

However, this is not the case for other values)ofwhere both Eﬁ’\z)l and E A_),oo
fluctuate asA increases, since the GDT contains a generative componeetminima
of Eff*5"*” and Eff~%* are both larger thaf.64. This implies that, even though
the generative component only has a small weight, the GDTacams an acceptable

alternative to the generative approach.

3. When\ = 0, we have Eﬁl > Eff;t)oo; for other values of\, this inequality usually

holds for most settings oA and=;. This implies that, when the GDT is used as an
alternative to the generative approach for high-dimeradialata, it usually lowers the

classification accuracy.

4. Apparently, when\ increases so that the generative component of the GDT gains m
weight, then the ARE, namely é‘f?, is closer to 1, in which case the GDT equates to

the generative approach.

3.2.3.3 Discriminative vs. GDT

The ARE between the discriminative approach and the GDThiplsi the ratio of the AREs
between them and the generative approach, described iimi8e8t2.3.1 and 3.2.3.2. That is,

Qs Effp=1 (p— 1)Effp_ﬂ>o
ARE(G4yq, dg) Eff, Qs+(p—1Q¢ @refl) BN o

ARE(4gq, & = = = ’
(00 = R4, g CEfY Qs+ (p— 1)@ FErp-1
where
Eff,o1 _ Qs Effyoc _ Qo
EfY, Q37 EffN, @4

If ARE(aqg,@)) < 1, then the GDT performs better than the discriminative agpginoin
terms of the asymptotic misclassification error; if AR, &) > 1, then the discriminative
approach performs better.

Lemma 3.2.1 When\ = 1, we have AREy, &)) = Effp; When\ = 0, we haveﬁ

p— 00
Br(@ss _
s =35 |
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Lemma 3.2.1 shows that the ARE between the discriminatiygcgeh and the GDT with

A = 0 converges to 3 whep — oo. This implies that, for high-dimensional data, the diserim
inative approach, compared to the GDT’s discriminative gonent, converges to a threefold
improvement in the classification performance as measurédeomisclassification error rate.
In addition, after some algebra, we have the following lepwviach implies that, for balanced

data, a discriminative approach is favoured, rather thar&DT's discriminative component.

Lemma 3.2.2 Whenm; = m = 3, we have

Eff,  [Ex(@)]+ @ - DEA@)]ss
Ef)=0) pEa(@)]s5
1 2A% A, 3p—1) 1 —8As
( +4A2+A2A0>+ ? <4A2+A2A0>+3_ i
ffom1  Effpooo

Numerical evaluations and their difference are shown in Figure 3.3, for

Y, " EfSY)

p—00

A =0,0.25,0.5 and0.75, respectively. We make the following observations.

1. When\ =0, Ef{i — = > land Eﬁg’;‘g‘; = 3, indicating that asymptotically the discrimi-
p 1 P"OO
native approach will provide better classification accythan the GDT'’s discriminative

component alone. However, asncreases, bot.‘é:f;f and ng;)“ reduce in value to be
p=1

p— 00

less than 1 for increasingly many settings'o&ndmy, indicating a reverse of the relative

performance of the two approaches.

2. When\ = 0, it is more likely that Ef?; (1)) < Eff:g’;%‘; , while, for other values of, it is
p—00
Eff oo
more likely that T;A)l > ﬁg) .

3. Apparently, when\ increases so that the GDT’s generative component gainsweigt,

then the ARE, namel%, approaches Eff(as shown in Figure 3.1), as g‘ﬁ — 1.
P

3.3 Simulation Study on Classification Performance of GDT

3.3.1 Implementation

The hybrid learning can be viewed as an optimisation prolitenmulti-classifiers. The opti-
misation of the GDT is based on a new log-likelihodgl(#), based on the common parameter

vectord. Here, for generalisation to the case of multi-groups, werite ¢, () as

0(0) = Mg(0) + (1 = Ny (8) = £g(6) — (1 = A (6) , with
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Figure 3.3: The ARE between the GDT and the discriminatiyeagch with\ = 0,0.25,0.5
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lo(0) = log | [ p(xi, vi; 0) = log [ | myup(xilyi; 6,) .

i=1 i=1

< = Ty, P(Xi|Yi; 0y, )
Cyx(0) =log | | p(yilxi) = log o : :
Y E 2131 K mep(xily = k; 0r)

n n K
lx(0) = log Hp(xz-) = logH {Zﬂkp(xi]y =k; Qk)} .
i=1 i=1 (k=1

in which7,, = p(y = v), i € {1,...,K}, K is the number of groupsi{ = 2 in our
study), and consists ofr, andf, k = 1,..., K, a parameter vector of the joint distribution
p(x,y;0). As seen fron¥,(6), the GDT becomes a pure generative approach when 1
while the weight of its discriminative component increaaes decreases frorto 0.

We use a general-purpose optimization based on the Brdydcher-Goldfarb-Shanno
(BFGS) algorithm, a quasi-Newton method, implemented byRainction optim from the
standard packag&tatsin R. Meanwhile, in order to investigate the performancemigancy
between the discriminative component of the GDT and a tridgrininative approach, we
compared the GDT ak = 0 with LLR. Here LLR is implemented by an R functidog-
itreg (Venables and Ripley, 2002), also using the BFGS algorithm.

In order to implement a GDT, the conditional distributipfx|y) has to be specified; as
was done in the simulation study by Bouchard and Triggs (R0®é assume thgix|y) fol-
lows multivariate normal distribution&” (.4, A) with a common diagonal covariance mathix
across the groups. However, we do not assume equal prioalpitities 7, but estimate them
from the training samples instead.

For the assumed Gaussian model with a common diagonal aaearimatrixA across
the K groups, the parameter vectis composed of< — 1 prior probabilities{wk}sz‘f, K
p-dimensional mean vectofg,, } X, and thep diagonal componentg\; ;}7_, of A.

First, the derivatives of) (#) with respect to{wk}{f:‘f can be written as

a(0) z": Liy=iy — (L= Nply = klxi)  1gy—ky — (1 = Mply = K|xi)
om, — Tk TK ’
where, as in Bouchard and Triggs (2004),

mp(Xily = k; 0k)
St mp(xily = 1;61)

Secondly, the derivatives df,(¢) with respect to{u}_,, unique for each group, can be

p(y = klx;) =
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written as

an0O) { dlog p(x;|y = k; ek)}
= 1, —(1— >\ == ]{7 7 ’
o ;:1 {1gy,=ky — ( )y = klxi)} o

where, for the assumed Gaussian model with

dlog p(x;|y = k; 0r)
Opig

= A%y — ) -

Thirdly, the derivatives of ,(#) with respect ta\, common for all the groups, can be written

as

A(0)
on 2

where, for the assumed Gaussian model with

Odlog p(x;|ly = k; 0
{14 = (0 Wty = i) CRERER RO

dlog p(x;|y = k; 64)
OA

] ) B _
25{—/\ P AT (o — ) (ki — ) AT

The above formulae can be rewritten with matrix repres@ntatso as to facilitate the com-
putation by matrix-based software like Matlab and R. A sinpkample of this is that, if

are assembled into tw x n matricesA and

p(y = k|x;) and, for each\; ;, 21oar(xily=hii)

753

B, respectively, then

K n

S5 by = k|Xi)(910gp(Xi‘y = kiOr) _ tracq ATB)
k=1 i=1 OAjj

In our study, four datasets are simulated; one of them narfsom two normal distributions
with a common identity covariance matdixvhich exactly satisfies the modelling assumptions
about the data-generating procegs|y), is also used by Bouchard and Triggs (2004), and
the other three are all from two normal distributions butwéither a common full covariance
matrix or two unequal diagonal covariance matrices or twequial full covariance matrices,
respectively. All of the latter three datasets violate thedeidling assumptions aboutx|y),
and all the distributions aredimensionalj.e., all the data are of two groups with four features.

Meanwhile, in order to investigate how the classificatiorfgrenance depends on both the
training-set sizen and the weight\, n is sampled within[50, 250] in steps of25, and \ is
sampled within0, 1] in steps of0.1; the test set size iH)? since at this size our results for the
logistic loss are at a similar level to those reported in Brawd and Triggs (2004). Within the

range[0, 1] of A, we use the same optimisation procedure to estimate thenptea vector
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with LDA- A equivalent to the GDT at = 1, while the results obtained from LLR are recorded
and plotted ath = —0.1 so as to be neighbours of those of the discriminative compooie
the GDT at\ = 0 for comparison only, wher& = —0.1 has no meaning in terms of physical
weight. For each sampled, the 10° observations are randomly split intotraining samples
and10® — n test samples with 100 replicates; from them, the mediantefdgistic losses
and misclassification error rates are recorded and ploahnple proportions and moments
are used as the initial values for BFGS optimisation.

Along with the logistic loss used by Bouchard and Triggs @0@e also use the traditional
misclassification error rate (ER) to measure the performanthe classifiers, defined as usual
by the number of misclassified observations over the totaibar of observations for binary
discrimination. For the dataset used by both Bouchard ailgdg3€2004) and ourselves, our re-
sults about the logistic loss in general lead to similar olz@ns to those reported in Bouchard

and Triggs (2004). Therefore, in the following, we only refgbe results about the ER.

3.3.2 Normally Distributed Data

Four simulated datasets are used in this section, eachstingsof 10> samples that are ran-
domly generated from twé-variate normal distributionsV/ (1, ¥1) and N (u2, X2), based on
500 samples from each distribution. As in Bouchard and Eri@04),.; = (1.25,0,0,0)7
andpy = (—1.25,0,0,0)”, wherey, only differs fromy; in one of the four dimensions; other
values ofu; andus can be linearly transformed to these two values so that ikare loss of
generality. Meanwhile}; and>; are subject to four different types of constraint, speciéisd

follows.

1. Equal diagonal covariance matrices:¥1 = Y = A =1.

2. Equal full covariance matrices: 3; = s = X while ¥ # A, with ¥ =

with ¢ = 0.25.

3. Unequal diagonal covariance matrices:>; = A, Yo = Ay with Ay # Ao, where

A, = IandA, = Diag(0.25, 0.75, 1.25, 1.75).



4. Unequal full covariance matrices: 31 # Ay, Yo # Ay and Xy # 3o, with 34

1 ¢ ¢ ¢ 0.25 c
c 1 ¢ ¢ c 0.75
andXs =
c ¢c 1 ¢ c c
c ¢ ¢ 1 c c
3.3.3 Results
Normal: Z; =A, 2, =A
o
C‘\_"’,
o — n=50
....... n=100
--- n=200
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Figure 3.4: Simulated normally distributed data with egliajonal covariance matrices. Plots
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of classification performance measured by ER vs. traingigszen and\ (A = —0.1 corre-

sponds to LLRX € [0, 1] corresponds to GDT andl = 1 corresponds to LDAAY), obtained

from 100 experiments on test sets of sif8. Left-hand panel: ER vs) for n = 50, 100 and

200; right-hand panel: ER vs: for LDA-A, A = 0.5,0 and LLR.

Our results are shown in Figures 3.4, 3.5, 3.6 and 3.7, réselg for the four simulated

datasets. Each figure consists of two plots of the ER\and the ER vsn, respectively; from

them, we observe the following patterns.

1. For the first dataset in which no mis-specification of treuased Gaussian model with

occurs except for there being a finite number of observatiotige training set, as shown

in Figure 3.4, LDAA in general performs the best.

2. When there is mis-specification, such as those cases shdwgures 3.5-3.7, at some

optimal values ofA € (0, 1) the GDT can perform better than &t= 0 and\ = 1.
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Figure 3.5: Simulated normally distributed data with ecquiicovariance matrices.
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Figure 3.6: Simulated normally distributed data with uregliagonal covariance matrices.
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Figure 3.7: Simulated normally distributed data with ureddull covariance matrices.

3. When there is mis-specification and the training-set siig large, our results show
that the performance of LLR, a discriminative classifiestgerior to that of LDAA, a

generative one.

4. Our results support the claim made by Bouchard (2005) thmater our assumption of
common diagonal covariance matrices, the discriminatbrapgonent of the GDT (with
A = 0) performs the same as LLR does, as they optimise the sametiobjéunction.
Nevertheless, our results also show that, when there ispasHication and: is small,
practical optimisation with regard to different paramesigions may either converge at

different values or even stop iteration without convergenc

3.4 Conclusions

The conclusions from our study are three-fold.

First, the GDT is a generative model integrating both dmsgrative and generative learn-
ing, so that it is also subject to model mis-specificatiorhefdata-generating procas|y; 0y),
or otherwise of the joint distributiop(x, y; 6).

Secondly, amongst the three approaches that we compai@sythmptotic efficiency of the
GDT is lower than that of generative learning when there isneodel mis-specification.

Thirdly, when there is no model mis-specification, LDA penfig the best; when there
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is model mis-specification, the GDT may perform the best ab@imal tradeoff between its
discriminative and generative components, and LLR, a tlidgriminative classifier, in general

performs well when the training-sample sizés reasonably large.



Chapter 4

On the Hybrid

Generative/Discriminative Algorithm

The so-called hybrid generative/discriminative algarithssigns different weights to par-
tial feature vectors ok, learning most parameters generatively but the weightzicita-
tively (Raina et al., 2003). In this chapter, we first intetpthe hybrid algorithm from three
perspectives, namely class-conditional probabilitiessszposterior probabilities and loss func-
tions underlying the model, and then discuss one of its rald8s extensions (Fujino et al.,
2007). Finally, by using simulated and real-world data, wmpare its classification perfor-

mance with that of the naive Bayes classifier and lineastagiegression.

4.1 Interpretation of the Hybrid Algorithm

Consider classifying an observation withfeatures into one of< groups by a classifief,
which was trained by using the observed features and grawaislafm other so-called training
observations. In this chapter, the dimension of featureei®ted byh instead ofp. We use
an h-variate random vectax = (z1,...,z,)" to represent thé features of the observation
and a random categorical variabjec {1, ..., K} to represent the group label. We denote a

classifier ofx by §(x) and the loss function of misclassifying which arises from the group

y, into the groupy(x) is L(y, §(x)).

54
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4.1.1 Class-conditional Probabilities

For binary classification, wher& = 2, based on Bayes’ Theorem, the Bayes discriminant
criterion (.e., (x) = argmax, p(y|x)) of the generative classifiers for classifyirgnto the
groupy = 1 can be written ap(x,y = 1) > p(x,y = 2), or equivalentlyp(y = 1)p(x|y =

1) > p(y = 2)p(x|y = 2). In addition, specific generative classifiers, such as fineamal-
based discriminant analysis with a common diagonal coneeianatrix (denoted by LDAY)

and the naive Bayes classifier, assume thahtfeatures are conditionally independent given
the group label, i.e., p(x|y) = [T, p(xily).

In the normalised hybrid and the unnormalised hybrid atgors proposed by Raina et al.
(2003), the feature vector is divided intoR partial feature vectors®, ..., x%, because they
suggest different levels of importance for different gantis, or partial feature vectors; for
examplex' may represent the message subject of an email wHilepresents the message
body. As with Raina et al. (2003), we focus éh= 2, such thatx = (x!7, x*")T, x! =
(z1,...,zn,)T, x2 = (zp,41,---,25)T @andhy = h — hy, and assume that the discriminant

criterion of the generative classifiers can be rewritten as
ply = Dp(x'ly = Dp(x2ly = 1) > ply = 2)p(x'|y = 2)p(x*|y = 2) .

Thus, giverp(x, y) # 0, the corresponding discriminant functiog(x) = log % can be

expressed in terms of likelihood ratios as

=1 p(xly=1) p(x?ly=1)
+ log +log———=.
ply=2) p(xty = 2) p(x%ly = 2)

Such a representation can be obtained by assuming the lea&&P

p(xly) = w(x', x*)p(x'ly)p(x*|y) |

wherew(x!, x?) can be regarded as a normalisation factor. However, if,Ifay,a(x!|y) and
p(x?%|y) are proper marginal distributions derived frortx|y) (i.e., p(x'ly) = > .2 p(x|y),
p(2Jy) = Yo p(xly) and, p(xly) = Y p(xty) = Y p(x[y) = 1), thenw(x!, x2) =

1, given that there exists = z such thatp(z|ly = 1) # p(z|ly = 2). In other words,

it leads to assuming conditional independence betweerapfeature vectorsc! |y andx?|y
such thaip(x|y) = p(x!'|y)p(x?|y). In addition, to some extent, for a simple implementation

in practice, Raina et al. (2003) further assume fiat|y) = H?;lp(mjyy) andp(x2|y) =
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H;.‘:hlﬂp(mj\y); these imply the conditional independence of the elemeittsnx! andx?
giveny, respectively.

Raina et al. (2003) introduce two additional parametgrand 6, into the discriminant
criterion, leading to different weights for different paftfeature vectors in the discrimination.
Two ways of weighting are proposed by Raina et al. (2003):cameesponds to assigningto

the groupy = 1 if
. o, 92 L o o, 2
ply=Dpxly =1)Mpx"ly=1)" >ply =2)p(x" |y = 2) "1 p(x“|y = 2)" |

which is the criterion (denoted b@riterion-H) corresponding to the normalised hybrid algo-

rithm; the other gives

ply = Dply = 1)p(x?ly = 1)%2 > ply = 2)px'ly = 2)" p(x2|y = 2)% ,

which is the criterion corresponding to the unnormalisetrityalgorithm. Without loss of
generality, in this chapter we focus on the normalised lyalgorithm.

Let us writed = (A1,62)”. Then the hybrid algorithm can be derived from

o o
po(xly) = we(x',x*)p(x'|y) ™ p(x*|y) "2 andpe(x,y) = p(y)pe(x|y) ,

wherew(x!, x2) is independent of groupgso that it is cancelled out froiGriterion-H, but
it is not necessarily further factorised ag(x!,x?) = wj(x!)wi(x?). However, in order
to maintainpy(x|y) as a proper probability distribution (so th@titerion-H is derived from
a proper probabilistic model), with the marginal distribas p(x!|y) = > . pe(x|y) and
p(x%y) = 3.1 pe(x|y), itis required that, for al,

91

o .
> we(x!, x)p(xy) e =p(x'ly)
X2

[

o1 1-22
D wp(x', P )p(xy) ™ = p(xPly)

In some cases, it might be difficult to validate the existeniceuch awy(x!,x?), e.g, when

01 _
ht

the above equations have to become independept dh other cases, further assumptions

1 while Z—Z; =% 1 or vice versa, as the sums, in termsxgfon the left-hand sides of

might be needed to guarantee the existence. We illustratéoyhassuming thatvg (x!, x?)
can be further factorised in terms@f (x!, x?) = w} (x')w3(x?); in other words, we assume

conditional independence betweehy andx?|y. It follows that

9 92
po(xly) = wy (x")p(x y) "1 wj (x*)p(x*|y) "2
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which also leads t€riterion-H. One option forwy (x*!, x2) is, for ally,

92

wh(x) = g ) TR W) = —p(Ply) T
qa(y)
where ¢(y) is a non-zero function used to cancel out termsyimwithin p(x1|y)1_’% and
p(x2]y)1_%. If such awy(x!,x2) cannot be foundCriterion-H is not a Bayes discriminant
criterion derived from a proper probabilistic model; nekietess, in practice it can still be used
as a criterion for discrimination, although in this casetlgbrid algorithm is no longer a true
Bayes classifier and, undefa- 1 loss function, it cannot provide a minimum Bayes error.
Under Criterion-H, we classifyx into y = 1 if pg(x,y = 1) > py(x,y = 2). Given
po(x,y) # 0, the discriminant function\;;(x) of the hybrid algorithm can be expressed in

terms of weighted likelihood ratios as

ply=1) 0, pxty=1) 6 pAy=1)
)\ X) = 10 —_— —I— -— 10 —_— og——————m .
(%) s ply=2) M & p(xlly=2)  hy gp(x2!y =2)

Therefore A7 (x) can be viewed as a “weighted” version of the discriminantfiom Ag(x) of

the generative classifier; however, as mentioned abovégenry the hybrid algorithm should
satisfy some conditions about the marginal distributiongrder to make the underlying model
probabilistically valid. In addition, as withg(x), most parameters, such as thosezfor!|y)
andp(x?|y), in Ay (x) are learnt by using a generative approach; only a few passetuch

as the two weight9, and -, are then learnt by using a discriminative approach based on
the learning results (abowtx!|y) andp(x?|y)) from the generative approach. Therefore, the
hybrid algorithm can be regarded as a generative classifiee & assumes the DGR x|y)

and thup(x, y).

With the assumption of conditional independence betwegn andx?

vy, it follows that

the two class-conditional probabilities(x|y) andpy(x|y), are related by

patcl) = p(xl) { oo 2o ) P o)

This indicates that, in practice, the hybrid algorithm ases a scaled DGBy(x|y) which
scales the generative DGRx|y) by a function not only of the group labelbut also of the

feature vectok.
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4.1.2 Class-posterior Probabilities

The second perspective for interpreting the hybrid alforitis via its modelling of class-

posterior probabilities:

o) = 20e) Pl X ) oG pladn(x ) o)
po(x) Po(x) po(X) Jwg(xt, x2)

wherepyg(x) = >, po(x,y) = po(x,y = 1) + pp(x,y = 2). According to Bayes’ The-

orem, the class-posterior probabilities in terms of theegative DGPp(x|y) arep(y|x) =
p(y)p(x|y)/p(x); it follows that

Po(yl) = plyl) {we<x1, 2 )p( |y) L p(ly)

221 p(x) }
po(x)
This indicates that the normalised hybrid algorithm assuscaled class-posterior probabilities

pe(y|x) which scale the posterior probabilitiegy|x) by a function not only of the feature

vectorx but also of the group label.

4.1.3 Loss Functions

In order to find the best classifier, one of the optimal cridtds to minimize the so-called

unconditional or total risk:

R(§) = By [Exjy [L (v, 9(x))]] = Ex [Eyx [L (y,9(x))]] -

Such a criterion suffices to minimize the Bayes error, aldled®ayes risk,
K
Eyx [L (3, 9(x))) = > p(yx) Ly, §(x)) -
y=1

A simple and widely used loss function i®a- 1 loss such thal (y, j(x)) = 1 if § # y and0
otherwise. This leads to a Bayes classifigt) = argmax, p(y|x).
Since there are many loss functions that can lead to the tisedadybrid algorithm, here

we only present one loss function, fixidgy, y(x)) = 0if y = y.

Proposition 4.1.1 If the number of groups i > 2, and it is assumed that, givenL(y, y(x)) =
L, is independent of(x) if § # y, then the hybrid algorithm proposed in Raina et al. (2003)
can be obtained through minimising the Bayes error with & losictionL(y, §(x)) such that

L(y,y(x)) = L, if y # y and0 otherwise, where

PN
L - Px[y)™p(x7ly) P2
Y p(xy) ’
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in which h; and h are the dimensions of! andx?, andx = (x'7,x?")”. A generalisation

of such a loss function i5, = %.

Proof The Bayes error for a classifigfx) with such a loss functioi(y, j(x)) is minimised
by

o o
j(x) = argmin Y _ p(y[x) L, = argmin Y p(x'|y) " p(x*|y) "2 p(y)
Yoy Yooyt

0, o o
= argmin —p(x'[§)™ p(x’|§) ™ p(§) = argmaxp(x' |y) " p(x°[y) = p(y) ,
Yy Y

which is Criterion-H. The proof for the generalisation df, can be obtained similarly by

01 2
replacingp(x' [y) " p(x2ly) "> with pg(x[y). Il

From Proposition 4.1.1, we observe that the loss from nasdiaation by the hybrid algorithm
depends on the accuracy of the approximation of the true PGR,) by the assumed one,
po(x|y) say. The closepy(x|y) is to p(x|y), the closer car.(y, §(x)) be approximated by a

0 — 1 loss function. Furthermore, in contrast to the 1 loss, L, is dependent os.

4.1.4 A Multi-class Extension

Fujino et al. (2007) present the result of a multi-class anttirpartition extension of the hybrid
algorithm by maximising a conditional entropy pfy|x) under certain constraints associated
with joint distributionp(x, y) and class-conditional probabilitieggx”|y) for each partial fea-
ture vectorx”,r =1,..., R, as

R
e“y Hr:l p(xr ’y))‘T
R Y
Zy ety Hr:l p(x?” ’y))\r

where)\, andy, are Lagrange multipliers. This result is equivalent to aigtitforward exten-

p(ylx) =

sion of the hybrid algorithm, in which, = 6, /h, andp, = log p(y) + log wg(x).
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4.2 Parameter Estimation, Implementation and Evaluation é the

Classifiers

4.2.1 Discriminative Learning of¢

By “hybrid”, the normalised hybrid algorithm proposed iniRaet al. (2003) means to use a

discriminative approach to the estimationdoguch that

. m N po(x®, y®)
0 = argmax > logpg(y @ |x®) = argmax Y log —— 7~
) ZZ:; o(y'[x") = " Z > ey

wherem is the number of independent training observatipfs®, y®)}™ | in which (x(i))T =
((xlv("))T, (xzv(“)T). If y is a binary variable such thate {1,2}, ps(y = 1|x) can be writ-
ten in a way similar to that of logistic regression:

exp(Am (x))
1+ exp(Ag(x))’

where\y (x), as defined in Section 4.1.1, is the discriminant functiamesponding tcriterion-

po(y = 1x) =

H. As with linear logistic regression\y (x) is a linear function of; andds.
Instead of using maximisation, we minimise the negativéikeihood —¢; to estimate),

andésy, where

—lg = - logpy(y™|x"
i=1

= i {1{y(i):1} log (1 + e—AH(x(i))) + 1{y(i):2} log (1 + e)\H(x(i)))} .
i=1

Concerning\g(x) , in order to estimate the parameters in the same discrivénatay

as that of linear logistic regression, Raina et al. (2008gfieed asf = (6, 01,62)", where

0y = log E g similar to the intercept in a linear logistic regressiondalpis estimated dis-
criminatively,i.e., log %:;g is not calculated by using generative estimatorg(gf= 1) and
p(y = 2) but is directly estimated by a discriminative approach. éptdor that,log zgﬁizz;g

andlog % are estimated by a generative approach.
Considering that the discriminative estimatorfofises outputs from the generative esti-

mator ofp(x|y) as inputs while both estimators use the same training se@iaR al. (2003)

suggest that the discriminative estimatorgas biased. Consequently, they use a “leave-one-

out” strategy as follows:

. m NG Po,—i(x (i),y(i))
0_; = argmax » logpg _; y(l) x()) = argmax Y log
0 ; W™l )= 0 Z E Po, z( ,y)

)
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wherepy,_;(x"),y) andpy _;(x¥,y(?)) are obtained from the data with tti¢h observation
removed. However, when the training set sizeis large enough, there is little difference
betweené_z- andé, and thus such a bias can be ignored. Therefore, in our stugglp not use

the “leave-one-out” strategy to estimate

4.2.2 Implementation of the Classifiers

In order to evaluate the discrimination performance of tierial algorithm, we compare it
with two widely-used discriminative and generative clsss, linear logistic regression and
the naive Bayes classifier, using simulated continuoudaudete data.

The naive Bayes classifier is implemented by an R functeimeBaye$rom a contributed
packagee1071for R. As with Raina et al. (2003), for discrete data, we usplaee (add-one)
smoothing. For simulated continuous data, the naive Belgssifier, which assumes normal
distributions for class-conditional probabilitiegx|y), corresponds to LDAY when the co-
variance matrix2; of the groupy = 1 is equal to the covariance matiik of the groupy = 2,
and corresponds to quadratic normal discriminant analyils a common diagonal covari-
ance matrix (QDAA) when3; # 3,. The naive Bayes classifier assumes the conditional
independence of all features given the group labg) such thaip(x|y) = H;’le(xj\y); its
discriminant functiom\g(x) can be written as

ply=1)

Aa(x) = log =) plzjly =1)

+ lo .
2 & p(zsly = 2)

j=1
The implementation of parameter estimation for the hyblgd@thm with Az (x) consists

of two steps: in the first step, by use of the R functi@miveBayesp(z;|y),j = 1,...,h, are

generatively estimated and thisg Zgi}zzg andlog Z&EIZ;; can be calculated; in the second

step,d is estimated discriminatively by use of an R funct@gim (from a standard packagtats

in R) with log % andlog ggzigjg as predictor variables. The hybrid algorithm assumes

conditional independence within the partial feature vesstsuch thap(x!|y) = ]"[;’;1 p(xjly)

h
andp(x2!y) = Hj:h1+1 p(xj‘y)-

Linear logistic regression is implemented by the R functitm which uses an iteratively
reweighted least squares algorithm (IRLS, or IWLS, alsowkmas the Fisher scoring algo-

rithm) to fit the model. The discriminant functioxp(x) of linear logistic regression can be



62

written as

h
Ao(x) = o+ > Bz,
j=1
which does not necessarily imply that the conditional iredejence assumption holds.

4.2.3 Evaluation of the Classifiers

To evaluate the performance of the three classifiers, we hesenisclassification error rate
(ER) and logarithmic loss (LL). The ER is defined as usual eyiimber of misclassified
observations over the total number of observations; it #&2dan & — 1 loss function and is
independent of the observed value

In contrast, the LL is dependent an The LL, also referred to as the logistic loss for
logistic regression, is based on a loss functiofy, §(x)) = — logp(y|x), wherep(y|x) is

determined by the classifigix), and thus defined by

t
LL =" {~logp(y®x")} |
i=1

wheret is the number of test observations. It can be easily recednisat the LL is in fact the
negative of the log-likelihood of(y|x), and therefore the estimates obtained by the discrim-
inative classifiers provide the best classification for tianing observations if the minimum

LL is used to measure the performance.

Consider two groupg € {1, 2} with the discriminant function\(x) = log ZEZ;B Then

the LL can be rewritten as

t A\ M= 1 1,,6)—
e {y 2}
i—1 ( %1 e/\(X‘”)> ( S e’\(x(”)> 7

wherel, i)y, is an indicator function of the subsgy?) = k}. A simple notation for the LL

used by the machine learning community for two groups suatytke {—1,1} is

t . | |
= S e = 3 o (1)
i=1

=1
4.3 Numerical Studies

4.3.1 Simulation Studies

Twelve datasets are simulated here, of which 6 are compdsedantinuous features and the

other 6 are composed af discrete features. In each continuous dataset, the da& fapim
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two h-variate normal distributions; in each discrete data$et,data arise from twa-variate
Bernoulli distributions.

Each dataset consists 8f = 10° observations, which are equally categorised into two
groups by a group labe} € 1,2. Amongst themn/2 observations from each of the two
groups are used as training observationsis sampled within100, 400] in steps of25. For
each sampledh, the N observations are randomly split inte training observations and=
N — m test observations withi00 replicates; from them, the medians of the ERs and LLs are
recorded and plotted. In each dataset, wéset4 and the feature vecter = (x1, z2, x3, w4)T
is composed of 2 partial feature vectars= (1, z2)” andx? = (z3,24)7,i.e, h1 = hy = 2.

Amongst the 12 datasets, 6 datasets (3 continuous and 2t@sbaverX; = X, i.e, the
two groups have a common covariance makixIn addition, there are 4 datasets (2 contin-
uous and 2 discrete) with diagonal covariance matrices tlaumlfor them the assumption of
conditional independence of dllfeatures ofx giveny underlying the naive Bayes classifier
is satisfied. There are also 4 datasets with block-diagamadr@ance matrices of two blocks,
where one block consists of tiig features ofk! and the other consists of tte features of
x2, and thus for them the assumption of conditional indepecel®etweenx! andx? giveny
is satisfied. The other 4 datasets have full covariance ceatsuch that each of tiefeatures
of x giveny is dependent on the others.

As our results for the simulated discrete data showed girpd#erns to those for the sim-
ulated continuous data, only the latter are presented beldwe former can be found in the

appendices of this thesis.

4.3.1.1 Continuous Data with a Common Covariance Matrixz

The first 3 datasets contain simulated continuous datangrfsbm two4-variate normal dis-
tributions: x ~ AN (u1,%4) for the group withy = 1 andx ~ A (ug, X2) for y = 2, with
w1 = (1.5,0,0.5,0)7, po = (—=1.5,0,-0.5,0)7, % = ¥y = Y andX is

1 o000 [1coo] [1ecec e
01 0O c 1 0 O c 1 ¢ ¢
, or
0 01 O0 0 0 1 c c ¢ 1 ¢
0 0 0 1 0 0 ¢ 1 c ¢ c 1
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with ¢ = 0.25, giving a diagonal, a block-diagonal and a full covariancgnr, respectively,
for the 3 datasets.

Medians of the ERs and LLs are obtained frdfoo replicates; the medians are plotted
against the training set size in Figure 4.1, of which each row represents the results fer on

dataset.

4.3.1.2 Continuous Data with Unequal Covariance Matrice&, X

The structure of the second set of 3 datasets is similar tafhhe first set in Section 4.3.1.1,

except that; # X5 andX, is

025 0 o o] Jos ¢ o ol foz e ¢ ¢
0 075 0 0 c 075 0 0 c 075 ¢ e
0 0 125 0 0 0 1235 | o le e 125 e

i 0 0 0 1.75_ i 0 0 c 1.75_ | ¢ c c 1.75_

while ¥, is the same a& shown in Section 4.3.1.1, respectively for these 3 dataskte

results for these 3 datasets are shown in Figure 4.2.

4.3.2 Empirical Studies

For empirical studies, six continuous datasets in the UGihime learning repository (Asun-
cion and Newman, 2007) are used here. The 6 UCI datasets aeastBcancer Wisconsin
(diagnostic)”, “Breast cancer Wisconsin (prognostic)Cdhnectionist bench (sonar)”, “Ecoli
(cp vs. pp)”, “Pima Indians diabetes” and “Wine (1 vs. 2)".

Raina et al. (2003) used newsgroups data, reasonably mijvidimessage into a message
subjectx! and a message body and obtaining very promising results from the hybrid al-
gorithm. However, for these UCI datasets, there might naumh an apparently reasonable
division. As a random division a¢ may break down the required connection of the features
within either of thex” and thus lead to a bias disfavouring the hybrid algorithmsinvegoly took
the first half of the features as and the others as”>. Such a simple division may preserve the
connection between features, as similar features are iergenext to each other in the order
measured.

Similarly to the training-test split of the simulated datess for each group we randomly

chosep% of the observations as training data and the remaifing — p)% as test data, where
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p = 20(10)80, such that the group proportion is preserved for trainirgy.each value op, we
generated 100 such random patrtitions to assess classifierrpance; medians of the ERs for

these 100 replicates are shown in Figure 4.3, those of theshawing similar patterns.

4.3.3 Conclusions of Numerical Studies

Based on the results shown in Figure 4.1, 4.2 and 4.3, our ricahstudies suggest the fol-
lowing conclusions.

First, with the simulated datasets, in general, in termsath lperformance measures,
namely ER and LL, if both the covariance matriégsand>l; are diagonal matrices, the naive
Bayes classifier performs the best; if both the covariandeicea:; and>; are full matrices,
linear logistic regression performs the best, in particulben the training set size is large.
The superior performance of the naive Bayes classifier eaatthibuted to the fact that the
simulated data satisfy the assumption of conditional iedeence underlying the classifier;
the superior performance of linear logistic regressiontzaiattributed to its robustness when
the assumptions underlying other classifiers are violated.

Secondly, the hybrid algorithm performs the best for 3 ofdixdJCI datasets while either
the naive Bayes classifier or linear logistic regressiafop@s the best for the others.

Therefore, with these datasets, our studies suggest ghduythrid algorithm may provide

worse performance than either the naive Bayes classifiarear logistic regression alone.



Chapter 5

Joint Generative-Discriminative
Modelling Based on Statistical Tests

for Classification

5.1 Introduction

The objective of statistical pattern classification is tassify an observatiotk into a group
y, whereX can be represented bypavariate data vectofz, ..., z,) of its p measured vari-
ables andy is a categorical variable. The classification is based on deaf which pa-
rameters are in general estimated from a training set labelled observation® = {X; =
(i1, ..., zip) }1 with their labelsy = {y; }7- .

Based on our studies presented in Chapters 2, 3 and 4, inniyer, we present a joint
generative-discriminative modelling (JGD) approach @ssification. This approach was also
inspired by a suggestion, made but not developed in Ruliinsted Hastie (1997), that a
promising hybrid approach is to ‘partition the feature {@ale) space into two. Train an infor-
mative model on those dimensions for which it seems coreext,a discriminative model on
the others.’ In other words¥ is partitioned into two sub-vectots; and X p, wherep(X¢|y)
may be correctly modelled bw{ X |y) not, such that a generative approach is applied to
for p(X¢|y)p(y) and a discriminative approach is appliedXg, for p(y|Xp). Therefore, a
key factor underlying the performance of such a classifiinéscorrectness of the partition of

X, where confidence ip(X¢|y) but notp(Xply) should be based on the obsen&dand) .
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The partition of variables into two subsets in our approachased on statistical tests of the
within-group distributiong(x,|y) of the variablest,, involved.

Closely-related work by Kang and Tian (2006) constructedtemative partition ofX, by
starting with an emptng)) (i.e.,X((;O) =X\ X(DO) is X), then, in thet-th iteration, moving
from Xg_l) into Xg_l) a single variabler;, namely the variable that can provide a classifier,
which is based orX(Gt) anng), with the highest improvement of classification performanc
over the classifier that is based mg‘” anng_l); the procedure is continued till no such
variable can be found. In each iteration, the classifier betsetappliedog_l) times, where
pg_l) is the number of variables remaining)fg_l), in order to select a within-loop winner.

In contrast to that of Kang and Tian (2006), the partitionun @approach follows Rubinstein
and Hastie (1997)’'s suggestion that it should be based erelit degrees of confidence we
have in the distributions oK |y and Xply. In addition, we do not partition variables in a
heuristic or iterative way and thus only perform classifaaionce rather than the many times
(of the order ofp(p+1) times) necessary to compare the remaining variablég.inTherefore,
our approach is much less intensive in computation, in@aéi for high-dimensional data.

We focus on two-group classification, in whighis a binary variable such thate {0, 1}
and the observations in the sampleare independent. The generalisation of our approach
to multi-group scenarios is determined by the generatinadif corresponding generative and

discriminative approaches involved.

5.2 Methodology

5.2.1 Models

Ajoint distributionp( X, y) can be factorised intp( X, y) = p(y| X )p(X), leading to discrimi-
native approaches which assume the form of posterior piitiEgp(y| X ) for classification, or
into p(X,y) = p(X|y)p(y), leading to generative approaches which assume a datsagjege
process (DGPy(X|y) for each group.

Suppose we know that, for the distributipfiX;|y), normality cannot be rejected, but, for
p(Xply), normality is rejected. GiveX = (Xp, X¢), it follows that there are several ways

of factorisingp(X, y).
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The first factorisation is

p(X7y) :p(XDvXG)p(y|XD7XG) ’ (51)

which leads to a discriminative model for classificationjetidoes not model the DGR X |y),
although we know that normality o¥ |y cannot be rejected and therefore is plausible. One
example of such a discriminative model is linear logistigression (LLR).

The second factorisation i§ X, y) = p(Xp, X¢|y)p(y), which gives

p(X,y) = p(y)p(Xcly)p(Xp|Xa,y) , (5.2)

the right-hand side of which includes a group distributign), a DGPp(X¢|y) and a con-
ditional DGPp(Xp|X¢,y), leading to a generative model. The factdy) can be assumed
multinomial.

Based on different specifications fptX¢|y) andp(Xp|Xa,y), many special cases can
be derived of this generative model; one of them includessanraption of conditional inde-
pendence betweel, and X giveny such thatp(Xp|X¢a,y) = p(Xply). Equation (5.2)

then simplifies to

p(X,y) = p(y)p(Xcly)p(Xply) , (5.3)

and can then lead to a block-wise generalisation of theerBayes classifier (NBC); however,
as either we know little about(X p|y) or our hypothesis about the naturemdfX p|y), such
as normality, is rejected, the NBC can be wrong in its modet#jzation and thus the esti-
mation of p(Xply) is not correct, in particular for continuousp. This motivates the third
factorisation ofp(X, y).

By exchangingXp andy in (5.2), we obtain the third factorisation pfX, y) as

p(X,y) = p(Xp)p(y|Xp)p(Xc| XD, y) , (5.4)

the right-hand side of which includes a to-be-ignored iistion p(X ), a discriminative ele-
mentp(y| X p) and a conditional DGB(X | X p, v), leading to a joint generative-discriminative
model. This model also includes many special cases, basatifferent specifications of
p(y|Xp) andp(X¢|Xp,y). Forexample, ifX p is categorical, then bot(y| X p) andp(X¢| Xp, y)
can be accommodated by the NBC, or the former by logisticessgion and the latter by the
NBC.
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5.2.2 Our JGD Approach

We focus on the scenario in which bakfy, and X contain only continuous variables and the
model is represented by equation (5.4). Although for suadeaario in theory we could assume
that the distributiorn(X¢| X p, y) is, for example, a Gaussian distribution, it is in practieech
to test this. For simplicity, we assume conditional indefgce such that(Xq|Xp,y) =

p(X¢ly); this leads to the simplified version

p(X,y) = p(Xp)p(y|Xp)p(Xaly) - (5.5)

However, it can still be computationally expensive to tas aissumption in practice for high-
dimensional data in order to implement the partitionXointo (X p, X;). Therefore, as usual,
p(X¢ly) is assumed to be normal, mainly for convenience, althoughsitill not easy to test
such multivariate distributions.

The classification-related difference between equatibr®) @nd (5.5) is equivalent to the
difference betweem(y)p(Xply) andp(y|Xp), which has been extensively studied before,
mainly under the assumption that the model specificatiop(&fp|y) is correct. Here we
concentrate on the case in which such a model specificatich,as the normality gf( X p|y),
has been rejected by statistical tests and thereby modelprisfication has occurred. In fact,
this is why the partitioning of( into X and X p is important.

In this context, our JGD approach can be described as follows

First, we test the null hypothesis of normality of each Jaleac; of X', and incorporate:;
in X¢ if normality is not rejected at a prescribed significanceslevand into X p otherwise.
Therefore, the partition ok into X p and X is achieved by performing a univariate normality
testp times. We use the univariate Shapiro-Wilk test for normpadihd setov = 0.01. As «
increases, the normality of more and more variables willdjected and, consequently, the
dimension of X4 will decrease. For low-dimensional data sets, such as soasemed in
Section 5.3 X may become empty with certain high valueswsuch a$).05 or higher. When
either X p or X turns out to be empty, the JGD approach degenerates to ait@rerative or
a discriminative approach.

Secondly, when neitheX p nor X is empty, based on Bayes’ theorem and equation (5.5),

we use the following classification rule: a new observatibr= (Zp, Z¢) is classified into

s Uty =020 otz =)~ &

groupy = 1if




73

andy = 0 otherwise.

The left-hand side of equation (5.6) is the sum of two terms.

One is a discriminative termpg{p(y = 1|Zp)/p(y = 0|Zp)}. It is the logit function
of the posterior probability(y = 1|Zp), and thus, if the LLR model is adopted, it can be
represented by, + fgl Bjzp;, wherepp is the dimension of/p, zp; are the variables in
Zp andg; are the coefficients corresponding:te;.

The other is a generative terfiog{p(Zc|ly = 1)/p(Zc|y = 0)}. Itis the log-likelihood
ratio of Zs between the two groups, and thus corresponds to normatibismsar/quadratic
discriminant analysis (L/QDA) with equal/unequal covada matrices across the two groups,
given equal priors for the two groups.

If, as in Kang and Tian (2006), we further assume that thealbéas withinX are con-
ditionally independent, such thatXq|y) = ?Slp(mgﬂy), wherexg; are the variables in
X andpg is the dimension ofX, then this generative term corresponds to L/QDA with
equal/unequal diagonal covariance matrices, or the NBGtHar words, such an assumption
justifies the use of the NBC faK. For high-dimensional data, such an assumption of inde-
pendence may provide better classification results thangasiull covariance structure (Bickel
and Levina, 2004; Fan and Fan, 2007), with variable selec¢tiken into account.

In this context, equation (4) can be re-written as

or & ocio  (2qj — pan)? . (265 — Hajo)?
Bo+ > Bizpj+ Y _ 4 log - ; + K >0, (5.7)
= o oGij1 20051 20¢450

wheres, andj; can be estimated by applying, for example, the method aititesly reweighted
least squares to the subsetfdetermined byXp; ngj1, 1ajo, 0gj1 andog;o are means and
standard deviations of grougs= 1 andy = 0, respectively, and can be estimated by applying
maximum likelihood estimation to the subsetbfdetermined byX.

For high-dimensional data such that> n, variable selection is commonly used before
classification is performed (Fan and Fan, 2007; Hall et 8082. Variable selection can, on
the one hand, make many traditional classification algmstifeasible, and, on the other hand,
remove noisy, irrelevant variables and thus improve thesifi@ation performance.

If k& variables withk < n are selected, then classical methods such as the NBC and LLR,
which were established for low-dimensional scenarios siaty < n, can be used effectively

and this is also the case with our JGD approach.
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5.3 Numerical Studies

5.3.1 UCI Data with p < n and Gene Expression Data withp > n

We apply our JGD approach to 6 datasets with continuoushtagan the UCI machine learn-
ing repository (Asuncion and Newman, 2007) and 3 gene-sgme datasets. The 6 UCI
datasets, satisfying < n (p < 100, 100 < n < 1000), are “Breast cancer Wisconsin (di-
agnostic)”, “Breast cancer Wisconsin (prognostic)”, “@eationist bench (sonar)”, “Ecoli”,
“Haberman’s survival” and “Wine”.

The 3 gene-expression datasets are “Colon Cancer” (Aldn é689), “Leukemia” (Golub
et al., 1999) and “Prostate Cancer” (Singh et al., 2002). Cblen Cancer dataset consists of
p = 2000 genes fom = 62 observations (40 tumour and 22 normal colon-tissue vectdise
Leukemia dataset consists pf= 7129 genes fom = 72 observations (47 acute lymphoblas-
tic leukemia (ALL) and 25 acute myeloid leukemia (AML) datactors). In the case of the
Prostate Cancer dataset, there are- 12600 genes forn = 136 observations (77 prostate
tumours and 59 non-tumour prostate vectors).

For the gene-expression datasets, we first preprocess téhasldid Dudoit et al. (2002),
and then, based on training sets of observations, skleatiables (genes) by using a tilting
method proposed by Hall et al. (2008)is set at 30, so that < n. The preprocessing includes
the following steps: truncating and censoring intensitiethe interval[100, 16000]; removing
genes which showed little variation in intensity acrosstlad observations; transforming in-
tensities to base-10 logarithms; and standardising easéradition to have zero mean and unit
variance.

Similarly to Kang and Tian (2006), in terms of misclassificaterror rate, we compare
the JGD approach with the NBC, LLR and recursive partitignmd regression trees (rpart)
methods. As Kang and Tian (2006) discretised all the contiswariables into ten equal-length
intervals whereas we use continuous variable without diisation, it may not be appropriate
to compare our results with theirs. Nevertheless, our éogbiand simulation studies, for low-
or high-dimensional real and simulated data, can be redaag@ complement to their results
on other UCI datasets.

The NBC and rpart methods are implemented by the R pacleff@&landrpart, respec-
tively; LLR is implemented by an R functiologitreg (Venables and Ripley, 2002), using the
BFGS algorithm.
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Data n(ng,n1) p(pg) JGD NBC LLR rpart p-v(3-N) p-v(3-L) p-v(3-r)

Becwd 569(357,212) 30(2) 0.035 0.070 0.035 0.088 0.008 1 60.01
Bcwp  194(148,46) 32(8) 0.264 0.300 0.308 0.325 0.016 0.445 .2030
Sonar 208(111,97) 60(2) 0.269 0.293 0.333 0.262 0.539 0.773.945

Ecoli  195(143,52)  5(2) 0 0.025 0.025 0.051 1 1 0.625
Haber 306(225,81) 3(1) 0.250 0.246 0.250 0.295  0.812 1 0.344
Wine  130(59,71) 13(7.5) O 0 0.038 0.077 1 0.125  0.031
Colon  62(40,22)  30(20) 0.071 0.143 0.200 0.243 1 0.031  0.016
Leuke  72(47,25) 30(5) O 0 0 0.134 1 1 0.031
Prost  136(59,77) 30(4) 0.077 0.154 0.154 0.113 0.473  0.094 1

Table 5.1: Description of the real datasets, medians of ERirmdd from 10-fold cross-
validation of our JGD approach, the NBC, LLR and rpart methoand p-values for the

Wilcoxon signed-rank test for pairs of our approach withheat the other classifiers. No-
tation: n(ng, n1): the numbers of observations in the whole dataset, and fupgy = 0 and

y = 1, respectively;p: the number of variables iX; pa: the median number of variables in
X¢; Bewd: Breast cancer Wisconsin (diagnostic); Bcwp: Breasicer Wisconsin (prognos-
tic); Sonar: Connectionist bench (sonar); Ecoli: Ecoliysppp); Haber: Haberman's survival,

Wine: Wine (1 vs. 2); Colon: Colon Cancer; Leuke: Leukemiagd®. Prostate Cancer.
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The description of the datasets, medians of misclassiicairor rates (ER) obtained from
10-fold cross-validation of the compared classifiers amchthalues for the Wilcoxon signed-
rank test for pairs made up of our approach with each of theratlassifiers are listed in
Table 5.1. For each fold of the 10-fold cross-validatidfz; and X p can be different from those
obtained in other folds, as can, for the high-dimensionalegexpression data, the selected

variables.

5.3.2 Simulated Data with Independent Normal and Gamma Distbutions

As we know, two normally distributed groups of data can lead tinear discriminant func-
tion if the two within-group covariance matricé and >, for groupsy = 1 andy = 0
respectively, are equal, satisfying the assumption upiderlLLR, and to a quadratic function
otherwise. The normal-based NBC here assumesithat ¥; and thus assumes a quadratic
discriminant function; however, it can provide a linear dtian for the case witlE; = X,
given that the estimated covariance matrices are approeiynaqual.

The Gamma distribution has, fer> 0, probability density functioit(z; o, n) = x*~n%e =" /T(a),
where the shape parameter> 0 and the inverse scale parameter (also called the nate)).
It follows that, if variables inXp are conditionally independent givena discriminative term

can be derived fronog{p(y = 1|Xp)/p(y = 0|Xp)} in the form

g PU=1KD) g S5 SR g, 59
gp(y:O|XD) 0 . j L Dj - 7 108 LDy , .
j=1 J=1

where, with parameters for grogpdenoted by, andz;,,

B = log ply=1) + f: {a 1 log i1 — ajo lognjo + log Ilao) } (5.9)
ply=0) =1~ T ’ L(ej1) )7
Bj = —=nj1 —njo) ;75 = a1 — @jo - (5.10)

Therefore, this represents a linear discriminative terat slatisfies the assumption underlying
LLR if a1 = oo and otherwise does not. In addition, it violates the assiemptnderlying
the NBC which is based on normal distributions in our study.

To explore different scenarios involving satisfaction miation of the underlying assump-
tions, we simulated 4 datasets, for combinations of nogrdiltributed data (as() with
equal/unequakt; andX, and data (as{p) from Gamma distributions with equal/unequah

anda;o, respectively.



e

Data

Xaly=0,Xagly=1

Xply=0,Xply=1

JGD NBC LLR

Siml
Sim2
Sim3
Sim4

N(-1,9),N(1,9)
N(-1,9),N(1,9)

N(-1,9
N(=1,9

), N(1,36)
), N(1,36)

G(2,1/4),G(2,1/2) v v
G(3,1/4),G(2,1/2)

G(2,1/4),G(2,1/2) v
G(3,1/4),G(2,1/2)

Table 5.2: Description of the simulated datasets. Notatiiu, o2); G(«,n); v indicates

cases in which the underlying assumptions are satisfied.

Data JGD NBC LLR p-v(J-N) p-v(I-L)
Siml 0.350 0.350 0.350  0.984 1
Sim2 0.225 0.200 0.200  0.562 0.250
Sim3 0.275 0.375 0.425 0.062 0.008
Sim4 0.200 0.250 0.250  0.438 0.375

Table 5.3: Medians of ER obtained from 10-fold cross-vaiata of our JGD approach, the

NBC and LLR, andp-values for the Wilcoxon signed-rank test for pairs made fupun ap-

proach with each of the other classifiers.
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For simplicity, for each simulated dataset, we gget= pp = 1 andn = 200 with 100
observations from each group. The structure of the 4 daté&sehown in Table 5.2 and results
about the corresponding ER obtained from 10-fold crosilatibn are listed in Table 5.3. The
specification of the class-conditional distributions iflEs5.2 is such that, within each simula-

tion, the variances of the Gamma distributions closely m#tose of the normal distributions.

5.3.3 Summary of Numerical Studies

From the classification results shown in Tables 5.1 and Se3bgerve the following.

First, our results for continuous UCI and gene-expressiatasttts demonstrate that the
classification performance of the JGD approach is in gersdigthtly superior to that of the
NBC, LLR and rpart methods. Its lack of statistically sigersfint superiority may be either due
to imbalance between the numbers of variableXgfand X p or due to the small number of
pairs (10 pairs from 10-fold cross-validation) in the Wiom signed-rank tests.

Secondly, the results for “Sim2”, “Sim4” and “Sim1” indieathat, when the underlying
assumptions for each method are either violated or largdigfied, the JGD, NBC and LLR
approaches show similar performance.

Thirdly, the results for “Sim3” show that, when only its ownderlying assumptions are

satisfied, the JGD approach can perform significantly béttr the NBC and LLR methods.

5.4 Conclusions

The JGD classification approach partitioned variablestintsubsets based on statistical tests
about within-group distributions of the variables, anditluwsed generative approaches for the
variables which passed the tests and discriminative appesafor the other variables. Such a
statistical partition of variables and a probabilistic donation of generative and discriminative
approaches led to promising classification performanckisfipproach for both low- and high-
dimensional data, as demonstrated by our numerical stémliesnpirical and simulated data.
As explained at the end of Section 5.1, our approach is muafe @e@onomical in terms
of computation time than that by Kang and Tian (2006). We lerecentrated on particular
choices for the generative and discriminative componehtaiomodels, but the overall prin-
ciple is quite general and can accommodate many other $pecsons. Of course, we must

ensure that the assumptions underlying our generative @aoembs can be tested statistically.



Chapter 6

On Generative and Discriminative
Hidden Markov Models

In this chapter, we study the assumption of “mutual infoioratndependence”, which is used
by Zhou (2005) for deriving an output-dependent hidden Markodel, the so-called discrim-
inative HMM (D-HMM), in the context of determining a stocliasoptimal sequence of hidden
states. The assumption is extended to derive its geneivaterpart, the G-HMM. In addi-
tion, state-dependent representations for two outpuedgnt HMMs, namely HMMSDO (Li,
2005) and D-HMM, are presented.

6.1 Introduction

Amongst the latent (hidden) variable models for structwtath such as time series, hidden
Markov models (HMMs) for discrete-valued hidden states state-space models (SSMs) for
continuous-valued hidden states are widely used.

Traditionally, an HMM is generative because it models aritistion P(O7|ST), the data

generation process (DGP) of the observed output sequéXice, o1, .. ., 0,, given the hidden
state sequencé;’ = si,. .., sy, and thus?(O7|ST), a state-dependent term, is included in the

criterion for determining a stochastic optimal sequendaaden states. Recently, Zhou (2005)
proposed a discriminative hidden Markov model (D-HMM), etincludes output-dependent
termsP(s:|O7),t = 1,...,n, in the criterion, based on an assumption of “mutual infdroma

independence”. Meanwhile, Li (2005) presented the saddhidden Markov models with

79
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states depending on observations” (HMMSDO), which assinaiglie current state depends
not only on the last state_; but also on the last output_1, so that output-dependent terms
P(s¢|s¢—1,0¢—1) are included in the criterion.

Both the D-HMM and HMMSDO show superior performance in detieing the opti-
mal state sequence for certain applications. Zhou (200&¥shhat the D-HMM outperforms
the corresponding generative hidden Markov model (G-HMi)dfart-of-speech tagging and
phrase chunking; Li (2005) shows that HMMSDO outperformesstandard HMM for predic-

tion of protein secondary structures when the trainingsktrge enough.

6.2 Generative HMM

Following the notation used by Zhou (2005), the definitiothefoptimal hidden state sequence
ST based on the observed output sequef@eis that of the maximum a posteriori (MAP)
estimatorS™* of ST
S* = argsr}}ax {log P(ST|O})} - (6.1)
i

The G-HMM rewrites the criterion (6.1) through applying Baytheorem and ignoring the

item determined purely b@7T as
S* = argmax {log P(ST) + log P(O7|ST)} ,
St
which is further factorised as

S* = argmax {log P(ST) +log (P(o;l]S’f) H P(o,|OF 1, S?)) } .
St k=2

In order to make this formulation tractable, an assumpti@t ®7 is conditionally inde-

pendent giverb? is in general introduced as, for &lle {2,...,n},
P(ox|OF ™1, 57) = P(ox|S7) | (6.2)

and thus, based on such a conditional independence assuaimipie MAP estimator for the

G-HMM is simplified to

S* = argmax {log P(ST) + Zlog P(oi]S{‘)} . (6.3)
Sn

1 =1
The G-HMM is regarded as being generative because it direutidels the DGRP(o0;|57) of
the observed; from the hiddenST.
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In practice, as for the standard HMM, the assumption (6.8)riber simplified to
P(oy|Oy ™!, ST) = P(0x|ST) = P(olsi) , (6.4)
and thus the MAP estimator of the standard HMM is

S* = argmax {logP (ST) ZlogP 0;|si) } . (6.5)
St

6.3 Discriminative HMM from Mutual Information Independen ce

The D-HMM rewrites the criterion (6.1) through applying Ba&y theorem, but not ignoring

the item determined purely Y7, as

P(ST,07)
S* = argmax {logP ST —l—log%} )
o (51 +1°8 pgm prop)
To make this formulation tractable, an assumption that thead information (/I (ST, O}) =

P(Sn,0n
log #s7i70m

duced by Zhou (2005) as

) betweenST andO7 is independent with respect to each hiddemwas intro-

MI(SP,07) =Y MI(s;,07), (6.6)
=1
or, in more detail,
log ——212 1) Sl’O Zl S“Ol 21 3"01 (6.7)

P(ST)P

Based on such a representation, the MAP estimator for thevViMHs simplified as (Zhou,

2005)
S* = argmax{logP (ST) + ZlogP si|O7) — ZlogP(s,-)} . (6.8)

57 =1

The D-HMM is regarded as being discriminative because therion (6.8) includes directly
the discriminative procesB(s;|OY), representing an output-dependence of a hidden state
on all the observed outpu(s;'.

We shall make four observations about the D-HMM.

First, it is noted that the criterion (6.8) is simultanegute maximise the maximum pos-
terior marginal (MPM) estimatop " ; log P(s;|O}) of log P(S7'|0}) and to maximise the
distance between the state transition maoglP(.ST") and its independence-based counterpart

i log P(s;).



82

Secondly, in order to satisfy the assumption (6.7) undeglthe D-HMM, it is required

that
11 P(si|ST™",07) _ 11 P(sk|OT)
i POl i Tlsk)
Since this is valid for any value af,, it follows that, for allk € {2,...,n},
P(s|St™1,01) _ P(sk]O7)
= (6.9)
P(silSF) P(sp)
Thirdly, the assumption (6.7) can be rewritten as
log 212 21) Sl’O Zl 3“01 21 Ol‘s’ . (6.10)

P(ST

Based on such a representation, the MAP estimator (6.8heoDtHMM can be rewritten,

with the term) ", log P(O?) determined purely by} being ignored, as

S* = argmax {logP ST) + ZlogP (O |si )} . (6.11)

i=1
Therefore, the D-HMM can also be represented as being gamebgcause the criterion (6.11)
includes a generative-like procegX07|s;), representing a state-dependence of all the ob-
served output®)} on a hidden state;.

Fourthly, it can be seen that, when the assumption (6.6) d@iahinformation indepen-
dence develops from independence between p&ire7) into that between local paifs;, o;)
such thatM I(ST,07) = Y1, MI(s;,0;), the criteria (6.11) and (6.8) degenerate into the
criterion (6.5), indicating that the D-HMM degenerateitite standard HMM.

6.4 Generative HMM from Mutual Information Independence

Furthermore, similarly to the assumption (6.6) propose@bgu (2005), an assumption that
mutual information betweef andO7 is independent with respect to each obsemethn be
introduced here as

MI(SP,00) =" MI(S},0:) , (6.12)
i=1
or, in more detail,

PSI,ON < P(Sto) s, Ploilsy)
o8 pempop 2 PPy~ 2= Py - O
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Based on such a representation, we can obtain another geaenadel and its MAP estimator,
with the term} """ , log P(0;) determined purely b@)} being ignored, as

S* = argmax {logP (ST) + ZlogP 02|Sl)} . (6.14)
S7L Z 1

This estimator is in fact the estimator (6.3) of the G-HMiM,, the G-HMM can be derived
under the assumption (6.12), a type of mutual informaticlependence.

Similarly, we shall make three observations about this GNHMvhich is derived from
mutual information independence.

First, in order to satisfy the assumption (6.13) of the G-HMMs required that, for all

ke{2,...,n},
P(op|OF ", 87) _ P(ok|ST)
PoglOf ") Plox)
Therefore, under the MAP criterion (6.1), the conditiond ¥ and (6.2) have the same effect

(6.15)

on determining the optimal hiddesy'.
Secondly, the assumption (6.13) can be rewritten as

log(Sfl—’O Zl Sl’o’ Zl 51‘0’ . (6.16)

Based on such a representation, the MAP estimator (6.14héoG-HMM can be rewritten,
with the terms related twg P(ST') being combined, as
S* — argslilax {(1 —n)log P(ST) + anlog P(S{’\oi)} . (6.17)
1 i=1
Therefore, in this sense, the G-HMM can also be represestégiag discriminative because
the criterion (6.17) includes a discriminative-like presé”(S7|o;), representing an output-
dependence of all the hidden stafgson an observed output.

Thirdly, it can be seen that, when the assumption (6.12) duaiunformation indepen-
dence develops from independence between p&jrso;) into that between local paifs;, o;)
such thatM I(S7,0F) = >.iy MI(s;,0;), the criteria (6.17) and (6.14) degenerate into the
criterion (6.5), indicating that the G-HMM degenerate®itite standard HMM.
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6.5 Equivalence between G-HMM and D-HMM

Once we assume a fully independent mutual information batvaay state-output combination
(Si, Oj) as
n n
MI(SP,07) =) > MI(si,0) (6.18)
i=1 j=1

or, in more detail,

IOgP 51701 ZZIOg SZ?O])

P Oﬂ)
=l (6.19)

n n

=22m0” PP

i=1 j=1 i=1 j=1

this assumption results in two criteria, one generative thedother discriminative, with the

MAP estimators as

S* = argmax{log P(ST) + ZZlogP (0j]s4)}, (6.20)
St =1 j=1

S* = argmax log P(ST) —l—ZZlogP siloj) Z{nlogP(s,-)} , (6.21)

i=1 j=1
respectively. These two criteria are equivalent.

In the context of determining an optimal sequence of hiddates, apart from the equiv-
alence above, up to now, we find two occurrences of equivaléetween a discriminative
representation of the MAP criterion and its generative tengart: one is for the D-HMM be-
tween the criteria (6.8) and (6.11), the other is for the GMkktween the criteria (6.17) and
(6.14).

We shall further illustrate such equivalence with two siebut related HMMs: one is a
generative-like state-dependent model, which assuméshiaaurrent outpub; depends not
only on the current state; but also on the last statg_;; the other is a discriminative-like
output-dependent model, the so-called HMMSDO (Li, 2009)iclv assumes that the current
states; depends not only on the last state; but also on the last output_; .

The joint distribution of the first generative-like statepgndent model is

P(S},07) = P(s1)P(o1s1) [ [ P(silsi—1)P(oilsi, si-1) - (6.22)
=2
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This distribution can be rewritten as

n

P(ST,07) = P(Olasl)HP(ShOi‘si—l)

=2 (6.23)

n

= P(01)P(s1]or) [ [ Poilsi—1)P(silsi-1,0:) .
=2

which leads to a discriminative-like output-dependent g&(s;|s;—1,0;) in the distribution.
In fact, the only difference between the probabilistic diegl acyclic graphs (DAGS) corre-
sponding to the joint distributions (6.22) and (6.23) i tlieections of edges from,; to o; are
reversed.

Similarly, the joint distribution of the discriminativéke output-dependent HMMSDO,
with P(s;|s;—1,0;—1) included, is (Li, 2005)

n

P(S},07) = P(s1)P(os1) [ [ P(silsi-1,0i-1)P(oilss) . (6.24)
=2

This distribution can be rewritten as

n

P(57,07) = P(Sl)P(0n|8n)HP(Sz',Oi—1|Si—1)

=2 (6.25)

n

= P(s1)P(on|sn) [ [ P(silsi—1)P(0i-1si, si-1) ,
i=2

which leads to a no-longer discriminative-like output-elepence in the distribution. In fact,
the difference between the DAGs corresponding to the jasiridutions (6.24) and (6.25)
is only in that directions of edges from to o;_; are reversed. In practice, whether or not
P(o;—1]s4,8;—1) is reasonable needs to be justified, because it means thatitest output

depends on the next state.

6.6 Conclusions

We suggest that the mutual information assumption (6. &)lt®in the G-HMM, while another
mutual information assumption (6.6) results in the D-HMMwéver, in practice, whether or
not the assumptions are reasonable and how the corresgodtiivs perform can be data-
dependent; research efforts to explore an adaptive swidhétween or combination of these
two models may be worthwhile. Meanwhile, we suggest thatstiealled output-dependent
HMMs could be represented in a state-dependent manner,ieagersa, essentially by appli-

cation of Bayes’ theorem.



Chapter 7

On Generative and Discriminative

Image Thresholding

In this chapter, we present discriminative approachesstogiam-based image thresholding, in
which the optimal threshold is derived from the maximumliikeod based on the conditional
distribution p(y|x) of y, the class indicator of a grey leve] givenz. The discriminative ap-
proaches can be regarded as discriminative extensiong tfatiitional generative approaches
to thresholding, such as Otsu’s method and Kittler andgWiorth’s minimum error threshold-

ing (MET).

7.1 Introduction

Image thresholding is a simple and widely-used technigqueségmentation, partitioning a
grey-level image into segments corresponding to diffectatses (Sahoo et al., 1988; Pal and
Pal, 1993; Sezgin and Sankur, 2004), given that the classesrie extent can be distinguished
by their grey levels. Most thresholding approaches areqaeg for two-class binarisation and
are based on the grey-level histogram of an image (Sahoo, t9&88; Sezgin and Sankur,
2004; Glasbey, 1993; Trier and Jain, 1995). Two of the mopufaw approaches are Otsu’s
method (Otsu, 1979) and Kittler and Illingworth’s minimuma thresholding (MET) (Kittler
and lllingworth, 1986).

Given an image ofV pixels, Otsu’s method selects the optimal threshidlds

t* = argmin o2 (t) = mo(t)od(t) + i (t)os (),
te[0,7—1]
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where[0, T is the range of grey level, anth(¢) andoy(t) are respectively the proportion of
and standard deviation within claSg(t), whereCy(¢) includes all the pixels with grey levels
x less thart, i.e.,Co(t) = {i : 0 < x; < t,1 <i < N}; mi(t), o1(t) andCy(t) are defined

similarly for the remaining pixels, and thug, (¢) is called within-class variance. The MET

method selects’ as

o1(t)
m(t)’

wherer, # 0,y = 0,1, and in practicer, is nonzero. Research efforts have been made to

t* = argmin 7o (¢)log %(t)
t€[0.7—1] mo(t)

+ mi(t) log
unify these two approaches (Kurita et al., 1992; Yan, 1996).
Kurita et al. (1992) show that Otsu’'s method is equivalenm@ximisation of the log-
likelihood based on the conditional distributipti|y), wherex is the grey level ang € {0,1}
is the class indicator correspondingatounder the assumption that the grey level within each
class (denoted by|y) follows a normal distribution\V'(,, 07) andog = of. Kurita et al.
(1992) also show that MET is equivalent to maximisation @ kbg-likelihood based on the
joint distribution p(z,y), under the assumption thaty ~ N (u,,07) andog # of. Since
p(x,y) = myp(x|y), wherer, = p(y), Otsu’s method is also equivalent to maximisation of
the log-likelihood based op(z, y) with 7y = 7 = 0.5. In this sense, both Otsu’s method and
MET assume a data-generating process (D@P)y); therefore, we call such approaches gen-
erative thresholding approaches. As with Fisher’s lingscriminant, Otsu’s original method
does not assume normally distributed classes orahat o7; therefore, hereafter we refer, as
Otsu’s method, to the generative method to which it is edeintashown in Kurita et al. (1992).

Sincep(x,y) = p(z)p(ylr) x p(y|xr), the MET method is also equivalent to minimi-
sation of the logistic loss, which is based erlogp(y|z). Meanwhile, under the assump-
tion of normal distributions, both Otsu’s method and MET arplivalent to minimisation
of the expected misclassification error rate. In other wobdgh methods seek such that
p(Ci(t")|x = t*) = p(Co(t*)|x = t*), leading to alternative iterative implementations by
solving

log{p(C1(t)[x)/p(Co(t)]x)} =0

for z and then updating, p(C,(t) andp(Co(t) in each iteration (Kittler and lllingworth, 1986;
Gonzalez and Woods, 2002).

For both Otsu’s method and MET, the grey-level histogransgimed to be an empirical

realisation of a two-component normal mixture. Howeveghsan assumption often cannot
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be guaranteed for real images, leading to a major potensialof model mis-specification
when generative thresholding is applied. In two-classrifisnation, there are discrimina-
tive approaches which do not assume any DGP and which cansbesémsitive to model
mis-specification than are corresponding generative agpes (Rubinstein and Hastie, 1997,
Ng and Jordan, 2001). Therefore, in this chapter, we predisntiminative approaches to
histogram-based image thresholding. The optimal threlskalerived from the maximum log-
likelihood based on the conditional distributipfy|x). The discriminative approaches can be
regarded as discriminative extensions of the traditioealegative approaches to thresholding,

such as Otsu’s method and MET.

7.2 Discriminative Thresholding

For two-class discrimination, in terms of minimum miscifisation error rate, an optimal
discriminant criterion for classifying an observatieninto classC; with y = 1 (or Cy with
y = 0) is a discriminant functiog(z, o) = log{p(C1|z)/p(Co|z)} > 0 (or < 0). For a pixelin
grey-level imagesy is in general its grey level as a scalar. The most widely ussatichinant
functions are a linear function(z,a) = By + f1x, Wwherea = (5o, 51)7, and a quadratic
functiong(x, ) = By + 1z + Boz?, wherea = (8o, 1, B32)7.

Theg(z, a) can be derived from a generative classifier, such as noraseblinear/quadratic
discriminant analysis whet& (11, 05) is assumed as the DGP for clasand where it is as-
sumed that? = o7 for the linear case and? # o7 for the quadratic case. It can also be
derived from a discriminative classifier, such as lineaafiyatic logistic regression, in which
no DGP is assumed.

Here we derive a discriminative thresholding approach froeximisation of the log-
likelihood based on the conditional distributipfy|x), which can be represented as a function
of g(z, o).

As g(z,a) = log{p(y = 1|z)/p(y = 0|z)}, after some algebra we obtain

ply = 1|z) = e9®)/ (1 + eg(m’a)) , ply=0[x) =1/ (1 + eg(m’a)) )

It follows that, for an image ofV pixels {(z;,v;)}.,, wherez; andy; are the grey level and

class indicator of the-th pixel, the log-likelihood/(«) based om(y;|z;) is

N N
o) = glaia)y; — Y _log (1 - eg(zi’a)) :
=1 i=1
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Let h(z), z = 0,...,T, denote the grey-level histogram constructed fromaheixels.
For histogram-based thresholding, a threshofshrtitions () into two sets of grey levels
and thus partitions the image into two classes of pixelsptéghbyC(t) andC;(t), such that
y; = 01if z; < t andy; = 1 otherwise. Ag; changes witht, and the parameter of g(z, «) is
estimated fron{(z;, y;) }}¥., by maximisation of (), we writeg(z, ) asg(x, a(t)) and/(a)
can be rewritten as

T T
fa(t) = Y h(@)glz.a(t) = Y hla)log (1+e7=o®)) .
r=t+1 =1
In this context, the optimal thresholdl can be determined discriminatively as

t* = argmax ((&(t)) ,
t

wherea(t), estimated fronCy(t) andC;(t), is the maximum-likelihood estimator of for a
thresholdt. Estimation of«(¢) proceeds similarly to that for logistic regression modetsng
Co(t) andC, (t) as the training set. As there is no convenient analyticaitsoi for «, discrim-
inative thresholding is of higher computational complgxitan generative thresholding.

The multi-threshold extensions of the discriminative gi@ding approaches can be ob-
tained by using the log-likelihood for a multinomial logitoatel, which is the multi-class gen-
eralisation of logistic regression.

When the DGP is known, a generative approach is to be prdf@mrgeneral. However,
for real-world application, the DGP is always unknown, iniethcase a generative approach
has to assume a specific DGP. For different assumptions dd@® a generative approach
can have different variants. For example, variants of MECIude those for Poisson (Pal and
Bhandari, 1993), Rayleigh (Xue et al., 1999), Nakagami-@am/\eibull and log-normal dis-
tributions (Moser and Serpico, 2006).

In contrast to generative thresholding, a discriminatigpraach to thresholding assumes
the discriminant functiory(x, «) rather than the DGP, and this may lead to more robust per-
formance against the model mis-specification. As parangstimation within discriminative
approaches is in general harder than that in generativeoagipes (Rubinstein and Hastie,
1997), the computational complexity of discriminativeas$inolding is in general higher than
that of generative thresholding, as in our implementatieloww.

For illustration, we present two discriminative threshioédapproaches, which have the

same formula but different for g(x, «) as those for Otsu’s method and MET, respectively.
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As Otsu’s method corresponds to a linear discriminant fonand MET corresponds to a
quadratic, we define the discriminative Otsu method as

t* = argrtnax 0(a(t)) with g(z, a(t)) = Bo(t) + Bi(t)x ,

and the discriminative MET as

t* = argmax £(&(t)) with g(z, at)) = Bo(t) + Bi(t)x + Bo(t)z? .

7.3 Experiments with Discriminative Thresholding

In this section, we compare the performance of generatigelmariminative versions of Otsu’s
method and MET. Comparison of approaches to image thrasigotéquires an appropriate
evaluation method, and numerous methods have been degiddaped on various criteria (Sa-
hoo et al., 1988; Sezgin and Sankur, 2004; Zhang, 1996; Zétaalg 2007). Roughly speaking,
supervised evaluation is subjective, requiring a pre-ssged image as ground-truth; unsuper-
vised evaluation is objective but prefers an approach gpjate for the underlying evaluation
criteria.

As with Kittler and Illingworth (1986) and Kurita et al. (128 we compare the thresh-
olding approaches by using histograms constructed fronulated data. The data for each
class are simulated from normal, Poisson, log-normal aoddwmponent normal mixture dis-
tributions. Normal distributions are, as used for Otsu’shrad and MET (Kurita et al., 1992),
the most-commonly used distributions in image processiwjsson distributions are justi-
fied based on a theory of image formation (Pal and Bhanda®i3)19og-normal distributions
are used as heavy-tailed adaptions of Rayleigh distribsitior the thresholding of synthetic
aperture radar (SAR) amplitude images (Moser and Serpifif)2 and, compared to normal,
Poisson and log-normal distributions, a normal mixture loara better approximation to the
distribution of a class in the histogram.

Although, in our scenario, the underlying distributions floe simulated data are known,
they are unknown for real images. Therefore, we do not coengacriminant thresholding ap-
proaches versus a generative thresholding approach gedefor a specific distribution, such
as MET for Poisson distributions in Pal and Bhandari (1993fpo log-normal distributions

in Moser and Serpico (2006).
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For Otsu’s method and MET, normally distributed classes satisfy the underlying as-
sumptions, while neither Poisson nor log-normally disttéal data satisfy the assumptions.

For discriminant thresholding, as normal distributions exponential families in canonical
form, they satisfy the linear or quadratic formulationgf, «(¢)). Although Poisson distribu-
tions are also exponential families in canonical form, liseaof the equivalence of mean and
variance, they only satisfy the linear formulationgfc, «(¢)). Log-normal distributions are
exponential families but not in canonical form; hence, thag normal mixture distributions
satisfy neither the linear nor the quadratic formulatiory@f, a(t)).

For Otsu's method and MET, the estimator of the parameter (r, p,,07)" is the
maximume-likelihood estimator based @iz, y), which can be calculated directly from the
histogram as in Otsu (1979), Kittler and Illingworth (198Md Kurita et al. (1992). The
thresholds obtained are denotedtbyandt,,, respectively.

For discriminant thresholding, as for logistic regressitie estimator of the parameteis
implemented by an R functiogim (from a standard packaggats), which uses an iteratively
re-weighted least squares algorithm to fit the model. Thestiwlds obtained are denoted by
do anddyy, respectively.

We make following comments about our implementation. Firsbrder to avoidr, = 0,
which may cause failure of MET, we only search for thresheldthin the [1, 99] percentile
range of histograms. Secondly, since grey levels are inerarfigp, 7], we left-truncate and
right-censor the simulated data into that range.

We simulate six datasets, each with 000 pixels, and sef’ = 255 as for 8-bit grey-level
images. The datasets for normal distributions are unbathint terms of class proportions,
while others are balanced. The setting of our simulatedidata follows.

The two datasets for normal distributions are the same as theed by Kurita et al. (1992):
one hasr; = 0.05, u1 = 50, uo = 150 ando; = o9 = 18; the other hag, = 0.25, up = 38,
po =121, o1 = 8 ando, = 40.

As a Poisson distribution can be well approximated by a nbdistribution when its mean
is larger, such a0, as with Pal and Bhandari (1993), we simulate pixels with ¢pey levels.
The dataset for Poisson distributions has= 5, us = 20. As the mean is equal to the variance
for Poisson distributions, the two classes have unequanees.

The dataset for log-normal distributions has logarithmérgy; = 2, pue = 4,01 = 1/2
andoy = 1/4.
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One of the two datasets for normal mixture distributionsfbas components, two for each
class with equal mixing weights. The two component§u; ., o) and N (i1 4, 0?) for the
first mixture are specified with; , = 60 andy, ;, = 80; and the two components (1,4, 03)
and/\/(ﬂg,b,ag) for the second mixture are specified wjth , = 120 and o, = 140. In
addition,a? = 03 = 10, and hence the two classes have equal variances. The othseti®r
normal mixture distributions is the same as the previousbomevitho? = 5 ando3? = 15, and
hence the two classes have unequal variances.

The thresholding results for these six datasets are showigure 7.1. We observe the
following.

For the datasets from normal distributions, where the brsims are themselves normal
mixtures, the discriminative Otsu methodl) gives almost the same results as MEJ;],
which is better than the Otsu’s original methag ) (Kurita et al., 1992) and the discrimina-
tive MET (das). The same phenomenon appears for the Poisson dataseteFather three
datasets, all the four methods of study show the similasttolels and thus comparable perfor-
mance.

Note that, for all six datasets, although the discrimir@tWET does not provide satisfac-
tory results, the discriminative Otsu method consisteptvides relatively good performance,
compared to the original methods. In terms of the level of motational complexity, that of
the discriminative Otsu method, which corresponds to aliméscriminant function, is lower
than that of the discriminative MET, which corresponds taiadratic, whereas those of both
discriminative approaches are higher than those of thenatigpproaches in parameter esti-

mation.

7.4 Conclusions

The discriminative approach to histogram-based imagsliotding proposed in this chapter is
based on maximum likelihood corresponding to the conditiaiistributionp(y|z), rather than
p(z,y) as in the case of the traditional generative thresholdingr. deir simulated datasets,
results show that the discriminative Otsu method condist@novides relatively good perfor-
mance. Considering its robustness and model simplicityswggest the use of the discrimina-
tive Otsu method for scenarios in which Otsu’s original noettnd MET do not perform well

due to model mis-specification and in which the computatsomot demanding.
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Figure 7.1: Thresholding results for 6 simulated datasé&seto, tyr, do andd,, are thresh-

olds from Otsu’s method, MET and their discriminative cauparts, respectively.



Chapter 8

Summary, Conclusions, Discussion

and Future Work

8.1 Summary of the Thesis

Classification is a ubiquitous problem tackled in statsstimachine learning, pattern recog-
nition and data mining (Hand, 2006). The sampling and diatingaradigms for classifica-

tion (Dawid, 1976; Titterington et al., 1981; Hand and YuQ2J) studied before in the statistics
community both theoretically and empirically, re-emergethe machine learning community
under the new terminology of generative and discriminatiessifiers (Ng and Jordan, 2001),
in particular with some hybrid modelling and learning teiues (Raina et al., 2003; Bouchard
and Triggs, 2004; McCallum et al., 2006; Bishop and Lass@6@7) to exploit the best of both

paradigms.

The purpose of this thesis was to investigate the degreenolvation and performance
improvement made with these hybrid classifiers, and in tlik lbased on the investigation, to
develop our own philosophy and techniques for classifinatio

The main approach used in the thesis towards its goal waswidey the hybrid classifiers
together with some widely-used statistical classifiersyriigy out the underlying statistical
assumptions and the connections between them, implergesititulation or empirical studies
for them and comparing the corresponding results therelsira.

In Chapter 2, we performed some empirical and simulatiodistuto provide extension of

and make comments on a highly-cited report (Ng and Jordd,)20hich compared the naive
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Bayes classifier (NBC) or normal-based linear discrimirsargtlysis (LDA) with linear logistic
regression (LLR) and claimed that there exist two distiegimes of performance between the
generative and discriminative classifiers, depending ertréining-set sizen. However, our
studies suggested that it is not so reliable to claim extgt@f the two distinct regimes and that
pairing of either LDA assuming a common diagonal covariamedrix (LDA-A) or the NBC
and LLR may not be perfect. Hence, it may not be reliable fgr@daim that was derived from
the comparison between LDA-or the NBC and LLR to be generalised to all generative and
discriminative classifiers.

In Chapters 3 and 4, we studied extensively two hybrid-iegrtechnigues, namely the hy-
brid generative-discriminative algorithm (Raina et al03) and the generative-discriminative
tradeoff (GDT) approach (Bouchard and Triggs, 2004). Weiedghat both the GDT and the
hybrid algorithm are by nature generative models integgalioth discriminative and genera-
tive learning. They are therefore still sensitive to moded-specification of the data-generating

process (DGP).

8.2 Conclusions

Based on the results from above investigations, our coiociasvere as follows.

First, there was no universal winner amongst the generatiigeriminative and hybrid
classifiers; the performance is data-dependent, as sho@hapters 2, 3 and 4.

This led to our second argument: it was recommended to figbex the data in order
to validate the assumptions underlying candidate classifiad then to decide to use either
generative, discriminative or hybrid classifiers.

We developed such an argument by proposing, in Chapter Bitaygnerative-discriminative
modelling (JGD) approach to classification, by partitigni@riables into two subsets based on
statistical tests of the DGP. Our JGD approach adoptstatatitests, such as normality tests, of
the assumed DGP for each variable to justify the use of génergassifiers for the variables
which satisfy the tests and of discriminative classifienstf@ other variables. Such a parti-
tion of variables and a combination of generative and disicitive classifiers were derived in
a probabilistic rather than a heuristic way, and also detnatesi promising performance for
practical application to both low- and high-dimensionalada

Our third conclusion was that, considering the pairing afegative and discriminative
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models, we could develop a discriminative counterpart foexisting generative approach and
vice versa, as shown in Chapters 6 and 7. However, within ayghir, two models have in
general different underlying assumptions, explicitly mplicitly; therefore, whether or not the

assumptions are reasonable and how the correspondingpéeinsm are again data-dependent.

8.3 Some Further Discussion

First, as discussed in Chapter 2, Ng and Jordan (2001) dathet there exist two distinct
regimes of performance between the generative and dis@ative classifiers with regard to
the training-set sizen. They came to that conclusion by comparing the normal-b&ded
and LLR, of which the NBC performs better with smallerand LLR with largern. A similar
pattern of two distinct regimes with regardritowas also reported by Perlich et al. (2003), based
on the performance of logistic regression (LR) and treedtido; they found that LR performs
better with smallern and tree induction with largern.. Therefore, although tree induction and
LR are not a pair of generative and discriminative classfigrcould be interesting to explore
such a pattern for other pairs of classifiers.

Secondly, one of the key points of the hybrid algorithm inRRagt al. (2003) is to assign
weights to the class-conditional distributions of subsdtgariablesx; the subsets were ob-
tained by partitionings. The extremes of such a block-wise NBC are either the indigrere
model investigated by Titterington et al. (1981) and Hand %o (2001), assigning a com-
mon weight, or a more sophisticated model, assigning @iffeweights to the distributions of
different variables. In addition, it may not be necessaryde a hybrid strategy to estimate
parameters, as the weights can be also estimated in a geaavay.

Thirdly, although the hybrid classifiers, such as the GDT tiechybrid algorithm, offered
good empirical results, our results showed that simpleeg#ive classifiers like NBC and dis-
criminative classifiers like LLR could offer comparable feemance to the hybrid classifiers.
This conformed to an argument made by Hand (2006) that sicipksifiers typically yield
performance that is almost as good as more sophisticatesiftdas. Meanwhile, a generally-
valid empirical evaluation of classifiers is always an imgot but difficult problem (Hand,
2006). Our setting of simulation and empirical studies inegal followed or extended those
of the original papers, such as in Chapters 2, 3 and 7, if ipedigt possible. However, a more

comprehensive comparative study may benefit from the thebgxperimental design, after
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investigation of the underlying assumptions of the clamsfunder study.
Finally, some good performance of hybrid classifiers, sigctha hybrid algorithm (Raina
et al., 2003) and the NBC-based independence model (Tigten et al., 1981; Hand and Yu,

2001), may be the consequence of bias-variance tradesdfieg are in general biased models.

8.4 Potential Future Work

Based on the results presented in this thesis, severatidimedor future work merit investiga-
tion.

First, we could use resampling methods for high-dimensitovesample-size data, such
as bagging or boosting of simple classifiers like NBC which slaown good performance for
high-dimensional data (Hand and Yu, 2001).

Secondly, we could compare generative and discriminativdais for problems where the
distribution of training samples is different from that et samples, and then develop a hybrid
classifiers for such a scenario.

Thirdly, one well-studied model corresponding to equat{br2) is the general location
model for mixed categorical and continuous data (Krzanagwi€k83), in whichX contains
categorical variables anii, contains continuous variables. For such a model, correkpgn
to traditional generative approaches to its parametemativn based in general on normal
distributions, we could develop and validate discrimivetinodelling and learning approaches.

Finally, when causal, effect and background variables anglidate predictors for an out-
come of response, such as in medical statistics with syngituoygical, aetiological and pa-
tient’s background variables, it could be better to selety oausal variables as the predictors,
as suggested by Ni Bhrolchain (1979). Approaches to aafgethiis may include weighting
each variable (or their class-conditional distributigreg)doing causality-based variable selec-
tion beforehand, although the latter could be a challengasy, which is beyond the topic of

this thesis.



Appendix A

Appendix for Chapter 3

A.1 Asymptotic Efficiency of GDT for Linear Normal Discrimin a-
tion
A.1.1 Linear Normal Discrimination

We assume that, within each sub-population, the featuréovecarises from one of two
multivariate normal distributions with different meanst he same covariance matrike.,
x|601 ~ N(u1, %), x|6p ~ N (1o, %), and that no mis-specification occurs. In this context, a

linear discriminant function is derived, as in Section 4. 1.

T 1
g9(x, @) = log W—; = 5 (T W — g Who) + (pn — o) Wx = o + ",

wherelW = X1, so thata” = (8o, 87), 07 = (71, ul, ud’, (vech))T).

A~

A.1.2 Estimation of £4(#)

Asymptotic properties of maximum likelihood estimatorggest that/n(6—6) ~ AN (0, Eg(é) =

nlg_l(H)), wherely(0) is the Fisher information matrix,

00y (0) 00y(6) 04(0)
Ijo)=E3 2= 20 =B ——2
ol®) { 00 96T 000T
After some algebra, we can obtain the following results:

vn(m —m) ~ AN(0, mm) ,
Vil — ) ~ AN0, 25) | (o — pio) ~ AN(0, 1),
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Vn(vech W) — vech)) ~ AN(0,nlg ' (vech(W))) , where

D%04(6) n(X; kX + XiiXk.)
I p— — g = b J b 2]
{ g(vecr(W))}Wi,j,Wk,l { aWi,jaWk,l } (1 + 6’7J)(1 + 6k’l) ’

in which ¥; ; andW; ; are the(i, j)-th components of and, respectively.

It follows that Xg(6) is a block-diagonal matrix composed of a scalg(71) = 7,

two p x p matricesSg(fn) = ¥ and g(fo) = =3, and a2efl) o 2t matrix

Sq(vech(W)) = nlyt(vechW)).

A.1.3 Estimation of 2, (0)

Asymptotic properties of maximum likelihood estimatorggest that

2 -1 )
Vi -0y = vir [ { -G 25~ 0.5,

wherely (8) = Mg(6) + (1 — ), x(8), andSy(0) = nI; ' (0)VA(0)I;(9), in which, since
> { a%e(e)} = 0 and/g(0) = £,x(0) + (x(0),

2
10) = B { =5 | = Mol6) + (1 = Viya6).

2
VA(6) = COV(a%‘éQ)) B { (8%7?) } = NIy(0) + (1 - X)L, (0)

Here, after some algebra, we obtain

1 alogr(e,ﬂ';x)] [8logr(0,7r;x)

—Lyx(0) = /xp((31|><)p(Co|X) { 50 50 ]Tp(X)dx,

with (6, ;%) = TS andp(x) = mip(x|61) + mop(x|é).

LemmaA.1.1 When\ = 1, we havel,(0) = Vi(0) = I4(0), and thusS, () = nly*(6);
when\ = 0, we havel, (6) = V5 (0) = 1,5 (6), and thus2, () = nI 1 (6). 1

ylx

With regard to each component éfwe obtain

dlogr(0,mx) 1

87‘1’1 T170 ’
dlogr(0,m;x) dlogr(0,m;x)
— - =W(x— , = = W(x — ,
i (x — 1) i (x — po)

L{Nog (0,7 x)] [—(x = p1)(x — p)T + (x — po) (x — “O)TL’J
oW i 1 —i—(sm' .
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A.1.4 Relationship betweenla = (& — o) and df = (6 — 6)

With g(x, @) = log Z — 5 (uf Wy — ud Wpo) + (u1 — po) " Wx = o + 67 x, after some

™0

algebra, we obtain

9o 1 9P po o po By [Tmml +mong];

—_—= = — s = W ; - )
om  mm Ot & o o oW ; 14 6;,
B B a8 B [Jij +Jja] (1 — o)
— =0 , T — W y T = —W 5 - : : )
87'('1 au{ 8,ug GWM 1+ 52',]'

wherelJ, ; is the single-entry matrix with 0 everywhere except for Ihat(t, j)-th position.
Using the above differentiation results, combined wiil§(#) as derived in Section A.1.2

andX, (¢) as derived in Section A.1.3, we can obtain the- 1) x (p+ 1) matrices¥y(&) and

Y (&), respectively.

A.1.5 Estimation of ¥4(&)

As mentioned earlier in Section A.1.3, for the discrimimattomponent in the GDT, we have

L) = [ p(Cspicax) | ZELC T [Mfgg’“@]%(xux.

Similarly, for discriminative learning of the LLR estimaté, its asymptotic variance matrix

Y4(&) was proved by O’Neill (1980) to be

5@ = [ oo [ 200 [0

e9(x,) 1
= | o (1 XT) p(x)dx .
/x[l—l—eg( )] (x)

A.1.6 Estimation of B

To calculate AER and ARE, such as

tr(BXg(a))

ARE(4q. 4q) = ———9\Y))
(G, ég) r(BZ4(@)) ’

we need to deriv@, which was defined in Section 3.2.1.

Forg(x,a) = fo + A7, x[01 ~ N (1, %), x| ~ N (no, ), we have

| 1\
oA ( x) (=) pdmo

whereD = {x : g(x,a) = 0} andmp is Lebesgue measure dn
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A.1.7 Simplified Estimation by Linear Transformation of x

Since a linear transformation of into ¢ + Ax does not change the misclassification error
rates, the above mentioned estimation of asymptotic vegiamatrices can be simplified by a
workable transformation. (Hereafter we still us¢o denote the new feature vector obtained
from transformation.)

Efron (1975) suggested a new, linearly transformedatisfying: x|6; ~ N ( e, I),
x|0p ~ N(=5e1,I), whereA = /(u1 — po)TW (1 — o), the Mahalanobis distance be-

tween the means of the two sub-populations, and, in additigmrequired thatA # 0 to make
the two sub-populations nonidenticlis the identity matrix ané? = (1,0,0,...,0). In such
a case,
08y [—mund + pord, 93 A[Ji+J;ie
0 1,7 0 o ] 7,1 €1

This suggests separatitigech(W))T into (n{,n1"), wheren! = (W11, W1a,...,Wy,) and

— (Waz, Wags, ..., W,,), so that, after some algebrgﬁﬁ—1 = Al gni =0.

L _2e¢l _2e¢ 0 0
Through simplification, we obtaif = Mdg, whereM = | ™7™ 27! 2

0 I —I Al O

Since the last column of the block mattiX is all zeros, and all the componentsidadre asymp-
totically uncorrelated, we can ignore the asymptotic ciewere matrix of the vectoy, for the

computation ofg(&) andX (&).

A.1.7.1 Re-calculation offy(6), $4(d) and S4(a)

If x|61 ~ N (5 e, 1) andx|fy ~ N (—5eq,I), we can obtain

V(i — ) ~ AN(0, mim)

V(i — pr) ~ AN(0, 1), v/alfio — po) ~ AN(0, 1)

Vi —m) ~ AN(0,nIg" (m)), where[LIg(m)] ,, = FE5E5s=5, S0 thaty/n(i —
m) ~ AN(0,J11 +1).

It then follows that
(0) = Block-Diag(Lq (1), Sg(fin), Sg(fin), Bg(ir), Sg(iz))

= Block- Dlag(ﬂ'lﬂ'o, I —I J1 1+ 1 .f)
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where £ is ignored, and thép + 1) x (p + 1) symmetric matrixtq(&) is (Efron, 1975)

A2 A(m1—m0)
ey A

1+ 2A27T17T0
(1 + A27T17T0)Ip_1

LemmaA.1.2 Whenm; = my = 4, we have a diagonal matriXy(a) = Diag(4 + A%, 4 +
2A% (4 + A?)I,_4); i.e, in this case, there exists a linear transformationxathat can make
the generative estimatés= &g of the coefficients of the linear discriminant functigfx, «)

asymptotically uncorrelated. |j

A.1.7.2 Re-calculation of,(6), £,(f) and £, (&)

After some algebra, we can obtain

1 _ A
ﬁly‘X(ﬂ-l) - 7T17?0 !

%Iy‘x(,ul) = 7T17T()Diag(A2 — AA + ATQA(), Ag, ... ,AQ) ,
LI x(po) = mimoDiag(As + AA; + %21407 Ao, ..., Ao),

%Iy\x(nl) = 7T17T0A2Diag(A2, Ao, L ,Ao) ,

where, with¢(z) denoting the density of the univariate standard normatidigton,

A2
— 7
A; = / A )A de, i=0,1,....
OO7T1€2 + mge” 2"

LemmaA.l3 Forall £k = 0,1,..., Ay, > 0, and Ay, is even-symmetric whilélyy is

odd-symmetric about; = £ (so thatdyy, 1 = 0if 11 = mp = 2).

Lemma A.1.4 WhenA — 0, we have thatd;,i = 0, 1, .. ., is thei-th moment of the univariate

standard normal distributioo\'(0, 1) so thatdy =1, A; =0, A2 =1,.... |}

With I, () and I4(0) as given in Section A.1.7.1, we can first derikg¢) and V()
through
{ 1(0) = Mg(0) + (1 = NIy (0)
VA(0) = A2 1g(0) + (1 — M) Iy (0)
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and then derive, (6) and3, (&) through

More preciselyX.,(0) is a block-diagonal matrix composed of a scalaf7 ), threep x p

diagonal matriceX (fi1), X (o) andX (71 ), and a matrix of no interest (1)2), where

A2+ (1 — /\2)A0

YA(71) = mimo

A+ (1= XN)Ap]?’
B R T _)\2+(1—)\2)7T0(A2—AA1+AT2A0) i
Sh (i) = EA(f)]11 _ L D me (a1 B2 )2
U (4 I,- m A?+(1=2A*)moAg
L EA()]22Tp1 i DoF— Mo Ao o1
S - A2 (1-A2)m1 (As+A A1+ A% 4g) ]
S (jio) = [Ea(i0)l1a _ L oy m (et a1 B2 ag))2
A 0 A2 +(1-XA2)m A
i [EA(i0)],2Tp1 _ D L]
and
N IN24(1-A2) o1 A24,
S (7)) = [Ex()]11 _ | T ymomar
R 20 (1=22) o7 A2
[EA()]2.21p-1 a;r((ll_ f)ﬂ)mfl ngAﬁS I,

Therefore, we have

[Ea(@)]3,31p-1

where
2
[Ea(@)11 = (ﬁ)zEA(ﬁl) + %([Ex(ﬂl)]m + [Ex(f0)]1,1) 5
EA(@)]1,2 = [EA(@)]21 = %(—[EA([M)]M + [Ex(0)]1,1) 5

[Za(@)]2.2 = [Sa(i)]11 + [Sa(fo)]1a + AP EA)]1

[Za(@)]3,3 = [Sa(fn)]2.2 + [Sa(f0)]2,2 + A*[EA()]22 -

Lemma A.1.5 Whenm = g = % according to Lemma A.1.3, we ha¥g(/11) = X (/o)
and thus[X)(&))12 = [Ex(&)]21 = 0, leading to a diagonal matrix:y(&); i.e., in this
case, there exists a linear transformation ofthat can make the GDT estimatés= &,

asymptotically uncorrelated. |j
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A.1.7.3 Re-calculation of¥y(&)

Efron (1975) showed that

Ay Ay
Sila) =mmo | A A, ;
AL,y
whereA; is as defined in Section A.1.7.2. It follows that
Ra(@)]r [Za(@)]1 X AR Aenrm
2d(d) = | [Sa(@))2,1 [Za(@)]22 = e AO;;‘EA% AOA’L;O_Af
Za(@)]3,31p-1 11

Lemma A.1.6 Whennm; = 7mp = % according to Lemma A.1.3, we have a diagonal matrix
Yg(d) = Diag(+:, 45, 1 Lp-1); 1-e, in this case, there exists a linear transformationxof

that can make the discriminative estimates- &4 asymptotically uncorrelated. |

A.1.7.4 Re-calculation ofB

Forg(x,a) = By + 8Tx, x|01 ~ N'(5e1, 1), x[0) ~ N(—5er,I), A > 0, we have that, after

some algebragy = log X, 7 = Ae{, sos" 3 = A% and

gx,a)=0%x" = (r= —% log %,xg, ..., Zp), Wherez,, ..., z, are any real numbers. It
follows that
A 1 7
B = 47T1¢(7—A_ 7) T 7'2
2
I,

A.2 Asymptotic Efficiency of GDT for Quadratic Normal Discri m-
ination
A.2.1 Quadratic Normal Discrimination

Now we assume that, within each sub-population, the feateitéorx arises from one of two
multivariate normal distributions with different covamze matricesi.e., x|6; ~ N (u1,21),
x|0g ~ N (1o, X0), whereX; # Xy. In addition, no mis-specification occurs. In this context,

a guadratic discriminant function is derived, as in Secfidn4, to be

g(x,0) = fo+ AT x +x"Tx =
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L 7 T 1. W
=~ (T Wi — pf Wopo) — =1
2(#1 11 — o Wopo) 5 l0g T

whereW; = X1, Wy = X%, so thatl" is a symmetric matrixa” = (3, 7, (vechT))T)

andg” = (m1, 1, u, (vech(W7))7, (vech(1Wy))7).

s 1
log W—(l) - + (i Wi — g Wo)x — §XT(W1 - Wo)x,

A.2.2 Estimation of 4(6)

By calculating the Fisher information matrix and after soatgebra, as with linear normal
discrimination, we obtain that

V(i —m) ~ AN(0, mmo) ,

\/ﬁ(ﬂy - #y) ~ AN(O, W_lyzy)&/ =0,1,

Vn(vech(W,) — vechW,,)) ~ AN(0, I (vech(W,))) , wherey = 0, 1, where

0204(0)
{Ig(Vecr(Wy))}[Wy}i,j7[wy}k,l =L {_@[Wy]m%[wy]k’l}

_ - EinEyl + [Eylia[Eylk)
v (14 6; ) (1 + 0ky) '

It follows that Eg(é) is a block-diagonal matrix composed of a scalgy(7,) = o,

two p x p matricesg(ji) = ¥ andSg(jig) = =¥, and two®ZH) ¢ 2@H) matrices

Sq(vech(W1)) = nlg ! (vechWy)) andSg(vech(Wp)) = nly ! (vechWy)).

A.2.3 Estimation of 2, (0)

A~

The way to estimat& (¢) is similar to that in Section A.1.3, based on the calculatibf (6)
andV,,(#), or, more concretely, on the calculation Kf¢) (see Section A.2.2) anf},(¢). In

order to calculatd |, (¢), we derive

dlogr(0,mx) 1

87‘1’1 T170 ’

dlogr(0,m;x)
O

0l 0,m;
= Wi(x — m), —Ogg(m]ﬂ x) _ ~Wo(x — po)

dlogr(d,mx)] [—(x = ) (x = )" + Ey]i,j (—1) Y.y = 0.1
ow, |, 1+ 6, W=

)
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A.2.4 Relationship betweenla = (& — o) and df = (6 — 6)

Consideringdy = log - — § (1 Wip1 — i Wopo) — 3 log [l 7 = pI Wi — pd Wy and

™0

I' = — (W — W)), after some algebra, we obtain that

850 1 850 T 850 T
A T _ sy AT — — s AT W 9
871'1 0 aufll“ M1 1 au%“ Ko 0

98 [mul+3], o [pong + o],
O[Wl]i,j a 1+ 51',]’ ’ 8[Wo],-7j a 1+ 51',]’ ’
ap op op
— =0, —=W;, — = —-W,
(97'('1 ’ alu/{ 1, 8,&% 0>
08 Pij+Jsilw) 98 [Jij+Jjil (=po)
8[W1]Z'7j 1+ 51'73' ’ 8[W0]Z'7j 1+ 51'73' ’
and
or’; j or’; j 8Fij
» =0 >~ =0 » =0
8771 ) au’{ ) aug )
or _ 1 [Ji,j + Jj,i] or _ 1 [Ji,j + Jj,i]

8[W1]Z'7j - 2 1 +5i,j ’ a[W(]]i,j - 2 1 +5i,j
Using the above differentiation results, combined V\Zﬂé‘(é) as derived in Section A.2.2

andx, () as derived in Section A.2.3, we can obtaig(&) andX (&).

A.2.5 Estimation of ¥4(&)

Similarly to that in Section A.1.5, the asymptotic variamaatrix X4(&) for quadratic normal

discrimination is

e9(%:@)
5a'(0) = [ el Veo(x )l[Vaglx.0) ).

whereV,g(x, o) = (1 x” SXT)T, in whichs, = vech(2xx” — Diag(xx")).

A.2.6 Estimation of B

Forg(x,a) = Bo + 87x + x"Tx, |61 ~ N (1, %1), x[60 ~ N (po, Xo), we have

p 89 2 p p 2
Vag(x,a)? = <8—xk> => | Bt 2xpmen+ D 2% |-
k=1

k=1 i=1,i#k

We may then calculatB based on its definition in Section 3.2.1.
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A.2.7 Simplified Estimation by Linear Transformation of x

Here we consider a univariate case used by O’Neill (1988), assumingp = 1, x|60; ~
N(p1,0%), 2|00 ~ N (uo, o), so that

07 = (1, pa, o, m, mo), Whereny = 1/0%,ng = 1/0¢ andmy € (0,1)

andg(z, a) = B + Bz +yz%, o = (60, 8,7) -

Furthermore, O’Neill (1980) suggested a linearly transfed. satisfyingz|0; ~ AN (u, 1),
x|0g ~ N (0, p), p < 1, which may further simplify the computation. However, tididwing
derivations in this paper are valid for< p < 1 andp > 1; note thafp # 1 is necessary to pre-
vent the quadratic normal discrimination from degenegatinto linear normal discrimination,
which has been discussed in Section A.1.

Through the simplification, foficc = M df, we have

2 1 2 1

—HIt s ~no 1 —p2+1
7r117ro —H1T - Moo % % 170 —H 0 u2 _g
M= 0 mo = K1 —pmo | = 0 1 —% % 0
1 1 1 1
0 0 0 -1 3 o 0 0 -3 3

In addition, since the distributions off, andx|6, are symmetric about their corresponding
means,u; and ug, respectively, it is expected that an index of misclasdificaerror, such
as AER and ARE, ought to be invariant either to the symmetnange ofu; aboutyg into
wy = 2po — p or to the symmetric change of abouty; into uf, = 2u1 — po. After the
above-mentioned simplification, as a specific instancegnthe illustrated that both AER and

ARE are invariant to the symmetric changeuohto p/ = —p.

A.2.7.1 Re-calculation offg(6), $4(d) and Lg(a)

ConSideringr‘Hl ~ N(N’7 1)' ‘T‘HO ~ N(O,p), HT = (7[-17“17,“077717770)1 aT = (507/877)' we
can obtain that

Vn(fry — 1) ~ AN(0, 7o),

V(i = pr) ~ AN(O, =i = 1), v/a(fo — po) ~ AN(0, oo = 2,

V(i —m) ~ AN(0, % = 2), V/alijo — no) ~ AN(0, 27%% — 2,

mop?

It then follows that

A . . . N . . . 1 p 2 2
Eg( ) = Dlag(Eg(W1)7 29(/1’1)7 29(/1’0)7 29(771)7 29(770)) = Dlag(ﬂ'lﬂ-()? 7T_1’ 7'('_0’ 7_‘__17 ?{72) )
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and
2 1
T 4+3 3 QU™ —TTg— —
~ 1 2
AN T _ 3 pro(1+2u°)+m1
Sg@) = MEGOMT = — | —mop R Y
7T0/.1,2—7r0—7r71 7TO+TP%
2 —ToH 2

We note that our results fQEg(&)]1 1, [Zg(&)]1,3, [Eg(&)]3,1 and[Eg(&)]s 3 are different from
those in O’Neill (1980), which appear to be contain minopesr
A.2.7.2 Re-calculation ofl,, (6), £,(f) and 2 ()

After some algebra, we can obtain that

1 H,
ﬁIy‘X(ﬂ-l) = 7r17(|30

Ly (i) = mmo(Ha — 2pHy + 2 Ho), 31y (p0) = mimo sz,
*Lyx(m) = T (Hy — 4pHz + (64° — 2)Ha — 4p(p® — 1)Hy + (4® — 1)*Hy),
+Lyjx(10) = ™2 (Hy — 2pHs + p* Hy),
whereH,; = f°° ’de, 1 =0,1,.... More precisely,H; can be evaluated numer-
ically as

H;, = / s sdx, 1 =0,1,.

T+ wof 2p

LemmaA.2.1 Hy, > 0,k = 0,1,..., and Hy is even-symmetric whered$,;, ,, is odd-

symmetric about = 0. |}

As with Section A.1.7.2, usind,«(¢) and I4(#) (Section A.2.7.1), we can first derive
I,(#) andVy (#) and then deriveZ, (/) and X (&), leading to

$(0) = Diag(Ex(71), 2 (1), Ba(fi0), Sa (1), Sa (o))

where ) A2 4+ (1- /\Q)HO
Ea(71) = mmo SN TEArE
Sy (jin) = 1 N+ (1= M) m(Hy — 2uH, + p?Hy)
m A+ (1= Nmo(Ha — 2uHy + p2Ho)J2
A=
Ua(fio) = p A (W %]2 ;
() = BN (L= N (Hy — Ay + (62 = 2 Hy — 4u(p = DI + (122 = 12 Ho)

[N+ (L~ N (H, — A + (642 — 2)Hy — 4u(® — DHy + (u2 — D2Ho)J



and
2
TOLZNZ 4 (1 — A?) UM (Hy — 2pH, + p?Hy)

Ea(fo) = '
TN+ (1 — )24 (Hy — 2pH) + p2 Ho)?

Thus, we obtain

Sa@)ar = (2B + 2 Gi) + (L :
ToT1

Er(@h2 = [Sa@as =~ (i) + LD, )

[Ex(@)]13 = [Ea(@)]s1 = — 4

[P3(@)2 = Ea(in) + ()*Da(in) + 1 Ea ().
[Ea(@)]2,3 = [Ea(@)]32 = —gzx(ﬁl) :

Za(@)]s5 = 350 + 75

A.2.7.3 Re-calculation of¥4(&)

SinceV,g(z,a) = (1 z 22)", after some algebra, we obtain

Hy H; H>
Yyl @) =mmo |Hy Hy Hs| = mmoW,
Hy, Hs Hy

whereH; is as defined earlier in Section A.2.7.2. It follows that

HyHy— H? HyHs3 — HiHy H{H3;— H3
HyHs — H\Hy HoHy,— H? H{Hy— HoHj
HyHs — H? HyHy — HyH3; HoHs — H?

Fala) = mimo det (W)

wheredet (W) = HO(H2H4 - Hg) + Hl(HgHg — H1H4) + HQ(Hng - H22)

109
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A.2.7.4 Re-calculation ofB

Forg(z,a) = By + Bz + vx2, 2|01 ~ N(u, 1), 26y ~ N(0, p), wherep € (0,1) U (1, 00).
After some algebra, we obtaif = log = + logpci® g — pu, y = 5L, 80[Vag(x,a)| =

1B+ 2vz|, Vag(r,a) = (1 x %), and
9(F,0) = 0 & & = DV 15y

2y

LetA = /32 — 483y, 1 = 5+A, Fg = %. Then, givenA € [0, o), since

) o B —BEpAY .

O’Neill (1980) showed that

T T
1 1 1 1
_om . —B3— pA . N -8B+ pA
=57 To To ¢< 1=, >+ 71 71 <Z5< =,
3 3 7t i

A.2.8 Numerical Evaluations of ARE

We can represerfig(a), X, (&) andX4(&) in a general notation as

1,
R R
(@)

()
2?3 E3(,13

ST
o )

i
2
[
M M
L2 RE
11

Along with B as derived in Section A.2.7.4, it follows that

@ [ —B—pA @ . [ —B+pA
@ (ﬁ) T (ﬁ)
&)

wherec(® = 2(Y + 22,209 + 23 (25 + =07 + 2a{5 + #{5] and¢() = =7 +
20,5 + 73 (253 + 23 ) + 2335 + #45(). Therefore,
(a1) (61) , (—BtpA
|_U(BR@)  © Vo (FhEt) + e (<50
1) = ~ - = = .
tr (BX(ag)) ( 2)¢( f P >_|_<£ 2 ¢<—ﬁ+pA>

2 1—p

tr(BX(a)) = -~

ARE(6i2, &

Numerical evaluations of the ARE between the the generatiseriminative and GDT
approaches for the quadratic normal discrimination areezhiout under the conditions (1)
z|01 ~ N(p, 1), 2|6y ~ N(0,p), (2) 7 = 0.5, (3) p € [0.1,2.0], (4) p € [-5,5] and (5)
A €0,1].
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A.2.8.1 Discriminative vs. Generative

Substituting®q(&) for X(a4) in i) andci®” | and substitutingiq(a) for $(a2) in ¢\**) and
(”) , we have AREdq, dg) and denote it hereafter by qEff,.

Lemma A.2.2 gEff _, is even-symmetric about= 0. |

QEffoey (T4 =0.5, 1o =0, 05 = p, Wy =1, 0% = 1)

Figure A.1: The ARE between the generative approach andifieeirdinative approach for
quadratic normal discrimination: gEff, is the ARE for one-dimensional data. In the plot the

gap is forp = 1 where the quadratic discrimination degenerates into afioee.

The numerical evaluation of gEff, is shown in Figure A.1; we can make similar obser-
vations about qEff , to those we made about Eff; in Section 3.2.3.1.
A.2.8.2 Trade-off vs. Generative

SubstitutingSy(a) for £(a;) in ¢!* and¢{*", and substituting® (&) for (az) in ¢\**
andg¢, (62) , we have AREq ), dg) and denote it hereafter by qﬁﬁl.

Lemma A.2.3 qEﬁ;A:)1 is even-symmetric abopt= 0. |

Numerical evaluations of qE}fﬁl, with A\ = 0,0.25,0.5 and0.75 respectively, are shown
in Figure A.2; we can make similar observations about;g\EﬁO those we made about ﬁﬁl

in Section 3.2.3.2.
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M (ry =05, 1= 0,02 = p, g =11, 02 = 1) GECP?) (=05, 15 =0, 0% = p, g =4, 02 = 1)

(a) gEf}” (b) qEF 50>

(r=0.5)

QEffye (15 =0.5, 1o =0, Go=p, iy =}, 02 =1) qufE;A:TJS)(Th =0.5,H=0,05=p, hy =, 02 = 1)

() eSS (d) qEM, "

Figure A.2: The ARE between the generative approach and Bev@th A\ = 0,0.25,0.5 and

0.75 respectively, for quadratic normal discrimination.
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A.2.8.3 Discriminative vs. Trade-off

The ARE between the discriminative approach and the GDTiplsi

ARE(8g,85) = ARE(4q,4g)  GEff,_,
©V T ARE(4y, bg)  qEFDY,

S
Il

PAnS
>
N

1

S
Il

Lemma A.2.4 AREdy, G ) is even-symmetric abopt= 0. |}

Numerical evaluations oﬂ‘% for A = 0,0.25,0.5 and0.75, respectively, are shown in
qEff,~,

, . , Eff,_ 1
Figure A.3; we can make similar observations ab%uﬁ)l to those we made abo&?{%1 in
qEff, Eff=1

Section 3.2.3.3.
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QEff/qEALE (1 = 0.5, 1o =0, 02 = p, y =, 02 = 1) QEfpet /B (1 = 0.5, 10 =0, 02 = p, by = p, 07 = 1)

A=0 A=0.25
(a) qEff,_, /qEFT" (b) qEff,_, /qERS"2)
Qe /BT ) (1 =05, 10=0, 0% = p, py =1, 02 =1) AEffp- QAT 0.5, 1o =0, 0 = p.py =, 0 = 1)

(c) qEff,_, /qEFS0Y (d) qEff,_, /qEFOS0 ™

Figure A.3: The ARE between the GDT and the discriminativeraach withA = 0,0.25,0.5

and0.75 respectively, for quadratic normal discrimination.



Appendix B

Appendix for Chapter 4

B.1 Results for Simulated Discrete Data

B.1.1 With a Common Covariance Matrix X

The third set of 3 datasets contains simulated discreteadiziag from two4-variate Bernoulli
distributions: x ~ B(p) for the group withy = 1 andx ~ B(q) for y = 2, where
p = (p1,p2,p3,p4)" = (0.2,0.3,0.4,0.5)7, q = (q1,¢2,q3,q2)" = (0.8,0.7,0.6,0.5)"".
In this context, the two groups have a common covarianceixnatrbut different means
(11 = E{x|ly = 1} = panduy = E{x|y = 2} = q). ¥ is a diagonal, block diagonal
and full covariance matrix, respectively for these 3 datase

For the first dataset, each of tlziefeatures{ocj};*Z1 is conditionally independent of the
others given the group labgl In order to achieve this, we set all the elementp a@ihdq such

that the covariance matrices for the two groups are diagoia#iices:
Sy=1 = diagVi,1, Va2, V3 3, Vaa) , By=o = diag(Vy 1, Va5, Va3, Vi4)
where, fori = 1,...,4,
Vii=pi(l—pi) . Vii=a(1—q) .

In order to havet,—; = 3,—» = X, we selg; = 1 — p;.
For the second dataset! is conditionally independent of? given the group labe}. In or-
der to achieve this, we set only, p3, q1, g3 and conditional probabilities, 1 1), Pa|1(0)> Paj3(1)» P4/3(0)

and 42|1(1)» 92)1(0) > 94|3(1) > 94|3(0)» Wherepﬂj(v) and Qi|5(v) denote the success probabilities

115
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andg; of z; givenx; = v,v € 0, 1. It follows that
p2 = p1p2n) + (1 = p1)p2jio) » @2 = a1q2pi1) + (1 — q1)a210)

Pa = p3paj31y + (1 — P3)Pajz0) » 44 = @3q4301) + (1 — @3)a4i3(0) »

and the covariance matrices for the two groups are bloclkodilgsymmetric matrices:

Vie Vig 0 0 V1,,1 V1,,2 0 0
Vig Voo O 0 Vig Voo O 0
Zy:l = ) 2:!/:2 = 7 ’ )
0 0 Vg3 Vi 0 0 Vg Vi,
L 0 0 ‘/?3’4 V4’4_ | 0 0 ‘/3,74 V4/’4_
where, fori = 1,...,4,

Vii=pi(l—pi) , Vii=a(1—q),

Vig =p1 (P2 —p2) » Vie =@ (2pa) — a2)
Vaa = p3 (pasa) — Pa) > Vaa = a3 (qa301) — qa) -

In order to haves,—; = 3,—» = X, we set
@qu=1-p1,q=1-p3,

Q1) = 1 = D21(0) » 92100 = 1 — p2p(1) » and
q43(1) = 1 — pag30) » Qaj30) = 1 — Paj3(1) -

For the third dataset, each of tlzlefeatures{xj}ﬁz1 is dependent on the others given
the group labely. In order to achieve that, we set only, ¢; and conditional probabilities

Pi|1(1)> Pi|1(0) andqm(l), 4i|1(0)» fori = 2,3, 4. It follows that, fori = 2, 3, 4,

pi = p1ipiji) + (1 = pU)Pino) » 4 = Qg + (1 — a)dip(o) >

and the covariance matrices for the two groups are full sylmecnmatrices:

i !/ / / !
Viig Vig Viz Vig Viin Vig Vig Vi
!/ / / !
s Vip Voo Vasz Vou S Vie Voo Vog Vou
y=1 — y Hy=2 — , , , y )
Vizg Vo3 V33 Vag Vig Vog Vig Vi,
!/ / / !
| Vig Vou Vaa Via| Via Vou Viu Via



where

Vii=pi(l=pi) , Vi =a(l—q),i=1,...,4;
Vig=p1(pin) —pi) > Vii=a (@) — @) > 0 =2,3,4;
and, fori, j = 2, 3,4,
p(zi = 1,25 = 1) = pipinypj) + (1 = pU)Pij1©0)P))1(0) >

q(zi=1Lz; =1) = qgpyip) + (1 — a1)qi10)%511(0) »

such that

!

Vij=plxi=1Lz;=1)—pip;, Vi, =qxi=1,7; = 1) — qiq; -

In order to have,—; = ¥,—2 = X, we set
@=1-p1,
giji(1) = 1 — pij0) » andgji0) =1 —pipry , 1 = 2,3,4 .

B.1.1.1 Diagonal Covariance MatrixX

117

For the first dataset, we set = p = (0.2,0.3,0.4,0.5)7, up = q = 1-p = (0.8,0.7,0.6,0.5)"

such that the common covariance matixs a diagonal matrix, dig@.16,0.21,0.24,0.25).

B.1.1.2 Block Diagonal Covariance Matrix3

For the second dataset, we set
p1=02,¢1=1-p1 =038,
p3=04,9g3=1—p3=006;
P21y = 0.7, pojr0) = 0.2,
Q@2p11) = 1 = Dpoj10) = 0.8, q2j100) = 1 — p2pn1) = 0.3
Pai3(1) = 0.8, py300) = 0.3,



118

It follows thaty; = p = (0.2,0.3,0.4,0.5)7, us = q

0.16 008 0 0
0.08 021 0 0
0 0 024 012]
0 0 012 025

1—p=(0.8,0.7,0.6,0.5)T, and

Y is a block diagonal matrix

B.1.1.3 Full Covariance Matrix X

For the third dataset, we set
p1=02,¢=1-p =038;

P2j1(1) = 0.7 » D21(0) = 0.2 s
G2 (1) =1 —pap) = 0.8, q2p100) = 1 = pap1y = 0.3;
p3ji1) = 0.8, p3ji) = 0.3,
g3)1(1) = 1 = p3ji0) = 0.7, @3j10) = 1 — papy = 0.2;;
Paji) = 0.9, pyj10) =04,
qa11) = 1 = pajpo) = 0.6, andqyj1 ) = 1 — paji) = 0.1.

It follows thaty; = p = (0.2,0.3,0.4,0.5)", uo =q=1—-p = (0.8,0.7,0.6,0.5)”, and
0.16 0.08 0.08 0.08

) ~10.08 0.21 0.04 0.04
¥ is a full matrix

008 0.04 024 004]

0.08 0.04 0.04 0.25]
The results for these 3 datasets are shown in Figure B.1.

B.1.2 With Unequal Covariance MatricesX;, 3,

The settings of the last 3 datasets are similar to those dhitiset in Section B.1.1, except
thatX; # X5 andq is different amongst these 3 datasets.

B.1.2.1 Diagonal Covariance Matricestq, >

For the first dataset, the setting is the same as that in &eBtib1.1 except thaly = p +
0.4 rather thanq = 1 — p. That is, we sefu; = p = (0.2,0.3,0.4,0.5)7, uy = q =
(0.6,0.7,0.8,0.9)T such that>; = diag(0.16,0.21,0.24,0.25) and¥, = diag(0.24,0.21,0.16, 0.09).
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B.1.2.2 Block Diagonal Covariance Matrices:y, Yo

For the second dataset, the setting is the same as that iimr58cl.1.2 except that;

120

p1+0.4, g3 = p3+0.4 rather thany; = 1—py, g3 = 1—ps, respectively. Thatis, we hayg =

p = (0.2,0.3,0.4,0.5)7, s = q = (0.6,0.6,0.8,0.6)", ¥ =

[0.24 0.12
0.12 0.24
0 0
0 0

andXsy =

0
0
0.16 0.08|
0.08 0.24]

0
0

B.1.2.3 Full Covariance MatricesX, X9

0.16 0.08
0.08 0.21
0 0
0 0

0 0
0 0
0.24 0.12

0.12 0.25

For the third dataset, the setting is the same as that indBeBtil.1.3 except that, = p; + 0.4

rather thang; = 1 — p;.

(0.6,0.6,0.5,0.4)7, %

0.16
0.08
0.08
0.08

0.08
0.21
0.04
0.04

0.08
0.04
0.24
0.04

That is, we have.; = p

0.08
0.04
0.04

0.25]

they are symmetric, positﬂ/e—definite matrices.

The results for these 3 datasets are shown in Figure B.2.

andXy =

0.24
0.12
0.12

0.12
0.24
0.06
0.06

0.12

(0.2,q.3,0.4,0.5)T, fo = q =

0.12]
0.06
0.06
0.24)

0.12
0.06
0.25
0.06
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