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Abstract 

Poliomyelitis is a seriously debilitating human disease, caused by poliovirus. Since the 

initiation of the World Health Organisation (WHO) and the Pan American Health 

Organisation (PAHO) poliomyelitis eradication program, mass immunisation of the 

worldwide population and better monitoring of acute flaccid paralysis (AFP) cases enabled 

the reduction in the number of poliomyelitis cases worldwide and the eradication of 

circulating wild-type polioviruses in a large number of countries. The oral live-attenuated 

poliovirus vaccine (OPV) and inactivated poliovirus vaccine (IPV) have been used 

extensively as a tool for achieving poliomyelitis eradication. Since the introduction of 

OPV, neurovirulent revertant poliovirus vaccine strains have been reported to cause rare 

cases of paralysis in vaccinees and/or contacts of vaccinees. However, recent reports of 

vaccine-associated acute paralysis (VAAP) outbreaks, caused by newly emerging 

circulating vaccine-derived polioviruses (cVDPVs), in Hispaniola and Madagascar have 

raised the existing concerns about the potential of poliovirus vaccine strains to recombine 

with human enteroviruses (HEV). The original aim of the project was to determine whether 

a non-poliovirus HEV could evolve to use the poliovirus receptor (PVR). A variety of 

methods were used to exploit aspects of the evolutionary capacity of viruses to achieve this 

goal. Although the aim was not attained, the investigation of recombinants between 

different HEVs yielded interesting results, which were pursued further. Two approaches 

were developed: in vitro generation of recombinant viruses and phenotypic analysis of 

such chimeras and the selection for recombinant viruses in vivo. 

In vitro generation of reciprocal recombinants between the structural and the non-structural 

coding region of coxsackievirus A21 (CVA21) and poliovirus type 3 (PV3) was initiated. 

Transfected and passaged chimeras did not produce infectious virions. 
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Immunofluorescence analysis of VP1 protein expression suggested that the recombinants 

were not acytopathic. A series of assays were then carried out to investigate the nature of 

the defect. HeLa S10 translation/transcription reactions of the in vitro generated 

recombinants expressed the correct protein-processing pattern suggesting efficient 

processing occurred in vitro. Replication assays demonstrated that the chimeras were 

replication competent. Trans-encapsidation experiments were then carried out and 

preliminary results strongly suggested that the defect could lie at the packaging level. 

Additional studies are required. 

Selection of recombinants in vivo, without predetermining the crossover sites, was also 

conducted. Under the conditions used, recombination between CVA21 and PV3 impaired 

genomes and echovirus 7 (EV7) and PV3 impaired genomes proved to be unsuccessful. 

This could have been due to both genomes localising to separate replication compartments 

rendering replication-dependent recombination impossible. This needs to be verified. 

Characterisation of the impaired parental genomes used for the experiment needs to be 

carried out. However, recent reports of recombinants between Sabin polioviruses and 

HEV-C confirm the possibility of such a recombination event occurring and emphasize 

concerns regarding the success of the polio eradication program. 

RNA viruses are also subjected to polymerase error rate, another evolutionary mechanism. 

Ribavirin, a random mutagen, was used to increase the error rate of CVA2 1, a HEV-C, to 

investigate whether this particular HEV-C could evolve to use an alternative receptor for 

attachment and entry. However, no novel tropic viruses were recovered under the 

experimental conditions applied. 
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ORF 
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PCR 
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PVR 
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RF 
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RNA 
RNA-i 
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RTP 
siRNA 
SNIDS 
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SDS 
TAE 
TEMED 
TNF 
TMEV 
tRNA 
Tris 
U 
UTR 
UV 
VAPP 
VDPV 
v/v 

Kilobases 
Milligram(s) 
Major histocompatability complex 
Millilitre(s) 
Millimolar 
Multiplicity of infection 
Messenger RNA 
National immunisation days 
Neuronal form of PTB 
Nucleotides 
Non-translated region 
Oral poliovirus vaccine 
Open reading frame 
Poly (r) A binding protein 
Polyacrylamide gel electrophoresis 
Pan American Health Organisation 
Phosphate buffered saline 
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Polymerase chain reaction 
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Poliovirus 
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RNA dependent RNA polymerase 
Replication form 
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WHO World Health Organisation 
w/v Weight by volume 
X-Gal 5-bromo-4-chloro-3-indolyl-beta-galactopyranoside 
µg Microgram(s) 
µl Microlitre(s) 
µM Micromolar 
°C Degrees Celsius 

Discrepencies observed in CVA21 related plasmid names were due to a recent change in 
the nomenclature and conservation of the original plasmid names in the laboratory 
database (see table of plasmids and appendix 2). 
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1 Introduction 

1.1 Picomaviruses 

Picornaviruses are some of the smallest RNA viruses: Pico (very small unit of 

measurement 10"12) ma (RNA) viruses. The Picornaviridae family comprises some of the 

oldest known viruses such as the foot and mouth disease virus (FMDV), one of the first 

viruses to be recognised (Loeffler & Frosch, 1898), and poliomyelitis, which has been 

prevalent since at least the 18th Egyptian dynasty (1550-1333 BC) as is shown in an 

illustration of a doorkeeper on a funeral stone (Melnick, 1982). 

1.2 Classification of the Picornaviridae family 

The Picornaviridae family is composed of over 200 serotypes. The original taxonomy was 

based on physical properties (particle density and pH-sensitivity) and serological 

relatedness. However, picornavirus classification was recently revised based on nucleotide 

sequences and divided into 9 genera: Aphthoviruses, Cardioviruses, Enteroviruses, 

Erboviruses, Hepatoviruses, Kobuviruses, Parechoviruses, Rhinoviruses and Teschoviruses 

(see table 1.1). The nine genera include pathogens that cause a wide range of mild to acute 

diseases. 
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Genus Species Serotypes 

Aphthovirus Foot and Mouth Disease Virus FMDV-0, A, C, Asia 1, SAT1-3 

Equine Rhinitis A virus ERAV 

Cardiovirus Encephalomycarditis Virus EMCV 

Theileovirus TMEV, VHEV 

Enterovirus Poliovirus PV 1-3 

Human Enterovirus A CVA 2-8,10,12,14,16, EV71 

Human Enterovirus B CVB 1-6, CVA9, E1-33, 

EV69-73 

Human Enterovirus C CVA 1,11,13,15,17-24 

Human Enterovirus D EV-68, EV- 70 

Bovine Enterovirus BEV-1, BEV-2 

Porcine Enterovirus A PEV-8 

Porcine Enterovirus B PEV-9, PEV 10 

Simian Enterovirus A SEV-A 

Erbovirus Equine Rhinitis virus ERBV 1 and 2 

Hepatovirus Hepatitis A virus HAV 

Avian Encephalomyelitis Virus AEV 

Kobuvirus Aichi virus AN 
Bovine Kobuvirus BKV 

Parechovirus Human Parechovirus HpeV-1 and 2 

Ljungan Virus LV 

Rhinovirus Human Rhinovirus A HRV 1,2,7,8,9 -13 etc 

Human Rhinovirus B HRV 3-6,14,17,26 etc 
Teschovirus Porcine Teschovirus PTV 1-11 

Table 1.1: Classification of members of the Picornaviridae. 
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1.3 Pathogenesis within a host 

Pathogenesis is defined by the broad spectrum of symptoms triggered by viral infection 

and the host range or tissues susceptible to infection by specific viruses. Because of the 

nature of this project, emphasis and detailed analysis of the human enterovirus (HEV) 

pathogenesis and life cycle, and not that of other genera of the Picornaviridae family, is 

contained in this chapter. The majority of HEV infections cause asymptomatic or mild 

syndromes (see table 1.2). However, HEVs have also been involved in cardiac and central 

nervous system (CNS) syndromes. Invasion of the CNS is characteristic of poliovirus, the 

prototype picomavirus, resulting in acute flaccid paralysis (AFP). However, 

Coxsackieviruses A have also been shown to cause AFP. In fact recent studies carried out 

in ICAM-1 transgenic mice have shown that CVA21 could cause identical symptoms to 

those seen in poliovirus infected PVR-transgenic mice (Dufresne et al., 2004). 
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Clinical diseases associated with Infection 

Enteroviruses 
Poliovirus type 1,2 Paralytic poliomyelitis and mild febrile illness 

and 3 
Coxsackievirus A Aseptic meningitis 

Hand, foot and mouth disease 
Common cold 

Coxsackievirus B Aseptic meningitis 
Myocarditis, pleurodynia, severe systemic disease in infants 
Upper respiratory tract illness, pneumonia 
and post-viral fatigue syndrome 

Echoviruses Aseptic meningitis 
Paralysis 
Respiratory disease 
Myocarditis 
Epidemic myalagia 
Hepatic disturbances 

Enterovirus 68 Pneumonia 
Enterovirus 70 Acute haemorrhagic conjunctivitis 
Enterovirus 71 Hand, foot and mouth disease 
Rhinoviruses 
Major receptor group Common cold 
rhinoviruses 
Minor receptor group Common cold 
rhinoviruses 
Parechoviruses 
Echoviruses types 22 Respiratory disease 
and 23 Encephalitis 
He atoviruses Hepatitis 
A hthoviruses Foot-and-mouth disease 
Cardioviruses 
Encephalomyocarditis Encephalitis and myocarditis 
virus and Mengovirus 
Theiler's murine Encephalomyelitis (in mice) 
encephalomyocarditis 
virus 

Table 1.2: Clinical diseases associated with picornavirus infection and exacerbation. 
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1.3.1 Poliovirus pathogenesis and life cycle within a human host 

Poliovirus is the prototype HEV and has been extensively studied since it was first 

identified as the etiologic agent of poliomyelitis in 1909 (Landsteiner & Popper, 1909). 

Infection with poliovirus causes mild or asymptomatic syndromes in 90% of cases and 

infection only progresses to poliomyelitic paralysis in 1% of cases (Melnick et al., 1996 a). 

Poliovirus infects cells of the digestive tract (oropharyngeal cells and intestinal cells), 

multiplies locally at the initial sites of virus ingestion (tonsils, Peyer's patch) and virions 

are shed into the environment through faeces (see figure 1.3). The translocation of 

poliovirus particles across M-like cells, which are found in the epithelial sheet of the 

Peyers patches (Ouzilou et al., 2002) enables the virus to come in contact with cells from 

the immune system, which are then thought to favour spread to cervical and mesenteric 

lymph nodes. These events lead to a primary viraemia during which poliovirus can 

replicate in peripheral blood mononuclear cells (Freidstadt & Eberle, 1996). Once inside 

the bloodstream the infectious virus particles spread to other susceptible tissues such as 

other lymph nodes, brown fat, muscle, and the central nervous system (CNS). Poliovirus 

has been shown to cross the blood-brain barrier in mice (Yang et al., 1997). Invasion of the 

CNS is primarily thought to occur by means of peripheral or cranial nerve retrograde 

axonal transport, stimulated by skeletal muscle injury (Gromeier & Wimmer 1998), and 

leads to the development of poliomyelitis. The fast retrograde axonal transport pathway of 

poliovirus from the axon to the neuronal cell body occurs in a PVR-dependent manner by 

the PVR interaction with the dynein-motor complex component Tctex-1 (Mueller et al., 

2002). Poliovirus is then able to attach, enter, infect and destroy motor neurons, in 

particular neurons of the anterior horn of the spinal cord leading to paralytic poliomyelitis 
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Figure 1.3: Poliovirus pathogenesis 

This schematic illustration represents a longstanding view of the pathogenesis of 
poliovirus. Note that additional data emphasize the importance of retrograde axonal flow 

of virus into the central nervous system. Virus enters by way of the alimentary tract and 
multiplies locally at the initial sites of virus implantation (tonsils, Peyer's patch) or the 
lymph nodes that drain these tissues, and virus begins to appear in the throat and in the 
feces-leading to virus shedding into the environment. At this time, it is possible that 
virus may spread to the CNS by peripheral or cranial nerve axonal flow. Secondary virus 
spread occurs by way of the bloodstream to other susceptible tissues-namely, other 
lymph nodes, brown fat, muscle, and the CNS. Virus can then also spread into the CNS at 
this time by means of peripheral or cranial nerve retrograde axonal flow-for example, 
from muscle. If a high level of virus replication occurs within the CNS, motor neurons die 
and paralysis ensues. (Diagram and legends taken from Melnick et al., 1996a) 
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in humans, primates and PVR transgenic mice (Ren et al., 1990). The following 

description of the virus life cycle focuses on poliovirus unless otherwise specified. 

1.3.2 Host cell infection and poliovirus life cycle 

1.3.2.1 Overview (see figure 1.4) 

The complete life cycle of poliovirus within a host cell occurs in approximately 5 to 

10 hours and is initiated by the attachment of the virus to its receptor: PVR (CD 155) 

(Hogle et al., 1985). Conformational changes induced by receptor attachment lead to the 

uncoating and release of the viral genomic RNA into the host cell cytoplasm (Belnap et al., 

2000), in which the entirety of the reproductive life cycle of poliovirus occurs. Once the 

genomic RNA has entered the cell, the 5' covalently-linked VPg is cleaved off by a 

cellular enzyme, releasing the RNA for translation into a single polyprotein (Pelletier et al., 

1988). The translated polyprotein undergoes a cascade of autocatalytic events known as 

proteolytic processing, generating functional viral proteins (Schechter et al., 1967; 

Ypma-Wong et al., 1988). Once the non-structural proteins are generated, the host cell 

endoplasmic reticulum membranes are altered and re-arranged to form replication 

complexes where initiation of the negative-sense strand synthesis occurs (Bienz et al., 

1987; Beinz et al., 1990). The negative-sense strands are then used as a template for the 

positive-sense strand synthesis. The newly synthesised positive-sense strand progeny RNA 

molecules are translated, enhancing the number of replication complexes formed and 

amplification of the viral genome (Jarvis et al., 1992). The VPg-linked progeny RNA 

genomes are then packaged into the virus capsid proteins VP I, VP3 and VPO, resulting 

from the polyprotein processing (Arnold et al., 1987). Encapsidation leads to the final 

maturation of the immature virions into infectious icosahedral particles, which are then 

released into the intercellular environment (Hellen et al., 1992). Poliovirus infection can be 
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lytic or non-lytic depending on the host cell type (Lopez-Guerrero et al., 2000), the state of 

differentiation of a particular cell type, the genetic make-up of the virus and the conditions 

of infection (Agol et al., 1998, Tolskaya et al., 1995). 

1.3.2.2 Attachment 

The recognition and the attachment to the PVR cellular receptor, a membrane-anchored 

immunoglobulin-like glycoprotein recognised by all three serotypes of poliovirus, is the 

first step of the poliovirus replication life cycle. 

1.3.2.2.1 Virus structure and receptor attachment 

Poliovirus is a non-enveloped virus that has an RNA genome packaged inside an 

icosahedral capsid of approximately 25nm in diameter, composed of 60 copies of the VP1, 

VP2, VP3 and VP4 viral capsid proteins. The poliovirus three-dimensional structure has a 

deep and narrow 20 A-surface depression around the 5-fold axes, also known as the 

"canyon", formed by the assembled VP 1, VP2 and VP3 proteins (see figure 1.5). 

Rossmann first developed the "canyon" hypothesis in his three-dimensional analysis of the 

human rhinovirus 14 (Rossmann et al., 1985). The "canyon" is lined by conserved residues 

(Rossmann et al., 1988; Rossmann et al., 1989), encircling each of the twelve 5-fold axes, 

and forms a docking site for the PVR attachment (He et al., 2000). The membrane-distal 

N-terminal domain of PVR binds to the viral canyon (He et al., 2003). Under the floor of 

the canyon, in the VP1 capsid protein lays a hydrophobic pocket, which contains a 

sphingosine or palmitate-like molecule (Rossmann et al., 1994) or "pocket factor". The 

"pocket factor" is of cellular origin and is thought to play a regulatory role in viral 

assembly and uncoating (Filman et al., 1989) as well as stabilising the virions during the 

transit phase from infected cells to non-infected cells. Binding of the PVR to the canyon 

depression of the poliovirion destabilises the "pocket factor", which triggers a 
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conformational change in the virus particle leading to the uncoating and release of the viral 

genomic RNA into the host cell cytoplasm (Rossmann et al., 1994). 

1.3.2.3 Viral uncoating and genome delivery 

The interaction of a mature poliovirus particle, with a sendimentation coefficient of 160S, 

with the cognate receptor PVR (He et al., 2003) has been demonstrated to cause 

conformational changes including the extrusion of the internal VP4 and of the N-terminus 

of VPl (Fricks & Hogle, 1990; Hogle et al., 2002) generating A-particles. A model for 

virus entry was proposed by Belnap in 2000 (see figure 1.6. A and 1.6. B) (Belnap et al., 

2000) whereby myristylated VP4 and VP1 N-terminus were extruded and embedded in the 

cell plasma membrane leading to the formation of a pore and triggering a change in the 

location of VP3, which acts as a plug to prevent leakage of the viral RNA genome from 

infectious particles. This conformational change is confirmed by the previous observations 

of a 10% size expansion of poliovirus particles on attachment to host cell surface 

(Incardona et al., 1964). These events are followed by RNA genome entry into the cell 

cytoplasm through the newly formed pore (see figure 1.6 B), confirmed by recent VP4 

mutagenesis studies (Danthi et al., 2003). The RNA genome delivery to the host cell 

cytoplasm leads to a decrease in the extracellular particle sedimentation coefficient to 80S. 

Because of the unstable nature of the A-particle 135S intermediates, up to 50-90% of virus 

particles are eluted or unable to deliver their RNA molecule. This contributes to the very 

high particle to infectivity ratio of 1000 to 1 (Fenwick & Cooper, 1962). Alternative 

uncoating and entry pathways have been thought to exist. Indeed studies of various 

rhinovirus serotypes demonstrated the virus entry to be dependent on a receptor-mediated 

endocytosis pathway (Nurani et al., 2003; Kronenberger et al., 1998). Alternative 

uncoating pathways are not discussed in this thesis. 
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1.3.2.4 Genome and translation 

All picomaviruses have a similar genome organisation (see figure 1.7). The poliovirus 

genome is described here. The infectious poliovirus genome is a positive-sense single 

stranded -7.5 kilobase-long RNA molecule (Holland et al., 1960a; Holland et al., 1960b) 

that is covalently linked to a small virus specific protein VPg via a phosphodiester bond at 

its 5'end (Flanegan et al., 1977; Lee et al., 1977, Lee et al., 1976), and is polyadenylated at 

its 3'end (Yogo et al., 1972). The genome is divided into three regions, the 5'untranslated 

region or non-coding region (5'UTR: Agol et al., 1991), the coding region and the 3'UTR. 

The UTR regions contain RNA structures involved in the regulation of translation and 

RNA synthesis. The RNA genome has one functional open reading frame, which directs 

synthesis of a single polyprotein (Warner et al., 1963). The polyprotein then undergoes 

proteolytic processing generating four structural proteins (VP I, VP3, VP2 and VP4: 

Maizel et al., 1963) and ten non-structural proteins (2A, 2B, 2C, 2BC, 3A, 3B, 3AB, 3C, 

3D, 3CD: Summers et al., 1965), which are involved in RNA replication, virion assembly 

and progeny release from the infected host cell. 

Once inside the cell, translation of the genome is initiated by a cap-independent 

mechanism involving a 5'UTR internal ribosome entry site structure, known as the IRES 

(Jang et al., 1988, Pelletier et al., 1988; Trono et al., 1988). The IRES is a cis-acting 

element with a tertiary structure that interacts with RNA-binding proteins to generate a 

functional `ribosome-landing site' (Palmenberg et al., 1997). The IRES structure binds the 

40S subunit of the ribosome in a specific orientation and forms a productive translation 

complex with the template limited RNA segment ̀starting window' (Pilipenko et al., 

1994). Other cis-acting elements such as the 5' cloverleaf structure are known to play a 

role in RNA replication and there is evidence of its role in the viral translation initiation 

process (Gamarnik et al., 1998; Simoes et al., 1991). 
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Other proteins such as PTB (pyrimidine tract binding protein: Hellen et al., 1994; Hellen et 

al., 1993; Niepmann et at., 1997), PCBP-2 (poly C-binding protein 2: Blyn et al., 1996; 

Blyn et at., 1997; Herman et al., 1998), autoantigen La (Meerovitch et al., 1993; Shiroki et 

at., 1999; Svitkin et at., 1994) and unr (Hunt et al., 1999) are important nuclear 

RNA-binding proteins also involved in efficient translation of the viral RNA genome 

(Gosert et al., 2000). Certain translation factors can act as chaperones or bridges between 

the IRES and the ribosome (Pilipenko et al., 2000). 2A has been shown to stimulate 

translation (Roberts et al., 1998; Hambidge et at., 1992) whereas 3CD has been shown to 

inhibit the process (Gamarnik et al., 1998). 

1.3.2.5 Polyprotein processing 

The poliovirus polyprotein precursor undergoes proteolytic processing, co-translationally, 

driven by viral proteases (see figure 1.8). There are three viral proteinases involved in the 

proteolytic cleavage events and the generation of mature viral proteins: the 2A, 3C and 

3CD proteases. The primary cleavage event is autocatalytic occurring both in cis or trans 

and is directed by the 2A protease cleaving the tyrosine-glycine (Y-G) amino acid 

sequence at the junction between the P1 structural protein precursor and the P2/P3 

non-structural protein precursors thereby separating the structural proteins from the 

non-structural proteins (Schechter et al., 1967). The 3C and the 3CD proteases 

preferentially cleave glutamine-glycine (Q-G) residues leading to the generation of the 

remainder of the viral proteins (Luke et al., 2001). In poliovirus only 9 of the 13 Q-G 

residues are cleaved (Hanecak et al., 1982; Kitamura et al., 1981). The lack of conservation 

of residues surrounding the Q-G amino acid sequences indicates that processing is not only 

sequence-dependent but that preferential processing must occur (Kusov et al., 1999). 

Studies demonstrating enhanced activity of 3CD protease over 3C protease (Parsley et al., 

1999) and complete P1 processing solely achieved by 3CD protease confirms that the 
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amino acid sequence cannot alone account for proteolytic activity of 3C and 3CD proteases 

and that structural conformations are also involved in specific protease activity (Harris et 

al., 1992; Ypma-Wong et al., 1988). The 3C and the 3CD proteases process the P1 

precursor into VPO, VP3 and VP1 structural proteins and the non-structural protein 

precursors P2 and P3 into 2A, 2B, 2C, 2BC, 3A, 3B, 3AB, 3C, 3D and 3CD. 

1.3.2.5.1 Capsid proteins 

The capsid proteins VPO, VP3 and VP 1 assemble to form empty virus capsids, a process 

discussed further in section 1.3.2.7.1. 

1.3.2.5.2 Non-structural proteins 

The P2 and P3 protein precursors contain most of the proteins important for the replication 

of the virus. P1 deletion mutants have been shown to replicate in tissue culture (Percy et 

al., 1992; Collis et al., 1992; Kaplan et al., 1988). The non-structural proteins have a 

variety of functions in the poliovirus life cycle within an infected host cell such as protease 

activity, membrane rearrangements, RNA replication and regulation of host cell functions. 

1.3.2.5.3 The viral proteins and their cellular targets 

Viral proteases are capable of hijacking host proteins, employing them for viral functions 

and shutting down the key cellular functions such as translation and transcription leading 

to cell cycle arrest and cell death. 

1.3.2.5.3.1 Translation 

Upon virus infection the host cell translation machinery shuts off. This mechanism is 

regulated by cellular and viral proteins. The poliovirus 2A protease exerts its proteolytic 

activity on host cell proteins by cleaving eIF4G (Etchison et al., 1982; Krausslich et al., 

1987; Sommergruber et al., 1994), a cellular translation initiation factor, and more 
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specifically eIF4G-I (Haghighat et at., 1996) and eIF4G-II (Svitkin et al., 1999; Gradi et 

al., 1998), essential components of the host cell cap-dependent translation initiation 

complex. Moreover, the cleavage of the poly (A)-binding protein (PABP) by the poliovirus 

2A and 3C proteases contributes to host cell translation shut off (Joachims et al., 1999). 

Once complete host cell protein synthesis shut off has occurred, 2 to 4 hours post infection, 

eIF4G is used for the viral cap-independent IRES-mediated translation (Ohlmann et al., 

1996). 

1.3.2.5.3.2 Transcription 

Similarly, viral proteases regulate both the viral and the cellular transcription machineries. 

The poliovirus 3C and 3CD proteases bind viral RNA secondary structures such as the 

5'cloverleaf of the positive-sense RNA molecule (Andino et al., 1993; Leong et al., 1993) 

and the poly(rC)-binding protein (PCBP: Parsley et al., 1997) thereby forming a complex 

required for poliovirus replication. 3CD has been suggested to be involved in genome 

circularisation as it bridges the 5'cloverleaf structure-PCBP complex with polyA-binding 

protein (PABP), bound to the 3' poly-A tail of the RNA molecule (Herold et al., 2001). 

The 3C and 2A proteases are also involved in the regulation of the host cell transcription 

and apoptotic pathways upon viral infection, by exerting a proteolytic activity on a variety 

of host cell proteins such as TATA-binding proteins (Clark et al., 1993; Yalamanchili et 

al., 1997), the cAMP-responsive element (Deitz et al., 2000), the transcriptional activator 

Oct-1 (Yalamanchili et al., 1997), the PABP (Joachims et al., 1999; Kerekatte et al., 1999), 

and anti-apoptosis and PKR phosphorylation pathways (Black et al., 1993). 
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13.2.5.3.3 Membrane re-arrangement and replication compartments 

1.3.2.5.3.3.1 P2 proteins 

P2 proteins are involved in membrane rearrangements within a host cell, disrupting cellular 

functions and creating replication compartments for the generation of progeny viral RNA. 

2B is thought to be involved in alteration of intracellular membrane permeability, 

facilitating the release of progeny virus (van Kuppeveld et al., 1997), inhibition of cellular 

exocytosis, dissociation of Golgi complexes and viral RNA amplification (Aldabe et al., 

1996; Barco et al., 1998; Doedens et al., 1995; Sandoval et al., 1997; van Kuppeveld et al., 

1995; van Kuppeveld et al., 1997; Johnson et al., 1991). 

2B and 2BC proteins play a role in the formation of viral replication vesicles (Bienz et al., 

1987; Bienz et al., 1983; Aldabe et al., 1995; Cho et al., 1994; Suhy et al., 2000; 

Teterina et al., 1997) and results showing that 2C is involved in positive strand synthesis 

give further evidence of the role taken by 2C during viral replication (Barton et al., 1997; 

Molla et al., 1991). 

1.3.2.5.3.3.2 P3 Proteins 

3A and 3AB proteins have also been shown to be associated with intracellular membranes 

(Datta et al., 1994; Semler et al., 1982; Towner et al., 1996). Indeed, 3AB, which delivers 

3B, known as VPg, (Kusov et al., 1999) and the 3D polymerase (Hope et al., 1997; Xiang 

et al., 1998) to replication compartments, is involved in rearrangement of intracellular 

membranes into replication vesicles (Doedens et al., 1997; Doedens et al., 1995; Lama et 

al., 1992). 

3D is the essential RNA-dependent RNA-polymerase that catalyses the positive-sense and 

the negative-sense strand synthesis RNA elongation during the replication process. 
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1.3.2.5.3.4 Immune evasion and immune response interference 

Some poliovirus proteins have been shown to interfere with the host immune response, 

probably indicating that poliovirus has evolved to evade the immune response induced 

following viral infection. The poliovirus proteins 2BC and 3A modulate the host immune 

response by interfering with exocytotic pathways (Barco et al., 1995), secretion of antiviral 

cytokines (ß-IFN, IL-6, IL-8) (Dodd et al., 2001), and antigen presentation via major 

histocompatibility complex class I (MHC-I) molecules (Doedens et al., 1995; Deitz et al., 

2000). 

1.3.2.6 RNA replication 

1.3.2.6.1 Replication complex formation and membrane rearrangement 

Genomic RNA replication is driven by the virally encoded RdRp and occurs in rearranged 

cellular membrane vesicles also known as replication complexes. The use of membranous 

replication compartments enables the localisation and concentration of proteins required 

for replication and assembly, provides protection from degradation by any cellular factors 

or proteins (Ahlquist et al., 2002) and could be a means of hiding the presence of double 

stranded RNA thereby avoiding the induction of a dsRNA activated immune response such 

as the protein kinase R (PKR) response and RNA silencing (Ahlquist et al., 2002). 

Poliovirus replication complexes have been shown to contain viral and cellular proteins, 

replicative-intermediate RNA and newly synthesised progeny RNA (Bienz et al., 1994, 

Bienz et al., 1992; Egger et al., 1996; Troxler et al., 1992; Egger et al., 2002) and are 

assembled on membrane vesicles (Bienz et al., 1987; Bienz et al., 1990). In fact it has been 

demonstrated that HeLa S 10 nuclear extracts contained cellular proteins inducing the 

formation of replication complexes (Jurgen et al., 2003). During poliovirus infection, 

COP II-coated vesicles derived from the anterograde membrane transport pathway form on 
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the ER but unlike other vesicles from that particular pathway, they are unable to fuse with 

the Golgi system or the ER-Golgi intermediate compartment (Rust et al., 2001). The 

involvement of the COP Il-dependent pathway was supported by inhibition studies 

(Sandoval et al., 1997). However, replication complex formation is not solely dependent on 

COP II-mediated pathways and studies using Brefeldin A (BFA) demonstrated 

COP I-dependent poliovirus replication inhibition (Cuconati et al., 1998; Irurzun et al., 

1992; Maynell et al., 1992). 

1.3.2.6.2 Cis-acting replication elements 

The viral RNA genome possesses signals, cis-acting elements, that allow the polymerase to 

differentiate between viral and cellular RNAs. The 5'UTR and 3'UTR cis-acting elements 

as well as elements within the genome-coding region have been identified to be involved in 

replication. The 5'UTR IRES ensures the formation of a pre-initiation template/ribosome 

complex. The 5'UTR cloverleaf stemloop d has been shown to interact with the 3CDP`° and 

PCBP has been shown to interact with the stem loop b of the cloverleaf thereby forming a 

ternary ribonucleoprotein complex (Andino et at., 1990a; Andino et al., 1990b). The 

cloverleaf structure has also been involved in the switch between translation and 

replication, as the two processes are mutually incompatible on a single template (Barton et 

at., 1999). 

The CRE, a secondary RNA structure, initially identified in the P 1-coding region of 

HRV 14 (McKnight et al., 1998), is involved in replication. Subsequent studies identified 

the presence of similar structures in the P1-coding region of cardioviruses (Lobert et al., 

1999) and in the 2C-coding region of poliovirus (Goodfellow et al., 2000). These structures 

contain a conserved GXYXAAAXXXXXXA motif (Yang et al., 2002), where the first two 

A residues of the AAA triplet template addition of pUpU onto VPg. The uridylylated VPg 
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(VPg-pUpU) (Paul et al., 2000; Rieder et al., 2000) is then used as a primer for the 

initiation of the positive-sense strand synthesis but not negative-sense strand synthesis 

(Goodfellow et al., 2003; Morasco et al., 2003; Murray et al., 2003). 

As opposed to the 5'UTR, the 3'UTR has not been studied extensively and the precise role 

of the latter in replication of picomaviruses is still unclear. The 3'UTR is not essential for 

viability of picornaviruses and mutagenesis and deletion of the 3'UTR did not prevent 

viability, though a reduction in viral fitness was observed (Meredith et al., 1999; Todd et 

al., 1997). The 3'UTR of enteroviruses has been identified to have two or three stem loops 

(Pilipenko et al., 1992), supported by thermodynamic studies (Jacobson et al., 1993; 

Melchers et al., 1997) and phylogenetic studies (Pilipenko et al., 1992). The 3'UTR can be 

exchanged, between PV3 and HRV14 (Rohll et al., 1995) and a defect in replication can be 

seen in viruses containing an altered 3'UTR (Melchers et al., 1997, Mirmomeni et al., 

1997, Pilipenko et al., 1996). The 3'UTR of poliovirus has also been shown to interact 

with cellular factors such as p105, p68 and p45 (Waggoner et al., 1998). Further studies 

expressing these cellular proteins and investigating the nature and functions of the 

interactions need to be conducted in order to understand the precise role of the 3'UTR 

cis-acting element. The poly-A tail, attached to the 3'end of the genome, is essential for 

poliovirus infectivity (Rohll et al., 1995; Sarnow et al., 1989), however other functions of 

the poliovirus poly-A tail still remain to be investigated. 

1.3.2.6.3 Model of poliovirus replication 

The model of the poliovirus replication has been proposed to occur in two phases: the 

synthesis of negative-sense strands followed by the production of positive-sense strands 

templated from the negative-sense strands. The first step to occur is that of genome 

circularisation (Herold et al., 2001) by protein-protein interaction that enable the formation 
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of a bridge between two molecules of 3CDpr°. The uridylylated VPg is then thought to 

serve as a primer for negative strand synthesis and elongation, catalysed by the RdRp 3Dp°I 

(Goodfellow et al., 2003; Morasco et al., 2003; Murray et al., 2003). Following the 

termination of the negative-sense strand synthesis, the viral RdRp uses VPg-pUpU 

complexed with the 3' termini of double stranded negative-sense strands, known as the 

replicative form or RF, as a primer for initiation of positive strand synthesis (see figure 

1.9). Binding of the 3D'°'-VPg-pUpU complex to the RF is responsible for unwinding and 

disrupting the double-stranded helices thereby generating partially double-stranded 

negative strands or replication intermediates (RI). This event leads to the exposure of more 

residues free for interaction with numerous polymerase/primer complexes. The 

CRE-generated VPg-pUpU primer is then released from the template (Goodfellow et al., 

2003). The large number of released VPg-pUpU primers, during negative-sense strand 

synthesis, enables the polymerase to initiate multiple rounds of positive strand synthesis 

from a single RF template. This asymmetric replication gives rise to high ratios of readily 

packageable positive-sense progeny RNA molecules to negative-sense template strands 

(Jarvis et al., 1992). 

1.3.2.7 Encapsidation 

1.3.2.7.1 Viral particle assembly and RNA encapsidation 

Viral particle assembly and encapsidation of the newly synthesised viral genome are 

essential steps of the poliovirus life cycle. These processes have been hypothesised to 

occur via two alternate pathways. 

Copies of the structural proteins VPO, VP! and VP3 assemble into 60 protomers to form 

poliovirus capsids. A late VPO cleavage event during the maturation of the virus particles 

gives rise to VP4 which is located inside the mature virus particle and VP2. The carboxyl 
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end of VPO is associated with the amino end of VP3 and the carboxyl end of VP3 is 

associated with the amino end of VP 1 (Arnold et al., 1987) forming a 6S protomer. Five 6S 

protomers then assemble to form 14S pentamers. Cleavages and repositioning of the ends 

of VP1, VP3 and VPO lead to the assembly of twelve 14S pentamers into immature 

icosahedral 80S procapsids, which encapsidate genomic RNA to form -160S particles (see 

figure 1.10). 

Alternatively, it has been hypothesised that the pentamers could assemble around a newly 

synthesised progeny viral RNA genome to form the 160S particles. Some viral proteins, 

such as 2C, could be involved in the assembly of poliovirions (Li et al., 1990; Vance et al., 

1997). Assembly and encapsidation processes involve protein-protein interactions of 

capsid proteins, RNA-protein interaction between the viral genome and the capsid proteins, 

potential host protein-viral protein and host protein-viral RNA interactions and 

autocatalytic cleavage, however the exact succession of events and the precise mechanisms 

remain unclear. 

1.3.2.7.2 Poliovirus encapsidation signals 

The process by which the poliovirus genome is encapsidated into capsid proteins has yet to 

be resolved. Poliovirus genome encapsidation is a specific process and the existence of a 

specific encapsidation signal is strongly supported by work carried out by Barclay and 

co-workers. Indeed, Barclay and co-workers showed that the HRV 14 and CB4 capsid 

proteins, provided in trans, could not encapsidate a replication competent poliovirus CAT 

(Chloramphenicol acetyl transferase) replicon, lacking most of the P1 coding region. 

However, poliovirus type 1, poliovirus type 2 and poliovirus type 3 capsid proteins were 

able to specifically encapsidate the poliovirus CAT replicon (Barclay et al., 1998). 



I 

3 

RNA 

Figure 1.10: Model of poliovirus particle assembly 

l- VPO, VPI and VP3 assembly into 6S protomer; 2- assembly of five protomers into 

pentamers; 3- assembly of 12 pentamers into empty 80S procapsids and encapsidation 
of newly synthesised RNA genome leading to maturation cleavage and generation of 
mature icosahedral progeny virion. 
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The exact localisation of the specific encapsidation signal remains unidentified. Defective 

interfering poliovirus genomes, containing deletions within the VP2/VP3-coding regions, 

were shown to be encapsidated even though these lacked as much as 13% of the genome 

(Ansardi et al., 1993a, Kuge et al., 1986). These studies were supported by more recent 

data. The observation that poliovirus replicons, lacking all but the last two amino acids of 

the P1-coding region, could be encapsidated by capsid proteins provided in trans showed 

that the specific poliovirus-packaging signal could not be located within the P 1-coding 

sequence (Ansardi et al., 1993b; Barclay et al., 1998). Other genome-encoded proteins 

have been thought to play a role in packaging with the exception of the 2A protein that 

does not appear to be involved in encapsidation (Ansardi et al., 1995). The substitution of 

the poliovirus type 1 2A-coding region with the CVB4 2A-coding region and the 

generation of a hybrid CVB3/PV 2B protein proved to have no effect on the virus viability 

(Lu et al., 1995; van Kuppeveld et al., 1997) suggesting that 2A and the first 30 amino 

acids of 2B did not contain a specific encapsidation signal. There is no direct evidence of 

the VPg viral protein playing a role in encapsidation, which was previously thought to be 

the case (Nomoto et al., 1977a; Nomoto et al., 1977b). An exchange of the poliovirus type 

3 VPg-coding sequence with the CVB4 VPg-coding region did not cause an encapsidation 

defect (unpublished data of Percy and Moon; see Barclay et al., 1998). Moreover the 

5'UTR (Rohll et al., 1994; Xiang et al., 1995) and the 3'UTR (Rohll et al., 1994) of 

poliovirus can be exchanged for those of certain picornaviruses suggesting that if an 

encapsidation signal exists it is most likely to reside in the region of the genome encoding 

2B to 3D (Barclay et al., 1998) or to be discontinuous. 

However, the previous results do not exclude 2A, part of 2B, capsid proteins and RNA 

structures from playing a role in the packaging of the poliovirus genome. Indeed the 

stimulation of encapsidation by unidentified signals of the 5'UTR strongly supports this 
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statement (Johansen et al., 2000). Moreover the specificity of the encapsidation process is 

not absolute as some poliovirus RNA appears to be packageable by coxsackievirus 

(Holland et al., 1964; Soloviev et al., 1968; Barclay et al., 1998), HRV and mengovirus 

particles (Jia et al., 1998). The overall encapsidation efficiency of the poliovirus genome 

by heterologous capsid proteins provided in trans is however significantly lower than 

encapsidation efficiency of the poliovirus genome by homologous capsid proteins. The 

specificity of the interspecies trans-encapsidation process could be due to the existence of 

specific replication compartments and thus inefficient mixing (Ansardi et al., 1993a), or to 

a requirement for specific interactions between genomic RNA sequences or structures and 

the capsid proteins (Barclay et al., 1998). 

13.2.7.3 Maturation cleavage 

Juxtaposition of catalytically active amino acid residues in the immature virion (Hindiyeh 

et al., 1999) and encapsidation of the RNA genome (Arnold et al., 1987) trigger the final 

stages of assembly by "maturation" cleavage of the VPO precursor protein between the 

C-terminal asparagines (N) of VP4 and the N-terminal serine (S) of VP2 (Basavappa et al., 

1994; reviewed in Hellen et al., 1992). This autocatalytic event provides the concluding 

stage to the production of mature infectious progeny virions (Ansardi et al., 1996; Rueckert 

et al., 1996) and release into the extracellular environment. 

1.3.2.8 Release 

Lytic release of newly synthesised virions, seen in poliovirus infection, can occur via 

virus-induced cytopathic effect or host-cell apoptosis defense mechanism, triggered by 2A 

(Barco et al., 2000b; Goldstaub et al., 2000) and 3C (Barco et al., 2000a) protease damage. 

Apoptosis can be interrupted by the activation of anti-apoptotic pathways, which have been 

shown to be inhibited by interaction of VP2 of CVB3 with the siva host apoptotic 
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regulatory protein (Henke et al., 2000). Recent studies have provided evidence that the 

enterovirus 2B protein was able to form pores in the ER and Golgi membranes thereby 

reducing Ca2+ levels and interefering with the ER-mitochondrial Ca 2+ signalling. This 

prevented premature apoptosis and allowed completion of the virus reproductive cycle 

(van Kuppeveld et al., 2005). Most poliovirus apoptotic and anti-apoptotic pathways have 

been reviewed by Blondel (Blondel et al., 2004). 

Several poliovirus proteins have been involved in host cell translation/transcription shut 

off. PV 2A mutagenesis studies demonstrated that 2A was involved in specific host cell 

shut off, a process different from that induced by the use of non-viral host inhibitors 

(Bernstein et al., 1985). PV 3A is a protein involved in the rearrangement of host cell 

membrane structures and was also shown to have a cytopathic effect on poliovirus-infected 

cells (Lama et al., 1998). Furthermore, accumulation of progeny virions and increase in 

size of the infected host cell causes cell burst and release of progeny virions into the 

intercellular environment, where these are then able to infect the neighbouring cells. 

1.4 Receptors: pathogenesis and tropism 

1.4.1 Picornavirus receptors and diseases 

The pathogenesis of picornaviruses or range of clinical symptoms observed as a result of 

virus infection varies depending on a number of factors such as the receptor and tissue 

tropism, the dose required for infectivity and the cellular immune response to a particular 

viral infection. Picornaviruses are pathogens that cause a wide range of diseases such as 

respiratory diseases, encephalitis, hepatitis, foot-and-mouth disease, myocarditis, 

non-specific febrile symptoms, aseptic meningitis, congenital and neonatal infections, 

encephalomyelitis, the common cold and poliomyelitis (see table 1.11). Picornaviruses 
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have evolved to use a variety of cell surface molecules as receptors for attachment and 

entry of picornaviruses into the cell. This section discusses enterovirus receptors and 

tropism in more detail. 
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Virus genus/species Receptors Accessory factors Pathogenesis 

Enteroviruses 

Poliovirus type 1,2 Paralytic 

and 3 PVR (Ig-like) N/A poliomyelitis and 
mild febrile illness 

Coxsackievirus A13, 
18,21 ICAM-1 (Ig-like) N/A Aseptic meningitis 

Coxsackievirus A9 avß3 Vitronectin N/A 
Hand, foot and 
mouth disease 

receptor inte rip 
Coxsackievirus A21 DAF (SCR-like) ICAM-1 I -like 

Common cold 
Coxsackievirus BI, 3, DAF (SCR-like) av06 (integrin) Aseptic meningitis 
5 Myocarditis, 

pleurodynia, 
severe systemic 
disease in infants 

Coxsackievirus BI, 6 CAR (SCR-like) N/A Upper respiratory 
tract illness, 
pneumonia 
and post-viral 
fatigue syndrome 

Echoviruses 1 a2 1 inte rip 2m Aseptic meningitis 
Echoviruses 3,6,7, Paralysis 
11-13,20,21,24,29, DAF (SCR-like) 02m Respiratory 
33 disease 

Myocarditis 

Echoviruses 22 av03 Vitronectin 
N/A 

Epidemic 
myalagia receptor (integrin) 
Hepatic 
disturbances 
Acute 

Enterovirus 70 Sialic acid N/A haemorrhaging 
conjunctivitis 

Rhinoviruses 
Major receptor group ICAM-1 like (g-) N/A 
rhinoviruses 

LDLR (low 
Minor receptor group density 
rhinoviruses lipoprotein N/A Common cold 

receptor) 

Rhinovirus 87 Sialic acid 
(carbohydrate N/A 

He atoviruses 
HAV 

HAVcr-1 (Ig-like 
and mucin-like) N/A Hepatitis 
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Aphthoviruses 

a305 Vitronectin 
receptor, aß(36 

FMDV (Jackson et al., Heparan sulphate Foot-and-mouth 
2000), av3i proteoglycan disease 
(Jackson et al., 
2003)- integrins 

Cardioviruses 
VCAM-1 (Ig-like) 

Encephalomyocarditis or or Sialylated 
A N/A Encephalitis and 

virus (carbohydrate) myocarditis 

24 

Table 1.11: Picornavirus receptors and accessory molecules involved in cell infection. 

Table was adapted from Evans & Almond (1998). A list of clinical diseases associated 
with picomavirus infection and exacerbation was added to provide a complete picture of 
receptors and role in pathogenesis. Abbreviations used: ß2m, ß2-microglobulin; CAR, 
coxsackievirus and adenovirus receptor; DAF, decay-accelerating factor; HAVcr-1, 
hepatitis cellular receptor type 1; N/A, not applicable (no accessory molecules are currently 
implicated in virus infection); PVR, poliovirus receptor; SCR, short consensus repeat (s); 
VCAM-1, vascular adhesion molecule type 1. 
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1.4.2 Identified enterovirus receptor 

1.4.2.1 Receptors 

Human enteroviruses exhibit great diversity in the range of molecules used as cell surface 

molecules for attachment. Enteroviruses have evolved to use cell surface receptors that 

have a defined role in cell recruitment, attachment, infiltration or other aspects of the 

immune system. Certain enteroviruses, such as some coxsackieviruses and poliovirus, 

appear to have evolved to attach immunoglobulin-like molecules. It is possible either that 

the viruses have evolved to use immunological molecules or that the receptor bound by 

these viruses are immunoglobulin-like as the structural fold of these molecules is stable. 

The majority of enterovirus receptors are immunoglobulin-like molecules, other proteins 

such as integrins or SCR-like molecules, glycosaminoglycans (GAGs), sialic acid and 

other molecules such as heparan sulphate, which are all involved in a broad number of 

cellular functions (see figure 1.12). 

The intracellular adhesion molecule type 1 (ICAM-1), the poliovirus receptor PVR, CD 155 

and the Coxsackievirus and adenovirus receptor (CAR) belong to the inununoglobulin-like 

family of cell surface molecules. 

ICAM-1, a molecule involved in the adhesion between leukocytes and endothelial cells, 

has been identified as the receptor for human enterovirus species C coxsackieviruses A 

(Colonno et al., 1986; Shafren et al., 1997a) and the major receptor group human 

rhinoviruses (HRV) (Greve et al., 1989; Staunton et al., 1989). 
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The structures shown are generic structures. CAR: coxsackie-adenovirus receptor, PVR: 

polio%irus receptor. ICAM-l : intracellular adhesion molecule type 1, VCAM-l: vascular 
cell adhesion molecule type 1. DAF: decay-accelerating factors. SCR: short consensus 
repeat. GPI: glycosylphosphatidylinositol, LDL-R: low density lipoprotein receptor, 
[. [)l.: Ios density lipoprotein. HAVCR-1: hepatitis A cellular receptor type 1. T/S/P: 
threonine/serine/proline. The domains indicated in white are the domains implicated in 

virus binding. The domains in black are the domains that do not play a role in virus 
binding. All the other domains are domains for which no information is available. Figure 
taken from Evans & Almond (1998). 
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CD155 is an 80kDa cell surface molecule, expressed as four splice variants of which a and 

5 act as a receptor for poliovirus attachment and entry (PVR) (Mendelsohn et al., 1989). 

Subsequent studies demonstrated that infection of non-transgenic mice with the 

mouse-adapted strain of poliovirus type 2 (Lansing) induced fatal poliomyelitis in mice 

(Murray et al., 1988), as seen in infection of PVR-transgenic mice with poliovirus type 1 

(Ren et al., 1990). These two pathogens were shown to infect different cell types by 

histopathological analysis. The study of the PVR-transgenic mice infected with poliovirus 

type 1 Mahoney strain implies that the use of PVR is involved in causing poliomyelitis 

(Ren et al., 1990) and defines a virus as a poliovirus. However the precise role of the PVR 

in the host still remains to be identified even though it is involved in embryonic CNS 

development and cell to matrix contacts by specific binding to vitronectin (Lange et al., 

2001). The PVR was recently shown to be a ligand for the natural killer cell (NK) 

triggering receptor DNAM-1 (CD226). Upon binding of CD 155 to DNAM-1, activation of 

lysis of PVR-expressing cells by NK occurred. This was inhibited by the use of 

anti-DNAM-1 monoclonal antibody (Bottino et al., 2003). Until the identification of a 

CD155 mouse homolog (Morrison et al., 1992), poliovirus was believed to only infect 

primates as no non-primate CD155 homologs were thought to exist (Koike et al., 1992). 

Transgenic mice expressing the human PVR (Koike et al., 1991; Ren et al., 1990) have 

proved to be a very useful animal model for the study of poliovirus pathogenesis in a 

laboratory environment. Studies investigating the expression of CD155 have suggested that 

the protein seems to be regulated on a developmental level. CD155 expression in 

embryonic anatomical structures giving rise to spinal cord anterior horn motor neurons 

may contribute to the restricted host cell tropism of poliovirus for these compartments of 

the CNS (Gromeier et al., 2000). The PVR has also been suggested to have a part in 

intracellular transport (Mueller et al., 2002) and maybe retrograde axonal transport. 
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The CAR molecule, the identified receptor for CVBs and adenoviruses type 2 and type 5 

(Bergelson et al., 1997), is expressed during the embryonic development in the central and 

peripheral nervous systems (Tomko et al., 2000) as well as in many other human tissues. 

CAR has cell adhesion functions (Honda et al., 2000). 

The enteroviral receptor DAF, a GPI-anchored complement regulatory cell surface 

molecule protecting host cells from autologous lysis (Lublin et al., 1989) has four short 

consensus repeats (SCRs), which mediate binding with human enteroviruses species B, C 

and D. DAF was demonstrated to be the human receptor for enterovirus 70 (Karnauchow 

et al., 1996). Haemagglutinating echovirus strains (Ward et al., 1994; Powell et al., 1997; 

Williams et al., 2004), echovirus 7 (Powell et al., 1997), CVA21 (Shafren et al., 1997a; 

Newcombe et al., 1994; Johansson et al., 2004) and CBV1,3 and 5 (Bergelson et al., 1995; 

Shieh et al., 2002) have since been shown to interact with DAF. DAF-inhibition studies 

have shown that EV6, EV7, EV 12 and EV21 infections were DAF-dependent (Powell et 

al., 1998; reviewed in He et al., 2002). Many picornaviruses have been shown to bind DAF 

indicating that adaptation to use DAF as a receptor is likely to result from evolutionary 

selective pressure. DAF may therefore offer a selective advantage over other cell surface 

molecules. DAF has been thought to facilitate internalisation of virus receptor or 

recruitment of naive cells and activation of the apoptotic pathway and therefore virus 

release and spread (Evans et al., 1998). DAF is also a molecule involved in controlling the 

host immune response and adaptation of viruses to use DAF could enable masking and 

inhibition of the immune system. 

Heparan sulphate is a ubiquitous cell surface glycosaminoglycan (GAG) that interacts with 

a wide range of virus families, such as a herpesviruses (Shieh et al., 1992) and 

picornaviruses (Jackson et al., 1996). A number of human enteroviruses have been 

reported to use heparan sulphate as a receptor for attachment and entry. Coxsackievirus B3 
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uses heparan sulphate as well as CAR for virus entry (Zautner et al., 2003) and echovirus 6 

clinical isolates use heparan sulphate as an alternative receptor to DAF for virus 

attachment and entry (Goodfellow et al., 2001). 

Sialic acid, a family of unique 9-carbon monosaccharides, plays an essential role in 

enterovirus 70-attachment (Alexander et al., 2002). Indeed EV70 is able to bind 

neuraminidase-treated cells, in which DAF was neutralised, as the molecule is sensitive to 

neuraminidase. This is further supported by Haddad's work demonstrating that 

DAF-binding is not required for EV70 infection of a human leukocyte cell line (Haddad et 

al., 2004). It is thought that EV70 primarily binds sialic acid. EV70 is likely to have 

evolved to use DAF as a receptor by passage in cell culture (Karnauchow et al., 1996). 

Increasing evidence indicates that dual tropism (simultaneous or sequential binding of a 

virus to two cell surface molecules) can be used for attachment and entry of enteroviruses 

into cells. The CVB3-Nancy strain uses the CAR receptor for attachment and entry and is 

unable to infect RD cells, as they do not express the CAR receptor. CVB3 serially 

passaged in RD cells (CVB3-RD) was able to productively infect these cells by DAF entry 

(Bergelson et al., 1995; Schmidtke et al., 2000) whilst retaining its ability to bind CAR 

(Schmidtke et al., 2000). CVB3-RD was however unable to infect CHO-DAF cells 

suggesting that accessory factors, molecules involved in subsequent stages of entry and 

uncoating, present in RD cells but not in CHO-DAF cells might play a role in infection 

with CVB3-RD adapted strain. Recent studies demonstrated that CVB3 was also able to 

use heparan sulphate as well as CAR for virus entry (Zautner et al., 2003). CVA9 is 

another enterovirus that is able to use more than one cell surface molecule for attachment. 

CVA9 uses the vitronectin receptor as a molecule for attachment to host cell (Roivainen et 

al., 1991). The inactivation of an RGD motif of the virus, by trypsin cleavage, does not 

prevent infection of African green monkey cells thereby indicating that there is an 
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alternative cell surface molecule used by CVA9 for attachment and entry (Roivainen et al., 

1994). Echoviruses use DAF as a receptor (Bergelson et al., 1994; Powell et al., 1998; 

Ward et al., 1994) however recent studies suggested the potential use of DAF and heparan 

sulphate, a second receptor, by these viruses (Goodfellow et al., 2001) 

Dual tropism could be due to capsid surfaces having evolved to contain two 

receptor-binding sites. However, distinguishing between molecules only involved in 

binding and molecules required for subsequent stages of infection such as entry and 

uncoating (known as accessory factors) can be difficult. 

1.4.2.2 Accessory factors 

As we understand more about viruses it is clear that accessory factors are important for 

infection. A number of accessory factors have been identified for different families of 

viruses and are thought to be important determinants of tissue specific pathogenesis and 

tropism. Accessory factors still need to be established for picornaviruses, however studies 

strongly suggest the involvement of such factors in the infection process (see table 1.11). 

Moreover, several entities have been reported to enhance infectivity of enteroviruses; in 

fact DAF has been demonstrated to enhance efficiency of CVA21 uptake, an ICAM-1 

using virus (Shafren et al., 1997a; Johansson et al., 2004). MAP70, an MHC class I 

protein, has been suggested to be an accessory factor in infection with CVA9 (Triantafilou 

et al., 2000). CD59, a complement control protein, appears to be important in echovirus 

infection, in particular infection with echovirus 7 (Goodfellow et al., 2001). a,. ß6 is thought 

to enhance CVB lytic infection of human colon cancer cells (Agrez et al., 1997). 

ß2-microglobulin (ß2-m), a component of the MHC class I has been indirectly implicated in 

the infection of RD cells with echoviruses, since treatment with 02-m antibody was able to 

block infection but not binding in RD cells (Ward et al., 1998). A similar event was 
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observed in CVA9 infection of CHO cells, where CVA9 was able to bind a�ß3 but no 

infection was observed after ß2-m antibody treatment (Triantafilou et al., 1999)(see table 

1.11). In all these cases, the role of these accessory factors remains ill defined. 

1.4.3 Tropism and its determinants 

It is clear that several factors are involved in the determination of pathogenesis and 

tropism, the affinity of picornaviruses for a population of host cells or a specific host tissue 

composed of susceptible cells (Shafren et al., 1997a; Johansson et al., 2004; Triantafilou et 

al., 2000; Goodfellow et al., 2001; Agrez et al., 1997; Triantafilou et al., 1999). The 

tropism of a virus is often defined by the receptor usage. Within each genus exist 

sub-divisions of viruses using the same receptor for attachment and entry. Some genera are 

directly correlated to receptor usage such as aphthoviruses that use the vitronectin receptor, 

and rhinoviruses and Coxsackievirus A2 1, both causing respiratory tract infections, that 

use either the intracellular adhesion molecule type 1 (ICAM-1: major receptor group) or 

the low-density lipoprotein receptor (LDLR: minor receptor group). However there is little 

or no direct correlation between the genetic similarity and receptor use for the remaining 

picornaviruses, for which the receptor has been identified, in particular for human 

enteroviruses as they exhibit the most diversity in receptor usage. 

Pathogenesis is also variable. Different viruses can cause the same clinical symptoms 

(Melnick, 1996). Indeed Coxsackievirus B3 and Coxsackievirus B4 (CVB3 and CVB4) 

strains can vary in their ability to cause particular syndromes such as cardiovirulence and 

diabetes (Cao et al., 1991; Dunn et al., 2000). The two different viruses, closely related in 

their non-structural coding region of the genome, can infect the same cell type through 

attachment to the same receptors DAF or different receptors: DAF and CAR (Bergelson et 

al., 1995; Shafren et al., 1997b). This and the recent recombination data (described in 
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Chapter 3) suggest that the predominant - if not the primary - determinant of virus 

pathogenesis is the receptor to which it attaches. 

Similarly, the same virus can infect different cell types, expressing the same cellular 

receptors, situated at distinct locations in the host, causing different symptoms. Poliovirus 

is a very good example as it can infect cells of the intestinal epithelium causing mild 

enteric syndromes whereas infection of the CNS motor neurons, expressing the same PVR 

cell surface receptor molecule, causes AFP. 

The choice of receptor or cell surface molecule, determining the cell type infected, is a 

major factor contributing to symptoms observed in a viral infection. Receptors are 

therefore very important pathogenesis and tropism determinants. However, it is unclear 

whether these cell surface molecules are the sole determinants of tropism or whether other 

factors are involved. Factors such as the immune status of a particular host and different 

environmental conditions may be involved in the determination of tropism and 

pathogenesis. Whilst poliovirus appears not to require additional factors for cellular 

infection to occur, this is not the case for all enteroviruses. 

Non-poliovirus enteroviruses, like CVA7, CVA9 (Grist et al., 1970), EV70 (Wadia et al., 

1983), EV71 (Chumakov et al., 1979) and recently CVA21 (Shaffren et al., 1997) are 

nonetheless able to cause poliomyelitis-like syndromes. Despite acquiring particular 

receptor af'inity, infection by some of these viruses can be blocked by antibodies to their 

original receptors. EV70 and EV71 have been shown to cause acute haemorrhagic 

conjunctivitis and hand-foot-and-mouth disease (Wang et al., 1999; Yin-Murphy et al., 

1984). It has been thought by many that non-poliovirus enteroviruses could potentially 

acquire affinity for CD 155 through adaptive changes in the P1 structural proteins coding 
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region (Gromeier et al., 1999). The hypothesis still needs to be tested and the following 

project was an attempt to determine whether such an evolutionary event could occur. 

1.5 Evolution 

RNA virus evolution occurs under selective pressure, provided by physical, selective, 

functional, developmental and/or genetic constraints, and is driven by two mechanisms 

enabling the viruses to adapt, survive and multiply in a new cellular environment: 

polymerase error rate leading to the introduction of mutations within progeny genomes and 

RNA recombination. The evolution of picomaviruses is driven by accumulation of point 

mutations, short insertions/deletions and genomic changes due to the exchange of genetic 

material, with related or non-related sequences, that lead to the generation of divergent 

RNA and protein sequences, with conservation of essential functions and viability of the 

virus. The evolution of picornaviruses occurs via both these mechanisms. 

1.5.1 Evolution of picornaviruses 

1.5.1.1 Mechanisms of evolution 

1.5.1.1.1 RdRp mutation rate and error polymerase rate 

Replication of all positive-sense strand RNA viruses is driven by RNA-dependent 

RNA-polymerases (RdRp), apart from retroviruses that replicate using RNA-dependent 

DNA-polymerases. RdRps lack a proofreading mechanism (Ishihama et al., 1986) and are 

therefore unable to correct mutations or mismatches introduced during viral replication. 

The polymerase error rate of picornaviruses has been shown to be as high as 2.1x10 to 

5.9x104 substitutions per nucleotide (Crotty et al., 2001; Sierra et al., 2000). As a result 

positive-sense strand RNA viruses exist as quasispecies, or an ensemble of related but 

genetically different viral genomes (Eigen et al., 1988), and exhibit high evolution rates, 
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discussed further in chapter 2. Existing as a quasispecies is an evolutionary advantage as 

the mutant spectrum contains viral sequences that may be efficient at evading the immune 

response, having increased resistance to antiviral agents, escaping specific antibodies and 

cytotoxic T cells and altering their induction of interferon capacity (Ruiz-Jarabo et al., 

2000). 

1.5.1.1.2 Recombination 

1.5.1.1.2.1 Definition and description 

The second process that drives positive-sense single strand RNA virus evolution is that of 

recombination between viral RNA genomes and was first described in poliovirus in the 

1960's (Hirst et al., 1962; Ledinko et al., 1963). It is a widespread mechanism known to 

occur in animal, plant and human viruses (Chetverin et al., 1997; Lai et al., 1992b; 

Slobodskaya et al., 1996) and it enables the generation of fitter viruses, able to survive in 

an altered environment, or the preservation of wild-type viral sequences. Recombination is 

the generation of a new combination of genes that are more advantageous for the survival 

of a specific viral population. Recombination between two pieces of RNA can be either 

homologous, and occur between two identical or similar molecules recombining in a 

precise (junction sites occupy different positions in recombining molecules) or imprecise 

(producing molecules with duplications and deletions) manner, or non-homologous, and 

occur between two different RNA molecules. 

1.5.1.1.2.2 Different processes of recombination 

Recombination of positive-sense single strand non-segmented RNA genomes can occur via 

two distinct mechanisms: a replication-dependent copy-choice mechanism where the viral 

replicase-nascent strand complex switches from one template to another during replication 

(Coffin et al., 1979; Kirkegaard et al., 1986; Figleworicz et al., 1997; Figleworicz et al., 
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1998) and a replication-independent mechanism of breakage and rejoining of pieces of 

genetic material (Kirkegaard et al., 1986). Until recently, very few studies had investigated 

the second process, however recent studies have provided definitive evidence of 

recombination occurring via a replication-independent mechanism of template breakage 

and rejoining (Chetverin et at., 1997; Gallei et al., 2004; Gmyl et al., 2003). 

1.5.1.1.2.2.1 RdRp copy choice mechanism 

Copy-choice recombination is the result of the RdRp template switching during replication 

(Figlerowicz et al., 1998; Jarvis et al., 1992; Kirkegaard et al., 1986; Lai et al., 1992a; 

Nagy et al., 1997; Nagy, 1998; Pilipenko, 1995), a process described in studies of 

pseudorevertant genomes in Theiler's murine encephalomyelitis virus (TMEV) and 

poliovirus (Pilipenko et al., 1995). Pausing of the nascent strand due to misincorporation 

by the RdRp, dissociation of the RNA polymerase from the nascent strand, re-annealing of 

nascent and template strands and resumption of the synthesis are the various stages of the 

copy-choice mechanism (reviewed Nagy et al., 1997). Studies in the 1960's demonstrated 

that poliovirus recombinants could arise as a result of mixed infection of a cell with two 

different serotypes of polioviruses (Hirst et al., 1962; Ledinko et al., 1963). This was later 

shown to occur inside specific compartments used for RNA replication (Bienz et al., 1990). 

1.5.1.1.2.2.2 Replication-independent recombination 

Unlike template switching, non-replicative recombination has not been studied extensively. 

Chetverin carried out experiments on Qß replication demonstrating non-replicative 

recombination of RNA fragments (Gmyl et al., 1999; Chetverin et al., 1997). These in vitro 

studies, however, did not exclude the possible low levels of replication due to the presence 

of the Qß replicase required for amplification of the recombinant molecules. 

Recombination could still be accounted for by a copy-choice mechanism. Even if we 

assume that Chetverin's studies demonstrate non-replicative recombination in vitro it has 
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not been demonstrated in an in vivo system until recently. Experiments studying the 

co-transfection of incomplete poliovirus RNA sequences demonstrated the generation of 

viable viruses and gave strong but not definitive evidence of a replication-independent 

recombination mechanism (Gmyl et al., 2003). However, the definitive evidence of such an 

event occurring was provided by the recent studies carried out in BVDV, where viable 

recombinants would arise from co-transfection of segments of RNA, each containing 

deletions in the RdRp-coding genes thereby completely ruling out the possible 

involvement of replication in the process (Gallei et al., 2004). 

1.5.1.2 Evidence of emergence of recombinants in nature 

The emergence of viruses as a result of recombination represents an important threat to the 

world as they have the potential to cause major outbreaks and pandemics. Indeed virus 

recombination, leading to the emergence of completely new viruses, has been a concern for 

many years. The recent outbreak of SARS, a coronavirus that is thought to have recently 

evolved from its natural reservoir to infect humans, illustrates the impact such emerging 

viruses can have both economically and demographically. Another example of 

recombination occurring in nature is that of bovine viral diarrhea viruses (BVDVs). Recent 

phylogenetic studies of BVDVs suggested that recombination between different virus 

strains had occurred in animal hosts (Nagai et al., 2004). HIV is an RNA human retrovirus 

that has had a huge impact on the world. Recombination has been reported to be a frequent 

event contributing to the generation of genetically diverse strains of HIV with different 

pathogenesis characteristics (Robertson et al., 1995). 

1.5.1.3 Evolution amongst enteroviruses 

Recombination plays a major role in enterovirus evolution. In fact, numerous 

recombination events have been reported in both a natural host environment and a 
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laboratory environment. Certain human enteroviruses are thought to have arisen from 

ancient recombination events and this was suggested to have occurred for CVA16 and 

bovine enteroviruses as sequence comparison studies of these viruses indicated strong 

phylogenetic relationships (Hyypiä et al., 1997). Genetic recombination between different 

human enteroviruses type B echovirus serotypes has been reported to occur when multiple 

epidemic strains were circulating simultaneously (Oprisan et al., 2002). This was 

confirmed by recent work studying the phylogenetic relationships between various 

enteroviruses species B (Oberste et al., 2004a). Further phylogenetic analysis of 

enteroviruses species C (Brown et al., 2003) and enteroviruses species A (Oberste et al., 

2005) included strong evidence that recombination amongst enteroviruses is a common 

occurrence. CVA2 1, currently defined as an enterovirus expressing the same tissue tropism 

as HRV and causing respiratory infections, was suggested to be a recombinant between a 

rhinovirus and a poliovirus in studies carried out in the mid 1980's (Stanway et al., 1984). 

1.5.1.4 VDPV and vaccine revertants 

Live-attenuated strains of poliovirus, containing mutations rendering the strains unable to 

cause poliomyelitis but still able to infect cells; have proved to an essential tool for 

vaccination and eradication of poliovirus. Sabin was one of the first generated 

live-attenuated poliovirus vaccine strains (Krugman et al., 1961), and these are now used in 

many countries as means of immunisation through vaccination with OPV, a live-attenuated 

vaccine containing three serotypes of live-attenuated poliovirus wild-type strains. Since the 

first use of live-attenuated poliovirus strains, the secretion of neurovirulent revertants have 

been reported (reviewed Dowdle et al., 2003) and have been shown to cause infection in 

immunodeficient patients and the non-immune population in close contact with the 

excreting vaccinee. However, recent data from retrospective studies have shown the 

presence of recombinant VDPVs (vaccine-derived poliovirus) circulating in the wild. 
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VDPDs isolates were circulating in Egypt for over 10 years, between 1983 and 1993, and 

circulation ceased with rising coverage of OPV vaccination (Yang et al., 2003). These 

studies not only suggest that OPV vaccine strains can recombine and cause acute flaccid 

paralysis (AFP) but that VDPVs can circulate for extended periods of time in an 

environment where low vaccination coverage is prevalent. Further retrospective studies of 

the poliovirus Sabin type 3-associated outbreak in Poland in 1968 (Martin et al., 2000) 

demonstrated that VDPV-related outbreaks were not restricted to tropical developing 

countries such as Hispaniola (Kew et al., 2002) and that VDPVs were able to cause AFP in 

developed countries with temperate climates and moderate population densities if the 

population immunity to one of the vaccine strains of poliovirus is low. Moreover studies of 

1963-1966 VDPV isolates in Belarus (Korotkova et al., 2003) reinforced the point that 

maintenance of sufficient levels of OPV vaccination coverage is essential to avoid 

circulating VDPVs from occurring. 

1.5.1.5 Recent outbreaks and recombinants between poliovirus and human 

enterovirus C 

The outbreak of recombinant vaccine strains in Hispaniola in 2000-2001 (Kew et al., 2002) 

caused an immediate public health concern, as the country had been free of wild-type 

poliovirus since 1991. Isolates were collected, sequenced and had Sabin poliovirus type 1 

5'UTR and P 1/2A-coding sequences and unidentified human enterovirus C 3'UTR, 

2B/2C/P3-coding sequences, thereby giving evidence for a recombination event. This 

recombination event is the first report of human enteroviruses C recombining with a Sabin 

poliovirus vaccine strain with a crossover point within the 2A/2B-coding region (see figure 

3.38). Other circulating VDPVs were also identified in the Philippines in 2001 (MMWR 

2001). More recent studies carried out by Delpeyroux's group isolated strains from 

outbreaks of AFP in Madagascar (Rousset et al., 2003) and identified a number of human 
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enterovirus C strains that were circulating at the time of vaccination (Rousset et al., 2004). 

Studies of both Haitian and Madagascan cVDPVs suggested that live-attenuated poliovirus 

vaccine strains were able to recombine with circulating enterovirus C causing a 

poliomyelitis-like disease. In fact, further studies carried out by Delpeyroux's group 

identified two unspecified recombination crossover points within the 2A-coding region and 

a definitive recombination between vaccine strains Sabin type 2 and enteroviruses species 

C (Rousset et at., 2004). These studies not only highlighted the risk of recombinant viruses 

emerging and causing outbreaks, as a result of low vaccination coverage, but the fact that 

enteroviruses C were able to recombine just confirmed the difficult obstacles the WHO 

would have to overcome in order to succeed in eradicating poliovirus from the world. The 

emergence of such recombinant viruses may lead to a persistence of circulating 

polioviruses in the wild. So far the circulating recombinant VDPVs isolated and analysed 

from outbreak cases had structural proteins of a vaccine strain and the remainder of the 

virus genome had sequences of unidentified viruses within species of HEV-C (Stanway et 

al., 2000). An urgent understanding of such recombinants is essential for the monitoring 

and control of transmission or re-emergence of poliomyelitis post-eradication. Failure to 

investigate concerns regarding the polio eradication programme could lead to the 

re-emergence of poliovirus and actually reverse the efforts and progress already achieved 

by the WHO. 

1.5.1.6 Vaccines and revertants 

Vaccine-derived polioviruses have been responsible for many reported acute flaccid 

paralysis (AFP) cases. Stability of live-attenuated vaccines has been a concern since the 

first evidence of the appearance of vaccine-associated paralytic poliomyelitis VAPP soon 

after the OPV vaccine was licensed for commercial use. With a large part of the world 

being polio-free OPV has always been considered as a very efficient and fairly safe 
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vaccine. However, recent retrospective studies and outbreaks of paralytic poliomyelitis 

associated with circulating vaccine-derived polioviruses (cVDPVs) have highlighted 

pre-existing concerns. 

1.5.2 WHO eradication program and rising concerns 

In the 1950's poliomyelitis was an important disease prevalent in both the developed and 

the developing world. Salk vaccine, a poliovirus inactivated vaccine (IPV), was initially 

used as a prevention method and is still used in many countries. Since the 1960's Sabin's 

OPV (trivalent live-attenuated oral poliovirus vaccine) has been used, in most parts of the 

world, as the preferred prevention method. IPV and OPV are still being used but the low 

cost of OPV production makes its administration in developing countries more manageable 

and realistic. This pattern is likely to change as eradication is achieved and every means 

possible will be made to exclude the potential reintroduction of circulating paralytic 

poliovirus. 

The 1979 smallpox eradication prompted the Pan American Health Organisation (PAHO) 

and World Health Organisation (WHO) to initiate a poliovirus eradication program, in 

1985, aiming to eliminate poliomyelitis worldwide by 1990 using the OPV as the means to 

the end. Mass immunisation campaigns were initiated with national immunisation days 

(NIDS), in which millions of children in a country are immunised in a single day, and 

sub-national immunisation days (SNIDS), in which smaller areas are immunised in one 

day. These have shown to abruptly reduce the number of susceptible individuals thereby 

interrupting transmission of the virus. However, widespread vaccination can prove to be 

challenging and some parts of tropical and developing countries have very low 

immunisation coverage. This leads to the emergence of vaccine-associated paralytic 

poliomyelitis (VAPP) caused by circulating vaccine-derived poliovirus strains (cVDPVs). 
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The WHO polio eradication program has achieved the eradication of circulating wild-type 

poliovirus in many parts of the world (figure 1.13), however the transmission of wild-type 

poliovirus still occurs in India, Pakistan, Afghanistan, Egypt, Niger and Nigeria and the 

emergence of more VAPP cases by cVDPVs in Haiti (Kew et al., 2002), Egypt (Yang et 

al., 1997), Philippines (MMWR 2001) and Madgascar (Rousset et al., 2003) have raised 

issues about the successful eradication of poliomyelitis. Better monitoring has enabled the 

detection of emerging recombinant viruses between vaccine strains and human enterovirus 

species C (Kew et at., 2002; Rousset et al., 2003), able to cause outbreaks, highlighting the 

importance of vaccine-derived polioviruses (VDPV) and the need for a better 

understanding of recombinants both in vitro and in vivo. 

The re-emergence of poliomyelitis due to undetected circulating wild-type strains or 

recombinant vaccine strains is a major concern. Monitoring and control methods need to be 

carried out and extended to the post-eradication era as poliovirus could escape or be 

released from laboratories and potentially cause a pandemic in a non-immune susceptible 

population. Vaccine strains need to be kept in case such an event was to happen and it is 

likely that vaccination in the developed world will switch to IPV in the end stages of the 

eradication program. Non-poliovirus enteroviruses are known to be capable of causing a 

poliomyelitis-like disease in humans. The eradication of poliovirus does not remove the 

possibility of another enterovirus evolving to use the poliovirus ecological niche left vacant 

post-eradication and cause poliomyelitis. 

1.6 Aims of the project 

As the world gets closer to poliomyelitis eradication, progress in vaccination distribution, 

detection methods and laboratory containment are becoming more important. The 

emerging VDPVs causing outbreaks of AFP are a major source of concern and various 
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issues need to be tackled. How do recombinants arise and do recombination hotspots exist? 

With the eradication of poliovirus and the ecological niche being left vacant, what are the 

chances that a non-poliovirus enterovirus could evolve to use the poliovirus receptor and 

cause poliomyelitis? What are the implications of such recombinants? Would these 

recombinants cause poliomyelitis due to their PVR usage and what are the determinants of 

tropism and pathogenesis? 

The initial aim of the project was to investigate the tropism of enteroviruses and to 

determine whether enteroviruses could evolve to use a novel receptor. Receptor 

interactions are important determinants of tissue tropism and numerous experiments have 

been carried out describing the evolution of a particular picornavirus to use an alternate 

receptor in a tissue culture environment. Evidence of Coxsackievirus A 21 adapting to use 

DAF as a receptor in tissue culture as opposed to its identified receptor ICAM-1 was 

recently provided by Johansson (Johansson et al., 2004). FMDV tissue culture adaptation 

to use heparan sulphate as a receptor is another interesting example of novel tropism 

(Jackson et al., 1996). Infection of ICAM-1 negative cells by human rhinovirus 14 

(HRV 14) was also shown (Reischl et al., 2001). Recent studies demonstrating enterovirus 

70 sialic acid usage (Alexander et al., 2002) and suggesting that EV70 had evolved to use 

DAF as a receptor again provided evidence that picornaviruses can evolve to use alternate 

receptors. 

Furthermore, the Haitian and Madagascan outbreaks caused by emerging recombinant 

viruses indicate that recombinants provide a source of continued circulation of PVR-using 

enteroviruses, which are known to be capable of causing poliomyelitis. 

The project was designed to investigate these issues. The project was divided into three 

major sets of experiments: mutagenesis selection and adaptation studies, in vitro generation 
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and characterisation of recombinant viruses and in vivo selection for novel tropic 

recombinant viruses. 

Mutagenesis studies to select for novel tropic viruses using an antiviral mutagen were 

carried out. These were designed to enable the generation of divergent mutant viruses 

using a process reproducing evolution. 

In vitro generation of recombinants with pre-determination of the crossover sites was 

initiated to investigate heterologous processing requirements of enteroviruses. The aim was 

to generate recombinant viruses that had the capsid-coding region of a non-poliovirus 

enterovirus and the remainder of the genome of a poliovirus. Reciprocal recombinants 

were also constructed in attempt to provide a better understanding of the VDPVs 

recombined with enterovirus species C (Kew et al., 2002; Rousset et al., 2003). The 

circulating VDPVs, isolated from outbreak cases in Haiti and Madagascar, were 

demonstrated to be recombinants between the structural protein-coding region of vaccine 

strains, Sabin poliovirus type 1 (Haiti) and Sabin poliovirus type 2 (Madagascar), and the 

non-structural protein-coding region of human enteroviruses species C. The viability of 

these isolates indicated that the 3CD of an enterovirus type C could efficiently process the 

P1 of a poliovirus vaccine strain. 

In vivo selection for novel tropic recombinant viruses by co-transfection of two defective 

viral RNA sequences constituted the final part of the project. Previous evidence of 

successful generation of recombinants by co-transfection of incomplete viral RNA 

transcripts, reports of emergence of recombinants between human enteroviruses C and 

Sabin poliovirus vaccine strains and the implication of such recombinants in view of 

poliomyelitis eradication formed the basis of the next set of experiments. Successful 

selection of capsid recombinants in tissue culture without predetermining crossover 



Claire Blanchard Introduction Chapter 1 43 

points/exact recombination sites and characterisation of such recombinants could provide 

valuable information on properties, stages of life cycle affected, tropism determinants, 

potential location of recombination hotspots of enteroviruses and the potential emergence 

of a virus with a novel sequence to occupy the ecological niche that would be left vacant 

following poliovirus eradication. Generation of such recombinants could also potentially 

be a tool for enabling identification of compatible domains of the genome involved in 

packaging and give us insights into protein-protein, protein-RNA and potentially 

RNA-RNA interactions involved in replication. 
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2 Selection of novel tropic viruses using a mutagen 

2.1 Introduction 

All RNA viruses, except for retroviruses, use RNA-dependent RNA-polymerases (RdRps) 

as a catalytic enzyme for RNA synthesis. RdRps lack proofreading activity thereby 

introducing errors to the newly synthesised progeny genomes. RNA viruses can therefore 

exhibit a high mutation rate. These viruses exist as quasispecies or large population of 

related but divergent viral sequences, which may be an evolutionary advantage. The 

frequency at which errors occur in a viral genome is known as error frequency, which is 

the measure of genetic drift or gradual adaptation to new environments due to external 

stresses also known as selective pressure. 

However, the evolution rate of RNA viruses is not solely determined by the fixation rate of 

mutations as it is also dependent on environmental factors. Measles virus exhibits a high 

mutation rate but has evolved slowly due to a low fixation rate of mutations (Schrag et al., 

1999) whereas HIV shows a higher evolution rate even though its mutation rate is similar 

to that of measles virus. The evolution rate of HIV has been extensively documented and 

has been shown to be dependent on mutation rate as well as on the host immune system 

(Wolinsky et al., 1996) and other factors, which select for viruses that exhibit particular 

phenotypes. Indeed a virus could evolve faster in a new host but keep the same polymerase 

error rate or fidelity, due to a variability in the fixation rate of mutations. Recent studies 

carried out by Andino (Crotty et al., 2001), Domingo (Ruiz-Jarabo et al., 2000; Sierra et 

al., 2000) and co-workers confirmed the mutation rate of picornaviruses to be between 

2.1x10 and 5.9x104 substitutions per nucleotide. These figures were obtained by direct 

sequencing analysis of many viral genomes and by using the frequency at which genetic 

markers are isolated from a given virus population. These studies confirmed the initial 
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poliovirus mutation rate calculation (Ward et al., 1988). More investigations have 

quantified the poliovirus mutation rate in a long-term immunodeficient excretor to be 1% 

per base per annum (Martin et al., 2000; Minor, 1996), again supporting initial calculations 

(Ward et al., 1988). Recent investigations demonstrated that the VP1-coding region of 

Sabin type 1 VDPV, isolated from the gut of a healthy child, exhibited a sequence drift of 

over 2% per base per annum. This figure proves that certain VDPVs exhibit higher 

mutation rates than that initially observed for poliovirus, and that these viruses are able to 

replicate in the gut of healthy individuals for long periods of time (Martin et al., 2004). 

Selective pressure occurs during processes such as replication, cell lysis and virion release 

into the intercellular environment, where these come into contact with cells from the 

immune system. The combination of variation and large replication yield during infection 

is considered to be advantageous to virus populations. If the host specific immune response 

results in the near elimination of wild-type viruses, quasispecies may contain escape 

mutants that do not express the specific epitopes recognised by cytotoxic T cells, 

antibodies or innate responses. These escape mutants will then quickly replicate and give 

rise to a new population of quasispecies, allowing the survival of the viral population as 

was shown for Hepatitis C virus (HCV) (Erickson et al., 2001) and HIV (Pircher et al., 

1990). However, errors can lead to the generation of non-viable viruses and the extinction 

of a particular virus population in the event of excessive number of mutations being 

introduced, a consequence known as error catastrophe (see figure 2.4 and 2.5). 

RNA virus recombination can be beneficial to mutant viral sequences and can allow 

recovery of fitness-impaired sequences (Chao et al., 1997). However, recombination can 

also lead to the generation of non-viable viruses due to incompatibility between genomes, 

RNA structures and/or proteins. 
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In an environment where the mutation rates are high, a significant proportion of mutations 

are deleterious. This leads to the generation of non-viable or otherwise disadvantaged 

genomes. Miiller's ratchet is the selection by serial passages of virus populations through a 

narrow genetic bottleneck, an evolutionary process whereby a significant percentage of a 

virus population is killed or prevented from reproducing, which leads to the reduction in 

the population and survival of a subset of viruses (transmitted from host to host) (Duarte et 

al., 1992; Chao et al., 1990; Domingo et al., 1985). In this context, wild-type viruses are 

defined as viruses that have sufficient fitness to survive and be transmitted from host to 

host. Mailer's ratchet could have significant implications for variability of disease severity 

during virus outbreaks. 

Evolution of picornaviruses, and more specifically poliovirus, occurs via two mechanisms: 

the introduction of mutations due to the error rate of RdRp and intra-/inter-typic 

recombination. The fixation rate and phenotypic selection may result in viruses with 

altered tropism at an enhanced level of mutation. The use of a mutagen in vitro may enable 

the selection for novel tropic mutant progeny viruses. 
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2.1.1 Ribavirin: a mutagen and its effect on virus life cycle 

Ribavirin, 1-0-D-ribofuranosyl-1; 2,4-triazole-3-carboxamide (see figure 2.1), is a 

synthetic broad-spectrum non-specific ribonucleoside analog with antiviral activity. 

Ribavirin is currently used for the treatment of a variety of RNA virus infections. In 

humans, the drug is used as monotherapy for Lassa fever virus infections and severe 

respiratory syncytial virus infections, and in combination with interferon-a as treatment for 

Hepatitis C virus (HCV) infections (Crotty et al., 2002a). 

Despite the extensive use of ribavirin, the detailed understanding of the activity of the drug 

is still unclear thereby preventing further development of enhanced derivatives with 

improved properties for clinical use. Recent studies have shown that ribavirin is an RNA 

virus mutagen (Crotty et al., 2000) and lethal mutagenesis has been proposed to be its 

mechanism of action (Crotty et al., 2001). 

Once inside the cell ribavirin is phosphorylated by adenosine kinase to generate ribavirin 

monophosphate (RMP). Sequential phosphorylation events then give rise to ribavirin 

triphosphate (RTP). RMP is an inosine monophosphate dehydrogenase (IMPDH) inhibitor 

(Muller et al., 1977; Streeter et al., 1973). IMPDH is a cellular enzyme used for de novo 

synthesis of guanosine triphosphate (GTP), which is itself required for translation, 

transcription and replication of all viruses. IMPDH inhibition triggers a decrease of 

intracellular levels of GTP, which could account for antiviral activity. 

RTP is a substrate for the poliovirus RNA-dependent RNA polymerase and acts as a purine 

nucleoside analog by presenting two distinct hydrogen-bonding conformations to 

complementary bases. Low intracellular GTP levels favour the incorporation of RTP into 
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Figure 2.1: Chemical structure of ribavirin (1-ß-D-ribofuranosyl-1, -2,4-triazole-3- 
carboaamide). 

Figure taken from Crotty et al. (2002 b). 

KI N-H---O ýýý .ý 

_,, 
N-ý ` _-r. ýH-N 

R C1 R 

K 

Ribavirin Cytosine Ribavirin Uracil 

Figure 2.2: Hydrogen-bonding conformations of ribavirin, a purine analog, with cytosine 
and uracil, pyrimidine bases. 

Figure taken from Grad et al. (2002). 
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the genome, promoting G to A and A to G transitions due to its ability to base pair with C 

and U (see figure 2.2) and disrupting RNA structures, which can be critical for virus 

replication (Crotty et al., 2000). 

Number of mutations Total mutation Total mutation Ribavirin 
observed in the frequency (/104 frequency 

concentration 
sequenced window nucleotides) (/genome) 

G-->A C-4T 

0 µM 0.5 1.2 2.1 1.5 

100 µM 0 1.3 2.5 1.8 

400 µM 4.4 5 9.3 6.9 

1,000 µM 6.8 12 20.8 15.6 

Table 2.3: Mutation frequency in ribavirin-treated RNA poliovirus populations. Data 

was taken from Crotty et al. (2001). 

2.1.2 Effect of ribavirin on poliovirus infection life cycle 

Andino and co workers (Crotty et al., 2000) established a relationship between ribavirin 

concentration and the mutation rate of poliovirus. In their study they also showed the effect 

ribavirin exerted on viral translation and production. The increase of the mutation 

frequency caused by ribavirin, shown in table 2.3 and the effect of ribavirin on translation 

and production of poliovirus were demonstrated by Andino and co-workers (Crotty et al., 

2000). Poliovirus replication and translation, determined using a subgenomic replicon, is 

reduced only very slightly in the presence of up to 1mM ribavirin. Under similar 

conditions virus yield is reduced by up to 3 loglo. The normal mutation rate of poliovirus, 

1.5 mutations per genome (Crotty et al., 2001), was increased to approximately 6.9 

mutations per genome in the presence of 0.4 mM ribavirin. This was shown to cause a 95% 
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decrease in the fitness of the viral population compared to that of wild type (Crotty et al., 

2001). Because the normal poliovirus population exists on the threshold of error 

catastrophe, accumulation of too many mutations can lead to lethal mutagenesis of 

poliovirus leading to a decrease in virus titres to near background levels (see figure 2.4: 

Crotty et al., 2001). RNA viruses are unstable and a small increase in mutation levels can 

result in a reduction of virus viability. This has been shown for poliovirus, vesicular 

stomatitis virus (Holland et al., 1990), and HIV (Loeb et al., 2000). Moreover, serial 

passages in the presence of a mutagen were shown to be sufficient for viral extinction of 

HIV populations (Loeb et al., 2000). The relationship between virus survival and error 

catastrophe is fragile and the application of random mutagenesis experiments might cause 

a shift in the equilibrium relationship towards error catastrophe (see figure 2.5). 

2.2 Aims 

Will the poliovirus niche remain vacant after the eradication of poliomyelitis or could 

viruses evolve to occupy the empty ecological niche? Enteroviruses exhibit a high 

mutation rate in nature. Over time, mutations cause changes in the capsid-coding region 

that could lead to a change in receptor usage. Moreover, it has been extensively reported 

that picornaviruses can adapt to use alternative receptors in tissue culture. Various 

examples provide evidence that picornaviruses can use more than one cell surface 

molecules for cell attachment. Indeed, FMDV can adapt through a single mutation to use 

heparan-sulphate as a receptor in tissue culture as opposed to the identified receptor avß3, 

(Jackson et al., 1996). Human rhinovirus 14 has been shown to be able to infect ICAM-1 

negative cells (Reischl et al., 2001). Coxsackieviruses have adapted to attach DAF and 

infect RD cells (Reagan et al., 1984). A DAF-binding echovirus 6 has been demonstrated 

to have the ability to use heparan sulphate as a receptor (data not published David 

Williams). An echovirus 11 variant has also adapted to not use DAF as a receptor for 
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Figure 2.4: Error catastrophe 

Relationship of mutation frequency to genomic RNA infectivity (Crotty et al.. 2002 b). Specific 
infectivity of normal poliovirus RNA was set to 100°0. The graph shows that poliovirus 
populations exist near the edge of error catastrophe, as there is a rapid decline in RNA genome 
infectivity at levels of mutagenesis only slightly higher than normal. The L150 (50°° loss of 
specific infectivity) is defined as the mutation frequency at which 50°0 of the viral genomes are 
lethally mutated. indicated by the dashed line. Wild-type poliovirus genomes contain an average 

1.5 mutations genome. Poliovirus genomes from cells treated with 400 µM and 1000 µM 
ribavirin respectively contain an average -6.9 mutations/genome and -15.5 mutations/genome. 
Taken from Crotty et al. (2001). 
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infection (Stuart et al., 2001). Finally, CVA21 DAF-binding has been demonstrated and 

confirmed (Shafren et al., 1997; Johansson et al., 2004). 

The aim of the experiment was to investigate whether accelerating evolution in vitro, by 

combining the use of a non-specific mutagen with the natural variability exhibited by 

enteroviruses, would generate key mutations resulting in a virus receptor-usage shift. 

Selection of mutagen-treated virus populations, by conducting serial passages on a variety 

of cell lines, could enable the isolation of specific tissue-tropic viruses. The potential 

outcome of such experiments could be the selection of a population of enteroviruses that 

have evolved to use an alternative receptor or the selection of a population of 

non-poliovirus enteroviruses that use the PVR. 

To investigate this, a closely related human enterovirus species C to poliovirus was used as 

a HEV representative for this experiment. CVA21 is a REV-C closely related to PV3 with 

an amino acid sequence identity of 84.2%. CVA21 and PV3 have evolved from a common 

ancestor to use different virus receptors. The aim of this experiment was to try and select 

for mutated CVA21 virus populations that bind the PVR. However, divergence from the 

common ancestor is an ancient event and it is possible that CVA21 is too genetically 

distant from poliovirus to be able to evolve to use the PVR (see figure 2.6). However, there 

are similarities in virus-receptor interaction of both viruses, as they both interact with 

Ig-like receptor molecules via a canyon interface. It is therefore possible that CVA21 could 

evolve to use the PVR as opposed to the ICAM-1 cell surface molecule. Can CVA2 1, a 

well-characterised HEV-C, undergo a shift in receptor usage in the presence of ribavirin? 

Can CVA21 evolve to use PVR? Such findings would be crucial information for the WHO 

poliomyelitis eradication program and would contribute to our understanding of virus 

evolution and the evolution of receptor tropism. 
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Figure illustrating different possible outcome of the designed strategy: switch 
from ICAM-1 usage to PVR-usage, switch to non-PVR alternate receptor-usage 
and death of mutated virus population due to introduction of fatal errors or 
mutations that do not allow alternate recptor usage. The switch from ICAM-1 

usage to PVR-usage could occur, however it is also possible that the shift in 

receptor requires too great a genetic shift. Discussed section 2.2. chapter 2. 
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2.2.1 Experimental model 

Initial titration of ribavirin was carried out to determine a concentration that would lead to 

the introduction of a number of mutations whilst retaining significant fitness levels of a 

CVA21 viral population. Once determined, CVA21 infection of a permissive cell line was 

conducted in the presence of ribavirin. RD cells (rhabdomysarcoma cells) express both 

PVR and DAF molecules on their cell surface and fully support replication of 

enteroviruses. RD-ICAM cells are RD cells engineered to express the ICAM-1 receptor for 

CVA21 attachment and entry and were used for the rounds of CVA21 infection in the 

presence of ribavirin. The resulting mutated progeny viral population would then be 

submitted to selection by passage on a variety of cell lines: RD cells, L20B cells and L 

cells (see figure 2.7). RD cells would allow for selection of DAF or PVR-tropic viruses. L 

cells, a murine fibroblast cell line, lack any identified human enterovirus receptors but are 

fully permissive for enterovirus replication and L20B cells are L cells expressing PVR 

(Wood & Hull, 1999). Compared analysis of selection experiments carried out in L cells 

and L20B cells would be the most restrictive strategy. Mutated enterovirus populations 

growing on L20B cells but not L cells would be PVR-tropic. This could lead to the first in 

vitro report of an enterovirus that had evolved to use PVR. 

2.3 Results and Discussion 

2.3.1 Effect of ribavirin on CVA21 yields and determination of 

concentration to use for experimental system 

The introduction of 6-9 mutations per poliovirus genome resulted in a 95% reduction in 

fitness of the viral populations (Crotty et al., 2001). The effect of a range of ribavirin 

concentrations on CVA21 was not expected to differ greatly from those observed with 

poliovirus, due to the similarity of the virus, the replication cycle and the similarity of 
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growth of the viruses in vitro. Only concentrations spanning the upper limits of ribavirin 

concentrations used by Andino and co-workers were tested during PV3 and CVA21 viral 

infections were used in this assay. 

Pre-treatment with ribavirin concentrations ranging from 0.5 mM to 6 mM was carried out 

and repeated four times. Pre-treatment with the mutagen would be expected to cause a 

reduction in intracellular levels of GTP and an increase in the levels of RTP incorporated 

in viral genomes (Muller et al., 1977; Streeter et al., 1973), as a GTP analog. Cells were 

then infected with CVA21 or PV3 viruses at an MOI of 1. CVA21 and PV3 infections of 

untreated cells in the presence and absence of a virus replication inhibitor GuHCI were 

conducted to check that the observed CPE were virally induced. Mock infections in the 

presence of ribavirin, to monitor the effect the mutagen exerted on cells, were carried out 

in parallel. The samples were incubated until full CPE was observed, progeny virus was 

harvested and the titre determined by TCID50 assay (Figure 2.8). 

An initial sharp decrease in viral titre followed by a drop in the rate of decrease of viral 

yields in the presence of increasing concentrations of ribavirin was observed. The CPE 

exhibited by PV3 infection of ribavirin pre-treated RD-ICAM cells and the effect of 

ribavirin on virus titres was similar to those previously observed (Crotty et al., 2000). 

Unlike PV3, CVA21 did not show as strong a decrease in titre at lower concentrations of 

ribavirin. A 1-log titre reduction of CVA21 was observed in the presence of 1mM 

ribavirin, a 2-log decrease was observed when CVA21 was treated with 3mM ribavirin and 

a 4-log decrease was seen in the presence of 6mM of the mutagen. With such a significant 

decrease the overall fitness of the mutated viral populations was expected to be too low 

due to an excessive number of mutations being introduced and the volume handled in the 

assay would need to be too high. 1 mM of ribavirin was the chosen concentration for the 

following assays, as a sufficient decrease in CVA21 virus titres (1-log) was achieved and a 
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TCID50 assays of PV3 and CVA21 virus grown in the presence of a range of 
ribavirin concentrations were carried out four times. Plates were fixed and stained. 
Titres were calculated and plotted using a log scale. The 4 repeats of the assay 
exhibited similar results. Standard deviation values were calculated and are 
represented as error bars on the graph. 10mM ribavirin concentrations exerted a 
cytotoxic effect on mock infected cells and was therefore not used in the experiment. 
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significant number of mutations were expected to have been introduced. None of the 

ribavirin concentrations used (with the exception of the 10mM samples), had a cytotoxic 

effect on the cells. This basic titration assay did not enable any direct comparison with the 

data observed in the Crotty papers, as it did not analyse the effect of ribavirin on different 

stages of the virus life cycle. 

To detect the introduction of mutations in the genomes of a population of progeny viruses, 

vRNA was extracted from harvested viruses grown in the presence of 0.5 mM, 0.75 mm (a 

concentration not tested in the previous assay), 1 mM, 3 mM and 6 mM ribavirin. Reverse 

transcription reactions were carried out using the extracted vRNA as a template. The VP 1 

coding region of CVA21 was amplified by PCR (using CVA21 specific oligonucleotide 

primers) and sequenced. The results are shown in figure 2.9. No product could be 

amplified and sequenced from the samples of the virus grown in the presence of 3mM and 

6mM ribavirin. Mutations of the primer binding sites or poor sensitivity of the PCR 

reaction could both be responsible for this phenomenon. A window of the CVA21 

VP 1-coding region of the virus samples grown in the presence of 0.5 mM, 0.75 mM and 

1 mM ribavirin was amplified by PCR and sequenced. The results are shown in figure 2.9. 

The sequencing results show that within a 1778-bp window two C to T coding changes, 

reflecting C to U substitutions in the original viral sequence, that were absent from the 

original CVA21 viral sequence, were introduced when the virus was grown in the presence 

of 1 mM ribavirin and no third-base changes were seen. No changes were detected in the 

sequences of the 0.5mM and 0.75mM ribavirin samples. Amplification reactions were 

carried out from a population of DNA molecules since the fragments were not cloned 

therefore the mutations seen are likely to have been fixed at early stages of the replication 

cycle and calculation of mutation rates would therefore be inaccurate. 
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It is unclear how many mutations are needed for a receptor shift to happen. However, it has 

recently been suggested that minimal changes in viral genomes could lead to a shift in 

receptor usage (Baranowski et al., 2001). There are 27 amino acids involved in the 

interface interaction between poliovirus and the PVR, 19 of which differ between PV3 and 

CVA21. A normal poliovirus has a mutation frequency of 1.5 mutations per genome or 1 

mutation per 5000 nucleotides. To have 19 amino acid changes, assuming that a single 

nucleotide change is sufficient to lead to an amino acid change, every virus would have a1 

in (5x103)19 or 2x1070 chance to mutate the correct 19 nucleotides. Even with a mutation 

rate of 1 mutation per 600 nucleotides, increase induced by treatment with a mutagen such 

as ribavirin, every virus would have a1 in (6x102)19 or 6x1052 chance to mutate the correct 

19 nucleotides and therefore amino acids for a shift in receptor usage. However, it is likely 

that more than one nucleotide change is required for an amino acid change and the chance 

of getting all 19 amino acid mutations would therefore be expected to be even lower. This 

describes the worst-case scenario whereby all 19 amino acids involved in the interface that 

differ between CVA21 and PV3 would need to be changed for a switch in the receptor 

usage of CVA21 to occur. 

However, due to the nature of the interaction of the canyon with the virus receptor, the 

importance of all amino acids involved in the interaction between a virus particle and a 

receptor molecule is not equal. For example, only 3 amino acids out of the 30 

residue-interface contribute 80% of the total energy of the interaction between EV7 and 

DAF (Bhella 2004). Similarly, Akio Nomoto's group suggested that only 3 amino acids are 

key to the interaction between PV 1 and the PVR (Arita et al., 1998). A single amino acid 

change has been shown to alter Echovirus type-6 receptor usage (unpublished data by 

David Williams). So it is very likely that significantly fewer amino acids than all 19 of 

those that differ between PV3 and CVA21, involved in the interaction, would need to be 
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changed for the virus to use a different cell surface molecule as a receptor for attachment 

and entry. If three amino acids need to be changed for the receptor swap to occur at a 

mutation rate of 1 in 5x103 then a population of (5x103)3 or 1.25x1011 would have to be 

screened, a more reasonable and manageable number. In fact in a hypothetical case where 

the mutation rate was increased to 1 mutation in 600 nucleotides the minimum population 

screened would have to be (6x102)3 or 2.1x108 viruses. A smaller number of mutations 

than that required for CVA21 adaptation to use the PVR could be required for CVA21 to 

adapt to use DAF, heparan sulphate or other enterovirus receptor molecules. The use of a 

random mutagen to accelerate evolution and select for a human enterovirus type C that has 

evolved to use an alternate receptor, and more specifically the PVR, is a feasible 

experiment, due to the small number of mutations actually required for a receptor shift to 

occur and due to the possible handling of large population sizes in small volumes. 

2.3.2 Determination of optimal concentration of ribavirin 

The assays carried out in this chapter do not enable the determination of the optimal 

ribavirin concentration to attain the correct equilibrium of introducing enough mutations 

and maintaining sufficient fitness of the mutated viral populations. Sequencing of 

independent clones from PCR reactions at each concentration and overlaying graphs 

plotting the number of mutations introduced versus ribavirin concentrations and the viral 

titre drop versus ribavirin concentrations (see figure 2.10) could be carried out. There is 

likely to be a balance between the number of mutations introduced and the decrease in 

viral titres. It would therefore be possible to determine the optimal ribavirin concentration 

needed to introduce a maximal number of mutations in a virus population without shifting 

to error catastrophe. 
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Figure 2.10: Graph of a hypothetical determination of optimal ribavirin 
concentration to use for the selection of novel tropic mutant viruses experiment. 

The optimal concentration is determined based on the amount of ribavirin needed to 
cause a signficant number of mutations whilst retaining the ability to replicate and 
produce progeny viruses. In this hypothetical situation the optimal concentration to use, 
shown by the red arrow, would be that causing a 2-log reduction in titre whilst 
introducing 2.5 mutations per genome. Such an assay needs to be carried out and the 
experiment needs to be repeated using the determined optimal ribavirin concentration. 
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2.3.3 Results and discussion of the selection experiment 

RD-ICAM cells, pre-treated with 1mM ribavirin, were infected with CVA21 at an MOI of 

1. Each sample was harvested and passaged onto fresh pre-seeded RD-ICAM cells. Four 

subsequent serial passages or rounds of selection were carried out using the same 

pre-incubation, infection and incubation stages in the presence of ribavirin, in which 1 ml 

out of 5mls were transferred. The first round of selection was named r1 (samples incubated 

in the absence of the mutagen) or R1 (for the samples incubated in the presence of 1 mM 

ribavirin), the second round r2 or R2 and so on (see figure 2.7). The samples were then 

screened on various cell lines. The selection strategy applied would allow a population of 

mutated viruses to evolve to use other receptors such as heparan sulphate, DAF alone, 

murine DAF or PVR, by comparison of infection of L cells and L20B cells. Each sample 

from each round of selection was tested on each cell line and serially passaged on the 

respective cell lines in order to enable potential infection and amplification of less fit novel 

tropic mutant CVA21 populations. The results are shown in table 2.11. The assay was 

repeated four times. On no occasion were novel tropic mutant viruses detected and isolated 

from the reactions. 
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Cell line infected 

Test samples RD-ICAM RD L L20B 

CVA21 r'   MI Q Q 

CVA21 R'   Q Q 

Cells R' Q Q Q Q 

CVA21 r2   Q Q 

CVA21 R   L Q Q 

cells R` c Q Q Q 

CVA21 r3   Q Q 

CVA21 R3   M Q Q 

cells + R3 Q Q Q 

CVA21 r4   Q Q 

CVA21 R4   Q Q 

cells R4 Q Q Q Q 

CVA21 r'  a Q Q 

CVA21 R'  a Q Q 

cells R' Q Q Q Q 

Table 2.11: Results of screening of samples of CVA21 serially selected in the presence 

of ribavirin. The read-out of the experiment was the presence ( ) or absence (E) of 

('PE observed in the transfected cell sheet.:, represent very low levels of CPE 

observed on the infected cell sheet (-20% CPE). 
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Ribavirin did not have a cytotoxic effect on any of the cell lines and serial passaging in the 

presence of the mutagen did not affect the readout of the experiment. No CPE was 

observed in L cells or L20B cells implying that CVA21 had not evolved to use murine 

fibroblast cell surface molecules or the PVR. As expected RD-ICAM cells always 

exhibited CPE in the passaged virus samples tested, but not in the absence of the virus. The 

ribavirin-independent result in RD cells was however intriguing. CVA21 virus alone and 

CVA21 virus incubated in the presence of 1 mM ribavirin caused low levels of CPE in RD 

cells. This outcome could be due to a positive selection for a subpopulation of virus that is 

able to grow. However the CPE levels were not amplified after several passages in the cell 

line indicating that low CPE due to a positive selection is unlikely. Possible contaminations 

of either the CVA21 virus stocks with RD-tropic virus or the RD cells with low levels of 

RD-ICAM or another cell line permissive for CVA21 growth were checked and different 

virus stocks were tested on different batches of RD cells. No contamination was detected. 

A likely explanation for the limited CPE observed in RD cells could be that CVA21 is able 

to use DAF as a cell surface receptor (Shafren et al., 1997; Johansson et al., 2004). 

Although the strain of CVA21 used for the experiment was not adapted to grow in RD 

cells, the limited CPE observed in the assay could be due to the fact that in the absence of 

ICAM-1 cell surface molecules CVA21 is able to attach DAF to some extent and actually 

cause some CPE. 

Under the conditions tested, the selection for novel tropic viruses was not successful, 

however the use of different parameters could potentially allow for the selection of such 

viruses. Several factors, such as the ribavirin concentration, the incubation time, the cell 

type chosen and the pre-incubation stage, might have biased the experiment. Reducing the 

pre-incubation time could mean that the intracellular levels of GTP were still significant. 



Claire Blanchard Selection of novel tropic viruses using a mutagen Chapter 2 59 

Intracellular GTP could therefore have been used during virus replication as opposed to 

RTP, leading to the generation of wild-type virus sequences and the absence of mutations. 

It would be interesting to repeat the experiment with a longer pre-incubation period so that 

a better environment for the introduction of mutations may be created. 

A ribavirin concentration of 1mM caused a 1-log reduction in CVA21 viral titres which, 

combined with the long incubation stage after infection of RD-ICAM cells, could have 

affected the outcome of the experiment. Indeed the risk of carrying out a long incubation is 

that of allowing fitter viruses, like wild-type viruses, to outgrow novel tropic mutants of 

lesser fitness. High mutation rates could lead to the introduction of lethal mutations 

affecting essential protein coding sequences and the overall RNA structure. Using random 

mutagenesis as a selection method combined with high mutation rates increases the risk of 

lethal mutagenesis. If random mutations are introduced at a high rate the probability of 

affecting a key sequence is increased and the mutated virus is less likely to be able to 

survive and outgrow wild-type viruses during the first round of infection in RD-ICAM 

cells in the presence of ribavirin. Multiple nucleotide changes may disrupt the overall RNA 

structure and therefore seriously impair downstream events that are dependent on such a 

structure. By attempting to speed up evolution there is a risk of reaching extinction without 

going through the various transitional stages. RNA viruses such as CVA21 and PV3 

already exist on the brink of error catastrophe and random mutagenesis might have 

destroyed a fine equilibrium and might have accelerated extinction. However, the 

experiment provides no evidence for error catastrophe in the studied virus populations, as 

virus titres were still significant (3.6 x 104 TCID50/ml, data not shown) after multiple 

passages of CVA21 in the presence of 1 mM ribavirin. 
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2.3.4 Future work 

Some variables of the described experiment could be altered. Indeed, repeating the 

experiment using high multiplicity of infection coupled with rapid passages could 

potentially alter the outcome. Furthermore, determination of the optimal ribavirin 

concentration to use for the introduction of a sufficient number of mutations is essential. 

Moreover, a variety of alternative assays with a more stringent selection applied to a 

variety of reference viruses, could be designed. 

The selection for novel PVR-tropic viruses would potentially mean the loss of ICAM-1 

affinity by the emerging virus populations. One way to select for recombinants in vivo is to 

select against parental viruses using ICAM-1, by repeating the assay in the presence of 

both ribavirin and soluble ICAM-1. The samples would then be washed to get rid of 

ICAM-1 tropic viruses allowing for recovery and growth of non-ICAM-1 binding novel 

tropic recombinant viruses. Should novel tropic mutant viruses be selected for, 

characterisation of such viruses by assays such as antigenicity testing, specific infectivity 

assessment and nucleotide sequence analysis would be carried out. 

Due to time restrictions and progress on the generation of recombinants in vitro project it 

was not possible to carry out the described assays. 
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3 Chapter 3: In vitro recombination 

3.1 Introduction 
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Human enterovirus (HEV) evolution is a consequence of selective pressure, error rate and 

recombination. Recombination plays a major role in the emergence of viruses with novel 

sequences. Emerging recombinant enteroviruses have been a major concern for the WHO 

poliomyelitis eradication program and have been reported to occur both in the laboratory 

environment and in nature. The exact circumstances, processes and factors contributing to 

the emergence of such recombinant viruses are unclear. 

So far the circulating vaccine-derived polioviruses (cVDPVs), isolated from outbreak 

cases, were found to have a structural protein-coding region derived from a vaccine strain 

and the remainder of the genome from an unidentified virus strain from the same species as 

poliovirus (Stanway et al., 2000). This was the case of the cVDPVs isolated in Egypt 

(Yang et al., 2003) and the Philippines (WMMR, 2001). Recently, cVDPVs isolated from 

Haiti, Egypt, the Philippines and Madagascar seemed to have arisen from a recombination 

event between Sabin poliovirus strains and enteroviruses circulating in the gut of vaccinees 

at the time of vaccination (Kew et al., 2002; Rousset et al., 2003). These emerging 

cVDPVs (reviewed in Kew et al., 2004) highlight the importance recombination plays in 

enterovirus evolution. 

The initial aim of the project was to generate and study viruses with mosaic non-poliovirus 

HEV-C P1-coding sequence resulting from shuffling that may use the PVR, thereby 

mimicking evolution. The generation of viable viruses would require cis-processing of the 

polyprotein. However, the exact requirements for the processing of the P1-coding region 

by a heterologous 3CD protease to occur in trans were unclear. The cis-processing 
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requirements were therefore investigated prior to shuffling by constructing and analysing 

recombinants with a precise exchange of the P 1-coding region. These in vitro generated 

recombinants exhibited interesting phenotypes and further characterisation was conducted. 

3.1.1 Aims 

To attempt to provide a greater understanding of the different factors involved in the 

generation and infection of recombinant enteroviruses, chimeras between a poliovirus and 

a human enterovirus type C (HEV-C) were generated in vitro. The studies described in this 

chapter were designed to broaden the understanding of key factors and mechanisms and 

enable a better knowledge of processing requirements. 

It was proposed to generate recombinants with a precise exchange of the P1-coding region 

between a poliovirus and a non-poliovirus ITV-C, using basic molecular cloning 

techniques. The source of the genomes used for the experiments were selected on the 

availability of infectious clones. Poliovirus type 3 Leon (PV3), a neurovirulent poliovirus, 

was chosen as one of the wild-type viral sequences. Sabin poliovirus type 1 (Sabin 1), a 

vaccine poliovirus strain, was an additional parental genome used for the experiments 

(kindly provided by Dr A. Macadam, National Institute for Biological Standards and 

Control). 

As the non-poliovirus HEV-C, a genome closely related to that of poliovirus type 3 Leon 

was chosen. CVA21 exhibits 84.2% identity of the polyprotein with PV3 (Brown et al., 

2003). The amino acid identity deduced from nucleotide sequence relationships of a range 

of HEV-C viral proteins is illustrated in appendices 3,4 and 5 of this thesis. Other HEV-Cs 

are more closely related to PV3; for example CVA20 has 90.2% amino acid identity to 

PV3. However, CVA21 was the closest relative to PV3 for which an infectious clone was 



Claire Blanchard In vitro recombination Chapter 3 63 

available. Recombinants between Sabin 1 P1-coding region and the remainder of the 

CVA21 genome and PV3 P1 coding region and the remainder of the CVA21 genome 

were generated for subsequent investigation. Reciprocal recombinants between the 

structural coding region of CVA21 and the remainder of the PV3 genome were also 

constructed. 

3.2 In vitro generation of recombinants 

3.2.1 Construction of recombinant plasmid DNA 

The recombinant sequences were generated so as to have reciprocal precise exchanges of 

heterologous P 1-coding regions without modifying the backbone sequences. The 

phenylalanine/glycine (F/G in the case of CVA21) and tyrosine/glycine (Y/G in the case of 

PV3 and Sabin 1) amino acid sequences at the VP 1/2A junctions, essential for correct 

processing to occur, were retained (Luke et al., 2001). This would therefore create a perfect 

exchange of the P1-coding region. 

3.2.1.1 Generation of backbone cassette vectors 

CVA21 and PV3 backbone vectors lacking the P1-coding regions were constructed. The 

first 14 amino acids of VP4 are identical in human enteroviruses. Synonymous codon 

variation was used to maintain, in the case of PV3, or introduce, in the case of CVA2 1, a 

Sac I cloning site at the start of the P1-coding region for the construction of backbone 

vectors. 

Synonymous codons were also used to maintain the native amino acid sequence at the start 

of the 2A-coding region of the backbone vectors. PV3 and CVA21 2A-coding regions start 

with respective GGC and GGG codons encoding a glycine (G). A Sma I site was created 
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by PCR in the PV3 backbone vector, where the second half of the site (GGG) replaced the 

original GGC sequence thereby maintaining the amino acid at the start of the PV3 2A. 

Similarly a Nae I site was introduced by PCR in the CVA21 backbone vector. The second 

half of the Nae I site has a GGC sequence coding for a glycine and again enabled 

conservation of the glycine present at the start of the native CVA21 2A. 

3.2.1.1.1 PV3 backbone vector (PV3BK) 

The PV3 backbone vector was derived from pT7FLC/REP3 (Barclay et al., 1998), using 

GEN-3'BK'F and GEN-3'BK-R oligonucleotide primers and the Nsi I restriction 

endonuclease. The PV3 backbone vector cloning strategy is illustrated figure 3.1. 

3.2.1.1.2 CVA21 backbone vector (CVA21BK) 

The CVA21 backbone vector was derived from pRibo-CAV21-NaelDel (David Williams). 

A 5' fragment of the 5'UTR and start of the coding-region was amplified by PCR using 

T7-F forward primer and CA21-5'-BK-R Sac I-containing reverse primer. The 5' PCR 

fragment was ligated to a Sac I digested 3' fragment, amplified by PCR, using 

GEN-3'BK-F-Nae (a Sac I and Nae I- containing primer) and GEN-3'BK-R (reverse 

primer annealing the 3C coding-region). A 3.9kb ligated fragment was re-amplified by 

PCR using T7-F and GEN-3'BK-R. The Mlu I and Bgl II double-digested PCR fragment 

was then ligated to a Mlu I and Bgl II double-digested pRibo-CAV21-NaelDel. The 

CVA21 backbone vector cloning strategy is illustrated figure 3.2. The clones were checked 

by RFLP analysis and sequencing of the ligation junctions. 

Once the backbone vectors were constructed, P1-coding regions were introduced to 

generate recombinants. The complete P1 sequences were generated by PCR using forward 

oligonucleotide primers, containing a Sac I site, and virus-specific blunt ended reverse 

oligonucleotide primers. 
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3.2.1.2 Generation of homologous P1 recombinants 
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First the backbone vectors had to be checked to ensure that they were competent to make 

viable vectors. The PV3 P1-coding region and the CVA21 P1-coding region were 

respectively introduced into the PV3 backbone vector (PV3BK) and the CVA21 backbone 

vector (CVA2IBK), thereby re-creating full-length sequences of the source genomes 

(figures 3.3 and 3.4). The clones were sequenced at the key junctions. The expected 

non-coding changes, introduced by PCR, were present thereby excluding the possible 

presence of contaminant wild-type sequences. When transfected into RD-ICAM cells, the 

homologous recombinants caused a cytopathic effect (CPE) and were therefore assumed to 

be viable. Subsequent cloning of heterologous recombinants was then carried out. 

3.2.1.3 Generation of heterologous P1 recombinants 

The cloning strategies for individual clones are illustrated in figure 3.5,3.6 and 3.7. 

Sac I-digested blunt-ended P1-coding regions amplified by PCR were introduced to 

respective Sac I and Sma I double-digested PV3 backbone vector and Sac I and Nae I 

double-digested CVA21 backbone vector. The same strategy was applied to all the clones. 

The P1-coding region PCR products were derived from pT7/SL3, pRiboCAV21 and pS1F 

using a generic forward primer (P1-GEN-F) and specific blunt-ended reverse primers 

(PV3-P1-R, CVA21-PI-R and Sabin 1-P1-R). The remainder of the genome was derived 

from PV3BK and CVA21BK. The clones were checked by RFLP analysis and sequencing 

of the 5'UTR/P1, complete PI and VP1/2A coding regions (see table 3.8.2 and figure 3.9). 

The CVA2IBK based clones were constructed in practical collaboration with David 

Williams. 
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Figure 3.3: The construction of pT7FLC/REP3-BISL3P1 (henceforth 
referred to as PV'3BkPN'3PI). 
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Figure 3.4: The construction of pRibo-CAV21-NaeDel-BKCVA21P1 (henceforth 
referred to as ('VA21 BKCVA21 P1). 
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Figure 3.5: The construction of pT7FLC/REP3-BK-CA21-P1 (henceforth 
referred to as PV'3BKCV'A21PI). 
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Figure 3.6: The construction of pRibo-CAV21-NaeDel-BKSabin1P1 (henceforth 
referred to as CV A21BKSAbin1PI). 
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Figure 3.7: The construction of pRibo-CAV21-NaeDel-BKSL3PI (henceforth 

referred to as CVA2IBKPV3PI). 
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The in vitro generated recombinants were named in two parts. The second part of the name 

corresponded to the origin of the P 1-coding region and the first part of the name 

corresponded to the source of the remainder of the genome (see table 3.8.1). 

Name of the plasmid as indicated in the 

laboratory database 

Henceforth simplified name of the 

plasmids 

pT7FLC/REP3-BK PV3BK 

pRiboCAV21-NaeDel-BK CVA21BK 

pT7FLC/REP3-BKSL3P1 PV3BKPV3P1 

pRibo-CAV21-NaeDel-BKCVA21 P1 CVA21 BKCVA21 P1 

pT7FLC/REP3-BK-CA21-P 1 PV3BKCVA21 1 

pRibo-CAV21-NaeDel-BKSabinlP1 CVA21BKSabinlP1 

pRibo-CAV21-NaeDel-BKSL3P1 CVA21BKPV3P1 

Table 3.8.1: Names of constructed plasmids 
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Digested plasmid DNA Bam HI (sizes in bp) Bgl H (sizes in bp) 
pT7FLC/PV3 10996 8241 

133 1643 
1244 

PV3BK 8513 5626 
1643 
1244 

PV3BKCVA21P1 10998 8244 
133 1643 

1244 
pRiboCAV21 10429 10429 
CVA21BKCVA21P1 10429 10429 
CVA21 BKPV3P 1 10426 10426 
CVA21BKSabinlPl 10405 10435 

30 
pS1F 5721 10101 

2471 
1879 
30 

Table 3.8.2: Predicted RFLP analysis of the in vitro generated P1 recombinants. The 

fragments expected from the restriction digests reactions are in base pairs (see figure 

3.9 for actual result). 

The RFLP analysis data indicated that the clones constructed were correct. The key 

junctions 5'UTR/P1-coding region and the VP1/2A-coding regions of the constructed 

clones were checked by sequencing. The cDNA sequence of the entire P 1-coding region of 

the CVA21BKSabin1P1 61-9, CVA21BKPV3P1 c6 and PV3BKCVA21P1 3 clones were 

also determined and shown to be correct (data not shown). The clones were amplified, 

purified from bacterial cultures and stored in the laboratory communal stocks. Subsequent 

analyses were then initiated. 
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Figure 3.9: Restriction length polymorphism analysis of in vitro generated 
Pl recombinants and controls. 

Recombinants and controls plasmid DNA was digested with Bgl 11 (A) and 
Bam HI (B) and run on a I% agarose gel. 
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3.3 Phenotypic analysis of in vitro generated recombinants 
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Phenotypic analysis of in vitro generated recombinants was carried out by transfection of 

T7 RNA transcripts derived from linearised plasmid DNAs in both RD-ICAM cells and 

HeLa cells, and the samples were screened for the presence or absence of cytopathic effect. 

3.3.1 Transfection of Pl recombinants 

Transfection of the chimeras was carried out in a Containment Level 3 laboratory (CL3). 

Recombinants with enhanced pathogenicity or altered tropism could be generated and 

higher safety levels should be applied when handling the potential viruses resulting from 

the reaction. The CL3 rules prevented transfected cells from being imported. All 

transfections were therefore carried out in a CL3 laboratory and were conducted so as to 

avoid the production of aerosols. 

T7 RNA transcripts were derived from linearised plasmid DNA, purified, quantified by 

spectrophotometric analysis and normalised. Either 1 µg or 5 gg of RNA were transfected, 

by DEAE-dextran or Lipofectamine 2000, into RD-ICAM cells and HeLa cells. RD-ICAM 

cells and HeLa cells support infection and replication of both parental viruses and should 

therefore be permissive for infection with potential chimeric viruses. The transfection 

samples were incubated at 37°C with 5% CO2 for 3-5 days to allow for any recombinant 

viral genomes of lesser fitness to recover and be amplified by repeated replication/infection 

cycles. Cells were examined by light microscopy to observe a cytopathic effect. The results 

are shown in table 3.10. No photographic evidence was provided due to the equipment 

restrictions and difficulty of removing material from the CL3 environment. 
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Input T7 RNA transcripts Cytopathic effect monitoring 

RD-ICAM cells HeLa cells 
CVA21 0 N 
PV3 E 0 
pS1F (Sabin 1) 

PV3BK 
0 

Q 

0 

Q 
PV3BKPV3P1 

PV3BKCVA21P1 1 
N 

Q 

0 

Q 
PV3BKCVA21P1 3 

PV3BKCVA21P1 4 

CVA21BK 

Q 

Q 

Q 

Q 

Q 

Q 
CVA21 BKCVA21 P1 0 N 
CVA21BKPV3P1 c6 Q Q 
CVA21 BKSabin1P 1 61-5 Q Q 
CVA21BKSabin1P1 61-9 Q Q 

CVA21BKSabin1P1 66-6 Q Q 
CVA21BKSabinIP 1 66-8 Q Q 
CVA21BKSabin1P1 69-1 Q Q 
CVA21BKSabin1P1 69-3 Q Q 
PV3 linearised in 3D Q Q 
Mock transfection Q Q 
Cells alone Q Q 

Table 3.10: Cytopathic readout of transfection of chimeric T7 RNA transcripts into 

RD-ICAM cells and HeLa cells. The read-out of the experiment was the presence ( ) 

or absence (o) of cytopathic effect observed in the transfected cell sheet. The numbers 

after each plasmid name represent individual clone numbers resulting from the 

cloning reaction. 
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As expected, control transfections of PV3, CVA21 and Sabin 1 RNAs caused CPE in cells 

after both transfection and serial passage. Similarly CPE was observed in the cells 

transfected with PV3BKPV3P1 and CVA21BKCVA21P1 RNAs. It was concluded that the 

experimental system allowed virus recovery following transfection and that the vectors 

could be used as a basis to create viable recombinants. These were consistent with the 

results previously seen. 

A number of heterologous P1 recombinant clones were prepared and analysed. These were 

based on CVA21BK and PV3BK, suffixed with clone numbers, and were expected to 

behave in a similar manner. RD-ICAM cells transfected with each of the heterologous P1 

recombinant clones RNAs exhibited very low levels. of CPE. However, serial passage of 

the samples did not appear to increase CPE and it appeared as though viruses could not be 

amplified. The initial low levels of CPE observed were likely to have been induced by the 

production and activity of 2A protease, a cytotoxic viral protein. The assay was repeated 

on several occasions and the same results were obtained. In addition, the same 

observations were made from transfections carried out in HeLa cells indicating that the 

observed results were not cell specific and were reproducible in other cell lines. The 

transfected chimeric T7 RNA transcripts did not cause CPE in HeLa cells. The results were 

consistent and identical to those observed in RD-ICAM cells (see table 3.10). It is possible 

that the transfection of recombinants did not give rise to viable viruses or that acytopathic 

viruses were produced, explaining the lack of CPE. 

The CVA2IBKCVA2IP1 and PV3BKPV3P1 clones were viable thus indicating that there 

were no defects in the backbone vectors. It appeared unlikely that the recombinants had 

errors in the sequences as all the clones were derived from the CVA21BK and PV3BK 
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vectors. Furthermore, RFLP analysis and sequencing of key junctions of all the clones and 

complete P1 coding region sequencing of the CVA21BKSabin1Pl 61-9, 

CVA21BKPV3P1 c6 and PV3BKCVA21P1 3 chimeras confirmed there were no errors in 

the constructed clones. It therefore seemed likely that the inability to produce viable virus 

was due to a defect in the replication cyle, rather than the chimeric viral genome. Further 

characterisation of the in vitro generated recombinants was therefore initiated. The possible 

acytopathogenicity of the in vitro generated P1 recombinants was investigated by an 

immunofluorescence assay to detect virus antigen. 

3.3.2 Immunofluorescence study of viral protein expression and 

determination of the acytopathogenic phenotype of chimeras 

Immunofluorescence analysis was carried out to detect VP 1 protein production, using a 

specific anti-enterovirus VP1 mouse monoclonal antibody (DAKO). The specificity of the 

antibody for the P1 capsid precursor protein was unclear. Subsequent in vitro translation 

studies appeared to indicate that the antibody was specific to VP 1 as no extra bands were 

observed in western blot analysis (see figure 3.17). 

The VPI capsid protein production would be expected to occur post-transfection. Viable 

chimeric viruses would be expected to produce VPI and protein expression would be 

detected after passage of RNAse treated transfected samples. The detection of VP I 

expression in both transfected RD-ICAM cells and RD-ICAM cells in which harvested 

RNAse treated samples had been passaged would suggest that the chimeric viruses were 

acytopathic. 

Duplicates of the transfected cells were lysed to release any intracellular virus particles, 

samples were harvested and RNAse treated to prevent RNA carry over onto a fresh cell 
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sheet. The harvested samples were passaged onto fresh cell sheets and VP 1 

immunolabelling was conducted. Cells were treated with a primary anti-VP1 DAKO 

mouse monoclonal antibody followed by treatment with a secondary anti-mouse 

FITC-conjugated polyclonal antibody (see appendix 1). Sample-coverslips were mounted 

on slides and visualised using a confocal microscope. All the confocal imaging was carried 

out at the same time. The results are illustrated in figure 3.11,3.12 and 3.13 using a range 

of magnifications. 

VP 1 expression was detected in cells transfected and passaged with control samples PV3, 

Sabin 1 and CVA21. These control samples are known to produce cytopathic viruses. 

These results suggested the assay had been successful. Mock transfection and passage 

controls were carried out in parallel as negative controls for non-FITC labelled cells and 

did not exhibit expression of VP1 after transfection or passage. A PV3-infected control 

singly labelled with the secondary FITC-conjugated antibody was used as a control for 

monitoring background levels of non-specific detection of FITC fluorescence. 

VP 1 expression was detected in all cell sheets transfected with RNA derived from 

recombinant cDNAs but not in other cells. A weak signal was detected in the cells 

passaged with the CVA21BKSabin1Pl RNA transfected cell harvest solutions. The 

detection of VP1 expression in the transfected cells indicated that translation had occurred. 

The lack of VP 1 expression in cells passaged with samples harvested from the chimera 

transfections would suggest that the recombinants were not acytopathic. If the 

recombinants were acytopathic the levels of VP1 expression in the passage samples were 

below the level of detection by immunofluorescence. These results suggested that the 

defect had to be at some stage post-transfection, such as processing, replication, packaging, 

assembly, and release or host cell entry. Further experiments were conducted to investigate 
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Figure 3.11: Detection of P\ 3BK('%'. %21P1 3 VPI expression 

fhe left hand Column represent the pictures of transfected cells and the right hand column are pictures 
of the supernatant passaged onto fresh cell sheets RNA transcripts from the indicated plasmids were 
transfected into RD-ICA\1 cells. The presence of VP1 virus antigen was determined by 
immunotluorescence analysis using as primary antibody the anti-HEV VPI (DAKO) \1Ab at 10 hours 
post-transfection or 10 hours after passaging of RNAse-treated culture supernatant to fresh cells. Mock 
transfected cells are also shown. 



CVA2IBKSabinlPl 61-5 

i\\, Ifihý, ihinll'1 (d -`) 

PIN II 

( \\, l 

(AA-'I l3KSahunl III 01-S 

( \'. A2 I BKSahin 111 161 -1) 

I' lý II 

c ý'A ,i Cells alone 

Figure 3.12: Detection of CV. &2IBkSabinIP1 61-5 and 61-9 VP1 expression 

I he left hand column represent the pictures of transfected cells and the right hand column are pictures 

ofthe supernatant passaged onto fresh cell sheets. RNA transcripts from the indicated plasmids were 
transfected into RI)-IC. \M cells. The presence of VPl virus antigen was determined by 

immunotluorescence analysis using as primary antibody the anti-HEV VPI (DAKO) MAb at 10 hours 

post-transfection or 10 hours after passaging of RNAse-treated culture supernatant to fresh cells. Mock 

transfected cells are also shown. 
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f Figure 3.13: Detection of ('N. 121 B1: P% 3P1 e6 VP1 expression 

The left hand column represent the pictures oftransfected cells and the right hand column are pictures 
of the supernatant passaged onto fresh cell sheets. RNA transcripts from the indicated plasmids were 
transtected into RD-ICAM cells. The presence of VPI virus antigen was determined by 
immunotluorescence analysis using as primary antibody the anti-1IEV VPl (DAKO) MAb at 10 hours 
post-transfection or 10 hours after passaging of RNAse-treated culture supernatant to fresh cells. Mock 
transfected cells are also shown. 
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the defect. As the results suggested that translation had occurred, in vitro translation assays 

were undertaken to confirm the initial observations. 

3.3.3 In vitro translation 

The processing of the P1 capsid precursor and its cleavage from the non-structural proteins 

are mediated by two viral proteases, 3C and 2A. The proteases and the capsid proteins, in 

the in vitro generated recombinants, are derived from separate viral sources and processing 

could be absent, incomplete or inefficient due to an incompatibility of the proteases with 

the P1 capsid precursors. Therefore the investigation of the protein processing properties of 

the in vitro generated chimeras, by in vitro translation assays, was essential. Initial 

characterisation of wild-type viral proteins and processing pattern was therefore conducted. 

3.3.3.1 Wild-type controls characterisation 

Radiolabelled infected cell lysates of control viruses CVA21, PV3 and Sabin 1 were 

prepared as an in vivo source of large amounts of correct processing products (figure 3.14). 

These were later used for comparison with the in vitro processing products, obtained using 

HeLa S 10 extracts. Control radiolabelled infectious virus particles, with a sedimentation 

coefficient of 160S, were also prepared in parallel, to identify the capsid proteins. VP I, 

VP3 and sometimes VP2 of the 160S particles were observed on the gels and comparison 

with the migration patterns exhibited by the infected cell lysates samples enabled the 

identification of capsid proteins (see appendix 1). These are illustrated in figure 3.14. 

CVA21 160S particles and Sabin 1 infected cell lysates consistently labelled poorly. 

CVA21 VP 1 and VP3 labelled protein bands are indicated with dots in figure 3.14. CVA21 

VP2 detection was not apparent due to the poor labelling of the virus. 
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The SDS-PAGE gel (figure 3.14) shows that CVA21 and PV3 exhibited a similar 

migration pattern for the P1,2BC, 2C and 3CD proteins. However, VP1, VP3 and 2A 

proteins of PV3, CVA21 and Sabin 1 control viruses differed in their migration patterns 

and were therefore diagnostic for the relevant parental sequences of each chimera. CVA21 

VP1 appeared to migrate faster than Sabin 1 VP 1, which itself migrated faster than PV3 

VP 1. Similarly, CVA21 VP3 migrated fastest whereas PV3 VP3 migrated slowest. The 

CVA21 2A protease appeared to migrate faster than PV3 2A and pS1F 2A, which migrated 

the slowest. 

Once characterisation of control viruses processing patterns was completed, in vitro 

transcription/translation assays using HeLa S 10 nuclear extracts supplemented with flexi 

rabbit reticulocyte lysates were conducted to determine the products encoded by the 

chimeras. The reactions were denatured and run on a 12.5% SDS-PAGE gel for analysis. 

The results are shown in figures 3.15,3.16 and 3.18. 

3.3.3.2 PV3BKCVA21P1 recombinants 

The in vivo infected cell lysates samples patterns and the in vitro patterns obtained using 

HeLa S10 nuclear extracts of control viruses were compared on the PV3BKCVA21P1 

processing gel (figure 3.15). These patterns were similar, apart from few additional cellular 

proteins present in the in vivo infected cell lysates. The CVA21 and PV3 infected cell 

lysates samples consistently migrated slightly faster than other lanes. This was taken into 

consideration for recombinant sample analysis. 

The PV3BKCVA21P1 recombinants appeared to exhibit the correct processing pattern (see 

figure 3.15). PV3BKCVA21P1 recombinants should express a PV3 non-structural protein 

pattern and a CVA21 capsid protein pattern. 3CD, P1,2BC and 2C could not be used for 

comparison purposes since the migration pattern of these proteins did not differ amongst 
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various samples. PV3BKCVA21P12A had the same migration phenotype as that of PV3 

2A and migrated slightly slower than the CVA21 2A. However, the CVA21 S10 sample 

consistently labelled poorly and 2A was hardly detectable on the protein gel. These results 

indicated that the non-structural proteins of the PV3BKCVA21P1 recombinants appeared 

to be PV3-like. 

VP1 of CVA21 and PV3 had similar migration patterns and could not be used as 

identification proteins for the PV3BKCVA21P1 recombinants analysis. However, VP3 of 

PV3 migrated significantly slower than CVA21 VP3 and the gel demonstrated that 

PV3BKCVA21P1 VP3 was CVA21 VP3-like. The results suggested that 

PV3BKCVA21P1 3 and PV3BKCVA21P14 proteins were correct and that the processing 

pattern in vitro was also correct. Therefore the P1 of CVA21 was processed in trans by the 

3CD of poliovirus. 

VP1 of the PV3BKCVA21P1 1 recombinant migrated slower than that of other 

recombinants and control viruses (indicated by an asterisk in figure 3.15). 

PV3BKCVA21P1 1 VP1 was aberrant in size and appeared to be approximately 35 kDa as 

opposed to native VP1, which is approximately 33 kDa. The 2A protease being correct, 

inefficient 2A-mediated cleavage event could not have caused the observed result. The 

2-kDa difference in size would correspond to an 18 amino acid difference, or 

54 nucleotides. This difference in size would not have been apparent during the RFLP 

analysis of the clone. Moreover, initial sequencing analysis of the constructed clones was 

restricted to the 5'UTRNP4 and VP1/2A junctions. Complete sequencing of the P1-coding 

region was only carried out on the clones that appeared to express the correct 

protein-processing pattern but not on the PV3BKCVA21P1 1 clone. Either PCR error or 

aberrant processing at the VP3/VP1 junction could account for the observed result. 
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3.3.3.3 CVA21BKSabin 1P1 and CVA21BKPV3P1 recombinants 

Chapter 3 76 

Comparison of the infected cell lysates with the HeLa S10 samples of CVA21, PV3 and 

Sabin 1 control viruses demonstrated similar processing patterns. The in vivo samples 

consistently migrated slightly faster than the in vitro samples. The in vivo samples are not 

shown in the CVA21BKSabinIP1 and CVA2IBKPV3P1 SDS-PAGE gels due to poor gel 

quality. 

The results of the CVA21BKSabin1Pl SDS-PAGE gel are illustrated in figure 3.16. VP3 

and 2A were the two proteins used for the identification and analysis of the 

CVA21BKSabinlPI recombinants in vitro processing. The gel shows that VP3 of the 

CVA21 BKSabin 1P1 recombinants migrated as Sabin 1 VP3 and 2A migrated as CVA21 

2A (see figure 3.16). The presence of VP1, as opposed to the uncleaved VP1/2A product, 

was detected by DAKO anti-VP 1 labelling western blot. VP 1 was present in all the 

samples, apart from the mock, and was estimated to be the correct size (see figure 3.17). 

No other bands were present on the western blot, confirming the specificity of the 

antibody, the correct cleavage of the P1 capsid protein precursor from the non-structural 

proteins and efficient processing into VP I. 

The CVA21 BKPV3P 1 c6 recombinant processing pattern was then analysed (figure 3.18). 

CVA21BKPV3P1 c6 appeared to express a PV3 VP3 migration pattern and a CVA21 2A 

migration pattern suggesting that the recombinant processed efficiently in vitro. It is 

important to note that the PV3 P1 chimera consistently labelled poorly, explaining the poor 

quality of the SDS-PAGE analytical gel. 

However in vitro translation did not enable the study of the kinetics of the processing 

cascade and in vivo translation should be investigated. Pulse-chase labelling type assays 
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VPI western blotting using a 11EV-specific DAKO anti-VP 1 mouse monoclonal 
antibody (1: 1000). Samples, generated during the in vitro S 10 
translation/processing assay, were run on an SDS-PAGE gel, transferred onto a 
membrane for protein analysis and probed for VP 1. A secondary anti-mouse 
HRPO-conjugated secondary antibody was then used at a dilution of 1/5000 in 
PUS-A. The western blot was developed with ECL western blot developing 

reagents for a couple of minutes and exposed on an X-Ray film. The film was 
developed and the hands represent VP1 proteins. 
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based on transfection would not be practical. It is therefore possible that the recombinants 

may have temporal defects in translation. 

In vitro translation assays suggested that the correct proteins were produced and the 

processing pattern appeared to be authentic. The recombinant proteins were consistently 

processed, the P1 and the VP1 proteins released from the non-structural proteins and the 

proteins involved in replication expressed. The chimeras would therefore look like 

sub-genomic replicons and would be expected to replicate. Replication of the virus 

genomes was therefore analysed by dot blot hybridisation assays. 

3.3.4 Replication assay 

Replication studies were carried out as described in Chapter 6: Materials and methods. 

RNA samples, normalised to I µg, were transfected individually into RD-ICAM cells. The 

transfected cells were harvested at different time points post-transfection and viral RNA 

extraction was carried out. The RNA samples were then transferred and fixed onto a 

membrane and hybridised to a generic [32P] probe. The probe was expected to bind the 3D 

polymerase-coding region of all viral RNAs used in the reaction and would therefore be 

expected to enable quantification of RNA production. The membrane was exposed to a 

phosphoimager screen. Figure 3.19 shows an example dot blot membrane. Radioactivity 

was then quantified and plotted onto graphs. The results are expressed in percentage fold- 

increase of viral RNA levels and are illustrated in figures 3.20 and 3.21 and summarised in 

table 3.22. 
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Samples Replication phenotype 

CVA21BKSabinlPl 61-5 +++ 

CVA21BKSabin1P1 61-9 + 

CVA21BKPV3P1 c6 +++ 

PV3BKCVA21P1 1 + 

PV3BKCVA21P1 3 + 

pRiboCVA21 ++/++ 

pS1F ++ 

PV3 +++ 

PV3 + 4mM GuHCI - 
Cells alone / mock transfection - 

Table 3.22: Summary of replication phenotype determination assay of in vitro P1 

recombinants. The replication phenotype was determined from graphs obtained, 

figure 3.20 and 3.21, based on [32P1 signal detection and quantification. Replication 

competent (+) and replication incompetent (-) samples are illustrated. Number of + 

signs indicate different levels of replication (see graphs 3.20 and 3.21). 

Graphs summarising the results of the time course/dot blot assay are illustrated figures 3.20 

and 3.21. The control samples behaved as expected. The control CVA21 and PV3 parental 

genomes exhibited an increased signal over time indicating that these were replicating. 

PV3 transfected in the presence of 4mM GuHCI, an inhibitor of viral replication (Molla et 

al., 1993), did not replicate. 

However, the Sabin 1 genome control sample, derived from the pS1F infectious clone, 

showed apparent lower replication levels than the PV3 and CVA21 controls. This was 

surprising considering the in vitro protein-processing pattern of Sabin 1 appeared to be 

correct. However, throughout the project the pS1F plasmid caused problems and exhibited 
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Figure 3.19: Sample dot blot. 

i 
ý 

PV3 

PV3BKCVA21P1 3 
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This figure is an example dot blot similar to those used for the replication 
curses. Several dot blots were carried out. The primary data was then used 
tier quantification and plotted onto graphs. 
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a few unexplained abnormalities, such as slow virus production and genome replication. It 

is not clear why this was the case. 

All the recombinants exhibited different levels of replication. The PV3BKCVA21P1 1 and 

PV3BKCVA21P1 3 recombinants appeared to be replication-competent. However, levels 

of replication were not as high as those observed in the positive control samples (see figure 

3.20). The CVA21BKPV3P1 c6 recombinant appeared to be highly efficient at replicating. 

The CVA21BKSabinIP1 61-9 recombinant replication seemed to be at least as efficient as 

the control virus replication. CVA21BKSabinlP1 61-5 was also replication-competent but 

to lower levels than those observed in the other test samples (see figure 3.21). These results 

confirmed the in vitro translation assay initial findings whereby the correct proteins had 

been synthesised and could catalyse the replication process. 

Under the conditions used, the levels of replication at different time points were 

reproducible. Each individual clone analysed is characteristic and consistent with previous 

assays. The assay needs to be repeated for the data to be statistical relevant. Repeating the 

assay in L cells may enable cleaner and more statistically relevant data to be generated. 

The defect, which prevented the chimeras from causing cytopathic effect must therefore be 

due to a late event such as maturation, assembly, packaging or infection of new cells. 

Because of the availability of relevant expertise and reagents, the packaging phenotype of 

the recombinants was analysed. 

3.3.5 Trans-encapsidation assays 

The trans-encapsidation assays were conducted to determine whether the P1 recombinant 

viral genomes had a packaging defect. 
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3.3.5.1 Trans-encapsidation experiment 

Chater 3 80 

3.3.5.1.1 Method 

The trans-encapsidation assay was conducted to monitor whether the T7 RNA transcripts 

of the P1 recombinants and progeny RNA, synthesised after transfection of the transcripts 

into RD-ICAM cells, could be encapsidated by CVA21 or PV3 helper viruses (protocol 

described in figure 3.23). Both CVA21 and PV3 are infectious and generate viral capsid 

proteins that assemble and package progeny genomes leading to the production of mature 

virions. Chimeric genomes being packaged into the helper virus empty capsids would 

demonstrate that the recombinants are competent for packaging. 

The recombinants are effectively replicon systems, as they are able to translate, process 

and replicate. However, these lack a reporter gene or other readily assayable marker and 

encapsidation was therefore screened for by PCR. An RFLP type analysis was then carried 

out to differentiate between chimeric genomes packaged into helper virus capsids and 

helper viruses, taking advantage of the differences at the 5'UTR/P1-coding regions. 

T7 RNA transcripts derived from the recombinants and controls were transfected into 

RD-ICAM cells. Six hours post-transfection the samples were infected with the helper 

viruses and incubated for 8-10 hours. Viral RNA was extracted from the various samples 

and reverse transcribed to generate cDNA. A 900-1000 bp window of the cDNA 

5'UTR/P 1-coding regions were amplified by PCR, using generic oligonucleotide primers 

(CVA21-CAPF and ENT-GEN-2R), digested with Bam HI endonuclease and run on a 2% 

agarose gel for analysis. Predicted RFLP patterns were generated using Vector NTI and are 

illustrated in figures 3.24 and 3.25. The ability of Vector NTI to predict priming of 

oligonucleotide to sequences does not take into consideration factors such as PCR 



Transfection of in vitro generated recombinant T7RNA transcript 

1 
80% confluent RD-ICAM cells 

1 
Incubation at 37°C for 6 hours 

1 Infection with helper virus at an moi of 10 

1 Incubation at 37°C for 8-10 hours to allow for helper virus 
progeny capsids synthesis and recombinant genome encapsidation 

1 I lan esting of viruses and RNase A treatment to avoid any carry over of 
RNA and to ensure only ancapsidated RNA infects the new cell sheet 

1 
f'aaaýýe Unto a fresh cell sheet of 80% confluent RD-ICAM cells 

1 I Ian sting of iruscs and DNase treatment to avoid detection of 
a non-specific signal in RT-PCR reaction 

1 Reverse transcription of isolated , RNA and newly synthesised cDNA 
analysis by PCR amplification and restriction digest 

Figure 3.23: Flo" chart summarising the method and analysis of the trans- 
encapsidation of recombinant genomes by helper virus assay. 
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conditions like the magnesium concentrations or the annealing temperatures and does not 

necessarily give a true representation of what is actually generated. 

pRiboCAV21 and pSIF control RNAs were transfected individually and co-infected with 

PV3 virus (figure 3.28). pT7FLC/PV3 and pSIF control RNAs were also transfected 

individually and co-infected with CVA21 virus (figure 3.28). These control samples were 

carried out in parallel to monitor the efficiency of the assay and to ensure that successful 

heterologous packaging had occurred. The Bam HI digestion was carried out on a series of 

PCR products amplified from control plasmid sequences: pT7FLC/PV3, pRiboCAV21, 

pSIF, PV3BKCVA21P1 3, CVA21BKSabin 1P1 61-9 and CVA21BKPV3P1 c6 (figure 

3.27). The expected sizes of fragments resulting from both digestion of the plasmid 

amplified sequences and of the encapsidation samples are shown in table 3.26. 
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Trans-encapsidation samples : RNA + virus Bam HI digests (in kb) 

PV3BKCVA21P1 3+ PV3 virus 
0.433,0.430,0.393,0.313,0.213, 

0.133 

CVA21 SabinlP 161-9 + PV3 virus 0.9,0.433,0.313,0.213 

CVA21BKPV3P1 c6 + PV3 virus 0.615,0.433,0.344,0.313,0.213 

pS IF + PV3 virus 0.9,0.433,0.313,0.213 

pRiboCVA21 + PV3 virus 0.535,0.454,0.433,0.313,0.213 

PV3BKCVA21P1 3+ CVA21 virus 0.535,0.454,0.430,0.393,0.133 

CVA21 Sabin 1P 161-9 +CVA21 virus 0.9,0.535,0.454 

CVA21BKPV3P1 c6 + CVA21 virus 0.615,0.535,0.454,0.344 

PSI F+ CVA21 virus 0.9,0.535,0.454 

pT7FLC/PV3 + CVA21 virus 0.535,0.454,0.433,0.313,0.213 

pT7FLC/PV3 0.433,0.313,0.213 

pRiboCVA21 0.535,0.454 

pS1F 
No fragment generated, CAV21- 

CAPF does not anneal to pS1F. 
PV3BKCVA21P1 3 0.430,0.393,0.133 

CVA21BKSabin1P1 61-9 0.9 

CVA21BKPV3P1 c6 0.615,0.344 

Table 3.26: RFLP analysis of alternative trans-encapsidation assay sample testing for 

packaging capacity of in vitro generated P1 recombinant DNAs. Fragments expected 

from the Bam HI restriction digests. 
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3.3.5.1.2 Results and analysis 

3.3.5.1.2.1 Plasmid controls 

PCR and Bam HI RFLP analysis of pT7FLC/PV3, pRiboCVA21, pS1F, PV3BKCVA21P1 

3, CVA21BKSabin1P1 61-9 and CVA21BKPV3P1 c6 control plasmid DNAs are 

illustrated figure 3.27. The fragment sizes obtained were as expected and were used as 

controls for sample analysis. The generation of an unexpected -0.9 kb PCR product 

resulting from amplification of pS IF was surprising. The observed result could have been 

due to the CVA21-CAPF oligonucleotide predicted to bind pS1F 0.927 bp upstream of the 

ENT-GEN-2R pS 1 F-binding site with 45% homology. 

3.3.5.1.2.2 Virus controls 

Control infections of RD-ICAM cells with CVA21, PV3 and Sabin 1 virus samples were 

also undertaken (see figure 3.28.8). The PCR/RFLP investigation of the PV3 infected 

sample generated the expected fragments. The CVA21 infected sample study exhibited two 

additional unidentified bands, not detected in the plasmid digests (result discussed later). 

The PCR/RFLP analysis of Sabin 1 did not yield fragments, as initially expected. This 

conflicted with the pS1F plasmid control analysis. It could have been due to the 

CVA21-CAPF oligonucleotide having primed a vector-specific site, not present in the 

Sabin 1 viral genome. The Sabin 1 data were not used for further analysis. 

3.3.5.1.2.3 Trans-encapsidation by PV3 helper virus capsids 

The control sample of pRiboCAV21 RNA + PV3 virus showed PV3 fragments as well as 

CVA21 fragments. It is important to emphasize that the detection of both CVA21 and PV3 

bands could have been due to both PV3 helper virus and CVA21 virus production from 

pRiboCVA21 RNA transfection. However, the presence of both CVA21 and PV3 bands 
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could indicate that pRiboCAV21 derived genomic RNA had been encapsidated in PV3 

capsids. 

The screening method used in this assay did not enable the detection of Sabin 1-specific 

bands, as one of the oligonucleotide primers used for amplification was unable to anneal to 

the Sabin 1 genome. The pS1F RNA + PV3 virus and pS1F RNA + CVA21 virus samples 

were therefore not used for the analysis. 

The test samples co-infected with PV3 virus presented a PV3-like RFLP pattern. No other 

bands were observed suggesting that no recombinant genomes could be detected. 

3.3.5.1.2.4 Trans-encapsidation by CVA21 helper virus capsids 

As expected, the control sample of pT7FLC/PV3 RNA + CVA21 virus exhibited PV3-like 

bands as well as CVA21 virus-like bands. This result suggested that either the PV3-like 

bands were derived from PV3 virus resulting from the transfection of pT7FLC/PV3 RNA 

or that a heterologous packaging event had occurred. The two possibilities could not be 

distinguished. 

Two unidentified bands, absent from the Bam HI digested pRiboCAV21-derived PCR 

product, were present in all the samples. The bands were observed in the Bam HI digestion 

of the CVA21 virus alone control and were thought to have been artefacts resulting from 

the vRNA extraction and/or reverse transcription reactions. These were excluded from the 

characterisation studies. All the samples co-infected with CVA21 virus, only had a 

CVA21-like RFLP pattern. 

The trans-encapsidation assay results indicated that no packaged recombinant genomes 

could be detected in the reactions. However, it is not possible to differentiate between lack 

of encapsidation and poor sensitivity or screening of the experiment. The former would not 
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be surprising; as previous studies have demonstrated that poliovirus subgenomic replicons 

could be encapsidated by poliovirus capsids and to some levels by CVA21 capsids but no 

conclusive evidence was given for the encapsidation of a poliovirus subgenomic replicon 

by CB4 or HRV14 heterologous capsids (Barclay et al., 1998). Contradictory studies 

reporting that successful encapsidation of a poliovirus subgenomic replicon by CVB4 and 

HRV14 heterologous capsid proteins had occurred (Ansardi et al., 1996). The in vitro 

generated recombinants could lack a specific functional packaging signal. The design and 

use of highly specific primers, amplifying the 5'UTR/P 1 region, may enable a more 

sensitive analysis of the recombinant genome trans-encapsidation experiment. 

Can capsid proteins, generated from transcription/translation of the recombinant RNA 

genomes, assemble and encapsidate a known packageable genome? To investigate this, a 

reciprocal trans-encapsidation experiment was carried out. 

3.3.5.2 Luciferase encapsidation by recombinant capsids 

3.3.5.2.1 Method 

To detect whether the P1 recombinant genomes were capable of providing capsids in trans 

a luciferase-encoding subgenomic replicon was provided in the same cells (see figure 

3.29). To confirm the packaging assay behaved correctly, a poliovirus type 3 packageable 

luciferase subgenomic replicon (pT7REP3-L) was co-infected with PV3, CVA21 and 

Sabin 1 control viruses into RD-ICAM cells (figure 3.30). 

Co-transfection of pT7REP3-L RNA with chimeric RNA was then carried out. The 

co-transfected RD-ICAM cells were incubated at 37°C overnight to allow generation of 

progeny virus. The samples were harvested, RNase treated, passaged onto a fresh 

RD-ICAM cell sheet and incubated for 6-8 hours at 37°C to allow expression of the 



Transfection of in vitro generated Transfection of pT7REP3-L T7RNA 
recombinant T7RNA transcript transcript 

Si 
80% confluent RD-ICAM cells 

1 
Incubation at 37°C for 12-16 hours 

1 
I larvesting of viruses and RNase A treatment to avoid any carry over of 
RNA and to ensure only encapsidated RNA infects the new cell sheet 

1 
Passage I onto a fresh cell sheet of 80% confluent RD-ICAM cells 

Ii 
I larN esting of samples and 

Luciferase assay 

Incubation at 37°C for 12-16 hours 

Harvesting of viruses and RNase A 
treatment to avoid any carry over of 

RNA and to ensure only encapsidated 
RNA infects the new cell sheet 

I 
Passage 2 onto a fresh cell sheet of 80% 

confluent RD-ICAM cells 
1 

Harvesting of samples and 
Luciferase assay 

Figure 3.29: Flow chart summarising the method and analysis of the 
trans-encapsidation assay by co-transfection 



Figure 3.30: Trans-encapsidation of pT7REP3-1. RNA bv control viruses in RD- 
1tA\1 cells. 

The assay was carried out five times, standard deviation values were calculated and 
are illustrated as error bars in the graph. 



Figure 3.31: Trans-encapsidation of pT7REP3-L RNA by recombinants: first 
passage into RI)-ICA\I cells post-co-transfection of T7 RNA transcripts. 

The assa' was carried out five times, standard deviation values were calculated and 
are illustrated as error bars in the graph. 
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luciferase gene. A luciferase assay was carried out and results were plotted as histograms 

(figure 3.31). Viable capsid proteins cannot be produced as a result of transfection with the 

poliovirus type-3 luciferase subgenomic replicon, as most of the P1-coding region is 

substituted for the luciferase reporter gene. The recombinant genomes are unable to 

produce progeny viruses. Any transfer of the luciferase signal onto a fresh cell sheet, after 

RNAse treatment, would be expected to be due to a luciferase genome packaged into 

capsids derived from the chimeras. 

The assay was also conducted on L20B cells (figure 3.33) and L cells (data not shown), 

cell lines, which could only be used to test PV3- containing capsid sequences. The 

PV3BKCVA21P1 3+ pT7REP3-L sample would therefore not be expected to yield a 

luciferase signal in L20B cells and was used as a negative control monitoring for the 

detection of non-specific luciferase activity. These were first passage samples. 

Samples passaged for the first time onto a fresh RD-ICAM cell sheet were incubated for 

12-16 hours at 37°C, harvested, RNAse treated and passaged for the second time onto a 

third RD-ICAM cell sheet. Should a luciferase signal be detected in the first passage of the 

test recombinant samples, transfer onto a third cell sheet should not occur as the 

recombinants are unable to make viable viruses that would enable the signal transfer. The 

assay was repeated five times. 

3.3.5.2.2 Results and analysis 

3.3.5.2.2.1 Control samples of transfected pT7REP3-L RNA co-infected with helper 
virus 

As expected, the control sample co-infected with PV3 virus exhibited a significant 

luciferase activity. The control sample co-infected with CVA21 virus exhibited a 

detectable but low luciferase signal indicating poor encapsidation of the poliovirus replicon 
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by heterologous capsids. The sample co-infected with Sabin 1 virus exhibited very low 

luciferase activity indicating poor if not non-existent trans-encapsidation. The consistent 

abnormal pS1F and Sabin 1 virus behaviour could not be explained. 

The control assay demonstrated efficiency of the method and was applied to the 

recombinant samples. 

3.3.5.2.2.2 Co-transfection of pT7REP3-L RNA with Sabin 1, CVA21 and PV3 
control RNAs 

Genomic RNA derived from PV3, CVA21 and pS1F co-transfected with pT7REP3-L RNA 

exhibited the expected luciferase activities in all the cell lines tested and confirmed the 

success of the trans-encapsidation assay. As expected, no luciferase signal was detected in 

any cell line tested after passage of the transfected pT7REP3-L alone sample and mock 

transfections. 

3.3.5.2.2.3 Co-transfection of pT7REP3-L RNA with PV3BKCVA21P13 RNA 

No luciferase signal was detected in the co-transfection of luciferase type 3-replicon RNA 

with PV3BKCVA21P1 3 RNA (pT7REP3-L + PV3BKCVA21P1 3) samples in RD-ICAM 

cells (see figure 3.31). This could be due to inability of PV3BKCVA21P13 capsid proteins 

(CVA21-like) to package the luciferase genome. In fact previous reports showed that 

CVA21 capsids appeared to reproducibly package poliovirus subgenomic replicons at very 

low levels (Barclay et al., 1998). 

3.3.5.2.2.4 Co-transfection of pT7REP3-L RNA with CVA21BKSabinlPl 61-9 RNA 

Significant luciferase signals were detected in RD-ICAM cells, from the co-transfected 

luciferase type 3-replicon RNA and CVA21BKSabin1P1 61-9 RNA 

(pT7REP3-L+CVA21BKSabinIP1 61-9). The CVA21BKSabinIP1 61-9 recombinant 
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should synthesise Sabin 1-like capsids. The luciferase signal was also detected in L20B 

cells (figure 3.33), but not L cells (data not shown), implying that virus entry was 

PVR-dependent. Only very low amounts of viral RNA could be extracted and reverse 

transcribed. PCR amplification of a range of windows of the 5'UTR/P 1, P1/P2 and 

3D-coding regions, RFLP and sequencing analysis of the samples were inconclusive. 

When the samples were passaged for the second time onto a fresh RD-ICAM cell sheet, a 

very low luciferase signal, close to background levels and considered as negative, was 

detected in the pT7REP3-L + CVA21BKSabin1P1 61-9 sample (figure 3.32). These results 

suggested that CVA21BKSabin1P1 61-9 was capable of encapsidating the luciferase type 

3-replicon genome. 

3.3.5.2.2.5 Co-transfection of pT7REP3-L RNA with CVA21BKPV3P1 c6 RNA 

The samples co-transfected with T7 RNA transcripts of the luciferase type 3-replicon and 

CVA21 BKPV3P 1 c6 exhibited a high luciferase signal in both RD-ICAM cells and L20B 

cells (figures 3.31 and 3.33) but not L cells (data not shown), again implying a 

PVR-dependent signal. The CVA2IBKPV3P1 c6 recombinant seemed to be able to 

generate capsid proteins that were then able to assemble and encapsidate the luciferase 

type 3-replicon progeny RNA. The output luciferase signal of the CVA21BKPV3P1 c6 + 

pT7REP3-L sample passaged onto a second cell sheet was strikingly high (figure 3.32). 

This was confirmed by repeating the entire trans-encapsidation assay several times. 

A possible contamination event with an infectious virus could explain this result. However, 

a contamination with poliovirus seemed unlikely as all the test samples were put in an 

incubator prior to handling the control samples, samples that would generated a positive 

signal. Moreover, ART-filter tips were used throughtout the experiments to avoid aerosol 

contamination of the pipettes. 



Figure 3.32: Trans-encapsidation of pT7REP3-L RNA by recombinants: second 
passage into RI)-I('A\I cells post-co-transfection of T7 RNA transcripts. 

The assay N% as carried out five times. standard deviation values were calculated and are 
illustrated as error bars in the graph. 



Figure 3.33: Trans-encapsidation of pT7REP3-L RNA by recombinants: first 
passage into 1.20B cells post-co-transfection of T7 RNA transcripts. 

The assay %N as carried out five times, standard deviation values were calculated and 
are illustrated as error bars in the graph. 
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Further investigation of this surprising result was conducted. Viral RNA extraction, reverse 

transcription, amplification of the 5'UTR/P 1 -coding region, P1/P2 and 3D-coding regions 

by PCR, RFLP and sequencing analysis of the sample were carried out. The P1/P2 and 3D 

coding-regions had a PV3 RFLP and sequencing pattern (data not shown), strongly 

suggesting a contamination event. However, the 5'UTR/P 1 PCR amplification 

(ID-1/ENT-GEN-2R) and the Bam HI RFLP analysis indicated that the samples had a 

CVA21 5'UTR and a PV3 P1 pattern (see figure 3.34.1 and 3.34.2). This suggested that a 

recombination event between the CVA2IBKPV3P1 c6 recombinant and the pT7REP3-L 

replication-competent RNA genomes had occurred. This resulted in the generation of a 

recombined chimera containing a CVA215'UTR and the reminder of the genome of PV3 

(CVA215'UPTR/PV3). Sequencing data analysis was poor, as it was apparent that mixed 

viral sequences were present, probably corresponding to the presence of both 

CVA2IBKPV3P1 c6 and CVA215'UTR/PV3 sequences (data not shown). A series of 

analyses were conducted in order to further investigate these observations. 

Interestingly, the sample with high luciferase activity also caused CPE when passaged onto 

fresh cell sheets. It should be noted that neither input genome alone caused CPE (see table 

3.10 and table 4.3). The samples were harvested, isolated and plaqued. A mixed plaque 

phenotype was observed with a population of small plaques (see figure 3.35 and 3.36) that 

were consistently smaller than those seen in a typical PV3 infection (data not shown). 

Previous studies demonstrated that, when 220 nucleotides of the 5'UTR of CVB3 were 

changed for PV 1, the viability of the virus was maintained. These viruses, however, had 

smaller plaques than that of PV3 wild-type plaques (Zell et al., 1995). Replacement of the 

complete PV3 5'UTR with the CVB4 5'UTR was demonstrated not to affect sub-genomic 

replicon replication (Rohll et al., 1994). Furthermore, chimeric CVB4/PV3 5'UTR did not 

appear to affect levels of virus production (Rohll et al., 1994). 
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Bam HI Bam HI 

pT71: 1_C PV. 1181bp ID-1/ENT-GEN-2R PCR product 

1 I ra_gments generated from the Bain HI digestion of the 
II)-I f: til'-Gl: N-2R amplified PCR products (in kb). 

p l'? lýl. C' PV3 0.673.0.296.0.2 13 

pRiboC'VA21 0.775.0.376 

CVA21131tiPV3Pl c6 0.855.0.296 

Figure 3.34.1: Bam III digestion of ID-I/ENT-GEN-2R PCR products 
of p-T'FI. (''PV 3, pRibo('\: %21 and ('x: -%21 BKPV'3PI c6. 
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Infectious recombined chimeric viruses would have been able to infect the third cell sheet 

and provide capsids in trans as they appear to cause CPE. Furthermore it is likely that the 

luciferase subgenomic replicon was packaged into CVA215'UTR/PV3 capsids during the 

first passage. The particles were then able to attach, enter and release the replicon into 

fresh cells. This could explain the transfer of a luciferase signal onto a third cell sheet. 

Another possible explanation is that a recombination event occurred generating a large 

genome containing both the luciferase-coding gene and the complete genome coding 

sequence. This is improbable, as a larger genome is less likely to be packaged into the 

empty virus particles, as it is not an evolutionary advantage. The plaque purified isolated 

viruses were passaged onto a fresh cell sheet and luciferase activity detection assay was 

carried out. No luciferase signal was detected thereby suggesting the absence of a large 

super-recombinant genome. 

The elevated luciferase signal seen after the first passage could also be due to the 

CVA21BKPV3P1 c6 recombinant capsid proteins assembling to form a virus particle 

packaging the luciferase replicon genome (see figure 3.30). This could also have been the 

case, as similar results were observed in the case of CVA21BKSabin1P1 61-9 (see figure 

3.30). It is likely that the two events together- trans-encapsidation and subsequent transfer 

of the luciferase genome and recombination to form a viable CVA215'UTR/PV3 

genome-were responsible for the present observations. The latter would amplify the 

former. However, it is still unclear why such high readings were observed. 

3.4 Discussion 

In vitro generated recombinants between polioviruses and a HEV-C, with a perfect 

exchange of the complete P 1-coding region, were unable to cause cytopathic effect when 



Figure 3.35: Plaque phenotype determination 

in RI) cells of'plaque purified virus isolated after the second passage of 
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Figure 3.36: Plaque phenotype determination (continued) 

in RI) cells of plaque purified virus isolated after the second passage of 
L'V: \2113KPV3PI c6 + pT7REP3-L samples and plaque purified twice: 
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transfected into permissive cell lines. The generated chimeras were initially thought to be 

acytopathic or replication-defective due to a combination of protein coding regions leading 

to the generation of non-viable viruses. Immunofluorescence studies suggested that the 

chimeras were not acytopathic but that VP1 was generated and that translation had 

occurred. Therefore a defect must have affected a post-translation event of the life cycle 

such as processing, replication, assembly, encapsidation, maturation or entry of progeny 

virions into uninfected cells. A series of assays were undertaken to determine the nature 

and location of the defect affecting the recombinants. 

In vitro translation assays were conducted to confirm the immunofluorescence study 

results. Results indicated that the recombinants appeared to translate efficiently and exhibit 

the correct in vitro protein-processing pattern. In vivo control samples appeared to have 

identical protein processing patterns as the in vitro translation control samples. The in vitro 

translation assay data suggested that the correct viral proteins had been made thereby 

implying that proteins derived from chimeras were likely to be able to drive genome 

replication. However, the translation assay was carried out in vitro and it is possible that in 

a particular cellular environment the polyprotein processing would not occur as efficiently 

or would be unable to generate functional proteins. 

Recombinant genome replication was then checked by dot blot hybridisation. The 

experiment confirmed that the in vitro generated recombinants were replication-competent. 

Some replicated to wild-type genome levels, whilst others were shown to be less efficient 

at replicating. These observations indicated that the defect was either located at maturation, 

assembly, and packaging processes or affected the infection of new cells. 

The level of expertise in the laboratory enabled trans-encapsidation assays to be conducted. 

Two assays, testing for the presence or absence of a packaging signal in the recombinant 
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genomes and for the capacity to encapsidate a replicon genome by the capsid proteins 

synthesised from the chimeric genomic RNA, were carried out. Trans-encapsidation of 

recombinant genomes by infectious helper viruses was investigated first. No packaged 

recombinant genomes were detected from the RT-PCR and RFLP screening. However, the 

sensitivity of the technique was not evident, as control samples did not enable a definite 

conclusion. Subsequent co-transfection of a luciferase type-3 poliovirus replicon with the 

recombinant RNA genomes into RD-ICAM cells, sample harvesting, RNAse treatment and 

passage onto a fresh cell sheets constituted the second trans-encapsidation assay. The 

results obtained from this assay suggested that both a recombination event and the P1 

recombinants generating capsids were likely to account for encapsidation of the luciferase 

subgenomic replicon. This could be explained by the recombinant genomes lacking a 

packaging signal or having an incompatibility essential for key interactions involved in 

encapsidation. This defect would have prevented the formation of viable virions. 

Studies investigating poliovirus packaging have not yet provided a detailed understanding 

of this mechanism and the proteins involved in such processes have yet to be identified. 

The poliovirus packaging signal was shown not to be located in the 2A-coding region or in 

the P1 minus the last few amino acids of VP 1-coding region and was suggested to be 

located elsewhere in the remainder of the genome (Kuge et al., 1986; Barclay et al., 1998). 

However, packaging may be more complex and dependent on a number of factors. 

Infectious cVDPVs, isolated from the Haiti outbreaks, were shown to be recombinants 

between Sabin poliovirus type 1 and HEV-Cs, with a crossover site located in the 

2A/2B-coding regions (Kew et at., 2002 see figure 3.37). In vitro generated recombinants 

and the Haiti isolates differed in the location of their crossover sites. Similar recombination 

events were observed in Madagascar cVDPVs isolates that proved to be Sabin poliovirus 
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Figure 3.37: Location of recombination breakpoints of the four different 
recombinant classes found among Hispaniola VDPV isolates. 

In the schematic of the poliovirus genome, the single open reading frame is 
indicated by a rectangle. flanked by the 5'- and 3'-untranslated regions (UTR). 
In rectangles A to E. Sabin I -derived sequences are indicated by white fill, 

and sequences derived from enteroviruses other than the Sabin OPV strains 
are indicated by shaded or hatched fills. The rectangles symbolize sequences 
of A. Sabin 1: B. DOR00-013: C. DOR00-041 c 1: D, HA100-003; and E. 
HA101-007. Figure and legend taken from Kew et al. (2002). 
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type 2/HEV-Cs chimeras, with a non-specified crossover site within the 2A-coding region 

(Rousset et al., 2004). 

The studied viable cVDPVs had P 1,2A and/or part of the 2B-coding regions derived from 

the same source genomes. The-non-viable in vitro generated P1 recombinants differed 

from the cVDPVs as the P1 and 2A/2B-coding regions were derived from separate source 

genomes. In light of these results, packaging may be more complex than initially thought. 

A packaging signal may depend on localisation of genomes and proteins and/or on 

compatibility required for specific interactions to occur. It is possible that the genome and 

the capsid proteins of a particular virus localise in specific intracellular areas. These 

intracellular areas may differ between viruses, which may prevent specific interactions, 

and thus packaging from occurring. Compatibility between the P1 with some of the 

2A/2B-coding regions may be necessary for efficient packaging to occur, whether the 

compatibility is based on RNA structures, protein-RNA or protein-protein interactions. 

Unassembled or partially assembled capsid proteins could exhibit high specificity for a 

particular RNA structure, RNA sequence or protein present within homologous 

2A/2B-coding regions. This would explain the discrepancy seen between the results 

presented in this thesis and those observed in Haiti and Madagascar (Kew et al., 2002; 

Rousset et al, 2004). 

A repeat of the assay by sequential transfection as opposed to simultaneous co-transfection 

may prevent the occurrence of recombination events between the chimeric genomes and 

the luciferase genomes and ensure a better data interpretation. 

Further investigations need to be carried out in order to determine the exact nature of the 

defect and to enable a better understanding of this particular stage of enterovirus life cycle. 

Electron microscopy (EM) studies should enable the detection of mature virus particles. 
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The absence of mature virions would support the existence of a packaging defect. If such 

virions were to be detected in the supernatant of transfected cells, then the defect would 

have to be at the attachment and entry level of the next cell sheet, since they cannot infect 

fresh cell sheets. If no virions were to be detected in the supernatant but were present in the 

lysed cell suspension, this would imply that the mature virions could not be released into 

the extracellular environment or that the production or release of such virus particles would 

be much slower. Due to equipment breakdown and restrictions of EM, such experiments 

were not completed. Should microscopy studies confirm the absence of mature virus 

particles, the detection of assembly intermediates would be undertaken. 

The detection of assembly intermediates by sedimentation coefficient assay should enable 

the determination of the particular stage of the life cycle affected by the defect and 

potentially the assembly step at which packaging of the genomic RNA occurs. The 

determination of the presence of assembly precursors by density gradients would also 

establish whether there was a defect in the maturation process or whether the lack of 

maturation was a consequence of a packaging defect. The method used would be designed 

based on early experiments (Moscufo et al., 1991) whereby radiolabelled HeLa cell 

suspension cultures, infected with a high MOI of control viruses or transfected with high 

concentrations of recombinant RNA, would be harvested and lysed. Alternatively, 

microinjection of high concentrations of sample RNA into oocytes, supplemented with 

HeLa nuclear extracts necessary for initiation of translation and RNA synthesis (Gamarnik 

et al., 1996), may be conducted to ensure a more efficient delivery of the samples. Samples 

would then be centrifugated to eliminate cell debris and the supernatants would then be 

applied to 6-25% and 10-30% sucrose gradients. Centrifugation to allow separation of 

different assembly intermediates with different sedimentation coefficients would then be 

conducted. The 6-25% gradient would enable isolation of the 6S protomers and 14S 
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pentamers and the 10-30% gradient would allow isolation of 80S empty capsids and 160S 

mature virions. The detection of 160S particle production would suggest that assembly and 

packaging had occurred. However, the detection of assembly intermediates may give an 

insight into what stage of assembly was affected by the defect. Results could be interesting 

for the understanding of the picornavirus packaging and assembly. 

In the present assays, the cells were lysed by freeze thawing, thereby releasing any 

intracellular viable and infectious progeny virions. An incapacity of recombinant viruses to 

attach and enter cells was not likely, as the entire P 1-coding sequence of the in vitro 

generated recombinants, checked in its entirety by sequencing, remained unchanged. The 

capsids, being identical to source capsids, would be expected to have wild-type infectious 

parent virion conformation and to attach and enter cells. 

A number of experiments need to be conducted in order to get a better understanding of the 

defect seen in the in vitro generated P1 recombinants and the requirements necessary for 

packaging to occur. One way to investigate this would be the generation of P 1/2A 

recombinants where P1 and 2A-coding regions would be swapped between CVA21 and 

PV3 or Sabin 1. The in vitro generation of such recombinants might give us an insight into 

the localisation of an encapsidation signal and the compatibility requirements for efficient 

encapsidation of the genomes to occur. This would also represent a scenario closer to that 

described in nature (Kew et al., 2002; Rousset et al., 2003; Rousset et al., 2004). 

The selection of novel tropic recombinant viruses in vivo, enabling the generation of 

recombinant viruses without predetermining crossover sites, and the in vitro generation of 

P 1/2A chimeras, may enable a better understanding of the results described in this chapter 

and of the encapsidation and assembly processes. 
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4 Results 3: In vivo recombination 

4.1 Introduction 

Since the introduction of the OPV, vaccine-derived polioviruses (VDPVs) have been 

reported to cause vaccine-associated paralytic poliomyelitis (VAPP) in both 

immunocompromised patients and healthy individuals (see chapter 1: Introduction). The 

recent outbreaks of VDPVs in Hispaniola (Kew et al., 2002), Madagascar (Rousset et al., 

2003), the Philippines (MMWR, 2001) and Egypt (Yang et al., 2003) have raised concerns 

about the WHO eradication program and have highlighted the threat VDPVs cause and the 

need for a better understanding of such viruses. 

A variety of reports (see chapter 1: Introduction) have shown that human enteroviruses can 

recombine in the natural host. In fact, intraspecies recombination is a common occurrence 

in nature, and has been reported in human enterovirus species A (Oberste et al., 2004b), 

human enterovirus species B (Oprisan et al., 2002; Oberste et al., 2004a) and human 

enterovirus species C (Brown et al., 2003). Moreover recent studies provided evidence that 

intertypic recombination could occur between a HEV-C and a poliovirus. In fact, the 

poliomyelitis-causing VDPVs isolated in Haiti and Madagascar were shown to be 

recombinants between poliovirus Sabin type 1/poliovirus Sabin type 2 and human 

enteroviruses species C (Kew et al., 2002, Rousset et al., 2004). 

When recombinants between a poliovirus and a HEV-C with a precise exchange of the 

P1-coding region were generated in vitro, these proved to be non-viable. Can viable 

recombinants between poliovirus and non-poliovirus human enteroviruses occur in a tissue 

culture environment? Can recombination occur in a particular cellular environment such as 

RD-ICAM cells or does recombination only occur in the M cells of Peyer's patches? In 
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vivo recombination studies could provide valuable information and determine whether 

recombination can occur in RD-ICAM cells or whether these cells lack specific 

requirements, only found in the gut environment, necessary for a recombination event to 

occur. What viruses are most likely to recombine? The experiments described in this 

chapter were designed to select for viable recombinant viruses in a tissue culture 

environment by co-transfecting two impaired genomes in the same cellular environment. 

Two selectable defective genomes unable to make viable virus progeny would be 

introduced to the same cellular environment, passaged and growing viruses isolated. This 

would bias the assay and recombination, where the crossover sites have not been 

pre-determined, would therefore be more likely to occur in the particular cellular 

environment. The choice of input genome was critical. Various defects such as in-frame 

deletion within the capsid-coding region, mutations preventing a complete replication 

cycle or sensitivity to a particular drug, such as GuHC1, were considered for these 

experiments. Should recombinant viruses arise from the experiment, these would be 

isolated, analysed, characterised, the exact location of the crossover points identified, and 

the existence of recombination hot spots and the relevance of these in virus evolution 

would be identified. In this chapter, assays carried out in a tissue culture environment are 

defined as in vivo. 

The successful selection and characterisation of capsid recombinants in tissue culture 

without predetermining crossover points and exact recombination sites should provide very 

valuable information on properties of interspecies recombinant viruses, tropism, viability 

and fitness determinants. Previous findings, described in chapter 3, showed that 

recombinants engineered in vitro to have a precise exchange of the P1-coding region were 

non-viable. These were suggested to have a late replication defect such as packaging. In 

vivo studies may allow a better understanding of the defect affecting the in vitro generated 
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recombinants and may provide valuable information on sequences and interactions 

involved in processes such as encapsidation. 

4.2 Experimental model 

In the model used here, two impaired viral genomes were co-transfected in an 

80%-confluent cell monolayer. The co-transfected cell sheets were incubated for 3 to 5 

days at 37°C to allow for recombination, recovery and multiplication of novel chimeras to 

occur. Any virus recovered would be isolated, analysed and characterised. 

The model was designed based on a number of studies. Evidence of the generation of 

recombinants resulting from the co-transfection of two impaired viral DNA sequences, 

with an efficiency of 80-100%, has been provided in baculoviruses (Chaabihi et al., 1997) 

and adenoviruses (Elahi et al., 2002). The study of poliovirus 5' and 3' overlapping RNA 

fragments (Gmyl et al., 2003) conclusively demonstrated the production of recombinants 

resulting from a co-transfection assay. Furthermore, recent experiments describe the 

generation of cytopathic recombinant viruses from in vivo co-transfection of 

non-replicating subgenomic transcripts of the pestivirus BVDV (bovine viral diarrhea 

virus) (Gallei et al., 2004). The described method can therefore lead to cell death due to the 

emergence of chimeric viruses. This suggested that the proposed model offered a suitable 

strategy to select for recombinants in vivo. 
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4.2.1 Strategy and experimental evidence 

In order to test the viability of the experimental system two impaired poliovirus type 3 

Leon genomes were chosen, based on availability of infectious cDNAs, subgenomic 

replicons and replication-incompetent clones in the laboratory. A PV3 subgenomic 

replicon (REP3-L) was selected as one of the parental genomes. This replicon lacks all but 

82 nucleotides encoding the P1 region, but replicates well upon transfection of permissive 

cell lines. The second chosen parental impaired viral genome was a 

replication-incompetent full-length poliovirus type 3 genome (SL3), derived from the 

plasmid pT7/SL3. pT7/SL3 has eight mutations in the 2C CRE region preventing the 

formation of the stem loop structure thereby inhibiting the formation of the VPg-pUpU 

primer and thus the initiation of the positive-sense strands synthesis. However, the SL3 

genome is still capable of generating negative-sense strands, a process required for 

replication-dependent recombination (Goodfellow et al., 2003), and the remainder of the 

genome is PV3 sequences. Interestingly, SL3 revertants to replication-competency could 

not be recovered (Goodfellow et al., 2000). 

4.2.2 Transfection efficiency calculation 

The transfection efficiency of poliovirus type 3 in RD-ICAM cells was calculated by blue 

cell assay, to determine favourable experimental conditions. Transfection by CaPO4 

precipitation (Elahi et al., 2002), DOTAP (Chaabihi et al., 1996), electroporation (Gallei et 

al., 2004) and DEAE-dextran (Gmyl et al., 2003) have all been shown to be successful at 

generating recombinants. The use of Lipofectamine 2000 is another very efficient RNA 

transfection method. To maximise the chances of observing a recombination event a 

variety of transfection methods, post-transfection incubation times, cell densities and RNA 
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concentrations were tested. Transfection method and RNA concentrations test results are 

illustrated in table 4.2. 

Transfection method 

[PV3 T7 RNA] transfected into 

RD-ICAM cells 

Oµg 1µg 5µg 10µg 

DEAE-dextran 1% 10-20% 30-40% 30-40% 

Lipofectamine 2000 5% 50% 70-90% 70-90% 

Electroporation (250V, 40052,250pF) 5% 60% 70-90% 70-90% 

Table 4.2: Summary of in situ ß-galactosidase detection of a bound ligand assay to 

determine the conditions for efficient transfection of PV3 T7 RNA transcript in 

RD-ICAM cells. The values represent the percentage of blue cells in each sample. 

The negative controls for transfection surprisingly exhibited reasonably high background 

level for the samples transfected by electroporation and Lipofectamine 2000. This was 

thought to be due to non-specific staining of unattached cells. Transfection by 

electroporation often results in a significant number of dead or unattached cells that never 

recover. Similarly, large numbers of Lipofectamine 2000 liposomes fuse with the cell 

membranes, which can disrupt these structures resulting in significant levels of cell death. 

The background levels of blue cell staining observed in DEAE-dextran transfected cells 

was significantly lower than that seen post-electroporation and Lipofectamine 2000 

treatment. This is because dextran permeabilises the cell membrane allowing entry of RNA 

and results in very little cell death. However, the transfection of poliovirus type 3 into 

RD-ICAM cells by electroporation and Lipofectamine 2000 (70-90%) was significantly 
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more efficient than transfection by DEAF-dextran (30-40%). The amounts of RNA that 

yielded greater transfection efficiency were that of 5µg and 10µg. 

However, these figures were calculated based on transfection of one parent and, due to 

time restrictions, co-transfection efficiency was not determined. Assuming the transfection 

efficiency was equally high for other genomes the theoretical co-transfection efficiency 

was calculated. Around 49% (70% of 70%) of the transfected cells would be expected to 

contain copies of both parental genomes. This figure was thought to be sufficiently high 

since recombination is a frequent event. The parameters (electroporation of a total of 10µg 

of RNA into 106-107 cells/ml) were standardised and applied to the experimental model. 

4.2.3 Co-transfection of SL3 and REP3-L genomes in L20B cells 

The experimental model is described in figure 4.1. A. RNA synthesised in vitro from 

pT7/SL3 and pT7REP3-L were co-transfected by electroporation into L20B cells (kindly 

provided by Dr A. Macadam, National Institute for Biological Standards and Control), a 

murine cell line expressing the PVR. To ensure that the differences in transfection 

efficiencies would not bias the assay, different ratios of normalised concentrations of RNA 

transcripts derived from the two parental genomes were used. RNAs synthesised from 

individual control plasmids pT7/SL3 and pT7REP3-L were transfected in parallel and a 

mock transfection was carried out to monitor the effect of the transfection conditions on 

L20B cells. A parallel control transfection of the pT7FLC/PV3 RNA transcript positive 

control was conducted under the same experimental conditions at a different time to ensure 

no carryover. The results are listed in table 4.3. 
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Figure 4.1: Experimental model 

Data analysis 

I \pcnmental procedure of co-transfection experiments for the selection of 
recombinant viruses. A- Co-transfection method of the pT7REP3-L T7 RNA transcript 
and pT7/SL3 T7 RNA transcript. B- Co-transfection method of the CVA21 Age I 
deletion clone T7 RNA transcript or EV7 Nsi I deletion clone T7 RNA transcript and 
pT7/SL3 T7 RNA transcript. 
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Amounts of RNA (in µg) 
Transfection of L20B 

cells 

pT7/SL3 RNA pT7REP3-L RNA PT7FLC/PV3 RNA CPE readout 

5 5 0 

2 8 0 " 

8 2 0 " 

10 0 0 ° 

0 10 0 ° 

0 0 10 " 

0 0 0 ° 

Table 4.3: Results of co-transfection by electroporation of pT7FLC/SL3 RNA with 

pT7REP3-L RNA in L20B cells. The read-out of the experiment was the presence   

or absence Q of cytopathic effect observed in the transfected cell sheets. The amount 

of RNA transfected is expressed in pg. 

4.2.3.1 Analysis of recovered recombinant viruses 

As expected, no CPE or very low levels of CPE were observed in the negative control 

samples. The very low levels of CPE observed were thought to be induced by SL3 and 

REP3-L production of the cytotoxic functional viral 2A protein. Complete CPE was 

observed in cells transfected with the positive control full-length wild-type PV3. Finally, 

L20B cells co-transfected with both defective genomes exhibited high levels of CPE, 
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comparable to wild-type levels. The viruses were isolated from the samples, analysed and 

characterised. 

The co-transfection of a replication-impaired SL3 genome with a REP3-L luciferase 

replicon in vivo led to the successful generation of viable recombinant viruses (SL3-L) 

with PV3-like sequences and properties. The expectation that two impaired PV3 viral 

genomes can recombine in vivo was confirmed and the viable recombinant viruses were 

analysed by receptor blocking, virus neutralisation, plaque phenotype, RFLP and 

sequencing studies. 

4.2.3.2 Receptor blocking assay 

Infections with the viruses resulting from the co-transfection of pT7/SL3 RNA and 

pT7REP3-L RNA were blocked by treatment with an anti-PVR monoclonal antibody (see 

table 6.1) indicating that the isolated viruses were PVR-binding viruses (see figure 4.4). In 

the absence of an anti-PVR polyclonal antibody PV3, PV 1 and the isolated recombinant 

viruses (SL3-L) were able to exert a cytotoxic effect on L20B cells. In the presence of the 

anti-PVR polyclonal antibody infections by PV3, PV 1 and the SL3-L viruses were blocked 

and no cytolysis was observed. This result confirmed that SL3-L viruses were PVR-tropic. 

4.2.3.3 Neutralisation assay 

SL3-L recombinant viruses had a PV3-like antigenicity as neutralisation of virus infection 

in L20B cells was observed in the presence of an anti-PV3 antibody but not in the presence 

of an anti-PV 1 antibody (see figure 4.4). PV 1 infection was neutralised by anti-PV 1 

antibody, PV3 infection was neutralised by anti-PV3 antibody and no antibody 

cross-reactivity was observed. 
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4.2.3.4 Plaque phenotype 

The plaque phenotype of SL3-L viruses was indistinguishable from that of PV3 viruses 

(see figure 4.5 and 4.6). 

4.2.3.5 Genetic analysis 

SL3-L viral RNA was extracted, reverse transcribed and amplified for further analysis. 

RFLP and sequencing studies were carried out in order to determine the genotype of the 

SL3-L viable recombinant viruses isolated from the in vivo co-transfection assay. The 

cDNA generated from the reverse transcription reaction was then amplified by PCR and 

the product was purified and submitted to RFLP analysis and sequencing. Both analyses 

confirmed the SL3-L sequences were poliovirus type 3-like (data not shown). 

To check the capsid-coding region of the genome was derived from the SL3 

replication-defective genome Sac I digests were carried out. Both pT7FLC and pT7/SL3 

have a Sac I site within the P 1-coding region (confirmed by sequencing). However, it is 

unclear as to why but the former can be cut whereas the latter cannot. This Sac I site was 

therefore used for identification purposes. Sequencing data demonstrated the presence of a 

Sac I site within the P1-coding region of the SL3-L cDNA. This site was not digested by 

Sac I confirming that the SL3-L viruses isolated had SL3 P1-coding region sequences. 

The SL3 clone has a Siva I site, situated in the mutated 2C-coding region. Screening for the 

absence of that site in the SL3-L virus sequences verified that the 2C CRE region was 

PV3-like and not SL3-like. Indeed the PV3 cDNA and SL3-L cDNA sequences were not 

digested by the Siva I restriction endonuclease whereas SL3 control sequences were. 

Partial genome sequencing data further supported the result; the Siva I site was absent from 

the SL3-L cDNA. Contamination with wild-type poliovirus type 3 could not be excluded in 



Figure 4.5: Plaque phenotype of recombinant viruses generated by co-transfection 
of R\. % transcripts derived from pT7/SL3 with pT7REP3-1,. 

'1-%No of the plaque purified viruses are illustrated here. The plaque phenotypes of 
control N iruses PV3 and SL3 are also illustrated here. The plaque assays were carried 
out on 1.2013 cells. A- Plaque assay of two of the plaque purified SL3-L viruses 
generated from co-transtection of RNA transcripts derived from pT7/SL3 with 
p T7Rl: P3-1.. 1: I and 1: 6 represent initial ratios of RNA used for transfection. B- Plaque 
assay of pT7Fl. C'PV3 T7 RNA transcript transfection. C- Plaque assay of pT7/SL3 T7 
RNA transcript transfection. 



Figure 4.6: Titration of virus resulting from pT7/SL3 RNA and pT7REP3-l. 
10A co-transfection. 

Titration hN plaque assay of the third passage of plaque purified viruses generated 
by transfection of 17 RNA transcripts in L2013 cells. A- Plaque assay of one of the 
passaged (p3) plaque purified viruses generated by co-transfection of pT7/SL3 T7 
RNA transcript %N ith pT7Rf: P3-L T7 RNA transcript on L20ß cells: 
1.2ýx 107pfu ml. ß- Plaque assay of the passaged (p3) plaque purified virus 
venerated by transfection of pT7FLC/PV3 T7 RNA transcript on L20ß cells: 
1.2Sx I07pfu/111 
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these experiments but was very unlikely due to the precautions taken whilst carrying out 

the experiment and control transfections. Further analysis of possible crossover sites was 

impractical as both parental impaired genomes had type 3 sequences. 

Repeating the experiment with defective genomes derived from different poliovirus 

serotypes could enable a more detailed analysis. Indeed, the successful recovery of viable 

recombinant viruses from co-transfection of a poliovirus-type 1 impaired parent with a 

poliovirus-type 3 impaired parent, could lead to the identification of recombination 

crossover points and the potential identification of recombination hot spots due to the 

sequence differences exhibited by the parental genomes. Time constraints and lack of 

availability of defective type 1-genomes prevented this assay from being carried out. This 

additional assay would add little to the aims of the study. However, the present result 

indicated that successful recombination between two homologous defective poliovirus 

type-3 RNAs could occur in vivo, in L20B cells. 

4.3 In vivo selection for recombinants between poliovirus and 

enterovirus species C and enterovirus species B 

Can a non-poliovirus enterovirus recombine with poliovirus in tissue culture? The in vivo 

selection for viable recombinant viruses between a poliovirus and a non-poliovirus 

enterovirus was therefore carried out using the experimental system as previously 

described and tested. Before initiating the assays the appropriate and available impaired 

parental genomes were carefully chosen and designed. The aim was to choose a human 

enterovirus C, closely related to poliovirus. These would be expected to recombine in vivo, 

as HEV-C are known to recombine with poliovirus vaccine strains in nature (Kew 2002, 

Rousset 2004). A human enterovirus B reference genome, more distantly related to 
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poliovirus, was also chosen for the assay, as it would be equally interesting in the selection 

for recombinants in vivo. 

The choice of available impaired parental genomes was limited as there are very few or no 

current replicon or SL3 versions of HEV-Cs or HEV-Bs. One of the parent genomes was 

required to be poliovirus capsid-encoding as the aim was to select for PVR-tropic viruses. 

The poliovirus SL3 replication incompetent clone was chosen as one of the impaired 

parents. l lEV representatives were chosen based on availability of infectious clones in our 

laboratory and homology levels to PV3. CVA21, a HEV-C closely related to polioviruses, 

has an 84.2% polyprotein amino acid identity with PV3, and EV7, a HEV-B more distantly 

related to polioviruses, only has a 64% amino acid identity with PV 1. CVA21 and EV7 

were the chosen as HEV representatives and best available parents for the experiment. 

CVA21 and EV7 cDNAs were genetically engineered to create an in-frame deletion within 

the capsid-coding regions so that infectious wild-type virus could not be generated due to 

the absence of functional capsid proteins. Due to time constraints the replication phenotype 

of the P1-deletion clones could not be tested. Their competence to replicate was assured 

from knowledge of the poliovirus and poliovirus sub-genomic replicon system and from 

the sequencing to verify an in-frame deletion was present. The cloning strategies are 

illustrated in figure 4.7 and 4.8 and described in section 4.3.1.1 and 4.3.1.2. 

4.3.1 Design of defective genomes 

4.3.1.1 Cloning strategy for the generation of in-frame deletion within the Pl-capsid 

coding region of CVA21 (enterovirus C) 

A pT7CVA21AP 1 deletion clone was derived from the pCAV21 plasmid, which contains 

an infectious CVA21 cDNA. pCAV21 has three Age I sites within the VP2 and VP4 
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coding regions of the genome. Following Age I digestion of pCAV21, T4 DNA 

polymerase treatment was carried out to fill in 5'overhangs to form blunt ends, which were 

ligated together. The ligation reaction was then transformed, amplified in ER2738 bacterial 

cells and the DNA was purified. The clones were screened by standard digestion with 

Nco I, Bam HI and Eag I, a site created upon ligation (data not shown), and sequence 

analysis of PCR amplified VP4/VP3 coding regions (see figure 4.7). A window of the 

5'LTTR/P1-coding region spanning the in-frame deletion was amplified by PCR (using 

forward and reverse oligonucleotide primers CAV21-CAPF and ENT-GEN-2R) and 

sequenced. The analysis confirmed that the constructed clones were correct. The 5'UTR/P 1 

junction coding region of pT7CVA21 AP 1 clones 6 and 7 sequences contained the Eag I 

site and were as predicted. The PCR fragment, were approximately 600bp-long suggesting 

that clones 6 and 7 did contain a deletion, compared to the wild-type pCAV21 PCR 

product, which was approximately 900bp-long. 

4.3.1.2 Cloning strategy for the generation of an in-frame deletion within the P1 

capsid coding region of EV7 (enterovirus B) 

A pT7EV7iP1 deletion clone was derived from the pT7EV7 plasmid, containing the 

complete infectious EV7 cDNA. pT7EV7 was digested with Nsi I, purified and 

self-ligated. The ligation reaction was digested with Sal I preventing religated vector from 

being recovered. The reaction was then transformed and amplified in ER2738 bacterial 

cells and the DNA was purified. The clones were screened by standard restriction digest 

reactions with Bam HI, Nco I and Sal I (data not shown) and sequenced. The sequencing 

analysis of a PCR amplified window of the 5'UTR/P 1 coding region (using specific 

forward and reverse oligonucleotide primers CB3-1F and 591-5R: see figure 4.8) 

confirmed that the recovered clones had in-frame deletions and that the sequences were 

correct. Sequencing of PCR products generated with primers specific for sequences coding 
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for the 5'LTTR/P 1 junction of pT7EV7A P1 clones 3 and 4 was carried out. The sequences 

were identical to the theoretical expected sequence generated from the cloning technique. 

The PCR fragments sent for sequencing were approximately 750bp-long suggesting that 

the pT7EV70P 1 clones 3 and 4 did contain a deletion, compared to the 2500bp fragment 

obtained from amplification of wild-type pT7EV7 sequences. 

4.3.1.3 Co-transfection of defective T7 RNA transcripts derived from engineered 

plasmid DNAs 

The co-transfection experiment was carried out as shown in figure 4.1. B. RD-ICAM cells 

were chosen because they would support growth of potential recombinant viral genomes 

and both parental genomes from which the impaired genomes were derived and would be 

expected to support growth of potential recombinant viral genomes resulting from the 

reaction. RD-ICAM cells also have a great ability to recover post-electroporation. The 

laboratory HeLa cell line, another permissive cell line, exhibited higher levels of cell death 

post-electroporation and was therefore not used for the assay. RNA synthesised in vitro 

from pT7CVA2I AP 1-6 and -7, pT7EV7AP 1-3 and -4, pT7/SL3 were DNase treated, 

purified, measured using a spectrophotometer and co-transfected into RD-ICAM cells. The 

RNA derived from each individual clone as well as RNA derived from pCAV2 1, pT7EV7, 

pT7FLC/PV3 control plasmids were synthesised and transfected. Mock transfections of 

RD-ICAM cells were also carried out to monitor background levels of cytolysis 

post-transfection. The test transfections were carried out first and removed from working 

environment to a 37°C incubator. The controls were then transfected under the same 

conditions. The results are shown in table 4.9 and 4.10. 
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Amounts of RNA transfected into RD-ICAM cells (in µg) 

pT7CVA21dP16 pT7CVA21AP17 pT7/SL3 pCVA21 pT7FLC/PV3 
CPE 

readout 

5 0 5 0 0 Q 

2 0 8 0 0 Q 

8 0 2 0 0 Q 

0 5 5 0 0 Q 

0 2 8 0 0 Q 

0 8 2 0 0 Q 

10 0 0 0 0 Q 

0 10 0 0 0 Q 

0 0 10 0 0 Q 

0 0 0 10 0   

0 0 0 0 10   

0 0 0 0 0 Q 

Table 4.9: Results of co-transfection of the CVA21AP1 RNA with the SL3 RNA in 

RD-ICAM cells. The read-out of the experiment was the presence   or absence o of 

cytopathic effect observed in the transfected cell sheet. The amounts of RNA 

transfected are expressed in pg. 
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Recovery of recombinant viruses generated in vivo between a replication-incompetent PV3 

and CVA21 with an in-frame deletion within the P1-coding region was unsuccessful. The 

CPE status of control samples was as expected, however no CPE was observed in the 

dually transfected samples. 
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Amounts of RNA transfected into RD-ICAM cells (in µg) 

pT7EV7AP1-3 pT7EV74P1-4 pT7/SL3 pT7EV7 pT7FLCIPV3 
CPE 

readout 

5 0 5 0 0 Q 

2 0 8 0 0 Q 

8 0 2 0 0 Q 

0 5 5 0 0 Q 

0 2 8 0 0 Q 

0 8 2 0 0 Q 

10 0 0 0 0 Q 

0 10 0 0 0 Q 

0 0 10 0 0 Q 

0 0 0 10 0   

0 0 0 0 10   

0 0 0 0 0 Q 

Table 4.10: Results of co-transfection of the EV7AP1 RNA with the SL3 RNA in 

RD-ICAM cells. The read-out of the experiment was the presence   or absence Q of 

cytopathic effect observed in the transfected cell sheet. The amounts of RNA 

transfected are expressed in pg. 
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As expected, the negative controls did not induce CPE in the transfected cells whereas 

transfection with RNA transcripts derived from the complete cDNAs of control viruses 

caused full CPE of the transfected cells. The absence of CPE observed in the test samples 

suggested that, under the conditions used, no viable recombinant viruses could be 

recovered between a replication-incompetent PV3 and EV7 with an in-frame deletion 

within the P1-coding region. 

4.4 Discussion 

Viable recombinant viruses were successfully recovered from in vivo selection experiments 

using two impaired PV3 viral RNA genomes. The experimental model was then applied to 

human enterovirus species C and species B defective genomes. Co-transfection of 

CVA21 AP 1 and SL3 defective genomes and EV7AP 1 and SL3 defective genomes in 

RD-ICAM cells failed to generate viable recombinant viruses under the conditions used. 

Previous studies have shown the successful generation of recombinants resulting from 

co-transfection of two impaired viral genomes in vivo (Chaabihi et al., 1997; Elahi et al., 

2002; Gmyl et al., 2003; Gallei et al., 2004). Furthermore, the Hispaniola (Kew et al., 

2002) and Madagascar (Rousset et al., 2004) outbreaks were demonstrated to have been 

caused by viable circulating VDPV strains that had emerged as a result of recombination 

between poliovirus vaccine strains and human enterovirus species C strains. It was 

therefore surprising that co-transfection of CVA21 and PV3 did not give rise to a 

recombination event leading to the generation of viable viruses. 
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4.4.1 Further investigations of the experimental conditions 

Further control experiments are required to investigate whether the results seen were due to 

the defective clones being unable to generate functional proteins and replicate or whether 

recombination between CVA21 and PV3 is not possible under the conditions used. Study 

of CVA2IAP1 and EV7AP1 translation needs to be carried out by in vitro translation 

assays using HeLa S 10 nuclear extracts and rabbit flexi-reticulocyte lysates. The 

replication competence of the generated defective RNAs also need to be determined by 

dot-blot assay or replication assay using HeLa S10 nuclear extracts, as the unsuccessful 

generation of viable recombinant viruses from the in vivo selection experiment could have 

been due to the P1-deletion genomes having a defect at the level of replication. Such a 

defect could have prevented replicative recombination from occurring. 

The precise co-transfection efficiency needs to be determined to ensure that the conditions 

used are optimal. Introduction of a tag-epitope during the in vitro generation of the P1 

deletion defective CVA21 (CVA21-tag) and co-transfection of SL3 RNA with the 

CVA21-tag RNA into RD-ICAM cells or L20B cells would constitute the basis of a 

specific probing assay. Eight hours post-transfection the cells would be fixed and 

permeabilised. Transfected cells would then be treated with both anti-VP 1 DAKO mouse 

monoclonal antibody (detecting the SL3 VP1 proteins), followed by treatment with a 

secondary anti-mouse antibody conjugated with FITC for example, and an anti-tag 

polyclonal antibody (probing for the CVA21-tag genome), followed by treatment with a 

secondary anti-polyclonal antibody conjugated with a different fluorochrome like TRITC. 

Confocal microscopy analysis would then be carried out to detect the percentage of dually 

transfected cells detected by co-localisation of the two different fluorochromes. The use of 

a fluorescence activated cell sorter (FACS) would enable detection and a more accurate 

quantification of dually-transfected cells. Once the co-transfection efficiency has been 
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determined, an improved design of the transfection technique will be possible thereby 

increasing the efficiency at which recombinants are generated. 

Recent studies, have provided definitive evidence that recombination could occur via a 

replication-independent pathway (Gallei et al., 2004), probably. involving cellular 

processes, suggesting that even in the event of the P1 deletion genomes being 

replication-incompetent, recombination could have occurred in a replication-independent 

manner. This hypothesis is further supported by the fact that defective RNA molecules can 

exert a complementing effect in a cellular environment and lead to cytopathic cell death 

(Garcia-Arrazia et al., 2004). The cellular environment used could have affected the results 

seen. The use of caco-2 cells, lining the intestinal epithelium, or pharyngeal cell lines may 

provide a more favourable environment for recombination between enteroviruses to occur. 

Moreover using such cell lines may better reflect a natural environment as it is in the sites 

of infection that recombination between two enteroviruses is more likely to occur. 

Co-transfection of defective EV7 RNA with SL3 replication-incompetent RNA did not 

generate viable viral genomes. This could be due to the distant genetic relationship 

between EV7, a human enterovirus type B, and PV3. As we were unable to reproduce the 

situation observed in nature for human enterovirus species C in vivo or in vitro such a 

conclusion could not be made. However, it is possible that human enterovirus species B 

will never be able to recombine with human enterovirus species C. Because different 

species use different cell surface receptors for infection, it may be impossible for both 

genomes to be present in the same cell type at any one time. If the genomes are not in the 

same cellular environment they may never be able to recombine and could be why there 

has been no reported evidence of such an event happening in nature. 
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4.4.2 Speculations 

There exist differences between SL3 and PV3 P1-coding regions. For example, the Sac I 

site present in the middle of the P1-coding region is not digested in the SL3, as opposed to 

the PV3 genome. It is known that these do not affect the production of viable viruses 

(Goodfellow et al., 2003; table 3.10; table 4.3). 

It is possible that the lack of pre-determined crossover sites and the randomness of 

recombination sites could have affected RNA structures preventing viable viruses from 

being generated. 

It is also possible that acytopathic recombinant viral genomes were generated in these 

experiments. The CVA21 2C CRE may have been unable to interact with the rest of the 

SL3 genome and therefore unable to take part in key interactions necessary for the 

generation of viable viruses. The primary screening method used in the described 

experiment did not enable the detection of acytopathic recombinant viruses and testing to 

determine whether the samples contained acytopathic viruses was not carried out due to 

time restrictions and prioritisation of other parts of the project. 

Recombination during mixed infection with various strains of poliovirus has been known 

to be a common occurrence in vaccinees. Recombination has also been shown to occur 

during mixed infection with various strains of poliovirus, where both genomes replicated 

in the same compartments (Egger et al., 2002). However, no study so far has provided 

proof of different enterovirus species replicating in the same compartments and it could be 

that strains belonging to either the same species (CVA21 and PV3) or different species 

(EV7 and PV3) replicate in separate replication compartments thereby making 

replication-dependent recombination impossible. 
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4.4.3 Alternative reference genomes 

It is expected that a genome exhibiting high homology with that of poliovirus would be 

more likely to recombine. Recent sequence analysis studies in which mass sequencing of 

complete genomes of the human enterovirus species A (Oberste et al., 2004b), human 

enterovirus species B (Oberste et al., 2004a) and human enterovirus species C (Brown et 

al., 2003) was carried out and inter- and intra-species amino acid percentage identity 

deduced from nucleotide sequences were calculated. These studies provided a better 

insight on evolutionary stages of human enteroviruses and a very useful report of 

homology levels that exist between enteroviruses. Some BEV-Cs, other than CVA21, have 

been shown to exhibit greater homology to PV3. CVA20, for example, would have been 

expected to be a better member to choose for the experiment, as it is 90.2% identical, based 

on complete amino acid sequence, to PV3. A more detailed comparison between CVA21, 

CVA20 and PV3 is described in table 4.11, based on the published data (Brown et al., 

2003). The way the assay was conducted did not enable us to use CVA20, as no infectious 

cDNA was available. 
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Amino acid identity with 

PV3 (in %) 
CVA21 CVA20 

5'UTR 79 81 

3'UTR 97 99 

P1 70 78 

P2 79 96 

P3 96 97 

Complete polyprotein 84.2 90.2 

Table 4.11: Amino acid sequence relationships (percent identity) between two 

members of the human enterovirus species C (CVA21 and CVA20) and PV3 (data 

adapted from Brown et al., 2003). 

An interesting alternative assay would be the transfection of SL3 RNA and subsequent 

co-infection with CVA20 virus. The progeny viruses would be harvested and passaged 

onto L20B cells, assuming CVA20 does not infect L20B cells, thereby only selecting 

PVR-binding viruses. It is unlikely that CVA20 would infect L20B cells as these are L 

cells expressing the PVR on their cell surface and that L cells are non-permissive for 

infection with any human enteroviruses. This would enable the selection of infectious 

recombinant viruses that have acquired an SL3 P1 coding region. This alternative assay 

may allow for recombination to occur. The characterisation of viable in vivo recombinants 

would then allow the mapping of recombination crossover sites and potential 

determination of recombination hotspots. 
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4.4.4 Suppression of synonymous sequence variation (SSSV) 

Suppression of synonymous sequence variation (SSSV) is a program designed by David 

Evans. The program differentiates equal distribution of the codons encoding a single amino 

acid from bias towards the use of a preferred codon encoding for an amino acid in a 

particular area of the genome. If there is equal distribution of codons encoding an amino 

acid, no bias towards use of a particular codon exists and therefore no suppression of 

synonymous sequence variation is observed. This is represented by high synonymous 

variation values. However, a trough would indicate a region where synonymous sequence 

variation was suppressed and a bias towards the use of a particular codon was observed. A 

trough is a region where there is less variation in the sequence then the amino acid 

sequence would allow. These troughs are thought to represent conserved regions that may 

play key roles in the virus life cycle. This has been confirmed to be the case of the first 

trough observed on the graphs (figure 4.12). The trough corresponds to the 2C CRE 

stemloop structure, a structure essential for priming and initiating genome replication. It is 

possible that other regions of synonymous sequence variation are structured regions. 

HEV-Bs and HEV-Cs sequences have been submitted to the SSSV analysis and the results 

are plotted on graphs illustrated figure 4.12. HEV-Bs and HEV-Cs exhibit different SSSV 

patterns in the non-structural coding region. The graph of HEV-Bs exhibits one trough, 

whereas the graph of HEV-Cs exhibits an additional two areas of strong suppression of 

synonymous variation. The trough present in both HEV-Bs and HEV-Cs graphs represents 

the region corresponding to the 2C CRE. The functions fulfilled by the two additional 

regions where troughs were observed are unknown, however sequence and maybe structure 

conservation suggests a functional role. If the HEV-Bs have a similar life cycle to that of 

HEV-Cs, some reactions are likely to be carried out in different ways, explaining the lack 
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of troughs. Should one of these functions involve interaction with homologous capsid 

proteins, this would explain the absence of recombinants between HEV-Bs and HEV-Cs. 

4.4.5 Future experiments 

Should recombinant viruses be generated in vivo using a more accurately designed method 

or alternative assays, a series of characterisation experiments would be carried out. A 

number of sequencing studies would be initiated in order to determine the location and 

nature of the recombination crossover sites. Analysis and comparison of various 

recombinants may enable determination of recombination hotspots and the implications of 

such hotspots in enteroviral evolution. Comparison of viable in vivo generated recombinant 

viruses with the non-viable in vitro generated P1 recombinants, described in Chapter 3, 

may enable identification of the defect affecting the latter and give insights into 

picornaviral research. 

An infectious centre type assay could also be undertaken to try and generate in vivo 

recombinants. Co-transfection of L cells, which have been shown to support replication of 

human enteroviruses post-transfection, with the two impaired parental genomes, could be 

carried out. 4-6 hours post-transfection, time point at which the cells would have recovered 

following the transfection but no newly generated virus would have been released, the 

co-transfected L cells would be lifted from the transfection flasks and transferred onto an 

80%-confluent monolayer of L20B cells, cell line supporting poliovirus recombination, 

RD-ICAM cells or RD cells. Overlay media would be added and the samples would then 

be incubated at 37°C for three to five days to allow plaque formation of any in vivo 

generated recombinants. These would then be isolated from plaques, purified, amplified 

and characterised. This method is an alternative to the technique described in this chapter 
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and may enable isolation of in vivo generated recombinant viruses as opposed to 

populations of mixed recombinants. 

The advantage of generating recombinants in vivo is that a scenario closer to that seen in 

nature is reproduced in a tissue culture environment. As opposed to in vitro generation of 

recombinants the crossover sites are not pre-determined and are more likely to mimic a 

natural situation. However, the use of novel techniques such as small interfering RNAs 

(siRNAs) and DNA shuffling to select for recombinants between human enterovirus 

species in a laboratory environment are interesting alternatives to the method used in this 

chapter (see chapter 5: General discussion). 
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5 General discussion 

Chapter 5 121 

In view of the poliomyelitis eradication program, several issues have become major 

concerns. What are the chances of a non-poliovirus enterovirus evolving to use the 

poliovirus receptor? Would such a virus cause poliomyelitis? What are the implications of 

such recombinants? The project aimed to investigate some of these issues. 

It was initially proposed to use DNA shuffling to create chimeric mosaic capsids that may 

interact with different cell surface receptors. DNA or gene shuffling is an elegant process 

that enables the production of in vitro recombinants with mosaic sequences of gene 

families and diverse libraries of progeny genes. This technique is very ambitious, as it 

requires very technically demanding DNA manipulations, and a number of different stages 

could become problematic. Firstly, stop codons, truncation of the sequences and incorrect 

open reading frames leading to inefficient translation could arise from DNA shuffling 

experiments. Secondly, full-length nonsense sequences encoding the capsid proteins could 

have been generated rendering any resulting viruses non-viable. Finally, full-length 

in-frame generated sequences of the capsid protein-coding regions could be processed 

inefficiently by heterologous 3C and 3CD proteases. It was therefore important to study 

processing requirements closely. To do so, recombinants with a precise exchange of the 

P1-coding region between poliovirus type 3 and CVA21, a HEV-C, were generated in 

vitro. The experiment developed into a very interesting analysis of chimeras. The in vitro 

generated recombinants were unable to cause cytopathic effects upon transfection and 

passage into cell lines permissive for infection and replication of both parental genomes. 

However, the chimeras appeared to produce the correct proteins and to exhibit the correct 

protein-processing pattern. Further assays indicated that the recombinants were 

replication-competent and suggested that these may have had a late replication defect such 
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as a packaging defect. These results indicated that relatively divergent capsids could be 

processed by viral proteases suggesting that the heterologous mosaic capsids created by 

DNA shuffling may also be processed by 3CD protease. 

The DNA shuffling technique has been applied to create recombinants of single genes such 

as cytokine (Chang et al., 1999), thymidine kinase (Christians et al., 1999), green 

fluorescence protein (Crameri et al., 1996), subtilisin (Ness et al., 1999) and a fucosidase 

(Zhang et al., 1997). However, until recently DNA shuffling had not been applied to viral 

genes. In 2000, studies described the use of the method to alter receptor tropism of a 

retrovirus by creating a recombinant mosaic of the envelope glycoprotein gene (Soong et 

al., 2000). Since then, a variety of studies have used DNA shuffling for recombinant 

generation, functional gene analysis and other purposes. RACHITT (RAndom 

CHImeragenesis on Transient Templates) is one of the best available DNA shuffling 

techniques (Pelletier et al., 2001; Coco et al., 2001; Coco et al., 2003) and it was planned 

to use this approach for the project. 

RACHITT, a templated assembly of mosaic sequences, could be used to generate 

HEV-C/PV recombinants with a mosaic P1-coding region, by shuffling several HEV-Cs or 

polioviruses P1 genes. Although ambitious, the potential recovery and characterisation of a 

PVR-tropic recombinant HEV-C virus would be very valuable. 

A range of relatively closely related input polioviruses and non-poliovirus HEV-Cs would 

be used for the experiment. The entire capsid-coding gene or a range of individual capsid 

genes of various polioviruses would be shuffled and introduced into a non-poliovirus 

HEV-C backbone vector containing the remainder of the coding and non-coding 

sequences. The experimental method is illustrated figure 5.1. First, top strands of the 

P1-coding regions of heterologous polioviruses would be partially digested with DNAse I. 
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synthesis of double strand 

1 
Cloning into IIEV-C Pl deleted backbone, screening and 

selection 

Figure 5.1: DNA shuffling 

I)NA shuffling using RACHITT: Random chimeragenesis on transient templates, 
method first used by Stemmer et al. (1994) for retroviruses. Adapted for accelerated 
HEV-C evolution. 
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The digested fragments would then be hybridised to a uracil-containing bottom scaffold 

strand of the P1-coding region of a HEV-C. The flaps would then be digested, the gaps 

filled and the nicks ligated. Uracil-DNA-glycosylase treatment of the heterologous hybrid 

would destroy the HEV-C PI-coding region scaffold strand allowing for the synthesis of a 

double stranded mosaic recombinant fragment. The fragment would then be cloned into a 

HEV-C P 1-coding region deleted backbone and screened for viability on a variety of celI-- 

lines. An ideal cell line for PVR-tropic viruses screening is the L20B cell line. L20B cells 

are murine fibroblasts (L cells) expressing the PVR. Therefore, a virus that grows on L20B 

cells but not on L cells would be PVR-tropic. Further screening utilising neutralisation 

assays, using a cocktail of non-poliovirus REV-C specific antibodies, could be conducted. 

The method presents a few drawbacks. DNA shuffling would yield large populations of 

chimeras that would not be subjected to screening until later on in the experiment. Because 

of the sizes of the fragments composing the mosaic, a very high number of different 

combinations of sequences could result from the assay and inevitably non-viable sequences 

would be generated. However, DNA shuffling enables the dramatic acceleration of gene 

evolution. 

Other approaches to DNA shuffling such as random mutagenesis studies using ribavirin are 

possible. This assay is discussed in Chapter 2. Certain aspects of the experiment need to be 

more formally tested. Such a method combined with the use of PVR covalently-bound to 

affinity chromatography column would make the screening process more stringent and 

could increase the chances of selecting for novel tropic viruses. However, upon binding to 

PVR viral uncoating occurs and the chromatography isolation of mutated virus populations 

binding the PVR with different degrees of affinity would need to be carried out at 0-4°C. 

Elution of low-affinity PVR-bound viruses using high salt concentrations and RNA 

extraction for subsequent transfection would then be carried out. Following transfection the 
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samples would be submitted to several rounds of replication thereby enhancing the affinity 

for PVR of the isolated viruses. This method may enable isolation and study of novel 

tropic mutated viruses. 

Although the project diverged from the initial aim, the results obtained from the in vitro 

generated recombinant studies were very interesting and could be very valuable for 

poliovirus research. Further investigations could lead to the identification of a, yet to be 

determined, specific encapsidation signal and/or interactions involved in packaging of the 

viral genome. In order to investigate this result further, forced recombination in a tissue 

culture environment without predetermining the crossover sites should to be carried out. In 

vivo recombination experiments did not yield any significant data. However, there are 

alternate ways of applying selective pressure and forcing recombination between two _ ___ 

viruses in tissue culture, such as RNA interference. 

RNA interference (Fire et al., 1998) is a very useful tool for functional gene analysis, gene 

silencing and therapeutic use (Cheng et al., 2003). Small double stranded fragments of 

RNA (small interfering RNAs: siRNAs) have been shown to induce sequence specific 

degradation of RNA. In fact, binding of siRNAs to single genes leads to suppression of 

gene expression. RNA interference has been identified in many organisms such as plants, 

trypanosomes and fungi and is thought to be a means of protecting an organism against 

viral infection (reviewed Saleh et al., 2004). Recent studies indicated that 

19-23 nucleotide-long synthetic siRNA fragments could trigger strong and specific gene 

silencing (Elbashir et al., 2001). 

The use of siRNAs, in a tissue culture environment, may enable the generation of 

recombinant viruses with altered tropism, and more specifically may allow recovery of a 

PVR-tropic non-poliovirus HEV-C. An experimental assay was designed to investigate this 
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and is illustrated in figure 5.2. Recent studies have demonstrated the existence of siRNA 

escape mutants that are resistant to specific RNA degradation necessitating the use of 

multiple siRNAs for efficient silencing of the input genome (Gitlin et al., 2005). Hence, 

several siRNAs would be synthesised to bind a number of genes: CVA21 VP1, VP2, VP3 

and VP4-coding. regions. binding siRNAs and PV3 2C CRE and 3C-specific binding 

siRNA fragments. Due to the highly specific nature of RNA interference, any input 

sequence could be used and a range of genomes could be tested. Initial silencing would be 

carried out on both CVA21 and PV3 genomes in a tissue culture environment, thereby 

disabling the genomes to yield viable viruses. These two partners, when present in the 

same cellular environment, should be subjected to sufficient selective pressure to generate 

chimeras. The assay could then be extended to a wider range of different partners. 

The emergence of siRNA escape mutants, the need for high numbers of siRNAs and-the- 

off-target effects exerted by siRNAs on host cells should not be ignored (Couzin et al., 

2004). However, the method would allow a forced recombination event between different 

junctions points. Analysis, identification of crossover points, characterisation of the 

biology of potentially viable in vivo generated recombinants and comparison with the in 

vitro generated precise exchange of the P1-coding region recombinants may give an insight 

into different areas of picornavirus research such as genome cellular localisation, cis-acting 

replication and encapsidation of progeny viral genomes into newly synthesised capsids. 



CVA21 genome 
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Figure 5.2: siR\A gene silencing recombination in tissue culture 

Diagram illustrating the use of siRNAs in tissue culture as means of obtaining 
recombinants %%ithout predetermining crossover sites. 
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6 Materials and Methods 

6.1 Standard solutions and chemical suppliers 

All chemicals were supplied by Sigma-Aldrich or BDH. All enzymes were supplied by 

Invitrogen, NEB, Promega and Roche. 

Phenol: chloroform 

25 parts phenol: 25 parts chloroform: 1 part isoamyl alcohol 

lOx Grin! o 

250 mM Tris-base, 2.5 M Glycine, 35 mM Sodium Dodecyl Sulphate made up to 51 in 
dH2O 

Destain buffer 

10% (v/v) Methanol, 10% (v/v) Acetic acid and 80% (v/v) dH2O 

Crystal Violet 

0.5 g Crystal violet in 20m1 of Ethanol, 880 ml dH2O, 10% (v/v) of 37%(w/v) 
Formaldehyde and 15 mM Sodium Chloride. 

50x TAE 

2M Tris-base, 57.1 ml Glacial Acetic Acid, 10 mM EDTA (pH 8.0) made up to 11 in 
dH2O 

Mini-prep solutions 

Solubilisation: solution 1 (4°C) 

50 mM Glucose, 25 mM Tris-HC1 (pH 8.0) and 10 mM EDTA (pH 8.0) 

Cell lysis: Solution 2 (room temperature) 

200 mM Sodium Hydroxide and 1% SDS 

Neutralisation: Solution 3 (4°C) 

3M Potassium Acetate, 11.5 ml Glacial Acetic Acid and 28.5 ml dH2O 
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RNase A 

Chapter 6 127 

2g RNase A (SIGMA, kept at -20°C) in 200 mis 10 mM Tris (pH 7.8) and 15 mM Sodium 
Chloride. Boiled for 15 minutes to destroy DNase and allow to cool slowly. Store at -20°C 

DEPC-treated water 

0.1% DEPC (SIGMA) to dH2O. Left at 37°C overnight and autoclaved twice. 

2x protein reducing gel loading buffer 

2 ml Glycerol, 1.5 ml 10% Sodium Dodecyl Sulphate, 0.625 ml 1M Tris (pH 6.8), 
0.375 ml dH2O, a spatula's worth of Bromophenol Blue and 50 µl Mercaptoethanol was 
added to every 1 ml of solution. 

Guanidine Hydrochloride (GuHCI)(SIGMA) 

100 mM GuHCI in dH2O 

6x DNA gel loading buffer 

7 ml dH2O, 3 ml Glycerol and a spatula's worth of Bromophenol Blue or Orange G. 

10% (w/v) Ammonium Persulfate 

20%SSC 

3M Sodium Chloride, 300 mM Sodium Citrate made up to 500 mis in dH2O. 

Hybridisation buffer 

Rapid-hyb buffer supplied by Amersham Biosciences. 

RNA denaturation buffer 

660 µl Formamide, 210 pl 37%(w/v) Formaldehyde and 130 µ1 lOx MOPS electropheresis 
buffer. 

10, MOPS 

200 mM MOPS, 80 mM Sodium Acetate, 1 mM EDTA and 100 ml of dH2O. 
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Western Blot Transfer buffer 

1% (w/v) Sodium Dodecyl Sulphate, 570 mM Glycine, 50 mM Tris-base, 
20% (v/v) Methanol and 160 ml dH2O. 
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Western Blot Blocking buffer 

5% (w/v) dried skimmed milk, 0.1% (v/v) Tween 20 in Phosphate Buffered Saline (PBS). 

Cell lysis buffer 

50 mM Tris-HC1 (pH 8.0), 1 mM EDTA (pH 8.0) and 100 mM Sodium Chloride. 

"Spiller" radiolabelling buffer 

1M Sodium Chloride, 20 mM Tris-HC1(pH 7.5) and 0.1% BSA in dH2O. 

Blue cell assay developing solution 

9.560 ml PBS, 2.500 ml 0.5M Potassium Ferrocyanide, 2.500 ml 0.5M Potassium 
Ferricyanide, 0.500 ml 1M Magnesium Chloride and 6.250 ml X-gal (1,4-O-ß-D- 
galactopyranosyl-D-glucose) (20 mg/ml). 

Plaque overlay media 

10% (v/v) l Ox EMEM: Eagle's minimum essential medium (GIBCO Life technologies), 
50% (v/v) dH2O, 1% (v/v) L- glutamine (GIBCO Life technologies), 2% (v/v) FCS (Foetal 
calf serum), 1% (v/v) Penicillin/ Streptomycin (GIBCO Life technologies), 3% (v/v) of 
7.5% Sodium bicarbonate (GIBCO Life technologies) and 30% (v/v) of 2% Bactoagar. 
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6.2 List of antibodies 
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Database 
Antibodies Dilution Usage 

reference 

Anti-PVR 280 A-AB-5H 1 in 50/ lin 200 Monoclonal antibody to PVR 

Anti-PV3 A-AA-lE 1 in 200 Rabbit polyclonal antibody to 
oliovirus type 3 

Anti-Polio A-AB-1D 1 in 200 Sheep 16- sheep polyclonal to 
type 1 oliovirus type 1 

Western blot: 1 in 1000 
Anti-VP I DAKO mouse monoclonal antibody 

DAKO Immunoflu cence: 1 in against enterovirus VP 1 
400 

Anti-mouse 1 in 200 ti-mouse FITC conjugated 
FITC olyclonal antibody 

Anti-mouse 1 in 5000 ti-mouse HRPO conjugated 
HRPO olyclonal antibody 

Table 6.1: Table of Antibodies 
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6.3 List of oligonucleotide primers 

Name of 
oligonucleotide 

Database 
reference 

Nucleotide sequence 

ID6 O-AB-91 GGTGTTAGAGAAAATTGGTTTTGG 

R3D O-AD-9C GGGATATCACTCAGCATAATAATGAGTCAAGCCAAC 

GEN-3'BK'F O-AA-2F TATGAGCTCACCACWCCCGGGTTTGGSCAYCAG 
GEN-3'BK-R O-AA-7E CCYACATACATGTTGGGGTACTTACTAGTGTTC 

-F 
O-AA-7H TACGACTCACTATAGGGCG 

CA21-5'-BK-R O-AA-1 F CTTGCGCTCCCATTTGCAC 
GEN-3'BK-F-Nae O-AB-7C RASGAGCTCACCACWGCCGGCTTYGGMCACCARAAC 

GEN-3'BK-R O-AA-7E CCYACATACATGTTGGGGTACTTACTAGTGTTC 

P1-GEN-F O-AA-8E TGGGAGCTCARGTDTC 
PV3-P1-R O-AD-6D TATGTGGTCAAACCTTTCTC 

CA21-P1-R O-AC-3B AAAAGTGGTAATTGAGTCTAC 

PV3/CA21-PI-R O-AA-3F TGSCCAAATACGTAWGTGG 
Sabinl-PI-R O-AC-4B TATGTGGTCAGATCCTTG 

NT GEN 2F O-AA-9C GGAACCGACTACTTTGGG 

ENT GEN 2R O-AA-1D TCNGGNARYTTCCACCAC 

ENT PCD 6R O-AA-5E TGGTARTTRCWRATYTTG 

CAV21 FO O-AA-6G CGGTGCACACGAGAATCAAA 

CAV21 R11 O-AA-5G CGACTGGAAGTCATCAGATG 

CVA21 P1 de1DJE 1 O-AE-8E CCGGGATCTCGAGG 

CVA21 P1 delDJE2 O-AE-9E CTAGCCTCGAGATC 

Polio-End O-AA-7B TAAGTCGACTTTTTTTTTTTTTTTTTTTTTTTTCCT 
CCGAATTAAAGAAAAATTTACC 

ENT PCD 6F O-AA-6E TMACHGCHGTBGARACWGG 

ID1 O-AB-21 TTAAAACAGCTCTGGGGT 

LUCF O-AB-9I CATCTTCGACGCGGGCGT 

PV3-VP2-F O-AD-8D GCCATTCTGCCCTTATCACCG 

PV3-VP3-R O-AD-9C CATTACTAATCCACGGCAC 

PV33D-T7R 
PV3-VP3-3F 

O-AD-9D 
O-AD-7D 

GGGATATCACTCAGCATAATAATGAGTCAAGCCAAC 
GCCAATGACCAGATTGGTG 

CAV21 CAPF O-AA-1H CTTCGAGAAGCCTAGTATCG 

CB3-1F O-AB-8A TCCGGTGACCAATAGAGC 

591-SR O-AD-5C TGTCTGAAGTACAGCTTGCC 

Table 6.2: List of oligonucleotides 
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Plasmid name Description Simplified plasmid 
name 

pS1F 
Full length poliovirus Sabin S1F 

e1 infectious clone 

CAV21 
CVA21 full-length infectious CAV21 
clone 
Full length poliovirus type 3 

pT7FLC Leon P3/Leon/37 infectious T7FLC 
clone 
Poliovirus type 3 Leon 

T7FLC/REP3 P3/Leon/37 CAT replicon T7FLC/REP3 
derived from pT7FLC 
Backbone vector lacking the 

pT7FLC/REP3-BK complete P1-coding gene PV3BK 
derived from pT7FLC/REP3 
Backbone vector PV3BK with 

pT7REP3-BK-SL3-P1 
insertion of the complete PV3 PV3BKPV3P1 P1-coding region introduction 
derived from pT7/SL3 
Backbone vector PV3BK with 
insertion of the complete 

pT7REP3-BK-CA21-PI CVA21 P1-coding region PV3BKCVA21P1 
introduction derived from 
CAV21 
Full length poliovirus type 3 

T7/SL3 
Leon P3/Leon/37with 

T7/SL3 
mutations in the 2C CRE 
derived from pT7FLC 
Poliovirus type 3 Leon 

T7REP3-L P3/Leon/37 luciferase replicon T7REP3-L 
derived from T7FLC/REP3 

pRibol 
Vector containing a ribozyme Ribol hammerhead 
CVA21 full-length infectious 
clone introduced in a ribozyme 

pRibo-CAV21 hammerhead-containing vector Ribo-CAV21 
derived from CAV21 and 
pRibol 
CVA21 full-length infectious 

pRibo-CAV21-NaelDel clone with a deletedNae I site, Ribo-CAV21-NaelDel 
derived from pRibo-CAV21 
CVA21 backbone vector 

pRibo-CAV21-NaelDel- lacking the complete P1- 
backbone coding gene, derived from CVA21BK 

Ribo-C"21-Nae l Del 
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Plasmid name Description 
Simplified plasmid 

name 
CVA21 backbone vector with 
insertion of the complete 

Ribo-CAV2I-BK/CA21 P1 CVA21 P1 -coding region, CVA21BKCVA21P1 derived from pRibo-CAV21- 
ae 1 Del-backbone and 

CAV21 
CVA21 backbone vector with 
insertion of the complete PV3 

Ribo-CAV21-BK/PV3-P1 P1-coding region, derived from CVA2IBKPV3P1 
Ribo-CAV21-Nae1Del- 

backbone and pT7/SL3 
CVA21 backbone vector with 
insertion of the complete 

Ribo-CAV2I-BK/Sabinl P1 SabinI P1-coding region, CVA21BKSabin1P1 
derived from pRibo-CAV21- 

ae 1 Del-backbone and pS 1F 

T7EV7 
Full length echovirus 7 T7EV7 infectious clone 
EV7 genome with an in-frame 

EV7AP 1 si I deletion in the P 1-coding EV7AP 1 
region, derived from pT7EV7 
CVA21 genome with an in- 

CVA21 AP 1 
frame Age I deletion in the P1- CVA21 AP 1 
coding region, derived from 
CAV21 

Table 6.3: List of plasmids 
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6.5 Cell culture and virological methods 

6.5.1 Digestion of DNA with restriction endonucleases 

Restriction digest reactions were carried out in the lx buffer recommended by the 

manufacturers in the presence of 1 unit (U) of restriction enzyme per µg of DNA. The 

reactions were made up to final volumes of 20 µ1 in the case of analytical digests or 50 Al 

in the case of preparative digests and were carried out at the temperatures recommended by 

the manufacturers for 1 to 4 hours. 

6.5.2 Plasmid DNA preparation for in vitro transcription 

5 pg of plasmid DNA, containing a T7 promoter, was linearised with the appropriate 

restriction endonuclease, phenol-chloroform extracted and ethanol precipitated. After 

washing in 70% ethanol, the DNA was pelleted, dried and resuspended in 20 p1 clean 

dH2O. 

6.5.3 In vitro transcription using T7 RNA polymerase 

1 Vg of resuspended DNA was incubated in lx transcription buffer (NEB), 1mM rNTPs, 

0.5 pl of RNAse OUT (Invitrogen), 1 pl of T7 DNA polymerase (NEB) made up to a final 

reaction volume of 25 pl with clean dH2O. The reaction was incubated at 37°C for 2 hours. 

10% of the reaction volume was checked on an agarose gel and quantified on a 

spectrophotometer. 
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6.5.4 In vitro transcription using Ribomax 
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1 µg of linearised DNA was incubated in 6 µl of 5x T7 buffer, 2.3 µl rATP, 2.3 µl rGTP, 

2.3 µl rCTP, 2.3 pl rUTP, 3 pl of T7 enzyme mix and clean dH2O (30 pl reaction mix) 

provided in the RiboMAXTh Large scale RNA Production Systems-T7, for 2 hours at 

37°C. The newly transcribed RNA reactions were then RQ1Dnase treated (1 U/µg of DNA 

transcribed) for 30 minutes at 37°C and heat inactivated at 65°C for 15 minutes. Samples 

were checked on an agarose gel and quantified in a spectrophotometer. 

6.5.5 RNA transfection of mammalian cell lines 

6.5.5.1 DEAE-dextran 

1-10 µg of T7 RNA transcripts was incubated in lxHepes-buffered saline, pH 7.1 in clean 

dH20 with 200 pg/ml DEAE-dextran and 10 pl lOx filtered glucose solution on ice for 

30 minutes. Prior to cell transfection, the pre-seeded 80% confluent 6-well dish cell 

monolayers (RD-ICAM cells, Hela cells, RD cells) were washed with Serum Free DMEM 

(SF-DMEM). To each well, 100 µ1 of the reaction mix was added and incubated at room 

temperature for 30 minutes ensuring the cell monolayers did not dry out. The transfection 

mix was then removed and 4 ml of DMEM supplemented with 10% FBS (Foetal Bovine 

Serum) were added to each well and the dishes were incubated at 37°C in a humidified 5% 

CO2 incubator. 

6.5.5.2 Electroporation 

Cells of a confluent T175 flask were resuspended using PBS-125mM EGTA and 

centrifuged at 2000 rpm for 5 minutes (Multifuge 3 S-R Heraeus). The cell pellet was 

resuspended in 500 pl PBS per reaction and transferred with 1-10 pg of T7 RNA to 4 mm 



Claire Blanchard Materials and Methods Chapter 6 135 

electroporation cuvettes for mammalian cells (CLP). The settings used for transfection 

were: 250 V, 400 12,250 µF. The cells were then added to a T25 tissue culture flask 

containing 4.5 ml of 10% DMEM and incubated at 37°C in a humidified 5% CO2 

incubator. 

6.5.5.3 Lipofectamine 2000 

10-15 pg of RNA in solution was made up to 100 p1 in OPTIMEM medium (GIBCO) and 

mixed and vortexed with a solution of 10-15 p1 of LipofectamineTm 2000 (Invitrogen) and 

90-85 pl of OPTIMEM. The mixture was incubated at room temperature for 10-15 minutes 

and a further 800 p1 of OPTIMEM was added to the mix. Before transfection the 

80%-confluent cell sheet was washed with OPTIMEM. 1 ml of the vortexed solution was 

added to each well of a 6-well dish and incubated at 37°C for 4-5 hours. The mix was 

removed and 4 ml of 10% DMEM was added to each well and incubated at 37°C. 

6.5.6 Infection of cell monolayers with virus 

80% confluent cell monolayers were pre-washed with SF-DMEM, virus was added to an 

MOI (multiplicity of infection) of 1-10 and incubated at 37°C in a humidified 5% CO2 

incubator for 30 minutes. The virus supernatant was discarded and DMEM supplemented 

with 10% FBS was added to the infected cell sheet. 

6.5.7 Purification of viral RNA 

6.5.7.1 Using Trizol1 Reagent 

Flasks of virus-infected cells were frozen and thawed twice. 750 µl Trizol® Reagent 

(Invitrogen) was added to virus-infected cells, vortexed and left at room temperature for 10 

minutes to ensure homogenisation and degradation of DNA. 200 µl of chloroform was 
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added and centrifuged for 15 minutes at 13,000 rpm (in a Biofuge pico Heraeus 

instruments) at 4°C. The upper phase was added to isopropanol and left at room 

temperature for 10 minutes before precipitation by centrifugation at 13,000 rpm for a 

further 10 minutes at 4°C (in a Biofugepico Heraeus instruments). The RNA pellet was 

washed with 75% ethanol and then the pellet was left to air-dry. The air-dried pellet was 

resuspended in 50 µl clean dH2O and incubated at 55°C for 10 minutes to ensure correct 

solubilisation of the extracted viral RNA. 

6.5.7.2 Using QIAamp® Viral RNA mini kit 

vRNA extraction was carried out using a QIAamp® Viral RNA mini kit. A volume of 

140 µl of harvested virus was added to 560 pl of prepared Buffer AVL containing carrier 

RNA in a 1.5 ml clean tube. The mixture was mixed by pulse-vortexing for 15 seconds and 

incubated at room temperature for 10 minutes. The samples were centrifuged briefly to 

remove drops from the inside of the lid and 560 pl of 100% ethanol were added to each 

tube. The mixture was mixed by pulse-vortexing for 15 seconds and centrifuged briefly. 

630 µl of the mix were carefully applied to a QIAamp spin column, which were then 

centrifuged at 8000 rpm for 1 minute (in a Biofugepico Heraeus instruments). This step 

was repeated with the remainder of the sample and using a clean collection tube. Clean 

collection tubes were used for individual steps. 500 µl of Buffer AW 1 were then added to 

each column and these were centrifuged at 8000 rpm for 1 minute (in a Biofuge pico 

Heraeus instruments). 500 µl of Buffer AW2 were added to each column and these were 

centrifuged at 13000 rpm for 3 minutes and then at 13000 rpm for 1 minute (in a Biofuge 

pico Heraeus instruments). 60 µl of Buffer AVE or elution buffer were added to each 

column in clean collection tubes, the columns were incubated at room temperature for 
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1 minute and centrifuged at 8000 rpm for 1 minutes (in a Biofuge pico Heraeus 

instruments). 

6.5.8 TCIDm 

Infectious titre of virus was routinely calculated by TCID50 (Tissue culture infectious dose 

50). One tenth of a confluent T75 tissue culture flask of cells was evenly distributed in 

100 µl volumes across a 96-well plate containing quadruplicates of 50 µl set of serial 

10-fold dilutions of virus. Three-to four days post infection crystal violet stain, 

supplemented with formaldehyde, was added to the monolayers for two to three hours. The 

non-infected cell sheets were stained and the cells, killed by infection, did not retain 

staining. The virus titre was expressed as the dilution of the virus required to infect 50% of 

the cultures (Reed & Muench, 1938). If CPE was observed in half of the wells at a dilution 

of 10'7, the titre was 107 TCID50 units in 50 µl. If all wells show CPE at 10"7 and none at 

10$, the titre is 107'5 TCID50 units in 50 µl. One well corresponds to approximately 

l0°-25TCID5o units. Titres were expressed as TCID50/ml. 

6.5.9 Plaque Assay 

RD, Hela, L20B or RD-ICAM cells as appropriate were seeded into 6-well plates and 

grown to 80% confluent monolayers. Serial 10- to 100-fold dilutions of the virus stocks 

were made in serum-free media. The cell sheets were then washed a couple of times in 

serum free media and inoculated with 200 µl of the diluted virus. The virus was allowed to 

absorb for 30-45 minutes at room temperature and the plaque overlay media was added to 

the infected monolayers. The inverted dishes were incubated for three to four days at 37°C 

in a humidified 5% CO2 incubator. Crystal violet solution was added to the dishes for two 

hours, the plaque overlays were then removed and further staining was carried out for two 
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to three hours. The plaques were counted and expressed as plaque forming units per ml 

(pfu/ml). 

6.5.10Virus neutralisation assay 

Viruses were pre-incubated with two-fold serial dilutions (50 µl) of neutralising antibody 

in serum free DMEM starting at 1: 50 for one hour at 37°C. 100 µl of cells were added to 

the wells and infection was allowed to proceed for 24-48 hours prior to crystal violet 

staining. 

6.5.11 Virus blocking assay 

Monolayers of the appropriate cell line in a 96-well plate were incubated with two-fold 

serial dilutions (50 µl) of neutralising antibody in serum free DMEM starting at 1: 50 for 

one hour at 37°C. 104 TCID50 (100 µl) of virus was added to the wells and infection was 

allowed to proceed for 24-48 hours prior to crystal violet staining. 

6.5.12 Synthesis of radiolabelled virus 

RD, RD-ICAM or Hela cells were pre-treated with Methionine-free Minimum Essential 

Medium Eagle (MEM) (Sigma) for one hour at 37°C in a humidified 5% CO2 incubator. 

The 80% confluent cell sheet of a T75 tissue-culture flask was infected with virus at an 

MOI of 10. The virus was adsorbed at room temperature for 30 minutes and the cells were 

washed and incubated with l Oml Methionine-free MEM for 2 hours. 10 ml 

Methionine-free MEM supplemented with 200 µCi [35S] methionine was added to the 

infected cells and this was incubated overnight at 37°C in a humidified 5% CO2 incubator. 

The virus was then harvested after 2 freeze-thaws and filtered through a 0.20 µm filter. The 

radiolabelled virus was partially purified by pelleting through a 12 ml linear 30% sucrose 
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gradient at 40,000 rpm (Sorvall Ultra Pro 80 centrifuge) using a TH641 rotor at 4°C for 

6 hours. The CVA21 pellet was resuspended in 300 µl Spiller buffer. All other viruses 

were resuspended in 300 µl of PBS-BSA. 

The virus was further purified by centrifugation through a 12 ml linear 10-25% sucrose 

gradient at 40,000 rpm (Sorvall Ultra Pro 80 centrifuge) using a TH641 rotor at 4°C for 

1 hour and 20 minutes to obtain infectious 160S particles. The gradient was harvested from 

the bottom in 500 µl aliquots. 5 µl of each fraction was counted in 3 ml of scintillant 

(Ecosint A scintillation fluid by National Diagnostics) by scintillation counting (Beckman 

LS5000CE machine). 160S particles, detected by a peak reading, were typically found in 

fractions 5 and 6. The sucrose was removed by washing with PBS-BSA or Spiller buffer 

and loaded into 1.5 ml Beckman Ultracentrifuge tubes in equal portions and centrifuged 

overnight at 40,000 rpm (Beckman TL-100 Ultracentrifuge) using a TLS55 rotor at 4°C. 

The 160S-pelleted particles were carefully resuspended in 100 µl of PBS-BSA and stored 

at -20°C for up to 4 weeks. 

6.5.13 Synthesis of infected cell lysates 

An 80%-confluent cell sheet was infected at an MOI of 10 for 30 minutes at room 

temperature and washed with SF-DMEM. 1 ml of 10% DMEM was added to the infected 

cells and incubated for 2 hours at 37°C in a humidified 5% CO2 incubator. Timing enabled 

viral proteases-mediated host cell shut off and insured that the proteins labelled were of 

virus origin. The washed cells were supplemented with I ml of Methionine-free MEM for 

30 minutes at 37°C in a humidified 5% CO2 incubator. The medium was removed and 1 ml 

of Methionine-free MEM supplemented with 100 µCi [35S] methionine was added and 

incubated at 37°C for 30 minutes to 1 hour. The cells were washed and resuspended in 1 ml 

PBS using cell scrapers. Cells were pelleted by centrifugation in a Biofuge pico microfuge 
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(Heraeus instruments) at 5,000 rpm for 5 minutes and resuspended in 100 µl of lx Cell 

Lysis Solution (CLS) and incubated at room temperature for 5 minutes. Cell debris were 

removed by centrifugation and the supernatant added to 100 µ12x reducing SDS-PAGE 

loading buffer. 

6.5.14Immunostaining assays 

6.5.14.1 "Blue cell" assay 

"Blue cell" assay is a rapid and sensitive method, known as CELICS (cloning by 

enzyme-linked immunocolourimetric screening (Evans et al., 1998)). 10 to 12 hours post 

RNA-transfection, the transfected cells were fixed in Methanol: Acetone (1: 1) for 

10 minutes at room temperature and washed with PBS. The cells were then incubated 

overnight in PBS-BSA (0.5%) at room temperature. The cells were washed and incubated 

with DAKO mouse anti-enterovirus VP1 antibody (diluted to 1: 400 in PBS-BSA) for 

2 hours at room temperature. The cells were washed 3 times in PBS-BSA and incubated 

for a further 2 hours at room temperature in the presence of anti-mouse ß-galactosidase 

antibody (diluted to 1: 800 in PBS-BSA). The cells were washed and incubated for 

30 minutes to 1 hour at 37°C in colour developing solution. 

6.5.14.2 Immunofluorescence assay 

6.5.14.2.1 Cell preparation 

13 mm coverslips (VWR international) were flame sterilised and put into a 24-well tissue 

culture plate. RD-ICAM cells were then seeded so as to reach 50% confluency on the day 

of infection and were incubated in 10% FCS DMEM supplemented with Penicillin: 

streptomycin at 37°C in a humidified 5% CO2 incubator. 
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6.5.14.2.2 Fixation and immunofluorescence labelling 

10 hours post RNA-transfection the transfected cells were fixed in 1 ml per well of 

Methanol: Acetone (1: 1) mix for 30 minutes at -20°C and rehydrated with 1.5 ml of PBS 

for 10 minutes. The transfected cells were then blocked in PBS + 2% FCS for 10 minutes 

on a rotating shaker. The cells were incubated with DAKO mouse anti-enterovirus VP1 

antibody (diluted to 1: 400 in PBS + 2% FCS) for 2 hours at room temperature on a rotating 

shaker. The cells were washed 3 times in PBS + 2% FCS and incubated for a further 

2 hours at room temperature in the presence of anti-mouse FITC conjugate antibody 

(diluted to 1: 400 in PBS + 2% FCS). The 24-well dish was wrapped in tin foil, as FITC is 

light sensitive. The cells were washed three times in PBS + 2% FCS and once with PBS. 

6.5.14.2.3 Analysis on the confocal microscope 

The coverslips were rinsed in dH2O and mounted onto a drop of PBS-glycerol on a glass 

slide, cells facing down. The coverslips were fixed by applying nail varnish around the 

edges of the coverslips. Slides were labelled and allowed to dry in a dark environment for 

15-30 minutes. The slides were then analysed using a confocal microscope set to detect 

FITC wavelength. The samples were photographed and analysed using LSM Meta 510. 

The figures were prepared with Adobe Illustrator 10. 

6.5.15 Packaging assays 

The trans-encapsidation assays were adapted from methods described in (Barclay et al., 

1998; Percy et al., 1992). T7 RNA transcripts were transfected into permissive cell lines 

and either co-transfected with helper T7 RNA transcript or co-infected 6 hours 

post-transfection with a helper virus. The samples were then incubated in a 37°C 

humidified 5% CO2 incubator until CPE was seen. The samples were freeze-thawed and 



Claire Blanchard Materials and Methods Chapter 6 142 

clarified. Each sample was then digested with 400 pg/ml of RNase A for 30 minutes at 

37°C. The RNAse digested samples were passaged onto a fresh cell sheet of RD-ICAM 

cells. The infected cells were incubated in a 37°C humidified 5% CO2 incubator for 8-10 

hours. The samples were harvested and screened by RT-PCR and RFLP analysis or by 

Luciferase assay. 

6.5.15.1 Luciferase assay 

The supernatants of the passaged samples were discarded and the cells were scraped off 

and resuspended in 1 ml of PBS. The cells were pelleted by centrifugation at 6000 rpm for 

5 minutes (in a Biofugepico Heraeus instruments). The supernatant was discarded and the 

cells were resuspended in lx cell lysis buffer (Promega(V). Luciferase activity was detected 

from 10 µl of the lysed samples, using a TD20/20 luminometer (Promega), after the 

addition of 100 µl of room temperature luciferase assay substrate + luciferase assay buffer 

solution (Luciferase assay system, Promega®). The Luciferase activity was measured 

using a luminometer and the data was expressed in relative light units. 

6.6 Molecular techniques 

6.6.1 Isolation of plasmid DNA 

10 ml and 100 ml overnight cultures of transformed E. coli in Luria broth with the 

appropriate antibiotic selection medium were used to perform small or medium-scale 

isolations of plasmid DNA. These were carried out following the alkaline lysis protocol 

described by Sambrook (Sambrook et al., 1989). 
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6.6.2 Restriction endonuclease digestion 

Chapter 6 143 

Restriction digests were carried out using 1 unit of the appropriate enzyme per µg of DNA 

in the buffer and at the temperature recommended by the manufacturer for one to three 

hours. Samples were visualised by electrophoresis on a 1% agarose gel in TAE buffer 

(40 mM Tris-acetate, 2 mM EDTA) containing 0.5 pg/ml ethidium bromide. The DNA 

was visualised on a UV transilluminator. The size of the DNA fragments was estimated 

using commercially available size markers, (GIBCO 1 kb ladder). 

6.6.3 Isolation of DNA fragments from an agarose gel 

DNA fragments were isolated from agarose gel using QlAquick® PCR and gel purification 

kit (QIAGEN). To an agarose slice containing the required DNA fragment in an eppendorf 

tube three volumes of Buffer QG were added and incubated at 50°C for 10 minutes to 

dissociate the agarose. The solubilised sample was then applied through a purification 

column, washed with buffer PE and eluted in 30 µl of buffer EB. A fraction of the purified 

DNA sample was then checked by visualisation on an agarose gel. 

6.6.4 Ligation of DNA fragments 

All ligation reaction were performed in 10 µl volumes at a molar ratio of insert to vector of 

3: 1 in lx ligation buffer (10 mM MgC12,200 mM Tris-HC1 pH 7.6,50 mM DTT, 1 mM 

ATp) with 1 unit of T4 DNA ligase. Reactions were incubated at 16°C for 2 hours or at 

4°C overnight. Ligation reactions were always purified by ethanol precipitation and 

resuspended in 5 µl clean dH2O for transformation. 
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6.6.5 Preparation of electro-competent Escherichia coli 
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A single colony of Escherichia coli ER2738 or DH5a was picked and inoculated in 10 ml 

of LB, containing the appropriate antibiotic selection medium, overnight at 37°C on an 

orbital shaker. The 10ml was added to 11 of LB with antibiotic and incubated at 37°C on 

an orbital shaker until the solution reached an OD600 of 0.5-0.7 before being pelleted for 

10 minutes at 3000 rpm in a Beckman bench-top centrifuge at 4°C. The bacteria were 

resuspended in 100 ml of ice-cold dH2O and centrifuged again at 3000 rpm for 10 minutes 

at 4°C (Multifuge 3 S-R Heraeus). The cells were then resuspended in 100 ml of ice-cold 

autoclaved 10% Glycerol solution and centrifuged at 2000 rpm for 20 minutes at 4°C 

(Multifuge 3 S-R Heraeus). The pellet was resuspended in 2 ml 10% Glycerol solution. 

Aliquots were snap-frozen in liquid N2 and stored at -70°C for up to three months. The 

cells were tested for their efficiency the following day by transforming 10 pg of pUC 19 

and plating it onto an LB agar plate containing ampicillin. Electro-competent cells 

routinely produced 107-108 colony forming units per µg of DNA transformed. 

6.6.6 Transformation of plasmid DNA in electrocompetent E. coli 

45 pl of thawed electro-competent E. coli cells were added to each 5 µl purified ligation 

reaction and electroporated in a1 mm electroporation cuvette (CLP) at 1600 V, 400 fl, 

25 pF with a time constant of 7-l Oms. The reaction were transferred to 500 µL of LB and 

incubated at 37°C for 45 minutes before plating on to LB agar plates containing 50 gg/ml 

ampicillin (or other appropriate antibiotic selection) and incubating at 37°C overnight. 

6.6.7 Amplification of DNA by PCR (Polymerase Chain Reaction) 

3 pg of template DNA was added to a reaction mix containing lx Thermopol buffer 

(10 mM KCI, 20 mM Tris-HC1(pH 8.8 at 25°C), 10 mM (NH4)2SO4,2 mM MgSO4, 
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0.1% Triton X-100 ), 2.5 mM dNTPs, 20 pmoles of the relevant forward and reverse 

primers and 1 unit of VentR® proof-reading DNA Polymerase (New England BioLabs 

NEB) in a 50 µl reaction volume. The DNA was preheated at 95°C for 3 minutes prior to 

adding the polymerase and amplified by 6-15 (for further cloning)-25 (analysis and 

sequencing) cycles at 95°C for 45s, 45-55°C for 45s, 73°C for 2-3 minutes (extension step 

was extended for longer products) followed by a final extension step at 73°C for 

10 minutes in a PTC-200 Peltier Thermal Cycler. The amplified DNA was analysed by gel 

electrophoresis in a 1% TAE agarose gel and purified following the isolation of DNA 

fragments from an agarose gel protocol. 

6.6.8 DNA sequencing 

200-300 ng of purified PCR products or double stranded midi plasmid DNA along with 

3.2 pM forward and reverse oligonucleotides were sent to the University of Dundee 

Sequencing Service for sequencing. Data was analysed using Bio Edit and aligned with the 

appropriate DNA sequence, from the Vector NTI database. 

6.6.9 Western immunoblotting 

6.6.9.1 Preparation of samples 

Appropriate samples were mixed in a 2x reducing SDS-PAGE gel-loading buffer. The 

samples were then heated at 99°C for a few minutes to denature proteins. 

6.6.9.2 Western blotting 

Protein samples, normalised for total amount of protein, were subjected to SDS-PAGE on 

a 10% or 12.5% polyacrylamide gel and transferred to a nitrocellulose membrane for ECL 

(Amersham Pharmacia) using a Bio-Rad Transfer Blot at 200 V for an hour. The 
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membrane was then soaked in blocking buffer at room temperature for about one hour, and 

washed three times in PBS-0.1% Tween 20. Incubation with a primary antibody diluted in 

blocking buffer to obtain a 1: 1000 dilution was carried out at room temperature for two 

hours. The membrane was washed three times in PBS-0.1% Tween 20 and incubated with 

a secondary antibody HRP, diluted to 1: 5000 in blocking buffer, at room temperature for 

two hours. A fmal three washes with PBS-0.1% Tween 20 were carried out prior to 

detection using an Amersham Biosciences ECLTM Western Blotting Detection Kit. The 

blots were exposed to a Kodak X-omat UV film and developed. 

6.6.1ODot blot replication assay 

6.6.10.1 Preparation of DNA probe 

The sequences for the probe were obtained from the pT7FLCIPV3 by amplifying the 3D 

polymerase using primers T7R3D and ID6. To 3 pg DNA was added lx Thermopol buffer 

(10 mM KCI, 20 mM Tris-HC1 (pH 8.8 at 25°C), 10 mM (NH4)2SO4,2 mM MgSO4,0.1% 

Triton X-100 ), 2.5 mM dNTPs, 20 pmoles of the relevant forward and reverse primers and 

1 unit of VentR® proof-reading DNA Polymerase (New England BioLabs NEB) in a 50 µl 

reaction volume. The PCR conditions were as follows: 95°C-3mins, 25 cycles of 95°C- 

45secs, 45°C-45secs, 73°C-2mins and a single final extension step at 73°C for 10 minutes. 

The PCR fragment was gel purified using a QIAquick® PCR and gel purification kit 

(QIAGEN) according to manufacturers instructions. 

25 ng of template DNA were mixed in dH2O to a final volume of 11 µl. The DNA was 

denatured by heating in boiling water for 10 minutes and quickly chilling on ice. 4 µl of 

High Prime, supplied by Roche, were mixed thoroughly and added to the denatured DNA 

reaction. The reaction tube was then supplemented with 5 tl (50 pCi) EasyTidesCytosine 



Claire Blanchard Materials and Methods Chapter 6 147 

5' Triphosphate (NEN [32P] a-rCTP). The solution was then mixed, briefly centrifuged and 

incubated at 37°C for 10 minutes. The reaction was stopped by heating at 65°C for 

10 minutes. The DNA probe was then purified through a Sephadex G-50 column to 

remove unbound nucleotides. 

6.6.10.2 Northern type hybridisation 

10 pl of RNA samples was added to 30 µl of RNA denaturation buffer, incubated at 65°C 

for 5 minutes and quenched on ice. A HybondTM-N Nylon membrane optimised for nucleic 

acid transfer (Amersham Pharmacia) was presoaked with dH2O before being placed on the 

BioRad Bio-DotTM microfiltration apparatus. The membrane was washed with IOxSSC 

buffer and the denatured RNA samples were added and dotted onto it by vacuum. Further 

washes with l Ox SSC buffer were carried out and the membrane was dried and samples 

were fixed by UV cross-linking at 1200 pJoules x 100 for 30 seconds in a UVStratalinker 

1800 (Stratagene). The membrane was transferred to a hybridisation chamber containing 

10 ml of Rapid-Hyb buffer (Amersham Pharmacia) and incubated at 65°C for 2 hours. 

The DNA probe mixture was added to the membrane in the hybridisation chamber and 

incubated at 65°C for 12-18 hours. The membrane was then washed with 1xSSC-0.1%SDS 

three times and with 0.5xSSC-0.1%SDS twice. The membrane was covered in cling film 

and exposed to phosphoimager screen for 30 minutes to 1 hour before visualising with 

BioRad Quantity One software. 

6.6.11Lt-vitro translation assay 

A mix of 30 µl of Hela S10 extracts, 5 µl of Flexi®Rabbit Reticulocyte Lysate System 

(Promega), 5 µl of l0xbuffer (10 mM rATP, 2.5 mM rCTP, 2.5 mM rGTP, 600 mM 

KOAc, 300 mM Creatine phosphate, 15 mM Hepes pH 7.0 made to 1 ml in dH2O) 
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supplemented with Phosphocreatine kinase (Sigma), 191 of 100 mM GuHCI, 3 µl of 

dH2O, 501Ci of [35S] Methionine and 1 gg of Ribomax prepared RNA diluted in 1 µl of 

dH2O was incubated at 30°C for 5 hours. 60 pl of 2x SDS reducing protein gel loading 

buffer was added to the reaction mix post-incubation and samples were denatured by 

incubation at 100°C for a few minutes. Samples were then run on an SDS-PAGE gel and 

visualised using Quantity One software after exposure to a phosphoimager screen for 10 to 

12 hours. 
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Appendix 1 

Viral protein sizes (in kDa) 
Poliovirus Leon Sabin poliovirus Coxsackievirus 

Control virus ty ty A21 
Viral proteins 
PI 95.9 97.3 97 
VPp 37.4 37.6 37.5 
VPl 32.3 33.4 33 
VP3 26.2 26.3 26.5 , .: 
VP2 29.7 30.1 29.9 
VP4 7.4 7.5 7.4 

VPI-2A 48.6 49.9 49.4 

P2 63.4 63.7 63.3 
2A 16.4 16.5 16.4 
2B 10.6 10.8 10.6 
2C 36.4 36.4 36.3 
2BC 47 47.2 46.9 

P3 82.8 83.5 82.8 
3A 9.5 9.7 9.5 
3B 2.3 2.4 2.3 
3C 20 20.2 20 
3D 51 51. 51 
3CD 71 71.4 71 
3AB 11.8 12.1 11.8 
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Table listing the viral protein sizes of PV3, Sabin 1 and CVA21 
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Plasmid name Description Published 
Full length poliovirus Sabin Provided by A. Macadam 

pS1F tvpe 1 infectious clone NIBSC, London 

CAV21 
CVA21 full-length infectious Hughes et al., 1989 
clone 
Full length poliovirus type 3 

pT7FLC Leon P3/Leon/37 infectious Goodfellow et al., 2000 
clone 
Poliovirus type 3 Leon 

pT7FLC/REP3 P3/Leon/37 CAT replicon Barclay et al., 1998 
derived from pT7FLC 
Backbone vector lacking the 

pT7FLC/REP3-BK complete P1-coding gene 
derived from pT7FLC/REP3 
Backbone vector PV3BK 
with insertion of the complete 

pT7REP3-BK-SL3-P1 PV3 P1-coding region 
introduction derived from 
pT7/SL3 
Backbone vector PV3BK 
with insertion of the complete 

pT7REP3-BK-CA21-P1 CVA21 P1-coding region 
introduction derived from 
CAV21 
Full length poliovirus type 3 

pT7/SL3 
Leon P3/Leon/37with Goodfellow et al., 2000 
mutations in the 2C CRE 
derived from pT7FLC 
Poliovirus type 3 Leon 

pT7REP3-L 
P3/Leon/37 luciferase Goodfellow et al., 2003 
replicon derived from 
T7FLC/REP3 

pRibol 
Vector containing a ribozyme Constructed by Simmonds 
hammerhead 2001 
CVA21 full-length infectious 
clone introduced in a 

pRibo-CAV21 ribozyme hammerhead- 
containing vector derived 
from CAV21 and Ribo1 
CVA21 full-length infectious 

pRibo-CAV21-NaelDel 
clone with a deleted Nae I 
site, derived from pRibo- 
CAV21 

pRibo-CAV21- CVA21 backbone vector 
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NaelDel-backbone lacking the complete P1- 
coding gene, derived from 
Ribo-CAV21-Nae 1 Del 

CVA21 backbone vector with 
insertion of the complete 

pRibo-CAV2I-BK/CA21 PI CVA21 P1-coding region, 
derived from pRibo-CAV21- 

ae1De1-backbone and 
CAV21 
CVA21 backbone vector with 
insertion of the complete PV3 

pRibo-CAV2I-BK/PV3-P1 
PI-coding region, derived 
from pRibo-CAV21- 

aelDel-backbone and 
pT7/SL3 
CVA21 backbone vector with 
insertion of the complete 

pRibo-CAV21-BK/Sabin1 PI Sabinl P1-coding region, 
derived from pRibo-CAV 21- 

ae 1 Del-backbone and SIF 

pT7EV7 
Full length echovirus 7 Lindberg et al., 1997 infectious clone 
EV7 genome with an in- 

EVMP 1 frame Nsi I deletion in the 
P1-coding region, derived 
from pT7EV7 
CVA21 genome with an in- 

CVA21AP1 frame Age I deletion in the 
P1-coding region, derived 
from CAV21 

Table listing plasmids used for this project 
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Appendix 4: Phylogenetic relationship based on P2, 
2A and 2B coding sequence comparison studies. 

A CAV16 

CAV19 CAV1 
ioo\ `%`--CAV22 

PV2 
PV1- 

0.1 

B 
CAV21 CAV24 

CAV21"'"/! j jooj; Z--CÄV17 
CAV24" 81 I'n' CAV11 

CAV13PV3 CAV20 

CAV13 

0.1 C CAV22 

CAV1J CAV13 

PV1 

PV2-"\ / ýCAV17 
CAV11 

PV3 CAV20 I -**'`CAV24 

Phylogenetic relation ship of l1EV C based on A: P2 coding region B: 2A coding region 
and C: 2B coding region sequence analysis comparison from Brown et al. (2003). 



Claire Blanchard Appendices 

Appendix 5: Phylogenetic relationship based on 
P3 and 3D coding sequence comparison studies. 

A 

t: AYIL l©ci 
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Phylogenetic relation ship of HEV C based on A: 3D coding region and B: complete 
P3 coding region sequence analysis comparison from Brown et al. (2003). 
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