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Abstract 

 
The observation that cis interactions of neighbouring gangliosides could 

influence the binding capabilities of anti-glycolipid antibodies has 

revolutionised the glycolipid world. The realisation of the importance of 

these interactions has necessitated a novel platform to be developed to 

assay antibody to a high number of potential glycolipid antigens and their 

combinations (complexes). I have developed a combinatorial glycoarray 

technique to assay serum anti-glycolipid and anti-glycolipid complex 

antibodies and investigated their frequency in two populations of patients 

with peripheral neuropathy, Guillain Barré Syndrome and Chronic 

Inflammatory Demyelinating Polyneuropathy. I have compared this 

technique to the standardized well established technique of assaying 

glycolipids antibodies, namely enzyme-linked immnosorbent assay (ELISA). 

In addition I have employed this platform to illustrate the presence of anti-

lipid antibodies within the cerebrospinal fluid (CSF) of Multiple Sclerosis 

(MS) patients. Furthermore though collaboration with other investigators I 

have demonstrated that oligoclonal immunoglobulin bands (OCB) present in 

the CSF of MS patients are lipid reactive. This is the first time since their 

original description over 50 years ago that the specificity of MS derived OCB 

has been described. Whilst the pathological significance of these lipid 

reactive antibodies remains uncertain their description provides new 

avenues for future research.  
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Chapter 1. Introduction 

 

1.1. Lipids  
  

Lipids are fatty acids and their derivatives. They have long been recognised 

as key components in the bilayer of cell membranes and are involved in 

many diverse roles including energy storage, cell signalling and trafficking 

(Posse de Chaves et al. 2010). Autoimmunity against lipids is noted in a wide 

variety of central and peripheral nervous system diseases (Plomp et al. 

2009) (Kanter et al. 2006)(Yamazaki et al. 2008)(Lepur et al. 2007). The role 

of such autoimmunity to lipids is still unclear in a number of these disease 

processes. 

 

The elucidation of the role auto antibodies directed against lipids has been 

a central theme in neurological disease over the last 50 years particularly in 

the acute polyradiculoneuropathy Guillain-Barré syndrome. This is an acute 

self-limiting post infectious neuropathy first described by French physicians 

during World War 1 (Guillain et al. 1916). A history of preceding infection is 

common e.g. gastrointestinal or upper respiratory tract with some of the 

causative microorganisms of these preceding infections been shown to have 

carbohydrate structures similar to those of glycolipids (or gangliosides) 

which are prominent in the peripheral nervous system suggesting molecular 

mimicry as a pathological basis for the disease process (Ang et al. 2004, Yuki 

et al. 2006).  These anti-ganglioside antibodies may be pathogenic and 

result in the development of neurological disability (Plomp et al. 2009, 

Willison et al. 2008). 
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1.2. Glycolipids and gangliosides 
 

1.2.1 Ganglioside structure and synthesis 
 

Glycolipids simply are lipids which are have a carbohydrate chain attached.  

Gangliosides are sialic acid bearing glycosphingolipids. Sialic acid refers to 

any member of the diverse family of nine-carbon neuraminic acid-based 

sugars. In humans, sialic acids are predominantly N-acetylneuraminic acid, 

abbreviated “NeuAc”.  Gangliosides are ubiquitously expressed in all 

vertebrate tissue and are particularly expressed in cell surface membranes 

in the central and peripheral nervous systems where they contribute up to 

10-12% of the total lipid content (Tettamanti et al. 1973). These are 

amphipathic molecules consisting of a carbohydrate core attached to a 

ceramide moiety (Figure 1.1 (A)). These membrane lipids are arranged such 

a manner that that the carbohydrate moiety sits on the exoplasmic surface 

of the cell membrane with the ceramide tail embedded into the bilayer of 

the cell membrane (Hakomori Si 2002)(Sonnino et al. 2007). The 

carbohydrate moiety consists of a varying chain of neutral sugars linking one 

or more sialic acid residues. Subclasses of gangliosides are defined based on 

the core of four neutral sugars attached to the ceramide. 

 

The nomenclature used is described by Svennerholm, designating 

gangliosides as GXyz, where G indicates ganglioside, X represents the 

number of sialic acid residues, (M=1, D=2, T=3, Q=4), y indicates the length 

of the carbohydrate sequence (defined as 5 minus the number of residues) 

and z is a letter indicating the isomeric form i.e. reflecting the position and 

linkage of the sialic acid residues (a, b, c) (Svennerholm 1994).The 

ganglioside biosynthetic pathway, which takes place in the Golgi complex, is 

outlined in Figure 1.1 (B). Gangliosides are synthesized by the sequential 

addition of sialic acids and oligosaccharides to a glycosylceramide molecule 
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which is catalysed by a series of specific glycosyltransferases (Figure 

1.2.)(Maccioni 2007).  In addition, located in the plasma membrane is the 

enzyme “plasma membrane ganglioside sialidase” or neuraminidase 3. This 

enzyme specifically hydrolyses sialic acid residues from polysialosylated 

gangliosides to produce GM1 within the plasma membrane (Miyagi et al. 

1999) (Wada et al. 1999). 

 

Variation can be further introduced the ganglioside molecule via alterations 

in the lipid backbone via changes in the length, degree of hydroxylation or 

saturation of either the sphingoid base or the fatty acid or both (Norton 

1977). 
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Figure 1.1. The structure and biosynthetic pathway of gangliosides 

Key: 

GalNAc= N-Acetylgalactosamine 

NeuAc= N-Acetylneuarminic acid 

 

A. Structure of the ganglioside GM1 

B. The biosynthetic pathway of gangliosides 

 

 

 

 
Figure 1.2. The enzymes involved in the biosynthetic pathway of 

gangliosides 

A= ceramide glucosyltransferase 

B= β1,4 galactosyltransferase 

C= α 2,3 sialtransferase 

D= α 2,8 sialtransferase 

E= N-acetlygalactosaminyltransferase 

F= β 1, 3 galactosyltransferase 
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1.2.2. Ganglioside localisation 
 

Gangliosides are anchored in the outer leaflet of the plasma membrane, 

where the long hydrocarbon chain of ceramide is embedded into the lipid 

bilayer allowing the oligosaccharide moiety to project outwards from the 

cell surface and potentially interact with a number of antigens. Gangliosides 

are prominent in the cell membranes of neurons and are organised into 

clusters of fellow lipid such as cholesterol and proteins known as lipid rafts 

(Simons et al. 2000). Lipid rafts or membrane “detergent resistant” 

microdomains are dynamic clusters of specific proteins e.g. 

glycophosphatidylinositol anchored proteins, lipids and kinases that can 

alter their composition and structure in response to intra- or extracellular 

stimuli. Recent work suggests that gangliosides may play an active role in 

the formation of these membrane microdomains (Silveira e Souza et al. 

2008) (Sonnino et al. 2007).  

 

1.2.3. Ganglioside function 
 

The exact biological functions of gangliosides have not been fully elucidated 

as yet. The functions modulated by gangliosides postulated include 

modulation of membrane proteins, neural development, cell-cell 

interaction/recognition, neuronal Ca2+ homeostasis, axonal growth, node of 

Ranvier stability and synaptic transmission (Lopez et al. 2009) (Plomp et al. 

2009).  

 

Evidence does exist for the binding of an immunoglobulin like family of 

proteins known as lectins. These are present on opposing cell membranes 

and one subtype in particular, the siglecs, bind to sialic acid containing 

glycans such as gangliosides (Crocker et al. 2007). Within the siglec family, 
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one member, myelin associated glycoprotein (MAG) is expressed in brain and 

appears to bind with high specificity to the gangliosides GD1a and GT1b. 

MAG is membrane glycoprotein that is selectively located in periaxonal 

Schwann cell and oligodendroglial membranes of myelin sheaths. It is 

important for the normal formation and maintenance of myelinated axons 

(Quarles 2007). Both GD1a and GT1b gangliosides share the same terminal 

sequence or epitope, “NeuAc α2-3 Gal β1-3 GalNAc” (Figure 1.1 (B)). In 

vitro, MAG binds with high affinity to GD1a and GT1b but not to closely 

related gangliosides such as GM1 or GD1b which lack the “NeuAc α2-3 Gal 

β1-3 GalNAc” terminus (Yang et al. 1996) (Collins et al. 1997).  This led to 

the hypothesis that MAG, on myelin, functions in vivo by binding to 

gangliosides GD1a and/or GT1b expressed on the axon surface (Yang et al. 

1996). 

 

Gangliosides appear to participate in axonal development primarily through 

the modulation of membrane receptor signalling activity (Abad-Rodriguez et 

al. 2007). This interaction is supported by neurotrophins via signalling via 

neurotrophin receptors (Trks, p75 neurotrophin receptor (p75 NTR)). Specific 

ganglioside-receptor interaction is capable of supporting (GM1-TrkA) or 

inhibiting axonal growth (GD1a/GT1b-p75 NTR). These interactions are 

subjected to fine regulation by the conversion of complex gangliosides to 

simpler ones (e.g. GD1a to GM1). This particular regulatory process can be 

spatially confined by local accumulation of ganglioside-converting enzymes 

such as neuraminidase 3 in the plasma membrane. 

 

Gangliosides have also been demonstrated to act as receptors for bacterial 

toxins.  Both neurotoxins from Clostridium botulinum (BoNT) and 

Clostridium tetani (TeNT) use gangliosides as cell surface receptors. TeNT 

binds with highest affinity to the complex gangliosides GT1b and GQ1b with 

lesser affinities to GD1a and the monosialated gangliosides (Walton et al. 
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1988). There are seven different subtypes of BoNT (A-G) with heterogeneity 

of ganglioside binding profiles observed. However all will bind with highest 

affinity to GT1b and GQ1b(Kitamura et al. 1980)(Kamata et al. 1986). 

Although both toxins bind at the motor nerve terminals of the 

neuromuscular junction, they are associated with different clinical 

sequelae. TeNT binding also occurs within the central nervous system 

following retrograde transport from the axon terminal to inhibitory neurons 

within the spinal cord.  This results in the prevention of neurotransmitter 

release causing the pathognomonic sustained contraction of muscles 

(Schiavo et al. 1992). In contrast BoNT is active within the peripheral 

nervous system disrupting neurotransmitter release causing a flaccid 

paralysis which may be similar clinical picture to acute GBS (Burgen et al. 

1949). 

 

Gangliosides also have the ability to function as receptors for viruses such as 

influenza virus. Infection of cells by this virus is initiated by the binding of 

haemagglutinin, a viral membrane protein, to sialic acid containing 

oligosaccharides, such as GM3 (Paulson et al. 1979) (Suzuki et al. 1986). This 

binding mediates viral entry and membrane fusion.  

 

Neuronal and non-neuronal tissues have different ganglioside profiles which 

may suggest regional specific functions. The more complex gangliosides are 

a feature of neuronal cell membranes whereas the more simplistic 

gangliosides such as GM3 and GD3 are more predominant in non-neuronal 

tissue such as liver and muscle (Fishman 1974)(Fishman et al. 1976). This 

difference in complexity of ganglioside profile expressed in neuronal and 

non-neuronal tissue is presumed to be secondary to the high level of UDP-

GalNAc-GM3-acetylgalactosaminyltransferase (GalNAc- transferase) 

expressed in the cells of the nervous system (Dicesare et al. 1971). 
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1.2.4. Neurological disease and glycolipids 
 

As aforementioned several neurological diseases are associated with 

autoimmunity to glycolipids. These include the peripheral neuropathies, 

Guillain-Barré syndrome and Chronic Inflammatory Demyelinating 

Polyradiculoneuropathy and the central nervous system demyelinating 

disorder, Multiple Sclerosis. 

 

 

1.3. Guillain-Barré syndrome 
 

There is considerable data pointing toward an association between anti-

glycolipid antibodies and the acute polyradiculoneuropathy Guillain-Barré 

syndrome (GBS). As gangliosides are highly enriched in cell surface 

membranes in both the central and peripheral nervous systems they have 

long been considered to be the likely antigenic target in this neuropathy. 

Classically this monophasic neuropathy presents with an ascending motor 

weakness with loss of tendon reflexes with peripheral sensory symptoms. 

This acquired neuropathy is preceded by an infection in around two-thirds of 

patients with the commonest observed microbial agent being Campylobacter 

jejuni enteritis (Rees et al. 1995) (Jacobs et al. 1998). 

 

1.3.1. Epidemiology of GBS 
 

GBS has an annual incidence of one or two per hundred thousand 

people(Alter 1990). The lifetime risk of any one individual acquiring the 

disease has been calculated to be approximately 1 in 1000.  
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1.3.2. Clinical Features and pathology of GBS 
 

The classical clinical presentation consists of an acute progressive 

symmetrical motor weakness reaching a nadir within 4 weeks (Van der 

Meché FG. Van Doorn PA. Meulstee J. Jennekens FG. GBS-consensus group of 

the Dutch Neuromuscular Research Support Centre 2001). This may be 

associated with sensory signs and symptoms but these are typically mild. In 

addition there is a loss of tendon reflexes. Autonomic symptoms affecting 

bladder, bowel and cardiac function may be associated. However a variety 

of clinical subtypes are observed with four main subtypes described based 

on clinical phenotype, pathology and aetiology and include acute 

inflammatory demyelinating polyradiculoneuropathy (AIDP), acute motor 

axonal neuropathy (AMAN), acute motor and axonal neuropathy (AMSAN) and 

Miller Fisher Syndrome (MFS) (Asbury et al. 1997) (Plomp et al. 2009). 

 

AIDP is the most common form in Europe and North America and is 

characterized by cellular infiltration of T cells and macrophages and 

subsequent demyelination and axonal damage (Hughes et al. 2005).  The 

axonal forms, AMAN and AMSAN, are only rarely encountered in this 

demographic. However in Japanese and Chinese populations these axonal 

variants, which appear to mediate pathology via antibody mediated 

damage, can account for 10-30% of cases (Yuki 2005).  In these axonal forms 

the primary target appears to be motor and/or sensory nerve axolemmal 

membrane (Feasby et al. 1986). In AMAN patients axolemmal membranes 

expressed at nodes of Ranvier and motor axon terminals are targeted, 

resulting in paralysis secondary to denervation (Ho et al. 1997). The 

pathology observed in AMSAN closely resembles that seen AMAN with both 

motor and sensory nerves affected in AMSAN (Griffin et al. 1996).  In 

contrast to AIDP demyelination in the axonal variants is absent or minimal. 
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Interestingly in addition to the heterogeneity seen in the ganglioside profile 

of neuronal and non neuronal tissue there is diversity to the ganglioside 

profile within neuronal tissue. This may explain the observation that the 

different clinical phenotypes observed in GBS can be associated with 

specific anti-ganglioside antibody profiles (Kaida et al. 2010). An example is 

the Miller-Fisher variant of GBS. This triad of ataxia, areflexia and 

ophthalmoplegia is associated with IgG directed against the complex 

ganglioside GQ1b (Chiba et al. 1992) (Kusunoki et al. 1999). Biochemical 

analysis of gangliosides isolated from cranial nerves and spinal nerve roots 

from humans show that GQ1b is particularly enriched in the oculomotor, 

trochlear and abducens nerves. Further immunohistochemical studies using 

a monoclonal antibody directed against GQ1b reveal that the paranodal 

myelin of the extramedullary portion of these cranial nerves were 

specifically immunostained (Chiba et al. 1993). Similar immunostaining was 

observed in a subset of neurons in dorsal root ganglia which may explain the 

development of ataxia in such patients (Kusunoki et al. 1999).  

 

1.3.3. Diagnosis of GBS 
 

GBS is a diagnosis made on both clinical and electrophysiological 

grounds(Van der Meché FG. Van Doorn PA. Meulstee J. Jennekens FG. GBS-

consensus group of the Dutch Neuromuscular Research Support Centre 

2001). The major clinical criteria include symmetrical weakness with a 

decrease or disappearance of distal limb reflexes and reaching a nadir 

within 4 weeks.  CSF protein levels rise with a near normal cell count. 

Presumably this protein rise is a reflection of the breakdown of the blood 

brain barrier. Differential diagnoses must be excluded. The 

electrophysiological findings should support a polyneuropathy and should 

include 3 of the following abnormal parameters in at least 2 individual 

nerves(Van der Meché FG. Van Doorn PA. Meulstee J. Jennekens FG. GBS-

consensus group of the Dutch Neuromuscular Research Support Centre 

2001): 
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1. Prolonged distal motor latency 

2. Reduced nerve conduction velocity 

3. Prolonged F-wave latency (given a normal distal conduction velocity) 
indicating proximal conduction slowing or block 

4. Reduced amplitude of the distal compound muscle action potential 
(CMAP) 

5. Abnormal reduction of the CMAP with proximal versus distal stimulation 
with a distal CMAP above 5mV measured peak to peak 

6. Increase in the duration of the CMAP with proximal stimulation versus 
distal stimulation (temporal dispersion) 

7. Reduction in amplitude of the sensory nerve action potential 

8. Abnormal recruitment pattern on EMG: either absent or “single pattern” 

9. Presence of spontaneous muscle fibre activity 

 

The characteristic features of AIDP include delayed or absent F waves, 

reduced motor conduction velocities with temporal dispersion and prolonged 

distal motor latencies. Small well formed CMAPs in the absence of 

demyelinating features are characteristic of the axonal variants. Sensory 

nerve action potentials may be reduced or absent in AIDP, AMSAN and MFS. 

It is noteworthy that electrophysiological patterns can evolve during the 

course of the illness. Furthermore when nerves are completely unexcitable 

classification into subtypes is not possible. 
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1.3.4. Treatment of GBS 
 

Treatment with either IVIG or plasma exchange have been shown hasten 

recovery (Hughes RA. Raphaël JC. Swan AV. van Doorn PA 2006) (Raphaël 

JC. Chevret S. Hughes RA. Annane D 2002). Either treatment when given 

within 2 weeks of diagnosis, approximately halves the number of patients 

requiring ventilation and doubles the speed of recovery. There is no 

evidence for combination therapy and currently no evidence for the use of 

corticosteroids in GBS (Hughes et al. 2010). 

 

1.3.5. Anti-glycolipid antibodies and GBS 
 

Specific anti ganglioside antibody profiles are associated with distinct 

clinical phenotypes in GBS. Anti-GM1 IgG is strongly linked to motor axonal 

forms of GBS with 50-80% of AMAN patients having higher anti-GM1 IgG 

levels in their serum than normal controls (Jacobs et al. 1996). These 

antibodies are also observed in the closely related clinical syndrome AMSAN 

(Hadden et al. 1998). Further studies reveal that AMAN and AMSAN are 

associated with IgG antibodies against (combinations of) GM1, GD1a or 

GalNAc GD1a. However what is not clear is the mechanism by which anti 

GM1 IgG can produce such clinically distinct phenotypes. GM1 is expressed 

in equal abundance on both sensory and motor nerves and it is, as yet, 

unclear how a specific anti-ganglioside antibody can be associated with such 

clinically distinct phenotypes. Anti- ganglioside antibody titres tend to be 

highest in the acute phase and decrease with clinical improvement 

suggesting that these anti-glycolipid antibodies may be directly associated 

with the pathogenic mechanisms. 

Whilst there is a well defined relationship between the axonal variants of 

GBS and anti-gangliosides antibodies, in contrast AIDP has not been 

consistently found to be associated with a specific anti-ganglioside antibody 

profile (Plomp et al. 2009).  The subtype Miller Fisher syndrome is 

associated with antibodies directed to the complex ganglioside GQ1b which 
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is particularly enriched in the nerves supplying the extra ocular eye 

muscles. This pattern of distribution of the ganglioside GQ1b would appear 

to correlate with the clinical sequelae associated with Miller Fisher 

Syndrome and would suggest pathogenicity. Indeed it has been 

demonstrated in the animal model that anti-GQ1b antibodies bind to motor 

nerve terminals in ex-vivo preparations  of mouse hemi diaphragm 

subsequently activating complement (Halstead et al. 2004) (Plomp et al. 

1999). This then activates the membrane attack complex (MAC) pore 

formation which leads to unregulated calcium influx, acetylcholine release 

and neuromuscular transmission block. What is unexplained is the 

mechanism by which some nerves with high GQ1b concentrations are 

protected or “immune” to pathology of MFS as observed by Chiba et 

al(Chiba et al. 1997). Despite the inconsistencies evidence does point 

toward a strong association between anti-ganglioside antibodies and GBS 

pathology. 

 

1.3.6. Molecular mimicry 
 

The hypothesis was put forward recently that anti-ganglioside antibodies 

arise in GBS via molecular mimicry (Ang et al. 2004)(Yuki et al. 2006). 

Around two thirds of GBS patients develop the syndrome around ten to 

fourteen days after infection with various agents (Hughes et al. 1999). The 

most common preceding infection is Campylobacter jejuni enteritis, 

although other bacterial and viral infections, mainly of the respiratory and 

gastrointestinal tract, have also been implicated (Jacobs et al. 1996) 

(Lehmann et al. 2010).  Both structural and serological studies on strains of 

Campylobacter jejuni isolated from GBS patients, reveal that the 

oligosaccharide moiety of their lipopolysaccharide (LPS) can mimic the 

oligosaccharide moieties on gangliosides (Yuki et al. 1993). LPS mimics of 

the gangliosides GM1, GD1a and GD3 have all been described (Aspinall et al. 

1994)(Salloway et al. 1996).  In addition antibodies that cross react with 

gangliosides have been produced when animals have been immunised with 



  Chapter 1    

 33 

LPS structures with the corresponding oligosaccharide moieties(Goodyear et 

al. 1999)(Ang et al. 2001)(Bowes et al. 2002)..  This is the basis for the 

theory of molecular mimicry with immunisation of LPS or ganglioside 

producing antibodies that recognise and bind self antigens.  

Although it has not been demonstrated, viruses may acquire gangliosides on 

their envelopes through their emergence out of infected host cells. This   

“budding” is a process by which viruses exit infected host cells by 

enveloping the virus core with host cell membranes. Gangliosides contained 

in these host cell membranes could then be exposed to immune cells on the 

virus envelope. 

It is unclear what host mechanisms are involved in the determination of an 

aberrant immune response (manifest by an acute neuropathy) when the host 

is challenged with an infection such as Campylobacter jejuni enteritis. Only 

1 in 3000 infected people will develop GBS (Plomp et al. 2009).  One review 

speculates that either the microorganism strain is of a highly specific 

specialized nature (for example bearing ganglioside like oligosaccharide 

cores on the lipopolysaccharide backbone) or that the host may have 

susceptibility factors which increase the likelihood of post-infectious GBS. 

Or that the propensity to develop GBS may only occur if these two 

conditions are met. The authors mention that gene variants have been 

described in carbohydrate–synthesizing enzyme genes of Campylobacter 

jejuni strains which have been isolated from GBS patients. These would 

then enable the synthesis of ganglioside like oligosaccharide structures to 

allow molecular mimicry to take place. 
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1.3.7. Anti-glycolipid complex antibodies 
 

 

The observation that cis interactions of neighbouring gangliosides could 

influence the binding capabilities of anti-glycolipid antibodies was reported 

recently by Kaida et al(Kaida et al. 2004). When performing TLC 

immunostaining on gangliosides with serum from a 31 year old with acute 

flaccid paralysis the investigators noticed binding to a mixture of GD1a and 

GD1b gangliosides. Further studies using ELISA confirmed higher affinity 

binding to the complex of lipids compared to each individual lipid 

introducing the concept of anti-ganglioside complex (GSC) antibodies to the 

glycolipid world. Further screening of a population of 100 GBS cases 

revealed the presence of IgG directed against the complex of GD1a and 

GD1b in 8 cases. The authors report that the anti-GSC reactivity was 

maximal when 6:4 or 5:5 (w:w) ratios of the two gangliosides were applied. 

In some cases (3/8) there was no IgG detectable against the contributing 

lipid in isolation (Figure 1.3.), in others there was detectable but lesser 

degrees of binding to the contributory lipids. This group of patients with 

anti-GD1a/GD1b antibody appeared to be predisposed to lower cranial nerve 

palsy and severe disability however this observation was not statistically 

significant. At the time the authors defined anti-GCS positivity when the 

optical density (OD) for the ganglioside complex was 0.2 higher than for 

either single ganglioside. This definition was revised some time later with 

anti-GSC’s only being defined to be present if the OD for the IgG directed 

against the complex of lipids was more than the sum of the OD’s of IgG 

directed against each contributing lipid (Kaida et al. 2007).  

 

This further study confirmed the observation that presence of these anti-

GSC antibodies could aid with clinical stratification. 234 GBS cases were 

investigated for the presence of anti-GSC antibodies. 39 (17%) had 

detectable anti-GSC antibodies using the newer definition. This represented 

IgG directed against a number of ganglioside complexes including 
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GD1a/GD1b, GM1/GD1a, GD1b/GT1b, GM1/GT1b and GM1/GD1b.  This 

particular subset of patients was more likely to have had an antecedent 

gastrointestinal infection and lower cranial nerve deficits. Those patients 

with IgG to the particular complexes of GD1a/GD1b and/or GD1b/GT1b 

were more likely to have severe disability and require mechanical 

ventilation (two tailed p= 0.009 and 0.003 respectively).The authors went 

on to search for IgG directed against three or four ganglioside complexes. 

They observed that the previously observed anti-GSC reactivity was often 

attenuated in such circumstances leading to the conclusion that 

heteromeric pairs of glycolipids were sufficient for the creation of IgG 

binding epitopes.  
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Figure 1.3. Illustration of an anti ganglioside complex (GSC) antibody 

In the first large series of GBS patients screened for anti ganglioside 

complex antibodies a subset of patients with antibody directed only to the 

complex of the two lipids GD1a/GD1b was observed(Kaida et al. 2004) 

 

 

This observation that cis interactions of neighbouring glycolipids could alter 

the binding profile of IgG is intriguing and not wholly unexpected(Varki 

1994). Over 15 years ago the concept that combinations of oligosaccharide 

groups from different glycans may form a distinct “lectin-type” (selectin) 

epitope was suggested. This was based on the observation that selectins had 

unusually high affinity for their target glycans which was unexpected for 

their monovalent oligosaccharide ligands. The authors hypothesized that the 

oligosaccharide ligands grouped together to form “clustered saccharide 

patches” which resulted in high affinity binding. This theory ties in nicely 
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with the more recently described realisation that lipids are not distributed 

randomly throughout the plasma membrane but are rather 

compartmentalized in functional membrane microdomains with the ability 

to interact with fellow raft lipids, proteins and enzymes (Simons et al. 

1997)(Simons et al. 2000). The importance of this local “microenvironment” 

has ramifications not only in GBS but in other nervous system diseases such 

as CIDP and Multiple Sclerosis, in which auto antibodies to lipids have been 

described (Hughes et al. 2006)(Kanter et al. 2006). 

1.4. Chronic Inflammatory demyelinating 
polyradiculoneuropathy 
 

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an 

acquired demyelinating disease of the peripheral nervous system (PNS) 

predominantly affecting spinal roots, major plexuses and proximal nerve 

trunks(Said 2006).  

1.4.1. Epidemiology of CIDP 
 

The prevalence of CIDP in across Japanese and Caucasian populations is 

reported to be similar (1.24 – 1.9 per 100,000)(Lunn et al. 1999)(McLeod et 

al. 1999)(Iijima et al. 2008) . Across populations, an increasing prevalence 

and incidence is noted with age with a male predominance over females 

reported. These epidemiological similarities suggest that the pathogenesis 

of CIDP may be common worldwide, and independent of genetic and 

geographical influences.   

1.4.2. Clinical features of CIDP 
 

CIDP is a generalised demyelinating disease characterized by progressive or 

relapsing weakness and impaired sensory function in the upper and lower 

limbs(McCombe et al. 1987).  It typically is an insidious chronic neuropathy 

which displays a progressive or relapsing clinical course. Segmental 
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demyelination is evident in peripheral nerves. This neuropathy encompasses 

a heterogeneous group including “typical” and “atypical” CIDP (European 

Federation of Neurological et al. 2006). “Typical” CIDP develops over 8 

weeks and is a chronic progressive, stepwise or recurrent symmetrical 

proximal and distal weakness with sensory dysfunction of all 4 limbs which 

are hypo/areflexic.  “Atypical” CIDP patients may have intact reflexes and 

can have different patterns of weakness e.g. predominantly distal 

weakness, pure motor or pure sensory presentations, asymmetrical 

presentations or focal presentations. Whether these variants respond to  

specific immunotherapies is largely unknown. 

1.4.3. Pathology of CIDP 
 

CIDP is considered to be an autoimmune condition as a significant 

proportion of patients respond to immunotherapies(van Doorn 2005).  

Demyelination is a key pathological feature with myelin considered to be 

the likely target for the immune response. Certain pathological features are 

diagnostic hallmarks and include “onion bulb” formation, perivascular 

inflammatory infiltrate with predominant demyelination(Toyka et al. 2003). 

The “onion bulb” formations of layers of Schwann cell cytoplasm 

interspersed with collagen fibres and loss of nerve fibres occurs as a result 

of proliferation of Schwann cell processes. Axonal degeneration is typically 

a chronic feature. The exact pathogenic mechanisms are unclear however 

evidence exists for both cellular and humoral mechanisms.  

Nerve biopsies have provided evidence for the presence of inflammatory 

infiltrate in CIDP. This infiltrate, consisting of macrophages and T cells, 

would suggest that T cell mediated mechanisms are involved(Schmidt et al. 

1996).  In addition increased levels of inflammatory cytokines and 

chemokines have been reported in nerves, CSF and serum of CIDP patients 

together with increased circulating T cells(Lunn et al. 2009). 
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Antibodies directed to myelin derived lipid or protein antigens have been 

demonstrated in CIDP. Deposition of immunoglobulin (IgM) and complement 

or its membrane attack complex has been reported on the surface of myelin 

sheaths(Dalakas et al. 1980). Antibodies may bind to macrophages via their 

Fc portion, activating phagocytosis and release of inflammatory mediators 

toward the myelin sheath.  In addition passive transfer studies imply that 

these antibodies are important in pathogenesis(Yan et al. 2000). How 

cellular and humoral responses interact in CIDP is largely unknown. In 

addition little is known as to whether there is pathological heterogeneity in 

keeping with clinical heterogeneity.  

 

1.4.4. Diagnosis of CIDP 
 

The EFNS taskforce agreed in 2005 on establishing a set of criteria for 

diagnosing CIDP(Joint Task Force of the EFNS and the,P.N.S. 2005). Based on 

clinical, electrophysiological and supportive paraclinical information these 

guidelines allow the diagnosis of definite, probable and possible CIDP. The 

clinical picture is either “typical” or “atypical” as discussed in section 

1.4.2.  Amongst others exclusion criteria included antibodies to myelin-

associated glycoprotein.  

The electrophysiological features of CIDP are suggestive of demyelination 

and include reduced conduction velocities, temporal dispersion of the 

compound muscle action potential (CMAP) and conduction block("Research 

criteria for diagnosis of chronic inflammatory demyelinating polyneuropathy 

(CIDP). Report from an Ad Hoc Subcommittee of the American Academy of 

Neurology AIDS Task Force", 1991)(Lewis et al. 1982)(Sumner 1994). 

 

 

 



  Chapter 1    

 40 

 

In accordance with reported neurophysiologic abnormalities definitive 

electrophysiological criteria have been defined and these include(Joint Task 

Force of the EFNS and the,P.N.S. 2005): 

1. ≥50% prolongation of distal motor latency in 2 nerves or 

2. ≥30% reduction of motor conduction velocity in 2 nerves or 

3. ≥20% prolongation of F-wave latency in 2 nerves or 

4. Partial motor conduction block in 2 nerves (≥50% amplitude reduction of 
proximal negative peak CMAP relative to the distal) or 

5. Abnormal temporal dispersion in 2 nerves or 

6. Absent F waves in 2 nerves + one other demyelinating parameter in 
another nerve (meeting criteria 1-6) 

7. Prolonged CMAP duration (>9ms) in 1 nerve + one other demyelinating 
parameter in another nerve (meeting criteria 1-6) 

Further criteria were established to allow neurophysiologic findings to be 

defined as probable (e.g. allowing partial conduction block to be defined 

when only ≥30% amplitude reduction of proximal negative peak CMAP 

relative to the distal) and possible CIDP. These neurophysiologic criteria 

must be interpreted in the setting of the clinical context as for example 

demyelination may be patchy or sometimes restricted to proximal nerves 

and roots therefore these strict criteria may not be met.  Therefore the 

diagnosis is a clinical one supported by additional paraclinical data including 

the presence of raised protein in an acellular CSF, thickened or enhancing 

nerve roots on MRI on spinal imaging, a positive response to 

immunomodulatory therapy or unequivocal nerve biopsy with features 

consistent with demyelination and remyelination(Lunn et al. 2009). 

CIDP share many symptoms and signs in early disease with GBS. A proportion 

of patients demonstrate an acute onset not unlike GBS – 16% in McCombe’s 
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cohort with 35% giving a history of preceding infection(McCombe et al. 

1987).  Recent work by van Doorn et al suggest that the diagnosis of CIDP 

should be considered when a patient thought to have GBS deteriorates again 

after 8 weeks from onset or when deterioration occurs 3 times or more. The 

similarities between these two disorders have led some to speculate that 

they are variants of the one inflammatory neuropathy with the main 

difference between the two variants being the duration of symptoms(van 

Doorn 2005).  

1.4.5. Treatment of CIDP 
 

A significant proportion of CIDP patients will respond to immunomodulatory 

therapies. First line therapies include steroids, intravenous immunoglobulin 

(IVIG) and plasma exchange (PE)(Lunn et al. 2009). Steroids were the first 

immunomodulatory treatment used in CIDP with case series suggesting that 

65-95% respond(Austin 1958)(Dalakas et al. 1981)(McCombe et al. 

1987)(Barohn et al. 1989).Side effects limit the use of steroids therefore the 

use of IVIG is preferable and therefore there is more evidenced based data 

available. The recent ICE study, a RCT investigating IVIG versus placebo in 

CIDP, reported an immediate response rate to IVIG was 54% vs. 21% in the 

placebo group. The absolute risk reduction for maintaining stability in 

prolonged treatment was 34%. The number needed to treat was 3.  

Plasma exchange has been investigated in short term trials only but does 

show benefit(Dyck, Daube, O'Brien, Pineda, Low, Windebank & Swanson 

1986b)(Hahn et al. 1996).IVIG has been compared with both steroids and PE 

with similar efficacies reported for all treatments(Hughes R. Bensa S. 

Willison H. Van den Bergh P. Comi G. Illa I. Nobile-Orazio E. van Doorn P. 

Dalakas M. Bojar M. Swan A. Inflammatory Neuropathy Cause and Treatment 

(INCAT) Group 2001)(Dyck et al. 1994).  Numerous second line agents have 

been used with varying degrees of success including, amongst others, 

methotrexate, azathioprine, ciclosporin, cyclophosphamide and 

rituximab(Hughes RA. Raphaël JC. Swan AV. Doorn PA 2004). There is 
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however, as yet, no robust RCT evidence for treatment with these second 

line agents.  

1.4.6. Antiglycolipid antibodies and CIDP 
 

The search for the specific antigenic target in CIDP has included 

investigation into both myelin derived proteins and lipids. However 

antibodies to PO and other myelin proteins such as PMP22 and P2 are 

reported with inconsistent frequencies in studies (Allen et al. 2005). 

However different frequencies may simply reflect differences in the 

conformation of the protein used in experimental protocols. PO, the most 

abundant peripheral nerve myelin protein, has been reported in 6/21 

patients with CIDP responsive to PE and in 1/15 controls(Yan et al. 2001). PO 

appears to be the most likely protein antigenic target as it has been shown 

that antibodies directed against such proteins can lead to demyelination 

upon intraneural injection(Hughes et al. 1985). 

Galactocerebroside, a major peripheral nerve glycolipid, is highly neurotoxic 

in animal models causing a CIDP-like process upon immunisation(Stoll et al. 

1986)(Toyka et al. 1996).  However antibodies against such lipid antigens 

have not been described in CIDP populations. The closely related lipid, 

sulfatide, has been investigated in numerous studies. Fredman et al 

reported that 87% (13/15) CIDP patients had detectable anti-sulfatide IgG 

using TLC(Fredman, Vedeler, Nyland, Aarli & Svennerholm 1991b). However 

this finding has not been reflected in other study findings(Ilyas, Mithen, 

Dalakas, Chen & Cook 1992a)(Melendez-Vasquez et al. 1997). Antibodies to a 

variety of lipid antigens have been described including LM1, GM1 and 

GD1a(Fredman, Vedeler, Nyland, Aarli & Svennerholm 1991a)(Ilyas, Mithen, 

Dalakas, Chen & Cook 1992a). Antibodies to GM1 are well described in the 

chronic immune neuropathy, MMN, however they present less frequently in 

CIDP(van Schaik, Bossuyt, Brand & Vermeulen 1995a). Human peripheral 

nerve myelin contains acidic glycosphingolipids such as sulfated glucuronyl 

paragloboside (SGPG) and SGLPG (sulfated glucuronyl lactosaminyl 
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paragloboside)(Quarles 1997)(Willison et al. 2002). One study found 

elevated IgM anti-SGPG in 6/9 CIDP patients(Yuki, Tagawa & Handa 1996a). 

Table 1.1. Antiglycolipid antibody studies in CIDP. 

Adapted from Hughes at al(Hughes et al. 2006).  
 

      Study Antigen Method Class CIDP positive OND positive HC positive 
   (Hughes et al. 1984) GalC ELISA IgG 1/11 2\17 (GBS) 0\19 

    (Rostami et al. 1987) GalC RIA  
No significant difference between 11 CIDP and 6 normal 
subjects 

      (McCombe, Pollard & 
McLeod 1988b) GalC ELISA  0/57 0/49  
      (Fredman, Vedeler, 
Nyland, Aarli & Svennerholm 
1991b) Sulf TLC IgG 13/15 15/23 6/40 
      (Ilyas et al. 1991) Sulf ELISA, TLC IgM 1/15 11/53 (GBS)  
     5/53  
      (Pestronk et al. 1991) Sulf ELISA, TLC  0/21 18/64 0/35 
     (Ilyas, Mithen, Dalakas, 
Chen & Cook 1992a) Sulf ELISA,TLC 

IgG & 
IgM 0/16 5/53 (GBS) 1/32 

       
    (Melendez-Vasquez et al. 
1997) Sulf ELISA IgG 1/40 0/40 0/37 
   IgM 0/40 0/40 0/37 
      (Quarles et al. 1990) Gang TLC  3/19 5/26 (GBS) 0/10 
    (Ilyas, Mithen, Dalakas, 
Chen & Cook 1992a) GM1  IgM 2/16  1/55 
     (Simone et al. 1993) GM1 ELISA, TLC IgG(IgM) 1/10 (0/10) 9/23 (4/24)  

 (van Schaik et al. 1994) GM1 ELISA IgG 10/43 3/30  
   IgM 3/43 2/30  
     (van Schaik, Bossuyt, 
Brand & Vermeulen 1995b) GM1 ELISA  12/43   
      (Yuki, Tagawa & Handa 
1996a) GM1  IgG 1/30 33/96 (GBS) 6/50 
   IgM 5/30 35/96 (GBS) 3/50 
     (Melendez-Vasquez et al. 
1997) GM1 ELISA IgG 0/40 0/40 0/37 
                          IgM 6/40 2/10 1/37 
    (Ilyas, Mithen, Dalakas, 
Chen & Cook 1992a) LM1 ELISA & TLC   IgG 2/16 11/53 (GBS) 0/32 
    (Melendez-Vasquez et al. 
1997) LM1 ELISA IgG 4/40 1/40 0/37 
   IgM 2/40 4/40 1/40 
     (Ilyas et al. 1991) SGPG ELISA,TLC IgM 1/15 13/53  
       
      (Ilyas, Mithen, Dalakas, 
Chen & Cook 1992b) SGPG ELISA,TLC IgM 0/16 7/53 0/32 
      (Yuki, Tagawa & Handa 
1996b) SGPG ELISA IgG 1/30 0/96 0/50 
   IgM 12/30 28/96 5/50 
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Key: 

GalC= Galactocerebroside 

Sulf= Sulfatide 

Gang= Human gangliosides 
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1.5 Multiple Sclerosis 
 

Multiple Sclerosis (MS) is a chronic disease of the central nervous system 

(CNS) in which repeated episodes of inflammation result in extensive 

demyelination, axonal loss and chronic disability and was first described 

over 150 years ago. It is the most common non traumatic disabling 

neurological condition affecting young adults and affects over one million 

people aged from 17 to 65 years worldwide(Anderson et al. 1992). The 

estimated prevalence of MS in Europe is 83 per 100,000, with higher rates 

observed in northern countries such as Scotland(Pugliatti et al. 2006). 

1.5.1. Epidemiology of Multiple Sclerosis 
 

Development of MS depends on both genetic susceptibility and 

environmental factors(Poser 2006)(Poser et al. 2004). How these complex 

factors interact is largely unknown. The importance of genetic factors is 

supported by the familial aggregation of disease (Table 1.2), the high 

prevalence in specific ethnic populations and the absence of increased risk 

of MS in adopted relatives of those with MS. 

Table 1.2.The genetics of Multiple Sclerosis(Poser 2000)(Poser et al. 2004) 

 

Relative with MS Risk of developing MS (%) Increase in risk above 

general population * 

Monozygotic twin 

 

25-30 125-150x 

1st degree relative 

 

2-4 10-20x 

Offspring of conjugal mating 

 

30.5 150x 

 

* Risk of developing MS in general population is 0.2% 

** Both parents have MS 
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The influence of environmental factors on MS risk is suggested by a variation 

in disease incidence with a higher incidence in temperate climates further 

away from the equator. Epidemiological data from migrant populations 

suggest early life environment is important. Those emigrating before the 

age of 15 from a high risk zone to a low risk zone carry at least part of the 

high risk of their country of origin(Poser et al. 2004).  

 

1.5.2. Clinical features of Multiple Sclerosis 
 

A clinically heterogeneous disease, MS is classified based on the clinical 

presentation at onset(Lublin et al. 1996)(Polman et al. 2005). A clinically 

isolated syndrome (CIS), caused by an inflammatory lesion involving the 

white matter of the central nervous system, is associated with risk of 

progression to clinically definite MS. The most common MS subtype, 

relapsing remitting MS (RRMS), is diagnosed when there have been two or 

more attacks of CNS demyelination lasting over 24 hours, separated by one 

month or more (i.e. relapses).  Relapses last for a number of days or weeks.  

Resolution of symptoms after a relapse may be a result of diminution of 

inflammation or remyelination.  After 20 years around 80% of RRMS patients 

will develop progressive neurological decline with acute relapses of 

neurological decline becoming less evident. Primary progressive MS (PPMS) 

occurs in an older population and presents with progressive neurological 

decline. 
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1.5.3. Pathology of Multiple Sclerosis 
 

The pathology of MS has similarly been shown to be heterogeneous. 

Historically the pathological basis of MS has been considered be to T cell 

dependent with inflammatory process instigated by myelin reactive T cells 

leading to secondary macrophage recruitment and myelin 

destruction(Lassmann et al. 2001)(Pittock et al. 2007). This has been 

illustrated by the induction of the animal form of MS, experimental 

autoimmune encephalitis (EAE), after the adoptive transfer of CD4+ T cells. 

However increasing evidence indicates B cells also contribute to disease 

pathogenesis(Lucchinetti et al. 2000)(Hauser et al. 2008).  Indeed both cells 

of the innate immune system (macrophages and microglia) and the adaptive 

immune system (T cells, B cells and plasma cells) can be identified in active 

MS lesions(Lucchinetti et al. 2000).  

 

Recent neuropathological studies revealed that there are four patterns of 

demyelination observed amongst active MS lesions obtained via brain biopsy 

and at time of autopsy (Lucchinetti et al. 2000)(Lassmann et al. 2001). A T 

cell dominant inflammatory process was observed in all four patterns 

however the investigators were able to segregate the lesions into four 

distinct groups based on plaque geography, extent and pattern of 

oligodendrocyte pathology, evidence for immunoglobulin deposition and 

complement activation, and pattern of myelin protein loss (Table 1.5.). 

Interestingly only one pathological pattern was observed per patient. The 

most common pattern observed, Type II, was characterized by the presence 

of complement activation and Ig deposition at sites of active myelin 

damage, suggesting that these mechanisms may be involved in 

demyelination and tissue injury. The efficacy with which plasma exchange 

was observed at treating pattern II patients supports this hypothesis(Keegan 

et al. 2005).  In addition a recent phase II double blinded placebo controlled 

trial investigating the B cell depleting agent Rituximab in RRMS would 

appear to support the suggestion that B cells have a pathogenic role in 
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MS(Hauser et al. 2008)(Lassmann et al. 2001). The trial revealed promising 

results, with a reduction in total (and new) gadolinium enhancing lesions 

and a reduction in relapses (20.3% vs. 40%) observed in the treated group. 

 

Table 1.3. Pathological heterogeneity in multiple sclerosis  

(Adapted from the Pathology of MS(Pittock et al. 2007)) 
 
Pathology 

subtype 

Frequency (%) Pattern of demyelination 

I 15 Macrophage associated demyelination 

II 58 Antibody and complement associated demyelination 

III 26 Distal oligodendrocyte dystrophy 

IV 1 Primary oligodendrocyte injury in periplaque white 

matter with secondary macrophage associated 

demyelination 

 

 

1.5.3. Diagnosis of Multiple Sclerosis 
 

A diagnostic scheme, employing data from paraclinical parameters such as 

Magnetic Resonance Imaging (MRI), is commonly used to reliably diagnose 

MS(Polman et al. 2005) (Table 1.3. and Table 1.4.) 
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Table 1.4. Diagnosis of clinical subtypes of multiple sclerosis. 

(Adapted from the “McDonald Criteria”) (Polman et al. 2005) 
Clinical Presentation Additional data required  

One year of disease progression 

Plus 2 of the following: 

1. Positive MRI Brain (nine T2 lesions or four 

or more T2 lesions with positive visual 

evoked potentials (VEP)a) 

2. Positive spinal cord MRI (two focal T2 

lesions) 

PPMS 

3. Positive cerebrospinal fluid (CSF)b  

Two or more attacks; objective clinical 

evidence of two or more lesions 

None 

Dissemination in time, demonstrated by: 

MRIc or 

Two or more MRI-detected lesions consistent 

with MS plus positive CSF or 

Two or more attacks; objective clinical 

evidence of one or more lesion 

Await further clinical attack implicating a 

different site 

Dissemination in time, demonstrated by: 

MRIc or 

One attack; objective clinical evidence of 

two or more lesions 

Second clinical attack 

Dissemination in space, demonstrated by: 

MRId or 

Two or more MRI detected lesions consistent 

with MS plus positive CSF and 

Dissemination in time, demonstrated by: 

MRI or 

One attack; objective clinical evidence of 

one lesion (clinically isolated syndrome) 

Second clinical attack 

a Abnormal VEP of the type seen in MS 
b Positive CSF by conventional methods such as isoelectric focusing of 

oligoclonal IgG bands or increased IgG index or both 
c MRI dissemination in time must fulfil the criteria in Table 5.3. 
d MRI dissemination in time must fulfil the criteria in Table 5.3. 
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Table 1.5. Magnetic resonance imaging criteria to demonstrate 

dissemination of lesions in time and space.  

 (adapted from “McDonald Criteria”(Polman et al. 2005)) 
 
MRI parameters Diagnostic criteria 

Detection of gadolinium enhancement at 

least 3 months after the onset of the initial 

clinical event 

Dissemination in time 

Or Detection of a new T2 lesion occurring 30 

days after reference scan 

Dissemination in space 3 of the following: 

 1. One gadolinium enhancing lesion or nine 

T2 lesions 

 2. One juxtacortical lesion 

 3. One infratentorial lesion 

 4. Three periventricular lesions 

 

 

 

 

 

Symptoms attributable to MS are generally indicative of damage to CNS 

white matter and can include painful loss of vision secondary to optic 

neuritis, coordination problems with cerebellar disease and leg weakness 

secondary to myelitis. Relapses may be monofocal or multifocal. Multifocal 

episodes with little recovery between are predictive of a more severe 

outcome(Langer-Gould et al. 2006).  
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1.5.5. Treatment of Multiple Sclerosis 
 

MS treatment consists of three modes of treatment: 

1. Treatment of acute relapses with intravenous steroids or plasma 

exchange 

2. The use of disease modifying therapies 

3. Symptomatic treatments 

 

In contrast to the use of immunosuppressants (usually steroids) for acute 

relapses, the use of disease modifying therapies in MS influence disease 

activity.  Glatiramer Acetate and a number of interferon β (IFN β) 

preparations have been shown to improve the course of the disease by 

reducing the relapse rate by around 30%(Comi et al. 2001)(Río J. Tintoré M. 

Nos C. Téllez N. Galán I. Montalban X 2005). In addition these therapies 

have been shown to reduce MRI parameters for disease activity and severity.  

 

A number of emerging agents have evolved in recent years including many 

oral agents and monoclonal antibody therapies. Many of these have diverse 

mechanisms of action. A number of these target T cell dependent responses 

for example Natalizumab, which was the first targeted therapy used in MS. 

This recombinant humanized antibody targets an adhesion molecule, α4β1-

integrin, on the surface of T cells. This interaction prevents T cells 

attaching to endothelial cells via vascular cell adhesion molecule-1 (VCAM-

1) and thereby halts the traffic of T cells across the blood brain barrier and 

is a highly effective treatment in MS(Ransohoff 2007). However, increasing 

evidence is gathering for the role of B cell ablative therapy in MS.  

Rituximab, the chimeric murine/human monoclonal antibody which depletes 
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B cells which express the target antigen CD20, is the B cell antagonist of 

interest. This treatment effectively depletes B cells from CSF and blood, 

lysing circulating B cells whilst sparing stem cells and mature plasma cells. 

Recent work in RRMS has demonstrated that Rituximab significantly reduces 

MS lesions and clinical relapses over a period of 48 weeks compared with 

placebo(Hauser et al. 2008). This adds further credence to the role of the 

humoral immune response in the pathogenesis of Multiple Sclerosis. 

 

1.5.6. Oligoclonal bands 
 

Indeed the most obvious indication that MS is associated with an aberrant 

humoral response is an increased intrathecal synthesis of IgG that manifests 

itself as discrete oligoclonal bands (OCB) of IgG in cerebrospinal fluid only 

(see Figure 5.1. (A) )(Correale et al. 2002). OCB are immunoglobulins (IgG, 

IgM or IgA) that are generated by plasmablasts and plasma cells in the CSF 

or CNS compartment. Isoelectric focusing (IEF) allows the separation of 

proteins in biological fluids according to the isoelectric point. They are 

visualized as prominent distinct bands in polyacrylamide gels. An illustrative 

IEF blot demonstrating the common patterns observed in clinical practice is 

shown in Figure 1.4.  

 

OCB are the most important diagnostic laboratory marker in practice in 

multiple sclerosis(Polman et al. 2005). In CIS the presence of OCB has been 

shown to be a valuable predictive biomarker. One particular prospective 

study following over 400 patients with a diagnosis of CIS, demonstrated that 

the presence of OCB doubled the risk for having a second demyelinating 

attack within 5 years(Tintore et al. 2008). 
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Figure 1.4. IEF Blot of CSF proteins and corresponding serum 

(courtesy of Ms Patricia Thomson & Ms Jan Gairns, NHS Neuroimmunology 
Laboratory, Southern General Hospital, Glasgow) 
 

A. Oligoclonal bands detected in the CSF only, and not in serum, indicative 

of local synthesis of immunoglobulin within the CNS compartment (typical 

pattern seen in MS) 

B. Normal examination 

C. Paired oligoclonal bands detected in serum and CSF indicative of recent 

antigenic stimulation outside the CNS e.g. as aftermath of systemic 

infection 

D. Monoclonal paraprotein detected in the serum also present in the CSF 

(characteristically seen as a consequence of a monoclonal M protein in 

multiple myeloma or monoclonal gammopathy of uncertain significance) 

E. Polyclonal increase in CSF gamma globulin 
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OCB are derived from clonally expanded populations of B cells that have 

undergone numerous somatic hypermutations indicative of antigen-specific 

selection, but their specificity and pathobiological relevance remains 

unknown(Qin et al. 1998)(Baranzini et al. 1999)(Ritchie et al. 2004).  

Despite intensive research, the target antigen(s) recognized by individual 

OCB in MS has remained elusive(Meinl et al. 2006)(Awad et al. 2010). 

 

1.5.7. Anti glycolipid antibodies and MS 
 

Much attention to date has focused on potential immune responses to 

myelin-derived proteins in the hunt for the OCB target antigens. This search 

for protein derived targets of the OCB response has, as yet, proven 

unfruitful(Owens et al. 2009). However 70-85% of the dry weight of myelin is 

composed of lipids whilst the remainder is comprised of proteins such as 

myelin basic protein and myelin oligodendrocyte protein(Norton 1977).  

Glycolipids such as gangliosides and galactocerebrosides are the most 

abundant component of human myelin. Cerebrosides are a subtype of 

glycosphingolipid in which the ceramide has a sugar residue at 1-hydroxy 

residue. The sugar residue can be either glucose or galactose; the two major 

subtypes are glucocerebroside and galactocerebroside. Galactocerebroside 

is one of the simplest glycolipid structures consisting of a galactose 

molecule linked to a ceramide. Sulfatide, another predominant myelin lipid 

is a galactocerebroside in which the 3’OH moiety on galactose is sulfated.  

(Figure 1.5.) Cerebrosides are the major glycolipid in CNS myelin(Norton 

1977). 

Both serum and CSF anti-ganglioside antibodies have been reported in 

multiple sclerosis patients(Arnon et al. 1980)(Acarin et al. 1996, Zaprianova 

et al. 2004)(Kanter et al. 2006). In fact 25 years ago it was observed that 

antisera to different glycolipids induced myelin alterations in mouse spinal 

cord tissue cultures(Roth et al. 1985). Well myelinated cultures of mouse 

spinal cord tissue were exposed to antisera against GalC, GM1 and GM4 and 
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anti-white matter serum. Cultures exposed to anti-white matter serum and 

anti-Galactocerebroside (GalC). antisera showed the most marked changes 

with a decrease in the number of oligodendroglial cells with dissolution and 

phagocytosis of myelin evident (assessed using light and electron 

microscopy). With higher concentrations of antisera, antibodies to GM1 and 

GM4 demonstrated similar albeit less severe changes. This difference in 

demyelinating capabilities of the antisera may be related to the amounts of 

respective antigen determinants present in the myelin membrane with GalC 

accounting for 24% of total myelin lipids whilst gangliosides account for less 

than1% of this fraction(Norton 1977, Shamshiev et al. 1999). The authors 

postulate that the damage induced correlated with the amount of lipid 

target present in the membranes involved.  

 

Glycolipids themselves are potential targets recognizable by T cells in MS 

patients. T cell clones reactive to single glycolipids have been isolated from 

the peripheral blood of MS patients(Shamshiev et al. 1999).  Some clones 

(3/21) were found to react only to glycolipids when presented in a mixture 

with other glycolipids (40% gangliosides, <25% sphingomyelin, <15% 

ceramides, <6% sulfatide and <15% N-acetylneuraminic acid). This raises the 

possibility that glycolipids may interact with each other forming new 

structures i.e. complexes with new epitopes capable of stimulating T cells 

which were otherwise unreactive when presented to isolated gangliosides.  

Anti-sulfatide antibodies have previously been reported in CSF of MS 

patients(Ilyas et al. 2003)(Kanter et al. 2006). Sulfatides, a class of sulfated 

galactoceramides, are synthesized primarily by the oligodendrocytes of the 

central nervous system. Although sulfatide is present in most cell 

membranes it is particularly enriched in the myelin sheath, which is the 

target of inflammation in multiple sclerosis. Sulfatide has been shown to be 

the most promiscuous of all lipids as it is capable of binding to all CD1 

isotypes whereas other lipids are isoform specific(Shamshiev et al. 2002). 

CD1 molecules are MHS class 1 like molecules that present lipid antigens to 
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Natural Killer T cells. The CD1 family consists of 5 glycosylated proteins, 

CD1a, CD1b, CD1c, CD1d and CD1e, which have limited polymorphism and 

are all expressed by professional antigen presenting cells(Porcelli 1995). 

Recently it has been shown that sulfatide reactive CD1d T cells represent a 

distinct population of T cells that infiltrate the CNS during experimental 

autoimmune encephalitis (EAE)(Jahng et al. 2004).  Disease suppression was 

possible in the animal model when the animals were treated at the same 

time as being challenged with MOG 35-55/CFA/PT for the induction of EAE. 

Suppression of disease was associated with a suppression of interferon-γ and 

interleukin-4 production by pathogenic myelin oligodendrocyte glycoprotein-

reactive T cells. Co injection with other self-glycolipids including GM1, 

sphingomyelin or β Galactoceramide had no effect on the course of EAE. 

The recently described microarrays have demonstrated the presence of 

antibodies in the CSF directed against a variety of lipid antigens including 

sulfatide(Kanter et al. 2006). 50 different lipids were sprayed onto PVDF 

membranes which were then incubated with CSF obtained from patients 

with MS (n=16) and patients with other neurological disease (n=11). The MS 

samples clustered showing strong IgG reactivity to lipids including sulfatide, 

a variety of oxidized lipids, phosphatydylethanolamine, sphingomyelin and 

lysophosphatidyl ethanolamine. In the SPMS group (n=8) antibodies were 

detected against GM1 and asialo GM1.The same group also reported that 

antibodies directed against myelin lipids (sulfatide, cerebroside, asialo GM1) 

appeared in mice after EAE had been induced. Administering a dose of 

sulfatide, as opposed to cerebroside, along with PLP (the antigen used to 

induce EAE) lead to a much worse clinical outcome. In addition 

administration of sulfatide-specific antibody worsened the disease severity 

in EAE. 
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Figure 1.5. Molecular structure of galactolipids 

A= Ceramide 

B= Galactocerebroside 

C= Sulfatide 

 

 

The deleterious effect of sulfatide on EAE has also been demonstrated in 

guinea pigs with increased demyelination evident(Moore et al. 1984) . 
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Furthermore the implantation of a hybridoma secreting sulfatide-specific 

antibody into the spinal cord of rats has been shown to cause 

demyelination(Rosenbluth et al. 2003) . It is not clear why the T cell study 

has conflicting results to Kanter at al. However not only do the times and 

doses of sulfatide used in both studies differ but also the animal models and 

myelin antigen used to induce EAE. 

This work is supported by an earlier study by Ilyas et al who investigated IgG 

antibodies directed against glycolipids of CSF in MS patients and 

controls(Ilyas et al. 2003). They reported that CSF antisulfatide antibodies 

were detectable in all subtypes of MS with a higher frequency of antibodies 

in SPMS (30%) compared to RRMS (15%) and PPMS (14%).  The purpose of such 

antisulfatide antibodies is yet to be determined however a sulfatide reactive 

monoclonal IgM antibody has been isolated from a patient with MS and 

shown to bind selectively to living oligodendrocytes in brain cell cultures of 

newborn rats(Rosenbluth et al. 2003). Staining of living cultures revealed 

that the monoclonal antibody bound to cells with typical oligodendrocyte 

morphology i.e. with round cell bodies, multiple arborized processes and 

large elaborated membrane sheets. The role of this sulfatide reactive 

antibody was not elucidated by this study. The lipid sulfatide, a product of 

oligodendrocytes, is first produced at a critical stage of oligodendrocyte 

differentiation. The authors postulate that these antibodies, capable of 

binding to the oligodendrocyte, interfere with oligodendrocyte 

differentiation thereby inhibiting repair. Equally these antibodies may be 

responsible for the prevention of recognition of exposed sulfatide by CD1 

restricted natural killer T cells. Thus by preventing the presentation of such 

lipid antigens to T cells they may act to inhibit the host immune response. 
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1.6. Summary: 
 

The influence of neighbouring glycolipids on antibody binding is an intriguing 

concept with potential repercussions in a host of neurological diseases. This 

concept may explain the inconsistencies observed between the anti-

ganglioside profile and clinical phenotype in GBS.  The axonal phenotypes 

AMAN and AMSAN are distinct clinical phenotypes yet both are associated 

with antibody directed against the same antigen, GM1, which is present in 

equal amounts in motor and sensory nerves. One postulation may be that in 

AMAN cases, the GM1 ganglioside in sensory nerves is “shielded” from 

antibody binding by adjacent “clustered” gangliosides.  

 

The clustering of ganglioside epitopes preventing the binding of IgG may 

also explain the finding of undamaged nerves with high GQ1b content in 

Miller Fisher Syndrome(Chiba et al. 1997). In addition the lack of a well 

defined antigenic target associated with the demyelinating phenotype, 

AIDP, is well described. One may hypothesize that the search for antigenic 

targets in AIDP has been unrewarding to date because of the lack of 

understanding of the importance of the neighbouring glycolipid 

environment.  

 

My hypothesis is that the creation of an array based platform will lead to 

the identification of additional antigenic targets in the peripheral 

neuropathies GBS and CIDP. The may include the identification of anti-

ganglioside complex antibodies which may help stratify patient groups 

according to clinical phenotype.  In addition I hypothesize that this 

technique may allow us to investigate further the specificity of CSF 

immunoglobulin in Multiple Sclerosis patients. 

 

To further understand the influence of the local environment on the binding 

capabilities of immunoglobulin it is necessary to design a new platform to 
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provide screening of a high number of antigens. Standard ELISA techniques 

are limited not only in the number of antigens that can be assayed but also 

by the amount of antigen and antibody required. An array based method 

would potentially allow a higher number of antigens to be investigated.  

 

 

 

The aims of this thesis were therefore to: 

 

1. Develop a “glycoarray” protocol to allow analysis of a large number of 

potential glycolipid antigens 

2. Compare the new protocol to standardized well established techniques 

such as ELISA 

3. Characterize anti-ganglioside complex antibodies in Guillain Barré 

Syndrome (GBS) 

4. Characterize anti-ganglioside complex antibodies in Chronic Inflammatory 

Demyelinating Polyneuropathy (CIDP) 

5. Characterize anti-myelin lipid complex antibodies in Multiple Sclerosis 

(MS) 

6. Attempt to further develop and miniaturize the glycoarray protocol to 

allow analysis of both protein and glycolipid antigens and complexes 
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Chapter 2. Methods 

 

2.1 ELISA 
 

After sonication for 3 minutes, 100ul of ganglioside (all lipids used in 

experiments are detailed in Table 2.1) in methanol solution at a 

concentration of 2ug/ml was placed onto 96-well Immulon 2 HB microtitre 

plates (Dynatech, Billinghurst, UK). Methanol was then evaporated leaving a 

final concentration of 200ng per individual well. After evaporation plates 

were placed a 4°C for a minimum of one hour. Non-specific binding to the 

plates was blocked by an hour long incubation at 4°C with 150ul per well of 

2% fatty acid free bovine serum albumin (FAFBSA) in PBS (Europa 

Bioproducts Ltd, UK). BSA was then discarded and 100ul per well of diluted 

serum or monoclonal antibody was added. Serum was diluted in 0.1% 

FAFBSA. Plates were then incubated at 4°C. After 3 hours plates were then 

washed 6 times with PBS. 100ul of horseradish peroxidase (HRP) conjugated 

polyclonal rabbit anti-human IgG (DakoCytomation, Denmark) was then 

added (diluted 1:3000 in 0.1% FAFBSA) to each well. After incubation for 1 

hour at 4°C plates were washed as before. Plates were then developed for 

15 minutes in the dark at room temperature with 100ul per well of substrate 

solution (-an O-phenylenediamine tablet dissolved a solution of 14ml 0.1M 

citric acid, 16ml 0.2M Na2HPO4, 30ml distilled water, 20ul H2O2). The 

reaction was then stopped with 50ul/well of 4M sulphuric acid. The optical 

density at 410nm was then determined. The background reading from a 

methanol coated well was subtracted from the ganglioside coated well to 

give an accurate reading. Coefficients of variation for this method have 

been reported as 11.2% for IgM and 3.8% for IgG glycolipid antibodies(Kuijf 

et al. 2005). 

 



  Chapter 2    

 62 

 

Table 2.1. Lipids used in ELISA and blot experiments 
Lipid Company Source of lipid 
GA1 Sigma-Aldrich Bovine Brain 
GM1  Sigma-Aldrich Bovine Brain 
GM2  Sigma-Aldrich Bovine Brain 
GM3 Sigma-Aldrich Canine blood 
GM4 Calbiochem Human brain 
GD2 Calbiochem Human brain 
GD3 Matreya Bovine buttermilk 
GD1a Sigma-Aldrich Bovine Brain 
GD1b Sigma-Aldrich Bovine Brain 
GT1a Accurate Chemical &Scientific 

Corporation 
Human brain 

GT1b Matreya Bovine 
GQ1b Accurate Chemical &Scientific 

Corporation 
Bovine brain 

Ceramide           (Cer) Sigma-Aldrich Bovine Brain 
Cardiolipin         (Cardio) Sigma-Aldrich Bovine Heart 
Sulfatide           (Sulf) Sigma-Aldrich Bovine Brain 
Galactocerebroside     (GalC) Sigma-Aldrich Bovine Brain 
L alphaphosphatidylcholine  (PC) Avanti Polar Lipids Brain, porcine 
L alphaphosphatidylserine           (PS) Avanti Polar Lipids  Brain, porcine 
L alphaphosphatidylethanolamine           
(PE*) 

Avanti Polar Lipids  Brain, porcine 

L alpha Phosphatidylinositol-4-
phosphate            (PIP (4)) 

Avanti Polar Lipids  Brain, porcine 

Digalactosyl diglyceride       (DGG) Sigma-Aldrich wholewheat 
Galactosyl diglyceride          (MGG) Sigma-Aldrich wholewheat 
PC /Plasmalogen                  (PL) Avanti Polar Lipids  Brain, porcine 
Sphingosine                           (SS) Sigma-Aldrich Bovine brain 
Sphingomyelin                      (SM) Sigma-Aldrich Bovine Brain 
Cholesterol                            (Chol) Sigma-Aldrich Sheep’s wool 
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2.2. Development of glycoarray methodology 
 

2.2.1 The ECL method 
 
Initially we employed the method described by Kanter et al(Kanter et al. 

2006). Importantly this method investigated CSF and monoclonal antibody 

binding only and not serum. 0.2um pore size polyvinylidene difluoride 

(PVDF) (Invitrogen, UK) membranes were cut (into equal sizes) and affixed 

using double sided Scotch tape (3M, USA) to plain glass microscope slides 

(VWR International, UK). A hydrophobic marker was then used to outline the 

border of the membrane.  Lipid antigens of interest were dissolved from 

stock solutions to working solutions in methanol of 0.1mg/mL. Combinations 

of lipids were created in 50:50 mixuture and stored in sealed rubber topped 

vials (Chromacol, UK).  All lipids were sonicated for 3 minutes prior to 

application to the slides (Ultrawave Ltd, UK). 

The experimental protocol echoes that of the ganglioside ELISA. The 

hydrophobic ceramide tail anchors the glycolipid to the hydrophobic 

membrane exposing the carbohydrate moiety to potential antibody binding. 

The experimental outline is summarised in Figure 2.1. 

Using an ATS 4 machine (Camag), lipids were sprayed onto the membrane 

covered slides. The lipids were sprayed onto predetermined coordinates 

using the ATS 4 Freemode software.  Slides were then left to dry for 1 hour.  

Slides were then placed on trays and probed with 2% fatty acid free bovine 

serum albumin (FAF BSA) in PBS for overnight at 4°C, to eliminate non-

specific binding to the slides. BSA was then discarded and 500ul per slide of 

diluted serum or monoclonal antibody was added. Primary  (serum or 

monoclonal) antibody was diluted in 0.1% FAF BSA/PBS. Slides were 

incubated at 4°C (on shaker at 4°C) for 2 hours. After 1 hour slides were 

then washed. This entailed incubating the slides in a jar/rack with PBS on a 

shaker (75rpm) for 2 hours at 4°C. The solution was refreshed every 30 

minutes. Secondary antibody (polyclonal rabbit anti-human IgG 

(DakoCytomation, Denmark)) was then diluted in 0.1% FAF BSA/PBS and 



  Chapter 2    

 64 

slides were incubated at 4°C (on shaker at 45rpm) for 2 hours. After 

incubation with the secondary antibody, a further series of washes was 

undertaken. After a final wash in distilled H20, ECL solution (Amersham ECL 

Plus, GE Healthcare, UK) was applied to each slide for 5 minutes. 

Thereafter, slides were placed in a cassette (Kodak,UK). Trimmed 

transparency paper was placed overlying the slides in the cassette. Film was 

then placed over the slides in the dark room and exposures of varying 

lengths of time were obtained. Films were digitalized using a flatbed 

scanner (Epson DX 6000). TIFFs were then quantified using appropriate 

analytical software (Total Lab TL100, UK) which measures the pixel intensity 

of individual spots. 
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Figure 2.1. Experimental outline of combinatorial array 

Lipid antigen (GD1b illustrated here) adheres to hydrophobic membrane 

exposing carbohydrate moiety. Primary antibody e.g. human GBS serum 

binds to lipid. Secondary anti- human IgG (which is linked to HRP) binds to 

the primary antibody. After application of ECL substrate a chemiluminescent 

reaction occurs which is then rendered on radiographic film. 
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2.2.2 Optimisation of the ECL method 

2.2.2.1 Blocking experiments 
Upon probing the membranes with diluted human serum it became evident 

that there were a proportion of samples with a high level of non specific 

binding to the PVDF membrane. A series of experiments investigating 

several different blocking methods was undertaken (Figure 2.2). All samples 

were assayed using 0.01% diluted human serum and 1/5000 anti-Human HRP-

IgG.  FAF BSA appeared to be of equivalent blocking to regular BSA (Sigma, 

UK) (data not shown). However other methods including commercial derived 

methods (e.g. Superblock (Thermo Scientific, Rockford, IL)) did not appear 

to be of superior efficacy in reducing the level of background binding to the 

PVDF membrane. 
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Figure 2.2. Blocking experiment 

Shown are blots obtained for one serum, 070500, (a patient with GBS and 

known anti-GM1 and GD1b antibodies when tested using ELISA) using five 

different blocking methods. The lipids were sprayed in escalating amounts 

of 10ng, 30ng and 100ng. 

A. Incubation of 1 hour in 2% FAF BSA 

B. Incubation of 16 hours in 2% FAF BSA 

C. Incubation of 1 hour in 5% FAF BSA  

D. Incubated of hour in 2% non fat milk (in PBS) (Tesco, UK) 

E. Incubated of 15 minutes in Superblock  
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2.2.2.2. Detergent 
We next investigated the addition of detergent to the wash cycles to see if 

this would reduce non specific binding to the PVDF membrane. Tween 20 

(Roche, Germany) is a polysorbate surfactant which is relatively non-toxic 

and used commonly as a detergent in laboratory assays. We used Tween at 

concentrations of 0.001%, 0.01% and 0.05% (dissolved in PBS) as the primary 

wash solution in successive experiments and compared to using plain PBS as 

the primary wash solution. 

Tween at a concentration of 0.001% was no different from PBS (data not 

shown) at reducing background binding. However even at a concentration of 

0.01% there was an observed reduction in binding of human antibody to lipid 

antigen (Figure 2.3).  Also the addition of detergent to the wash cycle 

reduced the adherence of the PVDF membrane to the glass slide and 

membranes commonly floated off the slides. Therefore the addition of 

detergent to wash cycles was abandoned.  
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Figure 2.3. The addition of detergent to experimental protocol (Tween 

0.01%). 

Blots and quantitative data obtained from three human sera with different 

anti glycolipid antibody profiles. Arbitrary units of intensity were measured 

using Image Quant Total Lab100 software and were averaged for each of the 

concentrations of lipids spotted; 10ng, 30ng and 100ng. 

A. Anti sulfatide antibody (i) without Tween (ii) with Tween  

B  Anti-GM1 antibody (i) without Tween (ii) with Tween 

C  Anti GD1b antibody (i) without Tween (ii) with Tween 

 



  Chapter 2    

 70 

2.2.2.3 Preabsorption with PVDF 
 

In an effort to try to reduce non specific background binding diluted serum 

samples, noted to have high background on previous experiments, were 

preincubated with blank PVDF membranes (Figure 2.4). All sera, with 

reactivity to sulfatide, were diluted to 0.01% in 0.01% FAF BSA. Each was 

then incubated with blank unused PVDF membrane in an eppendorf tube for 

1 hour prior to the initial “blocking step”.  Unfortunately this did not have a 

consistent diminutive effect on the level on background binding (Figure 2.4) 
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Figure 2.4. Preabsorption with PVDF membrane 

Three human sera with known anti-sulfatide antibodies were assayed in 

duplication, with and without an initial preincubation with blank unused 

PVDF membrane. 

A. Serum 43046 

B. Serum 43046 assayed with initial preabsorption step 

C. Serum 50635  

D. Serum 50635 assayed with initial preabsorption step 

E. Serum 64841 

F. Serum 64841 assayed with initial preabsorption step 
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2.2.2.4 Dilution of antibody 
 

Assays were then carried out using decreasing concentrations of anti-Human 

HRP-IgG. Figure 2.5 illustrates data obtained from investigation of one 

serum, 070311, with known anti-GM1 IgG with titre on ELISA of > 12,500. 

Arbitrary units of intensity were measured using Image Quant Total Lab100 

software and were averaged for each of the concentrations of lipids 

spotted; 10ng, 30ng and 100ng. The signal intensity appears saturated 

across all secondary antibody dilutions for spots obtained with 30ng and 

100ng. However for 10ng lipid spots a curve results with anti-GM1 reactivity 

lost at lower concentrations of anti-Human HRP-IgG (see Figure 2.5. (C)(i) & 

(D)(i)). This was observed for serum diluted at 0.01% and 0.001% 

respectively. 

10ng spot sizes were chosen as these were closest to the final lipid 

concentration used in ELISA.  According to the ELISA protocol 200ng of lipid 

is placed into an individual well, the area of which is estimated to be 

28.26mm3 (π.r2 = 3.14 x 9). This gives a final concentration of 

7.07ng/mm3.In order to estimate the area of the “spot” of lipid sprayed 

10ng of diluted methylene blue was sprayed onto A4 paper. The image was 

scanned and the dimensions were obtained using Image J with resultant 

dimensions of 0.31 width and 0.9 length giving an area of 0.279mm3. This 

gives a final lipid concentration of 35ng/mm3. 

As a result of these experiments the serum concentration chosen was 0.01% 

(good level of binding observed across all antibody dilutions) and the anti 

Human HRP-IgG dilution of 1/25000 was chosen as this concentration was 

associated with near maximal binding to the lipid antigen. 
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Figure 2.5 Dilution of secondary antibody 

All data here is obtained from one serum, 070311, with known anti-GM1 IgG with titre on 

ELISA at > 12,500. GM1 is the only lipid assayed in this experiment.  

A. 070311 diluted to 0.01%.   

B. 070311 diluted to 0.001%.  

C. (i) Quantification of 10ng spots in 0.01% serum  

(ii)   Quantification of 30ng spots in 0.01% serum  

(iii)  Quantification of 100ng spots in 0.01% serum  

D. (i)  Quantification of 10ng spots in 0.001% serum 

(ii)   Quantification of 30ng spots in 0.001% serum 

(iii)  Quantification of 100ng spots in 0.001% serum 
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2.2.2.5 Quantitation of anti-lipid antibody 
 

If autoradiographs are to be analysed by densitometry then it is essential to 

work in the range where the film gives a linear response to amount of 

radioactivity. This can be established by repeating blots at different 

amounts of exposures. Figure 2.6 illustrates data obtained using a serum 

with known high titre (> 12500) against the lipid GM1. Here the serum has 

been probed on membranes with 10ng, 30ng and 100ng GM1 lipid spots. For 

the 10ng lipid spot there is a linear relationship between spot intensity 

(measured in arbitrary units) and duration of film exposure. 

 

To ascertain the relationship for low titre anti-lipid antibodies a 

combinatorial array was used employing 45 potential target antigens per 

slide. Lipid combinations were premixed (w:w) and sonicated prior to 

printing. This template was designed by Dr.Simon Rinaldi. The serum 070536 

was probed at 1 in 100 dilution with HRP IgG diluted at 1:25000 and 

successive exposures to film were obtained. The amount of lipid spotted in 

isolation and in complexes used was 10ng only. This serum is known to have 

high titre anti-GM1 and –GD1b IgG. Near maximum signal is observed at 

exposure time of 1 minute. For lower titre anti-lipid antibodies such as anti-

GalC and anti-GalC/Chol complex antibodies a relationship between spot 

intensity and duration of film exposure is observed.  
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Figure 2.6. The effect of length of exposure of membrane to film on anti-

lipid IgG intensity (measured in Arbitrary Units).   All data here is obtained from one 

serum, 070311, with known anti-GM1 IgG with titre on ELISA at > 12,500.   

A. Illustrative blots of serum 070311 diluted at 1:100 and assayed with anti-human HRP IgG 

1:25000. 10ng, 30ng and 100ng of GM1 have been spotted in duplicate. The films were 

analyzed at exposures of 30 seconds, 1 minute and 5 minutes. 

B. Quantification of anti-GM1 antibody for increasing amounts of lipid antigen and at 

exposures of 30 seconds, 1 minute and 5 minutes. 
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Figure 2.7. The effect of exposure of membrane to film.  

A.  Illustrative blot obtained after 30s film exposure to serum 070536. Row 

and column headings reveal the complex at each location.  

B. Illustrative blot obtained after 5 minutes film exposure to serum 070536  

C. Quantification of IgG to single lipid and complexes of lipids at increasing 

exposures to film 
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2.2.2.5. Use of IgG as intrinsic positive control 
 

Protein assays commonly use a universal protein such as actin to test as an 

inherent “positive control”. These inherent quality control measures can 

also be set as a maximum value against which all other blot intensities are 

expressed as a function/fraction. We tried to employ this in our array 

methodology using human derived IgG (Sigma, UK). Alongside columns of 

lipid antigens we sprayed equivalent concentrations of human IgG (Figure 

2.8. (A) & (B)). We then probed with anti-human IgG-HRP as before. This 

then led to a splaying out of signal with a higher background signal. When 

the IgG was spotted (using a separate “contact” needle which makes direct 

contact with the membrane rather than spraying in a thin band) the 

resultant signal reduced in intensity very quickly (Figure 2.8. (C), (E)). 
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Figure 2.8. Protein spots 

 

A. Illustrative blot obtained with human serum 070906 with known IgG to 

GM1 & sulfatide. 

B. IgG sprayed onto membrane and probed with anti-Human HRP-IgG only 

C. IgG spotted onto membrane and probed with anti-Human HRP-IgG only 

D. GM1 sprayed onto membrane and probed with anti-GM1 antibody and 

anti-Human HRP-IgG. 

E & F. Quantification of protein and lipid spots (average of two vertical 

spots) in C & D respectively 
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2.2.2.6 Investigation of membrane 
 

We also ascertained that nitrocellulose membrane (Invitrogen, UK) did not 

serve as well as the PVDF membranes. Practically the nitrocellulose 

membranes were very friable and did not adhere well to the microscope 

slide. In addition the lipids appeared to adhere poorly to the nitrocellulose 

membrane. An example is shown in Figure 2.9. 
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Figure 2.9. PVDF vs. nitrocellulose membrane 

A. Illustrative combinatorial blot of serum 070500 on lipid array printed on 

PVDF membrane. As before row and column headings reveal the complex at 

each location. 

B. Illustrative blot of serum 070500 on lipid array printed on nitrocellulose 

membrane 
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2.2.2.7. Sequence of printing lipid 
 

Separate experiments were carried out to ascertain if there was a 

difference in binding patterns between lipid pairs which were spotted 

separately onto the membrane (i.e. each single lipid was sprayed separately 

onto the PVDF membrane forming a complex only when the second lipid is 

sprayed, “overprinting”) and those which were premixed and sonicated in 

vials prior to printing. 

It became apparent that whilst new anti-complex reactivity was still 

observed however the converse was not true. Those lipid partnerships which 

were inhibitory to IgG binding no longer had an attenuating effect on 

antibody binding. An illustrative example is depicted in Figure 2.10. 
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Figure 2.10. Comparison of printing methods: premixed Vs 

“overprinting” 

A. Illustrative blot from GBS patient 223 using array created with premixed 

lipids 

B. Illustrative blot from GBS patient 223 using array created using 

“overprinting” technique 

C. Quantification of binding to GM1 and GM1 complexes using both 

techniques 
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2.2.2.8. Storage of slides 
 

To ascertain how stable the printed membranes were serum samples were 

assayed on membranes printed in the same “print run” on day 1. The assay 

(using the same serum, 070500) was repeated along 5 separate time points 

after the slides were printed; 1 hour, 1 day, 1 week, 2 weeks and 3  months. 

This particular serum (070500) had demonstrated high titre binding to GM1 

(>12500) on ELISA.  Between the time points of 1 and 2 weeks there was a 

considerable reduction in signal intensity observed for IgG directed against 

single and complex lipids (Figure 2.11). In order to exclude this as a 

variability factor all slides were thereafter assayed 1 hour after the 

membranes were printed with lipid. 
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Figure 2.11. Effect of storage of printed lipid slides 

A & B illustrative blots obtained with serum 070500 when slides used after 1 

hour and after a period of 3 months respectively. 

C (i)-(vi) Quantification of binding to single lipids and complexes of lipids 

across 5 different time points. 
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2.2.3 Detection of anti glycolipid complex antibodies 
 

 

In parallel with these preliminary studies on the experimental protocol we 

investigated if the method would allow the detection of antibodies directed 

against a pair or complex of lipid antigens.  Arrays of 10 lipids and all their 

1:1 combinations were spotted in duplicate on the PVDF membranes (Figure 

2.12). The lipids probed included sulfatide (Sulf), galactocerebroside (GalC), 

GM1, GM2, GD3, GD1a, GD1b, GT1b and GQ1b. Membranes were then 

probed, as before, using anti-Human HRP-IgG at a concentration of 1/25000. 

Our array method appeared to be as sensitive as the ELISA method in 

detecting complex antibodies. Further studies involving larger patient 

cohorts would be undertaken to investigate this further. 
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Figure 2.12. Anti complex antibodies detected on ELISA and array 

(A) & (B) illustrative blots obtained from serum of GBS patient at 1/100 and and 1/12500 

dilutions respectively. Row and column headings reveal the complex at each location. “Xs” 

represent the negative controls (methanol) which act as a line of symmetry for duplicate 

spots within the same membrane. 

C. Quantification of binding using array method to single lipids and lipid complexes 

D. Quantification of binding using ELISA to single lipids and lipid complexes 
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2.2.4 Inter and intra-assay variation 
 

As a result of protocol work to date the experimental protocol was altered 

as follows: 

Membranes were cut into equal sizes with a scalpel (2.8cm by 2.5 cm) and 

adhered to glass microscope slides (VWR International, UK). Scotch tape 

proved to be poorly adherent to the glass slides therefore we used UHU glue 

(Ryman, UK) as an adhesive agent. A hydrophobic marker was then used to 

outline the membrane. The membranes were blocked for 1 hour in 2% FAF 

BSA/PBS (Europa Bioproducts Ltd, UK).  Slides were immersed in glass 

Copeland jars for blocking and washing steps. BSA was then discarded and 

slides were briefly immersed in PBS. Thereafter 500ul of diluted serum 

(1:100 in 0.1% FAF BSA/PBS) was then added per slide. Each slide was 

incubated for 1 hour at 4˚C. Slides were then washed. This entailed 

incubating the slides at room temperature in PBS on a shaker (75rpm) for 30 

minutes. The solution was refreshed every 5 minutes. Secondary antibody 

(polyclonal rabbit anti-human IgG, Dakocytomation, Denmark) was then 

diluted to 1:25000 in 0.1% FAF BSA/PBS and slides were incubated for 1 hour 

at 4˚C. After this incubation a further series of washes was undertaken. 

After a final wash in distilled H20, ECL solution (Amersham ECL Plus, GE 

Healthcare, UK) was applied to each slide for 5 minutes. Slides were then 

placed in a cassette with trimmed transparency paper overlying. Film was 

then placed over this transparency paper in the dark room and exposures 

were taken at 1 minute. Films were digitalized using a flatbed scanner 

(Epson DX 6000). TIFFs were then quantified using appropriate analytical 

software (Image Quant Total Lab100, UK) which measures the pixel intensity 

of individual spots. The methanol spots on each individual slide were 

selected as negative controls. The Total Lab software applies this average as 

the background intensity.  
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Inter-assay variability was then determined by assaying 5 different 

membranes with the human serum, 070536, on different occasions on a lipid 

template of sulfatide (sulf), galactocerebroside (GalC), GM1, LM1, GD3, 

GD1a, GD1b, GT1a, GT1b and GQ1b. This serum was known to have anti-

GM1 and –GD1b antibody on ELISA with titres > 1/12500. Two example 

processed blots are illustrated in Figure 2.13 (A). Using this method the 

coefficients of variation (CVs) for antibody directed against single lipids 

were measured at 9.92% (GM1), 6.67% GD1b and 6.65% (GT1a). The observed 

CVs were similar for antibody directed against complexes of lipids e.g. 

7.73% GT1a/GD1b.  

To determine the intra-assay coefficient of variance 4 separately prepared 

membranes were incubated with the human serum, 070500 (Figure 2.13 

(B)). The lipid template employed included sulfatide (sulf), 

galactocerebroside (GalC), cholesterol, sphingomyelin, GM4, GA1, GM1, 

GD1a and GD1b. This serum was known to have anti-GM1 and –GD1b 

antibody on ELISA with titres > 1/12500. The coefficients of variation were 

measured at 8.91% and 7.74% for GM1 and GD1b respectively.  
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Figure 2.13. Inter- and intra-assay variation 

A. Inter-assay variation; 2 examples of illustrative blots of serum 070536 

B. Intra-assay variation; illustrative blots of serum 070500 
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2.2.5. Development of fluorescent protocol 
 

A fluorescent based technique could have advantages such increasing the 

number of slides “assayable” in one experiment and also potentially 

broadening the range of intensity. A chemifluorescent protocol is analogous 

to chemiluminescence in utilizing an enzyme to cleave a substrate but 

generates a fluorescent product rather than light in the process.Initially we 

investigated this technique using the anti-GM1 mouse monoclonal antibody, 

DG2 with various fluorescent anti mouse IgG antibodies (Figure 2.14). 

Sulfatide, galactocerebroside and GM1 were printed onto PVDF covered 

slides as before. Slides were blocked and probed with primary antibody as 

before (10ug/ml in case of mouse monoclonal) and several fluorescent anti 

IgG were investigated. The slides were scanned using a Typhoon 9400 

scanner (GE Healthcare, UK) with spectra set at 633 for absorption and 670 

for emission.  DG2 appeared to bind to all lipids using Cy5 (origin) and TRITC 

(origin) secondary IgG. This is not unexpected given what we know about 

the binding capabilities of this monoclonal antibody(Townson et al. 2007). 

Unsurprisingly FITC (which absorbs at a spectra of 494 and emits at a 

spectra of 521) did not produce any useful images.  

We then next investigated human serum 074154 with known high anti 

sulfatide titre on ELISA (>12500) using AF 647 labelled Goat anti Human IgG 

(Invitrogen). AF 647’s spectra virtually matches that of CY5 with an 

absorptive spectra of 650 and emission spectra of 668. This serum appears 

to bind with some specificity to the sulfatide however it was noted that 

there was some non specific binding to the methanol only spots (Figure 2.14 

(D)). 

We next investigated the role of several different blocking agents in 

reducing this binding to the methanol only spots. Even when the membranes 

were not incubated with both primary and secondary antibody there was 

reactivity seen for individual lipid spots indicating an inherent fluorescent 

quality to the lipids (Figure 2.15). 
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Figure 2.14 Initial development of fluorescent based technique 

Images were obtained using Typhoon scanner (Absorption 633, Emission 670, 

Voltage 600 and resolution of 200) 

A. Incubation with DG2 antibody and CY5 (1/300) labelled anti mouse IgG 

B. Incubation with DG2 antibody and TRITC labelled anti mouse IgG 

C. Incubation with DG2 antibody and FITC labelled anti mouse IgG 

D. Incubation with serum 074154 (with known IgG to sulfatide on ELISA) and 

AF 647 labelled anti Human IgG 
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Figure 2.15. Incubation of slides with blocking agents only 

A. FAF BSA 

B. Regular BSA (Sigma, UK) 

C. 2% non-fat dried milk 

D. Superblock buffer 
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I next tried a streptavidin based technique in an effort to try and reduce the 

level of fluorescence. Streptavidin is a 52,800 Dalton tetrameric protein 

buffered from the bacterium streptomyces avidinii. It has a very high 

affinity for biotin. I preincubated biotin with the primary antibody (diluted 

human serum 1/100). Initial results were very promising with no background 

or methanol binding however after successive experimental runs binding to 

the methanol only spots was observed (Figure 2.16). 

 

I then incubated slides with blocking agents only (again missing out the 

incubation with primary antibody and secondary antibody) and 

demonstrated that there was an inherent fluorescent quality to the lipids 

(Figure 2.17). Because of this the fluorescent protocol was abandoned. 
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Figure 2.16. Biotin-steptavidin protocol 

A. Experimental protocol for blots C & E 

B. Experimental protocol for blots D & F 

C. Serum 070500 

D. Serum 070500 

E. Serum 072289 

F. Serum 072289 
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Figure 2.17. Demonstration of fluorescent nature of PVDF membrane 

A. Slide scanned after incubation with FAF BSA 

B. Slide scanned after incubation with FAF BSA- new source of methanol 

used when printing this slide 

C. Slide scanned after incubation with Biotin only 

D. Slide scanned after incubation with Streptavidin only 

E. Slide scanned after incubation with Casein 

F. Slide scanned after incubation with Superblock 
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2.3. Discussion  
Due to the inherent fluorescent nature of the PVDF membranes I abandoned 

the fluorescent protocol and decided to use the HRP based technique for 

our series of investigations. I used a protocol using serum diluted at 1:100 

with anti-human HRP IgG diluted at 1:25000. Successive film exposures were 

obtained but data presented in subsequent chapters is primarily from film 

exposures taken at 1 minute. I chose this film exposure time as it is easily 

reproducible and associated with near maximum signal of high-titre (by 

ELISA) anti-ganglioside antibody. Longer length of film exposures were 

associated with much higher background readings and “bleeding out” of 

signal from high intensity spots to adjacent negative spots. 

The next aim was to investigate the profile of anti-glycolipid complex 

antibodies in several different patient populations including GBS, CIDP and 

MS. In addition I also wanted to compare the new method to the long 

established ELISA technique in the ability to detect anti-lipid antibody. 
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Chapter 3. Guillain-Barré sydrome (GBS) 
 

3.1. Introduction 
 

As outlined in Chapter 1 gangliosides are highly enriched in cell surface 

membranes in both the central and peripheral nervous systems and have 

long been considered to be the likely antigenic target in the acute 

polyradiculoneuropathy Guillain-Barré syndrome (GBS). The observation that 

cis interactions of neighbouring gangliosides could influence the binding 

capabilities of anti-glycolipid antibodies was reported initially by Kaida et al 

using ELISA and TLC techniques(Kaida et al. 2004).  I have employed the 

combinatorial lipid array technique to investigate further the anti-glycolipid 

and anti-glycolipid complex antibody specificities in sera from a large cohort 

of GBS patients.  I collaborated with colleagues in Rotterdam who had 

collected a cohort of GBS patients (n=180) and a smaller cohort of healthy 

controls (n=20). Our Dutch colleagues had relevant clinical and paraclinical 

information (e.g. neurophysiological data such as GBS subtype; AIDP, AMAN 

etc) was available in a SPSS database. 

3.2. Methods 
 

3.2.1. ELISA 
Our Dutch colleagues had investigated the anti-ganglioside antibody (AGA) 

specificity (via ELISA) of a large cohort of GBS patients. They investigated 

IgG serum responses to the gangliosides GM1, GD1a and GQ1b. Titres were 

available for GM1 AGA but were not for GD1a or GQ1b. ODs were 

unavailable for all ganglioside AGAs. For ELISA experiments carried out in 

Glasgow the specificities of sera for gangliosides were assayed by the 

ganglioside ELISA as described in section 2.2.3. A positive binding result was 

considered to give an OD490nm of 0.1 or above.  
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3.2.2. Combinatorial array 
 

Using the Camag Automatic TLC Sampler 4, I assembled an array of 

individual glycolipids and their 1:1 combinations (complexes) spotted onto 

polyvinyl-difluoride (PVDF) membranes affixed to microscope slides. I 

investigated the serum IgG response to the lipids sulfatide (Sulf), 

galactocerebroside (GalC), GM1, LM1, GD3, GD1a, GD1b, GT1a, GT1b, GQ1b 

and all their possible 1:1 complexes thus comprising 55 target antigens in 

total. Complexes were premixed and sonicated for 3 minutes prior to 

printing. Details of where lipids were purchased are outlined in Chapter 2, 

Table 2.1. I probed these prepared slides with 180 GBS serum samples and 

20 serum samples from healthy controls. Each serum was assayed at a 

concentration of 1:100 unless otherwise stated.  Antibody binding to specific 

lipids was then detected using standard chemiluminescence and 

autoradiography using the protocol as outlined in Chapter 2; 2.2.4. Films 

were digitalized using a flatbed scanner (Epson DX 6000). TIFFs were then 

quantified using appropriate analytical software (Image Quant Total Lab100, 

UK) which measures the pixel intensity of individual spots. The methanol 

spots on each individual slide were selected as negative controls. The Total 

Lab software applies this average as the background intensity.  

 

3.2.3. Thin Layer Chromatography (TLC) 
 

Aluminium TLC plates were sliced in half (smooth edges retained) using a 

scalpel. 25ug of individual gangliosides (1mg/ml) were spotted using the 

Camag Automatic TLC Sampler 4 onto high performance TLC plates (origin). 

The samples were then allowed to dry for 1 hour. TLC running buffer was 

then prepared using glass measuring cylinders using chloroform, methanol 
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and 0.2% calcium chloride (50:45:10; v/v/v). 2 pieces of blotting paper were 

cut; one piece measuring half the height of the tank and the other 

measuring the full height of the tank. These were placed at separate ends 

of the tank. After placing the lid securely on the tank this was then left to 

equilibrate for 5 minutes. The TLC plate was then placed in the tank 

between the two pieces of blotting paper and allowed to run. After 30 

minutes the TLC plate was then removed and allowed to dry before cutting 

into strips. At this stage strips were either stained with resorcinol stain or 

probed with serum. Resorcinol stain was prepared and sprayed lightly onto 

the individual strips in the fume hood. This stain was prepared using 2.5mls 

of 2% resorcinol, 62.5ml of CuSO4, 2.437ml dH20 and 20ml concentrated HCL 

(added last). Gangliosides were then visualized by the application of heat to 

individual strips. 

For staining with serum or monoclonal antibody strips were not sprayed with 

resorcinol. Firstly they were coated with PIBM (polyisobutylmethacrylate) 

(Sigma Aldrich, UK) in n-hexane as a fixative for 1 minute. PIBM is dissolved 

in chloroform to 2.5% before further dilution to 0.4% in n-hexane. After air 

drying for 30 minutes the strips were then blocked for 1 hour in 2% FAF 

BSA/PBS (origin). BSA was then discarded and strips were briefly immersed 

in PBS. Thereafter 5ml of diluted serum (1:1000 in 0.1% FAF BSA/PBS) or 

monoclonal antibody (10ug/ml in 0.1% FAF BSA/PBS) was then added per 

strip. Each strip was incubated for 1 hour at 4˚C. Strips were then washed. 

This entailed incubating the strips at room temperature in PBS on a shaker 

(75rpm) for 30 minutes. The solution was refreshed every 5 minutes. 

Secondary antibody (HRP conjugated goat anti-mouse IgG used in 

monoclonal experiments and HRP conjugated anti-human IgG used in human 

sera experiments) (Dakocytomation) was then diluted to 1:3000 in 0.1% FAF 

BSA/PBS and strips were incubated for 1 hour at 4˚C. After this incubation a 

further series of washes was undertaken. After a final wash in distilled H20, 

ECL solution (Amersham ECL Plus, GE Healthcare, UK) was applied to each 

strip for 5 minutes. Strips were then placed in a cassette with trimmed 

transparency paper overlying. Film was then placed over this transparency 
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paper in the dark room and exposures were taken at 1 minute. Films were 

digitalized using a flatbed scanner (Epson DX 6000). 

3.2.4. Patients 
 

Patient characteristics of this cohort are outlined in Table 3.1. Certain 

clinical (e.g.distribution and severity of weakness) and paraclinical details 

(EMG classification, Table 3.2.) were available for this cohort in a SPSS 

database provided by our Dutch colleagues (van Koningsveld et al. 2004). No 

demographic information was available for the sera obtained from healthy 

controls. 

 

Table 3.1. Characteristics of GBS patients 

 
 GBS cohort 

N 180 

Sex  

     Male 103 

     Female 77 

Age (y)  

     Median 57 

     Range 40-68 

 

Age and sex for the patient subgroups. Data are presented as median (IQR-interquartile 

range).  

Table 3.2. EMG classification of GBS cohort 
 

EMG Classification  Frequency 

AIDP 56 

AMAN 4 

Equivocal 85 

Unexcitable  4 

Unavailable 31 
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3.2.5 Statistical analysis 
 

ANOVA analyses were used to compare anti-glycolipid levels between more 

than three groups. The Mann-Whitney test was used to compare anti-

glycolipid antibody levels between two groups. Paired t tests were used to 

detect if anti-complex antibodies were of higher intensity than antibodies to 

the contributing single lipid. Differences in proportions were tested for 

significance by chi-squared test and Fisher’s exact test where appropriate. 

These analyses were performed with PRISM4 (GraphPad software, USA).Raw 

data was logarithmically transformed (log 2) and heatmaps, hierarchical 

clustering  and further ANOVA analyses were performed by Dr Gabriela 

Kalna of the University of Glasgow using Partek Geometrics Suite (Partek 

Incorporated, USA). 

3.3. Results 
 

3.3.1 ELISA 
 

39/180 (21.66%) of the GBS cohort were observed by our Dutch colleagues to 

have AGA (illustrated in Figure 3.1 (A)). Most patients demonstrated a 

monospecific response to one lipid only (n=29). 10 patients displayed 

polyreactivity to gangliosides with 5 sera displaying IgG reactivity to GM1 & 

GD1a, 4 sera displaying IgG reactivity to GD1a & GQ1b and 1 serum 

displaying IgG reactivity to GM1 & GQ1b (Figure 3.1. (B)). 

3.3.2. ELISA vs. combinatorial array 
 

I then compared our combinatorial array method to ELISA. Inter- and intra- 

assay variation did not differ between the two methods (see chapter 2, 

section 2.2.4). For each ELISA and combinatorial blot experiment performed 

in Glasgow, a serum with known IgG reactivities to the gangliosides GM1, 
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GD1b and GT1a was used as a positive control in each batch of experiments 

performed.  

Our Dutch colleagues reported that 24/180 patients from the GBS cohort 

were positive for IgG GM1 antibody. The correlation between the GM1 ELISA 

titres and the average spot intensity for GM1 obtained with the blot 

method, whilst positive, was modest (Figure 3.2. (A), rs= 0.4304, p<0.0001). 

Figure 3.2. displays correlation and Bland-Altman graphs for ELISA and array 

data observed. Correlation quantifies how well X and Y variables vary 

together. As the data is not normally distributed Spearman correlation was 

employed. Two-tail p values were all significant demonstrating a positive 

correlation between the two methods.  

However rs measures the strength of a relation between two variables, not 

the agreement between them.  Bland-Altman plots are a more informative 

way at comparing two assay methods(Bland et al. 1986). The graph is 

constructed so the difference between the two measurements (Y axis) is 

plotted against the average of the two measurements (X). As our two 

methods have different units of measurement, optical density and arbitrary 

units of intensity, the raw data was normalised. The highest value observed 

in each respective dataset was set as 100% with all other values expressed 

as a percentage. Whilst this is not ideal this method does give us a better 

feel of the agreement between the two methods. The observed spread of 

data on either side of the mean difference would appear to agree with the 

modest correlation between the two methods. (see Figure 3.2. (B)). 

A proposed mechanism for the disparity in the ELISA and blot findings could 

be the age of these serum samples. Some of these samples were over 10 

years old and sample degradation could lead to a reduction in AGA titre. In 

addition each sample had been assayed with ELISA when patients presented 

separately. This means that ELISA experiments were assayed potentially 

with different batches of lipid antigen and experimental reagents 

introducing additional variability. Therefore I then repeated the IgG GM1 
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ELISA in all 180 GBS & 20 healthy control samples in Glasgow. The 

correlation between the Glasgow ELISA with the blot method was similar 

(Figure 3.2. (B), rs= 0.4428, p<0.0001) to the correlation between the Dutch 

performed ELISA and the combinatorial blot method.  

 

Although it is noteworthy that the titres obtained in Glasgow for IgG 

directed against GM1 were lower than those obtained in Holland. When 

specifically comparing the titres for only those patients positive on ELISA, 

there was a statistically significant reduction in titres between the two 

assays (Figure 3.3., 2 tailed paired t test, p=0.0025). Despite this when 

compared directly, the correlation between the GM1 ELISA performed in 

Holland and Glasgow was strong with an rs of 0.9158 suggesting that there is 

a true difference between findings on ELISA and the combinatorial blot for 

individual serum samples. However all of the samples detected on the Dutch 

ELISA as demonstrating reactivity to GM1, did display reactivity on the blot 

to a variety of both single and pairs of lipid antigens (see Table 3.4). 

As the same lipid stocks were employed as antigens in the Glasgow ELISA 

and the combinatorial blot, these two methods were directly compared. 

When using the ELISA method a positive binding result was considered to 

give an OD490nm of 0.1 or above. Similarly with the combinatorial method a 

positive binding result was considered to give an intensity of 10,000 

arbitrary units (measured with Total Lab software) or more. All intensities 

of 10,000 were double checked by eye and were associated with a positive 

blot on the radiograph. There were no intensities above 10,000 attributed to 

background activity only. 

20/180 GBS samples demonstrated IgG against GM1 with ODs > 0.1 when 

assayed via ELISA in Glasgow. None of the healthy control samples 

demonstrated binding to GM1. Interestingly only 13 of these GM1 ELISA 

positive samples demonstrated binding to GM1 using the combinatorial blot 

method explaining the modest correlation between the two methods (Figure 
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3.2. (B), rs= 0.4428, p<0.0001). Example blots are illustrated in Figure 3.4. 

Two patterns of antibody binding were observed. The first pattern is 

illustrated in Figure 3.4. (A) & (B) where antibody binding occurs against 

GM1 when presented singly and when complexed with most other lipid 

antigens. The second pattern is illustrated in Figure 3.4. (C) & (D) where 

anti-GM1 binding is inhibited when GM1 is complexed with specific lipids 

including LM1, GD1a, GT1b and GQ1b. 

The 9 remaining samples, which were positive on ELISA for GM1 and 

negative for GM1 on the blot were not however completely negative on the 

combinatorial blot. All 9 samples demonstrated binding to a variety of 

singles lipids and complexes of lipids (Table 3.4.). 

Five of these samples demonstrated IgG reactivity to other single glycolipids 

(Figure 3.5 (A)-(E)), with four demonstrating reactivity to glycolipids only 

when complexed with sulfatide (Figure 3.6). Interestingly 6/9 of the 

samples which did not recognize GM1 on ELISA, bound to the complex 

created by sulfatide and GM1 (Figure 3.5 (C) & (E) and Figure 3.6. (A)- (C)). 

3 of these 6 samples bound other single glycolipids including LM1, GD1a & 

GT1a and sulfatide. However two sera only bound to complexes with no 

demonstrable binding to single lipids (Figure 3.6. (A) & (B)).  

The converse observation was also described in two sera, where binding to 

GM1 was demonstrable on the combinatorial blot but negative on ELISA 

performed in Glasgow (Table 3.4. and Figure 3.7. (A)&(B)). Although when 

both of these sera were initially investigated via ELISA in Holland both 

demonstrated titres of IgG GM1 antibody of 400 and 1600 respectively. 
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Figure 3.1. Anti-ganglioside antibody (AGA) findings in the GBS cohort by 

colleagues in Holland 

A. Frequencies of AGAs in Dutch cohort. AGAs were observed in 39/180 
patients (21.66%). 
B. Pie chart documenting breakdown of these AGA specificities 
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Figure 3.2. Correlation and Bland- Altman graphs for IgG directed against 

GM1. 

rs, the non parametric Spearman correlation coefficient, has the range -1 to 

+1. P values quoted are two-tailed p values. The Bland-Altman graphs have 

three dotted lines intersecting the Y axis, representing the mean difference 

(middle dotted line) with the dotted line either side of the mean difference 

representing the 95% limits of agreement.  

A. Correlation of GM1 ELISA performed in Holland with GM1 blot 

B. Bland-Altman graph of GM1 ELISA performed in Holland with GM1 blot 

C. Correlation of GM1 ELISA performed in Scotland with GM1 blot 

D. Bland-Altman graph of GM1 ELISA performed in Scotland with GM1 blot 

E. Correlation of GM1 ELISA performed in Holland and GM1 ELISA performed 

in Scotland 

F. Bland-Altman graph of GM1 ELISA performed in Holland and GM1 ELISA 

performed in Scotland 
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Figure 3.3.  Illustrative graph of ELISA titres in AGA GM1 positive patients 

in Holland and Scotland. 

p value quoted is obtained with a 2 tailed t-test. 
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Table 3.4. Combinatorial binding specificities of sera with detectable IgG 
to GM1 on ELISA 
 

ID Dutch 
ELISA 
Titre 

Scottish 
ELISA 
Titre 

ELISA 
OD 
490nm 

*GM1 
ELISA 
reactivity 

GM1 blot 
intensity 

†GM1 
blot 
reactivity 

Blot specificity 

102 6400 6000 0.77915 positive 106304.68 positive GM1 
116 200 500 0.3394 positive 85609.83 positive GM1 
120 6400 6250 0.9872 positive 92791.63 positive GM1 
140 400 225 0.1654 positive 3743.2 negative GD1b 
152 12800 1500 0.2588 positive 101957.05 positive GM1 
183 6400 1125 0.48335 positive 3916.51 negative LM1 
184 100 0 0 negative 2582.215 negative GM1:LM1 complex 
192 100 600 0.43875 positive 33517.18 positive GM1 
195 800 225 0.18865 positive 4416.245 negative LM1 
222 3200 1000 0.44245 positive 4445.49 negative sulf:GM1 complex 
223 3200 750 0.35825 positive 93685.1 positive GM1 
224 800 400 0.24905 positive 3698.94 negative sulf:GM1 complex 
225 6400 2000 0.4885 positive 5072.735 negative sulf:GM1 complex 
229 400 0 0 negative 65877.9 positive GM1 
230 12800 3950 0.642 positive 10744.135 positive GM1 
233 100 150 0.2511 positive 3645.705 negative GT1a 
241 25600 6150 0.93845 positive 3274.41 negative GD1a, GT1a 
243 1600 425 0.5172 positive 96616.75 positive GM1 
256 6400 2500 0.6045 positive 18898.365 positive GM1 
263 12800 2700 0.9939 positive 39560.935 positive GM1 
292 12800 575 1.0344 positive 9638.715 negative sulf:GM1 complex 
303 1600 0 0 negative 38579.205 positive GM1 
310 1600 0 0.3722 positive 10637.8 positive GM1 
320 100 0 0 negative 2118.285 negative GD1a 

 

* ELISA considered to be positive if OD> 0.1  

† Blot considered to be positive if average spot intensity > 10000 arbitrary 

units of detection (obtained using Total Lab software) and associated with a 

positive spot on visual inspection 
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Figure 3.4. Illustrative blots of sera found to be positive for IgG directed 

against GM1 via both ELISA and combinatorial blot methods. 

For detailed array methodology see Chapter 2; 2.2.4. Row and column 

headings reveal the complex at each location, “X”s represent the negative 

controls (methanol) which act as a line of symmetry for duplicate spots 

within the same membrane. 

 

A. Serum 152 

B. Serum 229 

C. Serum 102 

D. Serum 223 
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Figure 3.5. Illustrative blots of sera found to be positive on ELISA for GM1 

AGA and negative for GM1 AGA on combinatorial blot.  

 

A. Serum 140 demonstrating binding to GD1b 

B. Serum 183 demonstrating binding to LM1 

C. Serum 195 demonstrating binding to LM1 

D. Serum 233 demonstrating binding to GT1a 

E. Serum 241 demonstrating binding to GD1a & GT1a 
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Figure 3.6. Illustrative blots for sera found to be positive on ELISA for 

GM1 but demonstrated reactivity to complexes on the combinatorial blot 

A. Serum 222 demonstrating binding to sulfatide:GM1 complex 

B. Serum 224 demonstrating binding to complexes of sulfatide with 

gangliosides 

C. Serum 292 demonstrating binding to sulfatide and complexes of sulfatide 

with gangliosides 
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Figure 3.7 Blots of GM1 reactive sera which were negative on ELISA 

performed in Glasgow 

 

A. Serum 229 

B. Serum 303 
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Our Dutch colleagues had also investigated IgG binding to the gangliosides 

GD1a and GQ1b. Unfortunately both ODs and titres were unavailable for 

these assays.  However the difference in binding specificities between ELISA 

and blot observed in GM1 assays was also observed in the GD1a and GQ1b 

serology (Table 3.5.). 13 serum samples were reported to be positive for 

GD1a serology by our Dutch colleagues.  Only 6 demonstrated IgG reactivity 

against GD1a using the combinatorial blot method. However a further 6 

demonstrated binding to other lipid and lipid complex antigens using the 

blot method (see Table 3.5.). Illustrative examples are shown in Figure 3.8.  

 

When I performed an ELISA investigating IgG to GD1a in Glasgow using these 

13 serum samples, only 7 demonstrated an OD> 0.01. The correlation 

between the ELISA performed in Glasgow and the combinatorial blot method 

is depicted in Figure 3.9. (A) (r2=0.5424). Only 1 sample which was positive 

on ELISA in both Holland and Scotland (OD of 0.139) was negative when 

investigated using the combinatorial array. 

 

12 serum samples were similarly reported to be positive for GQ1b serology 

by our Dutch colleagues.  Only 2 of these sera demonstrated IgG reactivity 

against GQ1b using the combinatorial blot method. A further 4 

demonstrated binding to other lipid and lipid complex antigens using the 

blot method (See Table 3.6.). Illustrative examples are shown in Figure 

3.10. When I performed an ELISA investigating IgG to GQ1b in Glasgow using 

these 12 serum samples, only 5 demonstrated an OD> 0.01. The correlation 

between this ELISA performed in Glasgow and the combinatorial method is 

depicted in Figure 3.9 (B) (rs= 0.7798). 
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Table 3.5. Combinatorial binding specificities of sera with detectable IgG 
to GD1a on Dutch ELISA 
 

 

 

ID Dutch 
ELISA 

Scottish ELISA 
OD 

*Scottish GD1a 
ELISA 
Reactivity 

GD1a blot 
 intensity 

*GD1a blot 
intensity 

Blot specificity 

165 positive 0.139 positive 1512.155 negative negative 
192 positive  0 negative 3184.72 negative GM1, LM1 
230 positive 0 negative 3341.35 negative GM1 
240 positive 0 negative 2836.2 negative LM1 
241 positive 1.37 positive 102831 positive GD1a 
245 positive 0 negative 4047.885 negative complexes only 
279 positive 1.72 positive 110195.9 positive GD1a, GD1b, GT1b, GQ1b 
281 positive 0.46 positive 2867.9 negative LM1 
303 positive 0 negative 12362.01 positive GM1, LM1, GD1b, GT1a 
320 positive 0.88 positive 107914.7 positive GD1a 
332 positive 0 negative 6968.805 negative complexes only 
340 positive 0.1064 positive 19689.23 positive GD1a, GT1b, GQ1b 
345 positive 0.6079 positive 182264 positive GD1a 

 

 

 

* ELISA considered to be positive if OD> 0.1  

† Blot considered to be positive if average spot intensity > 10000 arbitrary 

units of detection (obtained using Image Quant Total Lab software) and 

associated with a positive spot on visual inspection 
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Figure 3.8. Illustrative blots of sera reactive to GD1a on ELISA 

A. Serum 241 demonstrating reactivity to GD1a and GT1a 

B. Serum 240 demonstrating reactivity to LM1  

C. Serum 299 demonstrating reactivity to complexes only 
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Figure 3.9 Correlation of GD1a and GQ1b IgG in ELISA and combinatorial 

blot. 

P values quoted are two-tailed p values. 

 

A. IgG against GD1a (n=13). As the data is normally distributed the Pearson 

correlation coefficient is quoted. 

B. IgG against GQ1b (n=12). As the data is not normally distributed the 

Spearman rank correlation coefficient is quoted. 
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Figure 3.10 Illustrative blots of sera reactive to GQ1b on ELISA 

A. Serum 279 demonstrating binding to GD1a, GD1b, GT1b and GQ1b 

B. Serum 120 demonstrating binding to GM1, GD1a and GD1b 

C. Serum 299 demonstrating binding to complexes only 
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Table 3.6. Combinatorial binding specificities of sera with detectable IgG 
to GQ1b  

 
 

ID Dutch 
ELISA 

*Scottish 
ELISA 
OD 

GQ1b ELISA  
reactivity 

GQ1b blot 
 Intensity 

†GD1a 
blot 
reactivity 

Blot specificity 

108 positive 0 negative 614.52 negative negative 

120 positive 0 negative 2170.895 negative GM1, GD1a, GD1b, GT1b 

165 positive 0 negative 1783.585 negative negative 

240 positive 0.35 positive 3372.45 negative LM1 

253 positive 0.18 positive 4451.205 negative GD1a, GT1a 

257 positive 0 negative 3083.29 negative negative 

267 positive 0 negative 3535.99 negative negative 

279 positive 2.23 positive 110231.9 positive GD1a, GD1b, GT1b, GQ1b 

299 positive 0.95 positive 4318.79 negative complexes only 

319 positive 0 negative 4167.6 negative negative 

340 positive 0.36 positive 48570.29 positive GD1a, GT1b, GQ1b  

355 positive 0 negative 1020.515 negative negative 

 

 

 

* ELISA considered to be positive if OD> 0.1  

† Blot considered to be positive if average spot intensity > 10000 arbitrary 

units of detection (obtained using Total Lab software) and associated with a 

positive spot on visual inspection 
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Using the combinatorial array we identified that 42/180 GBS samples 

demonstrated IgG binding to glycolipid targets. Within these 42 samples 

which demonstrate IgG binding on the combinatorial arrays three patterns 

of binding emerge.  

The first (see Figure 3.11. (A)) is described as complex independent. Here 

antibody binds to the lipid antigen when presented singly and when 

presented in combination with other lipids. The second is complex enhanced 

(Figure 3.11. (B)) with increased/specific binding demonstrated to lipid 

antigens when complexed together on the membrane and was observed in 

16/42 seropositive patients. In keeping with Kaida’s definition of anti-

ganglioside complex antibodies I defined complex enhanced binding as being 

present if the intensity for the IgG directed against the lipid complex was 

more than the sum of the intensities against each contributing lipid(Kaida et 

al. 2007). The third pattern of binding occurs when anti-glycolipid antibody 

binding is attenuated when the lipid antigen is partnered with specific lipids 

(Figure 3.11 (C). However these patterns are an oversimplification as many 

sera would demonstrate more than one pattern on the array (see Figure 3.4 

(A) & (D). 
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Figure of 3.11 Three patterns of binding to glycolipid antigens 

 

Key: 

GalNAc = N-Acetylgalactosamine 

NeuAc= N-Acetylneuaminic acid 

GluNAc= N- Acetylglucosamine 

Gal= Galactose 

Glc= Glucose 

Cer= ceramide 

 

A. Serum 281 with complex independent pattern of antibody binding to the 

lipid LM1 

B. Cartoon of complex independent antibody binding to LM1 

C. Serum 245 with antibody binding only to the complex created by GT1a 

and either sulfatide or galactocerebroside.  

D. Cartoon demonstrating complex dependent binding to GT1a:sulfatide 

complex 

E. Serum 102 demonstrating inhibition of anti GM1 IgG binding when GM1 is 

complexed with particular lipids e.g. LM1, GD1a, GT1b and GQ1b 

F. Cartoon demonstrating inhibition of antibody binding to GM1 when GM1 is 

complexed with GD1a 
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Using the combinatorial array allows us to identify that 42/180 GBS samples 

demonstrate IgG binding to glycolipid targets (Figure 3.12.). 16 of these 

bound only to glycolipids presented either singly or as part of a complex 

with another lipid. A further 11 bound lipid in this manner but in addition 

bound “new” complexes of lipids.  Within both groups it was observed that 

there was enhancement of binding to complexes of lipids.  This “complex 

reactivity” has been defined as being present when the sum of the blot 

intensity of IgG directed against a pair of lipids is more than the sum of the 

IgG blot intensity directed against each individual contributory lipid. 6/16 

sera binding to single glycolipids and their complexes demonstrated 

enhanced binding to complexes. 5/11 sera which bound single glycolipids 

and new complexes also demonstrated increased binding to specific 

combinations of lipids compared to the intensity observed for each lipid 

partner. Therefore 11 sera which demonstrated IgG binding to single lipids 

demonstrated anti-GSC antibodies using Kaida’s definition. 

If we employ a stricter definition of complex reactivity in which there is no 

discernible binding to each contributory lipid partner in the complex it can 

be observed that there are 15 patients demonstrating this pattern. The 

binding specificity of these sera is outlined in Table 3.7.  

As outlined earlier 39/180 samples had been assayed using ELISA by our 

Dutch colleagues. 6 of these samples proved to be negative using the 

combinatorial method. The combinatorial method allowed the detection of 

a further 9 sera which bound predominantly to complexes of glycolipids 

rather than to single glycolipids (see Table 3.8.). None of the healthy 

control sera demonstrated any IgG binding to glycolipids or their complexes 

using the combinatorial array. 

The sera which were positive on the combinatorial array represented 10 

patients with neurophysiology findings in keeping with AIDP and 3 patients 

with AMAN. The rest of these anti-glycolipid positive patients had equivocal 

findings (n=22) or unavailable results (n=7). These glycolipid reactive 

patients were more likely to have suffered from diarrhoea (χ2 p= 0.0033) 



  Chapter 3    

 125 

and have proven serology for campylobacter jejuni (χ 2 p<0.0001) compared 

to those patients who tested negative on the array. There was no difference 

between the two groups of patients in the history for a preceding upper 

respiratory tract infection or serology for mycoplasma and cytomegalovirus 

(CMV).  

Patients who did not demonstrate any glycolipid binding on the array were 

more likely to have pain (χ 2 p= 0.0011), paraesthesiae (Х2 p= 0.0028) and a 

cranial nerve deficit (χ 2 p= 0.0022). Both antibody positive and negative 

groups were just as likely to require ventilation. 

Interestingly patients who demonstrated binding of any nature to glycolipids 

antigens on the combinatorial array (n=42) had significantly lower MRC-sum 

scores indicative of more severe disability at presentation (p=0.0001,Mann 

Whitney, see Figure 3.13 (A)). This difference in severity was still present 

though less marked at week 3 (p=0.0195, Mann Whitney, see Figure 3.13 

(B)). Those patients with complex reactivity (n=26) did not differ in MRC 

scores from patients with reactivity to single glycolipids antigens (see Figure 

3.13 (C) & (D)). 
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Table 3.7. Sera demonstrating IgG only to complexes of lipids with no 
demonstrable binding to individual glycolipids 
 

ID Glycolipid complex 

101 Sulfatide in complex with GM1/GD1b/GT1a 

104 Sulfatide in complex with GM1/GD1b/GT1a 

135 LM1 in complex with GM1/GD1b/GT1a 

Galactocerebroside in complex with GT1a 

184 LM1 in complex with GM1/GD1b/GT1a 

Sulfatide in complex with galactocerebroside/GT1a 

191 Sulfatide in complex with GM1/GT1a 

222 Sulfatide in complex with GM1/GD1b/GT1a 

224 Sulfatide in complex with galactocerebroside/GM1 

225 Sulfatide in complex with GalC/ GM1/GD1b/GT1a 

242 Galactocerebroside:GT1b, GM1:GD1a 

244 GT1a in complex with sulfatide/galactocerebroside 

245 GT1a in complex with sulfatide/galactocerebroside 

299 GQ1b in complex with sulfatide/GM1/GD1b/GT1a 

304 Sulfatide in complex with galactocerebroside/LM1 

332 Sulfatide in complex with LM1/GD1a/GD1b/GT1a/GT1b & 

LM1 in complex with GD3/GD1b/GT1b 

337 Sulfatide in complex with GM1/GD1b/GT1a 

Galactocerebroside in complex with GM1/GT1a 

GM1 in complex with LM1/GD1a/GD1b 
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Table 3.8. Additional sera identified using the combinatorial array 
 

ID Complexes 

only? 

Combinatorial array specificity 

101 Yes Sulfatide in complex with GM1/GD1b/GT1a 

104 Yes Sulfatide in complex with GM1/GD1b/GT1a 

135 Yes GM1 in complex with LM1/GD1b/GT1a 

191 Yes Sulfatide in complex with GM1/GT1a 

242 Yes GalC:GT1b complex, GM1:GD1a complex 

244 Yes GT1a in complex with sulfatide/galactocerebroside 

265 No GT1a, and GM1/LM1 complex 

304 Yes Sulfatide:GM1 complex 

337 Yes Sulfatide:GM1 complex 
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Figure 3.12. Breakdown of sera positive using combinatorial blot 

A. Pie chart demonstrating IgG binding pattern of 42/180 positive sera 

B. Illustrative blot from serum 229 demonstrating binding to GM1, GD1b and 

GT1a 

C. Illustrative blot from serum 265 demonstrating binding to GT1a and to 

the complex created by GM1:LM1 

D. Illustrative blot from serum 337 demonstrating binding to complexes only 

 

 



  Chapter 3    

 130 

 
 

Figure 3.13. MRC-sum scores in glycolipid reactive and unreactive 

patients 

Severity of weakness is expressed as MRC-sum scores- this is a sum of scores 

according to the Medical Research Council grading system of 6 bilateral 

muscle groups ranging from 60 (normal strength) to 0 (tetraparalytic) 

A. MRC-sum scores in AGA positive (n=42) and negative (n=138) patients at 

presentation 

B. MRC-sum scores in AGA positive (n=42) and negative (n=138) patients at 

week 3 

C. MRC-sum scores in GSC positive (n=26) and AGA (to single lipid antigens 

only) (n=16) patients at presentation 

D. MRC-sum scores in GSC positive (n=26) and AGA (to single lipid antigens 

only) (n=16) patients at week 3 
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Different measures of hierarchical clustering were applied to the data which 

was logarithmically transformed (log 2). This divided the 42 glycolipid 

reactive sera into subgroups depending on their glycolipid antibodies 

profile. Covariance clustering ordered the dataset into 4 separate groups 

with different ganglioside and clinical phenotypes (Figure 3.15 labelled 1-4). 

10/12 sera from Group 1 demonstrated IgG reactivity to LM1 either in 

isolation or in complex with other lipids.  This group were more likely to 

have reactivity to the GM1/LM1 complex compared to the rest of the 

glycolipid positive group. 6 of these 12 sera demonstrated anti-GM1/LM1 

complex reactivity (defined as a blot intensity for complex of lipids > sum of 

the blot intensity of the two contributory lipids) compared to 2/30 

(p=0.0036, 2 tailed Fishers exact test).  

All 12 sera comprising Group 2 demonstrated IgG reactivity to GM1 either 

presented in isolation or in combination with other lipids such as sulfatide.  

11/12 demonstrated binding to GM1 in isolation. This is in direct contrast to 

the glycolipid antibody profile of Group 1 (Fishers exact test p=0.0001), 

Group 3 (Fishers exact test p= 0.0006) and group 4 (p= 0.0004). When 

compared to all other samples p < 0.0001. 

All 12 sera comprising group 3 demonstrated IgG reactivity to the complex 

created by sulfatide and GT1a again using the same definition as before. 

This again is in contrast to the rest of the antibody positive cohort (Fishers 

exact test, p= 0.0003). Group 4 comprised sera which bound GD1a in 

isolation and when complexed with other lipids. 5/6 sera in this group 

bound the single lipid GD1a compared to 1/35 remaining glycolipid reactive 

group (Fishers exact test, p<0.0001). 
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In addition to clustering ordering the dataset into different groups with 

distinct ganglioside antibody profiles, these groups have different clinical 

phenotypes. Group 1 were more likely to have neurophysiology pertaining to 

the AIDP variant compared to Group 2 (p= 0.0373, Fishers exact test). Group 

1 patients were also more likely to have a sensory deficit at week 4 of the 

illness, compared to Group 2 (p= 0.0123) and, indeed, all other antibody 

positive patients (p=0.0061). Group 1 patients were least likely to have 

suffered from a preceding Campylobacter jejuni infection compared to the 

other three groups (p 0.04, Fishers exact test). 

 

 

Groups 3 & 4 were more likely to suffer from pain as opposed to Groups 1 & 

2 (p= 0.0188, Fishers exact test). Group 4 were more likely to have a cranial 

nerve deficit compared to Groups 2 & 3 (p=0.0021, Fishers exact test). 
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 Figure 3.14. Heatmap of 42 glycolipid reactive sera 

Unclustered heatmap depicts reactivity of sera (n=42) which bind to 

glycolipids using the combinatorial array. Each individual serum is 

represented by each column with each row representing lipid antigens. 
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Figure 3.15. Covariance clustering of heatmap 

Covariance clustering has been performed revealing 4 separate groups with 

different glycolipid and clinical phenotypes. 
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I was interested to observe that the 12 sera comprising group 3 

demonstrated IgG reactivity to the complex created by sulfatide and GT1a. I 

then investigated the responses to sulfatide, GT1a and the complex of 

sulfatide and GT1a using ELISA in 7 of these samples (see Figure 3.16.). The 

findings on ELISA were similar to those observed using the combinatorial 

array technique in that binding to the complexes of sulfatide:GT1a was 

enhanced. In 5 of these samples enhanced binding was also evident to the 

complex created by sulfatide and GM1 (see Figure 3.16.(C)). 

I next performed a TLC of the individual glycolipids to assess lipid purity. As 

illustrated in Figure 3.17 single spots can be observed for the glycolipids 

GM1, sulfatide and GD1b. However the GT1a preparation had multiple spots 

indicating possible contamination with other lipids.  

However I needed to further investigate whether these complex reactive 

sera were truly binding a complex of GT1a and sulfatide or another lipid and 

sulfatide. To do this I performed a TLC of GT1a (as before). After the GT1a 

separated, I then printed a line of sulfatide across the migration path of the 

GT1a and then probed with sera or the monoclonal antibody (DG2) (Figure 

3.18). DG2, a mouse monoclonal antibody, recognizes the terminal Gal-

GalNAc of GM1. Therefore it should not bind GT1a- however it binds to GT1a 

on the combinatorial array sing DG2 (see Figure 3.19). Using TLC however it 

is evident that the DG2 is binding to GM1 which is part of the GT1a/ lipid 

mix. The serum 104 is shown alongside DG2. It can be observed that there 

appears to be three localised areas of binding with one corresponding to 

GM1 and the other 2 representing unknown lipid fractions. Of note there 

was no demonstrable binding to the GT1a fragment using this technique. 

Further mass spec analysis performed on the lipid solution of GT1a by Dr 

Richard Goodwin of the University of Glasgow confirmed that GT1a was 

contaminated by large amounts of GM1 which may explain why the 

monospecific anti-GM1 antibody bound GT1 in addition. The contamination 

of the GT1a may reflect the presence of a sialidase which have cleaved 

sialic acid residues from GT1a to create GM1. The next step is to identify 
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these lipids by using mass spectrometry of the individual lipid fractions from 

the TLC plates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter 3    

 137 

 
 

Figure 3.16.   Anti sulfatide:GT1a complex antibodies 

A. Intensities for IgG against sulfatide, GT1a and sulfatide GT1a in 7 

patients. Binding to the complex of sulfatide and GT1a is enhanced 

compared to that of the sum of the intensities for the individual lipids 

(paired t test, p<0.0001)  

B. Findings on ELISA for the same 7 patients. Binding to the complex of 

sulfatide and GT1a is enhanced compared to that of the sum of the 

intensities for the individual lipids (paired t test, p=0.0394) 

C. Illustrative blot from serum 104 

D. Illustrative ELISA from serum 104 
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Figure 3.17. TLC of glycolipids 

 

(i) GM1 

(ii) Sulfatide 

(iii) GD1b 

(iv) GT1a 
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Figure 3.18. TLC overlay of GT1a + sulfatide 

 

TLC of GT1a performed as before. After the TLC plate was removed from 

the running buffer a line of sulfatide was then sprayed across the TLC plate 

intersecting  the GT1a. 

(i) GT1a separated using TLC and stained with resorcinol 

(ii) TLC overlay with the monoclonal anti-GM1 antibody GM1 DG2 

(iii) TLC overlay with serum 104 
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Figure 3.19. DG2 array combinatorial array specificity  

A. Illustrative blot of DG2 on combinatorial array demonstrating binding to 

GA1, GM1 and GT1a 

B. Key to combinatorial array 
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3.4. Discussion   
 

42/180 (23.3%) of GBS patients demonstrated evidence of IgG binding to 

glycolipids or their complexes using the combinatorial array. A wide variety 

of glycolipids and their complexes were bound by these sera. Seropositive 

patients represented patients with AIDP (n=10) and AMAN (n=3) however a 

large number had equivocal findings on neurophysiological testing (n=22) 

with data unavailable for 7 patients. Seropositive patients were distinct 

from seronegative patients in that they were more likely to have suffered 

from diarrhoea and had a campylobacter jejuni infection and were less 

likely to suffer from pain, paraesthesiae and a cranial nerve deficit. 

Seropositive (9/42) and seronegative (32/138) patients were equally at risk 

of the need for ventilation and both groups had similar rates of infection 

with mycoplasma and CMV.  On initial assessment those patients with 

glycolipids antibodies were more likely to have lower MRC-sum scores 

indicative of greater disability however by week 3 of the illness MRC-sum 

scores were similar between the anti-glycolipid positive and negative 

groups. 

Within the glycolipid reactive cohort with the aid of clustering techniques it 

was possible to separate this cohort of 42 into 4 groups with different 

glycolipid binding profiles. Group 1 (n=12) represented sera from patients 

predominantly with the AIDP phenotype.  

 

AIDP was initially thought to result from T-cell dependent mechanisms as 

lymphocytic inflammation has been described on nerve biopsies(Asbury et 

al. 1969). However more recent work involving pathology of autopsy cases 

suggests that antibody dependent mechanisms are involved(Hafer-Macko et 

al. 1996). The pathology described closely resembled that seen in 

experimental autoimmune neuritis induced by galactocerebroside 

antibody(K. Saida et al. 1979)(T. Saida et al. 1979). Galactocerebroside has 

been investigated as a possible antigen in a number of GBS series with a 
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number of these studies suggesting a relationship between mycoplasma 

pneumoniae infection and the development of anti-galactocerebroside 

antibodies(Hughes et al. 1984)(Kusunoki et al. 1995)(Hao et al. 1998). But 

the observed numbers of galactocerebroside sera are small for example 

Kusunoki’s data describes 4/82 GBS patients having galactocerebroside 

antibodies. The relevant neurophysiological data was not available for all 

patients although Kusunoki did report that 2 of these 4 patients had 

neurophysiological findings supportive of AIDP. Amongst many other lipids 

my study has investigated the IgG response to galactocerebroside in 180 GBS 

patients of whom 56 have neurophysiological findings in keeping with AIDP. 

No patient in this entire cohort demonstrated binding to galactocerebroside 

which would appear to suggest that this is not an important auto antigen in 

GBS. 

 

However this particular group (Group 1) of patients which had 

neurophysiology pertaining to AIDP, displayed a specific binding profile on 

the combinatorial array, namely to LM1 and complexes of LM1 with the 

closely related glycolipid GM1. LM1 is considered to be a major peripheral 

nerve myelin glycolipid with a structure closely related to that of GM1 

however the LM1, the N-acetylgalactosamine molecule is replaced with N-

acetlyglucosamine(Ogawa-Goto et al. 1998). Certainly there does appear to 

be stronger evidence for an association between LM1 antibodies and GBS 

than for galactocerebroside. In 1992 Ilyas et al demonstrated that 11/53 

GBS patients had anti-LM1 antibodies(Ilyas, Mithen, Dalakas, Chen & Cook 

1992a). However an earlier study had reported anti-LM1 antibodies in 30% of 

their normal controls. A later study appeared to suggest an association 

between IgG LM1 antibodies and AIDP with Yako et al reporting, after 

screening of a large cohort of patients (n=140), that 5/7 patients with 

detectable IgG to LM1 had neurophysiology in keeping with AIDP(Yako et al. 

1999). However further studies were at odds with this finding reporting the 

presence of LM1 antibodies in AMAN and AMSAN (n=8) in addition to 1 AIDP 

patient(Susuki et al. 2002). Interestingly sera from the axonal patients 
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demonstrated a polyspecific pattern of glycolipid antibody binding with IgG 

binding a variety of gangliosides however the IgG from the AIDP patient was 

monospecific for LM1. Only one of the LM1 reactive sera in my cohort was 

monospecific for LM1 and LM1 complexes (see Figure 3.11. (A)). This 

particular patient had equivocal findings on neurophysiological testing. The 

rest of the Group 1 sera were “polyreactive” but reacted significantly more 

to complexes of LM1 with GM1 compared to the rest of the seropositive 

sera. 

 

Group 2 (n=12) represented sera which bound GM1. These patients were less 

likely to have AIDP and probably represented patients with AMAN. Data from 

the TLC experiments would suggest that Group 3 may, in fact, share more in 

common with group 2. We are limited however in profiling these patients 

accurately due to the high number of patients with equivocal and 

unexcitable neurophysiology (89/180). 

 

Another lipid of potential importance is SGPG (sulfated glucuronly 

paragloboside). SGPG has a similar structure to LM1, except for a 3-sulfated 

glucuronic acid instead of a sialic acid on the terminal saccharide chain. 

SGPG shares carbohydrate antigenic moieties with myelin associated 

glycoprotein (MAG). Furthermore around 60% of patients with IgM 

paraproteinaemic neuropathy will demonstrate binding to SGPG(Ilyas et al. 

1991).   A number of investigators have looked at the IgG response to SGPG 

in GBS. 5/53 patients with GBS were reported to have antibodies to this 

glycolipid however a further larger study failed to detect anti anti-SGPG IgG 

in a cohort of 96(Ilyas et al. 1991)(Yuki, Tagawa & Handa 1996a). It would 

be interesting to include this lipid on future combinatorial arrays. 
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The position of glycolipids in functionally distinct membrane microdomains, 

termed function rafts, is likely to be relevant in the binding capabilities of 

anti glycolipid antibodies(Simons et al. 1997). This has been demonstrated 

aptly by Greenshields et al(Greenshields et al. 2009). The investigators 

revealed that the local environment directly influenced the binding 

capabilities of monoclonal anti glycolipid antibodies. Two monoclonal GM1 

antibodies were investigated, termed DG1 and DG2. These antibodies were 

generated by immunisation of GalNAc-transferase deficient mice with GM1 

preparations. This breed of mice lack all ganglioside more complex than 

GM3/GM3. When immunized with GM1 these mice generate IgG against this 

lipid because of an inherent lack of immunological tolerance.  However only 

one of these antibodies,DG2, demonstrated binding to ex-vivo motor nerve 

terminals. As a result of DG2 antibody binding, complement mediated 

damage ensued. DG1 and DG2 antibodies had similar affinities for GM1 in 

isolation however when GM1 was complexed with other lipids the binding of 

the DG1 antibody was significantly attenuated presumably thereby 

rendering the DG1 antibody pathologically inert. This data was obtained 

using the combinatorial array methodology I developed. This difference in 

binding specificity on the combinatorial array would appear to suggest that 

those antibodies that bind in a complex independent manner would have a 

higher chance of yielding pathological damage. 

 

Further work has suggested that the fine specificity of anti-GM1 antibodies 

has importance as a significant prognostic marker in GBS(Lardone et al. 

2010). Here the investigators graded 34 GBS patients into different groups 

based on a clinical score into mild, moderate and severe clinical 

phenotypes. No difference in ELISA titre was noted between in the groups 

but in contrast those patients with monospecific IgG (i.e. recognizing GM1 

alone as opposed being “cross-reactive” or “polyreactive” recognizing GM1 

and GD1b) were more likely to have a severe clinical phenotype.  
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In our study 13 patients demonstrated IgG which bound GM1 on the 

combinatorial array. 7 of these were cross reactive with GD1b. 5 of the 

remaining 6 bound GM1 and no other single glycolipid. The remaining serum 

demonstrated reactivity to GM1 and GT1a (see Figure 3.4. (A)). As we now 

know that GT1a was contaminated with GM1 it is likely that this remaining 

sample was actually monospecific for GM1. In contrast to Lardone’s work 

there was no significant difference in severity (MRC scores, need for 

ventilation) between these two groups of patients. 

 

To date most studies investigating anti-glycolipid antibody responses have 

involved conventional assays of single glycolipid antigens using ELISA or TLC. 

The observation that IgG could preferentially bind to pairs or complexes of 

glycolipids in GBS was first described 6 years ago in Japanese patients(Kaida 

et al. 2004). Further work by the group suggested that those patients with 

anti-glycolipid complex antibodies were clinically distinct with these 

patients having antecedent gastrointestinal infection and lower cranial 

nerve deficits more frequently. The presence of IgG to complexes created 

by GD1b with either GD1a or GT1b was significantly associated with severe 

disability and a need for mechanical ventilation. In our series of 180 these 

particular glycolipid complexes did not appear to be significant target 

antigens with only 1/180 GBS patient demonstrating IgG to the complexes 

created by GD1b:GD1a and GD1b:GT1b. 

 

Use of the combinatorial array has allowed us to observe different patterns 

of antibody binding with 26/42 seropositive patients binding preferentially 

to pairs or complexes of lipids including combinations of sulfatide with 

GM1/GD1b/GT1a and LM1/GM1 with 15  of these sera demonstrating only 

reactivity to complexes alone (see Table 3.7. for specificity of these anti-

ganglioside complex antibodies).  The 26 ganglioside complex seropositive 

patients represented 8 patients with AIDP, 1 with AMAN and 13 with 
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equivocal findings. Neurophysiological data was not available the remaining 

4 patients. The rest of the seropositive patients included 2 patients with 

AIDP, 2 with AMAN and 9 with equivocal findings. Data was unavailable for 3 

patients. 

 

Whilst the glycolipid positive cohort had significantly lower MRC scores at 

presentation (see Figure 3.13.) this effect was diminished by week three. 

Furthermore those patients with anti-complex antibodies were no different 

to the rest of the seropositive cohort. This is in contrast to earlier reports of 

anti-complex antibodies aiding the stratification of patients clinically(Kaida 

et al. 2004)(Kaida et al. 2007).  

 

Sulfatide was noted to be a frequent partner in glycolipid target complexes 

(see Table 3.7).  Sulfatide is a major glycosphingolipid of the myelin sheath 

in both central and peripheral nervous systems. Synthesized by the Schwann 

cell in the periphery, sulfatide is a very simple small molecule compared to 

other glycolipids such as gangliosides. It is composed of galactocerebroside 

(consisting of a galactose molecule and a ceramide) in which the 3’OH 

moiety on galactose is sulfated(Norton 1977). Sulfatide deficient and 

abundant animal models have been created to further investigate the role 

of this lipid.  Roles suggested for this lipid include the maintenance of 

myelin and node of Ranvier structure amongst others(Eckhardt 2008). 

Clearly on the PVDF based array sulfatide interacts with glycolipids to reveal 

targets of interest for IgG. Whether this is a phenomenon that is specific to 

the array is as yet unknown. Further studies to investigate this should 

include parallel ELISA studies to investigate whether this finding is simply a 

reflection of the platform upon which the lipids are presented. 
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From my data it can be observed that there is variation in the findings 

between the two methods of ELISA and combinatorial array. This variation 

in specificity between ELISA and the combinatorial blot is almost certainly a 

reflection of the platform upon which the lipids are presented. Compared to 

a plastic ELISA plate, PVDF is a porous substance and one may hypothesize 

that when lipids are presented using this platform they create 

conformations that are different to those created on an ELISA plate. Which 

technique more closely relates that of human myelin is as yet unclear. 

Further work comparing the binding specificities of a large cohort of 

seropositive patients may help define these differences further. 

 

This study has several drawbacks including the limited number of controls 

and the high number of patients within the GBS group with equivocal results 

on neurophysiological testing. However the data demonstrates that this 

method is capable of detecting glycolipid antibodies in sera and it is now 

possible to screen a large number of potential antigens in their 

combinatorial complexity to help identify the target antigens in GBS. 
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Chapter 4. Chronic inflammatory demyelinating 
polyradiculoneuropathy (CIDP) 
 

4.1. Introduction 
 

As outlined in Chapter 1, section 1.4., CIDP is considered to be an 

inflammatory neuropathy with the exact pathogenesis remaining unclear. A 

small proportion of CIDP patients are found to have anti-ganglioside 

antibodies(Hughes et al. 2006). A number of immunomodulatory therapies 

are effective in CIDP including plasmapharesis giving some circumstantial 

evidence that an auto-antibody mediated mechanism is involved in the 

pathology of this disease(Dyck, Daube, O'Brien, Pineda, Low, Windebank & 

Swanson 1986a)(Dyck et al. 1994). Combinatorial lipid arrays have shown 

that epitope recognition by such antibodies can be dependent on cis 

interaction with other lipids that form heterogeneous microdomains in 

plasma membranes(Rinaldi et al. 2009). I have used this approach to 

investigate anti-glycolipid antibody specificities in sera from CIDP patients. 

 

4.2. Methods 
 

4.2.1. ELISA 
 

Sera were assayed by ganglioside ELISA as described in section 2.2.3. A 

positive binding result was considered to give an OD490nm of 0.1 or above. All 

samples were assayed investigating IgG and IgM reactivities to GM1, GM2, 

GD1a, GD1b and GQ1b. If a positive binding result for any of these 

gangliosides was observed then the sample was assayed on a wider plate of 

glycolipids to achieve a final titration. This more complete screen included 

the gangliosides first assayed (GM1, GM2, GD1a, GD1b, GQ1b) and GD3, 
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GM3, and GA1. Details of where lipids were purchased are outlined in 

Chapter 2, Table 2.1.  

 

4.2.2. MAG ELISA 
 

Anti MAG assay is performed with Bϋhlmann anti-myelin associated 

glycoprotein IgM ELISA kit. Reagents supplied with this kit include microtitre 

ELISA plate precoated with human MAG, plate sealer, wash buffer 

concentrate, incubation buffer, calibrators A-D, low and high control, 

enzyme labelled IgM (anti-human IgM antibody conjugated to HRP), TMB 

substrate (TMB in citrate buffer with hydrogen peroxide) and a stop solution 

(0.02M  sulphuric acid). Serum samples are diluted to 1:1000 in incubation 

buffer (2µl sample + 2µl buffer). Samples are vortexed then incubated for 1 

hour at room temperature. Samples are then placed on ice for 10 minutes. 

Test strips (wells) are placed onto the plate holder and washed 4x with wash 

buffer. 100 µl of incubation buffer, samples, calibrators (A-D) and high and 

low controls are added to each well. The plate is then covered with the 

plate sealer and incubated at 2-8˚C. After 2 hours empty wells and wash 4x 

with wash buffer and pat dry. Then add 100 µl per well of HRP-labelled IgM. 

Cover with plate sealer and incubate at 2-8˚C. After 2 hours empty wells and 

wash 4x with wash buffer and pat dry. 

Allow substrate to reach room temperature and then add 100 µl per well 

and cover with plate sealer. Incubate in darkness on a rocking shaker at 

room temperature. After 30 minutes add 100 µl per well of stop solution. 

Read on plate reader, Dynatech Laboratories MR500, programme 7 (dual 

wavelength of 450nm test filter/630nm reference of background filter). A 

standard curve is constructed from the standards blank and A-D. From this 

graph it is verified that the high and low controls fall within specified range. 

Results are reported as positive if >1000 BTU (Bϋhlmann Titre Units) and 

negative if < 1000 BTU. Anti- MAG ELISA experiments were carried out by Ms 
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Emma Lewis, Neuroimmunology laboratory, Southern General Hospital, 

Glasgow. 

 

4.2.3. Combinatorial array 
 

Using the Camag Automatic TLC Sampler 4, I assembled an array of 

individual glycolipids and their 1:1 combinations (complexes) spotted onto 

polyvinyl-difluoride (PVDF) membranes affixed to microscope slides. I 

investigated the serum IgG and IgM response to 9 individual lipids including 

sulfatide (Sulf), galactocerebroside (GalC), GM1, GM2, GD3, GD1a, GD1b, 

GT1b, GQ1b and all their possible 1:1 complexes thus comprising 45 target 

antigens in total.  Details of where lipids were purchased are outlined in 

Chapter 2, Table 2.1. We probed these prepared slides with 57 CIDP serum 

samples, 30 serum samples from patients with Multiple Sclerosis and 27 

serum samples from healthy controls. Each serum was assayed at a 

concentration of 1:100 unless otherwise stated.  Antibody binding to specific 

lipids was then detected using standard chemiluminescence and 

autoradiography using the protocol as outlined in Chapter 2; 2.2.4.  

 

 

 

4.2.4. Patients 
 
Serum IgG and IgM lipid reactivities were investigated in CIDP patients 

(n=57), Multiple Sclerosis patients (MS) (n= 30) and healthy controls (HC) (n= 

27).  Sera were obtained from CIDP patients taking part in the randomized 

controlled trial of methotrexate for chronic inflammatory demyelinating 

polyneuropathy(RMC Trial 2009). The 57 CIDP patients were enrolled from 

26 European centres and were eligible for entry if they were at least 18 

years of age, had been diagnosed as having CIDP by a consultant neurologist, 
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and had a chronically progressive, stepwise or recurrent weakness of all 

extremities, with absent or reduced tendon reflexes and with or without 

sensory dysfunction developing over at least 2 months and present for at 

least 6 months.  Patients had to meet the diagnostic criteria for definite or 

probable CIDP within the previous 3 years(Hughes R. Bensa S. Willison H. 

Van den Bergh P. Comi G. Illa I. Nobile-Orazio E. van Doorn P. Dalakas M. 

Bojar M. Swan A. Inflammatory Neuropathy Cause and Treatment (INCAT) 

Group 2001)(Joint Task Force of the EFNS and the,P.N.S. 2005). All patients 

were receiving a stable does of immunoglobulin or corticosteroids or both. 

CIDP patients were randomly allocated treatment with weekly methotrexte 

in a double blinded fashion (32 placebo; 25 methotrexate).  Exclusion 

criteria included the presence of IgM paraprotein with antibodies to myelin 

associated glycoprotein (MAG) however patients with other paraproteins 

were not excluded. Serum samples were donated at enrolment and at end 

of trial. Certain clinical information and neurophysiological data (e.g. CMAP, 

distal motor latency, conduction velocities) was available in an excel 

database.  

 

All MS (30) patients met the McDonald diagnostic criteria for MS(Polman et 

al. 2005) and included 24 relapsing remitting MS ( RRMS), 5 primary 

progressive MS (PPMS) and 1 secondary progressive MS (SPMS).  All MS 

patients were immunomodulatory treatment naïve. The 27 healthy controls 

were volunteers without symptoms or history of neurological disease. CIDP 

patients were older compared to the other two groups and had a higher 

proportion of men (Table 4.1).  All sera was separated from clotted blood 

and stored at -70˚C until use.  
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Table 4.1. Characteristics of CIDP patients 
 
 CIDP MS HC 
N 57 30 27 
Sex    
     Male 40* 13 7 
     Female 17 17 20 
Age (y)    
     Median 58† 38.5 35 
     Range 47-64 29.5-45.4 30-47 
 
Age and sex for the patient subgroups. Data are presented as median (IQR-

interquartile range).  

* p< 0.05 and p< 0.001 if compared with MS or HC respectively (χ2 test) 

† p< 0.0001 if compared with MS or HC (ANOVA with Bonferroni correction 

for multiple comparisons) 

 

 

 

4.2.5 Statistical analysis 
 

ANOVA analyses were used to compare anti-glycolipid levels between more 

than three groups. The Mann-Whitney test was used to compare anti-

glycolipid antibody levels between two groups. Paired t tests were used to 

detect if anti-complex antibodies were of higher intensity than antibodies to 

the contributing single lipid. Differences in proportions were tested for 

significance by chi-squared test and Fisher’s exact test where appropriate. 

These analyses were performed with PRISM4 (GraphPad software, USA). Raw 

data was logarithmically transformed (log 2) and heatmaps, hierarchical 

clustering and further ANOVA analyses were performed by Dr Gabriela Kalna 

of the University of Glasgow using Partek Geometrics Suite (Partek 

Incorporated, USA).   
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4.3. Results 
 

4.3.1. ELISA 
 

Using the ELISA assay anti-glycolipid antibodies (AGAs) were not 

demonstrated significantly more frequently in the CIDP group. The data 

shows that 13/57 (22.8%), 2/30 (6.7%) and 3/27 (11.1%) serum samples from 

CIDP, MS and HCs respectively have elevated levels of IgM (AGA) anti-

ganglioside antibodies (Figure 4.1 (A)). This compares to IgG responses 

detected in 2/57 (3.5%) CIDP, 0/30 MS (0%) and 2/27 (3.5%) HC.  

However the number of CIDP IgM AGAs is significantly higher than the 

number of CIDP IgG AGAs (p= 0.0042, Fisher’s exact test). Indeed those sera 

which were positive for IgG AGA’s had only borderline positive ODs with 

much higher IgM OD’s observed for the same ganglioside. Presumably the 

positive OD’s seen in this CIDP group reflect the polyvalent binding 

capabilities of the IgM AGAs.  

The number of IgM AGA positive sera was not significantly higher (χ2) 

compared to the MS and HC groups. However within those patients who had 

ODs>0.1, the actual OD’s observed for the CIDP group were higher compared 

to those observed in the combined MS and HC group (Figure 4.1, p=0.0487, 

Mann Whitney). The presence of IgM anti-ganglioside antibodies in our 

healthy controls may reflect the presence of laboratory workers with 

exposure to gangliosides in our healthy control population. Indeed 

exogenous gangliosides used to treat neurological diseases have been 

associated with the both the development of IgG against gangliosides and 

the development of GBS(Landi et al. 1993). 
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IgM directed against GD1b was the only antibody seen specifically more 

frequently in the CIDP group compared to the combined groups of MS and 

HCs (see Figure 4.2 and Figure 4.3) (p< 0.05, ANOVA with Bonferroni 

correction for multiple comparisons). These GD1b reactive sera were 

clinically and neurophysiologically indistinct from the rest of the CIDP 

cohort. Table 4.2 lists the final titres obtained for IgM AGAs in the CIDP 

cohort.  

Only 3/13 samples demonstrated binding to one glycolipid only via ELISA. 

This specific binding was not restricted to one lipid but to two individual 

glycolipids- GM1 (Serum 18 & 91) and GD1b (Serum 28). The rest of the AGA 

positive sera bound to a variety of glycolipid antigens (for details see Table 

4.2.). 

Antibody positive patients did not differ clinically from antibody negative 

patients. Table 4.3 lists the clinical details of the individual AGA positive 

patients. Table 4.4. lists the characteristics of antibody positive and 

negative patients.  Furthermore neurophysiological measurements including 

CMAP amplitude, motor conduction velocities and distal latencies were 

similar across the two groups (see Figure 4.4, 4.5 & 4.6.). This similarity 

between the two groups may be a result of our small sample size but this 

may reflect that AGA positive patients have a similar clinical picture to AGA 

negative patients. In addition pathologically there is no evidence that the 

AGA positive patients are differ from AGA negative patients(Toyka et al. 

2003)(Hughes et al. 2006). One may make the assumption therefore that we 

are not looking for the correct antigen(s).  Increasing the number of 

antigens and also investigating responses against complexes of glycolipids by 

employing the technique of combinatorial array may help therefore to 

identify additional antibody positive patients. 

One sample (36) bound MAG via ELISA with a titre of 7400 BTU. Interestingly 

this sera bound GM2 and GA1 with titres of 5000 and 10000 respectively. 
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Figure 4.1. ELISA binding ratios for AGAs and ODs of AGAs observed. 

(A)  Percentage of sera positive for IgM AGA’s in CIDP, MS and HC groups. 

(B) Percentage of sera positive for IgG AGA’s in CIDP, MS and HC groups. 

(C) OD’s of the detected AGA’s in CIDP and combined MS and HC groups. In the samples 

where there is more than one AGA the highest OD value is used. 
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Figure 4.2 AGA frequencies for GM1, GM2 and GD1a 

(A)- (F) IgM and IgG AGA frequencies for GM1, GM2 and GD1a across all 

groups. The dotted line intersects the Y axis at 0.1.  
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Figure 4.3 AGA frequencies for GD1b and GQ1b.  

(A)- (D) IgM and IgG frequencies for GD1b and G1b across all groups. The 

dotted line intersects the Y axis at 0.1. IgM antibodies to GD1b are found 

more frequently in the CIDP group compared to combined group of MS and 

HC (p< 0.05, ANOVA with Bonferroni correction for multiple comparisons) 
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Table 4.2. IgM anti-ganglioside reactivities of individual CIDP patients 
 

   ID GM1 GM2 GAI GD3 GM3 GD1a GD1b GT1b GQ1b 

  13 12500 2000 12500 0 0 0 12500 0 300 

  18 500 0 0 0 0 0 0 0 0 

  26 0 0 0 0 12500 12500 0 12500 0 

  28 0 0 0 0 0 0 12500 0 0 

  31 1000 12500 0 1500 12500 800 10000 12000 600 

  35 160 1000 2500 300 1400 0 160 700 0 

  36 0 5000 10000 0 0 0 0 0 0 

  63 0 0 200 0 2700 2500 0 2200 0 

  67 0 2500 150 0 0 4600 250 2500 0 

  73 0 0 150 900 0 200 200 200 0 

  75 1100 180 2400 0 140 0 12500 0 0 

  82 0 0 0 12500 700 12500 12500 12500 12500 

  91 4000 0  0  0 0 0 0 
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Table 4.3. Clinical details and anti-ganglioside specificity for IgM 
seropositive CIDP patients. 
 
ID Sex Age Disease 

duration in 
years 

ONLS *AGA specificity  

13 M 41 1 4 GD1a, GA1, GD1b 
18 M 64 19 2 GM1 
26 M 64 11 4 GM3, GD1a, GT1b 
28 M 61 4 5 GD1b 
31 M 49 29 5 GM2, GM3 

35 M 43 0.75 3 GA1 
36 M 65 6 3 GA1 
63 F 67 3 2 GM3 
67 M 38 14 4 GD1a 
73 M 80 5 6 GD3 
75 M 44 9 3 GD1b 
82 F 69 20 8 GD3, GD1a, GD1b, GT1b, 

GQ1b 

91 M 47 6 5 GM1 
 

* IgM AGA with highest titre. For full details of specificity see Table 4.2. 

 

M=male; F=female; Duration is presented in years; ONLS= overall neuropathy 

limitations scale (higher values indicate higher disability- range 0-12); AGA= 

anti-glycolipid antibody;  
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Table 4.4. Characteristics of anti-glycolipid antibody (AGA) positive and 
negative CIDP patients. 
 
 
 
 AGA positive 

(n=13) 
AGA negative  
( n=44) 

Total 
(n=57) 

 
Men 
 

 
11 (85%) 

 
29 (66%) 

 
40 (70%) 

 
Age (years) 
 

 
61 (43.5- 66) 

 
58 (47.5-63.5) 

 
58 (47-64) 

 
Duration of disease (years) 
 

 
7.5 (4.5-19.5) 

 
7 (4-13.5) 

 
7 (4-15) 

 
MRC sum score ( range 0-80) 
 

 
65 (55-76.5) 

 
72 (67.5-80) 

 
72 (65-76) 

 
ONLS score (range 0-12) 
 

 
4 (3-5.5) 

 
4 (2.5-4.5) 

 
4 (3-5) 

 
Upper limb ONLS score (range 0-5) 
 

 
3 (2-3) 

 
2 (1-2) 

 
2 (1.5-3) 

 
Lower limb ONLS score (range 0-7) 
 

 
2 (1-2.5) 

 
2 (1-2) 

 
2 (1.5-3) 

 
Sensory sum score (range 0-64) 
 

 
7 (0-19) 

 
9.5 (4-20) 

 
9 (4-20) 

 
Data are number (%) or median (IQR).  MRC sum score (possible range 0-80) 

higher values indicate greater strength; Sensory sum score (possible range 0-

64) higher values indicate greater impairment. There was no statistical 

difference in clinical phenotype between the antibody positive and negative 

groups (Mann-Whitney). 
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Figure 4.4. CMAPs in antibody negative (AGA -) and antibody positive 

(AGA +) patients.  

One CMAP measurement per patient. 

A. Median nerve 

B. Ulnar nerve 

C. Common peroneal nerve 

D. Tibial nerve 
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Figure 4.5. Motor conduction velocities in antibody negative (AGA-) and 

antibody positive (AGA+) CIDP patients 

A. Median nerve 

B. Ulnar nerve 

C. Common peroneal nerve 

D. Tibial nerve 
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Figure 4.6 Distal latencies in antibody negative (AGA-) and antibody 

positive (AGA+) CIDP patients 

A. Median nerve 

B. Ulnar nerve 

C. Common peroneal nerve 

D. Tibial nerve 
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4.3.2. ELISA vs. combinatorial array 
 

Initially I compared our combinatorial method to ELISA. Inter- and intra- 

assay variation did not statistically differ between the two methods (see 

Methods chapter). The control serum used in all ELISA and array 

experiments was positive for IgM directed against GD1a, GD1b and GQ1b but 

negative for antibody directed against GM1 and GM2. Similar results were 

observed between the two methods (Figure 4.7.). For IgG experiments 

serum with known IgG reactivities to the gangliosides GM1, GD1b and GT1a 

demonstrated similar responses using the two methods. These “positive 

control” sera were used in every “run” of experiments performed. 

All samples positive on ELISA for IgM AGA were similarly positive using the 

combinatorial method. Figure 4.8. displays correlation and Bland-Altman 

graphs for ELISA and array data observed. Correlation quantifies how well X 

and Y variables vary together. As the data is not normally distributed 

Spearman correlation was employed. Two-tail p values were all significant 

(with the exception of GQ1b) demonstrating a positive correlation between 

the two methods. 

As with the GBS data presented in Chapter 3, I have employed Bland-Altman 

plots to compare two assay methods(Bland et al. 1986). The graph is 

constructed so the difference between the two measurements (Y axis) is 

plotted against the average of the two measurements (X).  Once again as 

our two methods have different units of measurement, optical density and 

arbitrary units of intensity, the raw data is normalised. The highest value 

observed in each respective dataset was set as 100% with all other values 

expressed as a percentage. Whilst this is not ideal this method does give us 

a better feel of the agreement between the two methods. Correlation 

between the two methods whilst positive was not particularly strong (see 

Figure 4.8). 
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Figure 4.7. ELISA and array dilution of control serum. 
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Figure 4.8.  Correlation and Bland-Altman graphs. 

GM1 (A, B), GM2 (C, D), GD1a (E, F) GD1b (G, H) and GQ1b (I, J). 

 rs, the nonparametric Spearman correlation coefficient, has the range -1 to 

+1. P values quoted are two-tailed p values. The Bland-Altman graphs have 

three dotted lines intersecting the Y axis, representing the mean difference 

(middle dotted line) with the dotted lines either side of the mean difference 

representing the 95% limits of agreement.  
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4.3.3. Combinatorial array 
 

All CIDP samples positive on ELISA were similarly positive using the 

combinatorial array technique. However the combinatorial array allowed us 

to identify an extra 6 CIDP patients who demonstrated IgM against a variety 

of glycolipids (see Table 4.5 and Figure 4.9). IgM reactivity to glycolipids 

(not including sulfatide) was observed in 19/57 (33.33%) CIDP patients, 4/30 

(13.33%) MS patients and 2/27 (7.4%) healthy controls. IgM to glycolipids 

(not including sulfatide) was seen significantly more in the CIDP group 

compared to the combined group of MS patients and healthy controls 

(Fishers exact test, p=0.0105). 

There was no significant association of IgG or IgM directed against sulfatide 

or galactocerebroside within the CIDP group using the combinatorial array 

(see Figure 4.10).  

As we are dealing with 45 potential antigens per patient heatmaps have 

been employed to visualise the raw data.  Figure 4.11. and 4.12. illustrate 

heatmaps obtained using logarithmic transformations of the IgM mean 

intensities recorded for each lipid antigen. Different measures of 

hierarchical clustering techniques were applied to the data (with clinical 

and paraclinical information linked) were applied.  Figure 4.11 

demonstrates data from IgM reactivities of the CIDP cohort when the 

Pearson squared clustering technique was employed. Here it can be 

visualized that the CIDP patients segregate into different groups with a 

gangliosides reactive group, sulfatide only reactive group and a glycolipid 

antibody negative group.  In keeping with the ELISA data these groups did 

not differ clinically or electrophysiologically. In contrast to the ELISA data 

there was not one glycolipid/glycolipid complex antibody demonstrated 

significantly more frequently in the CIDP cohort. Data from healthy controls 

and MS patients is presented in Figure 4.13. 

Different patterns of antibody binding were observed in the CIDP group. The 

predominant pattern appeared to be a complex independent pattern of 
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binding with antibody binding to the glycolipid no matter what glycolipid it 

was partnered with (Figure 4.14.(A) and Figure 4.15 (A)). In addition 

attenuation of binding was observed in certain patients (Figure 4.14 (B) and 

Figure 4.15 (B)). In four patients was enhanced reactivity to complexes 

observed (Table 4.5.). This was once again defined as reactivity to the 

complex of lipids being greater than the sum of the reactivities for the two 

individual complexes and is illustrated in Figure 4.14. (C) (and Figure 4.15 

(C)). In all 4 cases binding to single glycolipids was negligible with arbitrary 

units of detection measuring <10,000. 

 

 

 

 

 

 

Table 4.5. Additional sera with detectable IgM glycolipids identified using 
combinatorial array 
 

Serum ID IgM glycolipid reactivity 

37 GD1b 

41 Complexes (GalC:GD3, GM2:GT1b) 

43 Complexes (GalC:GD3, GM2:GT1b) 

44 GM1 

79 Complexes (GD1a:GD1b) 

92 GM1 
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Figure 4.9 Combinatorial blot; extra samples identified and proportions 

of patients testing positive for IgM glycolipid antibodies 

Row and column headings reveal the complex at each location, “X”s represent the negative 

controls (methanol) which act as a line of symmetry for duplicate spots within the same 

membrane. 

A. Serum 37 on combinatorial blot 

B. Serum 41 on combinatorial blot 

C. Percentage of patients demonstrating IgM to glycolipids and their complexes 
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Figure 4.10. IgM and IgG to sulfatide and galactocerebroside. 

 

A. IgM sulfatide reactivities in CIDP, MS and HC groups. 

B. IgG sulfatide reactivities in CIDP, MS and HC groups.  

C. IgM galactocerebroside reactivities in CIDP, MS and HC groups. 

D. IgG galactocerebroside reactivities in CIDP, MS and HC groups. 
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Figure 4.11 IgM Array analysis in CIDP patients.  

Heatmaps, created using logarithmic transformations of the mean intensities recorded for 

each lipid antigen depicting serum IgM reactivity in individual patients. Lipids are displayed 

as column headings and each row represents an individual patient. 
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Figure 4.12 Heatmap depicting reactivity of IgM derived from CIDP. 

Created as before with logarithmically transformed data, the lipid antigens are displayed as 

column headings and each row represents an individual patient. Here the data has been 

clustered using Pearson squared revealing two populations of lipid reactive CIDP IgM, one to 

gangliosides and one to sulfatide. 
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Figure 4.13 Heatmap depicting reactivity of IgM derived from MS and HC. 

Heatmaps were created as before. 
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Figure 4.14 Patterns of AGA binding I 

A & B. Serum 13; illustrative blot demonstrating “complex independent” 

binding of antibody to GM1 e.g. GM1:GD1b 

C & D. Serum 91 illustrative blot demonstrating attenuation of anti-GM1 IgM 

when GM1 paired with more complex gangliosides e.g. GM1:GD1b 

E & F. Serum 73 illustrative blot demonstrating enhanced binding to the 

complex created by GM2/GD3 



  Chapter 4    

 176 

 

 
 

Figure 4.15. Patterns of AGA binding II. 

A. Bar chart of binding to GM1 alone and in complexes in serum 13. There is no significant 

difference in binding (Kruskal-Wallis with Dunn’s correction, n=3) 

B. Bar chart of binding to GM1 alone and in complexes in serum 91 (n=1) 

C. Reactivity to complex of GM2/GD3 is increased in patient 73 compared to the sum of 

intensities for each contributing lipid partner (p=0.0120, 2 tailed t-test, n=3) 
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Table 4.6. ELISA and combinatorial blot specificity for AGA positive 
patients* 
 

ID ELISA specificity Blot specificity 

13 GM1, GA1,GD1b GM1, GM2,  GD1a 

18 GM1 †GM1/- 

26 GD1a, GT1b GD1a, GT1b 

28 GD1b GD1b 

31 GM1, GM2, GD3, GD1b, GT1b, GQ1b GM2, GD3, GD1a, GD1b, GT1b 

35 GM2, GT1b Sulfatide & complexes 

36 GM2 GM2 

37 - GD3 

41 - Complexes  

43 - Complexes 

44 - GM1 

63 GD1a, GT1b GD1a, GT1b 

67 GM2, GD1a, GT1b GM2, GD1a, GT1b 

73 GD3 Complexes  

75 GD1b GM1, GD1b  

79 - Complexes 

82 GD3, GD1a, GD1b, GT1b, GQ1b GD3, GD1a,GD1b, GT1b, GQ1b 

91 GM1 GM1, GD3 

92 - GM1 

 

*All ELISA positives are titres above 1 in 500. All combinatorial blot positives 

have arbitrary units of intensity >10000 and are associated with a positive 

spot on direct visual inspection. 

† When first assayed this sample tested negative and was included in the 

heatmap data. However when the sample was re-assayed it bound GM1. This 

variability presumably is a reflection of the low titre (1 in 500 on ELISA). 
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Similarly to the GBS data we can divide the AGA positive CIDP patients into 

different groups depending on their glycolipid antibody binding patterns 

with 3 separate groups (see Figure 4.16). The majority (13/19) 

demonstrated binding to single gangliosides and to those gangliosides when 

combined with other lipids. 4/19 demonstrated binding only complexes of 

gangliosides. 
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Figure 4.16. Patterns of AGA binding  

A. Pie chart demonstrating IgM binding pattern of 19/57 CIDP sera 

B. Serum 82 demonstrating binding to single lipids and their complexes 

C. Serum 75 demonstrating binding to the single lipid GD1b and the complex 

created by GM1:GD3 

D. Serum 41 demonstrating binding to the complex GT1b:GM2 
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As per Figure 4.16 (C) in one patient there was evidence of enhanced IgM 

reactivity to the complex created by GD3 and GM1 (see Figure 4.17). 

Interestingly this patient had high titre antibody to GD1b. When the 

structures of all three molecules are investigated it may well be the case 

that GD3 and GM1 cluster together to mimic the shape of GD1b. Therefore 

this binding to a neocomplex may simply reflect the resilience of the “anti-

GD1b antibody” to recognize its preferred antigen conformation no matter 

what the circumstance. 

 

We identified 3 patients with IgM binding to GD1a and GT1b using ELISA and 

array methodology (Figure 4.18). As both gangliosides share a common 

structure moiety (Figure 4.19.), terminal NeuAcα2-3Galβ- moiety it is likely 

that this structure represents the antibody’s binding site in these particular 

patients. These patients were not clinically distinct compared to the rest of 

the CIDP cohort (see Table 4.7.). 
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Figure 4.17 IgM GD1b AGA patient with reactivity to the complex created 

by GM1 and GD3. 

A. Illustrative blot of serum 75  

B. ELISA of serum 75 demonstrating binding to GD1b  

C. Molecular structures of GM1, GD3 and GD1b 
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Figure 4.18 Array and ELISA data for GD1a/GT1b IgM positive patients 

A & B represent illustrative blot & ELISA data for serum 26 

C & D represent illustrative blot & ELISA data for serum 63 

E & F represent illustrative blot & ELISA data for serum 67 
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Figure 4.19. Structures of gangliosides GD1a and GT1b. 

Abbreviations: GalNAc, N-acetylgalactosamine; NeuAc, N-acetylneuraminic 

acid; Gal, galactose; Glc, glucose; CER, ceramide 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter 4    

 184 

Table 4.7.  Clinical characteristics of IgM GD1a/GT1b positive patients. 

 
 26 63 67 

Sex Male Female Male 

Age 64 67 38 

Disease duration 11 3 14 

MRC sum score (range 0-80) 48 63 73 

ONLS (range 0-12) 6 2 4 

UL ONLS (range 0-5) 2 0 2 

LL ONLS (range 0-7) 4 2 2 

Sensory score (range 0-64) 22 6 0 

MCV (average) 36 35.5 45.5 

dCMAP (average) 1.8 2.8 11.2 

 

MRC sum score (possible range 0-80) higher values indicate greater strength; 

Sensory sum score (possible range 0-64) higher values indicate greater 

impairment. 
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4.4. Discussion 
 

13 of 57 CIDP patients demonstrated IgM binding to glycolipid antigens using 

the technique of ELISA.  These sera displayed varying titres to a wide variety 

of glycolipid antigens from the simple GM1 (n=6), GM2 (n=6), asialo-GM1 

(GA1) (n=7), GD3 (n=4) to the more complex gangliosides including GD1a 

(n=6), GD1b (n=8), GT1b (n=7) and GQ1b (n=1). 10/13 sera demonstrated 

binding to more than 1 glycolipid with 3 sera demonstrating anti-glycolipid 

antibody binding of a monospecific nature. 

 

All samples testing positive via ELISA were similarly positive using the 

combinatorial array method. Although in some instances the ganglioside 

profile on ELISA did not exactly match that found using the array method. 

Use of the combinatorial array allowed the identification of an extra 6 

patients demonstrating IgM reactivity to glycolipids.  Using both techniques 

of ELISA and the combinatorial array, glycolipid reactivity did not segregate 

the CIDP patients into clinically or neurophysiologically distinct groups. 

 

Using ELISA, IgM directed against GD1b was the only antibody seen 

specifically more frequently in the CIDP group compared to the combined 

groups of MS and HCs. These GD1b reactive patients did not differ clinically 

or electrophysiologically from other CIDP patients.  Although it is 

noteworthy that these patients display a wide range of anti-GD1b titres. In 

addition they display reactivity to a wide range of other glycolipids on ELISA 

and array platforms (Table 4.2. and Table 4.6.). Often GD1b reactivity, in 

conjunction with reactivity to other disialylated gangliosides, is seen in 
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conjunction with an IgM paraproteinaemic neuropathy(Willison et al. 2001). 

The clinical picture here is characterized by preserved motor function in the 

limbs with a sensory ataxia. Interestingly one of the CIDP cohort, serum 82, 

which is illustrated in Figure 4.16 (A) displays strong binding to the 

gangliosides GD3, GD1b, GT1b and GQ1b using the array technique.  This 

pattern of binding was observed on ELISA with additional strong reactivity to 

GD1a (see Table 4.2). GD3, GD1b, GT1b and GQ1b all share a common 

moiety the terminal NeuAc(α2-8) NeuAc (α2-3) Gal which is likely to be the 

primary binding site for this IgM antibody. Furthermore this particular 

patient, who has had CIDP for 20 years, has minimal motor deficit scoring 

well with a total MRC score of 68/80 (higher scores indicate higher strength) 

with a high sensory sum score of 40/64 (higher scores indicate greater 

impairment).  

 

In contrast to the ELISA method, using the combinatorial array did not 

reveal that any glycolipid/glycolipid complex antibody was demonstrated 

more frequently in the CIDP cohort.   

 

Previous work involving animal models of CIDP have suggested that the 

simple lipid galactocerebroside, comprising a galactose molecule linked to a 

ceramide, is implicated in the pathogenesis of this disease. Chronic 

experimental autoimmune neuritis (the animal model of CIDP- EAN) has 

been shown to be induced in rabbits by immunisation with 

galactocerebroside(T. Saida et al. 1979). Here rabbits were immunized 

repeatedly with bovine brain galactocerebroside and developed a 

neurological disorder specific to the peripheral nervous system 

characterised by flaccid quadraparesis, limb hypaesthesia and respiratory 

paralysis. A subsequent study employing intraneural injection of the rabbit 

anti-galactocerebroside serum produced focal demyelinating lesions in rat 

sciatic nerves(K. Saida et al. 1979). A further study suggests that this anti-
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galactocerebroside serum mediates pathology via antibody dependent 

mechanisms and complement activation as demyelinating activity was lost 

after complement inactivation(Sumner et al. 1982). However to date no 

group has reported an association of anti-galactocerebroside antibodies with 

CIDP patients(Hughes et al. 1984)(Rostami et al. 1987)(McCombe, Pollard & 

McLeod 1988a). This study agrees with these earlier reports of a lack of 

autoimmune response against galactocerebroside. In addition in keeping 

with observations from other groups there was no demonstrable IgG or IgM 

response to the closely related lipid, sulfatide, which was specific to the 

CIDP group. 

 

Using ELISA I observed many different patterns of antibody specificity.  In 

the case of anti-GM1 antibody specificity three main patterns have been 

described (Willison et al. 2002) :  

 

1. Anti-GM1 antibodies that cross react with the terminal Gal (β1-3) GalNAc 

structure and will therefore react with those glycolipids bearing the same 

terminus such as asialo-GM1 and GD1b.  

2. Anti-GM1 antibodies that cross react with GM2 as both lipids share an 

internal sialyated galactose moiety 

3. Anti-GM1 antibodies that are monospecific to GM1 only 

 

Six sera had demonstrable titres to GM1 (Table 4.2).  In keeping with the 

first pattern described above, one of these sera bound the three glycolipids 

GM1, asialo GM1 and GD1b using ELISA. However when assayed using the 

combinatorial array binding was demonstrated to GM1, GM2 and GT1b (see 
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Figure 4.14 (A)). As asialo-GM1 was not employed in the array technique we 

cannot comment on binding to asialo-GM1 using this technique. No sera with 

specificity to GM1 and GM2 alone were observed. Two of the GM1 reactive 

sera reacted in a monospecific fashion to GM1 alone using ELISA but when 

the combinatorial blot was employed one of these sera recognized GD3 in 

addition to GM1. The remaining three GM1 positive sera bound to a number 

of other glycolipid antigens (between 4 and 7) when assayed by ELISA. In 

each of these three cases (see Table 4.2) reactivity for other glycolipid 

antigens was higher than that observed for GM1. These three sera also had 

differing profiles using the combinatorial blot with one not recognizing GM1 

whatsoever, another only recognizing GM1 when complexed with other 

lipids, and the third recognizing GM1.  

 

This variation in specificity between ELISA and the combinatorial blot is 

almost certainly a reflection of the platform upon which the lipids are 

presented. Compared to a plastic ELISA plate, PVDF is a porous substance 

and one may hypothesize that when lipids are presented using this platform 

they create conformations that are different to those created on an ELISA 

plate. Which technique more closely relates that of human myelin is as yet 

unclear. 

 

However this possible variation in conformation clearly does not affect the 

findings in all sera as illustrated by the GD1a and GT1b reactive sera 

(illustrated in Figure 4.18) in whom findings on ELISA and the combinatorial 

blot method correlate well. Clearly neither technique of antibody detection 

is a perfect gold standard assay. We know that gangliosides aggregate in 

functional cholesterol rich microdomains with other glycolipids and 

proteins(Simons et al. 1997). The “gold standard” assay will need to take 

this into consideration. 
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These patients with demonstrable IgM responses to GD1a and GT1b (figure 

4.18) did not differ clinically nor electrophysiologically from other antibody 

positive or negative patients (Table 4.4). As GD1a and GT1b share the same 

terminal NeuAc (α2-3) Gal moiety it is likely that this IgM antibody 

recognizes this particular conformation (Figure 4.19). Both gangliosides 

serve as ligands for myelin associated glycoprotein (MAG)(Collins et al. 

1997). MAG is located in the periaxonal membrane of Schwann cells(Trapp 

et al. 1989). Mizutani and colleagues reported a male patient with a 

demyelinating neuropathy with a similar antigen specificity of IgM to GM3, 

GD1a and GT1b(Mizutani et al. 2001).The authors make the observation that 

the neuropathology observed in mice deficient in such complex gangliosides 

is similar to that seen in MAG deficient mice(Sheikh et al. 1999). They then 

speculate that in their case antibodies to the glycolipid antigens could 

potentially play a role in a demyelinating process by inhibiting adhesion 

between myelin and axonal membrane. Interestingly when reassayed on a 

wider panel of lipids only one of these sera bound to the closely related 

lipid GM3 which shares the same terminal epitope. In addition a MAG IgM 

was not demonstrated in any of these samples. In fact the only positive 

serum for MAG bound the structurally different glycolipid GM2 using both 

ELISA and the array method. 

  

 

Work into the responses of CIDP serum to glycolipid complexes is underway 

across many research groups. One study has recently investigated anti-

complex antibodies in CIDP and MMN (multifocal motor neuropathy) using 

ELISA. They investigated sera IgM reactivity to 5 gangliosides (GM1, GM2, 

GD1a, GD1b and GT1b) and all their 1:1 combinations(Nobile-Orazio et al. 

2010). New reactivities to complexes were only seen in patients testing 

positive for other gangliosides.  Modulation of lipid binding was apparent in 
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the MMN group with binding to GM1 attenuated by GD1a.  In contrast to 

Nobile-Orazio’s work we did demonstrate 4 patients with new reactivities to 

complexes with no demonstrable binding to single glycolipids. However 

these complex reactive sera compiled a small subset of the glycolipid 

reactive sera (4/19). This contrasts with our GBS data where we observed a 

higher proportion of patients (15/42) with detectable antibody only to 

complexes of lipid with 26/42 in total demonstrating anti-ganglioside 

complex reacitivty. 

 

The small number of glycolipid reactive sera (19/57) may be a consequence 

of the number lipids employed in the combinatorial array. With the current 

technique we are limited in the number of glycolipid antigens we can print 

per slide and did not include such lipids as LM1 

(sialosylneolactotetraosylcermaide) and SGPG (sulfated glucuronly 

paragloboside). Both lipids are difficult to isolate and are not commercially 

available. LM1 is a major peripheral nerve myelin glycolipid and its structure 

is closely related to that of GM1 (Ogawa-Goto et al. 1998).  However one 

early study has not demonstrated any IgM response to this lipid in a CIDP 

cohort(Melendez-Vasquez et al. 1997). SGPG has a similar structure to LM1, 

except for a 3-sulfated glucuronic acid instead of a sialic acid on the 

terminal saccharide chain. Initial investigations into responses against this 

lipid in CIDP did not prove fruitful however in 1996 Yuki et al demonstrated 

IgM response to SGPG in 12/30 (40%) CIDP patients(Ilyas et al. 1991)(Ilyas, 

Mithen, Dalakas, Chen & Cook 1992a)(Yuki, Tagawa & Handa 1996a). 

Including these lipids in future combinatorial arrays may yield a higher 

number of glycolipid reactive CIDP sera. However an alternative explanation 

is that this small number of lipid reactive IgM are simply an epiphenomenon 

of other pathological cascades and that anti-glycolipid antibodies do not 

have a significant role in CIDP. 
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Antibody positive patients did not differ clinically or neurophysiologically 

from antibody negative patients which may suggest that we are continuing 

to search for the wrong antigens.  The failure of this combinatorial approach 

to recognize a common antigenic target in CIDP may reflect the 

heterogeneous clinical and perhaps, the pathological nature of CIDP. If 

specific subsets of CIDP patients are interrogated (e.g. those who respond 

well to immunotherapies) for anti-glycolipid responses using a wider range 

of glycolipids, we may have success in the search for the elusive target 

antigens involve in this disease. 
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Chapter 5. Multiple Sclerosis 
 

5.1. Introduction 
The realization that lipids exist in functionally distinct rafts in partnership 

with fellow lipids and the recent description of anti-ganglioside complex 

antibodies leads us to question whether anti-lipid complex antibodies are a 

feature of multiple sclerosis.  Our first series of analyses was to use the 

combinatorial lipid array approach to investigate antibody specificities of 

multiple sclerosis CSF.  

 

We wanted to investigate the response of MS CSF to central nervous system 

myelin derived lipids. Myelin is particularly characterized by the high ratio 

of lipid to protein. Produced by oligodendrocytes within the CNS, myelin 

typically is composed of 70-85% lipid and 15-30% protein(Norton 

1977)(Anderson et al. 1992). Table 5.1. demonstrates Norton’s findings of 

composition of central nervous system myelin. The 3 main groups of lipids 

found in myelin include cholesterol, phospholipids and galactolipids. There 

are no lipids which are specific to human myelin however it is characterized 

by relatively high levels of galactocerebroside. In addition to the two main 

galactolipids, galactocerebroside and sulfatide, myelin also contains some 

minor galactolipids including fatty acid esters of galactocerebroside and the 

glycerol based lipids, mono and digalactosyldiglyceride(Norton 1977).  

Gangliosides have also been reported in myelin in particular GM1 accounting 

for 70 moles % of total ganglioside. The galactosylceramide derived 

ganglioside GM4 is also present in CNS myelin. An additional factor in the 

heterogeneity of these myelin based lipids includes the length of the fatty 

acid chain, degree of hydroxylation and degree of saturation.  

Oligodendrocytes synthesize galactolipids that characteristically contain in 

their ceramide part very long chain fatty acids with 18 to 24 carbon atoms
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Table 5.1. Composition of human central nervous system myelin- adapted 

from Table 1, Chapter 5, Isolation and Characterization of Myelin, Myelin, 

2nd Edition(Norton 1977). 

Substance Human myelin 

Total proteina                          30 

Total lipida                          70 

Cholesterol                          27.7 

Total galactolipid                          27.5  

-galactocerebroside                          22.7 

-sulfatide                          3.8 

Total phospholipid                          43.1 

- ethanolamine phosphoglycerides                          15.6 

-choline phosphoglycerides                           11.2 

- serine phosphoglycerides                          4.8 

- inositol phosphoglycerides                          0.6 

-sphingomyelin                          7.9 

Plasmalogen                          12.3 

  

 
a Protein and lipid figures are in percentage dry weight; all others are in 

percentage total lipid weight 

 

 

 

We started with a large scale array of 22 commercially available lipids 

(Table 2.1 and Figure 5.1.) that represented lipids that were constituents of 

CNS myelin and that were commercially available. Details of lipid origin are 

outlined in Chapter 2, Table 2.1.  We screened CSF derived from MS patients 

(n=12) and patients with other neurological disease (OND) (n=12). No 

binding to gangliosides was observed in any of the MS patients however a 

there was a non statistical trend observed for binding to the myelin derived 

lipid sulfatide. Therefore a smaller combinatorial grid was composed 

consisting of predominantly myelin derived lipids. 



  Chapter 5    

 194 

 

 



  Chapter 5    

 195 
 



  Chapter 5    

 196 

 

 

 

Figure 5.1. Preliminary combinatorial grid. 

Key to the grid is outlined below. Row and column headings reveal the 

complex at each location 

A. Serum 070536 

B. CSF from MS patient 20630 

 

A Sulf l GD1a 
B GalC m GD1b 
C Chol n GT1a 
D Sphingomyelin o GT1b 
E GA1 p GQ1b 
F GM1 q DGG 
G GM2 r PC 
H GM3 s PE* 
I GM4 t PIP (4) 
J GD2 u PL 
K GD3 v PS 
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The final 10 candidate lipids were used in the array included: 

 

1. Sulfatide; this was a lipid of interest due to the description of antibodies 

reactive to sulfatide within MS CSF as discussed earlier. 

2. Galactocerebroside; this closely related lipid has similarly been 

investigated in MS. Various in vitro models have suggested that anti-

galactocerebroside antibody may have demyelinating characteristics(Fry et 

al. 1974)(Raine et al. 1981).  Fry et al demonstrated that, when applied to 

mouse spinal cord cultures, antisera to galactocerebroside inhibited 

sulfatide synthesis and led to demyelination. Later Raine et al demonstrated 

that the demyelinating capabilities of anti-galactocerebroside sera on 

mouse spinal cord cultures was comparable to that observed with sera 

against whole white matter. 

 Also passive antibody transfers in myelin basic protein- primed animals 

further suggest the demyelinating properties of anti-galactocerbroside 

antibodies(Fierz et al. 1988). Further work suggests that anti 

galactocerebroside antibodies and not anti sulfatide antibodies alter the 

organization of myelin membrane sheets in both the PNS and CNS(Dyer et al. 

1988).  Both galactocerebroside and sulfatide have been implicated in the 

mediation of Ca2+ influx with each lipid mediating this function 

independently(Dyer et al. 1991). It has been suggested therefore that 

galactocerebroside and sulfatide may play different roles in the regulation 

and maintenance of myelination with antibody binding disrupting this 

process(Stoffel et al. 1997). In relation to CNS demyelination a recent study 

suggests that serum anti-galactocerebroside antibodies may be MS specific 

and may further aid in disease stratification being observed more frequently 

in the relapsing-remitting subgroup(Menge et al. 2005).  
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3. Ceramide was chosen because it is the natural precursor lipid of the 

galactolipids galactocerebroside and sulfatide (Chapter 1, Figure 

1.5.)(Stoffel et al. 1997). 

 4. Cardiolipin was chosen as a “reference” lipid not typically seen in CNS 

myelin. 

5. Sphingosine was chosen as it is a precursor of galactolipids. 

6. Sphingomyelin was chosen as it is highly expressed in CNS myelin (Table 

5.1.). 

7. Cholesterol is the major contributory lipid to myelin and was therefore 

included. 

8 & 9.  Galactosyl diglycerides occur in brain tissue. Monogalactosyl 

diglyceride is transformed into digalactosyl diglyceride by α galactose. The 

enzymes involved in the synthesis of these two molecules are present in 

oligodendrocytes and their activity appears to be related to the process of 

myelination during development(Pieringer et al. 1973).Early work by Hirsch 

and colleagues has suggested that MS derived sera is particularly reactive to 

the lipid, digalactosyl diglyceride, demonstrating that MS sera caused lysis 

preferentially of liposomes created with digalactosyl diglyceride(Hirsch et 

al. 1976). 

10.  As there was only one place left on the combinatorial grid one 

phospholipid was chosen to complement the selection of lipids. No one 

phospholipid appeared to affect binding in any significant manner on the 

initial array therefore one, phosphatidylcholine, was chosen randomly from 

the group of available phospholipids. 
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5.2. Methods 

5.2.1. ELISA 
The specificities of sera for gangliosides were assayed by ganglioside ELISA 

as described in section 2.2.3. A positive binding result was considered to 

give an OD490nm of 0.1 or above. 

 

5.2.2. Combinatorial array 
Anti-complex lipid reactivity was assayed by combinatorial lipid array as 

described in 2.2.4. We investigated CSF and serum IgG response to 10 

individual  lipids (see Table 2.1. for details): sulfatide (Sulf) , 

galactocerebroside (GalC) , ceramide (Cer), cardiolipin (Cardio) (Sigma-

Aldrich, UK), sphingosine (SS), sphingomyelin (SM), cholesterol (Chol), 

digalactosyl diglyceride (DGG) , monogalactosyl diglyceride (MGG) (Sigma-

Aldrich, UK), L alphaphosphatidylcholine (PC) and all their possible 1:1 

complexes (55 target antigens in total).  CSF and serum samples were 

probed at 1:10 and 1:100 dilutions respectively.  Monoclonal antibodies 

were probed at a concentration of 10µg/mL unless otherwise stated. When 

testing the recombinant Fab-fragments membranes were probed as before. 

However instead of using anti-human IgG as a secondary, 1:5000 diluted 

horseradish peroxidase-labelled anti-HIS (C-terminal) antibody (Miltenyi) 

was employed. A chemiluminescent reaction was employed again using ECL 

plus (Amersham/GE Healthcare, UK) and rendered on radiographic film after 

1 minute exposure. Films were digitalized by flatbed scanning and the 

images quantified by  Total Lab software (Amercham Biosciences, UK). 

 

5.2.3. Statistical analysis 
 

ANOVA analyses were used to compare anti-glycolipid levels between more 

than three groups. The Mann-Whitney test was used to compare anti-
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glycolipid antibody levels between two groups. Paired t tests were used to 

detect if anti-complex antibodies were of higher intensity than antibodies to 

the contributing single lipid. Differences in proportions were tested for 

significance by chi-squared test and Fisher’s exact test where appropriate. 

These analyses were performed with PRISM4 (GraphPad software, USA). Raw 

data was logarithmically transformed (log 2) and heatmaps, hierarchical 

clustering  and further ANOVA analyses were performed by Dr Gabriela 

Kalna of the University of Glasgow using Partek Geometrics Suite software 

(Partek Incorporated, USA). 

 

 

5.2.4. Immunohistology of Myelinating cultures 
 

In vitro myelinating cultures were established according to Sorenson et al  

and were carried out by Dr Ariel Arthur, University of Glasgow(Sorensen et 

al. 2008). Briefly, a single cell suspension was prepared from E15.5 rat 

spinal cord (Sprauge Dawley) and plated on to a confluent monolayer of 

neurosphere derived astrocytes in 50% DMEM, 25% horse serum (heat 

inactivated), 25% HBSS with Ca2+ and Mg2+, and 2 mM L-glutamine 

(Invitrogen) (plating media) at a density of 150,000 cells/200µL/13mm 

diameter cover slip. Cells were left to attach for 2 hrs at 37°C after which 

was added an additional 300µl of plating media and 500µL of differentiation 

medium (DM) which contained DMEM (4,500 mg/mL glucose), 10ng/mL 

biotin, 0.5% N1 hormone mixture (1mg/mL apotransferrin, 20mM putrescine, 

4µM progesterone, and 6 µM selenium) 50nM hydrocortisone, and 0.5mg/mL 

insulin (Sigma). Cultures were maintained at 37°C/7%CO2 and fed three 

times a week by replacing half the culture medium with fresh 

differentiation media.  After twelve days in vitro (DIV) insulin was omitted 

from the culture medium to promote myelination.   
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Immunohistological interrogation of cultures (28 DIV) for the recombinant 

antibody binding (n = 8, Denver clones 4, 17, 33, 37, 73, 76, 80, 97) (Table 

5.7) was performed as follows. Human antibodies, or the mouse IgM anti-

sulfatide antibody, O4 were applied for 30 min at 4°C, in conjunction with 

the anti-MOG antibody, Z2. After washing in ice cold DMEM, cultures were 

fixed in 4% paraformaldehyde for 15 min at room temperature followed by 

exposure to the appropriate secondary antibody for 45 min at room 

temperature (Alexa Fluor®, Invitrogen). Unbound secondary antibody was 

removed by washing with PBS followed by distilled H20 and mounted in 

Vectashield (Vector laboratories).  

 

5.2.5. Patients 
 

CSF and serum IgG lipid reactivities were investigated in archived MS and 

other neurological disease (OND) samples. In the group of 40 MS patients, 24 

had relapsing-remitting MS (RRMS) and 16 had primary progressive (PPMS). 

All patients met the McDonald criteria for the diagnosis of MS(Polman et al. 

2005). The group of 40 patients with OND had the following diagnoses:  

Neuropathy (9- including 1 GBS, 1 MMN and 2 chronic demyelinating 

neuropathies); Migraine (4); Idiopathic intracranial hypertension (4); Non-

specific headaches (2); Negative investigations for demyelination (11); 

Parkinson’s disease (2); Stroke (2); Cerebral venous sinus thrombosis (1); 

Viral meningitis (1); Cervical spondylosis (1); Dementia (1); Progressive 

ataxia (1); Pancreatic cancer (1). Casenotes were retrospectively reviewed 

for demographic data. Characteristics of the patients are outlined in Table 

5.2. The study was carried out in accordance with the local ethics 

committee (South Glasgow and Clyde REC). 
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Table 5.2. Characteristics of MS patients 
Variable MS  OND  

Number 40 40 

Sex   

    Male 26 12 

    Female 24 28 

Age (y)   

    Median 38.5 44.5 

    Range 25-64 16-69 

CSF IEF   

    isolated OCB 37 0 

    no bands 1 36 

    other* 2 4 

 

 

* Polyclonal or monoclonal CSF IgG or paired bands in CSF & serum 
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5.3. Results 

5.3.1. CSF and serum from Scottish MS patients 
 

Heat map analysis identified a disease-associated lipid-specific CSF antibody 

response in MS (Figure 5.2.) that preferentially targeted sulfatide (column 1, 

ANOVA with Bonferroni p-value adjusted for multiple testing; p=0.004) and 

heterodimeric complexes of sulfatide with other lipids, including 

galactocerebroside (p=0.03) (Figure 5.3.). Within individual CSF samples it 

was evident that antibody binding was modulated by specific lipid 

partnerships. In particular within MS CSF, binding to sulfatide was inhibited 

by combination with sphingomyelin (p< 0.01, 1 way ANOVA with Dunnett’s 

correction) (Figure 5.2. (A) & Figure 5.3. (B)). Lipid reactive antibodies were 

detected in 60% of MS and 25% OND CSF. The majority (75%) of the lipid 

reactive MS CSF samples recognized sulfatide and/or sulfatide containing 

complexes. The CSF sulfatide binding in MS patients appears to be MS 

specific as it was mostly unaccompanied (77%) by a corresponding serum 

response to sulfatide or sulfatide containing complexes indicating the 

response was intrathecal (p= 0.007 Fishers exact test compared to OND 

CSF/serum pairs) and may therefore represent OCB specificities.  
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Figure 5.2. Array analyses in patient CSF and serum 

Heatmaps, created using logarithmic transformations of the mean intensities recorded for 

each lipid antigen, depicting CSF (A) and serum (B) IgG reactivity in MS and OND patients. 

Lipids are displayed as column headings and each row represents an individual patient. 
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Figure 5.3. Dotblots of anti-sulfatide IgG in CSF of MS & OND patients 

A.  CSF anti-sulfatide/sulfatide complexes in CSF of patients with MS and OND. Closed 

circles denote MS CSF and open circles denote OND CSF. Reactivities to sulfatide and 

particular combinations of sulfatide with other lipids were observed more frequently within 

MS CSF. (p values shown have been obtained with ANOVA with Bonferroni). 

B. CSF anti-sulfatide/sulfatide complexes in CSF of MS patients only. Binding to sulfatide is 

inhibited when combined with sphingomyelin (p< 0.01, 1 way ANOVA with Dunnett’s 

correction) 
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Antibody binding was modulated strongly by interactions with other lipids 

resulting in different patterns of reactivity.  These included both complex- 

enhanced recognition, in which antibody binding to a heterodimeric 

complex is greater than to either individual component, and complex-

inhibited, in which certain lipids e.g. sphingomyelin inhibited antibody 

binding. Figure 5.4. illustrates complex enhanced recognition in MS CSF, 

where binding to the complex formed by cholesterol and cardiolipin is 

increased by 96.3% compared to the sum of the intensities for the individual 

lipids (p=0.0004, paired t test, n=3)  

 

Figure 5.5. demonstrates complex inhibition. Here the CSF specific IgG binds 

to sulfatide to yield a mean relative intensity signal of 57.1%, yet the 

intensity for the complexes of sulfatide created with the lipids ceramide, 

sphingomyelin and phosphatidylcholine is almost eliminated at between 

1.96% and 3.66% (p<0.0001, GLM ANOVA with Tukey, n=3). This is in contrast 

to the corresponding serum sample from the same patient which 

demonstrates IgG reactivity to digalactosyl diglyceride which is complex 

independent i.e. binding is not modulated by lipid partnerships. 
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Figure 5.4. Complex enhanced  reactivity 

A.CSF IgG blot from MS patient ID 21699. Row and column headings reveal the complex at 

each location. “x”s represent the negative controls (methanol) which act as a line of 

symmetry for duplicate spots within the same membrane.  

B. Serum IgG blot from MS patient ID 21699 

C. Quantitative analyses of CSF IgG reactivity. The array units have been normalized with 

the highest observed value for CSF set at 100%. All other data is expressed as a percentage 

of this observed value. 

D & E Molecular structure of cholesterol and cardiolipin respectively 
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Figure 5.5. Modulation of lipid binding by lipid partnerships 

A CSF IgG blot from MS patient ID 40584 

B Serum IgG blot from MS patient ID 40585 

C Quantitative analyses of CSF 40584 IgG reactivity.   

D Quantitative analyses of Serum 40585 IgG reactivity.  

† The data in C & D have been normalized to the highest value observed in the CSF and 

serum datasets respectively. 
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This CSF IgG anti-sulfatide response appears to be restricted to the CSF as in 

the majority of MS patients there was no accompanying serum anti-sulfatide 

response. This is in contrast to OND samples where anti-sulfatide IgG was 

typically present in paired samples of CSF and serum (p=0.007 Fishers exact 

test). One may assume then that these CSF specific IgG responses are 

intrathecal and may represent OCB specificities. However, whole CSF 

samples include antibodies from the polyclonal background (which 

predominantly originate from plasma filtered in the choroids plexus) in 

addition to the OCB therefore the anti-lipid response observed here may not 

be secondary to the OCB.   

 

To distinguish individual OCB from irrelevant background antibodies, we 

collaborated with two independent research groups who developed separate 

techniques for isolating OCB. For the first approach recombinant antibodies  

were produced from single B- and plasma cells(Owens et al. 2009). This 

approach became feasible since it was shown that CSF-resident cells of the 

B lineage may produce OCB(Obermeier et al. 2008).  

 

5.3.2. Lipid reactivity of recombinant antibodies from single CSF B cells 
 

We investigated 100 recombinant antibodies (rAb) derived from clonally 

expanded CSF B cells/plasmablasts obtained from patients with MS (n=11; 73 

rAb) and other CNS inflammatory diseases (OIND; n= 6; 27 rAb) (Table 

5.6)(Burgoon et al. 1999)(Owens et al. 2006)(Burgoon et al. 2006)(Bennett 

et al. 2009). Overall, lipid specific rAb were generated from 45% of MS 

patients and accounted for 27 % (20/73) of the total rAb, of which 19% 

(14/73) bound sulfatide and/or sulfatide containing complexes whilst the 

remaining 8% (6/73) recognized cholesterol (Figure 5.6.(A) and (B)) 
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Antibody binding was strongly modulated by interactions with other lipids 

resulting in patterns of lipid reactivity similar to that observed in the whole 

patient CSF. This included both complex-enhanced recognition, in which 

binding to a heterodimeric complex is greater than to either individual 

component (Figure 5.7.A,C) and complex inhibited, in which certain lipids 

inhibit antibody binding (Figure 5.7. B, D). Even in the case of apparently 

complex independent responses (Figure 5.9) lowering the rAb concentration 

reveals the preferred target is provided by a sulfatide/galactocerebroside 

complex.  
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Table 5.3. Features of recombinant antibodies (rAbs) derived from MS 
and OIND CSF 
 
Patient  rAb  Diagnosis No of 

rAbs 
produced 

No of 
rAbs 
reactive 
to lipid 

MS 02-19 1, 2, 19, 20,  57, 58, 
59, 60, 61 

PPMS 9 0 

MS 03-1A 3, 4, 5, 6, 69, 70, 71, 
72, 73, 74, 75, 76, 77 

MS 13 7 

MS 04-2 7, 8, 9, 62, 63, 64, 65 
 

PPMS 7 3 

MS 03-7 
 

66, 67 RRMS 2 0 

MS 04-3A 
 

68 RRMS 1 0 

ON 03-5A 
 

27, 28, 29 30 MS 4 0 

ON 03-3A 
 

21, 22, 23, 24, 25, 26 MS 6 0 

ON 04-7A 
 

31, 32, 33, 34, 35, 36, 
37 

MS 7 2 

ON 04-8A 
 

38, 39, 40, 41 MS 4 0 

ON 07-7A 
 

51, 52, 53, 54, 55, 56 MS 6 1 

MS 05-3 
 

10, 11, 12, 13, 14, 15, 
16, 17, 18, 78, 79, 80, 
81, 82, 

RRMS 14 7 

IC 05-2B 
 

87, 88, 89, 90, 91, 92 Chronic 
meningitis 

6 0 

IC 06-1C 
 

83, 84, 85, 86 SSPE 4 2 

SSPE 83D 
 

93, 94 SSPE 2 1 

IC 04-4 99, 100 Cryptooccal 
meningitis 

2 0 

ON 07-5E 
 

42, 43, 44, 45, 46, 47, 
48, 49, 50 

NMO 9 4 

IC 08-5F 95, 96, 97, 98 VZV 
radiculopathy 

4 3 

 

A Single-cell repertoire analysis was performed on CSF obtained during their first clinical 
event. Each CIS patient subsequently developed relapsing-remitting MS within a 6 month 
period 
B Single-cell repertoire analysis was performed on CSF obtained from a patient with chronic 
meningitis. The cause of the disease and the specificity of the rAbs are unknown. 
C Single-cell repertoire analysis was performed on CSF obtained from a patient with 
subacute sclerosing panencephalitis (SSPE). All the rAbs have been demonstrated to bind 
measles virus (MV) proteins (Owens et al 2006b) 
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D Single-cell repertoire analysis was performed on plasma cells microdissected from SSPE 
brain tissue by laser capture. Both rAbs bind the MV nucleocapsid protein  (Burgoon et al 
1999, Burgoon et al 2006) 
E Single-cell repertoire analysis was performed on CSF obtained during an initial event of 
optic neuritis. The patient was subsequently diagnosed with neuromyelitis optica.  6 of 
these rAbs recognize the aquaporin-4 water channel (Bennett et al 2009) 

F Single-cell repertoire analysis was performed on CSF obtained from a patient with VZV 
radiculomyelitis. The specificity of the rAbs is unknown.  
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Antibody binding was strongly modulated by interactions with other lipids 

resulting in patterns of lipid reactivity similar to that observed in the whole  
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Figure 5.6. Array analysis for rAbs 

(A) Heatmap depicting reactivity of rAbs derived from MS, NMO and OIND 

patient CSF, created as before. The lipid antigens are displayed as column 

headings and each row represents an individual rAb.  

(B) Covariance clustering has been performed revealing two populations of 

lipid reactive antibodies; one directed against sulfatide or sulfatide/lipid 

complexes and the other against cholesterol. MS rAbs do not segregate with 

unique binding profiles, as similar reactivities are also seen in OND rAbs 

(19% vs. 37%). 
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The array also demonstrated that a single rAb could bind an epitope formed 

by one lipid pair (Sulf/GalC) and another lipid pair comprising a combination 

of two structurally unrelated lipids (cholesterol/cardiolipin) (Figure 5.7. and 

Figure 5.8). This again suggests that antigen shapes could be mimicked by 

complexes generated from several structurally different lipids, or that 

certain antibodies are able to bind multiple antigens. The array patterns 

obtained using individual rAbs reproduced many features observed when 

arrays were probed with CSF from unrelated MS patients indicating that 

these anti-lipid antibodies represent commonly represented components of 

this intrathecal response. Importantly, these specificities were not unique 

for MS as lipid reactive rAb were also recovered from clonally expanded CSF 

B cells isolated from OND patients (Figure 5.6 and Figure 5.10). This 

suggests that MS does not differ from OIND with respect to the initial 

recruitment/expansion of these B cells, but may promote their retention 

and activation enabling them to make a sustained contribution to the 

intrathecal antibody response. Interestingly data from our collaborators 

show (Table 5.3) that several of these lipid-reactive OIND rAbs also bind 

defined protein antigens. This is not a unique phenomenon as demonstrated 

by the specificity of neutralizing anti-HIV antibodies which can recognize 

complex epitopes formed by HIV gp41 and phospholipids such as cardiolipin 

(Alam et al. 2007). 
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Figure 5.7. Modulation of rAb binding by lipid partnerships 

(A, C) Blot and quantification of MS rAb 3 with anti-lipid complex reactivity. Binding to the 

complex of sulfatide and galactocerebroside is increased by 82.84% (p=0.004 paired t test, 

n=3) compared to the sum of the mean intensities recorded from the individual lipids. 

(B, D) Blot and quantification of MS rAb 76 with binding to sulfatide inhibited when 

sulfatide is complexed with the lipid sphingomyelin (p<0.0001 GLM ANOVA with Tukey, n=3) 
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Figure 5.8. Structures of lipid complex partners recognized by MS rAb 3 

A. Sulfatide 

B. Galactocerebroside    

C. Cholesterol 

D. Cardiolipin 
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Figure 5.9. Serial dilution of MS rAb 17 

A. Blot of MS rAb 17 10µg/ml 

B. Blot of MS rAb 17 1µg/ml 

C. Blot of MS rAb 17 0.1µg/ml 

D. Quantification of MS rAb 17 binding to sulfatide and sulfatide/galactocerebroside 

complex. At a concentration of 0.1µg/ml binding to the complex created by sulfatide and 

galactocerebroside is enhanced (p=0.0143, paired t test, n=3)  
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Figure 5.10. Illustrative blots from NMO and OIND patients 

A. Blot of NMO rAb 43 

B. Blot of NMO rAb 44 

C. Blot of OIND rAb 93 

D. Blot of OIND rAb 97 
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5.3.3. Direct analysis of individual OCB antibodies 
 

We then collaborated with another group led by Dr K Dornmair (Munich, 

Germany). They used a novel approach to directly analyze individual OCB 

that were first separated by high-resolution isoelectric focusing from other 

OCB and the polyclonal background in the CSF, then analyzed by mass 

spectrometry, and finally produced as recombinant Fab-fragments. 

(unpublished data) This method involved the purification of disulfide-linked 

IgG heavy and light chains of single OCB spots by protein-G chromatography, 

deglycosylation, IEF and SDS-gel electrophoresis under non reducing 

conditions throughout. The identified peptide masses were aligned to 

patient specific IgG transcriptome databases that were generated in parallel 

from the CSF cells by amplifying, cloning, and sequencing the IgG-H, -κ and 

-λ chain transcripts. To identify 5 matching IgG-H and IgG-L chain pairs, 

they only considered characteristic peptides, i.e. peptides that contained 

amino acids that were introduced by somatic hypermutations, or comprised 

the hypervariable complementary determining region 3 (Obermeier et al. 

2008). They managed to isolate 3 matching IgG-H and IgG-L chain pairs from 

patient HM-63, one pair from patient 1039 and from patient NS-52 (Table 

5.4). 

 

The lipid reactivity of these HIS6 tagged OCB-derived Fab-fragments was 

then investigated using the combinatorial lipid array. In keeping with our 

previous results, where over 20% rAbs (20/73) bound lipid, one of these five 

antibodies  bound lipid, specifically binding sulfatide and sulfatide lipid 

complexes (Figure 5.11).  
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5.3.4. Immunohistological analysis of recombinant antibody binding to 
primary myelinating cultures  
 

In order to determine whether the lipid binding profiles of rAbs observed in 

glycoarrays correlate with any binding to equivalent surface antigens in live 

neural tissues, primary myelinating cultures that comprise a diverse range 

of specialised neuronal and glial membranes were selected for study. The 

widely used monoclonal anti-sulfatide antibody O4, which is known to 

readily bind sulfatide in neural membranes, was used as a comparator for 8 

rAbs that were tested. In these studies, none of the rAbs bound surface 

antigens, in contrast to the intense surface binding seen with the O4 

antibody (Figure 5.12. (C) (iv)-(vi)). This indicates that sulfatide-containing 

complexes recognised by the MS rAb are not accessible within the plane of 

the normal living membrane, and are therefore unlikely to provide targets 

for primary antibody-mediated demyelination. The likely explanation for the 

marked difference between O4 and rAb binding behaviour is shown in Figure 

5.12. (A) and (B), in which O4 can be seen to only bind sulfatide when in 

complex with sphingomyelin, in striking contract to the typical rAb 

behaviour, in which sulfatide binding in inhibited by sphingomyelin. 
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Table 5.4. Clinical data of the three MS patients from whom individual 
OCBs were analyzed.  

 
Patient             [IgG]CSF              IgGq  total cells    B-cells     disease duration      

  (g / l)    (cells / ml) (B-cells / ml)    (years) 

 

NS-52:  0.057    4.9    7,000         350         8 

HM-63  0.146  14.7  40,700      2,035         2 

1039  0.051    5.5    3,000         150         5 

 

 
 
We list the IgG concentrations in CSF, [IgG]CSF, the IgG quotient IgGq    = [IgG]CSF x 103 / 

[IgG]serum as quotient of the IgG concentrations in CSF and serum, and the number of cells 

of the B-linage No.B-cells calculated as 5 % of the total cell number from CSF(Meinl et al. 

2006). 

 

 

 

 

 
Figure 5.11. Lipid reactivity of Fab-HM-63-s9 

Illustrative blot of lipid reactivity of lipid reactive Fab 
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Figure 5.12 Lipid reactivity of rAb and O4 antibodies 

A. Blot of MS rAb 76 

B. Blot of mAb O4 

C. Unfixed myelinating cultures derived from embryonic rat spinal cord were stained at 4˚C 

with either (i)-(iii) MS derived rAb 76 (10µg/mL) or (iv)-(vi) mAb O4 (10µg/ mL) to visualize 

sulfatide (green) followed by the MOG-specific mAb Z2 (10 µg/mL) to identify 

oligodendrocytes and myelin sheaths (red). Control cultures were stained with polyclonal 

human IgG, mouse myeloma proteins and/or secondary antibody alone. In no case did 

immunoreactivity for MOG (red) at the surface of oligodendrocytes (arrow head) or 

myelinated internodes (small arrows) co-localize with bound human rAb ((ii), green) as 
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demonstrated in the merged image (iii). Staining obtained using rAb was restricted to a 

diffuse background indistinguishable from that observed when cultures were stained using 

polyclonal human IgG pooled from multiple donors. In contrast the sulfatide reactive mAb 

O4 binds co-localizes with MOG on the surface of oligodendrocytes and myelin sheaths (iv)-

(vi).  
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5.4. Discussion 
 

The specificity of the intrathecal antibody response associated with MS has 

been the subject of intense speculation since it was first described over fifty 

years ago. Collaborating with our colleagues in America and Germany has 

allowed us to explore the specificities of intrathecally produced antibodies. 

 

The monoclonal agents used in this study were derived from geographically 

distinct patient populations using two different approaches. Yet both 

identified lipids as a major target specificity; 27% recombinant antibodies 

derived from single clonally expanded CSF B cells (20/73) and 1/5 of Fab 

fragments defining individual OCB exhibiting lipid specificities. Thus two 

complementary but different approaches identify the role of lipids as 

targets of the intrathecal B cell response associated with MS, a concept 

supported by data obtained from analysis of antibody specificities in whole 

CSF in both this and previous studies(Ilyas et al. 2003)(Kanter et al. 2006).  

 

It is intriguing to note that 4 recombinant antibodies demonstrated anti-

lipid complex reactivity to the complex created by sulfatide and 

galactocerebroside (complex reactivity is again defined using a modified 

version of Kaida’s definition with intensity of IgG directed against the 

complex being greater than the sum of the intensity of IgG directed against 

individual lipid partners)(Kaida et al. 2007) . A further 5th monoclonal 

antibody appears to have anti-galactocerebroside/sulfatide complex 

specificity as lowering the rAb concentration reveals the preferred target is 

provided by the sulfatide/galactocerebroside complex (see Figure 5.11). 

These two lipids are structurally very similar, galactocerebroside being one 

of the simplest glycolipid structures consisting of a galactose molecule 
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linked to a ceramide. Sulfatide is a galactocerebroside molecule in which 

the 3’OH moiety on galactose is sulfated(Norton 1977). 

 

These two major glycosphingolipids of central nervous system myelin are 

reported to interact with one another by trans carbohydrate-carbohydrate 

interactions(Boggs et al. 2010). These lipids face each other in opposed 

extracellular surfaces of the multi-layered myelin sheath. Dendrimers or 

silica nanoparticles conjugated with saccharides have been used to mimic 

trans interactions between such cell surface glycolipids. It has been 

suggested, through the use of such nanoparticles, that galactocerebroside 

and sulfatide partake in a “glycosynapse”(Boggs et al. 2010). The 

interaction between the dendrimers and membrane bound lipids resulted in 

loss of the cytosleketon and clustering of membrane domains in 

oligodendrocyte culture systems. The authors suggest that this particular 

glycosynapse may be important for myelination and/or myelin function. Our 

data may suggest that this “glycosynapse” may be an antigenic target in 

Multiple Sclerosis. 

 

The currently described array only uses 10 lipids in heteromeric complexes 

and does not take into account possible effects due to differences in alpha-

hydroxylation, acyl chain length or degree of saturation of the fatty acid. 

Nevertheless we have identified specificities associated with over 20% of the 

intrathecal response. We anticipate that increasing array complexity though 

addition of further lipids and lipid- or membrane- associated proteins will 

identify additional target antigens. 

 

The role of such antibodies remains as yet undetermined. There is no firm 

data supporting a role for any known intrathecal antibody in mediating 
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demyelination as a primary event. However, for sulfatide, produced by 

oligodendrocytes and highly enriched in myelin and at a critical point during 

oligodendrocyte differentiation, a pathogenic role of antibody has been 

suggested(Bansal et al. 1989). The monoclonal antibody O4 that is specific 

for sulfatide, exacerbates demyelination in animals with experimental 

autoimmune encephalitis (EAE)(Kanter et al. 2006). This represents a 

dichotomy of evidence and suggests that the sulfatide binding properties of 

antibodies may be diverse. To address this we compared the ability of O4 

and a selection of CSF derived, sulfatide reactive rAbs, to bind to the 

surface of myelinating oligodendrocytes in vitro. rAbs do not reproduce the 

staining pattern of O4; therefore the lipid complexes required for binding 

cannot be available on the intact live membrane. Intriguingly the mAb O4 

binds to the complex formed between sulfatide and sphingomyelin, whereas 

in the majority of our MS patients and rAbs binding to sulfatide was 

inhibited when in complex with sphingomyelin. This may suggest that myelin 

may require to be damaged to expose the necessary and specific lipid 

antigen binding sites for the recombinant antibodies to bind (Figure 5.13). 
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Figure 5.13  Proposed mechanism of binding of MS derived rAbs 

A. Lipid reactive MS derived rAb do not bind antigen when myelin intact 

B. Lipid reactive MS derived rAb may bind lipid complexes when myelin 

membrane is disrupted and damaged in demyelination 

 

 

 

We cannot assume that the population of lipid reactive antibodies present in 

MS CSF will behave like the mAb O4, in terms of pathogenic activity. Indeed 

one hypothesis may be that sulfatide reactive intrathecal antibodies may be 

neuroprotective, for example by enhancing the clearance of myelin debris. 

Whilst their biological significance still currently remains unclear, 

identification of their specificity provides powerful avenues towards 

investigating this experimentally. 
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In order to further investigate the binding capabilities of these MS derived 

rAb further studies are planned. Both rat and mouse (where a higher level of 

myelination compared to the rat system is commonly observed) derived 

myelinating culture systems will be utilised to investigate this. 

Demyelinating injury to these culture systems could also be introduced 

though the addition of anti-MOG (myelin oligodendrocyte glycoprotein) 

antibody with a source of complement. My hypothesis is that binding of 

these rAbs would only occur when demyelination has occurred releasing 

lipid complex antigens which the rAbs then recognize. 

 

Of course we have only screened an array of 10 lipids and their one to one 

combinations. It is known that there is variability in the degree of 

hydroxylation, length of fatty acid chains and degree of esterification within 

myelin based lipids(Norton 1977). This adds another level of complexity to 

our continued search for target antigens. In addition it is known that lipids 

reside in membrane microdomains with proteins as well as other lipids. The 

possibility that antigenic targets consisting of several lipids and proteins 

exists, and deserves further exploration. This would not be feasible on the 

current template which is limited in the number of antigens which can be 

spotted therefore the next step is to create a true microarray of lipids 

where these questions may be addressed.  
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Chapter 6. Development of lipid microarray 

 

6.1. Introduction 
 

The combinatorial array is clearly advantageous in the search for novel lipid 

complex antigens however it has many limits. To date I have simply 

investigated antibody responses to single lipids and pairs of lipids. An 

additional level of complexity would be investigating responses against 

groups of three of more lipids. In addition it is known that there is 

variability in the degree of hydroxylation, length of fatty acid chains and 

degree of esterification within myelin based lipids(Norton 1977). This adds 

further levels of complexity to our continued search for target antigens. 

Furthermore lipids reside in membrane microdomains with proteins as well 

as other lipids(Simons et al. 1997). The possibility that antigenic targets, 

consisting of several lipids and proteins, exists and deserves further 

exploration. This would not be feasible on the current template which is 

limited in the number of antigens which can be printed. To help address 

these issues the next step is to create a “true microarray” of lipids which 

would allow a greater number of lipid antigens to be applied per slide. This 

would allow us to multiplex the assays, by printing very small spots of 

libraries of multiple lipids onto a small area of substrate, which can then be 

interrogated with small amounts of samples.  

Despite the technical issues I encountered with the fluorescent technique 

(see Chapter 2; 2.2.5.) I next investigated creating a microarray method. 

These experiments were carried out with Dr Susan Gannon of the RASOR 

(Radical Solutions for Researching the Proteome) consortium of the 

University of Glasgow. Fluorescent based microarrays can offer advantages 

where sensitivity of analyte detection is enhanced. Again I used the same 

experimental outline, where lipid is printed onto a membrane, which would 

then be incubated with the serum/antibody of interest. A secondary 

antibody which has been labelled with a fluorescent due would then be used 
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to visualize any reactivity (protocol outlined in Figure 6.1.). A non-contact 

arrayer (see Figure 6.2.), Perkin Elmer Piezorray TM was used to deposit 1nl 

volumes (in the form of 3 droplets of 330pl each) of 100ug/ml gangliosides 

prepared in methanol on slides covered with PVDF membranes.  

Each individual slide is composed of 16 printed subarrays. Each subarray was 

positioned on a 10 x 10 grid with 10 replicates of each capture spot 

composition. Spacing between the spots was set at 500µm and individual 

spot diameter was ~300nm. 16 subarrays were replicated per individual 

microscope slide. After printing, slides were allowed to dry overnight. Slides 

were then inserted into the 16 well FASTframe (Whatman, UK) for blocking 

and probing. The application of this frame allows each individual array to be 

potentially probed by 16 specific antibodies. Post block array wells were 

rinsed with PBS and primary antibody/patient serum was then applied 

(100µl for 1 hour). A PBS wash followed, then secondary antibody was added 

(80 µl for 30 minutes).  The secondary antibody used was either anti-

human/mouse IgG labelled with the fluorescent AlexaFlour dye 647. A final 

PBS was followed and slides were allowed to dry before scanning.  

Probed arrays were imaged on the ScanArray Express at excitation 

wavelength 633nm using an AlexaFluor 647 built in filter (at laser power 90 

and PMT 40) at the resolution of 10 µm. Quantitative function within the 

ScanArray Express software was used to convert the fluorescence levels in 

the array images into relative fluorescence units. The individual spot signal 

used is the mean spot fluorescence minus background. 
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Figure 6.1. Protocol of microarray experiment 

 Lipid antigen (GD1b illustrated here) adheres to hydrophobic membrane 

exposing carbohydrate moiety. Primary antibody e.g. human GBS serum 

binds to lipid. Secondary anti- human IgG (which is labelled with a 

fluorescent dye) binds to the primary antibody. The fluorescent intensity is 

then measured. 
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Figure 6.2. Microarray platform 

A. Perkin Elmer Piezoarray TM 

B. Whatman FAST frame 

C. Black and white image of an individual array. Naphthol Blue Black (Sigma-

Aldrich, UK) has been added to the ganglioside spotting solution at a 

concentration of 0.1mg/ml to assess the quality of spotting. 
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6.2. Development of microarray protocol 
 

6.2.1. Slide platform 
 

Initial experiments were carried out using homemade slides.  PVDF 

membranes were cut (to the size of a glass microscope slide) and affixed 

using UHU glue (Ryman, UK) to plain glass microscope slides (VWR 

International, UK).  A number of PVDF membrane types were used including 

0.2um pore size PVDF (Invitrogen, UK) and 0.45 pore size Immobilon FL PVDF 

(Sigma-Aldrich, UK) (see Figure 6.3).Each slide was placed into a slide 

holder which divided the slide into 16 separate chambers. Within each pad 

(labelled 1-16) 10 rows of lipid were spotted.   GM1 was the only lipid 

printed here. Each individual subarray is composed of 10x10 GM1 spots. 

Each subarray was then probed with the mouse derived monoclonal anti-

GM1 antibody (IgG), DG2. AlexaFlour 647 labelled goat anti-mouse IgG 

(Invitrogen) was then used as a secondary antibody. 

 

Both slides were associated with a large amount of background artefact and 

inconsistent spotting of the lipid. This inconsistency of spotting could be 

secondary to the fact that we were using lipids dissolved in the solvent 

methanol. It is noteworthy that this arrayer is primarily used to spot 

proteins dissolved in either water or PBS.  
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Figure 6.3. “Homemade” slides 

The numbers on the slide relate to each individual subarray. Here only the 

lipid GM1 was spotted and all subarrays were probed with the anti-GM1 

antibody DG2.  

A. Slide covered with PVDF membrane (Invitrogen, UK) 

B. Slide covered  with PVDF “ Immobilon FL” membrane (Sigma-Aldrich, UK) 
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6.2.2. Investigation of blocking agents and addition of water and dyes to 
lipid preparations 
 

As there are a large number of sub arrays per slide I used individual 

experiments to address multiple issues.  I next investigated 3 issues with 

one experiment. I investigated different methods of blocking (see Figure 

6.4.) using 2% BSA, 2% milk and no blocking step. Spot quality with milk was 

poor with additional background artefact (Figure 6.4. (B)). When the 

blocking step was omitted the signal from individual spots was saturated as 

indicated by the spots staining white in Figure 6.4. (C).  

 

During this experiment I also investigated using lipid antigen dissolved in 

different concentrations of methanol and water.  In addition I began to look 

at the effect of adding a visible dye to the lipid mix. An advantage of adding 

dye at this stage would be that, after a print run, each subarray could 

visually inspected for spot quality. However there continued to be 

considerable variation in spot size and intensity that was unpredictable (see 

Figure 6.5.). Despite these limitations, I was able to ascertain that I lipid 

dissolved in a mixture of methanol and water could serve as a target antigen 

(see Figure 6.6.). The addition of a dye to the mix did not appear to 

significantly affect printing of lipid which continued to be unpredictable. 

However both xylene cyanol blue (Grisp research solutions, Portugal) dye 

and chromatrope 2R (Sigma-Aldrich, UK) provided quite light staining of the 

PVDF membrane which was difficult to view with the naked eye. 
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Figure 6.4. Different methods of blocking 

A. 2% BSA (FAF) in PBS 

B. 2% milk 

C. No block 
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Figure 6.5. Illustration of individual subarrays from the BSA blocked slide 

(Figure 6.4. (A)). Lipids have been printed using a range of methanol: water 

concentrations and in a variety of dyes. For individual templates see (A)-(D). 

All subarrays were probed with the anti-GM1 mouse monoclonal antibody 

DG2. 

Key: 

* xylene cyanol blue dye added to lipid mix 

‡ chromatrope 2R dye added to lipid mix 

† no dye added to lipid mix 

A. Subarray 1; GM1 spotted with (xylene cyanol blue) and without dye 

B. Subarray 6; GM1 spotted with (xylene cyanol blue) and without dye 

C. Subarray 9; GM1 spotted with (chromatrope 2R) and without dye 

D. Subarray 14; GM1 spotted with (chromatrope 2R) and without dye 
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Figure 6.6. Effect of addition of water to lipid:methanol solution 

A. GM1 with xylene cyanol blue 

B. GM1 alone 

C. GM1 with chromatrope 2R 
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6.2.3. Preparation of lipids with dye 
 

From now on all lipid used was dissolved in a mixture of methanol and water 

(70:30) unless otherwise stated. I also used new PVDF covered slides called 

“Superprotein” slides (ArrayIt, USA) in this experiment. 

 

I printed the same template across 16 subarrays per slide (see Figure 6.7.). 

This template included GM1 and GD1b (for template details see Figure 6.7 

(C), (D)). The lipids were printed alone and also in combination with amido 

black dye.  Amido black (Sigma-Aldrich, UK) is an amino acid (molecular 

structure shown in Figure 6.8. (D))staining diazo dye which readily dissolves 

in both methanol and water. Staining of individual spots on the PVDF 

membrane was easily visible to the naked eye. 

 

It is clear from Figure 6.7. that there was considerable variation in the spot 

intensity achieved. Even for the inherent positive control, Alexa Fleur 647 

(AF 647)which is dissolved in 0.1% BSA in PBS, the coefficient of variation is 

high at 15.74%.  Investigating the 8 subarrays (2,3,6,7,10,11,14 &15 in 

Figure 6.7. (A)) in which DG2 was probed leads us to a coefficient of 

variation of 73.92%. It is worth remembering though the slides are printed 

using two programs, with the first programme printing the first 8 (labelled 

1-8) subarrays and the second printing the next 8 (labelled 9-16) subarrays. 

If we calculate the coefficient of variation for GM1 for the first programme 

(i.e. from subarrays 2, 3, 6, & 7, which is 18.49%) then coefficient of 

variation approaches that seen for AF 647.  
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In this experiment I used two concentrations of lipids dissolved in dye, 

100µg/ml and 10µg/ml. The lower lipid concentration was too low to 

reliably detect antibody as illustrated in Figure 6.8. (B). Data here has been 

extracted from subarray 6 (Figure 6.8.(A)) in which DG2 binds to GM1 spots. 

There is a significant reduction in fluorescent intensity in the GM1 spots 

created by the lesser concentration of dye combined with GM1. However 

there is no difference in between the GM1 with and without dye. In fact 

across 8 subarrays there was no statistically significant difference in binding 

between the GM1 with and without dye. 

 

However further work investigating the concentration curves of monoclonal 

antibody binding suggested that, in particular cases, there was an 

attenuation of antibody binding to lipid when prepared with dye (see Figure 

6.9 (A)). 
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Figure 6.7. Printing of lipid with amido black dye 

The dye 0.2mg/ml amido black has been used at a concentration of 

0.2mg/ml. All lipids are printed in a concentration of 100µg/ml unless 

otherwise stated.  

* lipids here are printed in a concentration of 10 µg/ml 

 

A. Illustrative image of whole slide 

B. Key of antibodies used to probe individual subarrays. DG2 is monospecific 

for GM1 and MOG3 is monospecific for GD1b. Arrays 1 & 16 were probed 

with PBS only.  

C. Illustrative subarray 6 demonstrating binding of DG2 to GM1 

D. Illustrative subarray 5 demonstrating binding of MOG3 to GD1b 
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Figure 6.8. The effect of dye (amido black) on binding of antibody 

* lipids here are printed in a concentration of 10 µg/ml 

 

A. Illustrative image of subarray 6 

B. Bargraph illustrating the binding of DG2 to subarray 6. p values quoted 

are obtained with ANOVA with Tukey 

C. Bargraph illustrating binding of DG2 to all 8 subarrays  

D. Molecular structure of amido black 
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Figure 6.9. Concentration curves for binding of the monoclonal 

antibodies to lipids prepared with and without dye (amido black). 

DG2 binds GM1 preferentially and EG4 binds GD1b and GT1b. 

A. DG2 binds preferentially to lipid without dye. 

B. EG4 binds binds similarly to lipid with and without dye 
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6.2.3 Printing of lipid complexes 
 

The next step was to create complexes of lipids using this platform. An 

option here is to simply print premixed solutions of lipids onto the slide. 

However this would lengthen the printing time considerably when large 

numbers of complexes are being investigated. Another option is to 

“overspot” lipid partners i.e. print single lipids sequentially over the same 

spatially addressable spot on the membrane thereby creating a complex. I 

investigated this using serum from a patient with GBS who demonstrated 

high titre anti-ganglioside complex antibodies using both ELISA and 

combinatorial blot methods (see Figure 6.10). Using both techniques high 

titres of IgG is observed to two lipid complexes; GM1:GD1a, and GM1:GT1b.  

For this experiment I used goat anti-human IgG labelled with Alexa Fleur 

647 (Invitrogen, UK) as a secondary antibody. Figure 6.11. illustrates 

individual subarrays. Another patient, D.B. with known high anti-GM1 titres 

of >12500 on ELISA, was used as a positive control sera to demonstrate 

binding to GM1. Higher levels of binding were observed for the complexes 

created by GM1:GD1a compared to either single lipid isolation using both 

methods of placing the lipid complexes (overspot method p= 0.0443, paired 

t test, n=4, and premixed lipid p = 0.0233, paired t test n=4). Binding to the 

complex created by GM1:GT1b was not as strong. Using the overspot method 

binding was preferential for the complex (p= 0.0344, paired t test, n=4) 

however this was not observed using the premixed samples. 

All assays in this experiment were carried out with and without the addition 

of amido black dye (see Figures 6.12 & 6.13.). Whilst the addition of dye 

does not have a significantly attenuating effect on lipid binding there is 

considerable variation observed across the concentration curves when dye is 

added to the lipid. 
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Figure 6.10. ELISA and combinatorial blot of serum from a GBS patient, 

P.J.  

A. ELISA demonstrating preferential binding to the complexes created by 

GM1: GD1a and GM1: GT1b 

B. Illustrative blot demonstrating preferential binding to the complexes 

created by GM1:GD1a and GM1:GT1b. Row and column headings reveal the 

complex at each location. “X”s represent the negative controls (methanol) 

which act as a line of symmetry for duplicate spots within the same 

membrane. 
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Figure 6.11. Illustrative subarrays demonstrating binding of antibody to 

single lipids and complexes of lipids.  

Templates are outlined alongside each subarray. 

A. Subarray demonstrating binding of serum from a GBS patient D.B.. Here 

IgG binds to GM1 in a complex independent manner i.e. binding occurs to 

GM1 alone and when complexed with other lipids. 

B. Subarray demonstrating no binding to lipids. This represents serum from a 

healthy control. 

C. Subarray here demonstrates binding of serum from another GBS patient 

P.J. (the same patient in Figure 6.7.). Here binding occurs preferentially to 

complexes of lipids 
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Figure 6.12. Intensity of binding of serum P.J to lipids with and without 

dye (amido black).  

Complexes were printed using two mechanisms. They were either mixed 

together before application (premix) or simply printed one on top of the 

other (overspot) 

A. Preferential binding of sera to the complex created by GM1 and GD1a.  

B. Preferential binding of sera to the complex created by GM1 and GD1a. In 

(B) all lipids have had amido black dye added. 
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Figure 6.13 Intensity of binding of serum P.J to lipids with and without 

dye (amido black). Complexes were printed as before. 

A. Preferential binding of sera to the complex created by GM1 and GT1b.  

B. Preferential binding of sera to the complex created by GM1 and GT1b. In 

(B) all lipids have had amido black dye added. 
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6.3. Discussion and further work: 
 

Whilst I have improved on this lipid microarray protocol to some degree 

numerous questions remain unanswered. For example when creating 

complexes by spotting one lipid over another will inhibitory complexes still 

be apparent? When I used this technique of printing one lipid over another 

to create a lipid complex with the combinatorial array technique the effect 

of inhibitory partnerships on lipid binding was lost (see Chapter 2, Figure 

2.10). If this attenuation is lost in the microarray platform then an option 

would be to use the microarray method to interrogate a large number of 

potential antigens initially and then revert back to ELISA or the 

combinatorial array technique to investigate lipid and lipid complex 

specificities of individual antibodies. 

In addition there is considerable variation even when printing the positive 

control sample, AlexaFlour 647. This sample is used commonly as a positive 

control in other experiments in which protein is arrayed. This variation in 

printing of AF 647 may simply be as a result of the age/state of the arrayer. 

Furthermore the arrayer used for these experiments is not specifically 

designed to work with solvent based substrates. Therefore using an arrayer 

specifically designed to work with methanol may prove advantageous. 

Indeed the RASOR group at the University of Glasgow have purchased a new 

arrayer with this purpose in mind. 
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Chapter 7. Final Discussion 
 
 
The combinatorial array has allowed us to investigate the binding 

specificities of a wide variety of anti-lipid antibodies in three different 

cohorts. We were able to identify that 42/180 GBS sera demonstrated IgG 

that was reactive to a wide variety of glycolipids. Interestingly over half of 

these seropositive sera (26/42) demonstrated anti-ganglioside complex 

antibodies by using a modified version of Kaida’s definition of anti-

ganglioside complex antibodies, (i.e. where intensity for IgG directed 

against the complex is more than the sum of the intensities of  IgG directed 

against the two individual contributory lipids)(Kaida et al. 2007).This is in 

direct contrast to the CIDP cohort where only 4/19 seropositive sera 

demonstrated anti-ganglioside complex antibodies using this definition.  

 

Why anti-glycolipid complex antibodies should be more frequent in the 

acute neuropathy, GBS compared to the more chronic CIDP is, as yet, 

unclear. This may relate to pathogenesis of the neuropathy in question. It is 

well described that molecular mimicry between campylobacter jejuni lipo-

oligosaccharides (LOS) and peripheral nerve glycolipids plays a role in the 

pathogenesis of GBS(Ang et al. 2004).The c. jejuni LOS contain glycolipid-

like moieties that can determine the specificity of anti-glycolipid 

antibodies. Importantly immunisation of c. jejuni LOS to animal models 

induces anti-glycolipid antibodies and a clinical picture similar to GBS 

demonstrating the pathogenic potential of such antibodies(Yuki et al. 

2004).One study has investigated serum anti-ganglioside complex antibodies 

from GBS patients with a history of antecedent infection with c.jejuni (Kuijf 

et al. 2007). They then demonstrated that these anti-ganglioside complex 

antibodies cross-reacted with LOS from autologous c. jejuni isolates which 

would suggest that these antibodies were induced by the c.jejuni infection.  

There is no firm evidence for a role of molecular mimicry in the 
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pathogenesis CIDP as yet and perhaps this may explain the relative absence 

of anti-glycolipid complex antibodies in this disease.  

 

The combinatorial array yielded interesting results in the Multiple Sclerosis 

(MS) cohort. Whilst serum anti-lipid IgG specificity was similar between the 

MS and control groups, the CSF profiles differed demonstrating a CSF 

specific IgG anti-sulfatide response. This led us to collaborate with two 

independent groups who had developed complementary techniques of 

creating recombinant IgG from the CSF of MS patients. Similar binding 

specificities were observed for Scottish derived CSF, recombinant IgG 

created using single cell PCR from American MS patients and recombinant 

IgG created from German MS patients via gel electrophoresis, a series of 

digestions and mass spectrometry. This has allowed us to identify for the 

first time at least some of the binding specificity of the oligoclonal bands in 

MS. Cis-interactions may prove to be of vital importance here as the 

complex created by sulfatide and sphingomyelin appeared to inhibit binding 

of these anti-sulfatide antibodies which did not bind intact myelin in culture 

based systems.  

 

However it is worth noting that assays of anti-lipid antibodies are fraught 

with difficulty with potential variability being introduced at numerous 

points. As illustrated aptly in Chapter 3 with GT1a, antigen source and 

purity is of vital importance. Timing of samples taken in relation to illness is 

also a likely important factor e.g. it is well described in GBS that anti-

glycolipid antibodies decline with time. Other issues such as oxidation of 

stored lipids are likely to be relevant. With the use of the combinatorial 

array in conjunction with ELISA, it is become increasingly apparent that 

detection methods used for anti glycolipid antibodies will have a degree of 

inherent variability. This is something which is well described when 

comparing ELISA results between laboratories with high inter-laboratory 

variation reported(Willison et al. 1999). 
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Future studies which will be carried out as a result of this work include: 

 

1. Combinatorial array screen of GBS & CIDP cohorts using additional 

glycolipid antigens: 

 

The combinatorial arrays employed to investigate the anti-glycolipid 

repertoire in both GBS and CIDP are limited and have some notable 

omissions namely SGPG, sulfated glucuronyl paragloboside, which is 

potentially a target antigen in neuropathy. The sulfoglucuronyl moiety 

appears to be an essential part of the epitope for anti-SGPG antibodies(Ilyas 

et al. 1991). This moiety is present on several other nervous system 

glycoconjugates including MAG, neural cell adhesion molecule and P0, the 

major glycoprotein of peripheral nervous system myelin(Kruse et al. 

1984)(Bollensen et al. 1987). Therefore antibodies to SGPG may have 

multiple potential target antigens and could interfere with the structural 

integrity of myelin through a variety of mechanisms. Ilyas et al reported 

that 13/53 (25%) of GBS patients demonstrated anti-SGPG antibodies with 8 

demonstrating IgM antibody and 5 demonstrating IgG antibody. Despite the 

subsequent negative study by Yuki et al this antigen may be of relevance in 

GBS (Yuki, Tagawa & Handa 1996a) as discussed by Ilyas et al. The authors 

mention that when serum from paraproteinemic neuropathy patients with 

anti MAG/SGPG antibodies is injected into feline peripheral nerve extensive 

myelin destruction is observed which is not dissimilar to that seen in acute 

GBS. (Hays et al. 1987)(Willison et al. 1988). Furthermore inoculation of 

rabbits with SGPG with appropriate adjuvants produced a clinical picture of 

neuropathy, led to the development of anti-SGPG antibodies with 

neurophysiological studies revealing reduced conduction velocities and 

conduction block.   

A further more extensive combinatorial array investigating the anti-

glycolipid responses of the GBS cohort is currently underway. A limitation of 
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my study was the low number of healthy controls. This has been addressed 

in this current study with a higher number of healthy controls available. 

 

A major failing of my GBS study is the lack of adequate neurophysiological 

data.  In total neurophysiological data was unavailable for 31/180 patients. 

Furthermore neurophysiological studies were either equivocal or unavailable 

for 29/42 patients with positive anti-glycolipid antibodies. AMAN and AMSAN 

are distinct clinical phenotypes yet both are associated with antibody 

directed against the same antigen, GM1. This ganglioside is present in equal 

amounts in motor and sensory nerves. 3/4 patients with AMAN demonstrated 

anti-glycolipid reactivity specifically to GM1 in a variety of patterns 

including complex dependent, attenuated and complex independent 

patterns. However there were no patients with AMSAN in the cohort to 

compare with the AMAN binding profiles. It would be interesting to 

interrogate a well characterised cohort of AMAN and AMSAN patients to 

establish if there is indeed a difference in glycolipid complex specificity 

which may help explain why sensory nerves are spared in AMAN. 

 

3. Elucidation of the role of lipid reactive recombinant antibodies 

 

It is important to determine the biological relevance of both the sulfatide 

reactive and unreactive recombinant antibodies derived from MS patients. A 

pathological role for anti-sulfatide antibodies in MS has been suggested. In 

the nervous system sulfatide is mostly present in oligodendrocytes and 

Schwann cells. It is first detected during oligodendrocytes differentiation 

and is upregulated before the oligodendrocytes wrap myelin around axons 

which may suggest that in addition to its role in maintaining the structural 

integrity of myelin it has other roles (Eckhardt 2008).  Other roles remain to 

be elucidated fully. Inconsistencies have been described with the 

administration of sulfatide to animal models of MS with both suppression 

and augmentation of disease reported (Jahng et al. 2004)(Kanter et al. 

2006).  
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For the first time we have demonstrated that a proportion of recombinant 

IgG from CSF of MS patients demonstrate lipid binding properties with 

sulfatide/sulfatide complexes being the primary lipid antigen. The next step 

is to investigate the role of these antibodies. To do this a variety of 

techniques can be used. Rat and mouse myelinating culture systems provide 

a suitable platform to start these investigations. Our preliminary studies 

reveal that these lipid reactive recombinant IgG behave differently to 

monoclonal anti-sulfatide antibody 04. The 04 antibody has a characteristic 

lipid specificity on the combinatorial array binding to the complex of 

sulfatide and sphingomyelin and binds to intact oligodendrocytes in a rat 

myelinating culture system. Interestingly the recombinant IgG derived from 

MS patients did not reproduce these binding profiles. The introduction of a 

demyelinating injury to these culture systems may reveal the target lipid 

antigen (s).  Furthermore the co-administration of lipid reactive 

recombinant IgG with appropriate adjuvants to animal models of MS may 

help elucidate the role further. Clearly this should be performed in 

conjunction with parallel studies involving the 04 antibody. 

 

3. Further development of the microarray technique to allow wider scale 

screening of lipid and protein antigens 

 

Of course as aforementioned we have only screened small arrays consisting 

of 9- 10 lipids and their one to one combinations. We have not taken into 

account the inherent variability of lipid antigens for example it is known 

that there is variability in the degree of hydroxylation, length of fatty acid 

chains and degree of esterification within myelin based lipids(Norton 1977). 

This adds another level of complexity to our continued search for target 

antigens. 

In addition it is known that lipids reside in membrane microdomains with 

proteins as well as other lipids. The possibility that antigenic targets 

consisting of several lipids and proteins exists, and deserves further 

exploration. Interrogation of such target antigens is not feasible on the 
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current platform and demands a further development of a microarray 

technique which allows the investigation of both protein and lipid antigens. 

We have made a small step towards the development of such a technique.  
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