
 

 
 

 
 
 
 
 

Alexander, Anne-Marie C. (2011) Probing the reactivity of lattice nitrogen 
in transition metal nitrides. PhD thesis. 
 

 

 

http://theses.gla.ac.uk/2796/  
 
 
 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, without prior 

permission or charge 

This work cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given 

 

 
 
 
 
 
 
 

Enlighten:Theses 

http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/2796/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk


Probing the Reactivity of Lattice Nitrogen in 
Transition Metal Nitrides 

 

 
Anne-Marie C. Alexander 

 

A Thesis Presented to the University for the Degree of 

Doctor of Philosophy 

 

 

 

School of Chemistry 

The University of Glasgow 

 
 

April 2011 

 
 
 



II 
Anne-Marie Alexander  Abstract 

Abstract 

Reactions involving nitrogen transfer are of great industrial interest. Utilizing nitrides in 

this manner, in principle, could help industries overcome the increasing challenges which 

they face to meet economic and environmental targets. An example of this is the possible 

application of metal nitrides in the direct synthesis of aniline from benzene, which could 

potentially remove the need for the lengthy, uneconomical, and environmentally unfriendly 

process which is currently employed.  

In the work presented in this thesis a screening study has been undertaken which explores 

the reactivity of lattice nitrogen within bulk and supported transition metal nitride 

catalysts. The experimental work has been conducted with the aim of developing a 

potential nitrogen transfer reagent in order to synthesise aniline via the direct conversion of 

benzene and has focussed on three main objectives: the first being to determine the most 

active transition metal nitride catalysts for ammonia synthesis, in the absence of N2, in 

order to determine the reactivity of “lattice” nitrogen. It was necessary at this point to 

establish which materials were reactive and lost nitrogen from the metal lattice at or below 

400oC, the maximum temperature for the envisaged process. 

Secondly, those materials which demonstrated a subsequent loss of lattice nitrogen upon 

reaction with H2/Ar were then screened to establish whether it was possible to restore the 

original nitrogen content in the materials in order for the nitrides to function in a Mars-van 

Krevelen type capacity.  Finally the reaction of benzene and hydrogen over bulk binary 

nitrides was conducted in an attempt to trap reactive NHx species for the production of 

aniline.   It was found that no aniline was produced in these reactions.  However, some 

interesting results were obtained over a selection of nitride materials, namely Co3Mo3N, 

Cu3N, Zn3N2, Re3N and a metallic Co-4Re compound where low quantities of, as yet 

unidentified, reaction products were formed. 

To the author’s knowledge, this is the largest systematic study of bulk nitrides and related 

materials which has been investigated on this scale and which has been directed towards 

this specific, novel, target process.
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1. Introduction. 

1.1 Catalysis with Nitrides. 

The chemistry of inorganic nitrides has progressed rapidly over the last two decades, due 

to advances in preparation methods, which has meant many nitrides have become much 

more easily accessible.[1-5]   However, the stability of the N2 molecule, when compared, for 

example to oxygen or halogens, has meant that the production of nitrides from the direct 

reaction with nitrogen is often difficult due to the thermodynamic barriers associated with 

the breaking of the N-N bond (945 kJ mol-1).[6]  This also implies that nitriding conditions 

are generally high temperature and often involve nitrogen containing species such as 

ammonia, which are more reactive than molecular nitrogen.  Many nitrides are air and 

moisture sensitive forming oxides and ammonia on contact with oxygen or moisture; this is 

particularly apparent with Group I and II nitrides.[7]  

Generally the transition metal nitrides are more stable and are characterised by their high 

melting points, hardness and resistance to corrosion. These materials often have very 

desirable physical properties under catalytic reaction conditions and it has been well-

documented that they possess catalytic advantages over their parent metals in activity, 

selectivity and their resistance to poisoning.[5, 8-10] Many have been found to be effective 

catalysts for a wide range of reactions and some, in particular molybdenum and tungsten, 

are often reported to exhibit catalytic properties comparable to that of traditional noble 

metal catalysts as initially proposed in the work by Levy and Boudart.[10-14]  

All transition metals form nitrides with the exception of the second and third row Group 

VIII-X metals (Ru, Os, Rh, Ir, Pd and Pt), although thin films of these have been 

prepared.[1,14]   Many of the catalytic studies reported in the literature have focused mainly 

on the application of the nitrides of Group IV-VI metals.[15-19]  This is partly due to their 

increased stability when compared to the nitrides of Group VII-X metals, which have been 

relatively little studied and have limited applications for catalytic reactions.[20,21]  

Nevertheless in recent years the number of reactions catalysed by nitrides has increased, as 

has their application in optoelectronic devices (TiN, BN, GaN and InN),[22-25] 

semiconductors (Cu3N, GaN)[26,27] and high temperature ceramics (BN, Si3N4).
[28,29]  

Despite the expansion in nitride chemistry the catalytic behaviour of many established 

nitride compounds remains unknown.  This is mostly due to the fact that efforts have 
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predominantly focused on preparative methods rather than their properties and catalytic 

ability. 

Nitrides are typically classified as ionic, covalent and interstitial,[7] although metallic 

nitrides have also been described.[30,31]  Ionic nitrides generally possess a formula which 

would be expected by the combination of a metal ion with N3- and are typically formed by 

elements found in Groups I, and II such as Li, Mg, Ca, Sr, and Ba.  However, metals such 

as Cu, Zn and Hg also form ionic or salt-like nitrides. Nitrides of the Group III metals are 

also salt like but are either metallic conductors, or at least semi-conductors, and therefore 

represent the transition to the metallic or interstitial nitrides.  Interstitial nitrides are formed 

by some transition metals and generally refer to those which have structures in which the 

nitrogen atoms reside in the interstitial space in close packed metal structures.  In moving 

from left to right along the 1st row transition series, the size of the metal atom decreases 

and it becomes increasingly difficult for the nitrogen atom to be accommodated into the 

metal lattice; hence the thermal stability of the nitride also decreases.  As a consequence of 

the smaller atomic radii, nitrides of Group VII -X transition metals do not form interstitial 

compounds but are generally classed with the ionic or salt-like nitrides (e.g. Cu3N as 

mentioned above). Non-metallic Group XIII and XIV elements, such as B, Si, P and C, 

form nitrides which are characterised predominately by their covalent bonding. Due to the 

chemical inertness and the high heat capacity of these materials, many covalent type 

nitrides, in particular BN and Si3N4, have been investigated as catalyst supports and are 

used within the ceramic industry.[29] However it is quite often that more than one type of 

bond exists within the compound which can make classification by this method somewhat 

arbitrary. Nitrides can be further categorized according to the number of metal atoms 

present in the main structure; these are binary (one metal), ternary (two metals) and 

quaternary (three metals).  Table 1.1-1 provides an overview of the nitrides of Groups IV-

X which may be most relevent for heterogenous catalysis.[31] 
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Group IV Group V Group VI Group VII Group VIII Group IX Group X

Ti2N

TiN0.9

TiN

V2N

VN

Cr2N

CrN

Mn4N

Mn2N

Mn3N2

Fe4N

Fe3N

Fe2N

Co4N

Co3N

Co2N

Ni3N

ZrN Nb4N5

Nb2N

NbN

Mo2N

MoN

TcN0.75 Ru Rh Pd

Hf3N2

HfN

Ta3N5

Ta2N

TaN

W2N

WN

Re3N

Re2N

Os Ir Pt

 

Table 1.1-1 Table of Group IV-X metal nitrides whic h may be most relevent for heterogenous 
catalysis. [31]  

 

1.2 Preparation methods. 

Before Volpe and Boudart reported the synthesis of nitride catalysts via the temperature 

programmed reaction method, transition metal nitrides had long been known as hard, 

refractory materials possessing the electronic and magnetic properties of metals. 

Traditionally, the synthesis of many metal nitrides involved the direct reaction of the metal 

with nitrogen gas, typically operated at elevated temperatures and pressures, which often 

resulted in materials with low surface areas.  Hence they were not considered as catalytic 

materials and as a consequence historically the use of nitrides has been fairly limited.[31] 

In the innovative work of Volpe and Boudart, it was shown that high surface area metal 

nitrides and carbides (reportedly 225 m2g-1 in the case of γ-Mo2N) could be prepared by the 

treatment of a metal oxide precursor with ammonia using carefully controlled temperature 

ramp conditions.[32]  In this method, which is generally described as ammonolysis, the high 

ammonia flow rates and low temperature ramp rates are of significant importance in the 

preparation of high surface area materials.[33]  The use of high flow rates reduces the partial 

pressure of the H2O generated during transformation of the oxide precursors and 

subsequently minimises the effect of hydrothermal sintering which occurs at high 

temperatures.   This method generally results in products which are pseudomorphic with 

the oxide precursor and is now very common in the preparation of different nitride 

materials.[34]  However, oxynitrides may form in the case of incomplete transformation, 

which may be difficult to identify by powder X-ray diffraction.[35]  The major concern with 

this method, however, is the pyrophoric nature of the freshly prepared materials.   

Passivation procedures employing low concentrations of O2 are generally applied leading 

to the generation of a protective oxide layer to facilitate handling.  This layer can 
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subsequently be removed by treatment with H2 or H2/N2 mixtures.[36,37]  Ammonolysis of 

different precursors can yield different phases, examples of which can be observed within 

the literature related to the preparation of molybdenum nitrides.[38-40]  For instance, 

ammonolysis of MoS2 or MoCl5 generates the δ-MoN phase, as opposed to the γ-Mo2N 

phase which is formed via the oxide precursor.  Ammonolysis has also been applied to the 

preparation of various supported nitride materials. Several studies have examined how 

preparation conditions can affect the phase purity of the molybdenum nitride obtained; 

Marchand and co-workers have demonstrated the effect of heating rates on surface areas of 

the γ-Mo2N phase prepared by ammonolysis of MoO3, as shown in Table 1.2-1.[33] 

 γ-Mo2N–A γ-Mo2N–B γ-Mo2N 
Volpe and 
Boudart 

Amount of commercial MoO3 
precursor (g) (Sg = 2 m2g-1)  

2-3 2-3 1 

Rate of temperature increase (K min-1)    

-from 293K to 633K 10 20 6 

-from 633K to 723K 1 20 0.6 

-from 723K to final         
temperature 

- 20 - 

Final temperature (K) 700 780 710 

Step time (h) 10-12 0.5 1 

Ammonia  flow rate (l h-1)  35 35 1 

Specific surface area (m2g-1) 115-120 15-20 170-220 

Table 1.2-1 The influence of ammonolysis parameters  on the surface area of gamma 
molybdenum nitride (S g : mass normalised surface area). [33]  
 
As can be observed from Table 1.2-1, sample γ-Mo2N-A and the γ-Mo2N sample, reported 

by Volpe and Boudart, have both been prepared using relatively low temperature ramp 

rates and it is apparent that these samples have a much higher surface area with respect to 

the γ-Mo2N-B sample prepared using higher ramp rates. The high flow rates of NH3 

documented in the table should also be noted.   

Although temperature programmed ammonolysis has a number of benefits, including 

reduced sintering and increased surface areas, in large scale applications problems arise 

due to heat transfer issues associated with the endothermic decomposition of ammonia.  

Wise and Markel proposed an alternative nitridation procedure using mixtures of H2/N2 in 
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order to eliminate these problems.[41]  In addition to this, they also reported that γ-Mo2N 

phase could be prepared with reproducible surface areas using mixtures of H2/N2.  There is 

a degree of dispute within the literature in terms of phases reported using this method.  

Some authors have reported the formation of the γ-Mo2N phase whilst others observe the 

formation of the body centred tetragonal β-Mo2N0.78 phase (which can also be prepared by 

the partial decomposition of γ-Mo2N).[42]  More recent reports have focused on the β-Mo2N 

phase and the influence of Mo precursors and heating rates on phase purity. [42-44]   These 

investigations highlight the effect that nitriding procedures can have on morphology and 

phases obtained and also illustrate the importance of final nitriding temperatures, ramp 

rates, H2/N2 ratio and MoO3 precursor source.   

 
Within the literature, there have been a number of studies which have investigated the 

thermal decomposition of nitrogen containing single source precursors to afford nitride 

products.  For example, Afanasiev[45,46] has reported that the thermal decomposition of 

(HMTA)2(NH4)4Mo7O24 (where HMTA = hexamethalentetramine) under an argon 

atmosphere yields a high surface area molybdenum nitride and a recent study by Wu 

demonstrated a single source route to nanocrystalline TiN through the decomposition of 

(NH4)2TiF6.
[47]  The route employed by Afanasiev provides a unique advantage over 

conventional methods in the fact the precursor acts as the reducing agent  with release of 

CO during the decomposition and nitridation occurs by utilising the  nitrogen present in the 

precursor. This method offers a convenient alternative for the preparation of nitride 

materials.  Solid state metathesis, in which nitrogen transfer occurs between a donating and 

a receiving phase, is also a feasible method in which to synthesise both binary and ternary 

nitrides.  Examples of this strategy can be observed in studies by Song and co-workerson 

the preparation of GaN, TiN, CrN and VN[48] and more recently in the synthesis of Li2SiN2 

in which Li3N was shown to be an effective nitridation agent with both single metal 

elements and metal oxides.[49]  Reactions using hydrazine as a nitriding agent have also 

been investigated by Jacob and co-workers.[50]  It was found that hydrazine is a more 

effective nitriding agent than ammonia when reacted with oxide, sulfide or chloride 

precursors and many nitrides that cannot be synthesised by ammonia can be prepared by 

this method (for example HfN and Th3N4).  Hydrazine needs to be introduced to the 

reaction using a water cooled lance to prevent its decomposition to ammonia and hydrogen 

prior to introduction to the reactor.  Due to the risks associated with this method, hydrazine 

has not been employed on a large scale. Solvothermal and sol-gel methods are also a useful 

means of nitride synthesis wherein high surface areas are required.  These methods have 
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been frequently used for the preparation of ceramic nitrides like GaN, Si3N4, BN and AlN 

and ZrN.[51]   They are generally used in the synthesis of binary nitrides, although they can 

be also be employed for the formation of ternary based systems which can be more 

difficult to synthesise. In a different approach, Jacobsen and co-workers have demonstrated 

the use of mechanochemical routes as an effective method to ternary nitrides wherein 

metals are ball-milled with binary nitrides.[52] 

Despite the range of nitridation procedures, temperature controlled ammonolysis is still 

currently the method of choice, notwithstanding the thermal implications associated with 

it. It is often the case that partial de-nitridation occurs during ammonolysis and the 

incorporation of oxygen into the structure due to either passivation or partial nitridation 

can occur.  It should be noted therefore that many of the materials investigated in the 

literature should be viewed as oxynitrides, which are difficult to distinguish from the 

nitride phase by powder x-ray diffraction.  However, the use of alternative synthetic 

procedures can lead to unusual phases of nitrides and in this respect such routes are 

therefore of interest in themselves.  

1.3 Catalytic Reactions with Nitrides. 

Metal nitrides have attracted significant attention as heterogeneous catalysts over the last 

decade.  As discussed previously, this is mainly due to the development of temperature 

programmed synthesis techniques consequently enabling materials with high surface areas 

to be synthesised.  Additionally it has been reported that some nitride materials have 

similar catalytic properties to the platinum group metals which has resulted in increased 

efforts to develop cheaper alternatives to the traditional platinum type catalysts. Metal 

nitrides have been shown to catalyse a range of reactions including applications in 

hydrotreating, ammonia synthesis and applications in fuel cells.  Table 1.3-1 summarises 

the range of catalytic applications for which nitrides have been reported.  

As can be seen in Table 1.3-1, different nitrides have attracted significant attention as 

active catalysts for hydrotreating reactions within the petroleum refining industry.  This 

process requires removal of heteroatoms from feedstream molecules and involves 

hydrodenitrogenation (HDN), hydrodesulfurisation (HDS) and hydrodeoxygenation 

(HDO).  Studies have been conducted using model heterocyclic compounds such as 

thiophene, pyridine, quinolone and benzofuran, and it was shown that nitrides are 

particularly effective in HDN type reactions, which requires high temperature and pressure 
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with commercial Co-Mo/Al2O3 and Ni-Mo/Al2O3 hydrotreating catalysts. When transition 

metal nitrides of Groups IV-VI were compared for HDS and HDN activity, it was shown 

that the activity follows the order of Group VI > Group V > Group IV with Mo2N showing 

the highest activity for both types of reaction.[75]  Bulk Co4N and Fe3N showed higher 

pyridine HDN removal than Mo2N, but these nitrides are difficult to prepare and often 

have low surface areas.[76]  These studies illustrate the potential that bulk nitrides may have 

to replace commercial hydrotreating catalysts.  Another exciting area in which nitrides may 

be utilised is in both PEM (proton exchange membrane) and DM (direct methanol) fuel 

cells.[86-89]  There have recently been investigations into the prospect of replacing noble 

metals such as Pt and Ru with less expensive but durable compounds such as CrN and TiN 

as coatings for the stainless steel cathodes and anodes.  Mo2N/C has been investigated as 

an alternative cathode material by Zhong and co-workers, and it was shown to have 

activity for the oxygen reduction reaction in the presence of methanol.[89] 

Application Catalyst 

Ammonia Synthesis γ- Mo2N
53 V2O2N

54,55, VN56 UN57, Re3N
59, 

Cs/Co3Mo3N
60-68 

Ammonia Decomposition VN69,70 

Amination VN , Mo2N, W2N,  TiN,  NbN18 , VAlON71 

NO Removal  Co4N/γ-Al 2O3
72 , 

Hydrotreating and Hydrogenation Re3N
73,  Mo2N,11,74 NiMo2N/Al 2O3

11,73, 
VN74, TiN74, Co4N

75, Fe3N
75, YbN77, EuN77 

Photocatalysis TiO2 (nitrogen doped anatase)78-81, GaN82,  
Ta3N5

83
, TaON84,85 

Fuel Cell Applications TiN86, CrN87, CN88 , Mo2N/C89  

Table 1.3-1 Range of catalytic applications to whic h nitride materials have been applied. 

 

Although the number of applications in which nitrides are utilised has grown significantly, 

these are still somewhat limited and it is apparent that much work is needed to develop 

other potential uses.  Interest in nitride materials in terms of catalysis has generally been 

directed on either the acid base properties or the noble metal like properties; there is very 

little evidence within the literature which has alluded to the use of nitrides as potential 

carriers in nitrogen transfer reactions and their possible application seems to have been 

largely overlooked in this respect. The potential reactivity of lattice nitrogen was first 

referred to in early ammonia synthesis studies by Segal and Sebba.[57] It was reported that 

‘extra’ nitrogen was incorporated into the surface layers of a uranium nitride catalyst, 

under a H2/N2 gas mixture, and which was subsequently found to participate in the 



8 
Anne-Marie Alexander  Chapter 1 

ammonia synthesis reaction.  One of the main issues associated with potential nitrogen 

transfer materials is the ability for the material to reversibly adsorb and desorb the reacting 

species.  Studies by Itoh and Machida have reported on the ability of rare earth 

intermetallic compounds to reversibly store large amounts of nitrogen.[90-92] These 

compounds form the corresponding nitrides by heating in either N2 or NH3 at elevated 

temperatures, with the nitrogen being incorporated into the interstitial sites within the 

crystal lattice.  The stored nitrogen can subsequently be lost in the form of ammonia when 

the systems are heated under hydrogen.  This is one of the first examples in which nitride 

based materials have been shown to regenerate to their original phase, once depleted, by 

reaction with a gas phase nitrogen source.  This demonstrates the potential ability for metal 

nitrides to participate in Mars-van Krevelen type processes, which are more commonly 

associated with oxygen transfer.[93] 

In the well-established Mars-van Krevelen oxidation mechanism an organic substrate is 

directly oxidised by the transfer of lattice oxygen from an oxide catalyst, thus generating a 

temporary vacancy in the metal lattice, which is replenished by a gas-phase oxygen source.  

This general type of mechanism has also been observed for sulfide and carbide catalysts. In 

the latter case, Green and co-workers have reported the direct lattice carbon transfer to 

carbon monoxide produced in the partial oxidation of methane catalysed by molybdenum 

carbide.[94]  In this investigation it was shown, through isotopic labelling, that surface 

carbon in the molybdenum carbide takes an active part in partial oxidation.  The oxygen in 

the reactants initially reacts with surface carbon species on the molybdenum carbide to 

yield CO and the partially oxidised carbide is subsequently regenerated to the original 

phase by methane in the feedstream, liberating product H2.  

 

Figure 1.3-1 13C exchanged carbon oxide distribution while pulsing  the mixture of 
(212CH4+O2) over Mo 2

13C at 1130 K and 1 bar. [94] 
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From Figure 1.3-1 it is apparent that on the first pulse the reaction is selective to CO over 

the labelled molybdenum carbide, however, over half of the CO produced is 13CO. This is 

clearly a result of the oxidation of lattice carbon species in the molybdenum carbide.  On 

subsequent pulses the amount of 13CO produced deminishes relative to the loss of labelled 

lattice species. These results highlight the potential ability for molybdenum carbides to 

participate in Mars van-Krevelen like processes.  

Although there is a limited amount of literature investigating nitride materials for nitrogen 

transfer reactions, recent studies by Olea et al have demonstrated one of the first examples 

of using lattice nitrogen transfer for the direct ammoxidation of propane to acrylonitrile 

using a vanadium aluminium oxynitride (VAlON) catalyst in a double Mars-van Krevelen 

process.[71] In those studies, isotopically labelled NH3 was employed in order to distinguish 

between adsorbed ammonia and lattice nitrogen species. It was reported that even in the 

absence of co-fed NH3 propane ammoxidation to acroylonitrile was evident. Measurements 

were conducted via temporal analysis of products (TAP) experiments. The consumption of 

gaseous ammonia in the reaction was documented to be involved in the re-nitridation of the 

catalyst surface instead of its direct participation in the reaction with propane. 

In this thesis, the reactivity of lattice nitrogen in a range of binary and ternary nitrides have 

been investigated with the aim of directly synthesising aniline from benzene.  Aniline is 

one of the most fundamentally important intermediate products and it is extensively used 

within organic synthesis and in large scale applications.[95-99]  It is used as a feedstock for a 

variety of different industries leading to a wide range of industrial and commercial 

applications. The majority of global aniline, between 80-85%, is consumed in the 

production of MDI (methylene di-para-phenylene isocyanate), for which the demand is 

steadily growing at an annual rate of between 6-8%.[95,97] MDI is subsequently polymerised 

and used in the synthesis of polyurethanes, which are versatile polymers used in the 

manufacture of rigid and semi-rigid foams, elastomers and coating resins.[95-97, 99]  These 

materials are typically used within the construction industry for building insulation and the 

automotive industry for car interiors. 

The remainder of the aniline manufactured is used in the production of a range of different 

products specifically pharmaceuticals, aniline dyes and rubber additives. Additionally 

aniline is also utilised in the agricultural industry to synthesise fungicides and 

pesticides.[98]   
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Large scale aniline production occurs via the hydrogenation of nitrobenzene in the 

following sequence of reactions: 

N2 +  3H2

NH3 +  2O2

HNO3 +  2H2SO4

HNO3 +  H2O

NO2
+ +  H3O+ +  2HSO4

-

C6H5NO2 +  3H2

C6H6 +  NO2
+

2NH3

C6H5NO2 +  H+

C6H5NH2 +  2H2O
 

Viewed in terms of the nitrogen conversion steps, i.e. initial reduction followed by partial 

re-oxidation and then re-reduction, the inefficiency and indirect nature of this process is 

readily apparent.  Given that ammonia synthesis, the first step of the process, is very 

energy intensive (reportedly being responsible for 1% of global energy demand) and that 

much of the hydrogen used in the process is indirectly converted to H2O, the desirability of 

alternative routes is obvious. 

In this thesis, a screening study has been undertaken whereby the reactivity of lattice 

nitrogen in a range of binary and ternary nitrides has been assessed. Initial studies 

investigate the ambient pressure ammonia production activity of the nitrides using both 

H2/N2 and H2/Ar feeds and comparisons have been made with ruthenium based systems, 

which are generally recognized to have the greatest efficacy for this reaction.  Those which 

have the greatest efficacy for ammonia production and/or demonstrate a loss of nitrogen at 

400oC or below have been investigated in a Mars-van Krevelen type capacity for the 

production of aniline via the direct and indirect amination of benzene.   The approach taken 

is novel and highly speculative.  No comparable studies of this nature has been 

documented in the literature 
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2. Experimental. 

2.1 Introduction. 

The experimental techniques employed within this research are reported in distinct 

sections; preparation, characterisation and testing. 

2.2 Preparation. 

A large number of materials have been prepared and tested in this work.  They are 

primarily bulk binary nitrides, although ternary nitrides, mixed metal phases and supported 

ruthenium catalysts were also prepared.   

2.2.1 Preparation of Precursors and Nitride Materials.  

(i) Ammonolysis Reactor. 

Most of the nitride materials were prepared using temperature programmed ammonolysis 

similar to that first reported in the work of Volpe and Boudart.[32]  The gases used were 

NH3 (BOC grade N 3.8), N2 (BOC oxygen free, 99.998 %) and 2 % O2/Ar (BOC purity). 

These gases were introduced into a vertical quartz glass reactor (10.5 mm internal 

diameter), fitted with a sintered disc, via ¼ inch stainless steel tubing (Swagelok).  Gas 

flow was controlled using a series of Brooks 5850 TR mass flow controllers and the 

effluent gas was flowed through a dilute sulfuric acid solution to neutralise any remaining 

ammonia present.  All experiments were carried out within a well-ventilated fume 

cupboard. The quartz reactor was located in the centre of a Carbolite tube furnace, and the 

temperature was controlled using a Eurotherm temperature controller which was 

programmed to go through various heating regimes for the nitriding process, dependent on 

the target nitride.  Figure 2.2-1 shows the experimental set-up for nitriding.   
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Figure 2.2-1 Apparatus used for preparing nitrides by ammonolysis 

 

(ii) Nitridation of materials. 

The typical experimental conditions used for nitriding are outlined below.  Approximately 

0.5 g of the material to be nitrided was placed into the vertical quartz reactor and a 94 ml 

min-1 flow of NH3 was introduced. The furnace was programmed to heat the material in 

accordance with previously reported methods specific to the nitride, as discussed in more 

detail in the relevant preparation sections, and this is shown in Table 2.2-1. Once the 

furnace had reached the final nitriding temperature a dwell period was applied.  Following 

this, the nitrided material was left to cool in flowing ammonia, and upon reaching ambient 

temperature, nitrogen gas was flushed through the system at 100 ml min-1 for 30 minutes to 

remove any residual ammonia from the system.  Some materials are known to be sensitive 

towards oxygen and in order to prevent pyrolysis on exposure of the nitrided material to 

air, these materials (VN, Fe2N, W2N, Co3Mo3N) were passivated using a mixture of 2 % 

O2/Ar flowing at 5 ml min-1 and N2 (passed through an oxygen trap) at 95 ml min-1 so as to 

obtain a gas mixture containing < 0.1 % O2.  This allowed a protective oxide skin to form 

on the surface of the nitride material which could be subsequently removed prior to testing 

by treatment with a 3:1 H2/N2 gas mixture. 
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Material Precursor Nitriding 
Temperature (oC) 

Nitriding 
Duration (hours) 

Nitriding 
Gas 

Mg3N2 as purchased    

TiN TiO2 (anatase) 900 6 NH3 

VN V2O5 700 2 NH3 

CrN CrCl3 700 5 NH3 

Fe2N Fe powder 500 6 NH3 

Co4N Co3O4 700 2 NH3 

Co4N/Al2O3 Co3O4/Al 2O3 700 2 NH3 

Ni3N NiCl2 480 6 NH3 

Cu3N CuF2 300 6 NH3 

Cu3N/SiO2 CuO/SiO2 300 6 NH3 

Zn3N2 Zn powder 600 6 NH3 

β-Mo2N0.78 MoO3 700 3 3:1 H2/N2 

Ta3N5 Ta2O5 900 9 NH3 

W2N WO3 700 2 NH3 

Re3N NH4ReO4 350 2 NH3 

Co3Mo3N CoMoO4.nH2O 785 6 NH3 

TiFe2Nx Ti shots Fe wire 450 3 NH3 

Co-4Re Co-Re oxide 700 3 NH3 

Table 2.2-1 Summary of preparation conditions for n itride materials 

 

2.2.2 Preparation of Mg3N2. 

Mg3N2 was purchased from Sigma Aldrich and no further treatment was required. [100] 

2.2.3 Preparation of TiN. 

Anatase nanopowder (TiO2 99.97 % Sigma –Aldrich) was used as the precursor for TiN.    

The material was heated to 900 oC, at a rate of 5 oC min-1 under the conditions outlined 

above.  The diffraction pattern of the nitrided material was crystalline and similar to that of 

pure phase TiN reported in the literature.[23] 

2.2.4 Preparation of VN. 

Ammonolysis of V2O5 (Aldrich) was undertaken so as to obtain VN using the method 

described by Shi and co-workers.[17]   The sample was linearly heated from room 

temperature to 350 °C over a period of 30 minutes, followed by a rise in temperature from 
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350 to 450 °C at a rate of 0.5 °C min-1, and a further increase from 450 to 700 °C at a rate 

of 1.25 °C min-1. The temperature was then kept at 700 °C for 2 h before cooling in a flow 

of NH3 and subsequently passivating as previously described. 

2.2.5 Preparation of CrN. 

CrN was synthesised by the reaction of CrCl3 (Sigma Aldrich 95%) with NH3 (94ml min-1) 

at 700 oC for 5 h as described in the literature.[101]   

2.2.6 Preparation of Fe2N. 

Iron nitrides were prepared following the method outlined by Goodeve and Jack.[102,103]   

They reported that it was possible to obtain different phases of iron nitride ranging from 

Fe2N, Fe3N and Fe4N through ammonoylsis of Fe powder at various temperatures.   In this 

study Fe2N was prepared by heating Fe powder to 500 oC using a ramp rate of 5 oC min-1 

under conditions previously described.  Powder X-ray diffraction confirmed that the only 

phase present in the sample was Fe2N. Other temperatures were also employed but resulted 

in mixed phase materials. 

2.2.7 Preparation of Co4N and Co4N/ γ-Al2O3. 

Bulk cobalt nitride and the γ-Al 2O3 supported cobalt nitride were generated by means of 

temperature programmed ammonolysis. The oxide precursors were loaded into the quartz 

reactor, and a flow of NH3 was introduced to the reactor.  The temperature was increased 

from room temperature to 300 oC over a period of 30 minutes, followed by a rise in 

temperature from 300 to 450 oC at a rate of 0.7 oC m and a further increase to 700 oC at 

which point it was held for 2 hours.[72] 

Supported Co4N was prepared by nitriding the supported oxide precursor (Co3O4/Al 2O3, as 

confirmed by XRD).  The precursor was prepared by method of incipient wetness 

impregnation via stirring γ-Al 2O3, in an aqueous cobalt nitrate (Co(NO3)2.6H2O, Sigma 

Aldrich 98+ %) solution so as to obtain a Co loading of 20 wt.%.  The precipitate was 

dried at 110 oC overnight and calcined at 500 oC for 3 hours.  
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2.2.8 Preparation of Ni3N. 

Baiker reported the synthesis of pure Ni3N through ammonolysis of NiO within a narrow 

temperature range of 200-500 oC, below or above which the nitride phase co-existed with 

nickel metal.[22]  Initially nickel oxide was employed as the precursor, and ammonolysis 

took place over a range of temperatures.  However, the resultant material was mixed phase 

Ni3N with impurities from Ni metal as shown by XRD.  NiCl2 (Koch Light Laboratories 

Ltd) was therefore utilized as the precursor and apparently pure phase Ni3N formed at 

480oC. A ramp rate of 15 oC min-1 and dwell time of 6 hours was used. 

2.2.9 Preparation of Cu3N and Cu3N/SiO2 . 

Cu3N powders were synthesised at 300 oC using anhydrous CuF2 (Aldrich 98 %) as a 

starting material and NH3 gas (BOC, 99.98 %) as a nitriding agent.[21,22,104]
  It was found 

that this material is very temperature sensitive and starts to decompose rapidly at 

temperatures above 320 oC forming metallic copper. 

Supported Cu3N was prepared by nitriding the supported oxide precursor (CuO/SiO2, as 

confirmed by XRD).  The precursor was prepared by method of incipient wetness 

impregnation via stirring SiO2 (200 m2), in an aqueous copper nitrate (Cu(NO3)2.6H2O, 

Sigma Aldrich 98+ %) solution so as to obtain a Cu loading of 20 wt.%.  The precipitate 

was dried at 110 oC overnight and calcined at 250 oC for 3 hours.  

2.2.10 Preparation of Zn3N2. 

The Zn3N2 powders were synthesised by reacting Zn powder (British Drug Houses) with 

NH3 gas at 600 oC using a ramp rate of 15 oC min-1.[105,106]   Powder X-ray diffraction of the 

resultant material confirmed that Zn3N2 had been obtained and trace impurities of ZnO 

were also observed, which is accordance with previous literature.  

2.2.11 Preparation of β-Mo2N0.78 and 1.5% Fe/ β-Mo2N0.78 , 1.5% Cu/ 
β-Mo2N0.78 and 1.5% Bi/ β-Mo2N0.78. 

β-Mo2N0.78 was prepared in-situ in a fixed bed microreactor.  0.5 g of MoO3 (sigma 

Aldrich 99.5 %) was charged to the reactor and treated with 60 ml min-1 of a 3:1 H2/N2 

(BOC, H2 99.998 %, N2 99.995 %) mixture at 750 oC for 3 hours.[107] 
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Iron, copper and bismuth were used as dopants and doped β-Mo2N0.78 was prepared were 

prepared by impregnating MoO3 using Fe(NO3)3.9H2O (Sigma Aldrich 98 %), 

Cu(NO3)2.3H2O (Sigma Aldrich 99 %), and  Bi(NO3).5H2O (Sigma Aldrich >98 %), 

respectively, so as to achieve a metal loading of 1.5 wt.%  on the MoO3 (i.e. using  0.109 g 

of Fe(NO3)3.9H2O, 0.057 g of Cu(NO3)2.3H2O and 0.026 g of Bi(NO3).5H2O respectively 

per gram of catalyst prepared). The doped materials were then dried in an oven at 120 oC 

and calcined at 500 oC for 5 hours.  Samples were subsequently nitrided following the 

same conditions previously described. 

2.2.12 Preparation of Ta3N5. 

Ta3N5 was synthesised by the reaction of Ta2O5 (Sigma Aldrich 99 %) with NH3 (94 ml 

min-1) at 900 oC for 9 hours as described in the literature.[109] 

2.2.13 Preparation of W2N. 

W2N was prepared using the same temperature programmed nitridation method as 

described for VN (section 1.2.4).[17]  WO3 (Sigma Aldrich) was treated with NH3 gas in 

order to produce the tungsten nitride.   

2.2.14 Preparation of Re3N. 

Clark and co-workers have reported that rhenium nitride can be formed by one of two 

methods, either from ammonium perrhenate (NH4ReO4) or rhenium trichloride (ReCl3) 

through ammonia reduction at temperatures between 300 and 350 oC, above which it starts 

to decompose to the metal.[73]  Re3N is relatively unstable and hence cannot be prepared by 

direct reaction of the elements due to the high temperatures required, nor can it be formed 

from the oxides because their reduction temperatures are above the decomposition 

temperature of the nitride. Thus, the application of rhenium nitride for the reactions of 

interest must be studied below 370 oC.  

NH4ReO4 (Sigma-Aldrich, 99.5 %) was used as the precursor for Re3N.   NH4ReO4 was 

nitrided in accordance with the conditions, outlined by Clark -350 oC for 2 hours.  Powder 

X-ray diffraction (XRD) confirmed the phase of the resultant material as Re3N which is in 

agreement with previous literature.[59,73] 
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2.2.15 Preparation of Co-4Re. 

Co-4Re was prepared by reduction of a cobalt rhenium oxide precursor.  The precursor was 

prepared by impregnating ammonium perrhenate (NH4ReO4 Sigma Aldrich 99+ %) with 

cobalt nitrate (Co(NO3)2.6H2O Sigma Aldrich 98+ %) using incipient wetness and it was 

then dried overnight at 110 oC.  The resulting powder was calcined at 500 oC for 3 hours 

and reduced in ammonia at 700 oC for 2 hours.  The higher temperature was required in 

order to reduce the cobalt metal.[59] 

2.2.16 Preparation of Co3Mo3N. 

Co3Mo3N was prepared by nitriding a cobalt molybdate hydrate precursor (CoMoO4.nH2O, 

as confirmed by XRD).  The precursor was prepared by adding aqueous solutions of cobalt 

nitrate (4.5 g Co(NO3)2.6H2O, Sigma Aldrich, 98+ %) and ammonium heptamolybdate  

(7.2 g (NH4)6Mo7O24.4H2O Sigma Aldrich 81-83 % as MoO3) then heating the mixture to 

approximately 80 oC for 3 hours.  A purple precipitate was collected after vacuum filtration 

and the precipitate washed with distilled water and ethanol, and subsequently dried 

overnight at 120 oC.  The resulting powder was calcined at 500 oC for 5 hours and then 

nitrided by ammonolysis using the following temperature regime, from ambient to 357 oC 

at a rate of 5.6 oC min-1, then to 447 oC at 0.5 oC min-1 then to 785 oC at 2.1 oC min-1. [111]  

The material was then cooled and passivated following the general procedure described 

previously.  

2.2.17 Preparation of TiFe2Nx Laves Phase. 

TiFe2Nx materials were prepared by heating 0.5 g Fe wire (Goodfellow, 99.95 %) and 0.5 g 

Ti metal shots (Goodfellow, 99.96 %) to 1150 oC under argon and dwelling at this 

temperature for 48 hours.  After cooling in the flowing gas, the material was then crushed 

into a fine powder and heated to 1150 oC for a further 48 hours in Ar, and crushed into fine 

particles.[90,91]  The material was then nitrided by temperature programmed ammonolysis in 

which it was heated to 450 oC at 5.6 oC min-1 and held at this temperature for 3 hours, 

before being allowed to cool to room temperature in ammonia gas. 

2.2.18 Preparation of Ru/AlMg2O4 and Ba/Ru/ AlMg2O4. 

Supported ruthenium catalysts have been prepared as they are known to be an excellent 

catalyst for ammonia synthesis. Some Ru-based catalysts have been shown to be 



Anne-Marie Alexander Chapter 2 18 

significantly more active than conventional, multipromoted iron system[112-114]  and these 

are being used for comparative purposes within this body of work. 

The support material (AlMg2O4) was prepared by drop-wise addition of 100 ml of a 0.05M 

solution of aqueous ammonium carbonate, (NH4)2CO3, Sigma Aldrich > 99.99 %) to a 

100ml aqueous mixture of Mg(NO3)2.6H2O (0.05M, Sigma Aldrich > 98 %) and 

Al(NO3)3.9H2O (0.02 M, Sigma Aldrich 98 %). A white precipitate was obtained after 

vacuum filtration and the precipitate was washed twice with distilled water and dried in an 

oven overnight at 120 oC. The Mg-Al complex oxide was prepared by calcinating the 

compound at 800 oC for 6 hours in air. 

Triruthenium dodecacarbonyl (Ru3(CO)12, Sigma Aldrich 99 %) was added by 

impregnation to the AlMgO support after the calcination step, so as to obtain a 5 wt.% 

metal loading, and dried at 70 oC.  The resulting orange-grey powder was crushed and 

sieved to < 250 microns and subsequently heated in 3:1 H2/N2 (60 ml min-1) at 400 oC for 2 

hours in order to reduce the Ru precursor and was then cooled under H2/N2. 

Barium nitrate, was introduced to the Ru/AlMg2O4 system by incipient wetness 

impregnation from aqueous solution, followed by drying the samples in air at 70 oC 

overnight and reduced as described above.[115,116]  

2.3 Characterisation. 

The following techniques were used to characterise, describe and verify the properties of 

pre- and post-reaction samples and to evaluate the results of various reactions carried out. 

2.3.1 Powder X-ray Diffraction (PXRD). 

Powder X-ray diffraction was carried out on all synthesised materials to identify the 

crystalline phases of the pre- and post-reaction samples.  XRD patterns were obtained 

using a Siemens D5000 X-ray diffractometer (40 kV, 40 mA) operating with a CuKα X-ray 

source (λ-1.5418 Å).  The scanning range used was 5 ˚- 85 ˚ with a step size of 0.02 ˚ and a 

scan rate of 1 second per step. 
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2.3.2 Surface Area Determination. 

The surface area of the catalysts was determined by applying the Brunauer, Emmett and 

Teller (BET) method to nitrogen physisorption isotherms which were determined at liquid 

nitrogen temperatures.  Isotherms were measured using a Micromeritics Flow Prep 060 and 

Gemini BET machine.  Prior to analysis, the samples (0.1 g) were degassed in N2 at 110oC 

overnight to remove any adsorbed moisture. 

2.3.3 Elemental Analysis. 

CHN analysis was performed to determine changes in the pre- and post- reaction materials 

with the kind assistance of Mrs Kim Wilson at the University of Glasgow using an Exeter 

Analytical CE-440 elemental analyser.   

2.3.4 Scanning Electron Microscope (SEM). 

SEM micrographs of pre and post reaction samples were acquired using a Philips XL30E- 

scanning electron microscope (25 kV, Spot Size 5, Working Distance 10 mm).  Samples 

were dispersed onto carbon stubs before being inserted into an inert atmosphere. 

2.3.5 Nuclear Magnetic Resonance (1H NMR). 

1H NMR spectroscopy was conducted on liquid samples (dissolved in a CDCl3 and THF-

d8) using a Bruker Advance III 400 MHz spectrometer.  Samples were run under 

automation using the standard default programme settings in the ‘Brooker data library’ as 

supplied with the spectrometer. 

2.3.6  Fourier Transform Infrared Spectroscopy (FTIR). 

Fourier Transform Infrared Spectroscopy was performed on a Shimadzu FTIR-8400S 

spectrometer.  Liquid samples were scanned 20 times at a resolution of 2 cm-1 in the region 

600-4000 cm-1 

2.3.7 Gas Chromatography / Mass Spectroscopy  (GCMS). 

GC analysis was conducted on liquid samples (dissolved in 1:10 v:v ratio with methanol) 

using a Thermo Finnigan Focus GC fitted with an AS2000 autosampler.  The column that 

was used in the instrument was a CP- Sil8CB 50 meter, 0.32 ID, 5 µm film thickness run at 
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a constant pressure of 14.5 p.s.i.  The injector was heated to 200 oC and the split ratio used 

was 30:1.  The initial oven temperature was 60 oC and this was held for 1 minute and 

subsequently increased to 260 oC using the following ramp profile, 30 oC min-1 to 110 oC, 

9 oC min-1 to 135 oC and finally 30 oC min-1 to 260 oC where it was held for 2 minutes.  

The total acquisition time was 11.6 minutes. Samples were also sent to the EPSRC 

National Mass Spectrometry Service Centre, Swansea, for characterisation. 

2.4 Testing. 

Figure 2.4-1 illustrates the reactor set up which was used to conduct the ammonia 

production and lattice nitrogen studies.  This was a fixed bed, continuous flow reactor and 

a quartz glass reactor tube (10.5 mm internal diameter) was used to contain the sample. 

The powdered sample was held centrally between silica wool plugs within the reactor tube 

which itself was held in a Carbolite furnace. The feed gas mixtures were introduced 

through ¼ inch stainless steel tubing (Swagelok), and a total flow rate of 60 ml min-1 

which was controlled via Brooks 5850 TR mass flow controllers, was used for both 

reactions. The vent gas from the reactor was passed through a sulfuric acid bubbler (200 ml 

0.0018 mol L-1) and the decrease in conductivity, corresponding to the consumption of H+ 

by NH3, was measured by a conductivity meter.  Conductivity calibration data can be 

found in the following section. All gases were vented into a fume hood. 

Furnace

Silica wool plugs
Sample

N containing 
gases

Ar containing 
gases

other gases

To Vent

H2SO4 Sol

Mass Flow Controller

Switch off Valve

Key

Drying Tube

 

Figure 2.4-1 Apparatus used to conduct ammonia synt hesis and lattice nitrogen 
experiments. 
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2.4.1 Ammonia Synthesis Calculations and Conductivity 
Calibration Data. 

During ammonia production and lattice nitrogen studies, the formation of ammonia was 

monitored through a decrease in the conductivity of a dilute sulphuric acid solution (200 

ml 0.0018 mol L-1).  As previously mentioned this decrease corresponds to the 

consumption of H+ ions by NH3, forming NH4
+ ions.  It is the difference in the relative size 

of these ions H+ and NH4
+ which results in the conductivity change of the solution. 

To establish upper and lower conductiviy values the mean conductivity of six different 

0.0018 mol L-1 solutions of H2SO4 and (NH4)2SO4 was determined.  Table 2.4-1 below 

shows the conductivities which were observed. 

Conductivity of H2SO4 solution(µS cm-1) Conductivity of (NH4)2SO4 solution(µS cm-1) 

959 313 

953 301 

943 302 

949 307 

934 308 

951 304 

Mean ~ 948 Mean ~ 305 

Table 2.4-1 Conductivity values which were observed  for 0.0018 mol L -1 solutions of H 2SO4 
and (NH 4)2SO4. 

 

The calculation shown below illustrates how the ammonia production rates were calculated 

with respect to the conductivity versus time plot for every ammonia synthesis experiments. 

       Moles of H2SO4 = Concentration (H2SO4) x Volume (H2SO4) 

          = 0.00108 mol L-1 x 0.2 L 

                                   = 2.16 x 10-4 moles 

Due to stoichiometric considerations 4.32 x10-4 moles of ammonia are required to 

completely react with H2SO4 

Change in conductivity for reaction H2SO4 + 2NH3                    (NH4)2SO4 
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= 948 µScm-1 – 305 µScm-1 

= 643 µScm-1 

Number of moles of ammonia required / Total change in conductivity 

=  4.32 x10-4 moles / 643 µScm-1 

= 6.72x10-7 mol /µS cm-1 

The gradient of the conductivity (µScm-1) versus time plots are determined.  By 

multiplying the resultant value by the calibration value (6.72x10-7 mol/µS cm-1) and 

dividing by the mass of the material investigated (generally 0.3 g) the mass normalised 

ammonia production rate is determined. 

Under reaction conditions using a 3:1 H2/N2 gas mixture and operated at 400 oC and 1 atm 

pressure, NH3 has a limiting yield of 0.4 mol%.20 

From the above information a theoretical equilibrium NH3 synthesis rate can be calculated 

as shown below: 

0.4 mol %  x 60 ml min-1  = 0.24 ml min-1 

0.24 ml min-1   = 1.07 x10-5 moles min-1 

                                    22400 ml (molar gas volume) 

1.07 x10-5 moles min-1x 60 min  = 6.4285 x 10-4 moles hour-1 

     6.4285 x 10-4 moles hour-1   = 2.142 x 10-3 mol g-1 h-1 

                                 0.3g (weight of material)    = 2142 µmol g-1 h-1 

 
 
It is worth noting that during ammonia production and lattice nitrogen reactivity studies 

that a change in the conductivity value may not be truly representative of the rate of NH3 

formation.  It is assumed within this thesis that NH3 is the only nitrogen containing species 

produced under reaction conditions so as to cause a decrease in the conductivity of the acid 

solution.  Other nitrogen containing species, such as N2H4, N2H2, N3H, may also form 

during the reaction and would have a similar effect of lowering the conductivity of the 

solution.  Furthermore it is also assumed that any NH3 species formed during reaction 
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subsequently reacts with H+ ions to form NH4
+.   It may be possible that only a limited 

amount of NH3 species reacts in solution (i.e. are trapped) and the remainder is vented, 

thus any decrease which is observed in the conductivity readings would not be illustrative 

of the total NH3 produced during reaction. 

2.4.2 Ammonia Production. 

0.3 g of material was placed into the quartz reactor tube and so that it was held centrally 

within the heated zone of the furnace.  Generally the nitrides were pre-treated at 700 oC 

with the reactant gas (H2/N2 (BOC, H2 99.998 %, N2 99.99 %) in a ratio of 3:1 

respectively) at 60 ml min-1 for 2 hours, in order to remove the passivation layer, with the 

exception of the less stable nitrides; Co4N, Ni3N, Cu3N, Re3N and Zn3N2, which were not 

pre-treated.  The samples were then cooled to reaction temperature, 400 oC (250 oC for the 

less stable nitrides), in flowing gas and held at this temperature for 6 hours. On reaching 

reaction temperature, the vent gas from the reactor was bubbled through a sulfuric acid 

solution (200 ml 0.0018 mol L-1) at ambient temperature.  The conductivity of the solution 

was measured every 30 minutes and the production of ammonia was measured by 

monitoring the change in conductivity of a sulfuric acid solution with respect to time and 

compared with the theoretical equilibrium NH3 synthesis rate which was calculated to be 

2142 µmol g-1 h-1 for the above reaction conditions with a limiting yield of 0.4 mol. % as 

discussed previously.[133] 

2.4.3 Lattice Nitrogen Reactivity. 

The reactivity of the lattice nitrogen, within the bulk nitrides, was assessed with H2/Ar as a 

function of temperature in order to evaluate the temperature range at which nitrogen was 

lost from the metal lattice.  

0.3 g of nitride was placed into the silica reactor tube and held between quartz wool plugs 

centrally in the heated zone of the furnace.  As described for ammonia synthesis studies, 

most of the nitrided materials were pre-treated at 700 oC for 2 hours with 3:1 H2/N2 to 

remove any residual oxide present and then cooled to 400 oC (or lower for the unstable 

nitrides).  At this point the feed gas was switched from H2/N2 to 3:1 H2/Ar (BOC, H2 

99.998 %, Ar min 99.99 %) and conductivity measurements were taken at 400 oC for 4 

hours. The temperature of the reaction was then increased and held in the following 

increments, 500 oC (1 hour dwell), 600 oC (1.5 hour dwell) and finally 700 oC (1 hour 
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dwell). Nitrides of Groups IX-XII had a marginally different temperature regime (starting 

at 200 oC) due to their thermal instability.  From conductivity calibration data, the 

percentage of nitrogen species, lost from the nitride resulting in the formation of ammonia 

could be determined and compared with the total amount of nitrogen lost from the nitride 

as determined by combustion analysis. 

2.4.4  Benzene Flow Test Reactor. 

Experiments investigating the potential synthesis of aniline from benzene, phenol and 

chlorobenzene were carried out using the experimental set-up as shown in Figure 2.4-2 

with some slight modifications.  0.3 g of reagent was placed into a silica reactor tube and 

held centrally in the heated zone of the furnace.  Those nitrides which were passivated 

following the procedure described in section 2.2.1 were pre-treated at 700 oC under 3:1 

H2/N2 gas (60 ml min-1) for 2 hours and allowed to cool to room temperature before the 

solvent was charged to the reactor.  The system was then flushed with H2/N2 at room 

temperature to ensure traces of oxygen were removed after exposure to air. A bubbler held 

at ambient temperature was used to introduce a flow of benzene/chlorobenzene/phenol 

over the materials. Assuming equilibrium, it is calculated that the proportion of benzene 

and chlorobenzene in the gas stream corresponds to 9 and 1% respectively. 

The reagents were tested at different temperatures, primarily 300 oC and 400 oC, (unless 

otherwise stated) and a temperature ramp rate of 100 oC min-1
 was used to attain the 

reaction temperature.  The temperature was then held for 1-4 hours.  An ice bath was used 

at the exit of the reactor to condense products which were subsequently analysed by 1H 

NMR spectroscopy, mass spectroscopy and FTIR spectroscopy. Below is a schematic of 

the set-up for benzene experiments on the plug flow reactor. 
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Figure 2.4-2 Apparatus used to for benzene /nitroge n experiments.   

 

2.4.5 Benzene - Ammonia Pulse Reactor. 

Benzene and ammonia pulse reactions have been undertaken with the ultimate aim of 

overcoming the limitation posed by direct reaction of ammonia and benzene.  Direct 

amination of benzene is an equilibrium limited dehydrogenation.[117]  By pulsing ammonia 

and benzene alternatively, the dehydrogenation stage can be separated from the amination 

stage. NHx residues are adsorbed onto the surface of the reagent and may react with the 

following pulse of benzene. In doing so, this may lift the equilibrium limitation by the 

sequential removal of hydrogen from the reaction and potentially enables increased 

benzene conversion to aniline.   

Pulse reactions were conducted under three different feed gas regimes, (a) 5 % H2/N2 

(BOC), (b) 5 % H2/Ar (BOC) and (c) Ar (BOC) only. The samples were initially exposed 

to the 5 % H2/N2 gas mix and also the 5 % H2/Ar and Ar only gas feeds if there was 

evidence of coking on the lower packing granules after reaction with the 5 % H2/N2 gas 

mix as discussed later.  Figure 2.4-3 is a schematic of the experimental set-up for the pulse 

reactions.  Both NH3 and C6H6 were injected into a carrier gas through an injection port 

fitted into the Swagelok steel tubing. The carrier gas was delivered to the steel reactor tube 

through ¼” Swagelok steel tubing and the flow set to 60 ml min-1 using a rotameter.  The 

effluent gas was passed to an online mass spectrometer (Varian Quadrupole Mass 

Spectrometer) via a needle valve, whilst excess gas sent to a vent flow line.   
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The reactor volume used was 3.69 cm3 and catalyst bed length was 0.13 cm3.  In order for 

the sample to be located centrally in the heater the reactor is packed with 1.78 cm3 boiling 

chips both above and below the nitrided sample. 

Before bringing the catalyst to reaction temperature, the reactor and gas lines were purged 

for 1 hour at ambient temperature using the H2/N2 carrier gas in order to remove any air 

from the reaction system prior to passing into the on-line mass spectrometer.  The 

materials were then heated to reaction temperature, 400 oC and held at this temperature for 

3 hours.  Upon reaching reaction temperature and after a period of 20 minutes to allow for 

catalyst stabilisation, 2 µl (2.3x10-5 moles) of benzene was injected into the reactor every 

15 minutes followed by 5ml (2.2x10-4 moles) NH3 gas. These injections were also 

performed in reverse, i.e. NH3 followed by benzene, in a series of different experiments.   

Packing 
granules

Sample

5% H2/N2

5% H2/Ar
or Ar only

To Vent

Furnace

To Mass Spec

Pressure Gauge

Switch off Valve

Key
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Figure 2.4-3 Apparatus used for conducting pulse ex periments 
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3. The Reactivity of “Lattice” Nitrogen in Nitrides  
as Probed by H 2/N2 and H 2/Ar Reactions. 

3.1 Introduction. 

Interest in nitrides, as previously discussed, has generally focussed on their catalytic ability 

for reactions such as hydrotreating, photocatalysis and ammonia synthesis.  However 

within this project metal nitrides are investigated as potential nitrogen transfer reagents, in 

which the nitrides could be viewed as reservoirs for ‘active’ molecular nitrogen.  This 

approach is akin to the Mars-van Krevelen mechanism which often occurs for catalytic 

oxidation reactions catalysed by metal oxides. In this mechanism an organic reactant is 

oxidized by the transfer of lattice oxygen from the catalyst generating the vacancies which 

are subsequently replenished by a gas-phase oxygen source.[93] Figure 3.1-1 illustrates this 

general type of process. 

Mn+O2-

M(n-2) + 

½ O2 SO

S

S  +  ½ O2        SO

 

Figure 3.1-1 Schematic of Mars-van Krevelen oxidati on mechanism (S = a substrate) 

 

As well as being a mechanism, Mars-van Krevelen type oxidation can be viewed in 

process terms.  In doing so, the substrate oxidation and catalyst re-oxidation phases can be 

performed in separate isolated stages.  This could result in significant thermodynamic and / 

or kinetic advantages - for example in partial oxidation reactions where the desired 

products are more susceptible to oxidation than the reactants, it is possible to enhance their 

yields by performing the reaction in the absence of gas-phase oxygen.  In the initial stage, 

the desired product is formed by direct reaction with the “catalyst” resulting in a reduced 

phase which can be re-oxidised in a separate stage.  This type of approach has been applied 
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on the industrial scale by Du Pont for maleic anhydride production from butane oxidation 

using a vanadium phosphate based catalyst.[118-120]  

In mechanistic terms, Mars-van Krevelen oxidation is found to occur in a wide range of 

systems.  One example is the partial oxidation of propylene to acrolein over bismuth 

molybdate, which has been shown to occur in two steps, the activation of the propylene 

molecule, followed by the insertion of O atoms into the hydrocarbon.[121]  Isotopic 

labelling studies have demonstrated that the sites located on the bismuth atoms, activate 

and dissociate O2. Oxygen atoms subsequently fill vacancies which occur in the lattice as a 

consequence of acrolein desorption. This general type of mechanism has also been 

observed for sulfide and carbide transfer reactions. In the latter case, Gracia and co-

workers have proposed a mechanism, demonstrated through computational methods, for 

the direct lattice carbon transfer from carbon dioxide hydrogenation to methane on an iron 

carbide surface.[122]  Similarly Green and co-workers have reported the direct lattice carbon 

transfer to carbon monoxide produced in the partial oxidation of methane which is 

catalysed by molybdenum carbide.[94] 

There is little evidence within the literature that suggests nitrogen participates in analogues 

of the Mars-van Krevelen type mechanism.  Metal nitrides have been largely over-looked 

in this respect, despite early reports by Segal and Sebba which alluded to the possibility of 

lattice nitrogen being active in  synthesis of ammonia catalysed by uranium nitride.[56-57]  

Examples can also be found in the Russian literature, where Panov and co-workers have 

investigated isotopic nitrogen exchange and ammonia synthesis with uranium and barium 

nitride systems.[123]   More recently studies by Grange and co-workers have demonstrated 

one of the first examples of using lattice nitrogen transfer for the direct ammoxidation of 

propane to acrylonitrile using a vanadium aluminium oxynitride (VAlON) catalyst in a 

double Mars-van Krevelen process, which is illustrated in Figure 3.1-2.[71]   
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Figure 3.1-2 Reaction mechanism for propane ammoxid ation over VAlON catalysts.  Solid 
lines indicate reaction paths involving lattice oxy gen, and dashed lines donate pathways 
with adsorbed oxygen.  Square brackets are used to symbolize surface intermediates. [71]  

 

One of the fundamental issues for this type of system is the ability for the material to 

reversibly uptake and release the reacting species.  It is well known that intermetallic 

compounds, such as LaNi5 and TiFe, can reversibly take-up and lose large amounts of 

hydrogen under mild conditions and it has been shown in the work of Itoh and Machida, 

that interstitial type metal nitrides behave in a similar manner, as shown below:[90-92]    

Ru / Al 2O3/ a-TiFe2Nx-δ

δ NH3

3/2 δ H2

δ / 2 N2

Ru / Al 2O3/ a-TiFe2Nx

 

Figure 3.1-3 Schematic of the nitrogen uptake / rem oval system described by Itoh et al. [90]  

 

Further to this, recent studies on Co3Mo3N have shown that there is a reversible loss of 

50% of nitrogen from the structure under a H2/Ar atmosphere, with the residual nitrogen 

moving to a different crystallographic site.  The original stoichiometry can then be 

subsequently restored under a nitrogen atmosphere. [124-126]   In many large scale processes, 

ammonia is used as a nitrogen carrier molecule and when viewed in terms of the nitrogen 

conversion process, they appear very inefficient.  For example, as discussed in the 
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introduction, large scale aniline synthesis is performed in the following sequence of 

reactions: 

N2 +  3H2

NH3 +  2O2

HNO3 +  2H2SO4

HNO3 +  H2O

NO2
+ +  H3O+ +  2HSO4

-

C6H5NO2 +  3H2

C6H6 +  NO2
+

2NH3

C6H5NO2 +  H+

C6H5NH2 +  2H2O
 

When broken down into the nitrogen transfer steps, it can be seen that N2 is initially 

reduced to produce NH3 from which HNO3 is prepared by its re-oxidation (and effectively 

the corresponding oxidation of much of the H2 used in the NH3 synthesis stage).  Nitration 

is eventually performed by nitronium cations in which the nitrogen is subsequently re-

reduced.  Given that it has been estimated that large scale ammonia synthesis consumes in 

excess of 1% of the global energy demand, the desirability of alternative, more direct 

routes is obvious.[95-99] 

 

The use of nitrides for the ammonia synthesis reaction has been well documented, with 

first examples of uranium and osmium nitrides being reported in the initial work of 

Haber.[128]  The conventional catalyst for ammonia synthesis is iron-based with the 

addition of alkali promoters, and more recently a promoted ruthenium based catalyst was 

introduced into commercial operation.[129-132]  However as demand grows for nitrogen 

containing materials, the need to develop a more cost effective and highly efficient 

catalytic process for ammonia synthesis has become of great significance over the last 70 

years. Among these, the invention of novel catalysts plays a leading role.  Many elements, 

other than iron, have been examined in order to obtain a more active catalyst.  One of the 

first being reported was molybdenum, documented by Mittasch in 1937. Molybdenum is, 

generally, known to dissociate N2 more easily than iron or ruthenium.  However, catalysts 

containing molybdenum or other transition metals have not been studied extensively when 

compared to iron or ruthenium based catalysts which are well understood.  Many of these 

studies investigate the nitrogen adsorption steps, and the extent to which promoters affect 

the activity of the catalyst.  Jacobsen and co-workers have rationalized the activity of 

Co3Mo3N in terms of a volcano relationship with the alloying of Co (which has a low N2 
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adsorption energy) with Mo (which has a high N2 adsorption energy) producing an optimal 

binding adsorption strength, and recent developments have involved the identification of 

Cs+ promoted Co3Mo3N as a highly active catalyst for ammonia synthesis with an activity 

reportedly exceeding commercial based catalysts.[52, 60-68] 

The work conducted in this chapter focuses on the reactivity of lattice nitrogen over a 

range of binary and ternary nitride materials and this is established via the comparison of 

ammonia synthesis activities using stoichiometric H2/N2 mixtures with H2/Ar mixtures, as 

described in the experimental section. Eighteen different systems were prepared, 

characterised and screened and activities were compared to a supported Ru catalyst, which 

is known to be one of the most active systems for catalytic ammonia synthesis.   Some 

supported nitrides have also been investigated to elucidate whether increasing the surface 

area of the material, via dispersion of the active phase, effects the ammonia synthesis 

activity.  The effects of dopants on the activities of some bulk nitride phases have also 

been investigated.   However, as previously mentioned, in order to function as a nitrogen 

transfer reagent it must be possible to replenish the depleted lattice nitrogen within the 

nitride, which will be discussed later in this thesis.  The proposed nitrogen adsorption and 

transfer cycle, in theory could be conducted as separate steps and at different temperatures, 

which may prove to be advantageous in the development of a novel nitrogen transfer 

process, overcoming thermodynamic and kinetic limitations imposed by such systems. 

This general type of approach has been documented in the work of van Santen using a 

carbide based system.[133,134] 

For this purposes of this chapter, the nitrides which have been investigated are divided into 

three groups – early transition metal nitrides, later transition metal nitrides and 

miscellaneous systems. 

3.2  Early Transition Metal Nitrides.  

3.2.1 Introduction to Early Transition Metals.  

This section investigates the reactivity of lattice nitrogen of group IV-VI transition metal 

nitrides.  The metal nitrides that will be discussed here include TiN, VN, CrN, β-Mo2N0.78, 

Ta3N5 and W2N.   

Group IV-VI transition metal nitrides are generally described as metallic nitrides because 

of their metallic conductivity, lustre and general metallic behaviour.  These compounds are 
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characterised by their high melting points, hardness and resistance to corrosion, like their 

corresponding carbides and borides, they are often referred to as refractory hard metals.[31] 

They have traditionally found applications in ceramics, cutting tools and as structural 

components.   In the pioneering work of Levy and Boudart,[10] and which has been 

summarised by Oyama,[9] transition metal nitrides have been shown to be efficient 

catalysts.  As a result, binary nitrides have attracted significant attention. In particular those 

of vanadium, molybdenum and tungsten have been applied to a range of reactions such as 

CO hydrogenation and NO dissociation, with resultant rates which are reportedly 

comparable to traditional ‘platinum- like’ catalysts.[9,10,11,17,54,75]   Suggestions have been 

made that this behaviour is attributed to the alloying the electron deficient parent metal 

with nitrogen.[134]  The nitrogen atoms occupy the interstitial space created within the metal 

lattice and in doing so increase the electron count; hence the chemical properties of the 

nitride reportedly bear resemblance to the platinum group metals.  The description of 

interstitial occupancy of N atoms cannot be so easily applied to Ta3N5 since it forms an 

orthorhombic unit cell and the nitrogen atoms are either three-fold or four-fold co-

ordinated to Ta.[136] However it is important to note that the level of similarity between 

nitrides and platinum group metals remains unclear, and much debate has arisen around 

this.[137-141]  

There is a substantial amount of catalytic literature available for binary nitrides.   However, 

these generally focus on Mo or W based systems whilst other nitrides remain little studied. 

In addition to this, a large proportion of the literature concerning binary nitrides is 

primarily focussed upon synthesis techniques and the electronic and structural properties. 

Nevertheless, of the binary nitrides reported in the literature, molybdenum has been studied 

in greatest detail in terms of its catalytic applications and it is understood in the greatest 

detail. γ-Mo2N and β-Mo2N0.78 have been shown to be active ammonia synthesis catalysts 

as have other binary nitrides such as vanadium nitride, uranium nitride and tungsten 

nitrides.   

Furthermore, indirectly related to this, within the organic literature early transition metals 

such as Zr, Mo and Ti have been used for molecular nitrogen fixation with the aim to 

incorporate nitrogen into organic compounds.  This approach can be illustrated by the work 

of Mori and others.[142,143] Mori reported the application of titanium-nitrogen based 

compounds, synthesised directly from dinitrogen, for the preparation of nitrogen 

heterocycles from organic compounds under ambient conditions. 
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The nitrides, which are investigated in this section, are stable under ammonia synthesis 

conditions and some can exist in a wide variety of stoichiometric forms, which could be 

envisaged to play a key role in facilitating Mars-van Krevelen type mechanisms/processes 

in which the reversible uptake and loss of N from the metal lattice may be facilitated. 

Despite ammonia synthesis activities of a number of the individual transition metal nitrides 

being known, there is not a comparative study of these materials within the literature and 

so this chapter also presents a general overview of this area.  In addition, comparative 

studies of de-nitridation employing H2/Ar have not been documented.  In this chapter, 

individual systems will be described separately and then comparisons drawn later.  Also, it 

should be emphasised that reaction data has been normalised to sample mass rather than 

surface area.  The reason for this is that most of the systems which have been investigated 

are air sensitive and therefore, since areas are not measured in-situ, use of this parameter 

may introduce artefacts.  

Ammonia production rates were derived from conductivity versus time plots, and a 

calculation applied to the gradient from the calibration data detailed in section 2.4-1.  

These are used to provide an indication of NH3 formation during various phases of time on 

stream and are not meant to imply that steady state rates pertain.    The general approach 

taken throughout this section, and indeed this chapter, has been to make comparisons of 

ammonia synthesis using H2/N2 and H2/Ar feedstreams.  The latter has been employed to 

determine the reactivity of “lattice” N species, including sorbed NHx residues. 

3.2.2 TiN. 

Much of the literature surrounding titanium nitride either focuses on preparative methods 

or the electronic and optical properties associated with it for use as photocatalysts.[144-149] 

For the titanium group nitrides there are few catalytic applications which have been 

documented, although recently Kaskel et al reported the use of titanium nitride for the 

catalytic decomposition of complex aluminium hydrides, which led to subsequent studies 

for the use of TiN as a co-catalyst in hydrogen transfer reactions.[150]   In addition to this, 

titanium complexes have also found use within organic chemistry as nitrogen transfer 

agents. As mentioned earlier, Mori developed a titanium–nitrogen complex from a titanium 

chloride precursor and applied it to the synthesis of nitrogen containing 

heterocycles.[142,143]  In the same study it was also observed, that via this method, the 

titanium nitrogen complex could be used to synthesise imines from keto-carbonyls, and 

pyrrole derivatives from 1,4 – diketones.    
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An early study by Lotz and Sebba reported the ammonia decomposition activities of the 

first row transition metal nitrides,[151] and it was shown that titanium nitride possessed little 

activity towards ammonia decomposition. Other than this, titanium nitride has only been 

studied for ammonia synthesis in combination with iron.[152]  Titanium nitride (TiNx) has 

been reported to exist in a variety of stoichiometric forms with x ranging from 0.53 to 

greater than 1.00.[23,24,153]  The colour of TiN1-x is an indicator of stoichiometry. The 

colours exhibited range from metallic grey to a yellow/gold, with yellow coloured TiN 

being the stoichiometric form.  The resulting sample that was prepared in the current study 

was black in colour, which would suggest it was sub-stoichiometric. This colour of TiN 

has been previously observed in studies by Kaskel et al where they also produced a black 

powder with surface areas reported to be in excess of 200 m2 g-1.[154] 

3.2.2.1 Reaction Data. 

The H2/N2 and H2/Ar reaction studies were conducted as outlined in the experimental 

section. Figure 3.2-1 illustrates the conductivity versus time plot for the ammonia 

production reaction at 400 oC using H2/N2 and H2/Ar feeds. 

It can be seen  that under H2/N2 that there is a steady decrease in the conductivity value for 

TiN in the first 2.5 hours after which the NH3 production rate drops off.  In the reaction 

with H2/Ar there is a sharp initial decrease in the conductivity within the first 30 minutes 

on stream, followed by a diminished rate of NH3 evolution.  As evident in the latter stages 

of the reaction, very little ammonia is produced. 

O

OTf

O

NH2

TiCl4

N N

Li (50 mol equiv)

Me3SiCl (50 mol equiv)

ClTi=NTMS

THF, reflux 24h
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Figure 3.2-1 Comparison of conductivity for TiN amm onia production using H 2/N2 vs. H 2/Ar 
at 400 oC. 

 
The ammonia which is produced, during either reaction, may be as a result of the 

hydrogenation of surface NHx  species formed either during the preparation of the nitride 

by ammonolysis or in the initial two hour pre-treatment with H2/N2.  The relatively rapid 

initial production of ammonia followed by a slower phase is a common trend which is 

observed in most of the nitrides that have been investigated in this work. The rates of 

ammonia synthesis at various time intervals for both the H2/Ar and H2/N2 reactions 

conducted at 400 oC  are presented in Table 3.2-1 

It is worth noting that even under H2/N2  the ammonia production rates during the first 30 

minutes of reaction are almost double that of the succeeding reaction rate, again, as 

mentioned above, may be due to the hydrogenation of adsorbed NHx surface species.  

Indeed it is possible that the difference between the H2/N2 and H2/Ar profiles relate to 

differences in the concentration of NHx between the two samples. 

Sample and Reaction Conditions NH3 Synthesis Rate (µmol h-1 g-1) 

TiN, 400 oC (H2/N2, 0-0.5 h) 152 

TiN, 400 oC (H2/N2, 1.0-2.5 h) 74 

TiN, 400 oC (H2/N2, 3.0-6.0 h) 6 

TiN, 400 oC (H2/Ar, 0.-0.5 h) 183 

TiN, 400 oC (H2/Ar, 1-6 h) 6 

Table 3.2-1 Ammonia production rates of TiN under b oth H 2/Ar and H 2/N2 at 400  oC. 
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Temperature programmed H2/Ar experiments were undertaken in order to assess the 

reactivity of the lattice nitrogen or NHx species as a function of temperature.  This 

experiment was carried out in a similar manner to the H2/Ar ammonia synthesis 

experiments but after ammonia production ceased the temperature was increased in 100 oC 

increments up to 700 oC.   The reaction profile (as well as the temperature profile) for TiN 

is illustrated in Figure 3.2-2: 

 

Figure 3.2-2 Conductivity data for NH 3 synthesis over TiN as a function of increasing 
temperature. 

 
Again there is an initial decrease in conductivity within the first 30 minutes on stream and 

is comparable to the rate reported in Table 3.2-1, after which the ammonia production rate 

decreases rapidly with time on stream at 400 oC.  After 4 hours, the reaction produces very 

little ammonia.  The temperature was increased to 500 oC and it is clear that there was a 

further burst of ammonia production, which was not sustained. Further increases in 

temperature led to short lived NH3 production.  These surges of ammonia production upon 

temperature increase indicate that the nitrogen associated with the TiN phase prepared has 

various degrees of reactivity.  This could be attributed to different binding strengths 

between bulk and/or surface nitrogen species.  It was calculated that only 1.29 % of the 

lattice nitrogen within TiN lost, as determined by CHN analysis, resulted in the formation 

of ammonia in this reaction. The ammonia production rates of TiN (under H2/Ar) at 

temperatures between 400 oC and 700 oC are presented in Table 3.2-2: 

 



Anne-Marie Alexander Chapter 3 37 

Reaction Temperature and Time NH3 Synthesis Rate (µmol h-1 g-1) 

400 oC (0.0-0.5 h) 170 

400 oC (1.0-4.5 h) 6 

500 oC (4.5-5.0 h) 58 

500 oC (5.0-6.0 h) 2 

600 oC (6.0-7.5 h) 9 

700 oC (7.5-9.0 h) 4 

Table 3.2-2 Ammonia production activity of TiN unde r H2/Ar as a function of increasing 
temperature. 

 

3.2.2.2 Nitrogen Analysis 

The results of pre- and post-reaction nitrogen analysis of the TiN sample are presented in 

Table 3.2-3, along with calculated stoichiometric nitrogen content of the material. 

Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-Reaction 
N Content 

(wt.%) 

TiN (H2/N2) after 6 h at 400 oC 22.63 19.74 18.81 

TiN (H2/Ar) after 6 h at 400 oC 22.63 19.74 18.76 

TiN (H2/Ar) using temperature profile 
as shown in Fig. 3.2-2 

22.63 19.74 18.45 

Table 3.2-3 Nitrogen content of TiN samples pre- an d post-reaction. 

 

The pre-reaction nitrogen content of the TiN is below that of the calculated stoichiometric 

value, which corresponds to a sub-stoichiometric form of TiN with a formula of TiN0.87, 

assuming there is no influence of surface oxidation.  When considering the post-reaction 

data it is evident that in all cases the nitrogen content is slightly lower than that of the pre-

reaction samples.  In the case of the reactions at 400 oC (H2/N2 and H2/Ar), both materials 

after reaction have comparable nitrogen content (within 0.05 wt.%) and which indicates 

that there is limited consumption of nitrogen, which is possibly consistent with the reaction 

and loss of surface NHx species.  Similarly in the case of the material treated under H2/Ar 

using the temperature profile illustrated in Figure 3.2-2 with a maximum of 700 oC, the 

post-reaction results indicate that very little additional nitrogen has been removed.  The 

results show that only 1.29 wt.% of nitrogen has been lost which is in good correspondence 
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with the amount of ammonia produced in the reaction, as determined from the NH3 

production data (1.25 wt.%).   

These results suggest that TiN is a relatively stable phase which would have very limited 

applicability as a nitrogen transfer reagent.  Since several studies investigating bonding 

energy in TiN and sub-stoichiometric TiNx have suggested that bonding energy between 

titanium and nitrogen is a function of nitrogen concentration within the metal lattice (i.e. 

with increasing nitrogen concentration as x approaches 1 the bond energy also increases) it 

is possible that the relatively inert behaviour observed in this study could be altered by 

changing the stoichiometry.  However, in practice, targeted synthesis of specific 

stoichiometries may prove difficult using ammonolysis. 

3.2.2.3 XRD Patterns. 

The pre-and post- reaction X-ray diffraction patterns of the titanium nitride samples, which 

have been studied under the reaction conditions described in section 3.2.2.1, are shown in 

Figure 3.2-3   

 

Figure 3.2-3 Pre- and post-reaction XRD patterns of  TiN under H 2/N2 and H 2/Ar (700 oC) gas 
mixtures (JCPDS 038-1420 TiN). 

 
All three samples match to face centred cubic TiN.  From the XRDs it is apparent that the 

reflections are quite broad, which is typical of high surface area materials, and possibly 

results from small particle size and/or disordered material.  There are no apparent lattice 

shifts generated upon reaction which would suggest no significant loss of nitrogen from the 

crystal lattice.  However, upon inspection of the post-reaction pattern obtained under H2/Ar 



Anne-Marie Alexander Chapter 3 39 

it is evident that some small additional reflections are present.  These peaks are 

characteristic of rutile (TiO2) which are most likely a result of aerobic oxidation when 

discharging the slightly more reduced material from the reactor.   

3.2.3 VN.  

Vanadium complexes are known to participate in biological nitrogen fixation, and are 

found in nitrogenase enzymes, where they show activity for the reduction of N2 to either 

hydrazine or ammonia.[155]  Similar non-biological mechanisms have been demonstrated in 

the work of Shilov et al, whereby vanadium (II)-catechol systems were prepared and the 

rate of ammonia formation was monitored and compared with a nitrogenase active 

centre.[156]  Despite this, very little is known regarding the potential catalytic applications 

of vanadium nitride.  However, as stated earlier reports by Sebba et al have demonstrated 

that vanadium nitride is catalytically active for both ammonia decomposition and ammonia 

synthesis reactions.[55,151]  In the study by Lotz and Sebba, it was suggested that the 

ammonia produced was a result of hydrogenation of loosely bound surface nitrogen which 

subsequently decreased with time on stream, affecting the activity of the material, as a 

consequence of the slow diffusion rates of nitrogen from bulk to the surface.[151]  More 

recent studies have suggested that vanadium carbides and nitrides may be more active for 

ammonia decomposition than platinum based catalysts. Oyama investigated the high 

temperature kinetics of ammonia decomposition over cubic VN.[70,157] This study 

highlighted that vanadium nitride exhibited similar behaviour to molybdenum and tungsten 

nitrides for ammonia decomposition.  Besides studies for ammonia synthesis and 

decomposition, vanadium nitride has also been shown, by Thompson et al,[158]  to be active 

for the dehydrogenation of butane.  

 

3.2.3.1 Reaction Data. 

Previous literature has suggested that vanadium nitride has a higher activity towards 

ammonia synthesis than either of its neighbouring metal nitrides, TiN and CrN, at elevated 

pressures and temperatures.[151]  This was also observed in the current ammonia production 

study conducted at ambient pressure and 400 oC, and the conductivity versus time plots for 

VN are presented in Figure 3.2-4. 
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Figure 3.2-4 Comparison of conductivity for VN ammo nia production using H 2/N2 vs. H 2/Ar at 
400 oC. 

From Figure 3.2-4, it can be seen that after about 90 minutes on stream under a H2/N2 

atmosphere the reaction exhibits an apparently steady state synthesis rate. However it can 

also be observed that under a H2/Ar environment there too is a relatively steady decrease in 

the conductivity with time.   However, in this case activity appears to drop off after 5.5 h 

and very little additional ammonia is produced after this period. Hence an extended 

reaction time run (as shown in Figure 3.2-4) was undertaken so as to distinguish whether or 

not catalytic ammonia formation occurs under a H2/N2 atmosphere, as up until 5.5 h this 

could still be ambiguous.  For most other metal nitride systems investigated a sharp drop in 

the conductivity has been observed within the first 30 minutes on stream, which may 

possibly be attributed to the removal of loosely bound surface NHx species.  In the case of 

VN, however, it is apparent that there is not the same sharp drop in conductivity but rather 

a gradual decrease. It may be the case that, as has been alluded to by King and Sebba,[55] 

surface species are removed before being replaced by bulk nitrogen diffusing to the surface 

which eventually ceases in leading to loss of activity.  Conversely in H2/N2 the surface 

nitrogen which is hydrogenated can continuously be replaced from the nitrogen in the feed 

gas and steady state conditions can be maintained.   The ammonia production rates for VN 

under H2/Ar and H2/N2 at 400 oC are presented in Table 3.2-4. 
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Sample and Reaction Conditions NH3 Synthesis Rate (µmol h-1 g-1) 

VN, 400 oC (H2/N2, 0-0.5 h) 98 

VN, 400 oC (H2/N2, 0.5-1.5 h) 24 

VN, 400 oC (H2/N2, 1.5-8 h) 40 

VN, 400 oC (H2/Ar, 0.0-0.5 h) 85 

VN, 400 oC (H2/Ar, 0.5-1.5 h) 49 

VN, 400 oC (H2/Ar, 1.5-5.5 h) 31 

VN, 400 oC (H2/Ar, 5.5-8 h) trace 

Table 3.2-4 Ammonia production rates of VN under bo th H 2/Ar and H 2/N2 at 400 oC. 

 

As for TiN, studies under H2/Ar were also conducted using the same temperature ramp 

profile as previously described.  The ammonia production rates for each temperature are 

quoted in Table 3.2-5.  

 

Reaction Temperature and Time NH3 Synthesis Rate (µmol h-1 g-1) 

400 oC (0-0.5 h) 84 

400 oC (1.0-4.5 h) 38 

500 oC (4.5-5.0 h) 31 

500 oC (5.0-6.0 h) 9 

600 oC (6.0-7.5 h) 40 

700 oC (7.5-9.0 h) 27 

Table 3.2-5 Ammonia production activity of VN under  H2/Ar as a function of increasing 
temperature. 

 
 

3.2.3.2 Nitrogen Analysis. 

From comparison of the pre- and post-reaction N analysis, it is evident that there is a 

significant loss of nitrogen from the samples upon reaction under both H2/N2 and H2/Ar.  

However, it is notable that the extent of nitrogen loss appears to be relatively independent 

of the reaction conditions.  Whilst the loss of N from the sample reacted isothermally with 

H2/Ar at 400 oC is greater than that of the corresponding H2/N2 reaction, as might be 

expected, the influence of employing the temperature programme up to 700 oC (using the 
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temperature profile shown for TiN in Figure 3.2-2) appears rather limited.  Whilst the 

nitrogen content in the temperature-programmed H2/Ar sample is lower than its isothermal 

counterpart, the difference is relatively small.  The loss observed has been compared with 

that calculated on the basis of ammonia production experiments and it was found that 

around 1.8 % of the total nitrogen lost, as found by CHN analysis, formed ammonia in the 

H2/Ar experiments.  

Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-Reaction 
N Content 

(wt.%) 

VN (H2/N2) after 6 h at 400 oC 21.55 18.39 14.88 

VN (H2/Ar) after 6 h at 400 oC 21.55 18.39 14.15 

VN (H2/Ar) using temperature profile as 
shown in Fig. 3.2-2 

21.55 18.39 14.06 

Table 3.2-6 Nitrogen content of VN samples pre- and  post-reaction. 

3.2.3.3  XRD Patterns. 

From XRD, all samples were confirmed to be cubic VN, matching JCPDS file number 00-

035-0768.  Post-reaction XRD analysis again illustrates that the VN undergoes no phase 

change under H2/N2. However, as with TiN, traces of an oxide, (in  this case V2O3) are 

present in the post H2/Ar (700 oC) reaction sample, as highlighted in Figure 3.2-7 and 

indicated by small stars.  It is known that the early transition metals are sensitive towards 

oxygen, and readily react to form their oxides. As discussed, this oxidation may occur on 

discharge of the material, which could be a result of the sample becoming more reduced at 

the higher temperatures, employed during the temperature programmed H2/Ar reactions, 

causing the material to subsequently become more sensitive towards oxygen and hence 

increasing susceptibility towards oxidation. 
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Figure 3.2-5 Pre- and post-reaction XRD patterns of  VN under H 2/N2 and H 2/Ar (700 oC) gas 
mixtures.    indicate V 2O3 reflections. (JCPDS 00-035-0768 VN). 

 

3.2.4 CrN.  

Like titanium nitride (section 3.2.2), chromium nitride is considered to have properies 

similiar to refactory metals, such as hardness and resistance to corrosion, and it has been 

investigated as a replacement for TiN for use as coatings on steel cutting and drilling tools 

due to its stability.[159-162]  Chromium nitride is one of the more difficult nitrides to prepare 

and is not readily synthesised from the oxide precursor.   Much of the literature 

surrounding preparation techniques concentrate on a variety of vapour deposition 

techniques, such as magnetron sputtering, vacuum arc evaporation and reactive ion 

plating.[162-165]  Various phases of CrNx, such as Cr2N and CrN can be observed using these 

deposition techniques and their formation is dependent on the partial pressure of the 

reactive nitrogen gas.  In comparison,  preparation of chromium nitride by ammonolysis is 

less well documented. Herle and co-workers reported the synthesis of CrN by 

ammonolysis of a chromium sulfide precursor (Cr2S3) and it was shown that a pure phase 

nitride could be synthesised under a flow of NH3 gas at 725 oC for 12 hours.[166]  More 

recently Zhang et al, discussed the effects of temperature and time on the morphology of 

chromium nitride prepared using a chromium halide precursor and ammonia gas.[101]   It 

was concluded  that as the nitriding temperature is increased from 500 oC to 800 oC larger 

particles form and this effect was also observed to occur when the nitridation duration was 

increased (in the range of 2-5 hours).  The catalytic literature on CrN is very sparse, with 

the bulk of the literature concentrating on material properties and novel preparation 

techniques. Despite this, Lotz and Sebba investigated this material as an ammonia 
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decomposition catalyst, along with the other first row transition metal nitrides, and its 

activity was found to be minimal.[151] 

3.2.4.1 Reaction Data. 

As can be seen from Figure 3.2-6, the decrease in conductivity does not follow the same 

pattern as has been previously observed, with the loss of nitrogen being somewhat erratic 

under both feed streams.  During the first 30 minutes on stream, there a drop in 

conductivity, in both instances.   However beyond this time, there does not appear to any 

consistency to the conductivity observed, although the general trend is a decrease.  It is 

apparent that in both instances very little ammonia is produced.  At most only 0.7 % of the 

lattice nitrogen contributes to the formation of ammonia in the case of the H2/Ar feed.    

Similar ammonia production was observed in duplicate H2/Ar and H2/N2 studies with a 

maximum difference in each conductivity reading of 10 µS/cm and 6 µS/cm respectively, 

which are represented by error bars in Figure 3.2-6.  As the production of ammonia is 

somewhat unstable, it has not been possible to calculate the ammonia production rates in 

the same manner as has been for materials, for this reason only the ammonia production 

rates for the first 30 minutes on stream are presented in Table 3.2-7. 

As can be seen, the rates for H2/N2 that are presented in Table 3.2-7 are comparable to that 

of vanadium nitride within first 30 minutes on stream.  However beyond this initial phase, 

the two systems behave differently.   

 

Figure 3.2-6 Comparison of conductivity for CrN amm onia production using H 2/N2 vs. H 2/Ar 
at 400oC (error bars of + 10 µS/cm H 2/Ar and + 6 µS/cm H 2/N2). 
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Sample and Reaction Conditions NH3 Synthesis Rate (µmol h-1 g-1) 

CrN, 400 oC (H2/N2, 0-0.5 h) 86 

CrN, 400 oC (H2/Ar, 0-0.5 h) 36 

Table 3.2-7 Ammonia production rates of CrN under b oth H 2/Ar and H 2/N2 at 400 oC. 

 
It may be anticipated that chromium nitrides would have activity rates comparable to either 

molybdenum or tungsten nitride, since Cr, Mo and W are from the same group in the 

periodic Table.  This is not the case.  Even at temperatures up to 700 oC in the temperature 

programmed studies employing H2/Ar, very little ammonia production is observed with a 

total of ca. 1% of the total nitrogen, as determined by CHN analysis, being lost as 

ammonia.  The ammonia production rates at various times on stream are presented in Table 

3.2-8. 

 

Reaction Temperature and Time NH3 Synthesis Rate (µmol h-1 g-1) 

400 oC (0-0.5 h) 27 

400 oC (1.0-4.5 h) 24 

500 oC (4.5-5.0 h) 36 

500 oC (5.0-6.0 h) 18 

600 oC (6.0-7.5 h) 5 

700 oC (7.5-9.0 h) 2 

Table 3.2-8 Ammonia production activity of CrN unde r H2/Ar as a function of increasing 
temperature. 

 
 

3.2.4.2 Nitrogen Analysis. 

As can be seen in Table 3.2-9 there is a large decrease in the post-reaction nitrogen 

content, with a loss of almost 13-14 wt. % in each case.  When this is compared to the 

calculated amount of total nitrogen lost as ammonia (ca. 1%) it is evident that the nitrogen 

lost is in a form which does not manifest itself in a change of conductivity of the H2SO4 

solution.  It is most likely that loss occurs as N2.  In this instance it is particularly curious 

that this amount of nitrogen has been lost from the system, when it is considered that CrN 

is supposed to be a thermally resistant material, and even when compared to TiN where 

only a small decrease in the nitrogen content is observed.  However this was reproducibly 

found to be the case.  
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Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-Reaction 
N Content 

(wt.%) 

CrN (H2/N2) after 6 h at 400 oC 21.21 19.66 6.57 

CrN (H2/Ar) after 6 h at 400 oC 21.21 19.66 5.98 

CrN (H2/Ar) using temperature profile as 
shown in  Fig. 3.2-2 

21.21 19.89 5.60 

Table 3.2-9 Nitrogen content of CrN samples pre- an d post-reaction. 

 
 

3.2.4.3  XRD Patterns. 

Chromium nitride exists in two phases; γ-CrN and β-Cr2N. with calculated nitrogen 

stoichiometric values of 21.21 wt.% and 11.81 wt.% respectively.[166]  This led to 

ambiguity in terms of the phases present in the post-reaction samples.  Using XRD samples 

were confirmed to be γ-CrN, with minor reflections corresponding to β-Cr2N reflections 

which are present in both the starting phase and the post H2/Ar reaction sample (as indicted 

by stars in Figure 3.2-7). 

It is interesting to note that these peaks are not observed in the post-reaction H2/N2 sample.  

Given the large, and reproducible, nitrogen loss from these samples it would be anticipated 

that there would be shifts in the position of the post-reaction reflections.  If crystalline Cr 

metal was formed reflections would be anticipated to occur at 39 o, 44 o, 49 o, 57 o, 67 o and 

71o 2θ.  Furthermore, if oxidation occurred upon discharge of these samples from the 

reactor it is probable that chromium oxide phases would be evident.  The origin of this 

apparent discrepancy is not clear.  

 In both post H2/Ar and H2/N2 reaction samples, there is evidence of a broad reflection 

between 17 o and 28 o 2θ, which is not observed in the pre-reaction XRD, which could 

potentially be an amorphous material and may explain the reason for the significant 

difference in nitrogen contents between the pre- and post-reaction samples. However its 

intensity is very low. 
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Figure 3.2-7 Pre- and post-reaction XRD patterns of  CrN under H 2/N2 and H 2/Ar gas mixtures.  
(JCPDS 003-1157 CrN)  β-Cr2N is indicated by a (   ) 

 

3.2.5 β-Mo2N0.78. 

Of the binary nitrides reported in the literature, molybdenum and tungsten nitrides have 

been studied in the greatest depth in terms of their catalytic applications.  Molybdenum 

nitride is well recognised as a catalyst for ammonia synthesis.[53]  Latterly most catalytic 

interest in nitride materials has largely arisen due to the easily accessible synthesis of high 

surface area γ-Mo2N by means of temperature programmed ammonolysis of an oxide 

precursor, as first reported by Volpe and Boudart.[32,107]   High space velocities of ammonia 

and carefully controlled temperature ramp rates are an important requirement in this 

method.  These specific parameters are thought to be significant in achieving high surface 

area materials by reducing the partial pressure of water generated from the oxide precursor, 

which is understood to reduce the surface area of the material through hydrothermal 

sintering, and to control the extent of thermal sintering at crucial stages of the temperature 

process.[32]  Wise and Markel demonstrated that high surface area γ-Mo2N could also be 

prepared using H2/N2 mixtures, rather than NH3, by applying similar conditions as 

described by Volpe and Boudart, involving controlled temperature ramp rates and high 

space velocities.[41]   Wise and Markel compared both nitridation methods and concluded 

that, in terms of industrial applications, application of a H2/N2 gas mixture is favoured with 

respect to NH3 due to the problems associated with heat transfer at elevated temperatures in 

the latter case.  Although Wise and Markel report on the synthesis of γ-Mo2N under H2/N2 
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mixtures, other studies which have also adopted this approach have shown that β-Mo2N0.78 

(which can also be prepared by partial decomposition of γ-Mo2N at temperatures above 

800 oC in an inert atmosphere)[42,43] is the resultant phase.  Although there are 

discrepancies in terms of the phases which are reported using this route, it was this method 

which was applied for the preparation of bulk and doped molybdenum nitrides in the 

current study, as described in the experimental section. 

Molybdenum nitride has been investigated as a potential catalyst for a range of different 

reactions including CO hydrogenation, ammonia synthesis, hydrotreating and amination 

reactions and has been reported to display similar catalytic activities to the platinum group 

metals. Thompson and co-workers have demonstrated that a range of early metal nitrides 

are active for ethanol amination and also reported that molybdenum nitride is more 

selective than Ni/SiO2 for the production of di- and tri-ethylamine.[18] Although 

molybdenum nitride has been studied in great detail, most catalytic applications have 

generally focused on the γ-Mo2N phase whilst other phases such as β-Mo2N0.78 and δ-

Mo2N have not been studied to the same extent. β-Mo2N0.78 is the only phase which is 

examined in this study.  As well as being relatively easy to prepare, inspection of the Mo-N 

phase diagram shows that variable stoichiometry may be possible and a number of 

different stoichiometries have been reported.[167]  Therefore, it is arguable that this phase 

could be of more interest than the more commonly investigated γ-Mo2N, in terms of the 

objective of this study.  Studies of the effect of metal dopants upon de-nitridation have also 

been conducted. These include Fe, Cu and Bi at a 1.5 wt. % loading.  Previous studies have 

indicated that addition of low level metal dopants may have an effect on the morphology 

and the de-nitridation characteristics.[168]  The metals which are employed as dopants in 

this study have either been found to be active for amination reactions or to activate the C-H 

bond in hydrogen abstraction.[169-179]  

3.2.5.1 Reaction Data. 

From previous investigations by Mckay et al, it is known that the beta phase is active for 

ammonia synthesis.[34]  Figure 3.2-8 presents a typical conductivity versus time plot which 

was obtained for the undoped β-Mo2N0.78 phase. 
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Figure 3.2-8 Comparison of conductivity for β-Mo2N0.78 ammonia production using H 2/N2 vs. 
H2/Ar at 400 oC. 

 

From Figure 3.2-8 it is evident that ammonia production occurs over β-Mo2N0.78 under 

H2/N2 and it would appear that steady state conditions are reached beyond 1.5 h on stream   

Figure 3.2-9 highlights that the addition of  metal dopants has little effect on the rate at 

which ammonia is produced, although it appears that Bi perhaps hinders the synthesis 

slightly and that iron perhaps enhances it slightly. Table 3.2-10 provides the ammonia 

synthesis rates for the above conductivity versus time plot and comparable data for doped 

samples can be found in Table 3.2-11. 

Sample and Reaction Conditions NH3 Synthesis Rate (µmol h-1 g-1) 

β-Mo2N0.78, 400 oC (H2/N2, 0.0-0.5 h) 222 

β-Mo2N0.78  400 oC (H2/N2, 1.0-6.0 h) 66 

β-Mo2N0.78, 400 oC (H2/Ar, 0.0-0.5 h) 224 

β-Mo2N0.78, 400 oC (H2/Ar, 1.0-6.0 h) 35 

Table 3.2-10 Ammonia production rates of β-Mo2N0.78 under both H 2/Ar and H 2/N2 at 400oC.  
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Figure 3.2-9 Comparison of conductivity for β-Mo2N0.78 and doped β-Mo2N0.78 ammonia 
production using H 2/N2 at 400 oC. 

 
 

Sample  

NH3 Synthesis Rate (µmol h-1 g-1) 

H2/N2  H2/Ar  

0.0-0.5 h 1.0-6.0 h 0.0-0.5 h 1.0-6.0 h 

β-Mo2N0.78 222 66 224 35 

1.5% Fe / β-Mo2N0.78 242 69 122 22 

1.5% Cu / β-Mo2N0.78 214 54 107 18 

1.5% Bi / β-Mo2N0.78 59 50 78 6 

Table 3.2-11 Ammonia production rates of β-Mo2N0.78 and doped β-Mo2N0.78 under both H 2/Ar 
and H 2/N2 at 400 oC. 

 
In the case of H2/Ar, the conductivity steadily decreases over time, which would either 

suggest that there is a ‘bank’ of reactive surfaces species which are not strongly bound or 

that nitrogen species slowly diffuse out of the metal lattice at this temperature (400 oC).  It 

was neccessary to determine if the metal dopants facilated this and  results are presented in 

Table 3.2-12.  
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Reaction Temperature 
and Time 

NH3 Synthesis Rate (µmol h-1 g-1) 

β-Mo2N0.78 
1.5% Fe /  
β-Mo2N0.78 

1.5% Cu / 
 β-Mo2N0.78 

1.5% Bi /  
β-Mo2N0.78 

400 oC (0-0.5 h) 220 122 107 78 

400 oC (1-4.5 h) 56 32 24 36 

500 oC (4.5-5 h) 85 82 89 77 

500 oC (5-6 h) 34 38 49 43 

600 oC (6-7.5 h) 54 63 42 47 

700 oC (7.5-9 h) 7 13 11 9 

Table 3.2-12 Ammonia production activity of β-Mo2N0.78 and doped β-Mo2N0.78 under H 2/Ar 
with increasing temperature 

 
From these results, it is evident that the addition of metal dopants has a relatively small 

effect on the production of ammonia, with synthesis rates being comparable to the undoped 

sample. However it is evident that the addition of bismuth hinders the production of 

ammonia, despite complete removal of lattice nitrogen (as detailed below). 

3.2.5.2  Nitrogen Analysis. 

Table 3.2-13 indicates the pre- and post- reaction nitrogen contents within the sample.  As 

can be seen, both the undoped and Fe-doped pre-reaction samples are consistent with the 

calculated stoichiometric values; however the Cu and Bi samples appear to be slightly 

lower than expected. In the case of Bi it is apparent that after 6 hours at 400 oC, under 

H2/Ar not all nitrogen has been removed, which is unlike the other samples studied, where 

all nitrogen is apparently removed. 

On examining the H2/N2 post-reaction nitrogen content, all samples have slightly lower 

values than the pre- reaction sample, which is further evidence to suggest the removal of 

surface species.  Despite this, the Fe doped material only lost 0.05 wt.% N compared with 

~1.5 wt.% observable in the other materials, this would suggest that under H2/N2 reaction 

conditions molybdenum nitride doped with Fe could more resistant to hydrogenation of the 

nitrogen in the metal lattice.  It may also be the case that the Fe facilitates a nitrogen spill 

over effect, replenishing nitrogen loss from the molybdenum nitride phase.  This 

suggestion is consistent with the fact that iron is known to be an effective ammonia 

synthesis catalyst.[139,217,218] 
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Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-
Reaction N 

Content 
(wt.%) 

Post-Reaction 
N Content 

(wt.%) 

β-Mo2N0.78, (H2/N2) after 6 h at 400 oC 5.38 5.58 3.83 

β-Mo2N0.78, (H2/Ar) after 6 h at 400 oC 5.38 5.58 0 

β-Mo2N0.78, (H2/Ar) using temperature 

profile as shown in Fig. 3.2-2 

5.38 5.58 0 

1.5% Fe / β-Mo2N0.78, (H2/N2) after 6 h at 

400 oC 

5.38 5.31 5.26 

1.5% Fe / β-Mo2N0.78, (H2/Ar) after 6 h at 

400 oC 

5.38 5.31 0 

1.5% Fe / β-Mo2N0.78, (H2/Ar) using 

temperature profile as shown in Fig. 3.2-2 

5.38 5.31 0 

1.5% Cu / β-Mo2N0.78, (H2/N2) after 6 h at 

400 oC 

5.38 4.39 3.14 

1.5% Cu / β-Mo2N0.78, (H2/Ar) after 6 h at 

400 oC 

5.38 4.39 0 

1.5% Cu / β-Mo2N0.78, (H2/Ar) using 

temperature profile as shown in Fig. 3.2-2 

5.38 4.39 0 

1.5% Bi / β-Mo2N0.78, (H2/N2) after 6 h at 

400 oC 

5.38 4.66 4.17 

1.5% Bi / β-Mo2N0.78, (H2/Ar) after 6 h at 

400 oC 

5.38 4.66 3.37 

1.5% Bi / β-Mo2N0.78, (H2/Ar) using 

temperature profile as shown in Fig. 3.2-2 

5.38 4.66 0 

Table 3.2-13 Ammonia production activity of β-Mo2N0.78 and doped β-Mo2N0.78 under H 2/Ar as 
a function of increasing temperature. 
 

3.2.5.3 XRD Patterns. 

Figures 3.2-10 to 3.2-13 confirm that the nitride formed is consistent with the β-Mo2N0.78 

phase reported in the literature.  These figures also highlight that small amounts of Mo 

metal is observed as an impurity in the pre-reaction materials, which is again consistent 

with previous studies.[44,168]  After reaction in the H2/N2 mixture, it is evident that there are 

some shifts present in the post-reaction diffraction pattern with respect to that determined 
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pre-reaction.  This accords with the reduced N content of the post-reaction as reported in 

Table 3.2-13.  On the other hand in a H2/Ar environment under the temperature 

programming regime employed, the nitride is completely reduced to the Mo metal in all 

cases.  In all doped systems there are no reflections present corresponding to metal 

dopants. 
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Figure 3.2-10 Pre- and post-reaction XRD patterns o f β-Mo2N0.78 under H 2/N2 and H 2/Ar gas 
mixtures.  (JCPDS 023-1256 β-Mo2N0.78). Mo metal (  )   
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Figure 3.2-11 Pre- and post-reaction XRD patterns o f 1.5%Fe/β-Mo2N0.78 under H 2/N2 and 
H2/Ar gas mixtures.  (JCPDS 023-1256 β-Mo2N0.78). Mo metal  (   )  
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Figure 3.2-12 Pre- and post-reaction XRD patterns o f 1.5%Cu/β-Mo2N0.78 under H 2/N2 and 
H2/Ar gas mixtures.  (JCPDS 023-1256 β-Mo2N0.78). Mo metal  (   )  

 

 

 

Figure 3.2-13 Pre- and post-reaction XRD patterns o f 1.5%Bi/β-Mo2N0.78 under H 2/N2 and 
H2/Ar gas mixtures.  (JCPDS 023-1256 β-Mo2N0.78). Mo metal  (   ) 

 
 

3.2.6  Ta3N5. 

Tantalum nitride and tantalum oxynitride have attracted considerable attention recently, 

with many studies focusing on their activity for visible light induced photocatalytic 

splitting of water to produce H2.
[180-182]  Although there is a limited amount of literature 
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available on Ta3N5 regarding ammonia synthesis, there are reports of tantalum oxides 

being utilized for these types of reactions. Studies by Antonelli and co-workers have 

investigated tantalum oxide based catalysts for ammonia synthesis reactions.[183,184]  In one 

particular study, it was found that by doping tantalum oxide with ruthenium, ammonia 

could be synthesised from a 3:1 H2/N2 gas mixture, with initial activity rates comparable to 

more traditional catalysts.  However it was found that the activation energy for cleavage of 

the N2 bond was much lower for these materials being only 10% of previously reported 

activation energies with using standard catalysts.  It was suggested that reduced tantalum 

metal played a significant role in splitting dinitrogen, in which a lower activation energy 

threshold was recorded for the cleavage of N2 on the Ru/Ta oxide surface. This was not 

observed for the other supports which were investigated (MgO and Al2O3).  Tantalum 

systems have also been found to be catalytically active for ammonia decomposition 

reactions.[185]  Ta3N5 can exist in a variety of sub-stoichiometric forms and like TiN, 

subject to the nitrogen content, a series of different colours can be observed.[109]   These 

range from brown/black through to orange/red.  Stoichiometric tantalum nitride (Ta3N5) is 

bright red when formed and this is often a good visual indication of phase purity.    

3.2.6.1 Reaction Data. 

Figure 3.2-14 illustrates the conductivity versus time plot for Ta3N5 using H2/N2 and 

H2/Ar.  As can be observed from the plot, the ammonia production activities are 

significantly different. 

Figure 3.2-14 reports the rate of ammonia production for Ta3N5 under H2/N2 at 400 oC.  In 

the comparable reaction, using H2/Ar, there is a relatively sharp initial decrease in the 

conductivity of the H2SO4 solution. This would suggest that within the first hour on stream 

there is ammonia produced.  This production quickly diminishes, with only a small amount 

of ammonia being produced subsequently.  The ammonia production rates for Ta3N5 during 

various time intervals on stream are given in Table 3.2-14. 
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Figure 3.2-14 Comparison of conductivity for Ta 3N5 ammonia production using H 2/N2 vs. 
H2/Ar at 400 oC. 

 

Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

Ta3N5 400 oC (H2/N2, 0.0-0.5 h) 366 

Ta3N5, 400 oC (H2/N2, 1.0-6 h) 239 

Ta3N5, 400 oC (H2/Ar, 0.0-0.5 h) 315 

Ta3N5, 400 oC (H2/Ar, 1.0-6 h) 35 

Table 3.2-14  Ammonia production rates of Ta 3N5 under both H 2/Ar and H 2/N2 at 400 oC. 

 

Further studies were conducted to assess the reactivity of the lattice nitrogen with H2/Ar as 

a function of temperature and again it was found that upon increasing the temperature by 

100 oC increments (to a maximum of 700 oC) ammonia production occurred in steps 

associated with the temperature increases. The ammonia production rates are presented in 

Table 3.2-15. 

Compared to all other systems investigated in this study, the production of ammonia under 

H2/Ar is significant.  However, there is a small degree of variability in the 0.0-0.5 h rates 

of the two H2/Ar reaction runs (400 oC isothermal and temperature programmed). This may 

possibly arise from different concentrations of surface NHx introduced during the H2/N2 

pre-treatment procedure.  Accordingly, in terms of the relatively high ammonia production 

rates in the absence of N2, it was especially of interest to determine the reactivity of surface 

NHx versus lattice N species in this system.   
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Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

400 oC (0-0.5 h) 300 

400 oC (1.0-4.5 h) 37 

500 oC (4.5-5.0 h) 188 

500 oC (5.0-6.0 h) 4 

600 oC (6.0-7.5h) 154 

700 oC (7.5-9.0h) 87 

Table 3.2-15 Ammonia production activity over Ta 3N5 under H 2/Ar with increasing 
temperature. 

 
Additional experiments were preformed to investigate the effect of temperature on the 

lattice nitrogen in an inert atmosphere and the extent to which hydrogen influenced the 

ammonia synthesis.  Figure 3.2-15 illustrates a study in which Ar (60 ml min-1) is initially 

passed over the material and the temperature raised up to 700 oC using the same 

temperature profile which has been previously applied in standard lattice nitrogen studies. 

After this pre-treatment, the sample was cooled to 400 oC and the reaction gas was 

subsequently switched to the H2/Ar mix and the previous temperature profile was applied.  

Surface NHx decomposition should occur under the Ar only pretreatment procedure, and 

thus subsequent NH3 production with H2/Ar gives an indication of the behaviour of lattice 

N species. 

 

Figure 3.2-15 Conductivity vs. Time plot for Ta 3N5 studying effects of temperature and H 2 on 
lattice nitrogen removal.  Feed gas switched from A r to H 2/Ar at 9 h on stream. 

 
Figure 3.2-15 details an experiment in which temperature programmed Ar pre-treatment  

was applied prior to cooling the sample and subsequently switching the feed to H2/Ar and 

Ar Only H2/Ar  
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repeating the temperature programmed regime.  Whilst it is clear that a degree of NH3 

production is evident in the case of Ar feed, the presence of H2 results in a much more 

significant loss.  This indicates the high degree of lattice nitrogen reacting in this sample. 

3.2.6.2 Nitrogen Analysis. 

The pre- and post-reaction nitrogen contents of Ta3N5 are presented in Table 3.2-16, along 

with the stoichiometric nitrogen content value.  In the case of H2/Ar studies it is interesting 

to note that although a substantial amount of nitrogen is lost (almost 33 % at 700 oC) only 

20 % of the total nitrogen lost contributes to the formation of ammonia.  In the H2/N2 and 

Ar only studies, there is only a relatively small change between the nitrogen content of the 

post-reaction samples compared to those of the pre-reaction samples.  This may suggest 

that only loosely bound NHx species are removed from the surface of the material and, in 

the case of Ar only treatment, relatively small loss of nitrogen is in good correlation with 

the conductivity versus time plot, where there is only a small apparent change in the 

conductivity values. 

Sample and Reaction 
Conditions 

Calculated 
Stoichiometric 
N content 
(wt.%) 

Pre-Reaction 
(wt.%) 

Post-Reaction 
(wt.%) 

Calculated 
Post-reaction 
Stoichiometry 

Ta3N5 (H2/N2, 400 oC)  
 

11.42 11.23 10.60 Ta3N4.64 

Ta3N5 (H2/Ar, 400 oC)  
 

11.42 11.23 7.98 Ta3N3.49 

Ta3N5 (H2/Ar, 700 oC)  
 

11.42 11.23 7.83 Ta3N3.43 

Ta3N5 (Ar -H2/Ar, 
700 oC)  

11.42 11.23 7.65 Ta3N3.35 

Ta3N5 (Ar, 700 oC) 11.42 11.23 10.73 Ta3N4.70 

Table 3.2-16 Nitrogen content of Ta 3N5 samples pre- and post-reaction. 

 

Figure 3.2-16 (a-d) shows the different colours observed for the post-reaction tantalum 

nitride samples. 
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Figure 3.2-16 Post- reaction tantalum nitride sampl es (a) H2/N2 400 oC  (b)  Ar 700 oC  (c) 
H2/Ar 700 oC  (d) H2/Ar 400 oC. 

 

3.2.6.3 XRD  Patterns. 

Since Ta3N5 is bright red and the sample colour is related to stoichiometry, visual 

inspection provides a good indicator of phase purity. Samples which are brown or orange 

in colour usually consist of an amorphous material or contain traces of TaON.  It was also 

found that as heating times were increased during ammonolysis, the nitrogen content in the 

material decreased giving rise to orange or burnt red products.  It was shown that the 

optimum heating time and temperature was 900 oC for 9 hours, in relation to achieving the 

desired Ta3N5 stoichiometry, although Henderson et al have quoted that much longer 

heating times should be applied.[109]   

As can be seen from Figure 3.2-16, the colours of the H2/Ar post-reaction samples were 

either burnt orange, in the sample treated at 400 oC, or green/black when treated to 700 oC.  

Although the green/black colour has not been reported in the literature, it would appear 

that a phase change may have occurred. However, upon inspection of the XRD patterns, it 

is apparent that the phase remains unchanged, although slight alterations in reflection 

widths can be observed.  Nonetheless the XRD pattern is in accordance with previously 

reported literature [109] and the phase is confirmed as Ta3N5 matching to JCPDS file 019-

1291.    In the case of the post- H2/Ar treated sample it is apparent that there is an increase 

(a) 

(c) 

(b) 

(d) 
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in the intensity of the background which is consistent with a greater content of amorphous 

phase, possibly arising from the loss of N observed. 
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Figure 3.2-17 Pre and Post-reaction XRD patterns of  Ta3N5 (JCPDS 019-1291) Small 
reflections that are indicated by  (  ) correspond to TaN. 

 
 

3.2.7 W2N  

The first reports of catalytic activity over tungsten carbide were by Böhm and co-

workers[186]  which subsequently led on to further studies using tungsten carbide as a 

catalyst for the isomerization reaction of neo-pentane to isopentane.[10]  This reaction had 

only previously been known to occur in the presence of a platinum or iridium catalyst and 

led to notion that tungsten carbides may in fact behave like platinum group metals.[9]  Since 

then, resulting primarily from subsequent studies by Volpe and Boudart, on the preparation 

of high surface area materials, and the perceived similarity in behaviour of carbides and 

nitrides, tungsten nitrides have been a focus of attention.  There is a range of literature 

concerning tungsten nitride, which describes preparation techniques and the mechanical 

and structural properties of the material. Tungsten nitride is known to exist in two main 

forms: W2N, which has a cubic structure, and WN which has a hexagonal structure.[186]  

Both phases are difficult to form, and W does not react readily with N2 directly.  However 

W2N is perhaps more difficult to prepare in pure phase, with W metal often appearing as 

an impurity.[187]  Despite this, tungsten nitrides have been explored for a wide range of 

catalytic applications including ethanol amination,[18]  NO reduction,[17,189] isomerisation 
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reactions[19] and hydrotreating.[11,190,191]  Like molybdenum nitride, tungsten nitride is also 

known to be one of the more active nitrides for ammonia synthesis.[198]  There is currently 

little evidence to suggest that tungsten nitrides have been utilized in a nitrogen transfer 

type reaction, despite the fact that it is a good ammonia synthesis catalyst.  Studies by Knor 

have investigated the effect of Pd doped tungsten on nitrogen dissociation.[193]  In that 

work, it was proposed that Pd would prevent the strong binding between tungsten and 

nitrogen and thus make it possible to react the surface nitrogen species more easily at room 

temperature. 

3.2.7.1 Reaction Data. 

As stated above, tungsten nitride is documented for its ammonia synthesis capabilities. 

Ammonia synthesis under essentially steady state conditions was apparent under H2/N2 at 

400 oC as shown in Figure 3.2-18.  Under a H2/Ar feed gas, as expected, there was an 

initial decrease in the conductivity of which was short lived and after 90 minutes little or 

no ammonia is observed.  Figure 3.2-18 compares the activity of W2N under both feed 

streams, whilst the corresponding ammonia production rates are presented in Table 3.2-17. 

 

Figure 3.2-18 Comparison of conductivity for WN amm onia production using H 2/N2 vs. H 2/Ar 
at 400 oC. 
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Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

W2N, 400 oC (H2/N2, 0.0-0.5 h) 84 

W2N   400 oC (H2/N2, 1.0-6.0 h) 60 

W2N, 400 oC (H2/Ar, 0.0-0.5 h) 66 

W2N, 400 oC (H2/Ar, 1.0-6.0 h) 12 

Table 3.2-17 Ammonia production rates of W 2N under both H 2/Ar and H 2/N2 at 400 oC. 

 
Further experiments were conducted to remove nitrogen from within the lattice as a 

function of temperature, under H2/Ar.  The results are presented in Table 3.2-18. It is 

apparent that the rate of ammonia production decreases as the reaction proceeds, although 

there is a further burst of ammonia produced after a temperature increase to 600oC, before 

ammonia production ceases completely.  It may be possible that this additional burst of 

ammonia is a result of more strongly absorbed surrface NHx species desorping from the 

material. 

Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

400 oC (0.0-0.5 h) 66 

400 oC (1.0-4.5 h) 24 

500 oC (4.5-5.0 h) 35 

500 oC (5.0-6.0 h) 18 

600 oC (6.0-7.5 h) 74 

700 oC (7.5-9.0 h) 2 

Table 3.2-18 Ammonia production activity over W 2N as a function of increasing temperature 
under H 2/Ar. 

 
 
 

3.2.7.2 XRD Patterns. 

As discussed earlier, tungsten nitride can occur as cubic W2N or as hexagonal WN phases.  

The samples prepared in this study corresponded to cubic W2N.  Again under H2/N2 no 

shift was observed in the post-reaction sample’s XRD pattern.  However, under H2/Ar, 

tungsten nitride undergoes a partial decomposition with W metal reflections, as indicated 

by a star in Figure 3.2-19, being evident.  This is somewhat expected due to the similar 
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nature of tungsten and molybdenum nitrides, where complete reduction of β-Mo2N0.78 to 

Mo was observed.  The observed reflections are particularly broad which would be 

indicative of materials with high surface area and very small particle size and/or disorder. 

 

Figure 3.2-19 Pre and Post-reaction XRD patterns of  W2N (JCPDS 025-1257 W2N) W metal 
reflections are indicated by (  ) 

 
 

3.2.7.3 Nitrogen Analysis. 

The N content in the pre-reaction sample is almost double that of the calculated 

stoichiometric value, and would suggest that perhaps WN (7.07 wt.% N) is formed instead 

of W2N. However, the XRD reflections correspond to those of W2N.  Another explanation 

for the high nitrogen content may be that a large amount of loosely bound NHx species is 

present on the surface of the material.  It is evident that there is a loss of nitrogen from the 

material after reaction and it is also evident that there is less nitrogen in the samples treated 

with H2/Ar than those exposed to H2/N2.   If the excess nitrogen content is a result of 

surface bound NHx, reactions could be undertaken with longer times on stream to enhance 

depletion.  Furthermore, the similarity between the N content values between the 

isothermally reacted and temperature programmed samples under H2/Ar suggest that the 

influence of higher temperature reduction is minimal.  In addition, the occurrence of W 

metal in the post-reaction XRD pattern indicates that loss of lattice N does occur to some 

extent.  Comparison of the production of NH3 with the loss of nitrogen indicates that only 

7 % of the total lost nitrogen, as determined by CHN analysis, results in the formation of 

ammonia. 
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Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-Reaction 
N Content 

(wt.%) 

W2N (H2/N2) after 6 h at 400 oC 3.66 6.13 5.62 

W2N (H2/Ar) after 6 h at 400 oC 3.66 6.13 4.24 

W2N (H2/Ar) using temperature profile 

as shown in Fig. 3.2-2 
3.66 6.13 4.18 

Table 3.2-19 Nitrogen content of W 2N samples pre- and post-reaction. 

 
 

3.2.8 Summary of Early Transition Metal Nitrides. 

Tables 3.2-20 and 3.2-21 give a summary of the nitrides investigated so far in this chapter.  

Ammonia production rates under selected conditions are presented in Table 3.2-20 whilst 

Table 3.2-21 presents the nitrogen content pre- and post-reaction of each material as well 

as the surface areas of the pre-reaction material.  Caution must be exercised in the latter 

respect since materials may be air sensitive and so the areas measured may not correspond 

to those exhibited in-situ 

3.2.8.1 Summary of Ammonia Production Rates. 

It is apparent from Table 3.2-20 that the ammonia production rates during the initial 30 

minutes on stream, for samples treated under both H2/N2 and H2/Ar, are higher than those 

observed between 1-6 hours on stream.   As previously discussed this initial high ammonia 

production rate may be attributed to the removal of loosely bound surface NHx species. In 

the case of TiN and CrN it was observed that after the intial 30 minutes on stream that very 

little or no ammonia was produced with further heat treatment, indicating that these 

materials do not lose nitrogen from the metal lattice at temperatures at or below 400oC and 

may therefore be unsuitable for the envisaged process.  It is also evident that Ta3N5 has a 

much higher ammonia production rate under H2/N2 reaction conditions, when compared to 

the other materials investigated in this section.  Most of the materials investigated in this 

section, with the exception of TiN and CrN, exhibit almost steady state ammonia synthesis 

conditions under H2/N2 at 400oC, the target temperature for the target process, and will be 

investigated further in subsequent chapters. 
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Material 

NH3 Production Rate (µmol h-1 g-1) 

H2/N2, 400 oC 1-6 h H2/N2, 400 oC,  0.5 h H2/Ar, 400 oC, 0.5 h 

TiN - 152 183 

VN 40 98 85 

CrN - 86 36 

β-Mo2N0.78 66 222 224 

Fe/ β-Mo2N0.78 69 242 122 

Cu/ β-Mo2N0.78 58 214 107 

Bi/ β-Mo2N0.78 50 59 78 

Ta3N5 239 366 315 

W2N 60 84 66 

Table 3.2-20 Summary of NH 3 production rates  for the early transition metal nitride 
materials. 

 

3.2.8.2 Summary Pre/Post-Reaction N Data and Surfac e Areas  

Material 

BET 
Surface 
Area 
(m2g-1) 

Nitrogen Content (wt.%) 

Calculated 
Stoichiometric 

Pre- 
reaction 

Post-reaction 
(H2/Ar) 
700oC 

Post-
Reaction 
(H2/N2) 
400oC 

TiN 116 22.63 19.74 18.45 18.66 

VN 39 21.55 18.39 14.06 14.88 

CrN 53 21.21 15.40 5.60 6.57 

β-Mo2N0.78 8 5.38 5.58 0 3.83 

Fe/ β-Mo2N0.78 10 5.38 5.31 0 5.26 

Cu/ β-Mo2N0.78 5 5.38 4.39 0 3.14 

Bi/ β-Mo2N0.78 4 5.38 4.66 0 4.17 

Ta3N5 8 11.42 11.23 7.83 8.40 

W2N 76 3.66 6.13 4.18 5.62 

Table 3.2-21 Summary of pre- and post-reaction nitr ogen content, and surface area of pre 
reaction samples for the early transition metal nit ride materials. 
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3.3 Later Transition Metal Nitrides  

3.3.1 Introduction to Later Transition Metals. 

When compared to the nitrides of early transition metals, nitrides of Groups VII –X have 

been far less well studied.  This may possibly be attributed to the fact that these nitrides 

have very poor thermal stability and mostly decompose to the corresponding metal at 

relatively low temperatures. For this reason, the later transition metal nitrides have found 

limited application. 

It is perhaps only within the last two decades that there has been a resurgent interest in 

these materials due to their potential application in the microelectronics industry and also 

for use in optical and magnetic storage devices.  As these materials are becoming more 

extensively studied in terms of their structural and electronic properties, an increase in the 

catalytic literature is becoming available.  For example only recently it was documented 

that cobalt nitrides have been found to be catalytically active for CO oxidation and NO 

decomposition reactions.[72,194] 

On the other hand some nitrides investigated in this section, such as Fe2N, Re3N, have long 

been recognised for their catalytic activity.  These materials have been documented to be 

active for dehydrogenation reactions[195] ammonia decomposition,[196] ammonia synthesis 
[197] and CO hydrogenation.[198, 199] 

3.3.2 Fe2N. 

Iron has been well documented as an ammonia synthesis catalyst, with initial reports 

reporting ammonia formation over iron at atmospheric pressure.[200,201]  This was confirmed 

in the work of Haber.  Further work by Mittasch led to the discovery of a doubly promoted 

iron catalyst, which was significantly more active and this was subsequently put into 

commercial operation for ammonia synthesis, where it remains the catalyst of choice. One 

of the key ideas behind the development of the iron catalyst was the formation of a 

metastable iron nitride intermediate.[202,203] 

The iron-nitrogen system has received considerable attention not only for catalytic 

purposes but also for magnetic storage devices and for use within the coating industry.[204-

209]  Binary iron nitrides are classified as interstitial compounds and a wide range of 
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different phases are known, with the first phase diagram of iron nitrides being documented 

by Goodeve and Jack, as presented in Figure 3.3-1:[102,103] 

 

Figure 3.3-1 Iron nitride phase diagram. [103]  

 

Goodeve and Jack also investigated the evolution of nitrogen from iron nitrides in order to 

determine their structure.  In this investigation, it was demonstrated that iron nitrides 

undergo phase transitions upon increasing temperature and decompose from Fe2N or Fe3N 

into lower phases such as Fe4N, as N2 is eliminated from the metal lattice. Despite the 

phase transformation associated with the loss of nitrogen, it was found that the relative 

positions of the Fe atoms in the crystal lattice remain unchanged although distortion occurs 

due to the rearrangement of the nitrogen atoms. In addition, it was reported that between 

250 oC and 450 oC, ammonia was evolved from the decomposition of the iron nitride under 

hydrogen, which is of obvious relevance to the current study. 

Iron nitrides appear to be promising candidates for nitrogen transfer reactions, due to the 

fact the nitrogen is evolved from the metal lattice at the temperatures of interest. 

Furthermore the nitride can be prepared directly from the Fe metal and it would therefore 

be possible to renitride reduced phases. 

3.3.2.1 Reaction Data. 

As previously mentioned, Fe based catalysts are currently used in commercial ammonia 

synthesis.  It was therefore expected that the Fe2N prepared in this study would exhibit 

production of ammonia as was observed under H2/N2 and H2/Ar and shown in Figure 3.3-

2. 



Anne-Marie Alexander Chapter 3 68 

From Figure 3.3-2 it is evident that the reaction profile for Fe2N follows a similar trend to 

that which was previously observed in some of the early transition metal nitrides as 

discussed in section 3.2. Under both reaction gases, there is a sharp initial decrease in 

conductivity, indicating the formation of ammonia due to loosely bound surface NHx 

species, which occurs for the first hour on stream.  This subsequently tails off in the case of 

H2/Ar.  The ammonia production rates for Fe2N at 400 oC for the reactions under H2/Ar and 

H2/N2 are presented in Table 3.3-1.   

 

Figure 3.3-2 Comparison of conductivity for Fe 2N ammonia production using H 2/N2 vs. H 2/Ar 
at 400 oC. 

 

Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

Fe2N, 400 oC (H2/N2, 0.0-0.5 h) 213 

Fe2N   400 oC (H2/N2, 1.0-6.0 h) 47 

Fe2N, 400 oC (H2/Ar, 0.0-0.5 h) 170 

Fe2N, 400 oC (H2/Ar, 1.0-6.0h) 17 

Table 3.3-1 Ammonia production rates of Fe 2N under both H 2/Ar and H 2/N2 at 400 oC. 

 
Table 3.3-1 shows the rates which were attained for the production of ammonia under 

H2/Ar using the temperature profile in Figure 3.2-2.  It is apparent that the rate of ammonia 

production decreases as the reaction proceeds. 
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Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

400 oC (0.0-0.5h) 170 

400 oC (1.0-4.5 h) 77 

500 oC (4.5-5.0 h) 67 

500 oC (5.0-6.0 h) 13 

600 oC (6.0-7.5 h) 15 

700 oC (7.5-9.0 h) 7 

Table 3.3-2 Ammonia production activity over Fe 2N with increasing temperature under H 2/Ar. 

 

3.3.2.2 Nitrogen Analysis. 

Inspection of the data presented in Table 3.3-3 highlights that more than half of the 

nitrogen is removed from the sample in the case of the H2/N2 reaction and almost two 

thirds in the case of H2/Ar at 400 oC and at higher temperature.  It is interesting to note that 

at increased temperatures (maximum of 700 oC) under H2/Ar that the nitride has not fully 

been reduced to Fe metal (as shown later). Table 3.3-3 also shows that the nitride is not 

stoichiometric to Fe2N and has a lower than expected nitrogen content.  In fact, the initial 

N content is has a closer nitrogen content to that expected for Fe3N which would contain 

7.71 wt.%.  However the powder XRD analysis suggested that Fe2N was formed, Figure 

3.3-3. 

Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-Reaction 
N Content 

(wt.%) 

Fe2N (H2/N2) after 6 h at 400 oC 11.13 8.65 3.57 
Fe2N (H2/Ar) after 6 h at 400 oC 11.13 8.65 2.43 
Fe2N (H2/Ar) using temperature profile 
as shown in Fig. 3.2-2 

11.13 8.59 2.40 

Table 3.3-3 Nitrogen content of Fe 2N samples pre- and post-reaction. 

 

3.3.2.3  XRD Patterns. 

The reflections present in the pre-reaction sample in Figure 3.3.2-2 are indicative of those 

of cubic Fe2N, with the (100) reflection at 43o 2θ, being the most prominent.  Small 

reflections that correspond to Fe3N phase can also be observed in the pre-reaction sample 

and are indicated by blue diamonds. Numerous attempts were made to achieve a pure 

phase material, following methods described by Goodeve and Jack.  However this proved 
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extremely difficult with resulting samples displaying additional phases, namely Fe3N, Fe4N 

and Fe metal impurities.  These samples were prepared at 350, 400 and 450 oC over a 

range of dwell periods; the samples used in this study were prepared at 500 oC for 6 hours. 

The XRD patterns of the post-reaction samples demonstrate the different phases which are 

obtained via the decomposition of the nitride. The post-reaction H2/N2 sample contains a 

mixture of iron nitride phases where Fe2N has partially decomposed into Fe3N and a small 

Fe reflection can be observed at 64o 2θ.  In addition to this, a small shift can be observed in 

the remaining Fe2N reflections to a lower 2θ value indicative of increasing unit cell 

volume.  The reflections are also slightly broadened which may result from increased 

disorder. 

 

Figure 3.3-3 Pre- and Post-reaction XRD patterns of  Fe2N. (Fe2N     ,Fe3N   ,Fe4N      ,Fe      ). 

 
The XRD pattern of the post-reaction H2/Ar sample indicates that Fe2N has partially 

decomposed into a combination of the lower Fe4N nitride and Fe metal, as indicated in 

Figure 3.3-3 by triangle and square markers respectively.  Overall the changes evident in 

the post-reaction samples are small in comparison to the significant loss of nitrogen 

observed for these samples.  However, in this context, it is important to note that there are 

amorphous backgrounds evident in all samples and hence N loss may occur from phases 

not visible by XRD. 
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3.3.3 Re3N. 

The catalytic properties of rhenium metal and the few rhenium nitride compounds that 

exist have been the subject of limited studies, and so far no commercial use has been made 

of the results.  Most of the literature that is available concentrates on the catalytic 

properties of the metal itself, which to date has been investigated for a variety of different 

reactions, including dehydrogenation reactions,[195] ammonia decomposition,[196] and 

ammonia synthesis.[197]  Reports of the catalytic activity of rhenium nitride have been more 

recent,  with Clark and co-workers reporting its use for hydroprocessing reactions, where it 

was found that Re3N appears to be active for hydrodenitrogenation reactions.[73] 

Additionally, Kojima and Aika have investigated Re3N as an ammonia synthesis catalyst, 

comparing it with Re metal to determine whether the formation of the nitride is beneficial.  

In that study it was shown that Re3N is active for ammonia synthesis with initial rates 

being higher than those previously reported for Mo2N, W2N, VN and NbN.[59]   However it 

was shown this activity was short lived and that deactivation occurs with time on steam. 

Despite this deactivation, thought to occur due to decomposition to Re metal, ammonia 

synthesis rates were higher than those reported for pure Re metal. 

3.3.3.1 Reaction Data. 

Like the rest of the nitrides discussed in this section, Re3N is unstable and decomposes to 

the metal at elevated temperatures.  Re3N is known to decompose above 370 oC and for 

this reason it was necessary to investigate rhenium nitride at a lower reaction temperature.  

Initially H2/Ar studies were conducted with increasing temperature to establish the 

temperature at which lattice nitrogen became “active”, as illustrated in Figure 3.3-4.  From 

the conductivity shown in Figure 3.3-4, it can be seen that ammonia is produced at 300 oC 

before reaching a plateau, as soon as the temperature is increased to 350 oC and then 400oC 

there is an increase in the amount of ammonia produced.  Ammonia production rates 

corresponding to the conductivity versus time plot, Figure 3.3-4, are presented in Table 

3.3-4.     
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Figure 3.3-4  Conductivity data for NH 3 production over Re 3N with increasing temperature 
under H 2/Ar. 

 

Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

300 oC (0.0-0.5 h) 930 

300 oC (0.5-2.0 h) 243 

300 oC (2.0-4.0 h) 21 

350 oC (4.0-4.5 h) 371 

350 oC (4.5-7.0 h) 101 

400 oC (7.0-8.0 h) 116 

Table 3.3-4 Ammonia production activity of Re 3N under H 2/Ar with increasing temperature.  
 
 

On conducting the above study, the standard H2/Ar and H2/N2 reactions were performed at 

350 oC, which is the same temperature used by Aika and Kojima in their investigation of 

ammonia synthesis.  In their study it was found that at 350 oC Re3N had an initial high 

activity over the first 30 minutes, and a subsequent deactivation after 2 hours on stream.  

From the activity plot that is presented in Figure 3.3-5 there is also an initial burst of 

activity during the first 30 minutes on stream with an ammonia production rate comparable 

to that reported by Aika and Kojima[59] (initial activity 430 µmol h-1 g-1 at 350 oC), Table 

3.3-5.  However in the case of H2/N2, the conductivity continues to steadily decrease, long 

after the 2 hours at which deactivation was previously reported.  It is also apparent that the 

rate of ammonia formation is generally lower at 350 oC as compared to 300 oC under 

H2/Ar.  This may possibly be due to the fact that NH3 decomposition is more favoured at 

higher reaction temperature. 
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Figure 3.3-5  Comparison of conductivity for Re 3N ammonia production using H 2/N2 vs. H 2/Ar 
at 350 oC. 

 

Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

Re3N, 350 oC (H2/N2, 0.0-0.5 h) 580 

Re3N, 350 oC (H2/N2, 1.0-6.0 h) 133 

Re3N, 350 oC (H2/Ar, 0.0-0.5 h) 419 

Re3N, 350 oC (H2/Ar, 1.0-6.0 h) 53 

Table 3.3-5 Ammonia production rates of Re 3N under both H 2/Ar and H 2/N2 at 350 oC. 

 
 

3.3.3.2 Nitrogen Analysis. 

As can be seen from Table 3.3-6, the pre-reaction samples are in fairly good agreement 

with the calculated stoichiometric value for Re3N.  The slightly elevated values may be a 

result of residual NHx species that are adsorbed on the surface during subsequent cooling 

after ammonolysis of the precursor. Conversely, in both the H2/N2 and H2/Ar reactions 

conducted at 350 oC, there is only a small amount of nitrogen remaining in the sample. 

Likewise there is a loss of nitrogen in the sample that underwent the temperature profile 

shown in Figure 3.3-4.  However this did not appear to become fully reduced, with almost 

half of the nitrogen remaining in the sample, which may be due to the sample being 

exposed to temperatures of 350 oC and above for only 3.5 hours as compared with the 6 

hours in the other studies. 
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Sample and Reaction Conditions 

Calculated 
Stoichiometric 
N content 
(wt. %) 

Pre-Reaction 
N Content 
(wt. %) 

Post-Reaction 
N Content 
(wt. %) 

Re3N (H2/N2) after 6 h at 350 oC 2.44 2.52 0.47 

Re3N (H2/Ar) after 6 h at 350 oC 2.44 2.52 0.32 

Re3N (H2/Ar) using temperature profile 

as shown in Fig. 3.3-4 
2.44 2.46 1.10 

Table 3.3-6 Nitrogen content of Re 3N samples pre- and post-reaction. 

 

3.3.3.3  XRD Patterns. 

The “Re3N” starting material appears to be largely amorphous with a very broad reflection 

centring upon 40o 2θ.  This is in accordance with the previously mentioned studies of Aika 

and Kojima.  Under H2/N2 at 350 oC for 6 hours almost total de-nitridation is apparently 

related to the possible formation of crystalline Re metal, although there are shifts evident, 

as shown in Figure 3.3-6. The H2/Ar sample subjected to the temperature programme, 

partially de-nitrides, as shown by the data, and a mixture of Re reflections (again shifted) 

and the original broad reflection is evident in the post-reaction XRD pattern which is 

consistent with this observation.  It should be noted that the XRD pattern of the isothermal 

H2/Ar reaction is very similar to that of the H2/N2 sample which is consistent with its 

similar post-reaction N content.   

The apparent similarity in the shifts of the Re metal reflections between the H2/N2 and the 

temperature programed H2/Ar samples suggests that Re-N phases of identical 

stoichiometry result in each case.  This could be due to the formation of Re4N.  However, 

since this phase is not included on the XRD search and match database, it was not possible 

to definitely match it. 
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Figure 3.3-6  Pre- and Post-reaction XRD patterns o f Re3N. 

 
 

3.3.4 Co4N. 

The literature available on cobalt nitrides is very limited with only a few studies of Co4N 

having been reported, and nitrogen rich Co2N and CoN systems only being recently 

investigated.[72,210-212]   Much of the catalytic literature on cobalt nitride, specifically Co4N, 

is found in the work of Yao and co-workers, where it has been reported that bulk and 

supported Co4N are active catalysts for NO decomposition and CO oxidation.[72, 194]  Little 

work on cobalt nitrides which investigates the ammonia synthesis properties has been 

documented, aside from the early work conducted by Lotz and Sebba in which the 

ammonia decomposition activity of Co2N was examined.[151]  Studies by Fang and co-

workers have shown that cobalt nitride can exist in large range of different stoichiometries 

which undergo stepwise decomposition in the order Co4N to Co3N to Co2N and ultimately 

CoN.[213]  

3.3.4.1 Reaction Data. 

From the conductivity versus time plot illustrated below, it is evident that there is a sharp 

decrease in conductivty, corresponding to the formation of ammonia, however it is 

uncertain whether this is due to reactive lattice species or surface NHx species, and it is 

most probably a combination of both.  Further decreases in conductivity are very small, 

even after an increase in temperture, and the formation of ammonia effectively ceases after 

1.5 hours on stream as shown in Table 3.3-7.  This is also evident in the reactions 

involving H2/N2 and H2/Ar, as shown in Figure 3.3-8. 
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Figure 3.3-7 Conductivity data for NH 3 production over Co 4N with increasing temperature 
under H 2/Ar. 

 

Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

250 oC (0.0-0.5 h) 357 

250 oC (1.0-4.0 h) 13 

300 oC (4.0-4.5 h) 4 

300 oC (4.5-6.0 h) 0 

400 oC (6.0-6.5 h) 9 

400 oC (6.5-8.0 h) 2 

Table 3.3-7 Ammonia production activity of Co 4N under H 2/Ar as a function of increasing 
temperature.  

 
The reactions under H2/Ar and H2/N2 were conducted at 250 oC, and follow a similar 

reaction profile as observed for the H2/Ar reaction with increasing temperature.  There is a 

sharp decrease in the conductivity, which subsequently stabilises in the first hour on stream 

and little further change in the conductivity is detected, resulting in a plateau.  The 

decrease in conductivity is not as large as one might expect from complete decomposition. 

However, much of the nitrogen lost from the nitride is in the form of N2 with 5.6 % of the 

total nitrogen, as found by CHN analysis, lost forming ammonia.   



Anne-Marie Alexander Chapter 3 77 

 

Figure 3.3-8 Comparison of conductivity for Co 4N ammonia production using H 2/N2 vs. H 2/Ar 
at 250 oC. 

 

Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

Co4N, 250 oC (H2/N2, 0.0-0.5 h) 321 

Co4N, 250 oC (H2/N2, 1.0-6.0 h) 10 

Co4N, 250 oC (H2/Ar, 0.0-0.5 h) 477 

Co4N, 250 oC (H2/Ar, 1.0-6.0 h) 8 

Table 3.3-8 Ammonia production rates of Co 4N under both H 2/Ar and H 2/N2 at 250 oC. 

 

3.3.4.2 Nitrogen Analysis. 

The pre-reaction sample contains a lower amount of nitrogen than the calculated 

stoichiometric value, as seen in Table 3.3-9. However this material was extremely difficult 

to prepare, and was constrained to very narrow synthesis conditions, requiring a specific 

temperature and time of formation.  Even altering these conditions slightly resulted in Co 

metal.  In the post-reaction samples it was surprising to see that some residual nitrogen 

remained in the sample treated under H2/N2, despite the production of ammonia apparently 

ceasing during the reaction. As for the samples treated under H2/Ar, no nitrogen is detected 

within the material, indicating complete decomposition to yield to Co metal. 
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  Sample and Reaction Conditions 

Calculated 
Stoichiometric 
N content 
(wt.%) 

Pre-Reaction 
N Content 
(wt.%) 

Post-Reaction 
N Content 
(wt.%) 

Co4N (H2/N2) after 6 h at 250 oC 5.60 3.39 0.89 

Co4N (H2/Ar) after 6 h at 250 oC 5.60 3.09 0.00 

Co4N (H2/Ar) using temperature profile 
as shown in Fig. 3.3-7 

5.60 3.17 0.00 

Table 3.3-9 Nitrogen content of Co 4N samples pre- and post-reaction. 

 

3.3.4.3 XRD Patterns. 

Cobalt nitride proved more difficult to synthesise than originally envisaged and it was 

found that the nitride had to be ammonolysed within a 20 oC temperature window, and that 

pro-longed exposure to ammonia resulted in decomposition to Co metal.  Yao had 

previously reported the difficulties in identifying the Co4N phase from Co metal by XRD, 

as the reflections are identical, which is shown in Figure 3.3-9.  Both the H2/N2 and H2/Ar 

post-reaction samples have decomposed into the corresponding Co metal, however it is 

impossible to distinguish the Co phase from the Co4N phase which is present in the pre-

reaction sample by XRD analysis and so assignments are made solely on the basis of CHN 

data. 
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Figure 3.3-9 Pre and Post-reaction XRD patterns of Co4N.  
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3.3.5 Ni3N. 

The first reported synthesis of Ni3N was that documented by Juza in which Ni powder was 

treated under flowing ammonia at 450 oC.[214]  This method, however, does not generally 

yield a pure phase material with unreacted Ni metal impurities often being observed. Since 

then a variety of different preparation techniques have been reported in attempts to achieve 

a pure phase material.  These include exothermic solid state metathesis, synthesis in 

supercritical ammonia, sputtering of nickel films in Ar/N2 mixed gases and also ion 

bombardment of nickel thin films with N+ ions.[215-218] These methods require strict 

synthesis conditions without which impurities from the starting materials, and or by-

products may be observed.  It has been stated that nickel nitride is the final interstial nitride 

that forms in the 3d metals and it has been reported to have a hexagonal close packed 

crystal structure.[218] 

Nickel nitride, along with cobalt and copper nitrides, has been shown to be metastable and 

decompose to the corresponding metal at relatively low temperatures. This was highlighted 

in the work of Baiker and co-workers where the thermal stability of copper and nickel 

nitrides under different atmospheres was examined.[22,219]  These studies were conducted 

after it was found that the formation of nitrides on metal catalysts severely hindered their 

activity in amination type reactions. From this study it was concluded that Ni3N, is stable 

in an ammonia atmosphere up to around 400 oC.  Furthermore it was also reported that in a 

hydrogen environment the nitride is only stable up to 110 oC.[22] Perhaps due to the 

instability of this material, it has seldom been investigated for catalytic applications. 

3.3.5.1 Reaction Data. 

As with Co4N, Ni3N is known to decompose to the corresponding metal at low 

temperatures. A similar reaction profile, shown below, was obtained.  However the 

decrease in conductivity for Ni3N was much more pronounced and after the first 30 

minutes on stream the H2SO4 solution required to be exchanged with a fresh solution, due 

to complete consumption of H3O
+ by reaction with the evolved NH3.  Measurements were 

subsequently continued and hence the conductivity is reported in arbitrary units as seen in 

Figure 3.3-10. Following this large decrease, further activity was minimal.  Ammonia 

production rates for Ni3N under H2/Ar and H2/N2 at 250 oC are presented in Table 3.3-10. 
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Figure 3.3-10 Comparison of conductivity for Ni 3N ammonia production using H 2/N2 vs. H 2/Ar 
at 250 oC. 

 
 

Sample and Reaction Conditions NH3 Production  Rate (µmol h-1 g-1) 

Ni3N, 250 oC (H2/N2, 0.0-0.5 h) 2335 

Ni3N, 250 oC (H2/N2, 1.0-6.0 h) 36 

Ni3N, 250 oC (H2/Ar, 0.0-0.5 h) 2702 

Ni3N, 250 oC (H2/Ar, 1.0-6.0 h) 20 

Table 3.3-10 Ammonia production rates of Ni 3N under both H 2/Ar and H 2/N2 at 250 oC. 

 
In the case of the temperature programmed H2/Ar experiments, Ni3N was observed to react 

in a similar manner to Co4N.  However, as seen under H2/N2 and the isothermal H2/Ar 

experiments, a significant amount of ammonia is produced within the first 30 minutes on 

stream, which quickly subsides.  In the temperature programmed H2/Ar experiments, a 

further small burst of ammonia is observed after the temperature is increased to 400oC, 

which is in agreement with previous findings, where it has been observed that nitrogen 

desorbs from nickel at two different temperatures, similar to those observed in this study. 
[150, 154] 
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Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

250 oC (0-0.5 h) 2743 

250 oC (1.0-4.0 h) 31 

300 oC (4.5-5.0 h) 36 

300 oC (5.0-6.0 h) 5 

400 oC (6.0-6.5 h) 95 

400 oC (6.5-8.0 h) 11 

Table 3.3-11 Ammonia production activity of Ni 3N under H 2/Ar with increasing temperature.  

 
 

3.3.5.2  Nitrogen Analysis. 

Although it is evident that all nitrogen is removed from the pre-reaction samples during 

reactions with H2/Ar and H2/N2, only around 31 % and 28 % of the lattice nitrogen 

accounts for the formation of ammonia under the H2/Ar (up to 400 oC) and H2/Ar (at 250 
oC) respectively.  The remaining ca. 70 % of nitrogen is thought to be lost as N2. 

Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-Reaction 
N Content 

(wt.%) 

Ni3N (H2/N2) after 6 h at 250 oC 7.36 6.88 0 

Ni3N (H2/Ar) after 6 h at 250 oC 7.36 6.88 0 

Ni3N (H2/Ar) using temperature profile 
as shown in Fig. 3.3-7 

7.36 7.24 0 

Table 3.3-12 Nitrogen content of Ni 3N samples pre- and post-reaction. 

 

3.3.5.3  XRD Patterns. 

Ni3N was inherently difficult to prepare. Initial attempts to prepare pure-phase Ni3N, 

following the method reported by Juza, using a Ni powder and heating it under ammonia 

gas for 6 hours at 450 oC proved unsuccessful, resulting in a mixture of unreacted Ni and 

Ni3N. [214]  It was then decided to follow a method outlined by Baiker and co-workers, in 

which a NiO precursor was used in temperature-programmed adsorption and desorption 

studies conducted in an ammonia atmosphere.[22]  It was reported that the formation of 

Ni3N was observed at 350 oC and by about 400 oC the formation and decomposition 

reactions of Ni3N were in equilibrium.  With this in mind, an in-situ XRD was performed 
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on NiO, although under a 6 % H2/N2 gas mixture, from room temperature up to a 

maximum of 700 oC and it was found that the NiO precursor did not form the nitride but 

instead decomposed directly into the Ni metal.  These studies were repeated with ammonia 

(albeit these were not conducted in-situ) as feed gas.  Whilst Ni3N reflections were evident, 

these were weak in comparison to those observed for Ni metal represented as stars in 

Figure 3.3-11. 

 

Figure 3.3-11 XRD patterns of ammonolysis of NiO at  various temperatures, Ni reflections 
are represented by (   ) other reflections correspo nd to Ni 3N. 

  
Ultimately Ni3N was synthesised using a nickel chloride precursor, as described in the 

experimental chapter, which yielded hexagonal Ni3N with a relatively high nitrogen 

content and only minor Ni impurities are observed in the pre-reaction material, as shown in 

Figure 3.3-11. 

Ni3N is fully reduced to the Ni metal, as confirmed by XRD, by both H2/Ar and H2/N2 
reaction gases. 
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Figure 3.3-12 Pre- and Post-reaction XRD patterns o f Ni 3N (JCPDS 010-0280 hexagonal 
Ni3N). Ni metal reflections are indicated by (   ) 

 
 

3.3.5.4 SEM Micrographs. 

On viewing the SEM micrographs, it was interesting to note the apparent ‘holes’ that 

appeared in the post-reaction material, which has also been observed in studies by Kieda 

and Messing.[221]  It is thought that these ‘holes’ form by the bursting of sub-surface N2 

occlusions. This would be a possible explanation why a low percentage of the nitrogen in 

the material forms ammonia in the reactions.  Since sub-surface N2 is formed, this also 

implies that there is a possible structure sensitivity, in that the surface area to volume ratio 

of crystallites may influence the amount of lattice nitrogen which forms NH3. 

            

Figure 3.3-13 SEM micrographs images a) pre-reactio n b) Post-reaction.  

 

a) b) 
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3.3.6 Cu3N. 

Recent interest in copper nitrides, motivated by its possible applications in the 

optoelectronic industry, has been documented.[222-224]  This material crystallizes in a cubic 

anti-ReO3 type structure.[225-230]   In this arrangement, the copper atoms occupy the middle 

of the cube edges and the nitrogen atoms occupy the corners of the cell. This structure is 

unusual since Cu atoms do not occupy the face centred cubic close packing sites.  As a 

result, this crystal structure has many vacant interstitial sites and therefore it may be a 

possible host to other transition metal atoms.   Both lithium and palladium atoms have been 

reported to been successfully incorporated into this structure.[229,231,232]  These ions have a 

similar size to Cu and as a result can be easily accommodated by the crystal lattice.  

Previous studies performed by Moreno-Armenta and co-workers[233] demonstrated that 

copper nitride has a small indirect band gap and can act as a semi-conductor, however 

when an extra ion is added to the lattice metallic like behavior is observed, which is in 

agreement with previous work by Hahn.[234]  This provides an interesting means of perhaps 

stabilizing, or at least modifying the behavior of, Cu3N which has a rather low 

decomposition temperature.  Most of the studies that have investigated the intercalation of 

other metals into the Cu3N framework have focused on enhancing the electronic properties 

of the material; however the focus of this study is to develop a nitrogen transfer reagent, 

and it is relevant to point out that from other literature studies copper itself is a good 

aminating agent with examples being found in the patent literature and documented in 

organic synthesis.[169-173, 236,237] 

3.3.6.1 Reaction Data. 

Copper nitride, like rhenium, cobalt and nickel nitrides, is metastable and decomposes to 

the Cu metal with increasing temperature.  It therefore follows that Cu3N displays a similar 

reaction profile to that observed for both cobalt and nickel nitrides.  The ammonia 

production rates for the H2/Ar experiment with increasing temperature are presented in 

Table 3.3-13. 
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Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

250 oC (0.0-0.5 h) 2109 

250 oC (1.0-4.0 h) 36 

300 oC (4.5-5.0 h) 18 

300 oC (5.0-6.0 h) 22 

400 oC (6.0-6.5 h) 9 

400 oC (6.5-8.0 h) 1 

Table 3.3-13 Ammonia production activity of Cu 3N under H 2/Ar as a function of increasing 
temperature. 

 

As indicated in Table 3.3-13, Cu3N displays a high activity for ammonia production within 

the first 30 minutes.  However, as in the case of Co4N and Ni3N, this is not sustained and a 

rapid deactivation of the nitride is observed. The most likely cause for this is complete de-

nitridation and the formation of the copper metal.  In the case of H2/N2 and H2/Ar studies, 

conducted at 250 oC, a comparable plot is obtained to that of the Ni3N, Figure 3.3-14.   

Figure 3.3-14 demonstrates that there is a rapid decrease in the conductivity in the first 30 

minutes on stream with both H2/Ar and H2/N2 feedstreams, and after approximately 1 hour 

on stream this activity is no longer observed.  Table 3.3-14 demonstrates that between 1.0 

and 6.0 hours on stream only a very small amount of ammonia is produced and is 

significantly lower (almost 300 x) than that produced in the first 30 minutes of the reaction.  

Despite the large drop in the conductivity value, only 45 % of the nitrogen lost from Cu3N 

can be attributed to the formation of NH3. 
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Figure 3.3-14 Comparison of conductivity for Cu 3N ammonia production using H 2/N2 vs. 
H2/Ar at 250 oC (H2SO4 solution changed after 30 minutes on stream). 

 
 

Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

Cu3N, 250 oC (H2/N2, 0.0-0.5 h) 1732 

Cu3N, 250 oC (H2/N2, 1.0-6.0 h) 8 

Cu3N, 250 oC (H2/Ar, 0.0-0.5 h) 2350 

Cu3N, 250 oC (H2/Ar, 1.0-6.0 h) 8 

Table 3.3-14 Ammonia production rates of Cu 3N under both H 2/Ar and H 2/N2 at 250 oC. 

 
 

3.3.6.2  Nitrogen Analysis. 

Table 3.3-15 presents the nitrogen content found in the pre- and post-reaction samples via 

microanalysis.  As can be seen from the table the pre-reaction samples correlate well to the 

calculated stoichiometric values for Cu3N, and as expected the post-reaction samples 

contain no nitrogen. 
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Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Cu3N (H2/N2) after 6 h at 250 oC 6.84 6.52 0 

Cu3N (H2/Ar) after 6 h at 250 oC 6.84 6.87 0 

Cu3N (H2/Ar) using temperature profile 
as shown in Fig. 3.3-7 

6.84 6.63 0 

Table 3.3-15 Nitrogen content of Cu 3N samples pre- and post-reaction. 

 

 

3.3.6.3  XRD Patterns. 

Like Ni3N, Cu3N was also difficult to prepare and a number of different synthesis methods 

were attempted.  Originally a CuO precursor was used, as described by Baiker.[22]  CuO 

was treated under H2/N2 and NH3 at various temperatures, as indicated in Figures 3.3-15 

and 3.3-16. 

In the case of H2/N2, the resultant material was copper coloured, which was a visual 

indication that CuO had been reduced to Cu metal.  This was confirmed by XRD, Figure 

3.3-15.  The increasing background as a function of angle is due to fluorescence effects 

associated with the use of a copper x-ray source. 

Upon ammonolysis, as shown in Figure 3.3-16, it is clear that most samples result in a 

mixed phase material, with CuO, Cu and Cu3N reflections being evident. The Cu3N phase 

starts to be apparent at 200 oC, becoming more pronounced at 300oC.   However reflections 

which correspond to CuO are also present in these samples.  On increasing the temperature 

to 350 oC, these reflections disappear and are subsequently replaced by Cu metal 

reflections, which would indicate that the material decomposes somewhere between 300 

and 350 oC, and that the temperature range for synthesis of Cu3N is very narrow. 
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Figure 3.3-15  XRD patterns of CuO reacted under 3: 1 H2/N2 at various temperatures.  
Reflections correspond to Cu metal.  

 

 

Figure 3.3-16  XRD patterns of ammonolysis of CuO a t various temperatures, Cu reflections 
are represented by (   ); CuO reflections are repre sented by (   ); Cu 3N reflections are 
represented by (   ).  These are the only reflectio ns that can be identified with some 
certainty.  

 
Since these attempts were unsuccessful in the synthesis of a single phase Cu3N, CuF2 was 

used as the precursor.  This is undesirable to use due to the formation of HF gas on contact 

with ammonia and care had to be taken to ensure that all necessary precautions were made.  

This synthesis method was first reported by Juza in which ammonolysis of CuF2 resulted in 

pure phase Cu3N being obtained, as is evident in the current studies presented in Figure 
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3.3-17 where the pre-reaction material corresponds to a pure phase Cu3N (JCPDS 00-002-

1156).[228] Post-reaction reflections are characteristic of copper metal and on visual 

inspection the material is copper coloured. 
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Figure 3.3-17 Pre- and Post-reaction XRD patterns o f Cu 3N. (JCPDS: 00-002-1156 Cu 3N). Cu 
metal reflections are indicated by (   ) 

 

3.3.6.4 SEM Micrographs. 

As for Ni3N post-reaction samples, Cu3N also exhibits a change in morphology from the 

pre-reaction samples.  In the post-reaction samples, it is again very evident that ‘holes’ 

have developed, possibly to a greater extent than observed for the Ni3N samples. As has 

previously been stated, these ‘holes’ are thought to correspond with loss of nitrogen from 

the material via bursting of sub-surface N2 occlusions.  These types of holes are not evident 

in other materials which have been investigated, apart from Ni3N, and may be a 

consequence of the materials being less thermally stable when compared to others such as 

Fe2N and β-Mo2N0.78.   Again this suggests that there may be a possible relationship 

between sample morphology and the amount of NH3 formed as a proportion of the lattice 

N. 
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Figure 3.3-18 SEM micrographs images a-b) pre-react ion Cu 3N c- f) Post-reaction Cu 3N 

 
 

3.3.7 Zn3N2. 

Zinc is not strictly a transition metal because its 3d orbitals are completely filled in the 

element and also its highest common oxidation state.  Its nitride, Zn3N2, is generally 

categorised with the Group III nitrides, such as BN, AlN and GaN. Zn3N2 was first 

synthesised by Juza and Hahn  in 1940, and since then has rarely been studied.[237]  Much of 

the recent interest in Zn3N2 focuses on the structure and optical and electronic properties of 

the material and how they may be applied to optoelectronic devices such as light emitting 

diodes and laser diodes.[105,238-240]  The catalytic literature on Zn3N2 is sparse and it is 

a) 

c) d) 

e) f) 

b) 
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unknown how the material will act under ammonia synthesis conditions, with it being 

grouped with refractory nitrides which are inactive for ammonia synthesis.  However it 

also has similar properties to that of copper, which decomposes to the metal at relatively 

low temperatures.  A structural study by Partin and co-workers has shown that the nitrogen 

atoms within Zn3N2 occupy two different crystallographic sites, which may prove to be 

advantageous in terms of a Mars-van Krevelen mechanism.[241]  

3.3.7.1 Reaction Data. 

Figure 3.3-19 highlights that although there is a small decrease in conductivity during the 

first 30 minutes on stream it is not the same sharp decrease as seen with the neighbouring 

cobalt, nickel and copper nitrides.  This would suggest that Zn3N2 is more stable at 250 oC 

than the preceding nitrides.  However as the temperature is increased to 400 oC, the 

reaction appears to proceed at an increased rate.  Ammonia production rates for the below 

conductivity versus time plot are presented in Table 3.3-16. 

 

Figure 3.3-19 Conductivity data for NH 3 production over Zn 3N2 as a function of increasing 
temperature under H 2/Ar. 
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Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

250 oC (0.0-0.5 h) 270 

250 oC (1.0-4.0 h) 46 

300 oC (4.0-4.5 h) 88 

300 oC (4.5-6.0 h) 40 

400 oC (6.0-6.5 h) 106 

400 oC (6.5-10.0 h) 162 

Table 3.3-16  Ammonia production activity of Zn 3N2 under H 2/Ar as a function of increasing 
temperature. 

 
Following the temperature programmed H2/Ar experiments, subsequent H2/N2 and H2/Ar 

studies were conducted at 400 oC.  It can be seen in Figure 3.3-20 that the initial decrease 

in conductivity, for both H2/Ar and H2/N2 reactions, is not as sharp as previously seen in 

other systems.  However it is apparent that under both reaction gases, a plateau is reached - 

after 2.5 hours on stream in the case of H2/Ar and around 5.5 hours in the case of H2/N2 - 

where the reaction ceases and either little or no ammonia is produced. Ammonia 

production rates at various time intervals in the reaction are presented in Table 3.3-17. 

 

Figure 3.3-20 Comparison of conductivity for Zn 3N2 ammonia production using H 2/N2 vs. 
H2/Ar at 400 oC (arbitrary units are used as the conductivity in the dilute H 2SO4 solution does 
not decrease below ~350 µS/cm, on reaching this poi nt the solution was changed and 
readings were continued). 
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Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

Zn3N2, 400 oC (H2/N2, 0.0-0.5 h) 536 

Zn3N2, 400 oC (H2/N2, 0.5-4.5 h) 498 

Zn3N2, 400 oC (H2/N2, 4.5 -6.0 h) 70 

Zn3N2, 400 oC (H2/Ar, 0.0-0.5 h) 327 

Zn3N2, 400 oC (H2/Ar, 0.5-2.5 h) 785 

Zn3N2, 400 oC (H2/Ar, 2.5-6.0 h) 8 

Table 3.3-17 Ammonia production rates of Zn 3N2 under both H 2/Ar and H 2/N2 at 400 oC. 

 
  

3.3.7.2 Nitrogen Analysis. 

From Table 3.3-18 it is apparent that the pre-reaction samples have slightly lower nitrogen 

contents, than would be expected from stoichiometric Zn3N2. However these values are 

comparable to that reported by Gregory and co-workers (10.91 wt.%).[105]  On examination 

of the post-reaction material, it is evident that not all nitrogen is removed from the 

samples, and less than half is removed from the post-reaction sample treated under H2/N2.  

This may or may not be attributed to the fact that the N atoms, in Zn3N2, occupy two 

different crystallographic sites within the lattice, and it may be the case that these different 

nitrogen species become active at different temperatures.  

Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-Reaction 
N Content 

(wt.%) 

Zn3N2 (H2/N2) after 6 h at 400 oC 12.49 10.04 5.99 

Zn3N2 (H2/Ar) after 6 h at 400 oC 12.49 10.14 2.50 

Zn3N2 (H2/Ar) using temperature profile 

as shown in  Fig. 3.3-19 
12.49 9.46 2.29 

Table 3.3-18 Nitrogen content of Zn 3N2 samples pre- and post-reaction. 
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3.3.7.3  XRD Patterns. 

The pre-reaction sample, had a relatively high nitrogen content, however the lower than 

expected nitrogen content might be attributed to the presence of ZnO.  This was confirmed 

by XRD with a ZnO reflection observed at ca. 36 o 2θ.  In addition to this a small Zn metal 

impurity was detected at ca. 39 o 2θ. However, the remaining reflections matched those of 

cubic Zn3N2.  This Zn reflection increases in intensity in the post-reaction XRD patterns, 

which would be expected in the case of decomposition of the nitride. The formation of 

ZnO is apparent in the post-reaction XRD patterns and it is more evident in the post-

reaction H2/Ar sample that underwent temperature increase up to 400 oC. In this instance 

the characteristic nitride reflection is not apparent and the intensity of the ZnO reflection at 

39 o 2θ increases.  This may indicate that the Zn3N2 phase becomes more reduced to Zn 

metal upon reaction, which subsequently oxidises forming larger ZnO crystallites with 

respect to those present in the pre-reaction sample. 
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Figure 3.3-21 Pre- and Post-reaction XRD patterns o f Zn 2N3. The symbols used show 
characteristic reflections of Zn 2N3 (   ) Zn metal (  ) and ZnO (  ) that can be clear ly identified 
without ambiguity. (JCPDS 035-0762 Zn 2N3). 
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3.3.8 Summary of Later Transition Metal Nitrides.  

Tables 3.3-19 and 3.3-20 give a summary of the nitrides investigated within this section.  

Ammonia production rates are presented in Table 3.3-19, and only the ammonia 

production rates for the first 30 minutes on stream are included in the table due to the 

instability of many of the materials. Table 3.3-20 presents the nitrogen content pre- and 

post-reaction of each material as well as the surface areas of the pre-reaction material.   

3.3.8.1 Summary of Ammonia Production Rates. 

As previously mentioned many of the materials investigated within this section are 

thermally unstable and for this reason only the ammonia production rates within the first 

30 minutes have been included in Table 3.3-19.  It is evident that during the first 30 

minutes on stream, Ni3N and Cu3N exhibit a significantly higher ammonia production rates 

when compared to the other materials investigated within this section, however as 

discussed in the relevent sections (3.3.5 and 3.3.6 respectively) this ammonia production is 

short lived and ammonia production ceases with these materials being reduced to their 

corresponding metals, under reaction conditions at relatively low temperatures c.a 300 oC.  

Co4N was observed to reduce to Co metal under reaction conditions, as confirmed by 

elemental analysis, with no further ammonia production observed after the first 30 minutes 

on stream.  

As discussed in the relevent sections Fe2N, Re3N and Zn3N2 exhibit ammonia production 

activities, under H2/N2, even after the initial 30 minutes on stream.  Of these three 

materials, Zn3N2 displayed the highest ammonia production rates, under H2/N2 after 30 

minutes on stream, followed by Re3N and lastly Fe2N.   However it is also apparent that 

during isothermal H2/Ar reaction conditions, a steady decrease in the conductivities is also 

observed for all three samples, which may suggest that these materials undergoe 

decomposition rather than functioning as true ammonia synthesis reagents.  This was 

confirmed by elemental analysis and the results are shown in Table 3.3-20.  This however, 

may prove to be advantageous for the develpoment of a novel nitrogen transfer reagent if 

the regeneration of the material can be preformed in a seperate step to that of the nitrogen 

transfer process and will be discussd further in Chapter 4.   
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 Material 

NH3 Production Rate (µmol h-1 g-1) 

H2/N2, 400 oC,  0.5 h H2/Ar, 400 oC , 0.5 h 

Fe2N 213 170 

Re3N 580 419 

Co4N 321 477 

Ni3N 1702 2335 

Cu3N 1732 2350 

Zn3N2 536 327 

Table 3.3-19 Summary of NH 3 production rates  for the later transition metal nitride materials  

 

3.3.8.2 Summary Pre/Post-Reaction N Data and Surfac e Areas.  

Material 

BET 
Surface 
Area 

(m2g-1) 

Nitrogen Content (wt.%) 

Calculated 
Stoichiometric 

Pre-Reaction 

Post-
Reaction 
(H2/Ar) 
700oC 

Post-
Reaction 
(H2/N2) 
400oC 

Fe2N 13 11.13 8.65 2.4 3.57 

Re3N 2 2.44 3.52 1.10 0.47 

Co4N 4 5.60 3.39 0 0.89 

Ni3N 3 7.36 7.24 0 0 

Cu3N 4 6.84 6.63 0 0 

Zn3N2 1 12.49 10.04 2.29 5.99 

Table 3.3-20 Summary of pre- and post-reaction nitr ogen content, and surface area of pre 
reaction samples for the later transition metal nit ride materials. 
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3.4 Miscellaneous systems.  

3.4.1 Introduction to Miscellaneous systems.  

The materials which are investigated in this section have been examined for a number of 

different reasons and do not necessarily ‘fit’ with the binary nitrides categories that have 

been discussed in preceding sections.  Most of these materials, with the exception of Co-

4Re, have been reported to exhibit nitrogen transfer properties.  For example, Mg3N2 has 

recently been reported by Ley and co-workers to be an active nitrogen source for the 

transformation of ester into amides.[100]  Co3Mo3N has recently been reported to exhibit 

reversible nitrogen loss and regeneration properties.[111] Re-nitridation is one of the 

significant problems associated with the development of a novel nitrogen transfer reagent 

and as Co3Mo3N exhibits the ability to re-nitride under N2 gas, this may have significant 

advantages for commercial type processes. 

In addition to this, ruthenium based systems are included at the end of this section in order 

to draw a comparison between activity rates and also to assess how active each material is 

with respect to ruthenium based catalysts, which are known to exhibit very high activity 

rates for ammonia synthesis reactions.[113-115, 242,243] 

3.4.2 Mg3N2. 

Magnesium nitride is a well-known solid material which has been used as an additive for a 

variety of different applications including ceramics, catalytic cross-polymerization and 

hydrogen storage materials.  Mg3N2 has recently applied in the formation of other nitrides 

such as boron nitride, scandium and lanthanum nitrides.[244-246]  Magnesium nitride is 

reported to have a similar structure to that of zinc nitride.  It forms an anti-bixbyite 

structure where the nitrogen atoms occupy two different crystallographic sites.[241]  As 

mentioned earlier in the chapter, this may prove to be advantageous in terms of a Mars-van 

Krevelen type process.   

Mg3N2 is known to be moisture sensitive, releasing ammonia when exposed to water.[253]  

Ley and co-workers have recently demonstrated that ammonia is also released from 

magnesium nitride when it is reacted with other protic solvents such as methanol or 

ethanol.[100]  They subsequently investigated magnesium nitride as a nitrogen source for the 

transformation of esters to primary amides. The release of ammonia from magnesium 

nitride was accompanied by a color change from brown to yellow-white. 
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3.4.2.1 Reaction Data. 

Group II metal nitrides are generally known to be unstable in air and also when exposed to 

moisture.  Despite this, it was unclear how the nitride would react under a H2/Ar 

atmosphere and it was therefore necessary to initially conduct a temperature programmed 

reaction under H2/Ar to determine the temperature range in which to conduct subsequent 

H2/N2 and isothermal H2/Ar reactions.  From Figure 3.4-1 it is evident that low levels of 

ammonia are formed at 300 oC.  As the temperature is increased to 400 oC, there is a large 

steady decrease in the conductivity value, which persists for the duration of the reaction.  

This significant decrease in conductivity has not been observed in other systems which 

have been subjected to temperature programmed H2/Ar reaction.  Ammonia production 

data for various phases of the reaction are presented Table 3.4-1  

 

Figure 3.4-1 Conductivity data for NH 3 production over Mg 3N2 as a function of increasing 
temperature under H 2/Ar. 
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Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

300 oC (0.0-0.5 h) 332 

300 oC (1.0-5.0 h) 33 

400 oC (5-5.5.0 h) 157 

400 oC (5.5-9.0 h) 291 

500 oC (9.0-9.5 h) 269 

500 oC (9.5-13.0 h) 191 

Table 3.4-1  Ammonia production activity of Mg 3N2 under H 2/Ar as a function of increasing 
temperature. 

 
H2/N2 and isothermal H2/Ar reactions were conducted at 400 oC, following these results.  It 

is clear from Figure 3.4-2 that the resultant conductivity versus time plots for H2/Ar and 

H2/N2 are comparable, with only a slight degree of variation in the ammonia production 

rates.  This may be attributed to the fact that Mg3N2 undergoes decomposition at 400 oC 

rather than exhibiting catalytic activity.  However, for the purposes of this study, the 

evolution of nitrogen from Mg3N2 at 400 oC may be beneficial, as this is the temperature 

range of interest for the target Mars-van Krevelen process which is the main focus of this 

thesis.   This study was repeated, although a longer reaction time of 13 hours was 

investigated, with rates for ammonia production comparable to those presented in Table 

3.4-2. 

 

Figure 3.4-2 Comparison of conductivity for Mg 3N2 ammonia production using H 2/N2 vs. 
H2/Ar at 400 oC. 
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Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

Mg3N2, 400 oC (H2/N2, 0.0-0.5 h) 481 

Mg3N2, 400 oC (H2/N2, 1.0-6.0 h) 190 

Mg3N2,  400 oC (H2/Ar, 0.0-0.5 h) 323 

Mg3N2, 400 oC (H2/Ar, 1.0-6.0 h) 226 

Table 3.4-2 Ammonia production rates of Mg3N2 under both H 2/Ar and H 2/N2 at 400 oC. 

 
  

3.4.2.2 Nitrogen Analysis. 

As has been previously mentioned, Mg3N2 is sensitive to air and moisture, and as a 

consequence the values obtained from nitrogen analysis may contain some degree of error 

due to the fact that the samples will have been exposed to an air atmosphere prior to 

analysis. 

Pre-reaction samples were used as purchased from Sigma-Aldrich, without any further 

treatment.   It is evident that there are differences in the nitrogen content between the pre- 

and post-reaction samples.  It was found by CHN analysis that the post-reaction isothermal 

and temperature programmed H2/Ar experiments samples, lost around 6.9 wt.% and 9.4 

wt.% of nitrogen respectively.  Subsequent calculations found that only 6.96 % and 

11.41% of the total lattice nitrogen lost from the respective materials could be attributed to 

ammonia formation.     

Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Mg3N2 (H2/N2) after 6 h at 400 oC 27.74 23.50 19.80 

Mg3N2 (H2/Ar) after 6 h at 400 oC 27.74 23.50 16.59 

Mg3N2 (H2/Ar) using temperature 
profile as shown in Fig. 3.4-1 

27.74 23.50 14.10 

Table 3.4-3 Nitrogen content of  Mg3N2 samples pre- and post-reaction 

 
 

3.4.2.3 XRD Patterns. 

All three samples match to that of cubic Mg3N2, and it is apparent from the XRD patterns 

that the reflections are sharp and indicative of highly crystalline material.  There are no 
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apparent lattice shifts between the pre- and post-reaction samples. This was not expected 

on the basis of the significant loss of nitrogen observed for these samples, as shown in 

Table 3.4-3.   

 It is also evident in the temperature programmed H2/Ar samples’ XRD pattern that the 

reflections observed at 43 o, 62 o and 78o 2θ,  are slightly broader than observed for both the 

pre-reaction and the H2/N2 post-reaction samples, which would suggest that there is an 

increase in disorder.  However, upon inspection of the post-reaction pattern obtained under 

H2/Ar it is evident that some small additional reflections are present.   In addition to these, 

very weak reflections can be observed at 17 o and 25o 2θ.  These are characteristic of 

magnesium oxide (MgO) which is most likely a result of aerobic oxidation upon 

discharging the slightly more reduced material from the reactor. 

 

Figure 3.4-3 Pre- and Post-reaction Mg 3N2 (JCPDS 035-0778 Mg 3N2). 

 

3.4.3 TiFe2Nx. 

The Laves type TiFe2 phase has been reported to exhibit reversible nitrogen uptake and 

loss behaviour.[91]  Itoh and co-workers have demonstrated that intermetallic TiFe2 

compounds, amongst others, absorb large amounts of nitrogen, when heated either in an 

ammonia or nitrogen atmosphere. The nitrogen taken up can subsequently be released as 

ammonia upon heating under a hydrogen atmosphere.  
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Similar approaches can be seen in earlier work by Schwab and Wicke, and also Biewer and 

Bernasek which document the use of titanium-iron nitrides for ammonia synthesis.[248,249]   

In the study by Schwab and Wicke, it was reported that upon nitridation of a Cs-Cl 

structured TiFe compound, enhanced catalytic activity was displayed.  The diffraction 

pattern from that study suggested that the material formed small iron particles which were 

supported on a TiN matrix.  However subsequent studies have shown that this material 

only absorbs a limited amount of nitrogen compared with the TiFe2Nx Laves phase. 

3.4.3.1 Reaction Data. 

 Initially H2/Ar studies were conducted with increasing temperature to establish the 

temperature at which lattice nitrogen became “active”, as illustrated in Figure 3.4-4.  From 

this conductivity versus time plot, it is evident that very little ammonia is produced 

between the temperature ranges of 250 oC to 400 oC.  On increasing the temperature to 

500oC, a much larger decrease in the conductivity is observed.  This is consistent with the 

formation of ammonia, and is in good agreement with the temperature at which Itoh 

observed significant ammonia formation (450 oC) by de-nitridation of TiFe2. Further 

temperature increases to 600 oC and 700 oC result in a subsequent decrease in the 

conductivity value, with formation of ammonia particularly occurring at 700 oC, as 

illustrated in Table 3.4-4.  The reaction was run over an extended period as a result of the 

uncertainty of the de-nitriding temperature.   

Although there is very little nitrogen lost from the Laves phase TiFe2Nx material at 400 oC, 

subsequent H2/N2 and isothermal H2/Ar studies were conducted at this temperature due to 

the fact that the target nitrogen transfer process which is the primary aim of this thesis 

should occur at this temperature. 
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Figure 3.4-4 Conductivity data for NH 3 production over TiFe 2Nx as a function of increasing 
temperature under H 2/Ar. 

 
 
Figure 3.4-5 indicates that there is an initial decrease in the conductivity for the H2/N2 

reaction studies which is only sustained for 1.5 hours, and subsequent ammonia production 

is limited.  This is also evident in the isothermal H2/Ar studies, where ammonia production 

ceases after 3.5 hours on stream. 

Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

250 oC (0.0-0.5 h) 130 

250 oC (0.5-4.0 h) 15 

300 oC (4.0-4.5 h) 56 

300 oC (4.5-7.0 h) 2 

400 oC (7.0-7.5 h) 19 

400 oC (7.5-9.5 h) 9 

500 oC (9.5-10.0 h) 56 

500 oC (10.0-12.5 h) 25 

600 oC (12.5-13.0 h) 84 

600 oC (13.0-15.0 h) 7 

700 oC (15.0-15.5 h) 210 

700 oC (15.5-17.0 h) 34 

Table 3.4-4  Ammonia production activity of TiFe 2Nx under H 2/Ar as a function of increasing 
temperature. 
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Figure 3.4-5 Comparison of conductivity for TiFe 2Nx ammonia production using H 2/N2 vs. 
H2/Ar at 400 oC. 

 

These results are in contrast to those documented by Itoh, in which it was found that after 1 

absorption-desorption cycle 324 µmol g-1 of ammonia was produced, albeit at 450 oC.[91] 

Table 3.4-5 presents the rates of ammonia formation for H2/N2 and isothermal H2/Ar 

reactions 

Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

TiFe2Nx, 400 oC (H2/N2, 0.0-0.5 h) 135 

TiFe2Nx, 400 oC (H2/N2, 1.0-6.0 h) 16 

TiFe2Nx, 400 oC (H2/Ar, 0.0-0.5 h) 67 

TiFe2Nx, 400 oC (H2/Ar, 1.0-6.0 h) 5 

Table 3.4-5 Ammonia production rates of TiFe2Nx, under both H 2/Ar and H 2/N2 at 400 oC. 

 

3.4.3.2 Nitrogen Analysis. 

Laves phase TiFe2Nx has been reported to exist in a variety of different stoichiometries 

ranging from x= 0.53 to x=1.44 corresponding to 4.44 wt.% and 11.22 wt.% nitrogen 

respectively.  As illustrated in Table 3.4-6, the pre–reaction sample has a very low nitrogen 

content when compared to the possible stoichiometric values. This may be due to the 

difficulty in the preparation technique and the evidence of multiple phases in the 
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diffraction patterns.   Despite this, the material has lost a limited amount of nitrogen and 

does not completely decompose to the metal.  A possible reason for this may lie in the fact 

that TiN reflections are evident in the diffraction pattern.  As has been previously observed 

in section 3.2.2, titanium nitride does not undergo substantial de-nitridation.  Another 

possibility may be that the formation of TiFe has occurred instead of the Laves TiFe2Nx 

phase.  This material has been reported to take-up only very small amounts of nitrogen. 

Sample and Reaction Conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-
Reaction N 

Content 
(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

TiFe2Nx  (H2/N2) after 6 h at 400 oC 4.44-11.22 1.31 1.09 

TiFe2Nx (H2/Ar) after 6 h at 400 oC 4.44-11.22 1.31 1.01 

TiFe2Nx (H2/Ar) using temperature 
profile as shown in Fig. 3.4-4 

4.44-11.22 1.31 0.94 

Table 3.4-6 Nitrogen content of TiFe 2Nx samples pre- and post-reaction. 

 

3.4.3.3 XRD Patterns. 

From the diffraction patterns obtained for the pre- and post-reaction samples, Figure 3.4-6, 

it is apparent the samples are largely amorphous.  This is in agreement with the previously 

mentioned studies by Itoh.  However, it is also evident there are multiple phases which 

exist within the material.  These correspond to TiFe2, TiN, Fe4N and Fe metal and due to 

the overlap of some reflections not all can be unambiguously assigned.  TiN and Fe metal 

reflections are represented by a triangle and star respectively, in Figure 3.4-6. 

This may be further evidence to suggest the formation TiFe. Schwab and Wicke 

documented that upon nitridation of TiFe, that the diffraction pattern suggested the 

formation of small iron particles within a titanium nitride matrix.[248]  It has also been found 

in the work of Itoh that TiFe does not form a single phase material.  This would be a 

possible explanation as to why TiN and Fe metal reflections are present in the both the pre- 

and post-reaction samples and may also be, in part, an explanation, as to why apparent 

ammonia production rates were much lower than those quoted by Itoh were observed. 
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Figure 3.4-6 Pre- and Post-reaction XRD patterns of  TiFe2Nx (JCPDS 015-0336 TiFe 2). (Fe 
metal    TiN   )   

 
 

3.4.4 Co-4Re. 

Aika and Kojima have recently described the synthesis of a bimetallic Co-Re system which 

was found to be active for ammonia synthesis.[59] The reported rate (2371 µmol h-1 g-1 at 

350 oC and 3.1 MPa) was found to be higher than those found over traditional ammonia 

synthesis catalysts, promoted iron (Fe-K2O-Al2O3), as well as Co3Mo3N, for which the 

rates are 2010 and 2113 µmol h-1 g-1 respectively, under similar conditions.[250]   In these 

studies rhenium nitride was initially investigated, as described in section 3.3.3, but was 

found to be unstable above 350 oC as was also reported in the findings of the current study.  

Cobalt was added in order to improve the stability of the material and in order to reduce 

the cobalt nitrate precursor a higher nitriding temperature is employed (700 oC) and hence 

the resultant phase is not the nitride which decomposes below this temperature.   Aika and 

Kojima also investigated the Co-Re system as a function of Re content and found that 

maximum ammonia synthesis activities were achieved with an 80 % Re content giving rise 

to a Co-4Re catalyst.   

3.4.4.1 Reaction Data. 

The current study temperature programmed H2/Ar studies were undertaken to investigate 

the effect, if any, of the presence of sorbed NHx species on the bimetallic Co-4Re 

compound.  It was found that low levels of NH3 were produced within the first 30 minutes 
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on stream.  Table 3.4-7 presents the ammonia production activity which occurred at 

various points throughout the reaction. 

 

Figure 3.4-7 Conductivity data for sorbed NH x species monitored as NH 3 production over Co-
4Re as a function of increasing temperature under H 2/Ar. 

 
 

Reaction Temperature and Time NH3 Production Rate (µmol h-1 g-1) 

400 oC (0.0-0.5 h) 42 

400 oC (0.5-4.0 h) 9 

500 oC (4.0-4.5 h) 26 

500 oC (4.5-5.5 h) 9 

600 oC (5.5-6.0 h) 4 

600 oC (6.0-7.5 h) 4 

700 oC (7.5-8.0 h) 0 

700 oC (8.0-9.0 h) 0 

Table 3.4-7  Ammonia production activity of Co-4Re under H 2/Ar as a function of increasing 
temperature. 

 
The ammonia formation rate when using H2/N2 contrasted strongly with that using H2/Ar 

as shown in Figure 3.4-8. 
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Figure 3.4-8 Comparison of conductivity for Co-4Re ammonia production using H 2/N2 vs. 
H2/Ar at 400 oC. 

  
Figure 3.4-8 highlights the catalytic ammonia synthesis activity exhibited by Co-4Re under 

H2/N2. It can be observed that there is a significant decrease in the conductivity value in 

the case of the H2/N2 reaction, consistent with the formation of ammonia and the profile 

indicates a steady state reaction rate.  The ammonia synthesis rate which was derived from 

this reaction was comparable to that reported by Aika and Kojima for the steady state 

reaction (492 µmol h-1 g-1 at atmospheric pressure and 350 oC)[59] and is presented in the 

table below. The initial ammonia synthesis rate quoted in Table 3.4-8 for the reaction using 

H2/N2 is much higher than the steady state rate, which is achieved after 30 minutes on 

stream.  This increased initial rate could again be attributed to the hydrogenation of sorbed 

NHx species generated by the ammonolysis or by the H2/N2 pre-treatment.  Aika and 

Kojima describe the first 30 minutes of reaction under the same conditions as a 

stabilisation period, suggesting that similar results were observed in the early stages of the 

reaction.  

Sample and Reaction Conditions NH3 Production Rate (µmol h-1 g-1) 

Co-4Re, 400 oC (H2/N2, 0.0-0.5 h) 747 

Co-4Re, 400 oC (H2/N2, 1.0-6.0 h) 472 

Co-4Re, 400 oC (H2/Ar, 0.0-0.5 h) 44 

Co-4Re, 400 oC (H2/Ar, 1.0-6.0 h) 9 

Table 3.4-8 Ammonia production rates of Co -4Re under both H 2/Ar and H 2/N2 at 400 oC. 
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3.4.4.2 XRD Patterns. 

The Co-4Re starting material appears to be slightly more amorphous than the H2/N2 and 

temperature programmed H2/Ar post-reaction diffraction patterns.  

The pattern of the Co-4Re material is similar to that obtained for the post-reaction H2/N2 

Re3N sample, in the fact that broad reflections are again observed centring around 40o 2θ.  

It is apparent that the H2/N2 and the temperature programmed H2/Ar patterns are not 

dissimilar from the starting material with no obvious shifts to indicate changing unit cell 

volumes, although the intensities of reflections do increase which may possibly be due to 

the fact that the samples become crystalline upon application.  All samples contain both Co 

and Re metal phases which are evident in Figure 3.4-9 and either indicated by a star or 

circle respectively. 

 

Figure 3.4-9 Pre- and Post-reaction XRD patterns of  Co-4Re (Co    , Re    ).  

 

3.4.5 Ru/MgAl2O4 and BaRu/MgAl2O4. 

Ruthenium is known to be an excellent catalyst for ammonia synthesis. [113-115, 242,243]  

Under moderate temperatures and pressures it is considerably more active than the 

commercial iron based catalyst.  Various high surface area materials such as alumina, 

magnesia, zeolites, boron nitrides and activated carbon have all been investigated as 

supports for the ruthenium phase.  The only ruthenium based catalyst to find industrial 

application is a promoted ruthenium catalyst supported on activated carbon, which was 
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commercialized by Kellogg in the mid 1980’s.[129]   The unpromoted catalyst was found to 

be inactive in ammonia synthesis but activity dramatically increased on the addition of a 

promoter such as potassium, caesium or barium.  Kowalczyk et al investigated the effect of 

alkali and barium promoters on a ruthenium catalyst supported on graphitized carbon.[251]   

It was found that barium enhanced ammonia synthesis activities on the catalyst but by 

which effect (structural or electronic) was unclear and there is much debate within this 

area.[113,251]   Within the Russian literature, there is further evidence to suggest that the 

addition of barium may be advantageous to ammonia synthesis activities.  Studies by 

Panov and co-workers have found that barium nitride exhibits a high nitrogen isotopic 

exchange activity that is more than two orders of magnitude greater than either Fe or Ru 

when they are compared at 323 oC.[123,252]  

In this work, Ru-based systems have only been investigated for comparative purposes.  A 

number of supports were investigated, including MgO, BN, Al2O3 and MgAl2O4.  Only the 

most active material has been presented for this reason. 

3.4.5.1 Reaction Data. 

As ruthenium based systems are only being studied for comparative purposes, temperature 

programmed H2/Ar reactions were not investigated, as it was evident in the isothermal 

H2/Ar reaction that there is a limited amount of ammonia produced.  The ammonia which 

is apparently produced during this reaction may possibly be attributed to the hydrogenation 

of sorbed NHx species residues which have accumulated during the pre-treatment phase of 

the reaction under H2/N2.    It is evident from Figures 3.4-10 and 3.4-11 that ruthenium 

based systems are highly active for catalytic ammonia synthesis.  As has been referred to 

above, reports that low levels of barium dopants enhance the catalytic ammonia synthesis 

activity of ruthenium has been published.   However, from the results presented in Table 

3.4-9 it would appear that the dopant levels of barium applied in fact slightly hinder the 

production of ammonia. This was also the case for other supports that were studied.    

Studies by Hansen et al have suggested that the effect of barium promotion is location 

sensitive, and dependent on the relative affinities of the promoter for either the support or 

the metal.[253]  Despite this the rate of ammonia production remains much higher than that 

of the other materials investigated in this work. 
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Figure 3.4-10 Comparison of conductivity for 5 % Ru / MgAl 2O4 ammonia production using 
H2/N2 vs. H 2/Ar at 400 oC. 

 

 

Figure 3.4-11 Comparison of conductivity for Ba.Ru/ MgAl 2O4 ammonia production using 
H2/N2 vs. H 2/Ar at 400 oC. 
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Sample and Reaction 
Conditions 

NH3 Production Rate (µmol h-1 g-1) 

Ru/MgAl2O4 Ba.Ru/MgAl2O4 

400 oC (H2/N2, 0.0-0.5 h) 467 480 

400 oC (H2/N2, 1.0-6.0 h) 710 562 

400 oC (H2/Ar, 0.0-0.5 h) 62 63 

400 oC (H2/Ar, 1.0-6.0 h) 6 4 

Table 3.4-9 Ammonia production rates of Ru/MgAl 2O4 and Ba.Ru/MgAl 2O4 under both H 2/Ar 
and H 2/N2 at 400 oC. 

 
 

3.4.5.2 XRD Patterns.  

Diffraction patterns of the unpromoted ruthenium catalyst largely resemble the support 

material, which itself corresponds to MgAl2O4. Additionally due to the amorphous 

appearance of the material, it is hard to unambiguously assign ruthenium metal reflections, 

with prominent reflections occurring at approximately 43o and 62o 2θ.  Despite this, 

reflections at these 2θ values appear to grow in intensity in the post-reaction samples and 

may possibly be a result of agglomeration of Ru metal.  

 

Figure 3.4-12 Pre- and Post-reaction XRD patterns o f 5 % Ru/MgAl 2O4. (JCPDS 0021-1152 
and 033-0853 MgAl 2O4). 

 
Again in the promoted ruthenium samples, the pre- and post- reaction diffraction patterns 

are almost identical to that of the support. However, additional reflections are observed at 
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25 o and 26 o 2θ in some cases.   These reflections are difficult to assign with any degree of 

certainty and may either be Ba metal or Ba3N2 both of which have reflections centring on 

25 o and 26 o 2θ.  

 

Figure 3.4-13 Pre- and Post-reaction XRD patterns o f Ba-5 % Ru/MgAl 2O4. 

 

The diffraction pattern of the sample treated with H2/N2 appears to be more amorphous 

than either the pre- reaction sample or the sample treated under isothermal H2/Ar 

conditions. This would suggest that there is more disorder within the material. 

3.4.6 Summary Miscellaneous Systems. 

Tables 3.4-10 and 3.4-11 give a summary of the nitrides investigated within this section, 

with ammonia production rates under selected conditions are presented in Table 3.4-10 

whilst Table 3.4-11 presents the nitrogen content pre- and post-reaction of each material as 

well as the surface areas of the pre-reaction material.   
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3.4.6.1 Summary of Ammonia Production Rate. 

Material 

NH3 Production Rate (µmol h-1 g-1) 

H2/N2, 400 oC 1-6 h. H2/N2, 400 oC,  0.5 h H2/Ar , 400 oC, 0.5h 

Mg3N2 190 481 323 

TiFe2Nx 16 135 67 

Co-4Re 472 747 44 

Ru/ MgAl2O4 710 467 108 

Ba.Ru/ MgAl2O4 562 480 63 

Table 3.4-10 Summary of NH 3 production rates for the miscellaneous systems 

 

3.4.6.2 Summary Pre/Post-Reaction N Data and Surfac e Areas. 

Material 

BET 
Surface 

Area 

 (m2 g-1) 

Nitrogen Content (wt.%) 

Calculated 
Stoichiometric 

Pre-
reaction 

Post-reaction 
(H2/Ar) 
700oC 

Post-reaction 
(H2/N2) 400oC 

Mg3N2 6 27.74 23.50 14.10 19.80 

TiFe2Nx 13 4.44-11.22 1.30 0.94 1.09 

Co-4Re 5 0 0 0 0 

Ru/MgAl2O4 123 0 0 0 0 

Ba.Ru/ 

MgAl 2O4 
111 0 0 0 0 

Table 3.4-11 Summary of pre- and post-reaction nitr ogen content, and surface area of pre- 
reaction samples for miscellaneous systems. 

 
 
 

3.5 Summary  

In this chapter the reactivity of lattice nitrogen over a range of nitride materials and was 

established via the comparison of ammonia synthesis activities using stoichiometric H2/N2 

mixtures with H2/Ar mixtures. The activities of these materials were subsequently 
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compared to a supported Ru catalyst, known to be one of the most active systems for 

ammonia synthesis.   Figure 3.5-1 illustrates the nitrides which have been investigated. 

These studies have been conducted in order to establish which nitride materials would be 

suitable for participation in the proposed Mars-van Krevelen reaction.  On the basis of the 

likely reactivity of benzene, 400 oC seems a probable upper limit for the target process,  so 

it is therefore necessary for the potential candidate systems to either de-nitride at or below 

400 oC or to exhibit the ability to form ammonia at this temperature.  It was evident that on 

moving left to right along the transition metals that the corresponding nitrides became 

more thermally unstable, which could in theory prove to be advantageous in the 

development of a novel nitrogen transfer reagent.  The adsorption-desorption cycle could 

be conducted at different temperature in separate steps thus possibly overcoming any 

thermodynamic and kinetic limitations imposed.  
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Figure 3.5-1 Periodic Table displaying the metal ni trides and metals of the alloys which have 
been investigated in this chapter. 

 

Figure 3.5-2 illustrates the ammonia formation rates exhibited by the various materials in 

the initial 30 minutes on stream and the rate thereafter. 
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Figure 3.5-2 H 2/N2 ammonia production rates over a range of different  materials which have 
been investigated within this chapter. (Blue) initi al 30 minutes on stream (Red) after initial 
30 minutes. 

 
It is evident that both nickel and copper nitrides exhibit a much higher rate of ammonia 

formation in the first 30 minutes on stream than any of the other materials investigated.  

However, it is apparent that this activity is not sustained and the reaction rapidly ceases.  

Attempts to stabilise these materials proved ineffective.  Of the first row transition series, 

zinc nitride appears to be a promising candidate exhibiting ammonia synthesis rates almost 

comparable to ruthenium.  However, this material also decomposes upon reaction.  

Vanadium and iron are the only the only two nitrides of the first transition metal series 

which exhibit a sustainable ammonia synthesis activity.  Despite this, their activities 

however these are much lower than the activities found for the ruthenium-based systems.  

It is also apparent that the only ‘comparable’ ammonia synthesis activities to Ru are those 

which are exhibited by Zn3N2 and Co-4Re. 

The introduction of iron as a dopant was shown to have a slight promotional effect on the 

ammonia synthesis activity of β-Mo2N0.78. Tantalum, tungsten and rhenium nitrides all 

exhibit sustainable ammonia synthesis activity at 400 oC under H2/N2.  Alloyed Co-4Re 

exhibits a very high ammonia synthesis activity, albeit not as active as investigated 

ruthenium systems. 

It is clear from the data presented that nitrogen can be removed from these materials at 

high temperatures under hydrogen. It is interesting to note that using a specific temperature 

profile only nitrides of the later metals of the Periodic Table are found to decompose fully 

to the pure metal. All other post-reaction materials retained nitrogen and the XRD patterns 



Anne-Marie Alexander Chapter 3 117 

either showed that no apparent structural change had occurred within the material, i.e. in 

the case of TiN, VN and CrN, or that the material contained a mixture of constituent metal 

and nitrided species.  Nevertheless, the loss of nitrogen, and therefore its potential to be 

employed in nitrogen transfer reactions is evident. Despite the vast excess of hydrogen in 

the gas-phase, the nitrogen which is lost from these materials predominantly occurs in the 

form of N2.  

However, in order to function as a nitrogen transfer reagent, it is essential that the nitrogen 

which is depleted from the nitride, upon reaction, is subsequently restored.   Figure 3.5-3 

illustrates the systems which demonstrated a loss of nitrogen, upon reaction, within this 

chapter (highlighted blue) and which will be further described for possible re-nitridation in 

the next chapter. 
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Figure 3.5-3 Periodic Table highlights in blue the nitride materials which lose nitrogen upon 
heat treatment and will be further investigated. 
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4. Re-nitridation Studies. 

4.1 Introduction.  

A major aim of this study was to investigate direct N transfer from nitride lattices to 

substrate and hence the potential capacity for the materials to act as nitrogen transfer 

reagents.   However, in order to function as a nitrogen transfer reagent, it is essential that 

the nitrogen which is depleted from the nitride, upon reaction, is subsequently restored.  

As previously discussed in Chapter 3, this type of mechanism is frequently encountered in 

oxidation catalysis via metal oxides.  However to date very little attention has been 

directed to nitrogen analogues.  The only examples can be found in the work of Itoh and 

co-workers, which have been previously been discussed in Chapter 3,[90-92] and by Gregory 

and co-workers, in which, the ternary nitride Co3Mo3N was reported to reversible lose and 

take up nitrogen under similar reaction conditions to those described in this thesis.[126] 

The systems which have been studied in this chapter are of significant interest as they were 

found to either lose a significant amount of nitrogen or reduce completely to the 

corresponding metal upon reaction at 400 oC or below (400 oC being the maximum 

temperature for the envisaged nitrogen transfer process).  However if these materials were 

found to be active in the synthesis of aniline, it would be necessary for the nitrides to be 

subsequently restored to their original phase in order to be cyclically operated. 

As was discussed by Wise and Markel, it is preferable to apply H2/N2 mixtures rather than 

NH3 for the nitridation of materials for large scale applications.[41] Accordingly within this 

chapter regeneration of depleted nitrides using NH3 and H2/N2 is discussed in relation to 

the number of select nitrided systems identified at the end of Chapter 3. 

4.2 Results and Discussion. 

As mentioned above, re-nitridation of materials is a fundamental issue associated with the 

envisaged nitrogen transfer process.  From an industrial perspective it would be preferable 

to nitride or re-nitride under N2 alone; however this has inherent problems due to the 

relatively inert nature of N2.  With the exception of β-Mo2N0.78, all the materials were 

prepared under ammonia and therefore initial re-nitridation studies were conducted in 

ammonia. Table 4.2-1 lists the materials which have been examined for re-nitridation 
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under NH3 and H2/N2 following de-nitridation by high temperature H2/Ar treatment, as 

described in Chapter 3. 

Material 
Restoration of nitrogen dificient materials in 

different nitriding atmospheres.  

NH3 H2/N2 
VN Yes No  
Fe2N  Yes – partially No 
Co4N  No No 
Ni3N  Yes-partially  No 
Cu3N No No 
Zn3N2 Yes-partially No 
Ta3N5 Yes No 
β-Mo2N0.78 - Yes 
Fe/ β-Mo2N0.78 - Yes 
Cu/ β-Mo2N0.78 - Yes 
W2N Yes No 
Re3N Yes – partially No 

Table 4.2-1 Summary Table indicating the results ob tained from studies to restore nitrogen 
deficient nitrides following de-nitridation by to h igh temperature H 2/Ar treatment.  

 
 

4.2.1 VN. 

Vanadium nitride has been shown to be one of the more active binary nitrides for ammonia 

production at 400 oC - the maximum operating temperature for the target process, as 

described in Chapter 3. However subsequent nitrogen analysis indicated that a significant 

amount of nitrogen was lost upon reaction (approximately 25 % of the initial nitrogen 

content) and appeared to be independent of reaction conditions.  

Despite this, vanadium nitride may potentially be active for similar nitrogen transfer 

applications.  It is therefore necessary to investigate whether the nitrogen lost, upon 

reaction, can subsequently be replenished from a nitrogen source in keeping with the 

envisaged Mars-van Krevelen type process. 

4.2.1.1  XRD Patterns. 

As discussed in Chapters 3, cubic VN does not appear to undergo a significant phase 

change upon reaction as determined by XRD analysis.  However V2O3 reflections 

(indicated by small stars) can be observed in the temperature programmed H2/Ar 

diffraction pattern, which as previously mentioned, may occur on discharge of the material 

from the reactor.  It is clear that the oxide is reduced under both NH3 and H2/N2 due to the 
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absence of the oxide reflections being apparent in the diffraction patterns of re-nitrided 

samples. The diffraction patterns of the re-nitrided samples correspond well to the freshly 

prepared un-reacted VN sample with no reflection shifts being evident. 

 

Figure 4.2-1 XRD patterns of pre- and post-temperat ure programmed H 2/Ar and re-nitrided 
VN samples. V metal 

 

4.2.1.2  Nitrogen Analysis. 

In Chapter 3 it was shown from the conductivity versus time plots that a VN appeared to 

demonstrate steady state activity under H2/N2 at 400 oC. No sharp initial decrease in the 

conductivity value was observed, as had been with the other nitrides investigated and this 

was thought to be a result of the hydrogenation of surface NHx species. 

It was also mentioned in Chapter 3, that the nitrogen lost from VN was relatively 

independent of reaction conditions with approximately the same amount of N being lost at 

either 400 oC or 700 oC.  However as is evident from Table 4.2-2, there is a significant loss 

of nitrogen upon comparison of the pre-reaction and temperature programmed H2/Ar 

sample.  Upon treatment with H2/N2 under re-nitridation conditions, at 700 oC only a 

further limited nitrogen loss was observed, however this is within experimental error + 

0.03 wt.%. On the other hand, when nitrogen deficient VN is reacted in an ammonia 

atmosphere the lost nitrogen seems to be replaced and a nitrogen content closer to the 

stoichiometric value is achieved.  However this is not apparent from the XRD analysis.   
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Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

VN (H2/Ar) using temperature profile 

as shown in Fig. 3.2-2 
21.55 18.39 14.06 

VN re-nitridation NH3 (700 oC, 3 h) 21.55 14.06 19.36 

VN re-nitridation H2/N2 (700 oC, 3 h) 21.55 14.06 14.01 

Table 4.2-2 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided VN 
samples. 
  

4.2.2 Fe2N. 

Within this study iron nitrides appear to be promising candidates for nitrogen transfer 

reactions, due to the fact the nitrogen is evolved from the metal lattice at the temperatures 

of interest, specifically between 250 and 400 oC.   

4.2.2.1  XRD Patterns. 

From the temperature programmed H2/Ar studies that were conducted in Chapter 3, it was 

shown that Fe2N partially decomposed into a mixture of Fe metal and the lower iron nitride 

phase, Fe4N, as indicated in Figure 4.2-2 by a triangle or square respectively.  The nitrogen 

deficient phase was subsequently reacted at 500 oC (the original preparation temperature) 

under NH3 and H2/N2, in an attempt to restore the nitrogen content in the post-H2/Ar 

sample. 

The XRD pattern of the sample re-nitrided under a H2/N2 atmosphere shows no significant 

difference when compared to the nitrogen deficient H2/Ar sample, although a small 

reflection at approximately 25.3 o 2θ, possibly corresponding to Fe2O3 is evident.  This 

could be a result of aerobic oxidation upon discharge of the material from the reactor.  
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Figure 4.2-2 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided Fe 2N 
samples. (Fe 2N     ; Fe2O3    ; Fe4N     ; Fe     ). 

 

However under a NH3 feed gas, the nitrogen deficient sample appears to take-up nitrogen 

to restore the original Fe2N phase, again with trace Fe3N impurity being evident at 

approximately 37.5 o 2θ (indicated by an arrow in Figure 4.2-2).   

Jack and Goodeve documented that iron nitrides could be prepared from direct reaction of 

the Fe metal under a H2/N2 gas mixture.[102,103] However from the studies documented 

within this thesis, both in the original preparation route and also in the re-nitridation 

studies, this has proved to be a relatively difficult method to synthesise Fe2N and it may 

only be possible to achieve the nitride via this route under pressure. 

However, it is also important to note that, as with the de-nitrided samples described in 

Chapter 3, the backgrounds of all samples are largely amorphous and any nitrogen which 

has been taken up under re-nitridation conditions may not be apparent by XRD, 

particularly in the case of the sample re-nitrided under H2/N2, as discussed in the following 

section. 

4.2.2.2  Nitrogen Analysis. 

Inspection of the data presented in Table 4.2-3 highlights that although full restoration of 

the original phase is not achieved under either re-nitridation conditions, a gain of nitrogen 

is apparent in both cases, albeit limited in the case of H2/N2.  Additional re-nitridation 

studies were conducted at various temperatures, in the case of H2/N2, in an attempt to 

increase the nitrogen content in the sample.  However, it was found that on increasing the 
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temperature the nitrogen content decreased.  This could possibly be attributed to the 

temperatures at which the various phases of iron nitride begin to decompose to lower 

nitride phases and iron metal. This would indicate that higher nitride phases such as Fe2N 

are only formed within a narrow temperature range making them difficult to re-nitride 

under H2/N2 gas mixtures.  

On the other hand Fe2N is partially restored to the original nitrogen composition under an 

ammonia atmosphere, with a nitrogen content of 6.95 wt. % compared to the original 8.59 

wt.% found in the un-reacted sample.  Again, as was discussed in Chapter 3, this is much 

closer to the stoichiometric value for Fe3N (7.71 wt.%).  However the reflections observed 

in the powder XRD analysis suggested that Fe2N was formed, Figure 4.2-2. 

Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Fe2N (H2/Ar) using temperature profile 

as shown in Fig. 3.2-2 
11.13 8.59 2.40 

Fe2N re-nitridation NH3 (500 oC, 6 h) 11.13 2.40 6.95 

Fe2N re-nitridation H2/N2 (500 oC, 6 h) 11.13 2.40 2.57 

Table 4.2-3 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided 
Fe2N samples. 

 

4.2.3 Co4N. 

As was discussed in Chapter 3, cobalt nitride was much more difficult to synthesise than 

originally envisaged.  It was found that the nitride formed only within a very narrow 

temperature range and reaction dwell time. 

Co4N is found to rapidly decompose to Co metal, and only a limited amount of the lattice 

nitrogen (ca. 5.6%) was found to react to produce ammonia in the H2/N2 and H2/Ar studies, 

with a significant amount being lost as N2.  Despite this, Co4N was further investigated in 

benzene reactions, due to the relatively low temperature at which decomposition to Co 

metal occurred.  

4.2.3.1  XRD Patterns. 

As discussed in preceding chapters, the reflections associated with Co metal and Co4N are 

almost identical making identification of phases rather difficult by XRD analysis alone.  
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However when combined with post-reaction nitrogen analysis, Table 4.2-3, it can be 

concluded that the nitride, Co4N, does not reform under NH3 or a H2/N2 gas mixtures, 

therefore the reflections observed in Figure 4.2-3 correspond to Co metal.  

 

Figure 4.2-3 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided Co 4N 
samples. 

 

4.2.3.2  Nitrogen Analysis. 

The pre-reaction sample contains a lower amount of nitrogen than the calculated 

stoichiometric value, as shown in Table 4.2-4. However this material was extremely 

difficult to prepare, and was constrained to very narrow synthesis conditions, requiring a 

specific temperature and time of formation, as outlined in Chapter 3.  As anticipated on 

this basis no nitrogen is present in the samples which have undergone attempts to restore 

the nitrogen content, as confirmed by post-reaction analysis. This may be directly related 

to the inherent difficulties which were associated with the initial preparation of Co4N 

which could only be synthesised within narrow temperature and time limits, as described in 

Chapter 3.  Additionally since Co4N reduces completely, Co metal is the starting point for 

re-nitridation, as opposed to the oxide which was used in the synthesis of Co4N.  The direct 

nitridation of Co metal is more commonly associated with sputtering or laser deposition 

techniques rather than those methods which are used in this work.[211, 213, 254] 
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Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Co4N (H2/Ar) using temperature profile 

as shown in Fig. 3.3-4 
5.60 3.17 0 

Co4N re-nitridation NH3  (700 oC 2 h) 5.60 0 0 

Co4N re-nitridation H2/N2 (700 oC 2 h) 5.60 0 0 

Table 4.2-4 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided 
Co4N samples. 

 

4.2.4 Ni3N. 

From the H2/N2 and H2/Ar studies which were reported in Chapter 3, it was found that 

Ni3N exhibits a high ammonia production activity during the first 30 minutes on stream at 

250 oC.  This, however, was short lived and may possibly be a result of total 

decomposition of the nitride to Ni metal.  Consequently efforts to re-nitride this material 

have been attempted.   

4.2.4.1  XRD Patterns. 

From the post-reaction diffraction data, presented in Figure 4.2-4, it is evident that upon re-

nitridation with NH3 and H2/N2, at 480 oC, the observed reflections largely correspond to Ni 

metal.  However, in the case of the sample re-nitrided under NH3 these appear to be shifted 

to a slightly lower Bragg angle, 51.48 o as compared to 51.60 o 2θ for the sample treated 

under temperature programmed H2/Ar  which may indicate the incorporation of a small 

amount of nitrogen within the lattice.   Additionally, very weak reflections can be observed 

at approximately 39 o, 41 o and 58 o 2θ, which can be assigned to Ni3N, albeit shifted to 

slightly higher Bragg angles when compared to the diffraction pattern of a freshly prepared 

unreacted sample.  These shifts may possibly be as a result of the lower nitrogen content 

present in the re-nitrided sample, as confirmed by nitrogen analysis. 
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Figure 4.2-4 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided Ni 3N 
samples. Ni metal is indcated by a (   ) 

 

4.2.4.2  Nitrogen Analysis. 

Samples were fully reduced to Ni metal prior to re-nitridation studies, as confirmed by 

XRD and elemental analysis as shown in Table 4.2-5.  It is clear that the sample treated 

under a NH3 atmosphere has partially re-nitrided, as was observed in the resultant 

diffraction pattern, with the nitrogen content increasing to 1.89 wt.% giving a 

stoichiometric value of Ni3N0.26.  However, no apparent re-nitridation was observed for the 

sample treated under H2/N2.  This was expected bearing in mind the sample decomposed to 

Ni metal at 250 oC in the H2/N2 study (Chapter 3). 

Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Ni3N (H2/Ar) using temperature profile 

as shown in Fig. 3.3-4 
7.36 7.24 0 

Ni3N re-nitridation NH3 (480 oC, 6 h) 7.36 0 1.89 

Ni3N re-nitridation H2/N2 (480 oC, 6 h) 7.36 0 0 

Table 4.2-5 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided 
Ni3N samples. 
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4.2.5 Cu3N. 

As was shown in the lattice nitrogen studies described in Chapter 3, copper nitride rapidly 

decomposes to copper metal when heated above 200 oC, resulting in ‘holes’ within the 

material, shown in the SEM micrographs presented in Chapter 3. As previously discussed 

these may be a result of sub-surface pockets of N2 bursting out of the material upon 

heating.  Previous studies in the literature document the formation of the nitride direct from 

the Cu metal; however, the resulting Cu from the studies conducted in Chapter 3, with this 

‘holed’ appearance proved more difficult to re-nitride than implied.   

In the case of Co3Mo3N, maintenance of the structure by partial de-nitridation may 

facilitate its regeneration. Hence partial de-nitridiation of Cu3N was also attempted.  As 

was described in Chapter 3, the loss of nitrogen from Cu3N is a rapid process, however by 

partially de-nitriding Cu3N using a lower concentration of H2 (a 6% H2/Ar gas mixture 

instead of a 3:1 H2/Ar mixture) it may have been possible to restore the original nitrogen 

content by switching to either N2 or H2/N2 gases after 20 minutes of H2/Ar treatment. 

However, it did not prove possible to partially de-nitride the sample and copper metal 

resulted under all attempts made to do this.  It may be possible that the loss of nitrogen 

from Cu3N is sequential and once nitrogen removal is initiated it becomes independent of 

the reaction conditions until all nitrogen is removed and the nitride is subsequently reduced 

to Cu metal. 

4.2.5.1  XRD Patterns. 

In both NH3 and H2/N2 re-nitridation studies, the resultant diffraction patterns are 

indicative of copper metal, as shown in Figure 4.2-5, and on visual inspection the samples 

were copper coloured. 
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Figure 4.2-5 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided Cu 3N 
samples. Cu metal is indacated by a (   )  

 

4.2.5.2  Nitrogen Analysis. 

Table 4.2-6 presents the nitrogen content found in the temperature-programmed H2/Ar 

sample and the re-nitrided samples via microanalysis.  From Table 4.2-5 it is clear that 

nitrogen was not re-introduced into the metal lattice. 

Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Cu3N (H2/Ar) using temperature profile 

as shown in Fig. 3.3-4 
6.84 6.63 0 

Cu3N re-nitridation NH3 (300 oC, 6 h) 6.84 0 0 

Cu3N re-nitridation H2/N2 (300 oC, 6 h) 6.84 0 0 

Table 4.2-6 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided 
Cu3N samples. 

 

4.2.6 Zn2N3. 

Zinc nitride is potentially one of the more interesting nitrides which have been investigated 

in this work.  It has been shown to be very active for the production of ammonia, albeit 

through its decomposition to zinc metal.   
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4.2.6.1  XRD Patterns. 

As was previously discussed in Chapter 3, Zn3N2 appears to decompose to highly reactive 

Zn metal upon reaction, which subsequently oxidises on discharge resulting in the 

formation of ZnO, as confirmed by post-reaction XRD analysis.  This is also apparent in 

Figure 5.2-6, in which the re-nitridation diffraction patterns correspond to ZnO (JCPDS 

003-0888) with only trace levels of Zn3N2 being observed as evidenced by the presence of 

reflections at  43.3o, 53.1o and 71.2o 2θ. 

Both NH3 and H2/N2 treated samples were run at 600 oC, which was temperature used for 

the initial synthesis of Zn3N2, as reported in Chapter 2.    From the XRD patterns presented 

in Figure 4.2-6 it is evident that the Zn reflections are not apparent in the samples treated 

under re-nitridation conditions, indicated by arrows in the nitrogen deficient sample.  

However, in the H2/N2 reaction sample no Zn3N2 reflections are observed, although they 

are apparent in the sample re-nitrided in NH3, as indicated by a star in the diffraction 

pattern.  This indicates that Zn3N2 becomes more fully reduced upon further heat treatment 

in a H2 rich atmosphere, as confirmed with post-reaction elemental analysis, in which a 

further loss of N was observed. 

  

Figure 4.2-6 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided Zn 3N2 
samples. Zn 3N2 represented by a      in H 2/Ar and re-nitrided diffraction patterns, Zn metal by 
a    and ZnO represented by        

 
The reflection at approximately 36o 2θ  in the diffraction pattern of the sample re-nitrided 

under NH3 is slightly broader than that of the reflection observed at the same position in 

the post-H2/Ar sample which may suggest that there is increased disorder within the 
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sample.  A small ZnO reflection can be observed in the pre-reaction sample at 36o 2θ 

(indicated by a small circle) and it may be possible that the apparent broadening described 

above may be attributed to the overlap of Zn3N2 and ZnO reflections.   

In the diffraction pattern of the sample re-nitrided under H2/N2, as previously mentioned, 

no apparent Zn3N2 or Zn reflections are evident.  However the reflections which are 

observed correspond to ZnO, which occur as a result of aerobic oxidation of Zn metal upon 

discharge from the reactor. 

4.2.6.2  Nitrogen Analysis. 

On examination of the NH3 and H2/N2 treated samples, it is evident that no significant 

amount of nitrogen has been incorporated back into the metal lattice, and in the case of the 

sample treated under H2/N2, almost total nitrogen loss has occurred.  This may be a direct 

consequence of further exposure to heat treatment in a hydrogen rich atmosphere.  This 

would also agree with the observed ZnO reflections evident in the diffraction pattern, 

Figure 4.2-6. 

Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Zn3N2 (H2/Ar) using temperature 

profile as shown in Fig. 3.3-19 
12.49 9.46 2.29 

Zn3N2 re-nitridation NH3 (600 oC, 6 h) 12.49 2.29 3.01 

Zn3N2 re-nitridation H2/N2 (600 oC, 6 h) 12.49 2.29 0.86 

Table 4.2-7 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided 
Zn3N2 samples. 

 
From Table 4.2-7, it is clear that only a very small amount of nitrogen is replaced in the 

nitrogen deficient sample which has been reacted under NH3 atmosphere, (an increase of 

0.72 wt. %).  This is much lower than the stoichiometric N content for Zn3N2. Studies 

employing shorter and longer reaction times were also conducted but the resultant nitrogen 

content in the samples was lower than that presented in Table 4.2-6.  
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4.2.7  Ta3N5. 

From the H2/N2 and isothermal H2/Ar studies for Ta3N5, described in Chapter 3, it was 

found that Ta3N5 displays a relatively high activity for ammonia production under H2/N2. 

However under H2/Ar, ammonia production at 400 oC was limited to the first 90 minutes 

on stream.   Further temperature programmed studies indicated that the presence of H2 in 

the feed stream results in a much more significant loss of nitrogen.  The loss of nitrogen 

from Ta3N5 is generally accompanied by colour change in the sample which acts as a 

visual indicator to the loss of nitrogen.  A similar colour change was also observed upon 

re-nitridation of the samples, as shown in Figure 4.2-7. 

 

Figure 4.2-7 a) de-nitrided temperature programmed H2/Ar b) re-nitrided H 2/N2  c) re-nitrided 
NH3 

 
Samples from temperature programmed H2/Ar studies were investigated for re-nitridation 

primarily due to the significant amount of nitrogen lost from the material during this 

process.  It was found that upon re-nitridation in a H2/N2 atmosphere the colour of the 

sample changed from a khaki green to black, whereas in a NH3 atmosphere the sample 

restored to the original red colour, implying the possibility of re-nitridation to the original 

phase, Ta3N5.  

4.2.7.1  XRD Patterns. 

Figure 4.2-8 presents the diffraction patterns obtained for pre-, post- temperature 

programmed H2/Ar and re-nitrided reaction samples.  Upon inspection of the diffraction 

patterns, it is noticeable that the sample re-nitrided under H2/N2 appears significantly 

different to the other diffraction patterns, which remain largely unchanged when compared 

to the pre-reaction pattern,  although slight alterations in reflection widths can be observed 

in the H2/Ar sample.  The reflections observed in the re-nitrided H2/N2 sample correspond 

to TaON (JCPDS 020-1235) and are indicated by a star in Figure 4.2-8. 

a) b) c) 
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Furthermore in the case of the re-nitrided H2/N2 sample, it is apparent that there is an 

increase in the intensity of the background which is consistent with a greater content of 

amorphous phase. 

 

Figure 4.2-8 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided Ta 3N5 
samples. TaON represented by a      in H 2/N2 re-nitrided diffraction pattern. 

 
 

4.2.7.2  Nitrogen Analysis. 

Attempts were made to restore the nitrogen content of the N-deficient Ta3N5 phase by 

treatment under H2/N2 and NH3 and dwelling at 700 oC for 3 hours. The results of the post-

reaction nitrogen analysis of the tantalum nitride samples studied under the conditions 

described in Chapter 3 are presented and compared with the post-reaction nitrogen contents 

of those “restored” materials in Table 4.2-8. 

Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Ta3N5 (H2/Ar) using the temperature 

profile as shown in Fig. 3.2-2 
11.42 11.23 7.83 

Ta3N5 re-nitridation NH3 (700 oC, 3 h) 11.42 7.83 11.19 

Ta3N5 re-nitridation H2/N2 (700 oC, 3h) 11.42 7.83 6.49 

Table 4.2-8 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided 
Ta3N5 samples. 
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It is clear that a further loss of nitrogen occurs under H2/N2 at 700 oC.  This may possibly 

be a result of the longer heating times in a hydrogen environment, which may cause the 

material to become further reduced as well as the addition of oxygen as evident in Figure 

4.2-8.   

On the other hand, re-nitridation in ammonia results in the nitrogen content of the nitrogen 

deficient sample being almost totally restored after 3 hours at 700 oC, with respect to the 

pre-reaction sample, 11.19 and 11.23 wt. % respectively. This is both a much shorter 

reaction time and lower temperature than originally used to prepare the material (9 hours 

and 900 oC respectively).  Hence the process of nitrogen loss / replenishment is fully 

reversible and the tantalum nitride can be readily regenerated at elevated temperature under 

NH3. 

4.2.8  β-Mo2N0.78. 

Regardless of any application of β-Mo2N0.78 as a transfer reagent, re-nitridation is an 

important step following de-nitridation in order to restore the original phase.  In previous 

studies of β-Mo2N0.78, Chapter 3, it has been observed that de-nitriding to produce Mo 

occurs readily but re-nitridation to restore β-Mo2N0.78   may be more difficult.   

From previous investigations, as described in Chapter 3, it was found that both doped and 

un-doped β-Mo2N0.78  have comparable ammonia synthesis rates under H2/N2 at 400 oC and 

ambient pressure, although samples doped with Fe or Bi metal was observed to either 

marginally enhance or hinder the production of ammonia respectively.   

Unlike the other materials in this study, β-Mo2N0.78 is prepared under H2/N2, rather than 

NH3 which would result in the formation of γ-Mo2N.  For this reason, H2/N2 was the only 

re-nitridation gas employed for this system. 

4.2.8.1  XRD Patterns. 

As described in Chapter 3, the pre-reaction sample is consistent with the β-Mo2N0.78 phase, 

and was shown to fully reduce to the Mo metal with high temperature H2/Ar treatment, as 

confirmed by post-reaction nitrogen analysis.   
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Although the original β-Mo2N0.78 phase is restored in the un-doped sample, it is noticeable 

that the reflections are slightly broader and less intense than that of the pre-reaction 

sample, indicating that there may possibly be greater degree of disorder within the sample. 

 

Figure 4.2-9 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided β-
Mo2N0.78 samples. 

 

 

4.2.8.2  Nitrogen Analysis. 

Table 4.2-9 indicates the pre- and post- reaction nitrogen contents within the β-Mo2N0.78 

sample.  As can be seen, the un-doped pre-reaction sample is comparable with the 

calculated stoichiometric values and it is evident that all nitrogen is removed from the 

sample upon reaction with H2/Ar using the temperature profile described in Chapter 3.   

As previously mentioned, the β-Mo2N0.78 phase is prepared under H2/N2 hence this was the 

only re-nitridation gas investigated to restore the nitrogen deficient sample.  From the 

nitrogen data presented in Table 4.2-9 it is clear that the sample is almost totally retored to 

the original β-Mo2N0.78 at 700 oC with H2/N2.   
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Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-
Reaction N 

Content 
(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

β-Mo2N0.78, (H2/Ar) using temperature 

profile as shown in Fig. 3.2-2  
5.38 5.58 0 

β-Mo2N0.78, re-nitridation H2/N2           

(700 oC, 3 h) 
5.38 0 5.12 

Table 4.2-9 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided β-
Mo2N0.78 samples. 

 

4.2.9 W2N. 

In the initial H2/N2 and H2/Ar studies at 400 oC W2N showed promising potential as a 

nitrogen transfer reagent, primarily due to the almost steady production of ammonia under 

a H2/N2 feed gas as was illustrated in Chapter 3.  In addition to this very little nitrogen was 

lost from the material under these conditions, in comparison to the H2/Ar reactions.  

4.2.9.1  XRD Patterns. 

As discussed earlier, tungsten nitride can occur as cubic W2N or as hexagonal WN phases.  

The samples prepared in this study corresponded to cubic W2N.   The observed reflections 

are particularly broad which would be indicative of materials with high surface area and 

small particle size and/or a large degree of disorder.  As was shown in Chapter 3, tungsten 

nitride undergoes a partial decomposition to W metal under H2/Ar at elevated 

temperatures, as indicated by a star in Figure 4.2-10.  Due to the similarity between Mo 

and W it may have been reasonable to assume that it was possible to restore the original 

W2N phase, under H2/N2, at 700 oC.  However, as is evident from Figure 4.2-10, the W 

metal reflections become more apparent, and the nitrogen content decreases, as confirmed 

by post-nitrogen analysis.  It is possible to almost completely restore the original phase 

under ammonia with no remaining W metal reflections being evident. 
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Figure 4.2-10 XRD patterns of pre-, post-temperatur e programmed H 2/Ar and re-nitrided W 2N 

samples.  W metal represented by  

 
 

4.2.9.2  Nitrogen Analysis. 

As has been previously discussed in the preceding chapter, the N content in the pre-

reaction sample is relatively high with respect to the calculated stoichiometric value for 

W2N and the N value is more representative of that expected from WN. However, the 

XRD reflections correspond to those of W2N.  It is evident that there is a significant loss of 

nitrogen from the material upon reaction with H2/Ar using the temperature profile shown 

in Figure 3.2-2 (maximum of 700 oC).  This is further supported by the occurrence of W 

metal in the post-H2/Ar XRD pattern, confirming that lattice nitrogen is lost from the 

material to some extent.   

A further loss of nitrogen is apparent from the sample in which re-nitridation has been 

attempted under H2/N2.  This may possible be a result of the excess hydrogen present in the 

gas mixture causing the material to become further reduced. Again this is in agreement 

with the observed diffraction pattern in which the W metal reflections become more 

intense.  Conversely under a NH3 atmosphere the nitrogen content is almost totally restored 

to that of the pre-reaction material.  
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Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

W2N (H2/Ar) using temperature profile 

as shown in Fig. 3.2-2 
3.66 6.13 4.18 

W2N re-nitridation NH3 (700 oC, 3 h) 3.66 4.18 5.89 

W2N re-nitridation H2/N2 (700 oC, 3 h) 3.66 4.18 2.17 

Table 4.2-10 Nitrogen content of pre-, post-tempera ture programmed H 2/Ar and re-nitrided 
W2N samples. 

 

4.2.10 Re3N. 

Aika and Kojima investigated Re3N as an ammonia synthesis catalyst, comparing it with 

Re metal to determine whether the formation of the nitride was beneficial.[59] In that study 

it was reported that the initial ammonia synthesis activity was very high but the reaction 

subsequently subsides after 2 hours on stream.  From the work presented in this thesis, 

rhenium nitride has been shown to exhibit production of ammonia with the H2/N2 

feedstream at 400 oC. However, it was confirmed by both XRD and post-reaction nitrogen 

analysis, that the Re3N decomposes upon reaction. It is possible that the Re3N does not 

fully reduce to Re metal, as proposed in the literature but decomposes to a lower nitride 

phase, possibly Re4N, although this phase has not been previously reported within the 

literature. 

As mentioned above, rhenium nitride decomposes upon reaction and there is a significant 

amount of nitrogen lost when reaction is undertaken under both H2/N2 and H2/Ar gas 

mixtures at 350 oC.  The isothermally H2/Ar reacted sample has been used to investigate 

the effect of re-nitridation under NH3.  NH3 was the only regeneration gas investigated in 

this section of work due to the fact that H2/N2 reaction was observed to reduce the nitride, 

as described in Chapter 3. 

4.2.10.1 XRD Patterns. 

The Re3N starting material appears to be largely amorphous with a very broad reflection 

centring upon 40 o 2θ.  This is in accordance with the previously mentioned studies of Aika 

and Kojima as discussed previously in Chapter 3. Under H2/Ar at 350 oC for 6 hours, 

almost total de-nitridation is apparent.  Crystalline Re metal albeit with shifts, reflections 
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are evident in the post-reaction XRD pattern, Figure 4.2-11, which as postulated, may arise 

from formation of a lower nitride phase such as Re4N. 

Upon subsequent reaction in NH3, it is apparent from the diffraction pattern that the 

material partially re-nitrides as shown in Figure 4.2-11, and a mixture of Re reflections 

(again shifted) and the original broad reflection are evident.  This diffraction pattern is 

similar to those which have partially de-nitrided, as in the case of the temperature 

programmed H2/Ar study. 

 

Figure 4.2-11 XRD patterns of pre-, post-isothermal  H2/Ar and re-nitrided Re 3N samples.   

 

4.2.10.2 Nitrogen Analysis. 

As can be seen from Table 4.2-11, the pre-reaction samples are in fairly good agreement 

with the calculated stoichiometric value for Re3N.  However, as mentioned previously, a 

significant amount of nitrogen is lost upon reaction in the isothermal H2/Ar reactions 

which were conducted at 350 oC. Only a relatively small amount of nitrogen remained, 

upon re-nitridation, in ammonia. The nitrogen content increased to more than double that 

of the post-H2/Ar sample.   Although the original Re3N phase was not achieved, it is clear 

that it is possible to partially restore the depleted nitrogen, which may still have a potential 

application in a Mars van-Krevelen type process. 
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Sample and Reaction conditions 

Calculated 
Stoichiometric 

N content 
(wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-
Reaction N 

Content 
(wt.%) 

Re3N (H2/Ar) using isothermal 350 oC 2.44 2.52 0.32 

Re3N re-nitridation NH3 (350 oC, 3 h) 2.44 0.32 0.84 

Table 4.2-11 Nitrogen content of pre-, post-isother mal H 2/Ar and re-nitrided Re 3N samples. 

 

4.3 Summary of Re-Nitridation Studies. 

As was discussed in the introduction to this chapter, the original nitride phase must be able 

to be regenerated after reaction in order to function in the envisaged nitrogen transfer 

process.  It is therefore necessary to restore the depleted nitrogen via gas phase nitrogen 

species and consequently this has been investigated, as described in this chapter, through 

re-nitridation studies conducted in ammonia and H2/N2.     

It was found that the re-uptake of nitrogen into the nitrogen deficient samples was largely 

dependent on the reaction gas employed.  From the studies described, most materials 

exhibit either a partial or complete restoration to the original nitride phase under the gas 

which was used in the original synthesis. 

Table 4.3.-1 provides an overview of the binary nitrides which have been investigated in 

this chapter and indicates under which gas mixtures either partial or total re-nitridation was 

observed. 

On inspection of the data only the early metal nitrides (VN, β-Mo2N0.78, W2N, and Ta3N5) 

were found to almost completely restore to the original nitride phase.  As is evident, 

however, when VN, W2N, and Ta3N5 are investigated in H2/N2 they appear to become 

further reduced and continue to lose nitrogen upon reaction which may possibly be 

attributed to the hydrogen rich atmosphere.  As has previously been mentioned, β-Mo2N0.78 

was not investigated under NH3 as it was initially prepared under H2/N2  
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Material and 
Reaction Conditions 

Nitrogen Analysis 

Stoichiometric 
value  

Pre-
reaction 

H2/Ar  
Re-nitridation 

NH3 H2/N2 

VN (700 oC 3 h) 21.55 18.39 14.06 19.36 14.01 

Fe2N (500 oC 5 h) 11.13 8.59 2.40 5.95 2.57 

Co4N (700 oC 2 h) 5.60 3.17 0.00 0.00 0.00 

Ni3N (480 oC 6 h) 7.36 6.58 0.00 1.89 0.00 

Cu3N (300 oC 6 h) 6.84 6.63 0.00 0.00 0.00 

Zn3N2 (600 oC 3 h) 12.49 9.46 2.29 3.01 0.86 

Ta3N5 (700 oC 3 h) 11.42 11.23 7.83 11.19 6.49 

β-Mo2N0.78 (700oC 3 h) 5.38 5.58 0.00 - 5.12 

W2N (700 oC 3 h) 3.66 6.13 4.18 5.89 2.17 

Re3N (350 oC 3 h) 2.44 2.52 0.32 0.84 - 

Table 4.3-1 Pre- and post-nitrogen analysis of the binary nitrides which have been 
investigated in this chapter under re-nitridation c onditions. 

 

Later transition metal nitrides can be divided into two groups; those which partially re-

nitride and those which remain as metals.  Of the later nitrides, Fe2N demonstrated the 

highest potential to reform the original Fe2N phase.  As was described earlier, Fe2N 

decomposes to lower nitride phases upon reaction with H2/Ar, however since Fe2N was 

originally prepared from Fe metal and should then be possible to regenerate the Fe2N phase 

from lower phases.  As demonstrated by XRD analysis, the original phase is regenerated 

under NH3 although the nitrogen content of the regenerated sample is slightly lower with 

respect to the original phase (5.95 and 8.95 wt.% respectively). 

In the H2/Ar studies described in Chapter 3, it was shown that not all nitrogen was 

removed from the Zn3N2 and Re3N the samples, remaining as 2.29 wt.% and 0.32 wt.% 

respectively.  Upon treatment with NH3, the nitrogen content of both samples increased 

slightly as shown in Table 4.3-1.  Since this increase was small it may be possible that 

these trace amounts can be attributed to surface NHx species. 

Co4N, Ni3N and Cu3N fully decompose to the corresponding metals upon reaction with 

H2/Ar. However, it is only Ni3N which appears to partially re-nitride, albeit to a limited 

extent and only in the presence of NH3, as demonstrated by the presence of weak Ni3N 

reflections in the XRD pattern, and confirmed by elemental analysis with an increase in the 

nitrogen content being apparent.  
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4.3.1 Modified Binary Systems. 

As previously mentioned, Cu3N decomposes to Cu metal upon treatment with H2/Ar, 

however unlike Ni3N no re-uptake of nitrogen is evident. Efforts to partially de-nitride 

Cu3N were also undertaken as mentioned in section 4.2.5. It was anticipated that in doing 

so, the remaining nitrogen may help to facilitate further nitrogen uptake. However, none of 

these studies were successful.  Another method which may help to facilitate nitrogen 

uptake is to introduce defects into the metal lattices of the materials.  Based upon studies in 

which low levels of Fe dopants have been shown to significantly enhance the nitridation of 

niobium oxide with H2/N2, the importance of dopants upon the de-nitridation – re-

nitridation behaviour of  Cu3N and β-Mo2N0.78 have  been investigated.[108] 

Cu3N was doped with small amounts of lithium and palladium.   Cu3N crystallizes in a 

cubic anti-ReO3 type structure and, as previously discussed in Chapter 3, has vacant 

interstitial sites in the centre of the crystal structure which could potentially host other 

metal atoms.  Both lithium and palladium atoms have been reported to been successfully 

incorporated into this structure.[229-232] These atoms have a similar ionic radius to Cu+ 

(Cu+= 0.71 Å; Li+ = 0.74 Å ; Pd2+ = 0.78 Å) and as a result can be easily accommodated by 

the crystal lattice. [255]  It was anticipated that either the Li or Pd ions would replace some 

Cu ions whilst maintaining the structure of the Cu3N, which may possibly help to facilitate 

re-uptake of nitrogen in to the metal, through the resultant defect structure and/or structural 

modification. 

By doping the material with Li or Pd ions, it was thought that this could potentially help to 

facilitate the re-uptake of nitrogen, by occupying the vacant interstitial sites in the crystal 

structure and consequently introducing lattice defects which may have helped to facilitate 

the uptake and loss of nitrogen.  However this proved ineffective and had little, if any, 

effect.  It would appear that once reduction is initiated within the Cu3N crystal it rapidly 

propagates throughout the material resulting in total elimination of nitrogen from the 

structure. 

β-Mo2N0.78 on the other hand was doped with low levels of Fe, Cu and Bi.  These metals 

have been employed as dopants for various reasons.  Both Fe and Cu have been found to 

be active for the amination of organic compounds, which is the main focus of the work in 

this thesis.[169-175]  Fe is also known to enhance the activation of N2 and it was shown in 

Chapter 3 that ammonia production was slightly enhanced by the addition of the Fe 
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dopant.[256]  In this study Fe may play a significant role in the loss and uptake of nitrogen.  

Bi has been investigated as a potential dopant as it is known to activate the C-H bond in 

hydrogen abstraction, however from the studies described in Chapter 3 Bi appeared to 

diminish ammonia production, with respect to the un-doped β-Mo2N0.78 sample.[176-179] 

Table 4.3-2 indicates the pre- and post- reaction nitrogen contents within the doped β-

Mo2N0.78 samples.  As can be seen, Fe-doped pre-reaction samples are consistent with the 

calculated stoichiometric values; however the Cu and Bi samples appear to be slightly 

lower than expected. All samples are reduced to Mo metal by H2/Ar in the temperature 

programmed regime, with all nitrogen being removed from the sample as confirmed by 

post-reaction nitrogen analysis. 

As is evident, doped samples re-uptake nitrogen but to varying extents.  As discussed 

previously, Bi metal appears to prevent the restoration of nitrogen into the metal lattice, 

with a much lower N content being observed with respect to the other samples.   

Despite this, it appears that the nitrogen is restored in the other samples to give N contents 

close to their original pre-reaction sample.  Only the Fe doped material achieves a higher 

nitrogen content, than the original pre-reaction sample upon re-nitridation, reaching a N 

content closer to the stoichiometric value. This may indicate that molybdenum nitride 

doped with Fe has an increased affinity for nitrogen at higher temperatures and the Fe may 

facilitate a nitrogen spillover effect, replenishing nitrogen loss from the molybdenum 

nitride phase. 
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Sample and Reaction conditions 
Calculated 

Stoichiometric N 
content (wt.%) 

Pre-Reaction 
N Content 

(wt.%) 

Post-Reaction 
N Content 

(wt.%) 
β-Mo2N0.78, (H2/Ar) using temperature 

profile as shown in Fig. 3.2-2  
5.38 5.58 0 

β-Mo2N0.78, re-nitridation H2/N2            5.38 0 5.12 

1.5% Fe / β-Mo2N0.78, (H2/Ar) using 
temperature profile Fig. 3.2.2-2 

5.38 5.31 - 

1.5% Fe / β-Mo2N0.78 re-nitridation 
H2/N2 

5.38 - 5.36 

1.5% Cu / β-Mo2N0.78, (H2/Ar) using 
temperature profile Fig. 3.2.2-2 

5.38 4.39 - 

1.5% Cu / β-Mo2N0.78,  re-nitridation 
H2/N2 

5.38 - 4.09 

1.5% Bi / β-Mo2N0.78, (H2/Ar) using 
temperature profile Fig. 3.2.2-2 

5.38 4.66 - 

1.5% Bi / β-Mo2N0.78,  re-nitridation 
H2/N2 

5.38 - 2.57 

Table 4.3-2 Nitrogen content of pre-, post-temperat ure programmed H 2/Ar and re-nitrided 
doped β-Mo2N0.78 samples. 

 

Fe metal appears to slightly enhance, or facilitate total re-nitridation of the original β-

Mo2N0.78 phase, Figure 4.3-1.  No shifts were observed in the re-nitrided diffraction pattern 

with respect to the un-reacted sample, however the reflection at approximately 81o 2θ is 

less intense in the re-nitrided sample.  This is in good agreement with the data presented in 

Table 4.3-2, where it is shown that the nitrogen content of the re-nitrided sample exceeds 

that of the pre-reaction sample, reaching a value closer to the stoichiometric value.  

Although the original β-Mo2N0.78 phase was restored in the sample doped with Cu upon 

H2/N2 treatment, the resultant diffraction pattern is comparable to that observed in the un-

doped sample, Figure 4.2-9.  It is evident that the intensities of the reflections in the re-

nitrided sample, as shown in Figure 4.3-2, are somewhat diminished with respect to the 

pre-reaction sample, which may indicate that the re-nitrided sample is less crystalline than 

the pre-reaction sample. 
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Figure 4.3-1  XRD patterns of pre-, post-temperatur e programmed H 2/Ar and re-nitrided 
1.5%Fe/β-Mo2N0.78 samples. 

 

 

Figure 4.3-2 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided 
1.5%Cu/β-Mo2N0.78 samples. 

 
 
In the case of the sample doped with Bi only partial re-nitridation is observed, Figure 4.3-

3, with both β-Mo2N0.78 and Mo metal reflections being evident.  This would suggest that 

doping β-Mo2N0.78 with Bi, in fact, impedes the re-uptake of nitrogen instead of facilitating 

it.  As mentioned earlier it was observed in the H2/N2 studies conducted in Chapter 3, Bi 

was also observed to hinder the production of ammonia 
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Figure 4.3-3 XRD patterns of pre-, post-temperature  programmed H 2/Ar and re-nitrided 
1.5%Bi/ β-Mo2N0.78 samples. 

 

 

4.4 Summary. 

As mentioned in the introduction to this chapter, regeneration of the candidate nitrides is 

fundamentally important in order to function as a nitrogen transfer reagents which may be 

applied to potential applications.  Consequently, in this chapter,  a range of nitrogen 

deficient nitrides have been investigated using NH3 and H2/N2 to assess whether it is 

possible to restore the nitrogen depleted samples to their original unreacted phase. 

As previously described, most nitride materials which were investigated in this chapter 

exhibit the potentially ability to re-uptake nitrogen, to some extent, in order to restore the 

original nitride phase. Co4N and Cu3N were the exception, in that no re-uptake of nitrogen 

was observed, despite efforts to increase the surface to volume ratio of the latter sample by 

supporting on silica.  In the case of Cu3N, which demonstrated very high initial ammonia 

production and described in Chapter 3, the effects of metal dopants was also examined.  As 

described earlier, Cu3N has a vacant interstitial site which can accommodate other metal 

ions.  By doping Cu3N with Li or Pd, as was investigated in the current study, defects are 

effectively introduced into the crystal lattice which can potentially have significant effects 

on the chemical and physical properties of the nitride.  It had been anticipated that these 

defects may help to assist nitrogen re-uptake into the metal lattice, but this was not 

observed.  It may be that in order to restore Co4N and Cu3N the original precursor has to be 

regenerated first (Co3O4 and CuF2 respectively) from which the nitride is known to form.  

In the case of Co4N this would be a relatively simple oxidation of Co metal, however to 
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regenerate CuF2, HF or F2 would be required which may have serious environmental and 

cost implications if to be undertaken on an industrial scale.  Additionally the regeneration 

would ultimately be performed in a multistep process and not the two stage process which 

was initially envisaged for the work done in this thesis. 

It was found that doping β-Mo2N0.78 with low levels of Fe improved re-nitridation, with 

respect to the un-doped sample, as shown by the nitrogen content after reaction.  This is in 

good agreement with the findings by Wakai and co-workers in which Fe was reported to 

significantly improve the nitridation of niobium oxide.[108]  β-Mo2N0.78 was the only 

material that could be regenerated using H2/N2 and this, as indicated in the introduction to 

this chapter, is a preferred nitriding gas for potential industrial applications, although the 

use of N2 alone would be optimal. 

From the results presented in this chapter, it is evident that it is possible to either partially 

or totally restore the original nitride phase in most of the materials investigated, with 

restoration of the early transition nitrides being most facile.  It is therefore possible to 

establish candidate systems which could possibly participate in a potential Mars-van 

Krevelen type process.  These include VN, Fe doped and undoped β-Mo2N0.78, Ta3N5 and 

W2N.  However, from the studies conducted in Chapter 3 it was apparent that many other 

nitride systems exhibit significant nitrogen loss and if suitable methods were developed to 

restore these nitrides, their application in nitrogen transfer may become feasible.  Therefore 

taking the upper limit of the target process to be 400 oC, on the basis of the data presented 

in Chapter 3 it is possible to select candidate systems for further study.  Figure 4.4-1 

illustrates the potential candidate systems which will be further investigated for possible 

direct routes to aniline in the next chapter. 
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Figure 4.4-1 Periodic Table highlights in blue the nitride materials which are of interest and 
will be further investigated in addition to Co 3Mo3N and Co-4Re. 
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5. An Investigation of Potential Direct routes to 
Aniline. 

5.1 Introduction. 

Aniline is a key intermediate compound which is used extensively within industry for the 

synthesis of many commodity chemicals, as well as large scale industrial applications. 

Around 67% of the world’s aniline production is used in the manufacture of rigid 

polyurethanes and other materials utilized by the construction and durable goods 

industries. Other major uses include the manufacture of polymers, agricultural chemicals 

and dyes.[127] 

There are several different routes for the synthesis of aniline, which generally involve 

converting benzene into a derivative, such as phenol,[257-259] chlorobenzene[174] and 

nitrobenzene,[95] which are subsequently converted to aniline.  Commercially, nitrobenzene 

is the most frequently used feedstock for this process and was traditionally employed in a 

process known as the Bechamp reaction for the industrial production of aromatic 

amines.[95-97]  This method utilizes iron and water in the presence of hydrochloric acid to 

reduce the nitro group to the amine, and is now almost obsolete for the reduction of 

nitrobenzene.  A more commercially viable route was discovered in the early 1960’s which 

improves upon the old Bechamp method - the catalytic hydrogenation of nitrobenzene – 

and this is still the predominant process used in the manufacture of aniline.[260-263]  In this 

process nitrobenzene reacts with 3 mole equivalents of hydrogen gas, in the presence of a 

suitable catalyst.  A number of different catalysts have been reported to be active including 

copper on silica, copper oxide, nickel sulfides and molybdenum metal.   

C6H5NO2 +  3H2 C6H5NH2 +  2H2O
 

Although this route is very selective to aniline (> 99%), the nitrobenzene is generally 

produced by nitration of benzene using a nitric-sulfuric acid mixture, which itself requires 

the oxidation of ammonia to produce the nitric acid.[95]  It is evident that current methods 

which incorporate nitrogen into organic molecules, specifically in the production of 

aromatic amines, proceed via an indirect process requiring a number of intermediate 

nitrogen inter-conversion reactions.  This has several different cost and environmental 

implications including the energy intensive processes that are required, the inability to 
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recover catalysts and the use of acids on an industrial scale.[98,99]   An attractive path for the 

synthesis of aniline is the direct amination of benzene, as shown below:  

C6H6 +    NH3 C6H5NH2 +    H2
 

This type of process has attracted much attention recently as it avoids the use of acids on 

an industrial scale. Most of the efforts in this area have concentrated on the identification, 

development and optimisation of effective catalysts.[264-267]   The direct synthesis of aniline 

by this route has been documented since 1917, in the work of Wibaut, in which aniline was 

synthesised by passing benzene over a nickel/iron catalyst at moderate temperatures and 

atmospheric pressure.[265]  This reaction, however, is thermodynamically limited due to the 

co-production of hydrogen. Various approaches have been employed to overcome this 

limitation including the use of gaseous oxygen as well as reducible metal oxide systems in 

order to remove the hydrogen as water, and thus drive the equilibrium forward.  However 

the inclusion of O2 can seriously impair the selectivity of the reaction.  The most successful 

system reported to date is based upon a reducible oxide system. This is Du Pont’s NiO/Ni 

cataloreactant system for which, reportedly, a maximum aniline selectivity of 97% is 

observed, at a maximum benzene conversion of only 13%.  Hence this process was not 

commercialised and a number of serious problems exist in the stability of the 

cataloreactant upon multiple reduction and re-oxidation cycles. [117,268-272] 

5.2 Proposed Direct Routes to Aniline. 

Direct approaches to aniline formation by reaction with ammonia have been limited by the 

need to remove the co-product hydrogen. An alternative potential route to aniline that has 

been investigated in the study presented in this thesis is shown below: 

C6H6 +  N(a) + ½ H2               C6H5NH2  

where N(a) = lattice or adsorbed nitrogen species 

In this method the thermodynamic limitations may, potentially, be overcome as hydrogen 

is a reactant, rather than a product of the reaction.    

Despite literature that documents the high activity of some metal nitrides for ammonia 

synthesis, there have been very few studies which investigate the use of metal nitrides as 
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aminating agents.  Studies by Thompson et al have shown that early transition metal 

nitrides are successful in the amination of ethanol to ethylamine with ammonia resulting in 

high selectivities and activities comparable to those which are observed for supported 

platinum and nickel catalysts,[18] with activities being ranked as  VN > Mo2N > W2N > TiN 

> NbN.  Additionally a study by Mckay[111] and co-workers investigate the potential use of 

Co3Mo3N for nitrogen insertion into benzene according to the scheme outlined above. The 

current study is effectively an extension of this previous work and extends it to investigate 

a greater range of nitride materials.   

The reactivity of lattice nitrogen, as probed by reduction with H2/Ar mixtures, for a range 

of different nitride materials has been discussed in Chapter 3. The materials which have 

been further investigated in this chapter demonstrated the ability to de-nitride at 

temperatures at, or below, 400 oC which is the maximum temperature for the envisaged 

process based upon the probable stability of benzene. 

The aim of the work reported in this chapter was to perform initial investigations into the 

application of nitrides as potential nitrogen carriers that would facilitate the direct 

activation of nitrogen to the synthesis of industrially desirable products, in particular the 

direct conversion of benzene to aniline.  Once in the nitrided state, if direct nitrogen 

activation and incorporation of pathways become possible, there could be a reduction in 

the requirement for the use of ammonia via its inter-conversion to derivatives, as a 

reactant.  This would be significant since commercial ammonia synthesis reportedly 

accounts for 1% of the global energy demand, as stated earlier. 

Figure 5.2-1 shows the materials, highlighted in blue, which have demonstrated the ability 

to act as a possible nitrogen transfer source in the investigation as outlined in Chapters 3 

and 4.  These materials have subsequently been subjected to treatment with benzene and a 

3:1 H2/N2 gas mixture, as detailed below. 

Two different reaction methods were employed in testing of benzene and hydrogen over 

the metal nitrides, which will be discussed in turn. Both of these methods were conducted 

according to the procedures outlined in the relevant testing sections in Chapter 2.   
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Figure 5.2-1 Metal nitrides to be investigated with in this chapter are highlighted in blue. 

 

It should be noted that no aniline was observed in the reaction products of any of the 

reactions subsequently described in this chapter.  Despite this, evidence of products other 

than aniline were observed using some of the materials which have been investigated.  

Identification of these compounds has proved to be very problematic due to the low 

concentrations observed and no definitive assignments have been made.   

Several methods were employed in an attempt to identify the compounds which were 

observed.  These included the use of ninhydrin indicator to ascertain whether primary or 

secondary amines were present in the compounds.[273] Samples were spotted onto a TLC 

plate and subsequently dipped into a ninhydrin solution, dried and heated with a heat gun 

to visualise the spot.  Typically alpha amino acids and primary amines give a blue- purple 

whereas proline gives a yellow product and secondary amines produce a red orange 

coloured stain.[274-276]  However this proved an ineffective method as ninhydrin itself 

colours to an orange/pink colour upon uncontrolled heating. 

Attempts to analyse samples using Fourier transform infrared spectroscopy was also 

ineffective due to the low concentrations involved, and no difference was observed 

between the un-reacted benzene and the reaction products.   

This subsequently led to samples being analysed through the use of 1H NMR spectroscopy 

and mass spectroscopy.  This helped to a certain extent in the fact that they helped to rule 

out the formation of aniline. Small peaks, other than benzene, were evident in some 1H 

NMR spectra and the mass spectra obtained for the reaction products did not correspond to 

the mass fragments expected for aniline. 
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From the pulse reactions that were undertaken, UV-Vis spectroscopy was attempted for the 

coloured reaction products, in the understanding that it may be possible to work out the 

conjugation, if any, in the event of the synthesis of polycyclic aromatics and subsequently 

partially identify the compound or any functional groups present. 

Additionally, samples were sent to the EPSRC National Mass Spectroscopy Service where 

GCMS was undertaken.  However again, the concentrations of reaction compounds were 

so low that problems were encountered in the identification of compounds, which involved 

using their search and match library facility and no definitive assignments could be made. 

Although a wide range of materials have been investigated, and some materials screened 

appear to be active for the synthesis of certain compounds, no definitive product 

identification has been possible other than the fact that the target compound, aniline, has 

not been synthesised in any of the reactions performed. 

5.3 Benzene-Flow Reactions. 

The first method which was investigated involved passing a continuous flow of benzene 

over the reaction material in a feedstream of H2/N2 and was conducted according to the 

procedure described in the testing section in Chapter 2.  The reaction temperatures were 

employed based upon the performance determined in the previous chapter. In addition to 

this, the temperature at which the material decomposed to the corresponding metal was 

also taken into consideration for the more unstable nitrides.  Table 5.3-1 gives an overview 

of the reaction temperatures used for each material. 

Products from the reaction were condensed using an ice bath at the exit stream of the 

reactor and subsequently analysed by mass spectroscopy and 1H NMR spectroscopy.  The 

concentration of benzene flowed over the material was estimated using the vapour pressure 

of benzene at room temperature, and determined to be approximately 9% by volume at the 

ambient laboratory temperature (18 oC). 
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Material 
Reaction Temperature 

300 oC 400 oC 
Co3Mo3N  X 
Mg3N2  X 
VN  X 
Fe2N   X 
Co4N  X  
Ni3N  X  
Cu3N X  
Zn3N2  X 
Ta3N5  X 
β-Mo2N0.78  X 
Fe/β-Mo2N0.78  X 
Cu/β-Mo2N0.78  X 
W2N  X 
Re3N X  
Co-4Re  X 

Table 5.3-1 Overview of reaction temperatures used for each specific material. 

 
The 1H NMR spectra of benzene and aniline are presented in Figures 5.3-1 and 5.3-2 

respectively. Benzene occurs as a singlet between 7-8 ppm in the spectrum,[277-280] and can 

be seen to occur at 7.92 ppm in the spectrum below. Small impurities are also evident at 

2.49 ppm and 1.45 ppm.  Mono-substituted benzenes often appear as a doublet and in the 

case of aniline a broad signal is also apparent at 3.72 ppm, corresponding to a NH2 

coupling. 

 

Figure 5.3-1 1H NMR spectrum of benzene in CDCl 3. 
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Figure 5.3-2 1H NMR spectrum of aniline in CDCl 3. 

 

5.3.1 Co3Mo3N. 

Co3Mo3N has attracted much attention recently as an alternative catalyst for ammonia 

synthesis and reports by Aika and Kojima have documented that doping Co3Mo3N with 

Cs+ results in ammonia synthesis activities which have been claimed to be higher than 

those of commercial iron-based catalysts.[60-63,67-68] Jacobsen and co-workers have 

rationalised this activity in terms of a volcano relationship between the ammonia synthesis 

and nitrogen binding energy.[66,68]  The combination of Co (with a low N2 binding energy) 

and Mo (with a high N2 binding energy) produces a CoMo alloy with an optimal nitrogen 

adsorption energy similar in strength to that of ruthenium, as shown in Figure 5.3-3 

As described, Jacobsen et al. identified CoMo as a potential high-activity alloy catalyst by 

simple interpolation between the corresponding pure-metal components on the volcano 

curve (Figure 5.3-3), which was subsequently confirmed using first principle DFT 

calculations. They also calculated that the N2 dissociation energy on this alloy is 

intermediate between the dissociation energies of the pure metal components.   It was also 

concluded that the bulk nitrogen of the ternary nitride did not appear to affect the activity 

of the alloy and that the main role of nitrogen atoms was to induce ordering to give the 

required (111) surface containing both Co and Mo atoms.  This would therefore imply that 

the bulk nitrogen was inert in this respect.[66] 
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Figure 5.3-3 Calculated turnover frequencies for am monia synthesis as a function of the 
adsorption energy of nitrogen for various transitio n metals and alloys. [66]  

 

However, more recently Co3Mo3N has been shown to reversibly take-up and release 

nitrogen.  In studies by Mckay et al, it has been demonstrated that it is possible to remove 

50% of the lattice nitrogen under H2/Ar at high temperature (700 oC) with the remaining 

nitrogen shifting to a new crystallographic position, resulting in a phase change from the 

Co3Mo3N (331) phase to the Co6Mo6N (661) phase.[111,124] This was subsequently 

confirmed by powder neutron diffraction studies.[125]  In these studies it was also shown 

that it was possible to replenish the lost nitrogen in a reverse nitrogenation process, which 

can be achieved under a N2 feedstream, therefore enabling the material to potentially 

participate in a Mars-van Krevelen process.[126]   For this reason Co3Mo3N was the first 

material to be investigated as a potential candidate for the direct reaction of benzene to 

aniline.  

Reactions with Co3Mo3N and benzene have previously been documented by Mckay and 

co-workers in which a temperature profile similar to that which was described for the 

temperature programmed H2/Ar studies used for the early transition metal nitrides in 

Chapter 3.  However it was found that Co3Mo3N underwent carburization to Co3Mo3C, due 

to the high reaction temperatures and hence a lower reaction temperature has been 

employed in this study.  Initially studies were conducted using chlorobenzene rather than 

benzene itself, primarily due to the fact that it is easier to cleave the C-Cl bond in 

chlorobenzene than the C-H bond found in benzene.   

5.3.1.1  1H NMR Spectroscopy. 

Figure 5.3-4 shows the 1H NMR spectrum of chlorobenzene taken from the bubbler prior 

to reaction, so as to directly compare the products collected from the exit stream of the 

reactor, Figure 5.3-5, with that of starting material. 
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Figure 5.3-4 1H NMR spectrum of chlorobenzene in CDCl 3. 

 

It is evident that additional peaks appear in the spectrum of the reaction products obtained.  

The most obvious change is a broad peak occurring at 4.82 ppm, which is highlighted in 

this spectrum.  The shape of the peak is consistent of that would be expected from an 

R2CHZ group where Z = O, N or a halogen and it is also in the region of the spectrum 

where this would be expected to occur. [277-280]   There is a small multiplet at 0.83 ppm, and 

a tiny singlet at 3.30 ppm.  These peaks are within the hydrocarbon region of the spectrum 

and may possibly be a saturated hydrocarbon species and a CH group respectively.  The 

large peak at 1.42 ppm corresponds to water and the large singlet in the aromatic region 

arises due to benzene, which characteristically occurs at 7.37 ppm. As this observed peak 

is a singlet, and different to the doublet as seen in the 1H NMR spectrum of the unreacted 

chlorobenzene, it may be possible that some of the chlorobenzene has undergone 

hydrogenation forming benzene.  The small peak at 2.07 ppm also appears in the unreacted 

chlorobenzene and so is concluded to be an impurity. 
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Figure 5.3-5 1H NMR spectrum of products collected after reaction  of Co 3Mo3N with H 2/N2 
and C 6H5Cl at 400 oC for 1 h (CDCl 3). 

 
 
Following these results, analogous reactions were undertaken with benzene to investigate 

whether or not it was possible to aminate the benzene directly.  From Figures 5.3-6 and 

5.3-7  it is apparent that a broad peak observed  at 3.52 ppm, more clearly presented in 

Figure 5.3-7 which is an expansion of the spectrum,  which is again within the same region 

as the broad NH2 stretch observed in the aniline spectrum, Figure 5.3-2 (3.72 ppm).   In 

addition there is a small peak at ca. 0.91 ppm. Again there appears to be some impurities 

giving rise to small features at 2.20 ppm and 1.20 ppm.  These are also present in the 

spectrum of benzene prior to reaction. It should be noted that the TMS signal was shifted 

to 0.10 ppm. 

 

Figure 5.3-6 1H NMR spectrum of products collected after reaction  of Co 3Mo3N with H 2/N2 
and C 6H6 at 400 oC for 1 h. (CDCl 3) 
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Figure 5.3-7  Expansion of Figure 5.3-6.  

 
 
These reactions have been repeated several times under the same conditions and the 

resultant products have given the similar 1H NMR spectrum on each occasion. 

5.3.1.2  XRD Patterns. 

The XRD patterns of the post-reaction Co3Mo3N samples show the same characteristic 

reflections to that of the pre-reaction  material.  However, upon close inspection, the shifts 

resulting from the reaction under chlorobenzene are evident.    

The post-reaction chlorobenzene XRD pattern shows a shift to a higher angle 2θ, which is 

indicative of a decrease in the unit cell volume.  This can be seen clearly in the comparison 

of the pre- and post-chlorobenzene reaction patterns in Figure 5.3-8, and the shifts 

correspond to a decrease in d-spacing from 2.125 Å in the pre-reaction sample to 2.117 Å 

in the post-chlorobenzene reaction. This effect does not occur in the post-benzene reaction 

XRD pattern where no apparent shift is observed although a small decrease in the 

intensities is possibly evident. 
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Figure 5.3-8 Pre- and post-chlorobeneze and benzene  XRD patterns of Co 3Mo3N. 

 
Similar shifts, to a higher Bragg angle, have been observed in H2/Ar studies and have been 

attributed to the loss of almost 50 % nitrogen from the material resulting in the formation 

of Co6Mo6N, which has been previously documented.[126]  CHN microanalysis, Table 5.3-

5, confirmed that only 1/3 of nitrogen was lost from this material when reacted under 

chlorobenzene, compared to almost half reported under H2/Ar.  It has been reported that on 

the transformation from Co3Mo3N to Co6Mo6N under H2/Ar only two line phases are 

observed with no intermediate stoichiometry being evident.[126] The cause for the shifts, 

documented here, remains unclear and is currently under investigation. It may be possible 

that a chloronitride forms, which may explain why a smaller shift is observed in the 

diffraction pattern and also why only a third of nitrogen is lost. However it is unlikely that 

the Cl atoms replace the N atoms in a 1:1 ratio. The N3- ion has an ionic radius of 1.71 Å, 

although it is anticipated that the radius of N may be smaller in the Co3Mo3N structure 

(since it will not be in the N3- form), whereas Cl- is slightly larger at 1.81 Å.[255]    On this 

basis, if chlorine were to replace nitrogen in a 1:1 basis the shift to a lower Bragg angle 

would be expected.  Shifts to lower Bragg angles were reported in a study by Mckay et al, 

in which the formation of Co3Mo3C was observed as a direct result of the reaction between 

Co3Mo3N and C6H6 at 700 oC, in which the carbon atoms replaced all nitrogen atoms 

within the crystal structure.[111]   In both chlorobenzene and benzene reactions there is no 

evidence of carbon species being deposited on the material, either as graphite (which 

would have a signature (002) reflection at ca. 26 o 2θ or as another carbide species. This 

was subsequently confirmed by CHN analysis. 

 

42.48o 

42.66o 
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5.3.2 Mg3N2. 

As discussed in Chapter 3, Ley and co-workers reported that Mg3N2 releases ammonia 

upon reaction with protic solvents such as methanol.[100]   This in turn was demonstrated to 

function as an alternative nitrogen source for the amination of esters to primary amides. 

In the current study it was found, from the studies described in Chapter 3, that Mg3N2 

produces a significant amount of ammonia at 400 oC, the upper limit to the proposed 

reaction, under both H2/N2 and H2/Ar suggesting that the material undergoes a form of 

decomposition. This was confirmed by post-reaction nitrogen analysis.  Consequently 

Mg3N2 has been studied in the envisaged reaction with benzene. 

5.3.2.1  1H NMR Spectroscopy. 

It is evident that there is a large peak at 7.82 ppm, which can be ascribed to benzene.  

However upon closer inspection the presence of additional weaker peaks can be observed, 

which are different to those previously described.  Expanded versions of the original 

spectrum, which is shown in Figure 5.3-9, are presented in Figures 5.3-10 and 5.3.11. 

 

Figure 5.3-9 1H NMR spectrum of products collected after reaction  of Mg 3N2 with H 2/N2 and 
C6H6 at 400 oC for 1 h. (CDCl 3) 

 
From Figure 5.3-10 it is evident that there several clearly defined peaks at the lower end of 

the spectrum indicative of either allylic or vinylic hydrocarbon chains. In addition to this 

there is a singlet and quartet which appears within the aromatic region of the spectrum.  

These peak positions, descriptions and possible assignment are presented in Table 5.3-2.  
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Figure 5.3-10 Expansion of upfield chemical shifts in Figure 5.3-9. 

 

 

Figure 5.3-11 Expansion of downfield chemical shift s in Figure 5.3-9. 
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Peak Shift 
(ppm) 

Description Possible Assignment 

1.48 triplet CH-CH2 

1.57 broad singlet RNH2 

1.89 doublet CH-CH 

1.95 sextet CH2-CH-CH3 

2.19 quintet CH3-CH-CH or R–CH2-CH-CH2 

4.80 septet R-(CH3)CH-CH3 

5.64 broad singlet RCO-NH2 or ArOH 

7.30 singlet aromatic RC-CH 

8.19 double doublet aromatic  CH-CH-CH (Ar-R group)  

Table 5.3-2 Table of chemical shifts from the 1H NMR spectrum, Figures 5.3-10 and 5.3-11. 

 
From the possible fragments, assigned to each shift a possible structure may be: 

 
 
 

The mass fragments which obtained via mass spectroscopy are relatively high and are 

presented below: 

71, 87, 105, 113, 127, 141, 147, 159, 175, 194, 211, 229, 233 m/z. 

The overall mass of the above compound is 219. However this mass is not observed in the 

mass spectrum.  The 175 m/z mass fragment is relatively close to the mass which would be 

obtained from the above compound if the propyl group were to be removed (176).  As 

previously mentioned, Mg3N2 is sensitive to oxidation in air, it may be possible that the 

material is slightly oxidised upon loading into the reactor, which may subsequently 

account for the presence of oxygen in the proposed structure. 
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5.3.2.2  XRD Patterns. 

The pre- and post-benzene reaction XRD patterns are presented in Figure 5.3-12.  There is 

no observed shift in the reflections of the post-benzene sample and the pattern is directly 

comparable to that of the pre-reaction sample, with both samples matching the cubic 

Mg3N2 phase. 

 

Figure 5.3-12 Pre- and Post-benzene XRD patterns of  Mg3N2. 

 

 

5.3.3 VN. 

Vanadium nitride, amongst others, has been reported by Thompson and co-workers to be 

active in the amination of ethanol.[18]   It was shown that vanadium nitride, like platinum 

and supported nickel, was selective towards the ethylamine but only in the presence of 

ammonia, since otherwise ethene was observed to be dominant product.   

Vanadium nitride was shown to be active for the production of ammonia, as described in 

Chapter 3, whilst it was also revealed, by subsequent post-reaction nitrogen analysis, that 

although a significant amount of nitrogen is lost upon reaction, only 1.8 % of the total 

nitrogen that was lost contributed to the formation of ammonia, with the remaining 

probably being lost as N2.  Vanadium nitride has subsequently been investigated as a 

possible aminating agent by reaction with benzene. 
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5.3.3.1  1H NMR Spectroscopy. 

There was no apparent difference in the 1H NMR spectra of the unreacted benzene and that 

for the products collected at the exit of the reactor, and so it is concluded that no products 

were formed.  

5.3.3.2  XRD Patterns. 

As with the lattice nitrogen studies, documented in Chapter 3, the XRD patterns of samples 

before and after reaction with benzene were confirmed to be cubic VN.  Although there is 

a limited amount of nitrogen lost from the material, as confirmed by CHN analysis, it may 

be possible that only loosely bound surface NHx species are removed at 400 oC, which may 

not be a sufficient temperature to activate the lattice nitrogen for it to then subsequently 

react with benzene.  However, above 400 oC it is possible that benzene will decompose 

into carbon and hydrogen and so the temperatures above this value were considered to be 

outside the target range of the desired direct amination process as stated in the introduction 

to this chapter. 

 

Figure 5.3-13 Pre- and Post-benzene reaction XRD pa tterns of VN. 

 
 

5.3.4 Ta3N5. 

In Chapter 3 Ta3N5 was shown to be active for the synthesis of ammonia at 400 oC under 

H2/N2.  It was found that under these conditions a very limited amount of nitrogen was lost 

from the material, when compared to the sample reacted under isothermal H2/Ar. It may be 
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possible that the N2 present in the H2/N2 feed gas suppresses the hydrogenation of the 

lattice N in Ta3N5.  Another possible explanation is that the N2 in the feed gas fills the 

voids created upon hydrogenation of lattice N. 

It was also demonstrated through a Ar-H2/Ar switching experiment, that although a small 

degree of ammonia was produced under an Ar only feed the presence of H2 caused a much 

more significant drop in the conductivity value, which consequently demonstrates the 

reactivity of the lattice nitrogen in this material. 

To the writer’s knowledge there is currently no literature available which has reported the 

use of Ta3N5 as an aminating regent or in nitrogen transfer type applications.  From the 

data presented in Chapter 3, summarised above, Ta3N5 may be an interesting potential 

candidate for nitrogen transfer applications. 

5.3.4.1  1H NMR Spectroscopy. 

Again, no obvious change was observed in the post-reaction 1H NMR spectrum of the 

reactant benzene. It was therefore concluded that no reaction occurred. 

5.3.4.2  XRD Patterns. 

The XRD patterns of the pre- and post-benzene reactions are essentially the same, 

indicating that the phase remains unchanged.  However it is evident that the reflections 

which correspond to TaN (indicated by a star) present in the pre-reaction sample, samples   

do not appear in the post-benzene sample. This was also observed in the diffraction 

patterns of the post-H2/Ar reaction samples (reported in Chapter 3), and may be attributed 

to the samples becoming more reduced upon reaction.  Furthermore, some reflections 

appear slightly broader in the post- benzene sample, such as those at approximately 30 o 

and 35 o 2θ, possibly indicating that there is a slight increase in the disorder within the 

sample, which is also consistent with the apparent increase in intensity of the background. 

This could possibly arise due to the loss of nitrogen from the sample, as confirmed by 

CHN analysis, giving rise to a post-reaction stoichiometry corresponding to Ta3N3.99.  No 

evidence of any additional carbon containing species was found after reaction.   
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Figure 5.3-14 Pre- and Post- benzene reaction XRD p atterns of Ta 3N5. TaN reflections are 
indicated by a 

 

5.3.5  β-Mo2N0.78. 

5.3.5.1   1H NMR Spectroscopy. 

In the spectra obtained of the benzene reactant, no change was observed upon reaction for 

the un-doped and doped β-Mo2N0.78 samples.  Hence it was concluded that no product 

formation occurred.  

5.3.5.2  XRD Patterns. 

After reaction with C6H6 and H2/N2 it is evident, in the case of the un-doped β-Mo2N0.78  

sample, that there are some shifts to a lower Bragg angle present in the post-reaction 

diffraction pattern with respect to that determined pre-reaction, Figure 5.3-15.  This would 

generally be indicative of an increasing unit cell volume.  In the instance of reactions with 

benzene it may be possible that some of the nitrogen is replaced by carbon which may 

induce a shift to a lower 2θ value due to the increased size of the carbon radius (N-3 1.71 Å, 

atomic N radius 0.65 Å and C-4 2.60 Å, atomic C radius 0.70 Å).[255]  The presence of 

carbon in the sample was subsequently confirmed by post elemental analysis which 

revealed that both nitrogen and carbon was present being 3.31 wt.% and 1.32 wt.% 

respectively.  Aside from the shift to a lower angle, no significant difference in the phase 

composition and no evidence of graphite was observed. 
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Figure 5.3-15 Pre- and Post-benzene reaction XRD pa tterns of β-Mo2N0.78. 

 
The pre- and post-benzene diffraction patterns for the Fe doped β-Mo2N0.78 are presented in 

Figure 5.3-16.  It is apparent that there are small changes in the intensity of the reflections 

at ca. 82 o 2θ.  In addition there is also a small reflection which can be observed in both 

diffraction patterns at approximately 25 o 2θ in the pre-reaction sample and 26o 2θ in the 

post-benzene sample. The reflection is more apparent in the post-benzene diffraction 

pattern, which may indicate the presence of graphite which would correspond to a 

reflection at 26 o 2θ. 

 

Figure 5.3-16 Pre- and Post-benzene reaction XRD pa tterns of 1.5 wt.% Fe/ β-Mo2N0.78. 

 
 

The post-reaction XRD pattern of the Cu doped β-Mo2N0.78 sample resembles the pre-

reaction sample, although the Mo reflections are more apparent.  In addition it is clear that 
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the intensities of the reflections decrease and the reflections become slightly broader with 

respect to those observed in the pre-reaction sample.  This may be a result of the material 

becoming slightly more disordered upon reaction with benzene.  No apparent graphite 

reflections are observed in the post-reaction Cu doped sample and the absence of carbon in 

the sample was subsequently confirmed by elemental analysis, Table 5.3-5. 

 

Figure 5.3-17 Pre- and Post-benzene reaction XRD pa tterns of 1.5 wt.% Cu/ β-Mo2N0.78  

 
 

5.3.6 W2N. 

There are several examples of tungsten nitride being used for amination reactions.  Within 

the patent literature, Bowmen et al reported on the use of WN and W2N, amongst others, 

for the amination of primary and secondary alcohols, for example the amination of 

monoethanolamine by diethenetriamine which resulted in a mixture of 

polyethlenepolyamines.[282]   More recently Thompson et al also reported on the synthesis 

of ethylamines, as discussed in section 5.3.3, using W2N.[18] 

W2N was shown to be active for the production of ammonia, as demonstrated in the studies 

described in Chapter 3, and is subsequently investigated in this chapter for the envisaged 

reaction with benzene.  

5.3.6.1 1H NMR Spectroscopy. 

From the 1H NMR spectrum of products which were collected from this experiment, it was 

evident that no reaction with the benzene had taken place.  
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5.3.6.2  XRD Patterns. 

The diffraction patterns of the pre- and post-benzene reactions are very similar, with a very 

small shift to a lower 2θ angle observed in the post-benzene reaction XRD pattern.  This 

shift corresponds to a lattice d spacing of 2.400 Å compared with 2.394 Å observed in the 

pre-reaction sample.  The shift to a lower angle is indicative of an increasing unit cell 

volume.  However it was shown by post-reaction elemental analysis that a small amount of 

nitrogen was lost upon reaction (0.56 wt.%), which would normally result in the shift 

moving to a higher Bragg angle, and there was no indication of carbon present.  The 

explanation for this effect is currently unclear but sample displacement effects in the XRD 

sample holder cannot be ruled out. 

 

Figure 5.3-18 Pre- and Post- benzene reaction XRD p atterns of W 2N. 

 
 

5.3.7 Fe2N. 

Iron catalysts have been long known for their activity for ammonia synthesis.[210-213]   In the 

present investigation, Fe2N was found to be active for NH3 synthesis at ambient pressure as 

detailed in Chapter 3. It was shown by XRD analysis that upon reaction Fe2N decomposes 

to lower nitride phases such as Fe3N and Fe4N as well as Fe metal, demonstrating the 

evolution of nitrogen upon reaction.  This has been well documented and is described in 

much detail by Goodeve and Jack.[102,103]  

Although there is an abundance of literature related to the structure and ammonia synthesis 

activities of iron nitrides, there is very little related to amination type reactions.   
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5.3.7.1   1H NMR Spectroscopy. 

Fe2N was reacted with benzene at 400 oC.  Upon analysis of the reaction products by 1H 

NMR spectroscopy, no evidence of any product formation could be found.   

5.3.7.2  XRD Patterns. 

The post-reaction XRD pattern of Fe2N, Figure 5.3-19, is clearly different to the pre-

reaction sample.  It is also evident that there is a broad reflection occurring at 

approximately 26 o 2θ, this is a signature reflection of graphite (indicated by a star). 

Additional weaker reflections at 54 o and 77 o 2θ also match graphite.  The broad reflection 

at 26 o 2θ possibly indicates that the graphite in the sample is very disordered or it may 

also be possible that there are very few layers of graphite present in the sample. The 

number of layers in the sample can be estimated using the Scherrer equation.  Taking the 

inter-planar spacing of graphite to be 3.35 Å, and that the apparent crystallite size of the 

reflection was calculated to be 63.50 Å, this corresponds to 19 layers of graphite present in 

the post-reaction sample. The presence of carbon was confirmed by CHN analysis to be 

2.13 wt.%.  It may be possible that graphite is not the only reflection which occurs at 26 o 

2θ, a weak Fe2O3 reflection (JCPDS 039-1346) also occurs at this position.  The larger 

reflections at 44 o and 65 o 2θ, correspond to Fe metal; however identification of other Fe 

metal peaks is difficult due to the overlap of reflections which may correspond to lower 

iron nitride phases, such as Fe4N and Fe3N. The pre-treated sample was confirmed to be 

pure phase Fe2N by XRD, with a small impurity at 41o 2θ, which could possibly 

correspond to Fe3N.    
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Figure 5.3-19 Pre- and Post-benzene reaction XRD pa tterns of Fe 2N. unambiguously 
assigned reflections are represented as the followi ng, Fe metal    , Fe 3N    graphite    . 

 
 

5.3.8 Re3N. 

From the studies conducted in Chapter 3, Re3N has shown to be active for the production 

of ammonia, and had a greater ammonia production rate between 1-6 hours on stream than 

most of the other nitride systems which were investigated, with the exception of Zn3N2, 

Ta3N5, Mg3N2 and Co3Mo3N.  As was mentioned in Chapter 3 the catalytic literature for 

Re3N is scarce, although it has been shown to be active for catalytic hydrodenitrogenation 

reactions.[73] There is no evidence within the literature to suggest that Re3N has previously 

been investigated for amination of organic compounds or for its potential use in nitrogen 

transfer applications. 

5.3.8.1  1H NMR Spectroscopy. 

Upon reaction, weak product peaks can be observed in the spectrum, as shown in Figure 

5.3-20.   Expanded spectra are presented in Figures 5.3-21 and 5.3-22. 
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Figure 5.3-20 1H NMR spectrum of products collected after reaction  of Re 3N2 with H 2/N2 and 
C6H6 at 400 oC for 1 h. (CDCl 3) 

 

It is apparent that most of these additional peaks occur at the upfield end of the spectrum, 

and a small peak is apparent at 7.39 ppm occurring in the in the aromatic region of the 

spectrum.  The peaks at the upfield end of the spectrum are indicative of small 

hydrocarbon species. These peak positions, descriptions and possible assignment are 

presented in Table 5.3-3.  

 

Figure 5.3-21 Expansion of shifts from 0-2.7 ppm in  Figure 5.3-20. 
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Figure 5.3-22 Expansion of shifts from 2.7-5.3 ppm in Figure 5.3-20. 

 

Peak Shift 
(ppm) 

Description Possible Assignment 

1.11 singlet C-CH 

1.67 multiplet ? 

1.87 quartet CH-CH3 

2.02 triplet CH-CH2 

2.39 doublet CH-CH 

3.38 quartet CH-CH3 

5.15 multiplet CH3-CH-CH2-R 

7.29 singlet Aromatic CH 

Table 5.3-3 Table of chemical shifts observed in 1H NMR spectrum presented in Figures 5.3-
21 and 5.3-22.  

 
From the possible fragments, with the exception of the multiplet at 1.67 ppm, assigned to 

each shift a possible structure may be: 

 

Again some of the mass fragments which were observed from the spectrum were relatively 

high, with respect to the target molecule aniline (93), and are presented below: 

71, 78, 43, 51, 50, 83, 121, 149, 167, m/z 
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As observed previously the mass at 71 is again evident, which as described may be a result 

of a dehydrogenated benzene ring and the mass at 78 is unreacted benzene.  The mass 

observed at 43 m/z may be attributed to CH3- CH2-CH2 whilst the mass at 83 m/z may 

correspond to the hydrocarbon chain which is observed in the proposed fragment; CH3-

CH2-CH2-CH2-CR=CH-CH3 

5.3.8.2  XRD Patterns. 

The XRD pattern which was obtained for the post-benzene reaction sample demonstrates it 

to have partially de-nitrided, as shown by the patterns presented in Figure 5.3-23. A 

mixture of Re reflections (again shifted) and the original broad reflection are evident. 

Additional sharper reflections are also apparent in the diffraction pattern.   These 

reflections at 17 o, 26 o, 28 o, 30 o and 35 o 2θ, as indicated by a star, correspond to ReO3 

(JCPDS 040-1155), may possibly be a result of oxidation of Re metal on discharge from 

the reactor. 

 

Figure 5.3-23 Pre- and Post- benzene reaction XRD p atterns of Re 3N.  ReO3 reflections 
indicated by     .  

 
 

5.3.9 Co4N. 

Cobalt nitride was shown to produce only a limited amount of ammonia from the H2/Ar 

and H2/N2 studies conducted in Chapter 3.  However it was shown that although a 

significant amount of nitrogen was lost from the material upon reaction, only 5.6 % of the 

total nitrogen lost from the material contributed to the formation of ammonia, with the 

remainder probably being lost as N2.  Cobalt nitride was also shown to rapidly decompose 
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upon reaction to Co metal and, as mentioned in Chapter 3, was difficult to prepare 

requiring very narrow synthesis conditions. 

However as the decomposition temperature of the nitride is well below that of the 

maximum temperature for the envisaged process (250 oC and 400 oC respectively) it may 

be possible to react the nitrogen with benzene by employing high ramp rates and short 

reaction times (100 oC min-1 and 1 hour respectively). 

However in a study by Rausch and co-workers, a supported Co catalyst was shown to be 

active for the amination of ethanol.[283]  In that investigation it was shown that gas phase 

hydroamination of ethanol and ammonia over a supported Co metal catalyst yielded a large 

range of reaction products including ethylamines and diethylimine. 

5.3.9.1  1H NMR Spectroscopy. 

From the 1H NMR spectrum of products which were collected from this experiment, it was 

evident that no reaction with the benzene had taken place.  

5.3.9.2  XRD Patterns. 

Again, as described for the H2/Ar and H2/N2 studies presented in Chapter 3, identification 

of phases proved difficult by XRD, as Co metal, Co4N and CoCx (JCPDS 044-0962) all 

have reflections centring on similar Bragg angles.  However, a small shift to a higher 2θ 

angle was observed at ca. 44 o 2θ.  On the whole there is no significant difference between 

the pre- and post-reaction diffraction patterns.  The post-benzene carbon and nitrogen 

analysis can be used to determine if this material has decomposed to Co metal or whether 

the transformation to a carbide has occurred, from the CHN data presented in Table 5.3-5 it 

is evident that the nitride has decomposed to Co metal and no carbon is present in the post-

benzene reaction sample. 
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Figure 5.3-24 Pre- and Post- benzene reaction XRD p atterns of Co 4N. 

 
 

5.3.10 Ni3N. 

As previously discussed, Ni3N decomposes to Ni metal upon reaction.  As was observed in 

the studies in Chapter 3 a significant amount of ammonia is produced within the first half 

hour on stream. However, this ceases almost immediately with very little or no ammonia 

produced thereafter.  As the material decomposes below the desired reaction temperature 

for the benzene reactions it may be possible, as described in the case for Co4N and Cu3N, 

to react the nitrogen with benzene,  upon decomposition of the nitride to Ni metal, by 

employing high temperature ramp rates. 

5.3.10.1 1H NMR Spectroscopy. 

Ni3N was reacted with both benzene and chlorobenzene feeds at 300 oC.  However there 

was no indication that amination or any other reaction had occurred in these instances.  The 
1H NMR spectra of post-reaction trapped samples corresponded to the respective reaction 

solvents, demonstrating the absence of detectable products of reaction.  

5.3.10.2 XRD Patterns. 

Upon inspection of the post-reaction XRD patterns, Figure 5.3-25, it is clear that there are 

some differences between the pre- and post-reaction samples. In the case of the reaction 

with chlorobenzene, the nitride decomposes to the Ni metal, which is confirmed by CHN 

analysis, whereas in the case of the reaction with benzene, under the same reaction 
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conditions, there is evidence of very weak reflections occurring at ca. 26 o and 48 o 2θ 

arising as a result of reaction.  These reflections are consistent with graphite, although very 

weak.  The presence of carbon is confirmed in the post-reaction sample by CHN analysis.  

From this it was found that the post-reaction sample contained a mixture of carbon and 

nitrogen at levels of 2.4 wt.% and 1.1 wt.% respectively.  The percentage of carbon in the 

sample is much lower than the value for stoichiometric Ni3C which is 6.77 wt.%.  It is 

difficult to ascertain whether or not the carbide has formed due to the similarity in 

reflections which are observed in the XRD.  However there is a possible shift to a higher 

2θ value which is indicative of a decreasing unit cell volume. This shift corresponds to a d 

spacing of 2.317 Å compared to 2.324 Å (which is found in the pre-reaction Ni3N sample) 

or 2.280 Å (which relates to the (110) reflection of the Ni3C phase as given by JCPDS file 

number 026-1080).  It may be possible that in this instance a carbonitride has formed.  

Similar shifts are also observed in the Ni metal reflections present. It is also apparent in the 

post-benzene diffraction pattern that although both Ni and Ni3N reflections are evident, the 

intensities of these reflections are also comparable in size to the reflections in which only 

Ni metal reflections are observed, as in the post-chlorobenzene sample, or those in which 

only Ni3N reflections are evident, as in the pre-reaction sample.  This indicates that both 

products are present in the sample. 

 

Figure 5.3-25 Pre- and Post-chlorobenzene and benze ne reaction XRD patterns of Ni 3N. 
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5.3.11 Cu3N. 

Copper itself is a good aminating agent with examples being found in the patent literature 

and documented in organic synthesis.[169-173,235,236]  In a study by Burgers and van Bekkum 

it was found that copper exchanged zeolites were highly active for the direct conversion of 

chlorobenzene  to aniline in the presence of ammonia, where isolated Cu atoms were 

thought to be the active sites.[174]  More recently Xu and Wolf reported that aryl halides 

could be aminated in the presence of catalytic amounts of copper salts to form anilines and 

their derivatives at low temperatures.[175]  However there are no literature studies 

documenting that Cu3N has been used for this purpose. 

Copper nitride along with some of the other more unstable nitrides such as Ni3N, Co4N and 

Re3N, as was previously shown in Chapter 3, decomposes at a relatively low temperature.  

It was for this reason that a high ramp rate (100 o C min-1) was employed in the 

experiments for this material described in this chapter.  Copper nitride has been reacted 

with both chlorobenzene and benzene in flow reactions; however, an additional study in 

which Cu3N was refluxed with chlorobenzene was also investigated, primarily due to the 

lower stability of Cu3N. 

5.3.11.1 1H NMR Spectroscopy. 

In the reflux reaction with chlorobenzene and Cu3N, the resultant 1H NMR spectrum, 

matched chlorobenzene, and even after expansion of the baseline, no additional peaks were 

observed. From previous literature studies, it has been shown that Cu3N is fairly stable up 

to temperatures of 250 oC beyond which it starts to decompose, so it is perhaps not 

surprising that no apparent reaction occurred during refluxing (at temperature 200 oC).  

Therefore it could be concluded that there was no active nitrogen to participate in the 

reaction at this temperature. 

The 1H NMR spectrum of the products obtained from the reaction of Cu3N with 

chlorobenzene and H2/N2 at 400 oC, is shown in Figure 5.3-26, and on first inspection does 

not appear to be different from that of benzene. A large peak can be observed at 

corresponding to unreacted C6H5Cl, however there is also evidence of additional very 

weak peaks.  Upon expansion of this spectrum, Figure 5.3-27, these peaks correspond to a 

small doublet at 6.17 ppm, two broad singlets at 4.08 ppm and 1.95 ppm, which may 

possibly be attributed to either Cl, NH or an OH group attached to CH-R group, and a 

triplet at 1.68 ppm, which may correspond to a CH-CH2 group.[277-280] 
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Figure 5.3-26 1H NMR spectrum of products collected after reaction  of Cu 3N with H 2/N2 and 
C6H5Cl at 400 oC for 1 h (CDCl 3). 

 

 

Figure 5.3-27 Expansion of the upfield region of th e 1H NMR spectrum in Figure 5.3-26. 

 
 
Further investigations employed a flow of benzene over the material and the 1H NMR 

spectrum obtained from the reaction products are presented in Figures 5.3-28 and 5.3-29.    

It is clear that there are several very weak peaks at the upfield end of the spectrum which 

correspond to the production of hydrocarbons.   On expansion of this spectrum it was 

found that the peak at 1.05 ppm is a triplet, which would suggest the presence of a CH2 

coupling and a further peak is apparent at 3.67 ppm, this is split into a quartet and 

indicative of a CH3 coupling.  There is an additional peak which can be observed at 

approximately 4.70 ppm, but this peak is much larger than those described above and 
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probably corresponds to water in the solvent.  There is no indication of the presence of any 

aromatic species other than unreacted C6H6.  

 

Figure 5.3-28 1H NMR spectrum of products collected after reaction  of Cu 3N with H 2/N2 and 
C6H6 at 400 oC for 1 h (D 2O). 

 

Figure 5.3-29 Expansion of Figure 5.3-28. 

 

5.3.11.2 XRD Patterns. 

As can be seen from Figure 5.3-30 the samples which have been reacted with benzene and 

chlorobenzene in the flow reactions have decomposed to Cu metal.  Subsequent CHN 

analysis confirmed that all the nitrogen had been removed from the material.  In the case of 

the chlorobenzene reflux reaction, the post-reaction diffraction pattern corresponds to that 

of the copper nitride, which would again suggest, that the reaction temperature has not 

been high enough to cause the nitride to lose nitrogen, as discussed earlier.  
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Figure 5.3-30 Pre- and Post-chlorobenzene and benze ne reaction XRD patterns of Cu 3N 

5.3.12 Zn3N2. 

As was demonstrated in Chapter 3, zinc nitride shows an initial high activity for the 

production of ammonia at 400oC, which subsequently ceases after 6 hours on stream.  This 

result was surprising as it was anticipated that Zn3N2 may behave similarly to Cu3N.  As 

the catalytic literature for Zn3N2 is scarce, and mainly concentrates on the structural and 

optical properties rather than catalytic aspects, it is again unclear whether Zn3N2 will be a 

suitable candidate for the amination of benzene, or indeed for similar Mars-van Krevelen 

type related processes. 

5.3.12.1 1H NMR Spectroscopy. 

Zn3N2 showed significant activity in the studies which were described in Chapter 3.  

Further to this, it was also one of the few materials which also exhibited additional peaks 

in the 1H NMR spectrum of the post-benzene reaction product, as shown in Figures 5.3-31 

and 5.3-32.   

Expansion of the 1H NMR spectrum highlights the presence of a triplet at 1.03 ppm and a 

quartet at 3.53 ppm, these are indicative of a CH2 and CH3 group respectively.  These 

peaks are similar to those which were observed in the 1H NMR spectrum of the Cu3N 

reaction with benzene.  In addition to these, there is a very broad peak which is apparent at 

approximately 6.78 ppm, which was not observed in the case of the Cu3N reaction.  This 

peak may correspond to a N or O containing heterocycle, however this remains unclear.[277-
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280]  These types of compounds, i.e. pyridine, pyrolle and furan have a characteristic broad 

peak between 6.7 and 7.2 ppm. NH and OH groups, which have a similar broad 

appearance, occur at lower or higher shifts of around 3.6-4.8 ppm and 7-9 ppm 

respectively.[277-280]   

 

Figure 5.3-31 1H NMR spectrum of products collected after reaction  of Zn 3N2 with H 2/N2 and 
C6H6 at 400 oC for 1 h. (D 2O) 

 

 

Figure 5.3-32 Expansion of Figure 5.3-31 

 

5.3.12.2 XRD Patterns. 

Although pre-reaction Zn3N2 has a relatively high nitrogen content, it is slightly lower than 

expected from stoichiometric Zn3N2, as was discussed in Chapter 3, and this may be 

attributed to the presence of ZnO  in the sample as confirmed by XRD analysis with a ZnO 
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reflection observed at ca. 36 o 2θ.  In addition, a small Zn metal impurity was detected at 

ca. 39 o 2θ. However, the remaining reflections matched those of cubic Zn3N2.  The Zn 

reflection becomes more apparent in the post- benzene reaction pattern, which would be 

expected in the case of decomposition of the nitride.  Again, as was seen in H2/Ar studies 

reported in Chapter 3, the formation of ZnO is evident in the post-reaction XRD patterns, 

as has been previously discussed this may be due to the increased susceptibility of Zn 

metal to oxidise on discharge due to its increased reactivity. 

 

Figure 5.3-33 Pre- and Post-reaction XRD patterns o f Zn 2N3 The symbols used show 
characteristic reflections Zn metal (  ) and ZnO (  ) that can be clearly identified without 
ambiguity. (JCPDS 035-0762 Zn 2N3). 

 

5.3.13 Co-4Re. 

Co-4Re is a relatively unstudied material and has demonstrated good potential as an 

ammonia synthesis catalyst, as reported in the studies by Aika and Kojima and 

subsequently in the H2/N2 reaction performed in Chapter 3.[59]  Initially this work has 

centred solely on nitride based materials, however Co-4Re has been investigated as a 

nitrogen transfer reagent based upon the significant ammonia synthesis activity exhibited 

in Chapter 3.  This material has a much higher activity than the other materials 

investigated, with the exception of the Ru based materials and Zn3N2.  However Zn3N2 

appears to decompose to Zn metal upon reaction and the production of ammonia ceases 

after 6 hours on stream. Co-4Re, on the other hand, has been tested for 16 hours under 

ammonia synthesis conditions with no apparent decrease in activity.  It is for this reason 

that Co-4Re is being investigated under benzene reaction conditions. 
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5.3.13.1 1H NMR Spectroscopy. 

Only upon expansion of the 1H NMR spectrum obtained from the products of reaction 

between Co-4Re and C6H6 with H2/N2 are very weak product peaks observed.  As with the 

other reaction products, the sample mainly consists of un-reacted benzene, which swamps 

the trace compounds which have been observed in some of the proton spectra.  This was 

one of the main reasons that these experiments were only run for one hour, in an attempt to 

prevent any reaction products being diluted with excess un-reacted benzene.  Figures 5.3-

35 to 5.3-37 illustrates the peaks which were observed on expansion of the proton 

spectrum of Co-4Re. 

 

 

Figure 5.3-34 1H NMR spectrum of products collected after reaction  of Co-4Re with H 2/N2 and 
C6H6 at 400 oC for 1 h. (CDCl 3) 

 
 
Again, it is evident that most of the peaks are concentrated at the lower end of the 

spectrum, indicating the possible presence of hydrocarbon species.  Additionally there are 

some peaks which are also present in the aromatic region of the spectrum, aside from the 

large benzene peak. However, it is obvious that these peaks overlap with benzene peak, 

making identification or possible assignment difficult.  Table 5.3-4 provides an overview 

of the peak shifts along with a possible proton assignment to the respective shifts. 
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Figure 5.3-35 Expansion of shifts from 0.0-3.5 ppm in Figure 5.3-34. 

 
 

 

Figure 5.3-36 Expansion of shifts from 3.5-6 ppm in  Figure 5.3-34. 
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Figure 5.3-37 Expansion of shifts from 7.10-7.95 pp m in Figure 5.3-34. 

 
 

Peak Shift 
(ppm) 

Description Possible Assignment 

1.28 triplet of doublets CH2-CH-CH 

2.99 quartet CH3-CH 

3.67 singlet C-CH 

4.26 singlet C-CH 

4.63 triplet CH2-CH 

5.30 broad singlet R-NH2 or R-OH 

7.29 singlet Aromatic CH 

7.50 possible doublet 
Aromatic CH-CH-CH (protons in same 
environment) 

7.60 possible triplet 
Aromatic CH-CH-CH (protons in different 
environments) 

7.88 multiplet 
may be C6H5-R (overlapping signals from 
each proton) 

Table 5.3-4 Table of chemical shifts observed in 1H NMR spectrum presented in Figures 5.3-
35 to 5.3-37. 

 

It may be possible that one of the compounds present in the reaction products is 

nitrobenzene.  As can be seen from the diagram below nitrobenzene has similar shifts to 

that observed in the 1H NMR spectrum, and would have a similar splitting pattern with the 

Ha protons splitting into a doublet at 8.2 ppm; Hb protons splitting into a triplet at 7.6 ppm 

(as Hc and Ha protons are in different chemical environments) and Hc splitting into a 

doublet at 7.8 ppm.  As protons a and c are ortho and para, respectively, to the NO2 group 



Anne-Marie Alexander Chapter 5 187 

(electron withdrawing) this results in a downfield shift and consequently signals may 

overlap resulting in the appearance of a multiplet, if the resolution is not high enough to 

completely separate the signals.[277-280] 

 

5.3.13.2 XRD Patterns. 

The post-benzene reaction diffraction pattern of the Co-4Re material is similar to that 

obtained for the pre-reaction sample with no obvious shifts to indicate changing unit cell 

volume. As seen in the H2/N2 and H2/Ar studies, the intensities of reflections in the post-

reaction sample increase in intensity, which as previously mentioned may be as a result of 

the material becoming more crystalline upon application.  As mentioned in Chapter 3, the 

pre–reaction samples contain both Co and Re metal phases, which are indicated by a star or 

circle respectively in Figure 5.3-38.  As has been previously discussed in Chapter 3,       

Co-4Re becomes more crystalline upon reaction which is evident in Figure 5.3-38.  This 

appears to be the only significant difference which is apparent between the diffraction 

patterns of the unreacted and post-benzene reaction samples.  Additionally there was no 

evidence of graphitic species on the surface of the material which was consistent with the 

post-reaction CHN analysis. 
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Figure 5.3-38 Pre- and Post-benzene reaction XRD pa tterns of Co-4Re (Co   , Re    ). 

 
 

5.3.14 Post-Reaction Carbon and Nitrogen Analysis. 

The post- reaction carbon and nitrogen contents of the nitrided materials were determined 

by combustion microanalysis, and are shown in Table 5.3-6 

It is apparent that all of the materials which have been investigated in this section lose 

nitrogen, to varying extents, from their structure upon reaction with benzene and H2/N2.  

However it is also evident that certain materials also contain carbon after reaction. 

As can be observed from the data presented in Table 5.3-6 Mg3N2 loses a significant 

amount of nitrogen upon reaction, however no apparent reflection shifts were observed in 

the diffraction patterns between the pre- and post-benzene reaction samples.  Additionally, 

as mentioned previously, Mg3N2 is air and moisture sensitive and the sample may undergo 

oxidation prior to elemental analysis, which is a factor that needs to be considered upon 

analysis of the elemental data. 

Elemental analysis confirmed the fact that carbon species were present in the post-benzene 

Fe2N, Ni3N and Fe doped β-Mo2N0.78 samples.  Both carbon and nitrogen are evident in 

both the Ni3N and Fe doped β-Mo2N0.78 samples. It is interesting to note in the case of the 

Fe doped β-Mo2N0.78 sample, the same wt.% of carbon is also apparent in the Fe2N.  Fe is 

known to be an active catalyst in the cracking of hydrocarbons and is frequently used for 
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Fischer-Tropsch reactions.[95]  It may be possible that the Fe metal causes the benzene to 

decompose and thus deposits accumulate on the material surface.   

As mentioned above, both carbon and nitrogen are evident in the post-benzene Ni3N 

sample but not in the chlorobenzene sample in which decomposition to Ni metal is 

apparent.  As was discussed in section 4.3.10, it is difficult to ascertain whether both 

carbide and nitride phases are present within the sample due to the close proximity of the 

reflections, although the presence of a tiny reflection at approximately 26o 2θ is present, 

which would be charateristic of graphite.   

From the table overleaf it is clear that both carbon and nitrogen are present in the sample, 

although these are both much lower than the calculated stoichiometric values for nitrogen 

and carbon in Ni3N and Ni3C (7.36 wt.% and 6.38 wt.% respectively).  As mentioned, it 

may be possible that a carbonitride phase exists, however this is remains unclear. 
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Table 5.3-5 Pre- and Post-benzene reaction nitrogen  and carbon content of materials 
investigated using a flow of benzene and H 2/N2 at the reaction temperature specified in the 
text. 

 
 

5.4 Benzene-Pulse Reactions. 

The second method investigated as a potential synthesis route to aniline adopted a series of 

alternate benzene and ammonia pulses into a carrier gas which were subsequently passed 

over the reaction material.    These pulse studies were undertaken with the ultimate aim to 

overcome the limitation posed by direct reaction of ammonia and benzene.  Direct 

amination of benzene is equilibrium limited by the loss of hydrogen as discussed in the 

Nitride 
Material 

(400 oC,     
* 300 oC) 

Nitrogen and Carbon content (wt.%) 

Calculated 
Stoichiometric 

N Content 
wt.% 

Pre-
reaction 

N Content 
wt.% 

Post-reaction 
Observed N 

Content wt.% 
Observed C 

Content wt.% 

C6H6 C6H5Cl C6H6 C6H5Cl 

Co3Mo3N 2.92 2.93 2.55 1.97 - - 

Mg3N2 27.74 23.50 18.73  
 

-  
 

VN 21.55 17.39 14.86  
 

- 
 

Fe2N 11.13 7.86 0.90  
 

2.13  
 

Co4N * 5.60 3.68 0.40 
 

-  
 

Ni3N * 7.36 6.58 1.10 0.09 2.40 - 

Cu3N * 6.84 6.05 0.00 - - - 

Zn3N2 12.49 9.80 5.45  
 

-  
 

Ta3N5 11.42 11.23 9.11  
 

0.07  
 

β-Mo2N0.78 5.38 5.41 3.31  
 

1.32  
 

Fe/ 
β-Mo2N0.78 

5.38 5.58 2.73  
 

2.13  
 

Cu/ 
β-Mo2N0.78 

5.38 4.39 2.29  
 

-  
 

W2N 3.66 6.13 5.57  
 

-  
 

Re3N * 2.44 2.50 1.31  
 

-  
 

Co-4Re n/a n/a n/a 
 

n/a 
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introduction to this chapter.  By pulsing ammonia the dehydrogenation stage can possibly 

be separated from the amination stage.   NHx residues adsorbed onto the surface of the 

reagent may react with the following pulse of benzene. In doing so, this lifts the 

equilibrium limitation by the potentially separating hydrogen loss from nitrogen addition in 

the reaction and potentially enables increased benzene conversion to aniline.    

Pulse reactions were conducted as described in the testing section in Chapter 2.  The 

materials which were investigated in the benzene-flow reaction have also been studied 

within this section and, as with the benzene–flow reactions, different reaction temperatures 

were applied taking into account the thermal stability of the materials. The temperature at 

which each material was studied is summarised in Table 5.4-1 below. 

Nitride Material Reaction Temperature H2/N2  

(Ar and H2/Ar for specific materials *) 

250 oC 350 oC 400 oC 

Co3Mo3N *  X  

Mg3N2*  X X 

VN  X X 

Fe2N  X X 

Co4N X X  

Ni3N X X  

Cu3N * X X  

Zn3N2 *  X  

Ta3N5  X X 

β-Mo2N0.78  X X 

Fe/β-Mo2N0.78  X X 

Cu/β-Mo2N0.78 *  X X 

W2N  X X 

Re3N * X X  

Co-4Re *  X  

Table 5.4-1 Overview of reaction temperatures used for each specific material. * indicates 
samples reacted in a H 2/Ar feed stream. 

 
Of the materials presented in Table 5.4-1, it was found that the only materials to present 

indication of reaction, either in the form of apparent coking in the post-reaction bed 

packing granules or by 1H NMR spectroscopy, were the same materials which displayed 

changes in the proton spectra of the benzene-flow reactions.  These materials are 



Anne-Marie Alexander Chapter 5 192 

Co3Mo3N, Mg3N2, Cu3N, Zn3N2, Re3N and Co-4Re.  For this reason, these are the only 

materials which will be described in this section. 

The other materials studied showed no indication of reaction with benzene other than small 

amounts of carbon being evident in the post-reaction elemental analysis.  These CHN 

results have also been included in Table 5.4-2 at the end of this section.  The 1H NMR 

spectra of these materials were found to match that of the control 1H NMR spectrum which 

is shown in Figure 5.4-1, along with a small additional peak between 7.89 and 8.05 ppm 

consistent with benzene. 

 

Figure 5.4-1 Control 1H NMR spectrum used for benzene-pulse reactions. 

 
The control 1H NMR spectrum was obtained as a result of soaking unreacted silica packing 

granules in THF, which was the only solvent that dissolved the ‘coked’ material observed 

in some of the post-reaction packing granules of certain materials investigated. This 

solvent was therefore used for consistency.  The two large peaks 0.79 ppm and 1.85 ppm 

correspond to THF with TMS referencing to 0 ppm.   

Figure 5.4-2 illustrates the colours which were observed from the products obtained from 

the coked post-reaction bed packing granules.  This ‘coking’ was only observed in the 

reactions which employed a H2/N2 feed gas for certain materials.  It was not observed in 

the reactions which were conducted under an Ar only or H2/Ar feedstream.  It is apparent 

that most catalytic aminations occur in the presence of hydrogen, and it has been 

documented that its presence improves the yield of amines and prevents the catalyst 

deactivating by preventing the formation of nitrides, i.e. during disproportionation of 
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reactants and products which may consequently lead to incorporation of nitrogen into the 

metal lattice, instead of the formation of the amine.[283, 284]   It is therefore surprising that no 

apparent reaction products are observed when using a H2/Ar feed, and that they are only 

evident when using a 5 % H2/N2 feed, especially considering all other reaction conditions 

remain the same this may be indicative that a source of gas-phase N2 is required to 

generate them.  Furthermore, the order that NH3 and C6H6 were pulsed into the reactor did 

not appear to make a difference. 

                  
 

Figure 5.4-2 Products obtained from H 2/N2 pulse with C 6H6 and (from left to right) Mg 3N2, 
Re3N, Cu3N, Zn3N2 and Co-4Re.  

 
Similar colours were reported in a study by Schulz, in which the deactivation of a zeolite 

catalyst during methanol conversion was investigated.[285] It was shown that during the 

reaction ‘coke’ forms on the surface of the zeolite subsequently blocking pores and hence 

deactivating the catalyst.  It was reported that different at different temperatures different 

types of ‘coke’ were observed.  For instance, it was noted that between 270-300 oC the 

catalysts had attained a yellow colour, which on exposure to air turned pink, which was 

reported to indicate the presence of highly unsaturated organic compounds, such as ethyl-

trimethly-benzene and isopropyl-dimethyl-benzene.  At higher temperatures (above 400 
oC) the catalyst had been found to have three distinguishable zones; black, grey and blue in 

colour. The blue zone was thought to be associated with minor coking by olefins, such as 

ethene and propene.[285]  

5.4.1 Co3Mo3N. 

5.4.1.1  1H NMR Spectroscopy. 

It is evident that the obtained spectrum, Figure 5.4-3, is very different to that of the control, 

which is presented in Figure 5.4-1.  Two large multiplets at 1.62 ppm and 3.51 ppm 

correspond to THF and appear to mask some of the other shifts.  However it is clear that 

there is an abundance of peaks at the lower end of the spectra, indicative of small chain 

hydrocarbons.  This spectrum is very difficult to interpret and may possibly be due to the 

fact that multiple components are present within the sample.  Attempts to purify the 

mixture were undertaken through use of thin layer chromatography.  A variety of different 
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solvent systems were investigated to try and achieve a good separation, and clearly identify 

the number of compounds within the sample.  However, this proved difficult as the TLC 

spot appeared to either ‘run’ on the silica or remain on the baseline as a ‘whole’ spot.  This 

would possibly be due to the sample either being too concentrated or that the polarity of 

the compounds are in fact very similar to each making them difficult to separate.  Figure 

5.4-4 shows an expansion of Figure 5.4-3. 

 

Figure 5.4-3 1H NMR spectrum of products collected after pulse re action of Co 3Mo3N with 
H2/N2 and C 6H6 at 400 oC for 3 h (THF-d8).  

 
 
From the spectrum, below, it is apparent that there are several triplets, occurring at 0.91 

ppm and 2.38 ppm which would possibly be indicative of a CH2 coupling; whilst it is 

difficult to assign the multiplets at 1.65 ppm, 2.05 ppm and 2.20 ppm. 

 

Figure 5.4-4 Expansion of the chemical shifts from -1.0-3.0 ppm in Figure 5.4-3. 
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The region which is covered in spectrum a) in Figure 5.4-5 is generally associated with 

protons that are coupled to either N, O or halogen atoms and often exhibit a broadening of 

mark up areatheir peak shape.[277-280]  The two multiplets at approximately 3.58 ppm and 

3.75 ppm are difficult to identify, it is evident that a triplet occurs at 3.38 ppm; a triplet of 

doublets corresponding to a CH2CH=CH group at 3.95 ppm and a quartet at 4.12 ppm, 

which may possibly be a CH or  CH2 group coupled to a CH3 group.  This is slightly higher 

than would be expected from standard ethyl group which would generally appear between 

1-2 ppm, and it may be that a more electronegative atom, such as an O or N atom, is in 

close proximity. 

 

 

a) 

b) 
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Figure 5.4-5 Expansions of Figure 5.4-3 at differen t shifts in the spectrum where peaks are 
observed a) 3.2-4.4ppm b) 4.6-5.8 ppm c) 6-8.5ppm d ) 9-11ppm. 

 
Spectra b-d indicate that a OH or NH2 group may possibly be present within the sample, 

which is identified by a broad peak occurring at 4.81 ppm, characteristic of the presence of 

a RNH or ROH group, further reflections can also be observed at the higher end of the 

spectrum. Peaks which appear at higher chemical shifts are usually indicative of the 

presence of either a CO or COOH group.[277-280] 

5.4.1.2  XRD Patterns. 

It is evident that small shifts to higher Bragg angles occur in both post-reaction samples, as 

shown in Figure 5.4-6. This type of shift in the Bragg reflection is indicative of a decrease 

unit cell volume and thought to be, in this instance, as a result of loss of nitrogen from the 

sample.  The shift which is observed under a H2/Ar feed gas is consistent with that which 

c) 

d) 



Anne-Marie Alexander Chapter 5 197 

has been previously documented by Mckay and co-workers.  In the case of the H2/N2 

sample, the observed shift from 42.48 o to 42.68 o 2θ, is not as significant as is in the case 

of H2/Ar, however it is clear that a degree of loss of nitrogen has occurred. This was 

subsequently confirmed by post-reaction CHN analysis, in which it was found that 

nitrogen had been removed from the sample in addition to the addition of 0.70 wt.% of 

carbon. This is much lower than the stoichimetric value for carbon in Co3Mo3C which 

would be 2.52 wt.%. However there are no apparent reflections in the diffraction pattern to 

indicate the presence of carbon species such as graphite.  Consequently, it may be possible 

that this shift is attributed to the formation of a carbonitride phase.   

 

Figure 5.4-6 Pre-and Post-H 2/N2 and H 2/Ar XRD patterns of Co 3Mo3N from benzene/ammonia-
pulse reaction. 

 
 

5.4.2 Mg3N2. 

5.4.2.1  1H NMR Spectroscopy. 

The reaction products which were obtained from this reaction, coating the post-reaction 

packing granules, were light yellow in colour and dissolved in chloroform unlike most of 

the other reaction products which appeared to only dissolve in THF. It is apparent from the 

spectra that there are no peaks in the aromatic region, apart from a small peak at 7.21 ppm, 

which can possibly be attributed to unreacted benzene. 
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Figure 5.4-7 1H NMR spectrum of products collected after pulse re action of Mg 3N2 with H 2/N2 
and C 6H6 at 400 oC for 3 h (CDCl 3). 

 
On expansion of this spectrum the splitting pattern becomes more evident, Figure 5.4-8 a-

c.  However as the spectrum is relatively complex it is difficult to accurately determine the 

compound or compounds within the sample, although the compound or compounds are 

most likely to be unsaturated hydrocarbon(s) due to the number of peaks within 1.5-2.5 

ppm and 3.5-5.5 ppm, which are typically regions where allylic or vinylic proton peaks are 

observed.[277-280] 

 

a) 
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Figure 5.4-8 Expansions of Figure 5.4-7 at differen t shifts in the spectrum where peaks are 
observed a) 1.2-2.8 ppm b) 3.3-5.2 ppm c) 4.6-5.8 p pm. 

 

5.4.2.2  XRD Patterns. 

Again as has been found in both lattice (Chapter 3) and the benzene flow studies, Mg3N2, 

does not appear to undergo any significant bulk phase change upon reaction, with no 

apparent shift in Bragg angle to indicate an increase or decrease in the unit cell volume, 

nor does the material appear to decompose to Mg metal, as has been seen with some other 

nitride materials which have been investigated.  All three samples match to cubic Mg3N2, 

and it is apparent from the XRD patterns that the reflections are sharp and indicative of 

well crystalline material.   

b) 

c) 
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Figure 5.4-9 Pre-and Post-H 2/N2 and H 2/Ar XRD patterns of Mg 3N2 from benzene/ammonia-
pulse reaction. 

 
 

5.4.3 Re3N. 

5.4.3.1  1H NMR Spectroscopy. 

Figure 5.4-10 shows the 1H NMR spectrum which was obtained for the reaction of Re3N 

and benzene.  As is evident, the spectrum is very complex making identification of 

compounds difficult, and although relatively similar to that which was observed in the case 

of Co3Mo3N, differences can be observed.  The most apparent difference is a small broad 

peak at 4.91 ppm, which could possibly be RNH2 group, which has an approximate 

chemical shift of between 5-8 ppm[277-280] and a collection of very weak peaks in the 

aromatic region at approximately 7.32 ppm, and 6.25 ppm, which have been expanded in 

Figure 5.4-11. 

 

Figure 5.4-10 1H NMR spectrum of products collected after pulse re action of Re 3N with H 2/N2 
and C 6H6 at 400 oC for 3 h (THF-d8). 
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Upon expansion of the aromatic region, Figure 5.4-11 a), it is evident a substituted 

aromatic fraction is present in the reaction products, with a small triplet and two doublets 

being apparent.  However, the remaining peaks overlap to such an extent that it is unclear 

which positions a substitution may occur and how many protons are associated with this 

aromatic species. A small doublet is also evident at 6.24 ppm 

Furthermore the peak which can be observed at 8.05 ppm may possibly be unreacted 

benzene and additional peaks at approximately 9.69 ppm, and at 9.67 ppm, Figure 5.4-11 

b), comprise a doublet of doublets and a doublet of triplets respectively. Due to the peak 

position, it may also be possible that this corresponds to substituted benzene which has an 

oxygen atom present in the structure. 

 

 

 

a) 

b) 



Anne-Marie Alexander Chapter 5 202 

Figure 5.4-11 Expansions of Figure 5.4-10 at differ ent shifts in the spectrum where peaks are 
observed a) 6.3-7.4 ppm b) 7.9-10.0 ppm  

 
From the above spectra it is probable that there is more than one compound present in the 

reaction products. 

5.4.3.2  XRD Patterns. 

As seen in previous studies the “Re3N” starting material appears to be largely amorphous 

with a very broad reflection centring upon 40 o 2θ.   Under H2/N2 at 350 oC for 3 h, almost 

total de-nitridation is apparent resulting in crystalline Re metal, with similar shifts which 

have been previously reported in Chapter 3, Figure 5.4-12. The H2/Ar pulse sample only 

partially de-nitrides and can be seen in the Figure with a mixture of Re reflections (again 

shifted) and the original broad reflection being evident in the post-reaction XRD pattern.  

Figure 5.4-12 Pre-and Post-H 2/N2 and H 2/Ar XRD patterns of Re 3N from benzene/ammonia-
pulse reaction. 

 

5.4.4 Cu3N. 

5.4.4.1  1H NMR Spectroscopy. 

The reaction product obtained from the pulse reaction of Cu3N and benzene with H2/N2, 

was bright blue in colour, which was a visual indication that a reaction had taken place.  

The 1H NMR spectrum for these reaction products was very similar to that obtained for the 

products of the Co3Mo3N reaction, and is shown in Figure 5.4-13.  It is interesting that 

both colours were also similar; however the colour of the products acquired in the pulse 
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reaction with Cu3N was much more intense than that observed in the case from the 

Co3Mo3N pulse reaction.  It may be possible that Cu3N is more reactive towards benzene 

than Co3Mo3N thus leads to increase in the concentration of products which may result in 

the more intense colour. 

The two characteristic THF peaks are apparent at approximately 1.61 and 3.49 ppm.  As 

with the Co3Mo3N reaction product, a number of peaks are concentrated at the lower end 

of the spectrum, some of which appear to be masked by the THF signals. Additionally 

there is a peak centring around 9.59 ppm, as well as another at 7.95 ppm, which can be 

attributed to un-reacted benzene. It is probable that the spectrum presented in Figure 5.4-13 

is compiled of several different compounds and one of which may potentially have a CHO 

group in its structure, this would give rise to a chemical shift between 9 and 10 ppm, and 

hence account for the peak observed at 9.59 ppm. 

Furthermore the two singlets centring on 4.80 and 5.25 ppm may possibly be protons 

attached to a tertiary C=C bond, or it may also be possible that these peaks correspond to 

CONH2 or ROH groups.[277-280] 

It is not possible to accurately determine which compounds are in this sample by the 

spectrum alone as it is too complex. As previously mentioned it is most likely that the 

sample contains more than one reaction product.  

 

 

Figure 5.4-13 1H NMR spectrum of products collected after pulse re action of Cu 3N with H 2/N2 
and C 6H6 at 400 oC for 3 h (THF-d8). 
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5.4.4.2  XRD Patterns. 

In the case of the pulse reaction under a H2/Ar feedstream, copper nitride decomposed to 

the copper metal as expected due to the reaction being conducted at 350 oC, which is above 

the sample decomposition temperature.  However, under H2/N2, it is clear from the 

diffraction pattern shown in Figure 5.4-14, that the nitride did not undergo complete 

decomposition, with a mixture of copper nitride and copper metal phases being evident.  

This was surprising due to the fact that copper nitride apparently decomposes to copper 

metal at temperatures above 250 oC, as was observed in the other studies documented in 

this thesis.  

 

Figure 5.4-14 Pre-and Post-H 2/N2 and H 2/Ar XRD patterns of Cu 3N from benzene/ammonia-
pulse reaction. 

 
 

5.4.5 Zn3N2. 

5.4.5.1   1H NMR Spectroscopy. 

As for the Co3Mo3N and the Cu3N samples the reaction product, once dissolved off the 

post-reaction packing material, was blue in colour. Likewise a similar 1H NMR spectrum 

was obtained with the same chemical shifts to that observed in the Cu3N reaction products.  

Chemical shifts greater than 9 ppm are generally associated with elements that have a high 

electronegativity, such as oxygen.  The resultant peak at 9.61 ppm is indicative that an 

oxygen atom may be present in one of the reaction products.  This may have arisen due to 

the fact that trace amounts of ZnO are present in the pre-reaction Zn3N2 sample, as 



Anne-Marie Alexander Chapter 5 205 

confirmed by XRD anaysis in Figure 5.4-15, and subsequently the benzene may have 

reacted with these oxide species to produce oxygen containing products. 

 

Figure 5.4-15 1H NMR spectrum of products collected after pulse re action of Zn 3N2 with H 2/N2 
and C 6H6 at 400 oC for 3 h (THF-d8). 

 
 

5.4.5.2  XRD Patterns. 

As was observed for the H2/N2 and H2/Ar studies, the presence of ZnO is apparent in all 

samples.  It is thought to occur as a result of aerobic oxidation of zinc metal upon 

discharge of the sample.  It is also apparent that, in the case of the H2/Ar pulse reaction, the 

characteristic Zn3N2 peak at approximately 23 o 2θ is significantly diminished so that it is 

very weak in comparison to other reflections.  However there does not appear to any 

significant shift in the reflections, despite the significant loss of nitrogen upon reaction, 

confirmed by post-reaction CHN analysis. 
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Figure 5.4-16 Pre- and Post-H 2/N2 and H 2/Ar XRD patterns of Zn 2N3 from benzene/ammonia-
pulse reaction. The symbols used show characteristi c reflections of Zn metal (  ) and ZnO     
(  ) that can be clearly identified without ambigui ty.  

 
 

5.4.6 Co-4Re. 

5.4.6.1   1H NMR Spectroscopy. 

The reaction product obtained from the post-reaction bed granules was red/brown in 

colour, and as with the other spectra that have been described in this section, the 1H NMR 

spectrum is very complex, Figure 5.4-17, and therefore identification of species is 

problematic.   However unlike the other spectra, it is evident that two large peaks in the 

aromatic region corresponding to a triplet at 7.16 ppm and a multiplet at 7.08 ppm, as 

benzene is generally represented by a singlet between 7-8 ppm, and within this body of 

work has been generally observed at ca. 8 ppm, the presence of a triplet and multiplet 

within the aromatic region would be indicative of a substituted benzene.  Due to the upfield 

shift, with respect to the previously observed benzene peaks (ca. 8 ppm), this may indicate 

that the substituent group is electron donating such as NH2 or OCH3.  If an electron 

withdrawing group were attached, for instance OH or NO2, a shift to a more downfield 

position would be expected.  Additionally a broad peak can be observed at 3.78 ppm, 

which is slightly masked by the neighbouring THF signal at 3.62 ppm, and another at 5.00 

ppm.  These may potentially correspond to a NH or NH2 groups.  The peak at 3.78 ppm is 

slightly larger than that at 5.00 ppm and may either be a result of the two peaks belonging 

to different compounds or that there is more protons associated with the peak at 3.78 ppm.   

When these are peaks are compared to those observed in the aniline spectrum in Figure 
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4.3-2, there is a relatively good match.  However, as mentioned previously, it is difficult to 

establish if this is a compound present in the reaction products.   

 

 

Figure 5.4-17 1H NMR spectrum of products collected after pulse re action of Co-4Re with 
H2/N2 and C 6H6 at 400 oC for 3 h (THF-d8).  

 
It is also evident that there are additional smaller peaks observed in the aromatic region, 

which have been expanded for clarity in Figures 5.4-18 and 5.4-19.  It is apparent that the 

very weak peaks centring at 6.46 ppm, appear to correspond to a triplet and a doublet¸ 

however the resolution of these peaks is relatively low. 

  

Figure 5.4-18 Expansions of Figure 5.4-17 at differ ent shifts in the spectrum where peaks are 
observed a) 6.4-6.7 ppm   
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The peak centring at 7.96 may be attributed to unreacted benzene, whilst the two doublets 

of doublets at 7.43 ppm and 7.72 ppm may be the result of a di-substituted phenyl, with 

one substituent being very electron withdrawing, such as a NO2 group, this would 

subsequently cause two doublet of doublets to be observed in the 1H NMR spectrum, a 

consequence of the resonance within the aromatic ring.  

As previously mentioned the presence of electron withdrawing substituents result in 

downfield chemical shifts of the proton signals.  This would therefore explain the presence 

of peaks observed at 9.28 ppm and approximately 9.66 ppm, Figure 5.4-19 b). 

 

 

 

Figure 5.4-19 Expansions of Figure 5.4-17 at differ ent shifts in the spectrum where peaks are 
observed a) 7.4-8.0 ppm b) 9.2-9.8 ppm  

a) 

b) 
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5.4.6.2  XRD Patterns 

As with the previous studies investigating Co-4Re, as discussed in Chapter 3, the post-

benzene diffraction patterns match to the pre-reaction diffraction pattern, although the 

system again appears to become more crystalline upon reaction. Both pre- and post-

reaction samples contain a mixture of Co metal and Re metal phases which are indicated in 

Figure 4.4.6- 2, by a star or circle respectively.   

 

Figure 5.4-20 Pre-and Post-H 2/N2 and H 2/Ar XRD patterns of Co-4Re from benzene/ammonia-
pulse reaction– (Co     Re    ) 

 

5.4.7 Post-Reaction Carbon and Nitrogen Analysis 

The post-reaction carbon and nitrogen contents of the benzene pulse reaction samples were 

determined by combustion microanalysis, and are provided in Table 5.4-2.  The nitrogen 

content of the pre-reaction sample and the stoichiometric value for each material are also 

presented for comparative purposes.  

As was observed in the benzene flow-reactions, both Fe2N and Fe doped β-Mo2N0.78 show 

an increased carbon content when compared to the other materials investigated, and again 

the presence of graphite was evident in the post-reaction XRD, although this may not be a 

true graphitic reflection in the  case of Fe doped β-Mo2N0.78 as has been previously 

discussed. The presence of carbon is also evident in the post-reaction Co3Mo3N sample, 

which have given rise to the small shift to increased Bragg angle apparent in the post-
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reaction XRD pattern, this may also explain why only 1/3 of the nitrogen is lost from the 

material instead of a loss of almost 50 % previously reported under a H2/Ar atmosphere; 

Zn3N2 and un-doped β-Mo2N0.78 samples. Trace amounts were also observed in Ni3N, 

Cu3N, Ta3N5 and Cu doped β-Mo2N0.78 samples, however were undetected by XRD 

analysis. 

It is apparent that both Ni3N and Cu3N do not fully reduce to the corresponding metal as 

has been previously observed, despite the reaction temperature being above that in which 

decomposition has been previously observed in the benzene flow reactions and in the 

studies conducted in Chapter 3.    It may be possible that by pulsing the NH3 sequentially 

the nitrides are regenerated to an extent. 

Again Zn3N2 displays a significant loss of nitrogen upon reaction, and is comparable to 

losses which have been previously reported in the reactions investigated in Chapter 3.   

When the nitrogen contents of the Zn3N2 post-flow and post-pulse reactions are compared 

it is clear that the nitrogen content is lower in the pulse reaction sample (being 5.45 wt.% 

and 3.14 wt.% respectively).  However it is also apparent, as mentioned earlier, that carbon 

is present within the post-pulse reaction sample, although the presence of carbon is not 

apparent by XRD analysis.  It may possibly that the carbon replaces some of the nitrogen 

in the metal lattice.   
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Table 5.4-2 Pre- and Post-benzene reaction nitrogen  and carbon content of materials 
investigated by a series of benzene and ammonia pul ses in H 2/N2 and H 2/Ar gas feeds. 

 
 

5.4.8 Summary 

The work which was conducted in this chapter was undertaken to investigate the 

possibility of direct synthesis of aniline from benzene.  Initial studies involved passing a 

flow of benzene over the material and condensing the effluent gas, which subsequently led 

on to reactions whereby benzene and ammonia were sequentially pulsed into a feed gas 

and over the reaction material.  Although it is clear that some of the materials, which have 

been investigated in the current study have produced some interesting results with respect 

to the organic species in which have been produced these currently remain unidentified, it 

is evident that these materials have not synthesised the target molecule, aniline.  

Material 

(350 oC) 

Nitrogen and Carbon content (wt.%) 

Calculated 
Stoichiometric 

N Content wt% 

Pre-reaction 

N Content 
wt% 

Post-reaction 

Observed N 
Content wt.% 

Observed C 
Content wt.% 

H2/N2 H2/Ar H 2/N2 H2/Ar 

Co3Mo3N * 2.92 2.93 1.79 1.63 0.70 0.54 

Mg3N2 * 27.74 23.50 18.73 17.41 - - 

VN 21.55 17.39 14.92  -  

Fe2N 11.13 7.86 3.71  0.92  

Co4N 5.60 3.68 -  -  

Ni3N 7.36 6.58 1.72  0.05  

Cu3N * 6.84 6.05 0.92 0.21 0.02 - 

Zn3N2 * 12.49 9.80 3.14 2.36 0.21 0.37 

Ta3N5 11.42 11.23 8.43  0.02  

β-Mo2N0.78 5.38 5.41 3.48   0.35  

Fe/β-Mo2N0.78 5.38 5.58 4.12   0.75  

Cu/β-Mo2N0.78  5.38 4.39 1.10   0.04  

W2N 3.66 6.13 5.48  -  

Re3N * 2.44 2.50 0.52 0.38 - - 

Co-4Re * n/a n/a - - - - 
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Further studies need to be conducted in order to identify the compounds produced from the 

pulse reactions; it may be that there is scope to develop these new and novel syntheses 

routes in the preparation of organic compounds.  

From the results presented in this chapter several nitride based systems appear to be of 

interest, these include Re3N, Cu3N Zn3N2, Co3Mo3N and Co-4Re.  

As was discussed in the introduction to this chapter, much effort has been done in an effort 

to characterise these unknown products.  Several different characterisation techniques were 

used, all of which provided little if no information regarding structural characterisation.  

This as has been mentioned may be a result of the low concentrations of products, which 

were obtained.  

In the initial studies with the benzene flow reactions a ninhydrin stain was used in order to 

identify whether primary amines were present in the sample, which stain blue-purple upon 

reaction with ninehydrin.  This colour was not observed in the spotted TLC plates however 

a pink/orange spot was observed in some instances.  It has been reported that some 

secondary amines stain this colour with ninehydrin, however it was also discovered that 

ninehydrin itself also dries, on the TLC plate, to the same pink/orange colour with 

prolonged heating and therefore this test was discarded as being unreliable. 

Additionally, infrared and UV-Vis spectroscopies were also undertaken.  It was thought 

that the infrared spectroscopy would provide information regarding the presence of NHx 

groups in the reaction products.  The spectra which were obtained matched that of the un-

reacted benzene despite the presence of additional peaks in the 1H NMR spectra.  UV-Vis 

spectroscopy was employed so as to assess the level of conjugation, if any, within the 

coloured pulse reaction samples.  Benzene has a characteristic band at 295 nm and on the 

basis that coloured compounds generally have an absorbance between 400-700 nm it 

would therefore be possible to assess the level of conjugation, and identify any functional 

groups present in the product reaction sample.  

This subsequently led to samples being analysed through the use of 1H NMR spectroscopy 

and mass spectroscopy.  Although these methods were useful to a certain extent the spectra 

which were obtained were often very complex making product identification difficult.  

Samples were also purified in the event that more than one compound was present in the 

reaction products.  This involved initially spotting TLC plates and finding an appropriate 
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solvent system in order to achieve a good separation between the components, however it 

was found that the spots streaked on the TLC regardless of the solvent system investigated. 

The most efficient system that was investigated was a 1 % methanol: chloroform system, 

which was subsequently used in a drip column to separate the reaction products.  It was 

found that most coloured reaction products had more than one component. It proved 

difficult to completely separate them, and as a result complex 1H NMR spectra were 

subsequently observed. 
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6. Conclusions 

In this thesis, a series of nitride-based materials have been screened and the reactivity of 

lattice nitrogen present within them was assessed.  Throughout this research project, the 

experimental work was conducted with the aim of developing a potential nitrogen transfer 

reagent in order to synthesise aniline via the direct conversion of benzene and has been 

split into three distinct sections. The first section of work investigated the hydrogenation of 

lattice nitrogen in order to assess the possibility of producing reactive species. It was 

necessary at this point to establish which materials were reactive and lost nitrogen from the 

metal lattice at or below 400 oC, the maximum temperature for the envisaged reactions 

with benzene. From the data presented, the removal of nitrogen from some of these 

materials and its potential for reaction was evident.   In order to truly act as a nitrogen 

transfer reagent in a process akin to the Mars-van Krevelen process, observed in metal 

oxide based reactions, it was necessary for the nitrogen deficient material to be 

regenerated, and hence this was the second section examined.  Finally the reaction of 

benzene and hydrogen over bulk binary nitrides in an attempt to trap the reactive NHx 

species, for the production of aniline was investigated.   To the author’s knowledge, this is 

the largest systematic study which has been undertaken in this area.  Valuable insights into 

all the different processes were obtained and are summarised in this section. 

• On moving left to right along the first row transition metal series, the corresponding 

nitrides became more thermally unstable, which could in theory prove to be 

advantageous in the development of a novel nitrogen transfer reagent.   

• Correspondingly, upon moving across the first transition metal series, it was found 

that ammonia production increased during the first 30 minutes on stream with Cu3N 

exhibiting the highest ammonia production rates during the first half hour of reaction.   

However, with the exception of VN, Fe2N and Zn3N2 which exhibited an almost 

steady state ammonia synthesis after 30 minutes, no further ammonia production was 

observed.  

• On descending a group, the ammonia production activity of the corresponding nitride 

also increases, which is subsequently sustained for longer than the 30 minutes 

observed in the case of the first series. 
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• On comparing the ammonia synthesis activities of binary metal nitrides with Ru 

based systems, it was found that only Zn3N2 has a ‘comparable’ activity to Ru.  

Although Re3N has an initial rate which is similar to that observed by Ru based 

systems, whilst Cu3N and Ni3N have an initial ammonia production rate which is 

more than double that observed by Ru. 

• Hydrogenation of lattice nitrogen in the binary nitride systems has been shown to be 

a function of temperature.  Increasing the temperature under H2/Ar appears to 

differentiate between weakly and strongly bound nitrogen species.  Despite the vast 

excess of hydrogen in the gas-phase, the nitrogen lost from these materials 

predominantly occurs in the form of N2. 

• The loss of nitrogen, and therefore its potential to be employed in nitrogen transfer 

reactions, is evident. Nitrides of the later transition metals, Co4N, Ni3N and Cu3N, 

and also β-Mo2N0.78, are found to decompose fully to the parent metal, with heat 

treatment. All other nitrides retained nitrogen. 

• It was demonstrated that that the nitrogen content in most of the nitrogen deficient 

samples investigated, with the exception of Cu3N and Co4N, could either be partially 

or wholly restored under the nitriding gas used to prepare the original nitride phase,  

thereby confirming the possibility that the materials may potentially function as 

nitrogen transfer reagents. 

• Reactions investigating the possibility of direct synthesis of aniline from benzene 

were undertaken over materials which either displayed a loss of nitrogen or 

demonstrated the ability to synthesise ammonia at 400oC or below.  Initial studies 

involved passing a flow of benzene over the material and condensing the effluent 

gas, which subsequently led on to reactions whereby benzene and ammonia were 

sequentially pulsed into a feed gas and over the reaction material.   

• Certain materials produced interesting results, namely Zn3N2, Cu3N, Re3N, 

Co3Mo3N, Mg3N2 and Co-4Re, and further work is required in order to characterise 

the products obtained primarily due to the fact that product identification by 1H NMR 

spectroscopy, mass spectroscopy and GCMS, proved difficult as a consequence of 

the low concentrations of products within the samples.  The main focus of this screen 

was to produce aniline and this was not achieved.   
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• Nitrides such as Ni3N, Fe2N, un-doped and Fe doped β-Mo2N0.78 and Co3Mo3N show 

a higher tendency for carburisation as benzene is passed over the material.  XRD 

analysis of the Ni3N, Fe2N and Fe doped β-Mo2N0.78 post-reaction samples indicate 

the presence of an extra reflection, attributed to graphite, and provides an explanation 

for the excess carbon present in the post-reaction sample, whilst the XRD diffraction 

patterns of un-doped β-Mo2N0.78 and Co3Mo3N exhibit small shifts to either higher or 

lower Bragg angles respectively. This may arise from the insertion of C atoms into 

the crystal structure and consequently forming a carbonitride phase. 

Below is diagram of the Periodic Table to illustrate the range of materials which have been 

investigated.  Those which are highlighted in blue those nitrides (or elements in the case of 

Co-4Re and Co3Mo3N) exhibit some interesting features, in terms of the reaction products 

which were observed, and are worthy of further investigation. 

1

H

2

He

3

Li

4

Be

Atomic Number

SYMBOL

5

B

6

C

7

N

8

O

9

F

10

Ne

11

Na

12

Mg

13

Al

14

Si

15

P

16

S

17

Cl

18

Ar

19

K

20

Ca

21

Sc

22

Ti

23

V

24

Cr

25

Mn

26

Fe

27

Co

28

Ni

29

Cu

30

Zn

31

Ga

32

Ge

33

As

34

Se

35

Br

36

Kr

37

Rb

38

Sr

39

Y

40

Zr

41

Nb

42

Mo

43

Tc

44

Ru

45

Rh

46

Pd

47

Ag

48

Cd

49

In

50

Sn

51

Sb

52

Te

53

I

54

Xe

55

Cs

56

Ba

*

57-

70

71

Lu

72

Hf

73

Ta

74

W

75

Re

76

Os

77

Ir

78

Pt

79

Au

80

Hg

81

Tl

82

Pb

83

Bi

84

Po

85

At

86

Rn

87

Fr

88

Ra

**

89-

102

103

Lr

104

Rf

105

Db

106

Sg

107

Bh

108

Hs

109

Mt

110

Uun

111

Uuu

112

Uub

114

Uuq

 

This is the first study to screen such a large range of both binary and ternary nitride 

systems in this manner.  By assessing the nitrogen desorption properties of each binary 

nitride, both with respect to across the Periodic Table, it is therefore possible to potentially 

develop a more suitable second-generation catalyst based upon the periodic trends 

identified. 

In terms of this 1st generation screening process it is possible to establish possible 2nd 

generation ternary and quaternary nitride candidate systems, based upon the lattice 

nitrogen reactivity and also the thermal stability of the binary nitrides.  It would be 

interesting to continue this work and possibly probe the effect and activity of mixed 

systems to either increase activity or increase the thermal stability of the material.  For 
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instance, if it were possible to make a ternary ZnTi system, the combination of an unstable 

system (Zn) and a stable system (Ti) would be achieved.  Another system which may prove 

interesting would be a Ta based ternary nitride, perhaps involving Cu or Ni.  Ta3N5 was 

very interesting in the fact that it had very desirable ammonia synthesis properties, was 

relatively stable in a H2/N2 atmosphere and could also be regenerated to the original phase 

after being depleted of N.  However, no reaction was observed with benzene.  Cu3N and 

Ni3N on the other hand decompose to the corresponding metal at low temperatures; they 

are difficult to restore to the original nitride phase, and Cu3N appears to be active in the 

synthesis of organic based compounds.  These compounds may have a similar valence 

electron count as CoMo (15e-); 15e- (ZnTi), 16e- (CuTa) and 15e- (NiTa) which may 

potentially influence the properties of the material, with respect to their activity and 

performance as a nitrogen transfer reagent, if electronic parameters are of significance. 
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