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Abstract 
 
 
Background 

Hyperglycaemia is common in acute stroke and is associated with a poor 

outcome. Underlying aetiology and mechanism of action is poorly 

understood. Management remains uncertain.  

 

Methods 

We undertook a randomised placebo controlled trial to assess the effect of 

GKI (Glucose-Potassium-Insulin) versus placebo on lesion volume 

progression and cerebral lactate levels using magnetic resonance imaging 

(MRI) and spectroscopy (MRS). 

 

An observational study of the capillary blood glucose within 48 hours of 

stroke onset was performed to define the temporal profile of glucose, with a 

subset followed prospectively to determine the prevalence of abnormal 

glucose metabolism in patients with stress hyperglycaemia.  

 

The association between insular cortex involvement and hyperglycaemia 

was determined by analysing MRI data sets from two randomised trials. 

 

Stroke unit practice for the management of glucose was assessed in a 

review of the stroke unit trialists’ collaboration data set. 
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Results 

• GKI infusion failed to attenuate infarct growth in patients with 

moderate hyperglycaemia within 24 hours of acute ischaemic stroke.  

A trend towards attenuation of increased lactate concentration was 

evident in the GKI treatment arm.  Exploratory analyses raised the 

possibility that GKI may be harmful in patients with persistent arterial 

occlusion.  

• Over the 48hour monitoring period 75% of patients developed 

Hyperglycaemia. Stroke severity was not predictive of admission 

hyperglycaemia whereas glycosylated haemoglobin was (OR 2.97; 

95%CI 1.84-4.78; p<0.001). 50% of patients screened were found to 

have abnormal glucose metabolism at follow-up.   

• Insular cortex involvment on MRI was not predictive of admission 

hyperglycaemia. 

• Testing for blood glucose concentration in stroke units was infrequent.  

Of the minority of units that had a protocol in place, the threshold for 

intervention with insulin was >10mmol/l.   

 

Conclusion 

We found no evidence that GKI infusion attenuated infarct growth in patients 

with mild hyperglycaemia following acute ischaemic stroke. In post-hoc 

analysis the possibility that GKI infusion may be harmful in patients with total 

occlusion suggests an effect dependent on recanalisation status. A non-
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significant trend towards attenuation of increased lactate concentration was 

evident.  Stroke severity was not found to be a predictor of post stroke 

hyperglycaemia. Underlying dysglycaemia was common in non-diabetic 

patients manifesting hyperglycaemia within 48hours of stroke ictus. 

Screening of high risk patients with oral glucose tolerance testing is justified 

and provides a potential opportunity for secondary prevention. Insular cortex 

involvement did not independently predict hyperglycaemia in acute stroke. 

Current management of hyperglycaemia is guided by consensus guidelines 

with little evidence base. Stroke unit practice varies with little change across 

stroke units over the years.  
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at the connection between diet and cancer 
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MR magnetic resonance 

MRA Magnetic Resonance Angiography 
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NBM nil by mouth  
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PWI Perfusion Weighted Imaging 

reteplase a thrombolytic drug 

ROS  reactive oxygen species 

r-proUK recombinant pro-urokinase  

rtPA recombinant tissue –Plasminogen Activator 

SAA serum amyloid A  

SAH subarachnoid haemorrhage 

SAINT Stroke-Acute Ischaemic NXY Treatment 

SCMU stroke care monitoring unit  

SELESTIAL 
Spectroscopic Evaluation of Lesion Evolution in Stroke: Trial of Insulin for Acute 
Lactic acidosis 

SEM  standard error of the mean 

SIS ward a semi-intensive stroke ward 

SITSMOST Safe Implementation of Thrombolysis in Stroke: Monitoring Study 
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STOP-NIDDM Study to prevent Non Insulin Dependent Diabetes Mellitus trial  

stroke ictus moment of stroke onset 
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THIS Treatment of Hyperglycaemia in Ischaemic Stroke trial  

TIA transient ischaemic attack 
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TOAST Trial of ORG 10172 in Acute Stroke Treatment 

TOF Time of Flight  

VEGF vascular endothelial growth factor 
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1.1 Introduction 
 

Stroke is the third commonest cause of death and the leading cause of 

disability in the United Kingdom. Recent national audit office figures estimate 

that in England there are 110,000 strokes and a further 20,000 transient 

ischaemic attacks each year1. In Scotland, there are an estimated 15,000 

strokes annually2. Stroke is predominantly a condition affecting older people 

with 75% of strokes occurring in those greater than 65 years of age3.  The 

estimated increase in the numbers of older people in society suggests that 

the cost of stroke will continue to rise. Stroke care directly costs the NHS 

£2.8 billion per year with an additional estimated indirect costs of £1.8 billion 

for lost productivity and £2.4 billion incurred through informal care by family 

and friends4.  

 

A stroke is characterised by rapidly developing clinical signs of focal (or 

occasionally global) disturbance of cerebral function, lasting for more than 24 

hours or leading to death with no apparent cause other than of vascular 

origin (World Health Organisation definition 1976).5  Stroke can be 

subdivided into ischaemic stroke, accounting for 85% of all strokes and  

haemorrhagic stroke which accounts for the remaining 15%.5  Haemorrhagic 

strokes are then subdivided into primary intracerebral haemorrhages (PICH, 

10%) or subarachnoid haemorrhages (SAH, 5%). About 10% of all people 

with acute ischaemic stroke will die within 30 days of stroke onset. Of those 

who survive, about 50% will experience some level of disability after six 
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months.6 In contrast 35% to 52% of patients with primary intracerebral 

haemorrhage will die within one month of symptom onset and only 20% are 

functionally independent at 6months.7,8  

 

Methodological factors within different populations have made comparison of 

stroke incidence difficult. Criteria have now been proposed for accurate case 

ascertainment.9  The crude annual incidence per 1000 population for any 

stroke as measured in the OXVASC (Oxford Vascular) study was 1.87 (95% 

Confidence Intervals 1.67-2.08) and 1.45 (95% CI 1.28 – 1.63) for first ever 

stroke.10      

 
 
1.2 Ischaemic Stroke 
 
Ischaemic strokes are mainly due to cardioembolism, extracranial or 

intracranial atherosclerosis or non-atherosclerotic cerebral vasculopathies. It 

is estimated that cardiac embolism accounts for 12 to 35% of ischaemic 

strokes.11 The most common cardiac source in western societies is non-

rheumatic atrial fibrillation, the prevalence of which increases with age. It is 

estimated that 30% of patients with stroke aged >80 years of age have atrial 

fibrillation compared to 5% of patients <60years.12 A presumed 

atherosclerotic mechanism is found in nearly 50% of patients with ischaemic 

stroke. Atherosclerosis primarily affecting the extracranial or intracranial 

vessels is responsible for 25% of all ischaemic strokes. About 20% of 

ischaemic strokes are due to lacunar infarcts. The mechanism underlying 
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lacunar ischaemic stroke is poorly understood but is thought to arise from a 

pathologically diffuse vascular abnormality, involving endothelial damage 

and blood brain barrier permeability.13 Only a small proportion is now felt to 

be as a result of artery-to-artery or cardiogenic emboli or intracranial large 

artery stenoses. Risk factors for atherosclerosis include hypertension, 

smoking, dyslipidaemia and diabetes.5  

 

1.3 Haemorrhagic Stroke 
 
Off the 15% of strokes that are non-ischaemic in origin, 10% will be due to 

primary intracerebral haemorrhage (PICH) and 5% subarachnoid 

haemorrhage (SAH). The main risk factor for PICH is hypertension. In a 

population based study the overall incidence of PICH was 12-15 cases per 

100,000 people per year.14 PICH is most common in men, in elderly people 

and in Asian and African Americans.15 Common underlying mechanisms 

include hypertension, ruptured arteriovenous malformations (AVM) or 

intracranial aneurysm, iatrogenic bleeds, cerebral amyloid angiopathy and 

the abuse of sympathomimetic drugs (cocaine, amphetamines).16  

 

In a comparison of data from two epidemiological stroke studies in the same 

area 20 years apart (Oxford Community Stroke Project (OCSP) 1981-84 and 

1986) and (OXVASC 2002-06), there was found to be no difference in the 

overall number of cases of PICH in the two studies. Interestingly, when the 

groups were further divided by age, there was a significant reduction in the 
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incidence of PICH in patients aged under 75 (rate ratio 0.53, 95% CI 0.29-

0.95; p=0.03) but the number of cases of in patients ≥75 tended to increase. 

(2.0, 95% CI 0.8-4.6; p=0.09). The incidence of PICH associated with 

premorbid hypertension fell (0.37, 95% CI 0.20-0.69; p=0.002) but the 

incidence associated with antithrombotic use increased (7.4, 95% CI 1.7-32; 

p=0.007). In patients above the age of 75, the proportion of cases who were 

non-hypertensive with lobar bleeds and presumed to have amyloid related 

haemorrhages increased (4.0, 95% CI 1-17; p=0.003).17  

  

1.4 Stroke Management 
 
The managment of stroke patients has seen significant changes over the last 

decade, with the development and implementation of dedicated stroke units.  

When the outcomes of patients admitted to stroke units were compared to 

those receiving conventional treatment  as part of randomised trials, stroke 

units were found to reduce patient mortality and both dependency and 

disability amongst stroke survivors.18   The definition of stroke unit includes 

models of care at different ends of the spectrum. This varies from acute 

physiological monitoring19 with high nurse staffing levels to the more 

historical rehabilitation wards20 that admit patients following an in-patient 

delay. In a systematic review involving almost 5,000 patients from 23 clinical 

trials, stroke patients managed in stroke units were less likely to die 

(Absolute Risk Reduction (ARR) 3%), require institutional care (2% absolute 

reduction) or have long term dependency (5% absolute reduction).21 An 
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additional advance in stroke care has been the recent licensing of 

thrombolysis for acute ischaemic stroke within three hours of stroke onset.22 

Stroke is now recognized as an acute emergency with the emphasis on early 

recognition, hospital presentation and rapid imaging.  The changes 

necessary to advance the management of stroke patients have been 

highlighted in the recently published national stroke strategy for England.   

 

1.5 Acute Stroke Treatments 
 
(a) Thrombolysis 

The licensing of intravenous alteplase for the treatment of acute ischemic 

stroke in appropriately selected patients within three hours of stroke onset 

has seen a greater emphasis on early presentation, prompt assessment, 

access to imaging, interpretation of imaging and treatment. Intravenous 

alteplase (recombinant tissue –Plasminogen Activator, rt-PA) within three 

hours of onset improves the chances of neurological recovery and functional 

independence after ischaemic stroke, with a number needed to treat of only 

8 for one additional person to make a full or nearly full recovery in the 

National Institute of Neurological Disorders and Stroke (NINDS) trial.23 

Although there was an increase in haemorrhage rates at 6.4% in the rt-Pa 

group versus 0.6% in the placebo group, there was no significant difference 

in mortality between the rt-PA group (17%) and the placebo group (21%; 

p=0.30) at three months. 

A further pooled analysis of stroke thrombolysis trials has shown that the 
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odds of a good outcome are greater the earlier treatment is provided, with an 

additional apparent benefit up to 4.5 hours.24 Attempts to extend the time 

window using brain imaging techniques have shown differing results. The 

recent randomized placebo controlled Desmetoplase In Acute Stroke (DIAS) 

II study showing no benefit over placebo when desmetoplase, a novel new 

thrombolytic agent was administered up to 9hours following ictus,25. The 

pooled multi-centre observational analysis of core CT and MRI based 

prospective thrombolysis data involving 1,210 patients treated with alteplase, 

demonstrated that the use of MRI for patient selection beyond 3hours 

predicted a favourable outcome (OR: 1.467; 95% CI: 1.017 to 2.117, 

p=0.040)26. A more detailed description of MRI in acute stroke is given in 

chapter three. 

 

Despite initial slow acceptance of rt-Pa, there has been a gradual increase in 

its use. Alteplase was provisionally licensed in the United Kingdom in April 

2003 within three hours of stroke onset for patients aged eighty or younger. 

There were two restrictions imposed with the licensing; (a) all patients were 

recorded with the Safe Implementation of Thrombolysis in Stroke: Monitoring 

Study (SITS-MOST) online database22 and (b) Boehringer-Ingelheim the 

drug manufacturers performed a further study, aimed at extending the time 

window to 4.5hours (ECASS III: European Cooperative Acute Stroke Study 

3). The recent publication of the SITS-MOST study including more than 

6,000 patients reported that the use of thrombolysis was feasible in centres 
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of varying experience and more importantly in centres not actively involved 

in research.22 Outcomes from the study were similar to the NINDS study 

population and reassuringly haemorrhage rates were similar for both 

treatment groups when similar definitions were applied.   

 

Despite increased acceptance of the drug and confirmation of its efficacy 

and feasibility, widespread uptake remains poor. Stumbling blocks include 

early presentation and access to both imaging and interpretation. In the 

United Kingdom initial concerns that few patients would be eligible due to the 

short time window were contradicted by a prospective study, which identified 

that over one third of patients were present in hospital within three hours of 

onset.27 In the National Audit Office report “Reducing brain damage: faster 

access to stroke care”, less than 1% of stroke patients in England received 

thrombolysis annually.28 Although attempts have been made to increase 

early hospital presentation and provide greater access to thrombolysis, there 

appears to be an upper limit of patients eligible for thrombolytic treatment. 

Even in the most active thrombolysis centres, almost 80% of patients with 

stroke would still either not be eligible or ultimately not receive intravenous 

alteplase.29  

 

(b) Neuroprotective agents 

Multiple neuroprotective agents; NMDA antagonists, calcium channel 

blockers and antioxidants have been studied in clinical trials.30 Despite 
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positive results from pre-clinical models no drug has yet been proven 

efficacious in the treatment of acute stroke.  In the recent randomised 

placebo controlled SAINT I trial (Stroke-Acute Ischaemic NXY Treatment), 

involving 1,722 patients within six hours of acute ischaemic stroke, NXY-059 

(a nitrone spin trap molecule with free radical sink properties) significantly 

improved the overall distribution of scores on the modified rankin scale at 

day 90.31 However a subsequent SAINT II study involving 3,400 patients 

failed to confirm the initial trial results.32 The earlier IMAGES trial 

(Intravenous Magnesium Efficacy in Stroke) which randomised 2,589 

patients to magnesium or placebo within 12 hours of ictus found no overall 

benefit for magnesium over placebo.33 The lack of clinical evidence 

supporting the role of neuroprotective agents and the limited eligibility for 

widespread use of thrombolysis emphasises the importance of stroke unit 

care.  

 

1.6 Key components of Stroke Unit Care 
 
Whereas restrictions are imposed on the number of patients eligible for and 

thus receiving thrombolysis, all stroke patients irrespective of severity, time 

to presentation and aetiology can benefit from stroke unit admission. The 

key components of good stroke unit care remain poorly understood but it is 

suggested that patient outcomes are improved by minimizing preventable 

complications of stroke and enhancing independence in functional abilities. 

In a report compiled by the stroke unit trialists’ collaboration, consistent 
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approaches in stroke unit services that resulted in a beneficial outcome 

included a) assessment procedures (medical, nursing and therapy 

assessments), b) early management policies (e.g. early mobilization, 

avoidance of urinary catheterization, treatment of hypoxia, hyperglycaemia 

and suspected infection) and c) ongoing rehabilitation policies (co-ordinated 

multi-disciplinary care, early assessment for discharge).34  

 

Despite the proven benefit, recent figures taken from the national sentinel 

stroke audit estimate that as many as 38% of stroke patients in the United 

Kingdom are still not managed in stroke units during the period of their 

hospital stay.35 In addition, it has been shown that only 15% of patients are 

admitted to the stroke unit on the same day as their stroke.35 Set standards 

defined by the sentinel stroke audit and the recently published stroke 

strategy should ensure optimal and continued improvements in patient 

management. Recognition of stroke as a medical emergency with rapid 

hospital admission will allow many patients ineligible for lytic treatment to 

benefit from stroke unit care. Optimisation of care within the hyper-acute 

phase of stroke through manipulation of physiological parameters is currently 

receiving significant interest.  It is generally accepted that correction of 

dehydration, hypoxia and use of anti-pyretics are beneficial in the light of 

deficiencies in clinical randomized trials. In a case controlled study 

comparing patients with normal physiological values (peak calculated serum 

osmolarity <300mOsm/kg; peak temperature ≤37.5°C; peak blood glucose 
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≤10.0mmol/l; minimum oxygen saturation ≥93%) during the first three days of 

stroke admission to those with at least one abnormality, patients with 

physiological homeostasis had improved outcomes across a range of 

measurements.36 When the stroke unit trialists collaboration data was 

examined in relation to stroke unit interventions versus conventional care, 

stroke unit practice was associated with statistically significant increases in 

the reported use of oxygen (OR 2.39; 95% Confidence Intervals CI; 1.39 to 

4.66), measures to prevent aspiration (2.42; 95% CI 1.36 to 4.36) and 

paracetamol use (2.80; 95% CI 1.14 to 4.83).37  Understanding of the role of 

physiological homeostasis in the management of acute stroke appears 

important in influencing stroke outcome. In a pilot study, patients randomised 

to a stroke care monitoring unit (SCMU) with continuous oxygen saturations, 

body temperature and cardiac rhythm monitoring, had a lower mortality 

(3.7%) compared to patients managed in a non-monitored stroke unit (SU) 

(25.9%) despite standardized protocols (OR 0.11; 95% CI 0.02 to 0.96) 

(p=0.05).19 When monitoring was examined in a larger cohort of 206 patients 

admitted to either a monitored semi-intensive care stroke unit (SU) or a 

standard cerebrovascular unit (CU) that did not have access to continuous 

monitoring, a good outcome was observed at discharge in 114 SU patients 

(85%) and 78 CU patients (58%), (OR 2.63; 95% CI, 1.4 to 4.8; p<0.02).38   

 

1.7 Pathophysiology 
 
The pathophysiology of acute ischaemic stroke encompasses two main 
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processes: (1) Altered cerebral metabolism and its effect on cellular 

metabolism and ultimate cell death and (2) Reduction in cerebral blood flow 

through the action of vascular, haematological and cardiac events.  

 

Cerebral Metabolism 

The human brain has a high metabolic demand and uses glucose as its 

primary substrate for metabolism. Glucose is metabolised by aerobic 

glycolysis in the cellular cytoplasm and generates two moles of pyruvate, two 

moles of nicotinamide adenine dinucleotide (NADH) and a net of two moles 

of adenosine triphosphate (ATP) for every mole of glucose consumed. A 

constant supply of ATP is needed to maintain neuronal integrity and to keep 

the major extra-cellular cations Ca++ (calcium ions) and Na+ (sodium ions) 

outside the cells and the intracellular cation K+ (potassium ions) within the 

cells.  The rate of glycolysis is regulated to supply the energy necessary for 

normal cellular function by the modulation of the glycolytic enzyme 

phosphofructokinase-1. Increased ATP use activates this enzyme by 

increasing cellular AMP (adenosine monophosphate) levels and in turn 

increases the rate of glycolytic ATP generation. Pyruvate is metabolized in 

one of three different ways: 1) Reversibly converted to lactate and 

accumulates, 2) Converted to the amino acid alanine, or 3) Enters the 

mitochondrial matrix and is further metabolized by the tricarboxylic acid 

(TCA) cycle.  In normal brain in the presence of oxygen, pyruvate is 

metabolized with the net formation of 38moles of ATP. In the absence of 
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oxygen, anaerobic glycolysis occurs resulting in the conversion of pyruvate 

to lactic acid through the action of lactate dehydrogenase. This process is 

less energy efficient with only two molecules of ATP produced along with 

lactic acid. Neurones in the brain require a constant supply of ATP to 

maintain their integrity and maintain cellular homeostasis. As the brain is 

unable to store energy it requires a constant supply of oxygenated blood 

containing an adequate glucose concentration.39 

 

The normal global cerebral blood flow (CBF) in a healthy adult is 50-

55ml/100g of brain per minute. Critical thresholds for the brain have been 

identified using both experimental animal models and clinical studies in 

patients during endarterectomy. When CBF falls to 15ml/100gm/min, 

spontaneous and electrical activity ceases. With further falls in CBF the 

water and electrolyte content of ischaemic tissue changes due to failure of 

ATP-dependent cell ionic pumps. The critical threshold for the beginning of 

irreversible cell damage is a CBF of approximately 10ml/100g/min40. For a 

short period neurones may remain viable and recover function if perfusion is 

restored. If reperfusion does not occur the lack of oxygen results in inhibition 

of normal enzymes and the development of anaerobic glycolysis and 

subsequent loss of ion homeostasis. Knowledge of two different thresholds 

gives rise to the concept of the ischaemic penumbra, a region of tissue 

defined by CBF that lies between the thresholds for loss of electrical function 

and loss of cellular homeostasis.39 In humans it is uncertain as to how long 
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the ischaemic brain can survive and still be salvaged by reperfusion or 

measures to protect neurones from dying.  

 
1.8 Management of Physiological Parameters (other than glucose) 
 
The neurons in the ischaemic penumbra are vulnerable to any additional 

insults, including any further falls in perfusion pressure caused by 

hypovolaemia due to either dehydration or iatrogenic manipulation of blood 

pressure. Monitoring of blood pressure and the creation of an appropriate 

environment through maintenance of physiological parameters may avoid 

conversion of the potentially viable neurons to necrotic tissue. Knowledge of 

the ischaemic penumbra and the potential for stabilizing the physiological 

environment in which the penumbral tissue exists has seen an aggressive 

approach to the maintenance of physiological parameters.  

 

(a) Oxygen: Common abnormalities contributing to hypoxia in stroke 

patients include aspiration pneumonia41 and Cheyne-stokes 

respiration.42 Oxygen is important for aerobic metabolism and 

correction of hypoxia may prevent further neurological deterioration43. 

A quasi-randomised controlled trial found that routine (100%) oxygen 

supplementation for 24 hours after stroke onset had no benefit on 

stroke survival.44 Over correction of patients not hypoxic may be 

detrimental to the ischaemic brain due to the possible promotion of 

free radical oxygen formation during reperfusion.45 Current AHA 

(American Heart Association) guidelines recommend that hypoxic 
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patients with stroke should receive supplemental oxygen.46   

(b) Hydration: dehydration leads to a rise in haematocrit and a reduction 

in blood pressure, which can then exacerbate the ischaemic cascade 

by reducing cerebral blood flow.  It has been hypothesised that 

routine use of saline infusions in the first 24 hours may improve 

cerebral blood flow by limiting dips in systemic arterial blood 

pressure.47 However moderate haemodilution with venesection and 

dextran was found to have no overall beneficial effect over placebo in 

patients within 48hours of an acute ischaemic stroke.  

(c) Body temperature: A meta-analysis suggested that a temperature, 

defined in the range >37ºC to ≥38ºC in the first week post stroke was 

significantly associated with increased morbidity and mortality. 

Mechanisms for hyperthermia induced brain damage include 

neurotransmitter release, free radical formation and impaired 

recovery of brain metabolism.48 Recommendations advise 

maintaining normothermia with anti-pyretics and antibiotics.  

(d) Hypertension: The management of hypertension in the acute setting 

of stroke remains controversial and there remains no agreed 

consensus.   Stroke council guidelines advise management of 

systolic blood pressure exceeding 220mmHg or diastolic blood 

pressure exceeding 120mmHg, but adherence to these criteria vary 

and uncertainty remains.46 Within the normal physiological range, 

blood flow to the brain is independent of mean arterial pressure and 
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cerebral perfusion pressure and gives rise to the phenomenon of 

cerebral auto-regulation. In the ischaemic brain the ability to auto-

regulate is lost and CBF becomes passively dependent on blood 

pressure (BP), such that lowering BP in patients with acute stroke 

might further decrease CBF to already ischaemic tissue.49 In those 

patients eligible for treatment with rtPA, current AHA guidelines 

stipulate that blood pressure should be lowered so that the systolic is 

≤185mmHg and diastolic ≤110mmHg before thrombolytic therapy is 

started.46   

(e) Post-Stroke Hyperglycaemia: Continued uncertainty in the absence 

of substantive clinical evidence surrounds the appropriate 

management of hyperglycaemia during the acute post ictal phase of 

ischaemic stroke and forms the basis of this thesis.  
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1.9 Aims and Objectives of Thesis 

The aims of the research are as follows  

(i) Perform a review of the current literature relating to the detection 

and management of hyperglycaemia in acute ischaemic stroke. To 

include an assessment of the evidence for glucose as a prognostic 

indicator.  Describe potential mechanistic actions of glucose on the 

ischaemic brain and accompanying vasculature, including a 

description of experimental animal studies.  

(ii) Review current guidelines for blood glucose management in 

stroke, the basis for these guidelines and current audited practice. 

The study will include an assessment of evidence available for 

insulin use in both stroke and non-stroke populations. A separate 

study will examine the use of blood glucose lowering protocols in 

stroke units included in the Cochrane systematic review of stroke 

unit management.   

(iii) The main study within the thesis will focus on a single-centre 

randomised placebo controlled trial undertaken to examine the 

effect of insulin in the form of a Glucose-potassium-insulin infusion 

on lesion volume progression and final infarct size using magnetic 

resonance imaging (MRI) surrogate markers and lactate 

concentration measured using magnetic resonance spectroscopy 

(MRS).  
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(iv) To explain the methodology of the different magnetic resonance 

imaging techniques, separate chapters will focus on the use of 

MRI and MRS in acute stroke.  

(v) Examine the temporal profile of glucose within the acute stroke 

phase and potential predictive factors for the development of 

hyperglycaemia. 

(vi) Consenting patients involved in the blood glucose profiling study 

with hyperglycaemia will undergo an oral glucose tolerance test to 

determine the true prevalence of abnormal glucose metabolism 

and metabolic syndrome.  

(vii) A further chapter will determine the effect of lesion localisation 

within the ischaemic brain on the development of post stroke 

hyperglycaemia. 
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2.1 Literature Search Methodology 

The main purpose of the literature search was to review articles relating to 

the effect of blood glucose on outcome in patients with acute stroke. The 

search strategy was designed to capture original articles examining the 

effect of blood glucose on stroke outcome in clinical and experimental 

studies. The search included studies documenting both clinical and 

radiological outcome measures, the use of both blood glucose lowering 

interventions and thrombolytic therapy. Additional searches focused on the 

use of magnetic resonance imaging surrogate markers and magnetic 

resonance spectroscopy in acute stroke and a specific search on the use of 

insulin therapy in focal models of ischaemia. Additional information was 

obtained on the current use of insulin in both stroke and non-stroke 

populations. 

 

Databases searched for the main literature review included OVID (1950 to 

April 2007) and Embase (1980 to April 2007). Terms used in the search 

strategy are shown in Table 2.1. Additional information was obtained from 

bibliographies of suitably referenced material. A further search strategy for 

focal models of ischaemia included accessing BIOSIS and Web of 

Knowledge databases, along with abstract books from relevant scientific 

meetings. Training in literature searching was undertaken through a course 

run by the library department of the University of Glasgow and reinforced 

through sessions with the lead librarian on the Southern General Hospital 

site.   
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Databases: OVID (1950 to April 2007); EMBASE (1980 to April 2007) 

Terms used MeSH Headings Keywords 

 - stroke Cerebrovascular Accident  
Cerebrovascular Disorders 
Carotid Artery Diseases  
Hypoxia-Ischemia, Brain 
Intracranial Arteriovenous Malformations  
Intracranial Embolism and Thrombosis  
Intracranial Hemorrhages  
Vertebral Artery Dissection 
Brain Infarction 
Subarachnoid Hemorrhage 
Intracranial Hemorrhages 
Cerebral Infarction 
Brain Ischemia 
Ischemic Attack, Transient 
Cerebral Hemorrhage 
Parietal Lobe 
Temporal Lobe 

stroke 
cerebrovascular accident   
brain infarct$ 
cerebral infarct$ 
cerebral ischaemia 
subarachnoid h$emhorrage  
subarachnoid h$emorrhage 
intracranial h$emorrhage 
cerebral h$emorrhage 
cerebellar h$emorrhage 
intracranial bleed 
cerebral bleed 
cerebellar bleed 
 
insular cortex 
parietal lobe 
temporal lobe 

-glucose 

control 

Blood Glucose 
Insulin 
Diabetes Mellitus, Type 1 
Diabetes Mellitus, Type 2 
Diabetes Mellitus 
Glucose 
Hypoglycemic Agents 
Hyperglycemia  
Glucose Intolerance 

blood glucose 
blood sugar 
insulin 
diabetes 
glucose 
oral hypoglyc$emic$ 
glyc$emic control 
dextrose 
 

-outcomes Morbidity 
Hospital Mortality 
Mortality 
Activities of Daily Living 
Quality of Life 
Geriatric Assessment 
Disability Evaluation  
Health Status Indicators 
Severity of Illness Index 

morbidity  
morbidity  
mortality 
disability 
functional dependence 
institutional$ 
infarct size 
infarct volume 
lesion size 
lesion volume 
h$emorrhage progression 
rankin score 
barthel score 
stroke severity 
NIHSS 
NIH stroke scale 
complication$ 
stroke complication 

-additional 

interventions 

Tissue Plasminogen Activator 
Fibrinolytic Agents 
Thrombolytic Therapy 
Neuroprotective Agents 
 

tPA 
tissue plasminogen activator 
thrombolysis 
thromboly$ 
fibrinoly$ 
neuroprotectant agents 
neuroprotective agent$ 

Table 2.1: Search Strategy (main literature review) (The symbol ($) represents unlimited truncation) 
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2.2 Definition of Post-Stroke Hyperglycaemia 

 
Post-stroke hyperglycaemia (PSH) is common and is recognised as a 

prognostic indicator of poor stroke outcome. A proportion of patients with 

PSH will have underlying diabetes, already established from the clinical 

history or detected at the time of presentation. The remainder of the patients 

with PSH are labelled as having “stress hyperglycaemia”, although a 

proportion have underlying impaired glucose tolerance when screened at 

later time points.  

 

Studies examining the influence of blood glucose on stroke outcome have 

certain limitations. There remains no consensus definition for PSH and as 

such blood glucose levels and the timing and nature of the blood glucose 

sample vary among studies (Table 2.2). The definition for hyperglycaemia 

has included both random and fasting blood glucose values greater than 6.1-

8.0mmol/l, at differing time points from stroke ictus. The time elapsed from 

stroke onset to blood glucose sampling in prospective trials has included 

patients presenting up to 72 hours from stroke onset.50 In view of this non-

uniformity in PSH definition prevalence rates differ across studies. By 

combining studies from Table 2.2 with documented numbers of patients with 

diabetes and stress hyperglycaemia, the overall prevalence for each 

respective group (±SD) was (1) Diabetics 17.3% (±6.0%); (2) Stress 

Hyperglycaemia 20.3% (±14.2%) and (3) Normoglycaemia 62.4% (±18.0%). 

The chronological span of the studies cited date from 1976-2002 reflecting 
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both clinical practice and access to radiological imaging in improving 

diagnostic classification. Earlier studies based the stroke type on clinical 

scores and undoubtedly combined both ischaemic and haemorrhagic strokes 

in the analysis for final outcome.  

 

In patients with primary intracerebral haemorrhage (PICH), admission 

hyperglycaemia was not found to be associated with increased stroke 

mortality. Unfortunately patient numbers with PICH included in the 

systematic review were small. Two larger studies have subsequently been 

published demonstrating that high admission blood glucose increases short-

term mortality in both diabetic and non-diabetic patients with PICH. In non-

diabetic patients admission blood glucose was associated with parameters 

of stroke severity: reduced consciousness level, haematoma size and 

intraventricular haemorrhage extension.51;52   



 

  

Year Study lead author 
Country of 
origin 

Number  
Recruited 

Type of strokes 
included 

Definition of Hyperglycaemia 
 (mmol/l) 

Time window 
for recruitment 

 
Diabetics 

Stress 
Hyperglycaemia 

Outcome 

1976 Melamed et al53d} Israel 392 IS, HS, SAH >6.7(fasting) Not stated 79 (20%) 108 (28%) Increased hospital mortality 

1983 Pulsinelli et al54d} USA 107 IS Not Specified <48hours 
35 (33%) Not defined Worse neurological outcome and 

increased   mortality in diabetics 

1985 Candelise et al55d} Italy 72 IS, HS >6.1 (Fasting) <48hours 11 (15%) 23 (32%) Higher 30day mortality 

1986 Cox et al.56d} UK 81 Hemiplegic stroke  ≥8.0 (Random) Not stated 6 (7.4%) 5 (6.2%) Increased Mortality 

1988 Adams et al57d} USA 65 IS Not Specified <48hours 
21 (32.3%) Not defined Hyperglycaemia or diabetes did not 

predict stroke outcome 

1988 Power et al58d} UK 205 IS,HS Not defined 
<18hours of 
admission 

11 (5.4%) Not defined Hyperglycaemia is a stress response 

1988 Woo et al.59d} China 252 IS, HS Not Specified <24hours 
31 (12.3%) Not defined Admission glucose correlated with 

stroke mortality 

1989 Gray et al.60d}  UK 200 IS, HS Not Specified <72hours 17 (8.5%) 13 (6.5%) Higher 4 week mortality  

1990 Woo et al.61d} China 304 IS, HS >7.8 (Fasting) <48hours 76 (25%) 23 (7.6%) Increased mortality 

1990 Kushner et al62d} USA 39 IS ≥8.6 <12hours 18 (46.2%) Not defined Poorer recovery if hyperglycaemia 

1991 Cazzato G et al63d} Italy 76 IS >6.1 (Fasting) <24hours 
17 (22.4%) 37 (48.7%) Higher 30 day mortality with stress 

hyperglycaemia 

1991 O’Neill et al.64d} UK 23 IS, HS Not Specified <24hours 0 Not defined Increased mortality.  

1992 Toni et al65d} Italy 327 IS >6.7 <12hours 

70 (21.5%) 93 (28.5%) Higher mortality for diabetics and 
stress hyperglycaemia than 
normoglycaemics 

1992 Kiers et al66d}. Australia 176 IS, HS >7.8 (Fasting) Not stated 
30 (17%) 10 (5.7%) Increased early mortality in stress 

hyperglycaemia 

1992 Murros et al.67d} Finland 99 IS, HS Not Specified <48hours 
15 (15.2%) 11 (11.1%) correlation with lesion volume in non-

diabetics 

1993 Van Kooten et al68d}. Holland 91 IS, HS ≥8.0 (Random) or ≥6.7 (fasting) <24hours 
10 (11%) 17 (18.7%) Normoglycaemia associated with 

better outcome 

1993 Tracey et al69d} UK 68 IS, HS Not Specified <24hours 
0 Not defined Lesion volume correlated with 

glucose 

1997 Weir et al70d}. UK 750 IS, HS >8.0 (Random) Mean 14.4hours 0 Not defined Poor 3 month outcome 

1999 Scott et al71d} UK 303 IS >6.0mmol/l, >6.9mmol/l Not stated 
Not defined Not defined PSH is common across all stroke 

types 

2001 Wang et al72d} Australia 416 IS ≥ 8.0 (Random) <24hours 83 (20%) 57 (13.7%) Increased hospital mortality 

2001 Szczudlik et al73d} Poland 262 IS ≥7.8 on admission, ≥6.4 day 0  <24hours 
65 (24.8%) 95 (36.3%) Higher 30 day mortality in stress 

hyperglycaemia  

2002 Christensen et al74d}. Denmark 445 IS, HS Not Specified <12hours 
0 Not defined Blood glucose increase is related to 

stroke severity 

2003 Passero et al51d} Italy 764 HS ≥ 7.2 (Random) <24hours 127 (16.6%) Not defined Increased 30 day mortality  

2005 Fogelholm et al75d} Finland 329 HS Not specified 89%<24hrs 39 (11.2%) Not defined Increased 1 month mortality 

Table 2.2: Definition of Post Stroke Hyperglycaemia, numbers recruited, country of origin, stroke type, time to recruitment and outcomes.  

(Stroke type abbreviations -  IS: Ischaemic Stroke; HS: haemorrhagic stroke; SAH: Sub-arachnoid Haemorrhage) 
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2.3 Hyperglycaemia and effect on stroke outcome 
 
Despite the recognised association between hyperglycaemia and poor 

stroke outcome, uncertainty remains as to whether blood glucose has a 

direct neurotoxic effect on the ischaemic brain or if it represents a 

pathophysiological response to increased stroke severity or unmasking of 

abnormal glucose metabolism. A number of different hypotheses exist: (1) 

PSH is an epiphenomenon of stroke severity and plays no mechanistic role 

in poorer outcome; (2) PSH is an unmasking of previously undiagnosed 

diabetes or impaired glucose metabolism with its associated comorbidities 

that is relevant to long term outcome; (3) Hyperglycaemia is associated with 

infarction/injury within specific anatomical areas of the brain independent of 

stroke severity; (4) PSH regardless of the mechanism is harmful and needs 

to be treated and (5) PSH is irrelevant mechanistically in worsening of stroke 

and treatment is unnecessary or indeed harmful.  

 

2.4 Aetiology of Post-Stroke Hyperglycaemia: Dysglycaemia 
 
Stroke is predominantly a disorder of older people. Diabetes is common in 

the elderly population with approximately 20% affected by the age of 75.76 

Within epidemiological stroke studies the prevalence of recognised diabetes 

varies from 9.4% to 33% (Table 2.3).  This noted variation appears 

dependent on the population studied. In the OCSP and OXVASC studies, 

the prevalence of diabetes in a predominantly caucasian population was 

9.4% - 10.5%.10 In the NEMESIS study it was slightly higher at 17%.77  In 
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contrast 33% of the overall patients recruited to NOMASS had documented 

diabetes.78 When divided on the basis of ethnicity 18% caucasians and 39% 

carribean/ hispanics were diabetic. In a more recent study documenting the 

proportion of diabetics recruited to acute stroke trials of neuropotectant and 

thrombolytic agents, the figure was almost 20% (Table 2.4).79   

 

Table 2.3: Epidemiological incidence stroke studies, documenting 
numbers recruited, year of study and the proportion with confirmed 
diabetes at presentation 

Epidemiological Study Year of 
study 
recruitment 

No. 
recruited 

Mean Age 
(±SD) 

Percentage 
Diabetic 

OCSP (Oxfordshire 
Community Stroke 
Project)

10
 

 

1981-84 429 72.3(12.7) 45(10.5%) 

OCSP (Oxfordshire 
Community Stroke 
Project)

10
 

 

1986 128 70.6(15.3) 12(9.4%) 

OXVASC (Oxford Vascular 
Study)

10
 

 

2002-2004 262 73.6(11.9) 25(9.5%) 

NOMASS (North Manhattan 
Stroke Study)

78
 

 

1990-1997 980 70.0(12.6) 320(33%) 

NEMESIS (North East 
Melbourne Stroke 
Incidence Study)

77
 

 

1997-1998 721 75.8 126(17%) 
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Table 2.4: Prevalence of diabetes amongst populations enrolled to 
acute stroke trials. Adapted from Table 1: Lees et al Cerebrovasc. Dis 
2005; 20 (suppl 1):9-14 

Trial Number of Diabetics/ total 

number recruited 

Percentage diabetic (%) 

IMAGES 413/2386 17.3 

GAIN-I 310/1523 20.4 

LUB-INT 405/1785 22.7 

CLASS 292/1198 24.4 

NINDS 85/624 13.6 

ECASS-II 169/800 21.1 

MAST-E 33/310 10.6 

COMBINED 1707/8626 19.8 

 

 

Diabetes prevalence is increasing worldwide. It is estimated that 28-44% of 

adults aged 45-74 have diabetes or impaired glucose tolerance, with an 

estimated 5.4 million Americans unaware of an underlying diagnosis of 

diabetes.80 Diabetes is an established risk factor for atherosclerosis. 

Prevalence of carotid artery disease in elderly diabetic patients is 20%.81 In 

any given stroke population the prevalence of diabetes is said to be of the 

order of 7-25%,50;61 with a further 6-32% having evidence of previously 

unrecognised diabetes prior to the acute event.55;56 Abnormalities in glucose 

metabolism insufficient to fulfil diabetic criteria are also known to increase 

cardiovascular risk. In a meta-regression analysis of 18 studies involving 
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88,000 patients, cardiovascular disease increased continuously with glucose 

levels of greater than 4.2mmol/l.82 In patients with known coronary artery 

disease the relationship between fasting blood glucose and incident 

ischaemic stroke was J-Shaped, with stroke rate increasing with fasting 

glucose levels >5.6mmol/l.83 The metabolic syndrome characterised by high 

fasting glucose, high blood pressure, low high-density lipoprotein cholesterol, 

high triglycerides and abdominal obesity84, is associated with an increased 

risk of morbidity and mortality from cardiovascular disease.85 In 14,000 

patients with coronary artery disease followed prospectively for 4.8-8.1 

years, patients with the metabolic syndrome had a 1.49 fold increased odds 

for ischaemic stroke or transient ischaemic attack (TIA) (95%CI, 1.20-

1.84).86 When patients recruited to the Norfolk arm of the prospective 

multicentre European Prospective Investigation into Cancer (EPIC-Norfolk) 

were examined for the relationship between glycosylated haemoglobin at 

baseline and incident stroke risk in patients without diabetes and stroke at 

baseline, a threshold relationship was found. A total of 10,489 men and 

women followed for a mean of 8.5years had 164 incident strokes, with stroke 

ascertainment being defined on the basis of death certificate data and 

hospital record linkage. After adjustment for age, sex and cardiovascular 

factors the relative risk of stroke for participants with HbA1c (5-5.4%), (5.5-

6.9%) and (≥7%) were 0.78 (0.50 to 1,22), 0.83 (0.54 to 1.27) and 2.83 (1.40 

to 5.74) respectively.87 Patients in the latter group who undoubtedly had 

undiagnosed diabetes had a significantly increased risk of stroke. The 
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methodology of the study did not permit breakdown of strokes into subtypes.  

 

Screening for abnormal glucose metabolism in patients manifesting “stress 

hyperglycaemia” following stroke is not routinely performed. In a 

retrospective review of 90 acute stroke patients with no history of diabetes 

and a hyperglycaemia prevalence of 31%, one patient had a management 

plan to screen for diabetes following discharge.88  

 

A recent study using an oral glucose tolerance test after three months to 

screen 98 TIA/stroke patients with an initial fasting blood glucose of 

<7.0mmol/l demonstrated impaired glucose tolerance in 28% and diabetes in 

24%. The median HbA1c value in those patients who were confirmed 

diabetic was 5.5%89, a value much lower than has been used previously to 

define patients with preceding hyperglycaemia in stroke trials.  In a study of 

62 patients screened at three months following an acute ischaemic stroke 

with admission blood glucose was ≥6.1mmol/l, 21% had diabetes mellitus 

and 37% had impaired glucose tolerance. A blood glucose ≥6.1mmol/l and 

HbA1c ≥6.2% on admission had an 80% positive predictive value for 

diabetes at 12 weeks.90 In a recent study of 238 consecutively admitted 

stroke patients screened twice within a two-week period, 16.4% of patients 

were diabetic and 23.9% had impaired glucose tolerance or impaired fasting 

glucose. 19.7% had transient hyperglycaemia on one test and a second test 

within normal limits and 19.7% had normal glucose metabolism on both 
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tests.91 The study raises a number of interesting issues (a) all patients were 

eligible for screening and not just patients with demonstrated 

hyperglycaemia; (b) fasting blood glucose values during the first week were 

generally higher than values obtained in the second week, favouring a role 

for stress hyperglycaemia in the acute phase of stroke; and (c) patients with 

diabetes known and newly diagnosed had more severe strokes, a higher 

rate of pneumonia and urinary tract infection and a worse outcome at 

discharge than non-diabetic patients. If screening is to be advocated for 

acute stroke patients the best time for undertaking the oral glucose tolerance 

test remains uncertain. In a recent study of 122 patients with acute 

myocardial infarction undergoing OGTT prior to hospital discharge (day 4 or 

5), 34% were diagnosed as having type-2 diabetes. When re-screened at 

12months 93% of the patients still had abnormalities in glucose metabolism 

(64% diabetic and 29% impaired glucose tolerance).92 Justification was 

given to the screening of patients at the time of initial hospital presentation 

with appropriate intervention as opposed to a wait and watch policy.    

 

Abnormal fasting glucose is part of the criteria for the metabolic syndrome In 

a Greek population based case control study examining the association 

between metabolic syndrome and acute ischemic/non-embolic stroke in 

subjects over the age of 70. The prevalence of metabolic syndrome was 

higher in stroke patients than in controls (46% versus 15.7%).93 Recognition 

of the syndrome is important as it confers increased risk for the development 
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of diabetes mellitus and for cardiovascular morbidity and mortality. In a study 

of patients with established vascular disease in the form of coronary artery 

disease, stroke, peripheral vascular disease or abdominal aortic aneurysm, 

the presence of the metabolic syndrome on testing was associated with 

advanced vascular damage as measured by carotid intima media thickness, 

ankle brachial pressure indices and albuminuria.94 Thus, identification of 

either abnormal glucose metabolism or metabolic syndrome is important for 

the identification of patients who may benefit from additional secondary 

preventative therapy input. 

 

2.5 Temporal Profile of Glucose Post-Stroke 
 
Elevated admission or fasting blood glucose at variable time points from 

stroke onset has been used to define post-stroke hyperglycaemia (PSH). 

Blood glucose has been shown to increase in the first 12 hours after stroke 

with the increase in blood glucose said to correlate with increased stroke 

severity.74 In an earlier publication of patients randomised to the placebo arm 

of the Glucose Insulin in Stroke Trial (GIST)-UK, blood glucose fell within the 

first eight hours of the infusion (median time to infusion 13 hours).95 Using a 

capillary glucose monitor to measure interstitial glucose over a 72-hour 

period, blood glucose was noted to decrease from a peak at eight hours 

following stroke, reach its lowest level at 14 hours, plateau and then have a 

further peak at 66-88 hours.96 Recognition of the temporal profile of blood 

glucose in acute stroke is important for management of PSH. In addition to 
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stroke severity, time to hospital presentation may be important in predicting 

hyperglycaemia in the acute phase of stroke. Additional factors often poorly 

described in the literature include the possible impact of feeding and fluid 

regimes. In determining the temporal profile it is important to have a 

consistent measure of determining blood glucose levels. Confusion remains 

surrounding the difference between capillary whole blood, venous whole 

blood and venous plasma in determining glucose levels. Following an OGTT 

in 75 healthy subjects, capillary blood glucose was significantly higher than 

venous blood. This has implications in determining profiles in patients during 

post-prandial monitoring phases.97    

 

2.6 Stroke Severity and Blood Glucose 
 
Studies examining the interaction between stroke severity, blood glucose, 

counter-regulatory hormones and catecholamines have reported conflicting 

results. Following an acute physiological illness, stress hyperglycaemia is 

thought to develop through glucagon, adrenaline and cortisol opposing the 

normal action of insulin.98 The more severe the stroke the more marked the 

stress response. Serum cortisol has been shown to correlate with stroke 

severity, blood glucose and temperature and is an independent predictor of 

short-term outcome.99 However plasma catecholamines associated with both 

stroke severity and hypertension were not found to correlate with glucose 

levels in a stroke population.68  

In patients randomised to the NINDS rt-Pa trial, blood glucose within three 

hours of stroke onset was not associated with stroke severity measured 
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using the National Institute of Health Stroke Scale (NIHSS).100 Patients 

assessed using the Glasgow outcome scale within 24 hours of symptom 

onset had an association between hyperglycaemia and stroke outcome but 

not between hyperglycaemia and initial stroke severity.68 However, patients 

examined with two blood glucose tests within 12 hours of stroke onset had a 

strong association between blood glucose and stroke severity measured 

using the Scandinavian stroke scale.74  

 

2.7 Stroke Location 
 
Another factor potentially relevant to the development of hyperglycaemia is 

stroke location. In a prospective study of 31 patients who underwent acute 

MRI within 24 hours of stroke onset, median admission blood glucose was 

significantly higher in patients with insular cortical ischaemia (8.6mmol/l) 

compared with those patients without (6.5mmol/l).101 Insular cortical 

ischaemia and pre-existing diabetes mellitus predicted glucose level, whilst 

HbA1c did not. There was no correlation between blood glucose and lesion 

volume. The insular cortex has been shown to influence autonomic function 

especially sympathetic activity.102 Insular damage in experimental stroke has 

been shown to result in an increase in the circulating levels of 

catecholamines suggesting this as a mechanism for the cardiac 

complications associated with stroke.103     

 

2.8 Hyperglycaemia and Ischaemic Injury  
 
Hyperglycaemia has been shown in experimental and clinical studies to act 
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on vascular and haemostatic function, altering local blood flow and platelet 

aggregation and influencing both vessel occlusion and recanalisation. The 

“ischaemic penumbra” is also susceptible to the effects of hyperglycaemia 

through its action on tissue cellular metabolism and has the potential to 

influence infarct progression and clinical outcome.  

 
 
Endothelial Abnormalities  
 
Epidemiological studies have consistently shown diabetes to be a major risk 

factor for atherosclerotic vascular disease.104;105 There is evidence that the 

primary initiating lesion in the pathogenesis of atherosclerosis is endothelial 

cell dysfunction.106 Hyperglycaemia has a direct effect on endothelial cell 

function and is known to induce a variety of biochemical changes. It has 

been established that four independent biochemical abnormalities are 

involved - increased polyol pathway flux with increased consumption of 

NADPH (nicotinamide adenine dinucleotide phosphate-oxidase) and 

depletion of GSH (reduced Glutathione), increased formation of advanced 

glycation end products (AGE), activation of protein kinase C through 

increased flux of dihydroxyacetone phosphate to DAG (Diacylglycerol) and 

finally increased hexosamine pathway flux with increase modification of 

proteins by O-linked N-acetylglucosamine (GLcNac).107  
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The pathways are related through the action of mitochondrial reactive 

oxygen species inhibiting the glycolytic enzyme glyceraldehyde-3-phosphate 

dehydrogenase, which diverts increased substrate flux from glycolysis to 

pathways of glucose overutilisation.  It is postulated that hyperglycaemia 

Figure 2.1: Potential mechanisms by which hyperglycaemia induced mitochondrial 
superoxide overproduction activates four pathways leading to hyperglycaemic damage. 
[Adapted from Brownlee et al 

107
] 
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triggered oxidative stress induces overproduction of superoxide which 

results in the activation of the four pathways and endothelial damage108. 

Activation of protein kinase C results in vascular occlusion, decreased 

fibrinolysis and blood flow abnormalities by affecting the expression of nitric 

oxide synthetase (eNOS), endothelin-1, vascular endothelial growth factor 

(VEGF), TGF-β (transforming growth factor - β) and plasminogen activator 

inhibitor-1 (PAI-1).107  

 

PAI-1 binds rt-Pa rendering it inactive.  In a study of 44 stroke patients, 

elevated PAI-1 levels were independently associated with failure to 

recanalise the middle cerebral artery despite receiving thrombolysis within 

three hours of symptom onset. Lower PAI-1 levels correlated with vessel 

recanalisation. 109 There is evidence that elevated PAI-1 levels contribute to 

hyperglycaemia induced exacerbation of post-ischemia reperfusion injury in 

stroke models.109 Hyperglycaemia induced ROS (reactive oxygen species) 

also appears to increase the activity of matrix metalloproteinase 9 (MMP-9). 

In tPa treated stroke patients elevated MMP-9 levels has been associated 

with haemorrhagic conversion.110  

 

Haemostatic abnormalities  
 
Platelet aggregability and adhesiveness are increased in diabetics.111 

Interaction between endothelium and platelets contributes to the 

hypercoaguable state of diabetes. A key factor in promoting the 
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prothrombotic state seen in diabetics involves the glycation of annexin II, a 

regulatory protein involved in fibrinolysis surveillance. In a hyperglycaemic 

environment, glycation of annexin II impairs the formation of the 

plasminogen/tissue plasminogen activator/annexin II complex with resulting 

decreased fibrinolytic activity.112   
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2.9 Ischaemic Penumbra  
 
Controversy continues regarding the potential mechanism by which 

hyperglycaemia causes neuronal injury. Experimental models demonstrate a 

consistent correlation between acidosis, hyperglycaemia and brain injury.113 

Anaerobic metabolism is less energy efficient and produces lactate and 

unbuffered hydrogen ions. Experimental models have consistently shown 

that hyperglycaemia prior to ischaemia results in higher levels of lactate than 

euglycaemic controls.113;114  

 

Hyperglycaemia may initially be neuroprotective, with increased glucose 

available for metabolism and ATP production. Persisting anaerobic 

metabolism results in the development of intracellular acidosis. It has been 

shown using both pH-sensitive microelectrodes and 31P nuclear magnetic 

resonance spectroscopy that the brain pH of animals pretreated with glucose 

is considerably more acidotic than saline treated controls.115;116 The 

mechanism by which acidosis exaggerates neuronal injury is uncertain. 

Astrocytes were previously thought to be the target, with selective neuronal 

necrosis giving way to pan-necrosis through failure of astroglial nutritional 

support and ion homeostasis.117 This has not been replicated in subsequent 

studies.  The pronounced acidosis seen with hyperglycaemia provides an 

environment in which secondary mechanisms can act.  Acidosis enhances 

free radical formation, activation of pH dependent endonucleases and 
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glutamate release with subsequent alteration of intracellular Ca++ regulation 

and mitochondrial failure. 113;118-120   

 

There is currently no direct proof that lactate is detrimental to the ischaemic 

brain. The “glucose paradox of cerebral ischemia” questions why glucose, 

the main energy substrate for the brain, causes demise of brain tissue at the 

time of cerebral ischemia.121 Cellular injury hinges on the role of lactate in 

the brain. Recent in-vitro work using murine hippocampal slices has shown 

that glucose and acidosis are detrimental to cells whereas lactate is not.122 

Work performed by Schurr et al has continuously questioned the detrimental 

role of lactate and has proposed that the effect of hyperglycaemia is related 

to the effect of corticosterone on the ischaemic brain, thus favouring a stress 

response.121 Support for this hypothesis comes from an animal model 

whereby blockade of corticosterone (the equivalent of human cortisol) with 

metyrapone attenuates the effect of pre-ischaemic hyperglycaemia on post-

ischaemic outcome.123 It is postulated that lactate is a source of energy 

during cerebral ischaemia. Using PET scanning it has been shown that 

lactate may be the preferred energy supply to the brain especially during 

times of stress.124 “The glucose paradox” remains unanswered. 
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2.10 The Role of MRI in understanding hyperglycaemia in acute stroke 
 
 

Despite controversy surrounding the role of lactate in the ischaemic brain, 

advances in MRI now permit the study of stroke evolution in hyperglycaemic 

patients.  Studies using MRI in acute stroke have demonstrated that 

persistent hyperglycaemia (blood glucose ≥7.0mmol/l) in the 72hours 

following acute stroke is associated with increased infarct size and worse 

stroke outcome.125 Twenty patients recruited within 24 hours of an acute 

ischemic stroke underwent MRI at three distinct time points: Day 1 (median 

15hours), Days 3-6 and Day 90. Blood glucose as measured using a 

continuous glucose monitor was measured for 72hours. In patients with a 

mean capillary blood glucose ≥7.0mmol/l, significantly greater changes in 

lesion volume were measured acutely (difference between first and second 

scan) and at final infarct (difference between first and third scan). Clinical 

outcome scores were worse in patients with hyperglycaemia (Table 2.5).    

                       

In a prospective MRI study acute hyperglycaemia was associated with 

reduced penumbra salvage, greater final infarct size and worse functional 

outcome in 40 patients who had an acute perfusion-diffusion mismatch. 

Using multiple regression analysis, a strong relationship between increasing 

acute blood glucose and reduced penumbral salvage was demonstrated with 

a doubling of blood glucose from 5 to 10mmol/l leading to a 60% reduction in 

Lactate 

NAA 
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penumbral salvage. A close correlation was also found between acute blood 

glucose and lactate levels in the ischemic brain.126 Interestingly the time to 

initial MRI scan was much shorter (4.5 hours) in those patients with a 

mismatch than for those patients in which a diffusion-perfusion mismatch 

could not be detected (13 hours). These results support experimental animal 

work in which the detrimental effect of hyperglycaemia was seen in 

ischaemic tissue which has a collateral supply and a penumbra.127 
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Reference Time 
Window 

Number of 
patients 

Study Parameters Results 

Baird et al128 <24hrs 25 Correlation between mean 
blood glucose and infarct 
volume change  

Mean blood glucose over 72hours correlated with infarct volume change 

between acute and subacute DWI (r≥0.60, p<0.01), and acute DWI and 
day 90 T2-MRI (r≥0.53, p<0.02) 
 

Parsons et 
al129 

<24hrs 63 The effect of 
hyperglycaemia on 
patients with and without 
DWI/PWI mismatch 

In 40/63 patients with mismatch, acute hyperglycaemia (≥144mg/dl) 
correlated with reduced salvage of mismatch tissue from infarction and 
greater final infarct size 
In patients with no mismatch acute blood glucose did not independently 
correlate with outcome measures  
 

Ribo et al130 <6hrs 47 Hyperglycaemia effect on 
DWI lesion growth relative 
to occlusion time.  

DWI lesion volume grew 2.7 times faster between baseline (pre rt-PA) 
and repeat imaging at 24-36 hours in those patients with hyperglycaemia 
(glucose >140mg/dl) during occlusion time.  (1.73 versus 4.63cm³/h of 
occlusion, p=0.07). Occlusion time measured using TCD 
 

Els et al131 <3hrs 31 Hyperglycaemia effect on 
MRI infarct size at 
admission (DWI), day 3 
(DWI) and day 7 (T2-MRI). 

Change in lesion volume between day 3 (DWI) and day 7 (T2-weighted 
MRI) increased significantly in the hyperglycaemic (admission blood 
glucose>178mg/dl) group (39.9±17.4%) versus the normoglycaemic 

group (27.1±14.1%) (p<0.05) 
 

 
Table 2.5: Effect of blood glucose on lesion volume progression measured using MRI surrogate markers in clinical studies of patients with 

acute ischaemic stroke (DWI: Diffusion weighted Imaging, PWI: Perfusion weighted imaging, TCD: Transcranial Doppler) 
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Reference Time 
Window 

Therapeutic 
agent 

Number 
of 
patients 

Study parameters Results 

TOAST132 <24hours Low molecular weight 
heparinoid versus 
placebo 

1259 Relationship between 
admission blood 
glucose and clinical 
outcome. 
 

All strokes combined: (OR =0.82 for every 100mg/dl 
increase in blood glucose; p=0.03),  
 
Non-lacunar strokes (OR 0.74 for every 100mg/dl 
increase in blood glucose; p=0.02) 
 

NINDS rt-PA 
Stroke trial100 

<3hours Intravenous  
rt-Pa versus placebo 

624 NIHSS change of ≥4 at 
3months or a final score 
of 0 
 
Symptomatic ICH at 
36hours* 

OR of neurological improvement per 100mg/dl 
increase in blood glucose =0.76 (0.61-0.95) (p=0.01) 
 
OR of SICH per 100mg/dl increase in blood glucose = 
1.75 (1.11-2.78) (p=0.02) 

PROACT II133 <6hours Intra-arterial r-proUK + 
IV heparin versus IV 
heparin alone 

180 Symptomatic ICH within 
36hours of treatment** 

Patients receiving r-proUK with admission blood 
glucose >200mg/dl experienced a 36% risk of SICH 

compared to 9% for those ≤200mg/dl (RR 4.2; 95% CI 
1.04-11.7) (p=0.022) 

CLOTBUST134 <3hours Intravenous 
thrombolysis with 
randomisation to TCD 
or placebo 

117 Interaction between 
admission glucose and 
ultrasound with respect 
to good clinical outcome 
(mRs 0-2) 

High admission glucose predicted a lower probability 
of good outcome in the control group but not the 
active ultrasound group, as demonstrated by an 
interaction between glucose and treatment group 
(p=0.043) 

 
Table 2.6: Relationship between admission glucose level and outcomes in clinical trials of anti-coagulant and thrombolytic agents. 

 
TOAST: Trial of ORG 10172 in Acute Stroke Treatment; NINDS: National institute of Neurological Disorders and Stroke; PROACT II: PROlyse for Acute Cerebral Thromboembolism; 
CLOTBUST: Combined Lysis Of Thrombus in Brain ischemia using transcranial Ultrasound and Systemic tPA); r-proUK: recombinant pro-urokinase  
*SICH defined as CT documented hemorrhage within 36hours of treatment that was temporally related to clinical deterioration. 
** Presence of ICH with neurological deterioration defined as an increase of ≥4 points on the NIHSS in comparison with the preangiography score within 36hours of treatment initiation. 
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2.11 Hyperglycaemia and New Stroke Treatments (Thrombolysis) 
 
Restoration of cerebral blood flow with salvage of penumbral tissue is the 

aim of thrombolysis. The earlier intravenous thrombolysis is initiated, the 

greater the odds of a good outcome. In the pooled analysis of the Alteplase 

Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke 

(ATLANTIS) study, European Cooperative Acute Stroke Study (ECASS) and 

NINDS rt-PA stroke trial the odds ratio of a favourable outcome for patients 

treated with rt-PA compared with controls was 2.81 (95% CI 1.75-4.50) in 

those treated within 90minutes and 1.55 (95% CI 1.12-2.15) for those treated 

from 91-180 minutes135 (Table 2.6). Patient numbers receiving intravenous 

thrombolysis remain low. Contributing factors include the short time window 

of three hours and the risk of haemorrhagic transformation. In a post-hoc 

analysis of the NINDS study hyperglycaemic patients had significantly 

increased odds of symptomatic intracerebral haemorrhage (OR=1.75 per 

100mg/dl increase in admission glucose, 95% CI 1.11 to 2.78, p=0.02) and 

reduced odds of a good clinical outcome (OR=0.76 per 100mg/dl increase in 

admission glucose, 95%CI 0.61 to 0.95, p=0.01). 100  

 

Experimental models of focal brain ischaemia have consistently 

demonstrated an association between hyperglycaemia and worse stroke 

outcome in the setting of reperfusion following temporary vessel occlusion. 

Similar results have recently been confirmed in clinical studies of acute 

ischaemic stroke patients receiving intravenous thrombolysis. Using 
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Transcranial Doppler (TCD) to assess recanalisation status in 73 patients 

following thrombolysis, hyperglycaemia was found to be an independent 

predictor of poor outcome at three months in patients who recanalised but 

not in patients with permanent occlusion.136  

 

Acute hyperglycaemia has been shown to predict non-recanalisation in the 

hyperacute phase of stroke. An acute blood glucose value >8.8mmol/l (OR, 

7.3; 95% CI, 1.3 to 42.3; p=0.027) was an independent predictor of non-

recanalisation within two hours of bolus alteplase administration.137 Acute 

hyperglycaemia is thought to exert its anti-fibrinolytic effect through glycation 

of annexin II.138 Correction of hyperglycaemia prior to recanalisation requires 

prompt blood glucose control at the time of initial presentation. Maintenance 

of euglycaemia with insulin at initial presentation and continued through to 

recanalisation may enhance the effect of thrombolysis. Timing to 

recanalisation was important with the highest odds for poor outcome in those 

patients with hyperglycaemia who recanalise within three hours  (OR, 3.1; 

95%CI, 1.8-14.3; p=0.002).139 In patients with delayed recanalisation (6-

12hours) hyperglycaemia was not predictive of poor outcome (OR, 1.1; 

95%CI, 0.7-21; p=0.43). Using MRI to measure infarct progression in 

patients receiving intravenous thrombolysis, infarct volume increased 

significantly more in hyperglycaemic patients; 39.9 ± 17.4% compared to 

normoglycaemic patients 27.1 ± 14.1% (p<0.05).131  
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Time to recanalisation appears predictive of haemorrhagic type. Early 

recanalisation with petechial haemorrhage can predict a good outcome 

whereas delayed recanalisation is associated with the development of a 

parenchymal haematoma and clinical deterioration.140 The delayed 

recanalisation associated with acute hyperglycaemia is thought to 

predispose to parenchymal haematoma development and explain its 

relationship with hyperglycaemia.  

 

2.12 Blood Glucose lowering therapies 
 
Controversy continues as to whether acute hyperglycaemia is a cause of 

neurological deterioration or an epiphenomenon, a distinction pivotal in the 

management of stroke patients with hyperglycaemia. Post stroke 

hyperglycaemia is common and, at least in non-diabetic individuals, is 

associated with a poor stroke outcome. 71;141 Control of hyperglycaemia has 

generally been assumed to be beneficial but prospective trial data has been 

lacking. In the absence of such evidence, clinical practice has been guided 

by extrapolation of results from non-stroke populations that inform 

consensus guidelines. 142 The absence of quality evidence in this area has 

been recognised and evidence derived from patients with acute stroke is 

becoming available. 
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2.13 Insulin and stroke units: current practice 
 
American and European guidelines advise active treatment of 

hyperglycaemia but the criteria for implementation of insulin treatment vary.  

European Stroke Initiative (EUSI) guidelines advise intervention if blood 

glucose exceeds 10mmol/l, whilst the American Stroke Association (ASA) 

guidelines have recently been updated to lower the threshold for intervention 

from 16.63mmol/l142 to 11.0mmol/l.46 The Royal College Guidelines simply 

state that blood glucose should be maintained within normal limits without 

specifying what the targeted range should be.143 The SIGN guidelines make 

no reference to glucose or its proposed manipulation.144 In an audit of acute 

neurological stroke care performed across 22 countries by the European 

Federation of Neurological Societies, the mean threshold of blood glucose 

concentration for intervention was 10.6mmol/l, ranging from 7.4 to 

14.4mmol/l in different countries.145 The survey did not reveal the variation in 

practice among centres within individual countries, which we presume to be 

at least as great. The decision to intervene is made more complex by the risk 

of iatrogenic hypoglycaemia during insulin treatment. This needs to be 

considered when selecting the most appropriate glucose level, the method 

and duration of insulin delivery, and the duration of glycaemic monitoring.  

 

A variety of methods of insulin administration exist, comprising continuous 

intravenous infusion, repeated subcutaneous dosing by sliding scale or 
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intravenous (IV) delivery of a reconstituted infusion containing insulin and 

dextrose with potassium supplementation (the GKI regime). Sliding scale 

regimens are largely reactive, correcting changes as and when they occur, 

whereas GKI regimens are largely proactive predicting insulin requirements 

and maintaining euglycaemia within a therapeutic range. Concurrent 

administration of insulin, potassium and glucose as a GKI infusion reduces 

the risk of hypoglycaemia arising as a result of device or infusion failure. 

 

Maintenance of euglycaemia can prove difficult in patients who are eating 

and drinking normally, as such patients tend to develop post-prandial 

hyperglycaemia before the insulin infusion rate is increased. While both 

sliding scale and GKI regimes have attracted criticism in the literature, 146 no 

clearly superior alternative has yet been reported. The practical aspects and 

the safety profile of each method have been considered in different hospital 

settings including critical care, coronary care, general medical wards and 

stroke units. In the absence of trial data sufficiently powered to examine the 

effect of insulin on clinical outcomes in a stroke population, trials of insulin 

infusions in other contexts (such as coronary and intensive care units) need 

to be considered.  

 

2.14 Insulin in hospitalised hyperglycaemic patients 

A meta-analysis of 35 randomised controlled trials involving 8,478 patients 

examined the effect of insulin on mortality in the hyperglycaemic critically ill 
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patient.147 Insulin was administered as a GKI Infusion in 86% of the studies, 

with 14% using intravenous insulin by pump. Studies were published 

between 1965 and 2002 and included patients primarily with acute 

myocardial infarction. Combined data demonstrated that insulin decreased 

short-term mortality by 15% [RR 0.85; 95% CI, 0.75-0.97]. Greatest benefit 

was noted in the surgical intensive care unit (ICU) population [RR, 0.58; 95% 

CI, 0.22-0.62], when the aim of therapy was glucose control [RR, 0.71; 95% 

CI, 0.54-0.93] and in patients with Diabetes Mellitus [RR, 0.73; 95% CI, 0.58-

0.90].  

 

Two multi-centre randomised controlled trials have recently questioned the 

benefit of insulin in critical illness. Both studies used GKI infusions in acute 

myocardial infarction. The Diabetes-Mellitus Insulin-Glucose Infusion in 

Acute Myocardial Infarction 2 (DIGAMI 2) trial was a follow on study from 

DIGAMI.148;149 DIGAMI recruited 620 patients with diabetes and acute 

myocardial infarction to intensive glucose management or routine care 

during both hospital stay and the three months following discharge. Intensive 

glucose management utilised a GKI infusion for 24 hours followed by daily 

insulin injections thereafter for the duration of the study. The mean glucose 

level at 24 hours was 9.6 mmol/l in the intervention group compared to 

11.7mmol/l in the control group. After one year, 18.6% in the infusion group 

and 26.1% in the control group had died (relative mortality reduction 29%, 

p=0.027). Mortality in the first DIGAMI study was lower than expected and as 
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such there was little statistical power to detect reasons for mortality 

reduction. The study was unable to answer whether the beneficial effects of 

insulin related to the acute GKI infusion or to the continuous insulin based 

metabolic control.  

 

DIGAMI 2 was therefore planned in which 1,253 patients with type 2 

diabetes and suspected acute myocardial infarction were randomised to one 

of three different groups: 24 hour GKI followed by long term subcutaneous 

insulin, 24 hour GKI followed by conventional glucose control or routine 

hospital glucose management. Period of follow-up and study participation 

varied from six months to three years. In contrast to the findings in DIGAMI, 

GKI with or without long-term insulin failed to demonstrate survival benefit 

over routine treatment. 149  

 

Differences existed between the two studies.  DIGAMI included patients with 

type 1 and type 2 diabetes and required an admission blood glucose of 

>11.0mmol/l as part of the inclusion criteria.  DIGAMI 2 however required the 

recruitment of type 2 diabetic patients only without a predefined glucose 

threshold. As a result, there was higher baseline blood glucose in patients in 

DIGAMI when compared to DIGAMI 2 (15.5 ± 4.5 versus 12.8±4.5mmol/l). 

The resulting initial decrease in blood glucose was more substantial in 

DIGAMI than DIGAMI 2 (-5.8mmol/l versus -3.4mmol/l). DIGAMI 2 had 

originally planned to include 3,000 patients but slow recruitment lead to its 
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premature cessation. Blood glucose control for groups 1 (9.1 ± 3.0mmol/l) 

and 2 (9.1 ± 2.8mmol/l) was significantly lower when compared to group 3 

(10.0 ± 3.6mmol/l) after 24 hours of the infusion but there was no statistically 

significant difference in blood glucose between any of the three groups 

beyond this time point and the desired blood glucose control was not 

achieved. Therefore, when compared with DIGAMI, the absence of an 

apparent treatment effect in DIGAMI 2 may in part be the failure to achieve 

effective glucose lowering between groups in the acute and long-term 

period.  

 

Additional results from the merger of two multi-centre trials (The Clinical Trial 

of Reviparin and Metabolic Modulation in Acute Myocardial Infarction 

Treatment Evaluation and Estudios Cardiologicas Latin American Study 

Group: CREATE-ECLA) which randomised 20,201 patients within 12 hours 

of acute ST-elevation myocardial infarction (MI) to GKI-infusion or placebo, 

found that GKI infusion had a neutral effect on mortality, cardiac arrest and 

cardiogenic shock.150 In the CREATE-ECLA study, mean glucose 

concentration was consistently higher in the GKI infusion population due to a 

high glucose concentration infusion. 

 

The publication of the large single centre Leuven study - examining the 

effect of insulin therapy aimed at tight glucose control in a surgical intensive 

care unit and its resultant effect on reducing mortality - has resulted in its 
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widespread adoption in many intensive care facilities. Patients (n=1,548) 

admitted to a surgical intensive care unit were randomised to either intensive 

insulin therapy, with maintenance of blood glucose between 4.4 and 6.1 

mmol/l or conventional treatment (insulin infusion only if glucose level 

exceeded 11.9 mmol/l and maintenance of glucose at a level between 10.0 

and 11.1 mmol/l).  Intensive insulin therapy reduced mortality in intensive 

care from 8% to 4.6% (p<0.04) and reduced overall in-hospital mortality by 

34%.151 Complication rates of severe nosocomial infections, acute renal 

failure, liver dysfunction, critical illness neuropathy, muscle weakness and 

anaemia were prevented in patients treated with intensive insulin.  When the 

same group examined the effect of insulin in 1,200 patients admitted to the 

medical intensive care unit with similar targeted levels of glucose control, 

intensive care mortality was similar for both groups - 26.8% in the 

conventional group versus 24.2% in the intensive treatment group (p=0.31). 

In-hospital mortality was 40% for the conventional group and 37.3% in the 

intensive insulin group (p=0.33). However for those patients (n=767) who 

stayed in the intensive care unit for three or more days, in-hospital mortality 

in patients receiving intensive insulin therapy (n=386) was reduced from 

52.5% to 43% (p=0.009). For all patients undergoing randomisation, 

intensive insulin therapy saw a reduction in newly acquired kidney injury, 

earlier weaning from mechanical ventilation and earlier discharge from both 

ICU and hospital.152  
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Despite the noted benefit of both studies in relation to its effect on mortality 

and morbidity in specific populations, a constant criticism relates to the lack 

of blinding, the single centre nature of the study, the influence of enteral 

nutrition and the practicalities of the infusion. In addition the units protocol 

involved all admitted patients receiving a large carbohydrate load both as an 

intravenous glucose infusion and immediate supplemental feeding. The 

feasibility of reproducing the intense monitoring and nurse staffing ratios (2.5 

full time equivalent nurses per bed in the ICU), in a stroke unit setting 

appears unlikely. Both trial results have recently been pooled to examine the 

controversies surrounding infusion duration, optimal blood glucose 

thresholds and effect on specific sub-groups. Intensive insulin therapy (IIT) 

reduced mortality for both the intention to treat population and for patients 

staying for >3 days with no difference in patients resident for <3 days. 

Mortality was more significantly reduced in patients with a blood glucose 

<6.1mmol/l when compared to patients with a blood glucose 6.1-8.3mmol/l or 

>8.3mmol/l, despite a greater risk of hypoglycaemia. 153Patients with known 

diabetes were the only subgroup not to show a survival benefit with IIT, 

which contrasts with the previously published meta-analysis.   

 

Attempts to reproduce results in a multi-centre trial have proved difficult. Two 

recent European trials aimed at maintaining tight glycaemic control (4.4-

6.1mmol/l) were stopped early due to an unacceptably high rate of 

hypoglycaemia in the tight control group.154;155 In 488 patients recruited to 
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the VISEP trial examining the effect of insulin in patients with severe sepsis 

and septic shock, 12.1% of patients receiving insulin had hypoglycaemia 

(<2.2mmol/l) compared to 2.1% of patients in the conventional treatment 

group.154 Recent evidence from the GIST-UK trial suggests that most acute 

stroke patients will have only mild to moderate increases in plasma glucose 

at presentation (median 7.6mmol/l, (IQR 6.7-9.0)) with minimal insulin 

requirement as a consequence.156 Consequently, without significant 

carbohydrate loading and immediate supplemental feeding, it is unlikely that 

intensive insulin regimens could be used in acute stroke patients. 

 

A further multi-centre trial continues recruitment (NICE-SUGAR: 

Normoglycaemia in Intensive Care Evaluation and Survival Using Glucose 

Algorithm Regulation) and will hopefully provide further information on the 

tolerability and efficacy of tight glycaemic control. 157    

 

2.15 Animal models and insulin 
 
In the absence of substantial clinical trial evidence our understanding of the 

effect of insulin on ischaemic stroke has been instructed by experiments in 

models of ischaemia. 

 

Evidence derived from animal models shows that during acute focal and 

global ischaemia, insulin therapy reduces ischaemic brain damage and may 

be neuroprotective.158 It is postulated that the neuroprotective action is 
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exerted through insulin like growth factor (IGF) type receptors. Insulin and 

IGF-1 were found to reduce ischaemic damage when injected directly into 

the brain ventricles.159 In a model of forebrain ischaemia in rats, insulin not 

only reduced histological injury but improved neurobehavioural outcome.160 

Insulin is also felt to exert an anticoagulant effect, through reduced 

thromboxane production 161 and decreased plasminogen activator inhibitor-1 

activity.162 The effect of insulin appears dependent on the model of 

ischaemia and also the method of insulin administration.   

 

2.16 Insulin in experimental models of focal ischemia 
 
A systematic search was undertaken with the aim of answering the question 

as to what effect insulin had on infarct volume and stroke outcome in 

experimental models of focal ischaemia. Appropriate studies were identified 

from the following databases; Pubmed (1966- 1st week in May 2006), 

Embase (1980 to 1st week in May 2006), web of science (1900- 1st week in 

May 2006) and BIOSIS 1969 –1st week in May 2006). Additional publications 

were identified from reference lists of all identified publications, review 

articles and abstract books of appropriate scientific meetings. Additional 

information was obtained by talking to researchers involved in the field. The 

search strategy employed the following keywords: insulin, ischaemia and 

cerebral. Search criteria were restricted to animal experiments. Studies were 

included if they described focal ischemia, exogenous insulin administration 



 79 

and a measure of infarct volume. Numbers of articles retrieved from the 

search strategy are shown in (Figure 2.2).  

 

Off the two hundred and twenty one original articles retrieved following the 

initial search strategy, forty-four studies were found to involve experimental 

models of focal ischaemia. This was further refined to twenty studies which 

had involved the administration of insulin, of which one study was 

subsequently excluded on the basis of there being no control group. Of the 

remaining nineteen studies, six did not have infarct volume as an outcome 

measure, leaving thirteen studies fulfilling criteria. The thirteen studies 

involved three different types of animal species, rat, cat and gerbil. Six 

studies reported temporary models of ischaemia, with the remaining seven 

describing permanent models.  

 

The effect of insulin appears to differ depending on a number of parameters, 

(i) the timing of insulin relative to ischaemia, ie whether the insulin 

administered was pre-, intra- or post ischaemic, (ii) the duration of ischaemia 

and whether it was permanent or temporary and (iii) the level of blood 

glucose achieved following insulin administration. In a temporary model of 

focal ischaemia using rats, elevated blood glucose at the time of ischaemia 

resulted in larger infarcts than those with a blunted glucose effect. 163 In a 

separate study, development of hypoglycaemia (mean blood glucose in the 

range 3.2-3.8mmol/l) following treatment with insulin, in a cat model of 
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temporary focal ischaemia, found larger infarcts and an increased death rate 

when compared to euglycaemic controls.164 A summary of the studies 

selected in the systematic review with outcomes are shown in Table 2.7.   
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Figure 2.2: Consort chart for the selection of original articles following initial search criteria 
examining the effect of insulin on experimental models of focal ischaemia. 
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Reference Species Site of 
Ischaemia 

Occlusion 
Type 

Results 

Yip et al
163

 Rat MCAO Temporary Intra-ischaemic normoglycaemia resulted in 
significantly smaller infarct volumes than 
hypoglycaemic rats  

Zhu et al
165

 Rat MCAO Temporary Insulin was not beneficial in reducing 
infarction size. The increased damage 
induced by insulin occurred in animals with 
very low blood glucose (2-3mmol/l) 

Hamilton et 
al

166
  

Rat MCAO Temporary Reduction in blood glucose to the low normal 
range (3-4mmol/l) reduced infarction size, 
whereas insulin administration without 
hypoglycaemia did not.  

Fukuoka et 
al

167
  

Gerbil UCCO Temporary 
 

Daily insulin injections without hypoglycaemia 
resulted in least infarction on histology. 

Zhao et al
168

 Rat MCAO Temporary  Oedema formation was less in rats treated 
with insulin that resulted in normal blood 
glucose levels.  

Temporary  Insulin induced hypoglycaemia resulted in 
increased infarct size in cat survivors.  

De Courten-
Myers et al

164
 

 

Cat 
 

MCAO 

Permanent Hyperglycaemic cats receiving insulin had 
larger infarct sizes than cats receiving normal 
saline. 

Nedergaard et 
al

169
 

Rat MCAO Permanent Volume of infarction was decreased in 
hypoglycaemic animals. 

Bomont et al
170

 Rat MCAO Permanent Insulin treatment in diabetic rats significantly 
reduced infarct volume (by approximately 
30%). 

Izumi et al
171

 Rat MCAO Permanent Insulin and Magnesium Chloride in 
combination maximally reduced infarct volume 
size. 

Izumi et al
172

 Rat MCAO Permanent Insulin given after MCA occlusion reduced 
infarction volume without inducing sustained 
hypoglycaemia 

Kazan et al
173

 Rat MCAO Permanent Infarct Volume was significantly reduced for 
rats receiving insulin when compared to 
controls 

Combs et al
174

  Cat MCAO Permanent No significant difference in infarct size 
between hyperglycaemic rats and rats with 
hyperglycaemia receiving insulin.  

Table 2.7: Experimental models of focal ischaemia, documenting species, site of 
ischaemia, occlusion type and results of insulin administration. Papers obtained from 
systematic review of available literature 

 
 
 
2.17 Insulin use in brain-injured patients 
 
Limited evidence exists on the action of insulin in humans with CNS injury. 

Post hoc analysis of 63 patients with isolated brain injury from the larger 

Leuven cohort of 1,548 surgical ICU patients receiving intensive insulin 
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therapy examined the effect of insulin therapy on intracranial pressure, 

diabetes insipidus, seizures and long-term rehabilitation at 6 and 12 months 

follow-up. 57% of patients included had intracerebral or subarachnoid 

haemorrhage with 19% being classified as having brain ischaemia. When 

the conventional treatment population (n=30) was compared to the 

intensively treated population (n=33), patients receiving insulin had reduced 

mean and maximal intracranial pressure, fewer acute seizures and at 12 

months brain injured survivors were more likely to be self-caring.  Non-

neurological morbidity was also reduced in the insulin group reflected by 

reduced duration of mechanical ventilation, ICU stay, hospital stay and 

reduced incidence of systemic sepsis. 175  

 

In a retrospective study of 960 patients with thromboembolic stroke, patients 

who had initial hyperglycaemia (blood glucose >7.2mmol/l) that settled on 

repeated testing at 24 and 48hours had similar mortality rates to patients 

with persistent euglycaemia.176 Insulin, oral hypoglycaemic agents or both 

were used in 63.7% of patients developing euglycaemia after admission. 

These results although taken from a retrospective study suggest some 

benefit of blood glucose control, providing justification for prospective work in 

this area.  
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2.18 Recent evidence in stroke patients 
 
The GIST-UK study recruited patients with acute stroke and blood glucose 

between 6.1 and 17mmol/l, regardless of whether or not they were known to 

have diabetes, although insulin requiring diabetic patients were excluded. 95 

Patients were randomised to either placebo (normal saline) or a GKI infusion 

for 24 hours. The objective of the GKI treatment was to maintain capillary 

blood glucose between 4 and 7mmol/l. The trial’s primary end-point was 

mortality at day 90. The GKI regime in GIST-UK comprised 500mls of 10% 

dextrose, 20mmol KCL and 16 units (initial) of soluble recombinant human 

insulin. Since the GKI regime involved 100ml/h IV infusion, patients with 

renal or significant congestive cardiac failure were excluded. Whilst these 

volumes of fluid may present difficulties for older patients with co-morbidity 

there was only a 3% incidence of symptomatic heart failure reported. At 

infusion initiation blood glucose monitoring was undertaken hourly until 

euglycaemia was reached and then changed to two-hourly. Dosage 

escalations or reductions required bag disposal and adjustment due to the 

inflexibility of insulin titration independent of glucose, although the median 

number of bag changes over the 24 hours was two per patient. This regimen 

can prove difficult in patients who are eating or drinking normally, requiring 

increased levels of insulin during the day and at times of meals with reduced 

requirements at night. This difficulty of dose titration is more relevant for 
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prolonged infusions and is relevant to infusion duration. The GKI regime is 

therefore very labour-intensive. 

 

The main results of GIST-UK have recently been published156, with 933 

patients randomly being assigned treatment between 1998 and March 31st 

2006. Of the 464 acute stroke patients who were treated with the GKI 

infusion, 30% died within 90 days compared with 27.3% among the 469 

patients who were randomised to receive saline solution (p = 0.37).  Median 

time to infusion was less than 14 hours for both groups. Similarly, no 

significant effect of GKI infusion upon prevalence of severe disability at 90 

days was identified.  One unexpected finding was an effect of GKI infusion 

upon blood pressure. Treatment with GKI was associated with significant 

decreases in blood pressure beyond that of medical therapy, with a mean fall 

in systolic blood pressure of 9.03 mmHg. Although insulin is known to exert a 

vasodilatory effect upon resistance vessels 177, alternative explanations 

include the effect of potassium as part of the trial infusion or the pressor 

effect of saline. 156 This observation requires further investigation.  

 

Despite the neutral result, the trial remains the first clinical trial of glucose 

modulation in acute stroke and subsequent trials will be informed through its 

results. The trial recruited 933 patients of a proposed sample size of 2,355 

patients and as such was underpowered to detect the pre-specified mortality 

difference between groups. As previously discussed, despite a glucose 
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enrolment range of 6.0-17mmol/l, the majority recruited had mild 

hyperglycaemia; median blood glucose 7.8mmol/l (6.8-9.2) in the GKI group 

and 7.6mmol/l (6.7-8.8) in the placebo group. The effect of GKI on patients 

with moderate to severe hyperglycaemia remains uncertain, with current 

practice still being guided by consensus guidelines. In contrast to the 

previously published meta-analyses on insulin, which demonstrated benefit 

in patients when the goal of therapy was glucose lowering, GKI lowered 

glucose but the effect was only modest (difference between GKI and saline 

groups of 0.57mmol/l) and glucose concentration fell spontaneously with IV 

saline alone.   

 

It is interesting to compare the neutral result of GIST-UK with the neutral 

result of DIGAMI II, which saw a 0.9mmol/l difference in blood glucose 

between the insulin and placebo groups, 149 while the first DIGAMI study had 

achieved a 2.1mmol/l reduction in glucose.148 A post-hoc analysis of GIST-

UK investigating the safety of glucose lowering on outcome found that 

patients receiving GKI with a 2mmol/l or more decrease in blood glucose 

between baseline and 24hours had a higher mortality at 24hours (34% 

(53/154)) when compared to patients with a glucose reduction of less than 

2mmol/l over the same period (22% (41/188)) (p=0.009). The time window 

for targeted acute stroke therapy remains uncertain, with previous 

neuroprotective and thrombolytic trials utilising a typical time limit of up to six 

hours from ictus to maximise the opportunity to attenuate tissue injury. 178;179.  
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In the GIST-UK study only eight patients were treated within three hours, 

with 108 patients being treated within six hours. No patients in GIST-UK 

received thrombolysis and as such any potential synergistic effect with GKI 

could not be assessed.    

 

An alternative method of insulin administration was examined in a 

randomised controlled pilot study.180  Intravenous (IV) insulin was given at a 

variable rate, adjusted for target glucose concentration of 5-8 mmol/l, and 

run simultaneously with a crystalloid infusion of either normal saline or 5% 

dextrose.  Patients within 24 hours of an acute ischaemic stroke with 

hyperglycaemia (8-20mmol/l) were randomised to receive rigorous 

glycaemic control or standard management for 48hours.  25 patients were 

recruited, with 13 randomised to insulin infusion. Over the course of the trial, 

one episode of transient hypoglycaemia occurred, which responded well to 

oral glucose.  

 

In a separate study a different method of IV insulin administration was 

used.181 24 patients (88% known diabetic) recruited within 12hours of an 

acute ischaemic stroke, with blood glucose in the range 9.4-22.2mmol/l, 

received insulin for a mean of 54 hours (range 17-72 hours). The insulin 

protocol was adjusted after every 3-7 patients to prevent hypoglycaemia, 

with potential post-prandial hyperglycaemia being covered with 

subcutaneous insulin 0.12 units/kg before each meal in those patients with 
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oral intake. Target glucose range was 3.9 - 7.2mmol/l. Hypoglycaemia was 

defined as <3.0mmol/l. At least one episode of hypoglycaemia occurred in 

11 (46%) patients, with symptomatic hypoglycaemia in 5 (21%). All episodes 

were rapidly detected with regular monitoring and symptoms resolved 

completely with glucose management as required.  Protocol deviations 

accounted for 3 of 19 episodes of hypoglycaemia. A potential technical 

problem with this method of insulin delivery is that blockage of the 

accompanying intravenous cannula may allow insulin delivery alone and the 

risk of hypoglycaemia.   

 

Two further trials are examining the effect of insulin in the presence of acute 

ischaemic stroke: the Glucose Regulation in Acute Stroke Patients Trial 

(GRASP) which is continuing recruitment and the Treatment of 

Hyperglycaemia in Ischaemic Stroke trial (THIS) which has completed 

recruitment but not yet presented its results. 182;183 In GRASP, patients with 

hyperglycaemia (glucose >6.1mmol/l) within 24 hours of symptom onset are 

randomised to tight glucose control (3.9-6.1mmol/l), loose glucose control 

(6.1-11.1mmol/l) or usual care. The infusion will be in the form of a GKI 

infusion and titrated to capillary glucose. The primary outcome is the rate of 

hypoglycaemic events (glucose < 3.05mmol/l).  

 

THIS is a randomised, multi-centre trial which recruited patients with acute 

ischemic stroke within 12 hours of symptom onset to usual treatment 
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(subcutaneous insulin four times daily) or aggressive treatment (continuous 

intravenous insulin to a target glucose range 6.1- 7.2mmol/l). The 

experimental interventions continue for 72hours. The primary outcomes 

measures were the modified Rankin scale, Barthel Index, NIH stroke scale 

and a stroke specific quality of life scale assessed at 90 days. Results are 

awaited. The study recruited 45 patients and as such it seems unlikely that 

any significant clinical measure of outcome will be discernible between 

groups. 

 

2.19 Insulin and mode of action 
 
There is evidence to support a beneficial effect of insulin administration to 

achieve euglycaemia in both preclinical models of ischaemia and in selected 

clinical scenarios184;185.  Animal studies confirm that this benefit is lost when 

hypoglycaemia occurs. 165 Uncertainty remains as to whether insulin has an 

effect independent of its action of glucose and evidence exists of alternative 

mechanisms. These include a potential direct neuro-protective effect, 

independent of euglycaemia. In a rat model of transient forebrain ischaemia, 

insulin administered with glucose significantly reduced cortical and striatal 

neuronal necrosis in the presence of normoglycaemia, suggestive of a 

neuroprotective effect of insulin. 186 Various methods of neuroprotection 

have been proposed, including a direct interaction with CNS tissue via a 

growth factor effect. Use of a continuous intra-ventricular infusion of insulin 

or insulin like growth factor 1 (IGF-1) in a transient forebrain model of 
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ischaemia, reduced neuropathological injury at one week compared to 

placebo. 187 Further, an anti-inflammatory effect of insulin has been 

proposed. Insulin infusion during acute myocardial infarction improves 

clinical outcomes, and although the mechanism remains elusive, it has been 

suggested that the suppression of plasma free fatty acid (FFA) concentration 

may play a role. High catecholamine levels during acute myocardial 

infarction result in an increase in FFA. Circulating levels of FFA and their 

myocardial uptake is reduced by the GKI infusion. 188 This may be significant 

as elevated FFA causes endothelial dysfunction. 189  

 

It has previously been demonstrated that insulin has a powerful anti-

inflammatory effect on endothelial cells in vitro and on circulating 

mononuclear cells in vivo when infused at a dose of 2.5 U/h in obese non-

diabetic subjects. Insulin incubated with cultured human aortic endothelial 

cells (HAEC) exerted an inhibitory effect on the cardinal pro-inflammatory 

transcription factor NFκB and the pro-inflammatory chemokine MCP-1.  

These effects suggest an anti-inflammatory and potentially atherogenic 

effect of insulin. 190 Thirty-two patients with acute myocardial infarction 

receiving reteplase were randomly assigned infusions of either insulin at 

2.5u/h, dextrose and potassium (GKI) or normal saline and potassium for 

48hours.191 Mean time to insulin infusion was 23 ± 3minutes after the first 

bolus of reteplase. Plasma concentration of high sensitivity C-reactive 

protein (CRP), serum amyloid A (SAA), plasminogen activator inhibitor-1 
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(PAI-1), creatine kinase (CK) and CK-MB were measured at baseline and 

sequentially for 48 hours. Baseline CRP and SAA were significantly 

increased at 24 and 48 hours in each group.  However in the insulin group 

there was a significant attenuation of the absolute rise in concentration of 

CRP and SAA from baseline. The absolute increase of CRP and SAA was 

reduced by 40% (CRP) and 50% (SAA) at 24 and at 48 hours compared with 

the control group. The absolute increase in PAI-1 from baseline was 

significantly lower (p<0.05) in the insulin treated group. CK-MB peaked 

earlier and tended to be lower in insulin treated subjects.  

 

One further mechanism underlying the anti-inflammatory role of insulin 

relates to the release of nitric oxide (NO). Insulin has been shown to induce 

an increase in the expression of nitric oxide (NO) synthase, the enzyme that 

generates NO. NO has been shown to down-regulate the expression of 

endothelial cell adhesion molecules as well as proinflammatory cytokines, 

resulting in vasodilatation and improved blood flow. 192 Insulin also has 

anabolic properties, with stimulation of skeletal muscle protein synthesis 

promoting tissue repair and potentially affecting rehabilitation. 193  

 

In addition to the potential mechanistic benefits of insulin, it is important to 

consider possible detrimental affects that could result in infarct progression. 

Experimental models have consistently shown that animals made 

hyperglycaemic prior to ischaemia have higher levels of lactate than 
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euglycaemic controls. 113;194 There is currently no direct proof that lactate is 

detrimental to the ischaemic brain. Using PET scanning it has been shown 

that lactate may be the preferred energy supply to the brain, especially 

during times of stress.195 This is relevant to the management of 

hyperglycaemia in acute ischaemic stroke patients. If the ischaemic brain is 

dependent on lactate for its source of energy, targeted euglycaemia may 

result in a decreased glucose load to the brain and thus less substrate for 

anaerobic metabolism and attenuated lactate production. Peri-infarct 

depolarisations (PIDS) are now known to contribute to infarct expansion in 

focal models of ischaemia. 196 In a cat model of middle cerebral artery 

occlusion a highly significant inverse relationship was seen between plasma 

glucose and frequency of PIDS (measured by fluorescence imaging), i.e. 

reduced cortical glucose loads resulted in more frequent PIDS and a worse 

clinical outcome. 197 The same group have demonstrated, in a single patient 

with traumatic brain injury, complete disappearance of cortical glucose 

dialysate coinciding with a period of hypoglycaemia associated with an 

insulin infusion. 198 This is consistent with the effect of hypoglycaemia on 

infarct progression in animal models and emphasises importance of strict 

monitoring in patients receiving insulin. The lower limit for glucose control in 

current randomised trials is 3.9-4.0mmol/l 95;181 but this may be associated 

with infarct progression and a safe lower limit may be higher. Evidence for 

this higher threshold in stroke patients may come from the post-hoc analysis 

of GIST-UK where a blood glucose reduction of greater than 2mmol/l from 
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baseline resulted in increased 24hour mortality. 156  

 
2.20 Conclusion 
 
Post Stroke Hyperglycaemia is common and is generally accepted as a 

prognostic indicator of poor stroke outcome. Uncertainty remains as to the 

mechanism by which hyperglycaemia is associated with poor stroke 

outcome and thus its aetiology. Prevalence of abnormalities in glucose 

metabolism in stroke patients is high but routine screening is often not 

undertaken. Recent years have seen advances in magnetic resonance 

imaging and thrombolytic treatment. Timing to recanalisation appears 

important for infarct progression and haematoma development in 

hyperglycaemic patients. It has recently been suggested that contrary to 

hyperglycaemia being detrimental in all strokes, it may actually be beneficial 

in lacunar infarction. In contrast to patients with acute myocardial infarction 

or requiring intensive care, where trial evidence permits recommendations 

for the use of insulin in the management of hyperglycaemia, there is a lack of 

evidence to support its use in stroke units. Current guidelines advise 

lowering of blood glucose but disagree on the threshold at which to 

intervene, and make no comment on specific insulin treatment regimes or 

treatment targets. Results from GIST-UK, the largest trial of GKI in acute 

stroke has contributed to our understanding of hyperglycaemia management 

in acute stroke. Intervention with insulin in the form of GKI would not be 

recommended on the basis of recent trial evidence and current clinical 

practice continues to be guided by consensus guidelines. 
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Chapter 3: Magnetic Resonance 

Imaging in Stroke 
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3.1 Introduction 
 

Current Royal College guidelines recommend CT scanning within 24 hours 

of stroke onset.143 In the recent 2006 national stroke audit, only 42% of 

patients had brain imaging to confirm their diagnosis within the desired 24 

hours. For those patients with a definite onset and scanning time, only 9% 

were imaged within the hyperacute three hour phase.35 Unfortunately access 

to imaging in the United Kingdom, for which CT is considered the modality of 

choice, remains a significant problem.  MRI is superior to CT in the detection 

of acute ischaemia, with many centres in Europe and North America using it 

as the primary imaging method.  Within the UK less than 1% of hospitals had 

access to MRI within four hours of stroke onset, increasing to 15% for the 

period 5-24hours.35 Early access to imaging is essential for the provision of 

intravenous thrombolysis but despite advances in both CT and MRI, current 

licensing is based on the interpretation of an unenhanced CT scan within 

three hours of ictus.22 Improvement in current accessibilty to hyperacute CT 

imaging in the UK is the primary aim for increasing the availabilty of 

thrombolysis. That said, assisted imaging modalities in MRI including 

Diffusion Weighted Imaging (DWI), Perfusion Weighted Imaging (PWI) and 

Magnetic Resonance Angiography (MRA) have improved sensitivity of lesion 

localisation, recognition of potentially reversible tissue and identification of 

occlusion site and recanalisation.  
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3.2 Diffusion weighted imaging (DWI) 
 
In early ischaemic stroke, cells swell and absorb water from the extracellular 

space and diffusion is restricted. Although the exact mechanism leading to 

the restricted diffusion has not been completely established, it is currently 

suggested that breakdown of the H+ ATPase pump leads to large shifts in 

water between the extracellular and intracellular space.199  DWI measures 

the random movement of water molecules with restricted diffusion appearing 

hyperintense or echobright.200 In animal studies, DWI has detected changes 

within minutes of arterial occlusion.201  Water apparent diffusion is 

measurably slower in regions of ischaemia compared to normal brain.  

 

Information about the severity of the ischaemic lesion can be determined by 

the apparent diffusion coefficient (ADC) value. Lower ADC values being 

associated with greater degrees of ischaemic injury and less chance of 

reversibility.202 By demonstrating hyperacute brain ischaemia within minutes 

of stroke onset, DWI is important in the assessment of stroke patients. 

Identification of early ischaemia contrasts to both CT and conventional T2 

weighted imaging, which require several hours to become positive.203 

 

In addition to early recognition of ischaemia, DWI has been shown to be 

better than conventional MRI in localising acute ischaemic lesions in stroke 

patients. Compared to T2-weighted and fluid attenuated inversion recovery 
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(FLAIR) which identified acute lesions in 71% to 80%, DWI identified 94%.204 

Standard clinical classification systems for stroke type have shown a 

discrepancy with DWI-MRI findings. Using DWI only 41 (44.1%) of 93 

patients found to have subcortical or brainstem lesions <1.5cm on imaging 

were originally classified as having a lacunar stroke.205 

  

Various studies have utilised DWI in predicting stroke outcome.  Using a 

predictive three point model including NIHSS score as a clinical measure, 

time in hours to MR DWI and the lesion volume on admission DWI, it was 

possible to predict stroke recovery.  It was found that the combination was 

better than any individual factor.206 In a separate study looking at 63 patients 

with non-lacunar stroke and undertaking a logistic regression model, DWI 

volume within 48 hours of onset at baseline was an independent predictor of 

outcome together with age and NIHSS score.207 

 

3.3 Perfusion Weighted Imaging (PWI)  
 
Perfusion is the flow of blood through the capillary circulation of an organ or 

tissue region, quantified in terms of the flow rate (millilitres per minute) 

normalised to the tissue mass (typically per 100g). The normal gray matter is 

perfused at the rate of 50-60ml/100g/min.199  Perfusion weighted magnetic 

resonance imaging can detect hypoperfused regions of brain and as such is 

able to give a measure of changes at a cellular level.  
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There are two main methods of obtaining PWI.  The first involves monitoring 

the transit of a rapidly injected contrast agent, e.g. gadolinium, during 

ultrafast T2 or T2* acquistions. Serial images are obtained every 1 to 2 

seconds over approximately two minutes, to monitor the signal decay 

associated with the passage of contrast.208 An alternative method involves 

arterial spin labelling (ASL) in which endogenous blood is magnetically 

labelled by pulsed radiofrequency energy as a diffusable tracer. When these 

labelled water protons exchange with tissue water at the capillary level, they 

alter the magnetic property of the tissue which can then be measured and 

translated into quantitative flow data. In regions distal to an arterial 

occlusion, the arrival of the contrast agent or the tagged water molecules in 

blood may be delayed.  

 

Once the data set is acquired a plot of signal intensity change with time is 

obtained.199 This can be converted into a concentration time curve from 

which several parameters relative to perfusion imaging can be calculated. 

These include: Cerebral Blood Flow (CBF), the amount of blood moving 

through a certain amount of tissue per unit time, measured in ml/g/min; 

Cerebral Blood Volume (CBV), the amount of blood in a given amount of 

tissue at any time (mls/g); and Mean Transit Time (MTT), the average time 

required for a particle of tracer in that region to traverse the capillary 

circulation209. The three parameters are related by the equation199: 
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CBV = CBF X MTT 

 

Using both PWI and DWI in acute ischaemic stroke - with PWI hypoperfused 

tissue and DWI the irreversible ischaemic core - the concept of an MRI 

delineated ischaemic penumbra has been developed.210 The correlation 

between areas measured by DWI and PWI (predominantly the MTT map) 

results in either a match (PWI = DWI), or mismatch (PWI>DWI or PWI<DWI). 

The mismatch PWI>DWI has been proposed as a definition of the ischaemic 

penumbra.  Increased experience with the use of DWI and PWI has seen 

two modifications to the definition.  The first relates to knowledge of the 

variability in hypoperfusion, a MTT ≥6seconds in the affected hemisphere 

compared to the contralateral hemisphere is more likely to result in infarction 

with lesser degrees of hypoperfusion more likely to result in tissue 

survival.210 The second is recognition that the DWI does not always progress 

to infarction.211 

 

3.4 Magnetic Resonance Angiography (MRA) 
 
MRA is useful in demonstrating the macroscopic vasculature and is able to 

detect morphological changes in blood vessels including levels of occlusion, 

degrees of stenosis and dissections.  Digital subtraction angiography is still 

accepted as the gold standard vascular imaging modality but the anatomical 
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information provided by non-invasive MRA makes it an attractive alternative.  

There are three main MRA techiques, (i) Time of Flight, (ii) Phase contrast 

and (iii) Contrast enhanced212. The physics underlying each method is 

beyond the scope of this review but each modality is based on the principle 

that contrast between blood vessels and stationary tissues is as a result of 

blood motion.  Phase contrast MRA provides acceptable images of the 

terminal internal carotid arteries, vertebrobasilar system and the Circle of 

Willis in a matter of minutes. Time of Flight (TOF) takes slightly longer but 

provides more detailed anatomical images including third order middle 

cerebral branches. Contrast enhanced MRA has increased the accuracy of 

determining the degree of stenosis at the carotid artery bifurcation, with the 

disadvantage that a contrast agent needs administered.203  

 

3.5 FLAIR (Fluid Attenuated Inversion Recovery) 
 
FLAIR produces heavily weighted T2 images with selective nulling of CSF 

and other fluids to give good anatomical images of the parenchyma.  As a 

result it has been used for the identification of periventricular lesions 

including demyelinating plaques.203 Because of the parenchmal detail FLAIR 

scans have been used for lesion volume measurements as surrogate 

markers of stroke outcome.128 
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3.6 Gradient Echo 
 
While conventional T1 and T2 weighted MRI pulse sequences are sensitive 

for the detection of subacute and chronic blood, they are less sensitive to 

parenchymal haemorrhage during the initial six hours after stroke symptom 

onset.213 Recognition of blood in the hyperacute phase is essential for any 

decisions regarding thrombolysis.  It has recently been demonstrated that 

gradient recalled echo sequences detect hyperacute blood and has resulted 

in its addition to MRI stroke screening protocols.214   

 

Initial concerns about the inability of MRI to delineate haemorrhage from 

infarct in the hyperacute stroke phase have proven unfounded.  In a 

prospective multicentre study, patients presenting with focal stroke 

symptoms within six hours of onset underwent brain MRI followed by non-

contrast CT.  Two hundred patients were enrolled of which MRI was positive 

in 71 patients with CT positive in 29 (p<0.001).  For the diagnosis of acute 

haemorrhage, MRI and CT were equivalent but was more accurate than CT 

for the detection of chronic intracerebral haemorrhage.215 In a more recent 

study including 357 patients assessed for acute stroke of which 217 had a 

final clinical diagnosis of acute stroke, MRI as in the previous study was 

similar to CT for the detection of acute intracranial haemorrhage but, MRI 

detected acute ischaemic stroke in 164 of 353 patients (46%; 95% CI 41-

51%) compared with CT in 35 of 356 patients (10%; 7-14%). In the subset of 
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patients scanned within three hours of symptom onset, MRI detected acute 

ischaemic stroke in 41 of 90 patients  (46%; 35-56%) with CT in 6 of 90 (7%; 

3-14%).216  

 

3.7 Use of MRI as surrogate markers   
 
Trials of neuroprotectant agents in experimental animal studies with positive 

results have failed to translate into similar results when tested in humans. 

This has been emphasised with the failure of the earlier reported Stroke-

Acute-Ischaemic NXY Treatment II (SAINT II) trial32. The application of 

relatively non-strict criteria for patient recruitment has resulted in a 

heterogenous population which has been used as possible explanation for 

trial failures. With the aim of selecting a more homogenous stroke population 

to study trial drug effectiveness there is currently a push for the use of MRI 

modalities to aid the selection process. This will faciliatate recruitment of a 

smaller target population, compared to trials of similar therapeutic agents 

which rely purely on clinical measures. In addition to use for patient 

selection, MRI measurements are being used as surrrogate markers of 

outcome.217 

 

As described earlier, imaging modalities including DWI/PWI have been used 

in trials of thrombolysis aimed at assessing the feasability of extending the 

time window beyond three hours210 (Table 1). In the EPITHET (Echoplanar 

Imaging Thrombolytic Evaluation Trial) pilot study, 19 patients underwent 
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DWI and PWI prior to thrombolysis and within six hours of stroke ictus, with 

repeat imaging at days 3-5 and day 90. Patients with MR evidence of 

mismatch (PWI>DWI) demonstrated a significant degree of recanalisation, 

reperfusion and tissue salvage in addition to improvement in clinical outcome 

measures, when compared to a group of historical controls.218   

 

Further trials have examined the effect of neuroprotectants on lesion 

progression using infarct size as a surrogate marker of outcome. Trials of 

citicoline in acute ischemic stroke have shown that change in lesion volume 

is a marker of clinical improvement. Patients showing clinical improvement 

from baseline to week 12 of at least seven points on the NIHSS, had a 

significantly greater relative reduction in lesion volume compared with 

patients who did not attain a similar level of clinical improvement.219  In the 

MRI sub-study of the GAIN (Glycine Antagonist in Neuroprotection) trial, 

gavestinel (GV150526) a selective antagonist at the glycine site of the 

NMDA (N-methyl-D-aspartate) receptor was found to have no effect on 

infarct volume at three months. Results were similar to the larger GAIN study 

(population 2,171) which had used clinical outcome measures. In addition 

,significant correlations were found between NIHSS and lesion volume at 

baseline and between clinical outcome measures (NIHSS, modified Rankin 

scale and Barthel Index) and lesion volume at three months.220 As in the 

citicoline study, there was a significant relationship between lesion volume 

decrease and an improvement in NIHSS by ≥7points (p<0.0001).  
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MRI permits the serial measurements of lesion volumes and thus allows an 

assessment of the effect of thrombolysis or neuroprotective drugs on lesion 

progression. In relying on lesion volume measurements, it is important to be 

aware of the variability in analysis which could ultimately affect results. In an 

assessment of the reliability of both intrarater and interrater MRI lesion 

volume measurements of DWI, PWI (mean transit time) and FLAIR, both 

acutely and at later time points in a stroke population, there was found to be 

good concordance in measurements across the different MR imaging 

modalities.221 A more recent study in a smaller population has suggested 

that inter-rater measurement of DWI lesion volumes may vary depending on 

lesion volume morphology.  That is, there is least agreement for multifocal ill 

defined lesions compared to solitary defined lesions and greatest 

discrepancy between early scans, ie at less than six hours compared to 

scans beyond 12 hours.222  

 

3.8 Conclusion 
 
Advances in MRI have seen it replace CT as the imaging modality of choice 

in the hyperacute assessment of stroke patients.  The additional information 

obtained in lesion localisation, recognition of hypoperfused tissue and site of 

occlusion assists both clinical decisions and increases the potential for its 

use in stroke drug development.  
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Chapter 4: Magnetic Resonance 
Spectroscopy in Stroke 
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4.1 Introduction 
 
 
Magnetic Resonance Imaging (MRI) provides high resolution spatial images 

to generate anatomical information, whereas Magnetic Resonance 

Spectroscopy (MRS) is a non-invasive method of studying biochemical 

changes within tissues.  For MRI acquisition, signals obtained from water, fat 

and other hydrogen containing metabolites within the magnetic field are 

interpreted together, with individual signals not being distinguished. In 

contrast, MRS aims to discriminate between different metabolites and 

water.223  

 

Individual metabolites consist of nuclei which themselves are surrounded by 

electron clouds.  In the presence of an external magnetic field, the electron 

clouds create their own magnetic field that opposes the external field. The 

strength of an individual magnetic field is determined by the chemical 

environment of the individual metabolite.  Since the resonance frequency of 

a particular nucleus is proportional to the strength of the magnetic field that 

the nucleus experiences, nuclei in different chemical environments can 

resonate at slightly different frequencies resulting in the phenomenon of 

chemical shift.223;224 

 

Interpretation of metabolites obtained using MRS requires knowledge of the 

region of interest within the brain from which the data was acquired. Two 

main methods of spatial localisation are routinely used.225  



 107 

 

(a) Single Voxel Spectroscopy (SVS): Signals are obtained from a small 

volume of tissue defined by the intersection of three orthogonal planes.  SVS 

produces a single spectrum from a single localised volume in one 

measurement sequence (Figure 4.1).. Comparison of individual spectra from 

different regions of the brain requires additional image time  

 

 

Figure 4.1 Single voxel spectroscopy from patient recruited to the SELESTIAL trial 
demonstrating peaks at N-acetyl aspartate(NAA), Lactate(LAC), creatine(CR) and 
choline(CHO).  

 
(b) Chemical Shift Imaging (CSI): A method of collecting spectroscopic 

data from multiple adjacent voxels covering a large volume of interest in a 

single measurement. An example of a multi-voxel spectrum spanning both 

hemispheres and including the DWI abnormaility is demonstrated. (Figure 

4.2). 

 

Figure 4.2 Multivoxel spectroscopy from SELESTIAL trial, demonstrating a larger 
voxel superimposed across both hemispheres with DWI involvement right 
hemisphere.   
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4.2 Cerebral Metabolites 
 
MRS data is usually presented as line spectra, with automated software 

programs providing almost immediate access for visual analysis. The major 

metabolites detected on [1H] Spectroscopy are N-acetylaspartate (NAA); 

total choline (Cho); total creatine (Cr), including Phosphocreatine (PCr); 

myo-Inositol (mI) and glutamate plus glutamine (Glx). Lactate is not routinely 

found in measurable amounts in normal brain (chemical structure figure 4.3). 

The metabolites are important components in brain energy metabolism and 

the location of the peaks on individual spectra result from chemical shifts as 

described earlier. The area under each peak represents the relative number 

of nuclei detected for a given metabolite.  All metabolites are assigned a 

specific chemical shift δ, which is expressed in units of parts per million 

(ppm) relative to a reference compound.  In [1H] Spectroscopy, the chemical 

shift reference is tetramethylsilane (TMS), which is assigned a value 

δ=0.0.223 

 

 

 
 
 
 
 
 
Figure 4.3 Chemical stucture of lactate identified on MRS. The asterix denotes the protons 
contributing to the major peak on MR spectroscopy. 
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Lactate (1.33ppm) 

Lactate is not found in measurable amounts in normally functioning brain 

tissue but is particularly relevant to stroke.  An end product of anerobic 

metabolism, lactate accumulates in tissues of patients with ischaemia or 

hypoxia.  On MRS lactate is a doublet peak and depending on the echo time 

(TE) used, the peak will either be upright (TE=270msec) or inverted 

(TE=230msec).223 Lactate has also been detected in mitochondrial diseases 

and brain tumours.223;226 

 

N-Acetyl Aspartate (2.02ppm) 

Although its function is not known, NAA is found only in the brain and spinal 

cord.  Its presence and level acts as a marker of healthy neurons.  Reduction 

in the size of the NAA peak provides a useful indicator of neuronal disease.  

NAA has been shown to increase during brain development after birth and 

during child development  and to decrease in old age. 223  

 

Total Creatine (3.03ppm) 

Both creatine (Cr) and Phosphocreatine (PCr) are found in neurones and 

glial cells and are involved in ATP metabolism. The Total Creatine (Cr/PCr) 

peak on [1H] Spectroscopy is used as a baseline reference level for other 

metabolites, as it is relatively unchanged in most disease processes. 223 
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Choline (3.22ppm) 

In normal brain the choline (Cho) peak is thought to consist predominantly of 

glycerolphosphocholine and phosphocholine.  Both compounds are involved 

in membrane synthesis and degradation.  Choline is thought of as a product 

of myelin breakdown.  In adult brain an increase in the choline peak area is 

associated with Alzheimers disease, chronic hypoxia and epilepsy, while a 

decrease is seen in hepatic encephalopathy.226  

 

 

myo-Inositol (3.6ppm) 

Only seen at short TE, myo-Inositol is thought to be involved in regulation of 

cellular transport across cell membranes. Its concentration fluctuates more 

than any of the other major metabolites, with significant elevation in newborn 

infants and hypernatremia and almost undetectable levels in hepatic 

encepahlopathy.223 

 

Glutamate and Glutamine (2.1-2.5ppm) 

Both glutamate and glutamine are excitatory neurotransmitters and are 

elevated in hepatic diseases.226 
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4.3 Quantification of Metabolites 
 
Absolute measurements of cerebral metabolites is difficult and requires 

additional assays of known internal or external reference standards referred 

to as phantoms.  Using these known reference compounds, the absolute 

quantification of metabolites is calculated.  In view of the difficulty obtaining 

and performing absolute quantification, most centres describe metabolite 

concentration relative to an internal constant.  Total creatine is generally 

accepted as an appropriate reference compound, although other studies 

have quoted metabolite levels relative to Choline129 or as a fraction of the 

sum of all metabolites.  

 
 
4.4 MR Spectroscopy in practice 
 
Applications of MRS are increasing, helped by the advances in MRS 

acquistion and software analysis.  Although still primarily seen as a research 

tool, its use has extended  to the evaluation of patients with demyelination, 

neuro-oncology, neurodegenerative conditions and focal brain lesions in 

AIDS.226 Of particular interest is the role of MRS in stroke and its contribution 

to our understanding of changes in cerebral metabolism in acute ischaemia.  

 

4.5 Stroke studies using MR Spectroscopy 
 
Early clinical studies using MRS examined the natural history of NAA and 

lactate in patients following ischaemic stroke.  Six out of 16 patients recruited 
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within three weeks of the incident event, with MRS at baseline, underwent a 

follow-up study.  Lactate was shown to be persistently elevated in 5/6 

patients up to 251 days post infarction.227 Work from the same group but 

involving 10 patients within 60 hours of ictus found a lactate peak in all 

patients, with a reduced NAA peak relative to the contralateral normal 

hemisphere in all but two patients.  On follow-up studies between days 8 to 

17 in seven of the patients, a significant decline in both lactate (-36%±11%) 

and NAA signals (-29%±9%) occurred.228 In a separate study using multiple 

logistic regression, reduction in NAA on sequential scanning was 

significantly associated with the extent of the infarct (p=0.03) and the 

presence of lactate (p=0.04).229 

 

When specific areas within the brain were examined in 11 patients with 

middle cerebral artery occlusion within 24 hours of ictus, regions with T2 

hyperintensity on MRI were found to contain elevated levels of lactate and 

reduced NAA, compared to the contralateral unaffected hemisphere.  

Lactate levels in regions adjacent to T2 hyperintensities were not 

significantly different from those of infarcted brain, whilst NAA were 

significantly lower in regions of infarction compared with peri-infarct tissue.230 

In a more recent study looking at areas within the ADC (Apparent Diffusion 

Coefficient) of six patients within seven hours of stroke onset, a 33% 

decrease in mean ADC within the narrow range 0.60-0.40 was associated 

with a 122% increase in the Lactate/NAA ratio.231 The significant variability in 
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metabolite concentrations reveals the spectrum of ischaemia seen with the 

ADC lesion and may explain its potential for reversibility.  

 

Both NAA and lactate have been studied as potential predictors of stroke 

outcome. In 32 patients undergoing MRS an average of 4.9 days after 

symptom onset, lactate was highly correlated with stroke severity and clinical 

outcome as measured by the barthel index on hospital discharge.  NAA was 

also predictive of stroke severity and functional outcome but less so than 

lactate.232 

 

When both MRS and lesion volume measurements were examined as 

predictors of clinical outcome, acute lactate/choline ratio correlated more 

strongly with clinical outcome scores than final infarct size, acute DWI or 

acute NAA/choline ratio.  Combination of acute lactate/choline and DWI 

lesion volume improved prediction of all outcome scores.233 

 

More recent studies have utilised MRS to help understand the 

pathophysiology of stroke progression.  Experimental models of reversible 

ischaemia have consistently demonstrated an association between 

hyperglycaemia, lactic acidosis and conversion of penumbral tissue to 

infarction.54;113 Using perfusion/diffusion weighted MRI in 63 patients, acute 

hyperglycaemia was found to correlate with reduced salvage of mismatch 

tissue from infarction, greater final infarct size and worse functional outcome 
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in patients noted to have an acute perfusion/diffusion mismatch at 

baseline.129 In a sub-study of 33 patients who underwent MRS, higher acute 

blood glucose in patients with mismatch was associated with greater 

acute/subacute lactate production and reduced salvage of mismatch 

tissue.129 For patients with no mismatch, there was no correlation between 

acute blood glucose and outcome measures or with acute-subacute 

increases in lactate.  

 

A recent and novel application for MRS has been its use in the measurement 

of cerebral temperature.  Higher cerebral temperature was noted in lesions 

that were large, had reduced cerebral blood flow and in patients with 

clinically severe strokes.234  

 

The effect of Normobaric oxygen (NBO) on cerebral metabolites was studied 

using multi-voxel based MRS and diffusion/perfusion MRI in seven patients 

with acute ischaemic stroke.235  It has been suggested that NBO is a 

potential neuroprotective agent.  One patient was excluded from analysis 

due to poor spectral acquistion, leaving four patients receiving NBO and two 

controls.  Baseline imaging was performed within 12 hours of ictus at 

+4hours and +24hours.  NBO was found to reduce brain lactate and 

preserve NAA, suggesting that NBO improves aerobic metabolism and 

preserves neuronal integrity.  Lactate expressed as a ratio secondary to the 

sum of metabolites decreased during the period of normobaric oxygen 
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delivery, whereas in patients with reperfusion lactate decreased further, 

suggesting that the beneficial effect may not be sustainable with persistent 

hypoperfusion.  The change in lactate from baseline to four hours tended to 

be different between groups and occurred mainly in DWI bright regions 

rather than mismatch regions.235 This study is significant in demonstrating 

the potential use of MRS in obtaining data that may act as surrogate markers 

for therapeutic interventions.  

 

Despite possible optimism for the use of MRS in future clinical trials, 

previous studies have highlighted a difficulty in complete data acquistion.  In 

50 patients recruited to an MRS study with planned screening on three 

separate occasions, metabolite results were available for 22 patients with 

one scan, 11 patients with two scans and only 7 patients with three scans. 

Contributing factors to the incomplete data set cited by the authors include 

local availability of the scanner, tolerability of their patient population to the 

time required for imaging and the quality of the data obtained.229  

 

 

4.6 Conclusion  
 
Magnetic Resonance Spectroscopy can enhance our understanding of 

stroke pathophysiology.  Despite recognised difficulties in data acquistion, 

MRS allows monitoring of the effect of therapeutic interventions on chemical 

changes within the MR delineated penumbra and infarct core.  This can 
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include neuroprotectant and thrombolytic agents, but also the effect of 

adjustment in physiological parameters (temperature, oxygen and blood 

glucose) on a metabolite level in the ischaemic brain.  
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Chapter 5: SELESTIAL 
(Spectroscopic Evaluation of Lesion 

Evolution in Stroke: Trial of Insulin for 
Acute Lactic acidosis) 
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5.1 Introduction 
 
Post stroke hyperglycaemia is recognised as an independent risk factor for 

poor outcome following stroke.236 Interventions to control hyperglycaemia 

vary in clinical practice with routine management being guided by consensus 

guidelines.142 There is a paucity of evidence to support blood glucose 

management in acute stroke with clinical decisions based on extrapolation of 

data from non-stroke populations.148;237 Controversy remains as to whether 

hyperglycaemia is purely an epiphenomenon of worsening stroke severity 

and underlying abnormal glucose metabolism238 or alternatively has a direct 

neurotoxic effect on the ischaemic brain.70  

 

Experimental models have shown a consistent correlation between acidosis, 

hyperglycaemia and brain injury.113;239 Animals made hyperglycaemic prior to 

focal ischaemia have higher levels of lactate than euglycaemic 

controls.240;241 If the neurotoxic hypothesis is true, then manipulation of blood 

glucose may have a beneficial effect on stroke outcome.  The recently 

published UK Glucose Insulin in Stroke Trial (GIST-UK) was the first multi-

centre trial to examine the effect of insulin on 90 day mortality.156 Patients 

randomised to glucose-potassium-insulin (GKI) infusion for 24 hours were 

found to have no mortality benefit when compared to placebo.156 The neutral 

result is consistent with the results of other phase III trials in stroke, which 

have failed to confirm promising experimental results in clinical studies, and 

raise the question of whether clinical trial methodology is at fault. Given the 
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clinical heterogeneity of stroke, large, simple trials may be a poor vehicle for 

understanding mechanisms.  Imaging, particularly MRI, provides surrogate 

markers that are potentially valuable in “proof of concept” studies.  Using 

MRI measures of lesion volume at baseline and a later time point, it may be 

possible to assess the effect on this surrogate outcome measure.  This has 

previously been shown with recombinant tissue plasminogen activator.218 In 

addition to lesion volume analysis, magnetic resonance spectroscopy allows 

the in vivo study of cerebral metabolites. As described earlier the 

mechanistic link between lactate and stroke outcome remains uncertain, 

MRS allows quantification of cerebral lactate in the ischaemic brain and 

allows testing of the hypothesis. Can manipulation of lactate through 

maintenance of euglycaemia in the early phase of stroke affect outcome..129 

 

We undertook a single centre, randomised, placebo-controlled trial to 

examine the effect of insulin on lesion volume progression in acute 

ischaemic stroke.  Using 1H MRS we also studied the effect of insulin on 

brain lactate concentrations. The trial acronym was SELESTIAL 

(Spectroscopic Evaluation of Lesion Evolution in Stroke: Trial of Insulin for 

Acute Lactic acidosis) and was funded by the Stroke Association of the UK 

(TSA 06/03) 
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5.2 Methods 
 
Patient recruitment:  

Patients with sudden onset of focal neurological deficit felt consistent with an 

ischaemic event, hyperglycaemia defined as capillary blood glucose 

>7.0mmol/l, presenting within 24hours of stroke onset and a diffusion 

weighted imaging abnormality on MRI were prospectively recruited from 

those admitted to the South Glasgow Stroke service over a 25 month period 

(December 2003-January 2006).  Time of onset was defined as the last time 

the patient was known to be without neurological deficit.  MR Imaging was 

performed at presentation (<24hours from onset), on day 3(±1) and day 

7(±2). Following initial imaging, patients were randomised to glucose-

potassium-insulin (GKI) infusion or placebo.  

 

Patients were excluded from randomisation if there was a contraindication to 

MRI, evidence of cerebral haemorrhage on imaging, capillary blood glucose 

≤7.0mmol/l or either patients or the next of kin were unable to provide 

consent or assent respectively.  The study was approved by the Multicentre 

Research Ethics Committee for Scotland (A) and by the local ethics 

committee.  

 

Randomisation:  

Randomisation was by means of computer-generated random numbers.  A 

lead in pilot study aimed to recruit 10 patients with 1:1 treatment allocation, 
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placebo (saline) or GKI for 48h. The purpose of the pilot study was to 

familiarise nursing, medical and radiography staff with the protocol. The 

initial phase high-lighted difficulties in trial recruitment with only one patient 

randomised within the first 6months. To address this problem a blood 

glucose monitoring protocol was introduced to the stroke unit with repeat 

CBG profiling every 4hours. Results from the screening protocol provide the 

basis of chapter 6. Trial recruitment improved through the remainder of the 

pilot study and into the main trial phase, whereby allocation was in a 1:1:1 

ratio to placebo (saline), GKI infusion for 24h or GKI infusion for 72h.  

Allocation was concealed in consecutively numbered, sealed opaque 

envelopes. A 57% relative reduction in the proportion of patients exhibiting 

lesion volume expansion between baseline and day 7 (from 70% to 30%) 

can be detected with 80% power (2p=0.05) and 15 subjects per group. Total 

sample size suggested is 45 patients.  

 

 

Clinical assessment 

Stroke severity was determined by the National Institute of Health Stroke 

Scale (NIHSS)242 on days 1, 3 and 7 to coincide with corresponding MRI 

scans.  Strokes were classified using the Oxfordshire Community Stroke 

Project (OCSP) system.243 Outcome was measured clinically using the 

modified Rankin Scale structured interview questionnaire244 at one month.  A 

single clinical research fellow trained in the administration of the scales 
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undertook all clinical assessments.  Stroke progression was defined as a 

worsening in stroke severity on the NIHSS of four or more points, between 

baseline and infusion discontinuation on day three. 

 

Infusion 

Placebo consisted of 0.9% normal saline (154mmol/l sodium).  The GKI 

infusion consisted of 500mls 10% dextrose, 20mmol KCL and 16 units of 

soluble recombinant human insulin.  Infusion bags ran at 100mls/hour.  The 

GKI infusion in the initial pilot study ran for 48 hours and in the main study 

was for either 72 or 24 hours as per randomisation.  For patients receiving 

GKI for 24hours, normal saline was instituted for the subsequent 48 hours.   

 

The dose of insulin was titrated as per a protocol dependent on capillary 

blood glucose measurements (appendix) by medical and nursing staff 

blinded to imaging and clinical measurement scores. The protocol was 

adapted from the GIST-UK156 study protocol with the only difference being 

the duration of infusion.  Capillary blood glucose readings were recorded 

using a Medisense monitor (Germany).  For patients receiving placebo, 

glucose monitoring was performed four-hourly. Readings were performed 

hourly in patients receiving the GKI infusion until euglycaemia was achieved 

and thereafter checked two-hourly.  Euglycaemia was defined as a capillary 

blood glucose reading of 4.0-7.0mmol/l.   
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- If capillary blood glucose was above the targeted treatment range, the 

500mls of the GKI infusion were discarded and a new infusion 

commenced with an additional four units of insulin added.  In addition, 

monitoring frequency was increased to hourly until euglycaemia was 

achieved or the infusion concentration needed to be adjusted.  

 

- If the capillary glucose fell to less than 4mmol/l the GKI infusion was 

discontinued. The capillary blood glucose was rechecked at 15 and 

30 minutes and if the repeat blood glucose was greater than 

4.0mmol/l a GKI solution containing four units less insulin was 

commenced.  If hypoglycaemia, defined as a capillary blood glucose 

<4.0mmol/l, persisted for 30 minutes, 10 mls of 50% dextrose was 

administered.   

 

Capillary blood glucose readings, blood pressure and pulse were recorded 

on a standardised form for the duration of the infusion. Blood pressure and 

pulse rate were recorded digitally four-hourly for all patients, by nursing staff 

allocated to the acute stroke unit. The blood pressure cuff was applied to the 

non affected limb for repeated measurements.  

 

Plasma blood glucose (drawn in sodium fluoride bottles and analysed using 

glucose oxidase method with Abbott diagnostics), urea and electrolytes were 

recorded on admission along with glycosylated haemoglobin, (HbA1c) (high 
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performance liquid chromatography on a Menarini analyser). Plasma 

glucose and electrolytes were repeated at 24 and 48 hours.  

 

Imaging 

All MR scans were obtained using a 1.5-Tesla echoplanar-imaging-equipped 

whole body scanner (Signa NVi; General Electric, software level excite 11.0). 

Images were obtained using an eight channel head coil using a protocol 

consisting of an initial T1-weighted sagittal localiser, a diffusion weighted 

planning sequence, diffusion HD b1000 Axial, T2 FLAIR axial, T2 gradient 

echo axial, oblique 3D time of flight, axial PROBE (proton brain exam) 

chemical shift imaging 144 multi-voxel spectroscopy, and axial PROBE 

single voxel spectroscopy centred in the diffusion lesion.  Repeat sequences 

were performed at day 3 and day 7, with outcome scans including a day 7 

axial FLAIR.  

 
Diffusion Weighted Imaging (DWI) was performed using a multi-slice, single 

shot, spin echo EPI (echo planar imaging) sequence.  Slice thickness was 

5mm with a 1.5mm gap, with 24 slices set to include the whole brain. Matrix 

size was 128x128; field of view 26 cm X 20.8cm; TR=8000ms; TE = 70.9; 

NEX (number of excitations) = 4. 2; b values of b=1000s/mm2 and b=0.  

Post image acquisition, DWI and FLAIR scans were anonymised and 

allocated random numbers by an independent MR physicist, who was 

blinded to clinical data.  For intra-rater reliability, twenty four duplicates were 
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included in the data set with interpretation of scans undertaken by myself 

(MMcC) blinded to clinical identifiers and timing of scans.   

 
Lesion volume measurements in cubic centimetres were made using the 

semi-automated Cheshire software (Perceptive Informatics, PAREXEL, 

USA).  Instruction and training in the use of the software was facilitated 

through a secondment to the Stroke-MRI laboratory of the NIH, Bethesda, 

Washington DC.  Initial analysis of an independent data set was performed 

and validated against pre-existing measurements. Following re-analysis of 

the introductory data set and further instruction, an additional set of images 

was interpreted and used as the test set to confirm satisfactory completion of 

training. 

 

Volume measurements involved identification of a lesion by visual 

inspection, initial semi-automated segmentation, followed by editing of the 

region of interest.  All DWI scans were measured.  Day 7 outcome FLAIR 

scans were then measured with knowledge of the corresponding day 1 DWI 

scan, to enable measurement of acute lesions.  Time of flight MR 

angiography (MRA) was analysed by a consultant neuroradiologist, blinded 

to clinical data, with each MRA classified as per the AOL (Arterial Occlusive 

Lesion) criteria (AOL 0: No recanalisation of the primary occlusion; AOL 1: 

Incomplete or partial recanalisation of the primary occlusion with no distal 

flow; AOL 2: Incomplete or partial recanalisation of the primary occlusion 
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with distal flow and AOL 3: Complete recanalisation of the primary occlusion 

with distal flow).245   

 
Spectroscopy 

The DWI slice with the largest diffusion lesion visually was used to place a 

voxel within the centre of the infarct core for ¹H MRS. In the majority of 

cases, voxel size was 2 X 2 X 2 cm, but in small infarcts, the voxel volume 

was adjusted to fit within the infarct core (Figure 5.16).  For single voxel, TR 

= 1500ms, TE = 144ms, NEX =8.  Global auto-shimming was performed. 

Repeated measurements on subsequent scans were performed using 

knowledge of location of the single voxel on previous imaging.  Acquired 

data was processed with spectral analysis software. The LC model software 

carries out automatic quantification of in-vivo proton spectra. In-vivo spectra 

are analysed as a linear combination of a basic set of complete model 

spectra of individual metabolite solutions in vitro. LC model allows a high 

degree of automation, which removes operator bias. Calibration has not 

been performed and the concentrations calculated by LC model are not in 

absolute units. The sequential study design allows us to use the results in 

terms of institutional units for the purposes of comparison. LC model creates 

an output for each voxel within the localisation volume. Data was analysed 

over the window 4.0ppm to 1.0ppm.  

 
Metabolites measured include lactate, n-acetyl aspartate and creatine. The 

creatine peak integrated area from the voxel within the ischaemic region was 
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used as the internal reference for each patient.  Values are expressed as 

ratios relative to creatine.  

 
5.3 Statistical analysis 
 
SPSS version 13.0 was used for data analysis.  Demographic data and 

baseline variables are expressed as medians with corresponding 

interquartile ranges. Effect of GKI infusion versus placebo on change in 

lesion volume dependent on recanalisation status (AOL criteria) were 

determined using Kruskal-Wallis across groups, with intra-group 

comparisons made using the Mann-Whitney U test.  For repeated measures 

of capillary blood glucose, systolic and diastolic blood pressure data was 

presented as parametric measures and analysed using one way anova. The 

appropriate use of parametric or non-parametric measures was determined 

using the Kolmogorov-Smirnov test for normal distribution.  Results were 

considered statistically significant at the 5% level.  Intra-rater assessment of 

lesion volumes where assessed by including 24 duplicates within the 

anonymised data set with differences in volume measurements analysed 

using the paired t-test. Results were displayed using a modified Bland-

Altman plot. Quantification of spectroscopy data for lactate and N-acetyl-

aspartate were recorded relative to creatine. Correlation between 

spectroscopy results and outcome measures were compared to admission 

clinical and MRI based measures. As for lesion volumes LCR (lactate 

creatine ratios were compared using the Mann-Whitney U test at the 

respective imaging points.    
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5.4 Results 
 
Of the 1,002 admissions to the stroke unit over the period of recruitment, 

530/1002 (53%) had an ischaemic stroke.  Of these, 80/530 (15%) fulfilling 

inclusion criteria and for whom access to MRI was potentially feasible, were 

approached for recruitment, 64 patients consented to the study and 50 

patients underwent baseline MRI, with 40 patients randomised to trial 

infusion.  Reasons cited for non-study participation of all 64 patients 

consented are described in Figure 5.1.  Ten patients were recruited to the 

pilot phase and 30 patients to the main phase.  Thirty-seven patients had 

MRI scans performed at all three designated time points, two patients had an 

acute MRI scan only with no follow-up imaging (one worsened clinically and 

one refused).  A single patient was unable to get the Day 3 scan but did 

have a Day 7 scan.  

 

Of the 40 patients randomised to trial infusion, 13 (33%) had a pre-

admission diagnosis of diabetes. Thirteen (33%) received intravenous 

recombinant tissue plasminogen activator.  Baseline demographics, along 

with time to admission, time to imaging and infarct volume, are shown in 

Table 5.1.  There was no difference between groups in relation to age, 

stroke severity or time to presentation. Time to infusion was less in patients 

receiving insulin (20.8hours (IQR: 12.9-24.5)) than in those receiving 

placebo (23hours (IQR: 18.5-25.5): p<0.001)*. 
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Figure 5.1: Consort chart for number of patients screened, recruited and imaged for the 
SELESTIAL study. Patients consented and then reasons for completing the study are shown 
in adjacent boxes. Randomisation for pilot and main study shown along with numbers 
completing imaging protocol (under scan time in brackets)  

 

Pilot GKI (48) 
(n=5) 

GKI (24) 
(n=10) 

Placebo 
(n=10) 

MRI (day3) 
(n=10) 

 

MRI (day3) 
(n=9) 

Pilot Placebo 
(n=5) 

MRI (day3) 
(n=5) 

MRI (day3) 
(n=5) 

 

MRI (day7) 
(n=5) 

MRI (day 7) 
(n=10) 

 

MRI (day 7) 
(n=10) 

64 patients consented to study 

50 patients underwent baseline 
MRI 

2 patients died 
1 patient’s condition 
deteriorated prior to 
scanning 
2 patients withdrew 
consent 
9 patients unable to get 
scan within time window 

40 patients randomised to infusion 

2 unable to tolerate scan 
2 no DWI lesion 
1 Posterior Circulation Stroke 
4 non-strokes 
1 Withdrew consent after baseline 
scan 

1,002 Admissions Dec ’03 – Jan ‘06 

530 patients with acute ischaemic stroke 

80 patients fulfilling eligibility criteria 

MRI (day7) 
(n=8) 

MRI (day 7) 
(n=5) 

MRI (day3) 
(n=8) 

GKI (72) 
(n=10) 
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Table 5.1: Baseline demographics, clinical assessment, blood glucose and imaging time for 
patients recruited to the SELESTIAL trial. Values expressed as median with interquartile 
ranges.  Risk factor profiles and OCSP classification described as proportions. There was 
no significant difference between groups. Time to infusion was significantly shorter to GKI 
than for placebo (p<0.001) (Mann Whitney U assessment of non-parametric measures) 

 Insulin 
(n=25) 

Placebo 
(n=15) 

Combined 
(n=40) 

Age (Years) (IQR) 76 (67,83) 74 (71,86) 75 (68,81) 

Diabetes 7 (28%) 6 (40%) 13 (33%) 

Atrial Fibrillation 6 (24%) 6 (40%) 12 (30%) 

Hypertension 19 (76%) 13 (87%) 32 (80%) 

Hyperlipidaemia 6 (24%) 4 (27%) 10 (25%) 

Ischaemic Heart Disease  5 (20%) 4 (27%) 9 (23%) 

Thrombolysis 8 (32%) 5 (33%) 13 (33%) 

Mean (±SD) Admission CBG 8.4 (2.3) mmol/l 8.1 (1.8) mmol/l 8.3 (2.1) mmol/l 

Mean (±SD) Admission blood 

glucose 

8.3 (2.7)mmol/l 7.3 (1.3) mmol/l  8.0 (2.3)mmol/l 

NIHSS (IQR) 11 (7,16) 14 (6,19) 11 (6,18) 

TACS 10 (40%) 9 (60%) 19 (47.5%) 

PACS 10 (40%) 2 (13%) 12 (30%) 

LACS 5 (20%) 3 (20%) 8 (20%) 

POCS 0 (0%) 1 (7%) 1 (2.5%) 

Time to admission (hrs) (IQR) 2.5 

(1.9,6.5) 

3.3 

(2.5,9.6) 

3.1 

(2.1,6.5) 

Time to infusion (hrs) (IQR) 

(measured from stroke onset) 

20.8* 

(12.9,24.5) 

23* 

(18.5,25.5) 

21 

(13.8,25) 

MRI within 6hours  2 (8%) 0 (0%) 2 (5%) 

MRI within 12hours 7 (28%) 3 (20%) 10 (25%) 

MRI (1) hours (IQR) 19.3 

(10.5,22.9) 

21 

(17.3,23) 

19.9 

(11.3,22.5) 

MRI (2) days (IQR) 3 (2,4) 3.5 (2,4) 3 (2,4) 

MRI (3) days (IQR) 7 (6,8) 7 (6,8) 7 (6,8) 
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Insulin infusion 

 
Fifteen patients were randomised to placebo and 25 patients to GKI infusion. 

This included 10 patients from the pilot study (5 placebo and 5 to GKI), 

where GKI and Placebo infusions ran for 48hours. The remaining 30 patients 

consisted of 10 randomised to placebo for 72hours, 10 receiving GKI for 72 

hours and 10 receiving GKI for 24hours, followed by placebo for the 

remaining 48hours.  The mean amount of hourly insulin required was 

3.4±1.3units.  The mean number of additional bag changes to permit 

adjustment of insulin dose to maintain euglycaemia was 4.8±3.2.   

 

Although there was no difference in capillary blood glucose at baseline, it 

was significantly lower in the GKI group versus placebo at 6hours (5.4mmol/l 

versus 6.9mmol/l; p<0.001) and 12hours (5.8mmol/l versus 7.0mmol/l; 

p=0.008).  There was no difference in mean capillary blood glucose between 

insulin groups combined and placebo for the remainder of the infusion period 

(Figures 5.2 & 5.3). Following commencement of trial infusions, 68% (17/25) 

of patients receiving GKI had an increase in capillary blood glucose between 

baseline and 6hours (Median change (IQR) in CBG for the GKI group was 

0.43 (-0.67, 0.8) mmol/l).  For patients receiving placebo 60% (9/15) had a 

reduction in capillary blood glucose between the two time points (Median 

change for the placebo group -0.25 (-0.36,0.00)mmol/l.  
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Figure 5.2: Capillary Blood Glucose variation (mean±SEM) with time for GKI infusions 
combined versus placebo. Number of patients recruited per group shown in key. (*includes 
patients in GKI-24 group with saline introduced post 24hours). Number of patients with data 
available shown in brackets below time points on X-axis.  

Figure 5.3: Capillary Blood Glucose variation (mean±SEM) with time for individual GKI 
infusions versus placebo. Number of patients recruited to each group shown in key. 
(*includes patients in GKI-24 group with saline introduced post 24hours). Number of data 
points available for analysis shown below time points on Y-axis. 
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Mean systolic blood pressure was significantly lower in the insulin (GKI) 

group versus placebo at 12hours, 48hours, 60 hours and 72hours (figure 

5.4) There was no statistically significant difference in overall mean diastolic 

blood pressure throughout the infusion period for GKI infusions combined 

versus placebo (Figure 5.5). Corresponding figures for individual GKI 

infusions versus placebo are shown in Figures 5.6 and 5.7.   

 
 

Figure 5.4: Changes in Systolic Blood Pressure (mean±SEM) mmHg) for GKI infusions 
combined versus placebo with time documented from infusion commencement in hours. 
Number of patients recruited to each group shown in key. (*includes patients given normal 
saline following 24hours of GKI infusion). Number of data points at respective time points 
shown in brackets under the time in hours from infusion commencement. Systolic blood 
pressure was significantly lower in the GKI group at 12hours, 48hours, 60hours and 
72hours. Mean values compared using student t-test.  
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Figure 5.5: Changes in Diastolic Blood Pressure (mean±SEM) mmHg for GKI infusions 
combined versus placebo, with time from infusion commencement measured in hours. 
Number of patients recruited to each group shown in legend. (*includes patients given 
normal saline following 24hours of GKI infusion). Number of data points at respective time 
points shown in brackets (n=?) under the time in hours from infusion commencement. There 
was no significant difference between diastolic blood pressure for GKI and placebo at any of 
the time points. Mean values compared using student t-test.  
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Figure 5.6:  Changes in systolic blood pressure (mean±SEM) mmHg for individual GKI 
infusions versus placebo with time from infusion commencement in hours. (*includes 
patients given normal saline following 24hours of GKI infusion). Number of data points at 
respective time points shown in brackets under the time in hours from infusion 
commencement. 
 

 
Figure 5.7: Changes in diastolic blood pressure (mean±SEM) for individual GKI infusion 
versus placebo with time from commencement of infusion documented in hours. (*includes 
patients given normal saline following 24hours of GKI infusion). Number of data points at 
respective time points shown in brackets under the time in hours from infusion 
commencement. 
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Primary Lesion Volume Outcome Analysis 
 

(1) MRI volume measurements 
 
Median DWI infarct volumes for placebo and insulin groups are shown at 

baseline and Day 3, along with FLAIR volumes at Day 7.  There was no 

statistically significant difference between lesion volume measurements 

between placebo and GKI groups combined at each of the imaging time 

points (Figure 5.8).  

 

 

 

 

 

 

 

 

 

Figure 5.8: lesion volumes expressed as a median ±interquartile range for placebo versus 
insulin groups combined (GKI) for day 1 DWI (d1), day 3 DWI (d3) and outcome FLAIR at 
Day 7 (d7). Patient numbers for whom lesion volume measurements are available are 
shown in boxes above each respective column.  

 

When median change in lesion volume expressed was considered for the 

thirty-seven patients with all three scanning sequences available, there was 

no significant difference for acute ((Day 1-Day 3) or outcome (Day1-Day7) 

n=15 

n=25 

n=14 
n=23 

n=15 
n=21 
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scans for GKI combined versus placebo groups (Figure 5.9). Example of 

images obtained shown in (Figure 5.10) 

 

Figure 5.9: Change in lesion volume (cc) expressed as median± interquartile range between 
DWI at Day 1 and Day 3 (d1-d3) and between day 1 DWI and Day 7 FLAIR (d1-d7) for 
placebo versus insulin groups combined. Number of patients with available results is shown 
in the boxes above each respective column. There was no statistically significant difference 
between groups, compared using Mann-Whitney U test.   

 

 

 

 

 

 

DWI 1 DWI 3 FLAIR 7 

Figure 5.10: Example of MRI scans in a patient recruited to the SELESTIAL trial, demonstrating DWI at 
days 1 and 3 and day 7 FLAIR. 



 138 

(2) Secondary imaging analysis 

Recanalisation data using the AOL criteria on the initial MRA was available 

for thirty-one patients (11/31 (35%) AOL 0, 1/31 (3%) AOL 1, 9/31 (29%) 

AOL 2, 10/31 (32%) AOL3).  See Figure 5.11 for MRA appearances for the 

relative AOL criteria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Change in lesion volume measurements between admission and days 3 or 

7, with accompanying AOL criteria were available for 29 and 28 patients 

respectively. Although median stroke severity was higher in patients with 

complete occlusion, there was no statistically significant difference across 

AOL 0:  
No Recanalisation of the Primary Occlusion 

 

AOL 1:  
Incomplete or partial recanalisation of the 
primary occlusion with no distal flow 
 

AOL 2:  
Incomplete or partial recanalisation of the 
primary occlusion with distal flow 
 

AOL 3:  
Complete recanalisation of the primary 
occlusion with distal flow 
 

Figure 5.11: Arterial Occlusive Lesion (AOL) classification for admission MRA images.  
Reconstructed images shown alongside the corresponding definition 



 139 

groups. Numbers thrombolysed were similar across all AOL criteria (Tables 

5.2 and 5.3).  

 
AOL criteria for patients with lesion volume measurements 

(Day1 DWI –Day 3 DWI) (n=29) 
 

 AOL 0 
(n=10) 

AOL (1/2) 
(n=9) 

AOL 3 
(n=10) 

Placebo 4 (40%) 4 (44%) 3 (30%) 

GKI-24 2 (20%) 3 (33%) 3 (30%) 

GKI-48 2 (20%) 1 (11%) 1 (10%) 

GKI-72 2 (20%) 1 (11%) 3 (30%) 

Thrombolysis 4 (40%) 4 (44%) 3 (30%) 

NIHSS (IQR) 16 (9,20) 14 (7,17) 9 (4,14) 

Table 5.2: Number of patients in each group based on AOL criteria with details on infusion 
type and duration of infusion for those patients with DWI lesion volume measurements at 
days 1 and 3. Percentages are shown in brackets within each group.  The number of 
patients receiving thrombolysis is documented, with percentage in brackets. Stroke severity 
measured using NIHSS is expressed as a median with interquartile range in brackets.  
 
 
 

AOL criteria for patients with lesion volume measurements 
(Day1 DWI –Day 7 FLAIR) (n=28) 

 

 AOL 0 
(n=10) 

AOL (1/2) 
(n=10) 

AOL 3 
(n=8) 

Placebo 4 (40%) 5 (50%) 2 (25%) 

GKI-24 2 (20%) 3 (30%) 2 (25%) 

GKI-48 2 (20%) 1 (10%) 1 (12.5%) 

GKI-72 2 (20%) 1 (10%) 3 (32.5%) 

Thrombolysis 4 (40%) 4 (40%) 2 (25%) 

NIHSS (IQR) 16 (9,20) 14 (7,17) 9 (4,14) 

Table 5.3: Number of patients in each group based on AOL criteria with details on infusion 
type and duration of infusion for those patients with DWI lesion volume measurement at 
days 1 and day 7 FLAIR. Percentages are shown in brackets within each group. Patients 
receiving thrombolysis documented as percentage. Stroke severity measured using NIHSS 
is expressed as a median with interquartile range in brackets.  
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When median percentage change in lesion volume measurements was 

considered for both acute (difference between DWI lesion volumes days 1 

and 3) and outcome (difference between DWI lesion volume day 1 and day 7 

FLAIR), there was a significant difference dependent on infusion type and 

level of recanalisation (Figures 5.12 & 5.13). 

 

For the acute scanning time points, patients receiving placebo had no 

significant difference in lesion progression across AOL type, however for 

those patients receiving GKI there was a significant difference dependent on 

level of recanalisation. Patients with complete occlusion were more likely to 

have a greater increase in infarct progression when compared to partial and 

complete recanalisers (p=0.013) (Kruskal Wallis). When GKI was compared 

with placebo within individual AOL groups, there was a significant difference 

between insulin and placebo for both AOL 0 (p=0.019) and AOL (1/2) 

(p=0.014) (Mann Whitney U) (Figure 5.12). 

 

Similar results were found when change between baseline and day 7 

outcome were considered. On this occasion the only significant difference 

between GKI and placebo was for patients in the complete occlusion group 

(p=0.033) (Mann Whitney U) (Figure 5.13). 
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Figure 5.12: Change in median infarct volume between days 1 and 3: expressed as a 
percentage dependent on vessel patency at recruitment.  There was a significant difference 
between insulin (GKI) and placebo for both the occlusion (p=0.019) and partial 
recanalisation (p=0.014) groups.  There was a significant difference across groups 
dependent on level of recanalisation (p=0.013) (Kruskal-Wallis). Numbers included shown 
above respective columns. 
 

 

Figure 5.13: Change in median lesion volume between days 1 and 7, (DWI and FLAIR) 
expressed as a percentage for both insulin and placebo groups.  There was a significant 
difference between placebo and insulin groups in the occlusion group (p=0.033) only.  There 
was a significant difference across groups dependent on level of recanalisation (p=0.017) 
(Kruskal-Wallis). Numbers in each group expressed above respective columns. 
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Intra rater reliability 

Anonymised scans included 24 repeats to assess intra-rater reliability of 

measurements.  For the 24 scans with duplicates, there were 18 DWI and 

six FLAIR scans.  For all scans included the mean difference between scans 

was 3.6 ±12.0 cm³ (95%CI; -1.5, 8.6 cm³).  The test statistic for the paired t-

test was 1.46, (degrees of freedom 23; p=0.158). The British Standards 

Institution repeatability coefficient was 24.  A graphical representation is 

shown with little variation in readings from zero (Figure 5.14). 
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Figure 5.14:  Difference between first and second lesion volume readings plotted against the 
average for the anonymised 24 duplicate scans (DWI and FLAIR) 
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Primary Spectroscopy Outcome Analysis 
 
Baseline single voxel spectroscopy was available for 36 patients (90%).  

Figure 5.15 demonstrates a typical single voxel spectra obtained and the 

positioning of the voxel within a DWI region during data acquisition.   

 

 

 

 

 

 

 

 

 

 

 

Individual values for cerebral metabolites were obtained using the LC model, 

methodology described earlier. Table 5.4 documents the median values 

obtained for the respective groups, with the numbers available for each 

randomised infusion. Interquartile ranges are expressed in brackets.  Only 

one patient in the GKI-48hour group had spectroscopy data fit for measuring 

and results are shown for that individual patient.  

 

Figure 5.15: (a) Single voxel placement in a Day 1 DWI abnormality within the right hemisphere and 
(b) Typical Single voxel spectra demonstrating metabolite peaks of Lactate (LAC), Creatine (CR), N-
Acetyl Aspartate (NAA) and Choline (CHO). 

(a) (b) 
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Table 5.4: Median cerebral metabolite levels for MRS, on days (1), (3) and (7), with IQR in 
brackets. Number of patients is shown for each infusion type at the top of each column. 
Creatine is expressed as a combination of Creatine and Phosphocreatine and refers to total 
creatine and is used as the internal reference point.  

 

 

 
Placebo 

(n=4) 
GKI-24 
(n=6) 

GKI-48 
(n=1) 

GKI-72 
(n=8) 

Lactate (day 1) 
8.3 

(4.1,12.4) 
5.5 

(2.9,12.3) 
10.5 

5.3 
(3.6,8.1) 

Lactate (day 3) 2.8 (1.5,4.7) 
3.1 

(2.4,4.0) 
5.7 

3.6 
(2.4,5.8) 

Lactate (day 7) 
3.0 

(1.8, 4.4) 
2.3 

(1.4,4.2) 
4.4 

3.2 
(2.4,4.0) 

NAA     (day 1) 
6.6 

(4.9,8.2) 
10.8 

(10.1,14.7) 
8.3 

10.7 
(4.8,12.8) 

NAA     (day 3) 
2.2 

(0.4,5.8) 
9.2 

(8.4,11.9) 
5.8 

4.7 
(0.8,7.2) 

NAA     (day 7) 
2.7 

(0.5,6.2) 
11.5 

(8.5, 12.5) 
5.1 

3.5 
(0.4,5.6) 

Cr+PCr (day 1) 
5.0 

(3.9,6.0) 
6.9 

(6.7,7.8) 
5.9 

6.7 
(4.9,8.5) 

Cr+PCr (day 3) 
2.1 

(0.9,3.8) 
5.9 

(5.0,7.6) 
4.0 

2.9 
(2.3,5.3) 

Cr+PCr (day 7) 
2.7 

(1.2,4.5) 
6.7 

(6.6,7.6) 
5.5 

2.6 
(0.9,4.3) 
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Lactate/ Creatine ratio (LCR) was significantly higher on initial MRS in 

patients with more severe strokes (NIHSS>15), at 1.64 (IQR 0.75, 4.51) 

versus 1.02 (0.25, 3.18) (p=0.04), and correlated with final infarct size 

(R=0.71; p<0.001) (Table 5.5).  In addition to analysis of correlation with final 

infarct size or exploratory analysis were used included association with 

measures of stroke severity and clinical outcome measures. 

 Outcome 

Modified Rankin Scale 

(range 2-6) 

Outcome  

FLAIR 

(range 1.2-445cm³) 

Acute Studies MRI (day 1)   

NIHSS 
(range 3-24) 

0.48 (0.002) 0.53 (0.001) 

DWI 
(range 1.0-350cm³) 

0.39 (0.014) 0.85 (<0.001) 

Lactate/Creat 
(range 0.1- 3.8) 

0.35 (0.038) 0.71 (<0.001) 

NAA/ Creat 
(range 0.2-2.0) 

-0.38 (0.022) -0.62 (<0.001) 

Sub-acute Studies MRI 

(day 3) 

  

DWI 

(range 1.0-462cm³) 
0.39 (0.014) 0.99 (<0.001) 

Lactate/Creat 

(range 0.2-9.3) 
0.24 (0.249) 0.78 (<0.001) 

NAA/ Creat 

(range 0.1-2.0) 
-0.26 (0.194) -0.68 (<0.001) 

Outcome MRI (day 7)   

FLAIR 

(range 1.2-445cm³) 
0.36 (0.032)  

Lactate/Creat 

(range 0.0-12.8) 
0.39 (0.093) 0.85 (<0.001) 

NAA/ Creat 

(range 0.1-1.9) 
-0.42 (0.069) -0.79 (<0.001) 

Table 5.5: Correlation between clinical and imaging measurements for one month outcome 
(modified Rankin scale) and Day 7FLAIR. Figure in brackets is the p value for statistical 
significance. Ranges are expressed in brackets for each parameter.  
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Repeat measurements at all the three time points were available for only 19 

patients, whilst repeated measurements at Day 1 and Day 3, were available 

for 25 patients. There was no significant difference in median 

Lactate/Creatine ratio between insulin and placebo groups at days 1, 3 and 7 

(Figure 5.16). The number of patients with available single voxel 

spectroscopy at each of the respective time points for placebo and insulin 

(GKI) groups combined is shown below.  

 

 

Figure 5.16: Median lactate/Creatine ratio (± IQR) for placebo and insulin groups combined 
for spectroscopy results on days 1, 3 and 7. The lactate/creatinine ratio is printed above 
each column. Number of patients with data available for measurement of cerebral 
metabolites is shown in the box above the error bar for each respective column.  
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Median change in LCR acutely between days 1 and 3 was 0.44 (IQR -0.28, 

5.56) for placebo and -0.16 (-0.42, 1.06) for GKI. Median change in LCR 

between day 1 and 7 was 2.11 (IQR –0.51, 4.34) for placebo and –0.12 (-

0.75, 0.34) for GKI (p=0.22). When considered as a percentage change in 

LCR from baseline at days 3 and 7, patients receiving placebo, had a larger 

increase in LCR when compared to patients receiving GKI (Figure 5.17). 

This did not achieve statistical significance. Interestingly despite this trend, 

mean blood glucose concentration for the 72hour period was similar for 

placebo (7.0±0.9mmol/l) versus GKI-24 (7.6±1.6mmol/l) versus GKI-72 

(6.7±1.1mmol/l) (p=0.395, one way ANOVA).  

 

Figure 5.17: Median percentage change in lactate/creatine ratio between days 1 and 3 
(MRS 1-3) and days 1 and 7 (MRS 1-7), for patients receiving insulin (GKI) or placebo. 
Numbers for each group are shown adjacent to the respective columns. Large numbers at 
the top of each column are the median percentage changes from baseline. There was a 
non-significant trend for a greater increase in LCR for placebo versus GKI groups between 
days 1 and 3 (MRS 1-3; p=0.542) and days 1 and 7 (MRS 1-7; p=0.423) (both Kruskal 
Wallis). 
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Clinical outcomes/ adverse events 
 
Modified Rankin was available for all 40 patients at one month.  There was 

no statistically significant difference between insulin and placebo groups.  In 

patients receiving GKI, 16% were independent (modified Rankin 0-2), 76% 

dependent (modified Rankin 3-5) and 8% dead at one month.  In the placebo 

group, 13% were independent, 87% dependent and there were no deaths. 

Stroke progression defined as a worsening in stroke severity on the NIHSS 

of four or more points, between baseline and infusion discontinuation on day 

three, occurred in 8% of patients receiving insulin and in none of the placebo 

group.    

 

Neither patient who had died in the GKI group had fulfilled the criteria for 

stroke progression (worsening in stroke severity on the NIHSS of four or 

more points, between baseline and infusion discontinuation on day three). 

One patient had a severe stroke (NIHSS 24) at presentation and died of 

pneumonia without completing follow-up imaging at days 3 and 7. A further 

patient died from acute respiratory failure.  

 

There were 42 episodes of hypoglycaemia in 20/25 (80%) patients receiving 

insulin, only one of these being symptomatic.  Seventy four percent of the 

episodes of hypoglycaemia occurred between midnight and 8am, 24% 

between 16:00 and midnight, and 2% between 08:00 and 16:00.  There 

were no episodes of heart failure documented.  
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Perfusion and Multi-voxel Spectroscopy 

 
Incomplete data acquisition secondary to failure to complete the full imaging 

protocol resulted in limited data for analysis on both perfusion and multi-

voxel spectroscopy.  Reasons documented include poor patient tolerability of 

the scanner secondary to the prolonged scanning time and lack of staffing 

familiarisation with these additional non-routine imaging sequences.  
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5.5 Discussion  
 
The consistent negative impact of hyperglycaemia on outcomes after stroke, 

and evidence supporting a mechanistic basis for this, has led many clinicians 

to regard active intervention to lower blood glucose as an integral 

component of stroke unit care.  However, the absence of benefit in the GIST-

UK trial, and potential hazards of hypoglycaemia identified in GIST-UK and 

also in trials of aggressive glucose control in intensive care settings, must 

raise concerns about the advisability of insulin treatment. 

 

Using MRI surrogate outcome measures we were unable to show that insulin 

in the form of a GKI infusion attenuated lesion volume progression in 

hyperglycaemic patients with acute ischaemic stroke.  Indeed, the significant 

interaction between GKI treatment and large artery patency suggests that 

insulin treatment may harm patients with persistent occlusion of a major 

vessel.  GKI was associated with significant increases in median lesion 

volume at both day 3 and day 7 compared to ple lacebo. While this 

observation should be interpreted with caution as it was an exploratory 

analysis and group sizes are very small, the median percentage change in 

infarct volume appeared to be dependent on degree of occlusion, and results 

were consistent for both baseline versus day 3 and baseline versus day 7 

comparisons.  These findings are also consistent with animal model data.  In 

a cat animal model of permanent middle cerebral artery occlusion (MCAO), 
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hyperglycaemic animals receiving dextrose and insulin died acutely of 

hemispheric oedema and brainstem compression significantly more 

frequently than did normoglycaemic maintained animals.164 Animal survivors 

in the dextrose/ insulin group were more likely to have larger infarct sizes 

than similar survivors in the placebo group.  Interestingly although blood 

glucose concentration in the dextrose/insulin group was within the 

hyperglycaemic range at the time of occlusion, it was rendered 

hypoglycaemic shortly thereafter, whilst the control group maintained 

normoglycaemia throughout.  There was no significant difference in either 

rectal temperature or mean arterial pressure between groups throughout the 

period of the study. Patients receiving thrombolysis accounted for one third 

of the sample population with no significant differences across groups 

defined on the basis of AOL criteria. The timing of the baseline MRA could 

not exclude the effect of spontaneous recanalisation and the studies 

methodology did not attempt to examine efficacy of alteplase. That said the 

results suggest that there may be a synergistic effect between successful 

recanalisation with alteplase and GKI in reducing final infarct size.  Future 

trials should consider combination therapy with knowledge of recanalisation 

being provided with MRA and real time trans-cranial Doppler. Previous work 

has described the association between hyperglycaemia and worse stroke 

outcome in patients receiving thrombolytic therapy with respect to infarct size 

and haemorrhagic conversion. The study was not designed to test similar 

outcome measures, with no specific grading of haemorrhagic conversion on 
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follow-up imaging. In addition sample numbers were too small to examine 

any attenuated effect on lactate/creatine ratio with GKI or placebo dependent 

on level of recanalisation.  

For the primary Magnetic Resonance Spectroscopy (MRS) endpoints we 

were unable to demonstrate a significant reduction in lactate across the 

three measured time points. A possible explanation results from failure to 

demonstrate a persistent significant difference in peripheral blood glucose 

manipulation between the placebo and GKI groups. Increased brain lactate 

as a consequence of anaerobic metabolism of glucose is postulated to be a 

mechanism for the neurotoxicity of hyperglycaemia.  It has been confirmed in 

experimental models of focal ischaemia that hyperglycaemic animals have 

higher brain lactate levels and correspondingly reduced pH113;246 when 

compared with euglycaemic controls.  Acidosis may mediate neuronal injury 

through enhanced free radical formation, activation of pH dependent 

endonucleases and glutamate release with subsequent alteration of 

intracellular Ca++ regulation and mitochondrial failure.113;120;247;248  

 

Previous MRS work in patients with acute ischaemic stroke has reported that 

hyperglycaemia was associated with elevated lactate concentration in a 

single voxel placed within the DWI lesion, and that lactate predicted 

conversion of penumbral tissue to infarction.129  Neither the study by 

Parsons et al [2002]129 or our study is ideal from a mechanistic perspective, 

since the DWI lesion is generally held to represent predominantly infarct 
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core, and infarct expansion is predominantly a consequence of conversion of 

the ischaemic penumbra to infarct. Lactate concentration in the penumbra is 

therefore of greater pathophysiological interest. Unfortunately, we were 

unable to acquire perfusion MRI in the majority of our patients to allow voxel 

placement in the region of DWI-PWI mismatch, the most widely used index 

of the penumbra. We attempted multivoxel spectroscopy, but found no 

significant differences in lactate concentration in voxels at the margins of the 

DWI lesion, and inconsistent placement of voxels between examinations 

together with lack of information on the anatomical location of the penumbra 

in individuals prevented meaningful interpretation of these data.  There is 

currently no direct proof that lactate is detrimental to the ischaemic brain.  

The “glucose paradox” questions why glucose, the main energy substrate for 

the brain, causes demise of brain tissue at the time of cerebral ischemia.  In-

vitro work using murine hippocampal slices has shown that glucose and 

acidosis are detrimental to cells whereas lactate is not.122 Using PET 

scanning it has been shown that lactate may in fact be the preferred energy 

substrate for the brain, especially during times of stress.249 In a rat model of 

global ischaemia, insulin-induced hypoglycaemia markedly inhibited lactic 

acid production but had no effect on intracellular brain pH as measured 

using 31P MRS241.This is relevant to the management of hyperglycaemia in 

acute ischaemic stroke patients.  If the ischaemic brain is dependent on 

lactate for its source of energy, targeted euglycaemia may result in less 
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glucose load to the brain and thus less substrate for anaerobic metabolism 

and attenuated lactate production.  

 

Limitations 
 
Only two patients had MRI within six hours of stroke onset, and 10 patients 

within 12 hours of ictus. The late average time to imaging may have 

prevented us from finding an effect of treatment if one assumes that the 

major detrimental effects of hyperglycaemia are on survival of the ischaemic 

penumbra, and therefore most relevant in the first few hours after stroke 

onset. In 42 patients undergoing MRI within 60 hours of an acute ischaemic 

event, patients imaged within 12 hours of symptom onset using DWI had 

significantly smaller lesion volumes (mean lesion size 35mls) when 

compared to follow-up outcome MRI scans (mean lesion size, 45ml) 

(p<0.05).  Patients imaged beyond 12 hours of symptom onset had mean 

lesion volumes not significantly altered on follow-up scans.250 Later imaging 

may fail to establish any discernible difference in lesion volumes that may be 

present when hyper-acute imaging (<6hours) is performed.  If we 

hypothesise that insulin has a direct neuroprotective effect on the ischaemic 

brain through its action on the ischaemic penumbra, knowledge of the 

duration of the penumbra is important.  Previous imaging studies have 

suggested that the penumbra duration varies.  PET techniques have 

demonstrated 44% penumbral tissue at about 18hours251 with some 

penumbral presence being documented up to 42 or 48hours.252  



 155 

 

The timing of the final follow-up imaging studies at day 7 may have been too 

early to assess final infarct volume correctly. At this stage, it is possible that 

persistent swelling may have obscured any effect on tissue salvage. 

However, there is currently no generally accepted optimal time for measuring 

outcome infarct volumes, and Day 7 FLAIR was chosen in order to minimise 

losses to follow-up that confound results at later time points, and especially 

so for more severe strokes.   

 

Despite initial single voxel spectroscopy results being available for 36 

patients, repeat data were available at day 3 for only 25 patients and 

complete data at all three time points available for 20 patients.  Voxel 

placement in follow-up scans was dependent on visual comparison with the 

baseline examination and some variation in positioning within the DWI lesion 

is inevitable.  In small DWI lesions, the voxel will include data from adjacent 

normal brain tissue, and possibly other tissues. Timing of repeated MRS 

measurements was standard and did not control for the different insulin 

infusion durations and thus the relative cerebral metabolite concentrations at 

these respective end points.   

 

Clinical information. 

Consistent with the GIST-UK study, the majority of patients screened had 

only mild hyperglycaemia.  Previous studies of the natural history of blood 
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glucose have found reduction in blood glucose over the first 24 hours after 

stroke onset95;128, which might be consequent to fasting in patients unable to 

swallow, and the common practice to avoid dextrose infusions in acute 

stroke. The mean fall in capillary blood glucose (±SD) in the placebo patients 

between baseline and 24hours in this study was small (0.6±1.44mmol/l) and 

the maximal difference between placebo and GKI treatment similar to that 

previously reported (maximal mean difference 1.33±0.23mmol/l at 6h/12h).  

Capillary blood glucose was lower at 6 and 12 hours of GKI infusion but 

thereafter there was no significant difference from the placebo (saline only) 

arm.  In contrast with the Leuven surgical ITU trial, the difference between 

active and control arms is therefore small, the intensity of euglycaemia 

possibly less and the duration of treatment shorter. Arguably, these factors 

may all have contributed to the failure to find benefit in this and previous 

stroke trials.  Previous observational studies have reported that 

hyperglycaemia within 72 hours of stroke onset is associated with a worse 

stroke outcome, and therefore logically prolonged infusions may be required 

to provide benefit.50 However, in the stroke population there are likely 

concerns with longer durations of tight glycaemia control. Further evidence 

that blood glucose lowering may not be beneficial to stroke outcome arises 

from a post-hoc analysis of the GIST-UK study. In the GKI-treated patients, 

the overall mean change in glucose concentration between baseline and 

24hours was -1.48mmol/l (SD 2.85) in survivors at 90days compared with     

-2.53mmol/l (SD 2.68) in those who died (p<0.002). Using a cut-off point of -
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2mmol/l for the mean change in plasma glucose in the GKI group, mortality 

was 34% (53/154) at 24hours in patients with a decrease in plasma glucose 

of 2mmol/l or more compared to 22%(41/188) in patients who had a 

decrease of less than 2mmol/l (p=0.009).156  

 

Symptomatic hypoglycaemia was rare, but asymptomatic hypoglycaemia 

occurred in most patients receiving the GKI infusion. In our own population, 

hypoglycaemia was found to be more common during the hours of midnight 

to 8am. Hypoglycaemia may be particularly hazardous in brain ischaemia, 

and has been frequent even in clinical trials undertaken in intensive care 

settings.151,154 In a rat model of temporary focal ischaemia, insulin reduced 

infarct volume,166 but in a separate study with the same model, infarct size 

was increased when hypoglycaemia developed.165 In contrast to other 

populations whereby insulin is administered to patients receiving enteral or 

parenteral nutrition,253 the heterogeneity of the stroke population means that 

nutritional intake varies, with many cases of hyperglycaemia associated with 

the post-prandial phase and hypoglycaemia during periods of fasting.  

Recognising variation in insulin requirements has led some authors to adjust 

overnight insulin regimes in stroke patients.181 The feasibility of monitoring 

prolonged insulin infusions within stroke units is also of concern, since 

nursing staff ratios are generally lower than in ITU environments. Despite 

close monitoring in a clinical trial setting within a hyperacute unit, we found a 

worryingly high incidence of hypoglycaemia, albeit predominantly 
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asymptomatic.  In addition to the potential hazard of hypoglycaemia, 

prolonged insulin infusions may restrict early mobilisation in stroke units, an 

important factor in analysis of the benefits of stroke unit care, 254 and again 

different from both coronary care and ITU populations.   

 

It remains possible that, in common with other trial interventions, it is a 

mistake to consider stroke as a single homogeneous condition.  In a 

retrospective study of 1,375 patients with acute ischaemic stroke, moderate 

hyperglycaemia (>8.0mmol/l –12.0mmol/l) was associated with increased 

odds of a favourable outcome in patients with lacunar stroke (multivariate 

OR 2.70; 95% CI 1.01-7.13, P=0.048) and decreased odds of a favourable 

outcome in non-lacunar stroke (OR 0.60; 95% CI 0.41-0.88, P=0.009).255 

Hence the requirement for glucose manipulation might be dependent on 

stroke type.  

 

Consistent with the GIST-UK data, we found that insulin resulted in a 

reduction of systolic blood pressure when compared with placebo at several 

time points.256 Whether this is a consequence of increased blood pressure in 

the saline control arm, or to lowered BP in the GKI arm, possibly due to a 

vasodilatory effect of insulin or of potassium within the GKI infusion, is not 

known.  Management of blood pressure in the acute phase of stroke is 

currently the subject of several clinical trials.  There is concern that lowering 

BP may be detrimental since reduced cerebral perfusion pressure within the 
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non-autoregulating ischaemic penumbra may be harmful.  Alternatively, 

higher BP might increase the risk of cerebral oedema.  It is at least a 

plausible hypothesis that reduced BP might be more detrimental in those 

with persistent arterial occlusion since the penumbra in these individuals is 

wholly dependent on collateral flow, as compared with those with partial 

recanalisation of the parent artery.   

 

 

5.6 Conclusion 
 
We found no evidence that GKI infusion attenuated infarct growth in patients 

with moderate hyperglycaemia within 24 hours of acute ischaemic stroke.  A 

non-significant trend towards attenuation of increased lactate concentration 

in the ischaemic brain was evident in the GKI treatment arm.  Consistent 

with previous studies, GKI infusion was associated with lower blood pressure 

and modest reductions in blood glucose.  Asymptomatic hypoglycaemia was 

common despite frequent monitoring within a well-controlled environment.  

 

Exploratory analyses raised the possibility that GKI infusion might in fact be 

harmful in patients with persistent arterial occlusion; this could simply 

represent a Type 1 error and requires confirmation, but is consistent with 

some experimental data. Sample size was too small to discriminate between 

populations on the effect of recanalisation status and possible lactate 

attenuation.  
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Intervention with GKI infusion to treat moderate hyperglycaemia in acute 

ischaemic stroke requires further trials before it should be considered. These 

trials should be designed with knowledge of recanalisation, inclusion of 

thrombolysis and real time monitoring of vessel patency.   
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6.1 Introduction 
 
Studies examining the role of hyperglycaemia in acute stroke have used 

inconsistent definitions with the temporal profile of blood glucose 

incompletely understood.  Post stroke hyperglycaemia (PSH) has been 

defined using values between 6.1 and 8.0 mmol/l, based on random or 

fasting blood glucose levels at various time points from stroke onset.53;55 

Previous observational studies have included patients presenting up to 72 

hours from ictus,50 with limited information on blood glucose profiles within 

the initial 6-12 hours.  The contribution of undiagnosed diabetes or impaired 

glucose metabolism to the hyperglycaemia of acute stroke remains poorly 

understood. Previous studies have defined patients as diabetic on the basis 

of preceding history or elevated admission blood glucose in the context of 

elevated glycosylated haemoglobin or fructosamine, with “stress 

hyperglycaemia” describing patients with elevated admission glucose in the 

presence of normal indices. We now know that many patients previously 

defined as “stress hyperglycaemia” have underlying abnormalities in glucose 

metabolism when screened at later time points.90;257 The association 

between stroke severity, stress hyperglycaemia at initial presentation and 

the true prevalence of abnormal glucose metabolism is poorly understood.  

Earlier studies have had poor correlation between stroke severity, timing of 

hyperglycaemia in the acute phase and oral glucose tolerance test results at 

later time points.  
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The aim of this study was to describe the capillary blood glucose profile in 

acute stroke over a 48hour period.  The study sought to define the 

prevalence of hyperglycaemia at different time points from stroke onset, 

describe its association with stroke severity, stroke type, and the contribution 

of feeding to hyperglycaemia.  The study also aimed to define the true 

prevalence of impaired glucose metabolism and metabolic syndrome in 

patients manifesting hyperglycaemia within 48hours of stroke onset and to 

describe its association with “stress hyperglycaemia” and stroke severity at 

initial presentation.  

 

6.2 Methods 
 
Hyperglycaemia was defined for the purposes of the study as capillary or 

venous blood glucose (CBG) concentration greater than 7.0mmol/l. 

 
Part 1: Retrospective Observational Study 
 
We undertook a retrospective review of routinely gathered clinical data in 

patients admitted to our acute stroke unit.  Data was included if patients 

presented with suspected acute ischaemic stroke within 24 hours of 

symptom onset, CBG was not significantly elevated (≥17mmol/l) and/or 

insulin was not administered during the monitoring period.  The inclusion 

criteria were selected to exclude those patients for whom the blood glucose 

profile may have been affected by the use of insulin. In accordance with the 

stroke unit protocol patients routinely underwent capillary blood glucose 

(CBG) concentration measurements every 4 hours for 48 hours using a 
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Medisense precision glucose meter (United Kingdom) with readings 

recorded by nursing staff on a specified form.  Baseline demographics 

including age, sex and risk factor profile were recorded.  Diabetes was 

defined on the basis of a recorded history of diabetes, or treatment with 

glucose lowering therapies pre-stroke.  Stress hyperglycaemia was defined 

as hyperglycaemia in the first 48h after stroke onset, in the absence of a 

documented history of diabetes consistent with previous definitions. Strokes 

were classified using the Oxfordshire Community Stroke Project (OCSP) 

classification system,243 and stroke severity was measured using the 

National Institutes of Health Stroke Scale (NIHSS) score.258 The NIHSS was 

further categorised into mild (NIHSS 0-6), moderate (NIHSS 7-15) or severe 

(NIHSS>15).  Time of stroke onset was defined, as the time the patient was 

last known to be well. 

 

A sub-set of patients recruited to the SELESTIAL trial, presented in an 

earlier chapter, were excluded from the continuous monitoring phase of the 

study but were eligible for admission descriptive purposes and the 

prospective follow up study. 

 

Feeding was documented as either staged oral diet or nil by mouth (NBM), 

in conjunction with speech and language therapists’ notes or written orders 

documented in the nursing notes. Patients classified as NBM had confirmed 

documentation of nil orally as per fluid balance sheet and food chart on note 
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review.  As the monitoring period was 48 hours from ictus, nasogastric 

feeding had not been commenced in any patients studied.  

 

 
 
Part 2: Prospective review and convalescent glycaemic status 
 
Ethical approval for the prospective study was obtained from the local 

research and ethics committee in October 2005.  Patients demonstrating 

hyperglycaemia within 48 hours off ictus were invited for follow-up to 

determine underlying glycaemic status.  Patients were approached at the 

time of incident admission, or by postal contact following discharge.  In the 

case of postal invitation, non-respondents received a further invitation after a 

4-week gap.   

 

Patients were eligible for screening if the incident event occurred within a 

minimum of 3 months and no later than one year from the anticipated Oral 

Glucose Tolerance Test (OGTT) date, provided the patient was 1) alive; 2) 

had a modified Rankin Scale score of ≤4 (i.e. not severely dependent); 3) 

lived within reasonable travelling distance of the stroke centre - thus patients 

requiring air-transport or prolonged journey times were deemed ineligible; 4) 

had confirmed hyperglycaemia (defined as an elevated capillary or venous 

blood glucose greater then 7 mmol/l) at least once within 48hours of stroke 

ictus and 6) was able to give consent.  Exclusion criteria included 1) Patients 

known to be diabetic at the time of the incident event, 2) Patients with inter-
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current illness at the time of the planned test and 3) Patients on 

corticosteroids.  Consort chart for the protocol used in recruiting patients to 

the prospective study is shown in figure 6.1. 

 

 
Figure 6.1: Consort chart demonstrating recruitment protocol for patients being screened for 
the prospective study examining the prevalence of abnormal glucose metabolism and 
metabolic syndrome in patients manifesting hyperglycaemia at acute stroke presentation.  

 

  

YES 

YES 

Hyperglycaemia 
CBG >7.0mmol/l 

OR 
Venous Blood Glucose 

>7.0mmol/l 
Within 48hours of admission 

 

Confirmed Ischaemic Stroke 

or TIA 

YES 

Non-Diabetic 

YES 

Acute stroke 

admission 

(a) Modified Rankin Scale ≤≤≤≤4 
(b) Travelling distance of Hospital 

(c) Able to give consent 
(d) Within 3-12months of stroke ictus  

Eligible for OGTT and 

Anthropometric measurements 
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Testing was performed in the day procedure unit of the Institute of 

Neurological Sciences or in the patient’s home if requested.  Using 

International Diabetes Federation (IDF) criteria, abnormal glucose 

metabolism was defined using a 75g oral glucose tolerance test (OGTT).  

Patients were fasted overnight before a blood sample was withdrawn for 

fasting glucose in a 2ml fluoride/oxalate container, shaken to ensure fluoride 

inhibits glycolysis and labelled “fasting”.  A separate fasting sample was 

obtained for a lipid profile.  Smoking, eating or moving around was not 

allowed during the test.  A further blood sample was taken 120 minutes after 

the 75g oral glucose load for the two-hour post-prandial glucose level.   

 

Waist circumference was measured in centimetres using a tape measure 

placed horizontally at the smallest area measured on exhalation between the 

ribs and the iliac crest. Three readings were recorded with the average 

reading being used.  Blood pressure was recorded with the patient in a 

seated position using a fully automatic upper arm blood pressure monitor 

(OMRON M7) with a comfort ML cuff.  The average of three recorded 

readings was used.  Glycosylated Haemoglobin (HbA1c) concentration was 

recorded at the time of the OGTT for all patients (High performance liquid 

chromatography on a Menarini analyzer)  
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Abnormal glucose metabolism was defined as Impaired Fasting Glucose 

(IFG): fasting blood glucose 5.6 to 6.9 mmol/l), Impaired Glucose Tolerance 

(IGT): 2hour post-prandial sample 7.8 to 11.0 mmol/l or Diabetes Mellitus 

(DM): Fasting blood glucose greater than or equal to 7.0 mmol/l or two hour 

post prandial sample greater than or equal to 11.1 mmol/l).  Metabolic 

syndrome was defined on the basis of the IDF consensus document: central 

obesity (defined as waist circumference greater than or equal to 94 

centimetres for Europid men and greater than or equal to 80 centimetres for 

Europid women, with ethnicity specific values for other groups) plus two of 

the following four factors (elevated triglycerides (≥ 1.7mmol/l), reduced HDL-

cholesterol (< 1.03 mmol/l in males and < 1.29mmol/l in females), 

Hypertension (Systolic Blood Pressure ≥130mmHg or Diastolic Blood 

Pressure ≥85mmHg) or raised fasting plasma glucose (≥5.6mmol/l)259.   

 

6.3 Analysis 
 

Summary statistics include mean ± standard deviation for normally 

distributed data (age, blood glucose concentration, HbA1c), or median and 

interquartile range for non-normally distributed variables.  Baseline features 

of the population studied were recorded as percentages relative to the total 

population.  Subject proportions were compared by Chi-squared tests.  

Significance was taken to be p<0.05 in all instances.  Continuous capillary 

blood glucose profiling was recorded for patients with OGTT and displayed 

on a line chart, as the mean ±SEM at distinct time points from ictus and 
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compared on the basis of normal glucose metabolism or abnormal glucose 

metabolism.   

 

Regression analysis was used to examine predictors of hyperglycaemia in 

the acute phase of stroke.  Characteristics of patients manifesting 

hyperglycaemia on admission were compared to those who developed late 

hyperglycaemia using the Chi-squared and the student’s t-test. Late 

hyperglycaemia was defined as the detection of hyperglycaemia within 

48hours of presentation when the initial admission blood glucose was within 

the euglycaemic range.  

 

6.4 Results 
 
Part 1 

Eight hundred and eighty six patients were admitted to the acute stroke unit 

between April 2004 and January 2006.  Four hundred and twenty nine 

patients with suspected acute ischaemic stroke, presenting within 24 hours 

of stroke onset underwent four-hourly capillary blood glucose profiling.  As 

per the consort chart (Figure 6.1), 76 patients were excluded, leaving 353 

patients with data for analysis.  Of the 353 patients, 337 had acute ischaemic 

stroke.  This comprised 76% (337/445) of all acute ischaemic stroke 

admissions to the unit over the study period. Sixteen patients undergoing 

CBG monitoring from admission were subsequently shown to have 

haemorrhage on radiological imaging.   
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886 patients admitted 
April-04 to January-06 

429 patients with 
suspected AIS presenting 
<24hours underwent CBG 

screening 

353 patients with complete 
clinical and 48hour 
glucose profiling 

completed 

25  Incomplete data Collection forms 
10  Incomplete Clinical Data 
16  uncertain time of onset 
5  Late presentation 

 

18 Non-strokes 
2 Patients requiring insulin 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2: Consort chart for patients admitted to the stroke unit between April 2004 and 
January 2006 inclusive and subsequently included in the capillary blood glucose monitoring 

study. AIS = acute ischaemic stroke. Reasons cited for patient exclusion shown in text 
boxes.  
 

The mean age was 70.43±12.6 years and mean NIHSS 8±7.  An established 

diagnosis of Diabetes was present in 18% (63/353) of patients.  Median time 

from documented stroke onset to initial CBG was 240 minutes (IQR 

165,520mins) (Table 6.1). Glycosylated haemoglobin concentration (HbA1c) 

was available for 56% (196/353) of subjects.  
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Total 
 

Non-
Diabetic 

Diabetic p 

Number of patients 353 290 (82%) 63 (18%)  

Mean Age (±±±±SD) (Yrs) 69.9 ±12.8 70.6 ± 13.0 66.1 ± 10.4 0.129 

Mean NIHSS (±±±±SD)  8.0 ± 6.6 8.3 ± 6.8 6.8 ± 5.1 0.103 

Stroke Type 

Ischaemic Stroke 

PICH 

 

337 (95%) 

16 (5%) 

 

276 (95%) 

14 (5%) 

 

61 (97%) 

2 (3%) 

 

0.246 

OCSP  

TACS 

PACS 

LACS 

POCS 

TIA 

 

80 (23%) 

108 (31%) 

121 (34%) 

33 (9%) 

11 (3%) 

 

70 (24%) 

89 (31%) 

96 (33%) 

24 (8%) 

11 (4%) 

 

10 (16%) 

19 (30%) 

25 (40%) 

9   (14%) 

0   (0%) 

 

 

 

Admission CBG (mmol/l) 6.8 ± 2.3 6.3 ± 1.3 9.1 ± 3.8 <0.001 

Admission Hyperglycaemia 

CBG>7.0mmol/l (%) 

103 (29%) 64 (22%) 39 (62%)  

 
Table 6.1: Baseline patient data for blood glucose monitoring study including age, blood 

glucose and stroke severity (NIHSS). All expressed as means±SD. Stroke classification 
based on OCSP criteria and expressed as percentages. Stroke type also expressed as 
percentages. Means compared using one way ANOVA, with percentages compared using 
chi-square.  
 

 
 
Admission Hyperglycaemia 
 
The overall prevalence of hyperglycaemia on admission for both diabetic and 

non-diabetic patients was 29% (102/353). For established diabetics 62% 

(39/63) were hyperglycaemic and 38% (24/63) euglycaemic. In non-diabetic 

patients 22% (64/290) had stress hyperglycaemia at presentation. For the 

0.20 
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entire population studied, the prevalence of stress hyperglycaemia was 18% 

(64/353). In the subset of 196 patients with documented HbA1c, HbA1c 

levels differed significantly according to age and stroke severity. Patients 

with euglycaemia on admission had a lower HbA1c than patients with stress 

hyperglycaemia, who in turn had a lower HbA1c than patients with diabetes. 

(Table 6.2) 

 

 Euglycaemic Stress 

Hyperglycaemia 

Diabetic 

(Euglycaemic) 

Diabetic 

(Hyperglycaemic) 

p 

N (n=196) 100 (51%) 49 (25%) 17 (9%) 30 (15%)  

Median Age 

(IQR) 
69 (58,79) 74 (66,80) 64 (58,74) 71 (65, 79) 0.162 

MedianNIHSS 

(IQR) 
9 (4,13) 6 (4,16) 5 (4,9) 6 (4,10) 0.660 

MedianHbA1c 

(IQR) % 
5.9 (5.6, 6.2) 6.2 (5.8,6.7) 7.1 (6.5,7.6) 7.9 (7.1, 8.8) <0.001 

 
Table 6.2 Association between Stroke Severity (NIHSS), Age, Glycosylated Haemoglobin (HbA1c) 
and Admission Hyperglycaemia for 196 patients. Data expressed as medians plus interquartile 
ranges, categorised at baseline as euglycaemic, stress hyperglycaemia, diabetic euglycaemia and 
diabetic hyperglycaemia.  Median values compared across groups using Kruskal-Wallis test.  

 

Continuous monitoring 

Thirty-six patients were randomised to the previously reported SELESTIAL 

trial and were excluded from the CBG profiling.  48h profiles were available 

for 317 patients.  The median time to first CBG reading was 238 minutes 

(165,494 minutes) and the median number of readings over the monitoring 

period was 13 (10,13).  Hyperglycaemia was further divided into isolated 
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hyperglycaemia (only one episode of hyperglycaemia in the 48hour period) 

or sustained hyperglycaemia (two or more episodes over the 48hours).  For 

the monitoring period, 25% of patients remained euglycaemic with 22% 

having isolated hyperglycaemia and 53% sustained hyperglycaemia. (Figure 

6.3) 

 

353 patients with clinical and 

48hour CBG profiling available 

196 patients with HbA1c available 

on admission 

157 patients with no recorded 

HbA1c on admission 

141 Non-

Diabetics 

149 Non-

Diabetics 
16 Diabetics 47 Diabetics 

36 SELESTIAL 
patients excluded 

HbA1c available 
for 50% of 
patients 
(40/80) 

HbA1c available 
for 46% of 
patients 
(32/69) 

HbA1c available 
for 54% of 
patients 
(90/168) 

317 patients with continuous monitoring profiles 

Euglycaemia 
throughout 

25% (80/317) 

Isolated 
Hyperglycaemia 

22% (69/317) 

Sustained 
Hyperglycaemia 

53% (168/317) 

Figure 6.3: Consort chart showing breakdown of sample population into 
diabetics and non-diabetics, along with classification into euglycaemia, 
isolated hyperglycaemia and sustained hyperglycaemia. Proportion with 
HbA1c available also shown.  
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When the 162 patients with HbA1c results available were categorised into 

isolated hyperglycaemia, sustained hyperglycaemia or euglycaemia there 

was a statistically significant difference in stroke severity (NIHSS) and 

HbA1c across groups.  HbA1c was lower and strokes more severe in 

patients who remained euglycaemic during the observation period.  Using 

binary logistic regression HbA1c was predictive of the development of 

hyperglycaemia in the 48hour period OR 3.64 (95%CI 1.633-8.122) 

(p=0.002) whereas stroke severity (NIHSS) showed a trend but did not reach 

statistical significance OR 0.936 (95% CI 0.877-1.000) (p=0.051).  

 

 

Euglycaemia 
Isolated 
Hyperglycaemia 

 
Sustained 
Hyperglycaemia 
 

P 

 
Number of 
patients 
 

 
40 

 
32 

 
90 

 
--- 

Median Age  

(IQR) 

67 

(58,77) 

70 

(58,80) 

71 

(59,78) 
0.126 

Median NIHSS 

(IQR) 

10 

(5,15) 

7 

(4,12) 

5 

(3,10) 
0.001 

Median HbA1c 

(IQR) 

5.8 

(5.6,6.1) 

6.2 

(5.6, 6.6) 

6.2 

(5.8,7.0) 
0.009 

 
Table 6.3 Association between Median Stroke severity (NIHSS), Age, Glycosylated 
Haemoglobin (HbA1c) and Hyperglycaemic status over the 48hour-monitoring period for 
those patients with complete results (n=162). Values expressed as medians with (IQR). 
Statistical analysis undertaken using Kruskal-Wallis.  
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Time post Ictus 

One hundred and sixty seven patients with a definite time of onset had blood 

glucose profiles analysed relative to stroke ictus.  One hundred and fifty 

patients were excluded due to no definite time of onset, which included 

patients with stroke on waking, late presentation or incomplete readings.  

The natural history of the overall mean blood glucose profile is shown in 

Figure 6.4.   

 

 

 

Figure 6.4 Temporal profile of capillary blood glucose (mean+SEM)(mmol/l) relative to 
time from ictus for those patients with a confirmed time of stroke onset (n=167) for 
the 48hour period of monitoring. 
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Blood glucose profiles are also shown for groups classified using OCSP 

(Figure 6.5).  

 

 

Figure 6.5 Temporal profile of capillary blood glucose (mean +SEM) relative to time 
from ictus, classified on the basis of the OSCP stroke classification system. 

 

Patients with TACS (Total Anterior Circulating Syndrome) had a lower mean 

blood glucose at 24, 36 and 48 hours compared to the other groups, 

although it did not meet statistical significance.   
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Using the NIHSS and defining groups as mild, moderate or severe (Figure 

6.6), there was a significant difference in CBG across groups at 36 and 48 

hours (t=36hours; F=3.218; p=0.042; t=48hours; F=3.997; p=0.020 (one way 

Anova).  In post-hoc analysis mean CBG was statistically lower in patients 

with severe stroke (NIHSS>15) compared to the mild stroke group (NIHSS 0-

6) (p=0.016).  

 

Figure 6.6 Temporal profile of capillary blood glucose (mean+SEM) relative to time 
from ictus for patients with definite times of stroke onset, classified on the basis of 
admission stroke severity (NIHSS). 
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Feeding 

Information on feeding status was available for 214 patients. 38 patients 

(18%) remained Nil by Mouth (NBM) for the monitoring period with the 

remaining 176/214(82%) of patients having staged oral intake (Table 6.4). 

There was a statistically significant difference between groups, with 20% of 

patients with staged oral intake euglycaemic compared to 40% of patients in 

the nil by mouth group (χ2=6.69; p≤0.01).   

 

Blood Glucose 

 Hyperglycaemia Euglycaemia Total 

Staged diet 
141 35 176 

Feeding 

NBM 23 15 38 

Total 164 50 214 

 
Table 6.4: Development of hyperglycaemia within the 48hour monitoring period for patients 
defined on the basis of oral intake. Staged diet versus nil by mouth (NBM) (n=214).  

 

 

The median NIHSS in the NBM group was 15 (IQR 9,19) compared to 5 

(IQR 3,10) in the oral intake group (p<0.001). For the 19 patients in the NBM 

group with definite time of onset, mean CBG decreased to a nadir at 24hours 

and then increased. For patients with defined oral intake the mean CBG 

initially increased then decreased to a nadir at 12 hours with a further peak 

at 48hours (Figure 6.7).  Mean CBG was significantly lower in the oral intake 

group at the 48hours time point (6.4mmol/l versus 6.6mmol/l; p = 0.032 

(F=4.719)). 
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Figure 6.7 Temporal profile of capillary blood glucose (mean+SEM) relative to time 
from ictus, dependent on feeding status across the 48hour period of monitoring.  
Patients were subdivided into nil by mouth (no oral intake for the observed period) or 
staged oral diet and fluids (confirmed oral intake for the monitoring period, as 
documented in the case note review). 
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Part 2: Prevalence of Convalescent Abnormal glucose metabolism 

One hundred and eighty three patients were identified with hyperglycaemia 

for the period October 2004 to January 2006. Thirty-eight patients were 

ineligible for follow-up (five patients who lived at significant distances from 

the hospital made repeat testing difficult and they were therefore excluded, 

see Figure 6.6). One hundred and forty five patients were approached. Sixty-

seven of 91 respondents (46%) agreed to study participation and underwent 

the OGTT.  

12 patients died

5 PEG feeding

5 distance

12 known diabetics

4 PNH residents

14 patients not agreeable to study

10 DNA

One non stroke excluded One patient with PICH excluded

Results available for 65 patients

67 underwent  OGTT

77 consented to study

91 Respondents

145 potentially eligible patients

Letter sent X 2

Phoned when number available

183 patients with Hyperglycaemia

Oct'04 and Jan'06

Figure 6.8 Consort chart for Hyperglycaemic patients 
approached and screened with the OGTT. 
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Two patients were excluded, one a non-stroke diagnosis and the other a 

diagnosis of PICH. Of the 65 remaining patients baseline demographics and 

clinical features are shown in table 6.5. Four patients were unable to 

complete the glucose ingestion, but data was retained to facilitate diagnostic 

criteria for the metabolic syndrome.  Full OGTT information was available for 

61 patients from the original 183 non-diabetic patients approached for 

screening.  

Demographic details N=65 

Median Age (IQR) 70 (61, 76) 

Gender (male/female) 25/40 

Median time to OGTT post stroke (days)(IQR) 176 (108, 240) 

Clinical Stroke Classification 

TACS 

PACS 

LACS 

POCS 

TIA 

 

11 (17%) 

14 (22%) 

30 (46%) 

9 (14%) 

1 (2%) 

Prevalence of Stroke Risk Factors 

Hypertension 

Hyperlipidaemia 

IHD 

Cigarette smoking (current/ex-smoker) 

Previous Stroke/TIA 

Atrial Fibrillation 

 

27 (42%) 

16 (25%) 

12 (18%) 

20 (31%) / 6 (9%) 

11 (17%) 

15 (23%) 

 
Table 6.5: Demographic profile of patients undergoing oral glucose tolerance testing. Values 
expressed as percentages or medians (IQR).  
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The results of the OGTT are shown in (Table 6.6).  52% (32/61) had 

abnormalities of glucose metabolism with 21% (13/61) of patients being 

diagnosed with diabetes and 31% (19/61) had either impaired fasting 

glucose or impaired glucose tolerance.  When baseline clinical data was 

examined there was no statistically significant difference in age or stroke 

severity between patients. Admission capillary blood glucose was 

significantly higher in patients who were found to have Diabetes, compared 

to patients with confirmed normal or impaired glucose tolerance/impaired 

fasting glucose (P=0.002).  
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Diabetes Mellitus 

Table 6.6 Results for the 75g Oral Glucose Tolerance test. Abnormal 
glucose metabolism defined using IDF criteria as shown. 
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Mean (±±±±SD) Normal IGT/IFG Diabetes 
Mellitus 
 

F p 

Age (Years) 64±10 73±10 66±14 2.068 0.138 

 
Admission 
NIHSS 

 
8±5 

 
7±7 

 
7±5 

 
0.865 

 
0.145 

 
Admission 
CBG (mmol/l) 

 

 
6.3±1.4 

 
6.7±1.2 

 
8.2±2.3 

 
6.962 

 
0.002 

HbA1c (%) 5.7±0.3 5.8±0.4 6.6±0.7 15.649 <0.001 

Rankin 
(3mths) 

2±1 2±1 2±1 0.402 0.671 

 
Waist (cm) 
circumference 

 
91±15 

 
92±9 

 
103±20 

 
0.953 

 
0.393 

 
Fasting BG 
(mmol/l) 

 
5.0±0.3 

 
5.5±0.5 

 
6.7±1.8 

 
13.622 

 
<0.001 

 
Triglycerides 

 
1.05±0.27 

 
1.43±0.62 

 
1.79±0.99 

 
6.878 

 
0.002 

 
HDL-C. 

 
1.23±0.35 

 
1.27±0.18 

 
0.93±0.19 

 
6.353 

 
0.004 

 
SBP (mmHg) 

 
145±25 

 
147±18 

 
143±18 

 
0.099 

 
0.906 

 
DBP (mmHg) 

 
85±17 

 
83±14 

 
79±12 

 
0.884 

 
0.420 

 

Table 6.7: Baseline demographics on admission (light grey) and subsequent clinical findings 
and laboratory characteristics of the 61 patients at scheduled follow-up for OGTT and 
anthropometric measurements. Groups are categorised  on the basis of OGTT findings as 
per IDF criteria (normal glucose metabolism, Impaired Glucose Tolerance (IGT)/Impaired 
Fasting Glucose (IFG) or diabetes). Data are expressed as mean±SD. Means compared 
across groups using one way ANOVA. Significance is defined as p<0.05.  

 

At the time of initial screening there was significant differences between 

groups for HbA1c, fasting blood glucose and lipid abnormalities (Table6.7).   
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Screening of patients who presented with admission hyperglycaemia found 

Diabetes or IGT/IFG in 68% of cases.   39% of patients with normal blood 

glucose at presentation developed hyperglycaemia in the monitoring phase 

and were found to have abnormal glucose metabolism at follow-up. Patients 

with hyperglycaemia on admission presented significantly earlier than 

patients with initial normoglycaemia (4.8±4.5hrs) versus 

(7.7±7.4hrs)(p<0.001)(Table6.8).  For the 65 patients screened for metabolic 

syndrome, complete data was available to aid diagnosis for 63 patients, of 

which 51% (32/63) had metabolic syndrome.  Metabolic syndrome was again 

more prevalent in patients with manifest hyperglycaemia on admission (70% 

versus 40% in the normoglycaemic group; p≤0.025). 

 

 

 

 

 

 

 

 

 

 

 

 

 Admission CBG 
>7.0mmol/l (n=22 +1) 

Admission CBG 

≤≤≤≤ 7.0mmol/l (n=39 +1) 

p 

Diabetes 
Mellitus 
 
IGT/IFG 
  
Normal 
Glucose 
Tolerance 

8 (36%) 
 
 

7 (32%) 
 

7 (32%) 

5 (13%) 
 
 

10 (26%) 
 

24 (61%) 

 
 

P≤≤≤≤0.05 
 
 
 

ΧΧΧΧ²=6.17 

Mean Time to 
admission±SD 

285mins±±±±268mins 462mins±±±±442mins P<0.001 

Mean 
NIHSS±SD  

9±±±± 7 7±±±± 4 ns 

Metabolic 
Syndrome 

16/23 (70%) 16/40 (40%) p≤≤≤≤0.025 
 

Χ²=5.11 
 Table 6.8 Underlying abnormalities in glucose metabolism and metabolic syndrome relative to 
patients defined as having Hyperglycaemia on initial or subsequent testing within the 48hour-
screening period. (One patient included had incomplete data for definition of glucose tolerance 
state, but was included in defining the metabolic syndrome population). CBG: capillary blood 
glucose. Differences in mean time and NIHSS measured using the student t-test. The percentage 
breakdown for abnormalities in glucose metabolism and metabolic syndrome compared for 
admission hyperglycaemia and late hyperglycaemia using the chi-squared test.  
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When baseline capillary blood glucose profiles were examined for patients 

who subsequently underwent OGTT, complete profiles were available for 30 

patients. Twenty patients had normal glucose metabolism with 10 patients 

having abnormal glucose metabolism (one with impaired fasting glucose, five 

with Impaired Glucose Tolerance and four with Diabetes Mellitus). In 

contrast to patients with normal glucose metabolism where mean glucose fell 

in the first 24hours, patients with dysglycaemia had an initial increase in 

mean glucose in the first 8hours, prior to a similar decline reaching a nadir at 

24hours.  Both populations demonstrated an increase in blood glucose 

between 24 and 48hours (Figure 6.7).  

 
Baseline temporal mean capillary blood glucose profiles for those patients with 

OGTT results available (n=30) 
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Figure 6.9: Capillary blood 
Glucose (mean±SEM) 
profiles for patients at the 
time of admission divided on 
the basis of OGTT results at 
screening. 
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6.5 Discussion 

Post-stroke hyperglycaemia is more common than previously suggested 

when repeated blood glucose monitoring is performed in the early acute 

stroke phase.  Sustained or isolated hyperglycaemia affected more than 

70% of stroke patients screened following admission to our stroke unit. 

Blood glucose concentration was influenced by time from ictus, stroke 

severity, prior glycaemic status and feeding status, with complex and 

sometimes counter-intuitive relationships between factors. The results 

presented need to be interpreted in the context of the study protocol and its 

real time recording within an acute stroke service. Confounding factors 

include lack of additional glucometer calibration outside the routine ward 

protocol, a deficiency in reported quality monitoring and assessment of intra 

and inter-rater observations. The reproducibility of isolated hyperglycaemia 

needs to be considered relative to feeding status at the time of the 

measurement. Many of the inconsistencies in cited prevalence rates in 

previous literature may be explained in part by our findings.  In addition to 

the high prevalence of acute post-stroke hyperglycaemia, we also found a 

high prevalence of impaired glucose tolerance, diabetes mellitus and 

metabolic syndrome. This finding raises the importance of dysglycaemia to 

PSH and its possible contribution to a worse stroke outcome.  An additional 

aspect of this finding is the identification of patients who may benefit from 

additional secondary preventative measures.     
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Prevalence rates for PSH are generally quoted on the basis of single blood 

glucose measurements. Observational studies examining the association 

between hyperglycaemia and stroke outcome have routinely not 

documented repeated measures as part of the study methodology. Only five 

of the clinical studies included in the systematic review by Capes et al 

described routine attempts to profile the blood glucose over time.58;64;65;68;74 

A more recent study has added to our understanding of the temporal profile 

of glucose by using a subcutaneous monitor over a 72-hour period.96 Blood 

glucose was shown to increase within 12hours of ictus, then decrease 

reaching a nadir at 14 hours with a further peak at 66-88hours.74;95;96 Only 

one study has identified patients within six hours of acute stroke but 

inconsistencies in the measurement of the blood glucose may refute the 

generalised increase in blood glucose over the desired time period.  In the 

study by Christensen et al, the median time to initial blood glucose testing 

was 2.5 hours (IQR 1.6,4.0) with the second blood glucose tested at 

3.2hours (2.0,5.2).74 Blood glucose analysis was performed using two 

separate methods, which may explain discrepancies in the blood glucose 

results. The consistent measurement methodology used for blood glucose 

monitoring in our study was a positive aspect, with blood glucose relatively 

constant within the first four to eight hours and then reducing to a nadir at 

12hours.  These results are similar to previous published work which also 

used consistent repeated measures.96 If blood glucose does remain 

relatively constant within the first eight hours post ictus, it is hypothesised 
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that blood glucose on admission reflects underlying glycaemic or diabetic 

status. This was confirmed from our population when admission HbA1c was 

found to be significantly lower in patients with euglycaemia at presentation 

and also throughout the entire monitoring period. 

 

Although the study’s aim did not focus on stroke outcomes, identification of 

hyperglycaemia predictors is important in deciphering the controversy that 

continues to exist surrounding its poor prognostic association. The 

suggestion that hyperglycaemia is purely an epiphenomenon of stroke 

severity is not consistent.  PSH is prevalent across all clinical sub-types and 

severities of stroke and is not just restricted to those most severely 

affected.71  Serum cortisol has been shown to correlate with stroke severity, 

blood glucose and temperature and be an independent predictor of short-

term outcome,260 whilst plasma catecholamines associated with both stroke 

severity and hypertension were found to have no correlation with glucose.68 

In patients randomised to the National Institutes of Neurological Disorders 

and Stroke (NINDS) trial of recombinant tissue plasminogen activator (rt-

PA), there was no correlation between blood glucose within three hours of 

stroke onset and stroke severity.100 Abnormalities in glucose metabolism, 

time to clinical presentation, fasting and blood sampling appear important.  In 

our own population, stroke severity was higher in patients with euglycaemia 

when compared to patients with hyperglycaemia. This was consistent for 

both admission hyperglycaemia and for patients who manifest 
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hyperglycaemia at some stage within the 48 hours. Interestingly, mean blood 

glucose was significantly lower in patients with more severe strokes when 

compared to the milder stroke population at 48 hours. This can be explained 

on the basis of feeding with the more severe stroke patients remaining nil by 

mouth throughout the monitoring period.   

Despite the neutral result from the recently published GIST-UK study,156 

maintenance of euglycaemia may present a challenge if future stroke trials 

show benefit of glucose lowering therapy.  Maintenance of euglycaemia in 

populations with variable oral intake and the expected post-prandial variation 

presents a greater challenge than for patients with targeted parenteral 

nutrition as seen in the ICU population.261 This variation in blood glucose has 

seen adjustment of insulin scales to coincide with meals and prolonged fasts 

and thus be predictive not reactive.181  

 

In patients with presumed “stress hyperglycaemia”, we found a high 

prevalence of impaired glucose tolerance, impaired fasting glucose, diabetes 

mellitus and metabolic syndrome.  The cited point prevalence for “stress 

hyperglycaemia” in studies is between 5.7% to 32%55;66 depending on the 

diagnostic criteria and population studied.  Patients previously defined as 

having relatively normal HbA1c levels and deemed to have hyperglycaemia 

secondary to the stressful insult are likely to have had underlying 

abnormalities in glucose metabolism.  Thirty-seven percent of patients with 

HbA1c levels 5.0% to 5.4% were found to have abnormal glucose tolerance 
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(32% had either IGT or isolated IFG and 5% had Type 2 diabetes mellitus)262 

when screened following a stroke or TIA.  Fasting Blood glucose levels 

>5.6mmol/l in patients with pre-existing atherothrombotic disease has been 

shown to increase the risk of cerebral ischaemic events.83 For patients 

recruited to the Dutch TIA trial with TIA or minor stroke, stratified on the 

basis of non-fasting blood glucose with impaired glucose tolerance (IGT) 

defined as a random blood glucose 7.8-11.0mmol/l, the risk of recurrent 

stroke was nearly doubled in patients with IGT compared to those with 

normal blood glucose levels (hazard ratio 1.8, 95%CI 1.1 to 3.0).263 Of 

patients recruited to the Glucose tolerance in Patients with Acute Myocardial 

Infarction (GAMI) study with OGTT performed prior to discharge, 67% had 

abnormal glucose tolerance.  The probability of patients remaining free from 

cardiovascular events (Heart Failure, Re-infarction, Stroke or cardiovascular 

death) was significantly higher in patients with normal rather than abnormal 

glucose tolerance (p=0.002).264 The exact mechanism by which impaired 

glucose tolerance contributes to increased risk is not completely understood 

but it has been shown to alter platelet function and accelerate 

atherosclerosis.265;266 The prevalence of metabolic risk factors including low 

HDL-cholesterol and elevated systolic blood pressure has been reported to 

increase linearly according to post-challenge glucose concentration.267  

 

The recognition of mild to moderate hyperglycaemia in the setting of acute 

stroke is both a prognostic indicator of stroke outcome and a potential 
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predictor of abnormal glucose metabolism.  In 62 patients screened at three 

months following an acute ischaemic stroke and admission blood glucose ≥ 

6.1mmol/l, 21% had diabetes mellitus and 37% had impaired glucose 

tolerance.  A blood glucose ≥6.1mmol/l and HbA1c ≥6.2% on admission was 

found to have an 80% positive predictive value for diabetes at 12 weeks.90  

In our own study, patients were eligible if CBG was >7.0mmol/l at any stage 

within the 48hour monitoring period.  Results demonstrated a similar overall 

diabetes prevalence of 21%.  However, when patients with only admission 

hyperglycaemia were considered, 36% had diabetes with a further 32% 

having impaired glucose metabolism or impaired fasting glucose.  Thirty-nine 

percent of patients initially euglycaemic but demonstrating hyperglycaemia 

following admission had abnormal glucose metabolism.  Similar figures were 

obtained for metabolic syndrome, being present in 70% of patients with 

admission hyperglycaemia and 40% of patients with late hyperglycaemia.  

 

One possible explanation for the discrepancy in screening results between 

early and late hyperglycaemia relates to time of presentation. Despite no 

statistical difference in stroke severity at presentation, patients with 

hyperglycaemia on admission presented earlier at 4.8±4.5hrs compared to 

the 7.7±7.4hrs in patients with late hyperglycaemia.  Our understanding of 

the temporal profile of blood glucose has confirmed that blood glucose tends 

to fluctuate with a nadir between 12 and 24 hours, before re-feeding 

commences and thus explaining the subsequent peak.96 Presentation during 



 192 

this period may miss the elevated blood glucose excursions and emphasises 

the importance of repeated screening.  An additional explanation for the 

development of late hyperglycaemia relates to the impact of feeding.  Post-

prandial glucose levels are known to increase earlier than fasting blood 

glucose levels for the same value of HbA1c, as individuals progress towards 

diabetes.268 A late hyperglycaemic phase has been detected in patients 

undergoing serial blood glucose screening, with diabetes, insular cortex 

involvement and age being identified as predictors, although the authors do 

comment that their results could not negate a role for feeding in its 

development.96 Difficulties in the use of capillary blood glucose monitoring 

for serial monitoring relate to preparation, analytical method and timing of the 

sample.  CBG testing has been shown to underestimate fasting or random 

samples and overestimate two-hour post glucose ingestion loading when 

compared to venous sampling.269  The study’s protocol specified four-hourly 

CBG monitoring but did not clarify the timing of the test relative to oral intake 

and as such erratic blood glucose values may reflect post-prandial 

excursions.  

 

Reliance on a single fasting blood glucose sample in the convalescent 

period would not have sufficed as an appropriate screening method in our 

population.  Fifteen patients with normal fasting glucose at follow-up were 

found to have impaired glucose tolerance or diabetes on post-prandial 

testing of which four patients with diabetes would have been misclassified as 
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normal.  Post-prandial hyperglycaemia is a recognised predictor of 

cardiovascular risk.  In the Diabetes Epidemiology: Collaborative Analysis of 

Diagnostic criteria in Europe study (DECODE), two-hour serum glucose level 

predicted increased all cause mortality and was a better predictor than 

fasting glucose.270 Following Myocardial Infarction (MI), abnormal glucose 

tolerance was the second strongest predictor after previous MI for future 

cardiovascular events (hazard ratio 4.18;CI 1.26-13.84;p=0.019).264 

Extrapolation of these results would advocate the use of OGTT as a 

screening method in the high risk stroke population.  The test results in our 

study were based in the majority on single assessment measurement.  As 

per local guidelines, testing should be repeated to confirm or disprove the 

biochemical findings. The study development and recruitment did not involve 

repeated assessment but the primary care physician of the patients with 

abnormal results were informed and advised about appropriate follow-up.  

 

One criticism reflecting the logistics of the study is that almost 45% of 

patients screened had a lacunar stroke syndrome at initial presentation.  In 

the European BIOMED stroke study, diabetic patients were more likely to 

have lacunar infarction when compared to non-diabetic groups (p=0.03).271  

Our results, based on a study sample with a high proportion of patients with 

lacunar infarction, may overestimate the overall prevalence of abnormal 

glucose metabolism and may not be applicable to a typical stroke population. 

It was not feasible due to swallowing difficulties, significant comorbidity or 
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interim mortality to include larger proportions of patients with total syndromes 

(TACS).  The reproducibility of our trial data to populations outside the UK 

also has to be considered.  In the Oxford Stroke Community Project 

(OCSP)243 and the Oxford Vascular study (OXVASC)272 the prevalence of 

established diabetes was 10.5% and 9.5% respectively.  In the North East 

Melbourne Epidemiological and Stroke Incidence Study (NEMESIS)273 it was 

19%, similar to the 18% in our own population, but much less than the 36% 

seen in the Northern Manhattan Stroke Study (NOMASS)274.   

 

The unadjusted relative risk of in-hospital or 30-day mortality associated with 

admission glucose levels ≥6.0 to 8.0mmol/l has been estimated at 3.07 (95% 

CI, 2.50 to 3.79) in non-diabetic patients and 1.30 (95% CI, 0.49 to 3.43) in 

diabetic patients.236 Extrapolation of these results may suggest that a label of 

diabetes on admission ensures repeated blood glucose monitoring and 

correction with insulin or oral hypoglycaemics.  In a retrospective study of 

patients admitted with thrombo-embolic stroke, glycaemic control defined as 

normalisation of blood glucose to <7.2mmol/l was associated with a 4.6 fold 

decrease in mortality risk as compared to patients with persistent 

hyperglycaemia (Blood Glucose ≥7.2mmol/l)(p<0.001).176 As our study 

demonstrates, 21% of patients with stress hyperglycaemia had unknown 

diabetes and therefore interventions and monitoring would not have been 

routinely undertaken. We would advocate that repeated monitoring of blood 

glucose in patients admitted with stroke is required.  Detection of 
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hyperglycaemia on admission is a predictor of abnormal glucose 

metabolism.  Detection of such hyperglycaemia demands the need for 

follow-up upon discharge to confirm or disprove abnormalities of glucose 

metabolism.  The detection of impaired glucose tolerance is important, as 

several trials have looked at intervening and preventing the development of 

diabetes.  In the US diabetes prevention program, an intensive lifestyle 

intervention among persons with IGT reduced the incidence of diabetes 

compared to placebo by 58%.275 Non-lifestyle measures have also been 

used with acarbose (an ∝-glucosidase inhibitor) with reduction in major 

cardiovascular events by 49% in persons with impaired glucose tolerance in 

the Study to prevent Non Insulin Dependent Diabetes Mellitus trial (STOP-

NIDDM). 276  

 

6.6 Conclusion 

Post Stroke Hyperglycaemia is common. Repeated blood glucose measures 

will result in the detection of a higher proportion of patients with PSH.  

Understanding its aetiology is vital in deciphering the need for intervention 

and a possible role in manipulating stroke outcome. Our study does not 

support hyperglycaemia being an epiphenomenon of stroke severity.  We 

found no association between the development of PSH and stroke severity, 

measured using the NIHSS. In contrast hyperglycaemia was found to be 

dependent on underlying glycaemic status, being influenced by undiagnosed 

dysglycaemia and manifest through post-prandial rises. Knowledge of the 



 196 

effect of fasting on blood glucose lowering and its possible role on the 

ischaemic brain may encourage earlier feeding in more severe strokes. 

Alternatively post-prandial hyperglycaemia provides a possible opportunity 

for dietetic adjustment. Detection of PSH justifies further screening in the 

high risk stroke population to establish the presence of abnormal glucose 

metabolism and the need for further secondary risk prevention. 
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Chapter 7: Insular Cortex 
ischaemia as a predictor of 

hyperglycaemia 
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7.1 Introduction 
 
Various theories have been proposed to explain the aetiology of post stroke 

hyperglycaemia (PSH).  Unmasking of abnormalities in glucose 

metabolism,90 an epiphenomenon of stroke severity74 or a site specific 

response independent of severity have all been suggested.101  

Understanding of the pathophysiological process underlying hyperglycaemia 

is important in deciding on its management in the acute setting.   

 

Early animal studies have reported a possible relationship between reactive 

hyperglycaemia and brain injury location.  Original work by the French 

physician Claude Bernard described transient hyperglycaemia and 

glycosuria, following induction of a lesion in the floor of the fourth ventricle of 

an experimental rabbit as cited in the paper on reactive hyperglycaemia by 

Melamed.53 In a subsequent experiment pituitary injury in fasted rabbits 

resulted in an immediate and marked hyperglycemia.277 More recent 

experimental and clinical work has suggested the insular cortex as an 

anatomical location within the brain that may influence the sympathoadrenal 

response and by extrapolation stimulate PSH.101;102   

 

The insular cortex has autonomic efferent projections and it has been 

proposed that it exerts a tonic sympathoinhibitory tone on autonomic 

brainstem centres.  Damage through ischaemia is thought to result in loss of 

the disinhibition, with clinical studies demonstrating increased sympathetic 
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activity reflected by cardiac arrthymias.278  In animal studies these effects 

are lateralised but distinct effects of right and left insular infarction are 

inconsistently reported in clinical studies.279 

 

In a recent MRI study of 31 patients within 24 hours of acute stroke, insular 

cortical ischemia was an independent predictor of glucose level (p=0.001), 

with the relationship being independent of pre-existing glycaemic status and 

infarct volume.101 The results have not been confirmed in larger population 

studies using CT as the imaging modality.280;281 The poorer sensitivity of CT 

in detecting acute ischaemia has been suggested as a possible explanation 

for the difference in results.   

 

We sought to examine the association between insular cortical ischaemia 

and post stroke hyperglycaemia in a larger data set by combining two 

studies that used MR surrogate measures.  The aim of  the study was to test 

the hypothesis that acute ischaemia of the insular cortex is associated with 

the development of post stroke hyperglycaemia.  In addition we sought to 

establish the influence of lateralisation on the development of 

hyperglycaemia. 
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7.2 Methods 
 
Studies Selected 
 
Access was obtained to the data set for (a) the multi-centre MR Images 

subset of the IMAGES (Intravenous Magnesium Efficacy in Stroke) trial33, a 

neuroprotectant trial examining the effect of intravenous magnesium 

sulphate on death or disability at 90 days and (b) the single centre 

SELESTIAL trial (Spectroscopic Evaluation of Lesion Evolution in Stroke: 

Trial of Insulin for Acute Lactic acidosis - a trial examining the effect of 

insulin in the form of a GKI infusion on lactate levels and lesion volume 

progression in acute stroke; see Chapter 5 ). 

 

Both studies were randomised placebo controlled trials.  Time to imaging 

and study infusion differed with MR-IMAGES recruiting patients up to 12 

hours from ictus and SELESTIAL 24 hours.  Repeat imaging was performed 

at 90days for MR-IMAGES and at days three and seven for SELESTIAL.  

Hyperglycaemia, defined as a capillary blood glucose greater than seven 

millimoles per litre, was a necessary inclusion criteria for SELESTIAL.  

 

Clinical data 
 
 
Baseline data recorded included age, gender, stroke severity as measured 

using NIHSS, stroke classification (OCSP),243 admission blood glucose, risk 

factor profile and documented history of diabetes.  Time to MRI scan from 

ictus was also documented.  The definition of hyperglycaemia for this study 
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was a blood glucose of greater than or equal to eight mmol/l, to be 

consistent with the original definition in the study by Allport et al.101 Timing of 

admission blood glucose in the MR-IMAGES study was recorded as the time 

that coincided with the initial MRI. For the purposes of the study and in the 

absence of data on glycosylated Haemoglobin (HbA1c), “stress 

hyperglycaemia” was defined as hyperglycaemia in patients with no 

documented history of diabetes. 

 

Image analysis 
 
The lesion volumes were interpreted by MMcC. Scans were anonymised and 

interpreted blinded to clinical data .  MRI scans were performed using a 1.5 

or 3.0 Tesla scanner, dependent on availability in respective centres.   

Anonymised data sets were transferred to a workstation and Diffusion 

Weighted Imaging (DWI) lesion volumes were measured using the cheshire 

software package (Perceptive Informatics, PAREXEL, USA).  Following 

delineation of the lesion by the reader, a semi-automated method was used 

to define lesion borders on each slice.  Further manual refinement of each 

slice produced the final lesion volume.  The lesion volume was then 

calculated automatically and expressed in mm3.  This was then adjusted for 

tabulation to cm3.  Following lesion volume measurements, scans were 

reexamined and DWI involvement of the insular cortex and hemisphere 

affected was recorded.  The insular cortex was defined anatomically as the 

region of cortical gray matter at the base of the Sylivian fissure medial to the 
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frontoparietal and temporal opercula consistent with the definition used by 

Allport et al. Insular cortex involvement was described as present (IC+) or 

absent (IC-). The insular cortex was further subdivided on the basis of the 

flow void in the middle cerebral artery into anterior and posterior portions.  

 

Statistical Analysis  

All statistical analysis was performed using SPSS (version 13.0).  Risk factor 

profile, hemisphere involvement and insular cortex entire, anterior or 

posterior involvement were described as percentages and compared across 

groups using the chi-squared or Fishers exact test as appropriate.  

Measures of stroke severity, blood glucose and lesion volumes were 

expressed in medians with interquartile ranges and compared using Kruskal-

Wallis test.  For blood glucose as a continuous variable, univariate general 

linear models were used.  When dichotomised into hyperglycaemia or not 

hyperglycaemia, biniary logistic regression was used with multivariate 

analysis in a forward regression model.  

 

7.3 Results 
 
Baseline clinical data was available for 98 patients from MR-Images and 40 

patients in the SELESTIAL study.  Two patients in the MR-Images data set 

had no documented admission glucose and a further 22 patients had MR 

scans from the available data set that were not able to be analysed using the 

software.  The SELESTIAL data set was complete, giving a total study 
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population of 114 patients. The consort chart below demonstrates the 

breakdown of the combined data set, with further subdivision dependent on 

glycaemic status (figure 7.1) 

 

 

Combined Data Set 

138 Patients 

Study population 

114 Patients 

No admission glucose in 

2 patients 

Unable to measure DWI 
lesion volumes in 22 

patients 

Post Stroke Hyperglycaemia 

39% (45/114) 

Euglycaemia 

61% (69/114) 

Hyperglycaemic 
Diabetics 

21% (24/114) 

Stress 
Hyperglycaemia 

18% (21/114) 
 

Euglycaemic 
Diabetics 

13% (15/114) 
 

Euglycaemic Non-
Diabetics 

47% (54/114) 
 

 
 
Figure 7.1: Consort chart demonstrating breakdown of patients from SELESTIAL and MR-
Images combined into diabetes, stress hyperglycaemia and Euglycaemia. Values expressed 
as percentages with actual numbers in brackets.  
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Post stroke hyperglycaemia (>8mmol/l) was present in 45 of 114 patients 

(39%).  Of those patients with PSH, 24 had a pre-existing diagnosis of 

diabetes, accounting for 21% of the study population.  “Stress 

hyperglycaemia” was present in 18%. Euglycaemic diabetics and non-

diabetics accounted for the remaining 13% and 47% of the sample 

respectively.  Hyperglycaemia was present on admission in 18/48 (38%) 

patients with left hemisphere strokes and 27/66 (41%) with right hemisphere 

strokes  

 

Insular Cortical Ischaemia 

The median admission blood glucose was similar for patients with insular 

cortex involvement (IC+) (7.1mmol/l) compared to those without insular 

involvement (IC-) (7.3mmol/l).  Both median stroke severity (NIHSS) and 

acute lesion volume measurements were significantly higher in patients IC+ 

compared to those IC- (Table 7.1).  The prevalence of diabetes and 

hypertension were similar in both groups, with atrial fibrillation being 

significantly higher in the IC+ group than the IC- group (35% versus 11%).  

 

In those patients with insular involvement the incidence of hyperglycaemia 

was 37% (19/52).  For  patients with “stress hyperglycaemia” proportions for 

IC+(17%) and IC-(19%) were similar.  When comparing hemispheres the 

proportion with hyperglycaemia were similar - 6/18 patients left sided 

IC+(32%) and 13/34 patients right sided IC+ (38%) (Table 7.2).  
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 Total 
 
(n=114) 

Insular 
Cortex 
negative 
(n=62) 

Insular 
Cortex 
positive 
(n=52) 

p 

Age 
 

71 (23-98) 71 (41-98) 72 (23-91) 0.873 

Right 
Hemisphere 

58% 52% 65%  

Pre-existing 
Diabetes 

39 (34%) 21 (34%) 18 (35%) 0.545 

Hypertension 81 (72%) 42 (68%) 39 (75%) 0.261 

Atrial Fibrillation 25  (22%) 7 (11%) 18 (35%) 0.003 

Hyperglycaemia 45 (39%) 26 (42%) 19 (37%) 0.347 

Admission 
Blood Glucose 

7.3 (3.4-22.0) 7.1 (3.4-22.0) 7.3 (4.4-19.1) 0.674 

Hyperglycaemia 45 (39%) 26 (42%) 19 (37%) 

Stress 
Hyperglycaemia 

21 (18%) 12 (19%) 9 (17%) 

 
Χ²=0.605 

 
0.605 

NIHSS 11 (2-28) 7 (2-22) 16.5 (4-28) <0.001 

NIHSS (0-6)  
Mild 

33 (29%) 30 (48%) 3 (6%) 

NIHSS (7-15) 
Moderate 

46 (40%) 25 (40%) 21(40%) 

NIHSS (>15) 
Severe 

35 (31%) 7   (11%) 28 (54%) 

 
 

Χ²=61.11 
 

P<0.001 
 

LACS 33 (29%) 31 (50%) 2 (4%) 

PACS 32 (28%) 17 (27%) 15 (29%) 

POCS 3 (3%) 3 (5%) 0 

TACS 46 (40%) 11 (18%) 35 (67%) 

 
 

Χ²=61.11 
 
 

P<0.001 

DWI Lesion 
Volume 

5.9 (0.03-
349.76) 

1.29 (0.03-
83.27) 

14.7 (1.09-
349.76) 

<0.001 

  
Table 7.1: Patient characteristics, baseline stroke severity, lesion volume 
measurements and stroke classification. Data expressed as total numbers 
(percentages) and median (range). Comparison made between insular 
cortex negative and positive groups. 
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 Right Insular 
Cortex (IC+) (n=34) 

Left Insular Cortex 
(IC+) (n=18) 

p 

Stress 
Hyperglycaemia 

7 (21%) 2 (11%) 0.224 

Diabetes 
 

11 (32%) 7 (39%) 0.431 

Atrial Fibrillation 
 

10 (29%) 8 (44%) 0.218 

Hypertension 
 

23 (68%) 16 (89%) 0.086 

Median Age (Range) 
 

74 (39-91) 68 (23-83) 0.370 

Median NIHSS 
(Range) 
 

14 (4-24) 18.5 (5-28) 0.049 

Median Blood 
Glucose (Range) 
 

7.4 (4.4-19.1) 7.3 (5.4-11.7) 0.962 

Median DWI lesion 
volume (cm³) 
(Range) 

16.2 (1.1-349.8) 11.8 (1.8-240.6) 0.908 

 
Table 7.2: Comparison of insular cortex involved patients relative to affected hemisphere. 
Values expressed as percentages or medians with ranges. Groups compared using Chi-
square or Mann-Whitney U test.  

 

Insular Cortex involvement was further classified into entire involvement, 

posterior involvement or anterior involvement.  Only one patient had solitary 

anterior involvement and was normoglycaemic (blood glucose 6.3) (Figure 

7.1). The proportion with hyperglycaemia for the remaining groups were 37% 

(14/38) in the entire IC+ involvement and 39% (5/13) in the posterior IC+ 

group.  When studying the risk factor breakdown for both the posterior IC+ 

and the entire IC+ groups the proportion with AF (atrial fibrillation) was 38% 

and 34% respectively, hypertension 85% and 71% respectively and for 

diabetes 31% and 37% respectively (Table 7.3).  
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 Entire IC+ 

(n=38) 
Posterior IC+ 

(n=13) 
p 

Stress 
Hyperglycaemia 

5 (13%) 4 (31%) 0.118 

Diabetes 
 

14 (37%) 4 (31%) 0.483 

Atrial Fibrillation 
 

13 (34%) 5 (38%) 0.587 

Hypertension 
 

27 (71%) 11 (85%) 0.282 

Median Age  
(Range) 

73 (23-91) 69 (55-91) 0.449 

Median NIHSS 
(Range) 

18 (5-28) 12 (7-20) 0.01 

Median Blood 
Glucose (Range) 

7.4 (4.4-19.1) 7.3 (5.4-10.3) 0.837 

Median DWI lesion 
volume (cm³) 
(Range) 

17.6 (1.1-349.8) 9.3 (1.3-107.6) 0.173 

 
Table 7.3: Comparison of insular cortex involvement dependent on posterior or entire 
involvement. Values expressed as percentages or medians with ranges. Groups compared 
using Chi-square or Mann-Whitney U test. 

 

 

 

 

 

 

Figure 7.2: Diffusion weighted images. (A) Entire Insular cortex involved (B) posterior 
insular cortex involved and (C) preservation of the insular cortex.   

A B C 
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Stroke severity and Blood Glucose 

There was a correlation between admission NIHSS and admission DWI 

lesion volume (Spearman P =0.530, p<0.001) (Figure 7.3).   

Figure 7.3 Scatterplot of admission lesion volume against NIHSS score 

 

There was also a correlation between NIHSS at presentation and admission 

blood glucose  (Spearman P =0.228, p=0.015) (Figure 7.4).  

 

Figure 7.4 Scatterplot of admission NIHSS score against blood glucose 
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There was no correlation between lesion volume and admission blood 

glucose (Spearman P =0.125, p=0.185) (Figure 7.5).     

 

Figure 7.5 Scatterplot of admission lesion volume against blood glucose 
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Hyperglycaemia Predictors  
 
Binary logistic regression including insular cortex involvement, entire or 

posterior cortex involvement, NIHSS, Age, history of diabetes and stroke 

lateralisation were used in a multivariate model to establish   predictors of  

hyperglycaemia on admission. The only significant factor in predicting 

hyperglycaemia was an established diagnosis of diabetes (OR4.11. 95% CI 

1.81, 9.33; p=0.001). Neither insular cortex involvement nor more specific 

posterior insular involvement was predictive of admission hyperglycaemia or 

stress hyperglycaemia.  

 

7.4 Discussion 
 
In contrast to the study by Allport et al which had shown that ischaemia of 

the insular cortex may contribute to post stroke hyperglycaemia (PSH), 

independent of DWI infarct volume, pre-existing glycaemic status and clinical 

stroke severity we were unable to demonstrate similar results in a larger 

group of patients taken from two randomised placebo controlled trials.101 

Evidence favouring the role for the insula in mediating a sympatho-adrenal 

response has been derived primarily from animal models. The insular cortex 

has been shown to be an important part of the central autonomic system, 

with interconnections to subcortical autonomic centres including the 

hypothalamus.  Insular cortex stimulation has resulted in alterations in 

catecholamine responses and cardiac arrhyhmias102;282;283 In clinical studies 

involving stroke patients, insular involvement has been associated with ECG 
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abnormalities and myocardial injury278. Effect of lateralisation on autonomic 

function has been demonstrated in studies undertaken in patients with 

epilepsy.  Stimulation of the left insula led to bradycardia and hypotension in 

five patients with the opposite effect in patients with right sided 

stimulation284.  The effect of lateralisation has not been consistent across 

studies since numbers studied have been relatively small.  One explanation 

for this is that strokes localised to the insular cortex are relatively uncommon 

with only four cases from a registry of 4,800 patients being admitted over a 

10 year period285.  The undoubted sympathetic response that has been 

demonstrated in both experimental and clinical studies is sufficient to 

suggest that the exaggerated stress response may result in hyperglycaemia. 

Activation of the hypothalamic-pituitary-adrenal axis is central to the 

neuroendocrine stress reponse and forms the basis of the suggested 

hypothesis that PSH is an epiphenomenon of stroke severity.286 It is also 

plausible although not confirmed in our study that a site specific lesion may 

result in an inflated stress response with an increase in catecholamines and 

cortisol.  Clinical evidence to support an exaggerated response has been 

conflicting.  Serum cortisol has been shown to74 correlate with stroke severity 

and blood glucose whereas plasma catecholamines were found to have no 

relationship with admission glucose.68  In our study, we found a weak 

correlation between stroke severity and admission blood glucose. 

Further studies trying to reproduce the findings by Allport et al using CT have 

failed.  In a retrospective review of patients receiving thrombolysis within 
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three hours of stroke ictus registered with the Canadian activase for stroke 

effectiveness study (CASES), pretreatment hypertension but not 

hyperglycaemia was predicted by insular ischaemia in univariate linear 

regression.  This predictive effect was lost when additional factors were used 

in multivariate regression.281 One reason for the discrepancy suggested by 

the authors relates to early blood glucose analysis and imaging.  The data 

from the CASES series was within three hours of ictus, whereas patients in 

the MR study were imaged at a median of 13hours (range 3-23) with blood 

glucose analysis at a median of 7.5 and 13hours for IC+ and IC- patients 

respectively.101  Blood glucose is known to increase within the first 12 hours 

of stroke onset and that this increase is associated with stroke severity.74 A 

lack of an association with blood glucose in this study may be explained by 

the hyperacute presentation with the admission blood glucose 

underestimating a higher blood glucose secondary to a delayed sympathetic 

response. In a study examining the effect of insular cortex involvement on 

ECG abnormalities, there was found to be no difference in ECG 

abnormalities on admission287, whereas earlier work had confirmed ECG 

changes up to 72hours from ictus288. Contrary to the theory of a possible 

delay in sympathetic response, a study by our own group which examined 

the highest blood glucose within 72hours of stroke ictus found that insular 

cortex hypoperfusion within 3hours of ictus was not predictive of the 

development of hyperglycaemia.289 The impact of thrombolysis in altering the 

inflammatory response in our original CT study and the CASES series needs 
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to be considered. No information was available on the thrombolysis status of 

patients recruited to the MR Images study. As reported earlier (Chapter 5) 

33% (13/40) of patients recruited to the SELESTIAL trial received rt-Pa. As 

numbers are small and the development of peak hyperglycaemia may have 

been affected by randomisation to placebo or GKI infusion further analysis 

was not undertaken. Attenuated inflammatory response has been 

demonstrated in patients showing clinical improvement after recombinant 

tissue plasminogen activator treatment.290   Work by Christensen et al in 179 

patients with blood glucose measurements within six hours of stroke ictus 

undergoing CT imaging found that there was no difference in blood glucose 

between non-insular and insular involvement and again no difference 

between right or left sided insular involvement280. Work by the same group 

found that cortisol levels did not relate to insular damage when examined as 

part of a multivariate analysis which included stroke severity on admission 

and early infarction signs on CT238.  

 

It has previously been documented that insular lesions are associated with 

ECG abnormalities and a potential relationship to cerebrogenic sudden 

death has been cited.282 Patients with  right sided insular infarcts were found 

to have significantly lower values for heart rate variability and more complex 

arrthymias when compared to controls.  When the same group examined 

this hypothesis in a later study both right sided insular involvement and the 

presence of non-sustained ventricular tachycardia were independent 
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predictors of one year mortality.278;288  Our understanding of the insular 

cortex and its contribution to the development of the stress response 

remains poorly understood.  Stimulation of the right insular cortex produces 

changes in blood pressure and heart rate with opposite effects occurring on 

stimulation of the left insular cortex.284 As previously documented, right 

insular cortex involvement is associated with increased incidence of 

supraventricular tachycardia.  In our own patient population we found that 

the prevalence of atrial fibrillation was higher in patients with insular cortex 

involvement when compared to those patients without insular cortex 

involvement; however we could not find any statistically significant difference 

between respective hemispheres or between posterior versus entire insular 

cortex involvement.  This is contrary to previous studies which have 

demonstrated that posterior insular cortex involvement may be associated 

with a higher risk of developing atrial fibrillation after stroke.291 

 

In comparison to previous studies patients with insular cortex involvement 

had worse stroke severity and also increased lesion volume measurements, 

but consistent with the work by Allport et al when this was controlled for, 

patients with purely posterior insular cortex involvement had similar glucose 

levels to patients with larger lesion volumes and more severe strokes. 

The retrospective nature of the study meant that the timing of the blood 

glucose is unlikely to have coincided exactly with the MRI..In view of the 

temporal profile of glucose, knowledge of timing relative to stroke onset and 
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imaging is important. A further criticism relates to the definitions of 

hyperglycaemia for the two sample populations. Although defined uniformly 

as a blood glucose ≥8.0mmol/l, the different methods of sample testing 

(capillary versus venous) ensured lack of uniformity in patient selection. It  

has previously been demonstrated that magnesium may increase blood 

glucose in experimental models of acute stroke but this is unlikely to have an 

effect on results since the blood glucose was taken as the admission 

glucose level prior to magnesium administration.292 Access to the MR-

Images data set did not allow access to information on infusion type for 

respective study participants. Unfortunately stress hyperglycaemia was 

defined on the basis of hyperglycaemia in the absence of an established 

diagnosis of diabetes and hence fails to exclude the population with 

undiagnosed abnormailities in glucose metabolism. Admission blood glucose 

may fail to detect hyperglycaemia if checked too early as we are now aware 

that blood glucose increases fluctuates within hours of onset.  

 

The association between atrial fibrillation and insular cortex involvement is 

similar to the cause or effect association betwen blood glucose and stroke 

severity and worse stroke outcome.  Does insular cortex involvement purely 

reflect a preponderance of non-lacunar strokes, where the mechanism is 

cardio-embolic or artery-artery embolisation and thus reflects the aetiological 

mechanism as opposed to being the precipitant of the cardiac arrthymia?  
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7.5 Conclusion 
 
Understanding the mechanism underlying hyperglycaemia in acute stroke is 

important. Damage to the insular cortex is plausible as a site specific 

hypthesis on the basis of experimental studies .  In contrast to an earlier MRI 

based study demonstrating insular ischaemia as an independent predictor of 

hyperglycaemia, we were unable to confirm the same results using similar 

methodolgy in a larger population.  Stroke severity and admission DWI 

lesion volume were significantly increased in patients with insular cortex 

involvement when compared to those without. Atrial fibrillation was more 

common as a risk factor in patients with confirmed insular infarction. The 

only predictive factor for the development of hyperglycaemia was the 

presence of established diabetes.  Isolated localised brain injury is not an 

independent aetiological explanation for post stroke hyperglycaemia.   
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Chapter 8: Stroke unit 
management of hyperglycaemia 
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8.1 Introduction 
 
In the absence of supportive trial evidence, the management of 

hyperglycaemia in acute stroke remains uncertain.  Both American and 

European guidelines advise management of hyperglycaemia, with the 

European stroke initiative (EUSI) recommending treatment for blood glucose 

greater than 10mmol/l293 and the recently updated American guidelines 

lowering the blood glucose threshold for intervention from 16.63mmol/l142 to 

>11.0mmol/l.46  The potential benefit if any from tight blood glucose control 

with insulin in acute stroke has been extrapolated from trial evidence 

obtained in both cardiac and intensive care unit populations.148;294 The only 

trial specifically examining the effect of insulin in an acute stroke population 

found no benefit for insulin in the form of a glucose-potassium-insulin 

infusion administered within 24hours of ictus over placebo on short-term 

stroke outcome.156 

 

Despite a lack of evidence for a benefit from blood glucose control, it is well 

established that post-stroke hyperglycaemia is associated with a worse 

stroke outcome.  A systematic review of thirty-two studies examining the 

effect of hyperglycaemia on mortality and/or functional recovery found that 

the unadjusted relative risk of in-hospital or 30day mortality associated with 

admission glucose level >6 to 8mmol/l was 3.07 (95%CI, 2.50 to 3.79) in 

non-diabetic patients and 1.30 (95%CI, 0.49 to 3.43) in diabetic patients.236  

A more recent study found a blood glucose level greater than or equal to 
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7mmol/l within 72hours of stroke onset was an independent predictor of both 

infarct expansion and worse functional outcome.128 

 

With the recognised uncertainty surrounding treatment of hyperglycaemia, 

management among individual stroke centres differs.  Stroke units reduce 

the risk of death, dependency and institutionalisation.18 A recent analysis of 

the stroke unit trialists collaboration suggests that prevention of 

complications including infections may explain the beneficial effect of stroke 

unit care.37 Measures to prevent aspiration, oxygen therapy and anti-pyretic 

use were significantly associated with stroke unit care whilst there was found 

to be no significant difference in insulin use between stroke units (8.6%) and 

the control population (6.3%).  

 

The aim of the study was to establish whether or not protocols for 

management of hyperglycaemia were in place at the time of trial 

development and recruitment for those units involved in the Stroke Unit 

Trialists’ collaboration. If protocols were available we aimed to determine the 

level of blood glucose for which insulin use should be considered, indications 

for repeat blood glucose monitoring and methods of insulin administration 

used.        

  
8.2 Methods 
 
After local development, a questionnaire on aspects of blood glucose 

management was circulated to the individual lead authors for each study 
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included in the database Stroke Unit Trialists Collaboration systematic 

review.18 The methodology of the Cochrane systematic review in summary 

involved rigorous searching for clinical trials of organised in-patient (stroke 

unit) care, the formation of a collaborative group comprising the primary 

trialists, collation of extensive descriptive information and outcome data, and 

the analysis of this data using rigorous meta-analysis methods.37  

 

For the current analysis we accessed published and un-published trial data.  

The aim of the study was to document protocols for the screening and 

management of blood glucose in the acute phase of stroke (defined as within 

72 hours of ictus).  The time window was chosen on the basis of both clinical 

and imaging studies, which have previously demonstrated hyperglycaemia 

within 72 hours of stroke onset to be associated with increased mortality and 

increased infarct expansion.60 

 

All studies were reviewed to identify admission criteria and stroke unit type.  

Studies were initially excluded if time to randomisation was greater than 

seven days and/or the model of stroke care was principally rehabilitation.  

For those units recruiting patients within seven days, studies were included 

in the final analysis if time to randomisation was within 72 hours or there was 

documentation that more than 90% of patients were admitted within this 

acute time window.  Data were recorded on a standardised from that 

included time to admission, numbers recruited to stroke unit care versus 
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conventional care, year of study and documentation of blood glucose 

monitoring and/or interventions to control blood glucose.  Where limited 

information was available, corresponding authors were contacted to provide 

additional details as to whether a protocol for blood glucose screening and 

insulin use was available at the time of their study.  Copies of available 

protocols were requested.  Results are presented as a descriptive narrative 

of protocols in place at the time of the trials recruitment.  

 

8.3 Results 
 
The stroke unit trialists’ collaboration systematic review contains 31 

controlled clinical trials involving 6,936 patients.18 Recruitment times to 

randomisation varied from less than 24 hours to 12 months.18;47 Nine studies 

aimed at comparing co-ordinated stroke rehabilitation to generic 

rehabilitation without targeted acute management were excluded from 

analysis. Of the twenty-two remaining studies, three (14%) randomised 

patients in a time window of 24 hours.19;47;295 A further seven studies (32%) 

randomised within 72hours.20;38;296-300 Two studies (9%) had an inclusion 

time window of five to seven days but recruited the majority of patients within 

24 hours of stroke onset and were therefore included in the final 

analysis.301;302 The remaining nine studies with recruitment periods of 

between seven and eight days were excluded.18  

Of the twelve studies included, there were 11 published articles (three 

abstracts) and one unpublished dissertation.  Additional un-published 



 222 

information relating to the management of blood glucose was obtained from 

nine of the twelve studies, by contacting the corresponding author.  Further 

information was obtained from the authors of an additional four studies that 

were not included in the final analysis.    

  

Studies Included 

Of the twelve studies recruiting patients primarily within 72 hours of ictus, 

there were 3,229 participants. Five studies compared a “comprehensive 

stroke ward” (CSW) to general medical ward management,47;295;296;298;302 

where the former was defined as a combined acute and rehabilitation stroke 

unit that accepted patients acutely but also provided rehabilitation for at least 

several weeks if necessary.18 One study compared a CSW to a mobile 

stroke team.297  Three studies compared semi-intensive stroke (SIS) ward 

care to other ward care.19;38;299 In two studies the SIS ward was compared to 

a CSW and in the other study, comparison was made to a mixed 

rehabilitation ward.  A SIS ward was defined as “having continuous 

monitoring, high nurse staffing but no supported ventilation facilities”.18 One 

study compared rehabilitation within a geriatric medicine ward to general 

medical ward management.20 The two remaining studies compared a mobile 

stroke team to management of stroke patients on a general medical 

ward.300;301 
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Blood glucose monitoring 

Complete information on blood glucose monitoring including additional 

information from respective authors was available for nine of the twelve 

studies.  The three remaining studies had no documented information on 

blood glucose monitoring in the text of the available published or 

unpublished material.296;300 Only one of the nine studies with complete data 

including confirmatory information from the corresponding author had no 

protocol for blood glucose monitoring at the time of study recruitment.20  In 

the remaining eight studies, there was a difference in both the frequency and 

indications for blood glucose monitoring (Table 8.1). 

Study Monitoring sequence and indication 

Athens
295

 Six hourly in patients with Diabetes and Hyperglycaemia (blood 

Glucose >6.7mmol/l) 

Groningen
19 

Six hourly in all patients admitted to the SCMU* 

Goteberg-

Sahlgren
298 

Mandatory glucose on admission, rechecked in all patients with 

elevated levels. All diabetics had blood glucose checked daily with 

liberal testing of HbA1C. No set program for intervention but would 

intervene if glucose high or low. 

Manchester
301 

Monitoring of glucose was part of protocol, frequency not specified. 

Newcastle
20 

No Protocol in place 

Orpington
297 

Blood glucose monitored four hourly 

Pavia
38 

Control of blood glucose at admission and then every two hours for 

two days or until the normalisation of blood glucose.  

Tampere
299 

Fasting Blood Glucose on three consecutive days and HbA1c within 

48 hours 

Trondheim
302 

Glucose level monitored twice on the day of admission and then 

once on days 1 and 3 

Table 8.1: Stroke unit monitoring protocols for blood glucose (*SCMU=Stroke Care 
Monitoring Unit, FBG=Fasting Blood Glucose) 
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One study simply stated that blood glucose monitoring was part of the 

protocol with no reference to frequency and duration of testing.301 Two of the 

studies recommended in the protocols that glucose infusions were not to be 

used within the first 48 hours and one week, respectively.295;302 Two studies 

described the prevalence of hyperglycaemia in their respective populations, 

however only one study documented the defining blood glucose level. (Table 

8.2) 

 

Hyperglycaemia Study 

Stroke Unit  General Medical Ward 

Orpington 
297 

(Blood 
Glucose>10.0mmol/l) 

27 (18%) 34 (22%) 

Pavia 
38 

(Blood Glucose 
threshold not 
defined)  

8 (6%) 7 (5.2%) 

 
Table 8.2: Documented prevalence of hyperglycaemia in units included in the stroke unit 
trialists’ collaboration. 

 

Intervention with insulin 

Of the twelve studies recruiting patients within 72 hours of ictus, we were 

unable to obtain complete information on two studies, as to whether or not 

an insulin protocol was in place at the time of study recruitment.296;300 Four 

studies had no documented intervention protocol in place for insulin use at 

the time of trial recruitment.20;298;299;301  Only six studies had a set protocol for 

the level of blood glucose at which insulin intervention should take place.  

Either subcutaneous or intravenous routes were used for insulin 
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administration in different protocols.  The threshold glucose level by which 

hyperglycaemia was defined and for which intervention with insulin would be 

indicated differed from 6.7mmol/l to 12.0mmol/l (Table 8.3)  Despite 

recommending intervention with insulin, only two study protocols both within 

a semi-intensive stroke unit gave accompanying literature on a 

recommended sliding scale insulin regimen.19;38  

 

Stroke Unit Control Group p  

Study Blood Glucose level at 

which insulin prescribed Numbers 

Recruited 

Insulin 

Use 

Numbers 

Recruited 

Insulin Use  

Athens
295 

Glucose >6.7mmol/l 
302 Not stated 302 Not stated _____ 

Akershus
44 

Glucose ≥ 12mmol/l 271 6.3% 279 3.3% _____ 

Groningen
19 

Glucose > 10mmol/l 27 3 (11%) 27 3 (11%) 1.00 

Orpington**
297 

Glucose > 10mmol/l 152 16 (11%) 152 18 (12%) 0.62 

Pavia
38 

Glucose ≥ 11.1mmol/l 134 Not stated 134 Not stated _____ 

Trondheim***
305 

Glucose> 12.0mmol/l 102 12 (12%) 104 8 (8%) NS 

Table 8.3: Stroke Unit insulin use. Level of blood glucose at which insulin 
intervention would be considered along with the unit names and the number of 
patients recruited to stroke unit care or the control population. (* Routine Stroke Unit 
versus a Stroke Care Monitoring Unit, ** Insulin use in the first 72hours, *** Insulin 
use in the first 24hours). Statistical analysis for demonstrated p scores was as 
described in each respective paper. In the Gronigen study Fishers exact test was 
used. For the Orpington paper logistic regression and in the Trondheim paper Chi-
squared test.  
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8.4 Discussion 
 
Guidelines for manipulation of blood glucose in stroke units involved in the 

Cochrane collaboration are consistent with previous published data on 

glucose thresholds for intervention in acute stroke populations and reflect the 

uncertainty in the current management of post stroke hyperglycaemia.   For 

those trials with available threshold values above which insulin would be 

indicated, blood glucose varied from 6.7 to 12mmol/l.295;302 In an audit of 

acute neurological stroke care across 22 countries undertaken by the 

European Federation of Neurological Societies, the mean threshold blood 

glucose concentration for intervention was 10.6 mmol/l, ranging from 7.4 to 

14.0 mmol/l by country.145 

 

It is well recognised that post stroke hyperglycaemia is associated with a 

worse prognosis236 and it has been proposed that manipulation of blood 

glucose to prevent hyperglycaemia may influence stroke outcome.303 

Unfortunately trial evidence is lacking with the only published trial to date 

showing no benefit for glucose-potassium-insulin (GKI) infusion over placebo 

on stroke outcome in patients with predominantly moderate hyperglycaemia 

recruited within 24 hours of ictus.156 The inclusion criteria for trial recruitment 

targeted patients with blood glucose values in the range 6.0-17mmol/l, yet 

the majority recruited had blood glucose in the mild hyperglycaemia range - 

6.8-9.2 mmol/l in the GKI group and 6.7-8.8 in the placebo group.  In 
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addition, despite a strict protocol for adjustment of the GKI infusion to 

maintain glucose levels in the range 4.0-7.0mmol/l, the difference in blood 

glucose overall between the two groups was small at 0.57mmol/l.  

 

These trial results indicate that there is currently insufficient evidence to 

support the use of glucose manipulation using a GKI infusion, in patients 

with mild hyperglycaemia.  The trial failed to provide additional information 

on the management of patients with moderate hyperglycaemia.  Consensus 

opinion continues to recommend the use of blood glucose lowering therapy 

in these circumstances.46;304    

 

In those units with blood glucose levels for which insulin was indicated, only 

two studies had published blood glucose lowering regimens.19;38 Regimens 

differed, utilising either a short acting insulin subcutaneous sliding scale or 

an insulin infusion.  Neither study advocated the use of a GKI infusion 

despite the theoretically reduced risk of hypoglycaemia due to concomitant 

administration of glucose.  At least in theory, sliding scale regimens are 

largely reactive, correcting changes as and when they occur, whereas GKI 

regimens are largely proactive, predicting insulin requirements and 

maintaining euglycaemia within a therapeutic range.     

 

The finding of different methods for insulin administration is not surprising as 

most studies included in the systematic review predate any of the published 
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studies examining the feasibility and safety profile of maintaining 

euglycaemia in a stroke population.95;181  

 

Despite protocols for blood glucose management being available, adherence 

to these protocols within individual stroke units appears to vary.  In the 

Orpington study, insulin was advocated in those patients with a blood 

glucose >10mmol/l managed in the dedicated stroke unit - yet only 59% 

(16/27) of patients with confirmed hyperglycaemia received insulin therapy. 

In contrast 53% (18/34) of hyperglycaemic patients managed on the general 

medical ward which had no specific protocol received insulin.297 One 

explanation for the high percentage of patients receiving insulin in the 

general medical ward is the possible influence of guidelines disseminated 

from the stroke unit being adopted by the treating physicians.  In contrast, 

almost double the percentage of patients (6.3%) managed in the Akershus 

stroke unit received insulin compared to stroke patients treated in the 

general medical ward (3.3%).47 The relatively low number of patients treated, 

assuming 100% concordance, reflects the high blood glucose level 

(12mmol/l) used in the study to define hyperglycaemia.  With the exception 

of the published trial data from Athens which quoted hyperglycaemia as a 

blood glucose >6.7mmol/l295 all other stroke unit studies with defined values 

have used levels >10.0mmol/l.19;38;47;297;302 This reflects the lack of a 

consensus definition for post stroke hyperglycaemia in patients with acute 
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stroke and also fails to reflect the poor prognostic outcome in patients with 

blood glucose levels in the range 6.1 to 8.0mmol/l236.   

 

In addition to the management of hyperglycaemia, recent studies have 

advocated more intense blood glucose screening protocols to reflect the 

temporal profile of blood glucose in the acute stroke period.  Over a 72hour 

period, blood glucose was found to decrease from a peak at eight hours, 

reach its lowest level at 14 -16 hours, plateau and then exhibit a further late 

hyperglycaemic phase at 48-88 hours.96 Knowledge of the variation in blood 

glucose with time is important when considering screening protocols, as 

certain studies limited repeated testing solely to those patients with diabetes 

or hyperglycaemia at initial presentation.  In addition to identifying 

hyperglycaemic surges, it is now recognised that identification of 

hyperglycaemia during the acute phase may unmask abnormalities in 

glucose metabolism.  Fifty-eight per cent of patients screened at three 

months following an acute ischemic stroke when admission blood glucose 

was ≥6.1mmol/l had either diabetes or impaired glucose tolerance.90  

 

The purpose of individual studies within the stroke unit trialists’ collaboration 

was to examine stroke unit care versus management in a control population 

on functional and mortality outcomes.  Analysis of individual components 

within each stroke unit model to explain the benefit of stroke unit care has 

been difficult.  In a recently published analysis, stroke unit care was 
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associated with a statistically significant increase in the reported use of 

oxygen (OR 2.39; 95%CI: 1.39 to 4.66), measures to prevent aspiration 

(2.42; 1.36 to 4.36) and paracetamol use (2.80; 1.14 to 4.83). Insulin use 

was similar across groups.37 

 

The recently published analysis of stroke unit complications was based on 

data from seven trials, of which only four included information specifically on 

insulin use in acute blood glucose management.19;47;297;302 Our own analysis 

of the available study data serves to emphasise the lack of uniformity in 

blood glucose screening and management, which in turn reflects clinical 

uncertainty in this aspect of stroke unit care.  It is important to acknowledge 

a number of limitations in our own study.  These include the retrospective 

nature of the study, limited information on strict protocols and adherence to 

those protocols at the time of study recruitment and lack of complete data 

availability for all studies.  The management of blood glucose in the pooled 

stroke analysis has to be considered in the context of published studies 

involved in the Cochrane review spanning almost a 25 year period, with the 

accompanying improvements in stroke management and co-ordinated care.  

 
8.5 Conclusion 
 
Stroke units that provided data for the Stroke Unit Trialists’ Collaboration 

employed varied protocols for blood glucose management in the acute 

phase of stroke. Testing for blood glucose concentration was infrequent in 

most.  Of the minority of units that had a protocol in place, the threshold for 
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intervention with insulin was >10mmol/l.  Both future trials and future 

registers of stroke care should give detailed methodology in the maintenance 

of blood glucose. 
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Chapter 9: Conclusion 
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9.1 Overall Conclusion 
 
The management of post stroke hyperglycaemia remains uncertain. It has 

generally been accepted that hyperglycaemia is associated with a poor 

stroke outcome. The thesis presented gives a review of the literature on 

hyperglycaemia in acute stroke and evidence for the use of insulin in stroke 

management. Post Stroke Hyperglycaemia is common with prevalence rates 

varying depending on the population studied and definition used. No 

consensus opinion exists as to the most appropriate method and timing of 

blood glucose sampling or the glucose level defining hyperglycaemia. 

Clinical studies examining hyperglycaemia in acute stroke tend to include a 

heterogeneous stroke population. Knowledge of stroke mechanism appears 

important in determining the effect of hyperglycaemia on stroke outcome. 

Results from animal studies suggest a beneficial effect of elevated blood 

glucose in models of permanent occlusion, with a converse effect in 

experimental temporary occlusion. 

 
The thesis presented contributes to the current literature in the fields of (1) 

Aetiology, (2) Pathophysiology and (3) Management of PSH.  

 

(1) Aetiology; in our prospective study of the evolution of hyperglycaemia in 

acute stroke we found that stroke severity measured using the NIHSS was 

not associated with hyperglycaemia.  In a separate study we found that 

insular cortex involvement was not a predictor of admission hyperglycaemia.  
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However, in non-diabetic patients manifesting hyperglycaemia within 

48hours of acute stroke and thus labelled as having “stress hyperglycaemia” 

when prospectively followed and screened there was a high prevalence of 

abnormal glucose metabolism, including diabetes and metabolic syndrome.  

 

(2) Pathophysiology; Identification of the underlying aetiology for PSH is 

fundamental to understanding its mechanistic action and the requirements 

for intervention. As mentioned above we found a high prevalence of 

abnormal glucose metabolism in non-diabetic patients with PSH.  Our results 

would suggest an unmasking of undiagnosed dysglycaemia with the 

associated abnormalities in vasculopathy and haemostasis.  Stroke severity 

did not predict hyperglycaemia in patients based on clinical assessment 

using the NIHSS and thus does not favour the epiphenomenon hypothesis.  

 

(3) Management; Current guidelines advise lowering of blood glucose but 

disagree on the threshold at which to intervene, and make no comment on 

specific insulin treatment regimes, or treatment targets. Analysis of protocols 

from stroke units involved in the Stroke Unit Trialists’ Collaboration 

demonstrated that testing for blood glucose concentration was infrequent in 

most. In those units with a protocol, the threshold for intervention with insulin 

was >10mmol/l. In a randomised placebo controlled trial we examined the 

effect of insulin versus placebo on lesion volume progression and cerebral 

lactate levels in acute ischaemic stroke using novel magnetic resonance 
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imaging measures. We found no evidence to support attenuated infarct 

growth in patients with mild to moderate hyperglycaemia receiving a GKI 

infusion within 24 hours of acute ischaemic stroke. A trend towards 

attenuation of increased lactate concentration in the ischaemic brain was 

evident in the GKI treatment arm. The GKI infusion resulted in a modest 

reduction in blood glucose measurements and was associated with lower 

blood pressure, both observations consistent with published trial evidence. 

Asymptomatic hypoglycaemia was common despite frequent monitoring 

within a well-established protocol and trained nursing staff. Prevention of 

hypoglycaemia is important as extrapolation of animal data and case series 

suggest that hypoglycaemia may increase final infarct size. A further 

exploratory analysis raised the possibility that GKI infusion might be harmful 

in patients with persistent arterial occlusion.  

The study demonstrated the feasibility of performing a randomised placebo 

controlled trial using magnetic resonance imaging and spectroscopy with 

surrogate outcome measures.  

 

9.2 Implications for current practice and future research 
 
Detection of PSH justifies further screening to establish the presence of 

abnormal glucose metabolism. A fasting blood glucose sample is insufficient 

and appropriately selected patients should be followed with an oral glucose 

tolerance test. Feeding appears to contribute to hyperglycaemia and early 

dietetic input should be considered in patients with post-prandial surges. 
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Hypoglycaemia was more common in the hours of midnight to eight am and 

likely justifies pre-emptive reductions in insulin therapy, if being considered 

during periods of prolonged fasts. The potential detrimental effect of 

hypoglycaemia, on infarct progression needs to be considered. 

Intervention with insulin in the form of GKI to treat mild to moderate 

hyperglycaemia would not be recommended on the basis of our current 

evidence or the evidence from the recently published GIST-UK study. In the 

absence of clinical evidence stroke units should continue to follow 

consensus guidelines, advising intervention for patients with moderate 

hyperglycaemia without aiming for aggressive tight blood glucose control. 

Knowledge of the potential deleterious effects of aggressive blood glucose 

control has been highlighted in a recent press release from the North 

American ACCORD (Action to Control Cardiovascular Risk in Diabetes) 

trial.306 Type 2 diabetic patients at high risk of future vascular events when 

randomised to intensive blood glucose control (HbA1c <6.0%) had an 

increased risk of cardiovascular death when compared to patients receiving 

a less intensive treatment protocol (HbA1c 7.0-7.9%). Trial recruitment to the 

intensive blood sugar lowering arm stopped eighteen months early due to 

safety concerns after review of available data. Trial recruitment to the non-

intensive group continues.  

 

Many questions surrounding the role of glucose lowering therapy continue to 

remain unanswered; is intravenous insulin as opposed to the GKI infusion 
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potentially beneficial to patients with hyperglycaemia? What level of blood 

glucose is felt suitable for intervention? What is the targeted therapeutic time 

window? Is there a role for thrombolysis and glucose lowering treatment? 

Will identification of the penumbra with CT and MR imaging select 

appropriate patients who may benefit? Is the effect of insulin infusion 

affected by early recanalisation of occluded vessels? What effect would 

insulin have on outcome if it impedes early mobilisation? How long should 

the insulin infusion last for, with current knowledge of the variation in the 

natural history of blood glucose in stroke demonstrating an early and late 

peak? What impact will feeding have on insulin requirements? What level of 

monitoring is required and how feasible that is within the confines of an 

acute stroke unit and the patient to nurse staffing ratios currently available?  

 

MRI and MRS provide exciting novel ways for patient selection, development 

of potential new drug therapies and the use of surrogate outcome measures. 

A general criticism of many previous stroke studies is the heterogenous 

population selected. Appropriate screening could identify a targetted 

population to test a number of different hypotheses. The application of 

Magnetic Resonace Imaging to the field of PSH could assist in selecting 

patients with lacunar versus non-lacunar infarcts, MRA evidence of 

recanalisation or occlusion and the presence of penumbral tissue (DWI/PWI 

mismatch). As a follow on to the SELESTIAL study, future trials should have 

a tighter inclusion time window, knowledge of recanalisation status, 
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penumbral size and stroke type.  Knowledge of blood glucose through the 

entire period of infusion would be possible using subcutaneous glucose 

monitoring. Detailed information on duration of hyperglycaemia, 

euglycaemia, hypoglycaemia and their respective effects on infarct 

progression could be obtained.   

 

The thesis presented has added to our understanding of Post Stroke 

Hyperglycaemia. Further hypotheses have been generated and future 

research has been suggested. The challenges in answering these 

hypotheses are considerable, but the potential impact upon our ability to 

provide optimal management of stroke patients is greater still.   
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Search Strategy (Chapters 3 & 4) 
 
 
1. stroke.mp. or exp *Cerebrovascular Accident/ 
2. cerebrovascular accident.mp. [mp=title, original title, abstract, name of 
substance word, subject heading word] 

3. exp *cerebrovascular disorders/ or brain ischemia/ or carotid artery diseases/ or 
hypoxia-ischemia, brain/ or intracranial arteriovenous malformations/ or 
"intracranial embolism and thrombosis"/ or intracranial hemorrhages/ or vertebral 
artery dissection/ 
4. brain infarct$.mp. or exp *Brain Infarction/ 

5. cerebral infarct$.mp. or exp *Cerebral Infarction/ 
7. brain hypoxia.mp. or exp *Hypoxia, Brain/ 
8. cerebral hypoxia.mp. or exp *Hypoxia, Brain/ 
9. exp *Ischemic Attack, Transient/ or exp *Brain Ischemia/ or cerebral 

ischaemia.mp. 
10. morbidity.mp. or Morbidity/ 
11. morbidity.mp. or exp *Morbidity/ 
12. mortality.mp. or exp *Hospital Mortality/ or exp *Mortality/ 
13. disability.mp. 

14. exp *"Activities of Daily Living"/ or functional dependence.mp. or exp *"Quality 
of Life"/ or exp *Geriatric Assessment/ 
15. institutional$.mp. 
16. infarct size.mp. 
17. infarct volume.mp. 

18. lesion size.mp. 
19. lesion volume.mp. 
20. rankin score.mp. 
21. barthel score.mp. or exp *Health Status Indicators/ or exp *Disability 

Evaluation/ 
22. exp *"Severity of Illness Index"/ or stroke severity.mp. 
23. NIHSS.mp. 
24. NIH stroke scale.mp. 
25. exp *Tissue Plasminogen Activator/ or tPA.mp. 

26. tissue plasminogen activator.mp. 
27. exp *Fibrinolytic Agents/ or exp *Thrombolytic Therapy/ or thrombolysis.mp. 
28. thromboly$.mp. [mp=title, original title, abstract, name of substance word, 
subject heading word] 
29. fibrinoly$.mp. 

30. exp *Neuroprotective Agents/ or neuroprotectant agents.mp. 
31. neuroprotective agent$.mp. 
32. MRI.mp. or exp *Magnetic Resonance Imaging/ 
33. nuclear magnetic resonance.mp. or exp *Magnetic Resonance Spectroscopy/ 

34. exp *Diffusion Magnetic Resonance Imaging/ or DWI.mp. 
35. FLAIR.mp. 
36. exp *Image Enhancement/ or fluid attenuated inversion recovery.mp. or exp 
*Image Processing, Computer-Assisted/ 
37. diffusion weighted imaging.mp. 
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GKI Infusion Protocol (SELESTIAL) [adapted from the GIST-UK study 
protocol]156 
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Placebo Infusion Protocol (SELESTIAL) [adapted from the GIST-UK 
study protocol]156  

 
SELESTIAL: Normal Saline Infusion Protocol 

 

  Set up a NORMAL SALINE infusion of 1000ml at 100 ml per hour 

The doctor may request the infusion contains potassium depending upon the 
patient’s electrolytes 

Monitor BMs every 4 hours on the BM monitoring chart 

Monitor BP and pulse 4 hourly on the TPR chart 

Blood glucose to be checked at 24 and 72 hours 
U & E’s to be checked at 24 and 72 hours 

If BMs rise above 17, the patient will need GKI (as per GKI protocol) 

or insulin infusion as clinical need dictates 

• The patient may eat and drink if clinically safe throughout the 24hour infusion. 
• Patients who are nil by mouth or who continue to require intravenous fluids after 

the infusion period will be prescribed appropriate therapy by the supervising 
Consultant’s team. 

• If there are problems out of hours with the control infusion then please 
call the on-call SHO.   

This patient has been randomised to receive a normal saline infusion.  The 
infusion will last approximately 72 hours.  It may last longer if there are 
persisting problems with oral intake 



 243 

 
Structured interview for the modified Rankin scale 
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NIH Stroke Scale 
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Patient Information Sheet (SELESTIAL) 

 

Influence of glycaemic control on brain lactic acidosis in acute stroke 

We are currently approaching patients who have suffered a recent stroke 

and are found to have elevated blood sugars to participate in a study looking 

at the impact of blood sugar control in acute stroke.  

 

Why are we doing this study? 

Blood sugar (glucose) is often high after a stroke, and people with high sugar 

levels are less likely to recover from the stroke than people with normal 

levels. We do not know whether the high blood sugar actually causes the 

outcome to be worse, but have reasons to think that it may. In animal 

studies, high blood sugar after a stroke causes the brain to produce more of 

a substance called lactic acid. Lactic acid is produced by tissues when they 

have too little oxygen. It is potentially harmful to brain cells, and this may 

therefore be the link between high blood sugar and worse outcome after a 

stroke. 

We have recently confirmed that there is a relationship between blood sugar 

and lactic acid in the brain in humans, based on studies in patients using 

MRI scans. We do not yet know whether lowering blood sugar reduces the 

lactic acid in the brain, and this is what we wish to test. 

 

What is Involved in the Study 

Patients who have high blood sugar will be invited to take part. If your 

doctors feel that your blood sugar is high enough to need treatment, then 

you will not be asked to take part in the study - treatment will be given to 

lower it. If your doctors aren't sure whether treatment is definitely needed, 

then you will be invited to take part. 
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If you agree to participate in the study you will undergo an MRI scan, 

following which you will be randomized to one of three possible treatments: 

(1) Insulin treatment for 24 hours followed by 48 hours with a normal saline 

solution, (2) insulin treatment for 72 hours or (3) A dummy treatment 

(placebo - saline solution). Saline will be administered as an infusion through 

a drip in the arm and is routinely given to stroke patients. Insulin will be given 

in a drip containing glucose and potassium to avoid any risk of lowering 

blood sugar too far. The amount will be adjusted to make sure your blood 

sugar levels are controlled and become neither too high nor too low. This will 

require regular checks with a tiny blood sample taken from a finger. The 

treatment allocation is stored in sealed envelopes that will be opened 

following completion of the Baseline MRI scan. All patients will receive 

normal routine treatment for their stroke in addition to the infusions as laid 

down in the ward stroke protocols. 

Everyone in the study will have an MRI scan before treatment starts, at the 

end of the treatment period (around 72 hours), and again 7 days after the 

start. This will show how big the stroke is, whether it becomes bigger over 

time, and what the amount of lactic acid is in the areas around the stroke. 

Checks on your progress and clinical condition will be carried out by the 

doctors and nurses on the ward at the same times. 

 

What is involved in the MRI scan? 

MRI scanning is commonly used after a stroke to obtain further information 

about the brain and blood vessels. Because it uses a strong magnetic field, 

patients with pacemakers cannot be scanned and there may be restrictions 

on some other types of implant. Details of any relevant conditions will be 

checked in detail by MRI staff beforehand. In addition to the routine type of 

scan, the study involves a scan to detect lactic acid concentrations in the 

brain. This may take up to 30 minutes. The study asks for three separate 

scans on different days to be performed. 
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Will I benefit from the study? 

You may not benefit individually from the study. We may obtain more useful 

information about your stroke from the MRI scans which could help with your 

treatment. Your blood sugar will be monitored more closely than usual, and 

this may identify the need for future treatment. If you receive insulin 

treatment, then it is possible that this may limit some of the damage after the 

stroke. The main benefit will be to provide information that may help with 

stroke treatment or future patients. 

 

Do I have to take part? 

No. 

If you are unhappy with taking part in the study at any time, you are 

completely free to withdraw. You will continue to receive all necessary 

medical treatment. 

 

What if I do take part? 

Information on your medical history and measurements taken after the 

stroke will be recorded for analysis. All data, including the scans, will be 

anonymised on all computer records for the study. Results of the MRI scans 

and blood tests from the study will be available to your doctors to use in 

deciding your day-to-day care. Your GP will be informed about your 

participation by letter.  
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Can I get further information about the study? 

 

If you wish to discuss any other aspect of the study, you can do so with Dr 

Keith Muir, or Dr Michael McCormick, both contactable via the hospital 

switchboard (0141 201 1100). 
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Relatives' Information Sheet (SELESTIAL) 

 

Influence of glycaemic control on brain lactic acidosis in acute stroke 

 

We are currently approaching patients and their relatives to consider 

participation into a study looking at the effect of blood glucose control in 

acute stroke.  

Why are we doing this study? 

Blood sugar (glucose) is often high after a stroke, and people with high sugar 

levels are less likely to recover from the stroke than people with normal 

levels. We do not know whether the high blood sugar actually causes the 

outcome to be worse, but have reasons to think that it may. In animal 

studies, high blood sugar after a stroke causes the brain to produce more of 

a substance called lactic acid. Lactic acid is produced by tissues when they 

have too little oxygen. It is potentially harmful to brain cells, and this may 

therefore be the link between high blood sugar and worse outcome after a 

stroke. 

We have recently confirmed that there is a relationship between blood sugar 

and lactic acid in the brain in humans, based on studies in patients using 

MRI scans. We do not yet know whether lowering blood sugar reduces the 

lactic acid in the brain, and this is what we wish to test. 

 

What is Involved in the Study 

Patients who have high blood sugar will be invited to take part. If the doctors 

feel that your relative's blood sugar is high enough to need treatment, then 

they will not be asked to take part in the study - treatment will be given to 

lower it. If the doctors aren't sure whether treatment is definitely needed, 

then your relative will be invited to take part. 
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If you agree to your relative’s participation in this study they will undergo an 

MRI scan, following which they will be randomized to one of three possible 

treatments: (1) Insulin treatment for 24 hours followed by 48 hours with a 

normal saline solution, (2) insulin treatment for 72 hours or (3) A dummy 

treatment (placebo - saline solution). Saline will be administered as an 

infusion through a drip in the arm and is routinely given to stroke patients. 

Insulin will be given in a drip containing glucose and potassium to avoid any 

risk of lowering blood sugar too far. The amount will be adjusted to make 

sure your blood sugar levels are controlled and become neither too high nor 

too low. This will require regular checks with a tiny blood sample taken from 

a finger. The treatment allocation is stored in sealed envelopes that will be 

opened following completion of the Baseline MRI scan. All patients will 

receive normal routine treatment for their stroke in addition to the infusions 

as laid down in the ward stroke protocols. 

Everyone in the study will have an MRI scan before treatment starts, at the 

end of the treatment period (around 72 hours), and again 7 days after the 

start. This will show how big the stroke is, whether it becomes bigger over 

time, and what the amount of lactic acid is in the areas around the stroke. 

Checks on progress and clinical condition will be carried out by the doctors 

and nurses on the ward at the same times. 

 

What is involved in the MRI scan? 

MRI scanning is commonly used after a stroke to obtain further information 

about the brain and blood vessels. Because it uses a strong magnetic field, 

patients with pacemakers cannot be scanned and there may be restrictions 

on some other types of implant. Details of any relevant conditions will be 

checked in detail by MRI staff beforehand. In addition to the routine type of 

scan, the study involves a scan to detect lactic acid concentrations in the 

brain. This may take up to 30 minutes. The study asks for three separate 

scans on different days to be performed. 
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Will my relative benefit from the study? 

They may not benefit individually from the study. We may obtain more useful 

information about the stroke from the MRI scans which could help with their 

treatment. Closer monitoring of blood sugar than usual may identify the need 

for future treatment. If they receive insulin treatment, then it is possible that 

this may limit some of the damage after the stroke. The main benefit will be 

to provide information that may help with stroke treatment or future patients. 

 

Do I have to agree to the study? 

No. 

If you are unhappy with you relative's participation in the study at any time, 

you are completely free to withdraw consent. All necessary medical 

treatment will continue to be given. 

 

What if I do agree to the study? 

Information on medical history and measurements taken after the stroke will 

be recorded for analysis. All data, including the scans, will be anonymised on 

all computer records for the study. Results of the MRI scans and blood tests 

from the study will be available to doctors to use in deciding day-to-day care. 

Your relative's GP will be informed about their participation by letter.  

 

Can I get further information about the study? 

 

If you wish to discuss any other aspect of the study, you can do so with Dr 

Keith Muir or Dr Michael McCormick, both contactable via the hospital 

switchboard (0141 201 1100). 
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Influence of glycaemic control on brain lactic acidosis in acute stroke 

Consent Form (SELESTIAL) 

 
         
      Please initial box 
 

I confirm that I have read and understand the information sheet dated 23rd April 2004  
(version 1) for the above study and have had the opportunity to ask questions 

 

  

I understand that my participation is voluntary and that I am free to withdraw at any time, 
without giving any reason, without my medical care or legal rights being affected. 

 

  

I understand that sections of any of my medical notes may be looked at by local researchers 
or from regulatory authorities where it is relevant to my taking part in research.  I give 
permission for these individuals to have access to my records. 

 

  

I give my permission for the study doctor to contact my GP to inform him/her of my 
participation in this study 

 
 
 

  

I agree to take part in the above study.   
 
 

 
 
________________________ ________________        ____________________ 

Name of Patient (Print name) Date Signature 
 
 
_________________________ ________________       ____________________ 

Name of Person taking consent Date      Signature 
(if different from researcher) 
 
 
_________________________ ________________       ____________________ 

Researcher (Print name) Date Signature 
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Influence of glycaemic control on brain lactic acidosis in acute stroke 

Form of Assent for Relatives (SELESTIAL) 

 
         
      Please initial box 
 

I confirm that I have read and understand the information sheet dated 23rd April 2004  
(version 1) for the above study and have had the opportunity to ask questions 

 

  

I understand that my relative’s participation is voluntary and that he/she is free to withdraw at 
any time, without giving any reason, without their medical care or legal rights being affected. 

 

  

I understand that sections of any of my relative’s medical notes may be looked at by local 
researchers or from regulatory authorities where it is relevant to their taking part in research.  
I give permission for these individuals to have access to their records. 

 

  

I give my permission for the study doctor to contact my relatives GP to inform him/her of their 
participation in this study 

 
 
 

  

I agree for my relative to take part in the above study.   
 
 

 
 

I __ __ __ __ __ __ __ __ __ __ __, am the nearest relative/ welfare guardian of 
the patient named below and I can confirm that there is neither a nearer relative or 
welfare guardian to the same said patient.  
 
 
________________________ ____________________ 

Name of Patient (Print name) Relationship to Patient 
  
________________________ ________________        ____________________ 

Name of Relative (Print name) Date Signature 
 
 
_________________________ ________________       ____________________ 

Name of Person taking consent Date      Signature 
(if different from researcher) 
 
 
_________________________ ________________       ____________________ 

Researcher (Print name) Date Signature 
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Influence of glycaemic control on brain lactic acidosis in acute stroke 
 
GP Letter (SELESTIAL) 

 
Dr Keith Muir 
Institute of Neurological Sciences 
Southern General Hospital 
1345 Govan Road 
Glasgow G51 4TF 

 

Date:________________________ 

RE: 

 

 

Dear Doctor 

    

The above named patient has been recruited to SELESTIAL (Spectroscopic 
Evaluation of Lesion Evolution in Stroke: Trial of Insulin for Acute Lactic 
acidosis) an acute stroke study examining the influence of glycaemic control 
on brain lactic acidosis and subsequent stroke outcome. Your patient will 
have received either placebo, 24 hour insulin infusion or 72 hour insulin 
infusion, on the basis of a diagnosis of ischaemic stroke and a capillary 
blood glucose of ≥ 7mmol. Additional MRI scans have been undertaken for 
study purposes and clinical outcome evaluation will be at day 30.  

Patients recruited will be screened for underlying diabetes during the period 
of the study. Results of any investigations will be forwarded to yourself. On 
completion of the study you will be informed of the outcome.  

If you wish to discuss any other aspect of the study, you can do so with Dr 
Keith Muir or Dr Michael McCormick, both contactable via the hospital 
switchboard (0141 201 1100). 

 

Yours sincerely, 
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Patient Information Sheet (Dysglycaemia) 
 

Prevalence of impaired glucose metabolism following stroke 

(How common are problems with glucose metabolism after Stroke?) 

 

You are being invited to take part in a research study.  Before you decide it 

is important for you to understand why the research is being done and what 

it will involve.  Please take time to read the following information carefully 

and discuss it with others if you wish.  Ask us if there is anything that is not 

clear or if you would like more information.  Take time to decide whether or 

not you wish to take part. 

 

Thank you for reading this. 

 

Why are we doing this study? 

Following a stroke, routine monitoring involves checking blood sugar levels. 

Treating a high blood sugar may improve the chances of recovery. High 

blood sugar is common: about 6 people in ten will have high levels in the 

days after a stroke. Around one-third of these people are diabetic 

(sometimes this is diagnosed for the first time after the stroke), but the other 

two thirds are not diabetic. We do not know whether this temporary high 

blood sugar level has any long-term importance. Although the high blood 

sugar may be explained by the stress of the stroke, we wish to find out if 



 265 

patients with “stress hyperglycaemia” have an underlying problem with the 

body’s ability to handle sugar (“glucose metabolism”).  

 

A proportion of patients will have a condition called “Impaired Glucose 

Tolerance”. Impaired glucose tolerance is not diabetes but does suggest that 

glucose is not being processed normally in the body.  If recognized, impaired 

glucose tolerance can be treated by changes in exercise and diet, so as to 

prevent the development of diabetes. Impaired glucose tolerance is 

diagnosed by performing an oral glucose tolerance test: this involves seeing 

how the body deals with sugar after a sugar drink is given. 

 

The purpose of the study is to see whether an elevated glucose at the time 

of a stroke indicates an underlying problem with glucose metabolism. As 

there is the possibility that stress from the stroke can persist for a period of 

time and may affect the results of the tests we would plan to perform the test 

at a time no sooner than 3 months from the acute stroke.    

 

Why have I been chosen? 

During your recent hospital admission, blood tests showed that your blood 

sugar was slightly high (hyperglycaemia). This is a common finding following 

stroke. We are hoping to recruit about 150 patients whose blood sugar was 

high immediately after a stroke to study whether there is a persisting 

tendency to high blood sugar. 
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Do I have to take part? 

It is up to you to decide whether or not to take part.  If you do decide to take 

part you will be given this information sheet to keep and be asked to sign a 

consent form (version 1 11/06/05).  

If you decide to take part you are still free to withdraw at any time and 

without giving a reason.  A decision to withdraw at any time, or a decision 

not to take part, will not affect the standard of care you receive. 

 

What is an Oral Glucose Tolerance Test (OGTT)? 

Both diabetes and impaired glucose tolerance can be diagnosed by 

performing an oral glucose tolerance test. This involves first taking a blood 

sample for glucose measurement after fasting. You will be asked not to eat 

anything from 10pm the night before the test. You will be given an 

appointment card to come to the ward for the following morning to have a 

fasting blood glucose performed. You will then be asked to take a drink 

containing a measured amount of glucose and a second blood test is taken 

two hours later. You will be asked to rest as much as possible for these two 

hours. The blood samples will be taken from a small plastic tube (cannula) 

placed in a vein in your arm. 

 

What else does the study involve? 

A blood sample will also be used to check your cholesterol levels. During 

your visit we will measure your height and weight to calculate your BMI 
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(Body Mass Index). Your waist and hip circumference will also be measured. 

These measurements give extra information on how your body deals with 

glucose.  

You will also be asked to answer a short questionnaire dealing with your 

current level of function since the stroke.  

A clinical examination will take place to assess any persisting problems 

since the stroke and your blood pressure will also be measured.   

 

Are there any risks involved in the study? 

None of the study tests involve any risk. Having a cannula placed in a vein is 

uncomfortable, and there may be some bruising afterwards. 

If you have swallowing problems that prevent you drinking safely, then you 

will not be asked to take the glucose drink. We would still like to perform a 

fasting blood sample and complete the rest of the clinical assessment. 

 

Will I benefit from the study? 

Identifying impaired glucose tolerance or diabetes is important as it provides 

an opportunity for medical management. If the tests show that you have 

either of these conditions, we will arrange for you to come back to discuss 

how to deal with them, and if necessary refer you to a specialist clinic. Some 

changes in medication may also be advised.  

Will my taking part be kept confidential? 
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Information on your medical history and measurements taken after the 

stroke will be recorded for analysis. All information will be anonymised on all 

records for the study, so you will not be identifiable.  

 

The results of the blood tests from the study will be available to your doctors. 

Your GP will be informed about your participation by letter, and will be 

informed of all of the results from the study.  

 

What will happen to the results of the research study? 

We plan to publish the results of the study in the medical press and will 

present our findings locally to clinical meetings.  No participants will be 

identifiable in any publication. 

 

Who has reviewed this study? 

The South Glasgow Research Ethics Committee has reviewed and approved 

this study. 

 

What if something goes wrong? 

If you are harmed by taking part in this research project, there are no special 

compensation arrangements.  If you are harmed due to someone’s 

negligence, then you may have grounds for a legal action but you may have 

to pay for it.  Regardless of this, if you wish to complain, or have any 

concerns about any aspect of the way you have been approached or treated 
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during the course of this study, please contact the Complaints Department at 

the Southern General Hospital, 0141 201 1100. 

 

Can I get further information about the study? 

If you wish to discuss any other aspect of the study, you can do so with Dr 

Keith Muir, or Dr Michael McCormick, both contactable via the hospital 

switchboard (0141 201 1100). 

Can I get independent advice about taking part in the study? 
 

Independent advice on taking part in medical research, "Medical Research 

and You", is available from Consumers for Ethics in Research  (CERES) PO 

Box 1365, London N16 0BW 

(www.ceres.org.uk or email info@ceres.org.uk). 

Independent advice on this specific study is available from Dr Donald 

Grosset, Consultant Neurologist, Institute of Neurological Sciences, Glasgow 

on 0141 201 1100. 

 

Who do I contact if I have a complaint about the study? 
 

Please contact the Complaints Department at the Southern General 

Hospital,  

0141 201 1100. 

 

Thank you for taking the time to read this information. 
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Prevalence of impaired glucose metabolism following stroke 

Consent Form (Dysglycaemia) 

 
         
      Please initial box 
 

I confirm that I have read and understand the information sheet dated 11th June 
2005(version 1) for the above study and have had the opportunity to ask questions 

 

  

I understand that my participation is voluntary and that I am free to withdraw at any time, 
without giving any reason, without my medical care or legal rights being affected. 

 

  

I understand that sections of any of my medical notes may be looked at by local researchers 
or from regulatory authorities where it is relevant to my taking part in research.  I give 
permission for these individuals to have access to my records. 

 

  

I give my permission for the study doctor to contact my GP to inform him/her of my 
participation in this study 

 
 
 

  

I agree to my involvement in the study   
 
 

 
 
 
________________________ ________________        ____________________ 

Name of Patient (Print name) Date Signature 
 
 
_________________________ ________________       ____________________ 

Name of Person taking consent Date      Signature 
(if different from researcher) 
 
 
_________________________ ________________       ____________________ 

Researcher (Print name) Date Signature 
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