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Statement 

Chapter 1 collects definitions and basic known results in lattice and coding the­

ory, sporadic finite simple groups, resolutions of singularities and toric geometry. 

See [13] [21] [35] [2] [3] [27] [16] [33] [24] [52]. 

The material in chapter 2 is largely known [59] [50] [34]. The description in terms 

of holomorphic surgery of line bundles is new (§l), as are the specific examples (§3). 

Again in chapter 3, the construction of generalised Kummer manifolds is giyen in 

terms of line bundles, though such resolutions are well documented. The examples 

of §3,4 & 5 are all new, as is the proof they are simply connected in §-J (though 

based on a proof of Spanier [59]). 

Paragraph §l of chapter 4 summarises known material on abelian varieties [40] 

[28]. §2 is original work, and §3,4 apply known theory and formulae to these con­

structions. 

In chapter 5, paragraph § 1 cites a theorem by Demazure [20]. In §2,3 the 

construction of 6.w is not new [62], but the calculations of the symmetries are. §5 

is all original. 
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Abstract 

This work makes use of well-known integral lattices to construct complex alge­

braic varieties reflecting properties of the lattices. In particular the automorphism 

groups of the lattices are closely related to the symmetries of varieties. 

The constructions are of two types: generalised Kummer manifolds and toric 

varieties. In both cases the examples are of the most interest. 

A generalised Kummer manifold is the resolution of the quotient of a complex 

torus by some finite group G. A description of the construction for certain cyclic 

groups G is given in terms of holomorphic surgery of disc bundles. The action of the 

automorphism groups is given explicitly. The most important example is a compact 

complex 12-dimensional manifold associated to the Leech lattice admitting an action 

of the finite simple Suzuki group. All these generalised Kummer manifolds are shown 

to be simply connected. 

Toric varieties are associated to certain decompositions of]Rn into convex cones. 

The automorphism groups of those associated to Weyl group decompositions of ]Rn 

are calculated. These are used to construct 24-dimensional singular varieties from 

some Niemeier lattices. Their symmetries are extensions of Mathieu groups and 

their singularities closely related to the Golay codes. 
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Introduction 

The main goal set out for this thesis was to construct compact complex manifolds 

admitting actions of finite simple groups. With hindsight another objective might 

have been complex analytic spaces reflecting properties of a lattice in various ways 

(the automorphisms being one of them). The motivations for such endeavours are 

several, and we shall return to them. 

Throughout the text lattices are positive definite quadratic forms, with root 

lattices, the Niemeier lattices and the Leech lattice as main examples. The con­

structions of many of the lattices make use of codes and their automorphisms are 

often closely related to finite simple groups. All the examples and these connections 

are discussed in chapter l. 

We examine essentially two different constructions of complex analytic spaces 

making use of lattices, namely generalised Kummer manifolds and toric varieties. 

The first are by definition resolutions of quotients of complex tori by finite groups. 

The second are determined by a set of convex cones in ]Rn generated by vectors in 

a lattice. We study these constructions from the viewpoint of the lattice and see 

how properties of particular lattices are reflected in the geometries of the resulting 

varieties. In particular, what can be said about the group of automorphisms of the 

varieties (that is the group of biholomorphic tranformations or biregular maps). 

Generalised Kummer manifolds (g.K.m.'s) are discussed in chapters 2,3 and 4. 

The classical Kummer surfaces are minimal resolutions of the quotient of a torus T 

of complex dimension 2 by the involution (±1) sending a point to its inverse in the 

group structure. These were extensively studied by Hudson [34] in 1905 and are 

examples of K3-surfaces. In §1 of chapter 2 we give details of the construction of an 

n-dimensional Kummer manifold K (involving attaching disc bundles by surgery) 

and how automorphisms of K can be described in this model. As throughout this is 

done from the perspective of the lattice involved, in this case in the construction of 

the torus T = en / L (the involution sends l E L to -l). In the 2 dimensional ('asp 

6 
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this involves looking at lattices of rank 4 and their automorphisms. \Ve giye details 

of cases giving rise to interesting group actions. Finite symplectic automorphism 

groups of K3-surfaces were classified by Mukai [50] and we examine how the groups 

acting on the Kummer surfaces fit into this picture. Due to this connection we pay 

more attention to symplectic actions in the 2 dimensional case. The root lattice D4 

gives rise to the most interesting case with a symplectic action of 24 Xl .-14 on the 

associated Kummer surface K D4 . 

Of course the more interesting simple groups appear in higher dimensions: we 

make use of the construction of ch.2 §1 to obtain Kummer manifolds admitting 

actions of these larger finite simple groups (ch.2 §3). Not surprisingly the Leech 

lattice provides the most interesting example: a 12-dimensional complex Kummer 

manifold KA24 admitting an action of the Suzuki group. 

The generalised Kummer manifolds in chapter 3 are resolutions of quotients of 

complex tori by cyclic groups of the form (8) where 8 acts on the universal covering 

<en of T as multiplication by exp(27ri/d). These cyclic groups have a fixed-point­

free action (apart from the origin) on the lattice L involved and correspond to 

some complex structure on L. The general construction is similar to that of the 

Kummer manifolds but involves slightly more complicated resolutions. We again 

view the resolution as attaching disc bundles by surgery. This description also 

allows us to determine the fundamental group of the generalised Kummer manifolds 

constructed (ch.3 §7). S.S.Roan's results tell us that we essentially cover all possible 

quotients of this type (ch.3 §8): only cyclic groups (8) of order at most 6 can 

occur. We give details for the most interesting example, again arising from the 

Leech lattice: X A24 is a 12-dimensional generalised Kummer manifold admitting 

an action of the Suzuki group. The advantage of taking these larger quotients (as 

opposed to the (±1) for Kummer manifolds) is that it eliminates "uninteresting" 

symmetries of the resulting manifold. In other words we obtain a symmetry group 

as close to the finite simple group as possible. These quotients also give rise to 

intricate combinatorial identifications among the attached bundles. Unfortunately 

we are unable to determine if the groups obtained are the entire group of (Kahler) 

transformations, although they are certainly all isometries coming from t he torus. 
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In chapter 4 we show that most the examples of Kummer and generalised Kum­

mer manifolds constructed are in fact algebraic vareties. This boils down to checking 

certain conditions for the lattices (the Riemann conditions). A complex structure 

on the lattice turns out to be sufficient for these conditions to hold and most the 

lattices considered have such a structure. 

Toric varieties are the second lattice related construction we consider. As already 

mentioned these are determined by a collection of cones (called a fan) in euclidean 

space where each cone is generated by vectors in some lattice N (for details ch.1 

§5). These are characterised as normal varieties containing a dense open algebraic 

torus whose action on itself extends to one on the entire variety. 

The basic example of toric varieties we consider are those corresponding to the 

Weyl chamber decomposition associated to some root lattice R. The cones of the 

decomposition are in fact in the dual lattice R*. These varieties are non-singular and 

we determine the exact automorphism group using a theorem of Demazure (the Weyl 

group is naturally involved). However these are essentially too symmetrical for our 

purposes of identifying interesting finite simple group actions. A natural next step 

is to apply these root lattice decompositions to (some of) the Niemeier lattices, each 

determined by its root sublattice of rank 24. The resulting 24-dimensional singular 

complex varieties inherit actions from symmetries of the lattices and reflect other 

properties of the lattices in their singularities. The main examples have symmetries 

involving the Mathieu groups and singularities related to the Golay codes. For these 

reasons and also the simplicity of the construction the varieties appear as natural 

geometric realisations of the Niemeier lattices. 

Toric varieties are entirely different from the spaces considered so far. The trivial 

toric variety corresponding to the fan consisting only of the origin in }Rn is the 

complex algebraic torus TN of dimension n. A compact complex torus is the quotient 

of TN by some free subgroup of rank n. In this sense generalised Kummer manifolds 

are (resolutions of) quotients of a (trivial) toric variety. This seems to be the limit 

of any direct link between the two different constructions, though indirectly they 

will be seen to be connected by their symmetry groups. Notice also that in the 

toric setting a 2n-dimensionallattice L produces a 2n-dimensional complex variet~· 

while the associated torus en / L is of dimension n. From the point of yipw of the 
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symmetries, one has in a sense doubled the dimension of L and added a complex 

structure when comparing some g.K.m. with a toric variety, both constructed from 

L. 

Singularities and their resolutions are present throughout this work. The reso­

lutions involved in the generalised Kummer manifolds are very simple (involving a 

simple blow-up of the original torus), though the description given is less conven­

tional. The singularities in the toric material are closely related to codes and open 

up new lines of inquiry in this respect. Minimal resolutions are resolutions yielding 

a space with trivial canonical bundle and these are important in the construction 

of mathematical models of field theories for example (see last paragraph). The res­

olutions in this work are mostly not minimal, and indeed most the singularities 

considered admit no such resolution. These questions fit into the framework of the 

generalised McKay correspondence discussed in chapter 3, which attempts to link 

the representation theory of the group G < SL(n, C) with minimal resolutions of the 

singularity cn /G. This stems from John Mckay's observations in dimension 2 [47]. 

There are several motivations behind this research. The constructions fit into 

the particular aim of obtaining all sporadic finite simple groups as automorphism 

groups of compact complex manifolds, with ultimate challenge the Monster simple 

group. Whether this last goal is achievable is still unclear. A more general aim is 

to give some geometrical interpretation to the list of sporadics. Obtaining them as 

symmetry groups of some family of geometrical objects (such as compact complex 

manifolds, or a particular class or family of these) would achieve this for example. 

Currently there is no unified way of describing the 26 sporadics, some best displayed 

as symmetries of codes (eg. the Mathieu groups), others of lattices (eg. the Conway 

groups), others of vertex operator algebras (eg. the Monster), others neither of these 

three (eg. the Fisher groups). 

A different motivation though perhaps related to the discussion above, is the 

construction of models of field theories in theoretical physics. The methods involved 

in this work are very close to the techniques used in constructing these so-called 

sigma models. This is to the extent that much of the literature is to be found in 

mathematical physics. If one requires the resolution to be minimal as defined in 

chapter 3, then generalised Kummer manifolds are natural generalisations of models 
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of field theories in dimension 3 (see [44]). Xote however that most our exanlples 

admit no such resolutions by results of Roan (ch.3 §8). Indeed minimal resolutions 

can only occur for quotients of tori of dimension 2 and 3 by the cyclic groups of order 

2 and 3 respectively. Other models are described as subvarieties of toric \"arieties. 

The hope is that the constructions in this work may through their synlmetries lead 

to important such examples. 
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The particular changes in notation for chapter 4 are made to remain consistent 

with the referenced literature. 



CHAPTER 1 

Lattices, finite simple groups and toric geometry 

1. Lattices 

We give the principal definitions and properties of lattices. 

DEFINITION 1. A lattice L is a finitely generated free Z-module L together with 

a non-degenerate symmetric bilinear form ( , ) : L x L ~ ~. 

The dimension of the lattice is the rank of the module, while a basis of L is just 

a module basis. A positive definite or real lattice is then a subset L c ~n of all 

Z-linear combinations over a real basis {VI, ... , vn } of ~n 

The usual euclidean dot product is the symmetric form in this case. 

A general lattice L is an integral lattice if (x, y) E Z for all x, y E L. L is called 

even if (x, T) - 0 mod 2 for all x E L, and odd otherwise. 

Fix a basis {II,"" In} of L. The n x m matrix AI with rows h to In is a 

generator matrix for L. The Gram matrix A = "~I Mt is the square matrix with 

entries aij = (Ii, lj). 

DEFINITION 2. The dual lattice L* is the set Homz(L, Z) of all Z-linear maps 

from L to Z. Equivalently, for a positive definite lattice L c ~n , 

L * = {x E ~n : (x, y) E Z Vy E L} 

:-\ lattice is self-dual if L = L *, and unimodular if positive definite and self-dual. 

If L is integral then L c L * and the quotient G = L * / L is a finite abelian group 

whose order is called the discriminant of L. :'\ote discr(L) = det A. 

DEFINITION 3. A. n automorphism (or s~'lllllletr~) of a lattice L is a Z-lin('ur 

map L ~ L jJl'('S(' "/'illf/ the form ( , ). 

13 



1. LATTICES 

We denote the group of all automorphisms of L by Aut(L). 

If L is positive definite then an automorphism of L is a map A E O( n) such that 

A(L) = L. 

Two lattices L1 and L2 are isomorphic (denoted L1 f'.I L2) if there is a bijection 

cp : L1 ~ L2 such that (x, y) = (cpx, cpy) for all x, yELl. For positive definite 

lattices, the isomorphism is an invertible orthogonal map A E O(n) mapping L1 to 

L2. Two lattices are similar (denoted L1 r-v L2) if one also allows a change of scale. 

that is eLl f'.I L2 for some constant c E JR. 

The direct sum L1 E9 L2 is the sum of the modules with the induced bilinear form 

on the two summands and (x, y) = 0 for all x ELI, Y E L2. A lattice is irreducible 

if it cannot be split as a direct sum. 

A shell of a lattice L is the set of vectors in L of a given norm. 

1.1. Root lattices and root systems. The reflection in a hyperplane r-L 

(r E L) is the linear map 

( ,)=,_2(A,r) 
Sr /\ /\ ( ) r r,r 

A root is an element r E L of norm 2, (r, r) = 2. The associated reflection Sr 

is a symmetry of the lattice, that is sr(L) = L, and reflections in all the roots of 

L generate a finite reflection group. A root lattice R is a positive definite lattice 

generated by its roots. Finite reflection groups are classified [35], leading to the 

following list of irreducible root lattices: 

The general root lattices are the direct sums of these. We now give the definitions of 

the (irreducible) root lattices and their duals both intrinsically and by a generator 

matrix. 

The n-dimensional lattices An and A~. 

An = {(Xl •. '" Xn+l) E zn+l : Xl + ... + Xn+l = O} 
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and has generator matrix 

-1 1 0 0 0 0 

o -1 1 0 0 0 

JI = 0 0 -1 1 0 0 

o 0 0 0 -1 1 

Its dual A~ has generator matrix 

1 -1 0 0 0 

1 0 -1 0 0 

M= 

1 0 0 -1 0 

-n/(n + 1) 1/(n + 1) 1/(n + 1) 1/(n + 1) 1/(n + 1) 

The n-dimensional lattices Dn and D~. 

and has generator matrix 

-1 -1 0 0 0 

1 -1 0 0 0 

.~I = 0 1 -1 0 0 

o 0 0 1 -1 

Its dual D~ has generator matrix 

1 0 0 0 

0 1 0 0 

.II = 

0 0 1 0 

1/'2 1/'2 1/'2 1/'2 
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The 8-dimensional self-dual lattice E8. 

E8 = {(Xl, ... ,X8): all Xi E Z or all Xi E Z + 1/2. LIi _ 0 mod :?} 

and has generator matrix 

2 0 0 0 0 0 0 0 

-1 1 0 0 0 0 0 0 

0 -1 1 0 0 0 0 0 

0 0 -1 1 0 0 0 0 
M= 

0 0 0 -1 1 0 0 0 

0 0 0 0 -1 1 0 0 

0 0 0 0 0 -1 1 0 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 

The 7-dimensional lattices E7 and E;. 

E7 = {(Xl, ... X8) E E8: Xl + ... +X8 = a}. 

A generator matrix is 

-1 1 0 0 0 0 0 0 

0 -1 1 0 0 0 0 0 

0 0 -1 1 0 0 0 0 

!'II = 0 0 0 -1 1 0 0 0 

0 0 0 0 -1 1 0 0 

0 0 0 0 0 -1 1 0 

1/2 1/2 1/2 1/2 -1/2 -1/2 -1/2 -1/2 

The dual lattice E; has generator matrix 

-1 1 0 0 0 0 0 0 

0 -1 1 0 0 0 0 0 

0 0 -1 1 0 0 0 0 

;II = 0 0 0 -1 1 0 0 0 

0 0 0 0 -1 1 0 0 

0 0 0 0 0 -1 1 0 

-3/.,1 -3/.,1 1/.,1 1/.,1 1/.,1 1/.,1 1/.,1 1/.,1 
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The 6-dimensional lattices E6 and E6. 

and has generator matrix 

0 -1 1 0 

0 0 -1 1 

0 
M= 

0 0 -1 

0 0 0 0 

0 0 0 0 

1/2 1/2 1/2 1/2 

The dual lattice E6 has generator matrix 

M= 

o -1 1 

o 0 -1 

o 
o 

o 
o 

o 
o 

o 
1 

-1 

o 

0 

0 

1 

-1 

0 

-1/2 

o 
o 
1 

-1 

0 

0 

0 

1 

-1 

-1/2 

o 
o 
o 
1 

0 

0 

0 

0 

1 

-1/2 

o 
o 
o 
o 

0 

0 

0 

0 

0 

-1/2 

o 
o 
o 
o 

o 2/3 2/3 -1/3 -1/3 -1/3 -1/3 0 

1/2 1/2 1/2 1/2 -1/2 -1/2 -1/2 -1/2 

Both E7 and E6 are given as sublattices of Es. 

17 

The groups R* / R are as follows. Later we give explicit descriptions of the ele­

ments of some of these groups. 

root lattice R An Dn (n even) Dn (n odd) E6 E7 Es 

group R* / R Z/(n + 1) Z/2 x Z/2 Z/4 Z/3 Z/2 1 

A (crystallographic) root system <I> is a set of vectors {Vi} C V spanning a positive 

definite lattice for which the corresponding reflections SVi generate a finite group. 

The elements of <I> are called roots and the associated reflection group the Weyl 

group W ( <I> ). A simple system S C <I> is a basis of the root system in which a root 

is expressed with all non-positive or non-negative coefficients. The elements of a 

simple system are simple roots. The geometry of a root system (and latticr) can be 

encoded in a Dynkin diagram - take a node for each simple root and join two nodes 

V, w by -(v, w) edges. \Ve refer to the standard literature for details [35] [7]. \YP 
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give a table of all irreducible root systems together with the lattice they generate 

and the associated Dynkin diagram. 

Root system Lattice Dynkin diagram 

An An 0 0 0···· .. · .. ···0 0 

Bn zn 0 0 0······0 0 

en Dn c D 0· .. ·· .. · .... 0 0 

o----()(;······ .. ····o o 

G2 A2 0--0 

F4 D4 0 0 J 0 

E6 E6 0 0 

I 
0 0 

E7 E7 0 0 

I 
0 0 0 

Es Es 0 0 

I 
0 0 0 0 

The action of the Weyl group partitions the vector space V = <P ® lR into IW( <p) I 

simplices called the Weyl chambers. Each of these is a fundamental domain D of the 

Weyl group and is determined by a unique simple system S C <P. The n walls of D 

are the hyperplanes perpendicular to the roots of the associated simple system. By 

convention D consists of those vectors in V with inner product at least 0 with each 

simple root. The Weyl group acts simply transitively on both the \\Teyl chambers 

and the simple systems. 

The table below gives the number of roots for each root system, the structure of 

the Weyl group and its order. 



1. LATTICES 19 

Root system <P 1<p1 W(<p) I\Y(<p)I 

An n(n + 1) 8n+1 (n + I)! 
Bn and en 2n2 2n ~ S n 2nn! 

Dn 2n(n - 1) 2n- 1 ~ 8n 2n- 1n! 

F4 48 (23 ~ 84) ~ 83 27.32 

G2 12 83 ~ 2 12 

E6 72 U4(2).2 27.34.5 

E7 126 2 x 86 (2) 210 .34 .5.7 

Es 240 2.0t(2).2 214.35 .52.7 

Here Ot(2), 86 (2) and U4(2) are simple groups of Lie type - see the Atlas [16] and 

Humphreys [35] for further details. 

We describe the automorphism group of a root lattice R. The Weyl group W(R) 

is the normal subgroup of Aut(R) generated by reflections in the roots of R. The 

remaining symmetries are those of a fundamental domain of W(R), or equivalently 

the graph symmetries of the Dynkin diagram. We denote this last group by G(R). 

Aut(R) is then the split extension of W(R) by G(R), where the permutations act 

by conjugation on the Weyl group: 

Aut(R) = W(R) ~ G(R) 

For reducible root lattices G(R) includes all permutations of similar components. 

Here is a table of the graph automorphisms of the irreducible root lattices. 

Root lattice Al An (n 2 2) D4 Dn (n -I 4) E6 E7 Es 

G(R) 1 Z/2 83 Z/2 Z/2 1 1 

We now make a few (hopefully clarifying) remarks on the connections between 

root systems and root lattices. The set of roots of a lattice form a root system. The 

root systems with all elements of equal length are exactly the minimal vectors of the 

root lattices; the remaining root systems are formed of the first two shells of some 

root lattices. We shall use root to mean both element of a root system and root of 

a lattice, though the latter can only have norm 2 according to our earlier definition. 

Also according to our definitions, the Weyl group of a root lattice is that generated 

by reflections in the vectors of norm 2, which ensures that the \\'eyl group of a root 
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lattice R is the same as the Weyl group of the root system 4> of roots of R. Also 

note that Aut(D4) = W(F4); F4 is the first two shells of the lattice D4 . The same 

holds for A2 and G2, with Aut(A2) = W(G2). Finally although Eg and Z are the 

only self-dual irreducible root lattices, others are self-similar meaning R ~ R*. In 

particular, D4 ~ D4 and A2 ~ Ai. 

1.2. Even unimodular lattices. A now classical result states that a (posi­

tive definite) even unimodular lattice must have dimension divisible by 8 [48], p.24. 

These have been classified up to and including dimension 24, and the result is sum­

marised in the table below 

Dimension Even unimodular lattices 

8 Eg 

16 Eg EEl Eg and Di6 

24 the Leech lattice A24 and the 23 Niemeier lattices 

The Leech lattice A24 is the unique 24-dimensional even unimodular lattice with 

no roots. In other words Aut(A24 ) contains no reflections (see §1.5 below). To 

construct Di6 and the Niemeier lattices we make use of gluing theory. 

1.3. Gluing theory. The idea is to build new integral lattices from known ones 

(e.g. root lattices). Gluing theory gives a convenient description of an arbitrary 

integral lattice L with a direct sum L1 EEl ... EEl Lm as sublattice. We suppose the Li'S 

are integral and the direct sum has the rank of L. A general vector in L then has 

the form x = Xl + ... + xm where x j E Lj. L is generated by adding some vectors 

{Y1, ... ,Yn} of this type to the direct sum, 

The y/s are called glue vectors and the integral lattice L is obtained by gluing the 

components L1, ... , Lm. The Y{'s (where Yi = Y[ + ... + y;n) can be viewed as 

elements of Lj / L j since all representatives of a coset generate the same lattice. The 

set of glue vectors form a group modulo L1 EEl ... EEl Ln called the glue code. In this 

context quotients A * / A (for a lattice A) are called glue groups. 
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As an example take the integral lattice Dn and the glue vector 

[1] = (1/2, . . . , 1/2) E }Rn 

Then define D~ = (Dn, [1]) (see Conway and Sloane [13] p.11'). 

When the automorphisms of L permute the components there is a convenient 

description of the symmetry group of L. This is for example the case if the sllblattic(' 

is that generated by all roots of L. Let G2 be the group of permutations of the L ) 

induced by automorphisms of L. G2 is then the quotient of Aut(L) b~' the normal 

subgroup N fixing the components, Aut(L) = N.G 2 . Also N = GO.G1 where Go is 

the subgroup fixing the components yl E Lj / L j of the glue vectors in their cosets 

and G1 is the permutations of the glue vectors Yi induced by N. Combining all these 

remar ks we get 

For more details on gluing theory see Conway and Sloane [13], chAo 

1.4. Niemeier lattices. We define a Niemeier lattice to be an even unimodular 

lattice of rank 24 containing some roots. These were classified by Niemeier [51] ill 

1974. The root sublattice of a Niemeier lattice N is the sublattice R C N generated 

by the roots of N. R has rank 24 and its irreducible components all have the same 

Coxeter number. In fact all such root lattices appear as sublattice of some Niemeier 

lattice. We list all possible such root lattices R, each corresponding to a unique 

Niemeier lattice (R)+ (also denoted N(R)). nL stands for L EB··· EB L (n timcs). 

Using t IH' gluing th{'or~' out lined a bovc one can generate a I'\iclneier lattic(' b~' 

adding (1 sd of glup vectors (glue code) to the appropriate root s~·stelll. The glut, code 

is dcnoted b~' Goo in accordance with [13]. \\'e describe SOllIe interest illg exalllples 
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and refer to §2 for definitions of the codes encountered below. For more details see 

Conway and Sloane [13], ch.16. 

Dt4 was defined in §1.3. 3Es is of course already even unimodular so no glue 

vectors are added. For the next cases we need more details on the glue groups of 

the irreducible root lattices. The lattice Al has two glue vectors, 

[0] = (0,0), [1] = (1/2, -1/2). 

Identifying these with the two elements of the finite field lF2' the glue code for 

(24AI)+ is the binary Golay code C24 C JF14. Similarly for (12A2)+; A2 has 3 glue 

vectors 

[0], [1] = (1/3,1/3, -2/3), [2] = (2/3, -1/3, -1/3). 

The glue code is then the ternary Golay code CI2 C lFj2. The glue vectors of D4 are 

[0], [1] = (1/2,1/2,1/2,1/2), [2] = (0,0,0,1), [3] = (1/2,1/2,1/2, -1/2) 

and the glue code for the Niemeier lattice (6D4)+ is the hexacode C6 C ~. The glue 

vectors of E6 are 

[0], [1] = (0, -2/3, -2/3, 1/3, 1/3, 1/3, 1/3,0), [2] = -[1]. 

The glue code of the Niemeier lattice (4E6)+ is the tetracode C4 C JB1. This approach 

to Niemeier lattices by examining the associated codes is due to Venkov [61]. 

As explained in §1.3, the automorphism group of a Niemeier lattice N splits as 

Aut(N) = GO(N).GI (N).G2(N). 

Go(N) is always the Weyl group of the root lattice R = RI EB ... EB Rm c N where 

~ are the irreducible components: 

Go(N) = W(R) = W(R I ) x ... x W(Rm). 

G
1 

is cyclic of order 1,2 or 3 and G2 is the permutations of the irreducible components 

preserving the glue code. Of course only similar irreducible components can be 

permuted. 

We work through the above examples. Since no glue (or only the trivial glue 

vector) is added to 3Es all permutations of the 3 components arise, 
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Also Aut(Dt4) = W(D24 ) since the 2 glue vectors cannot be permuted. At the other 

extreme G2 is closely related to the automorphism group of the code formed by the 

glue vectors. For 12A2 and 24A1, G2 are the finite simple ~lathieu groups :\h2 and 

M24 respectively (see §2 and §3). 

Aut(12At) = GO.G1.G2 '"'-J W(A2)12 .Aut(C12) ~ 312 .2.:d12 

Aut(24At) = GO.G2 ~ W(A1)24 .Aut(C24) ~ 224.1124 

The following table (taken from Conway and Sloane [13] p.407) giyes the order 

of the groups Goo, G1 and G2 for all Niemeier lattices. The generators are given 

using standard notation for the glue vectors of the root lattices (as in the examples 

above). In each case the set of generators includes all those obtained by a cyclic 

permutation of the elements in round brackets. For example [1(012)] includes [1012L 

[1201] and [1120]. 



1. LATTICES 24 

Components Generators for glue code IGool IGII IG21 
D24 [1] 2 1 1 

Dl6ES [10] 2 1 1 
3Es [000] 1 1 6 

A24 [5] 5 2 1 

2Dl2 [(12) ] 4 1 2 

A17E7 [31 ] 6 2 1 

D102E7 [110], [301] 4 1 2 

Al5D9 [21] B 2 1 

3Ds [(122)] B 1 6 

2Al2 [15] 13 2 2 

AU D7E6 [111 ] 12 2 1 

4E6 [1 (012)] 9 2 24 

2AgD6 [240], [501], [053] 20 2 2 

4D6 even perms of [0123] 16 1 24 

3As [(114)] 27 2 6 

2A72D5 [1112], [1721] 32 2 4 

4A6 [1 (216)] 49 2 12 

4A5D4 [2(024)0], [33001], [30302], [30033] 72 2 24 

6D4 [111111], [0(02332)] 64 3 720 

6A4 [1 (01441)] 125 2 120 

BA3 [3(2001011) ] 256 2 1344 

12A2 [2(11211122212) ] 729 2 IMl21 

24AI [1 (00000101001100110101111)] 4096 1 IM241 

1.5. The Leech lattice A24 . The Leech lattice was discovered by John Le('ch 

in 1965 [41]. It is the unique even unimodular lattice of rank 2--1 with no roots. 

The most common definitions of A24 make use of the binary Golay code C2.1 C ~4 

(see §2 on codes). For example the modulo 2 reduction map Z ~ IF2 induces a map 
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P : Z24 --+ JB14. The Leech lattice can then be defined as the preimage 

Also in the 1960s John Conway determined the automorphism group of this 

lattice [12]: 

where COl is the largest Conway sporadic finite simple group. 2.Col is also sometimes 

denoted Coo or ·0. Of course Aut(A24) contains no reflections since A24 has no roots. 

More details on the structure of the lattice are given in §1.9. 

1.6. Complex lattices. Let 9 and £. denote the rings Z[i] and Z[w] respec­

tively, where w is the third primitive root of unity. 9 is the ring of Gaussian integers 

and £. the ring of Eisenstein integers. Let V be a complex vector space of dimension 

n. 

DEFINITION 4. A complex lattice (or J-Iattice) is a finitely generated free J­

module 

where J = 9 or £. and {VI, ... ,vn } is a complex basis of V. 

The form ( , ) h is now the usual hermitian form on en: 

(x, Y)h = X . Y = XIYl + ... + XnYn for x, Y E en. 

The generator matrix and Gram matrix of a J-Iattice are defined as in the real case. 

Also define the dual lattice 

DEFINITION 5. An automorphism A of a complex lattice L c en is a unitary 

complex linear map preserving the lattice: A E U(n) s.t. A(L) = L. 

Equivalently, for a J-Iattice L an automorphism is a J-linear module map.-\. : 

L --+ L preserving the hermitian form ( , )h. The group of all complex autOIllor­

ph isms of a J-Iattice L is denoted AutJ(L). 
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Two complex lattices L1 , L2 are isomorphic if there is a complex linear map 

A E U(n) such that A(L1) = L 2 . 

A complex lattice L = J { VI, ... , vn } has an underlying real lattice L?: 

The converse is not always true. A real lattice L admits the structure of a complex 

Q-Iattice (resp. £-lattice) if and only if it has a fixed-point-free symmetry of order --1 

(order 3 resp.). The automorphism is the i (resp. w) of the corresponding complex 

structure. We tend to use the same symbol to denote a complex lattice and its 

underlying real lattice. 

A real lattice may admit several distinct complex or J-structures. The Leech 

lattice for example has both a Q and £-structure. Of course for a complex lattice L 

since the complex linear maps are also real linear and the distances are the same 

in both cases. AutJ(L) consists of those real automorphisms commuting with the 

corresponding fixed point symmetry i or w mentioned above. However different 

complex structures on the same real lattice may give rise to different automorphism 

groups. In the same vein, two non-isomorphic complex lattices may have isomorphic 

underlying real lattices. 

A few examples. The rings J = Q, £ are complex J-Iattices themselves, naturally 

embedded in C (with trivial generator matrix 1). 

The root lattices D4 and E6 have structures of £-lattices with respective generator 

matrices 

[~ ~] 
e 0 0 

and 0 e 0 

1 1 1 

where e = w - w = A. 

1.7. The Coxeter-Todd lattice K 12. The Coxeter-Todd lattice is a 12-dimensional 

integral lattice. It has a simple description as 6-dimensional complex lattice O\'Pf 
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the Eisenstein integers, with generators 

1 
J2(±O, ±1, ±1, ±1, ±1, ±1) 

where 0 = w - w = A may be in any position and there must be an even number 

of minus signs. 

Its complex automorphism group Aut£(KI2 ) is the Mitchell group, isomorphic 

to 6.U4(3).2, where U4(3) ~ PSU4(3) is a finite simple group of Lie type of order 

27 . 36 
. 5 . 7 = 3,265,920. For more details see [14]. 

1.8. Quaternionic lattices. Let 11, C lHI denote the ring of Hurwitz integers, 

generated as Z-module over its 24 units in lHI: 

±1, ±i, ±j, ±k, 1/2(±1 ± i ± j ± k) 

Its group of units llu is isomorphic to the binary tetrahedral group 2.A4 and the 

ring 11, coincides with the root lattice D4 under the usual identification }R4 - lHI. 

DEFINITION 6. A quaternionic lattice (or ll-lattice) is an ll-module 

where {VI, ... ,vn } is a quaternionic basis of lHI. 

The concepts of generator matrix and underlying real lattice LJR. go through as for 

complex lattices. An ll-lattice also has several complex structures both over 9 and 

£, since for example multiplication by i and 1/2( -1 + i + j + k) are fixed-poi nt-free 

symmetries of order 4 and 3 respectively. 

DEFINITION 7. An automorphism of a quaternionic lattice L is those symme­

tries of LJR. commuting with the action of llu· 

Denote the group of quaternionic automorphisms by Aut1l (L). 

As an example, E8 admits the structure of an ll-lattice in IHr with generator 

matrix 

For more on lattices over general rings see the discussion in Conway and Sloane 

[13] ch.2, p.52. 
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1.9. Structure of the Leech lattice. The Leech lattice has structures of Q. [ 

and 1-l-lattices. Similarly as for the real Leech lattice in §1.5 one can construct '\24 

as an [-lattice by pulling back the ternary Golay code C12 C lFj2. Take the quotient 

map 

where (3 is the ideal generated by 1 - w. The pullback p-l(C12 ) is then the complex 

Leech lattice. More on obtaining lattices from codes over finite fields can be found 

in Ebeling [21]. 

Other sporadic simple groups appear as automorphism groups of the [ and 1i­

Leech lattices. These automorphism groups are of course the subgroups of Aut(A24 ) = 

2.Co l commuting with the units of the two rings: 

Suz is the Suzuki group and J2 is the Hall-Janko group. See §3 on finite simple 

groups. Robert Wilson [63], [64] identifies the maximal subgroups of these simple 

groups. 

In [60] J.Tits provides a nice unified description of the situation, viewing A24 as 

a module over the endomorphism rings ~ of subgroups Ui C 2.Co l where 

and Ui is isomorphic to the double cover 2.Ai of the alternating group Ai' Then for 

i = 2,3,4 we have ~ = Z, [, 1i and recover our previous constructions. 

2. Codes 

We give some of the basic definitions and describe the codes encountered in the 

previous section. 

DEFINITION 8. A (linear) code is a linear subspace C C ~ where lFq is a finite 

field of order q. 

The weight w(c) of a codeword C = (Cl,"" cn) E C is the number of non-zero 

coordinates Ci. A code is called doubly even if w ( c) 0 mod 4: for all codewords 

c E C. A code C E ~ of dimension k and minimum weight d is called an [11. k. d)-

code. 
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The weight distribution of a code records how many codewords are of each weight 

and is displayed as a sequence of terms nm indicating that there are TTl codewords 

of weight n. 

A generator matrix for an [n, k, d]-code C is a k x n matrix whose rows form a 

basis for C as a linear space over IF q . 

For x, Y E ~ define the inner product x . Y 

The dual code CJ.. is then 

n 

X· Y = LXiYi 
i=1 

CJ.. = {x E ~ : x . Y = 0 Vy E C}. 

A code is self-dual if C = CJ... 

DEFINITION 9. An automorphism of a code C c ~ is an IFq-linear isomorphism 

f : ~ --+ ~ preserving the code, f (C) = C. 

The group of automorphisms of C is denoted Aut(C). 

We give some important examples of codes and their properties. 

2.1. The tetracode C4 • The [4,2,3] tetracode C4 C IFj is a ternary code with 

generator matrix 

[
1 1 1 0] 
o 1 -1 1 

C4 has 9 codewords and weight distribution 0138
. Its automorphism group is a 

non-split extension of the group of units of the field, Aut(C4 ) = 2.S4 · 

2.2. The hexacode C6 • The [6,3,4] hexacode C6 C ~ is a code over IF4 

{O, 1, W, w} with generator matrix 

o 0 1 1 1 1 

o 1 0 1 w w 

1 0 0 1 w w 

C6 has 64 codewords and weight distribution 
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The group of automorphisms of C6 is an extension of the group of units of the field 

by the alternating group on 6 letters, namely Aut(C6 ) = 3.A6. 

2.3. The binary Golay code C24 • The [24,12,8] code C24 C JF14 is an extended 

quadratic residue code. We will not be needing details of the construction of C24 or 

the ternary Golay code C12 so refer to Conway and Sloane [13], ch.3 and Ebeling [21] 

for precise definitions. C24 is the unique 24-dimensional self-dual doubly even code 

and can be used to define the Leech lattice (see § 1. 5). The code has 4096 elements 

with weight distribution 

Its automorphisms form the largest Mathieu group: 

2.4. The ternary Golay code C12 • The [12,6,6] code C12 C 1F12 is also an 

extended quadratic residue code. In §1.9 C12 is used to construct the complex Leech 

lattice over the Eisenstein integers Z[w]. The code has 729 words and weight distri-

bution 

Its automorphisms also essentially form a Mathieu group: 

In the context of the Golay codes, codewords are sometimes refered to as C -sets. See 

the discussion on the Mathieu groups in §3. 

3. Sporadic finite simple groups 

The finite simple groups were completely classified by the mid-1980s and split 

into 4 categories 

- groups of prime order 

_ the alternating groups An (n > 5) 

- groups of Lie type 

- the 26 sporadic groups 
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The groups of prime order are the abelian finite simple groups. As is the smallest 

non-abelian finite simple group. In this work we will mainly encounter sporadic 

groups and alternating groups, though some groups of Lie type will arise in chapter 

3. See Aschbacher [2] for a concise description of general finite simple groups. \Ye 

list the sporadics, and for details refer to another of Aschbacher~s books [3] and 

a recent book by R.Griess [27] on the sporadics associated to the Leech lattice. 

The Mathieu groups appear in several different contexts in coming chapters so their 

construction is outlined in some detail. 
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Notation Name Order 

Mll Mathieu 24.32.5.11 

M12 26.33.5.11 

M22 27.32.5.7.11 

M23 27.32.5.7.11.23 

M24 210 .33.5.7.11.23 

J 1 Janko 23.3.5.7.11.19 

J 2 27.33.52.7 

J3 27.35.5.17.19 

J 4 221 .33.5.7.113.23.29.31.37.43 

HS Higman-Sims 29.32.53.7.11 

Mc McLaughlin 27.36.53.7.11 

Suz Suzuki 213 .37.52.7.11.13 

Ly Lyons 28.37.56.7.11.31.37.67 

He Held 210.33.52.73.17 

Ru Rudvalis 214.33.53.7.13.29 

O'N O'Nan 29.34.5.73.11.19.31 

C03 Conway 210 .37 .53.7.11.23 

CO2 218 .36.53.7.11.23 

COl 221.39.54.72.11.13.23 

M(22) Fischer 217 .39.52.7.11.13 

M(23) 218.313.52.7.11.13.17.23 

M(24) 221.316 .52.73.11.13.17.23.29 

F3 Thompson 215 .310 .53.72.13.19.31 

F5 Harada 214.36.56.7.11.19 

F2 Baby Monster 241.313 .56.72.11.13.17.19.23.31.47 

F1 Monster 226.320.59.76.112.133.17.19.23.29.31.41.47.59.71 

There is yet no unifying way of presenting the sporadic groups. The first finite 

simple groups to be discovered were the Mathieu groups back in the nineteenth 
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century as multiply transitive permutation groups. The others haye all been con­

structed in the second half of the twentieth century. Janko was the first to add to 

the list in 1965 with J l . An important step was the discovery by Conway of COl. 

CO2 and C03 as automorphisms of the Leech lattice. The previously known HS. 

Mc and Suz were then displayed as stabilisers of sublattices of A24 . In the early 

1970s B.Fischer discovered the three Fischer groups as 3-transposition groups. The 

Monster is the largest sporadic group and was first constructed by Griess [26] as 

automorphism group of a 196, 883-dimensional real algebra. Most other sporadics 

can be found in the monster but it is still unknown if this is true in general. 

3.1. The Mathieu groups. We define M24 . Let lFq be the finite field of q = pm 

elements (p prime) and Q = {x2 
: x E IF q} be the squares in IF q' G Ln (q) is the linear 

isomorphisms of an n-dimensional vector space over lFq and SLn(q) is the subgroup of 

elements of determinant 1. The centre of GLn(q) consists of multiplication by non­

zero elements of the field. The quotient by the centre yields PGLn(q) and PSLn(q). 

PSLn(q) is denoted by Ln(q) and is a simple group of Lie type for n > 2 except for 

the cases n = 2 and q = 2,3. 

From now on n = 2. A = (aij) E SL2(q) acts on ~ as (x, y) H (al1 x +a12Y, a2l x + 
a22Y) where al1a22 - a12a2l = 1. The projective line PL(q) consists of the q+ 1 ratios 

x/y for x, Y E lFq and can be identified with the q elements of the field and 00. We 

denote PL(q) by O. L2(q) acts on 0 as 

al1x + a12 x f-----+ ----
a2l x + a22 

So we have displayed a permutation representation of L2(q) on a set of order q + 1. 

Define the Mathieu group M24 to be the group generated by L2(23) and the 

permutation x I--t x 3/9 for x E Q C O. 

The action of M24 is quintuply transitive on 0 (that is transitive on 5 element 

subsets of 0 - see Aschbacher [2] for basics on multiply transitive groups). 

Let P(O) be the set of subsets of O. One can view P(O) as a 24-dimensional 

vector space over lF2 where addition of sets is symmetric difference: for A, B E P(O), 

A + B = (A\B) U (B\A). P(O) inherits an action of M24 . The binary Golay code 

C
24 

is a 12-dimensional subspace of ~4. M24 consists precisely of those permutations 

of n preserving C24 · 
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From §2 there are C-sets of order 8,12,16. Every 5-element subset of n is con­

tained in precisely one C-set of order 8 (octads). In other words the octads form 

a Steiner system 8(5,8,24), whose automorphism group is also the ~Iathieu group 

M24 (see Biggs [5] for more on this approach). 

Define the Mathieu groups M24- k (k < 5) to be the pointwise stabiliser of a 

k-element subset of n in M24 . 

Also define the Mathieu group M 12 to be the (setwise) stabiliser of a 12-element 

C-set (dodecad). M12 can also be defined in a similar way to M24 above and is 

characterised as the automorphism group of the ternary Golay code C12 and the 

Steiner system 8(5,6,12). 

4. Singularities, resolutions and blow-ups 

A point x of a complex manifold M is singular if x is a singularity of the under­

lying differentiable manifold. The singularities arising in this work will always be 

isolated quotient singularities. In other words a neighbourhood U of x E M will be 

isomorphic (as germs of holomorphic functions) to 

(1) en IG where G < GL(n, e), G finite, 

with origin the only fixed point. A resolution of the singularity is a holomorphic 

map p from a non-singular complex space en IG, 

p: enIG-+cnIG, 

---------such that the restriction p : en IG - p-l(O) -+ en IG - 0 is a biholomorphism. 

By a (complex) orbifold we shall mean a complex space with only isolated quo­

tient singularities (a concept first introduced by Satake [57]). 

In resolving quotient singularities the key construction is that of a blow-up. Let 

n be the complex dimension of M. The blow-up of M at x E M yields a complex 
-.. 

manifold Mx and map 

.-.. 
such that the restriction (J : Mx - (J-l(X) -+ M - x is a biholomorphism and the 

inverse image (J-l (x) of x is isomorphic to epn-l. (J-l (x) is called the exceptional 

divisor. We define the blow-up of en at the origin 0; this is sufficient to obtain 
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the general construction for a manifold M. Let (WI : wn ) be homogeneous 

coordinates for cpn-l and (Zl,' .. ,zn) coordinates for en. The blow-up & is the 

submanifold of en x cpn-l satisfying the equations WiZj = ZiWj' The projection 
..-
<en y en x cpn-l --+ en is the map a above. 

The blow-up of en at the origin is equivariant with respect to an action of G < 

GL(n, C). One attempts to resolve the quotient singularity (1) above by successive 

blow-ups, first at the origin of en then in the exceptional divisors, to obtain a ne", 

space P whose quotient by the G-action is now non-singular. This is always possible 

since in the 1960s Hironaka [30] proved that every singularity of an algebraic space 

can be resolved by successive blow-ups of the ambient space, though giving explicit 

resolutions can be very difficult. 

5. Toric geometry 

A toric variety is a variety containing an algebraic torus as dense open subset 

whose action on itself extends to an action on the entire variety. A toric variety can 

be specified by the following data: 

1. a lattice N c V = NJR rv ]Rn 

2. a collection ~ = (~, N) of strongly convex rational polyhedral cones a called 

a fan 

A strongly convex rational cone is a set 

~ 

where Xi E N and containing no affine subspace through the origin. We say that 

a = [Xl,"" Xm] is generated or spanned by the Xi. The cones in the fan must fit 

together nicely, intersecting in faces. Also all faces of a given cone in ~ are cones in 

~. 

To each cone one can associate an affine variety as follows. Let M C "* be the 

lattice dual to Nand a V := {w E V* s.t. w(x) > 0 \::Ix E a} be the dual cone. 

Also let Sa be the finitely generated semigroup M n a V
• Now taking the C-algebra 

Aa = C[ Sa] generated by the semigroup, we define 

Ua := Spec(Aa) = Spec(C[Sa D· 
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A general toric variety X (~, N) is constructed by gluing the affine parts along 

their intersections. Note the origin of V is part of any fan and corresponds to the 

algebraic torus TN (hence toric variety) whose action on itself extends to an action 

on X(~,N). 

If P is a rational convex polytope in V containing the origin then the cones of the 

associated fan ~p are those spanned by the proper faces of P. Denote ..:Y(..).p. ~V) 

by X p . 

The support I~I c V of a toric variety is the union of all its cones. A toric 

variety is always a normal variety, and there is a nice condition for compactness: 

LEMMA 1. A toric variety X(~, N) is complete if and only if it has support 

I~I=V. 

Such a fan is called complete. The varieties X p described above are always 

complete, though not all complete toric varieties arise from convex polytopes. 

A map of fans cp : (~l' Nd ~ (~2' N2) is a Z-linear map cp : Nl ~ N2 such 

that for all cones (J E ~l' cp(a) is contained is some cone of ~2' A map of fans 

naturally gives rise to a holomorphic map cp* : X(~l' N 1) ~ X(~2' N 2) equivariant 

with respect to the action of the tori TNll TN2 and the induced map 

The following result tells us that these are all the maps in this category [52], p.19: 

THEOREM 2. Suppose f : X(~l' N1) ~ X(~2' N 2) is a holomorphic map, equi­

variant w.r.t. a homomorphism f' : TNl ~ T N2 · Then there is a unique map of fans 

cp : (Nl' ~l) ~ (N2' ~2) such that cp* = f· 

Note an isomorphism of fans cp : N ~ N need not be an automorphism of 

the lattice N. As a counterexample, let N = Z{1/2eI, e2} be a lattice in ]R2 with 

2-dimensional cones the 4 quadrants of the plane. The linear map cp : N ~ ,IV 

swapping the two generators is clearly a map of fans but does not preserve distances. 

Similarly an automorphism of the lattice need not be a map of fans as can easily be 

seen by taking an asymmetrical decomposition of the plane (with for eg jV = Z2). 

We will return to these aspects at a later stage when examining autOlllorphisIlls 
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of compact toric varieties. We quote a well-known result on singular affine toric 

varieties (see Fulton [24], p.29). 

THEOREM 3. Ua is non-singular if and only if some set of generators {Xi} of a 

can be completed to a basis of the lattice N. 

We now have an ideal framework in which to describe quotient singularities en IG 
for finite abelian groups G. Let N' c N be a finite index sublattice of N. Then the 

quotient G = N IN' of abelian groups acts naturally on C[M'] (i.e. on the algebraic 

torus and hence any other affine part). Let Xu! E C[M'] correspond to u' E Sa. 

Then VENIN' acts as 

v . Xu! = exp (2'iTi (V, u') ) Xu! 

where 

( , ) : N IN' x M' 1M -+ Q/Z 

is induced by the usual pairing. Now taking a cone a generated by a basis of N' 

we get X (a, N') = en. G acts on this affine variety as above, and under this 

identification 

Cn = X(a, N') -+ X(a, N) = en IG 

is the quotient map. In general the sublattice N' is generated by the shortest 

elements of N along the edges of the cone - this rules out simply obtaining affine 

space again as the quotient. 

In fact given a finite abelian group G < GL(n, C) of diagonal matrices one 

can construct a lattice N ~ zn = Z{ el, ... , en} such that NIzn ~ G [56] and 

X(a, N) is isomorphic to cn IG, where a is the cone generated by the standard basis 

{el' ... , en}. Take the exponential map 

exp : ]Rn -+ en , f---+ 

G < (c*)n and the lattice N = exp-l(G) is the one required. Note zn C N is just 

the inverse image of the identity matrix. 
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5.1. Resolutions of toric varieties. Clearly resolutions are going to be ob­

tained by subdivisions of the singular fan .6. (in the case above consisting of one 

n-dimensional cone and all its faces) where each new n-dimensional cone now gen­

erates the lattice. In fact this can always be done (see [24L p.48): 

THEOREM 4. Any singular fan .6. admits a non-singular subdivision ~'. 

Brylinski [9] gives an equivariant form of this result. 

THEOREM 5. Let G be a finite group of automorphisms of a fan.6.. Then ~ 

admits a non-singular subdivision also invariant under G. 

5.2. Calculating topological invariants. The fan.6. allows for easy combina­

torial calculations of many topological invariants of the associated variety X (~, N). 

Let di be the number of cones of .6. of dimension i. The odd Betti numbers of 

X (.6., N) are 0 and 

From this one determines the Euler characteristic X 

x(X(.6., N)) = dn = the number of top dimensional cones. 

The signature of the intersection form on the middle cohomology is 
n 

T(X(.6., N)) = L( -2)idn _ i. 
i=O 

Indefinite integral forms are determined by their signature and dimension, so In 

certain cases these calculations suffice in establishing the intersection form of the 

variety. As for the fundamental group of X (.6., N) (see Oda [52], p.14), 

PROPOSITION 6. The fundamental group 7rI(X(.6., N)) is isomorphic to the abelian 

group N / N', where N' is the sub lattice UaELl (a n N). 

In particular if .6. contains at least one n-dimensional cone then N' 

X (.6., N) is simply-connected. 

We give some examples of toric varieties. 

1.Vand 

5.3. Example. The origin in IRn is a fan by itself with associated variety .. \"(.u .. V) 

the n-dimensional algebraic torus TN· 
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5.4. Example. Let N = Z2 = Z{ e1, e2} and ~ be the complete 2-dimensional 

fan below, with the 3 top-dimensional cones 0"1: 0"2 and 0"3. 

(0,1) = e2 

(1,0) = e1 
}-------~ 

The dual fan then takes the form: 

All three O"i'S are clearly non-singular and yield the affine varieties 

ACTl = C[.X-1 ,X-1 Y] 

ACT3 = C[y- 1 , .X·y-1
] 

A(T2 = C[X, 1 '] 
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where X, Y correspond to the generators el, e2 respectively. The gluing maps (.-1. B) ~ 

(A-I, A-I B) between the affine components tells us these form a projectiYe space 

X(~,Z2) = Cp2. 



CHAPTER 2 

Automorphisms of Kummer manifolds 

A Kummer manifold is obtained by taking the quotient of a complex torus by an 

involution and resolving the singular points. They also appear in the literature before 

the resolution as singular algebraic varieties (or Kummer orbifolds). The study of 

the 2-dimensional Kummer surfaces is classical, the first substantial account being 

that of Hudson in 1905 [34]. This case has since attracted much attention. Both 

Hudson and more recently Gonzalez-Dorrego [25] described the striking link with 

combinatorial (16,6)-configurations, leading to a classification of all 2-dimensional 

Kummer varieties. 

In this chapter we shall be examining automorphism groups of both Kummer 

surfaces and higher dimensional Kummer manifolds. We start in §1 by a detailed 

construction of the manifolds leading to a nice description of their automorphisms. 

In §2 we concentrate on the two dimensional surfaces and how the results obtained 

fit in with previous work by Mukai on K3-surfaces [50]. §3 examines the situation 

in higher dimensions. 

1. Kummer manifolds 

Let us first describe the (complex) 2-dimensional construction disregarding the 

complex structure. Take a real 4-torus 

carrying the group structure inherited from Sl. This topological group then clearly 

has 16 points of order two, namely the quadruples of the form (±1, ±1, ±1, ±1). \Ve 

now remove a small open 4-disc Bi from around each of these double points, creating 

a manifold with boundary 16 distinct 3-spheres. The next step is to identify the 

remaining points of the orginal torus T with their respective inverses. This clearl~' 

identifies antipodal points on each boundary sphere, and we obtain a npw manifold 

41 
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X with boundary 16 3-dimensional real projective spaces ]Rp3, 

Let M f be the mapping cylinder arising from 

in homogenous coordinates. M f has boundary ]Rp3, so we can glue a copy of JIf 

onto each of the 16 ]Rp3 's by identifying the boundaries. The resulting manifold 

(without boundary) is called the real 4-dimensional Kummer manifold. 

Starting with a complex torus 

(where L is a lattice in e2 acting by addition) and repeating the above process we 

construct a complex Kummer surface K L . In the additive notation now, the double 

points are (±1/2, ±1/2, ±1/2, ±1/2) in terms of a basis of L. 

From now on we denote by (±1) the group of order 2 acting on a torus by sending 

an element to its inverse. 

The construction above goes through in higher dimensions. Start with a complex 

n-torus (n > 2) 

where L is now a lattice in en. The torus has 22n fixed points under (±1). Extract 

discs around each of these and take the quotient by (± 1). The resulting manifold 

XL has boundary 22n real projective planes ]Rp2n-l. Attach a mapping cyclinder 

M f to each of these, this time built from 

We obtain an n-dimensional complex Kummer manifold K L · Below is a picture 

of the situation in a subspace generated by two elements of a basis of L. The 

fundamental domain of the torus is outlined; the dots are the lattice points and the 

crosses are the points of order two other than the lattice points; the circles outline 

the discs removed. 
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It is clear from this construction that all Kummer manifolds of the same dimen­

sion are homeomorphic. The complex structure however depends on the lattice. 

By an automorphism of the Kummer maniold KL we shall mean a biholomorphic 

transformation of K L. 

We now explain how to construct automorphisms of KL starting from the lattice 

L. The following result (cf [23]) links biholomorphic homomorphisms of tori to the 

lattices. 

THEOREM 7. Two tori T1 = cn / L1 and T2 = en / L2 are biholomorphic if and 

only if there exits an A E GL(n, C) such that A(L1 ) = L2 . 

In particular invertible n x n complex matrices preserving the lattice are biholo­

morphic homomorphisms of T. We shall denote the group of all such automorphisms 

by Hom(T) since these are also group homomorphisms. In fact the group of biholo­

morphic transformations of the torus Aut(T) splits as the semi-direct product of the 

group of translations Tr of the torus by Hom(T) (see [1], p.42). 

THEOREM 8. Aut(T) = Hom(T) ~ Tr 

The homomorphisms act by conjugation on the translations. As an additive 

group Hom(T) ~ zm where m < 4n2 (see Lange and Birkenhake [40] ch.l). so in 

particular is infinite. The torus has a natural hermitian metric inherited from en. 
If we restrict to isometries: 

LEMMA 9. Let Homu(T) = Hom(T) n U(n). Then Homu(T) is finite. 
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PROOF. Let Ld denote the elements of the lattice L of length d - these are finite 

sets. Then it is clear that the lattice is generated by a finite number of Ld 's, say 

J = L1 U ... U Ln. Hence any such homomorphism of T is determined by its action 

on the elements of J. The automorphisms must preserve lengths, so each Ld is 

mapped into itself, and J is mapped into J. However there are only a finite number 

of distinct permutations of the elements of J, and it follows that there is only a 

finite number of such automorphisms of T. o 

There are of course infinitely many translations x M t + x of the torus, one for each 

element t E T. 

We shall now restrict our attention to the homomorphisms Hom(T) and return 

to the translations at the end of the section. We describe how homomorphisms of 

the torus behave under the construction of KL outlined above. 

Let G be a subgroup of Hom(T). Suppose G < U(n) and that (±1) < G; this 

last condition is always satisfied when G is the automorphism group of a lattice and 

will almost always be true in coming chapters. G acts on the set of double points of 

T and preserves distances, so acts on the truncated torus and its quotient by (±1). 

(± 1) identifies the cosets 

Zl -Zl Zl 

rv in T, where E en 

So the action of G is no longer faithful since A and -A in G act in the same way. 

(±1) is normal in G so we do get a faithful action of the group G/{±l). 

It remains to determine automorphisms of the complex projective planes glued 

in and how the two constructions match up on the boundaries. We start by giying 

another description of the mapping cylinder: we can view the process as attaching 

a disc bundle. Recall the map f : ]lU>2n+1 ~ cpn defined above. It can easily be 

seen that the preimage of a complex line [(Xl + iX2) : ... : (X2n-l + iX2n)] consists of 
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all lines in lR2n of the form 

s +t where s, t E lR 

These lines clearly form a projective line ]Rp1 rv Sl and so ]Rp2n+1 ~ cpn is a 

sphere bundle (the Hopf bundle for n = 1). On gluing the mapping cylinder each 

sphere is shrunk to a point, so the process could equally well be seen as attaching 

the corresponding disc bundle (i.e. with the sphere filled in). 

LEMMA 10. ]Rp2n-1 ~ cpn-1 is the sphere bundle of the vector bundle £2 = 

£ ® £ where £ ~ cpn-1 is the universal line bundle over cpn-1. 

For completeness we reprove this known fact. Recall that £ is the dual of the 

hyperplane bundle. 

PROOF. We use the Gysin sequence derived from the sphere bundle Sd ~ E ~ 

B: 

where R is a ring and e = e(A) E Hd+1(B; HO(Sd; R)) is the Euler class of the 

associated vector bundle A. Taking R = Z and m = 1 for the Sl-bundle ]Rp2n-1 ~ 

cpn-1 this gives 

Now the first two terms are isomorphic to Z, the second group with generator C1(£), 

the first Chern class of the universal bundle. The last term is isomorphic to Z/2. 

Since ¢ must be surjective the cup product by e map must be multiplication by 2 in 

Z, that is e(A) = 2C1(£). SO we have shown that the Euler class of the vector bundle 

A, which is also the first Chern class, is 2Cl(£). Finally since Cl(£®£) = 2Cl(£) 

and holomorphic line bundles are classified (up to isomorphism) by their first chern 

class we obtain A = £2 and the lemma is proved. o 
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From the above lemma we can now view the surgery as attaching the disc bundle 

D(£2) over cpn-l where the fibers are restricted to discs of the appropriate radius. 

It remains to describe the group action on these bundles. 

A E G < U (n) acts on the total space £ c cpn-l X en by sending 

(x, tx) I-----t (Ax, A( tx)) 

where t E C and (x, tx) is an element of cpn-l X en. This is of course a bundle 

map. Similarly A has a natural action on the tensor £ 0 £: 

But again A and -A have the exact same action on £2, so for G < U(n), G/(±I) 

has a faithful action on the bundle (still assuming (±1) is contained in G). Since 

G < U(n) preserves distances, the action restricts to the disc bundle D(£2). 

Finally the groups acting on the bundles and quotient space must match up on 

the boundaries along which they are glued. This amounts to choosing the same 

group in both cases. In other words, taking a linear transformation acting on the 

quotient of the truncated torus, the same transformation must be chosen on each of 

the 22n bundles to obtain an automorphism of the entire manifold. Another way of 

viewing this process is that if we choose an appropriate automorphism of a particular 

bundle it extends uniquely and identically out of it and down into the remaining 

22n - 1 bundles replacing the double points. 

Summarising, we have shown that for a group G < U(n) preserving a lattice 

L c en, G / (±1) acts faithfully on the Kummer manifold K L . In particular let 

Autc(L) denote the subgroup of complex linear maps of Aut(L). Then we have 

LEMMA 11. Autc(L)/(±I) has a faithful holomorphic action on K L · 

Note that (±1) is always in Aut(L) as all lattices have the -1 symmetry. Of 

course if L has a structure of J-Iattice for J = £ or 9 then Autc(L) is just AutJ(L). 

See ch.l §1 for more on complex lattices and their automorphisms. 

In the two dimensional case G / (±1) is a subgroup of PSU (2). In higher dimen­

sions however this is no longer the case in general as the centre of SU (n) is not 

(±1). 
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We now examine another source of biholomorphic maps of a Kummer manifold. 

this time independent of the lattice used in the construction, namely translations. 

First recall that the automorphism group of a torus T is the semi direct product 

Aut(T) = Hom(T) ~ Tr 

of the group of translations of the torus Tr by the group Hom(T) of biholomorphic 

homomorphisms of T. Up to now we have dealt exclusively with the latter group. 

Most translations of the torus are not preserved under the idenfication x '" -x when 

forming the Kummer manifold. Indeed in n dimensions only the 22n translations by 

the points of order 2 remain well-defined. Let p denote a point of order 2 and x E T. 

Then since p '" -p, 

x + p '" -x - p '" -x + p. 

In other words adding a point of order 2 is well-defined on the quotient space T / (± 1) . 

It is easily seen that these are the only translations remaining. On the Kummer 

manifolds these induce translations of the attached disc bundles. 

LEMMA 12. The translations of the torus T = en / L induce a free action of 

(Z/2)2n on the n-dimensional Kummer manifold K L · 

Together with lemma 11 this implies: 

THEOREM 13. 22n)<! Autc(L)/(±I) acts faithfully on the Kummer manifold K L · 

Moreover these are all the isometries of KL coming from the torus. 

PROOF. The action follows from lemmas 11 and 12 above. KL inherits a metric 

from the torus and by definition Autc(L) = Homu(T) are the metric preserving 

homomorphisms of the torus and all translations preserve the form. The product is 

still semi-direct as in theorem 8. 0 

2. Kummer surfaces and K3-surfaces 

The 2-dimensional Kummer manifolds or Kummer surfaces are of particular in­

terest for several reasons. First of all non-singular Kummer surfaces are !\"3-surfaces. 

The oldest account of the connections with combinatorial configurations is Hudson's 

book [34]. A luore modern and thorough account including work on !\"3-surfac('s 
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and jacobians can be found in Gonzalez-Dorrego [25]. Another good reference is 

Lange and Birkenhake [40]. More relevant to our work are the papers of ;\Iukai [50] 

and more recently Kondo [39] and Xiao [65] on symplectic automorphisms of K3-

surfaces. Mukai classifies all finite groups of such actions. See also Mason's account 

[45]. Finally Kummer surfaces over other fields arise in number theory as quotients 

of jacobians (eg. in [11]). 

Due to the connections with K3-surfaces we shall be primarily interested in 

symplectic automorphisms of the Kummer surfaces. Quaternions provide a nice 

framework in this context. 

The non-commutative field of quaternions is denoted by lHI, with standard real 

basis 1, i, j, k and the usual (real) vector space isomorphism 

We also identify lHI with ([2 in the standard way 

lHF (n > 1) will be viewed as a right lHI-vector space. 

We are interested in finite multiplicative groups of quaternions. Since 

\x2
\ = \x\\x\ 

(where the operation is quaternion multiplication), any quaternion with modulus 

not equal to 1 would generate an infinite number of elements. Hence 

LEMMA 14. Any finite multiplicative group of quaternions consists entirely of 

unit quaternions. 

In fact these groups are conveniently classified (see Coxeter [17]) 

THEOREM 15. A finite multiplicative group of quaternions is one of the following 

(1) a cyclic group 'LIn of order n 

(2) a dicyclic group (p, 2, 2) of order 4p 

(3) the binary tetrahedral group (3,3,2) of order 24 

(4) the binary octahedral group (4,3,2) of order 48 

(5) the binary icosahedral group (5,3,2) of order 120 
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The set of all unit quaternions form an infinite multiplicative group denoted 

Sp(l) which is also the group of distance preserving quaternionic linear maps of lHL 

One can view Sp(l) as acting by quaternionic multiplication on the left of the right 

lHI-vector space lHI. 

There is a particular nice description of the above finite groups in terms of gen­

erators and relations. Apart from the cyclic groups with their obvious presentation 

the group (p, q, 2) has presentation 

(A,B,C: AP = Bq = C2 = ABC = -1) 

Note that strictly speaking C is not necessary since AB = C so that A and B 

generate the group. Taking C = k the following lemma gives us quaternions A and 

B that generate the group (see Coxeter [17]). 

LEMMA 16. The group (p, q, 2) is generated by the quaternions 

A 7r k 7r .7r = cos - + cos - + i SIn h' 
p q 

B 7r k 7r .. 7r 
= cos - + cos - + J SIn h' 

q p 
and C = k 

where cos2 7rh = cos2 7r + cos2 7r 
P q 

For example in the case of the dicyclic group (2,2,2) the lemma produces the 

generators i, j, k satisfying of course 

·2 ·2 k2 . 'k 1 
'I, = J = = 'lJ =-

This group is sometimes denoted Q8' 

Finally bear in mind that the above lemma gives a possible set of generators of 

(p, q, 2) and that there are other isomorphic subgroups in Sp(I). 

LEMMA 17. The group of all unit quaternions Sp(l) is isomorphic to SU(2). 

So in particular theorem 15 above also holds for SU(2) and its finite subgroups. 

Under the isomorphism the following correspond 

[
i 0 ] J +---+ 
o -i ' 

These three matrices also generate an algebra in GL(2, C) isomorphic to lHI. B~' 

generate here we mean generate as an algebra with multiplication the usual matrix 

multiplication. 
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Recall that PSU(n) is the quotient of SU(n) by its centre. In general the centre 

consists of those matrices J.l • Id where J.l is an nth root of unity and Id the n x n 

identity matrix. For n = 2, PSU(2) is obtained by factoring out (±Id): 

PSU(2) = SU(2) 
(±Id) . 

The following important result ties in with the quaternion case (theorem 15) 

THEOREM 18. A finite subgroup of PSU(2) is one of the following 

(1) a cyclic group '!lIn of order n 

(2) a dihedral group Dp of order 2p 

(3) the alternating A4 of order 12 

(4) the symmetric group 84 of order 24 

(5) the alternating group A5 of order 60 

For a proof of the theorem and further discussion of these groups see Jones [37]. We 

now exhibit the obvious link between the groups in theorems 15 and 18. 

Recall PSU(2) is obtained from SU(2) by identifying matrices with their additive 

Inverses. Hence the exact sequence 

o ~ (±Id) ~ SU(2) p) PSU(2) ~ 0 

It is clear that a quaternion subgroup of type (i) of theorem 15 of order 2n is mapped 

(via the map p above) to the subgroup of type (i) of theorem 18 of order n (the 

cyclic groups of odd order excepted, since they do not contain -Id). Indeed under 

p the presentation above becomes 

(A, B, C : AP = Bq = C2 = ABC = 1) 

where -1 has been identified with 1. With this in mind we may also denote the 

groups 

by 

(p,2,2),(3,3,2),(~,3,2),(5,3,2) 
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respectively. Note (p, q, 2) has elements of order p, q and of course 2. \Ye now haye 

an accurate description of the different finite groups of quaternions and the resulting 

groups after the quotient by the centre (±Id). 

DEFINITION 10. A K3-surface is a compact complex surface S with trivial canon­

ical bundle Ks = 0 and first Betti number bi (S) = o. 

Recall that the first Betti number is the dimension of the cohomology group HI(S. Os), 

where Os denotes the structure sheaf of S. 

An important consequence of the definition is that every K3-surface admits a 

nowhere vanishing holomorphic symplectic 2-form w corresponding to a section of 

Ks. A symplectic automorphism of a K3-surface S is a biholomorphic transforma­

tion of S preserving the form w. On the tangent space at xES the holomorphic 

symplectic form is 

where Z = (ZI' Z2) and v = (VI, V2) E ([2. SU (2) consists of those unitary matrices 

preserving W X ' Hence a subgroup G < PSU(2) acting on a Kummer manifold KL as 

described in §1 is a group of symplectic automorphisms of the K3-surface K L · For 

a proof that Kummer surfaces are indeed K3-surfaces see [25]. 

In [50] Mukai classifies the finite symplectic automorphism groups of K3-surfaces. 

First recall that the Mathieu group M23 < M24 acts by permutations on the set n 
of order 24 (see ch.1 §3). M23 is the stabiliser of an element of n. 

THEOREM 19 (Mukai). A finite group G has a (faithful) symplectic action on 

a K3-surface if and only if G has an embedding in M23 splitting n into at least 5 

orbits. 

This is shown to be equivalent to the next more explicit statement. 

THEOREM 20 (Mukai). A finite group G has a (faithful) symplectic action on a 

/{3-surface -{=::} G is isomorphic to a subgroup of one of the 11 groups below 
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Order K3-surface 

168 

360 

120 

960 

384 

288 

192 

72 

72 

,,6 ,,6 2 ,,6 3 o· tr' 5 
wI Xi = wI Xi = wI Xi = In 'L-P 

,,5 _ ,,6 2 _ ,,5 3 o· tr'D5 
wI Xl - wI Xi - wI Xi = In 'L-r 

x2 + wy2 + W2 Z2 = V3v2 in Cp5 

X2 + w 2y2 + wz2 = V3W2 

X2 + y2 + Z2 = V3u2 

xi + x~ + x~ = x~ + x~ + x~ in cp5 

xi + x~ = x~ + x~ = x~ + x~ 

Double cover of CP2 with branch 

52 

X6 + y6 + Z6 _ 10(x3
y 3 + y3 Z3 + Z3 X3) = 0 

48 Double cover of CP2 with branch 

xy (X4 + y4) + z6 = 0 
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The proof of the (*) statement is group theoretical and rests on the observation 

that the number of fixed points of a symplectic automorphism of order m coincides 

with the number of fixed points of a permutation in M23 of order m. The (¢::) 

direction is proved by displaying an action of all 11 groups on a particular K3-

surface given in the 3rd column of the above table. Mukai describes the surfaces as 

loci of homogeneous polynomials, that is as projective varieties. 

Note that a K3-surface need not be algebraic, although Mukai only makes use of 

such surfaces in the theorem above. We will return to this question at a later stage 

when discussing algebraic embeddings of Kummer manifolds into projective space 

(chapter 4). 

We now describe some explicit constructions of Kummer surfaces and groups act­

ing on them. As mentioned at the beginning we shall make use of the quaternions 

by constructing a lattice L with automorphisms acting by quaternion left multipli­

cation (ie in SU(2)). The corresponding subgroup of PSU(2) acts symplectically on 

K L. In more detail now. 

Let L be a lattice in ]R4 = 1HI generated by unit quaternions forming a finite 

multiplicative group. Then the group acts on the lattice: 

(1) on those elements of unit length in L by quaternion multiplication on the left 

(2) on the rest of the lattice by linear expansion 
This action on L is of course free. The image of G < SU(2) in PSU(2) is a finite 

subgroup H acting faithfully on K L · 

It remains to construct such a lattice. In general let G be a finite quaternion 

group of the form (p, q, 2) for some p, q (we are only omitting the cyclic groups). 

Lemma 16 gives us three generators A, B, C E 1HI for this group, where C = k. Now 

consider the lattice 

L = Z{I,A,B,C}. 

In the examples to follow, the minimal vectors of the lattice form the group G. 

So to recap: if G = (p, q, 2) consists of the unit elements of L = Z{I, A. B. C} 

then G acts on the torus and truncated torus. After identifying inverse points the 

order of the group is halved and we obtain H = (p, ql 2) < PSU(2) acting faithfull~' 

on K L after extending the action into the attached bundles. 

Let us start with an easy case. 
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2.1. The dihedral group D 2 • Take the most obvious lattice in 4 dimensions. 

namely the root lattice Z4. Viewed in the quaternions, 

Z4 = Z{l,i,j,k} 

The 8 elements of Z4 of unit length are of course 

{±1, ±i, ±j, ±k} 

These 8 elements form the multiplicative group of quaternions Q8, and we are in the 

situation described above. Of course Q8 must be one of the groups of theorem 15. 

Writing Q8 as 

Q ( .. k' 2 ·2 k2 . 'k 1) 8 = 1,,), : 1, =) = = 1,) =-

we see from the presentation of (p, q, 2) that 

Q8 = (2,2,2) 

where (2,2,2) is the dicyclic group of order 8. Hence we have obtained the dihedral 

group D2 = (2,2,2) of order 4 as a group of symplectic automorphisms of K Z 4. 

2.2. The dihedral group D 3 • We construct the lattice using the method de­

scribed above. Using lemma 16 we obtain the generators A, B of the dicyclic group 

(3,2,2): 

1 V3. 
A=-+-1, 

2 2' 

(3, 2, 2) has order 12. Consider the lattice 

1 V3. 
B= -+-) 

2 2 

L = Z{l,k,A,B} 

It remains to verify that the dicyclic group is included in the lattice, i.e. that 

all quaternions in the group are a linear combination of the four generators above 

(coefficients in Z of course) - a simple calculation. Once this has been checked. the 

image of the group in PSU(2) is a dihedral group D3 of order 6 acting on l\"L. 
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2.3. The alternating group A4 • Again we use the same method. The relevant 

quaternion group is of course the binary tetrahedral group (3,3,2) = 2 . ...14 of order 

24. Using lemma 16 we obtain generators for 2.A4: 

1 1 1 
A = - + -k+-i 

2 2 J2' 

Taking these together with 1 and k consider the lattice 

L = Z{l, k, A, B}. 

As previously it remains to check that the 24 elements of (3,3,2) are in L - a tedious 

but easy calculation. Thus we have obtained a group A4 = (3,3, 2) of symplectic 

automorphisms of the Kummer surface K L . 

2.4. Another construction. We obtain the same action and surface using a 

different embedding of the same lattice. Consider the 4-dimensionallattice D4 with 

generator matrix 

1 0 0 0 

0 1 0 0 

0 0 1 0 

1 1 1 1 
2 2 2 2 

Equivalently D4 is the lattice 

D4 = Z{i,j, k, JL} 

where JL is a primitive sixth root of unity: 

The 24 elements of unit length in D4 are 

±1, ±i, ±j, ±k, ~(±l±i±j±k) 
2 

where there are 24 = 16 elements of the last form. These elements form a multi­

plicative group of quaternions 2.A4 = (3,3, 2). 

So we have displayed another construction of KD4 with an ...1.t-action. (see ch.1 

§1 and Conway and Sloane [13], ch.4 for more on D4) 
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Both the lattices A2 and Z4 are clearly embedded as sublattices in the copy of 

D4 just described, Z4 as mentioned in the above paragraph on D2 and A2 as the 

powers of the root /1. 

The 24 unit vectors of D4 form the units 1iu of the ring of Hurwitz integers 

1i described in ch.l §1. Indeed D4 is a one-dimensional quaternionic lattice with 

generator 1. 

Given the list of subgroups of PSU(2) in theorem 18 it is natural to ask which of 

these can be made to act on some Kummer surface KL as described above. Further 

motivation is given by Mukai's results described earlier; A5 and D6 would be of 

particular interest. We now show that there is one major obstruction on the size 

of the groups one may obtain in this way. Recall that in order for H < PSU(2) 

to act on K we required the corresponding group G c SU(2) to act by quaternion 

multiplication on the lattice in <e2. In the next propositions we omit the cyclic 

groups Zin < SU(2) of odd order since these are preserved under the quotient by 

(±1). 

LEMMA 21. Let H < PSU (2) be a finite group (odd cyclic groups excluded) acting 

on KL as described. Then the lattice L must have at least 21HI points of any given 

length. 

PROOF. Let G denote the preimage of H in SU(2) under the quotient map. 

Recall that the group G consists of unit quaternions and acts by quaternionic mul­

tiplication. Hence the action preserves lengths. Also only multiplication by 1 fixes 

some element so the action on L is free. 

Suppose now that there were less than IGI = 21HI points of length l in some 

lattice L C ]R4. Let a be such a point. Then since distances are preserved and there 

is at most IGI - 2 other lattice points of the same length l, there must exist two 

distinct elements a, f3 E G < SU(2) ~ Sp(l) such that 

aa = f3a. 

But this is impossible since G acts freely. Contradiction. o 

So to construct a limit on the order of the groups obtainable we need an upper 

bound on the minimum number of points in shells of a 4 dimensional lattice. 
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For general sphere packings (see Conway and Sloane [13] ch.l for a definition) 

the kissing number is the number of spheres touching a given sphere. A lattice sphere 

packing has spheres centered at the lattice points. The kissing number of a lattice 

sphere packing is the same for all the spheres, and we can define: 

DEFINITION 11. The kissing number T of a lattice L is the number of minimal 

vectors of L 

LEMMA 22. The maximum kissing number of a 4 dimensional lattice is 24. 

Indeed in dimensions n < 9 the laminated lattices An attain the maximum kissing 

number for lattice sphere packings - see Conway and Sloane [13] ch.l. 

PROPOSITION 23. A finite subgroup H of PSU(2) acting on a Kummer surface 

K as explained is of order at most 12. 

PROOF. Let L denote the lattice used in constructing K. By lemma 21 L must 

have at least 21HI points of any given length (except zero). However by lemma 22 

L has at most 24 minimal vectors. Also 21HI < 24 and IHI < 12, as required. D 

COROLLARY 24. No Kummer surface has a symplectic action of A5 or S4 zn­

duced from automorphisms of the lattice. 

The main action constructed is: 

THEOREM 25. There is a faithful symplectic action of 24 ~ A4 on the Kummer 

surface K D4 . 

PROOF. This follows from the earlier construction where we obtained an A4-

action on KD4 and from lemma 12 for the translations. The product splits since the 

group is a subgroup of the quotient of the automorphism group Hom(T) ~ Tr of the 

torus (see theorem 8). The translations also act symplectically. D 

How does this fit in with Mukai's results? By theorem 20 one should find 24 ~ A.t 

as a subgroup of one of the 11 groups listed there. The K3-surfaces on which the 

groups are made to act need not of course be Kummer surfaces. This leads an 

interesting open question as to which of these groups can be obtained acting on the 

more restricted class of Kummer surfaces. Returning to the above result 21 ~ ..14 does 
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indeed appear as a subgroup of the Mathieu group M20 = 24 )<l Ao listed as number 

(4) in theorem 20. I have so far been unable to determine whether the surface used 

by Mukai in this case 

is in fact a Kummer surface. 

2.5. Fixed points of symplectic actions. The number of fixed points fd of a 

symplectic transformation of a K3-surface depends only on its order d (Mukai [50]): 

d 2 3 4 5 6 7 8 

fd 8 6 4 4 2 3 2 

We examine how these appear in our construction of Kummer surfaces. Consider 

the root lattice Z4 as complex lattice over the Gaussian integers as in §2.l: Z4 = 

Z[i] EB Z[i]. The Kummer surface K Z 4 inherits a symplectic transformation CPA of 

order 2 corresponding to the symmetry 

[
i ° ] A= ° -i 

of the lattice (multiplication by i in the quaternions). A has 22 = 4 fixed points on 

the torus with representatives 

(0,0,0,0), (1/2,1/2,0,0), (0,0,1/2,1/2), (1/2,1/2,1/2,1/2) 

in ]R4. These are also fixed by the Kummer involution (±1) and are blown-up to 

form the Kummer surface. A acts on the disc bundle D(£) as described in §l. The 

zero section complex projective line of the disc bundle is preserved by A and has 

two fixed points (1 : 0), (0: 1) E Cpl. And CPA has a total of 2.4 = 8 fixed points 

as expected. 

Take the root lattice 2A2 with Eisenstein structure Z[w] EB Z[w]. The Kummer 

surface K2A2 then has a symplectic transformation CPB of order 3 corresponding to 

the symmetry 

B = [~ :] 
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of the lattice 2A2. B has 32 = 9 fixed points on the torus of which only the origin 

is fixed by (±1). (±1) identifies the other fixed points in pairs (see chapter 3 for an 

explicit description). Again B has 2 fixed points (1 : 0), (0: 1) on the zero section 

of the disc bundle. Since the origin is the only one of these points blown-up in the 

Kummer construction, CPB has a total of (32 - 1)/2 + 2.1 = 6 fixed points. 

2.6. Non-symplectic actions. Non-symplectic actions are constructed as out­

lined at the end of §l. Take the standard complex root lattice Z4 = Z[i] EB Z[i] C <e2 

as above. Z4 then has complex automorphism group of order 32: 

where (Z/4)2 is multiplication by i in each component and Z/2 is the permutation 

of the two. (±1) is then multiplication by -1 in each component. The quotient is 

Autg (Z4) / (±1) = (2 x 4) )q 2 

D4 also has a complex structure over the Gaussian integers. To determine 

Autg (D4) we use the quaternionic description: D4 = 1l C IHI with minimal vec­

tors 

±1, ±i, ±j, ±k, 1/2(±1 ± i ± j ± k) 

Aut1-l(D4) = 2.A4 < Sp(l) acts by quaternionic multiplication on the left of D4 C IHI 

commuting with the IHI-linear action on the right. Take the complex structure to be 

multiplication by i on the right in the quaternionic setting, that is multiplication by 

on (:2. Aut1-l (D4) = 2.A4 acting on the left then trivially commutes with the com­

plex structure. In addition to these transformations, sign changes of the two complex 

coordinates are also complex automorphisms of the lattice (that these preserve the 

lattice can easily be seen in the explicit description of D4 given above). They form 

a (Z/2)2 preserving 2 . .44 under conjugation (this follows for example from the tran­

sitivity of the 2.A4-action on D4). so 
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(±1) is multiplication by -1 in 2.A4l so the quotient is 
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Together with the translations by fixed points these calculations yield holomorphic 

(non-symplectic) actions on Kummer surfaces: 

3. Higher dimensional Kummer manifolds 

In comparison with Kummer surfaces in the previous section much less is known 

about a general higher dimensional Kummer manifold. There is no longer a nice 

combinatorial approach using configurations and of course the desingularised mani­

fold is no longer a K3-surface. Accordingly we no longer have any particular interest 

in special linear actions. Using results on lattice automorphism groups it is an easy 

step to apply our earlier construction and obtain interesting groups acting on cer­

tain Kummer manifolds. We then show how tensoring lattices helps us obtain all 

lattice automorphism groups acting on some Kummer manifold. A good general 

reference for the lattice theory is again Conway and Sloane [13]. For more on finite 

simple groups see the Atlas [16] and Aschbacher [3]. Higher dimensional Kummer 

manifolds are discussed in Lange and Birkenhake [40] and from a topological point 

of view by Spanier [59]. Spanier shows that all Kummer manifolds K (dim K > 2) 

are simply connected and calculates the Betti numbers. 

THEOREM 26. There are faithful holomorphic actions of 

(1) 212 )q 3.U4(3).2 on KK12 

(2) 224 )q 3.Suz on KA24 • 

PROOF. The Coxeter-Todd lattice K12 has a complex structure over the Eisen­

stein integers £ = Z[w] and 
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(see ch.l §l. 7). The Leech lattice as £-lattice has automorphism group 

Aut£(A24) = 6.Suz 

(see ch.l §1.9). The result now follows from theorem 13. D 

3.1. Complex lattices and tensoring. If the dimension of the manifolds is 

not an issue then one can obtain simple subgroups of real automorphism groups 

of lattices acting holomorphically on a Kummer manifold. This is done simply by 

tensoring the given real lattice by the Gaussian or Eisenstein integers. 

Let L be an n-dimensional real lattice with basis {h, ... ,In} and define 

This is again a real lattice, now of dimension 2n with basis {h, ... ,In' ih, ... ,iln}. 

By definition Li admits a complex structure over the Gaussian integers. Its real 

automorphism group is made up of the cyclic group (±i) of order 4 (the units of the 

Gaussian integers) and the automorphism group Aut(L) : 

9 E Aut(L) acts as 9 . (x ® l) = x ® gl 

z E (±i) acts as z . (x ® l) = zx ® l 

Clearly these all commute with the complex structure i, so writing Aut(L) = 2.C 

for some group C (all lattices have the (±1) symmetry): 

The sum is not direct as (-1) acts on both sides of the tensor product. The Kummer 

involution on the new lattice Li corresponds to (±1) inside (±i) and the involution 

on L: 

-(z®l) = (-z) ®l = z® (-l) 

in Z[i]®zL. By lemma 11 the resulting n-dimensional Kummer manifold KLi admits 

a holomorphic action of 2 x Aut(L). The sum is direct as 2 is now {I, i}. 

Starting with the Eisenstein integers one proceeds in a similar fashion. Define 

Lw = Z[w] ®z L. 
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Then 

Aute(Lw) = 3 x Aut(L). 

The only difference is that the involution is now only apparent in Aut(L). So for 

Aut(L) = 2.G we have 

Aute(Lw) = 3 x 2.G = 6.G 

and 

KLw is an n-dimensional Kummer manifold. 

3.2. Root lattices E6 , E7, and Es. The automorphism groups of root lat­

tices consist essentially of their Weyl groups as explained in ch.1 §l. We construct 

Kummer manifolds admitting actions of the finite simple U4 (2), 86 (2) and Ot(2). 

Define 

These are complex lattices in C6 , C7 and CS respectively with automorphism groups 

Autg(E6,i) = 4.W(E6,i) = 4.U4 (2).2 

Autg(E7,i) = 2.W(E7) = 4 x 86 (2) 

Autg(Es,i) = 2.W(Es) = 4.0t(2).2 

By theorem 13 the Kummer manifolds K E6,i' K E7 ,i and KEs,i of dimension 6, 7 and 

8 respectively admit holomorphic actions of 

212 >4 (2 x U4 (2).2) < Aut(KE6,J 

214 >4 (2 x 86 (2)) < Aut(KE7,J 

216 
>4 (2 x Ot(2).2) < Aut(KEs,J 

Es,w appears In [22] as the unique indecomposable unimodular 8-dimensional 

lattice over the Eisenstein integers. 
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3.3. The Conway group COl. The automorphism group of the real Leech 

lattice A24 is Aut(A24) = 2.Col where COl is the finite simple Conway group (see 

ch.1 § 1). Proceeding as above, define 

The complex automorphisms are then 

The associated 24-dimensional Kummer manifold admits a holomorphic action of 

3.4. Summary of constructions. We collect in a table the main Kummer 

manifolds KL constructed in this chapter together with the groups acting on them. 

The dimensions are over C. 

G < Aut(KL ) Lattice L Dimension of K L 

24 ~ A4 (symplectic) D4 2 

24 ~ A4.22 D4 2 

212 ~ (2 x U4(2).2) E6· ,I 6 

212 ~ 3.U4(3).2 K12 6 

214 ~ (2 x 86(2)) E7 · ,I 7 

216 ~ (2 x ot (2) .2) E8· ,I 8 

224 ~ 3.8uz A24 12 

248 ~ (2 x COl) A24,i 24 



CHAPTER 3 

Generalised Kummer manifolds 

Chapter 2 examined Kummer manifolds K and their automorphisms. ,,·here I{ is 

the resolution of the quotient of a complex torus by the usual involution -1 sending 

a point to its inverse. A generalised Kummer manifold is obtained by resolying the 

quotient of an n-dimensional complex torus by a more general group of biholomor­

phic transformations. In certain contexts one requires the resolution to be minimal 

[56]' a term we will define shortly. This greatly restricts the possibilities. In math­

ematical physics, generalised Kummer manifolds provide fundamental examples of 

field theory models. Much of the literature is to be found in this area; a good general 

reference from this point of view is the book by Hiibsch [33]. 

In this chapter we shall be constructing generalised Kummer manifolds though 

the resolutions will not be minimal. The automorphisms will be induced as for 

the classical Kummer manifolds (chapter 2). In §7 we show that the fundalIl(,Iltal 

group of a class of these is trivial. Finally we summarise some results of S.S.Roan 

on general quotients of complex tori by finite groups and their minimal resolutions 

(§8). We start by giving explicit resolutions for certain quotient singularities. 

1. Resolutions of cyclic quotient singularities 

Let () E GL(n, e) be the order d linear transformation J.-l • Id, where 11 = 

exp(27fi/ d) and Id is the identity matrix. Consider the isolated singularity en / (B) 

at the origin. This is a generalisation of the Kummer singularity en / (±1) encoun-
--tered in chapter 2, and can be resolved in the same way. Let a : en ----+ en be the 

equivariant blow-up of en at the origin. The quotient C; / ((}) is now non-singular 

and 

is;l resolution of ell /(B) (p llatllrall~· induccd by a). So one blow-up of the ullderl~'iIlg 

(,OlllPlcx spa('(\ is ('nough to d('singulal'isc in this case. 

G-l 
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In line with chapter 2 we view this resolution as a surgery process by attaching 

a disc bundle. Remove a 2n-disc D around the origin 0 E en. 0 still acts on 

en - D, and the quotient en - D I (0) is non-singular with boundary S2n-l I (0). Let 

£ -t cpn-l be the universal line bundle, and £d -t cpn-l the dth tensor of C. 

The disc bundle D(£d) -t cpn-l has boundary S2n-l I (0). The resolution above is 

then obtained by gluing D(£d) to en - D 1(0). Informally the line bundle "looks 

like" en I (0) around but away from the origin. This construction is of course also 

equivariant, and we shall give details of the action in a future construction (§3). 

2. Minimal resolutions 

Section 4 in ch.l discussed quotient singularities and their resolutions by succes­

sive blow-ups, §1 above providing a simple example. Let M be a complex orbifold. 

A resolution p : M -t M is minimal (or canonical) if M has a trivial canonical 

bundle, ICM = O. An equivalent condition is for the first Chern class to be zero, 

Cl (M) = O. Recall from ch.l §4 that all singularities can be resolved. However not 

all have a minimal resolution. Locally now, a necessary condition for a quotient 

singularity to admit a minimal resolution is that the canonical sheaf of the singular 

space be trivial. Equivalently the finite group must be in the special linear group: 

cn IG where G < SL(n, C), G finite. 

This condition is far from sufficient however and much work has recently gone in to 

determining which quotient singularities admit a minimal resolution. In dimension 

n = 2 all admit minimal resolutions. These are the Kleinian singularities corre­

sponding to the finite subgroups of SL(2, C) (or SU (2)), see ch.2 §2. The minimal 

resolutions have exceptional divisors whose intersection form is either An, Dn, E6 , 

E7 or E8 . The programme of finding minimal resolutions for all finite subgroups of 

SL(3, C) was recently completed by Roan [54]; see also [4],[55]. For n > 4 min­

imal resolutions no longer necessarily exist. For example the Kummer singularity 

en I (±1) has no minimal resolution for n > 4. This can be seen using toric geometry, 

as explained later in this section. 

2.1. A generalised McKay correspondence. In 1981 John ~lcKay' found a 

connection between the classical Kleinian singularities and the representation theory' 
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of the corresponding finite subgroup of SL(2, C) [47],[46]. This has become known 

as the McKay correspondence. More recent work has attempted to link the minimal 

resolutions in higher dimensions n with the representation theory of the finite group 

G < SL(n, C). Several conjectures have been put forward in this vein, all versions 

of a generalised McKay correspondence, see for example [36],[43],[53]. However the 

first basic question of charaterising the groups G < SL(n, C) admitting a minimal 

resolution remains unanswered. 

2.2. Minimal toric resolutions. In §5.1 of chapter 1 we quoted some results 

on resolutions of general toric varieties. In particular every quotient singularity 

en / G, G abelian, could be expressed and resolved using toric methods. In these 

cases the minimality of a resolution can be readily seen in the geometry of the fan. 

Recall that a resolution is given by adding new lattice vectors to the singular 

cone and subdividing into simplices. Let (j = [Xl, ... ,xm] be a singular cone in Rn 

and (j -+ (j a resolution obtained by adding the vectors {Vb .. . ,Vk} (the set could 

be empty). Define a trace map tr by 
m 

tr : Rn -+ R, X = a1 X 1 + ... + amxm M L ai 
i=l 

We can now state (see [56]) 

THEOREM 27. The resolution (j is minimal if and only tr( Vi) = 1 for all 1 < 

i < k. 

3. The Suzuki group Suz and manifold XA24 

We now construct a generalised Kummer manifold from the Leech lattice. As 

explained in ch.1 §1.9 one can view the Leech lattice A24 as a complex lattice over 

the Eisenstein integers £ = Z[w] such that 

where Suz is the Suzuki sporadic simple group of order 213.37 .52 .7.11.13 (see chapter 

1 and the Atlas [16]). Complex lattices and their automorphisms are discussed in 

ch.1 §1.6. The choice of complex structure induces an embedding A24 C C
12 

and We' 

can construct the associated complex torus 
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The complex lattice A24 has a Z/3-symmetry corresponding to multiplication by v.: 

and a Z/2-symmetry corresponding to the usual -1 involution of all integral lattices. 

We denote these groups of symmetries by (w) and (±1) respectiyely. The product 

(±1, w) of the two clearly form the normal Z/6 in Aut£(A24) above. 

As explained in ch.2 §1, Aut£(A24) is also the group of distance preserving bi­

holomorphic homomorphisms of the torus T = C12 / A24 • In this section we examine 

the orbifolds obtained as quotients of the torus by the cyclic (±1) and (w) actions. 

The case of the involution was extensively studied in chapter 2. The resulting 

orbifold has 224 singular points of Kummer type and can be resolved by attaching 

a copy of the disc bundle of the squared universal bundle [,2 over Cpl1 at each of 

these. The resolved orbifold is a 12-dimensional complex Kummer manifold KA24 

admitting a holomorphic action of the group 3.Suz. 

We approach the (w) case in a similar fashion. The root w acts on C12 as wId 

where Id is the 12 x 12 identity matrix. We now determine the fixed points on the 

torus, working in one of the twelve one-dimensional coordinate subspaces. 

w 

• 
1 

• 

Let xw + y E C be a coset representative of some point of the torus T. w then acts 

by multiplication. 

w. (xw + y) = xw2 + yw = x( -w - 1) + yw = (y - x)w - x. 

The point is fixed in the torus if 

(y - x)w - x = xw + y mod Z[w]; 

l.e. if 

x = 1/3(-m - n) and y = n + 2/3(-m - n). 
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Modulo Z there are only three solutions~ namely 

{x = 0, y = O}~ {x = 1/3, Y = 2/3} and {x = 2/3. Y = 1/3}. 

68 

So the fixed points on the torus in this coordinate space are the three marked by a 

dot on the above diagram, that is 

{O, -1/3 + w/3, 1/3 - w/3}. 

The torus T then clearly has 312 fixed points under the (w) action, namely those 

with coset representatives (81, ... ,812) E C12 where each 8i is one of the three points 

determined above. The resulting orbifold can be resolved as follows. Each singular 

point is locally isomorphic to C12 / (w). Removing a small neighbourhood of each 

singular point we are left with a 24-dimensional real manifold with boundary 312 

copies of 3 23 / (w). Let £ -+ CPl1 be the universal bundle over CPl1. Take the third 

tensor £3 of the line bundle. Then the associated disc bundle D(£3) has boundary 

3 23
/ (w) and we can glue a copy to each boundary component. The endproduct is a 

12-dimensional complex manifold, which we shall denote Xw. 

This resolution allows for a nice description of the automorphisms of Xw' The 

quotient Aute (A24) / (w) = 2.Suz clearly acts faithfully on the truncated orbifold as 

it preserves distances. The symmetries extend down into the resolved points: let 

A E 6.Suz, then A acts on £3 as 

This is a well defined holomorphic bundle automorphism. However wA E 6.Suz and 

A now act in the same way, so we have a faithful action of 2.Suz, as required. 

So far we have constructed two compact complex 12-dimensional manifolds KA24 

and Xw admitting holomorphic actions of 3.Suz and 2.Suz respectively. \Ye now 

turn to the natural merger of the two, namely the quotient of the torus by the cyclic 

group (±1, w) of order 6. 

The (±1, w) action fixes 224 + 312 - 1 points on the torus and has three isomor­

phism classes of point stabilisers, namely (±1), (w) and (±1, w). The singular points 

on the quotient split into three categories: 

1. (224 - 1) /3 singularities locally isomorphic to C12 / (±1) 

2. (312 - 1) /2 singularities locally isomorphic to C12 / (w) 
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3. one singularity corresponding to the origin of type (:12/ (±L ,.(.:) 

Category 1 consists of Kummer type singularities, category 2 of the cyclic sin­

gularities discussed above, both for which appropriate resolutions have been given. 

The remaining singularity coming from the origin is resolved similarly: remove a 

neighbourhood of the singularity of the orbifold and attach the disc bundle D(£6) 

of the sixth power of £. Again the automorphisms descend. The subgroups (±l) 

and (w) commute and so preserve each others fixed point set. In particular the 

singularities of T/(±I) (resp. T/(w)) are identified in 3's (resp. 2's) by the action 

of (w) (resp. (±1)), except for the origin of course. This explains the numbers of 

type 1 and 2 singularities above. 

So resolving the orbifold T / (±1, w) consists in attaching (224 - 1) /3 disc bundles 

D(£2), (312 -1) /2 bundles D(£3) and one bundle D(£6) - a total of (225 + 313 + 1) /6 

bundles. The resulting 12-dimensional compact complex manifold -"\~\24 admits a 

faithful holomorphic action of the Suzuki group Suz = Aut£(.\24)/(±L w). 

Note that X A24 can also be described as the quotient of a manifold by a group 

action. Indeed if one attaches a disc bundle D(£) at each fixed point of the torus to 

obtain a manifold YA24' then .XA24 = 1:\24/(±I,w). This facilitates the calculation 

of a number of topological invariants. Of course the surgery here is just blowing-up 

at smooth points - see ch.l §4. 

Unlike in the case of the classical Kummer manifolds in chapter 2, no translations 

of the torus are preserved after the quotient by (±1, w). Indeed those preserving 

the double points (fixed by (±1)) do not preserve the points with stabiliser (w) and 

VIce-versa. 

Summarising we have constructed a compact complex manifold .XA24 such that 

Suz < Aut(XA24 ). 

4. The Conway group COl and manifolds ,X.\24,w and .\A24 ,i 

Multiplication by w in Z[w] induces a complex structure on "\2.1,w = Z[w'l 0z '\2! 

(alread)" discussed in ch.2 §3.1). Its complex automorphism group (those commuting 

with w) is 
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where COl is the finite simple Conway group (see ch.1 §3) and Z/6 = (±1, w) is 

the group encountered above when constructing X A24 • We proceed here in a similar 

fashion. 

Let T be the 24-dimensional compact complex torus (J4 / A24,w. The (±1. 1.,))­

action on T has 248 + 324 -1 fixed points (points with nontrivial stabilisers) and the 

quotient T / (±1, w) has 3 types of singularities: 

1. (248 - 1) /3 singularities locally isomorphic to C24 / (±1) 

2. (324 - 1)/2 singularities locally isomorphic to C24 /(w) 

3. one singularity corresponding to the origin of type C24 / (±1, w) 

The quotient T / (±1, w) can be resolved as in §3, this time with powers of the 

universal line bundle £, ---+ CP23. In total (249 + 325 + 1)/6 bundles are attached. 

The resulting compact complex manifold is denoted X A24 ,W and admits a natural 

holomorphic action of the Conway group COl. But as in the case of X A24 none of 

the translations of the torus are preserved under the identification of inverse points 

of the torus: 

The construction of X A24 ,i is similar. Take T = C24 / A24,i where A24,i = Z[i] ®z 

A24 . As explained in ch.2 §3 the complex automorphism group of the lattice is 

where Z/4 = (±i). 248 points of the torus have nontrivial stabiliser under the 

(±i)-action. The singularities of the quotient T / (±i) are of two types 

1. 224 singularities locally isomorphic to C24 / (±i) 

2. (248 - 224 )/2 = 223 (224 - 1) singularities locally isomorphic to (J4/(±1) 
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We display a one-dimensional coordinate space Z[i] in the figure below . 

• 

The singularities of type 1 are all those made up of coordinates marked by a dot 

(including the origin), those of type 2 by coordinates taken from the dots and crosses 

but containing at least one cross coordinate. (±i) preserves the fixed point set of 

(±1) and identifies the two crosses in the above diagram. Hence there are half 

as many singularities of type 2 than fixed points of the torus with sta biliser (± 1) . 

Resolve using powers of the universal line bundle £ --+ Cp23 (this time to the powers 

2 and 4). The resulting 24-dimensional compact complex manifold denoted .Y'\21,i 

again admits a holomorphic action of the Conway group COl' 

Unlike the quotients by (±1, w) some translations are preserved by the construc­

tion: a subgroup of those acting on the Kummer manifolds in chapter 2. On the 

diagram above the diagonal translation by 1/2(1 + i) preserves the two sets of fixed 

points and induces a map on X A24 ,i' These form a group (Z/2)24: 

5. Miscellaneous manifolds XL 

Changing dimensions apart, sections 3 and 4 covered all types of quotients and 

singularities arising in such constructions. This will follow from Roan's results which 

we' describe in §8. In this section we briefly describe the manifolds obtained for ot her 

lattic('s. The methods are identical to those of sections 3 and -1 so \\.(' omit most 

details. The onl~' difference is in the dimensions of the tori and hence the nmllber 

of singularities of different type. \Ye start with tensors of the root lattic('s E(i. E" E" 

as ill tIl!' cOllstrudions of Kunlmer Inanifolds in ch.:2 §3.2 and obtain a pair of 
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manifolds for each group. This section is included more for sake of completeness 

than any obvious interest in the groups obtained. 

5.1. 12-dimensional X E6 ,w. Recall from ch.2 §3.2 that E6,~ = £ ®= E6 and 

AutE(E6,w) = 6.U4(2).2, where 6 = (±1, w). 

Let TE6 ,w = C6 /E6,w, and consider the space TE6,w/(±L u.J). The singularities of 

the quotient split as 

L (212 - 1)/3 of type C6 / (±1) 

2. (36 
- 1)/2 of type C6 /(w) 

3. one singularity of type C6 / (±1, w) 

Resolve by attaching disc bundles D(£2), D(£3) and D(£6) over CP5. The resolution 

inherits a holomorphic action of C4(2).2. 

5.2. 12-dimensional XE6 j. Recall that E6,i = 9 ®z E6 and that Autg(E(i,i) = 

4.U4(2).2, where 4 = (±i). 

Let TE6,i = C6 /E6,i. The quotient TE6,) (±i) has singularities which split into 

L 26 of type C6 
/ ((±i)) 

2. (212 - 26)/2 = 25 (26 - 1) of type C6 /(±1) 

Resolve by attaching disc bundles D(£4) and D(£2) over CP5. The resulting 

admi ts a holomorphic action of U 4 (2) .2. 

5.3. 14-dimensional "\E7,w. Recall that E7,w = E ®z E7 and Aut[ (E"w) = 

6.86 (2) with 6 = (±1, w). Let TE7 ,w = C7 /E7 ,w. Then TE7,w/ (±1, w) has singularities: 

L (214 - 1)/3 of type C7 /(±1) 

2. (37 - 1)/2 of type C7 /(w) 

3. one singularity of type C7 
/ (±1, w) 

Resolve b~' attaching the disc bundles oyer CP6. The resolution 

adllli ts a holOlllorphic action of S6 (:2). 
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First a small well-known lemma we will be needing. 

.0 

LEMMA 28. Let Z be a simply-connected manifold with a free action of a finite 

group G. Then 7rl(Z/G) ~ G. 

Let T = en / L be a complex n-torus (n > 2) with N = (±1, w) < Aut(L). 

where ±1 and w act by complex multiplication on the universal covering en. For 

convenience of notation we denote the involution (-1) by g. N is aI-ways normal 

in the group of automorphism Aut(T). The orbifold T / N can be resolved as in the 

------construction of §3. Let X denote the resolved orbifold T / N. 

------THEOREM 29. X = T/N is simply connected. 

PROOF. We first fix some notation for the purposes of this proof. All dimensions 

will refer to real dimensions. T is a compact torus of dimension 2n (the complex 

structure is irrelevant to the problem). Let Y denote the manifold with boundary 

22n + 3n - 1 spheres s2n-l obtained by removing a small 2n-disc around each of 

the fixed points of the action of N on T. Y is the manifold Y / N with boundary 

(22n - 1)/3 copies of IRP2n-l, (3n -1)/2 copies of S2n-l/(w) and one S2n-l/N. 

For the three types of boundary component B there is a natural map f : B ---+ 

cpn-l. Let M be the mapping cylinder associated to f. Then 8M = Band 

the manifold X is obtained by attaching the appropriate mapping cylinders to all 

boundary components. We index the boundary spheres of Y as follows: So, Si and 

Sj are the spheres around the origin, the fixed points of g and the fixed points of 

w respectively (the origin excluded from the last two sets). Similarly denote the 

corresponding boundary components of Y by Po, Pi and pj. These are isomorphic 

to S2n-l/N, IRP2n-l and S2n-l/(w) respectively. Let Mo, Mi and Mj denote the 

corresponding mapping cylinders. 

Since the discs removed from the torus have dimension 2n and n > 2, the fun­

damental group is not affected and 7rl (Y) = 7rl (T) is a free abelian group of rank 

2n. Choose some Xo on So as base point of Y. Generators for 7rl P") can be taken 

to be the paths Yl' ... ,Y2n where Yi is a composition of the paths 
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above. The resulting manifold is denoted X
K12 

and admits a holomorphic action of 

U4 (3).2. 

6. Summary of constructions 

We give a table of all the manifolds constructed in this chapter together with 

the groups acting on these. In previous sections we determined the translations 

preserved according to the cyclic group factored out: none remain for (±1, w) while 

some of order 2 remain for (±i). The dimensions are over C. 

G < Aut(XL) Lattice L Dimension of XL 

U4(2).2 E6w 6 , 

26 ~ U4(2).2 E6· ,1 6 

S6(2) E7w 7 , 

27 ~ S6(2) E7· ,I 7 

Ot(2).2 Es,w 8 

2s ~ Ot(2).2 Es · ,I 8 

U4(3).2 Kl2 6 

Suz A24 12 

COl A24w 24 , 

224 ~ COl A24,i 24 

As explained at the end of §3 for XA24 , all these complex manifolds X can be 

viewed as a quotient of another manifold by the cyclic group N = (±i) or (±1, w) (as 

indeed can the Kummer manifolds of chapter 2 by N = (±1)). Blow-up the torus at 

all the (smooth) fixed points of N to obtain a complex manifold Y. Blowing-up is 

equivariant and N still acts on Y. The quotient YIN is X. For details on blowing-up 

see § 1 and ch.1 §4. 

7. The fundamental groups 

In [59] Spanier shows that all Kummer manifolds are simply-connected. Using 

a similar method we show here that the same is true for the generalised Kummer 

manifolds constructed in this chapter. \Ye go through the argument for manifolds 

whose construction resembles that of the manifold .\ A24 and t he same argument ran 

be applied to the other generalised Kummer manifolds. 
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First a small well-known lemma we will be needing. 

-;-5 

LEMMA 28. Let Z be a simply-connected manifold with a free action of a finite 

group G. Then 71"1 (ZIG) ~ G. 

Let T = en I L be a complex n-torus (n > 2) with lv = (±L w') < Aut(L), 

where ±1 and w act by complex multiplication on the universal covering en. For 

convenience of notation we denote the involution (-1) by g. N is always normal 

in the group of automorphism Aut(T). The orbifold TIN can be resolved as in the 
~ 

construction of §3. Let X denote the resolved orbifold TIN. 

~ 

THEOREM 29. X = TIN is simply connected. 

PROOF. We first fix some notation for the purposes of this proof. All dimensions 

will refer to real dimensions. T is a compact torus of dimension 2n (the complex 

structure is irrelevant to the problem). Let Y denote the manifold with boundary 

22n + 3n - 1 spheres S2n-1 obtained by removing a small 2n-disc around each of 

the fixed points of the action of N on T. Y is the manifold Y I;V with boundary 

(22n - 1)/3 copies of ]Rp2n-1, (3n - 1)/2 copies of S2n-1/(w) and one S2n-1IN. 

For the three types of boundary component B there is a natural map f : B --t 

cpn-1. Let M be the mapping cylinder associated to f. Then aM = Band 

the manifold X is obtained by attaching the appropriate mapping cylinders to all 

boundary components. We index the boundary spheres of Y as follows: So, Si and 

Sj are the spheres around the origin, the fixed points of g and the fixed points of 

w respectively (the origin excluded from the last two sets). Similarly denote the 

corresponding boundary components of Y by Po, Pi and pj. These are isomorphic 

to s2n-1 IN, ]Rp2n-1 and S2n-1 I (w) respectively. Let Mo, Mi and l'l j denote the 

corresponding mapping cylinders. 

Since the discs removed from the torus have dimension 2n and n > 2. the fun­

damental group is not affected and 71"1 (Y) = 71"1 (T) is a free abelian group of rank 

2n. Choose some Xo on So as base point of r. Generators for 71"1 (}") can be taken 

to be the paths Y1, .... Y2n \"here Yi is a composition of the paths 
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The path a is on So from Xo to gxo· The path bi goes from gxo to a point .ri E 5i . 

The path Ci on Si goes from Xi to gXi· 

The diagram below is a one dimensional coordinate slice of a fundamental domain 

of the torus. The spheres bound the removed discs and surround the fixed points. 

The sphere marked 0 is So, those marked by a cross are the Sj's and the others the 

@ 
o 

@ 

The quotient map f : Y -t Y is a 6-covering of Y with covering transformation 

gw. Let Q be a based set of order 6 and consider the exact sequence of the fibration 

Q -t Y -t Y: 

Now 1f1(Q) = 1fo(Y) are both trivial, so 

And the fundamental group of Y is a split extension of 1f1 (Y) by a cyclic group 

C ::: Z/6: 

where the action of the cyclic group C = (g, w) on 1f1 (Y) is 

9 : Yi 1-+ (Yi)-l 

_ 1-+ - - 1-+ (y )-l(y )-1 (Y2.;)-1(Y2';_1)-1 1-+ Y2i-1 w : Y2i-1 Y2i' Y2i 2i 2i-1' • • 

for i > 1. 

By lemma 28 1f1 (S2n-1 / N) is cyclic of order 6; let z, v E 1f1 (1') be the images of 

generators of order 2 and 3 respectively under the injection 1fl (Po) -t 1fl (Y) induced 

by Po Y }'. Let Y1, ... ,Y2n be the images of Yl' ... 'Y2n under f· 1fl (} ') is generated 
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by Yl,·· ., Yn, Z and v. The generators z, v act by conjugation on the Yi as g. w' did 

on the Yi above. 

Now the path a represents z, that is Z = f(a). 

So since Z is of order 2, 

Yi f (Yi) 

f (a) f (bi) f (Ci) f[(gbi)-l] 

Z f (bi) f ( Ci) f ( bi) -1 

But this is a closed path in Y with base point f(xo) identified with gf(xo) in }': 

f(bi ) 
e-----1 

f(xo) 

In other words Yi is the composition of two closed paths z and ZYi with base point 

f(xo): 

Z 

gf(xo) 

1f1(Y) is generated by z, v and ZY1,"" ZY2n' But ZYi is just the generator f(Ci) 

Of1fl(Pi) = 1f1(lRp2n-1) moved to the base point f(xo). Hence 1fl(Y) is generated 

by the nontrivial elements of 1f 1 (Po) and 1f 1 (Pi). In effect the fundamental group 

coming from the torus has disappeared. 

Let (M, P) be one of the pairs (Mo, Po), (Mi' Pi) or (Mj, pj). We have the 

associated exact sequence: 

But 1f1 (M) = 1f1 (cpn-1) = 0 since n > 2. So 1f2(M, P) ~ 1f1 (P) is onto (and 

1f1 (M, P) = 0). By attaching the mapping cylinders we therefore kill off all genera­

tors of 1f1 (Y). The procedure cannot add to the fundamental group as 1f1 (J/. P) = o. 

so .. X is simply-connected. 0 
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The proof goes through for the case N = (±i), the only difference being that 

all the fixed points are now fixed by (±1) and the relations for 7rl (Y) are slightly 

different. 

COROLLARY 30. All generalised Kummer manifolds of the table in §6 are simply­

connected. 

-------PROOF. All are of the form TIN for N = (±i) or (±l,w). o 

8. Quotients of tori and S.S.Roan's results 

In sections 3 and 4 we took quotients of complex tori by the cyclic groups (±l, w) 

and (±1, ±i). This raises the question of which other cyclic groups arise as automor­

phisms of tori. The results we present here answer this question for cyclic groups 

N = (exp(27rild)) acting on the universal cover en of the torus as diagonal matrices 

exp(27rild) . Id, where Id is the identity matrix. The examples mentioned above are 

of this type. The second of Roan's theorems determines which of the TIN admit 

minimal resolutions (N as above). The material in this section can be found in 

Roan's paper of 1989 [56]. 

To state the result more conveniently, view T = en I L as a Lie group. Let 

8 E Hom(T) be a Lie group homomorphism. The cyclic groups mentioned above 

are then those with Lie derivative at the origin having equal eigenvalues, that is 

(d8)o = J-L. Id where J-L = exp(27rild). We denote the fixed point set of 8 by T e . 

THEOREM 31 (S.S.Roan). Let T be a complex torus and 8 E Hom(T) an order 

d homomorphism with (d8)o = J-L. Id and J-L = exp(27ri/d). Then d = 2,3,4 or 6 and 

d = 2,3 or 4 {::} ITel > 2 

d=6 {::} ITel=l 

So the cyclic groups acting on a torus with unique eigenvalue can have order 

at most 6. All such groups appeared as automorphisms of complex tori in our 

constructions of generalised Kummer manifolds in sections 3 and --1. Quotients of 

the tori by these cyclic groups yield isolated singularities of type en / (±l) (Kummer 

singularity) 1 cn/(w), cn/(±i) and cn/(±l,w). By the theorem aboY{' these are all 
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such singularities appearing in quotients of tori. A singularity of type en / (±l. ~') 

will always be unique (and at the origin) as in the construction of X.\24. 

To prove theorem 31 Roan constructs a homomorphism from the torus to an 

elliptic curve. He then uses the fact that elliptic curves only have automorphisms of 

order 2,3,4 and 6 and that those of order 6 have only the origin as fixed point. 

THEOREM 32 (S.S.Roan). Let T = en / L be a complex torus and 8 E Hom(T) 

an order d homomorphism with (d8) 0 = J..l • Id and J..l = exp (27ri / d) . If there is a 

minimal resolution of T / (8) then either n = d = 2 or n = d = 3. 

In other words the only quotients of complex tori by the cyclic groups of theorem 

31 admitting minimal resolutions are 2 and 3 dimensional tori having singularities 

e2 / (±1) and e2 / (w) respectively. The resolutions of these are the classical Kummer 

surfaces (ch.2 §2) and Calabi-Yau 3-folds [44]. In particular none of the quotients 

of tori (of dimension n > 4) of sections 3,4 and 5 have minimal desingularisations. 

Of course Roan's results do not rule out finding minimal resolutions of quotients 

by cyclic groups (8) where (d8)o has different eigenvalues. Such an example is given 

in Roan's paper [56]. 



CHAPTER 4 

The algebraic category 

Here we address the question of whether the manifolds discussed up to now 

are complex algebraic varieties. Indeed much of the literature deals with them as 

algebraic rather than analytic objects. However as we shall see the interesting cases 

from our point of view are not ruled out by this restriction. 

A complex structure on a lattice L turns out to be sufficient for the corresponding 

torus T = (Cn / L to be algebraic (i.e. an abelian variety). Then by general results all 

corresponding g.K.m. 's will also be algebraic. Making use of the GAGA principles 

(Serre [58]) results in the previous chapters will then apply to the algebraic category. 

For this we shall be making use of the category of complex analytic spaces which 

includes singular spaces as well as the usual complex manifolds. 

We end the chapter with a discussion of the canonical bundles of the manifolds 

and how these affect their automorphism groups. Let us start by introducing abelian 

varieties along with the machinery and results needed in this chapter. We follow the 

exposition of Lange and Birkenhake [40], an excellent reference for this topic. 

1. Abelian and Kummer varieties 

Notation. In this chapter only we use L to denote a line bundle and A a 2n 

dimensional lattice. This is to be consistent with references we make. V denotes a 

complex vector space of dimension n. 

An abelian variety is a complex torus T = V / A of complex dimension n together 

with a (holomorphic) positive definite line bundle L -t T, also called a polarisation. 

Such a line bundle is ample, i.e. Lm defines an analytic embedding I.{JLm of T into 

projective space for some m > 1, giving T the structure of an algebraic variety by 

Chow's theorem (see [28] and §3). 

The singular Kummer variety associated to T is the quotient 

KA = T/{±l) 

80 
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where (±1) is the Z/2-action on T, sending x to its inverse in the torus group. K.\ is 

also an algebraic variety of dimension n, but with 22n singular points corresponding 

to the points of order 2 on T under the natural map 

Generalised Kummer varieties are defined in the obvious way as algebraic versions 

of those in chapter 3. If L is a particular kind of polarisation, namely an irreducible 

principle polarisation, then the embedding 'PL2 corresponding to the tensor of L with 

itself induces an embedding 'ljJ of KA into Cp2n 
-1. Indeed the following diagram 

commutes 

KA KA 

Before proceeding any further we must examine in more detail this idea of a polari-

sation as it will be essential in what follows. 

First note that strictly speaking the map induced by the line bundle L -t T 

above only depends on the first Chern class of the bundle. Also the first Chern 

class has a nice interpretation as an alternating form. Indeed there is a canonical 

isomorphism 

between the second cohomology group of the torus with integer coefficients and the 

alternating integer-valued 2-forms on the lattice A. By linear expansion we can also 

view the Chern class as an alternating form E : V x V -t JR. We can give a precise 

condition for such an alternating form E to be the Chern class of some holomorphic 

line bundle. Indeed the following are equivalent 

(1) there is a holomorphic line bundle such that C1 (L) = E under t he above iso­

morphism 

(2) E(A,A) C Z and E(iv,iw) = E(v,w) for all v,w E V 

Finally there is a 1 - 1 correspondence between the alternating forms E on \" sat­

isfying the second part of condition (2) and the hermitian forms H on \". This 
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correspondence is given by 

H(v, w) = E(iv, w) + iE(v, w) 

82 

Denote by NS(T) the Neron-Severi group of T, defined as the image of the first 

Chern class map 

where OT is the sheaf of non-zero holomorphic functions on T. Recall that HI ( .. \:, Ox) 

is isomorphic to the group of line bundles on a complex manifold X ([28], p.133). 

So we have 

PROPOSITION 33. We can view NS(T) as either 

(A) the group of hermitian forms H on V satisfying ImH(A, A) CZar 

(B) the group of alternating forms E on V satisfying both 

E(A, A) C Z and E(iv, iw) = E(v, w) for all v, w E v. 

Returning now to the idea of a polarisation on the torus T, let us recall how 

a holomorphic line bundle induces a map into projective space (this holds for any 

manifold X). Simply pick a basis vo ... ,Vn of HO(L) = HO(X, O(L)), the space of 

holomorphic sections of L, and define 

'PL : X ---+ cpn 

by 

'P L (x) = (vo (x) : ... : Vn (x)) 

Of course this map is only defined if for any point x E X there is a section s of L not 

vanishing at x. This is equivalent to the linear system ILl = {(s)ls E HO(L)} having 

no base points. We now ask the question of whether this map is an embedding of 

the manifold into projective space. 

Returning to the tori, recall that a line bundle L on a torus T is said to be ample 

if cP Lm is an embedding for some m > 1. As mentioned earlier a polarization of a 

torus T consists of a positive definite line bundle L on T, that is a line bundle whosp 

first chern class Cl (L) = H is a positive definite hermitian form. 

PROPOSITION 34. L is ample {:=:} L is positive definite 



1. ABELIAN AND KUMMER VARIETIES 
83 

Let us now examine the map <fJL in more detail. Choosing an appropriate basis 

for the lattice A the symplectic form E is given by a matrix 

where D = diag( d1 , ... ,dn ) is a diagonal n x n matrix with integer entries. Such 

a basis is called a symplectic basis of A while (d1 ,. . . ,dn ) is called the type of the 

polarization. A principal polarization of some torus T is a polarization of t~'pe 
(1, ... ,1). 

Denote by h ° (L) the dimension of HO (L ), and by P f (E) the Pfaffian of the 

alternating form E. Recall that P f(E) = det D = d
1 
... d

n
. 

PROPOSITION 35. For any positive definite line bundle L, hO(L) = P f(E) 

Hence given a positive definite line bundle L on some torus T and using the 

notation introduced above, <fJL is a map 

<fJL : T -t CpP f(E)-1 

into projective space of dimension (d1 •.. dn ) - 1. It remains to determine when <fJL 

is an embedding. The main result is that of Lefschetz: 

THEOREM 36. Let L be a polarisation of type (d1 .•• dn ) with d1 > 3. Then <fJL 

is an embedding. 

Noting that C1 (L1 ® L 2 ) 

alternating forms this implies: 

COROLLARY 37. For any positive definite line bundle L on T, <fJLm is an embed­

ding for m > 3. 

1.1. Riemann Conditions. It remains to determine when a gin'Il complex 

torus T admits a positive definite line bundle, leading to an embedding of T and 

the associated Kummer manifold as algebraic varieties. The Riemann conditions are 

necessary and sufficient conditions for this to be the case. 

First we define the period matrix II of a complex torus T = '"j.\ of dimension 

n. Pick a basis B = {VI .... ,vn } of ,T and a basis AI, . " . A2n of .\. Exprpssing t IH' 
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basis of A in terms of B, say Aj = (Al,j, ... ,An,j), and arranging them in a matrix 

we define the period matrix II of T as 

II= 

The real lattice A C ]R2n embeds in V = en via the usual identification }R2 - c. 
Note that the period matrix depends on the basis picked for V and that only as 

a pair do they determine the lattice in en. There are several formulations of the 

Riemann conditions. The most common is 

THEOREM 38 (Riemann conditions I). A complex torus T with period matrix IT 

is an abelian variety if and only if there is an integral skew-symmetric n x n matrix 

Q such that 

(i) IIQ-l IIT = 0 

(ii) iIIQ-l IIT is positive definite 

Here II denotes the complex conjugate of II. 

For our computations the following restatement of the conditions will also prove 

helpful. Griffiths and Harris [28] give a detailed account of the various formulations 

and their equivalence. 

THEOREM 39 (Riemann conditions II). A complex torus T = V / A is an abelian 

variety if and only if for some choice of basis for V and A the period matrix takes 

the form 

II=(~ , Z) 

where 

~= 

is a n x n diagonal matrix with integer entries and Z is a n x n symmetTl(, matrix 

with imaginary part ImZ positive definite. 
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In fact this immediately produces the polarisation of T, since 

85 

is the matrix of the alternating form corresponding to the first Chern class. In 

particular (61, ... ,6n ) is the type of the polarisation. 

Note that deducing the second form of the theorem from the first simply involn's 

picking a symplectic basis of A and modifying the two conditions. In particular the 

skew-symmetric matrix Q becomes the same E above. 

2. Tori from complex integral lattices 

The vast majority of tori are not abelian varieties. We now turn to some of the 

tori come across so far and show that they satisfy the Riemann conditions. 

2.1. The lattice of Hurwitz integral quaternions D4. Recall from ch.2 §2 

that D4 is the densest 4-dimensionallattice and that the associated Kummer surface 

has (symplectic) automorphism group 24 ~ A4 . A period matrix for D4 is 

p= [~ 
N ow taking the alternating matrix 

one can easily check that both 

i 01/2+i/2] 

o 1 1/2 + i/2 

1 5 

1 -4 

o 1 

-1 0 

(i) PQ-1 p T = 0 and (ii) iPQ-1 pT is positive definite 

Hence Q satisfies the first statement of the Riemann conditions laid out above. It 

follows that the torus ([2/D4 is an abelian variety (or equivalently that it is algebraic: 

see the next section on the analytic and algebraic categories). In particular this 

Kummer surface may be one of Mukai's K3-surfaces in theorem 20. The matrix Q 

was obtained by taking a general 4 x 4 skew-symmetric matrix and turning t lw two 

conditions (i) and (ii) above into conditions on the coefficients. Thesp \\,prf' then 

silnplified and it became an easy task picking integers satisf~'ing the equat iOBS. 



2. TORI FROM COMPLEX INTEGRAL LATTICES 86 

2.2. The integral lattices E6 , E8 , K12 , A24 • One encounters obvious difficulties 

in applying the method used for D4 to higher dimensional lattices due simply to the 

greater number of variables and bigger matrices involved. However the second form 

of the Riemann conditions stated above proves fruitful for complex lattices. The 

method employed here consists in finding an appropriate basis for en and the lattice 

(the basis of the lattice given in terms of the basis of en) for the period matrix to 

take on the required form. For details on the lattices we refer to chapter 1. 

THEOREM 40. A complex torus en I A is an abelian variety if the lattice A admits 

a complex structure. 

First recall from ch.2 §1 that by a complex lattice we mean a lattice over the 

Gaussian or Eisenstein integers, that is the Z[i] or Z[w] span of a complex basis 

{VI, ... ,vn } of V. A is said to admit a complex structure if there is a complex 

lattice Ac with underlying real lattice A (identifying en and lR2n as usual). 

PROOF. Since A admits a complex structure we can pick a basis {VI, ... , vn } of 

A over J, where J = Z[i] or Z[w]. The real basis for the underlying real lattice 

can be taken as B = {VI' ... ' Vn , gVI, . .. ,gvn } where 9 = i or w (gVi E A since 

by assumption A has a 9 symmetry, and the set is linearly independent over lR 

since {VI, ... , Vn } are complex linearly independent). But now take {VI, ... , Vn } as 

complex basis of V. The period matrix w.r.t. the basis B of A above takes the form 

(Id, 9 ·Id) 

where Id is the n x n identity matrix. But 9 . Id is symmetric and with Im(g) = 1 

or -/3/2 clearly also has imaginary part Im(g ·Id) positive definite. Hence by the 

second version of the Riemann relations the torus en I A is an abelian yariety. 0 

The proof tells us more - all complex lattices admit a principal polarisation, that is 

one of type (1, ... , 1). 

COROLLARY 41. ((:3/E6' C4 lEg, ~ IKI2 and ((:12/.\"24 are all abelian varid/f's, 

as are all the tori used to construct generalised Kummer manifolds in chap! cr 3. 
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PROOF. E6 as Eisenstein lattice has generator matrix 

() 0 0 

o () 0 
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where () = w - w = A (see Conway and Sloane [13], p.126). For E8 also see [13] 

and for the Leech lattice A24 [13]. More elegantly, the above three lattices all appear 

in the chain of complex laminated Z[w]-lattices, as shown in [15]. Finally K12 has 

generator matrix 

2 0 0 0 0 0 

0 2 0 0 0 0 

0 0 2 0 0 0 

1 w w 1 0 0 

w 1 w 0 1 0 

w w 1 0 0 1 

as Eisenstein matrix. (see Conway and Sloane [13], p.128 and [14] for more details). 

Finally the tori in chapter 3 not mentioned so far are tensors of integral lattices 

with the rings [; and g, so are complex lattices by construction. o 

For completeness D4 is also a complex Z[w]-lattice (see ch.l §1.6) and so admits a 

principal polarisation. 

So according to corollary 37 the tori C2/D4' C3/E6, (C4 /E8, C6/K12 and C12 /.\'2..1 

all admit an analytic embedding into projective space. In fact since the polarisations 

are all principal these give embeddings into Cp8, Cp26, Cp80, Cp728 and CP3
12

_1 = 

Cp531440 respectively! 

3. Complex analytic and algebraic categories 

Serre's paper [58] gives a clear account of this material. See also appendix .-\ 

In Lange & Birkenhake [40] and Griffiths and Harris [28]. Now recall that one 

can associate a complex analytic space ~\h to any algebraic variet~· X o\"('r C. The 

map is functorial where the morphisms in the two categories an' regular maps and 

holomorphic maps respectively. A non-singular complex analytic spa('(l ('OIT(,Spoll<iS 
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to the usual idea of complex manifold. A complex analytic space Y is said to be 

algebraic if there is an algebraic variety X such that Xh ~ Y. 

THEOREM 42 (Chow). An analytic subspace of projective space is algebraic. 

And indeed in this case the hoi om orphic maps in the analytic category are regular 

maps in the algebraic category. 

So by Chow's theorem tori are abelian varieties if and only if they are algebraic 

varieties. Before examining Kummer and generalised Kummer varieties we need a 

result on group actions (see Cart an [10]). A group G is said to act properly and 

discontinuously on a topological space X if 

(a) if Xl and X2 are not congruent modulo G there are neighbourhoods AI, .--b of 

Xl, X2 respectively such that gAl n gA2 = 0 for all g E G 

(b) for all X E X the isotropy group Gx is finite and there is a neighbourhood A of 

X stable under Gx such that if gs E A for sEA, 9 E G then g E Gx . 

THEOREM 43. Let X be an analytic space and G a group of automorphisms of 

X acting properly and discontinuously. Then X / G is also an analytic space. 

Finite group actions always satisfy conditions (a) and (b), so in particular the 

Kummer involution (±1) and other cyclic groups (w), (±i), (±1, w) act properly 

and discontinuously on tori. Then by the above theorem all generalised Kummer 

orbifolds T / N where N is one of the cyclic groups above, are complex analytic spaces. 

Their automorphism groups as complex analytic spaces are those constructed In 

previous sections. 

Furthermore, if the torus is an abelian variety then the resulting generalised 

Kummer manifolds are also algebraic: the blow-up of the abelian variety remains 

algebraic and the quotient by the cyclic group also does (see Griffiths and Harris 

[28] p.192). 

THEOREM 44. All manifolds in the tables of ch.2 §3.4 and ch.3 §6 are alge­

braic varieties with algebraic actions of the corresponding groups (groups of b'ingu/ar 

maps). 
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4. The canonical bundles 

Although the results of this section are inconclusive we include it to illustrate 

the methods involved. The motivation behind these calculations is this following 

theorem [38], p.82. Recall that Aut(M) denotes all holomorphic transformations of 

M. 

THEOREM 45. If M is a compact complex manifold with ample canonical bundle 

then Aut(M) is finite. 

--Let ()" : Mp ~ M be the blow-up of an n-dimensional manifold at a smooth point 

p E M and E rv cpn-l the exceptional divisor. Then 

If p is a singular point of type en / ( ()) where () = f.-L • Id, f.-L = exp (27ri / d) and 1'4/ (()) 
is the resolution described in chapter 3 then the corresponding formula is 

(for both these formulas see Hiibsch [33], p.115 and Griffiths and Harris [28]). 

[EJIE is the universal bundle £ ~ cpn-l ([28], p.185) so in particular is not 

ample (the dual hyperplane bundle H ~ cpn-l is ample). For a torus T, Kr = 0 is 

the trivial bundle. Apart from the 2-dimensional case n > d. The canonical bundle 

of the resolved torus is obtained by applying the second formula for each singularity 

successively. This amounts to adding a power of £n-d for each type of singularity. 

We illustrate this with two typical examples. 

For a Kummer surface K = K T , 

o 

And K has trivial canonical bundle. 

As in the construction of .\1\24 (ch.3 §3), let .\ be the resolution of T / (± 1. v.;) 

where T is an n-dimensional torus (n > 6). Denote b~' mI- m2 t he number of 
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singulari ties of type C!' / (w), C!' / (± 1). Then 

ICx (J* ICT ® £,n-6 ® £,m1(n-3) ® £,m2 (n-2) 

£,n-6 ® £,m1(n-3) ® £,m2 (n-2) 
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But £, is not ample and these are all positive powers as n > 6, so ICx is not ample. 

In particular theorem 45 cannot be applied. 

However we knew this would be the case. There is an infinite number of holo­

morphic transformations coming from the torus : all act on the quotient space and 

on the equivariant blow-up. Only when we restrict to isometries does the group 

become finite. 



CHAPTER 5 

Automorphisms of toric varieties 

In this chapter we examine constructions of another type of variety involving 

lattices, namely toric varieties. A toric variety is determined by a lattice in ]Rn and 

a set of cones spanned by vectors of the lattice (as explained in ch.I §5). Properties 

of the varieties appear in the combinatorics of the cones. 

We examine the toric varieties obtained from standard lattices discussed so far 

with natural cone decompositions, and observe how properties of the lattices are 

reflected in the geometry and symmetries of these spaces. 

The toric varieties associated to root lattices are dealt with in §3 and §4. These 

appear in the study of symmetric toric fano varieties [62][19]. We are interested in 

their symmetries and make use of Demazure's structure theorem (§I) to determine 

their automorphism groups. §5 shows how these naturally lead to toric "geometric 

realisations" of some Niemeier lattices. We use this term as the toric varieties 

constructed reflect many of the properties of these Niemeier lattices in a natural 

way. 

We start by stating Demazure's theorem in the appropriate form for our purposes. 

1. Demazure's structure theorem 

Let X = X(~, N) be a complete nonsingular toric variety. Demazure gives a 

description of the automorphism group Aut(X) of algebraic morphisms of .X. The 

finite group Aut(N,~) of isomorphisms of the fan (together with the action of the 

torus TN) are precisely those commuting with the torus action as explained in eh.I 

§5. One starts by associating to the fan a root system R(~, N) in the following \\·a~·. 

Denote by ~(I) the set of cones in ~ of dimension 1. and by ~1Tlill the elements of 

N of minimal length along all x E ~(I). Then define R(~, ~V) C JI as 

R(~,N) = {a E AI: :3po E ~11lin S.t. (n.po) = 1 and (a,p) < 0 Vp E ~mln'P 1= Po}· 
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We now state the principal theorem in this area. For more details see Oda's book [52] 

and the orginal paper [20]. Let AutO(X) be the connected component of Aut(_Y). 

and split R(~, N) as 

Rs(~,N) = R(~,N) n (-R(~,N)), Ru(~,N) = R(~,N)\Rs(!:1,N). 

Finally W(N,~) is the subgroup of Aut(N,~) generated by the elements Wo. : ~y ---* 

N 

THEOREM 46 (Demazure's Structure Theorem). Let X = X(~, N) be a com­

plete nonsingular toric variety. Then Aut(X) is a linear algebraic group with the 

following properties: 

(1) TN is a maximal algebraic torus in Aut(X). R(!1, N) is the root system of 

AutO(X) w.r.t. the maximal algebraic torus TN 

(2) the reductive Levi subgroup Gs of AutO(X) = Gu ~ Gs (where Gu is the unipotent 

radical) has root system Rs(!1, N) and simple components of type A. 

(3) W(N,~) coincides with the Weyl group of Gs and 

Aut(X)/ AutO(X) ~ Aut(N, !1)/W(N,~) 

2. A motivating example - the octahedron 

Let P be the octahedron with vertices (±1, 0, 0), (0, ±1, 0), (0,0, ±1) in Z3. Let 

~p be the fan with cones spanned by the proper faces of P and X p = X(!1 p , Z3) the 

associated variety. The symmetry group of the octahedron is often denoted [4.3]: 

[4, 3] ~ 2 X 84 

This coincides with Aut(Z3, fl.p). 

We give another description of the situation. View P in the root lattice 3A1 . The 

top dimensional cones are then fundamental domains of the \\Teyl group \ Y (:3:\ 1)' 

The root lattice has automorphism group 
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This group coincides with the description of [4,3] given above: where the 2 is the 

diagonal in 23 . 

We generalise this to other root lattices. 

3. Toric varieties from root lattices 

We apply Demazure's theorem to some particular fans for which the root system 

is empty, hence determining the automorphism groups of the associated complex 

manifolds. §3.1 and §3.2 examine examples we will be using in §5. 

PROPOSITION 47. Let (N, ~) be a complete fan such that for any element a E JI 

there are at least two elements x, y E ~min forming an angle of less than 90 degrees 

with a {i. e. with strictly positive inner product}. Then R(N,~) = f/J and 

Aut(X(~, N)) = TN X Aut(N, ~). 

PROOF. The proposition follows easily from Demazure, since the empty root 

system corresponds to the maximal torus TN, and clearly W (N, ~) is trivial. The 

sum is a direct sum as Aut(N,~) consists of those morphisms commuting with TN 

and both are subgroups of automorphisms. D 

Let R be an n-dimensional root lattice and <I> its set of roots. 

DEFINITION 12. Define ~w = ~W(R) to be the fan whose top dimensional cones 

are fundamental domains of the Weyl group W(R). 

These top dimensional cones are n-simplices whose geometry is specified by the 

usual Dynkin diagrams: the nodes correspond to the walls of the simplex and the 

edges determine their angles of intersection. (From now on we omit R = zn 1 similar 

to nA I for the purposes of this chapter). We now show that the fan is defined ill 

the dual root lattice R* and is nonsingular. 

LEMMA 48. Let R be an n-dimensional root lattice. The 1-dimensional faces 

{edges} of the fundamental simplex of the Weyl group W(R) are each spanned by a 

vector of R*. 

PROOF. An edge E is the intersection of n - 1 of the h~·perplanes perpendicular 

to the simple generators S = {VI, .... l!n} of R. Let D be the fundamental domain 
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of the Weyl group corresponding to the simple system S. Let x be a \"ector in E. 

Then x has inner product x . Vi = 0 with the given n - 1 simple roots~ and sa~· 

x . Vk = t say, with the remaining simple root Vk. Under our convention t > 0 as 

xED (and x . Vi = 0 for all other simple roots Vi). But then y = xlt E E now has 

inner product 1 with Vk and still inner product 0 with the remaining generators. So 

y . R E Z by linear expansion and y E R*. 0 

Hence the fan defined is indeed in the lattice R*. We now show that the resulting 

variety is nonsingular. 

LEMMA 49. The vectors WI, . .. , Wn E R* spanning a fundamental simplex of the 

Weyl group W(R) generate R*. 

PROOF. Again ReV is a root lattice generated by a simple system S = 

{VI, . .. , vn }. Let B = {b1 , . .. , bn } be the vectors obtained by applying the above 

lemma to each edge of the fundamental simplex in V*. Then by construction B is 

the basis of V* dual to S. Let y E R*. Then y = 0:1 b1 + ... + O:n bn where O:i E !R. 

But 

and by definition Vi . Y E Z (since Vi E R). Hence O:i E Z and any element y E R* is 

a Z-linear combination of B. o 

The toric variety X(~w, R*) associated to the fan defined above is hence nonsingular 

and also clearly complete (see lemmas 3 and 1). Before proceeding any further w(' 

recall in a lemma some well-known facts about a lattice and its dual. 

LEMMA 50. For any lattice L C !Rn
, 

(aJ (L*)* = L 

(bJ Aut(L*) = Aut(L). 

PROOF. Let Q be a generator matrix for L. Then P = (Q-1)T is a generator 

matrix for L* (see Conway and Sloane [13]'p.11). (a) clearly holds since (P-1)T = Q. 

For (b) recall B E Aut (L) if and only if there is an integral matrix U with d pt C = ± 1 

such that UQ = QB ([13] p.90). 

(U- 1)T(Q-1)T = (Q-1)T(B-1)T 
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So {(B-I)T : B E Aut(L)} is isomorphic to Aut(L) and Aut(L) < Aut(L*). The 

converse clearly holds also and Aut(L) = Aut(L*). o 

We now show that for a root lattice R containing no irreducible component of 

type AI, (~w, R*) satisfies the hypothesis of proposition 47 (we examine the case 

R = Al separately). First by (a) of the above lemma M is the root lattice R . . Y 

being of course R*. Vertices of a typical fundamental simplex for R = An (n > 

1), Dn (n > 3), E6 , E7 , Eg (in ~min C R*) are given in the table pp.460-61 of Conway 

and Sloane [13] (omitting the origin vertex). One can easily check that all inner 

products among the edges are strictly positive. Now suppose x E 1\/ = R. Then 

xED for some fundamental domain D, and x has positive inner product with all 

the edges of D. If Al is not among the components then corollary 47 can be applied. 

Hence we have proved 

PROPOSITION 51. Let R be a root lattice containing no irreducible component 

of type Al and ~w the fan in R* consisting of the Weyl chambers and their faces. 

Then 

Aut(X(~w, R*)) = TR * x Aut(R*, ~w). 

By (b) of the above lemma Aut(R*) = Aut(R). As we shall now see this group 

coincides with the group Aut(R*, ~w) of fan maps and hence acts on the manifold 

X(~w, R*). Recall the nice description of the automorphism group of a root lattice, 

namely Aut(R) = W ~ G where W = W(R) is the Weyl group of Rand G = G(R) 

the graph automorphisms of the associated Dynkin diagram. 

PROPOSITION 52. For any root lattice R, 

Aut(R*, ~w) = Aut(R) = W(R) ~ G(R). 

PROOF. We must show that the group automorphisms 'P : R* --+ R* preserving 

the fan (not a priori distance preserving) form the group Aut(R) = \Y ~ G of lattice 

automorphisms. 

Fix a simple system S = {VI, ... ,Vn } C R of the root system <P of R. The walls 

of the corresponding Weyl chamber D are then the hyperplanes v;. 
Since the top-dimensional cones in ~w are fundamental domains of the ad ion 

of the Weyl group W, w E W clearly acts on the fan. so \Y(R) < Aut(R*, ~\\'). 
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Let <p E Aut(R*, ~w). Since I.p preserves the cones, I.pS = {YVl~.'" yL'n} is 

also a simple system and determines a cone I.pD in ~w. The \Veyl group \Y acts 

simply transitively on the simple systems (and chambers), so there exists a unique 

W E W such that {WVI, ... , wvn } = {I.pVl, ... , I.pvn } as sets. In other words the 

simple systems I.pS and wS are the same and the maps I.p, W : R --+ R only differ 

by a permutation. To prove the proposition it remains to show that only those 

permutations preserving distances are automorphisms of the fan. 

Let, be a permutation of the simple system S. The action of , extends to 

R by linear expansion. If, is in O(n) then, E G < Aut(R) and acts on ~\\" 

(since it preserves the roots <P and maps simple system to simple system). Hence 

G < Aut(R*, ~w). 

Conversely now. In the Dynkin diagram of S, two roots Vi and Vj have either 

inner product -lor O. In the first case Vi + Vj is also a root. Suppose, did not 

preserve the angle between Vi and Vj. Then Vi . Vj =i ,Vi' ,Vj and ,(Vi + Vj) is 

no longer a root. Similarly for Vi . Vj = 0: Vi + Vj is not a root, but if the inner 

product changed to -1 under " then ,(Vi + Vj) E <P. In both cases the fan ~w is 

not preserved. 

Hence only those permutations of S preserving the Dynkin graph are automor-

ph isms of the fan and Aut(R*, ~w) = Aut(R) = W ~ G. o 

Combining propositions 51 and 52 we have proved: 

THEOREM 53. For R and ~w as in proposition 51, 

Aut(X(~w, R*)) = TR* x Aut(R) = TR* x (W(R) ~ G(R)) 

One can give a nice geometrical feeling to this result. Indeed one can View 

a toric variety as a thickened up version of the polygon determined by the fan, 

where each face is extended to an affine variety. The theorem then tells us that 

the automorphisms of this variety are the combinatorial symmetries of the polygon 

together with the action of the torus on each separate affine part. 

Let us make a remark about automorphisms of a general fan ~ in a lattice L. 

These are the linear isomorphisms (bijections) L --+ L preserving the cones in ~. 

In particular these need not be distance preserving as automorphisms of a lattin'. 

although they coincide in theorem 53 above. Of course all the linear isomorphisms 
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of L form the group GL(n, Z), and potentially any of these could preserye the fan. 

Aut(N,~) < GL(n, Z) is however finite as the number of edges in ~ is also finite. 

3.1. R = A2 .. As an easy example, take the root system A2~ together ,,·ith the 

minimal vectors of its dual A2: 

The longer vectors are the roots of A2 , the shorter ones the minimal vectors of 

A2. The plane is tiled by the 6 fundamental simplices of the Weyl group spanned 

by the minimal vectors of the dual. In this case one could take the cones spanned 

by the roots of A2 and obtain the same fan, but this does not work in general. The 

toric variety X := X(~w, A2) is in fact projective space Cp2 blown up at three 

points, as can be seen by starting with the fan 

The 3 top dimensional cones are the three parts of the affine covering of Cp2. Adding 

the negatives of the three vectors corresponds to a blow-up in each of t h('s('. yiE'lding 
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the fan ~w below: 

By theorem 53, 

As expained in the introduction on toric geometry (ch.1 §5.2), several interesting 

invariants of the resulting manifold X can easily be computed from the fan. First 

the Betti numbers bm . Denoting by di the number of cones of dimension i in the 

fan, we have for this example do = 1, d1 = 6, d2 = 6. Then the odd Betti numbers 

are 0 and for m = 2k, 

yielding bo = 1, b2 = 4, b4 = 1. So the Euler charateristic is X(X) = 6 (also equals 

the number of top dimensional cones). Now turning to the intersection form on the 

middle cohomology we already know the lattice has rank 4 and is indefinite since the 

exceptional divisor of the 3 blow-ups has opposite orientation to that of the original 

CP2. For an arbitrary nonsingular compact toric variety the signature T(X) is 

n 

T(X) = 2:( -2)idn _ i. 
i=O 

So in this case we have T(X) = -2 and by the classification of indefinite quadratic 

forms the middle cohomology is the lattice 

(1) EB (-1) EB (-1) EB (-1). 

The fundamental group of X is trivial as for all these examples (see ch.l §5.2). 

For larger root lattices one is faced with the extra task of counting t he number 

of cones in each dimension. We now work through the case R = D4 · 
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3.2. R = D4· Let X = X(~w, D:) and W = W(D4) be the \Yeyl group. First 

since the 4-dimensional cones are fundamental domains of the \Yeyl group. clearly 

d4 = IW(D4) I = 192. Also do = 1 as always. To determine the number of L 2 

and 3-dimensional cones we use the action of the Weyl group and work out the 

appropriate stabilisers (parabolic subgroups). First recall that for a finite group G 

permuting a finite set of objects 0, in our case the Weyl group acting on the faces 

of a given dimension, we have 

where x E 0, ex is the orbit of x under e, and ex is the stabiliser of x in G. Let 

us start with the I-dimensional cones of the fan. These are the edges of the \Vt'yl 

chambers, and correspond to the intersection of 3 of the 4 hyperplanes determined 

by a simple system of D4. The Weyl group is transitive on the simplices and 2 edges 

of a given simplex are not in the same orbit of W, so the number of edges is 

where Xl,' .. , X4 span a Weyl chamber of W. The stabiliser of an edge x is generated 

by the reflections in the 3 walls whose intersection is x. The Dynkin diagram allows 

for a nice description of the situation (as already mentioned the nodes correspond to 

the walls of the simplex and the graph edges determine the angles of intersection). 

The 4 edges {Xl, . .. , X4} correspond to the 4 choices of three nodes in the Dynkin 

diagram of D 4 (shown below), and reflections in the hyperplanes corresponding to 

the nodes generate the stabiliser of that edge. 

Dynkin diagram D4 

Clearly 3 of the edges are of type A3: 

o~------~o~------o type (A3) 



3. TORIe VARIETIES FROM ROOT LATTICES 100 

and one is of type 3A 1: 

o o o 

The three edges of type (A3) have stabiliser W(A3) r-..J S4 of order 24, and the 

one of type (3A1) has stabiliser W(Al)3 ~ (Z/2)3 of order 8, yielding 

d1 = 3 . 192/24 + 192/8 = 48. 

In a similar fashion we can compute the number of 2 and 3-dimensional faces d2 and 

d3 : these are intersections of 2 of the walls of the simplex and the walls themselves 

respectively. In other words they correspond to subgraphs of the Dynkin diagram 

of one and two vertices respectively. Clearly the 4 walls are fixed only by reflection 

in themselves, while the 2-dimensional faces split into 3 of type (A2 ) and 3 of type 

(2A1) with stabilisers of order 6 and 4. 

d2 = 3 ·192/6 + 3·192/4 = 240, d3 = 4 ·192/2 = 384 

Summarising we have 

do = 1, d1 = 48, d2 = 240, d3 = 384, d4 = 192. 

Using the formula for the Betti numbers (ch.1 §5.2) one calculates 

bi = 0 (i odd), bo = 1, b2 = 44, b4 = 102, b6 = 44, bg = 1. 

The Euler characteristic is X(X) = d4 = 192 and the middle cohomology of S" is a 

lattice of rank 102 with signature 

(see ch.1 §5.2 for the formula). And again by the classification of indefinite' quadratic 

forms the intersection form of the manifold X is 

59(1) EB .13(-1). 
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As with all these constructions X is simply-connected as it contains at least one 

top-dimensional cone. Finally by theorem 53 X has automorphism group 

4. More fans in R* 

We construct a family of fans starting with a !J.w . These new fans will also admit 

an action of the Weyl group. Let D be a top dimensional cone in !J.w or equivalently 

a fundamental domain of the Weyl group W. The idea is to construct a new cone 

C by reflecting D in several of its walls and then generate the new fan by taking 

images of C under the Weyl group. 

So we start by reflecting the fundamental domain D in several of its walls, say 

So, . .. ,Sk E W. For W to preserve the new cone the image of D under all combi­

nations of these must be included. So letting W 0 < W be the parabolic subgroup 

generated by the reflections So, ... , Sk, define 

C={wF:WEWo}. 

One must of course check C remains a strongly convex cone (clearly not the case for 

W 0 = W, for which C = ]Rn). Define !J.~o to be the fan whose top dimensional cones 

are the images of C under the action of the Weyl group (W 0 fixing C of course): 

!J.~ 0 = {wC : w E W} U {all faces}. 

By construction these fans !J.~o admit an action of the Weyl group. As an easy 

example take R = A2 and Wo = W(Al) ~ Z/2 the parabolic subgroup generated 

by one of the two simple roots of A2. The fan !J.~o (already encountered in §3.1) is 

then: 

The associated variety is .. X" (~~ 0 
, A;) = Cp2 . 
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As this example illustrates proposition 47 no longer holds in general for fans 

(~~O, R*). For details on which subgroups Wo yield a fan see Yoskresenskii [62]. 

theorem 4. 

5. Fans in the Niemeier lattices 

Let R be an n-dimensional root lattice (not necessarily irreducible) and \Y = 

W(R) its Weyl group. In §3 we assigned a fan D..w to R. Say R splits into the 

irreducible components R = Rl EB ... EB Rm. Then W(R) = W(R1 ) x ... x \Y(Rm) 

and ~w is the product of the fans of the irreducible components (definition given 

in ch.l §5): 

~w = D..W(Rd x ... x D..W(Rm)· 

Also 

Let N be a Niemeier lattice and R the sublattice generated by its roots. Then 

since N is self-dual 

(2) R<N=N*<R* 

All four are equal only for N = R = 3Eg . Up to now the fans defined in sections 

3 and 4 and above have been fans in the dual root lattice R* (we denote D..w by 

(~w, R*) to emphasise this). These are clearly not in general in the Niemeier lattice 

by the relation (2) above. However in some of the most interesting cases 6D41 12A2 

and 24Al one can overcome this as the components are self-similar: 

For each of these root lattices L there is a constant eEL and isomorphism J.-L : cL -t 

L* , 

<p := J.-L 0 c : L -t L *. 

The fan (~w, L*) can then be pulled back from L* to L: 
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In this way we obtain fans 

and taking products (ch.l §5) one constructs 

The corresponding varieties are of course products of those defined in section 3: 

X(~w, 6D4) = X(~w, D:) x ... x X(~w, D:) (6 times) 

X(~w, 12A2) = X(~w, A;) x '" x X(~w, A;) (12 times) 

X(~w, 24A1) = X(~w, Ai) x ... x X(~w, Ai) (24 times) 
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Restrict R to one of 6D4 , 12A2 or 24A1 . Since R < N, ~w can be viewed as a 

fan in the associated Niemeier lattice N. The variety X(~w, N) is now singular as 

the vectors spanning a cone no longer generate the lattice but only the sublattice 

R < N. Recall from chapter 1 §5 that the singularities are quotient singularities 

C24 /G where G is the quotient of the lattice by the sublattice generated by the 

vectors spanning the cone. But N IRis precisely the gluecode so the singularities of 

X(~w, N) are of type C24 /G, where G < GL(24, C) is isomorphic to Goo. 

We will determine the groups Aut(N, ~w) for each case individually. Demazure's 

structure theorem can be generalised to non-compact toric varieties but not to non­

singular ones. As a consequence we are unable to determine the group of automor­

ph isms of the singular complex spaces X(~w, N). 

We now make use of theorem 5 due to Brylinski. His result states that any 

singular fan admitting an action of a finite group H has a non-singular subdivision 

also invariant under H. In other words the corresponding singular toric variety has 

a resolution whose fan automorphisms still include H. 

DEFINITION 13. Let N = N(24A1), N(12A2) or N(6D4)' Define (~N' N) to be 

any non-singular fan obtained from (~w, N) by Brylinski's algorithm [9] w. r. t. the 

finite group Aut(N, ~w). 

-----We have constructed a manifold X (~N' N) = .. X" (~w, N) for which Aut (JY. ~\\.) < 

Aut(N, ~N)' 
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We now examine the three cases R = 24AI, 12A2 and 6D4 in turn. To simplify 

notation we define Xw := X(~w, R), YN := X(~w, N) and X N := ..:\(~.I\" .Y). 

5.1. The Niemeier lattice (24AI)+. For the root lattice AI, the fan ~\\. is 

.. • 

And X(~w, AI) = Cpl. So the product fan (~w, 24Ad has associated yariety 

Xw := X(~w, 24AI) = Cpl x ... X Cpl (24 times). 

The connected component of the automorphism group is just the product of the 

connected components [1], p.31: 

AutO (Cpl ) X ... X AutO (Cpl ) (24 times) 

ITPGL(2,C) 
24 

The structure of Aut(Xw) now follows from Demazure (theorem 46). First W(24AI' ~\V) 

coincides with the Weyl group of n PGL(2, C), so 

W = W(24AI' ~w) = ITW(AI ) ~ 224 
24 

Also by proposition 52, 

Aut(24AI) contains all permutations of the simple roots in this case. By Demazure 

So finally 

Aut(Xw)j AutO (Xw) Aut(24AI, ~w )jW(24AI' ~w) 

(W(24AI) .S24) jW(24Ad 

Aut(Xw) = (IT PGL(2, C)).S24 
24 

Let N = (24AI)+. As 24AI C N, ~w is also a fan in N. The toric yari('t~· 

Y
N 

:= X(~w, N) is now an orbifold, that is YN has isolated quotient singularitif's. 

The fan has 224 top-dimensional cones [±V2el, ... ,±V2e24] where the ci's are thp 

standard generators of ]R24. As mentioned above each is an affine vari('t~· ((;24/G 

where G is a group of holomorphic transformations isomorphic to the glup code Gx · 
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Abstractly G is just the 2-group (Z/2)12. We identify G < GL(24, C) more precisely. 

First recall from ch.1 §1.4 that the gluecode Goo < 24Ai/24Al is the binary Golay 

code C24 C JB14 where 0, 1 E lF2 are identified with the glue vectors [0], [1] E A~ / AI' 

[0] is the trivial glue vector while [1] = (1/2, -1/2) is of index 2 in AI' So follmving 

the procedure of ch.1 §5, G < GL(24, C) is a group of 24 x 24 diagonal matrices and 

can be identified as a multiplicative version of the Golay code C24 : 

G = {diag(±l, ... ,±1): the minus signs are indexed by C24 }. 

Summarising, YN is a compact complex orbifold with 224 isolated singularities locally 

isomorphic to C24 /G where G < GL(24, C) is the finite abelian 2-group described 

above. YN is the quotient of the product of complex projective lines by the natural 

induced action of G: 

Y
N 

= X(Llw,24A 1) = Cpl x ... X Cpl 
G G 

A 24-dimensional cone in the fan (Llw, 24A1) corresponds to a subset U1 x· .. X U24 C 

CP 1 
X ... x CP 1 where the Ui ' s are one of the two affine parts of CP 1 . 

As already mentioned we cannot determine the automorphism group Aut(YN ) of 

the complex orbifold YN as Demazure's theorem does not apply to singular spaces. 

However we know the fan automorphisms preserved in the new fan (now in the 

Niemeier lattice): 

LEMMA 54. Aut(N, Llw) is the subgroup of Aut(24A1, Llw) sill acting on (Llw, N) 

and equals 

PROOF. The cones in (Llw, N) are the same as those in (Llw, 24A1), so the only 

extra requirement for a map of (Llw, 24A1) to preserve (Llw, N) is that the Niemeier 

lattice (24A1)+ be preserved. These are precisely the automorphisms of the Niemeier 

lattice. The lemma then follows from the properties of the Niemeier lattices in ch.l 

§1.4. o 

Applying Brylinski's algorithm we obtain a new fan (LlNl N) such that 

W(24Ar) ~ Ah4 < Aut(N, 6.N ) 
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where M24 is the Mathieu group. This group of course acts on the associated mani­

fold X(N, ~N). 

5.2. The Niemeier lattice (12A2)+. The toric variety X(~w: :\2) was dis­

cussed in detail in section 3.1 and is the complex projective plane cp2 blown-up at 

three points which we denote CP2. The product fan (~w, 12A2) = (~w, :\2) x ... x 

(~w, A2) then has associated variety 

Xw := X(~w, 12A2) = CP2 x ... X Cp2 (12 times) 

By proposition 52 and theorem 53, 

and 

Aut(Xw) 

Here 212.812 are the graph symmetries G(12A2) of the Dynkin diagram of 12A2. 

Let N = (12A2)+ be the corresponding Niemeier lattice. As 12A2 C N, ~w is 

also a fan in N. The associated toric variety YN = X(~w, N) is an orbifold with 

612 singularities, one for each top-dimensional cone. The singularities are of type 

C24 /G where G < GL(24, CC) is isomorphic to N/12A2. By construction N/12A2 is 

the ternary Golay code C12 C IFj2 with additive group structure (Z/3)6. Let 

(1 0) (w 0) (w 0) 
Ao = 0 1 ' Al = 0 W ' A2 = 0 W . 

Then G is the group of block diagonal 24 x 24 matrices: 

G = {diag(Ail' ... ,Ai12 ) : subscripts in C12 } 

G has a global action on X w restricting locally to that described above. 

X(~w, 12A2 ) CP2 x ... x CP2 
YN = G = G 

LEMMA 55. Aut(N, ~w) = W(12A2 ) ~ 2.I\II2 = SJ2 ~ 2.I\I12 
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PROOF. As for 24AI, a transformation of (~\\" N) is determined by its restric­

tion to the roots (generating 12A2). So Aut(N, fl.w) < Aut(12A2~ ~\\') is those linear 

maps also preserving N. The Weyl group preserves N. The subgroup of 212.S12 pre­

serving the Niemeier lattice is precisely the group G1 .G2 of automorphisms of .Y 

described in ch.1 §1.4 and isomorphic to 2.M12. The cyclic group consists in swap­

ping the glue vectors [1] and [2] in each component and the Mathieu group is the 

induced permutations of the components. o 

Again this variety can be resolved by Brylinski into a manifold X N admitting a 

torus equivariant action of 8j2 Xl 2.M12. 

5.3. The Niemeier lattice (6D4)+. The toric variety .. \'" = X(~\\'l D4) was 

discussed in § 3.2. 

Xw := X(fl.w, 6D4) = X x ... x X (6 times) 

By proposition 52 and theorem 53, 

and 

Aut(Xw) T6D4 x (W(6D4) Xl 8~ .86) 

,....., T6D4 x (23.84)6 Xl 8~ .86 . 

Here 8~ .86 is the symmetry group of the Dynkin diagram of 6D4· 

Let N = (6D4)+ be the associated Niemeier lattice. fl.w is a fan in Nand YN = 

X(fl.w, N) is an orbifold with 1926 singularities of type C24 /G where G < GL(2..t, C) 

is isomorphic to the group C6 ~ 26 (= 23 
X 23

). Let 

Ao= 

1 000 

o 1 0 0 

o 0 1 0 

000 1 

-1 0 0 0 

o -1 0 0 

o 0 1 0 

o 0 0 1 

1 000 

o -1 0 

001 

o 
o 

o 0 0 -1 

-1 0 0 0 

010 0 

o 0 1 0 

o 0 0 -1 
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Then G is the group of 24 x 24 matrices formed of block components Ai down the 

diagonal: 

G acts on Xw and 

YN = Xw/G = (X x ... x X)/G 

LEMMA 56. Aut(N, ~w) = W(6D4 ) ~ 3.86 

PROOF. Similar to that of lemma 55. o 

Resolving equivariantly we obtain a manifold X N admitting a holomorphic torus­

equivariant action of Aut(N, ~w) 



Summing-up 

Certainly the main achievement of this work is in bringing together several areas 

to study these manifolds and their properties. In other words examining generalised 

Kummer manifolds and toric varieties from the viewpoint of the lattice, and deter­

mining how well-known deep properties of the lattices are reflected in the associated 

spaces. The world of lattice theorists/finite simple group theorists seems to have 

remained surprisingly disjoint from that of the algebraic geometers working with 

toric or Kummer varieties (the exceptions appearing mainly to be physicists). As a 

consequence this thesis certainly poses as many questions as it answers and leaves 

open several promising lines of research, which we now discuss. 

Recall that to a complex algebraic curve of genus 9 one can associate an abelian 

variety of (real) dimension 29 called the jacobian of the curve. It would be inter­

esting to determine if for example the abelian variety ([12/ A24 was a jacobian and 

if so of which curve. One could then ask questions about the curve itself, such as 

determining its automorphism group. Can lattice theory somehow be reflected in 

curves via this connection ? For curves over finite fields some linking constructions 

do exist [49J. 

The most significant generalised Kummer manifold constructed is undoubtedly 

X A24 (ch.3) admitting an action of the Suzuki group. The possibly difficult problem 

left open in chapters 2 and 3 is establishing the entire automorphism group of the 

manifolds involved. In the example above, does in fact Aut (XA24 ) = Suz? In 

general the groups obtained are certainly all the distance preserving transformations 

inherited from the torus, but the question remains open. 

The toric constructions have proved more successful in this sense. where Oe­

mazure's theorem allows one to determine the exact automorphism group, at least 

of a non-singular variety. It is of no use for the singular spaces associatrd to til<' 

Niemeier lattices (Niemeier spaces) but would pin down the sYInmetries of aIl~' reso­

lution of these. The Niemeier spaces are pleasing by the simplicity of the construct ion 
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and the remark on bringing together two separate areas is no more true than in this 

context. An understanding of the lattices and toric geometry leads one naturally to 

consider them. As the next obvious step one asks if the Leech lattice giYes rise to 

some toric object. It seems the right framework for the answer could be described 

as toric schemes. These arise from similar toric decompositions of Lorentzian space 

this time with cones in a Lorentzian lattice (not discussed in this work). The Leech 

lattice appears as simple system of the reflections in roots of the (even unimodular) 

Lorentzian lattice 1125,1 (see f.eg. Borcherds [6]). 
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