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Abstract 

Meta-CASE tools offer the ability to specialise and customise diagram-based 

software modelling editors.  Constraints play a major role in these specialisation and 

customisation tasks.  However, constraint definition is complicated.  This thesis 

addresses the problem of constraint specification complexity in meta-CASE tools.  

Constraint Specification by Example (CSBE), a novel variant of Programming by 

Example, is proposed as a technique that can simplify and facilitate constraint 

specification in meta-CASE tools.  CSBE involves a user presenting visual examples 

of diagrams to the tool which engages in a synergistic interaction with the user, based 

on system inference and additional user input, to arrive at the user’s intended 

constraint. 

A prototype meta-CASE tool has been developed that incorporates CSBE.  

This prototype was used to perform several empirical studies to investigate the 

feasibility and potential advantages of CSBE.  An empirical study was conducted to 

evaluate the performance in terms of effectiveness, efficiency and user satisfaction of 

CSBE compared to a typical form-filling technique.  Results showed that users using 

CSBE correctly specified significantly more constraints and required less time to 

accomplish the task.  Users reported higher satisfaction when using CSBE.  A second 

empirical online study has been conducted with the aim of discovering the preference 

of participants for positive or negative natural language polarity when expressing 

constraints.  Results showed that subjects preferred positive constraint expression over 

negative expression.  A third empirical study aimed to discover the effect of example 

polarity (negative vs. positive) on the performance of CSBE.  A multi-polarity tool 

offering both positive and negative examples scored significantly higher correctness 

in a significantly shorter time to accomplish the task with a significantly higher user 

satisfaction compared to a tool offering only one example polarity.  A fourth 

empirical study examined user-based addition of new example types and inference 

rules into the CSBE technique.  Results demonstrated that users are able to add 

example types and that performance is improved when they do so. 

Overall, CSBE has been shown to be feasible and to offer potential advantages 

compared to other commonly-used constraint specification techniques. 
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1.1 Introduction 

This chapter introduces the research presented in this dissertation which aims 

to simplify and facilitate constraint specification in meta-CASE tools for the purpose 

of specifying a CASE tool with its associated modelling language.  The constraints 

introduced in this thesis consist of software engineering modelling language 

constraints such as those related to model element connections and cardinality.  

Specific examples of such constraints could be “It is not allowed to connect an Actor 

vertex with another Actor vertex using an Association edge type” and “It is not 

allowed to have more than one Start State vertex in a State Transition Diagram”.  

Such constraints specify the syntax and semantics of the software engineering 

modelling language. 

The chapter details the different dimensions of the problem including the 

importance of CASE tools, the role of meta-CASE tools and the problem of constraint 

specification in such tools.  It also proposes a solution based on a novel technique 

called Constraint Specification by Example.  In addition to setting the problem 

context, this chapter presents: 

 the aims and objectives of the research, 

 an outline of the approach followed to achieve them, 

 the contributions and achievements of this research in the problem context, and 

 a summary of the dissertation, including a figure and a table presenting the 

dissertation structure, contributions and achievements. 

1.2 Research Problem and its Context 

In the field of software engineering, Computer-Aided Software Engineering 

(CASE) tools for diagram-based modelling play a role in facilitating the work of 

software engineers.  CASE tools are helpful to software engineers in different ways at 

different software development stages (Henkel & Stirna, 2010).  By contrast, several 

authors such as Iivari, (1996) and Kelter, Monecke, & Schild, (2009) have reported a 

problem of CASE tool inflexibility due to their generality.  That is, generic tools don’t 
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provide modelling elements or structures tailored to the particular needs of particular 

software development domains or contexts of use. 

Consider the case of Domain Specific Languages (DSLs) that offer the ability 

to capture and model domain specific concepts that general languages cannot easily 

model (i.e., cannot capture the domain specific concepts) (Zschaler, Kolovos, 

Drivalos, Paige, & Rashid, 2010).  An example of such DSLs is the modelling 

language required to model an instance of a network that follows the ZigBee network 

protocol.  ZigBee defines the specification of the network layer that provides a 

framework to build applications in the application layer.  ZigBee specifies rules that 

control the relations between different components of the network which also affects 

the topology of the network.  To build a network depending on the ZigBee protocol, 

there is a need to follow the rules that it specifies.  Because of the limited availability 

of specialised modelling tools that capture the semantics of ZigBee-based network 

configurations, researchers at a UK university developing ZigBee-based sensor 

networks use general drawing tools and even “pin & paper” physical graphs to model 

their systems.  Clearly, a tailored modelling tool that captures the particular features 

and constraints of such networks would be desirable; in fact errors in the network 

specification have occurred because of the inadequacy of the modelling techniques.  

However, it is too costly for them to build an appropriate modelling tool or to have 

one built on their behalf1. 

In addition to the requirement of DSLs, in some cases, there is a need for local 

customisation of an existing tool.  This means that the required tool for modelling the 

required diagram exists but there is still a need for some customisation of diagrams to 

suit local conventions, for example.  One example of such modification in a diagram 

modelling tool could be the requirement of a Class Diagram editor to enforce starting 

the names of classes in the diagram with capital letters and starting the names of 

                                                 

 

1 Personal communication with Loughborough University research fellow. September, 2010. 
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variables with small letters.  C or C++ developers may require a tool that enforces an 

underscore prefixed to the names of class scope variables. 

More generally, although often potentially useful to the software developer, 

domain specific tools are not widely or commercially available because of their poor 

cost-benefit profile (Ledeczi et al., 2001).  That is, building domain specific tools is 

typically not cost effective given their limited context of use.  Meta-CASE tools have 

emerged as a potential solution to this problem.  Meta-CASE tools are tools that 

generate other tools (Gong, Scott, & Offen, 1997).  They can be used to increase the 

flexibility of modelling and to generate the required domain specific tools and their 

associated DSLs (or formalisms) with lower cost and effort (De Lara & Vangheluwe, 

2002).  Such meta-CASE tools specify and generate CASE tools via a meta-modelling 

process which uses a meta-modelling language and generates, simply, a meta-model 

with its associated constraints. 

In general, a modelling language can be specified by defining its vocabulary, 

syntax and semantics (Sommerville, Welland, & Beer, 1987) which is specified using 

a meta-modelling process.  Meta-modelling process is the process that generates the 

meta-model.  The meta-model is a composite of a model (could be a graphical meta-

model as in the case of MetaEdit+) and constraints.  The constraints are considered as 

an “important part of the metamodel” (Tolvanen, Pohjonen, & Kelly, 2007).  

However, some literature describes the constraints as additional information applied 

to the meta-model which is considered to be the diagram itself.  This is the case, for 

example, when Ledeczi et al. (2001) differentiate between the diagram itself and the 

constraints by stating that the meta-model describes the DSL and specifies its syntax 

but not its semantics which can only be specified using the constraints (Ledeczi et al., 

2001).  De Lara & Vangheluwe (2002) clarify that the constraints are important 

extensions for specifying the modelling formalism and the purpose of using the 

constraints is to limit the number of meaningful models.  Therefore, constraints have a 

vital role in modelling language specification through the meta-modelling process in 

meta-CASE tools. 

Constraint definition is a difficult, time-consuming and error prone task that 

needs experience in the domain to be specified and expertise in the constraint 

language or technique associated with the meta-CASE tool being used (Ali, Hosking, 
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Huh, & Grundy, 2009; Groher, Reder, & Egyed, 2010).  In addition to the previous 

documentation of this problem, the following argument shows that some empirical 

studies have been conducted to provide evidence of the difficulty of the constraint 

definition task.  

Ackermann (2005) states that using Object Constraint Language (OCL) for 

specifying behaviour of software components is a “time consuming and error-prone” 

task.  He refers to two case studies of using OCL in specifying business components.  

The results of these studies confirm that, although using OCL is useful for 

specification, “editing OCL constraints manually is nevertheless time consuming and 

error-prone”.  Costal, Gomez, Queralt, Raventos, & Teniente (2006) detail the same 

problem of editing formal constraint languages in general and they add in addition to 

the time consuming and error-prone problems that formal constraints are difficult to 

understand by non-technical readers and difficult to be treated automatically in CASE 

tools.  Fish, Hamie, & Howse (2010) introduce the same constraint specification 

problem of being time consuming and error-prone.  They justify the existence of this 

problem as “typical specifications may contain numerous constraints, which in 

addition often state complex facts about the elements of the component’s model”.  

Briand, Labiche, Di Penta, & Yan-Bondoc (2005) conducted a controlled experiment 

to evaluate the usefulness of OCL combined with UML diagrams.  The results 

indicated the difficulty of using OCL limits its usefulness  based on the “ability, 

experience, and training of software engineers” in using it.  Barr (2000) reported an 

empirical study which uncovered the difficulty of using OCL and constraint formal 

languages in general.  The difficulty is represented in the mistakes that the users made 

throughout the experimental task of specifying constraints using OCL.  Some of the 

problems that were documented and participated in the difficulty of OCL are 

“excessive complexity” and redundancy of OCL, “misunderstanding of OCL 

semantics”, “unclear issues in OCL semantics” and “insufficient semantical 

interconnections”. 

In the context of meta-CASE tools, Liu, Hosking, & Grundy (2007a) claim 

that “most want to avoid having to use textual scripting languages or programming 

language approach directly” for diagram editors behaviour specification including 

constraint specification.  This is an indication of such specification complexity.  In 
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another paper, Liu, Hosking, & Grundy (2007b) document that “an area that 

commonly proves difficult for meta-tool designers is the specification of model level 

behaviours, such as semantics, constraints, dependencies, element initialisations, 

calculations, etc.  Most approaches for model behaviour specifications use 

conventional code in the form of event handlers or constraint expressions”.  

Bergmann, et al. (2010) claim that the Eclipse Modelling Framework (EMF) utilises 

model queries including constraints for domain specific languages.  They include 

using OCL as an example of the model queries.  However, they also include a 

limitation of such model queries which is their complexity and time consuming 

nature.  They claim that this limitation is based on the industrial experience of the 

authors. 

In the context of drawing editors Alpert (1993) observes that layout constraints 

are useful in such editors but pointed out its complexity by stating that “the challenge 

remains of how to facilitate constraint specification”.  He introduced programming by 

demonstration as a solution for the constraint specification complexity problem and 

claimed that this technique is considered as “simple and natural”. 

Bimbo & Vicario (1995) see the problem in transforming the designer’s 

empirical understanding and experience of the domain specification to a textual 

abstract representation form.  The problem of the complexity of constraint definition 

has already been addressed by others.  Some approaches include using a general 

purpose programming language (e.g., Java) instead of a constraint programming 

language (Zhu, Grundy, & Hosking, 2004), using a visual programming language 

(Liu, Hosking, & Grundy, 2007a), or employing a spreadsheet-like interface (Li, 

Hosking, & Grundy, 2009) and the form-filling technique, found in some meta-CASE 

tools such as MetaBuilder (Gong, Scott, & Offen, 1997) and the commercial meta-

CASE tool MetaEdit+ (MetaCase, 2009). 

Nevertheless, constraint definition remains a research challenge.  The 

solutions described above require that a tool developer, typically a software engineer 

with knowledge of the modelling domain but little or no experience with CASE tool 

building, must become an expert in a complex constraint language or constraint 

specification tool. Ideally, such a developer of a domain specific tool should be able 

to produce their tool without investing considerable effort in learning how to use the 
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meta-CASE system. The research reported here offers an advance towards that ideal 

by introducing a novel technique that can reduce the difficulty of the constraint 

specification task. 

 

1.3 The Proposed Solution 

This research proposes a new technique, called Constraint Specification by 

Example (hereafter, CSBE), based on the Programming by Example (PBE) technique 

as a solution for the problem of constraint definition complexity in meta-CASE tools.  

PBE or, Programming by Demonstration (PBD), depends on introducing examples of 

data and values to a system that generalises the example(s) and generates a program 

(Myers, 1993).  This technique was originally invented to make programming an 

easier task and more accessible to non-programmers.  PBE has been applied in 

different contexts such as document generation, robotics and, in contexts other than 

meta-CASE tools, for constraint specification.  However, it has not been introduced or 

tested as a possible solution for the constraint specification complexity problem in the 

meta-CASE tools domain. 

The CSBE technique has been developed to introduce an implementation 

perspective of PBE in the context of the constraint specification process in a meta-

Research Problem: 

Constraint Specification is a difficult task because it is error-prone, time 

consuming and in meta-CASE tools there is a gap between the specification 

domain (as text) and the application domain (as modelling language). 

Research Question: 

Is it possible to reduce the difficulty of constraint specification in meta-CASE 

tools for the purpose of diagram editor specification? 
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CASE tool.  The CSBE technique describes and implements a synergistic2 

relationship between the user and the tool to solve the constraint specification 

problem.  This synergism depends in its simplest form on the user to introduce one or 

more examples that express the required constraint.  From these examples, the system 

tries to infer the required constraint.  The system depends on a rule-based inference 

engine for this purpose.  Since any constraint can be expressed either using positive or 

negative examples (this is called example polarity), CSBE allows the user to introduce 

the constraint examples in different polarities, positive or negative.  Finally, it gives 

the user the ability to customise and personalise the tool by augmenting the meta-

CASE tool inference engine using a learning technique.  It is believed that inventing 

CSBE will have a positive effect on reducing constraint specification complexity in 

the domain of meta-CASE tools. 

1.4 Aims and Thesis Statement 

The broad aim of this research is to simplify and facilitate the constraint 

definition task which is a part of the meta-modelling process for CASE tool 

specification in a meta-CASE tool.  In particular, the work focuses on facilitating and 

simplifying the constraint specification task using a novel technique, called Constraint 

Specification by Example (CSBE), developed as part of this research and based on the 

Programming by Example (PBE) technique.  This research focuses on a specific 

category of CASE tools, software modelling tools or diagram editors; for simplicity 

they are referred to throughout this research as CASE tools, however.  This research, 

in general, sets out and argues for the following thesis statement: 

                                                 

 

2 syn·er·gy/ˈsinərjē/ 

Noun: The interaction or cooperation of two or more organizations, 

substances, or other agents to produce a combined effect greater than the sum of their 

separate effects 
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Thesis Statement: 

It is possible to simplify and facilitate the constraint specification task in a meta-

CASE tool using the CSBE technique. 

There are three research questions that follow from the thesis statement.  

These questions with the relevant research objectives are as follows: 

Does CSBE improve the performance of constraint specification in a 

meta-CASE tool compared to the form-filling technique?  One objective of this 

research is to study this criterion for the CSBE technique for constraint specification 

task in comparison with the typical form-filling constraint specification technique.  

This objective tests the claim that the performance of specifying constraints in a meta-

CASE tool using the CSBE technique is higher compared to the form-filling technique 

because the CSBE increases the effectiveness, efficiency and user satisfaction. 

Does example polarity influence the performance of CSBE?  Answering 

this question is another objective of this research as it requires studying the effect of 

example expression polarity, positive and negative, on the performance of CSBE.  

This study validates the claim that example expression polarity influences the CSBE 

technique performance as it improves the technique performance by allowing 

constraints to be expressed using the two available example polarities, positive and 

negative, instead of depending on one polarity.  This study is supported by another 

one studying the effect of the polarity of expressing the constraints using natural 

English language on understanding the constraints. 

Does implementing and using the learning technique influence the 

performance of CSBE technique?  The research, by answering this question, 

explores the feasibility and desirability of customising the CSBE inference engine 

using a learning technique.  This study verifies the claim that implementing a learning 

technique for augmenting and customising the knowledge base of the system improves 

the CSBE technique performance by increasing its effectiveness, efficiency, and user 

satisfaction, and thus facilitates the constraint specification task. 
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1.5 Approach 

For the purposes of this research and, in particular, to validate the claims 

stated above, the Diagram Editor Constraints System (DECS), a meta-CASE tool 

developed at Glasgow University before the start of this research, has been used as a 

starting point.  In addition, an informal XML-based constraint language with 

associated parser and constraint checker has been developed and implemented 

together as a separate component in DECS.  The developed constraint language is 

able to specify several types of software design constraints including: 

 Connectivity constraints that constraint connection between two specific vertex 

types.  This includes the upper and lower bound numbers of edges outgoing or 

incoming from a specific vertex type. 

 Vertices and edges labels-related constraints that are in the context of uniqueness 

and regular expressions. 

 Cardinality constraints that limit the number of vertices, edges or structures 

composed of vertices and edges to specific upper bound number or lower bound 

number. 

 Visual representation uniqueness for vertices and edges. 

 Path-related constraints which include cyclic graph restriction and the existence of 

path between a specific vertex to some other vertices in the graph. 

 The language also is able to specify constraints over vertex and edge properties 

such as the background colour, the font colour, and the decoration (the arrow head 

in case of edges). 

The language was designed to be able to specify all the required constraint 

types used throughout this research since building and using a complete constraint 

language is out of scope of this research.  However, the constraint language is not 

complete as it lacks the ability to specify all the constraints that formal constraint 

languages can specify such as the constraint “it is not allowed for a vertex of type 

Actor to be connected with a Use Case that is connected to another Actor that is 

connected to the first Actor using a Generalisation edge type”.  This constraint 
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(appears in Figure  1-1) requires the concept of “self” that exist in OCL but not in the 

language used in this research. 

 

However, because the constraint language developed for this research has 

some distinctive features that will be discussed in detail in  Chapter 3, it has been 

considered as an achievement of this research.  Developing and improving the 

capabilities of this immature constraint language has also been introduced as an area 

for future work.  The current version of DECS depends mainly on constraints for 

CASE tool specification.  It defines the target modelling language by specifying the 

constraints that control the behaviour of the designer in the generated editor (the target 

CASE tool). 

To answer the research questions and achieve the objectives stated above, two 

constraint specification techniques have been developed in DECS, the form-filling 

technique, represented as a wizard and tabbed forms, and CSBE.  The form-filling 

technique has been selected because it is a typical technique used for constraint 

definition in documented meta-CASE tools, apart from text-based approach; it is used 

in meta-CASE tools for the purpose of constraint specification and it is common in 

Figure  1-1: Visualisation of a constraint that cannot be expressed using the XML-
based language used in DECS for the purpose of this research. 
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other different contexts which supports its familiarity.  To implement the CSBE 

technique a rule-based inference engine has been adapted from Sazonov (2004) with 

several modifications and implemented as a separate component, the inference 

manager. 

To investigate the first research question, an empirical study has been 

conducted comparing the two implemented techniques, viz., form-filling and CSBE, 

with respect to effectiveness, efficiency and user preference in constraint 

specification.  This study offers a contribution of this research as neither the PBE 

technique nor any of its derivatives, such as CSBE here, has been used before in the 

context of meta-CASE tools.  It is also a contribution in the field of PBE itself as PBE 

has never been used before (according to the reviewed literature) for software 

engineering modelling-related constraint specification. 

For the purpose of studying the second research question, a study has been 

conducted comparing two implementations of CSBE; the first allows the user to 

express the required constraint using either of the two available example polarities, 

positive or negative, while the second implementation allows the constraint to be 

expressed using only one example polarity (viz., negative).  Although example 

polarity is an associated feature to almost all examples in the field of PBE, this feature 

has not been studied empirically before, which is considered a contribution in this 

research.  Prior to this study, another supportive study has been conducted to explore 

user preference and the effect, in terms of comprehensibility, of expressing constraints 

in different forms in natural language. 

Finally, an empirical study has also been conducted to evaluate the feasibility, 

desirability and added value, of enabling users to add and customise the inference 

rules used by the CSBE technique.  This study is used to investigate the third research 

question stated above.  Such a feature has not been introduced or implemented before 

in any PBE system, which can be considered a significant contribution in this field. 

1.6 Chapter Summary 

This chapter has introduced the problem that motivates this research.  It 

describes the importance of CASE tools and the requirement of the ability to support 
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domain specificity.  It justifies the cost inefficiency of developing such domain 

specific CASE tools.  For this problem, meta-CASE tools have been introduced as a 

solution.  However they suffer from the difficulty of the tool specification process, 

especially the constraint specification task.  The chapter introduces a proposed 

solution for the constraint specification difficulty problem.  The solution is built 

around a novel constraint specification technique, Constraint Specification by 

Example (CSBE), which is based on Programming by Example (PBE). 

The chapter also introduces the aim of the research of simplifying and 

facilitating constraint specification in the domain of meta-CASE tools.  To achieve 

this aim, objectives of the research set out the research claims and questions.  The 

approaches to validate these claims are discussed in detail.  These approaches can be 

summarised as three novel ideas associated with studies for evaluation.  The first 

study implements the CSBE technique in a meta-CASE tool that generates constraint-

based software engineering modelling editors.  A study was conducted to evaluate the 

performance of this technique in terms of effectiveness, efficiency and user 

satisfaction compared to another implemented typical constraint specification 

technique, the form-filling.  The other two studies, availability of example polarities 

and the tool customisation through a learning technique, were conducted to evaluate 

the influence of these two features and their implementations on the performance of 

CSBE in facilitating the constraint definition task. 

1.7 Dissertation Roadmap 

Chapter Two reviews the literature and provides the required background in 

the area of meta-CASE tools and PBE.  The required definitions and importance of 

CASE tools, domain specific languages, and meta-CASE tools with its meta-

modelling process will be introduced.  The vital role of constraints in the meta-

modelling process and in the generated modelling editors is detailed with a review of 

the most related constraint classifications.  The review also includes the different 

techniques of constraint specification in the domain of meta-CASE tools.  The chapter 

also reviews some PBE systems in different domains. 
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Chapter Three describes DECS in its original form, as it was at the start of this 

research, and the enhancements introduced to it; that is, the chapter presents DECS as 

a context for this research.  The chapter details DECS’ structure and focuses on the 

constraint manger component with some technical implementation details.  It also 

introduces the XML-based constraint language with its implementation which 

facilitates building complicated constraints (that have many vertices and edges 

participating in them) in a flexible way.  Finally, the chapter presents the form-filling 

technique and relates it to the constraint language which sets out the flexibility of this 

technique in constraint specification. 

The fourth chapter details the theoretical synergistic model of the CSBE 

technique that has been proposed as a solution for the problem.  The chapter continues 

in describing this model through presenting CSBE and its distinctive features.  The 

chapter also describes the rule-based inference engine and the visual generalisation 

feature (also referred as the remodelling feature).  These feature discussions are 

supported with screenshots for better understanding. 

The following three chapters detail the three empirical studies with a fourth 

small related study associated with the second one.  Each chapter presents its 

empirical study by giving its aim, hypothesis, design, procedure, results, discussion, 

threats to validity and finally, a comparison with related work.  The eighth chapter 

summarises and concludes with a discussion of the relation between the conducted 

studies and the main aim and objectives of the research.  Finally, the chapter proposes 

some ideas for future work. 

Figure  1-2 presents a “roadmap” of the thesis followed by a clarification of the 

achievements and contributions in each chapter.  Some chapters are divided into two 

parts to distinguish the contents in terms of the contributions and achievements. 
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Chapter 2: 
Literature Review 

Chapter 4-a: 
CSBE Technique and 
Model 

Chapter 5: 
Research Methods 

Chapter 6-a: 
Study One 

Chapter 6-c: 
Study Three 

Chapter 7: 
Conclusion and Future Work 

Chapter 3-b: 
Tool Enhancement Chapter 4-b: 

Tool Implementation 
with CSBE 

Chapter 3-a: 
Initial Tool 

Chapter 6-b: 
Study Two 

DECS description,
enhancement, CSBE
technique description
and implementation. 

Empirical studies. 

Figure  1-2: The thesis chapters and roadmap. 

Chapter 6-c: 
Study Three 
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Table  1-1 shows a summary of the contributions while Table  1-2 shows a 

summary of the achievements found in the chapters presented in Figure  1-2. 

Table  1-1: Contributions distributed over thesis chapters 

Chapter Contributions 

Chapter 4-a  A novel specification technique, CSBE, for constraint 
specification in meta-CASE tools. 

Chapter 6-a  Demonstration, via an empirical study, that CSBE is superior to 
a wizard-based form-filling technique. 

Chapter 6-b  An empirical study of the relative comprehensibility of 
constraints expressed negatively vs. those expressed positively 
in a natural language. 

Chapter 6-c  Demonstration, via an empirical study, that the use of a multi-
polarity technique vs. a uni-polarity technique improves CSBE 
performance. 

Chapter 6-d  Development of a novel rule augmentation technique for CSBE. 

AND 

 Demonstration, via an empirical study, that adding a rule 
augmentation facility to a CSBE system improves performance. 
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Table  1-2: Achievements distributed over thesis chapters. 

Chapter Achievements 

Chapter 2  A literature review of: 

o meta-CASE tools, their use of constraints, the 
characterisation and classification of constraints and the 
methods by which they are defined, 

o PBE with its different application contexts, use of example 
polarities and techniques for rule learning. 

Chapter 3-b  Enhancements to the DECS meta-CASE system which made it 
suitable to be used as a prototype for this research. 

 Design and development of an XML-based constraint language 
used in the studies in this research.  This language has many 
features, such as flexibility, which qualified it to be adopted in 
this research. 

 Development and implementation in DECS of a constraint 
management component that handles constraints specified in the 
constraint language described above. 

Chapters 4-6  Implementation of CSBE in DECS with all of its distinctive 
features. 
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2.1 Introduction 

This chapter explores the different aspects of the background to this research 

and reviews the literature in the domains related to it.  The chapter starts by giving an 

overview of Computer Aided Software Engineering (CASE) tools and their 

importance.  Then it identifies some problems that limit the user of these tools, viz., 

the requirement for domain specificity and customisation, and provides a solution, 

meta-CASE tools.  It describes meta-CASE tools and the way in which they enable 

CASE tools to be defined and generated.  The chapter then explores the importance 

and role of constraints in CASE tools and in specifying CASE tools using meta-CASE 

tools.  This section ends by reviewing the literature documenting the difficulty of 

constraint specification, which clarifies the research problem, and which examines the 

techniques used to define constraints in meta-CASE tools. 

The chapter then reviews the domain of the proposed solution, Programming 

by Example (PBE), and provides examples of using this technique in different 

domains.  The chapter also explores different aspects of PBE such as example polarity 

and addition of inference rules. 

2.2 Computer Aided Software Engineering (CASE) Tools 

CASE tools are programs that support software engineering process activities 

and provide a wide range of services such as requirements analysis, design, model 

editing, documentation and report generation, code generation, and testing 

(Sommerville, 2007 page 12).  CASE tools are helpful to software engineers in 

increasing productivity, improving control of the development process, shortening 

development time, and improving software quality.  This reduces software production 

and maintenance costs and increases customer satisfaction (Henkel & Stirna, 2010).  

Diagram editors, as a type of CASE tools, are usually associated with, and used as a 

support for, software engineering methods for the purpose of developing graphical 

models that describe the system (Sommerville, 2007, page 12).  “Method” is the term 

used to describe one or more activities of a software development life cycle 

(Alderson, 1991).  These methods are techniques for describing “software 

specifications” in different information representations starting from source text to 
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graphical representation (Findeisen, 1994; Ledeczi, Maroti, & Volgyesi, 2001).  

Sommerville (2007 page 12) claims that each method should have four components.  

These include descriptions of the system models and their notations, constraints that 

specify the system models, recommendations that lead to good design, and description 

for the order of activities in the method.  CASE tools support methods by providing 

model editors that use the method’s notation (Sommerville, 2007 page 12; Gong, 

Scott, & Offen, 1997). 

‘CASE tool’ is a term that covers a wide range of different types of tools.  

Sommerville (2007 page 87) introduced a classification of CASE tools depending on 

their functions.  One category of this classification is editing tools such as text editors, 

diagram editors, and word processors.  This research focuses on a specific category of 

CASE tools, viz., software engineering graph-based diagram (or graph-based model) 

editing tools, which lies within the editors class of CASE tools according to 

Sommerville’s classification.  For simplicity, software engineering diagram editing 

CASE tools will be referred to as ‘diagram editors’ throughout this document. 

However, software modelling editors come in a variety of forms, with 

different levels of functionality.  Software diagram-based modelling tools can offer a 

range of functions to a developer starting from general graphical output in tools like 

Gliffy (Gliffy, 2011) through a suite of specialised editors for different modelling 

techniques as in a system like Rational Rose ® (IBM, 2009).  The last is a tool that 

provides the user with different Unified Modelling Language (UML) diagram editors 

for different purposes such as a Class Diagram editor and a Sequence Diagram Editor. 

In tools like Gliffy, the diagramming vocabulary is typically supported along 

with the functions for joining objects via edges into graph-like structures with no 

constraints governing rules of the method, which was introduced as one of the 

components of any method by (Sommerville, 2007 page 12).  Some examples of the 

required constraints are “connection constraints” (it is not allowed to connect two 

vertices of specific types), “cardinality constraints” (not allowed to have more than 3 

vertices of specific type in the diagram) or “representation constraints” (labels of 

vertices and edges must be unique in the diagram). 
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This is shown in Figure  2-1, which shows a diagram composed of several 

different methods’ notations related to two different diagram types, Class diagram and 

Use Case diagram, constructed using Gliffy.  Other tools such as Rational Rose allow 

the enforcement of constraints on legal diagrams arising from the semantics of the 

software model being represented.  Such tools do not allow the meaningless ad hoc 

diagram that appears in Figure  2-1.  Based on this difference, diagram editors can be 

categorised into two types, those that enforces constraints and those that do not.  This 

research focuses on the specific category of software graph-based modelling editors 

which enforce semantic constraints on the graphical models (or diagrams) that are 

allowed to be produced. 

Examples of the type of diagram editors that this research is focusing on are 

State Transition Diagram editors and Use Case Diagram editors.  Minas (2002) 

supports categorising diagram editors and defines diagram editors as graphical editors 

that are designed or tailored for a specific diagram language.  He distinguished the 

category of diagram editors from that of general drawing tools in terms of the ability 

of diagram editors to understand the distinctive features of the diagrams produced 

using them; it follows that they do not allow a user to produce arbitrary drawings, as 

in Figure  2-1.  Instead, they are restricted to visual components allowed in the 

diagram language.  He also introduced a Class Diagram editor as an example of the 

Figure  2-1: A meaningless diagram constructed on Gliffy that mixes the Use 
Case Diagram with Class Diagram vocabularies. 
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class of diagram editors and stated that it is not allowed to use it to draw a transistor 

symbol which is possible in a diagram editor for circuit modelling. 

2.3 CASE Tools Limitations 

As introduced above, CASE tools and in particular diagram editors are helpful 

to software developers and currently many of them are available commercially in the 

market.  Many diagram editors are very useful especially as editors for UML 

diagrams.  Although of benefit to software engineers, many diagram editors have 

problems that reduce and limit their use.  Reviewing the literature revealed some 

problems that can be summarised as follows: 

 Customisation Difficulty 

Typically, no customisation for the behaviour or the modelled language is available.  

Accordingly, the users must accept and learn what the tool provides.  They should not 

have high expectations of modifying the tool to suit their preferences.  In other words, 

the user of these tools such as Rational Rose, should accept to generate UML 

diagrams with formal UML and follow the rules set by the tool developer.  

Customisation of Rational Rose to be able to draw use cases with different vertices to 

give different priorities for them in the project, as an example, is not possible.  Again, 

such tools are helpful as a general diagram editors but their user should accept what it 

offers. 

 Fixed Methodology 

Most diagram editors support fixed methodologies with a fixed set of methods; they 

provide only limited support for domain specific concepts.  This is highly related to 

lack of customisation in currently available diagram editors.  This summarises the 

problem that diagram editors are programs that are hard coded by vendors.  For 

commercial purposes, each vendor developed one or more diagram editors trying to 

make them as general as possible to be used in different domains.  Moreover, vendors 

developed diagram editors to support used methods instead of a user’s domain 

specific methods.  This creates diagram editors that cannot be modified or customised 

to suit a specific domain instead of being general tool or not capable of supporting a 

domain that the user is interested in modelling.  If this problem is applied to Rational 
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Rose again, the tool provides only the ability to draw UML diagrams.  This means 

that it sticks to an approach that its vendor supports.  This approach and its methods 

are general enough as the software engineers usually require the UML in projects that 

depend on object oriented architecture.  However, the user will not be able to invent a 

new diagram into it or remove a diagram from its installation.  As an example, the 

user will not be able to use Rational Rose to create a diagram for a network in a 

building.  The user must accept it with its supported methods. 

 Users Must Adapt to Tool 

Diagram editors force their users to be customised to them not vice versa.  This 

problem emerged as a result of the above two problems.  Users have to work with, 

and adhere to, what is provided by the available tools with their supported methods.  

This, obviously, limits the options for modelling a domain or a software system to 

those made available via the paradigm of the tool being used (Marttiin, Rossi, 

Tahvanainen, & Lyytinen, 1993). 

These problems reduce, to an extent, CASE tool use and increase the demand 

for domain specific and customisable modelling tools.  One of the main advantages of 

diagram editors is their potential domain specificity; however, this feature does not 

always exist in currently available CASE tools (Kelter, Monecke, & Schild, 2009). 

2.4 Domain Specific Languages and Tools 

The solution for the problems identified above is providing domain specificity 

and customisability in CASE tools through support for domain specific modelling 

languages and CASE tool customisation.  A Domain Specific Modelling Language 

(DSML), for simplicity, Domain Specific Language (DSL), is a modelling language 

that can capture the specific domain concepts that it was designed for, the thing that 

general modelling languages lack.  A DSL captures and models the domain specific 

concepts using its domain specific vocabulary, syntax and semantics.  By being able 

to construct domain specific models, a DSL is an effective way of facilitating the task 

of application development and improving the productivity of software engineers 

(Goldman & Balzer, 1999;Santos, Koskimies, & Lopes, 2010; and Kelly & Tolvanen, 

2008).  Zschaler, Kolovos, Drivalos, Paige, & Rashid (2010) and Kirchner & Jung 
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(2007) document the same point by emphasising that the purpose of constructing and 

using a DSL is to tailor the modelling language capabilities for the specific domain 

required to be modelled. 

Tools that support DSL are called domain specific tools.  They are diagram 

editors that allow the user to build models using the DSL.  Accordingly, domain 

specific tools are considered as a subclass of CASE tools.  Domain specific tools 

capture the specifications of a domain in the form of domain specific models, enhance 

specific activities of the software development process such as accelerating the 

activity of requirements engineering and bridge the gap between the application and 

implementation domains (Ledeczi, Maroti, & Volgyesi, 2001; Atkinson, Gutheil, & 

Kennel, 2009; Guo, Sierszecki, & Angelov, 2009; Robert & Bernhard, 2005).  In an 

attempt to evaluate the need and the availability of domain specific modelling tools 

for commercial use, the MetaCASE website (MetaCase, 2009) was investigated.  It 

was found that commercial DSLs and their associated domain specific modelling tools 

are used in a number of different domains.  According to the website, the purpose of 

such domain specific tools is to improve the productivity and the quality of the 

industrial software development projects.  In total 20 domain specific modelling tools 

are presented on the website as examples of the tools that have been built and that are 

being used.  Examples of the domains of such modelling tools include mobile 

applications, car infotainment systems, a DSL for railway track control and the design 

of web applications.  A comment from “Burton Group” on the same website says 

“The use of domain-specific languages and custom meta models is the greatest aid to 

productivity and making model-driven development a viable practice.  Unfortunately, 

most vendors ship general-purpose UML modelling tools that are not easily 

customized to reflect domain-specific notations and constructs”.  This provides some 

evidence of the importance and wide scale of use of commercial domain specific 

modelling tools.  The following figures (Figure  2-2, Figure  2-3, Figure  2-4, Figure 

 2-5) show some examples of domain specific languages and their associated 

modelling tools developed using MetaEdit+.  All the figures are adopted from 

(MetaCase, 2009). 
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Figure  2-3: Specification of insurance product using financial DSM language.  
Adopted from (MetaCase, 2009). 

Figure  2-2: Multi-view mobile application using DSM language.  Adopted from 
(MetaCase, 2009). 
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Figure  2-4: DSM language for designing car infotainment systems.  Adopted from 
(MetaCase, 2009). 

Figure  2-5: DSM language for modelling the layout of the railway track.  Adopted 
from (MetaCase, 2009). 
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Although they are useful, domain specific diagram editors suffer from a 

problem that limits their use.  They are considered expensive, with a poor cost-benefit 

ratio because each domain requires a specific tool to be built starting afresh 

specifically for it.  This requires considerable effort over a significant period of time 

(Goldman & Balzer, 1999; Ledeczi et al., 2001; Ledeczi, Maroti, & Volgyesi, 2001; 

and Kelter, Monecke, & Schild, 2009).  Engstrom & Krueger (2000) also introduce 

another problem which is the quick development and changes in the domain which 

requires a continuous development of the domain specific tool.  Consequently, 

domain specific tools are available only for widely used domains with large markets 

that justify the investment.  This justifies the problem of unavailability of domain 

specific diagram editors commercially (Ledeczi, Maroti, & Volgyesi, 2001; and 

Gong, Scott, & Offen, 1997).  Meta-CASE tools, or CASE shells as Marttiin, Rossi, 

Tahvanainen, & Lyytinen, (1993) call them, solved this problem by their ability to 

specify and generate domain specific diagram editors including software engineering 

design diagram editors, the domain of this research. 

2.5 Meta-CASE Tools 

Ledeczi, Maroti, & Volgyesi (2001) introduced the Generic Modelling 

Environment (GME) as a meta-CASE tool that generates “graphical modelling” 

editors.  They introduced the meta-CASE tool as a solution for the problem of DSL 

diagram editors and the problem of creating customised diagram editors.  The meta-

CASE tool specifies and generates diagram editors that are tailored to the concepts of 

domains and customised as required.  In other words, they generate what has been 

introduced above as domain specific diagram editors and also generate customised 

diagram editors as the user requires.  It is claimed that these tools are generated and 

customised with less effort, cost and human resources than that required to build them 

from the scratch (Kelter, Monecke, & Schild, 2009; Alderson, 1991; Gray & Welland, 

1999; and De Lara & Vangheluwe, 2002).  Examples of the domain specific diagram 

editors generated using the meta-CASE tool GME are shown in Figure  2-6-a and 

Figure  2-6-b.  Figure  2-6-a presents a domain specific diagram editor for modelling 

signal flow on a chip (Systems, 2011) while Figure  2-6-b shows a domain specific 

diagram editor for modelling a finite state machine (Ledeczi, Maroti, & Volgyesi, 

2004). 
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a

Figure  2-6: a) A domain specific diagram editor for modelling signal flow on a chip 
design environment generated using the meta-CASE tool GME. Adopted from 
(Systems, 2011). b) A domain specific diagram editor for modelling finite state 
machine. Adopted from (Ledeczi, Maroti, & Volgyesi, 2004). 

b
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Isazadeh & Lamb (1997) and De Lara & Vangheluwe, (2002) define meta-

CASE tools as tools that can define, construct, and generate customised CASE tools 

to support specific development method(s).  As a consequence, any meta-CASE tool 

is open for defining a number of different software development methods (Findeisen, 

1994).  The main reason behind using meta-CASE tools is their ability to provide 

cost-effective way to develop methods through generating its associated graphical 

modelling diagram editors.  A meta-CASE tool is used to specify a CASE tool 

required to help in constructing graph-based models for a specific method or a 

specific domain.  The user of the meta-CASE tool achieves this by specifying the 

modelling language itself (called the DSL or the target language) that the CASE tool 

will use to construct the models.  In general, the user of the meta-CASE tool specifies 

the vertices (nodes) and the edges (connectors between the vertices) with specific 

visual representations that participate, and will exist, in the target language.  Then the 

user specifies the constraints that should exist in the target language.  Finally, the 

meta-CASE tool can generate the required tool as specified to be used by the designer 

to construct the required models using the target DSL.  The process of specifying the 

target language is called meta-modelling and will be discussed in detail in Section  2.6 

below.  Comparing the time and cost of producing a domain specific CASE tool with 

and without using a meta-CASE tool shows the importance of meta-CASE tools.  

They are considerably faster and cheaper. 

Ledeczi, Maroti, & Volgyesi (2001) claim that building a CASE tool using 

their meta-CASE tool (GME) takes from hours to one day which also encourages 

evolving new methodologies.  Their meta-CASE tool, GME, uses a meta-model to 

specify the domain specific modelling paradigm (domain syntactic, semantic and 

presentation information) that defines the set of models that the target modelling 

environment can construct.  The modelling paradigm information is used to construct 

the concepts of the domain, relationships allowed between these concepts, the 

presentation of these concepts and the rules (constraints) controlling the legally 

available model constructs in the target modelling environment.  Atkinson, Gutheil, & 

Kennel (2009) identify the meta-CASE tool’s role as allowing the users to generate 

(DSL) engineering tools. 
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The above discussion shows that meta-CASE tools are considered as a 

solution for the problems of DSL unavailability and the effort required to build tools 

from scratch.  Meta-CASE tools solve the problems mainly by the ability of one meta-

CASE tool to specify and generate several DSLs with their associated modelling 

editors.  It is believed that this reduces the cost and effort required to build each 

domain specific modelling tool from scratch.  Ledeczi, Maroti, & Volgyesi (2001) 

claim that the use of a meta-CASE tool reduced the time required to specify and 

generate a domain modelling tool to one day.  One comment from the “Butler Group” 

on the MetaEdit+ website states: “MetaCASE, through MetaEdit+, provides a DSM 

tool for full code generation.  It increases developer productivity.” The MetaEdit+ 

website also introduces ten examples of worldwide commercial companies working in 

different domains that are using MetaEdit+ in their work.  These companies include 

NOKIA® which uses the tool for generating modelling languages in domains related 

to mobile phones.  Panasonic®, SIEMENS® and Bloor® also use MetaEdit+ for 

generating specific modelling tools for different domains of interest.  Safa, L., a 

MetaEdit+ user from Panasonic® commented that “Even as a beginner with 

MetaEdit+, I could define a domain-specific activity language in about six hours…”.  

It is believed that this gives an idea of the importance, existence and the use of meta-

CASE tools in an industrial setting, reducing the effort and cost of specifying and 

generating domain specific modelling tools. 

2.6 Meta-modelling 

The target modelling language and its associated target CASE tool are 

specified through a meta-modelling process that includes describing the syntax of the 

language using a meta-model and its semantics using constraints.  In all of the 

following discussion, specifying or defining the required modelling language means 

by default the specification of its associated CASE tool.  Meta-modelling is the 

process of creating a model, the meta-model, for the required (target) modelling 

language by defining its syntax and semantics or “the act of creating a model of a 

modelling language, thus defining its abstract syntax and semantics” (Kirchner & 

Jung, 2007).  Similarly, Clark, Evans, & Kent (2003) define the meta-modelling as an 

approach through which a language is defined by constructing a model of the abstract 

syntax of the required language.  A supportive detailed meta-modelling process 
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definition has been introduced by Sommerville, Welland, & Beer (1987).  They state 

that meta-modelling is the process of defining the vocabulary, syntax and semantics of 

a modelling language.  Vocabulary includes the symbols and notations; syntax 

includes a description of the rules governing the connectivity and structure of a 

model; and finally, the semantics includes guidelines and rules that limit the user 

options and leads to a good design (model) and meaningful structures.  Nordstrom, 

Sztipanovist, Karsai, & Ledeczi (1999) define it as “the process of creating other 

models”.  Put simply, it is the process of modelling (or specifying) the required target 

domain specific language using the meta-model. 

The meta-model is the model “used to specify a language”.  It is the model 

that specifies the syntax and semantics of the required modelling language (Kleppe, 

2009 page 68).  In more detail Nordstrom, Sztipanovist, Karsai, & Ledeczi (1999) and 

Ledeczi, Maroti, & Volgyesi (2001) state that it is possible to differentiate between 

two parts in the meta-modelling process, the syntax definition and the semantics 

definition. 

Modelling the syntax: Syntax and lexicon definition, is achieved through the 

meta-model itself by defining the modelling object types and the allowable 

relationship types between them (Nordstrom, Sztipanovist, Karsai, & Ledeczi, 1999).  

The definition of meta-modelling above by Kirchner & Jung (2007), Kleppe (2009 

page 76) and Clark, Evans, & Kent (2003), differentiates between the abstract syntax 

and concrete syntax.  The abstract syntax, for graph based languages, defines the node 

and edge types with their structure and properties.  The abstract syntax is part of the 

meta-model.  The concrete syntax of a language defines the graphical representations 

of the nodes, edges and their defined properties.  The concrete syntax is not part of the 

meta-model; however, (Kirchner & Jung, 2007) introduces it as an important feature 

that meta-CASE tools should offer and allow to specify by connecting the concepts 

and types in the abstract syntax to graphical representations.  (Nordstrom, 

Sztipanovist, Karsai, & Ledeczi, 1999) introduce that in the context of specifying a 

domain specific modelling language (editor) for “processor modelling” the syntax 

definition step includes defining the object types “processor” and “sensor” while the 

relationship type is represented by the relation “connectedTo”. 
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Modelling the semantics: The meta-model, in general, specifies the abstract 

syntax of the required language, however, it does not specify the legal constructs or 

the correct models in the target language or the meaningful structures, the language 

semantics.  The semantics specification task is left for the constraints to perform 

(Ledeczi, Maroti, & Volgyesi, 2001).  Ledeczi et al. (2001) differentiate between the 

definition of syntax and the definition of semantics and they insist that meta-models 

only describe the syntax of the required language but not the semantics.  Clark, Evans, 

& Kent (2003) state that the meta-model may, optionally, include the concrete 

notation and semantics of the target language.  Nordstrom, Sztipanovist, Karsai, & 

Ledeczi (1999) add that the second meta-modelling process part, semantics definition, 

is achieved by constraint specification and can be represented, in the processor 

modelling editor example introduced above, as the number of allowed individual 

processors to be connected to sensors using the “connectedTo” relationship 

(Nordstrom, Sztipanovist, Karsai, & Ledeczi, 1999).  Some literature extends the 

work of constraints to be also required in the syntax definition task as Kirchner & 

Jung (2007) introduced.  They stated that constraints can participate as a technique for 

specifying the abstract syntax for defining the language concepts’ purposes as in the 

constraint that prevents circular relations.  They also agree with Ledeczi, Maroti, & 

Volgyesi (2001) that the easiest way for semantic specification is using constraints.  

The other alternative is to map the language concepts to a common programming 

language but this choice is not feasible because of its complexity and the need for 

specialised tool support of such mappings. 

Nordstrom, Sztipanovist, Karsai, & Ledeczi (1999) differentiate between static 

semantics and dynamic semantics and they classify constraints based on that.  Static 

semantics represents the constraints that are known before the target modelling 

language is generated and, consequently, they include all the constraints that can be 

defined at the meta-modelling time.  The dynamic semantics includes constraints that 

specify the meaning of a concrete instance model of the generated modelling language 

in a specific context.  These constraints cannot be defined at meta-modelling time 

because they are specific to the contexts of the model instances themselves, the thing 

that the meta-model has no prior knowledge about.  As an example, the static 

semantics in a meta-model for Use Case diagram specify that “it is allowed to connect 

two Actors using a Generalisation edge”.  However, the constraint “it is not allowed 
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that the Administrator Actor generalises the User Actor” in an instance of the 

generated Use Case diagram that models the requirements of a database system.  Such 

constraints cannot be specified by the meta-model because it is related to a specific 

context, the database system to be modelled.  This research is focusing on the static 

semantics constraint specification rather than solving the problems of dynamic 

semantics realisation. 

The meta-model is constructed using a meta-modelling language which 

according to (Ledeczi et al., 2001) is a predefined language that is rich enough to 

describe specific languages of different domains.  Kirchner & Jung (2007) suggest 

using GPLs such as Unified Modelling Language (UML), Entity Relationship Model 

(ERM), or Event-driven Process Chains (EPC) as meta-modelling languages.  

Kirchner & Jung (2007) describe using the meta-modelling language as the 

“approach” of building the meta-model to define the syntax and semantics of the 

required language.  They advocate using a graph-based meta-model approach for 

defining the visual modelling languages which is semi-formal but intuitive in building 

the meta-model.  Another approach could be the grammar-based approach such as 

Extended Backus-Naur Form (EBNF) which is a formal and precise way of describing 

the required modelling language.  Because the last is time consuming, the graph-based 

approach is preferred. 

Different meta-CASE tools have different meta-modelling approaches with 

different concepts and depend on different techniques.  Isazadeh & Lamb (1997) 

introduced a classification of meta-CASE tools based on the technique used to build 

and construct the meta-model.  This classification includes three techniques, ER-

diagram based, OO-based, and graph-based.  They also gave examples such as 

“MetaView” as a meta-CASE tool that depends on the ER diagram.  It allows a meta-

model to be built based on EARA/GE (Entity-Aggregate-Relationship-Attribute with 

Graphical Extensions) concepts.  These concepts are defined using a textual language 

called the Environment Definition Language (EDL).  Isazadeh & Lamb (1997) 

document that to be able to complete the modelling target language definition there is 

a need to define constraints over the EARA objects.  The constraint language 

Environment Constraint Language (ECL) is used for this purpose.  The constraints are 

used to enforce completeness and consistency checking on the objects. 
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Toolbuilder is another meta-CASE tool that has an ER-based meta-model.  It 

depends on generating diagram editors that are parameterised with the required data 

structure, interfaces, and the required symbols and graphics.  These three parameters 

define the meta-model that captures the concepts of the required modelling language.  

However, Isazadeh & Lamb(1997) document that there is a need for constraints to be 

able to specify the behaviour of the editor.  This is achieved using constraints that are 

defined using the C programming language. 

“MetaEdit+” is a commercial OO-based meta-CASE tool.  It depends on 

building a meta-model that captures the Graph, Object, Property, Port, Relationship 

and Role (GOPPRR) concepts.  Figure  2-7-b shows some of these concepts in relation 

to the required target modelling language which is the Family Tree modelling 

language in this case.  The (GOPPRR) is considered also as the meta-modelling 

language for this tool.  The tool depends on a graphical meta-model which is shown 

for the Family Tree modelling language in Figure  2-7-c.  The meta-model represents 

the abstract syntax as it shows the different vertex and edge types.  Each object 

participating in the meta-model should be described using the above concepts which 

helps in capturing the required domain.  Finally, MetaEdit+ uses a specific constraint 

language to define the semantics of the required language (Kelly, 2009). 
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a

b

c

Figure  2-7: Using MetaEdit+ meta-CASE tool for developing Family Tree Language 
Editor.  a) the required target modelling language in use. b) the meta-modelling 
concepts over the required language. c) the graphical meta-model of the required 
language. Adopted from (MetaCase, 2009). 
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Isazadeh & Lamb (1997) introduced examples of graph-based meta-modelling 

techniques such as in the meta-CASE tool “CASEMaker”.  CASEMaker depends on 

hypernode graph to capture the concepts and models the required language Figure  2-8.  

The meta-CASE tool uses a hypernode scheme constraint definition language to 

specify the allowed structures. 

 

From the above definitions and arguments, it is possible to conclude that meta-

modelling is complex, needs time, and, in the case of many tools, depends on experts 

to do the specification (Borning, 1986; Draheim, Himsl, Jaborning, Leithner, Regner, 

& Wiesinger, 2009).  Pohjonen (2005) documented part of the meta-modelling as 

needing a considerable amount of manual programming in meta-CASE tools to 

specify and define the target language and proposed reducing or eliminating the need 

for programming as a solution to reduce the difficulty of using meta-CASE tools.  It is 

also possible to conclude from the above discussion that meta-modelling, as a 

modelling language specification process, can be subdivided into two main activities, 

the specification of the diagramming language elements and the specification of the 

constraints over these elements (Smith, Cypher, & Spohrer, 1994; Draheim, Himsl, 

Figure  2-8: A graphical description of a hypernode.  
Ellipses are hypernodes, solid lines are hypernode edges 
and the dotted lines indicate hypernode nesting.  Adopted 
from (Scott, 1997).
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Jaborning, Leithner, Regner, & Wiesinger, 2009; Ledeczi et al., 2001; Clark, Evans, 

& Kent, 2003; and Kleppe, 2009 page 76). 

This highlights part of the meta-modelling, viz., constraint specification, on 

which very little research has focused, with research attention attracted to only one 

part of the meta-modelling, techniques and languages.  GME uses the UML class 

diagram as a meta-modelling language to build meta-models and to specify the 

instances of the required tool (required modelling language).  Figure  2-9 shows the 

meta-model of the finite state machine diagram editor introduced in Figure  2-6-b.  

Figure  2-9 shows two classes which represent the State and the Transition. 

 

Figure  2-9: Meta-model of the finite state machine domain specific language using 
class diagram as a meta-modelling language in GME meta-CASE tool. Adopted 
from (Systems, 2011). 
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GME also depends on an OCL extended language called Embedded Constraint 

Language (ECL) (Gray, Bapty, Neema, & Tuck, 2001) over the meta-model to 

“specify the static semantics” of the target language, in which these constraints are 

enforced (Ledeczi, Maroti, & Volgyesi, 2001). 

The meta-CASE tool KOGGE uses an extended version of entity relationship 

diagram (EER) to represent the concept of the target language and a constraint 

language called GRAph specification Language (GRAL) which is a Z-like formal 

language.  The EER role in the meta-model describes the concept of the required 

domain specific modelling language using five different blocks to represent entity 

types, relationship types, attributes, generalisations and aggregations.  GRAL is an 

assertion language that is used to specify constraints over the EER description (Ebert, 

Süttenbach, & Uhe, 1997). 

2.7 Constraints      (Related to Study One, Chapter 5) 

2.7.1 Importance of Constraints in Meta-modelling 

Constraints are defined in the context of diagram editors as rules that govern 

and restrict the behaviour of the designer.  They are considered as limitations to the 

available alternatives and signs to guide and enforce the behaviour of the designer 

towards producing good designs (Offen, 2000).  They are rules that limit the available 

alternatives to achieve a task, and enforce conformity with a specific software design 

process methodology (Jankowski, 1997; Offen, 2000; Scott, Horvath, & Day, 2000; 

and Bergmann et al., 2010).  Design constraints are an important means of evaluating 

the correctness (consistency) of a model (Groher, Reder, & Egyed, 2010).  This 

research is interested in software engineering modelling language constraints 

(sometimes ‘design constraints’.  Examples of this type of constraints are connectivity 

constraints and cardinality constraints such as “there must be a path between the Start 

State vertex and every other vertex in the State Transition Diagram” and “it is not 

allowed to have more than one End State in the State Transition Diagram”. 

All the reviewed meta-CASE tools literature suggests that constraints play a 

vital role in the meta-modelling process and form one of the pillars that meta-CASE 

tools are based upon.  The literature agrees that the semantics of the required 



39 

modelling language is specified by constraints.  According to Kirchner & Jung 

(2007), specifying the semantics of a modelling language with its meaningful 

structures is complicated (cannot be expressed using the graphical meta-model alone) 

and can only be achieved using constraints.  Some others add that the constraints also 

participate in the syntax definition.  The meta-CASE tools presented above as 

examples of the meta-modelling process clearly show that all of them depend on 

constraints in the modelling language definition.  In all of them constraints are 

participating and have a place in the definition process.  Kirchner & Jung (2007) 

introduce constraints as a main feature that should exist in any meta-CASE tool to 

refine and complete the definition of required modelling language.  All of this gives 

an idea about the importance of the constraints and their existence as a part of the 

modelling language specification process through meta-CASE tools. 

Constraints were also introduced as a possible solution to increase the 

flexibility of meta-CASE tools by Gray & Welland (1999) through allowing 

customising and editing constraints in already generated diagram editors.  The idea 

has been implemented in the meta-CASE tool GME (Karsai, Nordstrom, Ledeczi, & 

Sztipanovits, 2000).  GME provides several techniques to facilitate incorporating 

constraints into meta-modelling which indicates the importance of constraints and 

highlights their role in meta-modelling.  Karsai, Nordstrom, Ledeczi, & Sztipanovits 

(2000) even described depending on constraints for CASE tool specification through 

meta-modelling by the term “constraint-based meta-model”. 

In GME defined constraints can be reused through calling them from other 

constraints or other functions.  GME also allows constraints to be added, removed and 

evaluated on demand.  It implements an interactive tool, the constraint browser, which 

enables the available constraints in the database to be browsed, presenting their 

definition state and attributes.  The browser also allows any of them to be evaluated 

and disabled temporarily.  Another implemented facility that is related to constraints 

in GME is the constraint debugger.  This facility assists the CASE tool user to 

discover problems in constraint definitions.  However, this facility also can be turned 

off when the user is confident of constraint definition correctness.  This shows the role 

that constraints play in the domain of meta-CASE tools (GME, 2005).  The following 

paragraph introduces some examples of using constraints in meta-CASE tools. 
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The meta-CASE tool GME uses the UML class diagram as a meta-model and 

OCL as a constraint language for modelling language semantics specification 

(Nordstrom, Sztipanovist, Karsai, & Ledeczi, 1999 and Ledeczi, Maroti, & Volgyesi, 

2001).  They specify the static semantics using constraints which are responsible for 

defining the legal and correct models in the target language.  They document that if 

the meta-model fails to capture information of the target language for a reason like the 

inability to directly compile the captured information, constraints can perform the job.  

In such cases, GME uses the required constraints, in the form of OCL expressions, to 

overcome the limitations of the meta-model.  Again here, the constraints appear as 

part of the meta-model by adding more information to it instead of being a separate 

part.  They provide cases of such replacement of the meta-model with constraints as 

“multiplicity information of containment, membership and connection cardinality 

definitions”. 

A similar problem of not being able to capture the required integrity 

conditions in the KOGGE meta-CASE tool was solved using the constraint language 

GRAL.  KOGGE uses EER diagrams to model the required constraint language.  The 

constraint language GRAL is considered as an important part of the meta-modelling 

adopted in the meta-CASE tool (EER/GRAL).  This is because EER alone is not able 

to specify the required languages (Ebert, Süttenbach, & Uhe, 1997).  This point was 

also agreed by De Lara & Vangheluwe (2002) who document that an ER diagram that 

is used as a meta-model in the meta-CASE tool ATOM3 must be extended with a 

constraint language (OCL or Python expressions) to be able to define the target 

language. 

In a meta-CASE tool (called the ISI), Goldman & Balzer (1999) divided the 

meta-tool development process into two parts, graphical user interface generation and 

the part that provides the feedback such as the feedback of problems and design 

correctness, which work in the same manner as the constraints in other meta-tools.  

They document that specifying the target language “units”, vertices and edges, is not 

sufficient to produce meaningful designs.  They call this process “graphical user 

interface specification” and they add that this specification requires only superficial 

knowledge of the domain to be modelled.  In this case the user may use his/her deeper 

engineering understanding of the domain specific language to generate meaningful 
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designs or use the generated editor to construct artefacts without the deeper 

understanding.  By contrast, the feedback part of the tool requires a deep 

understanding of the domain and they have achieved its specification through 

independent components, the analysers.  These analysers are feedback programs and 

have exactly the same role as the constraint checker.  In other words, they depend on 

the constraints and they claim that the constraints are more important than the other 

part for the diagram editor specification.  This is because the constraints control the 

behaviour in the diagram and ensure design correctness. 

This research focuses on the modelling language syntax and semantic related 

constraints.  Examples of such constraints have been introduced by (Tolvanen, 

Pohjonen, & Kelly, 2007) as those define the legal connection types between object 

types, element occurrence and uniqueness.  In this research, such constraints include 

ones  like  “Non-Terminal State vertices must have unique labels in a State Transition 

Diagram”. 

2.7.2 Constraint Definition 

The constraint definition process is complex, time-consuming and error-prone 

(Groher, Reder, & Egyed, 2010).  Liu, Hosking, & Grundy (2007b) claim that a 

common difficulty of meta-CASE tools is specifying behaviour, including constraints.  

It is a fact that all meta-CASE tools depend on a constraint language to define the 

required constraints for the required CASE tool specification.  Although some tools 

may not have a distinctive step of constraint definition (e.g., it is considered as part of 

the whole meta-modelling such as in MetaBuilder (Ferguson, Hunter, & Hardy, 

2000)), many other tools adopt different constraint definition techniques to achieve 

this task.  Some literature has documented the problem of the difficult of constraint 

definition and has proposed different solutions and techniques to handle it.  Part of the 

solution was to change the technique of constraint definition such as using form-

filling or a visual language instead of depending on direct constraint editing using a 

scripting language. 

What has been noticed in this field is that the documentation is very limited.  

Literature that documents meta-CASE tools provide very little space documenting the 

constraint definition technique in the meta-CASE tool compared to the space given 
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for documenting the meta-model.  In general, a constraint language should be used to 

define constraints in meta-CASE tools as has been introduced in some examples in the 

previous sections.  However, what this research is interested in is the technique used 

for constraint specification.  The following subsections introduce different techniques 

that are used in constraint specification in meta-CASE tools.  There is also a 

documentation of the attempts of handling the problems of one technique by using 

another. 

2.7.2.1 Formal Constraint Language 

Using formal language for constraint specification in meta-CASE tools is the 

oldest, and one of the most common, techniques used in meta-CASE tools.  In such 

tools, constraints are specified using direct constraint language editing through an 

editor.  Examples of these tools are “Metaview” that uses Environment Constraint 

Language (ECL) (Findeisen, 1994), and “MaramaTatau” (Li, Hosking, & Grundy, 

2009).  Some modern tools use OCL as a formal language such as in “MaramaTatau” 

and Graphical Modelling Framework (GMF) which depends on Eclipse Modelling 

Framework (EMF) for providing the meta-model.  However, tools that use OCL 

should, by default, use a UML-based or closely related meta-model which is usually a 

Class diagram such as in GMF or Extended Entity Relationship (EER) as in the case 

of MaramaTatau (Li, Hosking, & Grundy, 2009). 

As a consequence of using a formal constraint language and using the direct 

editing of the language as a technique for constraint specification, the users of such 

tools must learn the constraint language programming to accomplish the job.  This is 

considered as a major problem with this technique.  Moreover, in such tools the 

mapping of the designer’s empirical understanding and experience of the domain 

specification to an abstract textual representation is considered another problem in this 

technique (Bimbo & Vicario, 1995).  The same problem has been noted by Liu, 

Hosking, & Grundy (2007b).  They stated that using OCL causes the problem of a 

wide gap and separation between the visual specification of the meta-model and the 

textual specification of the constraints.  They document that GME tries to bridge the 

gap by annotating the visual meta-model elements to indicate the application of 

constraints, but these constraints are still hidden.  Figure  2-10 shows a meta-model of 

a class diagram in the GME meta-CASE tool.  The “Equation” attribute of the 
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constraint (on the left hand side) shows the OCL expression “self.parts()->size > 0” 

which indicates that at least one part of the annotated object should exist in the 

diagram. 

 

Some tools tried to reduce the difficulty of programming formal constraint 

languages through providing supportive editors.  As an example, MaramaTatau uses a 

novel editor that provides a view of the constraint list juxtaposed to the meta-model.  

The tool also allows constraint navigation and provides an OCL constraint formula 

debug viewer which allows checking the OCL expression correctness. 

The meta-CASE tool KOGGE (Ebert, Süttenbach, & Uhe, 1997) uses GRAL 

as a constraint language and considers it as a part of the meta-model (EER/GRAL).  

GRAL is a Z-like assertion language that adds information to the diagram to specify 

the integrity conditions.  It specifies constraints on the values of the attributes of 

Figure  2-10: A meta-model in GME meta-CASE tool using class diagram and a 
constraint has been annotated to one of the classes.  The “Equation” attribute of the 
constraint shows the OCL expression “self.parts()->size > 0”. Adopted from (GME, 
2005). 
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vertices and edges.  These constraints include the existence of a certain path in the 

graph and cardinality restrictions of vertices and edges.  They are defined as a set of 

predicates which refer to the EER description and defined using a textual editor. 

2.7.2.2 Text-based Constraint Specification Language 

Text-based constraint languages are those languages that are used to define 

constraints using direct script editing but they are not formal constraint languages 

(discussed in the previous section).  Zhu, Grundy, & Hosking (2004) introduced the 

problem of constraint specification difficulty in traditional formal constraint 

programming languages and proposed the solution of another form of text-based 

programming approach.  They introduced the Java programming language for event 

handling and behavioural constraint specification as a replacement in the meta-tool 

“Pounamu”. 

 

In “Pounamu” a Java program is written by the user to specify a specific 

behaviour, including constraints.  This is done by providing the user with a Java code 

editor from within the meta-CASE tool as shown in Figure  2-11. 

Figure  2-11Constraint specification using Java programming language in Pounamu. 
Adopted from (Zhu, Grundy, & Hosking, 2004). 
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The same problem was addressed and the same “escape to code” solution has 

been introduced by White & Schmidt (2005) in the meta-tool Generic Eclipse 

Modelling System (GEMS), the VisualStudio DSL tool (Liu, Hosking, & Grundy, 

2007b) and JView (Grundy, Mugridge, & Hosking, 1998a) for event handling 

specification.  However, in an evaluation for their meta-tool “Pounamu”, Liu, 

Hosking, & Grundy (2007a) have reported that users dislike the event handler 

specification tool because Java is a prerequisite of using it.  This was introduced in 

Liu, Hosking, & Grundy, (2007b) as a problem that requires repetitive coding and 

knowledge of the meta-tool API.  ATOM3 provides options to choose the technique 

for constraint specification; it is possible to use OCL as a constraint language or 

Python expressions.  In both cases, the constraints must be edited by the user (De Lara 

& Vangheluwe, 2002).  Similarly, Goldman & Balzer (1999) used programs written in 

C++ or Visual Basic called ‘analysers’.  These programs are independent from the 

meta-tool and can be predefined which allows them to be used when required.  They 

provide feedback in the generated editor based on a request of the designer. 

It is believed that this category of constraint specification technique suffers 

from similar problems that exist in the formal constraint language category, maybe 

with a lesser severity.  This is because text-based constraint specification even with 

Java code still requires the user to know Java programming which is the problem 

addressed in “Pounamu”.  However, it is also believed that Java as a general 

programming language is much more common than formal constraint languages.  

Moreover, the problem of the gap between the text of specification and the visual 

form of application still exists because constraints are specified in Java through text 

editing. 

Microsoft Visio® is another tool that can work as a meta-CASE tool and in 

which rules can be specified (Microsoft, 2010).  It is possible to manipulate the GUI 

of Visio to construct templates using the object ShapeSheets which works under the 

developer mode.  The user of Visio can specify constraints such as preventing 

connections between specific vertex types using a Visual Basic program.  This is 

called diagram validation (Microsoft, 2010).  This is also considered as another 

application of the “escape to programming” technique for constraint specification. 
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2.7.2.3 Visual Programming Language 

Because of the difficulty of Java-based constraint specification and as an 

enhancement, Liu, Hosking, & Grundy (2007a) have invented a visual programming 

language approach for event handling specification purposes.  The visual language, 

“Kaitiaki” replaced the Java scripting approach in a newer version of “Pounamu”.  

Kaitiaki is a visual event handler that uses the dataflow metaphor, called Event-

Query-Filter-Action (EQFA) to specify event handling in “Pounamu”.  The language 

depends on a set of visual concepts called building blocks such as filters, iteration, 

query and start and end points of the data-flow diagram that describes the event and 

the required behaviour, the action.  The flow of data is described visually through 

arrow shape connectors and data propagation links.  The aim of this approach was to 

simplify the behavioural constraint specification especially for non-programmers.  

Figure  2-12-a and Figure  2-12-b show the visual language that is used to specify the 

events.  Figures show how to specify a layout constraint when the event of adding a 

new page in a website occurs.  In Figure  2-12-a the query “getSubPages” calls a sub-

query which is considered as a reusable package that is shown in Figure  2-12-b. 

Similarly Henkel & Stirna (2010) in the business modeller tool “Medix” 

introduced “microflows”, a visual programming technique to handle events.  

Microflows are structures of process models that describe events triggered by actions.  

They use notation extended from UML activity diagrams to construct the models.  

The events that trigger microflows can be set on objects (or concepts) in the meta-

model, such as “whenever a Complaint is updated or deleted”3.  Events also can be 

made to start microflows when triggered by GUI forms such as pressing on a button. 

Microflows are flexible because they can use loops to express behaviour and 

they can call other microflows, the feature that has also been introduced in 

“Pounamu”.  Microflows are not fixed such as in case of the “Pounamu” language; 

                                                 

 

3 This constraint refers to a business process model; hence, the reference to a (client) 

“complaint”. 
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instead, they are extensible by calling Java code procedures and external web 

services. 

 

JViews, which is a toolkit that extends JavaBean API, defines “event 

handling” through procedures of a programming language (Grundy, Mugridge, & 

Figure  2-12: a) Using Kaitiaki for specifying layout constraint. b) reusable sub-
query which is called by the query “getSubPages” in (a). Adopted from (Liu, 
Hosking, & Grundy, 2007a). 

a

b
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Hosking, 1998a).  It uses a visual language called Architecture Description Language 

(ADL) for attaching annotations (in label format) to indicate the specified events on 

the relations between different components. 

In Grundy, Mugridge, & Hosking (1998b) they describe a tool, JComposer 

that specifies and generates multi-view visual environments.  The meta-tool specifies 

behaviour including constraints through an event handler.  A visual event-flow 

language is used to specify the required language semantics.  The language is similar 

to the one introduced in Liu, Hosking, & Grundy, (2007a) and it has almost the same 

concepts and visual constructs, such as filters.  JComposer uses another meta-tool that 

specifies visual constraints which is BuildByWire (Mugridge, Hosking, & Grundy, 

1998).  The tool is used for specifying components and objects’ visual 

representations.  BuildByWire is also used for component visual specification in the 

tool JViews.  Although both BuildByWire and Kaitiaki are easier to use than text-

based specification (using Java code in this case) and solve the constraint 

specification complexity problem, both suffer from a significant disadvantage which 

is the lack of a user interface required to capture the model level specifications and 

“model level constraints” (Liu, Hosking, & Grundy, 2007b).  They proposed using a 

spreadsheet-like user interface for constraint specification to solve this problem. 

2.7.2.4 Spreadsheets 

Liu, Hosking, & Grundy (2007b) present spreadsheets as a solution for the 

constraint specification difficulty problem.  It is claimed that the technique has not 

been used in the domain of meta-CASE tools before Liu, Hosking, & Grundy (2007b) 

used it in MaramaTatau.  However, the idea of using spreadsheets for constraint 

specification has been proposed previously in Burnett, Atwood, Djang, Gottfried, 

Reichwein, & Yang (2001) and Engels & Erwig (2005).  In “ClassSheets”, Engels & 

Erwig (2005) presented a tool that manages transforming a class diagram specification 

to spreadsheets.  Liu, Hosking, & Grundy (2007b) applied a spreadsheet-like interface 

for constraint specification in the MaramaTatau meta-CASE tool.  The spreadsheet 

interface was used for easier definition of the property-change event handler 

constraints.  Because MaramaTatau uses OCL as a specification language, 

spreadsheet cells are filled with OCL expressions (Figure  2-13).  This figure shows 

the GUI of the spreadsheet that specifies an aggregation constraint.  The GUI shows 
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different properties for the “Whole” object as can be seen in the figure.  The property 

“price” is calculated using a formula that is specified using OCL.  In this specific 

example, the formula says that the “Whole” object price is calculated through some 

calculation that is applied over each of its parts objects (here part1 and part2).  

However, the spreadsheet technique has not been used in any other meta-CASE tool. 

 

2.7.2.5 Form-Filling 

This technique is another attempt to escape from the direct editing of 

constraints for specification purposes.  It depends on editing form fields which 

represent the properties of the required constraint.  Form-filling, which can exist in 

different formats such as wizards, has been implemented in the commercial meta-

CASE tool MetaEdit+ (Kelly, 2009). 

Figure  2-14-a and Figure  2-14-b show specifying a cardinality constraint and a 

connectivity constraint respectively using the form-filling technique available in 

MetaEdit+.  It has been commented by Kelly & Tolvanen, (2000b) that MetaEdit+ is 

“one of the most widely known and used metaCASE tools” and is used by Nokia 

designers for developing their own methods.  Bock (2007) also stated that MetaEdit+ 

has proven it is powerful for capturing domain concepts.  The constraints in 

MetaEdit+ are merged within its meta-model, GOPPRR.  For example, cardinality 

constraints can be specified through the Role concept in the meta-model.  In general, 

specification of such constraints is conducted through wizards as Liu, Hosking, & 

Grundy (2007b) introduced.  The values are filled in to give the values of the 

properties such as the maximum and minimum cardinalities of a specific object or a 

specific relation. 

OCL expression 

Figure  2-13: Spreadsheet-like GUI (adapted from Liu, Hosking, & Grundy(2007b)) 
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The form-filling technique is also used in the meta-CASE tool “MetaBuilder” 

that uses hypernodes as a meta-model (Scott, 1997).  The tool provides a form that 

asks the user to fill values for different properties.  They call this form a “constraint 

dialogue”.  Figure  2-15 shows the constraint dialog in MetaBuilder for specifying a 

cardinality constraint. 

 

In another meta-CASE tool, “CASEMaker” that also depends on hypernodes 

as a meta-model, it is believed that the same technique is used for constraint definition 

a
b

Figure  2-14: Form-filling technique in MetaEdit+. a) cardinality constraint 
specification. b) connectivity constraint specification. Adopted from (MetaCase, 
2009). 

Figure  2-15: Specifying a cardinality constraint using form-filling technique in 
MetaBuilder meta-CASE tool.  Adopted from (Gong, Scott, & Offen, 1997). 
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because it is believed that both are the same tool but with different versions.  This is 

not documented explicitly; however, it can be inferred from the screenshots4.  It is 

believed that the spreadsheet technique can be considered as a form-filling technique 

but with a spreadsheet-like GUI because it appears that the user requires to fill the 

cells with OCL expressions.  The way the spreadsheet is implemented in 

MaramaTatau supports this idea as the objects are connected to the constraints using 

the spreadsheet but the constraints specification was done using OCL expressions 

inserted in the cells of the spreadsheet-like GUI (Figure  2-13). 

A similar technique has been used but in, a wizard GUI.  The user fills the 

properties of the required constraints which are specified using OCL in the graphical 

modelling tool IBM Rational Software Architect (RSA) (Wahler, Koehler, & Brucker, 

2006).  The tool depends on some constraint patterns and the user chooses from these 

patterns then edits and modifies the predefined constraint.  The editing is organised 

through the wizard.  Goldman & Balzer (1999) state also that their tool depends on a 

properties form for each of the specified domain elements (vertex or edge).  Two of 

the properties specify the upper and lower bound numbers of each element. 

2.7.3 Summary of Meta-CASE tools 

Table  2-1 presents a classification summary of the meta-CASE tools based on 

the technique used in constraint definition regardless of the constraint language used.  

This classification, or its equivalent, has not been produced previously by others. 

A potential candidate technique for constraint definition is Programming by 

Example (PBE). However, the discussion above and Table  2-1 show that this 

technique has not been used before for constraint definition in the context of meta-

CASE tools.  As a result, part of the novelty of this research lies in the fact that it 

focuses on the development and use of a PBE technique in the context of meta-CASE 

tool domain for modelling constraint specification. 

                                                 

 

4 A request of the CASEMaker meta-CASE tool was sent to the developers for evaluation 

purposes and the reply confirms that the tool no longer exists (Brooks, 2008). 



52 

Table  2-1: Meta-CASE tools classification based on the constraint specification 
technique. 

Technique Example 
Technique 

Implementation 
Author(s) 

Formal constraint 

language 
Marama 

Object Constraint 

Language (OCL). 

(Grundy, Hosking, 

Huh, & Li, 2008) 

Text-based other 

than constraint 

language 

Pounamu 

Writing a Java 

program to 

implement the 

behaviour. 

(Zhu, Grundy, & 

Hosking, 2004) 

Visual language Pounamu 

Visual language 

each component of 

it has a predefined 

procedure. 

(Li, Hosking, & 

Grundy, 2009) 

Spreadsheet MaramaTatau 

Filling a 

spreadsheet-like 

interface with OCL 

expressions. 

Liu, Hosking, & 

Grundy (2007) 

Form-filling MetaEdit+ 
Rule forms and 

templates. 

(Tolvanen, 

Pohjonen, & Kelly, 

2007) 

2.8 Programming by Example  (Related to Study One, Chapter 5) 

Programming by Example (PBE) or Programming by Demonstration (PBD) is 

a technique that depends on introducing examples of data and values to the system 

which generalises the example and generates a program (a script) (Myers, 1993).  This 
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technique was invented originally to make programming an easier task and available 

for non-programmers.  The claim behind its invention is that, as the user knows how 

to perform a task and how the system should perform, this should be sufficient to 

create the required program without the need to have programming skills.  In addition, 

it is claimed that visual programming is easier to understand for humans than textually 

based programming.  Another motivation for using programming by example is that 

people are more capable of providing examples of what they want or mean than 

expressing this using a textual program (Myers, 1986).  Cypher (1993) introduces 

inferring the user intent from the example as the main challenge in applying such a 

technique. 

According to Cypher (1993), the first programming by demonstration system 

is PYGMALION introduced in 1975.  To avoid the confusion of systems with 

different techniques, Myers (1986) introduced a taxonomy to differentiate between the 

terms visual programming, program visualisation, and programming by example.  

Visual programming includes the visual programming languages, such as Class 

Diagrams and flow charts that can be interpreted later as programs.  Program 

visualisation is not a technique to reduce the complexity of programming, however; it 

is a way to illustrate and explain a program that is already written using the textual 

conventional way using a programming language.  This includes the illustrations of 

the program through animations or snapshots.  The term ‘Programming by Example’ 

has been used to describe a wide variety of systems that use different techniques and 

depend on different concepts.  However, Myers (1986) differentiates between two 

terms that describe two different system techniques, “automatic programming” and 

“programming with example”. 

“Automatic programming” describes systems that infer from several examples 

through an algorithm.  Accordingly they capture from the example the meaning of the 

user.  “Programming with example” describes systems that only remember the 

example the user introduces and generate a program based on this example as an 

input.  No inference is involved in such systems.  Such a system executes the user 

commands and generates a program that allows reusing these commands and does 

exactly what the user did in the first place. Macros are the most common form of 

Programming with Example.  Myers (1986) uses the term “programming by example” 



54 

to include both system techniques together.  He represents the system that applies 

programming by example as the intelligent pupil that infers or intuits by abstracting 

and generalising the examples provided by his/her teacher. 

2.8.1 Programming by Example Contexts and Tools 

The Programming by Example technique has been introduced into several 

different contexts.  The first to be documented here is the most relevant, the constraint 

definition.  The closest example to the work presented in this dissertation is the 

programming by example tool “Peridot” (Myers, 1993).  Peridot uses a programming 

by example technique to define layout constraints for graphical user interface 

components such as buttons and checkboxes.  A Peridot user creates the GUI 

components and the visual effect on the GUI component responding to the action of 

the mouse without conventional programming.  It depends on the user to introduce 

examples of the required constraint and the system infers the user intention from the 

example.  The system shows the inference to the user to confirm that the inferred 

constraint is the required one.  The system also uses a generalisation feature that 

allows the system to infer the intention of the user when repeated related actions are 

detected.  The inference mechanism in Peridot is condition-action rules.  The 

condition part of the rule specifies if the rule will be triggered or not; if true, then the 

action part is executed.  The action part is composed of the required procedure to 

generate the required program for the constraint; this requires user confirmation of an 

attached English message first, however.  Peridot depends in its work on 60 Lisp 

implemented rules that have four purposes: 

 Inferring graphical constraints that specify the special relation of GUI components 

to each other.  This rule type creates constraints between different GUI 

components such as the alignment of two buttons to each other. 

 Generalising to infer the possibility of control structures, such as iteration, from 

repeated related actions.  Such inferences are achieved straightforwardly such as 

in iteration which is inferred when the first two elements of a list are used. 

 Inferring how the control structures can be created and represented using GUI 

components.  This requires determining that some variables should be constants 

such as the y-axis or x-axis values depending on the GUI to be created.  Such 
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inference is related to the previous one as the system should generalise and 

continue creating the rest of the GUI components, in a list as an example. 

 Inferring the mouse effect on the GUI components.  This type of rules infers when 

and how the GUI components should be changed and where the mouse should be 

to affect a specific component as a result of a mouse click or movement. 

Myers (1993) justifies the use of the message to confirm the inference and 

applies the action part of the rule based on the fact that previous systems either ask the 

user to specify the constraints explicitly, which makes the systems difficult to use, or 

they infer the constraints automatically without confirmation from the user, which 

opens the door for many wrong inferences and guesses. 

In the context of constraint definition by example, “Chimera” (Kurlander & 

Feiner, 1993) is a system that applies PBE to define geometric constraints to specify, 

edit and manipulate graphical objects and the constructions of user interface widgets.  

Chimera defines constraints based on multiple examples that are introduced one by 

one and for each a snapshot is taken.  In each successive example, the previous 

example is edited and the snapshot is taken for the new edited example.  The system 

then takes all the snapshots as input and infers the constraints that satisfy all the 

snapshots and applies them to the scene objects.  Chimera defines geometric 

constraints that must be satisfied all the time after they are applied on the user 

interface objects.  When one constraint is violated, because of a modification of the 

geometric position of an object, the system modifies the other objects to return the 

scene into a stable state that satisfies all the geometric constraints applied to it.  Using 

this technique, the behaviour and the interaction of the user interface object is defined. 

Demonstrational Rapid User Interface Development (Druid) (Singh, Kok, & 

Ngan, 1990) is a user interface management system that is similar in its work to 

Peridot.  The difference between both systems is that the GUI components in Druid 

are predefined in a high level instead of low level as in Peridot.  Druid deals with the 

complexity of wrong constraint guesses (inferences) by allowing the user to use a 

direct specification facility which depends on the form-filling technique to set the 

different required attributes to specify the desired constraint.  This facility is used 
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when the system fails to infer the required constraint because of missing the rule that 

is required to infer the desired constraint from a specific example. 

aCAPpella is a programming by example dependent system that is designed to 

help end-users to build context-aware applications, such as smart home systems 

involving sensor input to determine context dependent operations (e.g., “play my 

music from speakers that are near me”) (Dey, Hamid, Beckmann, Li, & Hsu, 2004).  

It uses a machine learning technique supported with user input to build the required 

application and generates its program.  The aCAPpella system records the context of 

the example by capturing all the available data using all its available sensors.  All the 

behaviours and actions during the recording are recorded to be presented by the user 

at the end of the data capturing (recording) session.  The user reviews what has been 

recorded and annotates the data that is relevant to the behaviour that is required to be 

detected such as the actions that aCAPpella is required to perform on behalf of the 

user when specific events are detected.  The user also specifies the start time and the 

end time of the indicated events and behaviours.  This annotated data is entered into 

the learning system in aCAPpella for system training purposes.  The same process is 

repeated several times so the system can learn to recognise the required important 

events.  Later on, the system will be able to detect the events that trigger specific 

actions the user already specified to be conducted on his/her behalf.  At this point the 

user asks to generate the program that performs the required actions when some 

specific events are detected. 

Although the above systems involved the user as a collaborator/participant in 

the work of programming by example, some other systems introduced PBE as a way 

to avoid the involvement of the user in the work of the system.  Gamut is such a 

system that uses a programming by example technique to help non-programmers to 

generate games (McDaniel & Myers, 1999).  Gamut uses algorithms to infer from the 

examples without the intervention of the user to correct or redirect these inferences 

directly.  However, Gamut allows the user to correct the wrong or partially wrong 

inferences indirectly through some techniques.  “Hints” is one of the techniques to 

indicate the important objects to construct relationships between them.  Another 

technique is through providing extra examples which allows the system to update and 

refine the generated code and the behaviour according to the newly introduced 
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examples.  This is facilitated through the demonstration technique “nudges” which 

depends on providing the concepts “Do something” and “Stop that” which allow 

giving the system directions through positive and negative examples.  Gamut also 

uses some other concepts to help achieving its work such as “guide objects” which are 

objects that are used to guide the inferences and the control of the program 

construction.  These objects are visible only at program construction time and not in 

the generated program (the game).  The behaviour in Gamut is represented by an 

“event” or a “stimulus” such as pushing a button and “action” or “response” which is 

the desired behaviour.  Using the concept of the “timer” which specifies stimulus or 

responses related to the time is a distinctive feature of Gamut that has not been 

noticed in any other reviewed PBE system.  As an example, the user can specify the 

movement of an object to be started after 10 seconds of a specific stimulus.  

According to this description of the Gamut system, it can be concluded that it depends 

on algorithms and concepts which require system-user interaction at a higher level 

than other PBE systems. 

Another system that is also used to specify games using programming by 

example is Kidsim (Smith, Cypher, & Spohrer, 1994).  Kidsim handles the problem of 

generalisation and abstraction by combining a graphical rule rewriting technique with 

PBD to specify the required game.  The rule rewriting technique used here is similar 

in principle to the snapshots technique used in “Chimera” (Kurlander & Feiner, 1993).  

However, Kidsim involves the user interaction with the system to specify the 

important objects so the system can generate the required behaviour.  The 

involvement appears when the user specifies the pictures and determines which one 

represents the “before” object and which represents the “after” object.  The 

generalisation problem is also solved through user involvement by specifying the 

required level of abstraction using a pop-up menu to choose from all the available 

possible generalisations.  For example, consider the case of a monkey object being 

required to jump over a rock; when the user demonstrates this to the system, the 

system should know the required generalisation for the rock object and the 

alternatives would be the rock or any object. 

DocWizard is a system that learns through programming by example in the 

context of authoring and documentation (Prabaker, Bergman, & Castelli, 2006).  
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DocWizard developed to adapt for its work a technique called “follow-me”.  This 

technique depends on the user interacting with an Eclipse framework GUI by 

performing a task and the system recording the steps that the user is performing.  This 

generates a documentation of a number of steps called a procedure.  A new user can 

playback the procedure and follow the documentation step by step supported by the 

system guide.  The procedure is updated each time a new user performs different steps 

from the original procedure.  This is called “incremental update”.  A similar system is 

SMARTedit (Lau, Wolfman, Domingos, & Weld, 2001) which applies programming 

by example in the context of text editing.  Another similar programming by example 

system that captures the interaction of the users with the GUI is CHINLE.  This 

system watches the user performing a task using the interface of an application and 

generates a program to automate the task.  It also generates the steps of interaction 

which allows the user to correct errors caused by the system generalisation (Chen & 

Weld, 2008). 

The PBE technique has also been used in mapping between a state and its 

associated actions in robotic applications (Argall, Chernova, Veloso, & Browning, 

2009).  It has also been applied to solve the problem of extracting the constraints from 

a demonstrated task.  This leads to generate information that is passed to a learning 

algorithm which helps teaching robots some tasks using examples (Calinon & Billard, 

2008).  PBE has also been used in the context of spreadsheets.  Abraham & Erwing 

(2006) developed the spreadsheet system (Gencel) which uses the VIsual Template 

Specification Language (ViTSL) to model spreadsheet templates.  Using their 

software and its visual language, they designed an inference system that infers 

templates from example spreadsheets.  This allows the flexibility of redefining the 

spreadsheets when the requirements changes and automating the repetitive tasks.  

Another domain of PBE application is web sites.  Toomim, et al (2009) and Nichols & 

Lau (2008) introduced the use of PBE to enhance the user interface and to create 

mobile versions of web sites based on examples of user web site selections. 

2.9 Example Polarity   (Related to Studies 2 & 3, Chapter 6) 

Recalling the definition of PBE, it can be concluded that the technique, 

depends mainly on introducing examples and the system generating a program based 
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on these examples.  In PBE, the user introduces the examples to express the required 

program.  In most of the above reviewed PBE systems, the examples are introduced to 

express a required behaviour.  Although PBE itself and all the reviewed systems, 

consider the example as the first step of the technique, surprisingly, very little 

research attention has been given to the polarity of the examples, as no research has 

been conducted to evaluate this feature in separation.  Examples introduced to any 

system can be either positive or negative.  A positive example is one that expresses 

required behaviour while a negative example is one that expresses behaviour that is 

not desired. 

Some PBE systems have introduced the notion of example polarity in different 

ways and implicitly without using the term ‘example polarity’.  Myers (1993) 

documented that Peridot depends mainly on positive examples to express the required 

behaviour of the graphical interfaces; however, some constraints in limited cases need 

to be expressed using “negative examples”.  He defines the negative examples as 

showing the system what not to do and he describes the situation of needing this type 

of examples as “exceptions”.  Most of the PBE systems that report using positive and 

negative examples depend on those two example types together to refine the 

specification.  In Gamut (McDaniel & Myers, 1999), negative examples are used to 

exclude behaviour from a generalised one.  Gamut is an example of a complicated 

PBE system because it depends on many concepts and depends on intensive 

interaction between the system and the user to achieve the task as introduced above.  

One of the concepts is “nudges” which is considered as a valuable feature of the 

system that helps in refining the behaviour and the generated program code by 

introducing more examples.  The “nudges” feature depends on introducing positive 

examples to tell the system what to do or to express the “Do something” concept and 

to introduce extra examples to refine the defined behaviour using examples that 

express the “stop that” concept.  The last are considered negative examples that give 

the system direction in building the program. 

MetaMouse (Myers, McDaniel, & Wolber, 2000) is another system that uses 

implicit negative examples to refine behaviour through conditional branches in the 

code.  This system introduced positive and negative examples using the same concept 

as refinement for each other but in a different perspective.  The user introduces 
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examples and all the examples are considered positive.  The system depends on 

learning from the user’s repeated examples.  When a learned repeated action is 

detected, the system asks for user confirmation and shows the inference of the 

repetition.  If the user rejects the inference, this is considered as a “negative example”; 

the generated code based on the positive examples is refined by building branches in 

the code.  Another system that documents the example polarity concept is the 

InferenceBear or Grizzly Bear system (it has two names) (Frank, 1995).  This system 

uses positive and negative examples explicitly to refine the behaviour of each other.  

These examples are used to generate functions that support and define GUI behaviour.  

Myers, McDaniel, & Wolber, (2000) add that “without negative examples, a system 

cannot infer many behaviours, including those using a Boolean-OR”.  Based on 

Myers, McDaniel, & Wolber (2000), this feature, the positive and negative examples, 

has been tested by some subjects and they found it difficult to use. 

Heffernan (2003) proposed a tutoring system that can learn and includes 

inferring the structure of a human task from several example performances of the task. 

The system presented in Koedinger, Aleven, & Heffeman (2003) uses both positive 

and negative examples to help the computer infer the intent of a human. In addition, to 

be able use his system, a teacher introduces examples of how a problem should be 

solved (the task) and, in a separate process, a programmer continues the work by 

generalising the examples.  This dependence on the programmer to generalise is a 

known limitation of the system identified by Heffernan that he was proposing to solve 

by generalising examples automatically. 

In contrast to the research reported above, Hudson & Hsi (1993) are against 

using different polarities in examples.  They criticise the way that different example 

polarities, or “counter examples” as they call it, work because that will add 

considerable work on the user’s side.  Instead, they recommend involving the user in a 

much simpler process which is selecting from alternative solutions. 
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2.10 Rules Augmentation and Learning  (Related to Study Four, 

Chapter 7) 

Programming by Example requires inference.  Myers, McDaniel, & Wolber 

(2000) surveyed a range of PBE systems and identified a common problem, which is 

that most available tools depend on fixed rule-based systems and users are not 

allowed to change or update the rules.  They point out that Peridot system, for 

example, that defines layout constraints using a PBE technique depends in its 

inferences on a set of rules.  If extra rules are required or different (customised) 

examples required to be implemented for more adaptation of the system to the user, a 

programmer is required to manipulate the Lisp code in which the rules are written. 

According to them, this is one of the most important challenges in the field of PBE 

systems, viz., to be able to augment the rules of the inference engine at runtime 

without the need to manipulate the code directly.  According to the literature survey 

conducted in this research, no existing PBE systems allow the inference rules to be 

augmented at runtime or without programming. 

The notion of learning in PBE has been discussed by some authors (Maulsby 

& Witten, 1993; Bergman, Castelli, Lau, & Oblinger, 2005 and Castelli et al., 2007).  

However, their concept of learning is different from the concept described in the 

paragraph above.  For example, Bergman, Castelli, Lau, & Oblinger (2005) and 

Castelli et al. (2007) use the term ‘learning’ to refer to an inference process that 

updates the generated documentation (called a ‘procedure’), based on interaction of a 

user with an Eclipse GUI.  The system works based on a “follow-me” technique.  

When a procedure required to be documented, the user, called “author”, enters the 

authoring mode and records the interaction with the GUI.  DocWizard generates 

documentation for this interaction (the procedure).  Later on, another user uses this 

documentation by selecting the playback mode and following the documentation step 

by step.  Until this point DocWizard works like macros.  However, the second user 

can divert from the original generated procedure, for example to select another 

directory to save files other than that used by the author (assuming the documentation 

procedure contains saving file action).  In this case, the second user stops following 

the original procedure and performs some other actions that do not exist in the 

procedure.  The system compares the old and new actions to discover the differences.  



62 

Based on the differences, the system makes inferences to update the original 

procedure so it covers all the conditions presented by the first and the second users.  

They call this process “incremental update” as each time a user diverts from the 

existing procedure, the system updates this procedure.  The update takes the form of 

some conditions (if statements) appears in the procedure to cover the different 

conditions.  This update, based on an inference, is considered to be a form of learning. 

The MetaMouse system (Maulsby & Witten, 1993) is a system that learns 

from the repeated actions of the user so it can detect the next required action.  The 

system watches the user while working and generalises from the tasks.  When a task is 

repeated, it detects the similarity between the current task and a previous one.  

However, sometimes it generalises wrongly which leads to an incorrect inference.  In 

this case the user interferes to modify the behaviour.  This is considered as offering a 

set of positive and negative examples as introduced in the MetaMouse system 

documentation in the previous section.  MetaMouse depends on the positive examples 

to learn and generalise and depends on the negative examples to refine the generated 

and generalised code.  MetaMouse works only with the repeated behaviour, which is 

criticised by Fisher, Busse, & Wolber (1992) as a limitation of the system.  As will be 

seen in Chapter 7, this dissertation documents a tool that learns from the user but is 

not limited to repeated behaviours or examples.  Table  2-2 presents the different 

domains and contexts in which PBE has been applied according to the review 

conducted in this research. 
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Table  2-2: Programming By Example different domains of application 

Domain of Application Example Author(s) 

Diagram editor GUI specification ISI (Goldman & Balzer, 1999) 

Layout constraints specification 

between GUI objects 
Peridot (Myers, 1993) 

Layout constraints specification 

between objects other than GUI 
MetaMouse (Maulsby & Witten, 1993) 

Context-aware applications aCAPpella 
(Dey, Hamid, Beckmann, 

Li, & Hsu, 2004) 

GUI behaviour applications 
Grizzly Bear 

system 
(Frank, 1995) 

Games specification Kidsim 
(Smith, Cypher, & Spohrer, 

1994) 

Event-based Simulation Gamut (McDaniel & Myers, 1999) 

Authoring Documentation DocWizard 
(Prabaker, Bergman, & 

Castelli, 2006) 

Robotic Applications N/A 
(Argall, Chernova, Veloso, 

& Browning, 2009) 

Spreadsheet Templates Gencel (Abraham & Erwing, 2006) 

Web Sites Highlight (Nichols & Lau, 2008) 

The discussion in the previous sections and Table  2-2 show that no 

applications of the PBE technique in the context of meta-CASE tools have been found 
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in the literature, apart from one limited application in the domain of GUI visual design 

editor generation called ISI.  The (Goldman & Balzer, 1999) research in the context of 

meta-tools introduced the term “specification by example” to indicate the 

specification of the vocabulary and the visual representation of the components (they 

call this GUI specification) of the required modelling language but not the constraints.  

This is shown in Figure  2-16 as the “Domain Expert” prepares the constraints that are 

implemented by the “Analysis Programmers”.  This is a completely separated process 

from the GUI specification, which is according to (Goldman & Balzer, 1999) is 

achieved using “specification by example”. 

 

The specification is done by introducing a visual meta-model composed of 

pre-specified components with known meanings.  This is considered as specifying the 

meta-model using a visual language as appear in Figure  2-17.  This figure shows 

specifying the GUI of diagram editor for modelling satellite communications. 

Figure  2-16: Diagram editor specification and use in ISI. Adopted from (Goldman & 
Balzer, 1999). 
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They represent the vertex types as rectangles with labels to indicate their 

concept in the specific domain.  The visual representation is specified by connecting 

these rectangles with “graphic templates”.  This is the connection represented with the 

dashed connection in Figure  2-17.  Another connection is used to specify the vertex 

image in the toolbar, called the “tool icon” which is represented by the curved solid 

connection in the figure.  Edge types are specified exactly the same way.  In Figure 

 2-17 the edge appears at the top left corner and labelled as “link”.  In the domain of 

satellite communications, this is the only edge type available.  They call this process 

“specification-by-example”.  However, they specify the constraints (call them 

analysis) as program code using C++ or Visual Basic.  The generated diagram editor 

Figure  2-17: Specifying the GUI of a diagram editor for modelling satellite 
communications. Adopted from  (Goldman & Balzer, 1999). 
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and the developed analysers exchange design information via an object-oriented 

protocol.  The editor and the analysers are decoupled so some commonly used 

analysers can be predefined to be used off the shelf when required.  Figure  2-18 

shows the result of the specified diagram editor in Figure  2-17. 

 

Figure  2-18 shows the visual representation of different components (vertices 

and edges) and also shows at the top left corner, the result of analysis.  This analysis 

displays in a separate window a list of reports about violations of the specified 

constraints.  The report displays a message that says that “User U3 is directly 

connected to user U2” which is not allowed.  When the designer selects the report, the 

violation is marked up in the editor and annotated as shown between U2 and U3 in 

Figure  2-18. 

Figure  2-18: The generated specified diagram editor for modelling Satellite 
Communications. Adopted from  (Goldman & Balzer, 1999). 
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One commercially used application for PBE is macros (used in Microsoft 

Office, for example).  Macros depend on the user to demonstrate a required action or 

behaviour on a specific application.  Based on the behaviour provided, a program is 

generated that represents exactly the behaviour introduced by the user.  Macros, as 

Myers, (1986) classified them, are considered PBE systems but they are originally 

under another category, programming with example, as there is no generalisation, 

inference or any artificial intelligent algorithms involved in the process of generating 

the programs.  Macros represent a solution for one of the problems that PBE is also 

intended to solve, viz., reducing the effort of repeated actions.  Because there is no 

inference in macros, the repeated action example is recorded as it is and repeated as 

demonstrated exactly without any generalisation.  However, many applications that 

allow the use of macros provide the ability for code editing to generalise the 

behaviour manually which is considered an efficient method by Myers, McDaniel, & 

Wolber (2000).  Although Myers (1986) has introduced this category of systems (that 

just memorise with no inference, such as macros) in the category of PBE, this 

research excludes them.  This is because the term PBE is used here to refer to the 

process of generating a program through a process that includes inference. 

2.11 Conclusion 

This chapter reviewed literature and presented the background of the research.  

It started by reviewing the importance of CASE tools (diagram editors in this 

research) in facilitating software engineering work, their domain specificity and 

customisability limitations.  The solution of using domain specific languages with 

their associated tools solves the problem according to some authors.  However, such 

tools are expensive to be build, and consequently, they are not typically commercially 

available.  Literature that addressed this problem was reviewed and the solution of 

using meta-CASE tools, which generate the required diagram editors, was explained.  

The problem of the complexity of constraint specification in meta-CASE tools was 

presented.  This research addresses this problem by adapting a PBE technique.  PBE 

and its related features, example polarity and learning, were thus reviewed. 
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3.1 Introduction 

This chapter introduces the Diagram Editor Constraints System (DECS), 

which is used as an experimental meta-CASE tool for conducting this research.  It 

discusses the structure and the features of DECS in general.  Since DECS has been 

built before the start of this research, the chapter presents its initial state and describes 

the major enhancements introduced to it throughout this research.  This chapter also 

demonstrates how DECS works as a meta-CASE tool system, with some technical 

details, and shows its meta-modelling process by which a user can define the 

vocabulary of a target language using the available wizards and part of the syntax and 

semantics using constraints.  Additionally, the chapter introduces the XML-based 

constraint language that DECS depends on for target language specification and 

details its distinctive features. 

To avoid direct editing of constraint in XML, DECS offers two constraint 

definition techniques, form-filling and Constraint Specification by Example (CSBE).  

The first, form-filling, is implemented in DECS in the form of a wizard and tabbed 

forms.  The technique is discussed in detail here with explanatory examples and 

screenshots.  The second technique, CSBE, is described in the next chapter. 

3.2 Diagram Editor Constraints System (DECS) Structure and 

History 

3.2.1 Overview 

DECS is an Eclipse plug-in meta-CASE experimental prototype initially 

developed at the University of Glasgow prior to the start of this research.  It is a meta-

CASE tool that has all the required features to generate a diagram editor.  Each plug-

in Eclipse consists of XML manifests that describe the contents of the plug-in to the 

Eclipse runtime system.  The XML manifest file lists the internal and external 

libraries and dependencies that the current plug-in requires.  The XML file also 

specifies the extension points which specify the new feature that the new plug-in is 

adding to Eclipse.  Any Eclipse plug-in is an instance of Open Services Gateway 

initiative (OSGi) component, which is part of the OSGi framework.  In DECS case, 
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the extension point is “org.eclipse.ui.editors” which specifies that the new feature is 

an editor.  DECS depends in its work on another framework which is the Graphical 

Editing Framework (GEF).  This framework is composed of two plug-ins.  The first is 

the GEF itself which helps in implementing the graph and manipulate its components.  

The second plug-in is “draw2d” which helps in rendering and layout the graphics on 

screen.  GEF provides DECS with many features such as editing parts which 

including connecting vertices and manipulating the edges, creating the figures on the 

screen, and maintaining and enforcing the editing polices which handles the 

interaction with the diagrams.  Figure  3-1shows the interaction between Eclipse and 

DECS plug-in. 

 

This means that in this research, the DECS plug-in was modified and a fork or 

a branch of code has been added.  This, of course, included adding code to the already 

existing codebase and updating the existing one if required.  Figure  3-2 shows the 

general component structure of DECS while Figure  3-3 shows the use of DECS by 

different user types.  This structure shows that DECS initially is composed of 4 main 

components.  They interact with each other to achieve the meta-CASE tool work.  

Figure  3-1: Interaction between Eclipse and the DECS plug-in. Adopted from 
(Inglis, 2005). 
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The meta-modelling component is responsible for managing the specification of the 

vocabulary, syntax and semantics of the required language.  This component interacts 

with the repository component as it saves all the specified vertices, edges and graph 

types in the repository.  A meta-modelling component also reads from the repository 

component in case the user needs to use previously defined vertices or edges. 

 

 
Figure  3-3: DECS Use by different types of users. 

Figure  3-2: DECS Initial Structure and Components Interaction. 
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The diagram editor component is the one that provides the user with the 

required editor GUI in which the user can model diagrams of the specified modelling 

language.  Of course, this component reads from the repository component to be able 

to retrieve the elements of the required graph and their properties.  The final 

component is the constraint manager which is the one that monitors the diagrams 

(models) managed by the diagram editor component and gives decisions to keep the 

model in a state the does not violates any of the constraints.  The constraint manager 

reads all the required constraint specified in the meta-modelling component from the 

repository.  Figure  3-3 shows the interactions of different user types with DECS.  The 

diagram editor designer works in the meta-level to specify the required modelling 

language by specifying the participating vertices and edges.  Then they specify the 

constraints using the implemented form-filling technique.  The diagram editor is the 

user that models diagrams using the specified modelling language by the diagram 

editor designer.  It interacts mainly with the GUI provided by the diagram editor 

component. 

3.2.2 Development History 

The DECS project originally set out to create a meta-CASE tool that can 

specify and generate a modelling language editor using a meta-model that depends on 

drop down menus and constraints instead of graphical meta-models.  The project 

initially started as two undergraduate student projects (McCallum, 2000; Hamilton, 

2000) that resulted in a Java-based meta-CASE tool.  Additional enhancements to 

DECS represented with the ability to replay building the model facility and constraint 

viewer to present the constraints were conducted by Bogie, McCallum, Hamilton, and 

McGroarty, in 2000 (see DECS website, http://www.dcs.gla.ac.uk/decs/).  General 

enhancement has also been introduced to DECS in 2001 by Kristiansen (2001) and 

McClelland in 2002.  A meta-CASE tool similar to DECS project has been made by 

Nikitas (2005) using C#.  The first appearance of DECS as an Eclipse plug-in was of 

the result of another student project (Inglis, 2005).  Integrating the project in the 

Eclipse IDE using Java allows DECS to benefit from other available plug-ins to 

Eclipse such as the Graphical Editing Framework (GEF).  As Inglis (2005) comments, 

such an approach provides a suitable base for developing a project for modelling.  
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Based on that it was decided to adopt his version of DECS to be enhanced (described 

in Section  3.2.3) and used throughout this research. 

3.2.3 DECS Limitations and Enhancements in this Research 

The DECS version produced by Inglis (2005) was only able to create editors 

with a set of basic shapes that include the square, circle, and triangle.  Jia (2007) 

identified some further problems found in DECS: 

 the inability to change the size of a shape in the editing area, 

 the inability to add labels to edges, 

 the inability to edit shapes properties at runtime, and 

 the need for more real diagram types instead of modelling just the basic shapes 

diagrams. 

The above problems have been solved during a mini-project at the beginning 

of this research.  The first three problems were defects in the existing code.  It was 

important to solve the last problem because there was a requirement for suitable and 

realistic software design models to perform experiments on instead of the basic 

shapes.  To be able to solve this problem there was a need to study the way of 

defining shapes.  DECS defines different elements, vertex, edge and graph, using 

XML files that exist in a repository.  Vertex and edge files contain all the required 

properties for the visual components (or elements, i.e. vertex and edge types) such as 

the visual representation, background and foreground colours, labels and their colours, 

and the arrow head positions in the case of edges.  The graph file defines the diagram 

itself and contains all the participant vertices and edges.  The graph file is parsed first 

to generate the diagram editor with its elements.  DECS generates diagram editors that 

are extended from a GEF plug-in (Qattous, 2009). 

The vertex and edge specifications are read from file and are parsed at runtime 

to model the visual representation of the element with all of its specified features.  

The properties of any element can be updated at runtime without affecting the actual 

XML files.  A Java factory class exists for each of the components and is responsible 

for building its visual representation when required.  This provides an extension point 

(using inheritance) for any further model components and diagram types in the future.  
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For the purposes of this research and to provide real modelling language to conduct 

the experiments on, State Transition Diagram (STD) and Use Case Diagram were 

developed in DECS.  This was a suitable solution for the last problem stated above.  

Choosing these two diagram types is justified in Section  6.1.2.3. 

One main problem that DECS, as an Eclipse plug-in version, suffered from 

(and not noted in (Jia, 2007)) was the inability of DECS to specify constraints.  

Accordingly, the generated diagram editors were not able to enforce the constraints 

that are supposed to be enforced.  Since DECS, as a plug-in, has been developed as a 

student project, the limited time available did not give the chance to develop or 

implement a constraint language.  Accordingly, a suitable XML-based constraint 

language and constraint checker were developed as a part of this research to overcome 

this problem and to be able to conduct the required experiments. 

The following sections detail the process of specifying a CASE tool (an STD 

diagram editor) using DECS through its meta-modelling process.  The constraint 

language, and the form-filling constraint specification technique implemented to 

specify constraints using this language, are also discussed. 

3.3 The Meta-Modelling in DECS 

Like other meta-CASE tools, DECS depends on a meta-modelling process for 

target language specification.  The generated meta-model is represented as XML files.  

In DECS the “editor designer” (Figure  3-3) does the operation of meta-modelling.  At 

the end of this process DECS generates a diagram editor for the specified language.  

The meta-modelling process in DECS is basic that does not depend on graphical 

meta-models.  It is composed of two parts, vocabulary definition and constraint 

definition for syntax and semantic specification. 

The language vocabulary is defined by selecting the required element types, 

vertices and edges, which will be part of the target language.  These will be the set of 

available vertices and edges that appear as the modelling language symbols and 

notations.  All the language elements in DECS are defined using XML files and stored 

in the XML repository (Figure  3-2).  This repository is used for communication 

between different levels of DECS (meta-level and modelling language level) because 
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the files that are defined and stored in the meta-level will be read and used in the 

generated modelling language level. 

To clarify the vocabulary definition process, the following example shows the 

process of defining “State Transition Diagram” that has the three vertex types, Start 

State, End State, and Non Terminal State, and only one edge type, Transition.  The 

“editor designer” defines the required vertices and edges using a wizard.  Figure  3-4 

shows screenshots for steps of the wizard required to define the “Start State” vertex 

type.  The designer selects the required element to be defined (Figure  3-4-a), enters 

the vertex name, “Start State”, and specifies if the new vertex type inherits the 

properties from a previously defined vertex type (in this case it does not) (Figure  3-4-

b), and finally manipulates the presentation properties of the defined element by 

adding, deleting, or changing the values of these properties.  This ends up with a new 

vertex type, “Start State”, defined.  A new edge type is defined following the same 

process using its own wizard.  After the designer finishes defining all the required 

diagram elements (“Start State”, “End State”, “Non Terminal State” and 

“Transition”), they define the diagram itself.  This is done through a wizard that 

shows the designer all the available vertices (Figure  3-5) and edges.  The designer 

selects the required elements of the diagram to be specified which finishes the 

process.  This generates an XML file in the repository that describes the diagram type. 
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Figure  3-4: a) Select the required element (new vertex type). b) Enter the vertex 
type name. c) Define the presentation properties for the new define type. 

a 

b 

c 
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The “editor user” (Figure  3-3) can at this stage use the specified diagram type 

by selecting from the list to create a new diagram (Figure  3-6-a) and selects that the 

required diagram is of type “State Transition Diagram” (Figure  3-6-b).  Figure  3-7 

shows the generated diagram editor at work. 

However, the above diagram type definition is not completed yet.  The 

generated editor with its specified language draws instances of “State Transition 

Diagram” but without specified syntax and semantics.  To complete the meta-

modelling process, the “editor designer” should define the diagram syntax and 

semantics.  All the features related to the syntax and semantics of the graph must be 

added as explicit constraints. 

 

Figure  3-5: Select the vertices participating as elements at State Transition 
Diagram. 
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b 

a 

Figure  3-6: a) The user creates a new diagram of the specified diagram 
types. b) The user gives a name for the diagram and selects the required 
diagram type. 
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3.4 The Constraint Language in DECS 

DECS depends on an XML-based constraint language which uses property-

value assignment to define constraints.  The same method has been used by Scott, 

Horvath, & Day (2000) for constraint definition.  The constraint language is used in 

DECS to specify constraints that form part of the specification of the target modelling 

language.  Figure  3-9 shows one of the constraints that the language is capable of 

specifying which is “it is not allowed to connect a vertex of type End State as a 

source with a vertex of type Start State as a target using an edge of type Transition”.  

As the figure shows, this constraint is implemented using different XML constraints.  

This example will be discussed in detail later in this chapter. 

The property-value assignment technique for constraint definition allowed 

several constraint classifications to be used because classifications can be embedded 

within a constraint in form of values assigned to properties.  In this manner, 

Figure  3-7: Generated State Transition Diagram editor. 
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constraints in DECS can be considered as adapting multidimensional classification 

because it currently adopts the following two constraint classifications: 

 In DECS, the constraint language classifies the constraints depending on the scope 

of the constraint into vertex, edge, and graph constraints.  This classification 

classifies the constraints based on the starting scope of the constraints into vertex, 

edge and graph constraints.  A vertex constraint is defined as one that starts with 

the vertex element (the meaning of ‘starting with’ will be discussed later).  The 

edge constraint is similar but starts with edge instead of vertex.  The graph 

constraint specifies constraints that have as their scope the entire graph.  Examples 

of this classification will be discussed later.  This classification was adopted 

because it is simple (i.e., direct and related to the different components available 

in the context), suits the nature of the system as an XML-based system and solves 

the problems of other classification as introduced in the above constraint example.  

According to this classification, the DECS constraint language has three different 

constraint types that are implemented as three different XML file formats each of 

which is a format for one of the constraint types.  The template structures of these 

XML files are available in Appendix A.  This classification is similar to that 

introduced in (De Lara & Vangheluwe, 2002).  In their meta-CASE tool, AToM3, 

constraints are divided into two types, “local” and “global”.  Local constraints are 

used to define constraints applied to a specific entity of the graph such as the 

‘External Entity’ in an ER diagram.  An example of such a constraint is “the 

connection of two External Entities by means of a DataFlow is not allowed”.  An 

example of a global constraint is “all DataFlow names must be unique”.  Such a 

constraint is a global one because its effect extends over an entire diagram or a 

graph.  This classification is similar to the one adopted in DECS but with less 

detail as they combined the vertices and edges constraints into one classification 

called ‘local’. 

 The constraint language also adopts a classification depending on the enforcement 

of the constraint as “hard” or “soft”.  The classification has been also introduced 

before in (Gray & Welland, 1999).  Hard constraints are those constraints that 

must not be violated at any time during the process of modelling.  Soft constraints 

are those constraints that should be satisfied at the end of a modelling process but 

not within the process itself.  This means that they can be violated to an extent 
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during the process but the final product model should not be in a state that violates 

any of them.  Such a classification is also introduced in (Vessey, Jarvenpaa, & 

Tractinsky, 1992) and (Jankowski, 1997).  The Argo critic system by Robbins., 

Hilbert, & Redmiles (1997) adopts and implements both hard and soft types of 

constraint.  A similar behavioural classification of the constraints, based on the 

priority of the constraints as high and low, is introduced in (Ledeczi, Maroti, & 

Volgyesi, 2001).  For every OCL expression constraint in GME a specific priority 

is specified.  This priority determines the action that should be taken by the 

constraint manager when the constraint is violated.  When a high priority 

constraint is violated the transaction result of the violation is aborted and an error 

message is presented, while the system only presents a warning message when a 

low priority constraint is violated.  This constraint classification has been adopted 

in DECS because it affects the behaviour of the system depending on the 

constraint enforcement type, which is a required feature.  If the constraint is hard, 

the system will enforce it and prevents its violation which is the desired behaviour 

for all the constraints.  As an example, the constraint “it is not allowed to have 

more than one Start State in the diagram” is more appropriate to be specified as a 

hard constraint.  This is because when the designer adds the second start state 

vertex, the system should delete it (Figure  3-12).  However, in some situations the 

designer must be given time to provide the correct design that does not violate the 

constraint; this requires a soft constraint.  An example of this constraint type is “at 

least one Start State and one End State must exist in a State Transition Diagram”.  

This is a soft constraint because the user will add one of the vertices, either start 

state or end state, then the user will add the second vertex.  If the constraint is 

defined as a hard constraint and the user tries to add a start state vertex at the 

beginning, the system will delete it and shows an error message saying that both 

vertices must be in the diagram.  The same behaviour will be if the user chooses to 

add the end state before the start state.  This means the user should add both 

vertices at the same time which is not possible.  Because of that, a soft constraint 

gives the user the required time to modify the diagram in a way that satisfies the 

constraints; however, the system shows warning messages to remind the user 

about the violated constraint.  This is shown in Figure  3-8. 
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The property-value assignment feature also provides the ability to refer from 

one constraint to another.  As shown in Figure  3-9, some of the properties in the XML 

constraint definition take as values URI descriptors which work as references to other 

XML constraints.  This provides the DECS constraint language with flexibility.  This 

flexibility comes from the ability to construct the required constraint using different 

XML constraint definitions by referencing one to another (Figure  3-9).  The 

referencing feature allows the user to build complex constraint structures by plugging 

small constraints together.  A similar feature has been used in a visual language for 

event handling definition by Liu, Hosking, & Grundy (2007a). 

Referencing also allows the same constraint to be built in different ways 

depending on the starting point of building the constraint.  As an example, in state 

transition diagram type the constraint, “it is not allowed to connect a vertex of type 

End State as a source with a vertex of type Start State as a target using an edge of 

type Transition” can be defined either as an edge constraint which starts the definition 

of the constraint from the edge part then defines the source and target parts or can be 

defined as a vertex constraint which starts the definition from one of the vertices.  In 

Figure  3-8: A soft constraint asking the user to add an End State. 
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case of the first choice, edge constraint, the user would define an edge that its source 

is an End State and its target is a Start State.  This constraint definition appears in 

Figure  3-9.  Note that in this case the user defines what must not be allowed. 

 

In the case of the second choice, the user has two options; in the first, the user 

would define a vertex constraint that specifies an End State; its source connection is 

an edge constraint that specifies an edge of type Transition.  The edge target 

connection property refers to another vertex constraint that specifies a vertex of type 

Start State.  The second option is that the user can specify the constraint in a reverse 

way by starting the constraint by defining a vertex constraint that specifies a vertex of 

Figure  3-9: Edge constraint file referring to End State as a source connection and 
to Start State as a target connection constraint files. 
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Start State, its target connection property is an edge constraint (Transition) that its 

source connection property refers to a vertex constrain (End State). 

The referencing ability also allows reusing previously defined constraints 

which reduces the effort and time required to define the constraint if more than one 

element (a vertex as an example) of the constraint has the same description.  In this 

case, there will be only one XML file to describe one of these components and 

whenever required, there will be a reference for the same file.  This also opens the 

chance to use previously defined constraint components by referring to them instead 

of defining new constraints.  As an example, in the use case diagram the constraint “it 

is not allowed to connect a vertex of type Actor with a vertex of type Actor using an 

edge of type Association, Extend, or Include” the source and the target vertex types 

are the same, viz., actor vertex, and the same constraint file will be used.  In this case, 

the values of the source connection and the target connection for the edge constraint 

could be the same file that defines a vertex of type actor.  This means that the user 

needs to define only one vertex constraint file for both parts of the constraint (the 

source and the target).  This is shown in Figure  3-10.  A similar feature has been 

implemented in GME meta-CASE tool through defining constraints in forms of 

functions that can be called and reused from within other constraints (Ledeczi, Maroti, 

& Volgyesi, 2001). 

 
Figure  3-10: Edge constraint file referring two times to the same vertex constraint 
file. 
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The referencing feature provides one more advantage which is the simplicity 

of constraint construction and consequently performing a constraint definition task.  

Based on the divide and conquer concept, it is likely that it is easier to tackle the 

problem of defining a constraint as a set of small problems than as one big problem.  

The language also allows complex constraints to be composed using the logical 

relations AND and OR between URI constraint references which helps in constructing 

complicated constraint structures (that involve several vertices and edges with logical 

relations between them).  This feature also helps in defining more than one constraint 

at the same time.  As an example, in the constraint defined in Figure  3-10, it is 

possible, using the OR logical operation, to add another URI for the target connection 

property that refers to a vertex constraint of type Use Case.  In this case the constraint 

will be “it is not allowed to connect a vertex of type Actor OR a vertex of type Use 

Case with a vertex of type Actor using an edge of type Association, Extend, or 

Include”.  In addition, the referencing feature helps in simplifying the constraint 

generalisation feature which will be discussed in detail in chapter 7.  Because of all 

the features described above, this constraint specification language was developed and 

implemented in DECS and used in this research. 

3.5 Constraint Specification 

All the defined constraints are stored in a repository.  At runtime (when the 

“editor user” uses the generated editor), the constraint manager (Figure  3-3) pulls all 

the defined constraints from the store and converts them into Java objects.  This is 

done with the help of a recursive descent parser implemented to be able to follow the 

references in each constraint.  The Java object for each constraint is constructed using 

the wrapper design pattern and maintained within the constraint manager component 

which helps in constraint evaluation later on.  The constraint manager monitors the 

work of the designer (editor user) in the generated diagram editor and validates every 

action against the maintained constraint objects.  Every time the “editor user” 

modifies the diagram, the constraint manager scans the constraints to assert that the 

updated state of the diagram does not violate any of the available constraints. 

If a violation of a constraint is triggered, the constraint manager behaves 

depending on the violated constraint classification (hard or soft).  This constraint 
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classification specifies the behaviour of the constraint manager.  If the constraint is a 

hard constraint, the constraint manager undoes the last action performed in the editor 

to return the diagram to a legal state and shows the user a message justifying the 

action.  However, if the constraint is a soft constraint, the constraint manager only 

shows the user a warning message describing the violation.  The adoption of this 

classification allows the user to specify the required behaviour of the constraint.  The 

user can specify the type of the constraint, if hard or soft, using the attribute “type”. 

Figure  3-10 shows the definition of “hard” constraint.   

The last thing to describe in the constraint specification is the “description” 

attribute (near the top of the constraint definition following the “type” attribute).  This 

is the message that the constraint manager presents to the user when the constraint is 

violated which is used to describe and clarify the violated constraint. 

3.5.1 Constraint Specification Using the Form-Filling Technique 

As a part of meta-modelling process, a DECS user should be able to define 

constraints using the language described above.  To achieve this, it is possible to 

manually create or edit the constraint.  However, to provide a more convenient 

technique for constraint specification, the form-filling technique, in the form of a 

wizard and tabbed forms, has been introduced in DECS.  Justifications of using this 

technique have been introduced briefly in chapter 1.  The form-filling technique was 

adopted in this research instead of any other constraint specification techniques 

introduced in the literature review because it is the only documented typical technique 

for constraint specification in meta-CASE tools.  As shown in the literature review, 

the other techniques for constraint specification in meta-CASE tools are experimental 

and research techniques.  However, form-filling is considered as a typical technique 

instead of being a research one and is used in the commercial meta-CASE tool 

MetaEdit+ (MetaCase, 2009).  Additionally the form-filling technique is common in 

different meta-CASE tools instead of being implemented in just one tool for research 

purposes. 

Using the form-filling technique, the user defines a constraint by filling in the 

required values for the constraint properties.  There is a space for each property of the 

constraint file in form of a textbox or a checkbox.  This means that the wizard is a 
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GUI reflection of the constraint definition structure.  If another constraint is needed to 

be referenced, another form can be filled as each form represents one constraint.  

Referencing can be done either by defining a new constraint through calling a new 

tabbed frame form from within the current one (Figure  3-11) or by browsing the 

available constraints to reuse a previously defined one.  Both definitions lead to 

referencing files (the constraint URI, as shown in figures (Figure  3-9 and Figure 

 3-10)). 

Figure  3-11 shows the steps to define the constraint introduced above: “it is 

not allowed to connect a vertex of type End State as a source with a vertex of type 

Start State as a target using an edge of type Transition”.  This helps in comparing 

between constraint specification by direct editing the XML constraint file and using 

the form-filling technique to specify the constraint. 
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Figure  3-11: a) Transition edge constraint form (wizard) that defines two new 
constraints as references. b) End State vertex constraint form (tabbed-frame) to 
define referenced source connection constraint from the edge constraint. c) Start 
State vertex constraint form (tabbed-frame) to define referenced source connection 
constraint from the edge constraint. 

a 

b 

c 
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To complete the picture Figure  3-12 shows a generated diagram editor that 

models a State Transition Diagram.  One of the constraints specified to define this 

diagram editor is “it is not allowed to have more than one Start State in the same 

diagram”.  Figure  3-12 shows that the user already added one start state and has tried 

to add one more.  This violates the constraints and the constraint manager, as shown 

in Figure  3-10, deletes the second start state and presents an error message to the user, 

which is the text defined as the description of the constraint. 

 

3.6 Why DECS? 

DECS has been selected for use in this research for the following reasons: 

Figure  3-12: The error message “It is not allowed to have more than one start state 
in the same diagram” indicating violation of the constraint when the user tries to add 
the second start state. 
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 The main reason for choosing DECS for this research is the fact that it is 

dependent on constraints as the dominant part of its meta-modelling process.  This 

gives the required flexibility for testing the application of the CSBE technique for 

constraint specification. 

 DECS has been implemented partially before the start of this research which 

helped to save time and effort in meta-CASE tool issues, particularly 

implementation and code customisation, that is out of the scope of the research. 

 DECS has been implemented as an Eclipse plug-in which gives the opportunity to 

extend it as an experimental meta-CASE tool for research purposes worldwide.  

Additionally, Java is used for implementation which made it easy for the research 

to deal with because of the author’s strong background in this programming 

language. 

 The dependence of DECS on the GEF plug-in provided a suitable GUI for the 

generated editors and saved the time and effort of implementing features such as 

drag and drop and drawing edges. 

In addition to all of the above, it is believed that DECS is unique as a meta-

CASE tool in its dependence on constraints as the main source of target language 

specification.  All the reviewed meta-CASE tools utilise constraints but not to the 

level that DECS does.  It was noticed that DECS using constraints is able to specify 

many target languages include those used in this research (State Transition Diagram 

and Use Case Diagram).  Since the research is not about the sufficiency of the 

constraints to specify the target languages in meta-CASE tools, no studies were 

conducted in this direction.  However, in a trial to evaluate the ability to depend on 

constraints to define a modelling language, the ZigBee domain specific modelling 

language was analysed theoretically as a trial to see of it could be specified in DECS 

using only the constraints. 

ZigBee is a network protocol that has some rules that restrict the participant 

nodes to follow.  The following specifies the syntax and semantics of the ZigBee 

protocol as extracted from (Stevanovic, 2007). 

1) ZigBee classifies devices into only three types based on functionality, 

a) ZigBee end-device. 
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b) ZigBee router. 

c) ZigBee coordinator. 

2) Exactly one coordinator must exist in ZigBee. 

3) It is possible to have one or more routers in ZigBee (not compulsory). 

4) It is allowed to have a connection between coordinator and end-device. 

5) It is allowed to have a connection between coordinator and router. 

6) It is allowed to have a connection between router and end-device. 

7) It is not allowed to have connection between two end-devices. 

From the above conditions, it can be concluded that it is possible to define a 

domain specific modelling language for the ZigBee protocol using DECS.  This will 

be possible because all the constraints specified above can be represented using the 

constraint language implemented in DECS.  The difference of specifying the above 

language using DECS and using any other meta-CASE tool is the simplicity of 

depending only on the constraints in case of DECS.  However, this needs extra 

research to ensure that constraints alone can capture different concepts in other 

domains. 

3.7 Conclusion 

The Diagram Editor Constraints System (DECS) is an Eclipse plug-in meta-

CASE tool system that depends on an XML repository to store the specification of the 

required target language.  It depends on a wizard for vocabulary definition.  For the 

target language specification, DECS depends on constraints.  DECS has a structure 

with an XML repository responsible for the communication between the meta-level 

and the diagram editor (target language) level.  It also has a constraint manager that is 

consulted to ensure that the models in the diagram editor do not violate the defined 

constraints (the syntax and semantics of the specified target language).  For constraint 

specification, DECS depends on a flexible XML-based constraint language. 

In DECS, the user can specify constraints using the form-filling technique that 

is represented as a wizard and tabbed forms.  DECS depends mainly on constraints to 
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specify the required modelling language.  Since this research aim is in the domain of 

constraints, DECS is a suitable tool to be used to conduct this research. 

The next chapter discusses a novel technique, Constraint Specification by 

Example (CSBE), invented as part of this research, with its associated features 

including its synergistic approach.  This will be supported by the presentation of some 

technical details of the DECS inference engine. 
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4.1 Introduction 

In the previous chapter, DECS was introduced as a meta-CASE tool prepared 

as a prototype to conduct the empirical studies of this research.  Its XML-based 

constraint language was described, along with the DECS constraint manager.  Form-

filling has been implemented in DECS as one constraint specification technique.  To 

be able to validate the thesis statement and answer the first question stated in the 

introduction, there is a need to implement the CSBE technique into DECS. 

This chapter discusses the CSBE model developed as part of this research and 

discusses its novel features that adapt the PBE technique to the constraint 

specification task. These features include the use of an interactive synergistic 

approach, remodelling and visual generalisation within the process of inference, 

positive and negative examples and a system learning approach. Taken together, 

CSBE combines its features into a distinctive variant of PBE not found in any 

previous systems. 

The chapter also introduces the CSBE implementation in DECS.  This clarifies 

the practical application of the model and its features at work, illustrated using 

examples and screenshots.  It also shows some other features associated with the 

implementation such as constraint visualisation and inference engine transparency 

features.  This discussion is combined with the introduction of the inference engine 

and the implementation of its rules and their different types. 

4.2 Constraint Specification by Example 

The ordinary PBE technique for specification or configuration depends on 

providing one or more examples of the required program to the PBE system.  The 

system then infers the program by generalising the examples (Argall, Chernova, 

Veloso, & Browning, 2009).  In the context of constraints, the user introduces one or 

more examples that express the required constraint and the system attempts to infer 

the intended constraint. Note that, since inference is an essential part of the process, 

macros, and other similar systems, cannot be considered candidates for CSBE. 
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4.3 Visualisation-Oriented Constraint Specification 

DECS and its CSBE technique depend on a distinctive feature, in the context 

of meta-modelling, of expressing the constraints using the same elements (vertices 

and edges) of the target language (language to be specified) instead of using a 

different representation for these elements.  It is believed that this feature is a 

participant in increasing the intuitiveness and the visualisation of the constraint.  This 

is because the user defines the constraint using the same visual representation of the 

target language in the examples. 

Throughout the literature on meta-CASE tools, it can be noticed that the meta-

model is specified using some model paradigm, typically one that is different from the 

target language visual representation.  Scott (1997) uses hypernodes to express the 

model while the KOGGE meta-CASE tool uses an extended version of an ER diagram 

(EER) (Ebert, Süttenbach, & Uhe, 1997).  KOGGE’s meta-model specification 

includes even the visual representation of the target diagram elements (vertices and 

edges). 

Visualisation in the meta-model using the same objects as in the target 

language has been introduced by Draheim et al. (2010).  They call this visualisation 

feature ‘visual reification’ and they define it as “the notion that metamodels are 

visualized the same way as their instances”.  This includes some visual representation 

of the target model in the meta-model.  They justify its introduction in the meta-

modelling language by the requirement for intuitive meta-modelling features.  They 

focused on the principle of intuitiveness as a solution for the problem of unavailability 

of meta-modelling in the context of business modelling tools.  They introduced the 

idea of visual reification to make meta-modelling more intuitive in order to address 

the complexity of the meta-modelling process. 

4.4 CSBE Model 

Some PBE systems depend in their work on very little interaction between the 

user and the system, leaving all or most of the work to the system.  In this case the 

user will have very limited control over the generated program (Castelli, Oblinger, & 

Bergman, 2007).  Other systems allow interaction between the system and the user at 
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different levels.  This interaction can be extensive and complicated (depends on many 

concepts) as in the case of Gamut (McDaniel & Myers, 1999) that requires the user to 

define what the system should do and refine the behaviour by specifying what the 

system should not do using hidden objects, that can be seen only during the design 

time but not at the runtime,.  The interaction can also be complicated in the case of 

aCAPpella system (Dey, Hamid, Beckmann, Li, & Hsu, 2004) that requires the user to 

specify the important parts of the behaviour so the system can generalise only from 

these parts.  The interaction can also be very limited as in Peridot (Myers, 1993) that 

only allows the user to accept or reject one inference of the system at a time. 

The CSBE technique in DECS requires user involvement in the inference and 

generalisation processes.  It does not restrict the user’s work to confirming or 

rejecting a single inference; however, it also does not require him/her to provide many 

complicated examples (that depends on many concepts) with hidden objects to define 

a constraint such as in Gamut (McDaniel & Myers, 1999).  It depends on and adapts a 

synergistic approach that creates an interaction between the user and the system to 

specify these constraints. 

A collaborative, or synergistic, user-system interaction approach has been used 

before in the context of PBE by Hudson & Hsi (1993).  However, that approach 

depends on a user-centric heuristic search space by generating new possible solutions 

based on user choices.  They also depend on two rules for generalisation and 

generating solutions based on combinations between them.  In DECS, the synergistic 

approach depends, in its simplest form, on the system providing all the inferences of 

the introduced example and on the user helping by selecting the intended constraint.  

However, in some cases, the synergism between the user and the system extends 

beyond this.  Figure  4-1 shows a model of this approach clarifying different 

possibilities and interaction alternatives. 

The model describes the synergistic interaction approach between the user and 

the system to specify the required constraint.  The first step is that the user introduces 

an example.  The user also selects, explicitly, a polarity for the example.  The polarity 

issue will be discussed in detail later on, but for now CSBE allows the user to specify 

two types of example polarities, positive or negative (discussed in Section  4.5.1).  A 
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positive example shows what must hold and a negative example shows what must not 

be the case.  After this point, the example is ready to be interpreted by the system. 

 

The system takes the example as input and the inference engine works on it to 

generate an inferred constraint list.  This list is presented to the user who searches the 

list to find the required constraint.  If the user finds the constraint, they select it and 

the constraint is generated.  If the constraint does not exist in the inferred constraint 

list, the system tries to refine the introduced example by remodelling it visually.  This 

allows the system to infer from the modified example (discussed in Section  4.6).  If 

there is no possible remodelling, the user adds a new rule to the inference engine or, 

in other words, teaches the system how to infer from the example (discussed in 

Section  4.8).  If there is a possible remodelling, then the system performs it, which 

generates another example.  The new example is used as input again to the inference 

Constraint 
exists?

Example

Inferred 
constraint list 

System infers 

User provides example and 
selects the interpretation 

polarity 

System applies 
remodelling 

User Chooses from the 
list and presses yes

Any possible 
remodelling? 

User adds a new 
rule 

Constraint

Yes

Yes 

No 

No 

Figure  4-1: Synergistic interaction model in DECS. Interaction loop is shown in bold. 

Start 
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engine to generate another constraint list.  The process is repeated until the required 

constraint is achieved or the user abandons the attempt.  The following sections 

discuss the implementation of this model in DECS and detail its features. 

4.5 CSBE Design and Implementation 

Figure  4-2 introduces the DECS structure after CSBE is implemented into it.  

Note that Figure  4-2 is similar to Figure  3-2 in the previous chapter but with an extra 

component, Inference Manager, that is added to implement the CSBE model as a 

constraint specification technique in DECS. 

 

 

Figure  4-2: DECS Structure and the components interaction after the inference 
manager component is added. 
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The difference in the components structure of DECS is reflected on the use of 

DECS by different types of users.  Although there is no difference between Figure  3-3 

and Figure  4-3 regarding the user types, the diagram editor designer, in addition to the 

form-filling technique, has an additional alternative for constraint specification in the 

meta-modelling level which is CSBE.  This gives the diagram editor designer the 

option to interact with either the form-filling technique GUI or the CSBE GUI for 

constraint specification purposes.  However, the diagram editor user is not affected at 

all by the changes introduced to the meta-level. 

The inference manager is the component that maintains the inference engine 

implemented in DECS.  It contains all the inference rules as strings which allows 

extending them as required through direct scripting.  For every string in the rules, 

there is an associated Java class to perform the work.  Although the rules can be 

extended using a language very close to natural language, there is a limitation of the 

mapping availability between the script and the Java classes.  Any extension to the 

Figure  4-3: DECS is used by different types of users. 
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rule expression language itself requires an extension of the factory method that is 

responsible for building the required Java class. 

The inference engine implemented in DECS is an adaptation of an open-

source one described in (Sazonov, 2004).  Although the inference engine is almost 

completely changed, it was the base that DECS’ inference engine depends on.  The 

input of the inference engine is the diagram that is modelling the example (i.e., the 

example that expresses the constraint).  The inference engine extracts features from 

this diagram (the example) through triggering the rules.  The triggered rules are 

executed which generates the constraint list.  More details about the work of the 

inference engine are in the following parts of this chapter. 

The best way to explain and clarify the implementation of the model is 

through scenarios.  Three scenarios are introduced below: one to show the simplest 

form of interaction, the second to show a more complicated interaction with 

generalisation (so it is complicated because it involves the generalisation concept), 

while the third is the most complicated, involving system learning (so it is 

complicated because it involves the learning concept).  A Use Case diagram editor 

will be used as the target editor in these scenarios.  Note that the scenarios describe 

the process using simple constraints (do not involve many vertices and edges).  This is 

intended to simplify the process and understand it fully.  However, this does not mean 

that the system is unable to define other than these simple constraints.  Other 

complicated constraints (involve many vertices and edges) can be defined because of 

the flexibility of the constraint language as shown in the previous chapter. 

The first scenario for explaining the approach shows the task of defining the 

constraint: 

“It is not allowed to connect two vertices of type Actor using an edge of type 

Association”. 

To define this constraint, the user first introduces an example to express this 

constraint.  For this constraint, the user uses a negative example that shows two 

vertices of type Actor connected to each other using an edge of type Association.  

This example is shown in Figure  4-4-a. 
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Once the user introduces the example, s/he asks the system to infer by pressing 

the button “switch inference ON” (see Figure  4-45).  The system attempts to infer the 

constraint from the example.  Inference here can be thought of as an interpretation 

process, since the system tries to interpret the example.  Because the example supports 

several interpretations, the system infers all the possible interpretations, according to 

its knowledge, and presents these inferences to the user in form of a list with items 

attached to radio buttons (Figure  4-4-b) which means that the user can only choose 

one of the constraints presented in the list.  The system asks the user if the list 

contains the intended interpretation (the required constraint) or not.  In Figure  4-4-b 

the required constraint is shown as the first choice, by coincidence, and selected by 

                                                 

 

5 Note that, in Figure 4-4, the user has already pressed the “ON” button, so the dialogue shows 

“Press to switch inference OFF”. In general, a user can toggle the inference engine off or on, as desired. 

b 

a 

Figure  4-4: a) Negative example to express the constraint “it is not allowed to 
connect two vertices of type Actor using an edge of type Association”. b) Inferred 
constraints list. 
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default.  The system turn ends here and passes control to the user.  The user selects the 

intended constraint and confirms the selection by pressing “YES”. 

 

The system then shows another dialog box asking the user to give a name for 

the constraint and to select a URI to store the constraint file in.  The system finishes 

the process by generating a constraint in the DECS constraint language and storing it 

in a file in the specified location.  Just to complete the picture, Figure  4-5 shows the 

generated diagram editor with the new constraint applied in it.  When the user creates 

a model that contains two Actors and s/he tries to connect them using an Association 

edge, the system deletes the connection and shows the user a message explaining the 

constraint. 

Before going to the second scenario that shows some novel DECS inference 

manager features, some features in the first example will be clarified and discussed. 

Figure  4-5: Generated diagram editor working.  The error message “It is not allowed 
to have the structure (Actor is connected to Actor) using Association” indicating 
violation of the constraint when the user tried to connect two Actors using 
Association edge. 

User tried to connect the actors 
but the system deleted the edge.
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4.5.1 Positive and Negative Examples 

A positive example represents the desired state or what must hold, while a 

negative example represents an undesired state or what is not allowed.  In the example 

above, the user introduced a negative example to show the system what is not allowed 

(viz., connecting two Actors using an Association edge). 

In its initial form, DECS was developed to handle negative examples only, as 

many typical constraints are naturally expressed in the form “it is not allowed to …”.  

The example presented above takes this form.  However, it was realised that some 

constraints are easier6 and more natural to express positively (using positive 

examples).  The constraint “it is not allowed to have less than one Actor in the 

diagram” (or “there must be at least one Actor in the diagram”) (or “the lower bound 

number of Actor is 1”) is an example of such a constraint.  To express this constraint 

positively, the user only needs to provide an example of one Actor.  In other words, 

the example says, this is the desired case.  Figure  4-6 shows this constraint with the 

positive interpretation.  Figure  4-7 shows the negative interpretation of the same 

example. 

 

                                                 

 

6 easier = less mental effort 

Figure  4-6: Positive interpretation (inference) the introduced example. 
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The negative interpretation of the same example can be explained in the 

constraint “It is not allowed to have any Actor in the diagram” (or “the upper bound 

number of Actor is 0”).  Although this constraint is not likely in practice, this is what 

DECS infers negatively from it. 

Many previous PBE systems support both positive and negative examples.  

Peridot (Myers, 1993) depends mainly on positive examples to define GUI 

constraints; however, some constraints need to be expressed using negative examples.  

Some other PBE systems introduced positive and negative examples as one unit that 

are used together to refine the specification.  This is clear in Gamut (McDaniel & 

Myers, 1999) that uses explicit negative examples to exclude behaviour from a 

generalised one.  MetaMouse (Myers, McDaniel, & Wolber, 2000) uses implicit 

negative examples to refine the behaviour through conditional branches in the code. 

In DECS positive and negative examples are used explicitly with the direction 

of the user to enforce the interpretation polarity of the example as intended.  They are 

not used to refine the behaviour of each other; instead, each of them is used to define 

a constraint by itself and separately from the other. 

Figure  4-7: Negative inference for the same example introduced in (Figure  4-6). 
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Any example in DECS is presented either positively or negatively but not as a 

combination of both in the same example.  This gives the opportunity to express a 

constraint using an example with the preferred polarity (positive example or negative 

example).  It also reduces the complexity of using both polarities to express the same 

constraint by combining both types together in the same example to refine the 

behaviour for each other.  Since DECS cannot guess the polarity of an example which 

can hold different interpretations in either of the two polarities, the user must help the 

system by choosing the required interpretation polarity.  This is done by selecting 

either a negative or positive interpretation using the radio buttons, as shown in the 

Figure  4-4-b and Figure  4-8-b.  The first figure shows the negative interpretation 

while the second shows the positive interpretations for the same example (Figure  4-4-

Figure  4-8: Positive interpretation of the same example in Figure  4-4. 

b 

a 
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a and Figure  4-8-a)7.  The same is for Figure  4-6 and Figure  4-7 as they show the 

positive and negative interpretation for the same example. 

4.5.2 Inference Over States and Actions 

In the previous examples, DECS inferred the constraints from the state of an 

example.  In other words, the system makes inferences based solely on the state of the 

example (vertices and edges) at the moment of inference.  However, it is possible to 

combine the example state with an action performed on this state to complete the 

example.  This means that in some cases, the state may be not expressive enough to 

express the required constraint.  As an example, consider the constraint: 

“It is not allowed to have less than two Actors in the diagram”. 

This constraint can be expressed by introducing an example of two actors.  

This is a positive example to show that at least two actors must exist in the diagram.  

The same constraint can be expressed negatively in two steps.  First, the user 

introduces two actors in the diagram, and then s/he deletes one of the actors.  The 

system in this case interprets the example negatively by interpreting that the action 

taken by the user (deleting the actor) should not be allowed, and infers that at least 

two actors must be in the diagram.  To reach this inference, the system considers both 

the state of the model prior the action, which is here the two actors, and the action 

performed on this state, which is the delete action.  Using this feature, the user can 

express a constraint using an example that depends on presenting a state and an action 

over it.  This feature has been implemented in DECS for two reasons.  First, it enables 

a user to express constraints according to his/her preference which should increase 

DECS’ ease of use.  Second, it enriches DECS with different ways to express the 

same constraint which enhances its expressiveness power. 

                                                 

 

7 Note that these are not meaningful diagram states for a Use Case diagram. 



107 

Consider the following example that illustrates the use of the state-action 

feature to enable the use of a single polarity.  The constraint (expressed in Figure  4-6) 

can be expressed negatively instead of positively using the state-action technique. 

 

Figure  4-9 shows screenshots of a version of DECS that only depends on 

negative inference.  However, it is supported with the state-action feature which 

allows the user to express the required constraint using a negative example.  Figure 

 4-9-a shows part of the example which is composed of one Actor.  Negatively, this is 

interpreted by DECS as the constraint “It is not allowed to have any Actor in the 

diagram.” (or as the figure shows “The upper bound number of Actor is 0.”).  This 

part is considered as the state part of the example; however, the example has not been 

finished yet.  The action part is when the user deletes the Actor vertex (Figure  4-9-b).  

From this action, the inference engine can infer that this action is not allowed.  

However, to be able to come up with reasonable constraint, the previous state of the 

Figure  4-9: a) The user introduces a vertex (Actor) as an initial state of the example 
and the system shows the negative inference in the negative version of DECS. b) The 
user deletes the vertex to express the required constraints negatively using the state-
action feature. 

a 

b 
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example must be taken into consideration.  In this example, the previous state had one 

Actor and based on that the required constraint, “It is not allowed to have less than 

one Actor in the diagram.” (or as the figure shows “The lower bound number of Actor 

is 1.”) (or, “There must be at least one Actor in the diagram.”) will be inferred (Figure 

 4-9-b). 

 

Because the state-action feature is an important part of the empirical study 

presented in  6.3, one more example will be presented.  The example shows the 

process of expressing the constraint “It is not allowed for edges of type Include 

incoming to Use Case to be less than 2.”, (or “It is not allowed to have less than 2 

Figure  4-10: a) Initial state for an example. b) Expressing the required constraint 
negatively using state-action feature by deleting one of the Include type edges. 

a 

b 
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edges of type Include incoming to a Use Case.”).  The constraint is expressed using 

the state-action feature in Figure  4-10-(a and b). 

The first step (Figure  4-10-a) shows the state of the constraint example which 

presents the required state (two Include edges are connected to a Use Case vertex as a 

target).  However, because the system is interpreting the examples negatively, it does 

not infer the required constraint.  Instead, it infers that the maximum allowed number 

of include edges incoming to the use case vertex is one.  The next step of the example, 

the state-action part, requires deleting one of the include edges (Figure  4-10-b).  This 

triggers the system to infer the required constraint as it recognises the previous graph 

state and the user action, which is undesired. 

These examples show how the state-action feature enables the user to express 

examples using negative inference or interpretation.  DECS is also able to infer 

constraints using positive example interpretation only with the support of state-action 

feature.  It is possible to express the constraint “It is not allowed to have less than one 

Actor in the diagram.” (“The lower bound number of Actor is 1”) positively using an 

example with only one Actor as shown in Figure  4-11.  However, the problem appears 

when trying to express, positively, the constraint “It is not allowed to have more than 

one Actor in a Use Case diagram.” (“The upper bound number of Actor is 1.”) or in 

the constraint “It is not allowed to have more than one Start State in State Transition 

diagram”. 

 

Figure  4-11: Positive interpretation (inference) the introduced example. 
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Both constraints reveal the same problem which is that these constraints 

cannot be expressed positively using a reasonable example.  The only way of 

expressing the constraint is using the same example used for the lower bound number 

constraint.  In other words, two contradicting constraints will be expressed using the 

same example which creates an arbitrary way of expressing the constraints that is 

undesired system behaviour.  Although the last is more realistic and practical, for 

consistency with the above example, the first constraint will be used to explain the 

state-action feature. 

 

This constraint can be expressed, as shown in Figure  4-12-a and b, by 

introducing an example of two Actor vertices, which represents the state part of the 

example.  The user then deletes one of them, which is the action part of the example.  

This gives a positive example for the required constraint.  The only difference in this 

case is that the system will infer from the state that follows the action instead of the 

one that before it as in the case of negative examples.  In the same way it is possible 

to define the connection constraint “A vertex of type Actor must not be connected to a 

vertex to type Actor using an edge of type Association”.  Positive examples using the 

Figure  4-12: a) Initial state for an example. b) Expressing the required constraint 
positively using state-action feature by deleting one of the Actor vertices. 

b 

a 
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state-action feature appear in Figure  4-12 and Figure  4-13 with a positive version of 

DECS. 

There is a problem that appears in some cases in association with the state-

action feature.  This problem is clear in the constraint in Figure  4-13.  When the user 

deletes one of the Actor vertices (Figure  4-12-b), the system generates more 

inferences than required because it infers based on the action and based on the state 

without the action.  In Figure  4-12-b the system provides the inferences: 

 The lower bound number of Actor is 1, and 

 The upper bound number of Actor is 1. 

 

The second is the required one which is generated as a result of the action; 

however, the first is inferred based on the state only.  The problem here is that if the 

Figure  4-13: a) Initial state for an example. b) Expressing the required constraint 
positively using state-action feature by deleting the Association edge. 

a 

b 
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system infers both constraints using the same example, what is the benefit from the 

action in this case?  The user can only provide an example of one Actor only and both 

constraints are inferred without bothering with the action, which returns back to the 

same problem of providing extra arbitrary inferences from the example.  This problem 

appears only in some cases, with the positive state-action examples only, because the 

system infers from the current state taking the action into consideration instead of the 

previous state as in the negative state-action examples.  This problem does not appear 

in the second example (Figure  4-13).  This problem could be solved by preventing the 

system from inferring from the current state only (without action consideration) when 

there is an action.  However, this may create another difficulty which is that the user 

is not allowed to make any mistake or trials while introducing the example. 

Expressing a constraint in a natural language and expressing the constraint in 

the system using an example are two completely different things.  In a natural 

language, different designers might describe a constraint differently according to their 

way of expressing it when talking to each other.  However, in DECS, the expression 

of the constraint is done by a diagram example that has no relation to how the 

designer expresses it linguistically.  For example, in the above constraint, although it 

is expressed negatively in English by starting with words “it is not allowed...”, it is 

more natural to express it in DECS as a positive example.  In English, this constraint 

can also be expressed positively as: 

“At least two Actors must exist in the diagram”. 

The example polarity for expressing a constraint has been studied in more 

detail throughout this research and an empirical study has been conducted to evaluate 

its effect.  This experiment with another experiment conducted to evaluate the 

preference of expressing the constraints using natural language are documented in 

Chapter 6. 

4.5.3 Inference Engine Transparency 

To support the synergistic approach, DECS’ inference engine results are 

presented to the user in real time.  When the user starts building an example (drawing 

a model), s/he can switch on the inference engine even before finishing the example.  
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This means that the user can watch and follow the inference engine at work while 

introducing the example(s).  The following scenario clarifies this point. 

The user wants to specify the constraint “It is not allowed to connect Actor 

with Actor using Association edge”.  The user believes that he can express this 

constraint negatively by introducing the example: Actor is connected to Actor using 

Association edge as in Figure  4-8.  The user switches the inference engine on before 

even start building the example.  The inference engine has nothing (no inferences as 

no example provided).  The user starts building the example by drawing (drags and 

drops) an Actor vertex.  At this point the inference engine works and infers the 

constraints from the current state of the example which at this point is only one vertex 

of type Actor.  This is presented in Figure  4-14. 

 

The user reads the inferences before continuing the example.  The user notices 

that the system infers a constraint that is related to cardinality.  The user adds to the 

diagram another vertex of type Actor as in Figure  4-15. 

The user notices again that the system infers a cardinality constraint and one 

more constraint from the example.  Finally, the user connects the two vertices to 

achieve the required constraint.  This step is shown in Figure  4-4.  This scenario 

shows the meaning of inference engine transparency since the system reveals and 

Figure  4-14: The user is watching the inference engine working and reading the 
inferences while building the required example. 
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exposes the work of its inference engine while the user is building the required 

example. 

 

This feature brings some advantages such as being able to track the 

development of the constraint step by step.  If interested, the user can switch between 

positive and negative interpretations to look over and recognise the inferred 

constraints in every step.  In the above scenario, the user understood that the system 

can infer cardinality constraints using example that have vertices.  It is possible to 

argue here that this feature allows the user to understand the way that the inference 

engine works.  It also helps the user to express his/her examples more easily.  This 

can be clarified in case of the above scenario if the same user required later on to 

express a cardinality constraint on any vertex, he will be able to provide the required 

example easily as he has seen this before.  If the user is not interested or bothered by 

continuous inferences, it is possible to stop the inference engine by pressing on 

“switch inference OFF” button.  The user would need to switch it on again when the 

example is completed and inference is required. 

A similar feature of transparency has been mentioned by Goldman & Balzer 

(1999) and called ‘synchronous analysis’.  Although they did not implement it in their 

meta-tool, ISI, but suggested it as future work, they document that it would be a 

useful feature.  They required it to show and update the feedback from the editor 

Figure  4-15: The user is watching the inference engine working and reading the 
inferences while building the required example. 
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concurrently with the work of the designer instead of showing the feedback when the 

designer requests this by pressing a button. 

4.6 The Second Example: Synergistic Approach and Example 

Remodelling (Visual Generalisation) 

In the previous example, it was possible to express the required constraint 

using only one example.  This is difficult in some other cases as the following 

example shows.  If the user wants to specify the constraint: 

“It is not allowed to connect a vertex of type Use Case (as a source) to a 

vertex of type Actor (as a target) using any edge type”. 

There are two ways to express this constraint and both show a novel feature of 

DECS.  The first is initiated by the user since s/he introduces four different examples, 

all of them showing Use Case as a source and Actor as a target and different edge 

types in each example (Figure  4-16-a). 

 

Figure  4-16: Visual generalisation by remodelling in DECS. (a) examples by the user, 
(b) example remodelling. 

a 

b 
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The system cannot directly jump to the conclusion that the diagram represents 

four examples for the same constraint; instead it assumes that it is only one example.  

Accordingly, it infers that these four structures must not be allowed together in a 

diagram and shows this interpretation to the user.  Since this is not the intended 

constraint, the user presses “NO” to tell the system that the required constraint is not 

in the inferred list.  The system goes a step further by decomposing what has been 

considered as one example into different examples expressing one constraint.  

Therefore, the system generalises the examples visually by joining (fusing) them 

together into one example.  In this research, this process is called ‘visual 

generalisation’. In DECS visual generalisation is achieved by remodelling.  The edge 

in the new example will be represented by a general edge type with a label showing 

the generalised edge types (see Figure  4-16-b where the label says Association OR 

Extend OR Generalisation OR Include).  The remodelled example is used by the 

system in another inference attempt as shown in the model of the synergistic approach 

in CSBE (Figure  4-1).  In other words, the system considers the remodelled example 

as an example introduced by the user and makes inferences based on it.  

Consequently, the previously inferred constraint list is updated, showing the 

interpretations of the newly remodelled example.  This ends the system turn and the 

control returns back to the user to select from the list.  Since the newly inferred 

constraint list contains the intended constraint, the user selects it and presses “YES”.  

The process of naming and constraint generation continues as in the first example. 

In this scenario the user introduced four examples to express the constraint.  

However, because the intended constraint contains all the edge types (the four edge 

types defined in the Use Case diagram), the same constraint can be expressed in an 

easier way that depends on the generalisation abilities of the CSBE technique in 

DECS. 

The user can introduce only two examples showing a Use Case connected to 

an Actor using any of the four edge types, say Association and Include for this 

scenario (Figure  4-17-a). 
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The system again considers this as one example and shows inferences based 

on that.  The user rejects the inference.  The system decomposes the example into 

different structures and considers every structure as a separate example.  

Consequently, the system generalises the two examples, generated from the 

decomposition, by fusion and generates one example showing the fused edge with a 

label indicating the Association and Include edge types only (Figure  4-17-b).  The 

system infers again based on the remodelled example and the inferred list will contain 

a constraint including only Association and Include edge types.  Until now the 

behaviour is exactly similar to the last scenario.  However, in this scenario, the user 

again rejects the inference since the intended constraint is not in the list.  The system 

recognises that the user introduced two different edges from the diagram’s available 

edge types.  Based on that, it generalises to include all the available edge types in the 

example.  To generalise the example visually, the system changes the label of the 

edge to “All” meaning that all diagram edge types are included and the inference list 

is updated to contain the required constraint this time (Figure  4-17-c). 

Generalisation in DECS is distinctive because it can be considered as visual 

generalisation.  As Figure  4-16 and Figure  4-17 show, DECS generalises an example 

from the initially introduced examples and presents it visually to the user.  Although 

Figure  4-17: Visual generalisation. (a) examples by the user, (b) first remodelling,
(c) second remodelling. 

a 

b 

c 
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the term ‘visual generalisation’ has been used before in PBE systems (Amant, 

Lieberman, Potter, & Zettlemoyer, 2000), it was not used to refer to the same concept 

introduced in this dissertation.  Their concept of visual generalisation is the ability of 

a PBE tool to generalise and learn from user behaviour based on the visual properties 

of objects, such as the colour of a hyperlink in a web browser, instead of depending 

on the application data model, such as depending circles and boxes in a drawing 

application.  The concept and the implementation of visual generalisation which 

includes remodelling and depends on the generalised object as an input again for the 

inference process, has not been implemented in the same way before in any reviewed 

PBE tool. 

4.7 Inference Engine Rules 

The inference process in DECS depends on a rule-based inference engine.  

Rules are expressed as IF-THEN statements, stored as text and converted to objects at 

runtime.  Each rule consists of two parts, an IF part and a THEN part each represented 

by a runtime object.  The IF part tests whether or not the condition is satisfied.  The 

conditions tested in this part of the rules are diagram features that must be satisfied by 

the model (the example). 

If the IF part is satisfied, the THEN part is executed to generate a string 

describing the inferred constraint.  These constraint descriptions are what is presented 

to the user in the inferred constraints list.  In other words, each rule is responsible for 

inferring only one constraint.  When the user selects an inference that represents the 

required constraint from the list, the rule that inferred the selected constraint 

description will be responsible for generating the constraint code (XML script).  The 

THEN Java class performs this task. 

The DECS inference engine has two types of rules called ‘choice rules’ and 

‘remodelling rules’.  Choice rules are responsible for generating the inference list 

presented to the user such as those presented in the previous screenshots (Figure  4-5-

b) as an example.  Remodelling rules are responsible for the visual generalisation and 

example remodelling introduced above (Figure  4-15 and Figure  4-16).  These rules 

perform the action of modifying the example by fusing the elements and generating 
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the appropriate labels.  To connect the CSBE synergistic process ideas together, 

choice rules work while the user introduces examples and remodelling rules work 

when the user cannot find the intended constraint in the list and rejects all the inferred 

constraints. 

Both rule types depend on extracting features from the example(s).  Choice 

rules are interested in features such as the connection of the vertices, the cardinality of 

connections, the cardinality of vertices of the same type, and similarities between 

labels.  Remodelling rules extract features that are used to compare the introduced 

examples.  They check similarities and differences between the properties such as the 

types of source vertices, types of target vertices, and types of edges.  These rules 

allow the user to express the important parts of the constraint (the example parts that 

are required to be involved in the constraint).  In the last two examples, remodelling 

rules were used to infer that the user is not interested in generalising the source vertex 

or target vertices because they are the same in all examples.  By contrast, the user 

shows the required part to be generalised by making it different in the different 

examples.  If the user wants to generalise vertex types, s/he should introduce 

examples of different vertex types.  The system will generalise and remodel exactly as 

in the case of edges.  In the case of vertices, the system will model different vertex 

types by a rectangle with label showing the vertex types in the remodelling and “All” 

in the generalisation as shown in Figure  4-17. 

The list of features that DECS depends on for inference includes features such 

as the number of structures and the number of vertices in the model.  DECS depends 

on three different types of features that are related to the different types of rules.  The 

first type of features, “the state inference features”, is used to infer according to the 

state of the model.  This type is used by the choice rules.  The second type, “the action 

inference features”, is for inference based on the state-action rules which are also 

considered as a sub-category of choice rules as they generate choices, albeit with 

action.  The third type, “visual generalisation inference features”, helps to infer the 

opportunity for visual generalisation (remodelling) and, accordingly, are used by the 

remodelling rules.  A full list of feature sets is given in Appendix F Section  F.1.  A 

fourth type of feature is used by DECS but for the purpose of generalisation instead of 

inference in inference rule augmentation and learning (discussed in the next 
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paragraph).  All the types of features that DECS depends on either for inference or for 

learning mechanism are fixed.  They are only extendable by direct programming.  

This is considered as a limitation DECS; however, it offers a future research 

opportunity. 

4.8 Inference Engine Augmentation and Learning 

DECS, like other rule-based PBE systems, has a fixed rule set that has been 

implemented by the designer for the inference, remodelling and generalisation 

processes.  In a context such as software engineering constraints, this is typically not 

sufficient, since it is unlikely that a complete set of rules can be known and 

implemented a priori.  As a solution, rule learning has been implemented in the 

DECS’ CSBE technique as a part of the synergistic interaction between the system 

and the user (recall Figure  4-1 Page 97).  The learning technique has not been 

implemented before in any rule-based PBE system.  The technique depends on the 

user teaching the system while s/he is working on constraint specification.  This 

technique will be introduced here through the third scenario which is based on the 

following constraint: 

“It is not allowed to connect two vertices of type Actor using Association 

edge”. 

It is possible to define this constraint negatively as in the first example; 

however, we will assume that the user has chosen to provide a positive example to 

express this constraint.  Thus, the user provides an example showing two Actors with 

no connections between them to express a positive example for the constraint.  The 

user asks the system to interpret the example and selects positive interpretation radio 

button.  The user does not find the intended constraint in the generated list, so presses 

“NO” button.  The system switches to “remodelling” rules trying to remodel or 

generalise but no rules are triggered.  The system shows an apology message telling 

the user that the inference engine does not have the required knowledge to infer the 

intended constraint from the example.  This is not the end of the story; the system 

offers the user the option to add a new rule (recall Figure  4-1 Page 97).  Adding a new 

rule is considered a system learning mechanism since it allows the system to 
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recognise the example in the future and to infer the required constraint.  The user 

presses on the “Add Rule” button (Figure  4-18). 

 

Although this process is called adding rule, it is actually a constraint 

specification process and the system learns from it how to specify the constraint using 

the example.  In other words, the user will not only add a rule, but also will define the 

required constraint (using DECS’ constraint definition wizard). 

The system asks the user to choose the required constraint type: graph, vertex, 

or edge.  The user chooses by pressing on one of the buttons (Figure  4-18).  At this 

point DECS transfers to a “form-filling” technique.  Similar switching from one 

constraint specification technique to another has been introduced in (Druid) (Singh, 

Kok, & Ngan, 1990).  At this point DECS calls the required form based on the choice 

of the user.  The user fills the form as required and saves the constraint.  The system 

at this stage has another activity which is learning from the specified constraint.  It 

generates a file that holds a map between the introduced example and the generated 

constraint.  In the future, when the user introduces the same example, the newly 

defined constraint description will appear in the list.  In this way, the user specifies the 

Figure  4-18: the system could not infer the required constraint and the user is adding 
a new rule. 
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required constraint and, at the same time, teaches the system how to recognise 

examples of it. 

This scenario explains how to add a rule using a new or customised example.  

However, the scenario only presents how to use the added rule (the taught example) 

based on presenting exactly the same example again.  This shows a deficiency in the 

system learning technique.  This deficiency can be clarified in the following scenario.  

The scenario also clarifies the ability of customising and adapting DECS to infer 

constraints using a customised example of the user’s choice instead of the already 

implemented ones: 

The user is trying to define the constraint: 

“It is not allowed to have more than 1 Start State in a state transition diagram” 

This constraint can be defined using a negative example by providing two start 

states.  However, the user provides only one start state as an example and they believe 

that this is a convenient positive example to express this constraint (Figure  4-19). 

 

Figure  4-19: Positive example expressing the constraint “It is not allowed to have 
more than 1 Start State in a state transition diagram”. 
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The system does not infer the required constraint from the introduced example 

because the system inference engine does not have the knowledge to infer the required 

constraint from the introduced example. 

The user uses the “add rule” feature to teach the system how to define the 

constraint represented by this example.  This is done by pressing the “Add Rule” 

button which starts the process of adding a rule and teaching the system how to define 

the constraint.  The process starts by asking the user to select the required constraint 

type (Figure  4-18). 

Each of the three alternatives (Graph Constraint, Vertex Constraint, or Edge 

Constraint) will result in a different form to fill in to specify the constraint.  For the 

current example the “Graph Constraint” type is selected which results in showing the 

form required to specify a graph constraint (Figure  4-20). 

 

Figure  4-20: The system provides the user with a form to define a graph constraint. 
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This form is filled as shown in Figure  4-21 which shows only part of the form.  

Figure  4-21 shows that the user has entered the constraint name “UBN1” (to represent 

‘Upper Bound Number is 1’), the constraint type is “hard” and the location of saving 

the constraint is URI “D:\”.  The user also specifies the polarity property of the 

constraint as “Positive” which specifies that the constraint appears in the positive list 

(or when the positive interpretation of the example is required). 

 

Since the constraint is a related to the vertices, the user switches to the “Vertex 

Properties” tab in the form above which results in presenting the form in Figure  4-22-

a.  The user fills in the required parts of the form by entering the description, which is 

the message that will appear to the user when the constraint is violated.  The user then 

enters the value of the upper bound number which is 1 and enters the URI for the 

vertex, in this case of type Start State.  Since the user has not already defined such a 

constraint, they press the “New” button.  A vertex constraint form (out of the graph 

constraint form currently in use) (Figure  4-22-b) is presented and the user enters the 

required values which in this case are the constraint name “BasicStartState”, the 

location to save “D:\”, and the vertex type “Start State”.  The form contains other 

properties such as the polarity and the constraint type but they are ignored by the 

system as they are not relevant to the specification of the current constraint.  The user 

saves the “BasicStartState” constraint which returns the process again to the main 

constraint.  The reference URI appears in the URI text field.  The user presses the 

button “Add” to add the URI to the text area as appears in (Figure  4-22-a).  The user 

finishes the process by saving the constraint. 

Figure  4-21: The user enters some properties as a first step. 
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a 

b 

Figure  4-22: a) Continue specifying the constraint UBN 1. b) Specification of the 
Start State as a separate constraint that is referenced from UBN 1. 
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Once the user saves the constraint, the constraint is completely specified using 

the form-filling technique.  At the same time, the system learned how to define the 

constraint using the example shown in Figure  4-19. 

In a later session, the user requires to define the same constraint.  The user 

uses the same positive example that the system trained on and the result is in Figure 

 4-23. 

 

The user also wants, either in the same session, or in a later one, to define the 

constraint: 

“It is not allowed to have more than 1 End State in a state transition 

diagram.” 

If the user expressed this constraint in the same way as they did in the previous 

example, the user will express the constraint using one End State as they previously 

expressed the Start State constraint.  The example is shown in Figure  4-24. 

Figure  4-23: The system learned how to infer the required constraint, from the 
preferred example and preferred polarity. 
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The user needs to repeat the whole process above since the system cannot 

recognise the similarities between the current example (one End State) and the 

previous example (one Start State).  This is because the inference manager searches 

for an identical example instead of searching for a similar one.  In other words, the 

system is not able to generalise the first example so that the second example is 

recognised as of the same type. 

4.8.1 Generalisation 

To enhance the learning technique and acquire the full benefit of it, a 

generalisation feature has been implemented in DECS as a component called the 

“adding rule manager”.  Essentially, this generalisation feature is a form of inference 

from an example that reduces the number of situations in which learning must be 

applied.  The following algorithm describes the implementation of this feature and the 

previous example is used to explain it: 

Step 1: The first step is to recognise the similarities between the learned 

example and the new example.  Accordingly, similarity checking has been 

implemented instead of searching for identical examples only.  When the user 

provides an example for the first time to define a constraint and the system does not 

have the knowledge to infer the required constraint, the user uses the “Add Rule” 

feature to define the constraint using the wizard.  The user saves the specified 

constraint.  At this point, the ‘inference manager’ sends the set of features that were 

satisfied (triggered) as a result of the provided example to the ‘adding rule manager’.  

These features are those that are normally satisfied when an example is introduced 

Figure  4-24: Positive example expressing the constraint “It is not allowed to have 
more than 1 End State in a state transition diagram”. 
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and the ‘inference manager’ uses them to trigger the state and the action rules 

discussed in Chapter 4.  These features are available in Appendix F Sections  F.1.1 

(state inference features) and  F.1.2 (action inference features).  In the case of the 

above example, when the user provided the Start State example, only one feature is 

satisfied which is “the graph has a single vertex”.  The ‘adding rule manager’ receives 

the set of satisfied features and adds them as a script to an XML file that contains and 

represents the newly added rules.  This XML file will contain information that the 

‘adding rule manager’ receives about the introduced example and this is considered as 

the “added rule”.  This information can be listed as: 

 The set of satisfied features (explained above). 

 The example itself (the picture) is saved as an object in a file and its URI 

reference is added to the XML ‘added rules’ file. 

 The textual description introduced by the user which describes the constraint (see 

the ‘Description’ field in Figure  4-22-a). 

 The constraint itself is saved as an object in a file and its URI reference is added to 

the XML ‘added rules’ file. 

The above information is considered as an added rule.  Later on, it will be 

clearer that the IF part of this rule is the set of satisfied features and the THEN part is 

the constraint textual description.  Figure  4-25 depicts the ‘added rules’ XML file 

with the added rule above. 

 

Figure  4-25: The ‘added rules’ XML file 
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Before going further, assume that in a later session, the user introduced an 

identical example (one Start State) again.  In this case, the system can recognise the 

new example as being identical to the previous one using the saved original example 

picture.  However, assume that the new example is similar, instead of identical, such 

as the case of the ‘End State’ example above.  In this case, the following happen: 

 Some features in the ‘inference manager’ will be satisfied; in this case “the graph 

has a single vertex” will be the only one. 

 None of the original rules in the ‘inference manager’ will be triggered like in the 

first example. 

 The ‘inference manager’ sends the triggered features to the ‘adding rule manager’ 

which will search the added rules XML file. 

 The manager will compare the newly received satisfied features with the features 

already saved with each added rule. 

 The manager will discover a match for features (in this case one feature) with the 

‘Start State’ added rule. 

In other words, the system generalises the already saved examples at learning time 

and searches for similar examples to the currently provided example instead of 

searching only for identical ones.  This allows the system to recognise similar 

examples. 

Step 2: Step 1 solves the problem of recognising similarities between examples 

but does not offer a complete solution to the problem of generalisation.  To be able to 

generalise more fully, the system retrieves the previously saved example (the object 

file) and analyses it for opportunities to generalise properties in the constraint 

descriptions (the textual description).  This is achieved via the following scenario: 

 The ‘adding rule manager’ converts the original example file using its available 

URI into a Java object. 

 It compares the elements (vertices and edges) in the original example with the 

elements in the new example.  To be able to generalise, the comparison depends 

on some features called “rule generalisation features” (see Appendix F Section 

 F.1.4).  In case of ‘Start State’ and ‘End State’ example, the manager retrieves the 
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“Start State” example and compares it with the “End State” example.  The system 

checks the “Start State” vertex and collects the features 

o “vertex type = “Start State”, 

o “incoming edges = 0” and 

o “outgoing edges = 0”. 

 The system searches in the new example for a vertex with the same features but it 

fails to find the same vertex type.  This is the case where the system tries to find 

the identical example.  However, the system finds the “End State” which satisfies 

the final two features from the first example.  In this case the manager considers 

this as a match. 

 To be able to know what property should be generalised, the system retrieves the 

constraint object to check the properties that were specified in the original 

constraint.  In this case, the only specified property in the original example was 

the vertex type ‘Start State’.  Note that selecting the property to generalise does 

not have any relation with any particular type of features because the features are 

only for discovering a match.  After the match is discovered, the generalisation 

takes place based on the previously specified properties in the original constraint.  

However, the only common property between the features and the generalisation 

is the element type because the process depends mainly on it.  This is considered a 

limitation in DECS that should be addressed but it was not necessary during the 

empirical studies to generalise over properties apart from the element type.  By 

contrast, all the required constraints were generalised over the type in addition to 

other properties.  In addition to the element type, DECS generalises the colours, 

the labels and vertex cardinality. 

 The task now is to generalise the vertex type by replacing the ‘Start State’ with 

‘End State’ strings in the original constraint textual description available in the 

added rule.  This is done by parsing and replacement of the textual description.  

The description becomes “It is not allowed to have more than 1 End State in a 

state transition diagram”.  Another limitation in the generalisation process lies in 

the parsing.  This because there may be spelling mistakes in the original text or  

the user might not have included the property name in the text; in these cases,  , 
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the text will not be modified8.  However, the new constraint generation (Step 3) 

will not be affected. 

 The end of this step is that the modified textual description is returned back from 

the ‘adding rule manager’ to the ‘inference manager’ which adds it to the 

constraint list that will be presented to the user under the suitable interpretation 

polarity (positive in the current example as appears in the rule XML file).  This is 

shown in Figure  4-26 since the user provides End State as an example, and the 

system generalises from the previously learned example. 

 

                                                 

 

8 Note that the term ‘Start State’ in the string must be identical to the value of the vertex type 

property in the constraint definition. Currently, this restriction is not maintained by DECS itself; the 

person who defines the constraint must make sure that this equivalence is satisfied. 

Figure  4-26: Generalisation to infer from previously learned example. 
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Step 3: The inferred constraint list is presented to the user.  If the user selects the 

constraint description generated from an added rule and presses ‘OK’ to confirm that 

this is the required constraint, the following happens: 

 A dialog asks the user to enter a name (a location) for the new constraint. 

 The ‘inference manager’ knows that the selected constraint textual description is 

generated from an added rule, so it delegates the task of creating the constraint 

object to the ‘adding rule manager’ and sends it the new constraint name and 

location. 

 The ‘adding rule manager’, again, retrieves the original constraint object. 

 The manager makes a copy of the original constraint object and performs another 

generalisation process that is exactly the same as the previous one done in Step 2.  

However, this time the generalisation replacement is performed over the 

properties values in the new constraint object. 

 The new constraint is generated in the specified location. 

4.8.2 Some Complicated Scenarios 

The above scenario is the simplest possible generalisation scenario with only one 

feature required to be generalised, viz., vertex type.  Here are some complicated 

examples (involve generalising properties over more than one component in the 

example) that show the advantages and limitations of the “adding rule” feature.  This 

feature is able to generalise the number of vertices or edges if they are more than one.  

The following constraints clarify the idea: 

“It is not allowed to have more than 2 Start State vertices in a state transition 

diagram.” 

Assume the user expresses this constraint positively using an example consisting 

of two Start State vertices (Figure  4-27). 
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Assume also that the inference engine does not have the required knowledge to 

infer this constraint using the example provided.  In this case, the user uses the 

“adding rule” feature to teach the system to specify the constraint as the upper bound 

number of start state vertices is two.  The triggered feature in the inference engine as a 

result of the example in this case is “multi vertices exist”. 

Later on, the user needs to express the constraint: 

“It is not allowed to have more than 3 end state vertices in a state transition 

diagram.” 

Again it is assumed that the user will express this constraint using an example of 

three End States (Figure  4-28). 

 

Figure  4-28: Example expressing the constraint “It is not allowed to have more than 
3 end state vertices in a state transition diagram”. 

Figure  4-27: Example expressing the constraint “It is not allowed to have more than 
2 Start State vertices in a state transition diagram”. 
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Since the same feature will be triggered in the inference engine, “multi vertices 

exist”, the inference manager checks the previously taught example.  It discovers 

similarities and in this case, the generalisation process is performed on two features, 

the vertex type, generalised from start state to end state, and the upper bound number 

value is generalised from the value of 2 to the value of 3.  The required constraint is 

inferred and generated if selected.  The generalisation here is in the meaning of that 

the edge type and its value will be as parameters in the added rule and will be able to 

receive different values. 

The next constraint is more complicated because it shows a problem that could not 

be overcome during this research.  Assume the user needs to define the constraint: 

“There must be at least one edge of type Transition connecting a green start state 

vertex (as a source) with a red non-terminal state vertex (as a target) in a state 

transition diagram.” 

Assume that the user expresses this constraint positively using an example 

connecting a green start state (as a source) to a red non-terminal state (as target) 

(Figure  4-29). 

 

Assume also that the user taught the system how to define this constraint because 

it is not implemented in its inference engine knowledge.  Later on the user needed to 

specify the following constraint: 

“There must be at least one edge of type Transition connecting a yellow non-

terminal state vertex (as a source) with a blue end state vertex (as a target) in a state 

transition diagram.” 

Figure  4-29: Example expressing the constraint “There must be at least one edge of 
type Transition connecting green start state vertex (as a source) with red non-
terminal state vertex (as a target) in a state transition diagram”. 
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If the user uses a similar example to the one used before by connecting a yellow 

non-terminal state (as a source) with a blue end state (as a target) (Figure  4-30), then 

the inference manager will be able to detect the similarities between the two 

examples. 

 

It also will be able to generalise correctly even the same vertex type, non-terminal 

state, has been used once as a target and in another as a source.  The system will 

successfully generalise here for the vertex types and the colours as well. 

However, what would be the case if the user teaches the system expressing the 

constraint negatively rather than positively?  Assume that the user expresses the 

constraint negatively in the first place, using the example of a green start state and red 

non-terminal state that are not connected (Figure  4-31) and teaches the system how to 

specify the constraint. 

 

Later on, the when the user introduces the second example, yellow non-terminal 

state and blue end state (Figure  4-32), the inference manager will not be able to 

recognise the source and target vertices using its current algorithm. 

Figure  4-31: Negative example expressing the constraint “There must be at least 
one edge of type Transition connecting green start state vertex (as a source) with red 
non-terminal state vertex (as a target) in a state transition diagram”. 

Figure  4-30: Example expressing the constraint “There must be at least one edge of 
type Transition connecting yellow non-terminal state vertex (as a source) with blue 
end state vertex (as a target) in a state transition diagram”. 
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In this case, the system goes a step back and compares the vertex types for 

generalisation.  Consequently, the system assumes that the non-terminal state has not 

been changed and no need to generalise it.  The only generalisation applies to it will 

be the colour feature.  However, the green start state will be generalised to be blue end 

state.  The resulted constraint will be: 

“There must be at least one edge of type Transition connecting blue end state 

vertex (as a source) with yellow non-terminal state vertex (as a target) in a state 

transition diagram”, 

which is a wrong generalisation.  This problem has no solution as the human mind 

even would not be able to recognise the required generalisation without knowledge in 

the context to be specified itself. 

4.9 Conclusion 

This chapter introduced the CSBE technique which depends in its core on the 

PBE technique.  CSBE as implemented in DECS depends on an interactive, 

synergistic approach that encapsulates cooperation between the user and the system to 

specify constraints on target software model editors.  This chapter introduced the 

general model of CSBE and its associated synergistic approach which has been 

implemented in DECS through a separate component, the inference manager.  The 

synergistic approach has the advantage of keeping the user in the loop and offering 

alternatives in a phased manner that corresponds to the complexity of particular 

constraint definition tasks.  CSBE technique has many distinctive features that 

together support the synergistic approach.  These include: 

Figure  4-32: Negative example expressing the constraint “There must be at least one 
edge of type Transition connecting yellow non-terminal state vertex (as a source) with 
blue end state vertex (as a target) in a state transition diagram”. 
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 The use of both positive and negative examples increases the flexibility of the 

CSBE technique in DECS because it is more natural (or easier) to express some 

constraints negatively while it is more natural to express some others positively.  

Using both also supports the synergistic approach in a harmonic way as it allows 

the user to switch between interpretations.  To support this feature, CSBE 

implements the ability to infer from the state and the action (state-action) feature 

which provides the power of providing more alternatives for expressing the 

constraints using examples of different polarities.  This feature will be discussed 

in more details in Chapter 6. 

 Visualising the example by expressing the constraint using the target editor visual 

elements themselves instead of using conceptual elements.  This increases the 

intuitiveness and reduces the complexity of the specification and example 

expression processes as noted by Draheim et al. (2010). 

 Inference transparency is another feature of the CSBE technique in DECS that 

allows the user to understand the way the system works through watching it 

working while building examples.  This feature can be enabled and disabled at any 

time, as desired. 

 DECS has a novel rule based inference engine.  Rules are classified into two 

types, “choice” and “remodelling”.  Choice rules infer the constraints from the 

introduced example and generate the constraint list that the user can choose from.  

Remodelling rules are used to remodel and generalise. 

 Visual remodelling and generalisation gives the user a visual expression of the 

remodelled examples which help in understanding the inference results.  The two 

rule types work together to support the synergistic approach by allowing the user 

to direct system inference. 

 If the required constraint cannot be inferred, the user can teach the system how to 

define new constraints by augmenting inference engine rules or by customising 

the examples.  This feature will be discussed in more details in Chapter 7. 

In addition to the examples introduced above, DECS can infer complicated 

constraints.  Consider the example introduced in Figure  4-33.  When the user 

introduces an example as in Figure  4-33-a, the only reasonable system negative 
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inference is that the introduced structure is not allowed as in Figure  4-33-b (the 

inferred constraint description is not complete because it is too long).  The full 

inferred constraint is “It is not allowed to have the structure (Start State is connected 

to Non Terminal State) using Transition (non Terminal State is connected to Start 

State) using Transition (non Terminal State is connected to Non Terminal State) using 

Transition (Non Terminal State is connected to End State) using Transition”. 

 

Finally, this research treats PBE as the core of the CSBE technique.  

Consequently, CSBE is a PBE technique variant with a set of features, listed above, 

which make it distinctive from any other PBE implementation introduced before. 

Figure  4-33: a) A complicated example in DECS. b) The inference from the example. 

a 

b
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5.1 Introduction 

Throughout all the studies conducted in this research, different research 

methods and techniques were used for data collection purposes.  These methods are 

summarised in this chapter.  The chapter also introduces the definition of the 

population to which the research is generalising its results.  Some generalisation 

issues are discussed.  Finally, some general issues that threat the validity of this 

research are listed and discussed. 

5.2 Research Methods 

The following sections document the research methods used in this research.  

This is considered as a documentation of the general research methods.However, 

study-specific research methods are discussed in each section that documents the 

specific study. 

5.2.1 Experimental Design Principles 

In all of the studies conducted in this research, a within subject design was 

used.  This design was selected because it helps in validating the claims and 

hypotheses of the research.  All the studies in this research involved comparing two 

conditions and comparing them with respect to the performance of achieving the task.  

A within subject design helped in: 

 Eliminating the individual differences between subjects which may affect the 

performance as a dependent variable in all the studies. 

 Measuring one of the dependent variables which is user satisfaction and 

estimating user preference by providing the ability to ask direct questions that 

compare between the two tested conditions.  This is done by asking the user to 

answer which condition they preferred for performing the task. 

5.2.2 Pilot Studies 

Pilot studies were used as one of the research methods in this research.  Before 

every study (except Study 2), some pilot studies were conducted.  The number of 
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these pilot studies depended on the number of available subjects.  However, usually 

three pilot studies were done.  The aims of the pilot studies were different from one 

study to another.  Estimating the required time to complete the task, ensuring that the 

users understand the task as it is written on the task sheets and from explanation 

written on a whiteboard by the researcher, estimating the learning time, and ensuring 

that the task in general is feasible are the common reasons why pilot studies were used 

in this research. 

One pilot study (in Study Three) aimed also to discover the suitable conditions 

that should be used in the experiments.  In this study there was a need to make a 

decision regarding one of the conditions to compare with.  This condition had two 

alternatives and the pilot study helped in providing more data that allowed the 

experimenter to take the decision and support it.  This gives the pilot studies a major 

contribution in the design of the experiment. 

The pilot studies were of benefit sometimes in a way that was not expected.  

For example, in some of the pilot studies (in Study Four) the subjects interacted with 

the system in a way that indicated confusion.  After investigation, it was found that 

the subjects had done a previous experiment in the same research (Study Three) and 

they were expecting something from the system but the system did not react in the 

way they expected.  Accordingly, the study was very confusing to them as they 

wasted a lot of time just repeating the “examples” trying to find out the difference in 

the system behaviour between last time they used the system and this time.  Based on 

this pilot study, it was decided that all the participants of the study (Study Four) 

should not have experienced DECS or conducted any experiment in this research 

before.  In this case, pilot studies helped to avoid a problem in the experiment and to 

eliminate a threat to validity. 

5.2.3 Screen capturing and recording 

Purpose: collecting effectiveness and efficiency data. 

This technique was used instead of logs to collect the required data.  The 

users’ screens were captured as a video which recorded their work to achieve the task 

they were asked to perform.  Camtasia Studio® software was used for the purpose of 

screen recording.  Every user was given the task and the screen recording software 
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was started.  When the user finished the task, the recorder was stopped.  Later on, the 

required data was collected from the recorded videos.  Using a screen recording 

method for data collection had many advantages that can be summarised as follows: 

 Since the tasks were different from one study to another it was easier to record the 

task and extract the required data later on than implementing a log for every study. 

 Eliminating the dangers of implementation errors and bugs in building the log.  

Instead, recording the videos allowed the researcher to guarantee that the required 

data will be recorded and will be independent from any implementation. 

 It was easier to measure the correctness using the video than the log, especially 

when using the form-filling technique.  When using the video the correctness of 

the constraint specification was decided directly instead of revising log files and 

searching for the errors. 

 In measuring the required time, it was more convenient to depend on videos 

recorded to decide where to start counting the time required to achieve the task 

and when to stop counting. 

 Using the recorded screens allowed measurement of the correctness and the time 

when the users were given a limited time to finish the task.  Some users used more 

than the time limit trying to complete all the constraints.  This is because 

sometimes the users found the tasks as an interesting challenge.  Conducting the 

measurements using log files required many comparisons to check the limit and 

the time last constraint was defined for each user.  Such complications were 

avoided using the screen recorder. 

 It eliminated the dangers of missing logging some required data.  This sometimes 

happened because of an implementation bug or something that does not come to 

the mind of the designer before the experiment.  Later there would be a need to 

repeat the experiment to be able to log the required data.  In the case of the screen 

recording method, if more data is needed, the researcher may watch the videos 

again to extract the required data. 

 It allowed some mistakes in collecting data to be avoided by discovering 

implementation bugs in the system.  This happened only once (in Study 3) when a 

bug in DECS was discovered while watching the videos at data collection time.  
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Screen recording helped in this case also by repeatedly watching all the videos to 

determine the effect and spread of the bug in the experiment.  This helped in 

taking the decision of eliminating the data of one of the constraints in Study 3. 

 The videos recorded all the interaction behaviour of the user with the system 

during the task which may open an opportunity for additional analysis of this data 

from another perspective.  This may include analysing the data on the constraint 

level to discover the differences between the constraints.  The data can also be 

analysed from the human computer interaction perspective to study the interaction 

with CSBE’s user interface. 

5.2.4 Questionnaires 

Purpose: user satisfaction data collection 

In addition to the quantitative data collected using the screen recording, there 

was a need to measure user satisfaction as one of the measurements required in this 

research. 

Post-Experiment Questionnaires: In three of the four studies conducted 

throughout this research (all the studies except Study Two), questionnaires were used 

to evaluate user satisfaction about the technique or condition used independently from 

the other condition.  This is done by asking the users to fill a questionnaire after each 

condition used.  Because the conditions were counterbalanced, this is considered as a 

measurement of the user satisfaction with each condition alone.  The questionnaires 

depended on Likert scale of 5 questions.  This type of questions was selected to elicit 

the degree of user agreement or disagreement with the statement (or question) in the 

questionnaire.  It was also a suitable way of measuring the attitude of the user 

regarding the point they are asked about. 

Exit Questionnaires: In addition to the questionnaires after each condition, 

users were asked to answer one more questionnaire after finishing the whole study 

(both conditions).  Most of the questions in this questionnaire asked about the 

preference of the user to one of the conditions tested in the tasks.  This helped in 

measuring user satisfaction and preference to one of the conditions.  One study (Study 

Two) used only the last type of questionnaire because it is comparing comparison 
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between two constraint expressions in natural language and its aim was to compare 

between the two expressions with respect to user preference.  These questionnaires 

also were composed of Likert 5-scale questions to collect the attitude of the user 

towards any of the independent tested conditions. 

Post-Constraint Questionnaire: In one of the experiments, a short 

questionnaire was used with the purpose of collecting data about the effect of 

constraint expression in natural language on expressing the constraint using CSBE.  

This was the only questionnaire used for the purpose of collecting data about user 

satisfaction.  Again, this type of questionnaire depended on Likert 5-scale questions. 

5.2.5 Interview 

Purpose: user satisfaction data collection. 

Semi-structured interviews were conducted with the users after each finished 

filling in the exit questionnaire.  This interview was included in three of the four 

studies conducted in this research.  It was used as a qualitative method to extract and 

collect data regarding user satisfaction.  In the interview, the users were asked to give 

their opinion of the system in general and in the conditions they experienced.  The 

interview was valuable in collecting data about user satisfaction outside the limited 

questions prepared and designed in the questionnaires.  Some of the opinions were 

included as part of the discussions of the experiments to support the research claims 

and to provide answers for the research questions. 

Although the interview was semi-structured and while the user was 

interviewed, new questions and opinions may be asked to document; there were four 

questions that were prepared for the user to answer if no independent opinions were 

given.  These questions were “What did you like about the system?”, “What did you 

dislike about the system?”, “If you asked to change one thing in the system, what 

would that thing be?”, and “Do you have any other comments?”.  The questions were 

general enough to open discussions and other questions about the system.  These 

questions are considered as open questions; however, they were part of the interview.  

This type of question and interview were selected because they give the user the 

freedom to express and document their feelings and comments about the system.  In 

addition it gave them the ability to give opinions and feedback about things that might 
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not be covered in the Likert scale questions.  This type of questions also gave another 

way of system evaluation than limiting the subject with a number to select based on a 

specific question. 

5.3 Sample Selection 

5.3.1 Population Definition 

In this research the population which the samples were selected from was 

well-defined.  The population was defined by the following characteristics: 

 Participants should have knowledge of diagram editor CASE tools and their use. 

 Participants should have practiced software modelling before and they should 

know how to use at least one of the available (commercially or free) diagram 

editor CASE tools. 

 Participants should have knowledge of the diagrams used in the studies (viz., State 

Transition Diagram and Use Case Diagram). 

 Participants should be able to speak, read and write English. 

 Participants were NOT a required to have experience or knowledge in constraint 

definition or its domain such as knowledge of a constraint specification language. 

The above forms the specification of the population for this research.  

However, some extra conditions were introduced for specific purposes of some 

studies that cannot be considered as part of the general definition of the population.  

An example of this is the requirement in (Study Four) for subjects that have not been 

used DECS before or done an experiment related to it through this research.  Such 

specific requirements are documented in each study.  Apart from such study-specific 

conditions, it is believed that the above criteria characterise and define properly the 

population that this research depended on.  Jorgensen & Sjoberg (2004) document that 

it is not possible to make inferences and generalisation from studies results which do 

not have a well-defined population.  They also state that “empirical studies of 

software engineering may seldom have well-defined populations.”  They suggest that 

the difficulty of defining the population arises from unclear elements that should be 

considered in the population definition. 
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Again, it is believed that the above criteria are sufficient to define the 

population from which the samples for this research should be drawn apart from the 

specific criteria that should be available in some studies.  Some other elements that 

may be important in some other studies were not included because they are considered 

of insignificant importance in this research.  These elements may include the mother 

language, the gender, the age and the health condition. 

5.3.2 Deviation from the Well-Defined Population 

Based on the description, it is believed that this research has a well-defined 

population from which random samples should have been drawn.  It is believed also 

that the samples selected to conduct the experiments of this research are drawn from 

this well defined population.  However, all the participants were postgraduate 

students, either taught course or research students, following programmes in 

Computing Science or Software Engineering.  This may be considered a deviation 

from the well-defined population by sampling from only one subset of it instead of 

depending also on professionals as participants.  This is because the researcher has 

only access to this subset and did not have access to professionals.  This deviation 

from the well-defined population may affect, according to (Jorgensen & Sjoberg, 

2004), the ability to generalise and infer from testing the statistical hypothesis. 

However, all the participants satisfied the characteristics that define the target 

population.  Based on this, it is believed that the selected sample represents the 

required population because the tasks in the studies do not depend on knowledge or 

skills that are different between students as representative of inexperienced 

professionals, as (Sjoberg, et al., 2005) described them, and experienced 

professionals.  However, the participants’ attitude towards CSBE may be different if 

they are experienced professionals who have already invested considerable effort in 

learning a constraint language, for example.  According to this, this research used 

samples that represent the well-defined population which allows generalising its 

results.  In a survey of 103 published empirical studies, (Sjoberg, et al., 2005) 

surveyed the documentation of 20 replications of 14 experiments.  Among these, three 

experiments originally used students as subjects and, when replicated, used 

professionals as subjects.  In the three replications, the results of the original studies 

were confirmed.  This provides some empirical evidence that the community of 
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students can in some cases be representative of a wider software engineering 

population. 

5.3.3 Drawing Samples from the Population 

Samples were drawn from postgraduate students and researchers in Computing 

Science and Software Engineering.  They were considered as representative of the 

population.  The technique of sampling was completely random using email.  For each 

study (except Study Two), an email was sent to the postgraduate taught, research 

students and researchers (not students but none of them participated).  All the 

requirements of the subjects, such as software engineering background, knowledge of 

CASE tools and knowledge of modelling diagrams, were included in the email.  The 

email also contained the information sheet as attachment.  Each participant was paid 

£10 at the completion of the experiment and the consent form indicated that the 

payment would be made even if the subject chose to withdraw from the study before 

completion.  However, this did not happen with any participant.  The first 16 students 

that replied to the email and satisfied the definition of the required population were 

taken as subjects.  This procedure was followed in all the studies except Study Two.  

The number of participants (16) for each study (except Study Two 37 participated) 

was selected because of the available resources of time in waiting for collecting the 

participants, time in conducting the studies, analysing the data and the available fund 

for paying the participants. 

In Study Two, which is an online study that used a questionnaire, there was a 

need to specify the target population or the well-defined population.  For this study, 

the population is the same as the rest of the research.  To be able to direct the 

questionnaire to the required population, the same technique used for other studies 

(the email) was also followed in this study.  In Study Two, an email was sent to all the 

Software Engineering and Computing Science students in addition to the researchers 

in the School of Computing Science at Glasgow University.  This was to ensure that 

the participants had knowledge of State Transition Diagrams.  The email contained a 

hyperlink that directs to the online questionnaire (the experiment).  To increase the 

sample size, the researcher also sent the email to some colleagues who are studying 

research degrees in the UK (Bradford University) and asked them to broadcast the 

email to the Computing Science research students in their institution. 
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5.4 Threats to Validity 

In addition to the research methods that were used generally in almost all the 

experiments, there were some general threats to validity that apply to almost all the 

studies.  Similarly to the specific research methods for each study, threats to validity 

relevant to a particular study are introduced at the end of the description of that study.  

The following list describes the general threats to validity of this research. 

 Using students only: The research samples contained students only instead of 

containing professionals and students.  This may threaten the validity of the 

research by affecting the statistical test results generalisation.  Sjoberg, et al. 

(2005) claimed that students may be considered as representative of junior 

professionals with no experience.  This can be the case in this research because the 

students that participated as subjects were primarily postgraduate students with 

three or four years of university-level education.  Only one final year 

undergraduate student participated in one of the studies (Study One).  

Additionally, some of these student participants had worked at companies before 

they undertook their postgraduate studies; however, only the current state of the 

subjects were taken into consideration and information about previous work 

experience was only by personal communication with the research after the 

experiment. Part of Study One was conducted in Jordan, also involving 

postgraduate students; however, these participants were also working at the same 

time at a university (the Jordanian Applied Science University) as lab supervisors.  

This means that all the participants (except one) were involved in postgraduate 

studies which indicates they can be considered as professionals, albeit with no 

known practical software engineering experience.  Based on this, generalising the 

results of the studies is threatened by the fact that all the participants were 

students.  Sjoberg, et al. (2005) introduce that involving low proportion of 

professionals software engineers in the studies reduces their realism.  However, 

the nature of the population definition for these studies, discussed in section 5.3, 

would suggest that any threats to validity lie in generalisation of preferences rather 

than task performance. 

 Relativity of subjects with the researcher: All the participants, except those 

conducted the experiment in Jordan and part of the participants in Study Two, 
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were studying at the same university as the research running the studies in 

(Glasgow University).  Some participants in one of the studies (Study Two) also 

included friends of the researcher.  This may threaten the validity of the results 

because of the relation between the researcher and the participants.  In an attempt 

to limit this threat, only one study was conducted every year and most of the 

participants were from the newly enrolled masters students.  These students had 

met the researcher for the first time at the time of the experiment and they had no 

relation with him before.  To limit the effect regarding the research students at the 

same department as the researcher, they were not told nor had any hint about the 

expected results or the preferred independent condition by the researcher.  The 

participants from Jordan were also met for the first time at the time of the 

experiment and had no relation with the research before.  Some of the participants 

in Study Two were friends with the aim of increasing the sample size.  The 

precautions of not telling them anything about the expected or the preferred results 

were taken. 

 Bias towards the implementation: According to an expert (Prof. Sjoberg, D.), 

most of the empirical studies that involve tools developed (implemented) by the 

researchers themselves, the results are always to the advantage of their 

implementations.  Sjoberg, et al. (2005) document 20 replicated empirical 

software engineering experiments;  11 were conducted by the original authors and 

9 by others.  All the 11 experiments replicated by the original authors confirmed 

the original results.  However, between the 9 experiments replicated by others, 6 

reported different results from those obtained in the original experiment and one 

reported partially different results while only 2 experiments confirmed the original 

results.  This suggests there may be a bias towards the CSBE technique and its 

features over the form-filling technique and other tested features in this research.  

While this potential bias may well exist, form-filling interaction techniques follow 

a set of conventions, largely imposed by the interaction components supplied by 

the user interface libraries. This set of constraints reduced the degree of freedom 

of the researcher in the design of the form-filling condition. In general, the form-

filling technique is a typical representative of its type. 
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5.5 Conclusion 

This chapter introduced the research methods that are used in almost all the 

studies in this research.  These methods include pilot studies, screen recording, 

questionnaires and interviews.  These methods were discussed with clarification of the 

rationale for the use of each of them with reference to the aims of this research.  The 

chapter also introduced the definition of the participant population by listing the 

defining characteristics of this population.  The chapter introduced the sampling 

technique used in this research and discussed the deviation from the well-defined 

population because the samples contained only a subset of students, indicating the 

aspects of generalisation that are potentially affected by this limitation.  Finally the 

chapter discussed the general threats to validity including using students as subjects, 

the relationship of participants to the researcher and a potential “implementation” bias 

introduced because the researcher produced the representative control condition in 

one of the experiments. 
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6.1 CSBE vs Form-Filling Technique (Study One)9 

6.1.1 Introduction 

This section presents an initial study to investigate the usefulness of Constraint 

Specification by Example (CSBE) for constraint definition.  This is achieved through 

an empirical study that compares CSBE with a typical form-filling specification 

technique represented as a wizard and tabbed forms.  In addition to the justifications 

introduced in Section  3.5.1, the form-filling technique was chosen to compare with 

because it provides more support for the user than free text-based techniques in 

constraint specification which require the user to learn a textual language to be able to 

express the constraints.  In other words, it is a good and feasible technique to compare 

with.  By contrast, comparing with a free text-based approach would provide weaker 

evidence of the performance of CSBE. 

Study One was designed to answer the first research question: 

Does CSBE improve the performance of constraint specification in a meta-

CASE tool compared to the form-filling technique? 

Answering the question achieves one objective of this research which is to 

study the performance in terms of effectiveness, efficiency and user satisfaction of the 

CSBE technique in comparison with a typical form-filling constraint specification 

technique.  The empirical study tests the claim that the performance of specifying 

constraints in a meta-CASE tool using the CSBE technique is better (higher 

performance) than using the form-filling technique. 

As previously discussed, the form-filling (represented by a wizard and tabbed 

forms) and CSBE techniques were implemented in DECS.  This section details the 

                                                 

 

9 The work discussed in this section has been published as Qattous, Gray and Welland, 2010 
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empirical study that compares both techniques and shows the results.  At the end it 

discusses and concludes from the results with some comparisons with related work. 

6.1.2 Experimental Methodology 

6.1.2.1 Aim and Hypothesis 

The aim of this research is to reduce the complexity, and to facilitate and 

simplify the constraint specification task within the context of meta-CASE tools using 

Constraint Specification by Example (CSBE).  For this purpose, an experiment was 

conducted to evaluate the constraint specification performance of the novel technique, 

CSBE, in comparison to the common, form filling, technique (using a ‘wizard’ and 

‘tabbed forms’).  The following potential dependent variable measurements were 

tested for each technique (the CSBE and form-filling) to conduct the performance 

evaluation. 

 The effectiveness in terms of the resulting constraint specification correctness. 

 The efficiency in terms of the time required for accomplishing the constraint 

specification task. 

 The user satisfaction with the technique. 

6.1.2.2 The Hypothesis 

The null hypothesis of this experiment states that, 

H0: there is no difference between the techniques regarding the variables to 

be measured. 

The alternative hypothesis states that, 

H1: CSBE performs better than the form-filling technique with respect to all 

variables measured, 

6.1.2.3 Collection and Tasks 

The study required users to carry out a set of supplied constraint definition 

tasks.  Two diagram types were selected as target visual languages to be specified: 

State Transition Diagram (hereafter STD) and Use Case Diagram (hereafter UCD).  
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The experiment was conducted on both diagram types separately and at different 

times.  The experiment on STD was conducted in Scotland while the UCD experiment 

was conducted in Jordan and in Scotland and, consequently, had more participants.  

Both diagram types, STD and UCD, were selected because they are commonly used 

in the software design process and all the participants were familiar with them.  The 

diagram types also contain all the general types of constraints that may appear in most 

other diagram types. 

A main constraint list was created for each diagram ( Appendix B).  Each main 

list contained constraints that define an entire diagramming language.  Some other 

constraints were added to each list as customised constraints that define potential 

customised.  Constraints in each list were divided into six different groups based on 

similarities between constraints.  The constraint groups were organised based on the 

following criteria: 

 Constraints related to cardinality of vertices.  This class contains constraints that 

define the upper bound and lower bound numbers of allowed vertices such as the 

constraint “It is not allowed to have more than one Start State in the diagram”. 

 Cardinality of incoming and outgoing edges and connections between vertices 

such as the constraint “The End State must only have incoming transition edges” 

and “It is not allowed to connect two vertices of type Actor using an Association 

edge type”. 

 Unique visual representation of vertices such as “The End State must have a 

unique visual representation”. 

 Label-related constraints such as “Each Non-Terminal State must have a label”. 

 Path-related constraints such as “There should be a path between the Start State 

and every other vertex in the diagram”. 

Some of these categories generated more than one group, such as the second 

group which is divided in the UCD into two groups (outgoing and incoming edges) 

with a logical operator.  One criterion, unique visual representation, forms a group by 

itself and was used only in STD.  The full constraint lists are given in  Appendix C. 
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In order to create a set of constraints for use in the experiment, one constraint 

was picked randomly from each group to form a list of six constraints.  The chosen 

constraint was removed from its group to ensure participation of all the constraints in 

the lists.  When a group had no more constraints, all the removed constraints were 

returned back to start choosing again.  Of course, each group has a different assigned 

number of constraints to choose from.  Using this method of grouping and constraint 

selection, it was guaranteed that all the users will get similar, but not identical, lists of 

constraints.  This reduces the differences between the constraint lists with different 

users and used a wide range of constraints for each diagram type.  The resulting lists 

of 6 constraints each were used in the experiment as the basis of the user tasks. 

6.1.2.4 Participants 

41 participants (16 used STD and 25 used UCD) were selected from 

Computing Science and Software Engineering graduates and postgraduate students in 

Scotland and in Jordan.  In the Scottish study, one final year undergraduate student 

also participated.  The difference in number of participants for each diagram refers to 

the use of nine extra participants on UCD for more data validation. 

6.1.2.5 Experimental Design 

For this evaluation a within subject design was adopted.  The constraint lists 

were randomly assigned to different participants.  For each participant, two different 

constraint lists were used, one for the training and the other for the constraint 

definition task.  The users’ task was to define the 6 constraints in the list provided.  

The same list was assigned to each subject and used for both conditions, the form-

filling and the CSBE, to eliminate any effect of single constraints on the technique 

evaluation. 

The order of the technique usage was counterbalanced in an attempt to limit 

the order effect associated with the techniques.  Each participant was trained for about 

20 minutes on each technique and allowed to carry out the training task without 

assistance before starting the main task.  The training constraint list was used for this 

purpose.  The same process was repeated for each technique.  The participants were 

asked to fill out a number of different questionnaires at different stages of the 

experiment.  A time limit of 15 minutes was imposed for each task.  Each evaluation 
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was recorded by screen capture to be used later for data extraction and analysis.  The 

experimenter also observed each session and took notes. 

It should be noted that the experimenter intervened on several occasions when 

participants exhibited signs that they could not progress with the tasks.  This only 

occurred in the wizard condition and help was solely in the form of hints about the 

labels of different properties in the wizard.  No further interference or help was 

provided. 

6.1.3 Results 

All the 41 participants were familiar with the diagram types used in the 

evaluation.  Most of the participants indicated that they were familiar to some degree 

with the constraint definition task, with an average mean of 3.0 and 4.0 on a scale of 5 

for STD and UCD respectively.  Each experiment took approximately 2 hours 

including the training time.  The results for the users’ attempts were analysed with 

respect to the above mentioned hypothesis.  The nonparametric Wilcoxon signed-rank 

test was used to analyse correctness and satisfaction results while a survival analysis 

with the log-rank test was used to analyse the time results.  The comparison between 

the two techniques regarding the required measurements is presented in the following 

sections. 

6.1.3.1 Correctness 

The number of correctly defined constraints for each participant in both 

diagram types was gathered from the recorded screen capture videos.  The constraints 

that were not attempted by a participant because of the time limit (the 15 minutes 

given to accomplish the task) were considered as defined wrongly.  Apart from this 

time limit problem, all the participants attempted all the constraints.  Figure  6-1 shows 

the number of correctly defined constraints for each user in the STD and Figure  6-2 

shows the same results for the UCD.  Both figures show the results for the wizard and 

the CSBE techniques.  A significantly higher number of constraints were specified 

correctly using the CSBE than via the wizard. 
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6.1.3.1.1 State Transition Diagram 

In the case of the STD, 12 out of 16 (75%) of the participants defined a higher 

number of constraints correctly using the CSBE technique than the wizard.  Nine 

users defined all the constraints correctly in the task using the CSBE technique, two of 

whom also did using the wizard (Figure  6-1). 

 

The average percentage of constraints defined correctly using the wizard 

technique was 62.5% (3.8 constraints) while it was 89.6% (5.4 constraints) using 

CSBE.  Analysis shows that there is a high significant difference between both 

techniques regarding correctness in constraint definition (p < 0.01). 

6.1.3.1.2 Use Case Diagram 

In the case of UCD, 24 users (96%) defined a higher number of constraints 

correctly using the CSBE technique than the wizard technique.  Only one user defined 

Figure  6-1: Number of constraints defined correctly using wizard and CSBE by 
each user in the STD. 

 Wizard CSBE 
Mean 3.8 5.4 
Min 2.0 3.0 
Max 6.0 6.0 
STD 1.4 0.9 
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the same number of constraints correctly using both techniques.  19 users defined all 

the constraints correctly in the task using the CSBE technique, and one only did using 

the wizard (Figure  6-2). 

 

In the case of the wizard, the average percentage of constraints defined 

correctly was 40% (2.4 constraints out of 6) while it was 95% (5.7 constraints out of 

6) using CSBE.  Analysis shows that there is a high significant difference between 

both techniques regarding the correctness in constraint definition (p < 0.001). 

6.1.3.2 Time 

The time required to accomplish the constraint definition task for each 

participant in both diagram types was gathered from the recorded screen videos.  The 

 Wizard CSBE 
Mean 2.4 5.7 
Min 0.0 4.0 
Max 6.0 6.0 
STD 1.4 0.5 

Figure  6-2: Number of constraints defined correctly using wizard and CSBE by 
each user in the UCD. 
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time for each participant was rounded by a factor of 15 seconds.  This means if a 

participant accomplished the task using 10 minutes and 14 seconds, that was rounded 

to 10 minutes but if the time used was 10 minutes and 15 seconds, this was rounded to 

10.5 minutes.  Figure  6-3 shows the time required for each user to accomplish the task 

in the STD and Figure  6-5 shows the same results for the UCD.  Both figures show 

the time for the wizard and the CSBE techniques.  In both diagram types, the CSBE 

produced better results (higher correctness, less time required, higher user 

satisfaction) than the wizard. 

As mentioned above, 15 minutes were given for each participant to 

accomplish the task.  However, some of the users did not finish the task within the 15 

minutes and some others required the full time and finished exactly after 15 minutes.  

For these users, the statistical analysis, survival analysis, was required to measure the 

significance of difference between the both techniques regarding the time required to 

accomplish the task.  If such data had been ignored or excluded from the data 

analysis, this would have introduced a selection bias to the experiment.  In survival 

analysis, the data for participants that did not finish their tasks or subjects that stopped 

doing the experiment before the measured event has happened to them is called right-

censored data.  Survival analysis using the Kaplan-Meier survival curves, which show 

the percentage of the population still surviving at a giving time point, was conducted 

on the time data for STD and UCD and presented in Figure  6-4 and Figure  6-6 

respectively.  The Log-rank test was used to calculate the significant difference 

between the two Kaplan-Meier survival curves for both techniques. 

6.1.3.2.1 State Transition Diagram 

In the case of the STD, 50.0% (8 of 16) of the participants accomplished the 

task in less time using the CSBE technique while 37.5% (6 of 16) accomplished the 

task in less time using the wizard.  Three users required the 15 minutes maximum 

time and other three required more than 15 min to accomplish the task in the wizard.  

Only 1 required the 15 minutes and 3 required more in the case of the CSBE (Figure 

 6-3). 
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Two users required the 15 minutes allowed or more in both techniques and 

they were the only users who required the same time for both techniques.  One of 

them finished the task using the maximum 15 minutes in CSBE but not with the 

wizard while the other did not finish the task in either case. 

 Wizard CSBE 
Mean 11.8 11.1 
Min 8.0 5.5 
Max 15.0 15.0 
STD 3.0 3.5 

Figure  6-3: Task completion time in minutes for Wizard and CSBE by each user in 
the STD. 
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The Kaplan-Meier survival curve for STD (Figure  6-4) shows that both curves 

are close to each other and have almost the same trend.  However, it also shows 

clearly that CSBE curve is under the wizard almost all the time which indicates that a 

higher number of users finished their tasks using CSBE in less time as also shown in  

Figure  6-4.  The p value (= 0.64) shows that there is no significant difference between 

both techniques regarding the time required to accomplish the task. 

6.1.3.2.2 Use Case Diagram 

In the case of the UCD, 88% (22 of 25) of participants accomplished the task 

in less time using CSBE while two participants required the same time, 14 and 10 

minutes, in both techniques. 
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Figure  6-4: Kaplan-Meier survival curve of STD. 
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11 users used more than the 15 minutes given and one required exactly 15 

minutes using the wizard technique; while all the participants finished before 

consuming the given time in the case of CSBE.  The results suggest that participants 

have performed more quickly with the CSBE technique than the wizard (Figure  6-5). 

The Kaplan-Meier survival curve for UCD, (Figure  6-6), shows a distinct 

difference between both technique curves.  CSBE survival curve is always under the 

wizard one which indicates that the number of participants who accomplished the task 

using CSBE is higher. 

 Wizard CSBE 
Mean 13.8 10.2 
Min 8.5 5.5 
Max 15.0 14.0 
STD 1.9 2.1 

Figure  6-5: Task completion time in minutes for the Wizard and CSBE by each user 
in the UCD. 
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The figure also shows that none of the participants failed to accomplish the 

task within the required time using CSBE technique.  The p value (<0.0001) shows 

that there is a highly significant difference between both techniques in the time 

required to accomplish the task. 

6.1.3.3 User Perception 

In order to provide further validation for the hypothesis, post task and post 

experiment questionnaires that the participants filled out were analysed. 
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Figure  6-6: Kaplan-Meier survival curve of UCD. 
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Table  6-1: User perception of wizard and CSBE techniques in STD and UCD. 
(higher = better (higher user satisfaction), bold and underline = significant difference) 

 State Transition Diagram Use Case Diagram 

Questions Wz CSBE Wz CSBE 

How successful were you 
in accomplishing what 
you were asked to do? 

3.7 4.3 2.5 4.8 

This technique was 
powerful enough to allow 

me to define my 
constraints. 

3.9 4.3 4.3 4.7 

In most cases, I was 
confident that I defined 
the required constraint. 

3.3 4.6 2.4 4.8 

I felt that I acquired 
experience in this 

technique quickly while I 
was working. 

4 4 3.6 5 

I am satisfied with my 
performance in constraint 
definition tasks using this 

technique. 

3.5 4.1 2.4 4.8 
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Table  6-2: User perception of wizard and CSBE techniques in STD and UCD. 
(lower = better (higher user satisfaction), bold and underline = significant difference) 

 State Transition Diagram Use Case Diagram 

Questions Wz CSBE Wz CSBE 

How mentally demanding 
was the task using this 

technique? 
3.5 3.1 4.2 1.4 

How hurried or rushed 
was the pace of the task 

using this technique? 
2.8 2.3 3 1.2 

How hard did you have to 
work to accomplish your 

level of performance? 
3.1 2.4 3.9 1.4 

How uncertain, 
discouraged, irritated, 
stressed, and annoyed 

were you? 

2.6 1.8 3.8 1.2 

While I was working, I 
felt that I needed help 

from an expert. 
2.9 2.1 4.3 1.3 

In the post task questionnaires, participants’ opinions about the constraint 

definition task using each technique were investigated.  There was a need to discover 

the feelings of the participants while interacting with the system in the case of each 

technique.  A Likert 5-point scale was used and some of these were inverted to reduce 

bias.  Table  6-1 and Table  6-2 above show some of the questions and the average 

answer numbers on the scale.  Table  6-1 shows questions where the higher scale 

answer is better (more user satisfaction) while Table  6-2 shows questions where the 

lower scale answer is better in both diagram types. 

6.1.4 Discussion  

A higher percentage of constraints have been defined correctly using CSBE 

than using a wizard.  A statistically significant difference appeared between the two 

techniques in both diagram types.  The explanation of this result may be ascribed to 
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the ability of the users to express constraints visually more easily (using the visual 

diagram components) than expressing them through filling a form of properties, 

especially when URI references are used.  Anecdotal evidence supporting this idea is 

the observation that the users, while using the wizard, drew example constraints, 

especially connection constraints, using pen and paper before starting the definition 

process.  This suggests that visualising the constraint provides better (closer to the 

mind) understanding for its concept, which supports using CSBE and explains its 

performance in the constraint definition task.  This also agrees with the claims of 

Bimbo & Vicario (1995) and Draheim et al. (2010) that visualisation increases the 

intuitiveness of specification.  The feature of expressing constraints using the same 

visual elements (vertices and edges) of the target language has the main effect of 

increasing the intuitiveness according to Draheim et al. (2001).  Many users made 

comments that support the idea of intuitiveness and the idea of reducing the gap 

between the formats of specification and application of constraints.  A number of 

comments referred to the intuitiveness to the constraint visualisation and using the 

same visual elements of the target language in building the constraint examples, such 

as:  “I like the process of inference gives all the possibilities and I like visualising the 

constraints”.  “I did not like the wizard because it is not visual”.  “I like the 

visualisation, it shows you the real constraint”.  “Really more intuitive and simplifies 

complex cases definition compared with wizard”.  A repeated comment was “You can 

see the constraint before saving it, so you are sure of what you have defined”.  This is 

related to the synergistic approach which gives the user a list of different alternatives 

and the user selects from the list.  Apparently, the synergistic approach implemented 

in DECS contributes to its intuitiveness.  This is because the user interaction with the 

system by introducing an example to express the constraint visually and the reply of 

the system with a set of inferences allows the user to see all the different 

interpretations of the example.  When the user interacts by selecting the required 

constraint from the list and confirms the selection, this appears to give the user 

confidence that the specified constraint is the required one.  This confidence was 

limited in the case of using the form-filling technique since the user was not sure if 

the required constraint has been specified correctly or not. 

In general, the participants required less time to define the constraints using 

CSBE than when using the wizard.  This result can be explained by mentioning that 
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the wizard, as any form-filling technique, needs more time in reading the property 

labels and exploring the alternative values.  This time is reduced in the case of CSBE.  

On the other hand, the CSBE technique consumes the user’s time in thinking of 

suitable example(s) to express the constraint.  However, CSBE outperformed the 

wizard in time measurement.  It can be argued that with experience, properties in the 

wizard can be memorised while the time for expressing a constraint using CSBE will 

stay constant which may overturn the experimental result.  The answer here is that 

observations and qualitative interviews showed that the user gets experience in CSBE 

quicker than the wizard (Table  6-1).  Although it is not possible to generalise these 

results over long system usage and a large number of constraint definition tasks, they 

suggest that users can get experience in CSBE even if it depends on introducing 

different examples for each constraint. 

As shown in the survival analysis, there was no significant difference between 

the two techniques regarding the time required to accomplish the task in the case of 

STD.  By contrast, a strongly significant difference appeared in the case of UCD for 

the same measurement.  It is difficult to explain this data.  As mentioned above, the 

significant difference can be justified as the CSBE technique is easier than wizard and 

it is possible to accomplish the task in less time.  This is clear from the curves in both 

diagram types.  Constraint lists provided as tasks cannot clearly justify the difference 

between the diagram types because the constraints were of the same types.  However, 

the individual constraints were, of course, different and may have different levels of 

difficulty.  This difference in results between the two diagram types requires more 

investigation. 

Regarding user satisfaction, users prefer the CSBE technique and were more 

satisfied using it compared to the wizard.  Table  6-1 and Table  6-2 are self 

explanatory; users felt less stressed, less rushed, less uncertain, and more confident 

while performing tasks using CSBE.  This might explain the better (higher) 

performance in correctness and time especially as they believed that they have done 

better in CSBE in a question not included in the tables.  Users agreed that both 

techniques were powerful enough to define constraints with insignificant advantage to 

CSBE (p = 0.33 and p = 0.19 for STD and UCD respectively).  Some questions in the 

after-experiment questionnaire asked which technique was easier to be learned and 
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remembered, which technique will you use for constraint definition if you were 

assigned such task, and which technique will be more effective?  All their answers 

were to the advantage of CSBE. 

The results presented above demonstrate that using CSBE for constraint 

definition in the context of meta-CASE tool reduces the complexity of the constraint 

definition task.  Referring to the research problem introduced in  Chapter 1, CSBE 

reduced the complexity because: 

 It reduced errors associated with the constraint specification task. 

 It reduced the time required to accomplish the constraint specification task. 

 It reduces the gap between the constraint application domain and constraint 

specification formats.  This is done through visualisation. 

This indicates that the CSBE technique can add value to the meta-modelling 

process and to the CASE specification process in general.  Consequently, the study 

rejects the null hypothesis and accepts the alternative one. 

Because the same constraint suggestions can appear for different examples, 

participants came to expect the suggestion would appear in the same place.  For 

example, constraints that deal with labels always appear at the bottom of the list.  So 

users were starting to search the list from the bottom instead of starting from the top 

based on their experience during the training time.  This suggests that it may be 

problematic to allow an inference engine to rank (and hence list) the suggestions 

based only on their likelihood in a particular context. 

6.1.5 Threats to Validity 

Limiting the task time to 15 minutes could have an effect on the correctness 

measurement.  If subjects were permitted to continue without time limitation, some of 

them possibly would have achieved higher correctness.  However, extending the time 

limit would not threaten the validity of the significant result for UCD as all subjects 

completed the task within 15 minutes using CSBE.  It seems highly unlikely that 

extending the time limit for STD would produce a significant result but this needs 

further investigation.  Intervention (mentioned in Section  6.1.2.5) also threatens the 

validity of the results.  However, it only occurred in the form-filling condition which 
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worked against the CSBE technique.  Since the CSBE technique outperformed form-

filling, this indicates that the intervention had very little or no effect.  Subjects’ native 

language is also a threat to validity as not all the subjects are native English speakers.  

However, all the participants had or were carrying out their studies in English.  

Threats to validity of this research also include using only two diagram types (UCD 

and STD), which may limit the generality of the results.  The decision to use two 

diagram types was taken to reduce the threat of bias compared to using only one type.  

Additionally, time and resource limitations prevented investigation of more diagram 

types. 

6.1.6 Related Work 

Although some empirical studies have been conducted in the context of meta-

CASE tools and constraints, such an experiment to evaluate the CSBE technique (or 

PBE technique) against another technique has not been documented in any research 

before.  One experiment (Offen, 2000) was conducted to evaluate the effect of 

constraints on the work of designers in diagram editors.  To conduct this research, a 

meta-CASE tool, “CASEMaker”, was built to generate constraint-dependent diagram 

editors.  Results showed that extensive constraint messages from the system during 

the work of the designer reduce his/her novelty.  However, such results cannot be 

compared with the one generated from this research. 

An interesting study was conducted by Myers (1993) for evaluating the PBE 

system Peridot.  The aim of the study was to evaluate how efficient Peridot is to use.  

Ten people, half of them programmers and half not, participated in the experiment.  

Time for building a menu task was calculated and results showed that Peridot is 

efficient as it reduces the time required to build a menu from 50-500 minutes to 4-15 

minutes.  The time spent to accomplish the task was also considered as a criterion in 

an empirical study conducted by Maulsby & Witten (1993) to evaluate the learning 

ability of the PBE system Metamouse.  Quantitative and qualitative results show that 

Metamouse needs enhancement because it could not infer and learn the required 

repeated task from the users. 
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6.1.7 Conclusion 

This section has presented an empirical study comparing two constraint 

definition techniques, a typical form-filling technique represented by a wizard and the 

Constraint Specification by Example (CSBE) technique.  The latter has not been used 

in the context of meta-CASE tools before.  Both techniques have been implemented in 

DECS and the study evaluated both techniques using two diagram types, a State 

Transition Diagram and a Use Case Diagram, with respect to constraint definition 

correctness, required time to accomplish a constraint definition task, and user 

satisfaction.  Results show that, in general, the CSBE technique outperforms the 

wizard with respect to all the measured criteria.  A general conclusion is that CSBE 

succeeded in reducing the complexity of constraint specification task by reducing the 

error associated with this task, reducing the time required to specify constraints and 

reducing the gap between the specification and the application formats through 

visualising the task and increasing its intuitiveness. 
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6.2 Constraint Polarities in Natural Language (Study Two) 

6.2.1 Introduction 

Expressing a constraint in a natural language and expressing the constraint in 

the system using a diagram example are two different things.  In the natural language, 

different designers may describe a constraint differently according to their way of 

expressing it when talking to each other.  However, in DECS, the expression of the 

constraint is done using a diagram example that has no relation to how the designer 

expresses it linguistically as shown in  Chapter 4.  As an example, the constraint 

expressed in Figure  4-11, although it is expressed negatively in English by starting 

with words “it is not allowed...”, it is easier to express in DECS as a positive example 

(Figure  4-11).  In English, this constraint can be expressed positively as “The lower 

bound number of Actor is 1.” or “At least one Actor must exist in the diagram”.  To 

explore this area of natural language constraint expression, an online survey was 

conducted before conducting any other study related to the polarity of examples in 

DECS.  The following section describes this study. 

6.2.2 Constraint Polarity Survey 

6.2.2.1 Aim 

An online study was conducted with the aim of studying the preference, in 

terms of understandability, of users for positive and negative descriptions of 

constraints described in English.  The study consisted of 10 constraints that apply to 

State Transition Diagrams (STD).  STD was used because it is well known to people 

in the Computing Science community. 

6.2.2.2 Experimental Design 

As Table  6-3 shows, a within-subject design was adopted for this experiment 

to deal with individual differences between participants.  Each constraint was written 

in English in positive and negative forms.  Subjects were asked to choose the easier to 

understand between the positive expression and the negative expression or both if 

they are equally understandable.  Constraint expression polarity was considered as the 

independent variable with three levels, positive, negative and equal while the 
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dependent variable was the number of participants that preferred (found it easier) one 

expression to the other.  The evaluation was designed in the form of a questionnaire 

on a website and participants were invited by email.  The questionnaire is available in 

 Appendix D.  Participants included people of different cultures, different relation such 

as friends (researchers at Bradford University), and different levels of Computing 

Science background including undergraduate students and researchers.  Data was 

collected automatically by the survey tool SurveyMonkey (SurveyMonkey, 2011) 

used to perform the study. 

Table  6-3: Natural language constraint expression preference study summary 

Property Value 

No. of participants 
37 (not all of them answered about all 

the constraints). 

Adopted design Within-subject 

The independent Variable (IV) Natural language constraint expression 

No. of independent variable levels 3 (positive, negative, both) 

Dependent Variable (DV) Preference of one level of IV. 

6.2.2.3 Results 

Results showed that in all the constraints, expression using positive language 

was preferred over negative as shown in Figure  6-7.  Since some of the participants 

did not evaluate all the constraints provided in the questionnaire, the percentage of the 

participants that preferred one polarity over another was considered instead of the 

actual number.  Because the number of participants was over 30 in all the expressions, 

Central Limit Theorem (CLT) is applicable which assumes normality of data.  

Accordingly, a t-test was used to analyse the differences between constraint 

expression results.  A t-test was used for individual comparison as a safer solution 

than using ANOVA which is used only for between-subject design. 
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Results show that there are significant differences between positive and 

negative expressions and also between positive and equal with p-value (p < 0.001) for 

both comparisons.  On the other hand, there was no significant difference between the 

negative and equal selections (p = 0.104). 

6.2.3 Discussion 

These results demonstrate that people may understand and prefer one 

expression polarity of the constraint over another.  In particular, subjects significantly 

preferred and understood constraints that are written in positive natural language 

expressions compared to those written negatively. 

Based on these results, with the fact that there is a significant difference 

between the preference of positive and negative constraint expressions in natural 

language, it was decided that the natural language expression of a constraint should be 

taken into consideration as a potential confounding factor in any study or experiment 

that focuses on studying constraint polarity.  Accordingly, this confounding factor 

must be counterbalanced to avoid its threats to study validity. 

Figure  6-7: Percentage of participants agree that the constraint expression in 
natural language is easier to be positive, negative or both are equal. 
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6.2.4 Threats to Validity 

The threats to validity of this study can be summarised as follow: 

 As an online study, the study was conducted away from the eyes of the researcher.  

This cannot guarantee the control of the study such as the time spent in conducting 

the experiment or the care given in answering the questions.  As a trial to avoid 

this threat, the researcher invited trusted friends to avoid answering the questions 

randomly without giving care to the study in addition to the undergraduate and 

postgraduate students and researchers at Glasgow University. 

 Some of the participants did not finish the study (did not answer all the questions) 

which may threaten the results and its analysis.  Another related issue is that the 

study could not determine the reason behind not completing the online 

questionnaire.  This issue was handled by analysing the percentages instead of the 

absolute numbers as shown above in the results presentation. 

 As has been introduced in  Chapter 5, using friends in this study with the aim to 

increase the sample size, may threaten the validity of the results.  However, they 

were not told about any expectation or preference towards specific results. 

6.2.5 Conclusion 

This section introduced an online study as part of this research with the aim to 

discover the preference in terms of understandability towards a positive or negative 

polarity of natural language in expressing constraints.  Results showed that 

participants preferred positive language over the negative one.  This study has also the 

aim of helping to design the next study (Study Three).  Results suggest that the 

polarity of natural language used in expressing the constraints is a confounding factor 

that needs to be taken into account in the design of Study Three. 
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6.3 Example Polarities (STUDY THREE) 

6.3.1 Introduction 

The results of Study One showed the superiority of CSBE over a typical form-

filling technique in constraint definition (Qattous, Gray & Welland, 2010).  However, 

the DECS version that was used for conducting this experiment did not allow the user 

to specify the polarity of his/her example explicitly.  This means that the user provides 

the example and asks the system to infer from the example.  The system infers both 

polarities and presents them in one list.  So the users were not given the choice to 

specify explicitly the required interpretation of the example, either positive or 

negative.  Users were trained and told about the example polarity feature and asked to 

express constraints using a suitable example with a suitable polarity.  From their 

comments, documented in the post-experiment questionnaire, it was clear that the 

users understood the example polarity principle quickly and they applied it easily (i.e., 

they did not demonstrate any noticeable effort in considering how to be able to apply 

it). 

However, although DECS users liked the ability to express constraints using 

both polarities, positive and negative, there was no evidence that allowing such a 

feature would influence the performance of CSBE.  Some users commented that they 

would have liked to have been able to select an example polarity explicitly, rather 

than keeping it as an implicit feature.  Inferred constraints was another issue.  The 

constraint list generated by DECS contained together both positive and negative 

interpretations of the example.  Some participants in Study One commented that they 

were confused by this.  In addition, this also increases the number of inferred 

constraints presented in the list, which may increase the time required to search the 

list for the required constraint. 

As a result of these issues, the research raised a second question, “Does 

example polarity influence the performance of CSBE?”  In other words, “Does 

allowing constraints to be expressed using multi-polarity examples affect the 

performance of the CSBE technique?”  In particular “Does using multi-polarity 

examples add value to the performance of CSBE compared to using uni-polarity 
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examples?”  To answer these questions it was decided to conduct a study to evaluate 

the performance of CSBE when allowing constraints to be expressed using different 

polarity examples compared to restricting example expression to only one polarity.  In 

general, the study aimed to determine the more suitable implementation that improves 

the performance of CSBE technique by evaluating two different DECS 

implementations.  The first allows the constraints to be expressed using different 

polarity examples and the second restricts the user to only one example polarity.  

Since the study focussed on example polarity, it was decided to allow the user to 

specify example polarity explicitly.  Explicit example polarity specification means 

that there will be a control by the user over the inference engine to direct it either to 

infer and interpret the example positively or negatively.  This agrees with the 

recommendations of the users in Study One and handles the long list issue introduced 

in the previous paragraph.  Explicit example polarity specification was discussed in 

 Chapter 4.  However, it had not been implemented yet in the DECS version used for 

the experiment discussed in  6.1 and, therefore, was not used in Study One. 

Since this experiment was related directly to the example polarity, there was a 

major potential confounding factor that could threaten the study, viz., the polarity of 

the natural language used to describe the constraints in the experiment.  Accordingly, 

results of Study Two were taken into consideration as they contributed to the design 

of Study Three and helped in reducing the threats that can result from the natural 

language constraint description in the tasks given to users. 

Although the example polarity feature in DECS has been discussed before, 

this section starts with a brief recall for what has been discussed in  Chapter 4 with 

some helping examples.  The section then describes the different components of the 

two conducted experiments with explanation of their design and execution.  

Experimental results are presented, analysed, discussed and compared to some 

different related works.  The section ends by concluding from the studies conducted. 

6.3.2 Positive and Negative Examples in DECS 

To recall from  Chapter 4 a positive example represents the desired state or 

what must hold in the tool to be generated, while a negative example represents an 

undesired state or what is not allowed.  In  Chapter 4, some examples were introduced 
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to explain this constraint example feature implemented in DECS.  As a reminder 

example, the constraint “it is not allowed to have less than one Actor in the diagram” 

(or “the lower bound number of Actor is 1”).  This example is shown in (Figure  6-8).  

The same example with the opposite interpretation, negative, is shown in Figure  6-9. 

 

 

6.3.3 Inference Over State and Action 

Recall from  Chapter 4, DECS can infer from the example state and an action.  

The following example is repeated from  Chapter 4 for reminding with the state-action 

feature.  The constraint (expressed in Figure  6-8) can be expressed negatively instead 

Figure  6-9: Negative inference for the same example introduced in (Figure  6-8). 

Figure  6-8: Positive interpretation (inference) the introduced example. 
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of positively using the state-action technique.  Figure  6-10-a shows part of the 

example which is composed of one Actor.  Negatively, this is interpreted by DECS as 

the constraint “It is not allowed to have any Actor in the diagram.” (or as the figure 

shows “The upper bound number of Actor is 0.”).  This part is considered as the state 

part of the example.  The action part is when the user deletes the Actor vertex (Figure 

 6-10-b).  Taking the previous state of the example into consideration, the system can 

infer that the required constraint is “It is not allowed to have less than one Actor in the 

diagram.” (or as the figure shows “The lower bound number of Actor is 1.”) (or, 

“There must be at least one Actor in the diagram.”) as shown in Figure  6-10-b. 

 

Figure  6-10: a) The user introduces a vertex (Actor) as an initial state of the 
example and the system shows the negative inference in the negative version of 
DECS. b) The user deletes the vertex to express the required constraints negatively 
using the state-action feature. 

a 

b 
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6.3.4 Effect of Example Polarity 

6.3.4.1 Aim 

This study aims to discover the effect of example polarity on the performance 

of the CSBE technique.  In particular, the experiment studies the effect of allowing 

the user to express the constraints using multi-polarity examples compared to uni-

polarity examples.  This is conducted by comparing two different DECS versions for 

constraint expression using example(s). 

6.3.4.2 Experimental Units, Materials, and Tasks 

To achieve the aim of the study, there was a need to compare tools of different 

polarities.  The first step was to determine the different possible implementation 

alternatives for different polarities.  The following table (Table  6-4) summarises eight 

recognised implementation alternatives for constraint example polarity: 

Table  6-4: Possible implementation alternatives for example polarities. 

Possible alternatives Symbol 

Negative only supported with state-action feature. N + A 

Negative only without state-action feature. N - A 

Positive only supported with state-action feature. P + A 

Positive only without state-action feature. P - A 

Negative with state-action and Positive with state-action. (N + A) + (P + A) 

Negative with state-action and Positive without state-action. (N + A) + (P - A) 

Negative without state-action and Positive with state-action. (N - A) + (P + A) 

Negative without state-action and Positive without state-action. (N - A) + (P - A) 
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Among all the alternatives above, it was practically possible to use only two 

choices of different tool (DECS version) implementations for the study.  The limit on 

the number of alternatives arose for the following reasons: 

 Time problem: the time required to conduct the experiment with tasks for all the 

possible tools would be long, not counting the time required for training the 

participants on using them.  One practical problem this research faced was finding 

participants who would agree to do an experiment that is 60-90 minutes long.  This is 

actually the time required for testing two conditions.  Based on this, conducting all the 

alternatives or more than 2 of them would not be feasible and would have exhausted 

the participants, assuming they could be found. 

 Aim problem: the aim of the study would be altered as it specifies comparing 

between the uni-polarity compared to multi-polarity tools.  Consequently, comparing 

other tool alternatives is not in the scope of this study. 

 Design and data analysis problem: Comparing the different conditions or even 

more than two of them would complicate the experiment, its design and its data 

analysis.  One of the problems faced in this experiment particularly is its complex 

design for counterbalancing the different variables.  Additionally, the statistical 

analysis of the data would be complex as the comparison would be between different 

conditions with each other instead of concentrating on two only. 

Between all the choices above, the following two different tools 

implementations were selected as conditions to conduct the experiment on: 

 The Negative without state-action and Positive without state-action (N-A) + 

(P – A) or the Negative Positive tool (NP tool hereafter), which offers interpreting 

the examples either positively or negatively according to user choice.  In other words, 

this tool can infer from the negative and positive examples but without support for 

state-action feature. 

 The Negative only supported with state-action feature (N + A) or the Negative 

Action tool (NA tool here after), which interprets the examples negatively only.  

However, the state-action feature was also implemented in this tool to support 

negative inference so the tool can infer all the required constraints.  In other words, 

this tool can infer constraints from the “negative and action” examples. 

These two implementations were selected for the following reasons: 
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 They are sufficient to test the hypothesis and achieve the aim of this study as they 

include the required multi-polarity and uni-polarity alternatives. 

 It was fair to compare the two selected choices since neither the negative nor the 

positive tools without action support ((N - A) and (P - A)) would be expressive 

enough to express the constraints.  Because of that, these two options were eliminated.  

Using the negative and positive supported with action tool ((N + A) + (P + A)) was 

also not fair to be part of the comparison because this accumulates all the features in 

one tool leaving nothing to compare with.  Accordingly, this alternative was also 

excluded.  There are two additional unbalanced options that were eliminated, viz., (N 

+ A) + (P – A) or (N – A) + (P + A). 

 Selecting these two tools offered the options that allowed a comparison of polarity 

exploring the added value of including positive examples since the negative option is 

included in both tools. 

 The positive with action tool (P + A) was not selected because of the conceptually 

negative nature of the constraints and because the action concept was clearer in the 

negative tool than the positive one for expressing the constraints.  This was observed 

during preliminary and pilot studies.  The pilot studies aimed (i) to help decide the 

suitable polarity to be used as a representative in the uni-polarity condition and (ii) to 

estimate the required time and the difficulty of the experiment.  During these studies, 

and from the discussion conducted before them throughout the training time, it was 

noticed that it was easier to explain to users the action concept with negative 

examples than with the positive examples.  One more reason for not selecting the (P + 

A) tool was the problem associated with the positive (state-action) examples 

mentioned above (Figure  4-12-b).  This made using the negative tool a better (higher 

performance) choice to avoid any confusion for users while trying different examples 

using the state-action feature. 

It is believed that the selected tools offered, on balance, the most expressive 

and realistic alternative for each of the two conditions and, consequently, it was 

decided to choose the NA tool as a representative for the uni-polarity condition and 

NP as a representative for the multi-polarity condition.  Additionally, both selected 

implementations are powerful enough to express a wide range of constraints.  They 

also depend on two different backbone concepts of expressing the constraints using 

examples, as one depends on different polarities while the other depends on one 
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polarity supported with the action concept.  Both tools have almost the same GUI as 

shown in Figure  6-8 and Figure  6-9 for NP tool and Figure  6-10 and Figure  4-10 for 

NA tool. 

The study required participants to carry out a set of supplied constraint 

specification tasks that partially define a modelling diagram type.  Two diagram types 

were selected: State Transition Diagram (hereafter STD) to conduct the experiment on 

and Use Case Diagram (hereafter UCD) for training and experiment explanation 

purposes only.  These diagram types were selected for the same reasons indicated in 

the first study in the previous section. 

The experiment was conducted in Scotland at Glasgow University.  Sixteen 

participants were selected from Computing Science, Information Technology, and 

Software Engineering postgraduate students.  An invitation was posted to all the 

postgraduate students by email.  Students who replied with a completed consent form 

were selected.  Each participant was paid £10 for participation.  The selected subjects 

had no experience or previous knowledge of the tools to be tested; however, they were 

required to have knowledge of STD and UCD.  No knowledge of the constraints or 

their definition was required.  These conditions were mentioned in the invitation email 

that also contained information about the general aim of the study. 

To prepare the tasks for the users, a main constraint list was created for STD.  

The list contained constraints that define the diagram language.  Some other 

constraints were added to the list as customised constraints that define potential 

customised requirements to take advantage of the power of DECS as a meta-CASE 

tool.  Constraints in the list were divided into six different groups based on the 

following criteria: 

 Constraints related to cardinality of vertices in the diagram.  This class contains 

constraints that define the upper bound and lower bound numbers of allowed 

vertices such as the constraint “It is not allowed to have more than one Start State 

in the diagram”. 

 Cardinality of incoming and outgoing edges such as the constraint “End State can 

only have incoming edges” or “The cardinality of outgoing edges from End State 

is 0”. 
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 Unique visual representation of vertices such as “In any given diagram, Start 

State must have a unique visual representation”. 

 Vertices label-related constraints such as “Non-transition States must have 

labels”. 

 Edges label-related constraints such as “Outgoing Transition edges from Non-

Terminal States, must have unique labels” and “Transition edges must have labels 

starts with the substring ‘out’ ”. 

 and, the path related constraint, “There must be a path between Start State and 

every other vertex in the diagram”. 

From each group two constraints were selected and each selected constraint 

was placed into a separate list.  Two groups, “unique visual representation” class and 

the “path” related class, had only one constraint in each group, apart from the vertex 

and edge types; consequently, very similar constraints of the both groups were used in 

both lists.  At the end of the process, two lists each with 6 constraints, each constraint 

from a different group, were generated.  Using the above method of constraint 

selection, both generated constraint lists contained 6 similar, but not identical, 

constraints and each list formed a task. The tasks (constraint lists) showing the 

different constraints used appear in  Appendix E. 

Each constraint of the 6 in each list has a predefined (implemented) logical 

example that expresses it.  In the NP tool, each list had 4 constraints out of the 6 that 

can only be expressed (specified) using positive examples (constraints number 1, 3, 4, 

and 6 in  Appendix E).  Similarly, in the NA tool, 4 of the 6 constraints can only be 

expressed using negative with state-action examples.  Each list of the two was 

assigned to a tool and the assignment was counterbalanced.  Based on Study Two 

results, and to avoid the natural language effect discussed above, one of the lists was 

written starting with a negative language for the first constraint, positive language for 

the second one and so on.  By contrast, the second list started with a positive language 

for the first constraint.  Since the two lists contain similar but not identical constraints, 

the lists also were used for half of the participants.  For the other half, the lists were 

swapped, meaning that the list that started with a negative constraint for the first half 

of the participants, was replaced by one with positive for the second half of the 

participants.   



184 

These precautions guaranteed a counterbalanced assignment of the constraints 

to the participants and avoidance of the natural language effect.  Participants were 

assigned to the task according to Table  6-5 which summarises the distribution and 

counterbalancing precautions.  The table shows the condition that each user starts with 

since each user performed both conditions.  For example, user 1 starts with the NA 

tool using positive language list and the second part of the experiment was the NP tool 

with the negative language list. 

Table  6-5: Design of the experiment and user first assignments to different 
counterbalanced conditions. 

16 Participants 

Negative-Action Tool (NA) Positive-Negative Tool (NP) 

Positive Language Negative Language Positive Language Negative Language 

User 1 User 2 User 3 User 4 

User 5 User 6 User 7 User 8 

User 9 User 10 User 11 User 12 

User 13 User 14 User 15 User 16 

Each participant was asked to perform two tasks, each using one of the two 

different tools (NA and NP).  Each task was to define the 6 constraints in the list 

provided using one of the tools.  As a part of the task, the user was also asked to 

answer several questionnaires at different stages of the experiment.  All the 

questionnaires used are available in  Appendix E. 

Three pilot studies were conducted for the purposes described above.  During 

the pilot studies the time required to finish the tasks was estimated so participants can 

be interrupted if not accomplishing the tasks within the time limit.  Later on it was 

decided not to interrupt the participants; instead, there was no time limit because that 

was easier and more convenient for the resulting statistical analysis. 
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6.3.4.3 Variables and Hypothesis 

The independent variable of the experiment was tool implementation, which 

was of two levels (the two implementations) represented by the two tools, Negative 

tool with state-action feature and Positive-Negative tool.  The following dependent 

variable measurements were tested for each implementation (tool). 

 The effectiveness in terms of the resulting constraint specification correctness. 

 The efficiency in terms of the time required for accomplishing the constraint 

specification task. 

 The user satisfaction with the technique. 

6.3.4.4 The Hypothesis: 

The null hypothesis of this experiment states that, 

H0: there is no difference between the two implementations regarding the 

variables to be measured. 

The alternative hypothesis states that, 

H1: there is a difference between the two implementations regarding the 

variables to be measured. 

6.3.4.5 Experimental Design and Execution 

For this evaluation, a within subject design was adopted as each participant 

was asked to perform two tasks, each task using one of the tools.  This design was 

selected because of its simplicity in application and analysis.  Adopting this design 

allowed also the avoidance of the affect of personal variations between different 

subjects, such as experience, IQ, etc. 

Each participant was trained before each experiment, using UCD.  

Participants’ training was conducted using different constraint examples and a 

different diagram, UCD, to avoid any threatening effect of the training on the 

experiment itself.  The training included introducing subjects to the concepts of 

negative example, positive example, and the action notion using a white board and 

tool demonstrations.  The participants were encouraged to use the tool freely and they 
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were supported with all the required assistance to be familiar with it.  Training 

sessions took about 10-15 minutes each. 

Each task was conducted in 6 steps representing the 6 constraints of each task.  

The participants were given the constraints to define one at a time, which helped in 

focusing on the current constraint without looking to the previous or next constraint in 

the list.  Each constraint definition was recorded separately by screen capture to be 

used later for data extraction and analysis.  Deleting the previous example and starting 

with the new one was taken as an indication of starting the constraint definition while 

pressing the save button, to save the constraint definition, was taken as an indication 

of finishing the constraint definition.  This helped in measuring the required time for 

each constraint.  Participants were instructed at training time to choose any answer 

and finish the constraint definition to indicate giving up if they could not reach the 

required constraint. 

After each constraint definition the participant was asked to fill in a post 

constraint questionnaire.  Once the task of 6 constraints was completed, participants 

were asked to fill in a post task questionnaire, in order to evaluate each tool.  After 

finishing both tasks on both tools, participants were also asked to fill in a post 

experiment questionnaire, followed by a short interview to compare the tools. 

It has to be mentioned here that one of the constraints, the visual 

representation related constraint, was eliminated from the results because of an 

implementation bug.  This bug can be summarised as follows:  this constraint 

designed to be expressible using a positive example in the NP tool and was also 

designed to be expressible using a state-action example in the NA tool.  This 

constraint was one of the 4 constraints out of the 6 used in the experiment (mentioned 

before in Section 4.2) which was implemented to be inferred from a positive example 

in the NP tool and using a state-action example in the NA tool (constraint number 3 in 

 Appendix E).  This was provided the required controlled condition and 

counterbalance of always having 4 constraints in each list either expressible using 

positive examples in the NP tool or using negative examples with the state-action 

feature in the NA tool.  It was also part of the design of the experiment.  However, 

because of an implementation bug, it was possible to express the constraint using a 

negative example with or without the state-action feature in the NA tool.  By contrast, 
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it was only possible to express it using a positive example in the NP tool.  This 

created an unequal number of constraints that use negative examples and positive 

examples in the NP tool and constraints that use negative examples and negative 

examples with state-action in the NA tool in the two lists for each user.  After the 

results analysis, it has been discovered that this bug may have compromised the 

design; however, it did not compromise the revised design when the constraint is 

removed from the analysis.  Accordingly, all of the results of this constraint were 

removed from the analysis and the results presented here depend only on the revised 

design with the problematic constraint eliminated.  Thus, only 5 constraints’ data were 

analysed and are presented.  After the elimination of the visual representation related 

constraint, only 3 constraints were left that could be defined either positively in the 

NP tool or negatively with the action-state feature in the NA tool.  The other 

constraints in each list, 2 constraints, were defined negatively in the both tools.  Since 

this experiment design is within-subject. no normality assumptions were made about 

the collected data.  Based on this, the nonparametric Wilcoxon Signed-Rank test was 

used to analyse correctness, time required to accomplish the tasks, and satisfaction 

results. 

6.3.4.6 Results 

Most of the participants indicated that they were familiar to some degree with 

the constraint definition task with an average of 3.0 on a scale of 5.0.  Each 

experiment (participant) took 60 - 90 minutes including training and questionnaire 

filling time.  The comparison between the two tools regarding the required 

measurements is presented in the following sections. 

6.3.4.6.1 Correctness 

The number of correctly defined constraints for each participant was gathered 

from the recorded screen capture videos.  All the constraints were attempted by all the 

participants.  Figure  6-11 shows the number of constraints correctly defined by each 

participant and Figure  6-12 shows the number of participants who defined each 

constraint correctly.  Both figures show the results for the NA and the NP tools. 
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6.3.4.6.1.1 Correctness for each participant 

13 out of 16 (81.3%) of the participants defined a higher number of constraints 

correctly using the NP tool than the NA tool.  None of the participants defined more 

constraints using the NA tool while 3 (18.8%) participants defined the same number 

of constraints correctly using both techniques.  Half of the subjects, 8, defined all the 

constraints correctly in the task using NP, and none did using NA (Figure  6-11). 

 

The average percentage of constraints defined correctly using the NA tool was 

52.6% (2.63 constraints) while it was 77.6% (3.88 constraints) using the NP.  

Statistical analysis shows that there is a highly significant difference between the tools 

regarding correctness in constraint definition (Z = -3.28, p = 0.001). 

6.3.4.6.1.2 Correctness for each constraint 

4 constraints out of 5 (80%) were defined correctly by a higher number of 

participants using the NP tool than the NA tool.  Only one constraint, the cardinality 

Figure  6-11: Number of constraints defined correctly using Negative-Action and 
Negative-Positive tools. 

 NA NP 
Mean 2.6 3.9 
Min 0.0 1.0 
Max 4.0 5.0 
STD 1.3 1.5 
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related constraint, was defined correctly by the same number of subjects in both tools.  

The highest number of subjects, 15, was for the vertex label related constraint using 

the NP tool.  The biggest difference between the two tools appeared in the last two 

constraints which are the edge label related constraint and the path existence 

constraint (Figure  6-12). 

The average percentage of participants that defined constraints correctly using 

the NA tool was 52.5% (8.4 participants) while it was 77.5% (12.4 participants) using 

NP.  Although the number of users that defined constraints correctly using NP tool is 

higher in 80% of the constraints than those using NA, statistical analysis shows that 

there is no significant difference between the two tools (Z = -1.83, p = .068). 

 

 NA NP 
Mean 8.4 12.4 
Min 3.0 10.0 
Max 14.0 15.0 
STD 5.3 2.1 

Figure  6-12: Number of participants correctly defined each constraint using NA and 
NP tools. 
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6.3.4.6.2 Time 

The time required to accomplish each constraint definition was gathered from 

the recorded screen videos.  To calculate the total time required for each task, the time 

periods spent by each user to define each constraint were summed together.  Figure 

 6-13 shows the time required by each user to define the 5 constraints and Figure  6-14 

shows the time required to define each constraint by all the users.  Both figures show 

the time for the NA and the NP tools.  In both diagram types NP tool required less 

time than NA. 

6.3.4.6.2.1 Time spent by each user to accomplish the task 

The time required to define all the constraints by each participant was summed 

to get these results.  81.3% (13 of 16) of users accomplished the task in less time 

using the NP tool while the rest of participants or 18.8% (3 of 16) of users 

accomplished the task in less time using the NA tool. 

 

Figure  6-13: Sum of time required by each participant to complete the task in 
minutes using NA and NP tools. 

 NA NP 
Mean 13.4 9.4 
Min 6.6 4.9 
Max 22.0 17.3 
STD 4.8 3.9 
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Two participants required more than 20 minutes to accomplish the task using 

NA, while all the participants required less than 20 minutes to finish the task using 

NP.  More than double, 68.8%, of the participants finished the task in 10 minutes or 

less using NP compared to NA, 25%.  The longest overall time record was 22 minutes 

using NA and the shortest time was 4.88 minutes using NP tool.  Average time spent 

was 13.44 and 9.38 minutes for the NA and NP respectively (Figure  6-13). 

Statistical analysis shows a significant difference (Z = -2.28, p = 0.023) 

between the two tools regarding the time spent by each participant for defining 

constraints.  Apparently, the difference is to the advantage of NP tool as less time was 

required to accomplish the task using it. 

6.3.4.6.2.2 Time spent to define each constraint by all the participants 

The time required to define each constraint by all the participants was summed 

together to get these results.  All the 5 constraints required a longer time to be defined 

using the NA than using the NP tool. 

 

Figure  6-14: Sum of time required by all participants to define each constraint 
alone. 

 NA NP 
Mean 43.0 30.0 
Min 27.5 18.9 
Max 66.4 45.0 
STD 17.7 10.2 
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The longest time sum required to define a constraint was 66.4 minutes, for the 

path existence related constraint, using the NA tool.  By contrast, the vertex 

cardinality related constraint required the shortest time, 18.9 minutes, using the NP 

tool (Figure  6-14).  The average of time required by all users to define a constraint 

was 43 minutes and 30 minutes for NA and NP respectively. 

As Figure  6-14 shows, the NP outperforms the NA tool because the 

constraints are defined using less time.  Statistical analysis shows a significant 

difference between the tools (Z = -2.02, p = 0.043). 

6.3.4.6.3 User Perception 

In order to provide further validation for the hypothesis, post constraint, post 

task and post experiment questionnaires that participants filled out were analysed.  In 

all the questionnaires there was a need to discover the feelings of the participants 

while interacting with each tool.  A Likert 5-point scale was used and the order of 

some of these was inverted to reduce bias.  Table  6-6 shows the average answers of 

users in the “post-constraint” questionnaire.  Numbers in bold indicate significant 

difference between the tools. 



193 

 

Table  6-6: User perception of the NA and the NP tools in post-constraint questionnaire. 
(shaded = better (higher user satisfaction), bold and underlined = significant difference) 

Questions NA NP 

It was difficult to express the constraint with an 

example 
2.5 1.6 

It was easy to find the required constraint in the 

inferred constraint list 
3.7 4.4 

I was confident that I defined the required 

constraint 
3.7 4.5 

It was confusing to convert the English constraint 

expression to example 
2 1.7 

The way the constraint is written in English in the 

constraint list (the paper in your hand) affected 

my choice of the way I should express the 

constraint with an example 

2.1 2.3 

One aspect to be measured for user perception is the effect of the English 

language that the constraints were written in.  As described before, some constraints 

were written in a negative form while others written in a positive one.  Table  6-6 

shows that there was a slight significant difference (p = 0.041) between the two tools 

regarding the confusion because of the English language.  However, there was no 

significant difference regarding the effect of English on the way that the user 

expresses the constraint. 
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Table  6-7 and Table  6-8 show the average user perception answers of some 

significant questions in the “post-task” questionnaire.  Table  6-7 shows questions 

where the higher scale answer is better (higher user satisfaction) while Table  6-8 

shows questions where the lower scale answer is better (higher user satisfaction).  

Two tables are used because inverted Likert scale in the questionnaires was used. 

Table  6-7: User perception of the NA and the NP tools in post-task questionnaire. 
(higher = better (higher user satisfaction), bold and underlined = significant difference) 

Questions NA NP 

How successful were you in 

accomplishing what you were 

asked to do? 

3.2 4 

In most cases, I achieved the 

required constraint at the first 

attempt. 

3.9 4.3 

Constraint definition task was 

easy using this tool. 
3.1 4.3 
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Table  6-8: User perception of the NA and the NP tools in post-task questionnaire. 
(lower = better (higher user satisfaction), bold and underlined = significant difference) 

Questions NA NP 

How mentally demanding was the task using this 

technique? 
3.4 3 

How hard did you have to work to accomplish your 

level of performance? 
3.2 2.5 

Using this tool requires a lot of time and effort 

because I need to think of an example to express the 

constraint 

2.9 1.8 

How uncertain, discouraged, irritated, stressed, and 

annoyed were you? 
2.6 1.7 

While I was working, I felt that I needed help from 

an expert. 
2.9 2.1 

I was often unsure of what action to take next. 2.6 1.9 

6.3.5 Discussion 

A statistically significantly greater number of constraints have been defined 

correctly using the NP than using the NA tool.  The statistical significance also 

appeared between the two tools, with the advantage of the NP tool, in terms of the 

time required to define the constraints.  From these results, it can be concluded that 

expressing constraints using negative and positive examples is more effective and 

efficient than when using negative examples only supported by the state-action 

feature.  This conclusion is supported by the results showing higher percentages of 

users defining constraints correctly within a shorter period of time using the NP tool 

than the NA tool.  This gives a strong indication that spite of the apparently negative 

nature of constraints, it is easier, in some situations, to express them using positive 

examples.  A close look at Figure  6-12 and Figure  6-14 confirms that two constraints 
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(4 and 5) were much easier to express positively as a lower number of participants 

defined them correctly and took more time than with other constraints using NA tool.  

A note here is that although Study Two shows a significant difference between 

the positive and negative natural language for expressing the constraints, this does not 

show a significant difference in this experiment as appears in Table  6-6.  This is 

because of the careful counterbalance of the language polarity of the constraints over 

each of the tools as previously discussed in designing the constraints lists. 

User satisfaction results from the questionnaire after each constraint (Table 

 6-6) show clearly and significantly that the NP tool outperformed the NA tool on the 

constraint level except in one case and it does not show a significant difference.  

Expressing constraints and finding them in the inferred list using the NP tool was 

significantly easier since the positive interpretation list is separated from the negative 

one.  A significant difference also appears in the confidence of the user that s/he 

defined the required constraint.  It was significantly easier to think of an example for 

the constraint written in English using the NP tool.  The English language polarity 

showed no significant effect on constraint expression in both tools.  After-task 

questionnaires (Table  6-7 and Table  6-8) show that NP is significantly preferred by 

the users because they felt that they did better (higher performance) using NP, 

achieved the required constraint from the first attempt, and the constraint definition is 

easier using it.  Users also felt that NA needs significantly more effort, it is less 

natural or logical as they felt the need of expert assistance when using it, and it is 

significantly more confusing since the users were unsure what the next step should be. 

Observations, participants’ answers in the exit questionnaire, and qualitative 

interviews showed that NP is preferred and considered more powerful for almost all 

of the participants which agrees with the task results.  One participant only preferred 

the NA because he believes that the state-action feature is a powerful tool that 

increases the expressiveness and reduces confusion.  By contrast, the rest of the 

participants supported the NP tool and agreed that the availability of the two example 

interpretations to express a constraint gives a bigger chance to express it in a more 

natural and logical way and provides more alternative solutions to look at.  Although 

the users liked exploring different inferences generated by the opposite interpretations 

of the NP tool, it is believed that any implementation, including that used in the 
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current research, will aim to reduce the number of generated choices and inferences.  

This is to avoid overwhelming the user with inferences which may reduce the 

advantages of using CSBE.  It also gives the user the feeling that s/he is dealing with 

an intelligent system that understands her/his examples; this was one of the comments 

of two participants documented in their interviews. 

In NP DECS version, the GUI helps by separating the two interpretations into 

different lists.  All the participants liked the transparency feature and the recorded 

screen capturing showed that all of them kept the inference engine “on” while 

working.  These results also indicate the higher user satisfaction with the NP tool than 

NA.  This concludes that users preferred using tools with different alternatives for 

expressing the constraints than sticking to only one polarity.  In general, it can be 

concluded that example polarity affects the performance of CSBE in terms of 

affecting the effectiveness, efficiency and user satisfaction.  The availability of 

positive and negative polarities to express constraints affects the performance of 

CSBE positively compared to the availability of only negative polarity supported with 

the action feature. 

Participants were asked if they prefer customising the tool by learning the 

system so they can express some constraints using their own examples.  All of them 

supported the idea, since many of them faced a problem in expressing constraints 4 

and 5 (Figure  6-12).  This supports a rules augmentation and customisation feature 

because they felt that they need a more “natural way” than already implemented to 

express the constraints. 

6.3.6 Threats to Validity 

One of the threats to validity of this study is time.  Giving the participants the 

time to accomplish their tasks without limits could have an effect on the time 

measurement.  If a subject was stubborn enough to spend a long time on one of the 

constraints, this could affect the average time required to define the constraint.  

However, limiting the time will not allow some subjects to continue the definition 

process and the constraints will be considered defined wrongly which may leave a 

doubt about the correctness measures.  In addition, limiting the time could increase 

the complexity of the statistical analysis.   
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Another threat to this experiment is the individual differences between the 

constraints themselves.  Some of these constraints were implemented with the 

expectation that they would be expressed negatively, others positively and others 

using a negative example with action.  This may open a question about the effect of 

redistributing these factors over the constraints in a different way than used.  

Dependence on individual differences of the constraints could have been reduced by 

increasing the constraint set for each task. However, this was not feasible given the 

several variables to be counterbalanced - the tool implementation and the natural 

language the constraints are written in, and constraint presentation order.  This could 

be solved by using more subjects but this was not possible in this experiment because 

of the time, resources and difficulty of finding subjects.  However, this introduces an 

idea for future research that may study individual differences between the constraints; 

however, this question is not part of the aim of this study. 

The subjects’ native language is also a threat to validity as not all the subjects 

are native English speakers.  However, all the participants are studying or doing 

research in English at Glasgow University and thus considered sufficiently fluent in 

English to understand the constraints presented to them. 

With respect to external threats, using only one diagram type, STD, may limit 

the generality of the results.  The decision of using this diagram type has been 

justified before.  Additionally, time and resource limitations prevented investigating 

more diagram types. 

6.3.7 Related Work 

Since PBE has not been applied in a meta-CASE tool before, the ideas in this 

research and DECS features will be compared to other relevant PBE systems.  Many 

previously developed PBE systems support both positive and negative examples.  

Heffernan (2003) proposed the use of positive and negative examples to enhance an 

intelligent tutoring system.  Myers (1993) observed that Peridot depends mainly on 

positive examples; however, some constraints required being expressed using 

negative examples.  Peridot is the closest system to DECS, although they are different 

in terms of application domain, as Peridot infers graphical user interface constraints.  

This difference in constraint nature and application context most likely affected the 
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need for different example polarity since it seems that there was no problem in just 

using the positive examples only in Peridot as very few of its constraints depend on 

negative examples. 

Unlike DECS, all the reviewed PBE systems, apart from Peridot, that report 

using positive and negative examples depend on those two example types working 

together to refine the specification.  In Gamut (McDaniel & Myers, 1999), negative 

examples are used to exclude behaviour from a generalised, positive one.  MetaMouse 

(Myers, McDaniel, & Wolber, 2000) uses implicit negative examples to refine 

behaviour through conditional branches in the code.  Usually such systems are very 

sensitive to user errors or slightly malformed examples.  The InferenceBear (aka 

Grizzly Bear) system users found using positive and negative feature difficult (Myers, 

McDaniel, & Wolber, 2000). 

Hudson & Hsi (1993) criticised using different example polarities to refine 

generated code and system behaviour because this makes it very demanding for the 

user to define the behaviour.  Instead, they recommend involving the user in selecting 

the required behaviour from alternatives.  DECS follows this approach in part.  DECS 

depends on positive and negative examples but uses each as a standalone example, not 

as refinement for the other.  This offers the usefulness of using different polarities to 

increase the expressiveness of the examples while keeping it relatively easy to use by 

not involving the user in refinement issues.  None of the systems above used positive 

and negative examples as two separate types, each of which is used to provide a 

completely separate example.  As far as the author is aware, applying negative and 

positive examples as a “more natural” way of expression has not been tried before nor 

has there been a previous empirical study to explore this issue10. 

                                                 

 

10 There is a suggestion in (Myers, McDaniel, & Wolber (2000) that a small experiment was 

conducted on the InferenceBear/Grizzly Bear system but this has not been published. 
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6.4 Adding and Customising Rules (STUDY FOUR) 

6.4.1 Introduction 

The CSBE technique has proven its superiority over the form-filling technique 

as has been shown in Study One ( 6.1).  Study Three ( 6.3) has also shown that 

providing the opportunity of expressing the constraint using different polarity (multi-

polarity) examples enhances CSBE.  As concluded from the last section, allowing the 

user to express the constraint using either positive or negative examples gives a richer 

set of alternative examples of which some may be perceived to be more natural than 

others. 

DECS depends on a set of rules to infer the intended constraints using 

examples.  Consequently, the inference engine ability to infer constraints depends on 

its knowledge. DECS’ ability to interpret examples is limited to the fixed set of rules 

implemented in the DECS inference engine.  Consequently, if the inference engine 

does not have the required knowledge (rules) to interpret an example, DECS will not 

be able to infer the required constraint. 

DECS knowledge can be augmented by adding rules in the form of strings to 

the inference engine.  This must be augmented by providing associated Java classes, if 

not available, to be used at runtime.  Consequently, a programmer is required to 

manipulate the code to handle the knowledge and rule augmentation problem in 

DECS.  Clearly, it would be desirable to be able to offer a way to add rules to DECS 

at runtime and avoiding direct code manipulation. 

The rules augmentation problem extends beyond adding rules that the 

inference engine is missing; there is also the challenge of rule customisation.   This 

describes the case where DECS has the knowledge to infer the required constraint, but 

it is difficult for the user to think of the required example to express the constraint.  

That is, there may be an alternative potential example that is better (closer to the user 

mind) suited to the way a particular user thinks about the constraint and its expression. 

In other words, the problem can be viewed as forcing CSBE users to adapt themselves 

to it rather than CSBE adapting itself to its users. 
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The simplest example of this problem is that a user prefers to express a 

constraint using a negative example while the inference engine is implemented to 

infer the required constraint using a positive example.  This creates several problems 

starting with the extra effort and time that will be consumed in trying two different 

ways of expressing the constraint.  This part of the problem will not be limited to the 

current constraint as every time the constraint or a similar one is required, the user 

will try to express it according to their way of thinking about the example.  

Consequently, the user will spend the same time and effort trying the different 

alternatives each time they try to express the same or a similar constraint.  One 

solution for this problem is that the user learns how to express the constraints using 

the examples that the system understands.  However, this imposes a burden on the 

user, requiring them to adjust their way of thinking to suit the system and to 

remember the particular conceptualisation of the system. This waives the advantages 

of facilitating constraint specification and the intuitiveness of expressing the 

constraints, and provides the example that the system prefers to express the constraint 

not the one that the user prefers.  This introduces the second problem of the need to 

tailor or customise the inference according to the user way of thinking not the 

developer one (the system). 

This problem was noticed several times during the previous two empirical 

studies.  The participants often tried to express the constraints using examples other 

than those thought about by the author and implemented in DECS. In other words, the 

users did not share with the author, and thus with DECS, the same notion of how to 

express the constraints via examples.  This is not unexpected as different people think 

in different ways.  Although the problem might seem to be a positive and negative 

example problem, it is believed that users may vary in expressing a constraint even 

with the same polarity. Thus the problem is one of tailoring which includes the 

polarity preference problem as a subset. 

 Chapter 4 introduced the technical details for the solution of the above two 

problems (adding knowledge and customising the tool) through a learning technique.  

In this technique the user teaches DECS how to define a constraint using an example 

that is more natural to the user.  The learning technique depends on the user 

introducing an example and using the wizard to specify the constraint.  DECS watches 
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and learns how to define the constraint using the example.  The next time the user 

introduces the same or a similar example, DECS is able to infer the required 

constraint.  This solves both problems, adding and customising rules, introduced 

above.  This section starts by recalling the solution and some of the technical details.  

The section also presents and describes an empirical study conducted to evaluate the 

feasibility and desirability of the implemented learning technique.  The experiment is 

designed and conducted to answer the question: 

Does implementing and using the learning technique influence the 

performance of CSBE technique? 

This study tests the claim stating that it is possible to increase the performance 

of CSBE by implementing a learning technique for augmenting and customising the 

knowledge base of the system. 

The experimental design is described and the results presented and discussed.  

The section draws some conclusions from this experiment and reviews some related 

literature. 

6.4.2 Proposed Solution 

The proposed idea to solve the above two problems is by allowing the user to 

introduce an example that expresses the constraint (according to the user).  Later on, 

the user specifies the required constraint using the wizard.  This is considered as a 

system learning technique and also it has been called an “adding rules” features 

throughout this research because it involves augmenting the inference engine with 

rules.  This technique is illustrated in Figure  6-15, which is considered as a subset of 

Figure  4-1 (recall from Page 97) with more focusing on the learning part of the model.  

Figure  6-15 is explained in the following scenario: 
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To recall from  Chapter 4, adding rule feature depends on that the user introduces 

an example that s/he believes expresses the required constraint.  The system infers 

according to its knowledge.  The required (intended) constraint does not appear in the 

constraint list shown by the system.  The user presses a button, labelled “Add Rule”, 

and selects the required constraint type (graph, vertex, or edge constraint) which 

activates the appropriate wizard.  The user specifies the required constraint with a 

suitable description in natural language and saves it.  This means that the user has 

specified the required constraint using the form-filling technique at the same time s/he 

is adding a rule.  In other words, the rule addition process is a dual purpose task, 

adding the rule and specifying the required constraint at the same time.  The system 

also saves the introduced example as a Java object and attaches it to the specified 

constraint.  The next time the user introduces the same example, the system searches 

both the original rules in its knowledge base and the added examples.  It finds a match 

from the saved added examples (because the new and the old examples are the same) 

and includes the constraint description into the inferred constraint list.  When the user 

selects the constraint and confirms the selection, the system uses the previously 

specified constraint (constraint specified using the wizard) to specify the new 

constraint.  The new constraint is generated and saved. 

User provides 
examples 

System cannot infer 
the required constraint 

User uses “adding 
rule” feature 

System shows the 
wizard and the user 
specifies the 
required constraint 
using the wizard 

Constraint is specified 
and generated 

System learns how to 
infer and specify the 
constraint next time 

Figure  6-15: Adding rules process within CSBE. 

User selects 
constraint type 
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The following section documents an empirical study that was conducted to 

evaluate the feasibility and desirability of the implemented learning technique. 

6.4.3 The Feasibility and Desirability of Adding Rule and Customisation 

Feature 

6.4.3.1 Aim, Variables and Hypothesis 

The aim of this experiment is to evaluate the learning technique implemented in 

the DECS inference manager.  The experiment studies and evaluates the following: 

 The feasibility and desirability of enabling the system to learn to infer and define 

new constraints that did not exist in its inference engine knowledge. 

 The feasibility, and affect on constraint specification performance, of enabling a 

user to employ examples that they believe are more natural for expressing a required 

constraint, by adding a rule addition capability to DECS. 

 The experiment also studies the feasibility, desirability and the performance effect 

of the generalisation feature implemented in the learning technique. 

6.4.3.2 The independent variables: 

To set up the independent variables of the experiment, one DECS implementation 

has been used.  This DECS version was intentionally implemented to be unable to 

infer some constraints and to infer some others using complex examples only (this 

will be discussed in detail later on).  The users were encouraged to teach the system to 

recognise constraints from new examples that they introduced, either to add new 

example-constraint rules they considered missing from the system or to customise 

rules that they considered difficult to express. 

According to the above description the independent variables of the experiment 

are the two conditions: 

 A DECS version that does not have the required knowledge in its inference 

manager to infer all the required constraints and can infer some other required 

constraints but using difficult examples.  This DECS version required to be taught 

using “adding rule feature” how to infer and specify the required constraints.  

Accordingly, this variable is considered as “before the system learned” condition. 
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 The same DECS version described in the above bullet point after has been taught 

using “adding rule feature” how to infer and specify the required constraints using 

the user preferred examples.  Accordingly, this variable is considered as “after the 

system learned” condition. 

6.4.3.3 The dependent variables 

For the purpose of achieving the aims of the study, the following potential 

dependent variable measurements were tested before and after the system has been 

taught how to specify constraints. 

 The effectiveness of the system in terms of the resulting constraint specification 

correctness.  This measures the number of constraints defined correctly (out of 6) in 

the two conditions (tasks), before the user teaches the system and after the user 

teaches the system. 

 The effectiveness in terms of the frequency that the “adding rule” feature has been 

used.  Each time the user is required to use the adding rule feature, the constraint is 

considered wrong.  This dependent variable measures the number of instances of rule 

addition during the two tasks, before and after the user teaches the system. 

 The efficiency in terms of the time required for accomplishing the constraint 

specification task.  This is a measurement of the time that the user requires to finish 

each of the two tasks. 

 The user satisfaction with the learning technique.  This elicits if the users think 

that the rule addition feature is useful and whether or not they prefer using it. 

6.4.3.4 The Hypothesis: 

The null hypothesis of this experiment states that, 

H0: there is no difference between “before the system learned” and “after the 

system learned” how to specify constraints regarding the effectiveness, efficiency and 

user satisfaction. 

The alternative hypothesis states that, 
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H1: performance is improved after the system has learned how to specify 

constraints with respect to the effectiveness, efficiency and user satisfaction. 

6.4.3.5 Data Collection and Tasks 

The study required users to carry out a set of supplied constraint definition tasks.  

A State Transition Diagram (hereafter STD) was used as the context for this 

experiment.  STD was selected because it is commonly used in the software design 

process and all the participants were familiar with it.  This diagram also contains by 

default all the general constraints that may appear in most other diagram types.  

However, the constraints that were used were mod ified to allow evaluation of the 

generalisation feature as part of the learning technique.  The constraint modifications 

included customising different properties such the vertex and edge types, colours, and 

the vertex and edge upper bound number. 

For the purpose of conducting the experiment, 16 participants were selected from 

Computing Science and Software Engineering postgraduate students at Glasgow 

University.  The participants were invited by an email that contains all the information 

about the experiment and the requirements of the participants.  The participants were 

required to be familiar with STD and they must not have participated before in any 

previous experiment for this research.  The last requirement was set out because it was 

noticed during the pilot studies that participants who used the system before in 

previous experiments, especially the last experiment, were expecting the system to be 

intelligent and to infer the required constraints from their examples.  Consequently, 

there was a need for participants with no background expectations about the system. 

Two constraint lists with six constraints each were created ( Appendix F).  Both 

lists contained similar, but not identical, constraints.  The constraints were selected 

from different categories resulting in the following set: 

 one constraint related to the cardinality of vertices, 

 two label-related constraints, 

 one unique visual representation constraint, 

 one connection between vertices and path related constraint, and 
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 one lower bound number connection constraint. 

The constraints were selected carefully based on different criteria.  The first is that 

the constraints must have different properties, such as colour and vertex and edge 

types, so that the generalisation feature can be tested.  They also were chosen to be 

comprehensive so they evaluate different generalisation possibilities including the 

effect of the limitation discussed above. 

One of the criteria in choosing the participating constraints was the results from 

Study Three.  Two label-related constraints were selected because they proved to be 

easy to express in Study Three (Figure  6-12 – constraint 3) (easy in this context means 

that the constraint scored higher correctness and lower specification time than other 

constraints).  These two constraints were placed in the two lists, one in each list.  

These constraints were implemented so that they could be inferred easily (according 

to the previous empirical studies) without requiring examples to be added or 

customised.  Their existence was intended to give the user the confidence that the tool 

is working correctly and there is an inference engine that can infer some constraints.  

This, hopefully, reduced the doubt of the user that the tool cannot infer any constraint 

and all the constraint must be taught to the system which probably would reduce the 

motivation to participate in the experiment. 

The other constraints were chosen, based on results from the Study One and Study 

Three, so that their difficulty to be expressed ranged from easy, such as the cardinality 

constraint, to difficult, such as the path related one (difficult in this context means that 

the constraint scored lower correctness and higher specification time than other 

constraints).  Table  6-9 shows one of the two lists used, with a description of each 

constraint used and the purpose for its use.  The table shows the constraints of list 1 as 

a representative of the constraint categories used.  It shows for each constraint if it is 

considered as difficult or easy.  Additionally, it shows the property in the constraint 

that requires to be generalised.  This property will be the difference between the first 

list (used in the task before the system taught or the task at teaching time) and the 

second list (used in the task after the system been taught in the first task). 
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Table  6-9: Justification of the reasons for using each constraint in one of the lists used in 
the study. 

Constraint (first list) Constraint (second list) Diff Easy 
Required 

Generalisation 

1: At most 3 StartState (s) 
are allowed in the 
diagram. 

At most 4 EndState (s) 
are allowed in the 
diagram. 

 X 
Vertex type. 

Cardinality number. 

2: NonTerminalState (s) 
must have unique labels. 

NonTerminalState (s) 
must have labels. 

 X No generalisation. 

3: StartState must have 
unique visual 
representation in any 
given diagram. 

EndState must have 
unique visual 
representation in any 
given diagram. 

X  Vertex type. 

4: Any Transition edge 
label must start with the 
substring “out”. 

Any Transition edge 
label must start with the 
substring “_in”. 

X  The label string. 

5: There must be a path 
between Red StartState 
and the Green 
NonTerminalState in the 
diagram. 

There must be a path 
between the Yellow 
NonTerminalState and 
Blue EndState in the 
diagram. 

X  

Starting vertex type. 

Ending vertex type. 

Vertices colours. 

6: There must be at least 
1 Red Transition edge 
connecting StartState 
(source) with 
NonTerminalState or 
EndState (target) 

There must be at least 1 
Green Transition edge 
connecting 
NonTerminalState 
(source) with 
NonTerminalState or 
EndState (target). 

 X 

Starting vertex type. 

Transition edge 
colour. 

As explained above, each constraint list has six constraints.  Three of these 

constraints (constraints number 2, 3, and 4 in Table  6-9) can be expressed using the 

tool without requiring any additional inference rules; however, two of these three 

constraints (3, and 4) are expressed using putatively difficult examples based on 

observations from Study One and Study Three.  The third constraint, the label-related 

one (constraint number 2), can be expressed using an easy example, as discussed 

above in this section.  These three constraints were used to evaluate the feasibility and 

desirability of the tool for customising the examples that express the constraints.  This 

is because the constraints can be expressed using the tool but the user may not be able 

to find the implemented example required to infer the constraint.  In this case, the user 
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would be required to teach the system the example they prefer to express the 

constraint. 

The other three constraints cannot be expressed using the tool, as the rules that 

infer them were removed from the DECS inference engine.  These constraints 

evaluate the feasibility and desirability of teaching the system entirely new example-

constraint inference rules.  During task one, the user was instructed to try to specify 

the constraints and when s/he cannot, to use the rule addition feature to teach the 

system how to infer and specify the required constraints.  This is called the first task.  

Later on, the user is asked to specify the constraints in the second constraint list, 

which contains similar but not identical constraints as the first one.  This is called the 

second task. 

Table  6-10: Constraints used in the study and the ability of the system to infer them 
before using the adding rule feature (teaching the system). 

Constraint Num 
Can be inferred 

without 
learning? 

The purpose of use in the study. 

1 No 
Requires using adding rule feature. 

Study the generalisation of vertex type and cardinality.

2 Yes 
Easy to be expressed to give the user the confidence 
that the tool can infer something and not all the 
constraints required to be taught. 

3 Yes 

Assumed to be customised. 

Study the generalisation of vertex type.  A possible 
example could contain action. 

4 Yes 
Assumed to be customised. 

Study the generalisation of label strings. 

5 No 

Requires using adding rule feature. 

Study the generalisation of more than one property 
together (vertex type and colour).  A possible example 
(if negative) can show the limitation of the 
generalisation feature. 

6 No 

Required to be added. 

Study the generalisation of more than one property 
together (vertex type and edge colour). 
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The second task is conducted using the same tool that is used for the first task.  

This means that the user teaches the tool in the first task and uses this taught tool in 

the second task.  As is shown in Table  6-9, both constraint lists contain similar but not 

identical constraints.  The differences between the constraints in the two lists relate to 

the following features: the number of vertices in the graph, the vertex type, the edge 

type, the vertex colour, the edge colour and the edge label.  These features are used to 

study the example generalisation. 

Table  6-10 shows the constraints used in the study, including their identification 

number, whether or not the constraint can be inferred by the tool without (or before) 

using adding rule feature, and the purpose of its use in the study. 

6.4.3.6 Experimental Design and Execution 

As described above, two constraint lists were designed to contain similar, but 

not identical, constraints.  One of these lists was used as the list in the constraint 

definition task before teaching the tool while the second list was used as the list in the 

constraint definition task after teaching the tool.  In each list, the constraints were 

written into two natural language forms, viz., positive and negative, in English.  This 

results in 4 constraints lists (differences in constraints themselves and differences in 

natural language polarity) (see  Appendix F).  These 4 constraint lists were 

counterbalanced by alternating the constraint list the user starts with in task one and 

alternating the language within the constraint list.  These lists were assigned to the 

different users before starting the experiment.  Since 16 users participated, each four 

users used the same alternative combination.  This guaranteed the counterbalancing of 

different conditions that might affect the experiment.  The distribution of the lists and 

assignment to different users are summarised in Table  6-11which shows the lists used 

in the form of (user number (first list used / second list used)). 
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Table  6-11: Assignment of lists to users. 

16 Users 

Positive Language Negative Language 

User 1 (list 1/list 2) User 2 (list 1/list 2) User 9 (list 3/list 4) User 10 (list 3/list 4) 

User 3 (list 1/list 2) User 4 (list 1/list 2) User 11 (list 3/list 4) User 12 (list 3/list 4) 

User 5 (list 2 / list 1) User 6 (list 2 / list 1) User 13 (list 4/list 3) User 14 (list 4/list 3) 

User 7 (list 2/list 1) User 8 (list 2/list 1) User 15 (list 4/list 3) User 16 (list 4/list 3) 

For this evaluation a within-subject design was adopted.  For each participant 

two tasks each with a constraint list composed of 6 constraints were used.  Each task 

is to specify the constraints in the list using the CSBE technique.  However, the first 

task involved teaching the system how to specify the constraints while the second 

involved using the taught constraints to evaluate the ability of the system to learn 

from the first task.  If the constraint could not be inferred for any reason in task two, 

users were instructed to teach it to the system using the rule addition feature as in task 

one. 

Each participant was trained for about 20 minutes.  The training included 

explaining the different ways of expressing constraints and the polarities of that 

expression. Users were also allowed to “play” freely with the system.  This aims to 

familiarise the user with the system to be able to handle it without problems in 

dragging  and dropping the vertices, connecting them using edges, and changing the 

different properties.  However, the training did not use any constraint list.  This was to 

allow the user to provide examples according to his/her thinking instead of being 

biased by the examples they trained on.  Participants were asked to fill out a number 

of different questionnaires at different stages of the experiment and a short interview 
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was conducted with them at the end.  All the tasks were recorded by screen capture to 

be used later for data extraction and analysis. 

When the user performs the first task, s/he is asked to specify the 6 provided 

constraints.  Since it is not possible to specify, at least, 3 of them because the system 

cannot infer them, the user needs to specify the constraints using the wizard through 

“adding rule” feature.  During this process, the system learns from the user how to 

express and specify the constraints.  However, because the learning process involves 

using the wizard and using the wizard is an experiment by itself that needs user 

training, this part (using the wizard) was done by the researcher.  This was conducted 

as follows: 

The user reads the constraint from the list and tries to express it using a 

convenient example (according to him / her) and checks the inferences.  If the user 

tries to express the constraint using the preferred example but the system does not 

infer the required constraint the user asks the researcher to define the constraint for 

him/her using the wizard.  The researcher specifies the constraint using the wizard 

with detailed explanation for every action in the wizard to keep the user involved and 

attracted to the process.  This solves the problem of the need to train the user on using 

the wizard and avoids any mistakes that the user may do if they used the wizard 

themselves to specify the constraint.  If there is a mistake in defining the constraint 

using the wizard, this means that the system has been taught wrongly and will not be 

able to infer or generalise correctly.  In addition, using wizard in constraint 

specification has been evaluated before in this research and no need to be evaluated 

again in this experiment. 

To acquire the user perceptions and opinions, each user was asked to fill two 

types of questionnaires, post task (after each task) and post experiment (after the 

whole experiment).  These are in total 3 questionnaires.  For the all the questions in 

the post task questionnaires a Likert 5-point scale was used and some of these were 

inverted to reduce bias.  Similarly the questions in the post experiment questionnaire 

with additional semi-structured interviews with the users to elicit the opinions about 

the adding rules feature. 
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6.4.4 Results 

All the 16 participants were familiar with the STD used in the evaluation.  

Most of the participants indicated that they were familiar to some degree with the 

constraint definition task with an average of 3.06 for the first task and 4.19 for the 

second task on a scale of 5.  Each experiment took between 60 and 90 minutes 

including training and questionnaire filling time.  The results for the users’ attempts 

were analysed with respect to the above mentioned hypothesis.  No normality 

assumptions were made about the collected data.  Consequently, the nonparametric 

Wilcoxon Signed Ranked test was used to analyse correctness, the number of 

constraints requiring the rule addition feature and time required to accomplish the task 

in addition to the satisfaction results.  The comparison between the two techniques 

regarding these measurements is presented in the following sections. 

6.4.4.1 Correctness 

6.4.4.1.1 Correctness for each participant 

The number of correctly specified constraints (out of 6 constraints) for each 

participant in both tasks was gathered from the recorded screen capture videos.  The 

constraint was considered to be specified correctly if and only if the user provided an 

example that leads the system to infer the constraint.  Based on this, a constraint that 

the system could not infer and, consequently, that required that the user teach it to the 

system using the wizard, was not considered correct.  It can be argued here that half of 

the constraints cannot be inferred by the system in task one which means it is unfair to 

compare task one with task two.  However, this is part of the aim of the experiment as 

it evaluates the effect of the learning technique on the ability to specify constraints via 

CSBE. 

All the constraints were attempted by all the users.  Figure  6-16 shows the 

number of correctly specified constraints in task one and task two for each participant.  

A significantly higher number of constraints were specified correctly in task two than 

in task one. 
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All of the participants defined a higher number of constraints correctly in the 

second task than the first one (Figure  6-16).  In task two, 4 participants (25%) defined 

all the constraint correctly (no need to use the rule addition feature).  In task one, 6 

participants (37.5%) specified all the constraints incorrectly (i.e., needed to use rule 

addition for all the constraints) and of the rest, 10 participants (62.5%), defined only 1 

constraint correctly in task one.  In all cases the correctly defined constraint in task 

one was the label-related constraint, which was known from the previous experiments 

as easy to express (Section  6.4.3.5).  The lowest number of correctly defined 

constraints in task two was 2 constraints.  Analysis shows that there is a highly 

significant difference between both tasks regarding correctness in constraint definition 

(p < 0.001). 

 Task 1 Task 2 
Mean 0.6 4.7 
Min 0.0 2.0 
Max 1.0 6.0 
STD 0.5 1.1 

Figure  6-16: Correctness for each participant in task one and task two out of 6 
constraints. 
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6.4.4.1.2 Correctness for each constraint 

A constraint is considered correct if it correctly captured the constraint 

description given in the task and the user was able to specify it without use of the rule 

addition feature.  Task two outperforms task one regarding the average number of 

users defining constraints correctly (correctness per constraint) with an average of 

12.5 participants defining each constraint correctly compared to 1.67 in task one.  In 

task one, constraint number 2 (the label related one) was the only correctly defined 

constraint, due to the need to use rule addition for the others.  For constraint number 

2, only 6 users needed to use rule addition while the other 10 users defined it correctly 

without rule addition.  By contrast, in task two, the lowest number of correctly defined 

constraints was 10 participants in constraint number 5, the path related constraint. 

 

The rest of the constraints were defined by a higher number of participants 

with the highest number (16 participants, i.e., all of the participants) for constraint 

number 4, also a label related constraint.  The next highest correctness result was for 

 Task 1 Task 2 
Mean 1.7 12.5 
Min 0.0 10.0 
Max 10.0 16.0 
STD 4.1 2.4 

Figure  6-17: Correctness for each constraint for task one and task two out of 16 
participants. 
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constraint number 1, the vertex cardinality constraint, with (15) participants.  Data 

analysis showed a significant difference between the two tasks regarding the number 

of participants that defined the constraints correctly (p = 0.028, Z = -2.201). 

Figure  6-17 shows this data which can be considered as the same data shown 

above Figure  6-16 but with different presentation and perspective. 

6.4.4.2 Number of constraints required to be taught (added) 

6.4.4.2.1 Number of constraints required to be taught for each participant 

The number of times the rule addition feature required to be used for 

specifying and teaching the system inferring and specifying the constraints in both 

tasks was gathered from the recorded screen capture videos.  The constraint was 

considered to be taught if and only if the user asked the researcher to use the rule 

addition feature to specify the constraint.  Any constraint that has been taught was 

counted. 

Figure  6-18 shows the number of constraints required to be taught using the 

rule addition feature in task one and task two for each participant.  A significantly 

higher number of constraints were specified and taught using the wizard in task one 

than in task two. 

All of the participants required to use the “adding rule” feature for teaching the 

system more frequently in task one than task two (Figure  6-18).  The average numbers 

of constraints used “adding rule” feature were 5.3 constraints and 1.13 constraints for 

both task one and task two respectively.  6 participants (37%) required “adding rule” 

feature to specify all the constraint in task one.  Only 11 participants (68.8%) needed 

the “adding rule” feature in task two, 6 of them used it for only 1 constraint and the 

highest requirement was to specify 4 constraints of the 6.  5 participants have not used 

the feature at all in task two.  Analysis shows that there is a highly significant 

difference between both tasks regarding frequency of teaching the system the 

constraint specification (p < 0.001). 
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6.4.4.2.2 Number of constraints required to be taught for each constraint 

The number of constraints required to be taught or the number of rules to be 

added for each constraint was calculated (Figure  6-19).  This shows the same data as 

Figure  6-17 and Figure  6-18 but from a different perspective.  Figure  6-19 is 

considered as a reflection of Figure  6-17 since any constraint that required to be added 

(Figure  6-19) is considered as an incorrect constraint (Figure  6-17).  Figure  6-19 is 

introduced for more clarification, although its data can be inferred from (Figure  6-17). 

All the users required to add rules for the last 4 constraints in task one.  Only 

one user defined the first constraint correctly out of the 16 users as 15 of them 

(93.7%) required to add it.  For constraint number 2, discussed above, only 6 

participants required to add it (37.5%) in task one as it was designed to be easy.  In 

task two, the most frequently added constraint was the label related constraint number 

2; 5 participants added a new rule to infer it, as it had not been added or customised in 

 Task 1 Task 2 
Mean 5.3 1.1 
Min 4.0 0.0 
Max 6.0 4.0 
STD 0.6 1.1 

Figure  6-18: Number of constraints required to be taught using “adding rule feature 
out of 6 constraints. 
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task one.  Note that adding this constraint in task one will not help at all in task two as 

the constraint is different although it is still in the category of label related constraints 

and it has been implemented in task two to be easy to express.  3 constraints were also 

added by 4 participants each, one constraint was added by one participant (constraint 

number 1), and one constraint was defined correctly without the requirement to be 

added again by any participant in task two. 

 

Statistical analysis shows a significant difference between task one and task 

two with (p = 0.026, Z = -2.226).  This significant difference is expected because the 

of significance found in (Figure  6-17 and Figure  6-18). 

For extra clarification for the correctness and added rules results for each 

constraint, the following table shows the constraints that are required to be added 

represented by dark shaded cells.  Table  6-12 represents task one while Table  6-13 

represents task two. 

 Task 1 Task 2 
Mean 14.2 3.0 
Min 6.0 0.0 
Max 16.0 5.0 
STD 4.0 2.0 

Figure  6-19: Number of times the adding rule feature is used for each 
constraint out of 16 in task1 and task2. 
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Table  6-12: The constraints that required the use of rule addition feature in task one 
(shaded = added). 

C
on

st
ra

in
t 

# 
Users 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1                 

2                 

3                 

4                 

5                 

6                 
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Table  6-13: The constraints that required the use of rule addition feature in task two 
(shaded = added). 

C
on

st
ra

in
t 

# 
Users 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1                 

2                 

3                 

4                 

5                 

6                 

6.4.4.3 Time 

6.4.4.3.1 Sum of time required by each participant to complete the tasks 

The time required to accomplish the constraint definition task for each 

participant in both tasks was gathered from the recorded screen videos.  The time for 

each participant was rounded by a factor of 15 seconds.  The time to accomplish the 

task for each participant was calculated by summing the time required to define each 

constraint in each task.  The time was counted for each constraint starting from the 

point when the currently finished example is deleted from the editor and the editor is 

cleared and ready for another constraint.  The end of the time count (the counter is 

stopped) is when either the user decided to use the “adding rule” feature by pressing 

the “add rule” button or the user finished defining a constraint using CSBE when the 

system succeeded in inferring the constraint and the user selected the correct 

inference.  The time was counted whether or not the constraint was defined correctly.  

Figure  6-20 shows the time required for each user to accomplish both tasks in the 
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STD.  The diagram shows that task two has better results (a shorter time) than task 

one and analysis shows that the difference between the two tasks is significant. 

 

14 out of 16 (87.5%) participants required more time to specify constraints in 

task one than in task two.  The time averages required to accomplish the tasks for each 

user are 12.6 minutes and 7.9 minutes for task one and task two, respectively.  The 

highest time required was 23.6 minutes and 10.6 minutes for task one and task two 

respectively.  Analysis shows that there is a highly significant difference between both 

tasks regarding frequency of teaching the system the constraint specification (p = 

0.002). 

6.4.4.3.2 Sum of time required by all the participants for each constraint 

The total time required by all the participants to accomplish each constraint 

definition was calculated and presented (Figure  6-21).  Constraint number 2 required 

the shortest time among all the constraints in task one.  The rest of the constraints fall 

 Task 1 Task 2 
Mean 12.6 7.9 
Min 5.6 5.0 
Max 23.6 10.6 
STD 5.2 1.8 

Figure  6-20: The total time required by each participant out of 16 to accomplish the 
task. 
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in the range 28 to 35 minutes with the exception of constraint number 6 with a total 

time of 53 minutes.  The average time required for each constraint in task one was 

33.68 minutes. 

In task two, the shortest required time was for constraint number 1 with a time 

of 16.2 minutes, followed by constraint number 2 again with a slight difference, 16.7 

minutes.  The rest of the constraints are close to each other, ranging between 18.9 and 

29.9 minutes.  The average time required for each constraint in task two was 21.0 

minutes. 

Statistical analysis shows a significant difference between the two tasks (p = 

0.028, Z = -2.201).  The significance was expected because of the existence of 

significance between the two tasks in the case of time required to accomplish each 

task by each participant, presented above. 

 

 Task 1 Task 2 
Mean 33.7 21.0 
Min 22.8 16.2 
Max 53.1 29.9 
STD 10.4 5.2 

Figure  6-21: Total time required by all the participants to accomplish the 
specification task for each constraint. 
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6.4.4.4 User Perception 

In order to provide further validation of the hypothesis, post task and post 

experiment questionnaires that participants filled out were analysed. 

In post task questionnaires (filled in after each technique), participants’ 

opinions about the constraint definition tasks were investigated.  There was a need to 

discover the participant experience while interacting with the system before and after 

the learning technique is used.  Table  6-14 shows the most significant questions and 

the average answer scores. 

Table  6-14: Average answers of the post-task questionnaire. 
(shaded = better (higher user satisfaction), bold and underline = significant difference). 

Questions 
Task one 

(out of 5) 

Task two 

(out of 5) 

How mentally demanding was the task using this technique? 3.25 2.06 

How temporal demanding was the task? 2 1.44 

How successful were you in accomplishing what you were 

asked to do? 
2.44 2 

How uncertain, discouraged, irritated, stressed, and annoyed 

were you? 
2.63 1.88 

The constraint definition task was easy using this tool. 3 3.75 

While I was working, I felt that I needed help from an expert. 3.19 2.25 

I achieved the required constraint with my first attempted 

example. 
2.88 3.88 
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The difference in higher and lower number refers to the inversion of the Likert 

questions in the questionnaire.  The better number (higher user satisfaction) has been 

written in shaded cells.  All the average answers included in the table have a 

significant difference between task one and task two. 

In the post-experiment questionnaire the preference of the tool in task two was 

clear.  Some of the users realised that the tool in task one has some power but they 

could not discover it because it inferred constraints using difficult examples as appear 

from the first question in the Table  6-15.  Most of the user believed that the tool in 

task two is adapted to them and it thinks in the same way they are doing and they have 

done better (higher performance) in the second task than the first. 

Table  6-15: Post-experiment questionnaire. 

Question 

Average answer 

(higher number 

= agree out of 5) 

In task1, if I had used different examples, the tool would have been 

able to infer the correct constraint. 
3.0 

In the second task, the tool thinks like the way I think. 4.1 

The tool was better able to define constraints in the second task than 

in the first task. 
4.7 

The tool learned how to define the constraint. 4.4 

Task two was easier than task one. 4.7 

It was easy to add a rule using the wizard. 3.1 

The Rule Addition feature was useful. 4.4 

I did better in task two because I added rules in task one. 4.8 
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Most of the participants agree that the tool learned how to define the constraint 

possibly because they have seen the tool generalising in task two and they believed to 

an extent that using the wizard is not so difficult compared to the benefit and 

usefulness of the adding rule feature. 

6.4.4.5 Discussion 

As can be seen in the above results, there was a higher level of correctness, 

less rules added and less time required accomplishing the tasks in task two than in 

task one.  In all cases, there was a significant difference between both tasks in all the 

measured criteria.  Therefore, the learning technique has been demonstrated to be 

feasible and potentially advantageous when using CSBE. 

As has been introduced above, any constraint that required the use of “adding 

rule” feature was considered to be incorrect.  However, in 4 cases (user 10, task one, 

constraint 1; user 10, task two, constraint 6; user 14, task two, constraint 5; user 15, 

task two, constraint 5), there was an incorrect selection for the constraints.  This 

means that the user selected a incorrect constraint from the inferred list in the sense 

that it did not correspond to the constraint specified in the task list.  If these 4 cases 

are ignored, it is possible to detect that the correctness figures (Figure  6-16 and Figure 

 6-17) is a mirror reflection of the adding rules figures (Figure  6-18 and Figure  6-19), 

the participant and constraint figures.  These results reflect the importance of the 

learning technique both in cases where the constraint example is already in a rule in 

inference engine and in cases where it is not.  The increase of correctness and 

reduction of the number of rules added in task two indicate that using the learning 

technique has been successful in adapting the system to the user. 

In almost all the cases when the user required to use the “adding rule” feature 

in task two, this was because the user introduced a complicated example (that cannot 

be thought of as a prototype to express the constraint) at the teaching stage and then 

subsequently forgot how s/he taught the system to infer the constraint.  This is 

inferred because the users who made mistakes (defined a constraint wrongly) in task 

two were doing these mistakes because they introduced different examples than those 

they used to teach the system in task one to specify similar constraints.  It is believed 

that using very simple examples (simple in this context means the examples that may 
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come directly to mind when thinking of the constraint as prototype examples) to teach 

the system is the best way to remember the example later on.  This feature has not 

been implemented to increase the complexity of the user’s task by forcing 

remembering the example used during teaching stage.  Instead, it is implemented to 

facilitate expressing examples in CSBE and to reduce the memory requirement.  

Otherwise, the user would be asked to remember how the system infers the 

constraints.  This adapts the user to the system, the thing which this feature aims to 

avoid. 

It was also observed during the experiment that the user hardly noticed that 

both constraint lists are similar.  This can be explained in a couple of ways.  First, 

there is a completely different constraint in each list, viz., the two label-related 

constraints discussed before in Section  6.4.3.5.  Second, modifications were 

introduced to the constraints in the two lists to test the generalisation feature.  Finally, 

there was a period of time, about 5 minutes, between finishing the first task and 

starting with the second which is used in filling in one of the questionnaires.  If this 

period is added to the period after the user finished the constraint itself in the first 

task, this leads to an average gap of 17.6 minutes between specifying each constraint 

in the first task and the similar one in the second task.  This is one of the reasons why 

the constraints were placed in one order in both tasks. In general, the fact that users 

could specify the constraints correctly in task two, even though they didn’t recognise 

the similarity to constraint specifications in task one, provides evidence for the 

learning technique adapting the system to the user  

The significant difference between task one and task two regarding the time 

required to accomplish the task can be explained as a direct effect of the learning 

technique.  Since the system is adapted to the user and “thinks like them” in task two 

but not in task one, then it is to be expected that the user spends less time to 

accomplish the latter task.  Also, the user does not need to spend time searching for an 

example to express the constraint in task two.  This is because the system infers the 

constraint from the user’s original example which has been taught to the system in the 

first task. 

Responses to the questionnaires shows that the users preferred task two 

because they have the feeling that the system is adapted to them and they can specify 
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constraints using their preferred examples to express these constraints.  They believe 

that the tool is adapted and thinks like them with an average of 4.13 out of 5.  They 

also believe that in the second task the tool has learned how to define the constraints 

taught in the first task with an average of 4.38 and the learning technique was efficient 

with an average of 4.25.  They all agree that task two was easier and the “adding rule” 

feature is useful because they agree that they did better (higher performance) in task 

two as a result of the “adding rule” feature.  Surprisingly they believe that the learning 

(rule addition) process using the wizard is difficult with an average of only 3.63.  One 

of the questions asks if they believed they got answers from the tool even for different 

constraints where “different constraints” here means possessing different properties.  

The average answer of this question is 4.06.  This means that they knew that the two 

lists are not identical and they considered the constraints different because of the 

different properties.  This answer also indicates that they liked the generalisation 

feature and understand its benefit. 

It might be argued that the study depends on comparing the performance 

before and after teaching the system without taking into consideration the effort spent 

in teaching.  If the effort that the user spent teaching the system is taken into 

consideration and added (as time) to the second condition (after the system has 

learned), the results will be different.  This argument depends on the observation that 

the user is spending time and effort in teaching the system and this effort should be 

taken into consideration in the analysis of the results.  However, in response, it should 

be pointed out: 

 When the user is trying to define a constraint using CSBE and the system does not 

have the knowledge to infer the required constraint and specify it, the user must 

use the form-filling technique whether or not the system learns to infer the 

constraint.  Since the user must use the form-filling technique in all cases 

including this effort in the comparison is unfair.  This point was clarified earlier 

when the learning feature was discussed in  Chapter 4.  The discussion in the 

earlier chapter focused on the fact that learning is an activity that the system 

performs during the normal work of the user, viz., when using the form-filling 

technique to define a new constraint. 
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 When the user uses the form-filling technique to specify a constraint and the 

system learns, this is done once.  If this is considered as a cost the user pays to 

teach the system, then this cost and effort will be reduced each time the user is 

specifying the same constraint or a similar constraint.  This means that the effort 

should be divided and distributed over all the times that the user uses the added 

rule.  This effort and its reduction over time and use of the added rule can be 

evaluated using a study that involves using the system for longer time and for 

different diagram types. 

Of course, adding one rule or customising the inference engine for a specific 

diagram type does not mean that later on the user cannot add or perform more 

customisation to the inference engine for the same diagram type.  Based on the above 

results and discussion, it is possible to reject the null hypothesis and accept the 

alternative hypothesis stating that “there is a significant difference between task one 

and task two regarding the measured criteria.” 

6.4.5 Threats to Validity 

One major threat to validity of this experiment is that the researcher performed 

the constraint specification using the DECS wizard when a constraint required to be 

added.  This surely affected user perception of the difficulty of task one, making it 

appear not particularly difficult.  This appears in the answers in the questionnaire 

regarding this part.  However, if they were left to do this task by themselves, their 

opinion would most likely be more severe regarding the difficulty of task one. 

The overall aim of this study was to investigate whether the rule addition 

technique can improve the performance of CSBE. The rule addition system, as it 

stands, offers a potential improvement for part of the process but must still fall back 

on a non-CSBE technique for the other part of the process (i.e., actual definition of the 

constraint). Requiring the participants to use the wizard would have had several 

adverse consequences for the experiment: 

 The experimental design would have been complicated by the need to include 

wizard use and training. 

 The time to perform the experiment would have been considerably increased, with 

consequent problems of participant recruitment and fatigue. 
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 Results related to features of the rule addition technique, apart from the wizard 

component, could have been influenced by participant performance with, and 

reaction to, the wizard itself. 

For these reasons, it was decided to remove wizard use from the experimental 

design, with the researcher using the wizard when necessary during each trial. 

Evidence that this decision removed, or reduced, the effect of the wizard on the 

overall study results is the fact that there is no significant difference between the two 

tasks for the question “How hard did you have to work to accomplish your level of 

performance?”  This insignificance indicates that the user was not aware of the 

additional effort of wizard use in the process. 

Another threat could arise from a participant learning effect from the first to 

the second task.  This may threaten the validity of both time and correctness data as 

the user may have learned from task one and consequently improved their 

performance in task two, since both tasks have sets of similar constraints.  The 

experimental design attempted to reduce this effect as follows: 

 Participants were not told during training that the same, or similar, constraints 

would be used in both tasks. 

 Putting similar constraints in the same order in each task list leaves the maximum 

average time gap between a constraint in the first list and the one that is similar to 

it in the second list.  

 Changing properties in related constraints hides their similarity. 

6.4.6 Related work 

Learning has been introduced in different literature as introduced before.  

However, the learning introduced here in this research is different from most of that 

reported in the literature on PBE (see Section  2.10).  Learning in CSBE is a meta-

level learning of how to infer specific constraints from customised or added examples.  

In other words, it consists of the system learning the way its user thinks and prefers to 

express constraints using examples.  The only literature of which the author is aware 

that documents a similar idea is Myers et al. (2000) who claimed that it would be 
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desirable to be able to augment the rules of a PBE inference engine at run-time 

without the need to manipulate code manually.  

Castelli, Oblinger, & Bergman, (2007) introduced learning in DocWizard, but 

it is a different concept than that introduced in DECS.  Their learning concept is 

similar to that introduced in MetaMouse (Maulsby & Witten, 1993) in which the user 

is required to correct a wrong inference of the system.  This learning technique 

depends on combining positive and negative examples to refine the behaviour of each 

other which requires extensive involvement of the user.  However, DocWizard is not 

implemented to use positive and negative examples; instead, it depends on 

“incremental update” of the generated documentation based on the subsequent 

different actions of the users.  Such systems are usually complicated because they are 

sensitive to every change in user behaviour.  This means that every action of the user 

is counted and if the user makes a mistake the generated program will be difficult to 

recover; therefore, mistakes are not allowed in such systems.  The generalisation 

feature implemented in the learning technique presented in this section, that infers the 

required constraint from similar examples, is entirely different from DocWizard and 

MetaMouse, has not been used before in any PBE system. 

Myers, McDaniel, & Wolber (2000) and Castelli et al. (2007) encourage 

involving the user in the process of PBE.  It has been discussed before that DECS 

involves the user in the process of inference through introducing the example and 

selecting the required interpretation and then selecting the required constraint from the 

inferred constraint list.  DECS also involves the user in the process of learning via 

interaction with the “adding rule” feature.  This is through offering the example and 

specifying the associated constraint using the wizard. 
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7.1 Introduction 

This chapter presents the contributions achieved in this research and 

summarises the thesis argument.  The chapter also offers conclusions in terms of the 

original research questions as well as the overall aims of the research and offers 

recommendations for potential applications of the results for meta-CASE tools and 

CSBE.   Finally the chapter sets out several possible directions for this research topic 

in the future. 

7.2 Research Contributions and Achievements 

This research produced several contributions to software engineering 

knowledge.  The following can be considered as the major contributions of this 

research: 

Table  7-1: Contributions distributed over thesis chapters 

Chapter Contributions 

Chapter 4-a  A novel specification technique, CSBE, for constraint 
specification in meta-CASE tools. 

Chapter 6-a  Demonstration, via an empirical study, that CSBE is superior to 
a wizard-based form-filling technique. 

Chapter 6-b  An empirical study of the relative comprehensibility of 
constraints expressed negatively vs. those expressed positively 
in a natural language. 

Chapter 6-c  Demonstration, via an empirical study, that the use of a multi-
polarity technique vs. a uni-polarity technique improves CSBE 
performance. 

Chapter 6-d  Development of a novel rule augmentation technique for CSBE. 

AND 

 Demonstration, via an empirical study, that adding a rule 
augmentation facility to a CSBE system improves performance. 
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The above contributions were supported by a number of additional 

achievements, including: 

Table  7-2: Achievements distributed over thesis chapters. 

Chapter Achievements 

Chapter 2  A literature review of: 

o meta-CASE tools, their use of constraints, the 
characterisation and classification of constraints and the 
methods by which they are defined, 

o PBE with its different application contexts, use of example 
polarities and techniques for rule learning. 

Chapter 3  Enhancements to the DECS meta-CASE system which made it 
suitable to be used as a prototype for this research. 

 Design and development of an XML-based constraint language 
used in the studies in this research.  This language has many 
features, such as flexibility, which qualified it to be adopted in 
this research. 

 Development and implementation in DECS of a constraint 
management component that handles constraints specified in the 
constraint language described above. 

Chapters 4-7  Implementation of CSBE in DECS with all of its distinctive 
features. 

7.3 Thesis Summary 

This research has the aim of simplifying and facilitating constraint 

specification within the meta-modelling process in a meta-CASE tool.  A solution to 

the difficulty of constraint definition is proposed based on using a new technique 

called Constraint Specification by Example (CSBE), adapted from the well-known 

technique, Programming by Example (PBE). 

This dissertation started with an introduction that presented the problem and 

set out the aims and objectives of the research.  A solution was proposed and the 

approach to achieve the aim and objectives of the research was presented.  Finally, a 

roadmap for the whole dissertation, annotated with contributions, was introduced. 
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The second chapter of the dissertation reviewed relevant literature on meta-

CASE tools, their limitations, the challenges of constraint specification. It also 

reviewed Programming by Example, identifying its key features and variants.  

Chapters 3 and 4 set the context for the research and presented CSBE, a novel 

constraint specification technique.  Since a meta-CASE tool, Diagram Editor 

Constraints System (DECS), had already been developed in Glasgow University’s 

School of Computing Science, it was adopted and enhanced (as described in Section 

 3.2.3) to be a suitable platform for conducting this research.  To be able to define 

constraints, a flexible XML-based constraint language was developed and 

implemented. 

Based on Programming by Example, CSBE was developed as a novel 

constraint specification technique that addressed the limitations of current meta-CASE 

tools. An additional form-based specification technique, using a wizard and tabbed 

forms, was designed and implemented in DECS as a representative of state of the art 

constraint specification in meta-CASE tools, to be used as a control in subsequent 

empirical studies of the performance of CSBE.  

To achieve the research aim, it was necessary to test the main claim in the 

thesis statement: “It is possible to simplify and facilitate the constraint specification 

process in a meta-CASE tool using the CSBE technique”.  Testing this statement was 

broken down into answering three key questions: 

Does CSBE improve the performance of constraint specification in a meta-

CASE tool compared to the form-filling technique? 

Does example polarity influence the performance of CSBE? 

Does implementing and using the learning technique influence the 

performance of CSBE technique? 

Answering these three questions was achieved through four empirical studies 

summarised below. 

Does CSBE improve the performance of constraint specification in a meta-

CASE tool compared to the form-filling technique? Chapter 5 introduced the first 
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study (Study One) that was conducted to answer this question.  In this study, the 

form-filling technique, which has been used in some meta-CASE tools before, was 

compared against CSBE.  The experiment measured three criteria to represent the 

performance of the techniques: correctness, time required, and user satisfaction.    

Results showed that CSBE is superior to the form-filling technique with respect to all 

three criteria.  Since the constraints can be expressed using positive or negative 

examples, some users commented that it would be useful to allow users to explicitly 

select the polarity of an example.  This raised the second question and motivated 

studies three and four.  

Does example polarity influence the performance of CSBE?  To answer this 

question, chapter 6 introduced a study (Study Three) that has been conducted to 

evaluate the effect of example polarity on the performance of the CSBE technique.  

To achieve this general aim, two DECS implementations were prepared, the first 

supporting multi-polarity examples and the second allowing only uni-polarity 

examples.  To provide the system with the ability to infer the required constraints and 

to provide a fair comparison between both implementations, the uni-polarity tool also 

included constraint specification by action to increase its expressiveness. 

To investigate the potential confounding effect of the linguistic expression of 

constraints in Study Three, a preliminary study (Study Two) was conducted using an 

online questionnaire to test the preference of the users for the polarities in natural 

language constraint expression.  Results of this study showed that there is a 

statistically significant preference for the positive expression of constraints; this led to 

appropriate expression counterbalancing in Study Three to deal with this effect. 

The third study (Study Three) was conducted to compare between multi-

polarity and uni-polarity constraint example tools described above.  The study 

measured performance in terms of the number of constraints correctly defined using 

each tool, the time required to complete the task of constraint definition, and user 

satisfaction elicited through several questionnaires.  Results showed that allowing the 

expression of constraints using multi-polarity examples outperformed uni-polarity 

examples with respect to all the measured criteria. 
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Does implementing and using the learning technique influence the 

performance of CSBE technique?  In the above two studies, the constraints in CSBE 

are inferred based only on previously defined examples.  This created a problem if the 

user does not think in the same way as the tool developer; namely, the user will not be 

able to express the required constraint.  To solve this problem, there was a need to 

implement a technique for augmenting rules in the inference engine to customise and 

personalise the tool according to user preference.  The third question stated above 

asks whether or not this feature adds value to CSBE.  To answer the question, chapter 

7 introduced a study (Study Four) conducted using a customisable version of DECS 

with an inference engine that cannot infer some constraints and can infer some others 

only with examples that are potentially difficult to imagine (according to the 

researcher).  Participants were asked to define constraints using the tailorable version 

CSBE in two stages; inference rules added in the first stage could be used in the 

second stage.  Measures included number of constraints defined correctly, time to 

accomplish the tasks and user satisfaction. Results showed that the rule addition 

feature positively affected the performance of CSBE in all three measures. 

7.4 Conclusions and Recommendations 

The results of Study One answered the first question, 

Does CSBE improve the performance of constraint specification in a meta-

CASE tool compared to the form-filling technique? 

The study results demonstrate that the CSBE is more effective and efficient 

than the form-filling technique in DECS.  In other words, CSBE facilitated the 

constraint specification.  CSBE facilitated the constraint specification task because it 

reduced the error associated with the constraint specification task and increased the 

number of constraints specified correctly.  CSBE also reduced the time required to 

accomplish the constraint specification task and bridged the gap between the 

specification and application formats.  The last is achieved through visualisation of 

the constraint specification task and through the distinctive feature of specifying 

constraints of the target language using its own visual elements (vertices and edges) 

instead of using a representation, or expressing them, in other formats. 
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The results can be generalised to conclude that the CSBE technique constraint 

specification in the domain of meta-CASE tools in general, not just in DECS.  DECS 

shares the key common features definitive of meta-CASE tools, including the basic 

meta-modelling process (basic because it does not depends on graphical meta-

models), specification and generation of customised modelling languages, and more 

importantly, specification of constraints.  In particular, almost all the meta-CASE 

tools depend, in different ways, on constraint specification within their meta-

modelling process.  Consequently, simplifying constraint specification using CSBE 

should be of potential benefit to the entire class of meta-CASE tools. 

This generalisation is also supported via previous research that demonstrates 

that features used in CSBE add value to the specification process.  For example, 

Goldman & Balzer (1999) claim that visualisation simplifies the process of expressing 

editor vocabulary and the GUI.  As discussed in Sections  2.7.1and  2.8.1, they call this 

“specification-by-example”. Although it is not clear exactly what they mean by 

‘example’ in this phrase, it appears to refer to the visual representation of the meta-

model they construct and the definition of the vocabulary and GUI of the target editor.  

Recalling again here that they import constraints in the form of programs called 

“analysers”.  Therefore, the term ‘example’ in Goldman & Balzer’s notion of 

specification-by-example does not include constraint specification.  

Another example is Draheim et al. (2010) who document that using the same 

visual objects that are to be specified to construct the specification increases the 

intuitiveness.  The results can be generalised even to conclude that CSBE technique 

facilitates and simplifies the process of diagram editors or DSLs specification.  This 

conclusion is based on that the facts that CSBE facilitates constraints specification 

and the fact that constraints is part of the meta-modelling process.  Since CSBE 

facilitates the constraints specification which is part of the meta-modelling process 

that generates a meta-model specifying a modelling language, then CSBE facilitates 

specifying the target modelling languages or diagram editors.  However, this 

conclusion needs extra research to be validated.  These conclusions recommend and 

support the application of CSBE technique for constraint specification purposes in 

meta-CASE tools.  Some authors have introduced visual specification of meta-

models, such as Goldman & Balzer (1999) who specify the vocabulary and GUI for 
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the required diagram editor.  Others, such as Minas & Viehstaedt (1995), Rekers & 

Schurr (1995), and Lewicki & Fisher (1997), make use of  visual languages.  

However, these languages were restricted to the description of the graph formalism 

such as hypernodes and hypergraphs; their effort was focused on developing parsers 

for the graphs to be able to specify the required editors.  The point is that in all of 

these meta-CASE tools, constraints were specified using a textual format. 

In addition, since CSBE has facilitated constraint specification in the domain 

of meta-CASE tools, it is possible that this technique would also facilitate constraint 

specification in other domains that depend on constraints.  An example of such 

domains is a timetable management system used to arrange a timetable based on some 

constraints.  These constraints could be specified using CSBE and might be 

particularly valuable since the users of a timetable system would probably not be 

expert in computing and they would need an intuitive method for constraint 

specification. 

Thus, the first research question can be answered positively. 

Results of Study Two and Study Three answered the question, 

Does example polarity influence the performance of CSBE? 

One can conclude from the results that constraints expressed positively in a 

natural language are perceived as easier to understand than constraints expressed 

negatively.  Results also support the claim that providing the user with the ability to 

express constraints using either positive or negative examples increases the 

performance of CSBE compared to allowing negative examples only.  In general, it 

appears that  

 Offering a user more alternative ways of expressing a constraint improves 

performance. 

 Some constraints are easier to express positively and others negatively. 

 People prefer different expressions to express the same constraint.   

A uni-polarity approach, although powerful enough to express all the required 

constraints, limits alternatives and provides only one way of specifying the constraints 
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which increases the difficulty of expressing the constraints that are easier to be 

specified using the opposite polarity examples.  Almost all the previous research has 

introduced the positive and negative examples for specification but not as separate 

concepts; instead, they were introduced as one concept to refine the behaviour 

specified by each other.  Based on the studies presented in this dissertation, it is 

reasonable to recommend offering the ability to express constraints using multi-

polarities examples in meta-CASE CSBE as well as similar application domains.  

These conclusions and recommendation answers “Yes” to the second research 

question. 

Study Four addressed the question, 

Does implementing and using the learning technique influence the 

performance of CSBE technique? 

One can conclude from the results that implementing a technique that allows 

the inference engine to be augmented with new rules and personalised examples 

improves the performance of constraint specification using CSBE.  From the study the 

generalisation feature associated with the adding and customising rules transforms the 

process of rule augmentations and customisation into a learning technique.  

Accordingly, it is possible to conclude that using a learning technique that allows the 

system to build on experience of the user improves CSBE performance. 

A further generalised conclusion is that a learning technique, whatever this 

technique is, which leads to augmenting the system by experience and customisation, 

positively affects the performance of constraint specification in CSBE.  The last 

conclusion needs some extra research to validate it; however, since one learning 

technique was successfully implemented and tested in the research, it is believed that 

other techniques will also have similar successful results.  This claim is based on the 

use of a learning technique in the DocWizard PBE system (Prabaker, Bergman, & 

Castelli, 2006).  Based on the results and conclusions from this study, it can be 

recommended to implement a feature for adding rules and customising the inference 

engine of any constraint specification system that depends on CSBE or any other PBE 

technique.  The recommendation can be extended to provide the ability for meta-meta 

level definition of rules and customisation in the form of a learning technique in any 
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constraint specification technique that depends on CSBE technique or any similar 

PBE technique.  This answers the third question as “Yes”. 

One might argue that a system that provides well-designed rules could be 

more robust and comprehensive than one that adds rules in an ad hoc manner.  

Clearly, a well-designed and “generative” visual language would appear to be 

superior to an arbitrary set of inference rules.   However, with a fixed set of rules, 

even ones that are well-designed and comprehensive, the customisation of a tool to 

specific users and contexts is difficult, if not impossible. 

The alternative followed in this research was to design a core fixed set of rules 

and assume they are sufficient as a basis to teach to users.  Although learning and 

understanding how to express constraints using examples may be easier than learning 

a constraint programming language, it will end up involving learning and recalling 

specific examples, that were designed by somebody (the designer) who may 

conceptualise constraints in a way other than the user.  Fixed rules are a good thing in 

languages, particularly formal ones, but the ability to add rules and customised 

examples has been designed to support the personalisation of the tool and the 

potentially idiosyncratic examples that express the constraint.  In other words, 

creating the tool that understands how the user thinks and adapts to his/her thinking 

instead of adapting the user to the tool rules. 

From the above, in general it is possible to conclude that CSBE proved its 

value in the constraint specification task within the domain of meta-CASE tools.  It 

improves the performance, reduces the complexity and facilitates the constraint 

specification task which is part of any meta-modelling process for the purpose of 

CASE tool specification.  Consequently, CSBE helped in addressing the research 

problem introduced at the start of this dissertation.  CSBE’s distinctive features 

support the constraint specification process; they improve specification performance 

through increasing effectiveness and efficiency and the user’s experience of 

specification.  Two of its features, providing the ability to use multi-polarity examples 

and the ability to learn and personalise the inference rules, have been evaluated and 

shown to be valuable. 
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Based on the above, it can be concluded that that CSBE simplifies and 

facilitates the constraint specification process in meta-CASE tools. 

7.5 Future work 

During the work reported in this dissertation, many ideas came up that are 

suitable for the future development of the research.  These ideas fall into two 

categories.  The first is the development of new features and the enhancement of the 

current implementation of DECS.  The second is in the category of conducting 

additional empirical studies and research on the newly invented technique in this 

research, CSBE. 

This section introduces these future work ideas.  It presents the possible future 

work ideas one by one, starting from the work that can be conducted in the early 

future (within a year) as research or enhancement of the current version of DECS and 

based on the result of this research. 

7.5.1 More Diagram types to be Involved in the Research 

In this research there was a concentration on one diagram, the state transition 

diagram, for the conduct of experiments.  Use case diagrams were also used in Study 

One and were used for training purposes in the other studies wherever training was 

required.  The first future work proposed is to use more diagram types that require 

more user’s experience in the diagram types and more complicated constraints than 

those used in this research (i.e., constraints that involve more vertex and edge 

properties such as the details of attributes and methods names in a Class vertex type in 

a Class diagram).  Although the constraints used are typical and used in many other 

modelling diagram types and domain specific languages, it is possible that some 

diagram types, such as Data Flow Diagrams (DFD) and Entity Relationship (ER) 

diagrams, might require more complicated constraints. 

To include more complicated diagram types (i.e., those that have several 

properties and concepts) such as class and package diagrams, DECS itself must be 

updated to be able to model these diagram types with all of their required features, 

such as the ability to specify constraints over attributes of the class diagram and over 
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inclusion in package diagrams.  A DECS version which is able to model sub-diagram 

inclusion was implemented as a Masters project at Glasgow University towards the 

end of this research (Calisti, 2010).  Another Masters project to enhance DECS’ class 

diagram modelling is currently underway.  These versions could be used as a starting 

point for this proposed work.  In addition to improving the modelling capabilities of 

DECS, such research would also open the way to enhancement of the constraint 

language introduced in this research. 

7.5.2 Enhancing the Constraint Language 

The constraint language used in this research has many distinctive features as 

discussed previously.  However, it is still immature and needs to be developed.  One 

of the implementation advantages of the language is its extensibility.  To extend the 

language the following steps are generally required: 

 Extend the XML tag set as required.  No extra implementation is required for the 

parser as it is designed to parse the files with its concepts such as the URI 

references. 

 Extend the factory method required to build the Java object representing the 

constraint by adding any new attributes in the XML. 

 Add the required Java classes to build the constraint and check it.  This implements 

the required behaviour of the added features. 

 Redesign the wizard to include the required GUI to capture the new features. 

 Extend the inference engine class with the required rules to infer new constraints 

from examples.  This also requires extending the factory mapping method that 

maps the rules into Java classes that generate the inferences.  This last part can be 

ignored if all the new examples and constraints will be taught to the system.  

However, the features that should be extracted from the model must be 

implemented as rules. 

It is believed that the constraint language should be developed gradually to be 

able to capture the concepts that different modelling language specification may 

require. 
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7.5.3 Comparing CSBE with other constraint specification techniques 

In this research CSBE has been compared with the form-filling technique 

only.  However, there are other techniques for constraint specification such as 

spreadsheets and visual languages.  This requires further development and 

implementation of such techniques in DECS to be able to conduct research comparing 

them with CSBE. 

7.5.4 Ranking the Inferences 

Assume that a user wishes to specify the constraint “It is not allowed to 

connect two Start State vertices using Transition edge”.  Assume the user introduced a 

negative example of 2 start states connected by a transition edge and the system infers 

the constraint.  The system will not only infer the required constraint from the 

example; instead, it infers several other constraints and presents them in a list.  

Assume it inferred 5 constraints and the required one is the first in the list.  Assume 

now that the user needs to specify another constraint, for example, “Start States must 

not have incoming edges”.  The user may use the previously introduced example for 

the first constraint to specify the second constraint.  Assume the system infers the 

required constraint and it is ranked 4th in the list.  This means that the user needs to 

read the first constraint, which is the one already specified, reads the second, the third 

and then finds the solution when reading the 4th.  It is possible to imagine the 

situation of defining 3 or 4 constraints using the same example and the user reads the 

same constraints in the list over and over. 

This problem can be solved by providing checkboxes to select the required 

constraints from the inferred list instead of using radio buttons.  This could be a good 

solution but it is believed that the user when specifying the constraints is focusing on 

the constraint that is to be specified instead of looking to the whole picture of the 

language to be specified.  However, this is a claim that needs more research to prove.  

Another solution is implementing a learning system that provides different rankings 

for the inferences in the list based on the previous experience and the current user 

task.  This system should provide two different behaviours.  The first is to rank the 

selected constraints.  This means that the system puts the previously selected 

constraints at the bottom of the list so the user is not bothered with reading them 
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again.  This behaviour should be followed throughout the same session of defining a 

modelling language.  However, when the user provides a similar but not exactly the 

same example (the vertex types is different, for example), then the system should 

behave in the opposite way.  This means that the system should rank the previously 

selected constraints more highly because it is more likely that the user is defining the 

same constraint for some other component types.  The system also should follow the 

same “ranking up” behaviour when the user finishes defining the language s/he is 

working on and starts another session for specifying another modelling language (this 

is possibly sometime later).  In this case the system should assume that the user is 

going to specify similar constraints that were specified in the previous modelling 

language.  In other words, the system assumes that these constraints are the most used 

once so it ranks them at the top of the list. 

Ranking constraints may have little effect when the constraints generated from 

an example are few and are described using short sentences.  However, it is believed 

that it has a higher impact and importance if the number of constraints generated from 

an example is high and the sentences describing the constraints are long.  Again, this 

is just a claim and needs extra research to confirm.  This ranking feature has not been 

noticed or documented in any PBE system, not even as a future work, in the literature 

reviewed in this research.  A ranking approach that provides multiple ways of ranking 

constraints has been introduced in the PhD thesis of T. McBryan (2011).  This idea 

could be adapted to CSBE and its feasibility and desirability in the domain of meta-

CASE tools can be studied. 

7.5.5 Recommendation System Depending on Previous Specifications 

This suggestion is related to the work introduced in the previous section.  The 

inference system could collect information about the constraints that are selected 

during a modelling language specification session.  This information could be 

considered as experience for the system and this experience could be accumulated 

over time and for every modelling language specified.  The system supporting this 

experience collection should be able to find relationships between the selected 

constraints for different languages.  These relationships allow the system to suggest 

possible constraints based on the previous experience of specifying the modelling 

languages. 
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This work depends on the claim that there are many shared constraints 

between different modelling languages.  This means that if 10 constraints are defined 

to specify the modelling language A and one of these constraints is selected while 

defining the modelling language B, then there is a possibility that some of the other 9 

constraints of language A are relevant for language B.  This feature could improve the 

performance of defining the constraints for a language; however, it requires a feature-

based pattern matching system to recognise similarities among the selected constraints 

since component types are different between modelling languages.  Such a technique 

could be the basis of a new constraint specification technique called ‘specification by 

suggestion’ or ‘specification by recommendation’.  A recommendation system could 

be used or adapted to achieve this work such as that introduced in (McBryan, 2011). 

7.5.6 Enhance Rule Addition by Selecting the Required Collected Features 

This future work is one of the enhancements that can be added as a feature to 

DECS’ rule addition, or learning, technique.  When the user introduces an example 

and the required constraint is not inferred, the user chooses to add an inference rule.  

At this point the system collects features from the introduced example in the form of 

rule triggers.  These rule triggers are saved with the added rule so when this rules is 

fired again in the future because of an introduced example, the added rule will also be 

fired as it is triggered by a set of features in the example that are satisfied.  With this 

scenario, the generalisation and the control of the added rules are fixed by the system 

configuration. 

Such a facility might operate by showing the user the potential rule triggers 

(example features) that will be saved with the added rule.  This set of triggers will 

appear in a list, each trigger with an associated checkbox.  The user then can select the 

required features to be taken into consideration and required to trigger the newly 

added rule.  This gives the user the ability to restrict or relax the generalisation of the 

added rule. 

When the user restricts the added rule to the maximum this means that the rule 

will only be fired when exactly the same example is introduced again.  In this case all 

the fired rules and collected features from the example including the component types 

should be taken into consideration.  DECS does not have the ability to specify the 
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specific vertex or edge types in the rules in the current implementation; however, for 

maximum restriction this needs to be implemented.  It is believed that maximum 

restriction (i.e., no generalisation) doesn’t need to be added as a rule since the general 

rule can infer the specific example but not vice versa; in general, however, this is one 

of the possible degrees for generalisation.  The other extreme of generalisation is to 

consider the lowest possible number of features for generalisation.  The ability to 

control the learning degree through controlling the generalisation was introduced in 

the DocWizard system (Castelli, Oblinger, & Bergman, 2007). 

7.5.7 Visual Language 

Since DECS depends on an XML-based constraint language that has attributes 

with values, it is possible to visualise this language in form of a basic visual 

representation (e.g., squares, oval shapes and circles).  The XML file that defines a 

constraint can be represented in form of circles each of which is an attribute in the 

constraint.  The value for each attribute can be given in form of a label added to the 

circle.  This representation will be similar to an Entity Relationship diagram.  Entities 

in the diagram represent the main type of the constraint, graph, vertex or edge.  These 

entities can be connected to other entities to represent referenced constraints.  All the 

required features for each entity such as the type of the constraint (hard or soft), the 

upper bound number or any other feature can be attached also to the main entity.  

Although this technique requires the user to understand and learn the language and 

how to use the model to specify a constraint, such a constraint definition technique 

could be easier to use than DECS’ wizard.  A visual language has been used before 

for definition event handling (Li, Hosking, & Grundy, 2009).  However, their 

language is more general and requires the user to learn the meaning of each 

component to define an event handler. 

7.5.8 Constraint Conflict Checker 

One of the advantages of using a formal constraint language, such as OCL, is 

the ability to check for constraint conflict or redundancy.  Since DECS depends on an 

informal XML-based constraint language, it is not possible to use formal techniques 

to check for constraint conflict and redundancy; it is not impossible, however.  As 

future work it is proposed to add a conflict checker to DECS by translating the 
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generated constraints into OCL, so that OCL-based constraint analysis tools can be 

used. 
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A.1 Vertex Constraint XML File Template 

 

<?xml version="1.0" encoding="UTF-8" 
standalone="yes"?> 
<constraint name = "null" scope = "vertex" type = 
"null" description = "null"> 
 <vertex> 
  <type> 
   <item>null</item> 
  </type> 
  <baseShape permission = "ignore"> 
   <item>null</item> 
  </baseShape> 
  <label> 
   <text permission = "ignore"> 
    <item>null</item> 
   </text> 
   <textRE permission = "ignore"> 
    <RE>null</RE> 
   </textRE> 
  </label> 
  <bgColour> 
   <colour permission = "ignore"> 
    <item>null</item> 
   </colour> 
  </bgColour> 
  <sourceConnections> 
   <identicalLabels permission = "ignore"> 
    <value>null</value> 
   </identicalLabels> 
   <lowerBoundNumber permission = "ignore" value 
= "null"> 
    <edge> 
     <OR> 
      <uri>null</uri> 
     </OR> 
     <AND> 
      <uri>null</uri> 
     </AND> 
     <combination> 
      <uri>null</uri> 
     </combination> 
    </edge> 
   </lowerBoundNumber> 
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   <upperBoundNumber permission = "ignore" value = 
"null"> 
    <edge> 
     <OR> 
      <uri>null</uri> 
     </OR> 
     <AND> 
      <uri>null</uri> 
     </AND> 
     <combination> 
      <uri>null</uri> 
     </combination> 
    </edge> 
   </upperBoundNumber> 
  </sourceConnections> 
  <targetConnections> 
   <identicalLabels permission = "ignore"> 
    <value>null</value> 
   </identicalLabels> 
   <lowerBoundNumber permission = "ignore" value = 
"null"> 
    <edge> 
     <OR> 
      <uri>null</uri> 
     </OR> 
     <AND> 
      <uri>null</uri> 
     </AND> 
     <combination> 
      <uri>null</uri> 
     </combination> 
    </edge> 
   </lowerBoundNumber> 
   <upperBoundNumber permission = "ignore" value = 
"null"> 
    <edge> 
     <OR> 
      <uri>null</uri> 
     </OR> 
     <AND> 
      <uri>null</uri> 
     </AND> 
     <combination> 
      <uri>null</uri> 
     </combination> 
    </edge> 
   </upperBoundNumber> 
  </targetConnections> 
 </vertex> 
</constraint> 
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A.2 Edge Constraint XML File Template 

 

<?xml version="1.0" encoding="UTF-8" 
standalone="yes"?> 
<constraint name = "null" scope = "edge" type = "null" 
description = "null"> 
 <edge> 
  <type> 
   <item>null</item> 
  </type> 
  <sourceConnection permission = "ignore"> 
   <vertex> 
    <uri>null</uri> 
   </vertex> 
  </sourceConnection> 
  <targetConnection permission = "ignore"> 
   <vertex> 
    <uri>null</uri> 
   </vertex> 
  </targetConnection> 
  <lineStyle> 
   <type permission = "ignore"> 
    <item>null</item> 
   </type> 
  </lineStyle> 
  <lineColour> 
   <colour permission = "ignore"> 
    <item>null</item> 
   </colour> 
  </lineColour> 
  <sourceLabel> 
   <text permission = "ignore"> 
    <item>null</item> 
   </text> 
  </sourceLabel> 
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  <midLabel> 
   <text permission = "ignore"> 
    <item>null</item> 
   </text> 
   <textRE permission = "ignore"> 
    <item>null</item> 
   </textRE> 
  </midLabel> 
  <targetLabel> 
   <text permission = "ignore"> 
    <item>null</item> 
   </text> 
  </targetLabel> 
  <labelColour> 
   <colour permission = "ignore"> 
    <item>null</item> 
   </colour> 
  </labelColour> 
  <sourceDecoration> 
   <type permission = "ignore"> 
    <item>null</item> 
   </type> 
  </sourceDecoration> 
  <targetDecoration> 
   <type permission = "ignore"> 
    <item>null</item> 
   </type> 
  </targetDecoration> 
 </edge> 
</constraint> 
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<?xml version="1.0" encoding="UTF-8" 
standalone="yes"?> 
<constraint name = "" scope = "graph" type = "" 
description = ""> 
 <graph type = "graph"> 
  <cyclic permission = ""> 
   <value>null</value> 
  </cyclic> 
  <inEdge permission = ""> 
  
 <identicalInEdgeLabels>null</identicalInEdgeLabels> 
  </inEdge> 
  <outEdge permission = ""> 
  
 <identicalOutEdgeLabels>null</identicalOutEdgeLabels
> 
  </outEdge> 
  <vertices permission = ""> 
   <sUri>null</sUri> 
   <eUri>null</eUri> 
   <unConnected>null</unConnected> 
   <unLabelledVertices>null</unLabelledVertices> 
   <identicalVLabels>null</identicalVLabels> 
  
 <unUniqueRepresentation>null</unUniqueRepresentation
> 
   <lowerBoundNumber permission = "" value = ""> 
    <vertex> 
     <OR> 
      <uri>null</uri> 
     </OR> 
     <AND> 
      <uri>null</uri> 
     </AND> 
     <combination> 
      <uri>null</uri> 
     </combination> 
    </vertex> 
   </lowerBoundNumber> 
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   <upperBoundNumber permission = "" value = "">
    <vertex> 
     <OR> 
      <uri>null</uri> 
     </OR> 
     <AND> 
      <uri>null</uri> 
     </AND> 
     <combination> 
      <uri>null</uri> 
     </combination> 
    </vertex> 
   </upperBoundNumber> 
  </vertices> 
  <edges permission = ""> 
   <uri></uri> 
   <unLabelledEdges>null</unLabelledEdges> 
   <identicalELabels>null</identicalELabels> 
   <lowerBoundNumber permission = "" value = ""> 
    <edge> 
     <OR> 
      <uri>null</uri> 
     </OR> 
     <AND> 
      <uri>null</uri> 
     </AND> 
     <combination> 
      <uri>null</uri> 
     </combination> 
    </edge> 
   </lowerBoundNumber> 
   <upperBoundNumber permission = "" value = ""> 
    <edge> 
     <OR> 
      <uri>null</uri> 
     </OR> 
     <AND> 
      <uri>null</uri> 
     </AND> 
     <combination> 
      <uri>null</uri> 
     </combination> 
    </edge> 
   </upperBoundNumber> 
  </edges> 
 </graph> 
</constraint> 
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B.1 State Transition Diagram Main Constraint List 

 

 

Start State related constraints: 

 At most, one Start State is allowed in the graph (graph constraint, hard). 

 At least one Start State must be in the graph (graph constraint, soft). 

 Start State must only have outgoing transitions (vertex constraint, hard). 

 At least one outgoing transition must exist from a Start State (vertex constrain, soft). 

 There must be a path between the Start State and every node in the graph (connected graph) 
(graph constraint, soft). 

 Start state must have a unique visual representation. 

End State related constraints: 

 At most, three (3) End States are allowed in the graph (graph constraints, hard). 

 The graph must contain at least one End State (graph constraint, soft). 

 End State must only have incoming transitions (vertex constraint, hard). 

 At least one incoming transition must exist for an End State (vertex constraint, soft). 

 End State must have a unique visual representation (graph constraint, hard). 

Non-terminal State related constraints: 

 Each Non-Terminal State must have a label (graph constraint, soft). 

 Each Non-Terminal State must have a unique label (graph constraint, hard). 

 Each Non-Terminal State must have at least one outgoing transition (vertex constraint, soft). 

 Each Non-Terminal State must have at least one incoming transition (vertex constraint, soft). 

Transition related constraints: 

 Outgoing transitions from Start State must have unique labels (graph constraint, hard). 

 Outgoing transitions Non-Terminal States must have unique labels (graph constraint, hard). 

 Transition labels must start with “out” (edge constraint, soft). 

General Graph constraints: 

 The graph must be connected (graph constraint, soft). 
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B.2 State Transition Diagram Constraint Categories 

Category 1: 
Vertex 
cardinality 
related 
constraints. 

 At most, one Start State is allowed in the graph (graph constraint, 
hard). 

 At least one Start State must be in the graph (graph constraint, 
soft). 

 At most, three (3) End States are allowed in the graph (graph 
constraints, hard). 

 The graph must contain at least one End State (graph constraint, 
soft). 

Category 2: 
Edge 
cardinality 
related 
constraints. 

 Start State must only have outgoing transitions (vertex constraint, 
hard). 

 At least one outgoing transition must exist from a Start State 
(vertex constraint, soft). 

 End State must only have incoming transitions (vertex constraint, 
hard). 

 At least one incoming transition must exist for an End State 
(vertex constraint, soft). 

 Each Non-Terminal State must have at least one outgoing 
transition (vertex constraint, soft). 

 Each Non-Terminal State must have at least one incoming 
transition (vertex constraint, soft). 

Category 3: 
Unique visual 
representation 
constraints. 

 Start state must have a unique visual representation. 
 End State must have a unique visual representation (graph 

constraint, hard). 

Category 4: 
Vertex label 
related 
constraints. 

 Each Non-Terminal State must have a label (graph constraint, 
soft). 

 Each Non-Terminal State must have a unique label (graph 
constraint, hard). 

Category 5: 
Edge label 
related 
constraints. 

 Outgoing transitions from Start State must have unique labels 
(graph constraint, hard). 

 Outgoing transitions Non-Terminal States must have unique 
labels (graph constraint, hard). 

 Transition labels must start with “out” (edge constraint, soft). 

Category 6: 
Path 
constraint. 

 There must be a path between the Start State and every node in 
the graph (connected graph) (graph constraint, soft). 
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B.3 Use Case Diagram Main Constraint List 

 

 

Use Case Diagram Main Constraint List 

Actor related constraints: 

 At most (upper bound number) 3 actors can exist in the diagram (graph constraint, hard). 

 At least (lower bound number) one Actor must exist in the diagram (graph constraint, soft). 

 It is not allowed to connect two Actor vertices with Association, Include, or Extend (edge 
constraint, hard). 

 It is not allowed to connect Actor to Use Case using Include, Extend, or Generalisation edge 
(edge constraint, hard). 

 All Actor vertices must be labelled (graph constraint, soft). 

 All Actor labels start with ‘capital letter’ (vertex constraint, soft). 

 All Actor vertices must have labels (graph constraint, soft). 

 Actor labels must not be identical (graph constraint, soft). 

 Each actor at least should be connected to a Use Case or Another actor (vertex constraint, soft). 

Use Case related constraints: 

 At most (upper bound number) 3 Use Cases can exist in the diagram (graph constraint, hard). 

 At least (lower bound number) one Use Case must exist in the diagram (graph constraint, soft). 

 It is not allowed to connect two Use Case vertices with Generalisation or Association Edge (edge 
constraint, hard). 

 It is not allowed to connect Use Case (source) to actor (target) using any edge (edge constraint, 
hard). 

 Every Use Case (as target) at least (lower bound number) should be connected with either an 
actor or Use Case (vertex constraint, soft). 

 All Use Cases must be labelled (graph constraint, soft). 

 Use case labels must not be identical (graph constraint, hard). 

Edges related constraints: 

 All include edges must have <<include>> label (edge constraint, soft). 

 All extend edges must have <<extend>> label (edge constraint, soft). 
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B.4 Use Case Diagram Constraint Categories 

Category 1: 
Vertex 
cardinality 
related 
constraints 

 At most (upper bound number) 3 actors can exist in the diagram 
(graph constraint, hard). 

 At least (lower bound number) one actor must exist in the diagram 
(graph constraint, soft). 

 At most (upper bound number) 3 Use Cases can exist in the 
diagram (graph constraint, hard). 

 At least (lower bound number) one Use Case must exist in the 
diagram (graph constraint, soft). 

Category 2: 
Edge 
cardinality 
related 
constraints. 

 It is not allowed to connect two Actor vertices with Association, 
Include, or Extend (edge constraint, hard). 

 It is not allowed to connect Actor to Use Case using Include, 
Extend, or Generalisation edge (edge constraint, hard). 

 It is not allowed to connect two Use Case vertices with 
Generalisation or Association edge (edge constraint, hard). 

 It is not allowed to connect Use Case (source) to actor (target) using 
any edge (edge constraint, hard). 

Category 3: 
Vertex 
target 
connection 
with logical 
operator. 

 Every Use Case (as target) at least (lower bound number) should be 
connected with either an Actor or Use Case (vertex constraint, soft). 

Category 4: 
Vertex 
label 
related 
constraints 

 All Actor vertices must be labelled (graph constraint, soft). 
 All Actor labels start with ‘capital letter’ (vertex constraint, soft). 
 All Actor vertices must have labels (graph constraint, soft). 
 Actor labels must not be identical (graph constraint, soft). 
 All Use Cases must be labelled (graph constraint, soft). 
 Use case labels must not be identical (graph constraint, hard). 

Category 5: 
Edge label 
related 
constraints 

 All include edges must have <<include>> label (edge constraint, 
soft). 

 All extend edges must have <<extend>> label (edge constraint, 
soft). 

Category 6: 
Vertex 
source 
connection 
with logical 
operator. 

 Each actor at least should be connected to a Use Case or another 
Actor (vertex constraint, soft). 
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C.1 Study One Constraint Lists 

C.1.1 Constraint List for User 1, State Transition Diagram 

 At most (upper bound), three (3) End States are allowed in the graph (graph, 

hard). 

 Start State must not have incoming transitions (upper bound) (vertex, hard). 

 Start state must have a unique visual representation (graph, hard). 

 Each Non-Terminal State must have a label (graph, soft). 

 Outgoing transitions Non-Terminal States must have unique labels (graph, hard). 

 There must be a path between the Start State and every node in the graph 

(connected graph) (graph, soft). 

C.1.2 Constraint List for User 1, Use Case Diagram 

 At least (lower bound number) one Actor must exist in the diagram (graph, soft). 

 It is not allowed to connect two Actor vertices using Association, Include, or 

Extend edge (edge, hard). 

 Every Use Case (as target) at least (lower bound number) should be connected 

with either an Actor or another Use Case (vertex, soft). 

 All Use Case vertices must have labels (graph, soft). 

 All Include edges must have “<<include>>” label (edge, soft). 

 Each Actor at least (lower bound number) should be connected to a Use Case or 

another Actor (vertex, soft). 
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C.2 Study One Post-Experiment Questionnaire 
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C.3 Study One Exit Questionnaire / Interview 
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D.1 Study Two Questionnaire: 

1. Which one of the following expressions is more understandable to 

you. 

o At most, one Start State is allowed in the graph. 

o It is not allowed to have more than one Start State. 

o None. 

2. Which one of the following expressions is more understandable to 

you. 

o At least one End State must exist in the graph. 

o It is not allowed to have less than one End State in the graph. 

o None. 

3. Which one of the following expressions is more understandable to 

you. 

o Start State must only have outgoing edges. 

o Start State must not have incoming edges. 

o None. 

4. Which one of the following expressions is more understandable to 

you. 

o At least one outgoing edge from a Start State must exist. 

o Edges outgoing from Start State must not be less than 1. 

o None. 

5. Which one of the following expressions is more understandable to 

you. 

o Start State must have unique representation. 
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o It is not allowed for any other vertex type to share properties with Start 

State type. 

o None. 

6. Which one of the following expressions is more understandable to 

you. 

o Each Non-Terminal State must have label. 

o It is not allowed to have unlabeled Non-Terminal State. 

o None. 

7. Which one of the following expressions is more understandable to 

you. 

o Each Non-Terminal State must have unique label. 

o It is not allowed to have Non-Terminal States with identical labels. 

o None. 

8. Which one of the following expressions is more understandable to 

you. 

o Edges outgoing from Start State must have unique labels. 

o It is not allowed for edges outgoing from Start State to have identical 

labels. 

o None. 

9. Which one of the following expressions is more understandable to 

you. 

o Transition labels must start with the word "out". 

o It is not allowed for transition labels to start with anything other than the 

word "out". 

o None. 
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10. Which one of the following expressions is more understandable to 

you. 

o There must be a path between the Start State and every node in the graph. 

o It is not allowed to have Start State that has no path to the rest of the 

vertices in the graph. 

o None. 
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E.1 Study Three Constraint Lists 

E.1.1 Constraint List 1 

 The diagram cannot have less than one Start State. 

 Start State must only have outgoing Transitions. 

 In any given diagram, the Start State cannot have exactly the same visual 

representation as any other vertices in that diagram. 

 Each Non-Terminal State must have a label. 

 Outgoing transitions from Non-Terminal States cannot have identical labels. 

 There must be a path between the Start State and every other State in the diagram. 

E.1.2 Constraint List 2 

 At most, three (3) End States are allowed in the diagram. 

 Non-Terminal State incoming transition must not be less than one. 

 For any given diagram, End State must have a unique visual representation in that 

diagram. 

 Non-Terminal States cannot have identical labels. 

 Transition labels must start with the substring “out”. 

 It is not allowed to have a Start State without a path to every other State in the 

diagram. 
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E.2 Questions Per Constraint 
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E.3 Study Three Post-Experiment Questionnaire 
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E.4 Study Three Exit Questionnaire / Interview 
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F.1 Inference Features 

F.1.1 State Inference Features 

 The diagram contains single vertex. 

 The diagram contains more than one vertex without edges (not connected 

diagram). 

 The diagram has a single structure (more than one vertex connected together). 

 The diagram has multiple structures. 

 The properties of a vertex changed to look like another vertex. 

 The vertex label has changed. 

 The edge label has changed. 

 The graph contains all the vertex types available in the diagram. 

 All the vertices of the graph are of different types. 

 The graph has single source vertex and multiple target vertices. 

 The graph has single target vertex and multiple source vertices. 

 Vertices in the graph have identical labels. 

 Vertices in the graph have different labels. 

 Edges in the graph have identical labels. 

 Edges in the graph have different labels. 

F.1.2 Action Inference Features 

 A vertex is deleted from the graph. 

 An edge is deleted from the graph. 

 Identical part (sub-string) of labels deleted from different vertices. 

 At least two properties changed from a vertex. 

 A vertex label is deleted. 
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 An edge label is deleted. 

F.1.3 Visual Generalisation Inference Features 

 The graph has two structures with the same source vertex type. 

 The graph has two structures with the same target vertex type. 

 The graph is partially unified (generalised based on the element types in the 

examples). 

F.1.4 Rule Generalisation Features 

 The element (vertex or edge) type such as “Start State” and “Actor”. 

 Number of vertex source connections (outgoing edges from a vertex). 

 Number of vertex target connections (incoming edges to a vertex). 

 Vertex type at an edge source connection (the vertex from which the edge is going 

out). 

 Vertex type at an edge target connection (the vertex into which the edge is going). 

F.2 Study Four Constraint Lists 

F.2.1 Constraint List 1 

 At most 3 StartState (s) are allowed in the diagram. (graph, hard) 

 NonTerminalState (s) must have unique labels. (graph, hard) 

 StartState must have unique visual representation in any given diagram. (graph, 

hard) 

 Any Transition edge label must start with the substring “out”. (edge, soft) 

 There should be a path between Red StartState and the Green NonTerminalState 

in the diagram. (graph, soft) 

 There must be at least 1 Red Transition edge connecting StartState (source) with 

NonTerminalState or EndState (target). (vertex, soft) 

F.2.2 Constraint List 2 
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 At most 4 EndState (s) are allowed in the diagram. (graph, hard) 

 NonTerminalState (s) must have labels. (graph, hard) 

 EndState must have unique visual representation in any given diagram. (graph, 

hard) 

 Any Transition edge label must start with the substring “_in”. (edge, soft) 

 There must be a path between the Yellow NonTerminalState and Blue EndState in 

the diagram. (graph, soft) 

 There must be at least 1 Green Transition edge connecting NonTerminalState 

(source) with NonTerminalState or EndState (target). (vertex, soft) 

F.2.3 Constraint List 3 

 It is not allowed to have more than 3 StartState (s) in the diagram. (graph, hard) 

 It is not allowed for NonTerminalState (s) to have identical labels. (graph, hard) 

 In any given diagram, the StartState cannot have exactly the same visual 

representation as any other vertices in that diagram. (graph, hard) 

 Transition edge labels cannot start with anything other than the substring “out”. 

(edge, soft) 

 It is not allowed to have a Red StartState without a path between it and the Green 

NonTerminalState in the diagram. (graph, soft) 

 It is not allowed to have StartState (source) that is not connected to either a 

NonTerminalState or an EndState (target) using at least 1 Red Transition edge. 

(edge or vertex, soft) 

F.2.4 Constraint List 4 

 It is not allowed to have more than 4 EndState (s) in the diagram. (graph, hard) 

 It is not allowed to have unlabelled NonTerminalState (s). (graph, hard) 

 In any given diagram, the EndState cannot have the same visual representation as 

any other vertices in that diagram. (graph, hard) 
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 Transition edge labels cannot start with anything other than the substring “_in”. 

(edge, soft) 

 It is not allowed to have a Yellow NonTerminalState witout a path between it and 

the Blue EndState in the diagram. (graph, soft) 

 It is not allowed to have a NonTerminalState (source) that is not connected to 

either a NonTerminalState or an EndState (target) using at least 1 Green 

Transition edge. (vertex, soft) 
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F.3 Study Four Post-Experiment Questionnaire 
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F.4 Study Four Exit Questionnaire / Interview 
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