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Summary 

 

Up to 50% of patients with the clinical syndrome of heart failure have preserved 

left ventricular systolic function (HF-PSF).  Invasive studies utilising cardiac 

catheterisation have demonstrated that patients with HF-PSF have abnormalities of left 

ventricular (LV) relaxation and filling, or LV diastolic dysfunction.  As a result, it has 

been proposed that LV diastolic dysfunction is the primary pathophysiological process 

in HF-PSF.  However, population-based studies have shown that there is poor 

correlation between the presence of LV diastolic dysfunction and the presence of heart 

failure.  This controversy has led to a search for alternative pathophysiological processes 

which could potentially cause HF-PSF.  There are some data to suggest that patients 

with HF-PSF have a combination of LV diastolic dysfunction, or ‘LV stiffness’, and 

large artery stiffness, when compared with normal subjects and patients with systemic 

hypertension.  This implies that the interaction between the left ventricle and the 

vasculature is dysfunctional and a potential cause of HF-PSF.  Although there are 

limited data on arterial stiffness in HF-PSF, there have been no studies examining other 

parameters of vascular function in HF-PSF and vascular function has never been 

formally compared in cohorts of patients with HF-PSF and heart failure due to reduced 

LV systolic function (HF-RSF). 
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The studies presented in this thesis were designed to further characterise vascular 

function in HF-PSF and to compare vascular function between patients with HF-PSF, 

patients with HF-RSF and control subjects.  I used non-invasive techniques to assess 

parameters of arterial function, such as arterial stiffness and arterial endothelial function.  

I also evaluated parameters of venous function, namely venous capacitance and venous 

endothelial function. 

Arterial stiffness, measured by aortic pulse wave velocity (PWV), was 

significantly elevated in HF-PSF compared to both HF-RSF and control groups, 

implying that HF-PSF is indeed associated with greater arterial stiffness.  In contrast, 

arterial diastolic waveform analysis failed to show any significant differences in derived 

parameters of arterial compliance between the three study groups, which may be due to 

the fact that all three groups were matched for underlying coronary heart disease, 

reducing the ability of the technique to differentiate between groups. 

Using Laser Doppler iontophoresis, I demonstrated that HF-PSF and HF-RSF 

subjects have impaired microvascular responses to both acetylcholine and sodium 

nitroprusside.  This suggests that, rather than being solely a primary disorder of 

endothelial function, impaired control of vascular tone in HF-PSF reflects significant 

vascular smooth muscle dysfunction.  It is not certain if arterial smooth muscle and/or 

endothelial dysfunction is secondary to the inflammatory and neurohumoral activation 

associated with the heart failure syndrome, or a primary pathophysiological factor in the 

development of either form of heart failure. 
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As regards venous function, patients with HF-PSF had a lower venous 

capacitance than patients with HF-RSF (but similar venous capacitance to the controls).  

Increased venous capacitance may represent a compensatory response in heart failure 

that is less marked or absent in HF-PSF, compared to HF-RSF.  Venous endothelial 

function was measured with the Aellig dorsal hand vein technique.  It was not 

technically possible to complete an Aellig study in the whole patient cohort, resulting in 

fewer data being available for analysis.  Despite this, both heart failure groups appeared 

to have impaired venodilatation in response to acetylcholine, compared to controls, 

although this apparent difference was not statistically significant.  

While the studies of venous capacitance and endothelial function were not 

conclusive, they suggest that venous function may be abnormal in HF-PSF.  The finding 

that endothelial and smooth muscle control of arterial tone was impaired in both HF-PSF 

and HF-RSF may indicate a similar primary pathophysiological process, or indeed a 

similar response to inflammatory and neurohumoral activation in heart failure. I 

conclude that the data presented in this thesis supports the hypothesis that HF-PSF is 

associated with increased arterial stiffness, which in combination with increased LV 

stiffness is likely to result in impaired ventriculo-vascular coupling.  This process is 

likely to be an important pathophysiological factor in the development of HF-PSF. 
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1.1 The Heart Failure Syndrome 

 

1.1.1 A definition of heart failure 

There are several contemporary definitions of heart failure, most of which are 

unsatisfactory, as they do not encompass all aspects of the condition. 

One of the most widely quoted definitions of heart failure was first proposed by Paul 

Wood in 1950, and adapted slightly by Braunwald et al in 1982.  In Braunwald’s 

definition, heart failure is described as “…a pathophysiological state in which the heart 

is unable to pump blood at a rate commensurate with the requirements of the 

metabolising tissues or can do so only from an elevated filling pressure.”[1] 

Many modern texts define heart failure as a clinical syndrome characterised by typical 

symptoms, clinical signs and chest radiograph appearance, which may result from a 

number of different disease processes, rather than being a disease in its own right.  Both 

European and American guidelines on the diagnosis and management of chronic heart 

failure advise evaluation of patient symptoms and clinical signs in conjunction with 

investigation results to make a diagnosis of heart failure.[2, 3]  This is highlighted by the 

frequent use of clinical scoring systems, such as the Boston criteria,[4] to determine the 

likelihood of the presence of heart failure.   
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1.1.2 Epidemiology of heart failure 

The importance of heart failure as a major public health problem has been described in 

multiple review articles, such as those written by McMurray et al [5] and Mehta et al.[6] 

The following section provides a summary of the most important published data on the 

epidemiology of heart failure. 

 

1.1.3 Prevalence of heart failure 

Heart failure is common, particularly in older individuals. The largest body of evidence 

available on the prevalence of heart failure is from large cohort studies carried out in the 

United States. In the Framingham heart study, prevalence of heart failure in 50-59 year-

olds was 0.8% rising to 9.1% in those above 80 years of age.[7] Another extremely large 

cohort study, The United States National Health And Nutrition Examination Survey 

(NHANES), reported the prevalence of heart failure to be 8% in subjects over 65 years 

of age.[8] 

 

1.1.4 Incidence of heart failure 

Less information is available regarding the incidence of heart failure, with most data 

once again resulting from large population-based studies in the United States. In the 

Framingham heart study, the annual incidence of heart failure was 0.3% in men and 

0.2% in women aged 50-59 years, rising to 2.7% in men and 2.2% in women aged 80-89 

years.[7] Another population-based study conducted in the United States was the 
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Rochester epidemiology project.[9] In this study, investigators examined the incidence 

of heart failure during 1981 in Olmsted County, Minnesota.  During the study period, 46 

new diagnoses of heart failure were made in patients aged 0-74 years. Overall, this 

equates to an annual heart failure incidence of 110 cases per 100,000 population.  As 

noted in the Framingham study, the incidence of heart failure in the Olmsted study was 

higher in males than in females (157 versus 71 per 100,000 population). 

 

1.1.5 Prognosis of heart failure 

Heart failure is lethal, with a particularly high early mortality, and carries a prognosis 

similar to many common forms of cancer.  

The Framingham study showed that men with a diagnosis of heart failure have one-year, 

five-year and ten-year mortality rates of 43%, 75% and 89%, respectively. The 

corresponding mortality rates in women at one, five and ten years were slightly better at 

46%, 62% and 79%, respectively.[10] The NHANES study also provided long-term 

follow-up mortality data in patients with heart failure. In this study population, ten-year 

mortality rate in those aged 25-74 years was 49.8% in men and 36% in women.[8] These 

mortality rates compare favourably with those reported from the Framingham study. 

This discrepancy has been attributed to the fact that symptoms of heart failure in this 

study were self-reported, rather than based purely on a score derived from clinical 

criteria, such as was employed in the Framingham study.[10] In addition, the patients 

were not hospitalised, implying that their symptoms were less severe.[5, 6] 
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The Rochester epidemiology project also found the survival after a diagnosis of heart 

failure to be poor. In the cohort presenting in 1981 mortality was 20% at six months and 

34% at one year.[9] The same group has reported longer-term survival data on another 

cohort of patients who presented with heart failure ten years later, in 1991. The overall 

mortality in the 1991 cohort was 24% at one year and 65% at five years. [11] 

In summary, several large epidemiological studies have repeatedly shown that heart 

failure is common and carries a poor prognosis, underlining the importance of the 

condition as an area where further research and development of new therapies are vital. 

 

1.2 Pathophysiology of Heart Failure 

 

1.2.1 Elevated intra-cardiac pressure 

Central to the pathophysiology of heart failure is the development of elevated intra-

cardiac pressure. The commonest precipitant is myocardial damage and the development 

of impaired LV systolic contraction following myocardial infarction or ischaemia.  

Impaired LV systolic contraction leads to a chain of compensatory mechanisms in order 

to maintain stroke volume and cardiac output.  The most important compensatory 

mechanism is dilation of the left ventricle, increasing left ventricular end-diastolic 

pressure (LVEDP), or pre-load.  According to Frank-Starling’s law, increasing LV pre-

load stretches myocardial fibres (increasing sarcomere length) and will increase force of 

contraction, stroke volume and cardiac output.[12]  
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However, with progressive deterioration of LV systolic contraction, the left ventricle 

will continue to dilate and the LVEDP and subsequent myocardial stretch ultimately 

exceed the level that will result in improved stroke volume (figure 1.1).  During the 

diastolic phase of the cardiac cycle, high LV pressure results in elevation of the left 

atrial pressure.  As left atrial pressure rises, pulmonary capillary hypertension develops, 

resulting in transudation of fluid from intra-vascular to extra-vascular compartments, 

causing pulmonary oedema. Over time, pulmonary vascular remodelling occurs and 

pulmonary vascular resistance rises.  This increases right ventricular afterload and end-

diastolic pressure, starting a cascade of compensatory mechanisms on the right side of 

the heart. When the right ventricle decompensates, the right atrial and systemic venous 

pressure rise and the characteristic features of peripheral oedema, hepatic congestion and 

ascites develop. 
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Figure 1.1:  
Frank-Starling curve demonstrating that increased left ventricular end-diastolic pressure results in 
increased stroke volume up to a point when the curve plateaus and beyond which the left ventricle will 
decompensate and stroke volume may fall. The curve representing the normal resting heart is represented 
by the solid, black line. With increased venous return (preload) or increased left ventricular inotropy, the 
curve moves up and to the left (dashed red line). With increased left ventricular afterload, or decreased 
inotropy, the curve moves down and to the right (dashed blue line). 
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1.2.2 Neurohumoral activation 

Heart failure is associated with marked vasoconstriction and retention of salt and water.  

Initially an adaptive response in an effort to improve arterial pressure and tissue 

perfusion, ultimately these processes become maladaptive. Vasoconstriction and volume 

overload in heart failure are secondary to neurohumoral activity.  Specifically, increased 

plasma concentrations of angiotensin II, norepinephrine and endothelins all contribute to 

the increased vascular tone observed in heart failure.  The resulting vasoconstriction 

exacerbates poor tissue perfusion and stimulates further neurohumoral activity.  Volume 

overload results from the actions of aldosterone.  Reduced cardiac output results in renal 

arterial under-filling.  This stimulates the renin-angiotensin-aldosterone system (RAAS) 

to constrict peripheral vessels via action of angiotensin II to improve central arterial 

perfusion pressure, and to retain sodium and water via action of aldosterone.  Arterial 

under-filling also stimulates baroreceptors, leading to activation of the sympathetic 

nervous system, increased norepinephrine activity and further activation of the RAAS.  

This over-activation of the RAAS ultimately becomes maladaptive, and fluid overload 

results.[13]  In addition to angiotensin II and norepinephrine, endothelins circulate in 

high concentrations and exacerbate vasoconstriction in heart failure.[14] 

As a compensatory mechanism, endogenous vasodilators are released from cardiac 

tissue, predominantly in response to circulating volume overload and myocardial stretch.  

These endogenous vasodilators are known as the natriuretic peptides and in addition to 

vasodilatation, stimulate salt and water excretion from the kidney.[15]  One of the 
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natriuretic peptides, brain-type natriuretic peptide (BNP), is predictably found in higher 

plasma concentrations in patients with the clinical syndrome of heart failure.  More 

recently, evidence has shown BNP concentration to be associated with disease severity 

and a powerful predictor of clinical outcome in both HF-RSF [16] and HF-PSF.[17]  

Heart failure is also an inflammatory process, associated with profound activation of 

cytokine pathways leading to production of reactive oxygen species.  This inflammatory 

over-activity and free radical production has been implicated in the pathophysiology of 

vascular dysfunction in HF-RSF.[18] 

There is profound neurohumoral activity in heart failure involving several different 

pathways.  Excess neurohumoral activity in heart failure has been implicated as a 

potential cause or exacerbating factor in the peripheral vasoconstriction and vascular 

dysfunction seen in the heart failure syndrome. 

 

1.3 Heart Failure with Preserved Left Ventricular Systolic Function 

 

1.3.1 Definition of HF-PSF 

Heart failure with preserved systolic function can be defined as: the syndrome of heart 

failure in the presence of normal LV systolic function and the absence of significant 

valvular heart disease, cardiac dysrhythmia, right ventricular dysfunction or high output 

states such as anaemia.  This definition is straightforward but relies heavily on the 

statement that LV systolic function is ‘normal’.  The definition of normal LV systolic 
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function is not straightforward and has been the subject of debate.  Most centres use LV 

ejection fraction (LVEF) to quantify LV systolic function.  Due to the widespread 

availability of non-invasive imaging techniques, such as echocardiography and 

radionuclide imaging, LVEF can be obtained easily.  As LVEF is expressed as a 

percentage of LV diastolic volume, it gives one a figure that is easy to understand and 

lends itself to comparison between groups with statistical analysis.  These factors have 

greatly contributed to the widespread use of LVEF as a means of describing LV systolic 

performance.  In the literature, the LVEF considered to represent ‘normal’ LV systolic 

function varies widely between 40 and 70%,[19-21] but most groups define preserved 

LV systolic function as a LVEF >50%.  The LVEF value deemed to represent ‘normal’ 

LV systolic function obviously impacts on incidence and prevalence figures as detailed 

below in sections 1.3.3 and 1.3.4. 

 

1.3.2 Epidemiology of HF-PSF 

Much has been learned about the epidemiology of HF-PSF in the last ten years. It is now 

apparent from multiple epidemiological studies that patients with HF-PSF constitute a 

significant proportion of the total burden of heart failure. Comprehensive review articles 

on the epidemiology of HF-PSF have been published by Vasan et al [22] and more 

recently by Hogg et al.[23] The following section comprises an overview of the 

epidemiology of HF-PSF. 
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1.3.3 Prevalence of HF-PSF 

Although the populations studied are heterogeneous, with variable definitions of 

preserved systolic function, the evidence from multiple cross-sectional, population-

based studies tends to agree with incidence studies, and suggests that HF-PSF makes up 

a significant proportion of the overall burden of heart failure worldwide.  Prevalence of 

HF-PSF (LVEF ≥50%) in the Framingham study was 51%.[24] These results are 

mirrored in the Cardiovascular Health Study, in which the prevalence of PSF (LVEF 

≥50%) among patients with heart failure was 55%.[20] Another population-based study, 

looking at registry data of heart failure admissions to ten hospitals, was the Management 

to Improve Survival in Congestive Heart Failure (MISCHF) Study.  In the MISCHF 

study, 42% of patients had a LVEF ≥ 40% and 24% of patients had a LVEF ≥ 50%.[25]  

The Helsinki Aging Study looked at older subjects (75-86 years) with heart failure.  The 

threshold LVEF for ‘preserved’ systolic function was high at >70%.  In spite of this 

stringent definition of preserved LV systolic function, a significant proportion of this 

cohort of patients (51%) had HF-PSF.[21] Follow-up data from the Rochester 

Epidemiology Project heart failure population indicate that the prevalence of HF-PSF is 

high, and has risen in the last 15 years.  The prevalence of preserved systolic function 

(LVEF >50%) among patients with heart failure increased from 38% to 54% between 

1987 and 2001,[26] although the authors note that this phenomenon is probably partly 

due to increased clinician awareness of HF-PSF in recent years, leading to more frequent 

recognition and diagnosis of HF-PSF.  
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1.3.4 Incidence of HF-PSF 

As with epidemiological data on HF-RSF, there is less published information available 

about the incidence of HF-PSF than prevalence. The Rochester group found that of all 

patients admitted with a new diagnosis of heart failure over a one-year period (1991), 

43% had preserved LV systolic function, defined as an ejection fraction of ≥50%.[11] 

Similarly, the Cardiovascular Health Study population had a high incidence of HF-PSF. 

Over the study period there were 597 incident cases of heart failure, diagnosed in the 

community, rather than in hospital, of which 60% had a LVEF of ≥55% at time of 

diagnosis.[20, 27]  More recently, Bhatia et al have reported a study of 2802 patients 

admitted to 103 Canadian hospitals with a new diagnosis of heart failure. In this study 

population, the incidence of HF-PSF (LVEF ≥50%) was 31%.[28] 

 

1.3.5 Prognosis of HF-PSF 

Previously reported morbidity and mortality data from the Cardiovascular Health Study 

[29] and the CHARM study [19] suggest that HF-PSF is a more benign condition that 

HF-RSF.  However, recently published data from Canada would indicate that outcome is 

similar in both HF-PSF (LVEF >50%) and HF-RSF (LVEF <40%) with one year 

mortality rates of 22% and 26%, respectively (p=0.08).[28] 
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1.4 Pathophysiology of HF-PSF 

 

The pathophysiology of HF-PSF has not yet been fully established.  A commonly held 

view is that HF-PSF is due to diastolic dysfunction of the left ventricle.  More recently, 

it has been proposed that abnormalities of interaction between the left ventricle and the 

vasculature may lead to HF-PSF.  In this section I will provide an overview of what is 

currently known about LV diastolic dysfunction and ventriculo-vascular interaction, and 

the relevance of both in the context of HF-PSF pathophysiology. 

 

1.4.1 Diastolic dysfunction of the left ventricle 

The term ‘diastolic dysfunction’ refers to abnormalities of relaxation and filling of the 

left ventricle, rather than contraction and emptying.  It is a commonly held view that 

diastolic dysfunction of the left ventricle is the primary pathophysiological process in 

HF-PSF.[30, 31]  Left ventricular diastolic function is a complex process that has been 

extensively studied.  A comprehensive account of current information regarding the 

physiology of normal LV diastolic function and the pathophysiology of LV diastolic 

dysfunction is beyond the scope of this introduction.  Kass et al have recently reviewed 

this subject.[32] 

For the purposes of this introduction I will focus on a summarised description of LV 

diastolic function and dysfunction, and how LV diastolic dysfunction may be implicated 

in the pathophysiology of HF-PSF. 
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1.4.2 Active relaxation of the left ventricle 

Left ventricular diastole consists of two phases: active relaxation and passive filling.  

Relaxation of the left ventricle is an active process, beginning at the end of ventricular 

systolic contraction.  LV relaxation is a complex process, which relies on multiple 

events at molecular level, including myocyte calcium handling, active phosphorylation 

and actin-myosin cross-bridge detachment to name but a few.  All of these events 

consume energy, and can therefore be attenuated during myocardial ischaemia, resulting 

in abnormal LV relaxation.  This ischaemic failure of relaxation can be due to coronary 

heart disease, where normal myocardial oxygen requirements are not adequately met due 

to poor arterial supply.  Left ventricular hypertrophy (LVH) also causes ischaemic 

failure of LV relaxation.  The increased myocardial mass in LVH has abnormally high 

oxygen requirements and demand can outstrip supply even in the absence of coronary 

heart disease.  Co-existing LVH and coronary heart disease can result in a powerful 

substrate for impaired LV relaxation.[33, 34] Left ventricular relaxation is also 

dependent on venous return and LV pre-load, which I discuss in section 1.5.7, and 

duration of systole and LV afterload, which I discuss in section 1.4.5.  

Delayed onset or slow active relaxation results in attenuation of the normal fall in LV 

pressure during diastole, and a net rise in LV diastolic pressure. 
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1.4.3 Passive filling of the left ventricle 

Passive filling of the left ventricle is the other important phase of effective diastolic 

function.  It is dependent on the intrinsic characteristics of the LV wall, usually termed 

‘LV diastolic stiffness’.[32] 

The diastolic stiffness of the left ventricle is determined by the pressure-volume 

relationship during diastole.  Increased LV stiffness results in resistance to changes in 

volume in response to rising filling pressure. 

The most common cause of increased LV diastolic stiffness is thought to be LVH 

secondary to essential hypertension.  Left ventricular hypertrophy is particularly 

common in patients with HF-PSF, strengthening the argument that LV diastolic stiffness 

is an important factor in the development of HF-PSF.[35]  The development of LVH is 

complex, being influenced by various mechanical and, in particular, neurohumoral 

factors.[36, 37]  Left ventricular remodelling and hypertrophy occur in response to 

sustained elevation of pre-load or afterload in an attempt to maintain cardiac output.  

Ultimately these changes become maladaptive and deleterious to cardiac performance.  

There are two main pathophysiological processes in the development of LVH: myocyte 

hypertrophy and interstitial fibrosis.  Both of these phenomena can result in LV diastolic 

dysfunction.  Myocyte hypertrophy results in impaired active LV relaxation as described 

above.  Interstitial fibrosis is the increased deposition of myocardial extracellular matrix, 

in the form of collagen, through the proliferation and action of fibroblasts.  Interstitial 

fibrosis results in a poorly compliant LV chamber i.e., increased LV stiffness and 

abnormal passive filling of the left ventricle during diastole.[38] 
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1.4.4 Combined effects of abnormal relaxation and filling of the left ventricle 

The mechanisms by which impaired LV relaxation and increased LV stiffness result in 

diastolic dysfunction are illustrated in figure 1.2. 

 
Figure 1.2:  
Mechanism by which increased passive stiffness of the left ventricle and impaired active relaxation of the 
left ventricle combine to result in elevation of the left ventricular (LV) end-diastolic pressure.  Adapted 
from Gaasch WH, in Braunwald’s Heart Disease: a textbook of cardiovascular medicine.[1] 
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The end result of diastolic dysfunction is elevated LV diastolic pressure despite normal 

filling volume.  Zile et al employed cardiac catheterisation to obtain invasive LV 

pressure-volume loops from patients with HF-PSF, demonstrating that the diastolic 

pressure rise is steeper per unit rise in volume that in subjects without HF-PSF (figure 

1.3).[39, 40]  

It is via this mechanism that diastolic dysfunction of the LV can lead to elevation of the 

LVEDP, left atrial hypertension, neurohumoral activation and the clinical features of 

heart failure.  Therefore, LV diastolic dysfunction is implicated in the pathophysiology 

of HF-PSF. 
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Figure 1.3: 
Left ventricular pressure - volume relationship in patients with HF-PSF (diastolic heart failure) and normal 
subjects (controls) demonstrating the steep rise in intra-ventricular pressure with rising diastolic volume.  
Figure adapted from Zile et al 2002 and 2004.[39, 40] 
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1.4.5 Is HF-PSF purely due to LV diastolic dysfunction? 

The invasive cardiac catheter studies conducted by Zile et al [31] demonstrated that 

patients with HF-PSF have LV diastolic dysfunction, prompting the authors to suggest 

that formal assessment of diastolic dysfunction was unnecessary to make a diagnosis of 

‘diastolic heart failure’.  Although HF-PSF patients, when assessed with invasive 

studies, have LV diastolic dysfunction, it does not necessarily follow that diastolic 

dysfunction will lead to the development of HF-PSF.  Other groups have examined 

diastolic dysfunction in larger populations of patients, both with and without heart 

failure. Chen et al examined patients presenting with a first diagnosis of heart failure and 

found that only half of patients with HF-PSF had echocardiographic evidence of 

diastolic dysfunction. [41]  

Petrie et al analysed echocardiograms of patients with a presumptive diagnosis of heart 

failure and found that there was poor correlation between echocardiographic markers of 

diastolic dysfunction and either the presence of heart failure or accepted risk factors for 

diastolic dysfunction, such as hypertension, LVH and myocardial ischaemia.[42]  Large 

cross-sectional population echocardiographic studies [43, 44] have shown that diastolic 

dysfunction is at least as common in men as in women but, as discussed in section 1.3, 

HF-PSF is much more common in elderly females. 

There are fundamental problems when comparing studies of LV diastolic dysfunction.  

Invasive assessment of LV function in all patients with suspected heart failure is not 

practical and echocardiographic measures of diastolic function can be unreliable.  

Diastolic properties of the left ventricle are load-dependent and therefore prone to 
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variation even within the individual.[45] It is therefore difficult to be certain how much 

‘diastolic dysfunction’ is truly due to impaired active relaxation and/or increased passive 

stiffness of the left ventricle, and how much is influenced by pre-load conditions of the 

left ventricle.   

Although LV diastolic dysfunction certainly plays a role in the pathophysiology of HF-

PSF, the poor correlation between diastolic dysfunction and HF-PSF seen in population-

based studies has prompted consideration of other factors which may be implicated in 

the development of heart failure in this patient group. 

 

1.4.6 Ventriculo-vascular interaction 

Abnormal vascular function, and in particular the interaction between the systemic 

vasculature and the left ventricle, is a potential pathophysiological process in HF-PSF.  

Reduced aortic distensibility, or increased aortic impedance, has been known to increase 

LV afterload and adversely influence LV performance for more than 40 years.[46, 47]  

Since then, detailed studies of ventriculo-vascular interaction have been performed in 

both animal models and humans. Twenty years ago, Hori et al used a canine model to 

demonstrate that elevation of LV afterload during late systole directly impairs active LV 

relaxation during diastole.[48] These findings have been confirmed by more recent 

animal studies.[49] The possibility that late-systolic ventriculo-arterial interaction can 

adversely affect cardiac performance has been explored by other groups using human 

subjects.   
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Ventriculo-vascular interaction and, in particular, ventricular and vascular stiffness are 

commonly described in terms of LV end-systolic elastance (Ees) and effective arterial 

elastance (Ea), as discussed by David Kass in his 2005 review paper.[50] Ea is a 

measure of arterial load derived from the ratio of LV end-systolic pressure to stroke 

volume.[51] Ees represents the LV end-systolic pressure-volume relationship. The 

Ea/Ees ratio is representative of end-systolic ventriculo-arterial interaction. Ea and Ees 

are determined by invasively or non-invasively measuring the LV pressure-volume 

relationship throughout the cardiac cycle. An example of LV pressure-volume loops in 

young and elderly subjects, demonstrating Ea and Ees, is shown in figure 1.4.[52] 
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Figure 1.4: 
Pressure volume loops and relations derived by preload reduction maneuver in a young and in an elderly 
patient. End systolic elastance (Ees) measures chamber systolic stiffness and is the slope of a line 
connecting the upper left-hand corners (end systole) from each pressure volume loop (dotted line). 
Effective arterial elastance (Ea) measures arterial load and stiffness and is depicted by the negative slope 
of the diagonal solid line shown. Figure adapted from Chen et al 1998.[52] 
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Kass, Redfield and colleagues have conducted several studies investigating ventriculo-

vascular coupling in various patient groups, as detailed below. 

Redfield et al used non-invasive techniques to show that the combination of ventricular 

and arterial stiffening is more common in elderly females,[53] the section of the 

population most likely to develop HF-PSF according to population-based studies.[22, 

35, 41, 43]  Although subjects with diabetes or manifest cardiovascular disease were 

excluded from analysis, almost 40% of the subjects were taking cardio-active 

medications, which could have influenced the results. Chen et al used cardiac 

catheterisation to demonstrate that elderly subjects without heart failure have increased 

end-systolic LV and arterial stiffening.[52]  Once again, some aspects of the study group 

baseline characteristics are likely to have influenced the results.  The groups studied 

were heterogeneous, with some patients having severe coronary heart disease or 

significant hypertension, and a similar proportion having normal coronary arteries. 

These investigators have also conducted studies of ventriculo-vascular interaction in 

patients with HF-PSF. Kawaguchi et al,[54] used a combination of invasive and non-

invasive methods to assess ventriculo-arterial interaction in HF-PSF.  Both ventricular 

and arterial stiffening were markedly elevated in subjects with HF-PSF, compared with 

both young and age-matched controls without cardiovascular disease, and with age-

matched subjects with hypertension.  Unfortunately the most interesting comparison, 

between HF-PSF and hypertensive subjects, was made using different methodologies. 

Subjects with HF-PSF underwent cardiac catheterisation and subjects with hypertension 
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were assessed non-invasively with echocardiography.  Again, patients with coronary 

heart disease were excluded making the results less applicable to all patients with HF-

PSF. Melenovsky et al recruited subjects with HF-PSF, subjects with hypertensive LVH, 

and normal controls into their study.[55]  They examined multiple parameters of cardiac 

and vascular function using non-invasive techniques. The study population was 

predominantly African-American females and there was a higher prevalence of coronary 

heart disease, renal dysfunction and diabetes mellitus in the HF-PSF group. They found 

that HF-PSF and hypertension/LVH groups had similar abnormalities of ventriculo-

arterial stiffening and LV diastolic dysfunction but that LVH and left atrial dilatation 

were more marked in HF-PSF. They speculate that left atrial dysfunction may be 

involved in that pathophysiology of HF-PSF. Another important study from this group 

of investigators was reported by Lam et al.[56] A large cohort of patients with HF-PSF 

was recruited. Once again parameters of cardiac and vascular function were measured 

non-invasively in patients with HF-PSF and compared to hypertensives and normal 

controls. As in other studies, heterogeneity was present between groups: the HF-PSF 

patients had a higher prevalence of coronary heart disease and renal dysfunction 

compared to both other groups and had significantly lower blood pressures than the 

hypertensive group. Despite this, Ea and Ees were similarly increased in HF-PSF and 

hypertensive patients, compared to controls. In contrast with the findings of Melenovsky 

et al, diastolic dysfunction was more severe in HF-PSF subjects. 

Another group who have investigated cardiac and vascular function in HF-PSF used 

cardiovascular magnetic resonance imaging to determine aortic stiffness and examined 
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the correlation between aortic stiffness and exercise tolerance in HF-PSF. Hundley et al 

[57] investigated patients with HF-PSF and found that reduced aortic distensibility 

correlated with exercise intolerance in their cohort, suggesting that reduced arterial 

compliance, and therefore elevated LV afterload, is implicated in the development of 

symptoms in HF-PSF.  The patient selection process was robust, with clearly defined 

criteria to diagnose HF-PSF.  However, subjects in the control group were normotensive 

and free of cardiovascular disease, which undoubtedly enhanced the differences in 

vascular and ventricular abnormalities observed between HF-PSF and control groups.  In 

addition, patients with coronary heart disease were excluded and this may have led to an 

atypical cohort of patients with HF-PSF being studied.  The same investigators have 

since published a similar study conducted in patients with HF-RSF.[58]  They found that 

HF-RSF is also associated with reduced aortic distensibility and exercise intolerance.  

One could conclude from these two studies that reduced large artery compliance 

adversely influences LV performance and therefore symptoms, regardless of LV systolic 

function.  Whether or not reduced arterial compliance causes HF-PSF is as yet unproven. 

The role of abnormal ventricular-arterial interaction in the pathophysiology of HF-PSF 

has yet to be fully established.  Even so, the evidence presented by the above studies has 

cast doubt on the theory that HF-PSF is purely a disorder of LV diastolic function, with 

more than one group suggesting that the pathophysiology is in fact far more 

complex.[59, 60]  The combination of ventricular stiffening and increased LV afterload 

has many implications when considering the pathophysiology of HF-PSF.  Increased 

afterload increases cardiac work and oxygen requirements.  Combined ventricular and 
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arterial stiffening results in labile haemodynamic responses to both exercise and changes 

in circulating volume.  Elevation of LV afterload is a powerful stimulus for the 

development of LVH, which, as described in section 1.4.3, causes increased passive 

stiffness of the left ventricle during diastole. 

Left ventricular chamber stiffness, diastolic dysfunction and afterload are closely linked 

via dynamic interaction and may all be implicated in the pathophysiology of HF-PSF.  

 

1.5 Vascular Function 

 

There are reasons to believe that vascular dysfunction is implicated in the 

pathophysiology of HF-PSF.  Arterial stiffness is the main determinant of LV afterload 

and influences ventriculo-vascular coupling.  Some groups have investigated arterial 

compliance in HF-PSF but overall very little is known about vascular function in HF-

PSF.  Control of arterial tone via arterial endothelial and smooth muscle function is 

likely to influence arterial stiffness and compliance, but has never been investigated in 

HF-PSF.  Venous capacitance and control of venous tone are important determinants of 

LV preloading conditions that, if abnormal, could theoretically contribute to increased 

LVEDP and the clinical syndrome of heart failure.  As with arterial endothelial and 

smooth muscle function, venous function has never been studied in HF-PSF. 

Vascular function (and dysfunction) is dynamic and complex.  There are multiple 

methods available to assess vascular function.  In the following section, I will provide an 
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overview of the aspects of vascular dysfunction that I feel are most relevant to the 

pathophysiology of HF-PSF.  I will discuss the concept, clinical relevance and 

assessment methods of: arterial stiffness and compliance; arterial endothelial and smooth 

muscle function; venous capacitance; and venous endothelial function. 

 

1.5.1 Arterial stiffness and arterial compliance 

The terms arterial stiffness and arterial compliance are often used to describe the 

properties of the arterial tree.  It is a common belief that these terms are interchangeable, 

but they are actually slightly different.  As outlined in the preceding section, arterial 

stiffening may have an important role to play in the pathophysiology of HF-PSF.  

Arterial stiffening is an all-encompassing term used to describe rigidity of the arterial 

tree.  To understand pathological arterial stiffening, one must first appreciate the main 

mechanisms affecting blood flow through the arterial tree, one of which is arterial 

compliance. 

The term ‘arterial compliance’ refers to the ability of large arteries, namely the aorta and 

its major branches, to distend in response to a given pressure.  The aorta and major 

branches act as an elastic reservoir, buffering pulsatile flow from LV ejection, and 

transmitting less-pulsatile flow to the peripheral vasculature.  This is known as 

windkessel theory. 

The windkessel model of the circulation was originally proposed by Hales in 1733 [61] 

and further developed by Frank in 1899.[62]  An analogy was made between the hand-

operated fire-fighter water pump (windkessel in German) and the relationship between 
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the left ventricle, aorta and conduit vessels.  The pump was primed with intermittent air 

injections.  When the air pressure within the pump reached a certain level, a steady 

stream of water was forced out.  Windkessel theory compares this sequence of events 

with the buffering action of the aorta, receiving pulsatile flow from the left ventricle and 

delivering relatively steady flow to the conduit vessels.  This analogy enhanced early 

understanding of blood flow through the arterial tree.[63]  Although windkessel theory 

helps to understand the importance of elastic and conduit characteristics of arteries, this 

model of the circulation assumes that the arterial tree has separate elastic and conduit 

compartments.  In fact most of the arterial tree has both elastic and conduit properties, 

although one or other tends to predominate in any given arterial segment.  For example, 

the ascending aorta is predominantly elastic and the peripheral, more muscular, arteries 

are predominantly conduit vessels.  

 

1.5.2 Propagation of the arterial pressure wave 

The second mechanism is propagation of the arterial pressure wave through the arterial 

tree.  The speed at which the arterial pressure wave is transmitted is termed the pulse 

wave velocity.  Young originally described the relationship between PWV and stiffness 

of the vessel wall in 1804. The concept was developed in the first half of the 20th 

Century when work by Frank in 1920 [64] and then Bramwell and Hill in 1922 [65] led 

to development of the Moens-Korteweg equation:  

PWV= !h/2R •incE  



 46 

(Where Einc is Young’s Modulus of the arterial wall, h is wall thickness, R is end-

diastolic radius and ρ is blood density). 

The velocity of the pulse wave is inversely proportional to the elasticity of the vessel 

wall.  Pulse wave velocity may be measured by recording the pulse wave at a proximal 

and distal artery (e.g. carotid and femoral), either simultaneously or gated to the 

electrocardiogram (ECG), using pressure transducers, Doppler ultrasound probes or 

applanantion tonometry.[66] The distance travelled is determined by measuring the body 

surface distance between the proximal and distal arterial points.  The resulting 

calculation gives a direct measure of arterial stiffness that is easily reproducible.[67, 68] 

 

 

1.5.3 Arterial pressure wave reflection and diastolic waveform analysis 

The arterial pressure waveform is a composite of incident and reflected waves.  Wave 

reflection occurs at points of impedance mismatch, such as vessel bifurcation and is also 

influenced by the diameter and contractile properties of the resistance arterial bed.[69]  

The point at which the reflected wave returns to the proximal aorta is dependent upon 

the speed with which the incident wave travels along the aorta, i.e. the PWV.  In health 

the reflected wave arrives in the proximal aorta in diastole, augmenting diastolic 

pressure and facilitating coronary artery flow.  When, as a result of arterial stiffening, 

PWV increases, the reflected wave may arrive earlier, in systole.  The reflected wave 

superimposes on the incident systolic wave, augmenting systolic blood pressure.  This 

early return of the reflected wave during systole results in a steepening of the diastolic 
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decay contour of the pressure waveform, reduced diastolic blood pressure and widening 

of the pulse pressure.[70] The proportion of this augmented pulse pressure that results 

from wave reflection is termed the augmentation index (AIx). Therefore, aortic PWV, 

peripheral wave reflection from resistance arteries and pulse pressure are directly 

related. An example of the central aortic waveform is shown in figure 1.5. 

Figure 1.5: 
The central (aortic) pressure waveform consists of an incident wave, generated by systolic left ventricular 
ejection, and a reflected wave, from impedance points of the peripheral arterial tree. Haemodynamic 
parameters are derived by analysis of the central aortic pressure wave. T0 indicates the time at the start of 
the waveform; T1, duration from start of waveform to the first peak/shoulder (incident pressure wave); T2, 
duration from start of waveform to the second peak/shoulder (reflected pressure wave); ED, ejection 
duration, or duration from start of waveform to closure of the aortic valve (incisura); SP, central aortic 
systolic pressure; DP, central aortic diastolic pressure; P1, P1 height difference between the minimum 
pressure and the pressure at the first peak/shoulder (T1); augmentation (P), difference between maximal 
pressure (central aortic systolic pressure) and pressure at the fist peak/shoulder (P1 height); PP, pulse 
pressure; and AIx, augmentation index. Figure from Williams et al, 2006.[71] 
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In an attempt to characterise the properties of resistance vessels, i.e. points of impedance 

mismatch and wave reflection, more advanced models of the circulation have been 

developed.  Initial work by Hales and Frank [61, 62] on windkessel models of the 

circulation provided the building blocks for development of these more advanced 

models. 

Flow within a blood vessel is determined by two factors: 1) the difference in pressure 

between both ends of the vessel, i.e. the pressure gradient forcing blood through the 

vessel; and 2) the resistance of the vessel to flow.  In a two-element windkessel model, 

these two factors are described in terms of an electrical circuit, as a resistor and an 

inductor.  The human circulatory system is clearly far more complex than a simple two-

element model, and the concept was developed accordingly.  A third-order windkessel 

model was proposed by Watt et al in 1976 [72] and includes two capacitors in the 

circuit, representing the total compliance of proximal large arteries, and distal small 

arteries, termed C1 and C2, respectively. 

Cohn and colleagues combined this electrical analogy of the circulation with analysis of 

the arterial pressure waveform, in particular the diastolic portion of the waveform.  They 

analysed the diastolic waveform in terms of two components. 1) Diastolic decay of the 

incident wave representing elastic recoil of the proximal, large arteries.  This is termed 

capacitive compliance, or C1. 2) Fluctuations of the diastolic waveform due to reflected 

waves from small, peripheral resistance vessels.  This is termed oscillatory compliance, 

or C2 (figure 1.6).[73] 
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Figure 1.6: 
Modified windkessel model used for analysis of vascular properties. C1 indicates capacitive compliance; 
C2, oscillatory compliance; R, systemic vascular resistance; L, inertia of the blood; P1, proximal pressure; 
and P2, distal pressure.  Figure adapted from Cohn J et al, 1995.[73] 
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1.5.4 Clinical significance of arterial stiffness 

There are many factors that affect arterial stiffness in vivo.  The proportion of elastin to 

collagen fibres in the vessel wall is extremely important, with the number and integrity 

of elastin fibres being closely related to the elastic properties of the aorta and major 

branches.[74] Another factor which must be considered when evaluating arterial 

stiffness is the distending pressure of blood within the vessel lumen. With increasing 

pressure, there is increased recruitment of less elastic collagen fibres in the vessel 

wall.[75] Therefore, increased distending pressure, for example in systolic hypertension, 

results in increased arterial stiffness through two mechanisms: 1) increased distending 

intra-luminal pressure; and 2) arterial remodelling, with thinning and fragmentation of 

elastin fibres, which are eventually replaced by collagen, fibrosis and in advanced 

stages, calcification.[76, 77]  This process results in a positive feedback loop of 

increased pressure resulting in increased stiffness from vessel distension and arterial 

remodeling, elevation of PWV, early return of reflected pressure waves, further 

augmentation of systolic pressure and vascular damage (figure 1.7).[70] 

Other important influences on arterial stiffness include the bulk and tone of smooth 

muscle in the vessel wall, the latter being partly controlled by endothelium [78] and 

neurohumoral factors.[79]  As the body ages, the aorta undergoes significant structural 

change.  With increasing age, there is a linear relationship with elevation of the systolic 

blood pressure in association with reduction of the diastolic blood pressure and widening 

of the pulse pressure.[80]  Pulse pressure is related to the development of surrogate 

markers of cardiovascular risk, such as LVH.[81]  Pulse pressure itself is an independent 
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predictor of cardiac events, as evidenced by data from the Framingham study [82, 83] 

and from large longitudinal studies in France [84] and Germany.[85] As with PWV, 

pulse pressure rises with age [80] and is an important factor in the development and 

clinical course of cardiovascular diseases, including heart failure.[86-88] A landmark 

study comparing pulsatile haemodynamics non-invasively between patients with HF-

RSF and controls without heart failure, was performed by Mitchell et al.[89] This study 

demonstrated that patients with HF-RSF have both wider pulse pressure and increased 

characteristic aortic impedance (termed Zc – a measure of proximal aortic stiffness) 

compared to controls, indicating that properties of the arterial tree are likely to be 

implicated in the pathophysiology of heart failure.  

Perhaps unsurprisingly, PWV has also been shown to be an independent predictor of 

cardiovascular risk.  Blacher et al demonstrated that elevated PWV predicts 

cardiovascular mortality in patients with end-stage renal disease.[90]  Pulse wave 

velocity also predicts cardiovascular events in those with traditional cardiovascular risk 

factors, such as patients with hypertension,[91] diabetes,[92] and in subjects over 70 

years of age.[93] 

Analysis of diastolic pressure waveforms has shown that diabetes is associated with 

abnormal peripheral arterial function,[94] and that elderly subjects display abnormalities 

of both central and peripheral arterial function.[95]  There are, as yet, no data on the 

ability of diastolic pressure waveform analysis to predict cardiovascular outcomes. 
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Figure 1.7: 
Positive feedback loop indicating the pathogenesis of arterial stiffness. Figure adapted from Dart AM, 
Kingwell BA, 2001.[70] 
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1.5.5 Assessment of arterial stiffness 

There are many ways of assessing arterial stiffness in vivo, both invasively and non-

invasively.  In recent years there has been much interest in the non-invasive assessment 

of arterial function, particularly in view of the risks to patients associated with invasive 

instrumentation.  Non-invasive assessment of arterial stiffness lends itself to a wide 

range of uses in the research arena, and there has been a large amount of literature 

published in this area, as reviewed by Oliver and Webb.[96]  In a joint venture of the 

European Society of Cardiology and the European Society of Hypertension, the 

European Network for Non-invasive Assessment of Large Arteries was formed and has 

reviewed methods currently used to assess arterial stiffness non-invasively, deeming 

carotid-femoral PWV to be the ‘gold standard’ method.[67]  In view of the correlation 

between increased arterial stiffness and increased risk of cardiovascular events, non-

invasive assessment of arterial stiffness is gathering momentum as a means of estimating 

cardiovascular risk in the clinical setting. 

 

1.5.6 Arterial endothelial function – relevance to heart failure 

As demonstrated nearly 40 years ago by Zelis et al [97] patients with heart failure have 

impaired peripheral vasodilatation in response to various stimuli.  Over the years, it has 

become apparent that arterial endothelial dysfunction plays an important role in the 

attenuation of peripheral vasodilatation observed in heart failure patients.[78] Arterial 

endothelial dysfunction has been well documented in HF-RSF [98-102] and is due to 

multiple factors, including maladaptive overactivity of the RAAS system,[79] 
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circulating endothelin [103] and oxidant stress.[18, 104, 105]  The vascular endothelium 

is integral to maintaining normal vessel tone and function and, therefore, influences 

arterial stiffness.[76]  It could be argued that abnormal arterial endothelial function 

increases arterial stiffness and may adversely affect ventriculo-vascular interaction: a 

probable key factor in the pathophysiology of HF-PSF.  Impaired arterial endothelial 

function is associated with reduced arterial compliance in older individuals,[106] which 

may be relevant in patients with HF-PSF who tend to be elderly.  However, no such 

studies have been performed in subjects with HF-PSF and whether or not HF-PSF is 

associated with arterial endothelial dysfunction is not known.  

 

1.5.7 Methods of assessing arterial endothelial function 

There are several methods available for the assessment of arterial endothelial function.  

Much of our original information about vascular function, including the role of arterial 

endothelial function, was obtained with in vitro (or ex vivo) studies of blood vessels 

mounted on strain gauges and exposed to vasoactive agents.  This method was used to 

demonstrate that vascular endothelium plays a role in vasodilatation [107] and that 

endothelium-derived relaxing factor, later proven to be nitric oxide, is the key 

endogenous vasodilating agent released by vascular endothelium.[108] A related 

method, termed wire myography, has been used more recently using human vessels 

taken from patients with cardiovascular diseases, such as heart failure and coronary 

artery disease.[109] 
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In vivo studies of vascular function obviously have the advantage of providing 

information on ‘real life’ arterial endothelial function in the context of the disease 

process under investigation. 

The most widely used technique involves cannulation of the brachial artery and intra-

arterial infusion of vasoactive agents, most commonly the endothelial-dependent 

vasodilator acetylcholine and the endothelial-independent vasodilator sodium 

nitroprusside, combined with forearm venous occlusion plethysmography to assess 

changes in forearm blood flow.[100-102, 110] 

An alternative method of measuring changes in forearm blood flow is referred to as 

flow-mediated dilatation. Flow-mediated dilatation can be measured with a variety of 

techniques, one of the commonest being high fidelity ultrasound of the brachial or radial 

artery.  Changes in diameter of the forearm resistance arteries correspond closely to 

forearm blood flow.  This technique can be used with post-ischaemic reactive 

hyperaemia, which is predominantly influenced by arterial endothelial function,[99] or 

with intra-brachial infusions of endothelium-dependent and –independent 

vasodilators.[111] 

Another non-invasive method of assessing endothelial function involves administering 

vasoactive agents, typically acetylcholine and sodium nitroprusside, to the 

microvasculature of the skin using low voltage electrical current.  This method of drug 

delivery is known as iontophoresis.  The corresponding vasodilatory effect is then 

measured with Laser Doppler imaging, with increased flow of red blood cells during 

vasodilation giving higher intensity Laser Doppler readings, or ‘flux’.[112] In the 
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literature this technique of measuring microvascular responses to vasoactive agents is 

termed ‘Laser Doppler iontophoresis’, ‘Laser Doppler fluximetry’ or ‘Laser Doppler 

flowmetry’ and has been used to assess microvascular endothelial function in patients 

with HF-RSF [113] and in patients with various cardiovascular risk factors.[114-116]  

Laser Doppler iontophoresis has been shown to be reproducible [117] and results 

correlate well with those obtained by alternative methods of measuring arterial 

endothelial function, such as wire myography [118] and flow-mediated dilatation.[116, 

119] 

 

1.5.8  Venous capacitance 

The venous system has been studied far less than the arterial system in cardiovascular 

research.  As a result, there is limited information on the role of the venous system in 

cardiovascular disease.  The venous system is best described in terms of pressure-

volume relationships. 

Venous capacitance refers to the ability of the venous bed to increase in volume in 

response to pressure.  Venous capacitance is predominantly influenced by two factors: 

1) Intra-luminal venous pressure and the corresponding effect on vessel wall tension.  

Veins are thin-walled and extremely distensible at low pressures.  However, at the peak 

of the pressure-volume curve veins become less compliant and the curve plateaus out 

(figure 1.8).[120] 
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2) Changes in venous tone.  Venous tone is actively controlled by mural smooth muscle, 

which in turn is influenced by venous endothelium.  These mechanisms are discussed in 

more detail in section 1.5.10. 

Most of the circulating volume lies in the venous bed, which acts as a capacitance 

reservoir.  Changes in venous capacitance can have dramatic effects on LV filling 

pressure, or pre-load, and stroke volume.[121]   

Assessment of venous capacitance has predominantly been performed by measuring 

changes in either upper or lower limb volume in response to occluding venous return 

from the limb.  The assumption being that changes in volume will be attributable to 

venous distension and pooling, as bone and muscle have a relatively constant volume at 

rest. 

This investigative technique is termed venous occlusion plethysmography.  Essentially, 

circumferential changes in limb circumference during venous congestion are measured 

and pressure/volume data is extrapolated to give a measurement of venous capacitance.  

The basic principles of performing venous occlusion plethysmography in the limbs were 

first described by Hewlett and van Zwaluwenburg in 1909 [122] and have become more 

sophisticated over time.  Changes in limb circumference were originally recorded using 

a fluid-filled cuff to enclose the whole forearm.  The rise in forearm volume caused 

deflection of a column of water that was then measured.  In the late 1940’s, a mercury-

filled rubber gauge was developed to measure changes in limb circumference.  The 

gauge forms part of a constant current electrical circuit and will provide a recordable 
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linear output that responds to tension on the gauge.  This technique was introduced by 

Whitney [123] and further developed by Hokanson and colleagues.[124] 

More recently, radionuclide plethysmography has been developed.  Although technically 

more challenging, radionuclide plethysmography facilitates the assessment of multiple 

vascular beds, such as pulmonary and splanchnic, in addition to the vasculature of the 

upper and lower limbs.[120] 
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Figure 1.8: 
Relationship between trans-mural pressure and volume in veins, demonstrating marked compliance at low 
pressure but relatively low compliance at higher pressures. Figure adapted from Schmitt M et al, 
2002.[120]
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1.5.9 Venous capacitance – relevance to heart failure 

Venous capacitance has been studied in the context of HF-RSF.  Reduced venous 

capacitance is associated with reduced exercise capacity in patients with HF-RSF.[125]  

Reduced venous capacitance has also been demonstrated to correlate with more severe 

symptoms of heart failure and elevated pulmonary artery pressure in patients with HF-

RSF.[126]  There are also data, from canine models of heart failure, to suggest that 

reduced LVEF can induce marked baroceptor-mediated venoconstriction resulting in a 

dramatic increase in LVEDP.[127]  Frenneaux’s group have completed multiple studies 

using radionuclide plethysmography to assess venous function in patients with HF-RSF 

and in normal subjects.  They have demonstrated that venous capacitance responds 

appropriately to endothelial-dependent vasodilatation, despite evidence of impaired 

arterial endothelial function.[98]  Their data also show that venous capacitance is under 

the control of natriuretic peptides both in patients with HF-RSF [128] and in healthy 

subjects,[129] but that exogenous aldosterone has little effect on venous capacitance in 

HF-RSF.[130] 

Reduced venous capacitance may also play an important role in the pathophysiology of 

HF-PSF.  Patients with HF-PSF are more sensitive to the effects of vasodilators and 

diuretics on LV filling pressure, suggesting that venous capacitance is reduced.[131, 

132]  Although there is evidence to support the theory that changes in venous 

capacitance can influence both symptoms and LVEDP in HF-RSF, there have been no 

studies of venous capacitance in patients with HF-PSF.   
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1.5.10 Venous endothelial function 

The most accurate method of assessing venous endothelial function is with the dorsal 

hand vein technique, introduced by Nachev, Collier and Robinson in 1971 [133] and 

modified by Aellig ten years later.[134] 

This technique involves placing a sensor, attached to a linear variable transformer, 

directly over a dorsal hand vein.  The vein is then cannulated to allow vasoactive 

substances to be administered locally.  The venous return from the limb is occluded 

intermittently and compliance of the vein during venous congestion is measured.  In this 

manner, the effects of vasoactive drugs on venous compliance can be assessed in real 

time.[135, 136]  By using endothelium-dependent and –independent vasodilators, a 

measure of venous endothelial and vascular smooth muscle function can be 

derived.[137]  Most studies using the dorsal hand vein technique have been carried out 

in healthy adults.  Some of these studies have focused on the effects of vasoactive agents 

which are potentially important in the pathophysiology of HF-RSF, such as angiotensin I 

and II,[138] endothelin,[139] atrial natriuretic peptide [140] and norepinephrine.[141]   

A few groups have performed dorsal hand vein studies in patients with HF-RSF.  Love 

et al characterised the venoconstrictive effects of endothelin receptor agonists in patients 

with HF-RSF.[142]  Dzeka et al demonstrated that patients with HF-RSF have venous 

endothelial dysfunction and an exaggerated venoconstriction response to prostaglandin 

inhibition.[143]  It has also been shown that HF-RSF patients display marked 

venoconstriction in response to neuropeptide Y, a sympathetic neurotransmitter, in 

comparison with healthy controls.[144] 
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The venous endothelium plays an important role in maintaining venous tone and, 

therefore, modulates venous capacitance.  Previous studies suggest that HF-RSF is 

associated with venous endothelial dysfunction.  The venous endothelium has never 

been studied in patients HF-PSF and therefore it is not known whether or not venous 

endothelial dysfunction plays a role in the pathophysiology of HF-PSF. 

The interaction of the vascular system with the heart is dynamic and complex.  

Abnormal vascular function, and increased arterial stiffness in particular, has been 

shown to adversely affect left ventricular morphology and function, for example the 

development of LVH in systolic hypertension.  As LVH and LV diastolic dysfunction 

have been associated with HF-PSF, it is possible that abnormal vascular function leads 

to the development of HF-PSF.  However, the role of vascular dysfunction in the 

pathophysiology of HF-PSF has not yet been established. 

 

1.6 Summary 

 

Heart failure is a clinical syndrome that can occur in the presence of reduced or 

preserved LV systolic function.  The investigation of the pathophysiology of HF-PSF to 

date has answered some questions about potential mechanisms involved but the subject 

remains an area of controversy and debate.  From reviewing the evidence available, 

diastolic dysfunction of the left ventricle appears to play a key role in the development 

of heart failure in these patients, as HF-PSF subjects usually have abnormalities of LV 
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relaxation and filling on invasive assessment.[39]  However, the idea that HF-PSF is 

purely due to diastolic dysfunction has been challenged.  The main basis for questioning 

the ‘diastolic heart failure’ theory is that parameters of diastolic function vary widely 

depending on loading circumstances of the left ventricle and do not always correlate 

with presence of heart failure in population-based studies.[42] 

An alternative theory is that impaired vascular function adversely affects LV 

performance and ultimately leads to development of the heart failure syndrome. 

There are some data to support the hypothesis that HF-PSF is causally associated with 

impaired ventriculo-arterial interaction: both increased stiffness of the left ventricle 

during systole and reduced arterial compliance have been demonstrated in previous 

studies.[54, 57] These results are perhaps not surprising, given that LV afterload, i.e. 

large artery compliance, has long been accepted as a determinant of LV mass and 

systolic and diastolic performance (section 1.4). 

I propose that the role of vascular function in the pathophysiology of HF-PSF has not yet 

been fully established.  Previous studies have suggested that reduced arterial compliance 

is frequently present in patients with HF-PSF, but the groups included for study have 

been heterogeneous, with a high percentage of patients having significant co-

morbidities.  Co-morbidities varied between groups compared and conditions which are 

known to be associated with reduced arterial compliance, such as diabetes mellitus and 

coronary heart disease, were not matched for during patient selection.  Concomitant 

medications were also extremely variable between groups, which may have confounded 

results from previous studies.  Furthermore, vascular function in HF-PSF and HF-RSF 



 64 

has not been directly compared.  It is therefore uncertain whether or not vascular 

dysfunction is secondary to the ‘heart failure syndrome’, with compensatory activation 

of neurohumoral and inflammatory systems resulting in abnormalities of vascular 

function and tone, or if vascular dysfunction is a primary pathophysiological mechanism 

in the development of HF-PSF.  There are other unanswered questions regarding the role 

of the vasculature in the pathophysiology of HF-PSF.  Mechanisms controlling arterial 

tone and function, such as endothelium and smooth muscle, have been extensively 

investigated in HF-RSF, but have never been evaluated in HF-PSF.  Most investigators 

of heart failure pathophysiology have neglected to study the venous bed.  Although there 

are some data on venous function in HF-RSF, venous capacitance has not been 

examined in HF-PSF and may be important in determining LV preload conditions.  To 

date, nothing is known about endothelial control of venous tone in HF-PSF.   

My hypothesis is that abnormalities of vascular function are more extensive and severe 

in HF-PSF than in HF-RSF, supporting the theory that vascular dysfunction plays a key 

role in the complex pathophysiology of HF-PSF.  The studies described in this thesis 

were designed to test this hypothesis. 
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Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 



 66 

2.1 Patient Selection 

 

This project conforms to the principles outlined in the Declaration of Helsinki and was 

approved by the West Medical Ethics Committee, Western Infirmary, Glasgow, UK.  

All patients gave written, informed consent. 

 

2.1.1 Study groups 

Three groups of patients were recruited: 

HF-PSF group 

Patients with coronary heart disease and HF-PSF. 

HF-RSF group 

Patients with coronary heart disease and HF-RSF. 

Control group 

Patients with coronary heart disease, preserved LV systolic function, and no evidence of 

heart failure. 

 

2.1.2 Definitions and inclusion criteria 

Heart failure was defined as:  

a) Relevant symptoms/ signs/ radiographic findings as indicated by Boston criteria (table 

2.1).[4] 

b) Clinical requirement for diuretic therapy  
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c) Increased plasma N-terminal pro b-type natriuretic peptide (NT-proBNP) 

concentration (section 2.2.8).  

Subjects had to fulfill all three criteria to be included in either heart failure group. 
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Table 2.1: 

Boston criteria for diagnosis of heart failure. Each parameter has a corresponding score. 
Scores are added to give a total.  If the total Boston score > 8, the diagnosis of heart 
failure is deemed probable. JVP: jugular venous pressure; PA: postero-anterior. 
 

 
 

CRITERION 
 

History 
 

Rest dyspnoea 
Orthopnoea 

Paroxysmal nocturnal dyspnoea 
Dyspnoea walking on flat 

Dyspnoea walking on incline 
 

Examination 
 

Pulse 91-110bpm 
Pulse > 110bpm 

JVP > 6cm 
JVP > 6cm + hepatomegaly or peripheral edema 

Rales – basilar 
Rales – basilar and elsewhere 

Wheeze 
Third heart sound 

 
Chest Radiograph 

 
Alveolar oedema 

Interstitial oedema 
Bilateral effusions 

Cardiothoracic ratio > 50% (PA film) 
Upper lobe venous diversion 

 

 
 

SCORE (if present) 
 
 
 

4 
4 
3 
2 
1 
 
 
 

1 
2 
2 
3 
1 
2 
3 
3 
 
 
 

4 
3 
3 
3 
2 
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Echocardiographic parameters: 

a) Preserved LV systolic function was defined as: 

LVEF of ≥0.50, measured by echocardiography.   

b) Reduced LV systolic function was defined as: 

LVEF of < 0.40, measured by echocardiography. 

Echocardiograms were performed by a single operator, who was blinded to subject 

group allocation, on a routine basis for clinical reasons in all subjects. Left ventricular 

ejection fraction was calculated using semi-quantitative assessment with 16 segment 

wall motion scoring.[145] 

 

Coronary heart disease was defined as: 

a) Previous myocardial infarction. 

AND/OR 

b) Symptoms of angina pectoris with exercise electrocardiogram or myocardial 

perfusion scan evidence of reversible myocardial ischaemia. 

AND/OR 

c) Evidence of significant coronary artery disease at coronary angiography. 
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2.1.3 Exclusion criteria 

a) Significant valvular heart disease (defined as at least moderate dysfunction of one or 

more heart valves at echocardiography). 

b) Atrial fibrillation. 

c) Diabetes mellitus. 

d) Renal failure (defined as serum creatinine  >250µmol/L). 

e) Uncontrolled hypertension despite antihypertensive therapy (systolic BP >140 or 

diastolic BP >90mmHg). 

 

2.1.4 Screening process 

All emergency admissions to the Western Infirmary Glasgow with a primary diagnosis 

of heart failure, admitted between August 2003 and June 2005, were screened for 

potential enrolment in the study. 

The central database comprising all attendees of the Heart Function Clinic at the 

Western Infirmary was screened for patients who could potentially be recruited into the 

study. 

In order to be eligible for the study patients had to be able and willing to undertake two 

whole mornings of vascular function studies.  Recruitment of subjects into the HF-PSF 

group was therefore slow as a high proportion of the patients were elderly, with multiple 

co-morbidities, and thus unsuitable.  A significant number of patients with HF-PSF also 

had specific exclusions such as diabetes mellitus or atrial fibrillation. 
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To speed up recruitment into the HF-PSF group I incorporated twice-weekly review of 

the echocardiography laboratory log at the Western Infirmary into my screening 

methods.  All patients whose indication for echocardiography was heart failure and who 

had preserved LV systolic function were screened for potential recruitment into the 

study. 

In total 935 patients were considered for recruitment into the HF-PSF group.  Of these 

935 patients, 803 were excluded.  The commonest reason for exclusion was inadequate 

objective evidence of heart failure to achieve a Boston score of >8.  The second 

commonest reason for exclusion was the presence of multiple co-morbidities and/or 

general frailty, making it impractical for patients to undergo two full mornings of 

vascular function studies.  The remaining exclusions were on the basis of pre-defined 

exclusion criteria, most frequently diabetes mellitus or atrial fibrillation.  Of the 132 

patients who were suitable for recruitment into the HF-PSF group, 112 declined to 

participate.  8 patients agreed to participate after initial invitation but later cancelled or 

did not attend for vascular function studies.  Therefore, 12 patients were successfully 

recruited into the HF-PSF group. 

Control subjects and HF-RSF subjects were identified and recruited by screening 

patients attending general cardiology and Heart Function clinics at the Western 

Infirmary. 
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2.2 Study Design 

 

This study was conducted in the Clinical Investigation and Research Unit (CIRU), 

Gardiner Institute, Western Infirmary, Glasgow, UK.  Subjects attended the CIRU on 

two occasions in the morning following a light breakfast. Subjects were asked to abstain 

from caffeine and tobacco for 12 hours and to omit their morning medication prior to 

their visit. 

 

2.2.1 Schedule of experiments 

First visit 

The experimental protocol was as follows: 

1)  An equilibration period of 30 minutes supine rest in a temperature-controlled (21-

23oC) vascular study room. 

2)  Applanation tonometry: carotid-femoral (aortic) PWV. 

3)  Applanation tonometry: radial arterial diastolic waveform analysis.  This experiment 

includes heart rate and brachial blood pressure measurement. 

4) Laser Doppler iontophoresis. 

5) Venous occlusion plethysmography. 

Second visit 

1) Equilibration period of 30 minutes supine rest in a temperature-controlled (21-23oC) 

vascular study room. 
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2) Aellig dorsal hand vein study.  

3) Venepuncture for NT-proBNP, renal biochemistry and total cholesterol. 

Both visits were conducted under identical conditions, as described above, one week 

apart. 

The duration of the first visit was approximately 4 hours and the duration of the second 

visit was between 3 and 4 hours.  Offline processing of raw data combined with 

subsequent statistical analysis took between 12 and 13 hours per patient studied.  

Therefore the total time to perform vascular function studies including processing and 

analysing the data was between 19 and 21 hours per patient. 

 

2.2.2 Aortic pulse wave velocity 

Aortic pulse wave velocity (PWV) was measured using a high fidelity micromanometer 

(SPC-301; Millar Instruments, Texas, USA) coupled with the SphygmoCor™ system 

(SphygmoCor™ BPAS; PWV Medical, Sydney, Australia). The body surface distance 

between points of maximal palpable pulsation at carotid and femoral arteries was 

measured in millimetres.  A hand-held micromanometer-tipped probe was applied to the 

skin overlying the carotid and femoral arteries in turn, at the point of maximal palpable 

pulsation. Arterial waveforms were recorded for a minimum of 12 seconds at both 

carotid and femoral sites. The pulse wave recorded at each point was gated to a 

simultaneous electrocardiogram. The time delay between initial wave reflection at the 

proximal (carotid) artery and the distal (femoral) artery was measured with the “foot-to-

foot” method to give a value in milliseconds (figure 2.1). The time difference between 
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successive arterial wave reflections and the body surface distance between the 

measurement points of carotid and femoral arteries were then assimilated by the 

software program to calculate PWV in metres per second (m/s). The quality control 

parameters integral to the SphygmoCor™ software were used to determine the quality of 

arterial waveform and ECG recordings. The foot of the waveform and the R-wave of the 

ECG must be easily identified from at least three successive beats at each measurement 

point to calculate PWV. The variation in heart rate between carotid and femoral 

recordings must be less than 6%. PWV measurements must have a standard deviation of 

10% or less. Three PWV measurements meeting these quality control criteria were 

recorded for each subject and averaged for analysis.  Pulse wave velocity data were 

transferred to a personal computer and collated using Microsoft Excel software for 

Windows (Microsoft Corp., Seattle, Washington) before undergoing statistical analysis 

with Prism Graphpad software for Windows (Graphpad Software Inc., San Diego, 

California, USA). 
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Figure 2.1: 
Aortic pulse wave velocity (PWV) calculation using the “foot-to-foot” method; the arterial pressure 
waveform at the carotid and femoral arteries is gated to the R-wave of the electrocardiogram (ECG). 
PWV = L / ∆ T (L = Length between surface measurement sites in mm, ∆ T = transit time in m/s.) 
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2.2.3 Arterial diastolic waveform analysis 

Arterial pressure waveform analysis was performed and central and peripheral arterial 

compliance, derived from a modified windkessel model, measured using the 

Hypertension Diagnostic incorporated (HDI) system (HDI pulse wave CR-2000; 

Hypertension Diagnostics Inc., Egan, Minnesota, USA).  As mentioned below, this 

device was also used to measure heart rate and brachial blood pressure in all subjects.  

An acoustic transducer was applanated over the radial artery of the dominant arm. A 

wrist stabiliser was positioned on the wrist to gently immobilise the wrist and stabilise 

the radial artery making it accessible for optimum placement of the arterial pulse 

pressure sensor. The pressure sensor was positioned over the radial artery and held in 

place using a holding and positioning device on a manually adjustable shaft. Pulse 

pressure waveforms were recorded by placing the device over the point of maximal 

arterial pulsation. The applanating pressure was adjusted by rotating the knob on the top 

of the device until optimal waveforms were obtained.  A sphygmomanometer cuff was 

placed around the upper non-dominant arm.  Heart rate, blood pressure and arterial 

pressure waveforms were recorded for 30 seconds and analysed with integrated HDI 

software.  Three measurements were taken and averaged for off-line analysis. Using 

curve-fit analysis of the diastolic pulse waveform and a modified windkessel model of 

the circulation, the HDI software calculates derived measurements of large (central or 

‘capacitive’) artery compliance, small (peripheral or ‘oscillatory’) artery compliance and 

systemic vascular resistance, along with averaged heart rate and brachial blood pressure 
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values.  Averaged values for large and small artery compliance, systemic vascular 

resistance, heart rate and blood pressure data was transferred to a personal computer and 

collated using Microsoft Excel software for Windows (Microsoft Corp., Seattle, 

Washington) before undergoing statistical analysis with Prism Graphpad software for 

Windows (Graphpad Software Inc., San Diego, California, USA). 

 

2.2.4 Heart rate and brachial blood pressure measurement 

The Hypertension Diagnostic Inc. system (HDI pulse wave CR-2000; Hypertension 

Diagnostics Inc., Egan, Minnesota, USA) was used to measure heart rate and blood 

pressure in all subjects.  As described above, heart rate was recorded for 30 seconds 

during each measurement of arterial pressure waveforms.  Also during this time, a 

brachial blood pressure reading was taken using a semi-automated sphygmomanometer.  

Heart rate and brachial blood pressure were recorded three times and averaged. 

 

2.2.5 Microvascular function 

Microvascular function was measured with Laser Doppler imaging and iontophoresis of 

endothelial-dependent and -independent vasodilators.[112, 146] 

Iontophoresis 

Two iontophoresis chambers were attached to the skin of the volar aspect of the right 

forearm by means of double-sided adhesive discs, avoiding hair, broken skin and 

superficial veins.  
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The iontophoresis chambers (ION 6; Moor Instruments Ltd., Axminster, UK) are 

constructed from Perspex with an internal platinum wire electrode. Following 

application to the skin, the chambers were connected to the anode and cathode 

connections of the iontophoresis controller. A digital multimeter was connected in 

parallel to monitor voltage across the chambers (figure 2.2). As a constant current source 

was used, resistance values were calculated from the recorded voltages using Ohm’s 

law. 

Control of current delivery has been pre-programmed into the software for the Laser 

Doppler imager such that the current is switched on at the beginning of a scan and 

remains on until the start of the following scan. The current then either remains on for 

the next scan or is switched off once the total charge has been delivered. Current 

duration was determined by the time taken to complete each scan (50s) multiplied by the 

total number of scans. To limit the iontophoresis dose, low currents were used. The 

protocol involves incremental current delivery of four scans at 5 microamps, four at 10 

microamps, four at 15 microamps and two at 20 microamps, giving a total charge of 

8 mC. 

Drugs used:  2.5 ml of 1% acetylcholine chloride (Sigma Chemical Co., St. Louis, MO, 

U.S.A.) was introduced into the anodal chamber; 2.5ml of 1% sodium nitroprusside 

(Sigma) was introduced into the cathodal chamber. The vehicle for both drugs was 0.5% 

sodium chloride solution. 
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Fluid was prevented from escaping by placing circular 32 mm coverslips over the 

chambers. Thus both agents were delivered simultaneously during each period of current 

administration. 

 

Perfusion measurements 

Non-invasive measurement of skin perfusion was performed with a Laser Doppler 

Imager (Moor Instruments Ltd.) equipped with a red laser (wavelength 633 nm, power 

1 mW, beam diameter 1 mm). The laser was scanned in a raster fashion over both 

chambers and through the coverslips. The backscattered light was collected by 

photodetectors and converted into a signal proportional to perfusion in arbitrary 

perfusion (flux) units that are displayed as a colour-coded image on a monitor (figure 

2.2). Perfusion measurements were obtained using the imager manufacturer’s image 

analysis software.  Analysis of perfusion measurements were performed off-line to yield 

the median flux value across approximately 700 measurement points. Twenty sequential 

scans were taken. The first was taken as a control prior to current administration, 

followed by the protocol of fourteen scans described above, followed by five scans with 

no current administration. The biological zero was measured with a single scan taken 

during occlusion of arterial blood flow by inflation of a sphygmomanometer cuff to 

supra-systolic levels (200 mmHg).  During off-line analysis, the colour-coded images 

were used to trace the two-dimensional area of each chamber in turn to generate a region 

of interest (ROI) for each scan.  The integrated software then calculated median flux 

values from acetylcholine and sodium nitroprusside chambers for each scan.  These raw 
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data were collated with Microsoft Excel software.  Professor William Ferrell, University 

of Glasgow, performed statistical analysis of the data using Microsoft Excel software, as 

discussed below. 

Using this method, I compared skin microvascular responses to endothelial-dependent 

(acetylcholine) and endothelial-independent (sodium nitroprusside) vasodilators. 
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Figure 2.2: 
A) Schematic of experimental setup. Acetylcholine (ACh) was placed in the anodal chamber and sodium 
nitroprusside (SNP) in the cathodal chamber. A digital voltmeter (V) was connected between the two 
chambers. B) Backscattered light intensity provides the photo image and the Doppler-shifted component 
provides the flux image. Flux is colour-coded with lowest perfusion in dark blue and highest in dark red.  
Figure from Ramsey et al, 2002.[112] 
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2.2.6 Venous capacitance 

Forearm venous capacitance was measured with venous occlusion plethysmography 

using mercury-in-silastic strain gauges (D.E Hokanson inc., Bellevue, USA) placed 

around the non-dominant forearm approximately 10 cm from the olecranon process at 

the point of greatest circumference.  Just prior to measuring venous capacitance, the 

hand was excluded from the circulation with a wrist cuff inflated to 220 mmHg.  Venous 

capacitance was measured using the equilibration method – inflating the upper-arm cuff 

to 45 mmHg for 2 minutes and 30 seconds.  Rapid cuff inflators were used to inflate the 

cuffs.  Venous capacitance was recorded 3 times in each patient and averaged.  The 

voltage readings from the plethysmograph were transferred through a MacLab/8E 

(ADInstruments, Hastings, United Kingdom) to a Macintosh computer (Apple 

Computers Inc., Cupertino, California, US) for analysis using Chart software (version 

3.2.8, ADInstruments) and then transferred to a personal computer for statistical analysis 

as detailed below.[147] 

 

2.2.7 Venous endothelial function 

Venous endothelial function was assessed using the modified Aellig dorsal hand vein 

technique.[134]  Figure 2.3 details a schematic representation of the experimental setup. 

A suitable dorsal hand vein was selected and cannulated with a 34-gauge butterfly 

cannula.  Physiological (0.9% NaCl) saline was infused into the dorsal hand vein at a 

rate of 0.3 ml/minute for 30 minutes. 
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After this period, the transducer was mounted over the selected vein via a tripod and 

venous dilatation in response to congesting pressure of 45 mmHg, applied with a 

brachial sphygmomanometer cuff, was measured.  This measurement was repeated three 

times and the average value used as the baseline range of venodilatation.  The saline 

infusion rate was then reduced to 0.2 ml/minute. A second line was added to the 

butterfly cannula and a concomitant infusion of phenylephrine was commenced to 

constrict the vein. The dosage of phenylephrine was increased as follows in a stepwise 

fashion between 1 and 2500 ng/minute.  Each dose was infused at 0.1 ml/minute for 6 

minutes and the venous response measured between the 4th and 6th minute. The 

phenylephrine dose that produced 70% venoconstriction from baseline (ED70) was 

determined and infused for the remainder of the study. To ensure stable 

venoconstriction, the ED70 was infused for 12 minutes with venous responses being 

measured between 4 to 6 and 10 to 12 minutes.  When stable venoconstriction had been 

established, the saline infusion was reduced further to 1 ml/minute and a third line was 

added to the cannula.  

To assess endothelial-dependent venodilatation, a concomitant infusion of acetylcholine 

was commenced and increased sequentially at the following doses: 0.1, 1, 5, 10, 50 

nmol/minute up to a maximum dose of 100 nmol/minute. Each dose was infused at 0.1 

ml/minute for 6 minutes, with the venous response being measured between the 4th and 

6th minute.  Acetylcholine causes endothelial-dependant venodilatation at low doses and 

smooth muscle-dependent venoconstriction at higher doses. The dose of acetylcholine 

was increased until venodilatation had peaked and then diminished to 20% below the 
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peak, at which point all infusions were discontinued and the butterfly cannula removed.  

The maximum venodilatation by acetylcholine was then calculated to give a measure of 

venous endothelial function.  The raw data were transferred to a personal computer and 

collated using Microsoft Excel software for Windows (Microsoft Corp., Seattle, 

Washington) before undergoing statistical analysis with Prism Graphpad software for 

Windows (Graphpad Software Inc., San Diego, California, USA). 
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Figure 2.3: 
Schematic of experimental setup for the Aellig modified dorsal hand vein technique. A) Shows the mobile 
core over the collapsed vein. B) Shows the core position after vein dilatation in response to inflation of a 
sphygmomanometer cuff around the upper arm to a congesting pressure of 45 mmHg. Movement of the 
core within the linear variable differential transformer (LVDT) is converted into an output in volts that is 
graphed to give venous dilatation measurements. 
Adapted from Aellig WH, 1981.[134] 
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2.2.8 Blood tests 

All serum samples were taken from the antecubital fossa with the patient in the supine 

position for a minimum of 30 minutes prior to venesection. 

Serum samples for urea and electrolytes and total cholesterol were analysed in the 

Biochemistry Laboratory at the Gartnavel General Hospital Glasgow, using standard 

methods. 

Blood samples for plasma NT-proBNP were taken directly to the research laboratory in 

the Western Infirmary and spun directly at 4˚C in a centrifuge for 15 minutes at 3,000 

rpm.  The supernatant was removed and put into separate freezer containers labelled 

with the patient subject number and stored in the freezer at -20˚C until the assays were 

analysed.   

The Roche Elecsys proBNP (Roche Diagnositics, East Sussex, England) immunoassay 

was used to analyse NT-BNP (proBNP). The Elecsys method used was an 

electrochemiluminescent immunoassay on an Elecsys 2010 autoanalyser.  This has a 

within-assay and between-assay variability of 2.7 and 3.2% respectively.  The measuring 

range of the assay is 5–35,000 pg/ml.  The analytical sensitivity of the assay is 5 pg/ml. 

From work conducted on a healthy population, the following 95th percentile figures were 

established as normal ranges dichotomised for age and sex (table 2.2).[148]  An elevated 

NT-proBNP was taken to be a value greater than the 95th percentile for each age and sex 

category. 
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The NT-proBNP immunoassays were completed by Dr Ian Morton who was blinded to 

clinical details, including LV systolic function.  The results were recorded on a 

Microsoft Excel spreadsheet separate from any other clinical details or patient 

identifiers. 

 
Table 2.2: 
 
95th percentile according to age and sex of NT-proBNP for a healthy population.  
 

 NT-proBNP concentration pg/ml 

Age (years) ≤ 64 65-69 70-74 ≥ 75 

Female 213.4 314.2 338.5 355.3 

Male 122.6 112.6 236 295.7 

 

 

 

 

 

 

 

 

 



 88 

2.3 Power Calculation, Data Collection and Statistical Analysis 

 

2.3.1 Power calculation 

Dr Chris Weir from the Department of Statistics at the University of Glasgow provided 

statistical advice on power calculation and data analysis. I performed the power 

calculation for this study using data from a prior validation study in our department 

using the SphygmoCor™ device to measure PWV (Dr Arthur Doyle – personal 

communication).  Ten subjects over 60 years of age with hypertension, normal renal 

function and no other manifest cardiovascular disease underwent carotid-femoral PWV 

assessment. Data from this study are appropriate for use in my power calculation as 

patients with hypertension are at risk of developing heart failure. The standard deviation 

of PWV in Dr Doyle’s sample was 0.45 m/s.  Therefore to detect a difference in PWV 

between groups of at least 0.66 m/s, with 90% power, using analysis of variance 

(ANOVA), eleven subjects per group were required. As multiple comparisons were to 

be made, Bonferroni post-test correction was to be employed in statistical analysis. 

Significance level was set at 5% (between group differences were considered significant 

if p value <0.05). 

 

2.3.2 Data collection and statistical analysis 

Data were collated with Microsoft Excel Software for Windows (Microsoft Corp., 

Seattle, Washington). Statistical analysis and figure preparation was performed using 
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Prism Graphpad software (Graphpad software Inc., San Diego, California, USA) apart 

from microvascular endothelial function data (Laser Doppler iontophoresis), which were 

analysed with Microsoft Excel.  Baseline characteristics of patients were summarised by 

mean (standard deviation) for continuous variables and by frequency for categorical 

variables.  Comparisons of continuous variables between groups were made using t-tests 

and ANOVA with Bonferroni correction for multiple comparisons. Data are presented as 

mean (standard deviation) in the text and as box (median and inter-quartile ranges) and 

whisker (range) plots in figures apart from microvascular and venous endothelial 

function data, which are presented as dose-response graphs.  

During analysis of Aellig dorsal hand vein data, it was apparent that there was marked 

variability in baseline vein diameter between subjects.  There was also significant 

variability in responses to pre-constriction with phenylephrine and subsequent dilatation 

with acetylcholine, both within and between study groups.  Although stable 

venoconstriction was achieved in all studies included in analysis, exact ED70 (70% 

constriction from baseline) was not achieved in all studies.  Similarly, there was 

variability of venodilatation in response to acetylcholine within and between groups, 

with some subjects achieving peak venodilatation at low doses of acetylcholine, and 

some requiring much higher doses to achieve significant venodilatation.  As a result, 

there was substantial variation of both baseline venoconstriction values, and of 

acetylcholine concentrations used to achieve venodilatation. Consideration of the raw 

data led to the decision to use percentage change venodilatation from baseline in 

response to acetylcholine for analysis.  The data are presented for each study group as 
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percentage venous dilatation from baseline at each dose of acetylcholine, and were 

compared using analysis of variance with Bonferroni post-test correction for multiple 

comparisons. 

When considering the patient baseline characteristics, it is clear that there are differences 

in potentially confounding variables between study groups. Specifically, there are 

differences in age and gender between groups, and the use of some medications such as 

nitrates, potassium channel activators and calcium antagonists varies between groups. 

Unfortunately the small sample size does not allow for multivariate analysis to correct 

for these variables. It must be acknowledged that less stringent inclusion/exclusion 

criteria would have resulted in recruitment of a larger sample size and the option to 

apply multivariate analysis if necessary. 
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Chapter 3 
 
 
 

Aortic Pulse Wave Velocity 
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3.1 Introduction 
 
 
As discussed in chapter 1, the cause of heart failure in patients with HF-PSF is an area of 

controversy. The most commonly held view is that most have diastolic dysfunction, i.e. 

a disorder of LV relaxation and filling, as opposed to contraction and emptying.[40, 149]  

More recently, it has been suggested that these patients have abnormal ventriculo-

vascular coupling, due to a combination of ventricular and vascular stiffening.[50, 53, 

54, 57, 59, 60, 150] 

An important determinant of LV afterload, and integral to ventriculo-vascular coupling, 

is large artery (aortic) stiffness.  As discussed in chapter 1, section 1.5.2, PWV has long 

been accepted as an excellent surrogate of aortic stiffness, and is generally considered to 

be the ‘gold standard’ method of assessing aortic stiffness non-invasively. 

Previous studies have compared vascular function between patients with HF-PSF and 

patients with systemic hypertension and/or normal subjects.  Co-morbidities such as 

diabetes mellitus and coronary heart disease were rarely matched between study groups 

during patient selection.  Vascular function has never been compared between HF-PSF 

and HF-RSF. 

In this chapter I present patient characteristics, blood pressure and heart rate data, and 

the results of PWV experiments. 
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3.2 Methods 

See chapter 2 for comprehensive documentation of methods employed in this study.  

 

3.2.1 Patient selection 

The aim of patient selection in this project was to allow comparison of vascular function 

between both common types of HF-PSF and HF-RSF and an appropriate ‘real-life’ 

control group.  Therefore all subjects selected had coronary heart disease and patients 

with co-morbidities known to adversely affect vascular function, such as diabetes 

mellitus, uncontrolled hypertension and renal failure, were excluded. 

Three groups of patients (n=12 each) were selected, matched for the presence of 

coronary heart disease: 1) HF-PSF, 2) HF-RSF and 3) controls with preserved LV 

systolic function and no evidence of heart failure. 

 

3.2.2 Heart rate and blood pressure measurement 

The heart rate and one brachial blood pressure measurement was recorded over a 30 

second time period using the HDI device, as described in chapter 2.  This measurement 

was performed three times for each subject and averaged. 
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3.2.3 Aortic pulse wave velocity measurement 

Pulse wave velocity was measured using the SphygmoCorTM applanation tonometry 

system as described in chapter 2. 

Briefly, a sensor probe was used to measure the arterial waveform at carotid and femoral 

arteries.  The upstroke of the arterial waveform was gated to the R wave of the ECG 

using the ‘foot-to-foot’ method to calculate transit time of the arterial pulse wave along 

the aorta, ∆T.  This value, together with the measured surface body distance in 

millimitres (mm) between both measurement points (carotid and femoral arteries), L, 

can be used to calculate PWV in m/s with the equation: PWV = L/∆T. 
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3.3 Results 

 
3.3.1 Patient baseline characteristics 
 
Patient baseline characteristics and concomitant medications are shown in table 3.1. 

Table 3.1: 
 
Baseline characteristics of subjects, summarised by mean (standard deviation) for continuous variables 
and by frequency for categorical variables. Diuretic use classified by type: Thiazide (T) or Loop (L). Five 
patients in the control group were taking thiazide diuretics as anti-hypertensives. 
LVEF – left ventricular ejection fraction; NYHA – New York Heart Association; ACEI – angiotensin-converting 
enzyme inhibitor; ARB – angiotensin receptor blocker; HMG CoA – 3-hydroxy-3methylglutaryl coenzyme A 
 

GROUP 
 

Control 
n=12 

HF-PSF 
n=12 

HF-RSF 
n=12 

 
 

Age  
Boston Score 
Cholesterol 
NT-proBNP 

Systolic BP (mmHg) 
Diastolic BP (mmHg) 

Mean BP (mmHg) 
LVEF (%) 

 
Sex M/F 

 
History of 

hypertension 
 

NYHA Class (n) 
 

MEDICATION 
ACEI/ARB 
B-Blocker 
HMG CoA 

Diuretic 
(Thiazide/Loop) 

Aspirin/Antiplatelet 
Nitrate 

Ca Channel Blocker 
K Channel Activator 

 
Mean (SD) 
69.7 (8.3) 

N/A 
4.62 (1.18) 

186.9 (113.4) 
135.4 (14.1) 
70.1 (20.5) 
91.9 (26.5) 
63.2 (4.8) 

 
5/7 

 
 

10 
 

N/A 
 

n 
10 
9 

12 
5 (T) 

 
12 
1 
6 
6 

 
Mean (SD) 
77.3 (5.9) 
13.4 (2.1) 

4.56 (1.12) 
894.2 (446.9) 

146.2 (7.1) 
69.5 (7.3) 
95.0 (6.2) 
62.7 (8.1) 

 
4/8 

 
 

10 
 

II (11) III (1) 
 

n 
10 
9 
11 

12 (L) 
 

10 
2 
2 
1 

 
Mean (SD) 
73.9 (6.3) 
12.8 (1.7) 
4.7 (1.26) 

1416.1 (1033.7) 
134.0 (13.5) 
72.8 (10.6) 
93.2 (8.5) 
28.0 (9.4) 

 
8/4 

 
 

9 
 

II (10) III (2) 
 

n 
12 
10 
12 

12 (L) 
 

12 
4 
2 
2 
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3.3.2 Blood pressure 

There were no significant differences in systolic, diastolic or mean blood pressure 

between patient groups (figures 3.1, 3.2, and 3.3, respectively). 

Pulse pressure was significantly higher in the HF-PSF group compared with the HF-RSF 

group but not compared with controls (figure 3.4). 

 
Figure 3.1: 
Systolic blood pressure compared by patient group with analysis of variance (ANOVA). 
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Figure 3.2: 
Diastolic blood pressure compared by patient group with analysis of variance (ANOVA). 
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Figure 3.3: 
Mean blood pressure compared by patient group with analysis of variance (ANOVA). 
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Figure 3.4: 
Pulse pressure compared by patient group with analysis of variance (ANOVA). 
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3.3.3 Heart rate 

Subjects with HF-PSF had a significantly lower mean heart rate than both HF-RSF and 

control subjects: 51.6 (6.1); 60.3 (8.5) and 60 (8) beats per minute respectively, p<0.05, 

(figure 3.5). 

 
 
Figure 3.5: 
Heart rate compared by patient group with analysis of variance (ANOVA). 
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3.3.4 Aortic pulse wave velocity 

Pulse wave velocity was not recordable in one male patient from the HF-RSF group. 

Pulse wave velocity was significantly higher in HF-PSF subjects than in both HF-RSF 

and control groups: 10.7 (1.1); 8.9 (1.7) and 8.6 (2.1) m/s respectively, p<0.05 (figure 

3.6).  

 

Figure 3.6: 
Aortic pulse wave velocity (PWV) compared by patient group with analysis of variance (ANOVA). 
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3.4 Discussion 

 

The proportion of women was higher in the HF-PSF group than in both the HF-RSF and 

control groups.  Patients with HF-PSF were older than controls, but not patients with 

HF-RSF. The use of medications known to modify vascular smooth muscle and 

endothelial function, particularly angiotensin-converting-enzyme inhibitors (ACEI), 

angiotensin receptor blockers (ARB), 3-hydroxy-3-methylglutaryl coenzyme A (HMG 

Co-A) reductase inhibitors, aspirin and beta-blockers, was similar between groups.  The 

main difference in medications between groups was the higher use of diuretics in both 

heart failure groups, compared with controls.  All three groups had similar total serum 

cholesterol levels.  NT-proBNP was significantly elevated in both the HF-PSF and HF-

RSF groups compared with controls (p<0.05), in keeping with the clinical diagnosis of 

heart failure (table 3.1).  There was a trend to a higher mean plasma concentration of 

NT-proBNP in patients with HF-RSF than was observed in the HF-PSF group (1416.1 

[1033.7] pmol/l versus 894.2 [446.9] pmol/l, respectively).  However, this difference 

was not statistically significant (p=0.12, t-test) and was accounted for by one outlier in 

the HF-RSF group, who had a plasma NT-proBNP concentration of 4319 pmol/L.  New 

York Heart Association functional class and Boston score were similar in both heart 

failure groups. 

Heart failure with preserved LV systolic function was associated with elevation of PWV, 

which is related to the properties of the vessel wall by the Moens-Korteweg equation, 
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and has long been accepted as a surrogate marker of arterial stiffness and vascular 

remodelling.[65] Increased PWV in HF-PSF has not previously been reported.  More 

importantly, PWV was significantly elevated in my cohort of patients with HF-PSF, 

compared to controls and patients with HF-RSF, despite all three groups of patients 

being matched for underlying arterial disease (i.e. having coronary heart disease), 

implying that HF-PSF is indeed associated with greater arterial stiffness. 

Patients with HF-PSF had a significantly higher pulse pressure than patients with HF-

RSF, independent of mean arterial pressure.  Pulse pressure is closely related to PWV.  

As discussed in section 1.5: when PWV rises, pulse waves are reflected from the 

peripheral vasculature to the proximal aorta earlier in the cardiac cycle, augmenting 

central arterial pressure during systole rather than diastole, resulting in elevated central 

pulse pressure.[70]  Pulse pressure is also influenced by height and age, with central 

pressure augmentation being more marked in shorter, older individuals.[151] This may 

be important in HF-PSF patients who are more likely to be older and female, as noted in 

epidemiological studies.[22, 23]  On review of the blood pressure data, patients with 

HF-PSF displayed a trend towards higher systolic blood pressure, accounting for the 

observed difference in pulse pressure. Another factor influencing pulse pressure, albeit 

to a lesser degree than PWV, is heart rate, with slower heart rates resulting in higher 

pulse pressures.[70]  My patients with HF-PSF had slower heart rates than the other two 

groups and this may have contributed to the elevated pulse pressure values observed in 

this particular cohort.   
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The PWV and pulse pressure data presented above support my hypothesis that patients 

with HF-PSF have increased aortic stiffness. Increased aortic stiffening is likely to be 

implicated in the pathophysiology of HF-PSF by causing widening of the pulse pressure, 

reduced coronary perfusion, increased LV wall stress, development of LVH and 

increased myocardial oxygen demand.  All of these factors may result in impaired 

ventriculo-vascular coupling, elevation of LVEDP and the clinical syndrome of HF-PSF. 
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 Chapter 4 
 
 
 
 

Analysis of Arterial Diastolic Pressure Waveforms 
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4.1 Introduction 
 
 
As I discussed in section 1.5.3, the arterial pressure waveform is a composite of incident 

and reflected waves.  Wave reflection occurs at points of impedance mismatch, such as 

vessel bifurcation and is also influenced by the diameter and contractile properties of the 

resistance arterial bed.  The point at which the reflected wave returns to the proximal 

aorta is dependent upon the speed with which the incident wave travels along the aorta, 

i.e. PWV.  In health the reflected wave arrives in the proximal aorta in diastole, 

augmenting diastolic pressure and facilitating coronary artery flow.  However, with 

progressive arterial stiffening PWV increases and the reflected wave arrives earlier in 

diastole and may arrive during systole.  The reflected wave superimposes on the incident 

systolic wave, augmenting systolic blood pressure.  This early return of the reflected 

wave during systole results in reduced diastolic blood pressure and widening of the pulse 

pressure.  As I mentioned in chapter 1, section 1.4.6, this phenomenon has profound 

detrimental effects on ventriculo-vascular coupling, which is likely to be implicated in 

the pathophysiology of HF-PSF. 

Using a modified windkessel model of the circulation, it is possible to analyse the 

contour of the arterial pressure waveform during diastole.  With this method, one can 

determine the relative contributions of incident and reflected waveforms making up the 

contour of the composite arterial pressure waveform during diastole.  At the beginning 

of diastole, following aortic valve closure, the incident arterial pressure wave decays as 

pressure in the proximal aorta falls.  The elastic recoil of the aorta determines the speed 
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of decay.  In healthy young individuals the aorta is rich in elastic fibres, buffering the 

incident wave and resulting in slow decay of the diastolic arterial pressure waveform.  

When the aorta loses elasticity, for example due to aging or systemic hypertension, its 

buffering effect is reduced.  As a result the incident wave rises sharply during systole 

and decays rapidly in diastole.  When described in the context of a windkessel model of 

the circulation, the elastic recoil of the large arteries during diastole is termed ‘capacitive 

compliance’. 

The second component of the arterial pressure waveform during diastole is the reflected 

pressure wave.  As mentioned above, the point at which the reflected wave arrives in the 

proximal aorta is dependent on the speed at which the incident wave is conducted along 

the aorta, the PWV, and the contractile properties of the peripheral vessels.  In the 

windkessel model of the circulation, the contractile properties of the peripheral vessels 

are termed ‘oscillatory compliance’. 

In this chapter, I will detail the results of diastolic pressure waveform analysis in patients 

with HF-PSF, HF-RSF and controls. 

 

4.2 Methods 

 

Full details of the methods employed in this study are documented in chapter 2. 

Arterial diastolic pressure waveform analysis was performed using an applanation 

tonometry technique and a specifically designed analysis and software system (HDI 
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Pulse wave CR-2000; Hypertension Diagnostics Inc.), as described in more detail in 

chapter 2.  Arterial waveforms were recorded from the radial artery over a 30 second 

time period.  This protocol was performed three times and the data analysed 

automatically by the integrated software. Using curve-fit analysis of the diastolic 

pressure waveform and a modified windkessel model of the circulation, the HDI 

software calculates derived measurements of large (central or ‘capacitive’) artery 

compliance, small (peripheral or ‘oscillatory’) artery compliance and systemic vascular 

resistance. 

 

4.3 Results 

 

4.3.1 Patient baseline characteristics 

Patient baseline characteristics along with heart rate and blood pressure data are 

presented in chapter 3. 

 

4.3.2 Arterial diastolic pressure waveform analysis 

Acceptable waveforms were not obtainable in one subject from the HF-RSF group. 

Derived values for large (central) arterial compliance (termed C1), small (peripheral) 

arterial compliance (termed C2) and systemic vascular resistance were compared 

between subject groups. No significant differences were detected between groups 

(figures 4.1, 4.2, 4.3. and table 4.1.). 
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Figure 4.1: 
Large artery compliance compared by patient group with analysis of variance (ANOVA). 
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Figure 4.2: 
Small artery compliance compared by patient group with analysis of variance (ANOVA). 
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Figure 4.3: 
Systemic vascular resistance compared by patient group with analysis of variance (ANOVA). 
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Table 4.1: 
 
Large artery compliance (C1), small artery compliance (C2) and systemic vascular resistance 
compared by patient group with analysis of variance (ANOVA). 
 
 

PARAMETER CONTROL 
n=12 

HF-PSF 
n=12 

HF-RSF 
n=11 

p-value 

 
 

Large Artery Compliance (C1)  
(ml/mmHg) 

Small Artery Compliance (C2)   
(ml/mmHg) 

Systemic Vascular Resistance 
 (dyne.s cm-5) 

 

Mean (SD) 
 

1.103 (0.42) 
 

0.029 (0.009) 
 

1705.8 (197.4) 
 
 

Mean (SD) 
 

1.004 (0.29) 
 

0.025 (0.009) 
 

1798.8 (336.3) 
 
 

Mean (SD) 
 

1.289 (0.55) 
 

0.033 (0.019) 
 

1822.1 (659.1) 
 
 

 
 

ns 
 

ns 
 

ns 
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4.4 Discussion 

 

Pulse wave analysis using the HDI device yielded values below the reported normal 

range for both large and small vessel compliance in all three patient groups, but no 

significant differences between groups.  I found this surprising in light of the PWV 

results in the same subject groups, demonstrating that HF-PSF subjects have 

significantly higher PWV, and therefore, arterial stiffness.   

The discrepancy between HDI and PWV results is likely to be due to the different 

applanation tonometry techniques.  The HDI technique has predominantly been used in 

previous studies to identify abnormalities of arterial compliance in patients at 

cardiovascular risk, e.g. diabetics,[94] or patients with established heart failure [152] 

compared with normal subjects.  It has also been employed effectively to demonstrate 

changes in arterial compliance in response to pharmacological therapies.[153, 154] 

The fact that we used the HDI device to compare patients who all had established 

atherosclerotic disease may have reduced the ability of the technique to differentiate 

between groups and resulted in no significant inter-group differences being detected.  

Another factor that may account for the discrepancy between PWV and HDI results is 

the data analysis method.  PWV is determined using a simple equation.  On the other 

hand, the HDI system uses curve-fit analysis of the diastolic pressure waveform and 

estimates other variables such as stroke volume and cardiac output from the systolic 

upstroke of the arterial pressure wave, heart rate, brachial blood pressure, age and body 
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surface area.  As I discuss in chapter 3, there are differences in age and gender between 

groups.  These differences are likely to confound the data upon which the HDI software 

bases calculations of stroke volume and cardiac output, and subsequent calculations of 

arterial properties.  Finally, a more simple explanation is that there may not have been 

enough patients studied to detect a difference between groups using this technique. 
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Chapter 5 
 
 
 

 
Microvascular Endothelial and Smooth Muscle Function 
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5.1 Introduction 
 
 
The vascular endothelium is integral to maintaining normal vessel tone and function and, 

therefore, normal ventriculo-vascular interaction.[76]  As mentioned in section 1.5.6, 

arterial endothelial dysfunction has been well documented in HF-RSF [98-102] and is 

thought to be secondary to neurohumoral and inflammatory activation.[155-157]  

Whether HF-PSF is associated with endothelial dysfunction is, however, unknown.  In 

this chapter I detail the results of microvascular function compared between patients 

with HF-PSF, HF-RSF and controls. 

 

5.2 Methods 

 

Iontophoresis combined with Laser Doppler imaging was performed as previously 

described in chapter 2. 

Acetylcholine chloride was introduced into the anodal chamber and sodium 

nitroprusside was introduced into the cathodal chamber.  Current applied to these 

chambers results in iontophoresis of both agents across the skin to exert their effects on 

the microvasculature.  During iontophoresis, a laser scanned both chambers to determine 

skin perfusion – a measure of vasodilatation. 

The data were analysed off-line and study groups were compared using repeated 

measures 2-way ANOVA (Microsoft Excel software for Windows). 
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5.3 Results 

 

5.3.1 Patient characteristics 

Baseline patient characteristics along with heart rate and blood pressure data are 

presented in chapter 3. 

 

5.3.2 Laser Doppler iontophoresis 

Vasodilatation in response to acetylcholine was similar in both heart failure groups.  

Both heart failure groups displayed an impaired vasodilator response to acetylcholine 

compared with controls (HF-RSF versus control p=0.0003, HF-PSF versus control 

p=0.00099, HF-PSF versus HF-RSF p=ns, ANOVA) as illustrated in figure 5.1. The 

heart failure groups also had similar peripheral vasodilatation responses to sodium 

nitroprusside.  These endothelium-independent responses were also significantly 

reduced when compared with controls (HF-RSF versus control p=0.012, HF-PSF versus 

control p=0.006, HF-PSF versus HF-RSF p=ns, ANOVA), as demonstrated in 

figure 5.2. 
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Figure 5.1: 
Peripheral microvascular responses to acetylcholine. Doppler measurement of vasodilatation is expressed 
as arbitrary perfusion units (PU). Cumulative charge in micro-Coulombs (mC) is the total charge delivered 
during iontophoresis. 
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Figure 5.2: 
Peripheral microvascular responses to sodium nitroprusside. Doppler measurement of vasodilatation is 
expressed as arbitrary perfusion units (PU). Cumulative charge in micro-Coulombs (mC) is the total 
charge delivered during iontophoresis. 
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5.4 Discussion 
 
 
The data presented in this chapter are the first to demonstrate that HF-PSF subjects have 

impaired microvascular responses to both acetylcholine and sodium nitroprusside.  This 

suggests that, rather than being solely a primary disorder of endothelial function, 

impaired control of vascular tone in HF-PSF also reflects significant vascular smooth 

muscle dysfunction.  It should be emphasised that all patients in this study had coronary 

artery disease, which is known to be associated with impaired peripheral vascular 

responses to vasodilators.[158] These data show that patients with HF-PSF have 

impaired peripheral microvascular vasodilator function over and above what would be 

expected with atherosclerotic disease alone.  These results also show that the degree of 

microvascular dysfunction is similar in both HF-PSF and HF-RSF patients, implying 

that the vascular abnormalities seen in heart failure are not exclusively due to reduced 

LV systolic function.  Apart from the difference in LV systolic function, the heart failure 

groups were otherwise well matched.  They had similar clinical symptoms and signs, as 

evidenced by NYHA class and Boston scores and both displayed significant 

neurohumoral activation, with equivalent elevation of plasma NT-pro-BNP 

concentration.  

Impaired responses to both endothelial-dependent and -independent vasodilators, have 

been previously demonstrated in some,[100, 113, 159-161] but not all [78, 101, 102] 

studies in patients with HF-RSF. One of the most important potential mechanisms 

causing endothelial dysfunction is oxidative stress, leading to production of reactive 
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oxygen species and inactivation of nitric oxide, a key factor in the control of vasomotor 

tone.[162]  There is a significant body of evidence suggesting that oxidative stress is an 

important pathophysiological process in the development of arterial endothelial 

dysfunction in HF-RSF.[18, 105]   Other factors, such as maladaptive overactivity of the 

RAAS [79] and circulating endothelin [103] have been implicated as potential causes of 

arterial endothelial dysfunction in HF-RSF.  The vascular endothelium is integral to 

maintaining normal vessel tone and function and, therefore, influences arterial 

stiffness.[76]  Impaired arterial endothelial function is associated with reduced arterial 

compliance in older individuals,[106] which may be relevant in patients with HF-PSF 

who tend to be elderly.  It is not yet known whether or not any of these 

pathophysiological processes are responsible for vascular endothelial and smooth muscle 

dysfunction in patients with HF-PSF 

Notwithstanding the mechanisms causing it, it would appear that the ‘heart failure 

syndrome’, regardless of aetiology, is associated with impaired peripheral microvascular 

vasodilator function.   

To date, peripheral vascular function in HF-PSF has not been extensively studied.  The 

results in this chapter show that patients with HF-PSF have profoundly reduced 

peripheral microvascular responsiveness.  In other words, HF-PSF is associated with a 

markedly impaired capacity to regulate vascular tone and function.  If this phenomenon 

is present across multiple vascular beds it may be implicated in the pathophysiology of 

HF-PSF by potentially reducing coronary artery flow, increasing peripheral 

vasoconstriction and impairing ventriculo-vascular coupling. 
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This raises the possibility that modification of vascular endothelial and/or smooth 

muscle function will prove to be a useful therapeutic strategy in the future management 

of patients with HF-PSF. 

Although it is possible that the mechanisms causing impaired vascular reactivity are 

similar in both types of heart failure, evidence is currently lacking.  Further studies of 

the mechanisms causing vascular endothelial and smooth muscle dysfunction in HF-PSF 

are required to clarify this issue. 
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6.1 Introduction 

 

In this chapter I present the results of venous function studies.  Results of both venous 

capacitance and venous endothelial function experiments are detailed and discussed. 

As I discussed in section 1.5.9, venous capacitance and control of venous tone are 

important determinants of LV pre-loading conditions that, if abnormal, could 

theoretically contribute to increased LVEDP and the clinical syndrome of heart failure. 

Venous capacitance has been studied in the context of HF-RSF, where reduced venous 

capacitance is associated with reduced exercise capacity in that patient group.[125] 

Reduced venous capacitance has also been demonstrated to correlate with more severe 

symptoms of heart failure and elevated pulmonary artery pressure in patients with HF-

RSF.[126]  There is no information regarding venous capacitance in patients with HF-

PSF.  Patients with HF-PSF are more sensitive to the effects of vasodilators and diuretics 

on LV filling pressure, suggesting that venous capacitance is reduced.[131, 132]  There 

have, until now, been no studies of venous capacitance in patients with HF-PSF.   

As mentioned above, reduced venous capacitance may be an important 

pathophysiological factor in the development of HF-PSF as there is evidence to suggest 

that venous capacitance influences LVEDP and symptoms in patients with HF-RSF.   

The venous endothelium is integral to control of venous tone and, therefore, venous 

capacitance.  The most widely accepted method of assessing venous endothelial function 

is the modified Aellig dorsal hand vein technique.  In chapter 1, I provide an overview 
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of the development of the dorsal hand vein technique and a summary of the data from 

previous studies of venous endothelial function.  Most of these studies were performed 

in healthy individuals, however there are some data indicating that patients with HF-RSF 

have impaired venous endothelial function.  Venous endothelial function has never been 

assessed in patients with HF-PSF. 

In the following text I will detail the methodology and results of venous capacitance and 

venous endothelial function measurement in subjects with HF-PSF, subjects with HF-

RSF and appropriate controls. 

 

6.2 Methods 

 

Full details of the methodology used to measure venous capacitance and venous 

endothelial function are described in chapter 2.  Briefly, forearm venous capacitance was 

measured with venous occlusion plethysmography using mercury-in-silastic strain 

gauges.  Just prior to measuring venous capacitance, the hand was excluded from the 

circulation with a wrist cuff inflated to 220 mmHg.  Venous capacitance was measured 

using the equilibration method – inflating the upper-arm cuff to 45 mmHg for 2 minutes 

and 30 seconds.  Venous capacitance was recorded three times in each patient and 

averaged.[147] 

Venous endothelial function was measured using the modified Aellig dorsal hand vein 

technique.[134]  A suitable dorsal hand vein was cannulated.  Baseline venous dilatation 
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in response to an upper arm sphygmomanometer cuff at 45 mmHg was measured.  The 

vein was pre-constricted with phenylephrine, infused in incremental doses until 70% 

venoconstriction from baseline was achieved (ED70).  While maintaining the 

phenylephrine infusion to achieve steady-state ED70, a concomitant infusion of 

acetylcholine was commenced and incremented to stimulate endothelial-dependent 

venodilatation.  As acetylcholine causes smooth muscle-dependent venoconstriction at 

high doses I pre-determined that each study would be discontinued when maximal 

venodilatation had peaked and then fallen by 20% of the maximum vein diameter 

achieved. 

 

6.3 Results 

 

6.3.1 Patient baseline characteristics 

Patient baseline characteristics along with heart rate and blood pressure data are 

presented in chapter 3. 

 

6.3.2 Venous capacitance 

Venous capacitance was higher in HF-RSF subjects compared to HF-PSF subjects: 1.75 

(0.41), 1.34 (0.34) ml/100 ml forearm volume respectively, p<0.05, ANOVA (figure 

6.1). 
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Figure 6.1: 
Venous capacitance (VC) compared by patient group with analysis of variance (ANOVA). 
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6.3.3 Venous endothelial function 

It was not technically possible to conduct a dorsal hand vein study on two patients from 

the HF-PSF group, and on 1 patient from each of the HF-RSF and control groups. There 

was marked variability in baseline vein diameter between subjects. There was also 

significant variability in responses to pre-constriction with phenylephrine and 

subsequent dilatation with acetylcholine, both within and between study groups.  

Although stable venoconstriction was achieved in all studies included in analysis, exact 

ED70 (70% constriction from baseline) was not achieved in all studies.  Similarly, there 

was variability of venodilatation in response to acetylcholine within and between 

groups, with some subjects achieving peak venodilatation at low doses of acetylcholine, 

and some requiring much higher doses to achieve significant venodilatation.  As a result, 

there was substantial variation of both baseline venoconstriction values, and of 

acetylcholine concentrations used to achieve venodilatation. Consideration of the raw 

data led to the decision to use percentage change venodilatation from baseline in 

response to acetylcholine for analysis.  The data are presented for each study group as 

percentage venous dilatation from baseline at each dose of acetylcholine, and were 

compared using analysis of variance with Bonferroni post-test correction for multiple 

comparisons. The number of subjects receiving each dose of acetylcholine is shown in 

table 6.1. 

Venodilatation in response to acetylcholine appeared to be similarly poor in both heart 

failure groups compared with controls, although there were no statistically significant 

differences in responses between groups (figure 6.2).  Both heart failure groups 
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displayed a trend towards more pronounced venoconstriction at high dose acetylcholine 

compared with controls. 

 
Figure 6.2: 
Venous dilatation with acetylcholine (ACh) following pre-constriction with phenylephrine compared by 
patient group. Responses are presented as percentage change from baseline with each dose of ACh. 
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Table 6.1: 
Number of patients per study group at each acetylcholine (ACh) dose. 
 
ACh dose (nmol/min) 0.1 1 5 10 50 100 

Number per study group 

          HF-PSF 

          HF-RSF 

          Control 

 

10 

11 

11 

 

10 

11 

11 

 

9 

11 

11 

 

9 

11 

9 

 

7 

9 

6 

 

4 

4 

3 
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6.4 Discussion 

 

Venous capacitance appeared to be lower in the controls than in patients with HF-RSF.  

Perhaps the more interesting finding was that the patients with HF-PSF had a similar 

venous capacitance to the controls and lower venous capacitance than patients with HF-

RSF.  As I mentioned in the introduction to this chapter, patients with HF-PSF are more 

sensitive to the effects of vasodilators and diuretics on LV filling pressures, suggesting 

an abnormality of venous capacitance.[131, 132]  Higher venous capacitance will result 

in a greater capacity of the circulation to accommodate a higher circulating volume 

without resulting in elevation of the LVEDP.[120]  It has been shown that patients with 

HF-RSF display a preserved venodilator response to atrial natriuretic peptide [128] and 

an appropriate venous capacitance rise in response to nitric oxide [98] despite 

impairment of arterial endothelial function.  Patients with HF-PSF may have a reduced 

venous response to endogenous nitric oxide leading to a failure to increase venous 

capacitance - which could then be considered to be a dysfunctional response.  Another 

possibility is that this cohort of patients with HF-PSF had higher resting venous pressure 

than patients with HF-RSF.  This would result in measurements starting at a steeper 

point on the venous compliance curve, and less change in venous volume in response to 

congesting pressure.   
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The data from the Aellig experiments suggest that patients with HF-PSF and HF-RSF 

may have impaired venous endothelial function compared to control subjects.  However, 

these apparently different responses to acetylcholine did not reach statistical 

significance. 

Both heart failure groups displayed a trend towards more pronounced venoconstriction 

at high dose acetylcholine compared with controls.  Despite the graph appearance, it 

must be borne in mind that not all patients in each group received high dose 

acetylcholine, due to the pre-determined end-point of a 20% fall from peak 

venodilatation being reached at lower doses of acetylcholine for most patients.  The 

point where the difference between heart failure groups and the control group is most 

apparent is during infusion of 100 nmol/minute acetylcholine.  The number of patients 

who received this dose in each group was 6 HF-PSF patients, 4 HF-RSF patients and 3 

control patients (table 6.1). 

The fact that it was not technically possible to perform a dorsal hand vein study in all 

patients, coupled with the variability of responses to both constricting and dilating 

agents, makes it difficult to draw firm conclusions from these results. 

The findings of these studies of venous function raise the possibility that patients with 

HF-PSF have abnormal venous capacitance and/or impaired venous endothelial 

function.  However, I do not claim to have defined the exact role of the venous bed in 

the pathophysiology of HF-PSF.  Although it remains possible that patients with HF-

PSF have impaired venous function, the venous capacitance results presented above are 

not conclusive and the Aellig experiments do not have enough statistical power to prove 
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or disprove the hypothesis that HF-PSF is associated with venous endothelial 

dysfunction.  Further, larger studies are required to investigate venous function in HF-

PSF. 
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Chapter 7 
 
 
 
 

Final Summary and Discussion 
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Heart failure has been recognised as an important public health burden for decades.  

Multiple epidemiology studies have indicated that a significant proportion of patients 

with heart failure have preserved LV systolic function.[22, 23]  Recently published data 

indicate that HF-PSF has increased in prevalence in the last 15 years,[26] and carries a 

similar prognosis to HF-RSF.[28]  Prior to these epidemiology studies, it was widely 

accepted that, in the absence of significant valvular heart disease, heart failure was 

caused by reduced LV systolic function.  The pathophysiology of HF-RSF has been 

extensively studied and the basic principles are easy to understand, reinforcing the 

widespread assumption that HF-RSF is the predominant form of heart failure. 

The realisation that approximately half of all patients with heart failure have preserved 

LV systolic function has caused controversy.  The pathophysiology of HF-PSF is not 

easily explained and has been studied far less than HF-RSF.  Acceptance within the 

medical community of HF-PSF as a condition in its own right has been slow, 

confounding the relative lack of research in the field.  In fact, increased awareness of the 

condition among doctors has probably contributed to the apparent increase in prevalence 

of HF-PSF over the last 15 years. 

Initial investigation into the pathophysiology of HF-PSF, most notably by Zile and 

colleagues, demonstrated that subjects with HF-PSF have marked abnormalities of LV 

diastolic function, i.e. LV relaxation and filling.[31]  On the basis of this important 

finding, heart failure without significant impairment of LV systolic function was termed 
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‘diastolic heart failure’, a definition which was widely adopted.  Despite the compelling 

evidence presented by Zile’s group, some questions remained regarding whether or not 

LV diastolic dysfunction is the only pathophysiological process causing HF-PSF. 

For example, diastolic dysfunction of the left ventricle is also very common in HF-

RSF,[43] suggesting that the volume overload associated with the heart failure syndrome 

may impair LV diastolic function, rather than LV diastolic dysfunction causing heart 

failure per se.  Supporting this view is the finding from several studies that non-invasive 

and invasive measures of LV diastolic function and pressure are load-dependent.[54, 

163]  This characteristic renders measures of diastolic function less reproducible, and 

there is poor correlation between LV diastolic dysfunction and the presence of heart 

failure in population-based echocardiography studies.[42] 

Another issue is that population-based studies have revealed the paradox that LV 

diastolic dysfunction is as common in males as it is in females, whereas HF-PSF is more 

common in women.[43] 

Although LV diastolic dysfunction is likely to play an important role in the development 

of HF-PSF, it is unlikely to be the only pathophysiological factor. 

An alternative explanation is that patients with HF-PSF have impaired ventriculo-

vascular interaction, i.e. stiffening of both the left ventricle and the vasculature, leading 

to elevation of LVEDP and the heart failure syndrome.  Results of some studies would 

appear to support this hypothesis as combined ventricular and arterial stiffening has been 

demonstrated in patients with hypertension and elderly females who, according to 

epidemiology data, are more likely to develop HF-PSF.[53] Kawaguchi et al conducted 
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one of the few studies investigating this concept in patients with HF-PSF.[54]  They 

demonstrated combined ventriculo-arterial stiffening in HF-PSF when compared with 

both hypertensive and normal individuals.  Although not conclusive, this growing body 

of evidence indicates that HF-PSF is unlikely to be purely a disorder of LV diastolic 

dysfunction, and may be due to a combination of ventricular and vascular abnormalities, 

as has been proposed by both Burkhoff and Kass.[59, 60]  

Increased arterial stiffness may result in abnormal ventriculo-arterial coupling, increased 

LV wall stress, reduced coronary flow and aggravate or even cause the clinical 

syndrome of heart failure. If this concept is expanded, one must consider that 

abnormalities of many facets of the vascular tree could potentially contribute to the 

development of heart failure. 

The vascular endothelium is integral to maintaining normal vessel tone and function and, 

therefore, normal ventriculo-vascular interaction.[76]  Vascular endothelial dysfunction 

has been well documented in HF-RSF.[98-102]  Whether HF-PSF is associated with 

endothelial dysfunction is, however, unknown.   

Additionally, reduced compliance of veins, leading to reduced venous capacitance, may 

also play an important role in the pathophysiology of HF-PSF.  Venous capacitance has 

been shown to be a determinant of LV pre-load conditions [121] and patients with HF-

PSF are particularly sensitive to the effects of vasodilators and diuretics on LV filling 

pressure, suggesting that venous capacitance is reduced.[131, 132]  If venous 

capacitance can influence LV pre-load conditions then it follows that control of venous 

tone, via endothelial and smooth muscle activity, could also exert an effect on LV pre-
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load and potential to develop heart failure. There have been no previous studies of 

venous function in patients with HF-PSF.   

The studies presented in this thesis were designed to further define the extent of vascular 

dysfunction in HF-PSF and to test the hypothesis that vascular dysfunction is more 

severe in HF-PSF than in HF-RSF and appropriate controls.  I aimed to investigate not 

only arterial stiffness and endothelial function, but also parameters of venous 

capacitance and endothelial function.  The studies were designed specifically to compare 

vascular function between patients with HF-PSF and HF-RSF.  I chose this method to 

determine whether or not vascular dysfunction is similar in both heart failure groups, 

suggesting that it is secondary to the heart failure syndrome regardless of aetiology, or 

more severe in HF-PSF, indicating that vascular dysfunction is potentially implicated in 

the aetiology of HF-PSF. 

As a control group, I recruited patients with coronary heart disease and preserved LV 

systolic function, rather than normal subjects.  It is extremely common for investigators 

to compare vascular function between patients with established cardiovascular disease, 

such as heart failure, and normal subjects.  This method is well recognised, but 

undoubtedly over-emphasises abnormalities of vascular function in the group under 

study.  I felt that for the purposes of this study it would be more appropriate to use a 

control group of patients at risk of developing heart failure, i.e. patients with coronary 

heart disease, who might also be expected to have endothelial dysfunction and/or 

abnormal arterial compliance.  This method of patient selection provides a comparison 

of vascular function between patients who are representative of contemporary clinical 
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practice, and will help to determine if HF-PSF is truly associated with vascular 

dysfunction, over and above what would be expected from coronary heart disease alone. 

The vascular experiments were chosen to provide a comprehensive, non-invasive 

assessment of both arterial and venous function. 

Previous studies have suggested that arterial stiffness is increased in HF-PSF, but arterial 

stiffness has never been compared between HF-PSF and HF-RSF, as investigated in this 

study.  I also aimed to investigate aspects of vascular function that have never been 

assessed in HF-PSF, such as arterial endothelial function, venous capacitance and 

venous endothelial function. 

The results proved interesting. Arterial stiffness, measured by aortic PWV, was 

significantly elevated in HF-PSF compared to both HF-RSF and control groups, despite 

all three groups of patients being matched for underlying arterial disease (i.e. having 

coronary heart disease), implying that HF-PSF is indeed associated with greater arterial 

stiffness. These data were consistent with the observation that patients with HF-PSF had 

a significantly higher pulse pressure than patients with HF-RSF, independent of mean 

arterial pressure.  In contrast, the results of arterial diastolic waveform analysis were not 

especially illuminating, with no significant differences in derived parameters of arterial 

compliance being detected between the three study groups.  This was surprising, as 

abnormal arterial compliance might be expected to be reflected in both increased PWV 

and abnormal arterial waveforms.  However, as I discuss in chapter 4, the complexity of 

the diastolic waveform analysis equation to derive measures of arterial compliance, 

coupled with the fact that all three groups had established arterial disease (coronary heart 
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disease), is likely to have reduced the ability of the technique to differentiate between 

groups in this study.  It may also be possible that a larger sample size was required to 

demonstrate true differences between groups. 

The Laser Doppler iontophoresis experiments revealed that HF-PSF subjects have 

impaired microvascular responses to both acetylcholine and sodium nitroprusside.  This 

suggests that, rather than being solely a primary disorder of endothelial function, 

impaired control of vascular tone in HF-PSF reflects significant vascular smooth muscle 

dysfunction.  Although a novel finding, subjects in the HF-RSF group displayed a 

similar pattern of microvascular dysfunction.  Therefore it is not certain if arterial 

smooth muscle and/or endothelial dysfunction is secondary to the inflammatory and 

neurohumoral activation associated with the heart failure syndrome, as has been 

suggested in studies of HF-RSF, [155-157] or a primary pathophysiological factor in the 

development of either form of heart failure.  It is possible that endothelial and arterial 

smooth muscle dysfunction is both cause (in HF-PSF) and effect (in HF-RSF) – 

reflecting different pathophysiologies in the two conditions 

Venous capacitance appeared to be lower in the controls than in patients with HF-RSF.  

An interesting finding was that patients with HF-PSF had a similar venous capacitance 

to the controls and lower venous capacitance than patients with HF-RSF.  As I outline in 

chapter 6, the low venous capacitance in patients with HF-PSF may be representative of 

failure to increase venous capacitance - which could then be considered to be a 

dysfunctional response.  Another possibility is that my cohort of patients with HF-PSF 

had higher resting venous pressures than patients with HF-RSF, resulting in 
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measurements starting at a steeper point on the venous compliance curve, and less 

change in venous volume in response to congesting pressure. 

The Aellig dorsal hand vein experiments provided some interesting information on 

endothelial control of venous tone.  Both heart failure groups appeared to have impaired 

venodilatation in response to acetylcholine compared with controls, however this trend 

did not reach statistical significance.  Unfortunately it was not technically possible to 

complete an Aellig study in the whole cohort of patients, resulting in relatively small 

numbers used for data analysis.  This makes it difficult to draw any firm conclusions 

about venous endothelial function in HF-PSF on the basis of the data presented in 

chapter 6. 

In conclusion, the studies presented in this thesis have added to current knowledge 

regarding the pathophysiology of HF-PSF.  After initially recognising HF-PSF as a 

separate form of heart failure and appreciating the epidemiology, we have begun to 

understand the complex pathophysiology of HF-PSF.  Previous studies have shown that 

there is strong association between HF-PSF and LV diastolic dysfunction. 

This study has reinforced the theory that HF-PSF is associated with increased arterial 

stiffness, which in combination with increased LV stiffness is likely to result in impaired 

ventriculo-vascular coupling.  This process is likely to be an important 

pathophysiological factor in the development of HF-PSF.  A novel finding presented in 

this thesis is that endothelial and smooth muscle control of arterial tone, measured with 

Laser Doppler iontophoresis, was impaired in both HF-PSF and HF-RSF.  This may 

indicate a similar primary pathophysiological process, or indeed a similar response to 



inflammatory and neurohumoral activation in heart failure. The studies of venous 

capacitance and endothelial function I have presented suggest that venous function may 

be abnormal in HF-PSF.  The venous function data are not conclusive but may provide 

stimulus for further research in this rarely investigated field. 

Further studies are required, not only to investigate the pathophysiology of HF-PSF, but 

also to seek effective therapies for this extremely common form of heart failure. 

Examination of arterial stiffness, endothelial function and venous function during 

different cardiovascular loading conditions could provide interesting information on the 

generation of symptoms in HF-PSF. This could be achieved by conducting vascular 

function studies during exercise or acute decompensated fluid overload. As regards 

treatment of HF-PSF, there is a paucity of data. The CHARM-Preserved trial showed 

that treatment with the angiotensin receptor antagonist Candesartan resulted in mild 

clinical benefit in HF-PSF.[164] Treatment of HF-PSF with angiotensin receptor 

antagonists is the subject of other large, randomised, controlled trials such as I-

PRESERVE (comparing Irbesartan with placebo) and full results are awaited.[165] 

Novel therapies for HF-PSF are also being developed. For example, compounds which 

break glycation cross-links can attenuate the development of both left ventricular 

hypertrophy and arterial stiffness, an attractive combination when one considers 

potential pathophysiological factors in the development of HF-PSF. These compounds, 

such as Alagebrium [166] and ALT-711 [167], have been investigated in small studies 

but are not yet ready for use in larger clinical trials. It is my hope that the studies 

presented in this thesis will stimulate future studies into this important area of heart 

failure research
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