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Abstract 

Background: Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are two 

distinct forms of chronic auto-immunity; understanding the transcriptomic 

profiles of key leukocyte subsets implicated in these arthritides could improve 

the diagnosis and treatment of patients. Current microarray analyses of samples 

derived from RA and PsA patients have examined the genetic profiles of whole 

blood or diseased tissue which, although informative, can mask the genetic 

contributions of individual cell types. Monocytes and macrophages are a cellular 

subset known to play a major role in PsA and RA through the production of pro-

inflammatory chemokines, cytokines and destructive proteinases.  

Aim: To define the transcriptome in CD14+ cells separated from the blood and 

synovial fluid of PsA and RA patients, and to then compare and contrast that 

signature in health and disease. Thereafter to define the relevant activities of 

selected novel moieties described in the foregoing analysis.  

Methods & Results: The transcriptomic profiles of healthy, RA and PsA CD14+ 

blood cells were remarkably similar - few genes could distinguish diseased from 

healthy CD14+ cells. Comparison of the genetic signature of the RA and PsA 

synovial fluid CD14+ cells revealed that just over 50% of the differentially 

expressed genes were shared between the two disease groups. Furthermore, 

analysing the canonical pathways in the synovial fluid cells compared to the 

matched peripheral blood of both patient groups surprisingly revealed Liver X 

receptor (LXR) activation pathway as the most significantly upregulated 

pathway: this pathway has been previously shown by our group to play a pro-

inflammatory role in arthritis.  

Examination of specific upregulated mRNAs in the synovial fluid CD14+ cells from 

both disease types revealed two novel genes that had not previously been 

associated with arthritis, the lysosomal enzyme legumain and the cell surface 

molecule plexin A1. Legumain was demonstrated to be present in RA and PsA 

CD14+ cells by RNA and protein analysis and was physiologically active. 

Incubation of CD14+ cells with patient synovial fluid under hypoxic conditions 

also potentiated legumain expression. Plexin A1 was confirmed to be expressed 

at the mRNA level within RA synovium. siRNA knockdown of plexin A1 suggested 
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that it may play a pro-inflammatory role within macrophages since subsequent 

treatment of these macrophages with LPS resulted in decreased TNFα 

production. However, investigations into the identity of the specific ligands for 

plexin A1 in arthritis, known as semaphorins, were inconclusive.  

I finally generated microarray data to evaluate the transcriptome of 

macrophages activated via cel contact with activated T cells. Such cells shared 

only a small percentage of genes with those dysregulated in the RA and PsA 

synovial fluid derived CD14+ cells suggesting that this model at the time points 

chosen may not be an appropriate in vitro representation of articular 

macrophages. An imaging system of this in vitro model was also established to 

visualise the dynamic nature of the T cell – macrophage interactions and 

demonstrated that variables such as duration or method of T cell activation 

could alter the number and duration of interactions between the two cell types.  

Conclusions: These studies demonstrate that the CD14+ cells isolated from the 

blood are similar transcriptomically between healthy controls and RA and PsA 

patients. The synovial fluid CD14+ cells from RA and PsA patients exhibit 

substantial overlap in terms of their genetic profile. Two novel molecules 

expressed by diseased patients namely plexin A1 and legumain have been 

identified and their preliminary characteristics in the context of synovitis have 

been defined.  
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TLR   Toll-like receptor 
TRAF   TNF receptor associated factor 
Treg   T regulatory cell 
TTCF   Tetanus toxin C fragment 
UPR   Unfolded protein response 
VASH1  Vasohibin 1 
VEGF   Vascular endothelial growth factor 
ZIA   Zymogen induced arthritis 
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1.1 Inflammatory Arthritis: Rheumatoid Arthritis and 
Psoriatic Arthritis 

The inflammatory arthritides compose a heterogeneous group of chronic 

inflammatory rheumatic diseases. The progressive joint inflammation and 

immune cell infiltration typically seen in these diseases leads to progressive and 

irreversible destruction of the cartilage and bone. Arthritis affects 1-3% of the 

general population and is projected to affect 67 million people by 2020 in the 

United States alone [1]. This disease is not only associated with significant 

healthcare costs but also severe physical limitations and disability within the 

individual [2]. Rheumatoid arthritis affects 0.5-1.1% of the population [3]. 

Psoriatic arthritis is another common inflammatory arthritis affecting 2-3% of the 

general population and occurring in 7-26% of psoriasis sufferers [4]. 

1.1.1 Definition and Classification 

Rheumatoid arthritis (RA) is a chronic symmetric polyarticular arthritis which 

primarily affects the small joints of the hands and feet [5]. It is characterised by 

inflammation of the joint lining and cellular infiltration into the joint, which 

subsequently causes damage and destruction of bone and cartilage. RA sufferers 

have a life expectancy decrease of 3 to 10 years compared to the general 

population [3]. The current accepted criteria for the classification of RA have 

been defined by the 1987 American College of Rheumatology (ACR) criteria 

outlined in Table 1.1 [6]. 
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Table 1.1 ACR classification criteria for rheumatoid arthritis 

 
A patient is diagnosed as having RA if they present with at least 4 of the 7 

criteria with the first four criteria being present for at least 6 weeks: 

1. Morning stiffness 

2. Soft tissue swelling in 3 or more joint areas 

3. Arthritic swelling of the hand joints 

4. Symmetrical presentation of arthritis 

5. Rheumatoid nodules  

6. Serum rheumatoid factor (RF) positive 

7. Radiographic changes including erosions or bony decalcifications. 

 

Psoriatic arthritis (PsA) is a (predominantly) seronegative inflammatory disease 

of joints, entheses and periarticular connective tissue in association with 

psoriasis [7]. Rheumatoid factor and anti-cyclic citrullinated proteins (anti-CCP) 

antibodies are seen in 4.7% and 7.6% of cases respectively [8]. PsA constitutes a 

subset within the spondyloarthropathy (SpA) group due to it sharing common 

clinical features with the other SpA diseases. Clinical, radiologic and familial 

evidence has indicated PsA as a distinct disease entity however basic research 

within this disease has been confounded by the absence of widely agreed-upon, 

validated disease criteria. Several classification criteria have been proposed by 

Moll and Wright [9], Vasey and Espinoza [10] and the European 

Spondyloarthropathy Study Group (ESSG) [11]. A large international study group 

identified as the classification criteria for psoriatic arthritis or CASPAR study 

group has since been used to construct new classification criteria [8] (see Table 

1.2). 
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Table 1.2 Classification criteria for psoriatic arthritis (CASPAR) 

 
To meet the CASPAR criteria a patient must have inflammatory articular disease 

(joint, spine or entheseal) with ≥ 3 points from the following categories (1 point 

each): 

1. Psoriasis (skin, scalp) 

2. Psoriasis in patient‘s history 

3. Psoriasis in family history 

4. Psoriatic nail involvement (now) 

5. Rheumatoid factor negative (determined by ELISA) 

6. Dactylitis (inflammation of an entire digit) (now) 

7. Dactylitis in patient‘s history 

8. Radiological signs of new bone formation adjacent to the joints  

 

1.1.2 Epidemiology 

Numerous population based studies have been performed on the incidence and 

prevalence of RA and indicate large differences between various communities. 

Studies performed in North America and Northern Europe have found the 

prevalence of RA to be 0.5-1.1% with an annual incidence of 29-38 per 100,000 

whereas lower prevalence of 0.3-0.7% were demonstrated in Southern Europe 

which had an annual incidence of 16.5 per 100,000 inhabitants [3]. In the UK the 

prevalence of RA is estimated to be 0.8% [12] with an incidence of 36 per 

100,000 in women and 14 per 100,000 in men [13]. There have been few 

prevalence studies in developing countries but those that have taken place 

suggest a significantly lower prevalence of RA than in North America and 

Northern Europe, of 0.1-0.5% [14].  

In comparison, fewer epidemiological studies have been performed on PsA 

possibly due to a previous lack of a widely accepted classification or diagnostic 

criteria. Prevalence is estimated at 0.1-1% [15] which increases in patients with 

psoriasis to 7-26% [4] but has been reported up to 30% in a Swedish study [16]. 

Few population based incidence studies have been undertaken on PsA however, 

the various incidence rates have been reported as 6 in 100,000 individuals in 

Finland [17], 6.59 in 100,000 in the USA [18] and 8 in 100,000 in Sweden [19]. In 

a study performed in Minnesota the age- and sex-adjusted incidence increased 
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from 3.6 (1970-1979) to 9.8 (1990-2000), reasons for this increased are unknown 

but may be due to better classification and diagnosis of the disease [20]. 

1.1.3 Clinical Features 

RA and PsA often present similar overlapping features of disease, as outlined in 

Table 1.3, such as the presence of rheumatoid factor which occurs in 80% of RA 

patients but also 4.7% of PsA patients [8]. Secondly, although PsA classically 

presents with an asymmetric distribution, symmetry has been detected in up to 

33% of patients with polyarticular disease [21].  The pattern of joint involvement 

is not fixed and in a 2 year follow up study of early PsA patients initially 

classified as polyarticular, 49% were subsequently classified as oligoarticular 

[22]. In addition psoriasis, which is a defining feature of PsA, develops after the 

rheumatological manifestations in 20% of patients or does not develop at all 

[23]. However, there are several differential features between the two diseases 

that aid in differential diagnosis: PsA shares features in common with the 

spondyloarthropathies such as HLA-B27 association which are not observed in RA 

[24-26]; also the involvement of the distal joints, spine involvement and the 

presence of enthesis are all typical clinical features specific to PsA [15]. 

Consequently, several factors must therefore be taken into account when 

distinguishing PsA from RA. 
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Table 1.3 Comparison of clinical features of RA and PsA 

 
Finding     RA    PsA 

Morning stiffness >1 hour    +++    + 

Standard mortality ratio   1.27 [27]   1.62 [28] 

Rheumatoid Factor    ++ (80%) [6]   +/- (4.7%) [8] 

Articular Features 

Symmetrical Arthritis   +++    +/- [21] 

Dactlylitis     -    +++ 

New bone formation near joints  -    +++ 

Affection of distal finger/toe joints -    +++ 

 

Extra-articular features  

Rheumatoid arthritis: 

Skin (Rheumatoid nodules, Vasculitis); Cardiac (ischemic heart disease) [29]; 

Respiratory (interstitial lung disease) [30]; Haematological (anaemia) [31] 

 

Psoriatic Arthritis: 

Skin (psoriasis, nail lesions 87% [32]); Ocular (uveitis [33]); Back pain [21]. 

 
 
 

1.1.4  Risk Factors 

The precise cause of RA or PsA is currently unknown, but it is believed to be a 

combination of numerous risk factors as well as disregulated inflammatory 

processes. 

1.1.4.1  Genetic Factors  

There is overwhelming evidence that the risk of developing RA or PsA is 

associated with genetic factors. 

1.1.4.1.1 First-degree relatives and twin studies 

A well established approach to assess and quantify the possible role of genetic 

factors and disease risk is to measure the concordance of diseases between 

related individuals. A highly heritable disease will have an increased prevalence 

in individuals related to the arthritis sufferer compared to the general 

population. A parameter used to measure this is the λR which is the ratio of the 



23 

prevalence of a disease among first-degree relatives compared to the general 

population. The λR for RA is 2-17 [34] which is a modest value compared to a 

highly penetrant diseases such as cystic fibrosis which can have a λR value of 500 

[35]. A recent study in Sweden demonstrated an increased relative risk (the 

probability of the disease occurring) of RA in siblings of affected individuals as 

4.6 and in children as 3.0 [36]. The λR for PsA was determined to be 30.8 in a 

first-degree relative study of 100 PsA patients in Canada [37] and 47 in a similar 

study conducted in the UK [38]. A 2009 Icelandic study also demonstrated that 

first-degree relatives had a 40-fold increased risk of developing PsA whilst 

second-degree relatives had a 12-fold increased risk [39]. Overall these studies 

indicate that PsA a more heritable disease in first- and second-degree relatives 

compared to RA. 

Twin studies are a powerful tool to understand the genetics of a disease. An 

increased incidence of disease amongst monozygotic (identical) twins compared 

to dizygotic twins offers evidence that inherited factors predispose to disease 

[35]. In RA two major twin studies have been undertaken using a Finnish [40] 

cohort and a British cohort [41] and the combined data from these studies 

suggests that RA is approximately 65% heritable [42]. Unlike RA there are no 

large twin cohorts available for PsA and the one twin study reported could not 

demonstrate a genetic effect on PsA as it was underpowered [43] however the 

results from the first-degree relative studies have demonstrated that PsA is a 

highly heritable disease. 

1.1.4.1.2 HLA associations 

The largest genetic contribution to RA susceptibility is a combination of a group 

of alleles within the HLA-DRB1 gene found within the major histocompatibility 

complex (MHC) region in chromosome 6p21. These alleles are collectively known 

as the shared epitope since they encompass a conserved sequence of amino 

acids in the third hypervariable region of the class II DRβ1 chain (70Q/R-K/R-R-A-

A74) [44]. Many studies have demonstrated that HLA-DRB1 alleles are consistently 

linked and associated with RA in every population [45, 46] and have been shown 

to interact with environmental factors such as smoking [47]. Despite being the 

largest genetic contribution to RA a large UK based study found no PsA 

susceptibility association with the HLA-DRB1 alleles [48]. 
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There have been far fewer genetic mapping studies performed on PsA compared 

to psoriasis which was first found to be associated with HLA class 1 antigens in 

the 1970s [49], however subsequent studies have since identified the same 

psoriasis risk alleles to be associated with PsA. For example, the HLA-Cw*0602 

which comprises the largest genetic contribution to psoriasis is also associated 

with PsA patients who have psoriasis [48]. HLA-B27 is another molecule 

containing PsA associated variants [24-26], it is considered indicative of the 

association of PsA to the spondyloarthropathies and could also be a predictive 

marker for clinical features such as joint deformity [50]. PsA has also been 

associated with polymorphisms in the MHC class 1 chain-related gene A (MICA), 

which was not associated with psoriasis alone [51]. MICA molecules are 

considered markers of stress and are expressed by epithelial cells [52], they are 

recognised by the receptor NKG2D found on CD8 αβ T cells, γδ T cells and 

natural killer (NK) cells and therefore polymorphisms within this molecule may 

subsequently affect the innate immune response. 

1.1.4.1.3 Other genetic associations 

Despite the MHC locus contributing the single strongest genetic risk to RA, it is 

estimated to explain only 30% of total genetic component of susceptibility 

indicating that other genes may also be involved in disease predisposition. 

Genome wide linkage scans have subsequently identified a number of non-HLA 

genes associated with disease risk.  

PTPN22 

A variant within the PTPN22 gene is the second largest genetic risk to the 

development of RA after the shared epitope. This variant has been associated 

with RA in numerous studies [53, 54] but has been found to be very rare in Asian 

populations and is not associated with RA in these populations [55]. PTPN22 

codes for a lymphoid-specific phosphatase (Lyp), which is an intracellular 

protein tyrosine phosphatase (PTP) involved in T cell receptor (TCR) signalling. 

Following engagement of the TCR complex, protein tyrosine kinases become 

activated and then phosphorylate immunoreceptor tyrosine-based activation 

motifs (ITAMs) in the cytoplasmic tail of the TCR-CD3 chains. Phosphatases 

dampen this response thereby providing a means of turning the signalling on and 

off. The genetic variant within the PTPN22 gene associated with RA is a 

nucleotide change causing an amino acid substitution. This results in a gain of 
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function for Lyp by increasing its enzymatic activity and causes an overall defect 

in T cell response to antigen stimulation. It has been proposed that this variant 

could predispose to RA by suppressing T cell receptor signalling during thymic 

development resulting in the survival of autoreactive T cells [56]. 

Despite the PTPN22 variant predisposing to RA and many other autoimmune 

diseases such as systemic lupus erythematosus (SLE) [54] and systemic sclerosis 

(SSc) [57] there has been no consistent evidence for an association with PsA [58, 

59]. However, different variants within the same gene locus have been 

associated with psoriasis [60, 61]. 

STAT4 

Signal transducer and activator of transcription 4 (STAT4) is an important 

transcription factor in the regulation of the immune response. STAT4 is involved 

in the signalling pathways of IL-12, IL-23 and type 1 interferons in T cells and 

monocytes leading to a T helper type 1 (Th1) and Th17 differentiation and 

monocyte activation [62]. A fine-mapping study first identified an RA 

susceptibility locus within the STAT4 gene in a US population [63] and this 

association has since been confirmed in other populations of European and Asian 

descent [64, 65]. Analysis of STAT4 deficient mice have underlined the 

importance of this transcription factor in RA since these mice lack Th1 responses 

and do not develop experimental arthritis [66]. However, further studies are 

required to determine the role of the susceptibility variants in RA. There has 

been no reported PsA susceptibility locus in STAT4 however, as has been found 

with PTPN22, a gene polymorphism in STAT4 is associated with psoriasis [67]. 

IL12B and IL23R 

IL12B and IL23R are both proteins which are known to be important in T cell 

development. Genetic variants within these genes have been identified as 

psoriasis genetic susceptibility loci and subsequent studies have also identified 

association with PsA but not RA [68]. 

1.1.4.2  Gender 

Despite PsA showing no gender bias, RA is far more common in women than men 

with the female to male ratio being 3:1 [3]. Gender differences may also play a 

role in the disease activity as women with RA have been found to have worse 
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disease activity compared to men with RA [69]. The higher incidence of RA in 

women had led many studies to analyse whether or not there is a hormonal 

influence on disease risk. Studies on hormone levels are often difficult as 

treatment for the disease or often the disease itself can affect hormone levels 

and reports on pre-disease hormone levels are not often available. One study 

found that serum testosterone levels were lower in males with RA compared to 

healthy controls which is supportive of the hypothesis that male sex hormones 

could protect against RA [70]. RA frequently goes into remission in women during 

pregnancy [71] but will flare up again during breastfeeding [72] which is thought 

to be due to the major hormonal fluctuations taking place. Further studies into 

the use of the oral contraceptive pill (OCP) in women has found that current or 

ever-use of OCP has a protective effect against RA development although it has 

not been determined whether OCP postpones rather than prevents the onset of 

RA [73]. 

1.1.4.3  Environmental and lifestyle factors  

Both environmental and lifestyle factors are influences that have long been 

considered as potential triggers for the pathogenesis of RA and PsA. 

1.1.4.3.1 Infectious agents 

A potential involvement of infectious agents in the occurrence of RA and PsA has 

been speculated as it is thought that such agents could trigger the development 

of disease in a genetically susceptible host. The identification of bacterial DNA 

in the RA synovium has fuelled this hypothesis as investigations have 

demonstrated the presence of Mycobacterium [74] and mycoplasma [75] DNA. 

However, the bacterial species identified frequently have an equal occurrence in 

control populations therefore the pathogenic role for these bacteria remain to 

be identified. 

Bacterial infections have also been suggested to have a pathogenic role in PsA as 

there have been reports of increased immunoreactivity in the sera of PsA 

patients to some streptococcal antigens which is not seen in RA patients or 

psoriasis patients without arthritis [76]. However, it is difficult to prove a solely 

pathogenic role for such antigens since secondary infections of psoriatic plaques 

are common. Anti-enterobacterial antibodies have also been detected in the 
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sera of PsA patients at a significantly higher level compared to psoriatic patients 

or healthy controls [77] although the significance of this is yet to be established. 

Interest into the role of viral infection in the initiation and propagation of 

inflammation in inflammatory arthritis has been stimulated through several 

observations such as acute viral infections are occasionally followed by the 

development of an acute polyarthritis similar to early RA. Proposed viral triggers 

associated with RA include parovirus B19, retroviruses, and herpes viruses 

including Epstein-Barr virus (EBV) [78]. EBV was initially proposed as a potential 

factor involved in arthritis by the presence of anti-EBV antibodies in the sera of 

affected patients [78]. Subsequent research has since aimed to address the 

possible role of EBV in RA, Takeda et al found evidence of EBV infection in 47% 

of RA synovial samples but none of the 30 OA controls [79]. However, two 

following studies by Blaschke et al [80] and Niedobitek et al [81] did not find 

such a high proportion of EBV within the RA synovium (8% and 18% respectively). 

Consequently, since its expression is highly variable in RA synovium it is unlikely 

that EBV plays a primary role in this disease. Hepatitis C infection has been put 

forward as a trigger for PsA since levels of the virus are found at significantly 

higher levels in the sera of PsA patients compared to that of healthy controls 

[82] but once again the role of this virus within disease pathogenesis is unknown.  

Consequently, there has been no conclusive evidence to date which has clearly 

defined the role of any infectious agent in RA or PsA. The persistent expression 

in joint tissue of any one particular pathogen has not been demonstrated but 

interestingly a study analysing the synovial tissue of a variety of inflammatory 

arthritis patients demonstrated that several samples were positive for two or 

more viral species at the same time [83]. Therefore, multiple different 

infections may be needed in order to drive arthritis pathogenesis. 

1.1.4.3.2 Smoking 

Cigarette smoking has been demonstrated to significantly increase the risk, 

severity and outcome of RA in men and women [84, 85]. Smoking is associated 

with a thirteen fold increase in the incidence of the disease and can induce long 

term susceptibility as individuals who have ceased smoking for greater than ten 

years remain twice as likely to develop RA as the general population [86]. 
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Cigarette smoking supports the process of citrullination which is the post-

translational modification of the amino acid arginine within a protein to the 

amino acid citrulline. This process is catalysed by the enzyme peptidylarginine 

deaminase 4 (PADI4). Citrullinated proteins such as fibronectin, fibrin, α-

enolase, fibronectin and type-II collagen have been detected in the RA synovium 

and have been demonstrated to be targets of the autoantibody response [87, 

88]. These anti-citrullinated protein antibodies (ACPAs) have been identified in 

over 90% of RA patients and correlate with disease activity [89]. Citrullinated 

proteins have been suggested to play a pathogenic role by modifying self peptide 

which may then drive an immune response [90]. There is a strong association  

between smoking and the generation of ACPAs in patients with HLA-DRB1 alleles 

demonstrating how genetic and environmental factors may interact to drive RA 

pathology [47]. 

1.1.5 Histopathology 

The normal synovium covers the inner surface of the joints and is relatively 

acellular consisting of 0.5-5 mm thickness. It comprises of a thin intimal layer of 

predominantly fibroblasts and macrophages and a thicker sublining layer 

connective tissue layer. Within the joint, a protective smooth layer of cartilage 

acts as a shock absorber and provides a low friction surface to allow the bones to 

gently move over each other. This is lubricated by synovial fluid which within a 

non-diseased joint is relatively acellular with mean counts of 35 cells/μl [91]. 

The synovial fluid also provides nutrients to the chrondrocyte cells within the 

joint cartilage as the cartilage lacks blood vessels.  

During the progression of chronic arthritis, the synovium evolves from a 

protective structure to an invasive tissue that is characterised by inflammatory 

cell infiltration into the synovial membrane (synovitis) which drives the typical 

symptoms of joint pain and stiffness. In RA, the intimal lining layer thickens to 

over 8 cells deep and in PsA this thickening is 2-3 cells deep [92]. In addition, 

the synovial fluid expands abnormally acquiring between 10-1000 cell/µl [93] 

consisting of polymorphonuclear cells as well as monocytes, T cells, DCs, B cells 

and NK cells. 
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Radiographic examinations reveal a loss of joint space and the destruction of 

underlying cartilage and bone which is caused, in part, by the release of 

proteolytic enzymes from macrophages and fibroblasts. MMP-1, MMP-3 and TIMP-

1 mRNA have been detected at similar levels in the synovium of both RA and PsA 

[94]. Moreover, the activation of bone-resorbing osteoclasts by M-CSF and RANK-

L, both of which are up-regulated by IL-1 and TNFα, is a critical event for 

progression of bone damage in RA and PsA and levels of both osteoclast 

activating factors are found in both the synovium and peripheral blood of RA and 

PsA patients [95, 96]. In PsA, bony erosions are less common and often appear at 

a slower rate than in RA and consistent with these findings the levels of 

aggrecans, which are components of the cartilage structure and an indicator of 

damage, are lower in PsA synovial fluid compared to RA synovial fluid [97]. 

This articular destruction is accompanied by pannus formation (intrusion of the 

bone and cartilage by the proliferating synovial membrane) and the infiltration 

of inflammatory cells. The influx of these cells can promote synovial 

inflammation and damage through the production of chemokines, cytokines and 

proteases which can in turn promote a state of hypoxia and hence pronounced 

angiogenesis. Angiogenesis is a prominent feature of synovitis and is 

fundamental to disease pathology by transmitting oxygen and nutrients to the 

synovium in addition to being a means through which inflammatory cells are 

recruited to different areas of the diseased tissue. In both RA and PsA pro-

angiogenic factors, such as angiopoetin-1 and -2 and VEGF, are detectable at 

early stages of disease [98, 99] however levels have been found to be higher in 

PsA than RA which may be explained by the significantly increased number of 

blood vessels found in PsA compared to RA [92]. See Figure 1.1 for a comparision 

of an arthritic and normal synovium. 
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Figure 1.1 Comparison of a normal and arthritic synovium 
This illustration demonstrates the presence of inflammatory cell infiltrates characterised by 
macrophages, B cells, T cells and DCs; synovial membrane hyperplasia and cartilage and bone 
destruction. 

 

1.1.6 Immunopathology 

RA and PsA are both characterised by an inflammatory cell influx into the 

diseased joints which drives tissue destruction and inflammation. Consequently, 

in order to elucidate the mechanisms which drive synovitis it is important to 

identify which cells are present within the synovium and how they may be 

contributing to the perpetual inflammatory response.  

See Figure 1.2 for a summary of the interactions between the inflammatory cells 

found within the arthritic joint. 
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1.1.6.1  The monocyte/macrophage lineage 

Monocytes and macrophages are found at high levels within the synovium of both 

RA and PsA. Circulating monocytes of the peripheral blood also demonstrate an 

increased level of activation compared to healthy controls. The variety of 

cytokines, chemokines, growth factors and enzymes that are secreted by this 

cell type ensure that they play a central role in the pathogenesis of arthritis. 

Due to this cell type being the focus of this thesis; a full and detailed discussion 

of monocytes and macrophages will take place in section 1.2 of this 

introduction.  

1.1.6.2  Dendritic cells 

Dendritic cells (DCs) arise from myeloid progenitor cells and are a highly 

phagocytic cell type. DCs are professional antigen presenting cells (APCs) that 

are critical to the cross talk between the innate and adaptive immune response. 

DCs are found in tissues in a inactive form and upon immune activation by TLR 

ligation or antigen uptake they downregulate their phagocytic activity and 

upregluate their ability to process and present antigen and are subsequently 

directed to lymph nodes via a CCR7 dependent pathway in order to induce to T 

cell activation [100]. There have been two major subsets of DCs identified, 

myeloid DCs (mDC) and plasmacytoid DCs (pDC). mDCs have a primary function 

of antigen capture and presentation and are capable of producing a wide variety 

of cytokines such as IL-23, IL-18, IL-12p70, IL-15 and TNFα and therefore are 

able to polarise T helper cells depending on the cytokines they secrete. pDCs 

tend to be present in the circulation at a lower frequency than mDCs and upon 

viral infection are a major source of type I interferon synthesis. In RA and PsA 

the levels of circulating pDCs are significantly reduced compared to healthy 

controls and the levels of mDCs are significantly reduced in RA patients however 

both mDCs and pDCs are found to be present in the SF of both RA and PsA 

patients [101]. Depletion of pDCs in a murine model of arthritis has been shown 

to enhance the severity of articular pathology suggesting that they may mediate 

an anti-inflammatory function [102] whereas mDC numbers have been 

demonstrated in RA patients to inversely correlate with disease activity 

suggesting that they may contribute to RA activity [103]. 
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1.1.6.3  T cells  

T cells can be divided into two subgroups, CD4+ and CD8+. CD4+ effector T cells 

can be divided into distinct subgroups depending on their cytokine secretion 

profile. Th1 cells are classified according to the secretion of the cytokines IL-2 

and IFNγ whilst Th2 cells are known to secrete the cytokines IL-4, IL-5 and IL-13. 

In addition another subset of T cells designated Th17 has recently been 

described due to their secretion of IL-17A in addition to IL-17F and IL-22. There 

is strong evidence which implicates a role for T cells within the pathogenesis of 

RA and PsA, first CD4+ T cells contribute a large proportion of infiltrating cells 

into the synovium and synovial fluid of RA and PsA. The number of T cells within 

the synovial fluid are similar in both groups of patients [92]. Secondly, the strong 

association of HLA genes to aggressive pathology in RA and PsA may reveal the 

presentation of arthritogenic peptide to autoreactive T cell clones especially 

since T cells can be detected co-localised to MHC II expressing APCs in RA and 

PsA synovium. In addition, T cells have been demonstrated to play a primary role 

in several murine models of arthritis including CIA [104]. 

RA and PsA were thought to be Th1 mediated diseases due to the predominance 

of Th1 cytokines such as IFNγ and IL-12 within the synovium and the detection of 

Th1 CD4+ IFNγ+ cells at an elevated ratio compared to Th2 cells [105]. However, 

more recently, studies in animal models have favoured a mechanism which 

implicates Th17 cells. IL-6 is known to induce the differentiation of Th17 cells 

and studies have demonstrated that IL6-/- mice are resistant to the development 

of CIA [106]. In addition, the inhibition or overexpression of IL-17 within the 

murine joints suppresses or increases joint inflammation respectively [104, 105]. 

At present it is not known how well these murine models represent human 

disease as although IL-17 is detected within RA synovial fluid [106] Th17 cells are 

present in low numbers within the RA synovium and may only be induced to 

produce IL-17 following cell contact with activated macrophages [107]. Other 

studies have also demonstrated that the frequency of Th17 within the synovium 

is low compared to the frequency in patient blood and Th1 cells are the 

predominant T cell subtype within the diseased joint [108]. Additionally, IL-17 is 

now known to be secreted by non-CD4+ T cells such as γδ T cells, NK cells, CD8 

cells, macrophages, neutrophils and most recently mast cells [109-112] therefore 

it is unlikely that the observed phenotype upon IL-17 deletion is solely 
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attributable to Th17 cells but may be a combination of different cellular 

sources. IL-17 can induce the secretion of numerous effector molecules, 

including TNFα, IL-23, IL-6, MCP-1 and RANKL from macrophages, fibroblasts and 

chrondrocytes indicating that blockade of IL-17 may be a beneficial therapeutic 

target for RA and PsA [113]. 

CD4+,CD25+ regulatory T cells (Tregs) have become a focus of arthritis research 

due to their participation in controlling effector CD4+ cell function and their 

ability to regulate the autoimmune response through the production of IL-10 and 

TGFβ [114] and via direct cell contact. Treg cells have been identified within the 

peripheral blood and synovial tissue of RA patients but they have been found to 

have a decreased ability to suppress TNFα and IFNγ from effector CD4+ cells or 

monocytes [115]. Interestingly, this ability to suppress cytokine secretion from 

effector CD4+ cells was demonstrated to be mediated through TNFα, since 

treatment with the anti-TNFα antibody infliximab was able to restore the Treg 

suppressive capacity.  

In contrast to CD4+ T cells, CD8+ T cells or cytotoxic T cells mediate effector 

function by MHC I directed antigen specific killing of target cells and through 

cytokine production, in particular IFNγ and TNFα. Populations of CD8+ T cells 

have been identified in both RA and PsA synovium [116, 117]. Of interest, 

studies have reported a greater CD8+ T cell enrichment in PsA synovial fluid 

compared to RA synovial fluid which may be reflecting a more important role for 

CD8+ T cells in the former compared to the latter [118] however the role of CD8+ 

T cells in either disease are at present unclear. 

1.1.6.4  B cells 

B cells mediate adaptive immunity through the secretion of antigen-specific 

antibodies which promote pathogen elimination, but are also able to present 

antigen. Upon activation by antigen presentation, B cells will migrate to the 

lymph nodes or spleen where they will differentiate into antibody secreting 

plasma cells. The production of auto-antibodies can subsequently induce 

inflammatory cell activation through the binding of the antibodies to the Fc 

receptors expressed on leukocytes. 
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There is a wealth of evidence which points to a key role of B cells within 

arthritis pathology including the presence of germinal centres within the 

synovium of both RA and PsA [119, 120]. These germinal centres are in an 

environment surrounded by pro-inflammatory cytokines and self antigens and 

therefore provide an ideal location for antigen presentation, plasma cell 

differentiation and auto-antibody production. In addition, the use of the anti-

CD20 monoclonal antibody therapy rituximab has shown clinical benefits in both 

RA and PsA [121, 122]. Of particular importance, it is recognised that B cells may 

be critical in the initiation of RA since autoantibodies against self citrullinated 

proteins, type II collagen and rheumatoid factor are present in the serum of 

patients up to 10 years before the clinical manifestation of disease [123]. A 

similar finding has yet to be shown in PsA. 

1.1.6.5  Other inflammatory cell types 

Neutrophils and Mast cells 

Neutrophils are found at a high concentration within the synovial fluid and 

synovium of RA and PsA with an increased number being detected in the latter 

disease [124]. At present their primary role within disease pathogenesis is not 

known. However, neutrophils are activated by complement components and 

cytokines to release a variety of proinflammatory cytokines such as TNFα, BAFF, 

IL-6 and IL-18 and therefore may generally contribute to the pro-inflammatory 

milieu found within the synovium. Mast cells are also detected in the synovial 

fluid of both RA and PsA [125, 126]. Animal models of arthritis have been 

contradictory in determining the role that mast cells play within the disease 

[127, 128]. However, as mentioned above, a recent study has demonstrated that 

mast cells within the synovium of RA patients express the proinflammatory 

cytokine IL-17A [109] and therefore may be playing a pathogenic role within the 

disease by secreting cytokines into the synovium which will activate other 

inflammatory cells resulting in a positive feedback loop of inflammation. 

Fibroblasts 

Synovial fibroblasts together with synovial macrophages are the two leading cell 

types within the hyperplastic synovial tissue that invades and degrades adjacent 
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cartilage and bone. Fibroblasts are well established effectors of inflammation 

within arthritis as they are known to produce a wide variety of inflammatory 

mediators such as IL-1, IL-6, TNFα, MCP-1, IL-8 and M-CSF which in turn can 

potentiate the influx, survival and activation of several leukocyte subtypes 

[129]. Synovial fibroblasts are also an important source of MMPs and cathepsins 

which are enzymes that drive the destruction of articular cartilage and bone. In 

addition, these cells produce high levels of RANKL in both RA and PsA and 

therefore can drive articular destruction indirectly through the induction of 

osteoclasts and hence osteoclastogenesis [130, 131]. 

Osteoclasts and Chrondrocytes 

The articular structure in healthy individuals is maintained in stable equilibrium 

through maintaining a balance of both bone resorption and deposition and 

collagen deposition. Within the diseased synovium this balance is skewed in 

favour of bone resorption and collagen removal which leads to articular 

degradation, furthermore in PsA patients aberrant bone formation may also 

occur. Osteoclasts are multinucleated cells which mediate bone resorption 

through the secretion of acid and MMPs, and are differentiated from monocyte 

precursors in the presence of RANKL and M-CSF [132]. Other cytokines within the 

inflammatory milieu can drive osteoclast formation such as TNFα, IL-1β and IL-17 

which induce RANKL expression.  

Chrondrocytes are cells which, under normal conditions, maintain a stable 

equilibrium between the synthesis and degradation of matrix components such 

as collagen. However, in arthritis the chrondrocyte cell participates in the 

destruction of its own matrix by releasing a variety of MMPs in response to the 

proinflammatory cytokines present within the synovium such as IL-1 and TNFα. 

The chrondroytes themselves can also release pro-inflammatory mediators in 

response to cytokine activation which can further perpetuate the chronic 

cartilage destruction in a paracrine and autocrine fashion [133]. Consequently, it 

is evident that the synovial environment within RA and PsA can promote 

articular destruction through several mechanisms.  
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Figure 1.2 Inflammatrory cell types within the synovium 
An overview of the cellular communication between immune cells within the RA and PsA inflamed 
joint. Adapted from [132]. 

 

1.1.7 Mechanisms of inflammation 

The numerous inflammatory cells infiltrating the synovial compartment release 

soluble factors including cytokines, chemokines and MMPs that are directly 

responsible for the disease pathology by activating and promoting recruitment of 

further inflammatory cells. A full explanation of the cytokines and chemokines 

expressed by monocytes and macrophages in RA and PsA are discussed fully in 

section 1.2.4 and 1.2.5. 

1.1.7.1  Cytokines 

Cytokines are small (5 to 50 kDa) proteins or glycoproteins that serve as 

chemical messengers between cells and thus are of significant importance in 

almost all aspects of innate and adaptive immunity. Cytokine levels are 

significantly upregulated in RA and PsA where they regulate the chronic 
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inflammatory response. Within the synovium cytokines can work in an autocrine 

fashion and due to the close proximity of cells they can also work in a paracrine 

(neighbouring cell activation) and juxtacrine (cell-to-cell contact) manner. 

In both RA and PsA numerous pro-inflammatory cytokines including TNFα IL-6, IL-

1α/β, IL-17, IL-18, BAFF and IL-23 are elevated in the serum, synovial fluid and 

synovium [132] (see Table 1.4). The critical role of cytokines within the 

pathogenesis of both RA and PsA is exemplified by the success of specific 

cytokine targeted therapies such as anti-TNFα and anti-IL-6R [134, 135]. Of note, 

anti-inflammatory cytokines such as IL-10, IL-1Ra and soluble TNF-receptor 

(sTNFR) are also detectable in the inflamed synovial compartment. However, the 

levels of these are thought to be too low to be biologically active thus providing 

a disequilibrium of pro- and anti-inflammatory cytokines. 
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Table 1.4 Major cytokines with a role in inflammatory arthritis 

 
Cytokine Principle Source   Primary Biological Activity 
 
TNFα  Monocytes, macrophages  activates macrophages and  
  Fibroblasts, T cells, DC,  endothelial cells; induces  
  Neutrophils    neutrophil apoptosis; increases 
       ICAM-1, VCAM-1 and E selectin 
       expression 
 
IL-1α/β Monocytes, macrophages  induces cytokine secretion from 
  DC, B cell, fibroblasts  monocytes and fibroblasts;  
       increase endothelial adhesion  
       molecule expression; osteoclast 
       activation 
 
IL-1Ra  Monocytes    antagonize effects of IL-1α and 
       IL-1β 
 
IL-18  Monocytes, DC, neutrophils T cell differentiation; NK cell  

activation; activation of 
monocytes and macrophages 

 
IL-6  Fibroblasts, monocytes,  B cell proliferation and antibody 
  macrophages, T cells,  production; T cell proliferation;  

B cells     acute phase response;  
     thrombopoiesis 

 
IL-10  Monocytes, T cells,   decrease DC activation and  
  B cells, DC, epithelial  cytokine release; decrease  
  cells     synovial fibroblast cytokine and 
       MMP release 
 
Type I IFN Widespread    antiviral response; macrophage 
       activation; lymphocyte activation 
       and survival 
 
IL-17  T cells, macrophages,  induces proinflammatory cytokine 
  DC and γδ T cells   release from macrophages;  
       fibroblasts and endothelial cells 
 
IL-15  T cells, monocytes,   increased T cell and NK cell  
  macrophages, DC   recruitment, B cell 

differentiation, synovial 
fibroblast and macrophage  
activation 

 
IL-23  monocytes, DC,   Th17 cell proliferation 
  macrophages 
 
RANKL  stromal cells, osteoblasts,  stimulates osteoclast mediated 
  T cells     bone resorption 
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Table 1.4 continued 

 
APRIL  monocytes, macrophages,  promotes T and B cell survival 
  lymphocytes    and proliferation 
 
BAFF  T cells, monocytes,   Promotes B cell survival and 
  macrophages, DC   maturation 
 
GM-CSF Monocytes, fibroblasts,  Stimulates the differentiation 
  T cells, osteoclasts   and survival of macrophages 
       and neutrophils 
 
M-CSF  Lymphocytes, fibroblasts,  regulator of monocyte 
  monocytes and osteoclasts  differentiation and proliferation 
       and of macrophage survival 
 
 

1.1.7.2  Chemokines 

The influx of inflammatory cells into the synovium is mediated by chemokines 

which are small molecular weight (8-12 kDa) chemoattractant proteins that 

primarily promote leukocyte recruitment and activation. Over 50 distinct 

chemokines have been identified and can be classified into four sub-families: 1) 

CXC which can promote angiogenesis, 2) CC which act primarily on monocytes 

and T cells, 3) C and 4) CX3C which consists of the chemokine fractalkine 

(CX3CL1) [136]. A number of pro-inflammatory chemokines have been detected 

at elevated levels in both RA and PsA (see Table 1.5). 
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Table 1.5 Chemokines with a role in inflammatory arthritis 

 

Chemokine ligand Receptor (s) Primary source  Physiological  
         Feature 

 
CC Family 
CCL2 (MCP-1)  CCR2  Fibroblasts, macrophages, Inflammation, 

Osteoclasts osteoclast 
differentiation 

 
CCL3 (MIP-1α)  CCR1, CCR5 Macrophages, fibroblasts Inflammation 
 
CCL4 (MIP-1β)  CCR5  Monocytes, DCs  Inflammation 
 
CCL5 (RANTES) CCR3, CCR5 T cells, macrophages,  Inflammation 
   CCR1  Fibroblasts 
 
CCL19 (ECL)  CCR7  Macrophages,    Homeostatic,  
     neutrophils   Inflammatory 
 
CCL20 (MIP-3-α) CCR6  macrophages,   Inflammation, 
     Fibroblasts   bone resorption 
 
CCL21 (SLC)  CCR7  endothelial cells  Inflammation, 
         Lymphoid neogenesis 
 
C Family 
XCL1 (lymphotactin) XCR1  mast cells, activated  Inflammation, 
     CD8+, NK cells   stimulates T cell  

Accumulation 
 
CXC Family 
CXCL1 (gro-alpha) CXC2R,  Fibroblasts   Inflammation,  

CXCR1      synovial angiogenesis 
 
CXCL5 (ENA-78) CXCR2  Fibroblasts   Inflammation 
 
CXCL8 (IL-8)  CXCR1,  Macrophages,   Inflammation, 
   CXCR2  fibroblasts, epithelial  synovial angiogenesis 
     cells 
 
CXCL9 (Mig)  CXCR3  macrophages,   Inflammation, 
     Neutrophils   angiostatic 
 
CXCL10 (IP-10) CXCR3  Fibroblasts, monocytes, Inflammation, 
     DCs, epithelial cells,  agiostatic 
     Endothelial cells 
 
CX3C Family 
CXC3CL1 (fractalkine) CXC3CR1 Monocytes, fibroblasts, Inflammation 
     Macrophages, DC 
     Endothelial cells 
 
MCP, monocyte chemoattractant protein; MIP, macrophage inflammatory protein; RANTES, 
regulated on activation normal T cell expressed and secreted; ECL, Epstein-Barr virus-induced 
receptor ligand; SLC, secondary lymphoid  tissue chemokine; ENA, epithelial-derived neutrophil-
activating peptide; MIG, monokine induced by gamma interferon; IP-10, interferon gamma-
induced protein 10kDa. 
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1.1.8 Current therapies in RA and PsA 

Advances in the knowledge of the mechanisms driving RA and PsA pathology have 

enabled the discovery of new therapeutics. In recent years the purpose of new 

therapeutics has altered from that of simply inhibiting disease progression to the 

ability to prevent the initial onset of disease. 

1.1.8.1  DMARDS 

Disease modifying anti-rheumatic drugs (DMARDs) particularly methotrexate 

have been widely used for the treatment of RA and PsA for decades. Despite 

reports of methotrexate treatment reducing the synovial sublining layer within 

PsA patients [137] it has been increasingly recognised that methotrexate only 

partially inhibits the progression of structural damage in RA [138]. In addition, a 

2-year retrospective study of matched PsA patients either on or off 

methotrexate therapy did not show any difference in radiologic progression 

scores between the two groups [139]. Furthermore, up to 60% of RA patients 

have reported adverse reactions to methotrexate including nausea, diarrhoea, 

headaches, hepatitis and leukopenia which have only resolved with 

discontinuation of therapy [140]. As a result methotrexate does not exert 

therapeutic benefits in a large proportion of patients and may only delay the 

progression of disease. Other DMARDs in use are sulfasalazine, cyclosporine, 

leflunomide and hydroxychloroquine which all demonstrate some clinical benefit 

in a percentage of patients but as with methotrexate are often associated with 

toxicitiy and restricted duration of effectiveness. 

1.1.8.2  Anti-TNFα 

TNFα is a potent pro-inflammatory cytokine that is known to play a critical role 

in chronic inflammatory diseases such as RA and PsA [141]. Soluble TNFα is 

produced as a precursor form called transmembrane TNFα (tmTNFα) which is a 

cell surface protein found on activated macrophages and lymphocytes [142]. This 

tmTNFα is cleaved and processed by TNFα-converting enzyme (TACE) to release 

a soluble 17 kDa molecule. The combination of three of these 17 kDa molecules 

as a homotrimer forms soluble TNFα, which mediates its pro-inflammatory 

properties through type 1 and 2 TNF receptors (TNFR1 and TNFR2) [143]. 

Numerous studies have indicated that both soluble TNFα and its precursor form 
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tmTNFα are involved in the inflammatory response through binding to TNFR1 or 

TNFR2. Soluble TNFα can act at sites distant from the TNFα-producing cells 

whereas tmTNFα can exert its function on other cells through direct cell contact 

[144]. 

At present there are three anti-TNFα agents, infliximab, etanercept and 

adalimumab, which are approved worldwide for the treatment of various 

inflammatory conditions including RA, PsA, psoriasis, Crohn‘s disease and AS 

[135]. In addition, other anti-TNFα agents, certolizumab pegol and golimumab, 

have just been approved for clinical use. Infliximab, adalimumab and golimumab 

are monoclonal antibodies against human TNFα and etanercept is engineered 

from human TNF receptors. Adalimumab, infliximab and entanercept all bind to 

soluble or tmTNFα with a similar affinity [145].  

Adalimumab has been demonstrated to have a high level of tissue penetration in 

RA patients as radioscintography demonstrated that labelled adalimumab rapidly 

(within minutes) localised to the inflamed joints after intravenous administration 

[146] and tissue concentrations of the antibody in the synovial fluid range from 

31% to 96% of those in the serum [147]. Greater than two thirds of RA patients 

respond favourably to TNFα inhibitors and administration of adalimumab to RA 

patients has been shown to significantly slow the radiological progression after 

one year [148]. PsA patients treated with adalimumab over 48 weeks show 

reduced radiographic progression, reduced disability and improved skin and joint 

manifestations [149] therefore this anti-TNFα treatment have proved to be a 

highly effective treatment for the management of inflammatory arthritis. The 

antibody‘s mechanisms of action within the diseased patients include binding 

and hence neutralising soluble TNFα. 

Infliximab is a similar therapy to adalimumab as it is a monoclonal antibody 

against human TNFα. A phase III study of infliximab in 200 PsA patients showed 

significant benefit since at week 14, 58% of patients achieved an ACR20 

response. The presence of dactylitis and enthesitis decreased significantly and 

quality of life measures also significantly improved [150]. Within RA patients 

infliximab has proven to be highly efficacious with ACR20 and ACR50 responses 

of up to 80% and 60% respectively [151]. Etanercept is a soluble receptor for 

TNFα and has been demonstrated to be successful in the treatment of PsA and 
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RA. In a phase III trial of 205 PsA patients an ACR20 response was achieved by 

59% of etanercept treated patients and psoriatic skin involvement significantly 

decreased after 24 weeks of treatment [152]. Furthermore, the successful 

response of patients to treatment from any of these three anti-TNFα therapies 

are significantly increased when administered in combination with methotrexate 

with which it has synergistic benefits [151, 153, 154]. 

Since TNFα can act independently, additively or synergistically within the 

arthritic joint its neutralisation can reduce the production of other pro-

inflammatory molecules such as IL-6, IL-1β and MCP-1 from immune cells as well 

as reducing the expression of ICAM-1 and VCAM-1 adhesion molecules which can 

prevent cell trafficking into the joint and is the reason for the reduced 

cellularity seen the inflamed tissue after anti-TNFα therapy [135]. 

1.1.8.3  Rituximab and B cell targeted therapies 

Rituximab is a chimeric human/mouse monoclonal antibody directed at the CD20 

antigen expressed by mature B cells and pre-B cells but not on other cells 

including plasma cells. It was first used as a treatment for non-Hodgkin‘s 

lymphoma but has since been approved for treatment of RA. Although several 

studies have suggested that CD20 may function as a calcium channel or a cell 

surface signalling receptor, its function and the mechanisms of action in RA 

remains unclear [155]. In the phase III REFLEX trial rituximab was administered 

to 309 RA patients whilst 209 patients received placebo, and it was found that 

rituximab efficacy versus placebo was evident from 8 weeks onwards and the 

retardation of joint damage was significantly different from placebo after 56 

weeks [122]. Rituximab therapy has also been successful in the treatment of PsA 

[121]. 

Several mechanisms for the observed improvements have been suggested such as 

reduced antibody production; reduced secretion of B cell derived pro-

inflammatory cytokines or reduced antigen presentation. Due to the success of 

rituximab considerable effort has been expended into developing biologics 

against BLyS (B-lymphocyte stimulator) also known as BAFF (B-cell-activating 

factor of the TNF family) and APRIL (a proliferation induced ligand) which are 

TNF superfamily members and promote B cell survival, differentiation and 
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activation. Belimumab is a fully human monoclonal antibody that specifically 

targets BLyS, the reports of a phase II study of this antibody in RA demonstrated 

a reduction in B cells and rheumatoid factor however the ACR responses were 

low in comparison to those seen with rituximab as only 29% of patients achieved 

an ACR20 response [156]. 

1.1.8.4  Anti IL-6 receptor 

Since anti-TNFα therapy is ineffective in a proportion of patients, other 

therapies are required to treat such non-responder patients. Tocilizumab, a 

human monoclonal antibody against the IL-6 receptor, has provided encouraging 

results in patients who have previously failed anti-TNFα therapy [134]. In 

addition, as has been observed with anti-TNFα therapy, the optimal clinical 

responses are seen when tocilizumab is administered in combination with 

methotrexate [157]. At present there have been no trials investigating the 

efficacy of tocilizumab in psoriatic arthritis. 

1.1.8.5  Abatacept 

Abatacept is a recombinant human fusion protein of the extracellular domain of 

the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) linked to the Fc portion 

of human IgG1. Abatacept functions to block T cell activation by binding to the 

CD80/86 receptor on an antigen presenting cell thus blocking the second signal 

activation of the CD28 receptor on the T cell. During clinical trials of RA patients 

abatacept treatment resulted in a high ACR response and it is now approved in 

Europe for treatment of RA [158]. A recent trial has also found that abatacept is 

an efficacious therapy for PsA resulting in significant improvements in patients 

compared to placebo controls [159]. 

1.1.8.6  Other therapies 

Ustekinumab is an IL12/23 inhibitor and its administration has demonstrated 

significant efficacy in psoriasis since IL-12 and IL-23 are over expressed in 

psoriasis plaques. This inhibitor has also shown efficacy in preliminary PsA 

studies by reducing the signs and symptoms of arthritis [160]. 
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1.2  Monocytes and Macrophages  

1.2.1  Monocyte and macrophage origin 

Leukocytes are a diverse group of cells types which mediate the body‘s immune 

response. They have a shared origin of hematopoietic stem cells (HSC) and 

develop along divergent differentiation pathways in response to internal and 

external cues. The mononuclear phagocyte system represents a population of 

leukocytes originating as bone marrow derived myeloid cells [161] and comprises 

of bone marrow monoblasts and promonocytes, peripheral blood monocytes, 

tissue macrophages and dendritic cells (DCs). 

Current models propose that blood monocytes originate in vivo from HSC derived 

progenitors with myeloid restricted differentiation potential. Successive 

commitment steps include common myeloid progenitors (CMPs) and 

macrophage/DC progenitors (MDPs). Each of these differentiation steps involves 

cell fate decisions which subsequently restrict cell development potential [162]. 

MDPs are a subset of proliferating cells in the bone marrow that differentiate 

into both monocytes, which give rise to the macrophage subsets, and common 

DC precursors (CDPs), which give rise to the DC subsets [161]. See Figure 1.3 for 

an overview of monocyte and macrophage differentiation. 
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Figure 1.3 Differentiation of the macrophage/DC progenitor and origin of macrophage and 
DC subsets 
Differentiation of monocytes and macrophages in humans. Hematopetic stem cells (HSC) give rise 
to common myeloid progenitors (CMPs) which can differentiate into macrophage/DC progenitors 
(MDPs) within the bone marrow. The MDPs will then give rise to monocytes which will then 
differentiate into tissue macrophages, alternatively the MDPs will differentiate into common DC 
precursors (CDPs) within the blood. The CDPs will then differentiate into classical DCs (cDC) or 
plasmacytoid DCs (pDC). 

 

1.2.2 Monocytes 

Circulating blood monocytes supply peripheral tissues with macrophage and DC 

precursors and within the setting of infection contribute to immune defense 

against microbial pathogens. Newly formed monocytes are thought to remain in 

the bone marrow for less than 24 hours before entering into the peripheral 

blood. In humans and mice, monocytes contribute 4-10% of all circulating 

leukocytes [163] and share some typical morphological features such as irregular 

cell shape, cytoplasmic vesicles and high cytoplasm to nucleus ratio.  
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1.2.2.1  Monocyte subsets 

In humans, circulating monocytes are not a homeogenous population and can be 

divided into two distinct subsets on the basis of the expression of CD14, a 

component of the LPS receptor complex, and CD16 the FcγRIII immunoglobulin 

receptor [164]. These subsets are designated CD14+CD16-, otherwise known as 

CD14+ monocytes, and CD14lowCD16+, otherwise called CD16+ cells [165]. These 

two monocyte subsets express distinct chemokine, immunoglobulin, adhesion 

and scavenger receptors and have varying levels of cytokine production, antigen 

presentation and transendothelial migration [166]. See Table 1.6 for the 

characteristics of these two monocyte subtypes. 

CD14+ monocytes are large ~18 μm in diameter and represent 80-90% of 

circulating monocytes, in contrast CD16+ monocytes are smaller ~14 μm in 

diameter and constitute ~10% of circulating monocytes [166]. CD14+ cells express 

high levels of the chemokine CCR2 and low levels of CX3CR1; consequently, their 

phenotype resembles that of mouse Ly6c+ (Gr1+) monocytes [161, 165] whereas 

CD16+ cells resemble the phenotype of mouse Ly6clo(Gr1lo) monocytes. TLR4 

stimulation of both CD14+ and CD16+ monocytes with LPS induced similar levels 

of TNFα mRNA within the two cell types whilst the IL-10 mRNA was low to absent 

in CD16+ monocytes [167]. In addition, intracellular cytokine staining of CD14+ 

and CD16+ monocytes demonstrated a higher level of TNF protein within the 

CD16+ in response to TLR4 and TLR2 stimulation [168]. This combination of low 

IL-10 levels and high TNF levels meant that CD16+ monocytes became known as 

pro-inflammatory monocytes. 

Despite monocytes being far less efficient than DCs at MHC class II antigen 

presentation to CD4+ T cells [169], both CD14+ and CD16+ monocytes 

demonstrated the ability to present tetanus toxin antigen to T cells [170]. 

However, CD16+ monocytes have demonstrated a higher level of HLA-DR 

expression compared to CD14+ monocytes [164] and have been shown to 

preferentially develop into DCs with high antigen presentation capacity in 

response to TLR stimulation [171] suggesting that this monocyte subset and their 

DC progeny may be superior antigen presenting cells. 
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A third human monocyte subset has been recently reported that is defined by 

the expression of CD14+ CD16+ and CD64+ (FcγR-I) [172]. These cells combine 

characteristics of macrophages and DCs as they have high expression of CD68 

and HLA-DR and high T cell stimulatory activity. In comparison to CD14+ 

monocytes, CD14+CD16+CD64+ monocytes have a similarly high phagocytic 

activity and produce large amounts of cytokines such as TNFα and IL-6. But they 

also share characteristics with CD16+ monocytes such as a greater stimulatory 

activity in mixed leukocyte reactions (MLR) compared to CD14+ cells [173]. At 

present the origins of this subset are not know but they are speculated to be an 

intermediate phenotype between monocytes and DCs [172]. 
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Table 1.6 Characteristics of human monocyte subsets 

 

    CD14+ (CD14+CD16-)   CD16+ (CD14lowCD16+) 
 
Monocyte markers 
CD14     ++     +/— 
CD16     —     + 
CD11b     +     + 
 
Chemokine receptors 
CCR1     +     — 
CCR2     +     — 
CCR4     +/—     — 
CX3CR1    +/—     ++ 
CXCR4     +/—     + 
 
Adhesion molecule 
CD62L     +     — 
 
 

1.2.2.2  Monocyte diapedesis  

A central component of monocyte trafficking is the continuous transition from 

the blood circulation into the tissue and vice versa, as this process enables the 

monocyte cells to differentiate and develop into functional macrophages. The 

endothelium within the vasculature represents the interface between these two 

compartments and acts as a barrier to leukocyte trafficking whilst also 

instructing leukocyte adhesion and transmigration. Egress of the monocytes from 

the bone marrow into the circulation or from the circulation into the tissue 

requires migration across the monolayer of endothelial cells which line the 

vascular circulatory system, known as diapedesis. 

Extravasation of monocytes can be divided into several steps and the process 

begins when monocytes accumulate on the luminal side of the endothelium and 

undergo transient rolling interactions mediated by selectins [163], which 

facilitates sensing of chemokines presented on the endothelial surface and 

enables the monocytes to respond to them. This triggers the interaction of 

monocyte integrin receptors with their endothelial ligands which results in cell 

arrest, these molecules include junctional adhesion molecule-like (JAML) which 

has been demonstrated to contribute to monocyte adhesion and transmigration 

in vitro [174]. Once the cells have arrested on the endothelium they undergo 

actin polarisation and integrin-dependent lateral migration. This process is to 

allow the monocytes to search for sites permissive for endothelial barrier 



50 

penetration [175] and once a site has been found the monocytes breach and 

transmigrate across the endothelium. The movement across the endothelium 

may either be paracellular where the monocytes move in between two 

endothelial cells or transcellular where the monocytes pass directly through an 

individual endothelial cell through the formation of a transcellular pore [176]. 

As mentioned previously, CD14+ cells preferentially express the chemokine CCR2 

which allows monocyte intravasation into the circulation from the bone marrow 

through interaction with its ligands CCL2 (otherwise known as MCP-1) and CCL7 

[177]. This finding is further exemplified in CCR2-/- mice which express a 

diminished number of Ly6C+ mouse monocytes in the circulation under 

homeostatic conditions [178] demonstrating that the exit of CD14+ or Ly6C+ 

monocytes from the bone marrow is mediated in part by CCR2. Inflammation is 

associated with an increase in CCL2 within the circulation therefore in the 

presence of a local inflammatory stimulus, circulating CD14+ monocytes 

extravasate into the affected non-lymphoid areas in a CCR2-CCL2 dependent 

manner where they differentiate into macrophage or DC subsets [179]. These 

and many other studies has resulted in the human CD14+ cells and the equivalent 

mouse Ly6C+ cells becoming known as the ―inflammatory‖ subset. 

In contrast, CD16+ monocytes lack CCR2 expression and undergo transendothelial 

migration through the expression of CX3CR1, which is the fractalkine receptor, 

and CCR5 which is the receptor for CCL3 (otherwise known as MIP1α) [163]. 

Studies performed by Auffray et al have demonstrated that the Ly6C- subset of 

murine monocytes, which are equivalent to the CD16+ human monocytes, 

continuously migrate over the luminal surface of dermal and mesenteric 

microvascular endothelium where they are thought to be patrolling for signs of 

infection or tissue damage [180]. This patrolling behaviour was dependent on the 

integrin ICAM-1 and the chemokine receptor CX3XR1 and is responsible for this 

cell subset becoming known as ―resident‖ monocytes. Upon tissue damage such 

as exposure to irritants, aseptic wounding or peritoneal infection these 

patrolling resident monocytes extravasated rapidly within 1 hour and invaded 

the surrounding tissue where they were the main producers of the pro-

inflammatory cytokines TNFα and IL-1 and were shown to differentiate into 

macrophages. The Ly6C+ cells were shown to enter the immune site at a later 

time and differentiated into inflammatory DCs. These results elegantly 
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demonstrated the functions of the two monocyte subsets within an immune 

response [180]. Since human CD16+ monocytes share a phenotype similar to the 

resident Ly6C- mouse monocytes these cells could have a similar patrolling 

function within human immune system surveillance. 

1.2.2.3  Monocyte function in immune defense  

Monocytes were previously considered to be merely a developmental 

intermediate between bone marrow precursors and tissue macrophages. 

However, it is now clear that monocytes can carry out specific effector functions 

during inflammation. Monocytes have been demonstrated to be crucial for host 

defense again a wide variety of pathogens such as Listeria monocytogenes, 

Mycobacterium tuberculosis, toxoplasma gondii and various fungi. CCR2-/- mice 

are susceptible to infections caused by all of the above bacteria/fungi indicating 

that CCR2 mediated recruitment of Ly6C+ monocytes is crucial for host immune 

defense [166]. This result is verified by experiments performed in MCP-1-/- mice 

which are also more susceptible to bacterial infections such as L. monocytogens 

infection, MCP-1 is a ligand for CCR2 and is released during infection [181] and 

therefore plays a role in monocyte trafficking. Once at the site of infection it 

has been shown that monocytes produce reactive nitrogen intermediates (RNIs) 

and reactive oxygen intermediates (ROIs) and increase the production of 

phagolysosomal enzymes in order to destroy the bacteria and bring the infection 

to an end [182]. 

1.2.3  Macrophages 

The term ―macrophage‖ was first used over 100 years ago by Elie Metchnikoff to 

describe the large mononuclear phagocytic cells he observed in tissues [183]. 

Since this first observation an enormous amount of research to establish the 

function and importance of this cell type has taken place. It is now known that 

macrophages, along with DCs, form networks of phagocytic cells throughout 

most tissues where they play major roles in host development, inflammation, 

scavenging and antipathogen defences. Most macrophages in the tissue of an 

adult are derived from circulating monocytes which replenish these populations 

and there is substantial debate about whether specific monocyte populations 

develop into specific tissue macrophage subsets [184]. In addition, some 

macrophages such as those found within the lung and brain, undergo self-
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renewal and proliferation and do not need circulating precursor monocytes to 

maintain their population [185].  

1.2.3.1  Macrophage heterogeneity 

Macrophages are distributed constitutively throughout the body and known to 

have a very high degree of heterogeneity which reflects the specialized 

functions adopted by these cells in different tissue localisations. Apart from the 

inflammatory monocyte derived macrophages which will be discussed in detail in 

section 1.2.3.3 there are several other macrophage types that have been 

identified. Examples of these cell types include: Langerhan cells which are a 

self-renewing subset found within the epidermis [186]; the bone re-modelling 

osteoclasts which require M-CSF and RANKL for development [187, 188]; 

microglia and choroid-plexus macrophages which reside within the CNS; and 

Kupffer cells which are the resident macrophages of the liver and are involved in 

the clearance of particulate and soluble substances. 

1.2.3.2  Macrophage function 

The heterogeneous nature of the macrophage, its diverse distribution and 

numerous cell subsets indicate that it has several physiological functions. 

However, there are two main function shared by most macrophage subsets; 

phagocytosis and antigen presentation. 

1.2.3.2.1 Phagocytosis  

Macrophages represent a major defense against invasion of the host by a wide 

variety of microorganisms including bacteria, viruses, fungi and protozoa. 

Macrophages also play a role in the clearance of apoptotic cells and the process 

by which they carry out these two important functions is phagocytosis. Apoptosis 

is a feature that is conserved through all eukaryotic cells and constitutes a series 

of cellular events through which the cells orchestrate their own demise. A 

critical feature of apoptosis is the ability of the apoptotic cell to be recognised 

by the innate immune system and phagocytes. One of the most studied apoptotic 

signals is the change in the plasma membrane phospholipid distribution on the 

apoptotic cell, especially the exposure of the phospholipid phosphatidylserine 

(PS). PS is normally found in the inner leaflet of the plasma membrane of viable 

cells. However during apoptosis PS is exposed on the outer membrane of the cell 
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and is a marking of an apoptotic cell. It has been proposed that PS exposure is a 

sufficient signal for macrophage-mediated phagocytosis [189]. Macrophages 

appear to use several receptors in the recognition and phagocytosis of apoptotic 

cells such as PS-R, CD36 and CD14 [190] which is thought to maintain the 

efficient clearance of apoptotic bodies as different receptors may engage with 

different phases of apoptosis. CD14-dependent clearance of apoptotic cells by 

macrophages has been demonstrated in both murine and human systems [190, 

191] and it has been shown to interact specifically with ICAM-3, a glycosylated 

leukocyte protein, during the clearance of apoptotic leukocytes [192].  

Macrophages also have specialised surface receptors that detect the presence of 

microorganisms before phagocytosis takes place. These receptors can directly 

interact with the microorganism through the recognition of pathogen associated 

molecules such as surface carbohydrates, peptidoglycans or lipoproteins. The 

macrophage can also recognise the pathogen through opsonins. Opsonins are 

host factors such as IgG and components of the complement cascade that attach 

to the pathogen surface. These opsonins are then recognised by receptors on the 

macrophage such as Fcγ receptors (FcγR) and complement receptor 3 (CR3) 

[193].  

Once the macrophage has recognised the apoptotic cell or the microorganism it 

will engulf the cell or pathogen by advancing pseudopodia over the regions of 

the cell/microorganism that are linked to the cell surface receptors. This 

internalisation requires reorganisation of the macrophage cyotoskeleton as well 

as delivery of membrane to accompany the increased surface area of the 

phagocytic cup which engulfs and surrounds the apoptotic cell/microorganism. A 

process called phagosome maturation then takes place inside the phagocytic 

macrophage by which the phagosome undergoes sequential fusion with early 

endosomes, late endosomes and lysosomes which are increasingly acidified 

membrane bound structures [194]. The fusion of these structures to the 

phagosome eventually leads to degradation of the phagocytosed pathogens or 

cells. Although most pathogens are phagocytosed and destroyed with ease by the 

macrophages, certain pathogens have developed mechanisms through which they 

avoid phagocytosis such as M. Tuberculosis which inhibits phagosomal 

maturation and L.pneumophila which can redirect the phagosomal maturation 

pathway in order to allow bacterial replication [193]. 
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1.2.3.2.2 Antigen processing and presentation 

Macrophages are one of several antigen presenting cells (APCs) which present 

antigen to T cells or to B cells within follicles of the lymph node [195]. Indeed 

one of the important functions of the macrophage is to assist in initiating and 

facilitating cell-mediated immune responses against pathogens through the 

processes of secreting cytokines and inflammatory mediators as well as antigen 

presentation. As professional phagocytes, macrophages express a variety of 

receptors that participate in the phagocytic uptake of antigens including those 

which recognise complement activation products or Ig Fc fragments. 

Macrophages express both MHC class I and class II molecules and therefore are 

able to present antigen derived from cytosolic or extracellular proteins for 

recognition by the appropriate CD8+ (MHC class II expressing) or CD4+ (MHC class 

I expressing) restricted antigen specific T cells. In addition macrophages can 

deliver the second co-stimulation signal required by the T cell to enhance 

cellular adhesion and signalling and promote maximal cross-talk between the 

macrophage and the T cell. These signals include CD80/86 and CD40 which 

interact with CD28 and CD154 respectively on the T cells [196]. The process of 

antigen presentation amplifies the inflammatory signal through subsequent T 

cell cytokine production and clonal expansion. 

1.2.3.3  Macrophage activation  

Macrophages are an extremely heterogenous cell type and as a result have 

demonstrated remarkable plasticity which allows them to respond to 

environmental cues and change their phenotype. These stimuli can be exogenous 

or endogenous and can be produced by innate immune cells, antigen-specific 

cells or the macrophages themselves. This extensive network of potential stimuli 

can give rise to diverse populations of macrophages with distinct physiology and 

much work has been devoted to phenotyping and understanding these 

macrophage populations. 

One of the first populations of activated macrophages to be described were the 

classically activated macrophages which designates the effector macrophage 

population that are produced during the process of cell-mediated immune 

responses [197]. The first description of a classically activated macrophage was 

the result of research performed in the 1960s by Mackaness et al which 
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demonstrated that the infection of mice with Mycobacterium bovis bacillus 

Calmette-Guerin (BCG) or Listeria monocytogenes enhanced the antimicrobial 

ability of macrophages in a stimulus dependent but antigen independent manner 

[198]. Since this first observation, several studies have shown that classical 

macrophage activation depends on the pro-inflammatory cytokines produced by 

T helper 1 (Th1) cells and NK cells, in particular TNFα and IFNγ, and microbial 

products [199]. The combination of these two signals resulted in a macrophage 

population which had enhanced microbicidal activity and secreted high levels of 

pro-inflammatory cytokines [200].  

IFNγ can be produced by both innate and adaptive immune cells. NK cells are an 

early source of this cytokine as they produce IFNγ in response to stress and 

infection. This cytokine can prime macrophages to secrete pro-inflammatory 

cytokines and produce oxygen and nitrogen radicals to increase their killing 

ability [201]. However this production of IFNγ by NK cells is transient and cannot 

maintain a population of macrophages. Therefore an adaptive immune response 

is normally needed to sustain the activated macrophages and sustain host 

defense against intracellular pathogens. In this situation IFNγ can also be 

provided by Th1 cells which are antigen specific however the microbicidal 

macrophages that the IFNγ induces can kill and phagocytose randomly. 

Other mechanisms of classical macrophage activation include TLR ligation by 

bacterial pathogens which, acting in a MyD88-dependent manner, induces the 

transcription of TNFα which will then assist IFNγ and activate the macrophage 

population in an autocrine manner. In addition to this mechanism of activation, 

TLR ligands can also activate TIR-domain-containing adaptor protein inducing 

IFNβ (TRIF)-dependent pathways, which signal through IRN-regulatory factor 3 

(IRF3) and result in IFNβ production [202], this IFNβ can induce classical 

macrophage activation in place of IFNγ indicating that TLR agonists can 

overcome the IFNγ dependent classical macrophage activation. 

The role of classically activated macrophages in the host defense to intracellular 

pathogens has been well established. Studies have shown that mice lacking in 

IFNγ expression are more susceptible to various bacterial or viral infections and 

treating macrophages with IFNγ and TNFα before infection with Leishmania 

parasites results in a population of macrophages which can kill the parasite. 
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However the complex combination of genes and cytokines that are expressed 

and produced as a result of classical activation require both the IFNγ receptor 

ligation and either TNFα receptor ligation or TLR ligation. Since stimulation of 

macrophages with IFNγ alone resulted in macrophages that could not clear the 

Leishmania parasite effectively but exogenous treatment with TNFα or a TLR 

ligand restored the macrophage ability to clear the parasite completely [197]. 

In conclusion, classically activated macrophages can be produced by innate 

stimuli following a pathogenic infection and cell-mediated immune response. 

This activation usually requires two stimuli consisting of IFNγ and TNF or TLR 

ligation but this can be overcome by certain TLR agonists that can induce TNF 

and IFNβ production from the macrophages which acts in an autocrine manner. 

The resultant macrophages have increased microbicidal activity and can produce 

high levels of pro-inflammatory cytokines. The pro-inflammatory cytokines 

produced by classically activated macrophages, such as IL-1, IL-6 and IL-23, are 

known to induce the development and expansion of Th17 cells [197, 203] which 

can contribute to numerous inflammatory autoimmune pathologies. Therefore 

although classically activated macrophages are a fundamental constituent of 

host defense, their regulation must be tightly controlled to avoid extensive host 

damage. 

Since the identification of classically activated macrophages numerous 

investigations have demonstrated that macrophages can also be activated by 

other stimuli which results in the upregulation of cell surface markers and 

phenotypic changes that are distinct from those induced by IFNγ. These studies 

analysing different subset of activated macrophages came after reports of the 

macrophage mannose receptor, which is expressed on resident macrophages, 

being specifically downregulated by IFNγ but upregulated by the cytokine IL-4 

[204, 205]. It was proposed that IL-4 induced an ―alternative‖ form of 

macrophage activation compared to the classical activation and subsequently 

other workers introduced the term M1 and M2 for classically and alternatively 

activated macrophages respectively to emulate the T helper cell polarisation 

literature [206]. Further work has demonstrated that IL-13 can also induce 

alternative macrophage activation [207] by upregulating the mannose receptor 

which is dependent on IL4Rα1 which is the common IL-4 and IL-13 receptor alpha 

chain [208]. 
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Alternatively activated macrophages are similar to classically activated 

macrophages as they can develop in response to innate or adaptive signals. IL-4 

is thought to be one of the first cytokines released during tissue injury [209] 

where one of the main sources of this cytokine are basophils and mast cells. 

However, as has been demonstrated with classically activated macrophages, the 

transient secretion of activating cytokines by innate cells is not sufficient to 

maintain the sustained macrophage activation therefore the adaptive immune 

response is necessary to develop and maintain an alternatively activated 

macrophage population. In contrast to the classically activated macrophages 

which require a Th1 immune response to produce the cytokines needed for 

activation the alternatively activated macrophages require a Th2 immune 

response. Th2 immune responses are primarily induced in response to 

disturbance at mucosal surfaces such as the intestine or the lung but can also be 

induced at non-mucosal surfaces such as in response to helmith infections [210]. 

The main cytokines which are produced by Th2 cells are IL-4 and IL-13 which 

directly induce the alternative activation of macrophages, however other 

cytokines have also been demonstrated to indirectly induce alternative 

macrophage activation through Th2 cells. IL-33 is one such cytokine and binds to 

it receptor ST2 on Th2 cells which therefore amplifies Th2 cytokine production 

and hence alternative macrophage activation [211]. 

Alternatively activated macrophages act upon inflammatory and immune 

processes and their main role is to counteract pro-inflammatory and cellular 

immune mechanisms through regulatory and inhibitory functions. Treating 

macrophages in vitro with IL-4 and IL-13 induces macrophages that fail to 

present antigen to T cells, produce minimal levels of pro-inflammatory cytokines 

and are much less efficient at producing oxygen and nitrogen radicals and killing 

intracellular pathogens compared to classically activated macrophages [212]. IL-

4 can also stimulate arginase activity in these macrophages which allows them to 

convert arginine to ornithine, since ornithine is a precursor of collagen these 

cells can therefore contribute to the production of extracellular matrix. 

Consequently, alternatively activated macrophages are often referred to as 

wound healing macrophages [197].  

Alternatively activated macrophages also have a role in parasitic infections 

where they contribute to the clearance of helmiths by aiding in the expulsion of 
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the worms in an arginase-dependent manner [213]. Recent reports have 

suggested that this protective effect mediated by alternatively activated 

macrophages may be due to these macrophages controlling the underlying Th-1 

responses during the helmith infections which if left unregulated would 

contribute to pathogenesis of the infection [210]. Alternatively activated 

macrophages can also secrete the chemokine CCL22 which induces the 

recruitment of Th2 cells into affected tissue to aid in the removal of parasitic 

infection [214]. This macrophage subgroup has also been identified in the lungs 

of mice with experimental asthma and also in those of humans with asthma 

where they are thought to play a role in the recruitment of inflammatory cells 

into the lung through their secretion of the chemokines CCL24 and CCL17. These 

chemokines recruit several cell types into the lung including basophils, 

eosinophils, mast cells and Th2 cells which may lead to excessive type 2 

inflammation and airway hyperreactivity and therefore contribute to the clinical 

disease pathogenesis [211, 215].  

Previously, during the investigations into the phenotypes and subsets of 

macrophages the term ―alternative activation‖ was used to describe all forms of 

non-classical activation of macrophages. This loose definition obscured the 

phenotypic differences observed in macrophages which were activated by 

cytokines or factors other than IFNγ in a non-classical manner. Consequently, 

three subsets of the M2 alternative activation were proposed:  M2a are 

macrophages activated by IL-4 and IL-13; M2b are macrophages that are induced 

by agonists of TLRs or IL-1 receptors; and M2c macrophages are induced by IL-10 

and glucocorticoid hormones [216]. However, a recent review by David Mosser 

and Justin Edwards proposed a different grouping of macrophage subsets and 

propositioned a new population of macrophages called regulatory macrophages 

[197]. These regulatory macrophages would appear to be most like the M2c 

subset as they are induced by glucocorticoids, IL-10, apoptotic cells and immune 

complexes and have anti-inflammatory activity. Glucocorticoids are naturally 

produced hormones which are released by the adrenal gland in response to stress 

and can inhibit macrophage mediated host defense by preventing the 

transcription of genes coding for pro-inflammatory cytokines such as IL-1β and 

TNFα [217]. Glucocorticoids can exert both direct and indirect effects on 

immune responses as glucocorticoid treated APCs either fail to present antigen 
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to T cells or induce the development of regulatory T cells which can inhibit 

immune responses [218] therefore the macrophages induced by glucocorticoids 

are primarily anti-inflammatory.  

The first report of regulatory macrophages was by Gerber and Mosser in 2001 

who demonstrated that following in vitro stimulation with immune complexes 

and the TLR4 agonist LPS, the subsequent macrophage population produced high 

levels of the anti-inflammatory cytokine IL-10 [219]. Following studies 

demonstrated that the same IL-10 producing regulatory macrophages could be 

obtained by activating macrophages with various stimuli including IL-10 and 

apoptotic cells [197, 220]. Similar to the induction of classically activated 

macrophages, regulatory macrophages require two signals to induce their anti-

inflammatory activity. The first signal of glutocorticoids, immune complexes or 

apoptotic cells for example will generally have little stimulatory function on the 

macrophage however when combined with a second signal, such as a TLR ligand, 

these two signals will induce the macrophages to produce IL-10 which is the 

most reliable characteristic of regulatory macrophages. In addition, regulatory 

macrophages also downregulate IL-12 production [219] therefore the ratio of IL-

10 to IL-12 can be used to define regulatory macrophage populations. Due to the 

ability of IL-10 to downregulate the production of pro-inflammatory, regulatory 

macrophages are effective inhibitors of inflammation although they do maintain 

their ability to produce pro-inflammatory cytokines [197]. Regulatory 

macrophages are unable to contribute to the extracellular matrix which is seen 

in alternatively activated macrophages however they do express high levels of 

the co-stimulatory molecules CD80 and CD86 and as a result can still present 

antigens to T cells [212]. 

In summary, the regulatory macrophages represent a newly defined subset of 

activated macrophages that have a predominantly anti-inflammatory function 

through the production of IL-10. However several studies have demonstrated 

that incorrect regulation of these macrophage can have deleterious effects on 

the host and regulatory macrophages have been found to play a role in the 

neoplastic growth of tumours [197]. Tumour associated macrophages have been 

found to have a regulatory phenotype and produce high levels of IL-10 and can 

also contribute to angiogenesis and tumour growth [221]. However, the function 
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and exact role that these regulatory macrophages play in tumour progression is 

still to be elucidated. 

To conclude, the plasticity of macrophages has made classification of activated 

populations very difficult and there is controversy regarding the phenotype of 

these populations as research groups denote different identifications of the 

macrophage subsets. As demonstrated above the classification of macrophages is 

more complex that an M1 or M2 macrophage because unlike T cells, which 

undergo major epigenetic modifications during differentiation, macrophages will 

maintain their plasticity and continue to respond to environmental cues [222]. 

Therefore rather than being strict phenotypic characteristics the three subsets 

of macrophages discussed here represent a spectrum of activation and these 

macrophages will have the ability to change from one subset to another and may 

even display attributes of two subsets depending on the host environment. See 

Figure 1.4 for a cartoon representation of the three macrophage population 

which arise as a result of different mechanisms of activation. 
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Figure 1.4 Innate and acquired immune activation of macrophages 
Classically activated macrophages develop in response to the cytokines IFNγ, which can be 
produced during an adaptive immune response by Th1 cells or during an innate immune response 
by NK cells, and TNFα which can be produced by NK cells, Th1 cells or APCs. Alternatively, 
classical macrophage activation can develop as a result of TLR ligation by microbial products. 
Alternatively activated macrophages arise in response to IL-4 and IL-13 which are produced during 
a Th2 adaptive response or during a granulocyte innate response. IL-33 can activate Th2 cells and 
amplify their cytokine production and therefore alternative macrophage activation. Regulatory 
macrophages develop in response to various stimuli including IL-10, apoptotic cells, immune 
complexes and glucocorticoids. Each of these macrophage populations has a different phenotype 
and role within host defense, classically activated macrophages have microbicidal activity whereas 
alternatively activated macrophages have a role in tissue repair and parasite expulsion and 
regulatory macrophages produce high levels of IL-10 to dampen the immune response. The 
development of the macrophage populations shown here are not permanent changes to the cells 
and due to remarkable plasticity of macrophage cells they retain the ability to change from one 
subset to another depending on the environmental stimuli. Adapted from [197]. 
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1.2.4 Monocytes and macrophages in inflammatory arthritis 

Autoimmune disorders such as PsA and RA are characterised by the obliteration 

of self-tolerance and the appearance of self-reactive lymphocytes. Monocytes 

and macrophages are one of the cell types implicated in the perpetuation of 

arthritic disease and are found in dense populations within the diseased synovial 

membrane. 

1.2.4.1  Blood monocytes in RA and PsA 

Within healthy individuals the circulating blood monocyte population will consist 

of approximately 90% CD14+CD16- cells and 10% CD14lowCD16+ cells [166]. In 

comparison to the CD14+CD16- monocytes, CD14+CD16- (CD16+) monocytes have 

shown distinct patterns of additional surface molecules such as MHC class II, 

ICAM-1 and LFA-1 [164, 223] and are thought to bear resemblance to tissue 

macrophages. CD16+ monocytes are thought to be of pathological significance 

since they are expanded in inflammatory conditions such as asthma [224] and 

sepsis [225] and have been discovered to be at a higher ratio in the blood of RA 

patients. The percentage of CD16+ monocytes is significantly increased in RA 

blood (11-15%) compared to healthy blood (9-9.5%) [226-229] and the RA 

diseased blood monocytes also had increased levels of surface TLR2 compared to 

the healthy controls [227]. CD16+ cells produce larger amounts of TNFα in 

response to TLR2-specific ligands compared to CD16- cells [168] suggesting that 

the RA blood monocytes may be more proinflammatory and have higher levels of 

activation compared to those of the healthy controls. 

The expression of CD16 on blood monocytes in RA patients has also been shown 

to be correlated to the disease activity of the patients which also substantiates 

the hypothesis that CD14+CD16+ monocytes in RA contribute to the disease 

pathogenesis [226, 228, 229]. In addition, the plasma concentrations of 

cytokines which are known to induce CD16+ expression such as M-CSF, TGFβ1 and 

IL-10 are increased in RA patients. In addition, to being at an increased level in 

the blood of RA patients, CD16+ monocytes are also overrepresented in the 

synovium of patients where they again correlate with disease activity and the 

degree of joint destruction [229]. Moreover, circulating CD16+ monocytes as well 

as the lining layer in the synovial tissue of RA patients show increased expression 

of CX3CR1 which is the receptor for fractalkine (CX3CL1). CX3CR1 is capable of 
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mediating leukocyte migration and firm adhesion, and high levels of fractalkine 

have been detected in the serum and synovial fluid of RA patients indicating that 

this receptor – ligand complex may be mediating the migration and recruitment 

of CD16+ monocytes from the blood into the synovium [230]. 

In addition to the work performed on CD16+ overexpression within the blood of 

RA patients other studies investigating the function of monocytes in RA have 

further demonstrated their pathogenic role within the disease. For example, RA 

CD14+ monocytes have been shown to inhibit synovial T cell glucocorticoid –

mediated apoptosis though the release of soluble factors rather than via direct 

cell contact. Therefore RA monocytes could provide a mechanism for the 

increased survival of synovial T cells within the disease and may be a mechanism 

for the differences in response to glucocorticoid treatment for RA [231]. 

In comparison to the RA literature there has been little research into the 

presence of an elevated CD16+ monocyte population in PsA patients. However, a 

very recent study by Chiu et al noted that there was an increased frequency of 

circulating CD14+CD16+ monocytes in PsA patients compared to healthy controls 

(0.91% versus 0.46% respectively) [232]. It had been previously demonstrated 

that circulating monocytes in PsA were able to mature into osteoclasts, which 

are cells that directly absorb bone, without any exogenous stimuli [233]. The 

results of the current study demonstrate that the osteoclast cells were mainly 

derived from the CD14+CD16+ cells in PsA and increased CD16 expression was 

associated with increased bone erosion in PsA [232]. However, this result is in 

direct contrast to those of Komano et al who isolated monocytes from the blood 

of RA patients and illustrated that the CD16- monocyte subset but not the CD16+ 

population were able to differentiate into osteoclasts by stimulation of the cells 

with RANKL in combination with M-CSF. In contrast, the CD16+ monocytes 

expressed larger amounts of TNFα and IL-6 which were enhanced by RANKL 

stimulation therefore this would suggest that the RA blood monocytes consist of 

two functionally distinct subsets which respond in alternative ways to RANKL 

stimulation [234]. The difference demonstrated between the ability of CD16+ 

cells to form osteoclasts in PsA but not in RA is at present inexplicable but may 

be due to differences in the monocyte subsets between the two diseases. 
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1.2.4.1.1 Chemokine receptor expression on diseased monocytes 

The majority of cells which form the infiltrate in RA and PsA synovial tissue are 

derived from the circulation and the synovial inflammation seen in both diseases 

is dependent on the infiltration and retention of these inflammatory cells within 

the joint. Chemokines and their receptors play a crucial role within these 

processes as they allow the immune cells to chemotax from the blood to the 

synovium and the upregulated expression of chemokine receptors is a 

characteristic of diseased monocytes. The chemokine network represents a large 

group of chemotatic proteins which are structurally related. To date there are 

around 50 chemokines signalling through 20 different receptors which can be 

constitutively expressed on cells or be up- or down-regulated dependent on cell 

activation.  

Arthritic blood monocytes have previously been demonstrated to express 

chemokine receptors at a significantly increased level compared to normal blood 

monocytes. As mentioned previously fractalkine (CX3CL1) is expressed at a 

higher level on RA CD16+ monocytes which is thought to mediate the migration 

of these cells into the diseased joint [230]. An additional study has also found 

that RA PB monocytes express both CCR1, which will bind a variety of ligands 

including CCL3 and CCL5, and CCR2, which binds with CCL2, while RA SF 

macrophages have upregulated levels of CCR5 and CCR3. This differential 

chemokine receptor expression would suggest that CCR1 and CCR2 may be 

involved in monocyte recruitment from the blood and CCR3 and CCR5 may be 

involved in retention of the monocytes within the synovium [235]. In addition, a 

recent paper had revealed the expression of the chemokine receptor CCR9 on RA 

PB monocytes as well as RA synovia, the expression of CCR9‘s only known ligand 

CCL25 was also detected in RA synovia co-localised with CD14+ monocytes and 

CD68+ macrophages. CCL25 induced strong chemotaxis of PB monocytes and also 

the differentiation of monocytes into macrophages and therefore this receptor-

ligand complex may play a dual role in the pathogenesis of monocytes in RA by 

inducing their movement into the synovium and promoting their differentiation 

into a destructive macrophage phenotype [236]. 

The RA and PsA synovium also contains high levels of monocyte chemotactic 

chemokines including the ligands for the chemokines receptors mentioned above 

which are expressed on PB monocytes such as CCL5 and CCL3 [237, 238] which 
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will enable the migration of blood monocytes into the synovium in order to 

differentiate into pathogenic macrophages and maintain their continual 

pathogenic secretion of pro-inflammatory cytokines and chemokines.  

A recent interesting imaging study which investigated the migration of RA 

monocytes, isolated CD14+ monocytes from patients and labelled them with a 

radioactive tracer before re-infusing these monocytes back into the patients. 

The patients were imaged and the results determined that a small number of the 

monocytes had migrated into the diseased joints after 1 hour and had a 

continuous movement into the joint [239]. These results demonstrate the short 

migration time of monocytes from the blood into the synovial compartment and 

reveal the strong migratory potential of these monocytes possibly led in part by 

the high levels of chemotactic proteins expressed within both the patient 

synovium and serum and the upregulation of adhesion molecules on the surface 

of the cells [230, 240].  

The proinflammatory milieu within the serum of arthritis patients can also 

induce blood monocytes to produce chemokines and pro-inflammatory cytokines 

therefore the blood monocytes are not only the precursors for the inflammatory 

macrophages seen in the synovium but can also contribute to the inflammatory 

environment themselves. For example, a recent study demonstrated that the 

pro-inflammatory molecule osteopontin which is found at increased levels in the 

serum of RA patients induced the expression of the chemokines CCL2 and CCL4 

in CD14+ monocytes [241]. Monocytes have also been shown to secrete TNFα in 

response to immune complexes found in the serum of arthritis patients [242] 

indicating that these cells play a role in the elevated serum chemokine and 

cytokine levels observed in RA and PsA.  

1.2.5 Macrophages in RA and PsA 

Once the peripheral blood monocytes have entered the arthritic synovium they 

will mature and develop into macrophages which express broad pro-

inflammatory, remodelling and destructive potential and contribute significantly 

to the inflammation and joint destruction observed in RA and PsA. Similar 

numbers of CD68+ macrophage populations are found within the lining and 

sublining of the synovium in RA and PsA [243] and upregulated levels of 
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monocytes and macrophages have been found in the synovial fluid of RA and PsA 

patients [244]. The importance of macrophages for the pathogenesis of 

inflammatory arthritis has been demonstrated by several studies such as those 

performed by Tak et al who illustrated that the number of synovial macrophages 

correlate with the scores for knee pain and also the levels of TNFα and IL-6 

expression [245]. In addition, the radiographic progression of joint destruction in 

RA has been found to correlate with the degree of synovial macrophage 

infiltration [246] which underscores the important role the macrophage plays in 

synovial inflammation. Furthermore, an ex vivo cellular model of rheumatoid 

arthritis which was set up using cultures of synovial tissue from RA patients 

revealed that the spontaneous reconstruction of inflammatory tissue which was 

visualised after 4 weeks of culture could be inhibited by depleting CD14+ cells  

from the synovial tissue. They suggested that these results imply a critical role 

of CD14+ monocytes and macrophages in the development of the destructive 

pannus tissue observed in RA [247]. Studies in animal models have also revealed 

the importance of macrophages in arthritis as op/op mice which are deficient in 

the macrophage differentiation cytokine M-CSF fail to develop collagen induced 

arthritis [248]. 

1.2.5.1  Stimulation of macrophage activation in RA and PsA 

The differentiation and activation of infiltrating monocytes into pathogenic 

macrophages underlies the systemic inflammation observed in both RA and PsA 

and is a complex interaction of paracrine mechanisms through cell-cell 

interaction as well as the result of soluble stimuli and autocrine mechanisms. 

1.2.5.1.1 Cell-cell interaction 

A considerable part of macrophage effector responses is mediated by cell 

contact dependent signalling with different inflammatory or mesenchymal cells. 

Due to the large numbers of fibroblasts and macrophages within synovial tissue 

the interaction of these cell types is essential for the resulting tissue damage 

and inflammation. The direct cell contact of these two cell types elicits the 

production of IL-6, GM-CSF and IL-8 which can be enhanced by the addition of 

other pro-inflammatory cytokines or inhibited by the addition of regulatory 

cytokines or by neutralising CD14 [249].  
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The interaction between monocytes and endothelial cells in arthritis is necessary 

for the sustained influx of cells into the synovium through the interaction of 

selectin/intergrin pairs on the surface of the two cell types. The synovial 

cytokine environment upregulates the expression of these ligand pairs and leads 

to the further influx and activation of peripheral blood monocytes [250]. In 

addition, cell contact between macrophages and monokine-activated NK cells 

induces TNFα production from the macrophages demonstrating a further 

mechanism for macrophage activation [251]. 

A substantial amount of work has been dedicated to analysing the cell contact 

dependent activation of macrophages by T cells which will be discussed in detail 

in section 1.2.5.3. This cell contact activation occurs in the absence of antigen 

but there have also been reports of macrophages acting as APCs within the joint 

and presenting autoantigens such as collagen to T cells [252]. 

1.2.5.1.2 Soluble stimuli 

There are numerous soluble stimuli present in the arthritic joint which are able 

to activate macrophages of these the most notable stimuli are cytokines. Many 

of the cytokines present have a pro-inflammatory effect on the macrophages and 

several of them, such as TNFα, IL-1 and IL-15, are produced by macrophages 

themselves and therefore will activate the macrophages in an autocrine fashion 

and result in a subset of perpetually activated macrophages. T cells within the 

joint can also produce inflammatory cytokines that will affect the macrophage 

population such as IL-17 which has pro-inflammatory and amplifying effects on 

macrophages in RA [113]. In addition to their inflammatory effects, there are 

also cytokine stimuli within the joint which have a regulatory effect on the 

synovial macrophages such as IL-4 and IL-13 which are produced by T cells and 

are involved in the alternative activation of macrophages as discussed previously 

and also IL-10 which is produced by macrophages themselves and may be a 

mechanism of autocrine regulation in order to try and reduce the chronic 

inflammation taking place. 

An interesting study undertaken by Vandooren et al demonstrated that the 

synovial fluid from SpA patients which included a subset of PsA patients was able 

to induce the preferential expression of the M2 (alternative activation) markers 

CD163 and CD200R on peripheral blood monocytes in comparison to synovial fluid 
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from RA patients [253]. Previous studies had also shown an increased number of 

CD163 expressing macrophages in the synovium of SpA patients [254, 255], these 

studies demonstrate that the local inflammatory synovial environment is 

different in SpA compared to RA and could be preferentially inducing a more 

wound healing alternative macrophage phenotype which may be contributing 

towards maintaining tissue integrity although at present no differences in the 

subsequent destructive processes in SpA and RA have been identified. 

1.2.5.2  Macrophage effector molecules in RA and PsA 

Once the blood monocytes have been differentiated and fully activated into 

synovial macrophages they start to produce a number of pro-inflammatory 

effector molecules that contribute to the continual inflammation and joint 

destruction seen within the arthritic joint. Subsets of these molecules are 

outlined below. 

1.2.5.2.1  Chemokines  

As discussed previously chemokine receptor expression play a significant role in 

the infiltration of blood monocytes into the synovium. Once in the arthritic joint 

the differentiated macrophage will upregulate a different profile of chemokine 

receptors such as CCR3 and CCR5 which may be involved in their retention 

within the synovium [235] and in addition will also secrete chemokines in 

response to the pro-inflammatory environment. Synovial macrophages have been 

shown to produce a range of CXC and CC chemokines and will often produce the 

ligands for the chemokine receptors expressed on the diseased blood monocytes 

in order to increase the number of infiltrating monocytes entering the synovium. 

One such chemokine is CXCL16 which is the sole ligand for CXCR6 and is found in 

the RA synovial tissue lining and interstitial macrophage cells. CXCL16 is involved 

in monocyte recruitment into the RA synovial tissue [256]. 

In addition to secreting monocyte chemotactic chemokines synovial macrophages 

also produce chemokines such as CXCL8 (IL-8), CXCL1 (Groα), CXCL7 (CTAP-III) 

and CCL18 (PARC) which are chemotactic for other inflammatory cells such as 

neutrophils and T cells [257, 258]. CCL22 is also secreted by macrophages in RA 

and PsA synovium and is thought to be involved in the migration of CCR4 

expressing memory T cells to the joint [259]. These secreted chemokines can 
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become part of autocrine loops of macrophage activation as their cognate 

receptors are often found on the surface of the macrophages themselves. 

Furthermore, some of the macrophage-expressed chemokines such as IL-8 are 

powerful promoters of angiogenesis and thus provide a link between macrophage 

activation and the prominent neo-vascularisation of the RA and PsA synovium 

[136]. 

1.2.5.2.2 Cytokines, proteinases and growth factors 

 
TNFα 
In RA and PsA, TNFα is mostly produced by macrophages at the cartilage pannus 

junction and in the synovial membrane [250], this cytokine can induce the 

production of adhesion molecules, collagenase and collagen from synovial cells 

and can also act on macrophages in an autocrine manner to produce numerous 

products including IL-6, IL-8, MCP-1 and MIP-1α [258]. Due to its significant pro-

inflammatory capabilities TNFα is of critical importance in the pathogenesis of 

RA and PsA and neutralisation of the cytokine through the use of anti-TNFα 

antibodies is now used as a therapy for both diseases [135, 148, 149]. 

IL-1 
IL-1 is another pro-inflammatory cytokine found within the synovial joint that is 

predominantly secreted by CD14+ macrophages [260], and synovial fluid levels of 

this cytokine have been found to correlate with joint inflammation [261]. IL-1 

influences proteoglycan synthesis and degradation and hence articular damage 

underscoring the pathogenic effect macrophages and their products can have on 

the chronic nature of arthritis. In addition, the IL-1 type 1 receptor (IL-1R1), 

which mediates IL-1-induced cell activation, is found on numerous cells within 

the synovium of RA patients [262] indicating the pro-inflammatory capacity of IL-

1 within the synovium. The type II receptor (IL-1R2) which does not induce 

cellular activation and is therefore anti-inflammatory is found at low levels in 

the arthritic synovium [263]. However, IL-1 receptor antagonist (IL-1RA) which 

blocks the action of IL-1 by binding to IL-1R1 is constitutively expressed by 

differentiated macrophages and is produced at increased levels by the 

mononuclear cells of RA patients compared to healthy controls [264]. In 

addition, IL-1RA levels in the sera of PsA patients correlate with the number of 

swollen joints [265]. These findings may help to explain why therapeutic 

application of IL-1RA (anakinra) appears to be only modestly effective in RA 
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[266] and PsA [267] despite being an effective therapeutic for several hereditary 

autoimmune diseases.  

IL-15 
IL-15 is an IL-2 family member cytokine that has chemoattractant properties for 

memory T cells, it is produced by lining layer cells including macrophages and is 

increased in the synovial fluid of RA patients [268]. Peripheral or synovial T cells 

stimulated with this cytokine can induce macrophages to produce IL-1β, TNFα, 

MCP-1 and IL-8 but not the anti-inflammatory IL-10 [269]. Since IL-15 is produced 

by the macrophages themselves, this may re-stimulate the T cells and result in a 

self-perpetuating pro-inflammatory loop [268].  

IL-6 
IL-6 has also been shown to be produced by synovial macrophages in addition to 

synovial fibroblasts, it is elevated in the synovial fluid of RA and inflammatory 

arthritis during the acute phase of disease and has been shown to have phase 

dependent effects as it protects the cartilage in acute disease but promotes 

excessive bone formation during chronic disease [250]. However, despite these 

opposing effects of IL-6 within the disease setting clinical trials of an anti-IL-6 

receptor antibody suggest it may be used as an effective treatment for RA [134, 

157] although at present no trials have investigated the use of such antibodies in 

PsA. 

IL-18 
IL-18 is a member of the IL-1 family of cytokines and its expression is up-

regulated within the synovial membrane as well as the serum and synovial fluids 

of RA and PsA patients [270, 271]. It is expressed by CD68+ macrophages 

contained within lymphoid aggregates as well as by fibroblast-like synoviocytes 

and RA synovial fluid CD14+ macrophages also express the IL-18 receptor (IL-18R) 

[272]. Several lines of investigation have demonstrated the pro-inflammatory 

role of IL-18 in arthritis: (a) IL-18 deficient mice exhibit reduced incidence and 

severity of disease in the CIA and ZIA mouse models of arthritis [273-275] (b) 

anti-IL-18 antibodies can effectively reduce development and established 

arthritis in both streptococcal cell wall induced arthritis (a strongly macrophage-

dependent model) and CIA [276, 277] (c) treatment with low doses of IL-18 prior 

to induction of CIA was able to increase the severity and incidence of disease 

[278] and (d) IL-18 is selectively overexpressed in the bone marrow of patients 
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with juvenile idiopathic arthritis and macrophage activation syndrome [279]. IL-

18 has also been demonstrated to correlate with CRP levels in arthritis patients 

and their levels decrease in parallel in synovial tissue and serum following 

effective treatment with DMARDs [271]. A recent study performed by Ruth et al 

engrafted human synovial tissue into SCID mice and investigated whether the 

injection of IL-18 into these grafts could induce the migration of human PB 

monocytes which were administered to the mice. They found that IL-18 could 

indeed induce monocyte recruitment to the synovial tissue and in addition IL-18 

gene knockout mice showed pronounced reductions in joint inflammation during 

ZIA model of arthritis once again indicating the dominant role of IL-18 within 

arthritis and its ability to act in an autocrine manner and induce monocyte 

migration to sites of inflammation [275]. 

MIF 
Macrophage migration inhibitory factor (MIF) is an early-response cytokine 

abundantly released by macrophages. This cytokine can stimulate macrophage 

functions in an autocrine manner such as the release of TNF-α and phagocytosis. 

MIF can also confer resistance to apoptosis in both macrophages and synovial 

fibroblasts within the synovial joint [250]. In RA, MIF is overexpressed in the 

serum and synovial fluid of patients and correlates with disease activity and 

arthritis severity is significantly reduced in MIF-/- mice in comparison to wild 

type mice and is associated with reduced T cell activation [280]. 

Proteinases 
Matrix metalloproteinases (MMPs) are enzymes involved in extracellular matrix 

degradation that is a central part of the joint destruction seen in arthritis. There 

are around 30 known MMPs and of these mainly MMP-1 (collagenase), MMP-2 

(gelatinase A) and MMP-9 (gelatinase B) are released by RA synovial macrophages 

[258, 281]. MMP-1 and MMP-3 (stromelysin) mRNA has also been detected in the 

synovium of PsA patients [94]. Synovial macrophages also produce tissue 

inhibitors of MMPs such as TIMP-1 and TIMP-2 that anatagonise the effects of 

MMPs. 

Growth factors 
Growth factors are involved in the synovial angiogenesis, inflammation and 

fibrosis occurring in the arthritic joint.  Synovial macrophages are known to 

secrete several such factors including platelet-derived growth factor (PDGF) and 
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vascular endothelial growth factor (VEGF) [258]. PDGF-C and PDGF-D are the two 

isoforms expressed by synovial tissue macrophages and the latter isoform has 

been previously shown to increase the production of the enzyme MMP-1 within 

the synovium [282]. VEGF levels are significantly increased in the sera of PsA and 

RA patients and correlate with disease activity [98, 283]. The VEGF receptor 

(VEGFR-1/Flt-1) has previously been implicated in macrophage activation and 

angiogenesis in RA [284]. VEGFR-1 deficient mice were shown to obtain 

diminished clinical symptoms of induced arthritis compared to wild type mice 

and this VEGFR-1 deficiency was associated with reduced macrophage 

differentiation and function including a decrease in the secretion of pro-

inflammatory mediators [284]. 

1.2.5.2.3 Anti-inflammatory cytokines 

In addition to producing a large variety of pro-inflammatory mediators in the 

synovial joint macrophages also produce anti-inflammatory cytokines, namely IL-

1RA as mentioned previously and IL-10. IL-10 is a macrophage and Th2 derived 

cytokine which reduces antigen presentation by macrophages and prevents the 

production of pro-inflammatory cytokines by synovial macrophages [250]. The ex 

vivo production of IL-10 by RA PBMCs is negatively correlated with radiographic 

joint damage suggesting that IL-10 is protective however several studies have 

found a deficiency of IL-10 in the synovial compartments [285] which proposes 

that the synovial macrophages may be reducing their regulatory cytokine output 

in favour of a highly pro-inflammatory profile. 

An outline of the characteristics and pro-inflammatory potential of inflammatory 

arthritis monocytes and macrophages are shown in Figure 1.5. 
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Figure 1.5 Phenotypic overview of RA and PsA monocytes and macrophages 

An overview of the functional differences between healthy monocytes and RA or PsA diseased 
monocytes in the blood (A) and the arthritic joint (B). This figure demonstrates the inflammatory 
phenotype of these cellular subtypes and the mechanisms of their activation in RA and PsA. 

 

1.2.5.3 In vitro model of inflammatory arthritis 

The use of in vitro model systems within the investigation of chronic arthritis is 

valuable for the detailed analysis of patient cells to fully understand how they 

activate and interact with other cells. One such in vitro model has been 

established to investigate the contact-dependent, antigen independent 

interactions occurring in the synovial joint between macrophages and stimulated 

T cells. Since histologically, T cells are often found within close contact with 

macrophages within RA synovial tissue [286]. In addition, T cell cytokines such as 

IL-4, IL-10, TGF-β and IL-13 have predominantly anti-inflammatory effects and 
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IFN-γ alone displays weak activation capacity in terms of IL-1β and TNF-α 

induction which suggests that the soluble factors produced by T cells are not 

pathological mediators. Therefore it was hypothesised that within the synovium, 

one method through which T cells could exert a pathological effect would be 

through direct cellular contact with macrophages to induce cytokine and 

chemokine secretion from the latter cell type. 

The history of contact mediated activation of macrophages by stimulated T cells 

began in the mid-eighties when it was observed that the expression of 

membrane- associated IL-1 (IL-1α) in mouse macrophages was mediated by both 

soluble mediators and direct cell contact with T cells [287]. The same group 

subsequently demonstrated that this T cell contact mediated IL-1 induction in 

monocytes took place with both Th1 and Th2 cells in the absence of lymphokine 

release [288]. Following this result a similar experiment was setup with human 

cells and it was demonstrated that the production of IL-1β by human monocytes 

also required direct cell contact with anti-CD3 stimulated cells [289]. 

Accordingly, other investigators have shown that the induction of macrophage 

effector functions mediated through T lymphocytes in living cell co-cultures 

involved signals from cell-cell contact in addition to IFNγ [290]. Furthermore, by 

using isolated plasma membranes from T cells stimulated with PHA/PMA Vey et 

al demonstrated that this contact activation was sufficient for the activation of 

the human monocytic cell line THP-1 and their subsequent secretion of IL-6, 

TNFα and IL-1β in the absence of T cell derived cytokines. This cytokine release 

did not occur when the cells were physically separated by a permeable 

membrane [291].  

Antigen independent, direct contact mediated activation of monocytes and 

macrophages by stimulated T cells was found to be as potent as LPS in inducing 

cytokine production in monocytes and monocytic cell lines [291-293]. However, 

besides PHA/PMA various stimuli for the T cells were found to activate 

monocytes by direct cellular contact such as cross-linking CD3 by anti-CD3 mAb 

and the addition of cytokines to the T cells. In addition, depending on the T cell 

type and the stimulus, direct cell-cell contact between stimulated T cells and 

monocytes/macrophages induced different patterns of products secreted from 

the latter cell type (see Table 1.7).  
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Table 1.7 Depending on T cell stimulus, various products are induced in the 
monocyes/macrophages upon direct cell contact 

 
Stimulus   T cell   Monocyte  Products  
 
PHA/PMA  PB T cells,  PB mo, THP-1 TNFα, IL-1β, IL-6, 
   Synovial, Jurkat,    IL-8, IL-1α, MMP-1, 
   Th1 and Th2,     MMP-9, TIMP-1 

HUT-78     [291, 293-295] 
 
PdBu/ionomycine PB T cells  PB mo   IL-10, TNFα [296] 
 
Anti-CD3  PB and synovial  PB mo, THP-1 IL-10, IL-1β, TNFα, 
   T cells      MMP-1 [296-299] 
 
Anti-CD3  PB T cells  PMA/IFNγ treated IL-10, IL-12, TNFα, 
      U937    IL-4 [300] 
 
IL-15 or IL-2  PB T cells,  U937, PB mo, TNFα, IL-1β, IL-10  
   Synovial T cells, THP-1, synovial [301, 302] 
   Th1 and Th2  mo 
 
IL-2, IL-6, TNFα PB T cells,   PB mo   TNFα, MCP-1, 
   Synovial T cells    MCP-1, MIP-1α, 

MIP-1β, RANTES,  
IL-8, GROα, IP-10,  
IL-1β [269, 298] 

 
 

The observations outlined in Table 1.7 suggested that multiple ligands and 

counter-ligands are involved in the contact mediated activation. It was 

hypothesised that membrane associated cytokines or soluble cytokines may play 

a role however the Dayer group consistently demonstrated that neither soluble 

TNFα receptors or IL-1Ra blocked T cell mediated signalling of the monocyte. 

Additionally neutralisation of TNFα, IL-1, IL-2, GM-CSF and IFNγ all failed to 

affect monocyte activation by membranes from stimulated T cells [291, 293, 

297]. In addition to membrane-associated cytokines other surface molecules 

were investigated for their ability to activate macrophages upon contact with 

stimulated T cells. The CD40/CD40L interaction was shown to be involved in the 

contact activation of both human and mouse macrophages by T cells stimulated 

for 6 hours [303] but T cells isolated from a CD40L knockout mouse were also 

able to trigger macrophage activation although this activation was less than that 

seen from wild type murine T cells [304]. Furthermore, blocking antibodies to 

CD40L or soluble CD40 failed to inhibit contact-induced activation of 
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macrophages by 48 hour activated T cells. HUT-78 cells, which are able to 

induce cytokine production from macrophages, do not express CD40L mRNA in 

the resting or activated state [305]. Finally, Th1 but not Th2 clones stimulated 

with IL-15 were able to induce IL-1β production from monocytes, in the former 

system blockade of the CD40/CD40L interaction resulted in inhibition of IL-1β 

production despite similar levels of CD40L expression in the Th1 and Th2 cells 

indicating the selective requirement of CD40 engagement upon monocyte 

activation by Th1 clones [301]. Other groups have also demonstrated the 

presence of surface molecules such as CD69, LFA-1 and ICAM-1 on simulated T 

cells play a role in macrophage activation through the use of blocking antibodies 

which effectively inhibited macrophage activation [291, 302, 306]. 

Histological studies of the RA synovium have indicated that this tissue is very 

cellular and that several different cell types including macrophages and T cells 

are in close proximity [286]. This could therefore suggest that direct contact 

between macrophages and T cells could be important in vivo in modulating 

synovial macrophage function. It was first reported in 1994 that a cocktail of 

cytokines, namely IL-2, IL-6 and TNFα, could activated T cells in the absence of 

antigen which in turn stimulated B cells [307]. Since the RA synovial joint is a 

highly pro-inflammatory environment containing a milieu of pro-inflammatory 

cytokines it was hypothesised that these cytokines could activate the T cells 

contained within the joint which would subsequently activate the synovial 

macrophages by direct cell contact and be a mechanism for the increased 

production of pro-inflammatory mediators.  

In 1997, McInnes et al demonstrated that IL-15 alone, which is a cytokine found 

within RA synovium [268], could activate T cells isolated from the PB or SF of RA 

patients; these fixed T cells were then able to activate U937 cells or matched RA 

PB or SF monocytes to produce TNFα. This monocyte activation was cell contact 

dependent since the TNFα production was abrogated in the presence of a semi 

permeable membrane. Furthermore, it was demonstrated that the T cell surface 

molecules CD69, LFA-1 and ICAM-1 were involved in this activation since 

antibodies against these molecules prevented the secretion of TNFα from the 

monocyte [302]. In the same year Brennan and Feldmann used the cytokine 

cocktail IL-2, IL-6 and TNFα to stimulate PB T cells and demonstrated that the 

manner in which the T cells were activated influenced the profile of cytokines 
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secreted by the monocytes. Thus, if blood T cells were activated with cross-

linked anti-CD3 this induced the production of TNFα and IL-10 from monocytes 

[296]. However, if the T cells were stimulated with the cocktail of cytokines for 

8 days, the monocytes produced TNFα production but not IL-10 [269]. Such 

observations suggested that these cytokine stimulated T cells, designated Tcks, 

could be similar to the T cells found in the synovial tissue of RA patients since 

they induce an unbalanced pro-inflammatory cytokine response from monocytes.  

Consequently, further work performed by the Brennan and Feldmann group set 

out to investigate fully these Tck cells and their relevance to RA. This group 

demonstrated that the TNFα production in RA synovium was T cell dependent as 

the removal of CD3-positive T cells from RA synovial mononuclear cells resulted 

in the significant reduction of macrophage TNFα, in addition this TNFα output 

was abrogated if physical contact between the two cell types was blocked [298]. 

It was also shown that Tck cells but not T cell receptor dependent stimulated T 

cells induced TNFα production in monocytes in an NF-κB dependent manner. 

Conversely, phosphatidylinositol 3-kinase (PI3K) inhibitors were found to block T 

cell receptor stimulated T cell activation of monocytes but did not affect Tck 

mediated monocyte activation indicating the different signalling mechanisms 

employed by the two differentially activated T cells [298]. Interestingly, RA 

synovial T cells were also found to employ the same signalling mechanisms as 

Tcks since the induction of TNFα in resting PB monocytes by synovial T cells was 

NF-κB dependent and were superinduced if PI3K was blocked [298]. These 

results provided evidence that the IL-2, IL-6, TNFα activated Tcks were similar 

to the synovial T cells found in RA and provided a basis for an in vitro model of 

inflammatory arthritis.  

Subsequent investigations have also substantiated this finding and provided 

evidence for the Tck cell contact activated macrophages as a model of arthritis. 

For example, the chemokines produced by M-CSF differentiated macrophages 

after contact with fixed Tck cells have been analysed and it was revealed that 

they produce several CC and CXC chemokines such as MCP-1, MIP-1α, MIP-1β, 

RANTES, IL-8, GROα and IP-10. Interestingly, blockade of NF-κB signalling 

through IκBα overexpression inhibits Tck and synovial T cell induced macrophage 

secretion of CXC but not CC chemokines, suggesting that RA synovial T cells 

share similarities in their effector function to Tck cells [308]. Subsequent 
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phenotyping of this Tck cell subset has revealed that they are a 

CD4+CD45RO+CCR7- CD49dhigh population of T cells. After IL-2, IL-6 and TNFα 

stimulation in culture these Tcks acquire an activated phenotype that resembles 

the phenotype of RA synovial T cells including the selective upregulation of 

adhesion molecules and integrins such as very late antigen 4(VLA-4) [309]. In 

summary, these investigations established the functional and phenotypic 

similarities between in vitro cytokine activated T cells (Tck) and RA synovial T 

cells and demonstrated the importance of the cell contact mediated activation 

of monocytes/macrophages as a surrogate model of RA. 

The modulation of T cell induced signalling in monocytes may be an important 

concept as it would maintain a low level of monocyte activation within the blood 

stream. Apolipoprotein (apo) A-I has been identified as a specific inhibitor of 

contact-mediated activation of monocytes [310]. Apo A-I is known as a negative 

acute phase protein and is one of the main proteins of high density lipoprotein 

(HDL). There have been several reports of variations of apo A-I concentration in 

inflammatory diseases [311] and in RA the levels of circulating apo A-I and HDL-

cholesterol in untreated patients were lower than in healthy controls [312]. 

Conversely, apo A-I levels were enhanced in the synovial fluid of RA patients 

[313]. 

This possible regulatory mechanism within the synovium may be overcome by a 

positive acute-phase protein which can displace apo A-I from HDL, known as 

serum amyloid A (SAA) [314]. SAA is produced in the liver but has also been 

detected in the RA synovium, HDL-associated SAA is a pro-inflammatory 

molecule and the expression of SAA can be increased by cytokines such as TNFα 

and IL-1β. This could therefore lead to a positive feedback loop of inflammation 

within the synovium as the cell contact dependent activation of synovial 

macrophages will induce the production of pro-inflammatory cytokines which 

will therefore increase the levels of SAA and consequently decrease the levels of 

Apo A-I. The decreased level of Apo A-I, which is an inhibitor of contact 

mediated monocyte activation, will thereby result in higher levels of monocyte 

activation and increased levels of pro-inflammatory molecules thus increasing 

the chronic synovial inflammation [314]. To try to further understand the role of 

HDL within T cell contact activation of monocytes Gruaz et al performed a 

microarray analysis of monocytes activated by the plasma membranes of fixed 
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PHA/PMA stimulated T cells in the presence or absence of HDL. The results of 

this study demonstrated that T cell activation of monocytes induced the 

upregluation of 437 probe sets in the monocytes including genes associated with 

the inflammatory response and inflammatory diseases. It was also shown that 

the addition of HDL to the monocytes at the time of T cell membrane activation 

was able to inhibit the expression of 164 (38%) of these probe sets which 

included probe sets specific for TNFα, IL-6, IL-1β, CCL4 and CCL3. Consequently 

this study substantiated the previous reports of the pro-inflammatory nature of T 

cell contact activation of human monocytes and the subsequent anti-

inflammatory capacity of HDL upon this cell contact model [315]. 

In summary, these studies have demonstrated that stimulated T cells have the 

ability to active monocytes and macrophages in an antigen independent but cell 

contact dependent manner. The method through which the T cells are 

stimulated can vary (see Table 1.7) and this variation can affect the products 

secreted by the monocytic cell. However it has been demonstrated that a 

particular stimulus consisting of a cocktail of cytokines can induce a T cell 

phenotype and activation pattern similar to that of RA synovial T cells. Due to 

the close proximity of T cells and macrophages within the RA synovium and the 

predominantly anti-inflammatory effect of T cell secreted cytokines the T cell – 

macrophage cell contact activation has been postulated to be a mechanism of 

increasing the pro-inflammatory cytokine and chemokine levels within the 

synovium. Therefore the cytokine cocktail method of T cell stimulation within 

the cell contact model has become an established in vitro method of 

investigating the role T cell – macrophage activation within arthritis.  
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1.3  Gene expression analyses in inflammatory 
arthritis 

As described in 1.1.1, the rheumatic diseases are a heterogenous group of 

disorders with a wide clinical spectrum and considerable variability in secondary 

organ involvement. Every aspect of this heterogenous disease phenotype should 

be represented in the pattern of genes and proteins which are expressed by the 

patient. This molecular signature will represent the contribution of the 

interactions between specific molecules and the individual cell types that are 

associated with disease characteristics and subtypes and thus will determine the 

samples‘ unique molecular biology. A powerful way to gain insight into the 

molecular signature contained within the cells and tissues of rheumatic diseases 

has arisen with the advent of DNA microarray technology, which can 

comprehensively identify the subset of genes which are differentially expressed 

among patients with clinically defined disease. There were initially several 

problems in the use of such technology, which requires highly standardised 

conditions, such as the lack of consistent methods for blood and tissue handling 

or preparation or the use of different platforms and standardisation procedures. 

However, after a decade of technical improvement the technology and 

standardisation procedures have been shown to be robust and allow comparison 

between properly designed and controlled experiments [316] thereby helping to 

unravel information that may aid in allowing clinicians to optimise treatment for 

and understanding further the complexity of rheumatic diseases. 

The resultant findings of microarray analyses performed in RA and PsA are 

summarised in Table 1.8. 

1.3.1.1  Rheumatoid arthritis 

1.3.1.1.1 Genetic analysis of affected tissues  

One of the first gene expression profiling studies for RA was conducted on biopsy 

tissue using high density cDNA arrays [317]. This report identified an increased 

expression of inflammation associated genes, such as HLA-DR, in the RA 

synovium compared to normal synovium. However, due to the investigators using 

pooled samples from three patients with RA and three healthy controls it was 

impossible to study the individual genetic profiles of the patients or the 

heterogeneity between samples. In contrast, a study set up by van der Pouw 
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Kraan analysing the genetic expression of the synovial tissue from RA (n=21) and 

OA (n=9) patients found the RA patients to be highly heterogenous in their 

genetic signatures [318, 319]. Interestingly, they identified two molecularly 

distinct forms of RA; the synovial tissue from one group of patients had an 

abundant expression of clusters of genes indicative of ongoing inflammation and 

involvement in the adaptive immune response. This subgroup was referred to as 

the RA high inflammation group. The second group, known as the low 

inflammation subgroup, contained expression profiles of tissue remodelling 

genes such as increased expression of MMP-11 and MMP-13 and low levels of 

inflammatory genes which was similar to the patterns seen in the OA tissue 

[318]. Analysis of the genes in the RA high inflammation subgroup indicated a 

prominent role of genes involved in activated IFN and the signal transducer and 

activator of transcription (STAT)-1 pathway [318]. It was determined by 

histological analysis that the difference obtained in the two subgroups of RA 

patients were related to differences in cell distribution, as tissues which 

contained germinal centre-like structures were those found in the high 

inflammation subgroup. 

A further study performed by Devauchelle et al analysed the differences in gene 

expression between the synovial tissue of RA (n=5) and OA (n=10) patients [320]. 

A set of 63 genes were identified based on their over- or under-expression in RA 

tissue compared to the OA tissue, 15 of these genes had unknown function but 

the expression of the remaining 48 genes allowed the correct classification of 

additional RA or OA patients therefore the authors proposed that such 

information could aid in the diagnosis of RA. Of interest, 16 genes from this 

study overlapped between the microarray performed by van der Pouw Krann and 

seven of these genes including the type I IFN regulated GBP1 and CTSL had 

comparable gene expression profiles indicating the ability to reproduce genetic 

results between different patient samples and different groups of investigators.  

Additional studies have also demonstrated that RA patients have significant 

tissue heterogeneity both between and within patient samples. A study 

performed by Tsubaki and colleagues [321] showed that early RA patients were a 

heterogenous group in comparison to patients with longstanding RA as the early 

RA patients could be subdivided into at least two different subgroups depending 

on their gene expression profiles. A similar study was performed in 2009 [322], 
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the synovium from 4 early RA patients, 4 treated longstanding RA patients and 7 

controls was analysed by microarray and it was found that distinct molecular 

signatures were expressed during early or longstanding RA suggesting that 

increased understanding regarding the main biological processes and pathways 

involved at each stage of the disease may help to decide the most appropriate 

therapy for the patients. An interesting study by Lindberg et al [323] 

investigated the variability in synovial gene expression at the biopsy site, 

between different sites and between patients. Multiple biopsy samples were 

taken from 13 patients; 7 by orthopaedic surgery and 6 by rheumatic arthroscopy 

and it was found that the number of differentially expressed genes between 

pairs of biopsies from the same knee ranged from 6 to 2,133 indicating the 

considerable level of heterogeneity between biopsy samples. The methods by 

which these samples were taken had a significant effect on the results since the 

number of differentially expressed genes between biopsies from the same 

patient was three times higher when the biopsies were taken by the orthopaedic 

method compared to the arthroscopic method which was thought to be due to 

sampling of non-inflamed tissue. Upon removal of biopsies which contained non-

inflamed tissue the remaining gene expression signatures were found to be 

unique to each patient but also contained groups of genes which belonged to 

gene ontology categories such as cell communication and immune response.  

Since the arrival of microarray studies which have analysed the diseased 

synovium of RA patients there has also been an increase in the number of studies 

which analyse the gene expression changes of the synovium in response to 

patient treatment. Lindberg and colleagues recently investigated the 

transcriptional profile of the synovium of RA patients treated with the anti-TNFα 

therapy infliximab in order to determine biomarkers which could be predictive 

of response to treatment [324]. This study found that within the 62 patients 

analysed no significant differences in genes expression could be detected 

between responders and non-responders to the infliximab treatment which 

therefore does not support the idea that microarray analysis of whole synovium 

biopsy specimens can be used to identify non-responders before the initiation of 

treatment.  
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1.3.1.1.2 Genetic analysis of blood derived cells  

Although the gene expression analysis of tissue samples of affected target organs 

offer insight into the genes principally involved in disease progression and 

activity, it may not be viable to use this approach to study all patients especially 

large cohorts. Consequently, several groups began to analyse the gene 

expression profiles of whole blood or peripheral blood mononuclear cells (PBMCs) 

to obtain disease related gene expression profiles since the systemic nature of 

RA allows the communication between systemic and organ specific 

compartments within the disease. In addition, understanding the gene 

expression of blood cells may allow the use of such profiles for biomarker studies 

and could also improve diagnosis and personalised therapy. 

One of the first microarrays analysing RA PBMCs took place in 2004 by Bovin and 

colleagues who examined the PBMCs from eight RF-positive RA patients, six RF-

negative patients and seven healthy controls [325]. No significant differences 

between RF-positive and RF-negative patients were detected. However, 

comparison of the gene expression pattern from all fourteen patients and the 

healthy controls identified a subset of 25 discriminative genes which included 

genes associated with the inflammatory response such as defensin alpha and 

CD14 antigen as well as the calcium binding proteins S100A8 and S100A12. 

Batliwalla and colleagues investigated the gene expression differences between 

PBMCs from RA patients (n=29) and those from healthy donors (n=21) [326]. 

Using cluster analysis they identified a significant alteration in the expression of 

81 genes in the PBMCs of RA patients compared to controls. A large number of 

these genes correlated with differences in the monocyte counts between the 

two study populations as many of the genes were known to be expressed at high 

levels in monocytes such as CD14 antigen. A logistic regression analysis revealed 

that of the remaining genes IL-1RA, S100A12, glutaminyl cyclase and Grb2-

associated binding protein (GAB2) were the top discriminator genes in 

categorising RA patients from controls.  

A further study performed by Edwards and colleagues analysing the RNA from 

the PBMCs of nine RA patients and thirteen healthy controls found 330 genes 

differentially expressed in RA [327]. These differentially expressed genes 

belonged to diverse functional classes and included genes involved in several 

biological groups such as transcription, signal transduction, extracellular matrix, 
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cytokines, enzymes and proteases. Interestingly, ten genes which had an 

increased expression in RA PBMCs compared to healthy controls mapped to an RA 

susceptibility locus, 6p21.3 which the investigators hypothesised could be a 

mechanism contributing to the etiology of the disease through the coordinated 

transcription of specific regions of a chromosome in response to stress or 

inflammation. A study performed by Junta et al evaluated the differential gene 

expression profile of PBMCs of RA patients and their association with the HLA 

shared epitope (HLA-SE), anti-CCP antibody levels, DAS-28 score and disease 

treatment [328]. This research demonstrated that thirteen genes were 

exclusively associated with the presence of HLA-SE alleles whose major functions 

were related signal transduction, apoptosis and signal transduction. One hundred 

and one genes were associated with the presence of anti-CCP antibodies, 91 

genes were associated with disease activity including genes involved in DNA 

damage, signal transduction and response to stress and finally 28 genes were 

associated with TNF blockade treatment which included genes involved in 

protein transport and intracellular signalling.  

In 2007, van der Pouw Krann and colleagues published a paper investigating the 

gene expression profiles of whole blood from RA patients (n=35) and healthy 

controls (n=15) [329]. The microarray data confirmed previous observations of 

increased expression of genes such as the S100A8 and S100A12 calcium-binding 

proteins. Pathway analysis software identified the increased expression within 

RA patients of immune defense genes including the type I IFN response genes 

indicating that this pathway is activated systemically in RA. A separate study 

comparing RA PBMCs to those of controls identified a spectrum of genes involved 

in immunity and defense to be upregulated in the RA patients once again 

demonstrating that such immune pathways are upregulated systemically in RA 

[330]. 

In addition to microarray analyses being performed on synovial biopsies from 

patients before and after therapeutic intervention there have also been a 

number of recent studies evaluating the effect of different treatments on the 

gene profile of PBMCs. Since a significant percentage of patients fail to show a 

clinical response to treatment, designated non-responders, the main focus of 

such microarray studies has been to determine molecular discriminators of 

response in patients. One study which obtained blood from patients before 
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starting the TNFα blockade therapy infliximab identified an eight-gene 

expression profile that was able to predict the patient response to the treatment 

as either a responder or non-responder [331]. This profile, which included the 

genes HLA-DRB3 and TLR5, was able to predict response of an independent 

validation set of RA patients with 85.7% accuracy. Another study looking at 

molecular discriminators of response to the anti-TNFα therapy etanercept found 

certain genes which when expressed in groups of two or three could have 89-95% 

prediction accuracy [332]. Finally, a microarray analysis of PBMCs taken from 

patients before the commencement of the IL-1Ra therapy anakinra identified 52 

genes which were expressed as a response to treatment [333]. Seven of these 

transcripts, as assessed by quantitative RT-PCR, were able to predict 15 of 18 

independent responder and non-responder patients with an accuracy of 87.5%. In 

conclusion, the emergence of such modelling systems could aid the clinician in 

the selection of the optimal treatment strategy for RA patients and has strong 

application potential within the clinical setting.  

1.3.1.1.3 Gene analysis within cell subsets 

The analysis of synovial biopsies and PBMCs from RA patients has been extremely 

useful in identifying patterns of gene expression within the disease and the 

response of patient tissues to treatment. However, it has been suggested that 

some of the genetic signatures identified in such studies may be attributable to 

differences in the relative abundance of individual cell populations within the 

sample. In addition cell-specific changes may be missed when analysing a mixed 

population of cells. Consequently, several groups set out to investigate the 

genetic signatures of individual cell populations within RA patients.  

Fibroblast-like synoviocytes (FLS) are considered to play a major role in joint 

destruction in RA and also contribute to leukocyte migration into the joint. One 

of the first gene expression profiles of RA FLS revealed the over-expression of 

genes responsible for tumour like growth of rheumatoid synovium [334]. This 

study used a cDNA array containing 588 cDNA-fragments of known cancer related 

genes to compare the gene expression of FLS from five RA patients and five 

traumatic control patients and found the increased expression of such cancer-

related genes in the RA FLS. An additional study analysing the genetic expression 

of 19 RA FLS samples correlated the genetic data to that of paired synovial 

tissue samples and found that the heterogeneity at the synovial tissue level was 
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associated with a specific FLS phenotype [335]. The high inflammation tissues 

were associated with an FLS subtype that exhibits similarity with a fibroblast cell 

called myofibroblasts. The myofibroblast cells are specialised cells that have a 

key role in connective tissue remodelling and cell infiltration. Addition studies in 

oncology have demonstrated that these cells play a crucial role in angiogenesis 

through the production of growth factors and extracellular matrix proteins. 

Therefore these myofibroblast-like FLS in RA synovium are thought to contribute 

to the tissue destruction and angiogenesis which is often seen in this disease.   

Szodoray and colleagues used a genome scale microarray to identify 

differentially regulated genes in peripheral blood B cells from eight RA patients 

with early disease compared to eight healthy controls [336]. They discovered 

that 305 genes were overexpressed in RA B cells and 231 genes were 

underexpressed compared to controls. Clusters of functionally associated 

networks were analysed and five biological classes were defined: autoimmunity; 

cytokines; cell activation and apoptosis; neuro-immune regulation and 

angiogenesis. A microarray analysis has also been performed on isolated CD4+ T 

cells, the study by Li et al analysed the microRNA (miRNA) profile of CD4+ T cells 

isolated from the synovial fluid of RA patients compared to CD4+ T cells isolated 

from healthy controls [337]. Analysis of the results demonstrated that miR-146a 

was upregulated in SF CD4+ T cells whilst miR-363 and miR-498 were 

downregulated. Subsequent studies indicated that miR-146a overexpression 

suppressed T cell apoptosis since one of the genes it regulated was Fas 

associated factor 1 (FAF1) and therefore the upregulation of this miR could 

promote the long-term survival of the pathogenic T cells.  

There is also one microarray gene expression study that has been performed 

specifically on monocytes from RA patients, Stuhlmüller et al compared 

monocytes from the first leukapheresis pool (activated cells) and third 

leukapheresis pool (nonactivated cells) of 26 RA patients undergoing 

leukapheresis treatment to identify known and novel genes in the activated 

monocytes [338]. This analysis identified 482 differentially expressed genes 

between the first and third pools, the activated monocytes were found to 

express inflammatory genes such as IL-1β, IL-6 and TNFα whilst the nonactivated 

monocytes expressed differentiation and transcription genes such as PU.1. 
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Despite the enormous advances in the field of transcriptomics and microarray 

analyses there appears to be very few studies investigating the genetic signature 

of individual cell types within arthritis which could be masked in a full scale 

microarray of whole blood or synovium. Since individual cell types are known to 

play diverse roles in the pathogenesis of arthritis understanding the genetic 

signal of the different activated cell types may aid in unravelling the causes and 

different treatment mechanisms of this disease. 

1.3.1.2  Psoriatic arthritis  

In comparison to the vast amount of microarray analysis that has been 

performed on RA patients there has been a paucity of research into the genetic 

signature of PsA. In addition, there has been a great deal of progress into 

identifying the genetic phenotype of psoriasis but very few studies analysing the 

arthritis that will often accompany or follow this condition have been 

performed. One of the few microarray studies analysing PsA took place in 2002, 

Gu and colleagues investigated the genetic profiles of PBMCs from RA patients 

(n=6), spondyloarthropathy (SpA) patients (n=7) and PsA patients (n=6) compared 

to healthy controls (n=7). They established an upregulation of several genes in 

the three types of arthritis in comparison to healthy controls including those 

coding for chemokine receptors (CCR1 and CXCR4), cytokines (IL-1β) and the 

signalling molecules JAK3 and MAP kinase p38 [339]. They also found an 

upregluation of the chemokine receptor CXCR4 in the three arthritis groups, the 

ligand for CXCR4 is SDF-1 and levels of this chemokine were detected in the SF 

of the SpA and RA patients. Since SDF-1 is a chemokine for lymphocytes and 

monocytes it was suggested to be potentially important pro-inflammatory 

mediator within the pathogenesis of RA, SpA and PsA. 

Despite the interesting observations of the above study, due to the method by 

which they grouped the microarray results together for all three different 

arthritis subsets it proved difficult to discriminate the specific gene profile of 

the PsA patients. However, two subsequent studies used microarray technology 

to compare the PBMCs of PsA patients to those of healthy controls. The first 

study performed by Batliwalla and colleagues analysed the gene expression 

signature of peripheral blood cells from 19 PsA patients compared to that of age 

and sex matched healthy donors [340]. They found that 257 genes were 



88 

expressed at a lower level in PsA patients and 56 genes were expressed at a 

higher level in comparison to controls. The genes that were downregulated in 

the PsA patients were found to be involved in the suppression of innate and 

acquired immune mechanisms suggesting that these cells favoured a pro-

inflammatory response. Pro-inflammatory genes such as S100A8 and S100A12 

demonstrated increased expression in the PsA samples. In addition, using a 

dataset of RA samples for comparison it was found that the combination of two 

genes MAP3K3 and CACNA1S could correctly classify the RA patients and PsA 

patients. Therefore this gene expression profiling was able to differentiate PsA 

from control subjects and PsA from RA patients indicating that PsA has a 

distinctive blood cell gene expression pattern. Stoeckman et al also performed a 

similar microarray analysis comparing the PBMCs of PsA patients to those of age 

and sex matched healthy controls and discovered that 310 genes were 

differentially expressed with the majority being upregulated in PsA [341]. It was 

also found that this differential gene expression profile did not overlap with 

those of RA or SLE patients and that individual genes, such as ZNF395, had high 

discriminatory potential for disease diagnosis indicating that PsA patients had a 

unique gene expression profile which could reveal novel disease markers. 

At present these three microarray analyses are the only studies to be performed 

investigating the gene expression pattern of PsA. There have been no studies 

into the gene expression of synovial tissue or individual cell subsets and the 

effect of different drug therapies on the genetic signatures of diseased cells, 

which has been very informative in the field of RA, have not been performed. As 

a result very little is known about the transcriptomics of PsA and therefore more 

investigation is required in this field in order to gain more information into the 

pathogenesis of this disease and to aid clinicians in deciding the optimal therapy 

for the patients. 

See Table 1.8 for a summary of the gene expression studies performed in RA and 

PsA. 
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 Table 1.8 Genomic studies in RA and PsA 

Disease Tissue  Number of   Approx number Comparison   Results     Ref. 
    samples  of genes on array 
 
RA  Synovium 21 RA and 9 OA 11,500 and 18,000 Within RA and versus  Evidence for the existence of [318, 319] 
          OA    multiple pathways for tissue 
              destruction 
                
RA  Synovium  5 RA and 10 OA  5,760  RA versus OA   Differentially expressed genes  [320] 
              between RA and OA  
 
RA   Synovium  12 early and 4 late  23,040  Early versus longstanding Early RA fell into two groups  [321]  
          RA    dependent on the expression  
              of genes critical for proliferate 
              inflammation 
 
RA  Synovium 4 early untreated,  10,000  Early RA versus LS RA, Early and LS RA have separate [322] 
    4 treated     early RA versus healthy, molecular signatures with distinct 
    longstanding, 7     LS RA versus healthy  biological processes participating  
    controls         during the course of disease 
 
RA  Synovium 13 RA. 7 biopsies   46,000  Biopsies from the same There is a substantial level of [323]   
    obtained by     patient compared,   heterogeneity between pairs of  
    orthopaedic sampling,   orthopaedic versus  patient samples. Orthopaedic 
    6 by arthroscopy    arthroscopy   biopsies are unsuitable for gene 

expression analysis 
 

RA   Synovium 62 patients before  17,927  Treatment responders No difference between responders [324]  
infliximab treatment    versus non-responders and non-responders was detected therefore  

synovial biopsy samples may not be  
appropriate to identify non-responders to 
infliximab treatment 
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Table 1.8 continued               

 
RA  PBMCs  8 RF+, 6 RF-, 7   10,000  RF+ versus RF- and  No differentially expressed genes  [325] 
    healthy controls    versus healthy control between RF+ and RF- patients.  
              Increased expression of  

immunoinflammatory response 
              genes in RA 
 
RA  PBMCs  29 RA and 21   12,626  RA versus HC   Monocyte associated gene  [326] 
    healthy controls        signature increased in RA 
 
RA  PBMCs  9 RA and 13    6937  RA versus HC   Diverse functional subsets of  [327]  
    healthy controls        genes were differentially expressed  
              between RA and HC samples. Ten  
              genes with increased expression in  

RA PBMCs mapped to RA susceptibility  
locus 6p21.3 

 
RA  PBMCs  23 RA    4500  Comparison between  Different numbers of genes were [328] 
          patients according to  exclusively associated with each 
          anti-CCP level, DAS-28, disease variable  
          HLA-shared epitope  
          presence and treatment 
          type 
 
RA  Whole blood 35 RA and 12   18,000  within RA and versus HC Assignment of a type I IFN   [329] 
    healthy controls        signature in a subpopulation 
              of patients 
 
RA  PBMCs  18 RA and 15   48,701  RA versus HC   Elevated expression of genes  [330] 
    healthy controls        associated with immunity and 
              defense in RA patients 
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Table 1.8 continued 

 
RA  Whole blood 44 RA before   47,000  treatment responders  An 8-gene expression profile  [331] 
    infliximab treatment    versus non-responders was able to predict treatment response 

 

RA  PBMCs  19 RA    18,500  Before versus 72 hours Gene pairs and triplets predictive  [332] 
          after etanercept  for response to treatment at an 
              early stage of treatment 
 
RA  PBMCs  32 RA before   12,000  treatment responders  A 52-gene expression profile  [333] 
    anakinra treatment    versus non-responders was demonstrated to predict 
              treatment response  
 
RA  FLS  5 RA and 5 HC   588  RA versus HC   Increased expression of genes  [334] 
              responsible for tumour-like growth 
              in RA FLS 
 
RA   FLS  19 RA    18,000  Within RA   The heterogeneity between   [335]  
              synovial tissue is reflected in the FLS 
 
RA  B cells  8 RA and 8 HC   21,329  RA versus HC   B cell biology in RA is disregulated [336] 
              due to the differential expression of 
              multiple biological pathways 
 
RA  CD4 T cells 2 RA and 1 HC   47,000  RA SF versus   RA CD4+ cells overexpress  [337] 
          HC PB CD4+ cells  micro-RNA‘s which help promote the 
              long term survival of the T cells 
 
RA  Monocytes  29 RA    482  Monocytes from first  Activated monocytes from first  [338] 
          leukapheresis compared leukapheresis pool had and increased 
          to monocytes from third expression of pro-inflammatory genes 
          leukapheresis pool 
 
 



Chapter 1  92 

Table 1.8 continued 

 
PsA  PBMCs  6 RA, 7 SpA,   588  Three forms of arthritis The three forms of arthritis similarly [339] 
    6 PsA, 7 HC     versus HC   upregulate pro-inflammatory 
              molecules in comparsion to HC 
 

 

PsA  PBCs  19 PsA, 19 HC   22,215  PsA versus healthy  Downregulated genes in PsA   [340]  
              compared to HC consisted of genes 

associated with suppression of 
              immune mechanisms 
               
PsA  PBMCs  16 PsA, 15 HC   54,000  PsA versus healthy  PsA genetic profiles showed no  [341] 
              overlap with RA or SLE profiles 
              and were distinct from control profiles 
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Chapter 2 Materials and Methods 
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2.1 Patients and controls 

RA and PsA patients who fulfilled the American College of Rheumatology criteria 

for RA [6] or met diagnostic criteria for PsA [8] were identified from the 

Rheumatology Clinics in Glasgow Royal Infirmary (GRI) and Glasgow Gartnavel 

Hospital (GGH) and were invited to take part in the study. All patients and 

healthy donors gave informed consent and the study protocol was approved by 

the Ethical Committee, Glasgow Royal Infirmary, Scotland. 

2.2  Cell Culture 

2.2.1 Primary Human Cell Culture 

All tissue culture work was performed in laminar flow hoods and all cells were 

cultured at 37oC, 5% CO2 in RPMI-1640 medium (Invitrogen) containing L-

glutamine (2 mM), penicillin (100 IU/ml), streptomycin (100 μg/ml) and 10% 

foetal calf serum (complete medium). 

2.2.2 Purification of mononuclear cells from buffy coats and 
peripheral blood 

Peripheral blood mononuclear cells (PBMC) were purified by standard density 

gradient centrifugation. Briefly, blood was obtained from either single donor 

plateletpheresis residues donated by Gartnavel blood bank or from healthy 

donors. The blood was then diluted 1:1 in phosphate buffered saline (PBS) 

(Invitrogen) and 10 mls were overlaid on 4 mls Histopaque®-1077 (Sigma) in 15 

ml centrifuge tubes. Tubes were centrifuged at 350 g for 20 minutes at room 

temperature. The mononuclear cells were then harvested from each tube and 

washed three times at 200 g for 5 minutes in ice cold PBS containing 2 mM 

ethylene diamine tetra-acetic acid (EDTA) and 0.5% human serum albumin, (PEA) 

before cell purification. 

2.2.3 Purification of mononuclear cells from synovial fluid  

Before the mononuclear cells were isolated from patient synovial fluid (SF) the 

fluid was centrifuged for at 350 g for 20 minutes in order to pellet the cells. The 

cell free synovial fluid was collected and stored at -700C. The pellet of cells 

from the synovial fluid was resuspended in PEA before being overlaid on 4 mls 

Histopaque®-1077 and centrifuged at 350 g for 20 minutes. The mononuclear 
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cells were then harvested and washed three times in PEA before cell 

purification. 

2.2.4 Isolation of CD3+ T cells and CD14+ monocytes 

CD3+ T cells and CD14+ monocytes were purified by positive selection from 

mononuclear cell suspension by autoMACS, according to the manufacturer‘s 

instructions. Briefly, mononuclear cells were incubated in 90 μl/107 cells PBS/2 

mM EDTA/0.5% human serum albumin (PEA) containing 10 μl/107 cells anti-CD3-

conjugated magnetic microbeads (Miltenyi Biotec), or 10 μl/107 cells anti-CD14-

conjugated magnetic microbeads (Miltenyi Biotec) for 15 minutes at 4oC. After 

washing in ice cold PEA by centrifugation at 200 g for 5 minutes CD3+ T cells or 

CD14+ monocytes were isolated by positive selection using the possel programme 

on the autoMACS machine. The positive cell fraction was put through the 

machine twice on possel programme to ensure a higher purity. Purity was 

assessed by flow cytometry and routinely >95%. 

2.2.5 CD3+ T cell and CD14+ monocyte stimulation 

CD3+ T cells were purified by positive selection from peripheral blood and 

activated for 6 days in complete medium containing IL-2 (25 ng/ml), IL-6 (100 

ng/ml) and TNF-α (25 ng/ml) (all from Biosource), in order to produce an 

activated phenotype similar to that displayed in the synovium [309]. CD14+ cells 

were purified by positive selection from the same peripheral blood and cultured 

in 96, 24 or 12 well plates depending on the experiment at 5x105 cells/ml in 

complete medium supplemented with 50 ng/ml M-CSF (Biosource). These cells 

were then incubated for 6 days at 370C. 

2.2.6  T cell / macrophage cell contact 

After 6 days in culture the cytokine activated T cells (Tcks) were washed three 

times in PEA and either fixed in PBS/2% paraformaldehyde on ice for 2 hours, or 

not (as indicated), and added back to the macrophage culture at a ratio of 4:1. 

This culture was incubated at 370C for between 1 to 24 hours depending on the 

experiment. 



96 

2.3 Flow cytometry 

2.3.1 Assessment of cell purity 

All samples which were isolated on the autoMACS were analysed for purity by 

Flow cytometry. After positive selection cells were washed in PEA and 

resuspended at a concentration of 1 x 106 cells/ml. 100 μl of cells was added to 

two clean FACS tubes, one for the isotype control and one for the antibody 

staining. For purity checks the following antibodies were used (all from BD 

biosciences): 

Tube 1. Isotype IgG FITC, IgG APC 

Tube 2. CD14 FITC, CD3 APC 

5 μl of each antibody was added to the tube and the cells were incubated at 

room temperature for 15 minutes in the dark. The cells were then washed with 

PEA and the supernatant discarded. If the cells were to be analysed immediately 

they were resuspended in 200 μl PEA or if they were to be analysed the following 

day they were resuspended in 200 μl FACS FIX (2% paraformaldehyde in PBS). The 

cells were analysed on a FACS Calibur (BD Biosciences) using Cell Quest 

software™. When assessing the purity of the samples, an analysis gate was set to 

ensure that within the isotype control sample <2.5% of the cells were positive 

for FITC or APC staining. 

2.3.2 Semaphorin 6D staining 

Surface and intracellular semaphorin 6D staining was assessed on Tck cells and 

CD3/CD28 activated cells after 0, 3 and 6 days of activation. 

T cells were obtained from donor blood packs as described in 2.2.4 and half of 

the T cells were stimulated with IL-2, IL-6 and TNF-α as described in 2.2.5 for 3 

and 6 days to produce Tcks. The remainder of the T cells were stimulated with T 

cell activation expansion kit cytostim beads (Miltenyi Biotec) according to the 

protocol. Briefly, the MACSibead particles were loaded by pipetting 100 μl each 

of CD2-biotin, CD3-biotin and CD28-Biotin into a 1.5 ml eppindorf and mixing. 

500 μl of Anti-biotin MACSibead particles (1 x 108 Anti-biotin MACSibead 

Particles) were added to the antibody mix with 200 μl of PEA and the mixture 
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was incubated for 2 hours at 40C under constant, gentle rotation. Once the Anti-

Biotin MACSibead particles were loaded they were stored at 40C until required. 

To activate the T cells with the Anti-Biotin MACSibead particles 25 μl of beads 

per 5 x 106 T cells were resuspended in 100 μl complete culture medium and 

centrifuged at 300 g for 5 minutes after which time the beads were resuspended 

in 100 μl complete medium. The T cells were resuspended at a density of 5 x 106 

cells per 900 μl of complete medium and the 100 μl of beads were added. The 

cells were cultured in 24 well plates at a concentration of 2.5 x 106 cells per 

well for 3 and 6 days. In order to remove the beads before the FACS staining 

commenced the T cells were extracted from the plate and washed before being 

resuspended in PEA and vortexed thoroughly. The cells were then placed in an 

easystep magnet (Stemcell) for 2 minutes and the supernatant containing the 

activated T cells was removed and the process was repeated again. Once all the 

beads had been removed from the cells they were washed twice in PEA buffer 

and stained for semaphorin 6D.  

The following protocol for intracellular and surface staining of semaphorin 6D 

was used to stain unactivated T cells at day 0 and the Tcks and CD3/CD28 Anti-

biotin MACSibead after 3 and 6 days of activation. 

2.3.2.1  Surface staining Semaphorin 6D 

T cells were washed and approximately 1 x 106 cells were put into each FACS 

tube. 10 μl of Fc block (Miltenyi Biotec) was added to each tube and the cells 

incubated for 5 minutes at 40C. The cells were washed in PEA at 200 g for 5 

minutes and 5 μg of semaphorin 6D antibody (MAB2095, R&D) or 5 μg of 

irrelevant antibody (CD68 mouse anti human DAKO) was added to the tubes 

before being incubated for 20 minutes at 40C. The cells were washed in PEA and 

6 μl of goat F(ab‘)2 anti-mouse IgG APC secondary antibody (F0101B, R&D) was 

added to the cells for 10 minutes at 40C before being washed again. CD4 FITC or 

isotype FITC (BD bioscences) was added to the relevant FACS tubes for 15 

minutes at 40C and the cells were washed a final time before being resuspended 

in 300 μl PEA and analysed on the FACS Calibur. 

2.3.2.2  Intracellular staining of semaphorin 6D 

T cells were washed and approximately 1 x 106 cells were put into each FACS 

tube. 10 μl of Fc block (Miltenyi Biotec) was added to each tube and the cells 
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incubated for 5 minutes at 40C. The cells were washed in PEA at 200 g and 100 μl 

of cytoperm (BD biosciences) was added for 20 minutes at 40C, after this time 50 

μl of permwash (BD Biosciences) was added to the cells which were then spun at 

200 g for 5 minutes. The cells were then resuspended in 100 μl of 2% goat 

serum/perm wash and incubated at 40C for 20 minutes; 5 μg of semaphorin 6D, 

CD68 or mouse IgG1 was added directly to the cells in 2% goat serum/perm wash 

and incubated at 40C for 20 minutes. After this time 500 μl of permwash was 

added to the cells which were then spun at 200 g for 5 minutes. The cells were 

resuspended in 100 μl of permwash and 5 μl of goat anti-mouse APC (Invitrogen) 

was added before the cells were incubated at 40C for 10 minutes. For the final 

step the cells were washed in permwash and resuspended in 200 μl permwash 

before being analysed on the FACS Calibur. 

2.4 Enzyme-linked-immunosorbent assay (ELISA)  

ELISA was used to measure concentration of human IL-6 and TNFα in cell culture 

supernatants. The concentrations of antibodies and buffers used for each ELISA 

are shown in Table 2.1. 

96 well plates (Thermo Labsystems) were coated with detection antibody in PBS 

and incubated overnight at 40C. The plates were then washed with 0.05% 

PBS/Tween followed by the addition of blocking buffer (0.5% BSA/PBS) to block 

non-specific binding and incubated at 370C for 1 hour. An eight point standard 

curve was made using recombinant human cytokine dissolved in complete media 

at a top standard of 2000 pg/ml and serially diluted 1:2. 100 μl of each standard 

was added in duplicate to the plate along with two wells containing only 

complete media. Samples were then diluted 1:2-4 with complete media (donor 

dependant) and 100 μl transferred to each well. The plates were covered and 

incubated for 2 hours at room temperature. The plates were washed several 

times in 0.05% PBS/Tween followed by addition of secondary antibody and 

incubated at 370C for 1 hour. After incubation the plates were washed and 100 μl 

TMB chromagen (Biosource) was added to each well. The reaction was stopped 

by addition of 100 μl stop solution (Biosource) and the intensity of the signal was 

read at 450 nm on a microplate reader (Dynex Technology). 
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Cytokine Concentration 

of primary 
antibody 

Concentration 
of secondary 
antibody 

Streptavidin 
HRP dilution 

Kit supplier 

TNFα 

 

IL-6 

2 μg/ml (100 

μl/well) 

2 μg/ml (100 

μl/well) 

1.5 μg/ml 

(100 μl/well) 

1.5 μg/ml 

(100 μl/well) 

1:1250 

 

1:1250 

Invitrogen 

 

Invitrogen 

Table 2.1 Cytokine analysis by ELISA 

 

2.5 Microarray  

2.5.1 Collecting and preparing samples for microarray 

All CD14+ blood and synovial fluid samples were collected by density gradient 

centrifugation and magnetic bead positive selection as described in 2.2.2 and 

2.2.3. An aliquot of each sample was taken to check for cell purity and the 

sample was lysed in trizol (Invitrogen) (2x106 cells/ml trizol) and stored at -700C.  

2.5.2 Isolating cells using the FACS ARIA 

For the cell contact activated macrophages the following protocol was used. 

Cytokine activated T cells (Tcks) were washed three times in PEA, CFSE 

(Invitrogen) dye was made up in Hank‘s buffered salt solution (HBSS) media 

(Invitrogen) at a concentration of 10 μM and 1 ml was added to the Tcks before 

incubating for 10 minutes at 370C. Tcks were washed three times in PEA and 

then fixed in PBS/2% paraformaldehyde on ice for two hours. After washing 

three times in PEA the fixed CFSE stained Tcks were added to macrophages in a 

24 well plate at a 4:1 ratio and left in cell contact for 2 hours. Following the 2 

hour cell contact the supernatant was collected and retained for cytokine 

analysis by ELISA and 0.5 ml cell dissociation solution (Sigma) was added to each 

well. The plate was incubated for 15 minutes at 370C to remove the adherent 

macrophage cells. Any remaining cells that were seen to be still adhering to the 

plate on inspection under a brightfield microscope were incubated with 

additional cell dissociation solution. All of the cell suspensions were washed in 
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PEA and pooled together for isolating on the FACS ARIA. The two cell fractions of 

macrophages and fixed CFSE stained Tcks were separated on the basis of FITC 

positive and FITC negative therefore all the FITC negative cells were believed to 

be macrophages. Cells were counted as they were being separated on the FACS 

ARIA and cell fractions were lysed in Trizol (2 x 106 cells/ml Trizol) and stored at 

-700C. 

A small aliquot of each cell fraction was taken for cytospins to ensure we had 

collected the correct cell type in each fraction.  

2.5.2.1  Cytospins 

An aliquot of cells isolated from the FACS ARIA were resuspended at a 

concentration of 0.5 x 106 cell/ml in PEA. Glass slides were labelled and placed 

into the metal holders with a piece of filter paper and a cuvette, 200 μl of the 

cell suspension was loaded into the cuvette and the cells were spun at 350 rpm 

for 6 minutes. The slides were then removed and the cuvette was carefully 

detached to avoid damaging the smear of cells. The cells were immediately 

stained with RAPI-DIFF reagents (Ready reagents). The slides were placed in a 

Coplin jar containing solution A for 15 seconds and then placed in a Coplin jar 

containing solution B for 15 seconds finally the slides were washed twice in 

Phosphate buffer pH 6.8 for 10 seconds and then left to dry before being imaged 

on a light microscope. 

2.5.3 Manual RNA Isolation from Trizol 

The cells isolated from the cell contact experiments and patient samples were 

stored in Trizol and transferred to GlaxoSmithKline (GSK) in Stevenage for mRNA 

extraction. QIAgen mini columns were used for the RNA clean-up with an 

incorporated on column DNAse step. Briefly, 200 μl of chloroform was added to 

each epindorff of cells containing 1 ml of Trizol and centrifuged at 12,000 g for 3 

minutes. The aqueous supernatant was removed to a clean epindorff and an 

equal volume of 70% ethanol added. This solution was applied to a QIAgen 

RNeasy mini-column and the protocol supplied with the QIAgen kit was followed 

to extract the RNA. Briefly, the RNeasy column was centrifuged at 13,000 g for 

30 seconds at room temperature and the flow through discarded. The sample 

was then washed by adding 700 µl of solution RWT and the column was spun at 
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13,000 g for 1 minute at room temperature and the flow through was discarded. 

A DNase-1 stock solution (Qiagen) was prepared in 550 µl RNase-free water and 

10 µl of this solution was added to 70 µl buffer RDD. 80 µl of DNase-1/RDD buffer 

was pipetted onto each column and incubated at room temperature for 15 

minutes. Following this step 500 µl of buffer RW1 was added to each column 

which was subsequently spun at 12,000 g for 1 minute. The sample was then 

washed twice by adding 500 µl of solution RPE and spinning the column at 13,000 

g for 1 minute. The column was then transferred to an RNase-free microfuge 

tube and 35 µl of RNase-free water was added to the column making sure the 

liquid was centred on the membrane. The sample was allowed to stand for 1 

minute to allow the RNA to dissolve into the water and the microfige tube was 

spun for 1 minute at 13,000 g. The RNA sample was then re-pipetted onto the 

column membrane and allowed to stand for 1 minute in order to increase RNA 

yield before being centrifuged at 13,000 g for 1 minute. All RNA samples were 

subsequently stored at -70ºC. 

The concentration of each RNA sample was measured on a nanodrop 

spectrophotometer and the quality of the RNA was analysed on an Agilent 2100 

bioanlyser using the agilent RNA 6000 pico kit (Agilent Technologies). When using 

the Agilent bioanalyser the sample RNA was diluted to 5 ng/ml in deionised 

water before being put on the pico chip for analysis.  

RNA was then diluted to 10 ng/μl using water on a Beckman Coulter Biomek FX 

machine. 5 μl of this RNA was transferred to a 96 well cone plate (Greiner) for 

amplification. 

2.5.4 Single strand cDNA amplification 

Single strand amplification was performed using NuGEN RNA amplification 

system V2. 

2.5.4.1  First strand cDNA synthesis 

For the primer annealing stage 2.5 μl of A1 primer was added to each 5 μl RNA 

sample and the 96 well plate was placed in a thermal cycler for 5 minutes at 65 

ºC. After this time the samples were removed and snapcooled by placing them 

on ice. 
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The first strand master mix was prepared as follows (volumes listed are for a 

single sample) 

First strand buffer mix   12 μl 
First strand enzyme mix   1 μl 
Total Volume    13 μl 
 

13 μl of the first stand master mix was added to each sample and the samples 

placed in a thermal cycler programmed to run as follows: 

Incubate at 48ºC for 60 minutes 

Heat at 70ºC for 15 minutes 

Cool to 4ºC  

Once the temperature had reached 4ºC the plate was removed from the thermal 

cycler and spun in a centrifuge to collect condensation before being placed on 

ice. 

2.5.4.2  Second strand cDNA synthesis 

The second strand mastermix was prepared as follows (volumes listed are for a 

single sample) 

Second strand buffer mix (B1)   18 μl 
Second strand enzyme mix (B2)  2 μl 
Total Volume     20 μl 
 

A multichannel pipette was used to add 20 μl of second strand master mix to 

each well containing the first strand reaction mixture in the 96 well plate. The 

plate was briefly centrifuged for 2 seconds to remove air bubbles before being 

placed in a pre-warmed thermal cycler set to the following programme: 

Incubate at 37ºC for 30 minutes 

Continue heating at 75ºC for 15 minutes 
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Cool to 4ºC 

Once the programme had completed the plate was removed from the thermal 

cycler and spun briefly before being placed on ice. 

2.5.5 SPIA™ amplification 

The SPIA mastermix was prepared as follows (volumes are listed for a single 

sample): 

SPIA buffer mix (C2)  72 μl  
SPIA primer mix (C1)   2 μl 
Water      4 μl 
SPIA enzyme mix (C3)  40 μl 
Total Volume    118 μl 
 

A multichannel pipette was used to add 118 μl of the SPIA mastermix to each 

well of the 96 well plate containing the second strand reaction mixture. The 

plate was briefly centrifuged before being placed in a thermal cycler 

programmed to incubate the samples at 48ºC for 30 minutes. After this time a 

further 6 μl of SPIA primer mix (C1) was added to each well of the 96 well plate 

containing the SPIA reaction mixture. The 96 well plate was centrifuged for 2 

seconds and placed back into the thermal cycler to run on the following 

programme: 

Incubate 48ºC for 30 minutes 

Continue heating at 95ºC for 5 minutes 

Cool to 4ºC 

The plate was removed from the thermal cycler and centrifuged for 2 seconds 

before being placed on ice. 
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2.5.6 Purification of amplified cDNA 

Purification of the amplified cDNA is required if it is intended for fragmentation, 

labelling and GeneChip array analysis. All amplified cDNA was purified according 

to the Agencourt RNAClean magnetic beads protocol. 

The magnetic beads were resuspended by gently agitating the RNAClean bottle 

before being dispensed into a clean reagent reservoir. 288 μl of beads were 

added to one matrix tube per sample. The amplified cDNA sample (160 μl) was 

then pipetted into a matrix tube and incubated at room temperature for 10 

minutes to allow the cDNA to bind to the magnetic beads.  

A round bottomed 96 well plate was placed onto the plate magnet and for each 

sample half of the bead/cDNA mixture (220 μl) was added into each well and 

incubated for 10 minutes at room temperature. After this time the supernatant 

was carefully removed and discarded using a multichannel pipette.  

The remaining 220 μl of bead/cDNA mixture was added to the same wells and 

again the plate was incubated for 10 minutes at room temperature before 

removing the supernatant from the wells.  

Each sample was washed by dispensing 200 μl of 80% ethanol to each well for 30 

seconds after which time the ethanol was removed and discarded. This step was 

repeated ensuring that all ethanol was removed before leaving the samples to 

air dry for 2 minutes.  

34 μl of water was added to each sample on the plate and the plate was left 

undisturbed for 5 minutes, after this time the plate was tapped gently to mix 

and left for another 5 minutes. The plate was then placed onto the magnet and 

incubated for 10 minutes.  

The cDNA concentration of each sample was measured on a nanodrop 

spectrophotometer and the quality of the cDNA was analysed on an Agilent 2100 

bioanlyser using the agilent RNA 6000 pico kit. When using the Agilent 

bioanalyser the sample cDNA was diluted to 5 ng/ml in deionised water before 

being put on the pico chip for analysis. 
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2.5.7 Fragmenting and biotin labelling of the amplified cDNA 

For fragmenting and labelling, 5 μg of cDNA in a total volume of 25 μl was used. 

Fragmenting and labelling was performed using the FL-Ovation™ cDNA Biotin 

Module V2 kit from Nugen. 

2.5.7.1  Fragmentation 

The fragmentation master mix was prepared as follows (volumes listed are for a 

single sample) 

FL1   5 μl 
FL2   2 μl 
Total Volume  7 μl 
 

7 μl of master mix was added to each cDNA sample in a 96 well plate and mixed 

by pipetting the sample several times. The plate was centrifuged briefly to 

remove any air bubbles and then was placed into a thermal cycler set to the 

following programme: 

Incubate 370C for 30 minutes 

Incubate 950C for 2 minutes 

Cool to 40C. 

The plate was centrifuged briefly and placed on ice before proceeding with the 

labelling step. 

2.5.7.2  Labelling 

The labelling buffer mix (FL3), labelling reagent (FL4) and labelling enzyme 

(FL5) were obtained from the product box stored at -200C 15 minutes prior to 

completion of the fragmentation reaction to allow the products to thaw to room 

temperature.  

The labelling master mix was prepared as follows (volumes listed are for a single 

sample): 
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FL3   15 μl 
FL4   1.5 μl 
FL5   1.5 μl 
Total Volume  18 μl 
 

18 μl of master mix was added to each cDNA sample in a 96 well plate and mixed 

by pipetting the sample several times. The plate was centrifuged briefly to 

remove any air bubbles and was then placed into a thermal cycler set to the 

following programme: 

Incubate 370C for 60 minutes 

Incubate 700C for 10 minutes 

Cool to 40C  

After completion of the programme the plate was removed from the thermal 

cycler and centrifuged briefly before continuing with the hybridization step. 

2.5.8 Array hybridization 

Array hybridization was performed using the GeneChip Hybridization Control Kit 

(Affymetrix). The biotin-labelled cDNA was hybridized onto Human genome U133 

Plus 2.0 array cartridges (Affymetrix).  

The Affymetrix cartridges were removed from the refrigerator one hour before 

use to allow them to equilibrate to room temperature. 

The hybridization cocktail was prepared as follows (volumes listed are for a 

single sample): 

2x hybridization buffer  110 μl 
Affymetrix B2   3.7 μl 
Affymetrix 20X controls  11 μl 
Invitrogen BSA   2.2 μl 
Invitrogen herring sperm DNA  2.2 μl 
DMSO     22 μl 
Water     19 μl 
Total volume    170.1 μl 
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170 μl of hybridization cocktail was added to a 96 well plate (one well per 

sample) into which 50 μl of fragmented and labelled cDNA was added. After 

pipetting several times to mix the sample the 96 well plate was placed in a 

thermal cycler set to the following programme: 

Incubate 950C for 3 minutes 

Incubate 450C for 5 minutes 

Cool to 40C 

The plate was removed from the thermal cycler and centrifuged at 350 g for 5 

minutes. 

For each sample 200 μl of sample/hybridization cocktail was removed from the 

96 well plate and dispensed into an Affymetrix chip. The chips were secured in a 

450C hybridization oven and spun at 60 rpm for 16 hours. 

2.5.9 Staining and Scanning 

Genechip fluidic station 450 (Affymetrix) was used to wash and stain the probe 

chips. 

Wash buffers were made up the day prior to staining and scanning the chips. 

Wash buffer A was prepared as follows: 

20% SSPE   300 ml 
10% Tween   1 ml 
Water   699 ml 
Total volume  1000 ml 
 

150 ml of wash A was aliquoted into wash station bottles (one bottle per one 

Affymetrix chip). 

Wash buffer B was prepared as follows: 

MES buffer  83.2 ml 
NaCl   5.3 ml 
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10% Tween  1 ml 
Water   910.5 ml 
Total Volume  1000 ml 
 

150 ml of wash buffer B was aliquoted into wash station bottles (one bottle per 

Affymetrix chip). 

The fluidics stations were primed and for each fluidic station three bottles 

containing wash A buffer, wash B buffer and water were placed in the fluidic 

stations.  

The staining solutions to stain the chips were prepared as follows. 

Streptavidin Phycoerythrin (SAPE) solution (volumes listed are for a single 

sample, 600 μl each for the first and third stain): 

2x stain buffer 600 μl 
BSA   48 μl 
SAPE   12 μl 
Water   540 μl 
Total Volume  1200 μl 
 

Antibody solution (volumes listed are for a single sample): 

2x stain buffer 300 μl 
BSA   24 μl 
Goat IgG  6 μl 
Antibody  3.6 μl 
Water   266.4 μl 
Total Volume  600 μl 
 

The empty vials on the fluidics station were replaced with 600 μl each of SAPE 

(first and third stain) and antibody (second stain).  

The Affymetrix chips were removed from the hybridization oven and the 

hybridization mix was extracted from the chip. Each chip was inserted into a 

fluidics station where they were washed and stained, after this time the chips 

were removed and checked for air bubbles. If air bubbles were found the chips 
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were put back on the fluidic station to be re-filled with wash buffer, if no air 

bubbles were found the chips were then scanned. 

2.5.10 Scanning 

Tough-spot (Cole-Parmer) labels were used to cover the two septa on the 

affymetrix chip to prevent leakage of wash buffer. Smudges and dust were 

removed from the glass front of the chip and the chips were loaded into the chip 

carousel. The chips were scanned using GeneChip® Scanner 3000 and analysed 

using Affymetrix GeneChip Command Console software. 

2.6 PCR and SYBR green 

The primer sequences used for SYBR green are shown in Table 2.2. 

Table 2.2 Primer sequences used for RT-PCR 

 
 
Primer 
name 

 
Forward sequence 

 
Reverse sequence 

 

GAPDH 

β-actin 

Legumain 

Plexin A1 

Sema 3A 

Sema 3F 

Sema 6D 

 

TCG ACA GTC AGC CGC ATC TTC TTT 

AAT GTG GCC GAG GAC TTT GAT TGC 

CGC ACA CCA ACA CCA GCC AC 

AGG GAG AAC GGC TGC CTG GT 

TGG GGT TGC CCA GCT CCC TT 

GGA CAC AGC ATC GGC CCT CA 

GCC GTT CCA CCC ATT GCC GA 

 

ACC AAA TCC GTT GAC TCC GAC CTT 

AGG ATG GCA AGG GAC TTC CTG TAA 

AGG GGG ACG GGA GAA CTG GC 

AGC AGG GAG CGC ACG TTG TC 

TGT GCG TCT CTT TGC AGT GGG 

GAC GGG TCG TTC AGC CAC CG 

ACC ATG CCA GCT TCA GAG CCA 

 

RNA isolation was performed on samples as described in 2.5.3. 
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2.6.1 cDNA preparation 

cDNA was prepared from RNA samples according to AffinityScript™ multiple 

temperature cDNA synthesis kit. Briefly 100-500 ng of RNA, depending on 

experiment, was mixed with 3 μl random primers and RNase-free water to a 

total volume of 15.7 μl. The reaction was incubated at 650C for 5 minutes before 

being cooled to room temperature for 10 minutes to allow the primers to anneal 

to the RNA. The following components were then added to each sample for a 

total volume of 20 μl. 

2.0 μl of 10x AffinityScript RT buffer 

0.8 μl of dNTP mix 

0.5 μl of RNase Block Ribonuclease Inhibitor (40 U/μl) 

1 μl of AffinityScript Multiple Temperature Reverse Transcriptase (RT) 

A minus RT (-RT) control was also set up with each set of samples along with a 

water control. In the case of the -RT control 1 μl of RNase free water was added 

instead of the AffinityScript Multiple Temperature RT.  

The reaction was then incubated for 10 minutes at 250C to extend the primers 

prior to increasing the reaction temperature to 420C for 60 minutes for cDNA 

synthesis. The reaction was then terminated by incubating it at 700C for 15 

minutes. 

2.6.2 PCR  

2.6.3  SYBR green 

SYBR green was performed using SYBR green mastermix (Applied Biosystems). 

Prior to setting up the SYBR green the cDNA was diluted 1 in 5 using RNase-free 

water. The reaction mix was prepared as follows (volumes listed are for a single 

sample): 

Mastermix  10 μl  
Primer mix  0.8 μl 
Water   8 μl 
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Total volume  18.8 μl 
  

Each sample was measured in triplicate therefore 3 lots of reaction mix were 

prepared for each cDNA sample. For the triplicate samples 54.5 μl reaction mix 

was mixed with 6 μl cDNA and 19.8 μl of this total mixture was added to each of 

the three wells of a MicroAmp fast optical 96 well reaction plate (Applied 

Biosystems). A non template control was added to the plate where 6 μl of water 

was mixed with the 56.4 μl reaction mix and a minus RT was also included in the 

plate using the –RT control cDNA.  

Once the plate had been loaded with the cDNA samples it was covered using a 

MicroAmp optical adhesive cover (Applied Biosystems) and spun at 200 g for 5 

minutes. The plate was then transferred to an ABI 7900 H7 Fast-real-time PCR 

machine (Applied Bioststems) where it was read on the following cycle: 

Incubate 48ºC for 30 minutes 

Incubate 95ºC for 10 minutes 

40 cycles of 95ºC for 15 seconds followed by 60ºC for 1 minute 

A dissociation curve was subsequently measures on the following cycle: 

Incubate 95ºC for 15 seconds 

Incubate 60ºC for 15 seconds 

Incubate 95ºC for 15 seconds 

Using the results of this analysis, the expression of target genes relative to the 

housekeeping gene was then quantified.  

2.7 Immunohistochemical methods 

2.7.1 Antibodies 

Table 2.3 Antibody source and concentration used for IHC 
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Antibody Manufacturer Source Working concentration 

Legumain 

Plexin A1 

Prestige Antibodies 

Cell Signalling  

Rabbit 

Rabbit 

0.5 μg/ml 

1.02 μg/ml 

 

Table 2.3 shows the antibodies that were used for single immunohistochemical 

staining for light microscopy and the concentration of the antibody used. 

2.7.2 Single immunohistochemical staining 

Sections containing sections of RA synovial membrane were initially heated to 

650C for 35 minutes after which time they were de-waxed in xylene and 

rehydrated through an ethanol gradient to water/TBS Tween (TBST). To reduce 

non-specific background staining endogenous peroxidase activity was blocked 

using hydrogen peroxide (H202) and methanol. Fixation of tissue specimens forms 

cross-links that mask the antigenic sites, thereby giving weak or false negative 

staining for immunohistochemical (IHC) detection of proteins. Antigen retrieval 

using citrate buffer is designed to break the cross-links thereby unmasking the 

antigens and epitopes in the tissue. Antigen retrieval was performed in 0.01 M 

citrate buffer pH 6.0, the buffer was heated in a microwave for 5 minutes then 

the sections were added to the buffer and were heated for 8 minutes before 

being left to cool for 15 minutes. The sections were then blocked for 1 hour at 

room temperature in 2.5% serum of the species in which the secondary antibody 

was raised. The relevant primary antibody or isotype antibody was applied to the 

sections which were left overnight at 40C.  

The following day the species specific reagent from the ImmPRESS kit (Vector) 

was added to the sections for 30 minutes before being washed in TBST and 

developed with ImmPACT DAB (Vector) for up to 2 minutes until a brown 

reaction product appeared. Sections were then washed in water and 

counterstained using hematoxylin. Finally sections were dehydrated in ethanol, 

cleared in xylene to remove fats and oils and then mounted in DPX (Cellpath Ltd) 

before being imaged on a light microscope. 
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2.8 Western blotting 

2.8.1 Whole cell lysates 

CD14+ monocytes from the peripheral blood or synovial fluid of patients and 

CD14+ monocytes and M-CSF matured macrophages from normal donors were 

washed in PBS. Subsequently, 100 μl of M-PER (Thermo Scientific) with the 

addition of 1 μl Halt Protease Inhibitor Cocktail (Thermo Scientific) was added to 

the cells. The cells were solubilised for 30 minutes on ice before centrifugation 

of the lysates at 16,000 g for 15 minutes. The resulting whole cell lysate 

supernatants were removed from the cell debris pellet and were stored at -200C 

before being used for Western blot anaylsis. 

2.8.2 BCA Assay 

To determine the protein concentration of the cell lysates a BCA assay (Thermo 

Scientific) was performed. For each sample 2.5 μl was added to 72.5 μl of BCA 

reagent in triplicate on a 96 well plate and left at room temperature for 30 

minutes. A standard curve was also set up on the plate using known 

concentrations (2000 µg/ml – 25 µg/ml) of the protein bovine serum albumin 

(BSA). The plate was read on a plate reader at 502 nm. The amount of total 

protein in each sample was determined by comparing the OD value of each 

sample to a standard curve of values. 

2.8.3 SDS-PAGE gel electrophoresis 

5µg of protein from the whole cell lysates were incubated with the appropriate 

volume of 4x NuPAGE LDS sample buffer (Invitrogen) and 10 x NuPAGE reducing 

agent (Invitrogen) at 700C for 10 minutes. Samples and seeblue plus2 protein 

standard (Invitrogen) were run on NuPAGE Bis-Tris gels (4-12%) (Invitrogen) with 

NuPAGE MES running buffer (Invitrogen) at 100 V for 1 hour. The gel was then 

transferred onto a nitrocellulose membrane using the i-blot transfer system 

(Invitrogen).  

2.8.4 Western blotting 

Following transfer, nitrocellulose membranes were washed in TBS/Tween (0.5 M 

NaCl and 20 mM Tris pH 7.0 with 0.1% (v/v) Tween-20) and blocked for 1 hour in 

TBS/Tween containing 5% non-fat milk protein. Membranes were then incubated 
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with 0.2 μg/ml legumain primary antibody (R&D, AF2199) diluted in TBS/Tween 

containing 5% non-fat milk protein overnight at 4ºC. Following the incubation 

with the primary antibody the nitrocellulose membranes were washed (5 x 

5mins) with TBS/Tween and incubated in the an anti-goat HRP-conjugated 

antibody (abcam, ab6741) containing 5% non-fat milk containing protein for 1 

hour at room temperature. The membranes were then washed in TBS/Tween (5 

x 5 mins) and protein bands were visualised using the ECL detection system (GE 

Life Sciences). Nitrocellulose membranes were incubated in a mixture of equal 

volumes of ECL solution A (2.5 mM luminol, 0.4 mM p-coumaric acid and 100 mM 

Tris pH 8.5) and ECL solution B (0.002% hydrogen peroxide and 100 mM Tris pH 

8.5) for 1 minute before exposing the membranes to Kodak X-Ray film. 

Nitrocellulose membranes were then stripped and re-probed with a β-actin 

primary antibody (1/1000 dilution ab8229 Abcam). Membranes were stripped at 

room temperature for 1 hour with stripping buffer (100 mM 2-mercaptoethanol, 

2% SDS and 62.5 mM Tris pH 7). Nitrocellulose membranes were washed 

thoroughly in PBS/Tween and checked for residual signal before re-starting the 

western blotting protocol. 

2.9 Legumain activity assay 

To measure the activity of the enzyme legumain in our samples an activity assay 

was performed. The activity of legumain was measured on its ability to cleave a 

substrate Z-Ala-Ala-Asn-AMC (AnaSpec). Cleavage of this substrate releases the 

AMC (7-amino-4-methylcoumarin) flurophore which can be detected at 441 nm 

upon excitation at 342 nm. 

2.9.1 Collecting samples for activity assay 

M-CSF differentiated samples were washed in PEA prior to lysis. Patient synovial 

and blood CD14+ cells were isolated by magnetic bead separation and washed in 

PEA before lysis. All samples were lysed in lysis buffer containing 50 mM citrate, 

0.1% CHAPS (pH 5.5), 5 mM of DTT and 0.5% Triton-X 100 [342]. Cell lysates were 

collected and frozen at -700C.  

2.9.2 Setting up activity assay 

Human recombinant legumain (rhLGM) (R&D, 2199-CY-010) was used as a 

positive control and is supplied as the pro form of the enzyme. To activate the 
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rhLGM it was diluted to 100 μg/ml in activation buffer containing 50 mM sodium 

acetate and 100 mM NaCl, pH 4.0 and incubated for 2 hours at 370C. After this 

time the rhLGM was diluted to 1 ng/μl in assay buffer containing 20 mM citric 

acid, 60 mM Na2HPO4, 0.1% CHAPS (pH 5.5), 1 mM EDTA, and 1 mM DTT. 50 μl of 

the rhLGM was loaded into a well of a black welled 96 well plate. 

Cell lysate samples were freeze thawed three times before being centrifuged at 

10,000 g for 5 minutes, 50 μl of each sample was loaded into a black welled 96 

well plate. 

The substrate Z-Ala-Ala-Asn-AMC was diluted to 200 μM in assay buffer and the 

reaction was started by adding 50 μl of substrate to all wells containing sample 

and rhLGM. A blank well containing 50 μl assay buffer and 50 μl substrate was 

also put on the plate.  

The plate was read on a fluorescent plate reader programmed to take readings 

at times 0, 5, 10, 15, 20, 25, 30, 60, 90, 120, 150, 180, 210 minutes, the plate 

was incubated at 370C for the duration of the readings. 

2.10 siRNA 

N-TER Nanoparticle siRNA transfection system (Sigma) was used to knockdown 

the plexin A1 gene in M-CSF derived macrophages using 4 Flexitube plexin A1 

siRNA‘s (Qiagen). To check the transfection system was working in the 

macrophage cells an Allstars negative control with an Alexa Fluro 555 

modification (Qiagen) was used to visualise the cells after transfection. If the 

nanoparticle transfection system had worked and the siRNA negative control had 

entered the cells then the cells were seen to be fluorescing orange by light 

microscope or by FACS analysis. The Allstars negative control siRNA is a 

nonsilencing siRNA which has no known homology to any known mammalian 

gene; therefore it is used to check whether the transfection of the cells has any 

effect on the expression of the gene being investigated. 

To set up the siRNA transfection the target (plexin A1) and negative control 

(Allstars negative control) siRNA were prepared as follows: 

5 μM target/control siRNA  13 μl 



116 

siRNA dilution buffer  37 μl 
Total volume    50 μl 
 

The N-TER peptide was then prepared as follows (volumes listed are for each 

siRNA being tested) 

N-TER peptide    8 μl 
Water     42 μl 
Total Volume    50 μl 
 

The 50 μl of N-TER peptide was added to each 50 μl siRNA preparation and 

incubated at room temperature for 20 minutes; the concentration of siRNA at 

this point was 650 nM.  

To transfect the M-CSF differentiated macrophages the siRNA was diluted to a 

concentration of 5 – 30 nM in complete medium depending on the experiment. 

The culture medium was then removed from the macrophages and 500 μl of 

diluted siRNA was added to macrophages. The cells were incubated for 24 hours 

at 370C and after this duration the supernatants were collected for cytokine 

analysis and the cells were put in 0.5 ml trizol. Alternatively after siRNA 

treatment, the macrophages were stimulated with Tcks at 4:1 ratio or were 

stimulated with 10 ng/ml LPS for 24 hours at 370C. After this period of 

stimulation the supernatants were collected for cytokine analysis and the cells 

were put into 0.5 ml trizol.  

All 4 siRNA‘s were tested individually on the macrophages for knockdown of the 

plexin A1 gene, however in some experiments a mixture of 2 siRNA‘s were used 

to see their combined effect. In this case when preparing the siRNA 7.5 μl of 

each siRNA was added to the siRNA dilution buffer.  

2.11 Real time cell imaging 

Macrophages and T cells used for cell imaging were autoMACS purified as 

described in section 2.2.4. 
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2.11.1 Preparing macrophages for imaging 

AutoMACS purified CD14+ monocytes were cultured in 24 well plates in complete 

medium supplemented with 50 ng/ml M-CSF (Biosource) for 5 days.  To remove 

the macrophages 0.5 ml of cell dissociation solution (Sigma) was added to each 

well and the plate was placed into a 370C incubator for 10 minutes. The wells 

were then washed with PEA and scraped to remove any remaining macrophages 

still adhering to the wells. Macrophages were washed, counted and resuspended 

in complete medium at concentrations between 2x105 and 6x105 depending on 

the experiment and plated out on either a 2-well or 4-well chamberslide (VWR). 

The macrophages were left to adhere overnight in a 370C incubator.  

2.11.2 Staining macrophages for imaging 

A red fluorochrome called CMTPX (Invitrogen) was used to stain the 

macrophages, the dye was diluted to a concentration of 2.5 μM in HBSS media 

(Invitrogen) and 1 ml was added to each chamberslide well of macrophages. The 

chamberslides were placed in a 370C incubator for 20 minutes. After this time 

the media was removed from each well and 1 ml of complete medium added, 

the chamberslides were then incubated for a further 30 minutes in a 370C 

incubator to allow any excess CMTPX dye to be secreted from the cells. 

2.11.3 Staining T cells for imaging 

Depending on the experiment, either T cell purified from the blood of a healthy 

donor on the day of the imaging or Tcks that had been activated in a cytokine 

cocktail for 6 days were used. If Tcks were to be used they were washed 

thoroughly three times in PEA before being stained. The T cells/Tcks were dyed 

green with 1 ml of 10 μM CFSE (Invitrogen) which had been diluted in HBSS 

medium. The cells were incubated for 10 minutes at 370C, after this period the 

cells were washed three times in PEA to remove any excess CFSE. Tcks were 

either fixed in PBS/2% paraformaldehyde on ice for two hours, or not (as 

indicated) and the cells were added to the macrophages at a ratio of 1:1 or 4:1. 

2.11.4 Imaging cell contact on microscope 

The T cell - macrophage cell contact was left for varying amounts of time 

depending on the experiment but was usually imaged after 2 hours on a Carl 
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Zeiss Axiovert S100 inverted microscope. An automated sequence of events using 

Openlab software was setup in order to record time lapse images of the cell 

contact.  The sequence of events consisted of an image taken in green, followed 

by a brightfield image followed by a red image. This series of pictures was taken 

every 12 seconds for up to 1 hour and recorded the movement of the T 

cells/Tcks along with their interactions with the macrophages. 

2.11.5 Analysis of real time images 

Analysis of the movies produced from the time lapse images was done on 

Volocity software (PerkinElmer). Two different types of analysis were carried 

out measuring the number and duration of interactions and the co-localisation 

coefficient of interactions. 

2.12 Statistical analysis 

All microarray results were background corrected by the GC-RMA algorithm and 

analysed by paired T test or 1-way ANOVA unequal variance (Welsh ANOVA) using 

Genespring GX 11 software. In addition for specific comparisions both DAVID and 

IPA software, which use a modified version of Fisher‘s exact test, were 

employed. The remaining results are displayed as mean ± standard deviation and 

statistical analysis was done by students T test or 1-way ANOVA test, as 

indicated in figure legends, using the GraphPad Prism 4 software. A p value of < 

0.05 was considered statistically significant. 
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Chapter 3 Transcriptomic analyses of psoriatic and 
rheumatoid arthritis blood and synovial fluid CD14

+
 

cells 
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3.1 Introduction and Aims 

Rheumatoid arthritis (RA) and Psoriatic arthritis (PsA) are both chronic, 

autoimmune arthritides. The cause of neither disease is, at present, known with 

both genetic and environmental factors thought to play a role in disease 

susceptibility and progression thereafter. The synovial tissue in both RA and PsA 

is characterised by marked cellular infiltration, pronounced angiogenesis and 

increased cytokine and protease expression [132, 343]. Therapies used clinically 

in both RA and PsA induce significant improvement in disease activity status but 

many patients do not respond to existing standard of care [132], consistent with 

the heterogeneous nature of the diseases: this in turn underlines the need for 

further research and better therapies specifically targeted at patients who are 

non-responders to current treatments. 

In order to address this gap in the knowledge and understanding of RA and PsA 

many genome-wide gene expression studies have been undertaken in both 

diseases comparing the genetic profiles of patients to those of healthy controls 

in order to acquire a genetic signature unique to each disease [325-327, 329, 

330, 340, 341]. Gene expression studies have also been performed on patients 

undergoing various forms of therapy to identify discriminatory genetic markers 

which could predict the patient response to therapy [332]. Many of these genetic 

studies have been performed on peripheral blood mononuclear cells (PBMCs) or 

whole synovial tissue, which provides interesting information on the genetic 

expression status of the diseased state as a whole but cellular heterogeneity 

contained therein may be masking the contribution of individual cell types. 

Recently a small number of RA gene expression studies have specifically 

examined B cells [336], CD4+ T cells [337] and fibroblasts [334] from diseased 

patients in order to obtain an understanding of how these individual cell types 

are contributing to disease.  

There is also one microarray gene expression study that has been performed 

specifically on monocytes from RA patients, Stuhlmüller et al compared 

monocytes from the first leukapheresis pool (activated cells) and third 

leukapheresis pool (nonactivated cells) of 26 RA patients undergoing 

leukapheresis treatment to identify known and novel genes in the activated 

monocytes [338]. However, at present there are no gene expression studies 
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looking at CD14+ cells in PsA and as yet there have been no studies performed on 

both blood and synovial CD14+ monocyte/macrophage cells from RA or PsA 

patients. These cells are known to play an important role in disease progression 

as they are a major source of proinflammatory cytokines in the joint [344] and 

the number of synovial macrophages has been found to correlate with the 

degree of disease activity in RA [345]. The inflamed synovia in both RA and PsA 

have been found to contain similar numbers of macrophages upon comparison 

[243]  therefore elucidating the molecular signature of this cell type in both PsA 

and RA may lead to a better understanding of its critical role in disease activity. 

Due to the lack of transcriptome data from CD14+ cells from PsA and RA I 

therefore sought to determine the gene expression pattern of CD14+ cells from 

the matched peripheral blood and synovial fluid of RA and PsA as well as CD14+ 

cells isolated from healthy volunteer derived blood. A priori comparisons were 

set up between disease and non-diseased state (healthy versus diseased blood), 

the site of cell isolation (peripheral blood versus synovial fluid) and the two 

disease types (RA versus PsA). 
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3.2 Patients and normal donors 

Inflammatory arthritis patients attending Gartnavel General Hospital (GGH) or 

Glasgow Royal Infirmary (GRI) fulfilled the American college of Rheumatology 

criteria for RA [6], or met diagnostic criteria for PsA [346]. Information regarding 

patient characteristics is shown in Table 3.1.  

Age-matched normal donors were recruited from the Glasgow Biomedical 

Research Centre (GBRC) building and all blood samples were taken with 

informed consent. 

Table 3.1 Patient characteristics 

 

Characteristic RA patients PsA patients 

Mean age (years) 

Female:Male 

Mean Disease duration (years) 

ESR mm/hr (mean) 

CRP  (mean) 

RF positive (%) 

% of patients using DMARDS 

Anti-TNF therapy (number of patients) 

68 

5:3 

12.2 

86 

107 

87.5 

62.5 

1* 

51 

4:4 

1.8 

37 

115 

0 

37.5 

1* 

 

*Anti-TNF therapy was stopped due to patients becoming anti-TNF resistant 



123 

3.3 Collecting patient samples 

For the microarray study, matched synovial fluid and blood samples were 

collected from 8 RA patients and 8 PsA patients. CD14+ cells were positively 

selected from the samples using Miltenyi beads and an aliquot of cells were 

tested by FACS analysis for purity before being put into Trizol. CD14+ Miltenyi 

beads were used since the CD14 surface antigen is present on both monocytes 

and macrophages [190, 347] therefore these beads should isolate blood 

monocytes as well as the synovial fluid macrophages. Normal donors who were 

age and sex matched to patients (Table 3.2) were recruited and from these 

donors CD14+ cells were positively selected from the blood only since by 

definition no synovial compartment derived population cold be ethically derived. 

An aliquot of unactivated CD14+ cells were put into Trizol and the remainder of 

the monocytes were stimulated with M-CSF for 6 days and then cell contact 

activated (see chapter 6). Once all the samples had been collected the RNA was 

extracted from all samples at GSK Stevenage and analysed for quality. 
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Table 3.2 Patient and normal donor samples collected 

 
 

Patient 

 

Gender 

 

Age 

Age and sex 

matched normal 

donor 

PsA 1 

PsA 2 

PsA 3 

PsA 4 

PsA 5 

PsA 6 

PsA 7 

PsA 8 

RA 1 

RA 2 

RA 3 

RA 4 

RA 5 

RA 6 

RA 7 

RA 8 

Female 

Female 

Male 

Male 

Male 

Female 

Male 

Female 

Female 

Male 

Female 

Male 

Female 

Male 

Female 

Female 

53 

40 

34 

34 

80 

58 

54 

58 

71 

56 

62 

69 

78 

69 

69 

77 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

No 

Yes 

No 

No 

No 

No 

No 

No 
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3.3.1 Purity of monocyte samples 

The CD14+ cells isolated from each patient blood and synovial fluid sample were 

analysed on a FACS Calibur to check that there were no other contaminating cell 

types that would affect the transcriptomic profile obtained. Figure 3.1 shows a 

purity check from one representative PsA patient (A) and one RA patient (B).  

3.3.2 RNA quality of patient samples 

The RNA quality of the samples was analysed on an Agilent 2100 Bioanalyser 

which is a microfluidics based platform that analyses RNA qualitatively; RNA 

samples and a standard (ladder) are loaded into wells on a specifically designed 

chip containing a fluorescent dye. The dye molecules become incorporated into 

the RNA and a voltage gradient is applied to the chip allowing the RNA to 

become separated by size. By comparing the separation of the RNA to that of 

the ladder, which contains components of known size, a standard curve of 

migration time versus fluorescence units is plotted called an electropherogram. 

Viewing the electropherogram can give an indication of the integrity of the RNA 

sample. 

Figure 3.2 (A) is an electropherogram showing an example of good quality RNA. 

It is characterised by three clear peaks, a peak for the RNA marker (1) and a 

peak for the 18 S (2) and 28 S (3) ribosomal RNA subunits. There should be a 

relatively flat baseline between the two rRNA peaks and minimal low molecular 

weight noise adjacent to the RNA marker peak. Figure 3.2 also shows the RNA 

quality from the blood and synovial fluid CD14+ cells of a representative PsA 

patient (B) and RA patient (C). All four of the samples show good quality RNA 

evident by the two clear peaks and no low molecular weight noise. After 

checking the RNA from each sample was of good quality, cDNA was generated 

from each RNA sample before being purified, fragmented and labelled. The 

labelled cDNA was then hybridised onto an Affymetrix GeneChip. 
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Figure 3.1 Purity of CD14+ cells isolated from PsA and RA patient blood and synovial fluid 
samples 
These graphs are a representative of the CD14+ cells isolated from the 8 PsA and the 8 RA 
patients that were analysed on the microarray 
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Figure 3.2 RNA quality of the CD14+ samples from two patients 
RNA was extracted and analysed for quality using an Agilent 2100 Bioanalyser. Figure (A) 
represents an example of good quality RNA. It is characterised by three clear peaks: a peak for the 
RNA marker (1) and a peak for the 18 S (2) and 28 S (3) ribosomal RNA subunits. The quality of 
representative PsA patient samples (B) and RA patient samples (C) are shown here and both 
demonstrate good quality RNA. 

 

(C) 

(B) 

PsA PB mo PsA SF mo 

(A) 

1 

2 
3 

RA PB mo RA SF mo 
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3.4 Summary of samples analysed on microarray 

The samples that were examined using the microarray GeneChips are 

summarised in Table 3.3. Eight matched PsA and RA blood and synovial fluid 

samples were obtained along with 6 age and sex matched healthy controls, 

unactivated blood CD14+ cells were not collected from one control but 

macrophage cells before and after Tck cell contact activation were collected for 

all 6 healthy controls. These latter samples will be discussed and analysed in 

chapter 6. 

Table 3.3 Summary of microarray samples 

 

Monocyte/macrophage sample analysed   Number of samples 
 
PsA PB CD14+        8 
PsA SF CD14+        8 
RA PB CD14+        8 
RA SF CD14+        8 
Healthy control PB CD14+      5 
Healthy control M-CSF activated Mø    6 
Tck cell contact activated Mø     6 
 

 



129 

3.5 Analysis of microarray results 

Affymetrix GeneChip microarrays are one of the most popular high-density 

oligonucleotide (oligo) gene expression arrays currently available and have been 

widely validated for the purposes of the present study – this was therefore our 

selected methodology of choice. Each gene on an Affymetrix GeneChip is 

represented by a probe set consisting of 11 pairs of 25-bp oligos covering the 

transcribed region of the gene. Each probe set pair consists of a perfect match 

(PM) and a mismatch (MM) oligonucleotide. The PM probe matches exactly the 

sequence of the gene while the MM probe differs in a single substitution in the 

central 13th base, the MM probe is designed to distinguish noise caused by non-

specific hybridisation from the actual specific hybridisation signal [348]. 

Affymetrix GeneChips have many sources of variation, for example non-

biological variation can arise due to: differences in sample preparation, unequal 

quantities of starting RNA, differences between chips or differences in 

hybridisation between chips [349], therefore pre-processing must take place to 

adjust for these sources of non-biological variation.  

Affymetrix microarrays are pre-processed in three steps: 

Background correction – this is to adjust for hybridisation effects that are not 

related to the interaction between probes and target DNA 

Normalisation – this is to remove systematic errors and bias, it is necessary as it 

allows multiple chips to be compared to each other and analysed together. It is 

performed under the assumption that all chips have approximately the same 

distribution of PM values. 

Summarisation – This is performed using the 11 individual probe intensities from 

a probe set, combined to yield a single value for each gene that best represents 

the expression level of the sample RNA transcript. 

There are many different algorithm tools that can be applied to the background 

correction step of Affymetrix data pre-processing: an appropriate choice is 

dependent upon the experimental design and dataset. Each phase will now be 

described. 
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3.5.1 Background correction of the Affymetrix chips 

At present there are several different algorithm tools that are used to 

background correct Affymetrix chips such as MAS5 [350], RMA [351], GC-RMA 

[352] and PLIER. Upon careful consideration it was decided to use GC-RMA, 

which is a modified version of RMA, as the background correction for my 

experiment design and dataset. As mentioned above each gene is represented on 

the GeneChip by 11 probe pairs made up of a MM and a PM probe, the MM probe 

is designed to distinguish noise and non-specific background signal from the 

specific hybridisation signal. However a problem arises when using MM data 

because in approximately 1/3 of probes the MM intensity levels are higher than 

the PM intensity levels. This suggests that the MM probes are detecting real 

signal. In these cases subtracting the MM signal from the PM signal results in a 

negative signal value and the loss of interesting signal value for those probes. 

Due to this problem several pre-processing algorithms were designed which only 

took into account the PM values, an example of which is RMA. RMA excludes MM 

data completely which reduces noise but also loses information therefore GC-

RMA was designed which takes into account non-specific hybridisation using the 

signal intensity of representative MM probes possessing the same GC nucleotide 

content as the PM probe of interest. 

The background correction in GC-RMA consists of three sequential steps: 

1. Optical background correction, this is an important step as the scanner 

measuring the hybridisation strength of each GeneChip will introduce 

optical noise 

2. Probe intensity adjustment through non-specific binding (NSB) using the 

optical noise adjusted representative MM probe intensities 

3. Probe intensity adjustment through gene-specific binding where the NSB 

adjusted PM intensities are corrected for the effect of PM probe affinities. 

GC-RMA is currently considered to be one of the best methods for estimating 

expression values of genes. A recent study comparing several pre-processing 

algorithms found GC-RMA to be the algorithm of choice for detecting differential 

expression of genes and also the algorithm which produced gene expression data 
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that was highly correlated to qRT-PCR validation data [353]. Hence, GC-RMA was 

chosen for pre-processing the Affymetrix GeneChips data produced in the 

current study.  

3.5.2  Signal histogram of normalised data 

Once the data normalisation had been performed and prior to formal data 

analysis, all the GeneChips must be analysed to check for outliers that may 

affect or skew the results interpretation. One method is to examine the signal 

histogram of the normalised data which plots a line for each of the GeneChips 

with the intensity of the probes contained on the chip on the x-axis and the 

frequency of the probe intensity on the y-axis. This then allows the visualisation 

of the distribution of the signal intensity to identify any outliers. Figure 3.3 

illustrates the signal histogram of all the samples that were tested, each line 

represents one GeneChip and they are coloured by condition with blue 

representing the cell contact activated macrophage samples, red the M-CSF 

treated macrophages, purple the healthy donor blood CD14+, green the patient 

blood CD14+ and gold represents the synovial fluid CD14+ cells. It can clearly 

been seen on the histogram that all the samples have a similar signal intensity 

expression apart from one sample which is a GeneChip containing a cell contact 

activated macrophage sample. The reasons for this outlying sample are unknown 

but since it is only one sample and the signal intensities of the other samples are 

relatively similar to each other it is unlikely to represent a problem with the 

hybridisation, washing or staining of the chips. As a result it is most likely to be 

due to a problem with the individual sample or the labelling of that particular 

sample. Since this sample is an outlier and may potentially skew the data 

interpretation it was removed from further data analysis. 
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Figure 3.3 Signal histogram of normalised data 
This graph represents the signal intensity of all the GeneChips that were analysed in this 
experiment. It is used to identify outliers in the samples. Each line represents one GeneChip and 
the lines are coloured according to the monocyte sample that was loaded onto each GeneChip. A 
blue line represents a cell contact activated macrophage, green is CD14

+
 cells from the patients, 

purple is healthy donor blood CD14
+
, red is M-CSF activated macrophages and gold is synovial 

fluid CD14
+
 cells.  

 

3.5.3 Principle component analysis 

Phenotypes of diseases or experimental conditions can be classified using 

Principle Components Analysis (PCA) [354]. This is an analytical method that 

identifies distinct patterns in the observed transcriptomic differences of 

samples. It transforms multidimensional data into a lower dimensional space 

using as few variables as possible. The resultant PCA graph can be used to look 

for trends in the data and also identify samples which may be outliers as samples 

clustered within the same area of the PCA graph are considered to be 

genetically similar.  

All the samples from the microarray were analysed by PCA based on conditions 

applied (Figure 3.4). Each circle on the graph represents a sample and each 

colour represents a condition. Figure (A) shows the PCA plot of all samples 

including the outlier sample that was identified in the signal histogram to 

illustrate how different the genetic profile of that sample was compared to all 

the other samples. This is visualised on the PCA plot by the one blue circle 



133 

representing the outlier sample being isolated on the left hand side of the graph 

while all the remaining samples are clustered on the right hand side of the 

graph. This graph provides further support for the removal of this one sample 

from the analysis as its genetic profile and signal intensity vary widely from the 

other samples. 

Figure 3.4 (B) demonstrates the PCA plot of the samples once the outlier had 

been removes. It can clearly been seen that SF CD14+ cells (gold circles) from 

both disease types cluster tightly together indicating that CD14+ cells from RA 

and PsA SF share a similar expression transcriptomic profile. This same pattern 

can also been seen for the patient blood CD14+ cells (green circles); both 

diseases have similar genetic profiles as indicated by the clustering of the green 

circles. This cluster of patient blood samples is distinct from the synovial fluid 

cluster of samples and more ‗transcriptomically similar‘ to the healthy donor 

CD14+ blood cells (purple circles) due to the healthy donor CD14+ samples being 

located in the same area of the PCA graph as the diseased blood CD14+ cells. The 

red circles and blue circles represent M-CSF activated macrophages and cell 

contact activated macrophages respectively and will be fully discussed in 

chapter 6. 

This PCA analysis helped to visualise the trends in the data and these trends 

were used to determine further comparisons to be performed. These were:  

 comparing patient blood to normal blood 

 comparing diseased blood CD14+ cells to synovial fluid CD14+ cells of both 

RA and PsA to see if there are genes that are similar in both diseases and 

conversely if each disease also has a unique distinguishing genetic subset. 
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Figure 3.4 Principle component analysis of all microarray samples 
PCA was performed on the microarray samples to try and identify trends in the data. Graph (A) 
indicates the normalised samples before the outlier was removed. The blue circle on the left hand 
side of the graph represents the outlying sample and it can been seen that all the other samples 
are clustered away from that area of the graph indicating that general genetic profile of the outlying 
sample does not match those of the remaining samples. Figure (B) shows PCA graph once the 
outlying cell contact sample had been removed. Each circle represents a sample and samples 
clustered in the same area of the graph are considered to be genetically similar. Each colour 
represents a sample condition; red is M-CSF treated macrophages, blue is cell contact activated 
macrophages, gold is synovial fluid derived CD14+ cells, green is patient blood CD14+ cells and 
purple is healthy blood CD14+ cells. 
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3.6 Comparing samples 

3.6.1 Comparison 1: Patient blood compared to normal blood 

Analysing the PCA graph indicated that the CD14+ cells from both the 8 RA and 8 

PsA patients have a similar gene expression to the 5 healthy control CD14+ cells. 

It was decided to analyse the genetic profiles of these samples further to see 

how similar they were and to determine if there were any disease-specific genes 

not detected in the healthy controls as has been found by many previous studies 

[325-327, 329, 330, 340, 341]. 

All samples were pre-processed by the GC-RMA algorithm and quality control on 

the entities was performed. To pass the quality control analysis each entity had 

to have a signal value between 20 and 100% in order to remove any background 

signal and each entity had to be expressed in all 21 samples (8 RA PB, 8 PsA PB 

and 5 healthy PB). This is due to the considerable heterogeneity in the patient 

samples with regards to treatment and disease duration; we were only 

interested in genes that had changed in all disease samples rather than genes 

that changed for example, only in response to a certain treatment type.  

41424 entities passed the quality control analysis that can be visualised as shown 

in Figure 3.5. The y value is the normalised signal intensity of the entity where 

the signal is normalised to the median value of that entity across all the 

samples. It is a visualisation tool that allows entities with very high or very low 

signal values to be visualised on the same graph. The graph indicates that whilst 

there are many entities that do not change their signal expression levels 

between non-diseased and diseased states there are some outliers that have 

varying levels of intensity in each of the three conditions.  
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Figure 3.5 Profile plot of entities that passed the quality control filter. 
Each line represents an entity and this graph shows the change in the signal intensity value of each 
entity in all healthy samples (left hand side of the graph), PsA PB samples (middle of the graph) 
and RA PB samples (right had side of the graph). The colour of the line denotes the signal intensity 
of the entity in healthy peripheral blood; blue represents a signal intensity of -6 to -1, yellow -1 to 1 
and red 1 to 6. 

3.6.1.1  Statistical analysis of healthy and diseased blood CD14+ 
cells 

During microarray data analysis, multiple testing corrections (MTC) should be 

applied where possible to decrease the number of false positives. Any statistical 

tests (e.g. T test, ANOVA) that are performed on microarray data perform one 

test per gene therefore the number of false positives increases proportionally to 

the number of tests performed. For example analysing 10000 genes with a cut-

off p value of 0.05 will mean performing 10000 individual statistical tests and as 

a result 500 genes (0.05 x 10000) are likely to appear significant by chance 

alone. The Benjamini and Hochberg (false discovery rate) MTC gives a corrected 

p value for each gene depending on the number of genes being tested [355]. 

A one-way ANOVA unequal variance (Welch ANOVA) with a Student-Newman-

Keuls (SNK) post Hoc test was used to analyse the 3 microarray conditions of 
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healthy blood, RA blood and PsA blood. A MTC was unable to be used in this 

instance as when the Benjamini and Hochberg MTC was used there were no 

significantly changed genes between the three groups. Since a p value cut off of 

0.05 was used this means that 5% of the differentially expressed genes may be 

false positives and appearing by chance alone, a way to overcome this is to look 

at the p values of each gene as the higher the p value of the gene the less 

chance of it being a false positive.  

The one-way ANOVA with a p value cut off of 0.05 gave the following results: 

494 genes significantly changed between RA and PsA PB cells 

1457 genes significantly changed between healthy blood and RA blood 

1384 genes significantly changed between healthy blood and PsA blood 

These results indicate that although the PCA graph showed all of the blood CD14+ 

samples to be genetically similar, there are groups of genes that are significantly 

changed between samples indicating that there are likely to be disease-specific 

genes being expressed.  

3.6.1.2  Fold change cut off analysis of healthy and diseased 
blood derived CD14+ cells 

Since there were many genes that had significantly changed between groups a 

fold change analysis was performed to look at differential expression. A cut off 

value of 2 was chosen, consequently if a gene had a fold change difference in 

expression between two conditions that was ≥ 2 then it would be considered 

differentially expressed. The fold change cut off gave the following results: 

43 genes changed between RA and PsA blood CD14+ cells (22 genes up-regulated 

in RA compared to PsA PB and 21 genes up-regulated in PsA compared to RA PB) 

239 genes changed between healthy blood and RA blood (158 genes up-regulated 

in RA compared to healthy PB and 81 genes down-regulated in RA compared to 

healthy PB) 
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281 genes changed between healthy blood and PsA blood (153 genes up-

regulated in PsA blood compared to healthy and 128 genes downregulated in PsA 

blood compared to healthy) 

These results demonstrate that of the 54,000 probe sets on the Affymetrix 

GeneChips there are very few of these (43 probes/genes) that are differentially 

expressed between RA blood and PsA blood. This result reinforces the PCA 

results which showed the RA and PsA blood samples to be grouped together 

therefore implying these samples were transciptionally similar. Hence from our 

data it appears that the blood monocytes from RA and PsA have similar 

transcriptomic profiles and there are very few genes that are expressed by these 

monocytes that could distinguish them as belonging to either disease. 

Nevertheless there are 43 genes that were distinguished by this analysis as being 

differentially expressed between RA and PsA PB CD14+ cells with a fold change 

difference of ≥2. Of these 43 gene hits there were only 24 individual genes that 

had changed. This is because on the affymetrix GeneChips each gene can be 

represented by more than one probe set and one gene can be appear several 

times in the differentially changed gene list, also the gene lists often contain 

transcribed loci that have no known function or gene name and therefore cannot 

be analysed further. Of the 24 genes that were differentially expressed between 

RA and PsA blood CD14+ cells 12 were upregulated in RA blood compared to PsA 

and 12 were upregulated in PsA blood compared to RA. 

Table 3.4 outlines the functions of the 12 genes upregulated in RA PB CD14+ cells 

compared to PsA PB CD14+ cells. 

Table 3.5 outlines the functions of the 12 genes upregulated in PsA PB CD14+ 

cells compared to RA PB CD14+ cells. 
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Table 3.4 A list of the 12 upregulated genes in RA PB CD14
+
 cells compared to PsA PB CD14

+
 cells  

Symbol  Gene Name    Fold change upregulation  Description of Gene 
       in RA PB compared to 

PsA PB (p value) 
 
NRP1  Neuropilin 1     5.1 (5.72 X 10-5) A single pass transmembrane protein which has various ligands including 
            semaphorins and VEGF family members. They have principle functions  

in cell motility, including neural growth cone collapse mediated by 
semaphorins, and vascular and lymphatic sprouting triggered by VEGFs 
[356]. NRP-1 is the major VEGF 165 receptor in fibroblast like 
synoviocytes in RA. It is also expressed in the lining layer, endothelial 
cells and infiltrating leukocytes in RA [357]. 

 
NCAM1  Neural cell adhesion molecule 1  3.8 (0.017)  A cell surface glycoprotein which mediates homotypic and heterotypic  
           cell-cell adhesion through a homophilic binding mechanism. It is present  
           in the nervous system where it participates in neural outgrowth and cell  
           migration [358]. NCAM may also play a role in blood vessel stability as  
           NCAM deficiency results in unstable endothelial cell – pericyte  

interaction and hence vessel stability [359]. 
 
CYB5R2 Cytochrome b5 reductase 2   3.5 (0.021)  Cytochrome b5 is an electron transfer component in oxidative reactions 

such as anabolic metabolism of fats and steroids [360]. The CYB5R2 
isoform is a membrane bound form of cytochrome b5 reductase which 
partakes in fatty acid elongation and desaturation [361] and cholesterol 
biosynthesis. It may also play a role in mitochondrial respiration [362]. 

 
GPR34  G protein-coupled receptor 34  2.8 (0.048)  G protein-coupled receptors are the largest family of receptor proteins 

in mammals and are known to bind to a variety of extracellular ligands 
such as chemokines, enzymes and hormones [363]. GPR34 is highly 
abundant in mast cells where it acts as the functional receptor for 
lysophosphatidylserine which enhances mast cell degranulation [364]. 

 
HPGD  hydroxyprostaglandin dehydrogenase  2.4 (0.0062)  An enzyme responsible for the inactivation of prostaglandins and 

15-(NAD)        lipoxins by catalysing the oxidation of 15(S)-Hydroxyl group resulting 
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in metabolites with reduced biological activity [365]. It is 
downregulated in human epithelial tumours and shows tumour 
suppressor activity [366]. 

 
PKP2  Plakophilin 2     2.3 (0.046)  A protein found co-localised to desmosomes, which are adhesive  

junctions linking intermediate filament networks to sites of strong 
intercellular adhesion. These junctions provide strength to tissue 
undergoing mechanical stress such as cardiac and epidermal tissue 
[367]. Plakophilin 2 has been detected in the adherens junctions of 
cardiomyocytes [368] and can co-localise with β-catenin at adherens 
junctions in epithelial cells [369]. 

 
CA5B  carbonic anhydrase VB, mitochondrial 2.2 (0.045)  A metalloenzyme expressed in mitochondria which is involved in several  
           biosynthetic processes and plays a key role in fatty acid biosynthesis 
[370]. 
 
IL7  Interleukin 7     2.1 (0.011)  A member of the IL-2 family expressed by epithelial cells in  

lymphopoietic tissues, epithelial cells, keratinocytes, DCs and 
monocytes [371]. IL-7 plays an important role in T cell homeostasis such 
as naïve T cell survival but has also been found to induce bone loss by 
inducing osteoclast formation from human monocytes in a T cell 
dependent manner [372]. Serum levels of IL-7 are higher in RA patients 
compared to healthy controls and correlate with markers of 
inflammation [371]. IL-7+ cells correlate with the number of CD68+ cells 
in RA synovial lining and sub-lining layers and double staining 
demonstrates that CD68+ cells are a major producer of IL-7 [373]. 

 
LAMC1  Laminin, gamma 1    2.1 (0.016)  Laminins are extracellular matrix components and are a major  

constituent of basement membranes. Laminin and collagen provide the 
basic scaffold to which other basement membrane proteins, such as 
proteoglycan, integrate [374]. Laminin is also expressed in the cerebal 
cortex and laminin γ1 has been shown to play a critical role in neuronal 
morphogenesis and migration [375]. Laminin γ1 is also required for the 
deposition of matrix molecules in cardiomyocytes [376]. 
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LYCAT  Lysocardiolipin acyltransferase  2.1 (0.011)  In embryonic stem cells (ESC) differentiation lysocardiolipin  
acyltransferase plays an essential role in hematopoietic and endothelial 
lineage development [377]. It is also involved in the remodelling of the 
phospholipid cardiolipin. Cardiolipin is sensitive to oxidative damage by 
reactive oxygen species and lysocardiolipin acyltransferase plays a 
regulatory role in remodelling cardiolipin in response to stress [378]. 

 
LRP11  Low density lipoprotein receptor-related 2.1 (0.0077)  The LDL receptor related protein (LRP) is a heterodimeric endocytic 

protein 11        cell surface receptor which transports a variety of macromolecules 
into cells through a process called receptor mediated endocytosis. 
LRP11 is expressed mainly in the brain and it has been shown to play a 
role in cell-cell adhesion in neurons however it has also been shown to 
be present in vascular smooth muscle cells and can induce enhanced 
migration and invasion activities [379]. LRP11 may play a role in 
Alzheimer disease (AD) as its expression is significantly reduced in the 
brains of AD patients, in this setting LRP11 is thought to be a sorting 
protein that protects β-amyloid precursor protein (APP) processing into 
amyloid-β (Aβ) which is the peptide found accumulated within the brains 
of AD patients [380]. 
 

RNF34  Ring finger protein 34    2.0 (0.049)  Otherwise known as human ring finger homologous to inhibitor of  
apoptosis (hRFI). hRFI is an apoptosis regulator protein. Transfection of 
hRFI into HeLa cells resulted in an increase in cell survival after TNFα 
treatment [381] and transfection of hRFI into human colorectal cancer 
cells significantly inhibited death receptor mediated apoptosis with 
decreased caspase activity [382]. Thus indicating that hRFI has anti-
apoptotic activity. 
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Table 3.5 A list of the 12 upregulated genes in PsA blood CD14
+
 cells compared to RA blood CD14

+
 cells 

 
Symbol  Gene Name    Fold change upregulation  Description of Gene 
       in PsA PB compared to 

RA PB (p value) 
 
GSTM2  glutathione S-transferase M2   3.0 (0.040)   Glutathione S-transferases (GSTs) are a broadly expressed family 

of enzymes which protect against endogenous oxidative stress as 
well as exogenous toxins. They detoxify a variety of electrophilic 
compounds including oxidised lipids and DNA products generated 
by reactive oxygen species damage to intracellular molecules 
[383]. Glutathione S-transferase M2 is a muscle specific enzyme. 

 
GSTM1  Gluthathione S-transferase M1  2.9 (0.035)   (See above for a description of GSTs). Allelic variant within the 

GSTM1 gene are associated with differences in detoxification 
efficiency, the GSTM1 gene has a non-functioning allele termed 
GSTM1-null. RA patients who carry this GSTM1-null polymorphism 
and are smokers are associated with worse disease severity 
[384]. A further study in a Korean population indicated that the 
GSTM1-null polymorphism is associated with increased 
susceptibility to RA [385]. 

 
PPP1R16B protein phosphatase 1,   2.9 (0.036)   Protein phosphatase 1 (PP1) is a eukaryotic serine/threonine 

regulatory (inhibitor) subunit 16B       phosphatase which regulates a large variety of cellular functions 
through the interaction of its catalytic subunit with over 50 
different regulatory subunits [386]. The PPP1R16B gene encodes 
a protein called TGF-β-inhibited membrane-associated protein 
(TIMAP). TIMAP is expressed at high levels in endothelial cells, 
phosphorylation of TIMAP controls its association with PP1 which 
in turn regulates extension of filapodia within the endothelial 
cells [387]. 

 
 
VASH1  Vasohibin 1     2.9 (0.0088)   An angiogenesis inhibitor upregulated in endothelial cells [388]. 
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Vasohibin-1 has also been detected in RA synovium in synovial 
lining cells, synovial fibroblast and endothelial cells. In vitro 
stimulation of RA synovial fibroblasts with inflammatory 
cytokines induced vasohibin-1 mRNA expression in hypoxic 
conditions [388]. 

 
CHST13 Carbohydrate (chondroitin 4)   2.8 (0.013)   Chondroitin sulfotransferases synthesize the diverse sulphated 

sulfotransferase 13         structures found in the glycosaminoglycans (GAGs) chondroitin  
sulphate [389]. As present there is no defining information on 
the specific role of carbohydrate sulfotransferase 13. 

 
FOXP1  forkhead box P1    2.7 (0.017)   A member of the FOX family of transcription factors. FOXP1 has a 

role in B cell development [390], thymocyte development [391] 
and monocyte differentiation as downregulation of FOXP1 is 
necessary for monocyte differentiation and hence macrophage 
function [392]. 

 
KLF9  Kruppel-like factor 9    2.3 (0.011)   The kruppel-like factor family are zinc finger transcription 

factors. KLF9 regulates estrogen and progesterone action by 
modulating the activity of the progesterone receptor (PGR). It 
directly interacts with PGR to mediate progesterone responsive 
genes [393] and acts as a transcriptional repressor of estrogen 
receptor signalling [394]. 

 
KIF1B  Kinesin family member 1B   2.3 (0.031)   The kinesin superfamily of proteins play a role in organelle  

transport in cells such as neurons and epithelial cells [395]. 
KIF1B is a plus end directed motor that transports synaptic 
vesicle precursors in the axon from the cell body to the synapse 
[396], it has also been shown to transport mitochondria in nerve 
cells [397]. 

 
BIN1  Bridging integrator 1    2.3 (0.035)   BIN1 contains a BAR domain that allows it to interact with  

cellular membranes and induce membrane curvature [398]. BIN1 
is a muscle specific isoform of BAR domain containing proteins. It 
is highly expressed during muscle development and helps 
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generate the membrane curvature needed to form T-tubules 
[399].  
 

MED26  Mediator complex subunit 26   2.1 (8.6 X 10-4)  Once of several subunits that comprise the Mediator complex. 
The Mediator complex forms a crucial part of the RNA 
polymerase II transcriptional machinery that is essential for the 
transcription of almost all protein coding genes [400]. 

 
ACSL3  Acyl-CoA synthetase long-chain  2.1 (0.039)   An enzyme isoform involved in lipid synthesis, fatty acid  

family member 3        catabolism and membrane remodelling [401]. 
 
EIF2AK3 Eukaryotic translation initiation factor 2.1 (0.022)   An ER transmembrane protein kinase which functions during 

2-alpha kinase 3        cellular stress as an unfolded protein response (UPR) sensor. It is  
activated by accumulated misfolded proteins in the ER and 
reduces cellular translation to allow the cell to correct for the 
misfolded proteins causing the ER stress before synthesising 
additional proteins [402]. 
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3.6.1.3  Database for annotation, visualisation and integrated 
discovery (DAVID) analysis of genes changed between 
healthy and patient CD14+ cells 

Following on from the statistical and fold change analysis of the blood CD14+ 

samples an analysis of the groups of genes which were changed between healthy 

and patient samples took place. This analysis will identify the function of the 

expressed genes and subsequently group them according to their function. This 

may be more informative rather than studying each individual gene and could 

indicate the phenotype of the diseased CD14+ cells.   

The database for annotation, visualisation and integrated discovery (DAVID) 

analysis was used to investigate the gene lists to see if there was a significant 

enrichment of group of genes required for a specific biological function. DAVID is 

a publicly available software that can systematically map a large number of 

genes to their associated biological annotation and then statistically highlight 

the most overrepresented enriched biological processes [403].   

DAVID analyses gene lists in regard to the reference background, which in this 

analysis is all of the genes expressed on the Affymetrix GeneChip. To decide the 

degree of biological enrichment within the input gene list DAVID compares it to 

the reference background for example, if 10% of the gene list are kinases versus 

1% of the genes on the Affymetrix GeneChip then kinases would be classed as 

overrepresented within the gene list. The DAVID software uses a modified 

Fisher‘s exact test to measure the gene-enrichment in the biological process 

groups and groups with a p value <0.05 were considered to be specifically 

associated with the gene list. Each gene is represented by more than one probe 

on the Affymetrix GeneChip and therefore there may be several entities in the 

gene list which correspond to the same gene, DAVID analysis takes this into 

account and will only analyse each gene once irrespective of how many times it 

appears in the gene list.  

The gene lists which were analysed using DAVID were the up- and down-

regulated genes in RA blood CD14+ compared to healthy blood CD14+ and the up-

and down-regulated genes in PsA blood CD14+ compared to healthy blood. 

Related groups of genes with a p value <0.05 were considered to be significantly 

enriched within the gene list, if there were several gene groups associated with 
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the gene list only the top 10 most significantly associated groups were analysed. 

Figure 3.6 shows the biological process gene groups which were expressed at a 

higher level in RA blood compared to healthy blood CD14+ (A) and those that 

were expressed at a lower level in RA blood (B). The upregulated groups of 

genes include genes associated with chemotaxis, which could be in preparation 

of the monocytes extravasating from the blood into the diseased joints, and 

genes associated with response to external stimulus. This latter gene group may 

be due to the proinflammatory stimuli found within the serum of arthritis 

patients but not healthy controls to which the RA blood monocytes are exposed 

[404, 405]. The downregulated groups of genes in RA PB monocytes include those 

that regulate intracellular protein complex localisation and negative regulation 

of cell migration which reinforces the results shown in graph (A) suggesting that 

RA blood monocytes are upregulating groups of genes which will enable the cell 

to migrate and respond to chemotaxis. 

Figure 3.7 indicates the biological process groups which were upregulated in PsA 

PB CD14+ compared to healthy controls (A) and downregulated in PsA PB 

compared to healthy control blood (B). The results of this analysis indicate that 

in comparison to healthy control monocytes the PsA blood monocytes have an 

increased expression of genes involved in DNA packaging, chromatin assembly 

and nucleosome assembly suggesting an overall reduction of DNA transcription 

and translation within these cells. The PsA blood monocytes are also 

upregulating genes involved in chemotaxis, which was also shown in the RA 

blood monocytes in the previous figure, and may be due to an increase in 

chemokines within the serum of PsA patients in comparison to healthy controls 

[265, 406]. The downregulated genes in the PsA blood samples are mainly 

involved in cell projection, morphogenesis, differentiation and metabolic 

processes which all involve a large amount of energy expenditure therefore the 

cells could be trying to conserve energy and resources.  

In summary, the purpose of this healthy blood and diseased blood comparison 

was to determine if there were any disease-specific genes not detected in the 

healthy controls as the PCA analysis had demonstrated that the blood CD14+ 

samples in healthy and diseased patients had similar genetic profiles. Despite 

the possibility that 5% of the genes within the gene lists generated are false 

positives due to not being able to apply a multiple testing correction (MTC) to 
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the data there were a considerable number of differentially expressed genes 

between the healthy blood samples and diseased samples. This indicates that 

there are disease specific genes being expressed in the monocytes which in the 

case of both RA and PsA included groups of genes required for chemotaxis and 

cell movement. This analysis also generated the surprising result that there are 

only 24 individual genes that are differentially expressed between RA and PsA 

blood monocytes, this would suggest that the blood monocytes are remarkably 

similar in the two forms of arthritis and may suggest that they play similar roles 

within the diseases.  

 

Figure 3.6 Up and downregulated groups of genes in RA blood compared to healthy blood 
DAVID analysis was used to discover the significantly up- and downregulated biological process 
gene groups as identified by gene ontology (GO). The 10 most significant biological process 
groups are shown which all have a p value <0.05 which is equivalent to a –log p value >1.30. 
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Figure 3.7 Up and downregulated groups of genes in PsA PB compared to healthy PB 
 DAVID analysis was used to discover the significantly up- and downregulated biological process 
gene groups as identified by gene ontology (GO). The 10 most significant biological process 
groups are shown which all have a p value <0.05 which is equivalent to a –log p value >1.30. 
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3.6.2 Comparison 2: Analysis of microarray results comparing 
psoriatic and rheumatoid patient blood CD14+ cells to 
synovial fluid CD14+ cells 

My major questions concerned changes occuring in the genetic profile as the 

CD14+ cells of PsA and RA patients move from the blood into the synovial 

compartment. The principle component analysis (PCA) plot of the RA and PsA PB 

and SF CD14+ (Figure 3.8) illustrates that there are numerous genetic differences 

between the PB and SF of both diseases indicated by the PB samples (blue and 

red circles) occupying a separate area of the PCA graph as the SF samples (green 

and purple circles). However this graph also shows that the PB CD14+ cells of 

both diseases and the SF CD14+ of the two diseases are transcriptionally similar 

to each other. This observation indicates that there are large genetic differences 

between the site from which the CD14+ were isolated (i.e. blood and synovial 

fluid) however the genetic differences between diseases at these sites  is small 

(i.e. RA and PsA SF CD14+ cells are transcriptomically similar). 

3.6.2.1  Statistical analysis of peripheral blood CD14+ compared to 
synovial fluid CD14+ 

All samples were pre-processed with the GC-RMA algorithm and quality control 

was performed on the 16 matched RA samples (8 PB and 8 SF) and then 

performed on the 16 matched PsA samples (8 PB and 8 SF). In order to pass the 

quality control filter each gene had to have a signal value between 20 and 100% 

and be expressed in all 16 samples. Again, this was selected due to the high 

heterogeneity of the 8 RA and 8 PsA patients with regard to disease duration and 

patient treatment. Ensuring that each gene was present in all of the 16 RA or 

PsA samples being tested meant that the analysis was only looking at genes 

changed in the disease condition as a whole and was not affected by an 

individual treatment type.  

Once the quality control had been performed a paired T test was undertaken for 

each disease comparing the matched PB and SF samples of each patient. The p 

value cut off was 0.05 and the Benjamini and Hochberg multiple testing 

correction was applied to the data which gives the genes a corrected p value. 
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Following this analysis there were:  

10763 significantly changed genes between RA PB CD14+ cells and RA SF CD14+ 

cells 

9533 significantly changed genes between PsA PB CD14+ cells and PsA SF CD14+ 

cells 

Figure 3.9 shows the profile plots of the significantly changed genes between RA 

PB and SF (A) and between PsA PB and SF (B). The profile plot is a visualisation 

tool similar to a heatmap to allow trends in genetic expression data to be 

identified, however its benefit over a heatmap is that it allows thousands of 

genes to be analysed simultaneously. On these graphs each line represents one 

gene and the colour of the line denotes the median GeneChip intensity value of 

that gene from the 8 blood samples; with blue signifying a low intensity value, 

yellow denotes an intermediate value and red denotes a high level of intensity. 

The profile plots indicate that there are a large number of genes in both 

diseases which are upregulated in the SF CD14+ cells compared to PB CD14+ cells; 

there are also a smaller number of genes which a downregulated in the SF cells 

compared to the PB CD14+ cells. 
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Figure 3.8 PCA analysis of PB and SF from RA and PsA patients 
PCA analysis was performed on the 32 samples to try and discover trends in the data as samples 
in the same area of the graph are considered to be genetically similar. Each circle represents an 
individual sample and all samples are colour coded per condition, red corresponds to RA PB, blue 
to PsA PB, purple to RA SF and green to PsA SF. 
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Figure 3.9 Profile plots of entities that are significantly changed between PB and SF in RA 
and PsA 
Each line on the profile plot represents one gene and the graphs indicate how the normalised 
signal intensities of the gene change between the PB samples and the SF samples. The colour of 
the line represents the median signal intensity of each gene in the PB samples. A blue line 
indicates the gene was expressed at a low level in the PB, a yellow line indicates an intermediate 
level and a red line a high level of signal intensity. 
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3.6.2.2  Fold change analysis and Ingenuity pathway analysis (IPA) 
of RA PB vs RA SF and PsA PB vs PsA SF 

The two gene lists which had been generated from the paired T test analysis 

were subjected to fold change analysis. Due to the substantial number of 

significantly expressed genes in both diseases a fold change cut off of ≥ 4 was 

applied to the data. In microarray data analysis the fold change cut off value is 

arbitrary and we were interested in genes with a high fold change difference 

between PB and SF. 

The fold change analysis gave the following results: 

 1686 genes significantly changed between RA PB and RA SF with a fold 

change ≥ 4 

 1149 genes significantly changed between PsA PB and PsA SF with a fold 

change ≥ 4 

The varying expression levels of these genes is depicted in Figure 3.10 which is a 

heatmap of all the significantly changed genes between the PB and SF samples 

of RA and PsA with a fold change cut off of 4. The heatmap displays the 

normalised signal intensity of each gene within the blood and synovial fluid 

samples of each patient. The range in colour represents the relative expression 

levels of the genes in each sample with green representing a low level of 

expression and red representing a high level of relative expression. Heatmaps 

are used as a visualisation tool and this figure is demonstrating the there appear 

to be many genes which are upregulated in the synovial fluid of the patients in 

comparison to the peripheral blood as demonstrated by the large number of 

genes which are green (low level of expression) in the peripheral blood cell but 

are red (high level of expression) in the synovial fluid cells.  

The two gene lists were then subjected to ingenuity pathway analysis (IPA) 

which may be used to analyse complicated gene sets and identify genes that are 

part of a common regulatory network. This software has advantages over DAVID 

analysis in addition to identifying the overrepresented molecular and cellular 

functions within the gene list IPA can also identify the canonical pathways as 

well as the diseases and disorders associated with the genes. IPA is similar to 
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DAVID analysis as it uses Fisher‘s exact test to determine whether an association 

of a biological process or a pathway with the dataset is due to random chance. 

The smaller the p value of the process or pathway the less likely that the 

association is random and the more significant the association, in this analysis p 

values less than 0.05 indicate a statistically significant non-random association. 

IPA determines the association of processes and pathways within the gene list by 

comparing it to a reference gene set, which in this case are all the genes 

expressed on the Affymetrix GeneChips, and calculating whether the pathways 

or processes are overrepresented in the gene list and whether this association is 

statistically significant using Fisher‘s exact test. 
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Figure 3.10 Heatmap of significantly changed genes with a fold change cut off of 4 between 
the PB and SF of PsA and RA patients 
The normalised signal intensity of each differentially expressed gene with a fold change cut off of 4 
or above is shown. The degree of colour represent the relative level of expression for each gene in 
each sample ranging from green - low relative expression, to red - high relative expression (see 
legend). It can be visualised that there are genes which are expressed at a low level in the blood 
and therefore a high level in the synovial fluid and vice versa. 
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3.6.2.3  IPA of RA blood vs RA synovial fluid CD14+ 

The 1686 differentially expressed genes between the RA PB and RA SF CD14+ 

samples with a fold change cut off of 4 were analysed using IPA. This analysis 

generated three sets of results associated with the gene lists; the top 5 

canonical pathways, the top 5 diseases and disorders and the top 5 molecular 

and cellular functions. 

Table 3.6 indicates the top 5 canonical pathways associated with the up- and 

downregulated genes observed in the RA synovial fluid samples. This analysis 

includes pathways which have previously been associated with RA such as the 

coagulation system and the role of macrophages in RA but also includes other 

pathways such as LXR/RXR activation.  

Figure 3.11 outlines the canonical pathway of LXR/RXR activation which was the 

most significant pathway associated with the RA PB vs SF gene list. All of the 

genes highlighted in the pathway are the 17 genes from the gene list associated 

with the RA comparison; all of these genes are highlighted in red which indicates 

that these genes were upregulated in the synovial fluid CD14+ cells compared to 

the PB CD14+ cells. These genes range from pro-inflammatory chemokines such 

as MCP-1 to the cholesterol efflux genes ApoE and ApoC1. The relevance of these 

genes to RA pathogenesis will be analysed in detail in the discussion section of 

this chapter. 

Table 3.7 outlines the diseases and disorders associated with the up- and down-

regulated genes expressed in RA SF CD14+ compared to RA PB CD14+. As would be 

expected all the diseases and disorders are related to or involve RA. The range 

of p values shown determines the significance of the gene list to different terms 

encompassed by the diseases and disorders. For example the term inflammatory 

disease includes more specific terms such as inflammatory disorder of the joint, 

arthritis or multiple sclerosis so depending on the association of the gene list 

with each term tested an individual p value is given. Due to the large number of 

terms that can be significant within one category a range of p values is outlined 

in the table. 
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Table 3.8 outlines the top 5 cellular functions associated with the gene list. The 

gene list comprises genes that are differentially expressed within the RA synovial 

fluid CD14+ cells and the cellular functions significantly overrepresented in this 

gene list are those which we would expect to be upregulated within the RA SF 

cells in comparison to the PB cells. Two of the cellular functions are cellular 

movement and immune cell trafficking which could be upregulated as a result of 

the CD14+ transendothelial migration from the blood vessels into the synovium 

[258, 407]. Since macrophages within the synovial compartment are known to 

participate in cellular interactions with several cell types such as fibroblasts 

[249], T cells [269, 314, 408], endothelial cells [407] and natural killer (NK) cells 

[251] it is no surprise that one of the top cellular functions associated with the 

RA SF CD14+ cells is cell-to-cell signalling and interaction. The final two cellular 

functions associated with RA SF CD14+ compared to PB cells are cellular growth 

and proliferation and cellular development which is logical due to the 

maturation that the CD14+ cells undergo into fully activated macrophages once 

they are within the synovium and exposed to the pro-inflammatory and hypoxic 

environment [409, 410]. 
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Table 3.6 The top 5 canonical pathways associated with the RA PB vs RA SF CD14+ 

comparision 

 

Canonical pathway 

p value (number of 
associated 

genes/total number 
of genes in pathway) 

 

LXR/RXR activation 

Hepatic fibrosis/ hepatic stellate cell activation 

Role of mø, fibroblasts and endothelial cells in RA 

LPS/IL-1 mediated inhibition of RXR function 

Coagulation system 

 

3.96 x 10-7 (17/86) 

2.27 x 10-5 (21/131) 

7.20 x 10-5 (36/366) 

1.07 x 10-4 (25/205) 

1.98 x 10-4 (9/37) 

 

Table 3.7 The top 5 diseases and disorders associated with the RA PB vs RA SF CD14
+
 

comparison 

 

Diseases and Disorders 

 

p value 

 

Connective Tissue Disorders  

Inflammatory Diseases 

Skeletal and Muscular Disorders 

Immunological Diseases 

Inflammatory Response 

 

4.68x10-15 – 4.77x10-4 

4.68x10-15 – 5.90 x 10-4 

4.68x10-15 – 4.77x10-4 

9.70x10-14 – 4.43x10-5 

2.79x10-13 – 7.03x10-4 

 

Table 3.8 Top 5 molecular and cellular functions associated with the RA PB vs RA SF CD14
+
 

comparison 

 

Molecular and Cellular Functions 

 

p value 

 

Cellular movement 

Cell-to-cell signalling and interaction 

Cellular growth and proliferation 

Immune cell trafficking 

Cellular development  

 

1.00x10-23 – 5.90x10-4 

1.40x10-17 – 7.03x10-4 

9.08x10-17 – 7.05x10-4 

1.72x10-15 – 1.35x10-4 

7.08x10-13 – 6.89x10-4 

 



159 

Figure 3.11 LXR/RXR activation canonical pathway associated with the RA PB vs SF 
comparison 
This diagram outlines the genes involved in LXR and RXR activation which were differentially 
expressed in the RA PB vs RA SF comparison. The genes which are coloured red are those which 
were expressed at a higher level in the RA SF cells and therefore are genes which are upregulated 
once the blood CD14

+
 cells enter the synovial environment. 
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3.6.2.4  IPA analysis of PsA blood vs PsA synovial fluid CD14+ 

The 1149 genes differentially expressed with a fold change ≥ 4 in the PsA 

synovial fluid compared to the PsA blood CD14+ were analysed using IPA. As with 

the RA blood vs synovial fluid investigation this analysis yielded three sets of 

results associated with the gene list: the top 5 canonical pathways, the top 5 

diseases and disorders and the top 5 molecular and cellular functions. 

Table 3.9 demonstrates the top 5 canonical pathways associated with the 

differentially expressed genes in the PsA SF CD14+ samples compared to the PsA 

CD14+ blood samples. Three of the pathways overlap with the results of RA SF 

associated pathways once again emphasizing the similarities between the 

synovial fluid macrophages of both RA and PsA. The PsA SF specific canonical 

pathways included the complement system and intriguingly the pathogenesis of 

multiple sclerosis. The elements of this canonical pathway along with the PsA 

genes associated with it can be visualised in Figure 3.12. This diagram 

demonstrates that the PsA SF differentially expressed genes associated with the 

pathogenesis of multiple sclerosis pathway are all chemokines and emphasises 

the overlap in inflammatory gene expression between immune mediated 

diseases. 
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Table 3.10 outlines the diseases and disorders associated with the differentially 

expressed genes in PsA SF CD14+ cells compared to PsA PB CD14+ cells. As was 

observed with the RA SF gene set in Table 3.7 all of the diseases and disorders 

associated with immunological disease and the inflammatory response. 

Table 3.11 outlines the cellular functions associated with PsA SF CD14+ cell gene 

expression. There is considerable overlap between the cellular functions 

associated with PsA SF and RA SF CD14+ cells as four of the top five functions 

associated with RA are also associated with PsA. All of the five cellular functions 

would be expected to be differentially expressed in PsA SF CD14+ cells compared 

to the matched peripheral blood cells. In PsA, monocytes are known to migrate 

from the blood into the inflamed joint [254, 411] (demonstrated by the functions 

cellular movement and immune cell trafficking) where they interact with other 

cell types and illicit an immune response [412] (demonstrated by the functions 

cell-to-cell signalling and interactions and cell mediated immune response), the 

pro-inflammatory environment also enables the differentiation of these cells 

into activated macrophages (demonstrated by the function cellular growth and 

proliferation). Hence, the cellular functions being undertaken by the PsA SF 

CD14+ cells as they move from the blood into the synovium are the functions 

needed to transform them into an activated, pro-inflammatory immune cell 

capable of sustaining the chronic inflammation seen in psoriatic arthritis. 
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Table 3.9 Canonical pathways associated with the PsA PB vs PsA SF CD14
+
 comparison 

Canonical pathway p value (number of 

associated genes/total 

genes in pathway) 

LXR/RXR activation  

Complement system 

LPS/IL-1 mediated inhibition of RXR function 

Pathogenesis of multiple sclerosis 

Hepatic fibrosis/hepatic stellate cell activation 

8.52 x 10-6 (13/86) 

7.12 x 10-5 (8/35) 

2.09 x 10-4 (20/205) 

4.50 x 10-4 (4/9) 

1.67 x 10-3 (14/131) 

 

Figure 3.12 Pathogenesis of multiple sclerosis canonical pathway associated with the PsA 
PB vs PsA SF CD14+ cell comparison. 

Component of the pathway coloured red are genes that are upregulated in the PsA SF CD14+ 
cells. Four of the nine pathway components are upregulated in PsA SF macrophages. 
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Table 3.10 Diseases and disorders associated with the PsA PB vs PsA SF CD14
+
 

comparison 

 

Diseases and Disorders 

 

p value 

 

Inflammatory Disease 

Connective Tissue Disorder 

Skeletal and Muscular Disorders 

Immunological Disease 

Inflammatory Response 

 

2.58x10-15 – 2.21x10-3 

2.76x10-15 – 2.08x10-3 

2.76x10-15 – 1.70x10-3 

6.64x10-14 – 2.08x10-3 

4.83x10-10 – 2.21x10-3 

 

Table 3.11 Molecular and cellular functions associated with the PsA PB vs PsA SF CD14
+
 

comparison 

 

Molecular and Cellular Function 

 

p value 

 

Cellular Movement 

Cell-to-cell signalling and interaction 

Cellular Growth and Proliferation 

Immune Cell Trafficking 

Cell Mediated Immune Response 

 

2.98x10-20 – 2.31x10-3 

1.51x10-16 – 2.15x10-3 

3.41x10-13 – 2.21x10-3 

1.18x10-13 – 1.14x10-3 

7.86x10-9 – 2.15x10-3 
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3.6.2.5  Depicting RA and PsA differentially expressed genes 

Analysis of the foregoing results identified the interesting observation that the 

synovial fluid CD14+ cells of both the RA and PsA patients shared substantial 

similarity in gene expression. This observation was first identified by examining 

the PCA plot (Figure 3.8) depicting the SF samples of both diseases were co-

localised indicating a similarity in the overall transcriptomes of the two diseases. 

The subsequent IPA analysis then identified that many of the same canonical 

pathways and cellular functions appeared in both diseases therefore signifying a 

similarity in gene expression. Consequently, it was decided to further analyse 

the genes that had changed in the RA and PsA PB and SF samples as we 

hypothesized that there would be a subset of genes that changed in both 

diseases as well as subsets of genes that had only changed in RA or PsA. To 

answer this hypothesis a Venn diagram was constructed (Figure 3.13) using the 

following gene lists: 

All entities (shown in blue), which is the list of genes that had a positive signal 

on the GeneChip in any of the samples. This is the starting list of genes before 

any quality control analysis has been done.  

PsA PB vs PsA SF (shown in green), these are the differentially expressed genes 

between PsA PB and PsA SF. According to a paired T test and Benjamini and 

Hochberg MTC each gene has a corrected p value ≤ 0.05. 

RA PB vs RA SF (shown in red), this list represents the differentially expressed 

genes between RA PB and RA SF. The p values were calculated in the same 

manner as those for the PsA comparsion. 

Figure 3.13 indicates the Venn diagram, analysing the results proved our 

hypothesis to be correct as the diagram produced three gene lists: 

1. Genes that are specifically changed in only the RA PB vs RA SF analysis 

(5158 genes) 

2. Genes that are specifically changed only in the PsA PB vs PsA SF analysis 

(3928 genes) 
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3. Genes that are changed in both diseases (5605 genes) 

These gene lists also demonstrate that 58% (5605 of 9533 total genes) of the PsA 

SF CD14+ differentially expressed genes and 52% (5605 of 10763 total genes) of 

the RA SF CD14+ differentially expressed genes are present in both of the 

diseases. This indicates that there is a significant and substantial amount of 

overlap between the transcriptomes of the synovial fluid CD14+ cells of the two 

diseases. 

 

 

 

Figure 3.13 Venn diagram of the differentially expressed genes between RA PB and SF and 
between PsA PB and SF 
Gene lists were applied to the Venn diagram in order to distinguish genes that were changed in 
both RA and PsA and genes that were changed in only one of the diseases. The blue circle 
represents all of the genes which were expressed on the Affymetrix GeneChips. The red circle 
represents differentially expressed genes between RA PB and RA SF which had a p value ≤ 0.05. 
The green circle represents the differentially expressed genes between the PsA PB and PsA SF 
which had a p value ≤ 0.05. The regions where these three circles overlap represent genes which 
are expressed in both RA and PsA (5605 genes), in RA only (5158 genes) and in PsA only (3928 
genes). 
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Prior to any further analysis a fold change cut off of 4 was applied to the data. 

Since the fold change cut off in microarray data analysis is arbitrary we decided 

a high fold change cut off to specifically focus on the genes that were 

differentially expressed to a large extent. The fold change cut off gave the 

following three gene lists: 

1. Up- and downregulated genes that are changed in both diseases (873 

genes) 

2. Up- and downregulated genes that are changed in the PsA PB vs PsA SF  

analysis only (154 genes) 

3. Up- and downregulated genes that are changed in the RA PB vs RA SF 

analysis only (348 genes) 

IPA analysis was subsequently performed on these three gene lists to determine 

the canonical pathways associated with both diseases and each disease 

individually. Specifically the genes that were up- and down-regulated in the 

synovial fluid compared to the peripheral blood CD14+ cells of the diseases were 

analysed to try to determine what pathways were activated within the synovial 

fluid macrophages once they were exposed to the proinflammatory environment 

of the joint. The diseases and disorders analyses in the previous IPA comparisons 

were not very informative as they highlighted that the diseases associated with 

our gene lists were related to arthritic and inflammatory disorders. Therefore in 

this IPA analysis only the canonical pathways and molecular functions associated 

with the genes lists were investigated. 
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Table 3.12 shows the canonical pathways associated with the differentially 

expressed genes that were similarly expressed in both RA and PsA synovial fluid. 

These pathways are the same as those that were identified in the IPA analysis of 

the RA PB vs SF and PsA PB vs SF comparison (Table 3.6 and Table 3.9 

respectively). Table 3.13 demonstrates the molecular and cellular functions 

associated with the gene list which was differentially expressed in both RA and 

PsA synovial macrophages. These functions have previously been identified in 

the RA PB vs SF and the PsA PB vs SF comparisons and demonstrate the shared 

macrophage functions between the two diseases. 
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Table 3.14 identified the canonical pathways that are significantly associated 

with the subset of genes which are differentially expressed specifically in the 

synovial fluid CD14+ cells of the PsA patients but not the RA patients. It outlines 

pathways that would not usually be associated with macrophages such as B cell 

development and altered B and T cell signalling in RA. Investigating the 

differentially expressed genes from the gene list which are associated with these 

pathways identifies genes that are expressed in both macrophages and B cells/T 

cells such as CD40, MHC II and TLR3. This result is highlighted in Figure 3.14 

which demonstrates that the two genes within B cell development canonical 

pathway associated with the PsA only gene list, are MHC II and CD40 which are 

two genes that are known to be expressed in both B cell and macrophages. 

Table 3.15 outlines the molecular and cellular functions associated with the 

differentially expressed genes found specifically in the PsA SF CD14+ cells 

compared to the PsA PB CD14+ cells. Two of these functions, cellular movement 

and cell-to-cell signalling and interaction, were previously associated with the 

broad PsA PB vs SF CD14+ comparison, however the other three functions which 

consist of DNA replication, cell cycle and cell death are unique to the PsA SF 

CD14+ expressed genes and demonstrate the disease specific cellular functions. 

Table 3.16 outlines the canonical pathways significantly associated with the 

subset of genes differentially expressed specifically within the RA synovial fluid 

CD14+ cells. The top two pathways were previously associated with the 

differentially expressed genes in RA PB vs SF (see Table 3.6) however this 

analysis of the unique genes expressed in RA SF cells identifies three other 

pathways involving intracellular signalling within the macrophages including 

atherosclerotic, p38 and ERK5 signalling. Figure 3.15 demonstrates the ERK5 

canonical pathway and outlines the five genes from the RA gene list which were 

associated with the pathway. In this figure, genes highlighted in green were 

expressed at a higher level in the RA PB CD14+ cells compared to the SF cells 

whereas genes highlighted in red denote the genes which were expressed at a 

higher level in the RA SF CD14+ cells compared to RA PB CD14+ cells. Table 3.17 

outlines the molecular and cellular functions associated with the gene list 

expressed by RA SF CD14+ cells only. All of these functions were previously 

associated with the broad analysis of RA PB vs SF CD14+ apart from the function 
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of cell morphology. Hence cell morphology is a disease specific function and is 

only associated with RA SF CD14+ cells. 
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Table 3.12 Canonical pathways associated with the differentially expressed genes in BOTH 
RA and PsA synovial fluid 

 

Canonical Pathways expressed in BOTH RA and 
PsA synovial fluid CD14+ 

P value (number of associated 
genes/total number of genes 
in pathway) 

LXR/RXR activation 

LPS/IL-1 mediated inhibition of RXR function 

Complement system 

Hepatic fibrosis/Hepatic stellate cell activation 

Pathogenesis of Multiple Sclerosis  

3.28x10-6 (12/76) 

7.07x10-5 (18/197) 

1.00x10-4 (7/34) 

1.52x10-3 (12/128) 

3.11x10-3 (3/9) 

 

Table 3.13 Molecular and cellular functions associated with the differentially expressed 
genes in BOTH RA and PsA synovial fluid 

 

Molecular and cellular functions associated 
with BOTH RA and PsA synovial fluid CD14+ 

P value 

Cellular movement 

Cellular growth and proliferation 

Cell-to-cell signalling and interaction 

Cellular development 

Cellular function and maintenance  

9.80x10-17 – 1.15x10-2 

3.51x10-12 – 1.15x10-2 

1.09x10-11 – 1.15x10-2 

3.96x10-7 – 1.15x10-2 

5.32x10-7 – 1.15x10-2 
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Table 3.14 Canonical pathways associated with the differentially expressed genes in PsA 
only 

 

 
Canonical pathways expressed in PsA synovial fluid 

CD14+ only 

P Value (number of 
associated genes/total 

number of genes in 
pathway) 

B cell development  

Allograft rejection signalling  

Pathogenesis of Multiple Sclerosis 

Autoimmune Thyroid disease signalling  

Altered T and B cell signalling in Rheumatoid Arthritis 

8.08x10-4 (3/30) 

1.53x10-3 (3/51) 

1.75x10-3 (2/9) 

1.79x10-3 (3/53) 

2x10-3 (4/85) 
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Figure 3.14 B cell development canonical pathway associated with the genes expressed in 
PsA synovial fluid only 
The two genes highlighted within this pathway (MHC II, CD40) are expressed in the PsA only gene 
list and are associated with this pathway. These genes are highlighted in red which indicates that 
they were upregulated in the PsA SF compared to PsA PB. 

 

Table 3.15 Molecular and cellular functions associated with the differentially expressed 
genes in PsA only 

Molecular and cellular functions associated with 
PsA synovial fluid CD14+ only 

P value 

Cellular movement  

DNA replication, recombination and repair 

Cell-to-cell signalling and interaction 

Cell cycle 

Cell death 

3.34x10-7 – 2.16x10-2 

1.08x10-5 – 1.91x10-2 

1.74x10-5 – 2.16x10-2 

2.46x10-5 – 2.16x10-2 

3.47x10-5 – 2.16x10-2 
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Table 3.16 Canonical pathways associated with the differentially expressed genes in RA 
only 

 

Canonical pathways expressed in RA synovial 
fluid CD14+ only 

p value (number of 
associated genes/total 

number of genes in 
pathway) 

Heptatic fibrosis/hepatic stellate cell activation 

Role of mø/fibroblasts and endothelial cells in RA 

Atherosclerosis signalling 

p38 MAPK signalling 

ERK5 signalling 

5.27x10-5 (9/128) 

2.19x10-4 (13/329) 

2.95x10-4 (7/107) 

1.52x10-3 (6/96) 

1.54x10-3 (5/69) 
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Figure 3.15 ERK5 signalling canonical pathway associated with the genes expressed in RA 
synovial fluid only 
The highlighted genes are those that were differentially expressed only in the RA PB vs RA SF 
comparison. Genes highlighted in green indicate genes which were downregulated in RA SF 
CD14

+
 cells and therefore were expressed at a higher level in RA PB CD14

+
 cells. Genes which 

are highlighted in red demonstrate genes which were expressed at a higher level in RA SF CD14
+
 

cells compared to the RA PB CD14
+
 cells. 
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Table 3.17 Molecular and cellular functions associated with the differentially expressed 
genes in RA only 

Molecular and cellular functions associated with 
RA synovial fluid CD14+ only 

P value 

Cellular movement  

Cellular growth and proliferation 

Cellular development 

Cell-to-cell signalling and interaction 

Cell morphology 

1.09x10-14 – 4.09x10-3 

3.19x10-11 – 3.75x10-3 

1.38x10-9 – 4.12x10-3 

4.87x10-9 – 3.57x10-3 

9.64x10-8 – 4.90x10-3 
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3.6.2.6  Table of genes highly upregulated in both RA and PsA SF 
samples 

The IPA analysis was very informative in defining the groups of genes and the 

pathways involved in the RA and PsA synovial CD14+ cells however we also 

wanted to study individual genes and their expression within each disease to try 

and identify novel pathways of arthritis pathogenesis. The aim of the subsequent 

analysis therefore was to locate novel genes that were increased in the CD14+ SF 

samples of both diseases. The list of genes upregulated in both RA and PsA SF 

cells compared to their matched blood cells was obtained from the Venn 

diagram analysis and analysed in order of descending fold change. Starting from 

the most highly expressed genes in both RA and PsA synovial fluid literature 

searches were performed on genes to determine their function and expression. 

Unsurprisingly, many genes had been previously associated with or found to be 

highly expressed in either RA or PsA; however some novel genes were also found. 

Table 3.18 lists several of the genes that were analysed. 
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 Table 3.18 Gene upregulated in BOTH RA and PsA synovial fluid CD14+ cells 
 
Symbol Gene Name    Fold change  Fold change   Description of Gene 
       upregulation  upregulation 

in RA SF (p value) in PsA SF (p value) 
 
SPP1  Secreted phosphoprotein 1  1762 (3.8x10-4) 484 (3.2x10-4)  An extracellular matrix glycoprotein expressed  

(osteopontin)          by many inflammatory cells. It is up-regulated  
in response to injury and inflammation  [413]. 
Thrombin cleaved OPN is found in RA SF at a 

             30 times higher concentration compared to OA 
             SF [414]. 
 
CCL18  Chemokine ligand 18   326 (6.4x10-5)  375 (2.7x10-4)  A T cell attracting chemokine expressed by 
             monocytes/macrophages and DCs [415]. Levels  

of CCL18 in RA were higher than in OA in serum, 
synovial fluid, cartilage and synovial tissue. These 
levels were positively correlated with disease activity 
and rheumatoid factor levels [416, 417]. 

 
APOCI  Apolipoprotein C-I   482 (3.3x10-4)  344 (5.4x10-4)  Apo C-I along with Apo C-II are constituents of  

high-density lipoprotein (HDL) that slows the clearance 
of triglyceride-rich lipoproteins [418]. 

 
PLTP  Phospholipid transfer protein  98 (8.9x10-4)  246 (2.7x10-4)  PLTP facilitates the transfer of phospholipids  

from triglyceride-rich lipoproteins to HDL via an enzyme 
lipoprotein lipase (LPL) [419]. PLTP may play a role in 
atherosclerosis depending on its expression. Systemic 
over-expression of PLTP is associated with increased 
atherosclerosis susceptibility [420] whereas in an LDLr-

/- mouse model, which is susceptible to atherosclerosis, 
macrophage derived PTLP was found to be 
atheroprotective [421]. 
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AXL  AXL receptor tyrosine kinase  72 (0.002)  203 (2.4x10-4)  AXL subfamily is involved in cell adhesion,  
motility, angiogenesis and signal transduction. It may 
play a role in the invasiveness of cancers [422]. 

 
FN1  Fibronectin 1    263 (8.1x10-4)  172 (5.6x10-4)  A glycoprotein that has roles in adhesion of  

multiple cell types to the extracellular matrix (ECM), 
migration, proliferation, matrix remodelling and tissue 
repair [423]. Activated T cells and macrophages 
secrete fibronectin [424] and RA SF contains 2 to 3 
times more fibronectin than RA plasma [425]. 
Fibronectin is present in the SF, synovial membrane 
and plasma of PsA patients [426-428]. 
 

LGM  Legumain    167 (1.7x10-4)  164 (2.7x10-4)  A lysomal cysteine proteinase that is specific  
for the hydrolysis of asparaginyl bonds [429]. It can 
cleave and activate MMP2 [429]; α-thymosin [430]; 
fibronectin [431] and cathepsin B, H and L [432]. It is 
over-expressed in tumour associated macrophages in 
breast cancer tumours [433]; unstable atherosclerotic 
plaque macrophages [434]; and lesional atopic 
dermatitis and psoriasis [435]. 
 

AQP3  Aquaporin 3    62 (5.5x10-4)  30 (4.4x10-4)  A small hydrophobic membrane protein  
involved in the transport of water and glycerol across 
the cell membrane [436]. AQP3 is expressed in the 
basal layer of keratinocytes mammalian skin [437, 438]. 
AQP3 has been found in OA cartilage [439] and in 
PBMCs from RA patients where it was associated with 
DAS28-CRP levels [440]. 

 
NRP1  Neuropilin 1    11 (0.002)  40 (7.0x10-4)  Single pass transmembrane glycoprotein  

involved in cell motility and whose ligands include 
semaphorins and VEGF family members [356]. 
Neuropilin 1 is the VEGF 165 receptor in fibroblast like 
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synoviocytes in RA and is also expressed on infiltrating 
leukocytes [357]. Neuropilin 1 mRNA has also been 
detected in OA but not healthy cartilage samples [441].  

 
PLXNA1 Plexin A1    26 (4.9x10-4)  27 (9.9x10-4)  Single membrane spanning proteins which,  

along with neuropilins, are receptors for semaphorins 
[442]. Plexin A1 expression is increased during M-CSF 
differentiation [443] and it is thought to be important for 
T cell – DC interactions as plexin A1 deficient DCs 
Induced 50% less T cell proliferation than control DCs 
[444]. 

 
PDPN  Podoplanin    6 (0.02)  22 (0.001)  A mucin-type transmembrane glycoprotein that  

is involved in lymphatic vessel formation. It is a specific 
marker for lymphatic endothelium and is not expressed 
in blood vessels [445]. TNFα blockade therapy 
promotes the proliferation of lymphatic vessels, the 
inflamed synovium of RA and SpA patients receiving 
TNF blockade therapy stained for podoplanin [446]. 

 
 
 
 
 
 
 
 
 
 
 
 
 



180 

Table 3.18 demonstrates the subset of genes that were explored in silico in 

depth from the list of genes upregulated in SF CD14+ cells of both diseases. They 

were analysed based on their large fold change increased in the SF; this analysis 

was set up to try and discover novel genes that as yet had not been analysed in 

the context of RA and PsA arthritis. Several novel genes were found but after 

performing comprehensive literature searches two of these genes, an enzyme 

called legumain and a surface receptor called plexin A1, appeared to be 

candidate genes which may have particular relevance to the pathogenesis of the 

synovial macrophage in both PsA and RA. It was decided to concentrate further 

research on these two genes to try and discover why they were highly 

upregulated in the SF CD14+ cells of both RA and PsA. The following two chapters 

demonstrate the experimental work performed to try and understand the role of 

these genes within the synovial environment. 
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3.7 Discussion 

Microarrays have become a standard method to investigate differential disease 

states on the basis of genome-wide expression. Previously, there have been 

numerous microarray studies analysing the two diseases RA and PsA. However, 

these studies mainly focused on the gene expression of PBMCs or whole synovial 

tissue and as yet very few studies have measured the gene expression within 

individual immune cell types. Macrophages are an essential component of the 

inflammatory cell influx into the joint, being one of the major cell types 

producing the pro-inflammatory cytokines, chemokines and extracellular matrix 

components which all contribute to the destruction and degradation of the 

arthritic joint [258]. Since very little is known about the transcriptomic profile 

of this cell type within RA or PsA we decided to microarray chip analyse several 

different samples to try and elucidate which genes were being expressed in (1) 

diseased blood monocytes compared to healthy controls, and (2) synovial fluid 

macrophages compared to blood monocytes. 

Once all the patient and normal samples had been collected, prepared and 

individually hybridized onto Affymetrix GeneChips the results were subjected to 

quality control to detect any outliers. Quality control must take place during 

microarray analysis to ensure that: i) the data is suitable to answer the 

experimenter‘s question and ii) the data is suitable for subsequent analysis 

[447]. For the current analysis quality control consisted of examining the signal 

intensity of the GeneChips on a signal histogram which resulted in the detection 

of a GeneChip which had an abnormal signal intensity. This outlier was further 

confirmed by analysing the principle component analysis (PCA) plot which graphs 

the overall transcriptomic signature of each sample. Quality control problems 

can come from several sources; for example the hybridisation step can cause 

uneven fluorescence on the chip and differences in RNA quality can produce 

variable signal intensity and reports have shown that removing outlier GeneChips 

can improve the detection of differentially expressed genes [447], therefore the 

outlier sample identified in this study was removed from further analysis. 

Once the outlier was removed a PCA plot of the samples was setup to identify 

trends in the data since samples clustered within the same area of the PCA 

graph are considered to be genetically similar [354]. This analysis identified that 
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the blood CD14+ cells from both RA and PsA were genetically similar and also the 

synovial fluid CD14+ cells from both diseases had similar genetic profiles, which 

was a surprising result as previous studies had identified differential subsets of 

macrophages in RA compared to PsA [253, 255]. On the basis of the PCA plot and 

the original hypotheses we decided to perform two main comparisons: i) the 

differentially expressed genes in the patient blood CD14+ cells compared to 

those of the healthy blood CD14+ cells, and ii) the differentially expressed genes 

in the patient synovial fluid CD14+ compared to the matched blood CD14+ cells. 

3.7.1 Comparison 1: Healthy blood versus diseased blood  

The first data comparison to take place was analysing CD14+ cells isolated from 

the blood of diseased patients and healthy controls. Previously there have been 

several microarray analyses comparing peripheral blood mononuclear cells 

(PBMCs) or peripheral blood cells (PBCs) of healthy donors to those of patients 

with rheumatic diseases such as RA, PsA and JIA [325-327, 329, 330, 340, 341]. 

These studies have been very informative in distinguishing disease specific 

expression profiles such as the microarray analysis work by van der Pouw Krann 

et al which discovered a type I IFN subpopulation of RA patients who had a 

higher expression of type I IFN specific genes and a distinct biomolecular 

phenotype compared to healthy controls [329]. Batliwalla et al performed a 

similar microarray analysis comparing the PBCs of PsA patients to those of 

healthy controls and identified specific genes that could discriminate healthy 

controls from PsA patients, which they suggested could act as diagnostic 

biomarkers for PsA [340]. Consequently, microarray analysis comparing healthy 

and diseased peripheral blood cells have provided a wealth of information for 

rheumatic disease and identified many disease specific genes and biological 

processes.  

However, this type of analysis is not without problems and several analyses have 

reported skewing of the overall data and gene expression due to differing 

numbers of cell subtypes within the whole blood. Batliwalla et al came across 

this problem when examining the gene expression profiles of PBCs from RA 

patients to those isolated from healthy controls. They found 40% of the genes 

differentially upregulated in the RA cells were classed as ―monocyte enriched‖ 

which they later discovered was due to significantly higher numbers of 
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monocytes in the RA patient PBCs compared to those of healthy controls [326]. 

Thus whilst microarray analysis on whole blood cells is informative, difficulties 

can arise when trying to account for differences in the number of cell subtypes 

which can cause complications when trying to compare and verify work between 

groups.  

Whole blood microarray profiling may also be masking the individual contribution 

of cell subtypes to the disease therefore microarray analysis of individual cell 

types from diseased patients may be a useful strategy in understanding the 

genetic makeup of these cells. Recently, a small number of studies have been 

performed looking at the gene expression profiles of specific cell types in RA 

such as B cells [336], CD4+ T cells [337] and fibroblasts [334]. One study 

performed by Stuhlmuller et al has also analysed the gene expression of RA 

blood monocytes isolated during the course of leukapheresis treatment [338]. 

However, at present there have been no studies analysing the blood monocytes 

of RA and PsA compared to healthy donor blood monocytes. Given the 

importance of the monocyte/macrophage in the pathogenesis of RA and PsA we 

hypothesised that analysing the gene expression profile of this cell subset in 

comparison to healthy controls may elucidate disease specific genes and also 

discriminate differences in gene expression between the two diseases. 

Peripheral blood isolated CD14+ cells were analysed from 8 RA patients, 8 PsA 

patients and 5 healthy controls. When these samples were analysed on the PCA 

plot (Figure 3.4) we discovered the intriguing result that all of the peripheral 

blood samples were clustered together indicating a similar gene expression 

profile expressed by the healthy and diseased sample conditions. Since most of 

the previous microarray experiments of healthy vs diseased PBMCs have 

demonstrated a significant difference in the genetic profiles of the two 

conditions this result may suggest that the large genetic differences seen in 

these experiments are not the result of differences in the monocytes but may be 

due to large genetic differences between other cell subtypes. 

Of the 12 genes which are upregulated in RA blood monocytes compared to PsA 

monocytes three (NCAM1, PKP2 and LAMC1) are associated with cell adhesion 

and interaction. Neural cell adhesion molecule 1 (NCAM1) otherwise known as 

CD56 is usually expressed on cytotoxic cells such as natural killer (NK) cells and 
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NK-T cells. However, a small population of CD56+ monocytes have been 

identified in healthy individuals which can present antigen and produce a variety 

of monocyte cytokines in response to LPS stimulation [448]. CD56+ NK cells are 

enriched at the inflammatory sites in RA where they have been found to interact 

with monocytes and induce TNFα expression in a cell contact dependent manner 

[251, 449]. Conversely, CD56+ CD8+ CD28- T cells displayed strong anti-

inflammatory properties in a SCID mouse chimera model of human RA by 

interacting with APCs and causing the subsequent down-regulation of CD80 and 

CD86 [450]. NCAM1 is known to mediate cell-cell adhesion and the data above 

suggests that it plays a role in cell adhesion and interaction therefore we can 

hypothesise that NCAM1 expression in RA blood monocytes may be playing a role 

in cell-cell interaction.  

PKP2 and LAMC1 are two novel genes not previously associated with RA. 

Plakophilin 2 (PKP2) is normally found co-localised with adhesive junctions in 

cardiomyocytes and epithelial cells [368, 369] therefore its possible role in RA 

blood monocytes is unclear at present. LAMC1 (laminin gamma 1) is a subunit of 

all laminin molecules which are major constituents of basement membranes and, 

along with collagen, provide the basic scaffold to which other basement 

membrane proteins, such as proteoglycan, integrate [374]. Laminins have 

structural, adhesive and cell signalling functions and are able to modulate cell 

signalling behaviour and migration by interacting with cell surface integrin 

receptors [451]. Laminin has also previously been found to affect monocyte 

phagocytosis, and play a role in monocyte migration by inhibiting their adhesion 

to basement membranes thereby assisting their migration across the membrane 

and also by inducing spontaneous migration within the cells [452-455].  LAMC1 

has previously been detected in healthy blood monocytes, which was used to 

produce the molecule laminin-8, monocyte adhesion to laminin-8 also produced 

spontaneous and chemokines-induced migration [455]. Hence, the upregulation 

of LAMC1 in RA blood monocytes could help play a role in the migration of these 

cells across the basement membrane of the blood vessels thereby assisting their 

infiltration into the joint. 

Two genes which were upregulated in RA PB compared to PsA PB have previously 

been shown to be associated with RA. These genes are NRP1 (neuropilin-1) and 

IL7 (Interleukin 7). Neuropilin-1 is a receptor for vascular endothelial growth 
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factor (VEGF) and is expressed in the synovium of RA patients where it was 

specifically associated with the lining layer, infiltrating leukocytes and 

endothelial cells [357]. Recent work has shown that the interaction of 

neuropilin-1 with VEGF prevented apoptosis and was therefore crucial to 

rheumatoid synovial cell survival [357]. VEGF is detected in the serum of RA 

patients [456] and has been found to correlate with the development of 

radiographic damage and CRP level [457]. Since neuropilin-1 interaction with 

VEGF has been shown to prevent apoptosis in synoviocytes we hypothesis that 

neuropilin-1 is playing the same role in the blood monocytes and the 

upregulation of NRP1 in the RA monocytes could be a mechanism to prolong their 

survival.  

IL-7 has also previously been described in RA, serum levels of the cytokine are 

higher in RA patients compared to healthy controls and correlate with markers 

of inflammation [371]. IL-7+ cells correlate with the numbers of CD68+ cells in RA 

synovial lining and double staining has demonstrated that CD68+ cells are the 

major producer of IL-7 [371]. In RA blood and synovial fluid IL-7R is primarily 

expressed on T cells, with the highest expression on CD4+ cells. Numerous 

studies have focused on the role of IL-7 in RA, synovial fluid isolated CD4+ T cells 

are hyperresponsive to IL-7 and IL-7 enhanced cell-contact dependent activation 

of T cells and macrophages resulting in TNFα production [373]. IL-7 also 

enhances IFNγ and TNFα production from T cells [458]. Hence, the RA blood 

monocytes positive for the IL7 mRNA in this present study may be a source of the 

increased RA serum IL-7 levels and due to the cytokine‘s pro-inflammatory 

properties could be contributing to increased inflammation seen in these 

patients. 

Analysing the group of 12 genes that are upregulated in PsA PB monocytes 

compared to RA PB monocytes two groups of genes emerge, genes that are 

associated with response to stress and toxins (GSTM1, GSTM2 and EIF2AK3) and 

genes involved in transcription and its initiation (FOXP1, KLF9 and MED26). 

Glutathione S-transferase M1 and M2 (GSTM1 and GSTM2 respectively) are part of 

a broadly expressed family of enzymes which catalyse the conjugation of 

glutathione and are involved in the detoxification of cytotoxic carcinogens and 

metabolites. Glutathione is an intracellular antioxidant and is a prominent 

defence against reactive oxygen species, it acts as a radical quencher in cells by 
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removing superoxide anions and hydrogen peroxide and works to maintain the 

equilibrium between free radical production and antioxidant defence thereby 

reducing oxidative stress damage [383]. Oxidative stress has previously been 

shown to be implicated in the pathogenesis of RA and PsA where an excess of 

free radicals causes oxidation and subsequent damage to cartilage, extracellular 

matrix and DNA [459] and markers of oxidation have been found in the serum 

and synovial fluid of patients [460, 461]. Hassan et al measured the level of the 

antioxidant glutathione in RA serum compared to healthy controls and found it 

to be decreased whereas the levels of the enzyme glutathione S-transferase 

(GST) were increased, which the authors suggested could be a compensatory 

mechanism in the absence of its substrate glutathione [462]. Since our data has 

shown an increase in the levels of two GST proteins, GSTM1 and GSTM2, in PsA 

blood monocytes compared to RA blood monocytes these PsA patients may also 

be increasing their levels of these enzymes to due to the increased oxidative 

stress associated with this disease and the decrease in antioxidant glutathione. 

Of interest, polymorphisms in GST genes have been associated with RA 

susceptibility, these genes include GST Theta (GSTT1), GST Pi (GSTP1) and in 

particular one of our genes of interest GST Mu (GSTM1) [385]. Some of the 

polymorphisms also show an additive effect with smoking and patients carrying 

the polymorphisms who also smoke were found to be at an increased risk of 

disease with higher disease severity [463]. Despite no susceptibility being 

reported for PsA these findings highlight the potential importance of GST 

enzymes within the pathogenesis of psoriatic arthritis. 

Eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) otherwise 

known as PERK is an endoplasmic reticulum (ER) transmembrane protein kinase. 

The function of the ER is to correctly fold and process proteins which are 

intended for the secretory pathway before they are transported to the Golgi 

apparatus. If the secretory demand exceeds the folding capacity of the ER, the 

accumulated mis- or unfolded proteins, often called ER stress, activates the 

unfolded protein response (UPR). The UPR aims to enhance the processing, 

assembly and transport of secretory proteins. PERK is a UPR sensor, its role is to 

reduce global translation thereby allowing the cell to correct for the impaired 

protein folding resulting from the ER stress before allowing additional secretory 

proteins to be synthesised [402]. PERK does this by phosphorylating eIF2 which 
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prevents the release of the translation factor from the ribosomal machinery and 

thus reduces translation [464]. At present there have been no studies performed 

on the role of the UPR in psoriatic arthritis, however another 

spondyloarthropathy ankylosing spondylitis (AS) has shown associations between 

the molecule HLA-B27, which is present in up to 96% of patients [465], and the 

UPR. Research into AS in HLA-B27 transgenic rats has shown that HLA-B27 has 

the propensity to mis-fold resulting in ER stress and the activation of the UPR 

[466]. Consequently, the upregulation of the UPR sensor PERK in PsA compared 

to RA blood monocytes may be an indication that the PsA monocytes are more 

exposed to mediators of ER stress such as metabolic stress or mutant/over 

expression of secreted proteins as is seen in the spondyloarthropathy AS which 

shares some clinical features with PsA. 

As mentioned above there are also a group of genes upregulated in PsA blood 

monocytes which are associated with transcription initiation namely FOXP1, 

KFL9 and MED26. Forkhead box P1 (FOXP1) is a member of the FOX family of 

transcription factors and is involved in B cell development [390], thymocyte 

development [391] and monocyte differentiation in vitro and in vivo [392, 467]. 

FOXP1 must be downregulated by the monocyte in order for it to fully 

differentiate into a macrophage, because mice which are transgenic for FOXP1 

have reduced M-CSF receptor expression, impaired migratory capacity and 

diminished macrophage function such as cytokine production [392]. Since PsA 

monocytes expressed FOXP1 as 2.7 fold change increase compared to RA 

monocytes this could suggest that at the time of the samples being taken the RA 

monocytes were more differentiated towards a macrophage phenotype 

compared to the PsA monocytes. 

Kruppel-like factor 9 (KLF9) is a member of the Kruppel-like family (KLF) of zinc 

finger transcription factors. There are 25 KLFs proteins known at present, which 

bind to GC/GT boxes found in promoter regions and enhancer/silencer regions of 

multiple chromosomal genes [468]. KLF9 has been identified as having a 

stimulatory role in neuronal cell process formation and differentiation [469] and 

endometrial cell proliferation [470]. A recent study has also shown that mice 

lacking KLF9 have disregulated intestinal crypt cell proliferation and villus cell 

migration [471]. The exact role of KLF9 within PsA blood monocytes is unclear at 

present but it could play a role in monocyte migration into the diseased joint. 
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Mediator complex subunit 26 (MED26) is one of at least 30 subunits that make up 

the mediator complex. The mediator complex is a required part of 

transcriptional activation and serves as an adaptor between the transcription 

factors bound at the regulatory elements on the DNA and both RNA polymerase II 

and the general transcription factors [472]. At present the exact role of MED26 

within the mediator complex is unknown therefore it is difficult to speculate on 

the role of MED26 on PsA blood monocytes however it could indicate an increase 

in the amount of general transcription taking place within the monocytes. 

Database for annotation, visualisation and integrated discovery (DAVID) software 

was used in this analysis to determine if there is a significant enrichment of 

different biological processes within the two remaining gene lists: (1) 

differentially expressed genes between RA PB monocytes and healthy blood 

monocytes (2) differentially expressed genes between PsA PB monocytes and 

healthy blood monocytes.  

The DAVID analysis of the genes which were expressed at a higher level in RA 

blood compared to healthy blood monocytes (Figure 3.6) demonstrated two 

distinct groups of genes, response to stimulus (indicated by the three biological 

processes response to external stimulus, response to chemical stimulus and 

response to wounding) and cellular movement (indicated by the three biological 

processes chemotaxis, taxis and locomotion). The other biological processes 

associated with this RA gene list were negative regulation of cellular process and 

positive regulation of cellular process, which both contain many of the same 

genes. Since these biological processes conflict highly with each other they were 

not analysed further.  

The RA blood monocytes may be up-regulating genes associated with response to 

stimulus function due to the pro-inflammatory stimuli present in the serum of RA 

patients which are not found in healthy controls. The three biological process 

groups: response to stimulus, response to chemical stimulus and response to 

wounding contain many of the same genes including; TSP1 (thrombospondin-1), 

SOCS3 (suppressor of cytokine signalling 3) and CLU (clusterin). Thrombospondin-

1 has previously been associated with RA [473] and a recent study indicated that 

serum thrombospondin-1 levels were increased in RA patients compared to 

healthy controls and correlated with increased serum levels of pro-inflammatory 
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cytokines [474]. This study validates the data found in this experiment which 

indicates thrombospondin-1 is expressed at a higher level in RA PB monocytes 

compared to healthy controls and is significantly associated with biological 

processes involving response to environmental stimuli. 

Another gene associated with all three response to stimuli related biological 

processes is suppressor of cytokine signalling 3 (SOCS3). The SOCS family consists 

of SOCS1–SOCS7 and cytokine-inducible SH2 (CIS) and their role is to tightly 

regulate the activity of the JAK-STAT pathway [475]. They are not constitutively 

expressed in cells but their expression is induced by a range of cytokines via 

activated STATs [476]. Once expressed they inhibit the JAK-STAT pathway by 

several mechanisms such as prevention of STAT recruitment to activated 

cytokine receptors, induction of substrate degradation and suppression of JAK 

catalytic activity [477]. SOCS3 levels are significantly higher in RA PBMCs 

compared to healthy controls, which was found to be due to the upregulation of 

SOCS3 specifically in the RA blood monocytes [478]. SOCS3 overexpression is 

effective in preventing the development of murine collagen induced arthritis 

(CIA) [479] and SOCS3 knockout mice, which have a constitutive lack of SOCS3 in 

hematopoetic and endothelial cells, developed a more severe form of acute IL-1 

dependent inflammatory arthritis [480]. Taken together these results suggest 

that SOCS3 is a critical negative regulator in inflammatory arthritis. Our data 

indicate that SOCS3 is upregulated in RA PB compared to healthy control 

monocytes which was also found by Isomaki et al [478]. This upregulation is no 

doubt caused by the increased pro-inflammatory environment to which the RA 

monocytes are exposed to within the blood and may be a regulatory mechanism 

of the cells to try and reduce the overactive inflammatory response. However, 

SOCS expression is known to alter cellular responsiveness to cytokines therefore 

up-regulation of SOCS3 may be involved in disease progression by causing 

unresponsiveness to anti-inflammatory genes.  

Clusterin (CLU) was another gene associated with the response to stimulus 

processes outlined in the DAVID analysis. It was the most differentially expressed 

genes in the RA PB vs healthy blood monocyte comparison with a fold change 

increase in RA PB of 40 it also had the second highest p value of 1.80 x10-4. Since 

a multiple testing correction was unable to be used in the analysis a high p value 

indicates that this change is more likely to be a true result and not a false 
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positive. CLU is a secreted heterodimeric protein which was initially described as 

a complement inhibitor protein, where its role is to protect cells from the 

membrane attack complex (MAC) by binding to the MAC and rendering it 

physiologically inactive [481]. It has since been found to interact with a variety 

of molecules including lipids, amyloid proteins, and Igs. However, unravelling 

the function of CLU is complicated by its ability to interact with several 

molecules and its differential expression in many diseased states such as 

neurodegenerative disease and cancer [482, 483]. Recently it became apparent 

that different functions of CLU might depend on its final maturation and 

localisation, and whilst its predominant form is a secreted 80 kDa heterodimeric 

protein (sCLU) a nuclear form of the protein (nCLU) has also been reported 

which is thought to be responsible for its functions involving NF-κB and apoptosis 

[484]. This suggests that CLU can have different functions depending on whether 

it is expressed inside or outside of the cell. 

Santilli et al reported that the intracellular level of nCLU could be essential for 

regulation of NF-κB activity through its ability to stabilise inhibitors of NF-κB 

(IκB) [485]. Consequently, Devauchelle et al further demonstrated that nCLU 

interacts with phosphorylated IκB and prevented it from being degraded by the 

E3 ubiquitin ligase βTrCP and therefore blocking NF-κB activation [486]. This 

latter study was based on the result of a previous microarray experiment which 

demonstrated significantly lower amounts of CLU in the synovial membrane of 

RA patients compared to OA [320]. Subsequently it was concluded that the lack 

of CLU within the RA synovium would result in enhanced IκB degradation and 

therefore a greater activation status of NF-κB enabling pro-inflammatory gene 

expression. This finding was also supported by their observation that siRNA 

induced knockdown of CLU in cultured fibroblast-like synoviocytes (FLS) resulted 

in increased production of IL-8 and IL-6 cytokines which are regulated by NF-κB 

[486]. 

Numerous studies have analysed the role of CLU in the apoptosis of cancer cells 

but once again the function of CLU may depend on its form and localisation. 

sCLU inhibits apoptosis in human cancer cells by interfering with Bax activation 

in mitochondria [487] however, nCLU has been found to be pro-apoptotic as 

overexpression of nCLU resulted in cell death in both the presence or absence of 

ionizing radiation [488]. It is now accepted that a shift from the cell producing 
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sCLU to nCLU would result in cell death as nCLU has been found to induce cell 

death in many experimental conditions [489]. 

The finding that RA blood monocytes highly upregulate CLU compared to healthy 

blood monocytes is a significant one and has not been demonstrated previously. 

Of note the same pattern of upregulated CLU expression is also seen in PsA blood 

monocytes compared to healthy controls. Many reports conclude that CLU is an 

anti-inflammatory molecule in arthritis as CLU has been found at a reduced level 

in RA synovium compared to OA synovium [320] and CLU knockout mice induced 

with the K/BN model of arthritis developed arthritis faster which also lasted for 

longer compared to the control mice [490]. Hence the reasons for the large 

upregulation of CLU in RA PB (40 fold change increase) and PsA PB (20 fold 

change increase) compared to healthy controls are unknown. Since most reports 

demonstrate that CLU is anti-inflammatory the monocytes may be upregulating 

CLU as a counteractive mechanism as a result of the pro-inflammatory 

environment. Two of the most studied functions of CLU are inhibition of the NF-

κB pathway and induction of apoptosis. However, since several of the NF-κB 

target genes, such as IL-6, are consistently upregulated in the serum of RA 

patients and there have been no reports of increased apoptosis levels in PsA or 

RA PB monocytes, to the contrary the antiapoptotic molecule Mcl-1 has been 

found to be increased in CD14+ cells isolated from RA SF [491], this may suggest 

that CLU may have a different function within arthritic blood monocytes. CLU is 

a heterogenous molecule with many differing, often conflicting, functions and 

further work into the expression of this molecule within the cells and serum of 

RA and PsA patients is necessary. 

The second group of biological processes upregulated in RA PB monocytes 

compared to healthy controls were associated with cellular movement, indicated 

by the three biological processes chemotaxis, taxis and locomotion. This group 

of biological processes in significant for the pathogenesis of RA as one of the 

earliest events in RA is the ingress of leukocytes into the inflamed synovial 

tissue. In order for the cells to enter the synovium from the blood they must 

adhere to the endothelial cells and then migrate into the interstitial matrix 

which is aided by the upregulation of chemokines and chemokines receptor on 

the leukocytes and the endothelial cells [136]. Once again due to the 

heterogeneous nature of genes and their various functions many of the same 
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genes were significantly associated with all three chemotaxis associated 

biological processes which indicate the importance of cellular movement to the 

RA PB monocytes. Some of the genes associated with these biological processes 

are LAMC1, FPR1, FPR2 and PPBP. 

Laminin gamma 1 (LAMC1) has been described earlier on in this discussion as it 

was significantly upregulated in RA PB compared to PsA PB. It is a basement 

membrane molecule and may be helping the RA monocytes migration across the 

basement membrane of the blood vessels thereby allowing their subsequent 

infiltration into the joint. The two genes formyl peptide receptor 1 (FPR1) and 

formyl peptide receptor 2 (FPR2) were also both included in the chemotaxis, 

taxis and locomotion biological process groups. The protein product of FPR1 is 

known as formyl peptide receptor (FPR) and the protein product of FPR2 is 

denoted as formyl peptide receptor-like 1 (FPRL-1) which both belong to the 

seven transmembrane domain Gi-protein-coupled receptor (GPCR) family. Two 

of the main sources of ligands for this family of receptors are bacterial [492] and 

mitochondrial proteins [493] therefore the main function of these receptors is 

thought to be to mediate trafficking of phagocytes to sites of bacterial invasion, 

tissue damage or cell necrosis, although anti-inflammatory functions of some 

ligands has also been proposed [494]. FPR and FPRL-1 are detected on 

phagocytic leukocytes especially monocytes and neutrophils and activation of 

these receptors by their agonists results in Ca2+ mobilisation and cellular 

migration [495].  

There are numerous ligands for FPR and FPRL-1 and several of them have been 

previously found in the serum and synovial fluid of RA, one such ligand is soluble 

form of the urokinase-type plasminogen activator receptor (suPAR). suPAR is a 

ligand for FPRL-1 and has been demonstrated to be released by neutrophils 

isolated from the PB and SF of RA patients. Cell lines expressing FPRL-1 migrated 

towards the supernatants harvested from RA neutrophils thereby suggesting that 

neutrophils may be involved in the recruitment of FPRL-1 expressing cells into 

the diseased synovium [496]. Consequently, the upregulation of FPR and FPRL-1 

in RA blood monocytes in comparison to healthy control blood may be due to 

pro-inflammatory environment that the RA blood monocytes are exposed to 

which has been shown to contain the ligands for these receptors. Activation of 

FPR and FPRL-1 has been demonstrated to induce monocyte migration therefore 
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the upregulation of these genes may be a mechanism to induce monocyte 

recruitment into the synovial joint. 

Pro-platelet basic protein (PPBP) otherwise known as CXCL7 is the third gene 

associated with the cell migration group of biological processes upregulated in 

RA monocytes. It is translated as a 14 kDa propeptide called PPBP or leukocyte 

derived growth factor (LDGF) which can then be cleaved into several smaller 

forms called platelet basic protein (PBP), β-thromboglobulin (β-TG) connective 

tissue activating protein-3 (CTAP-III) and neutrophil activating peptide-2 (NAP-2) 

[497]. Peptidases such as cathepsin G, are known to play a role in the post-

transcriptional modifications of PPBP [498]. The derivatives of PPBP have 

amazing functional diversity: NAP-2 is a potent neutrophil chemoattractant 

[497]; PBP and CTAP-III have antimicrobial activity and LDGF itself is a fibroblast 

mitogen [497]. PBP was originally thought to be expressed only by cells of the 

megakaryocyte lineage but it has since been shown to be expressed by 

monocytes in response to various stimuli such as exposure to microbial 

components LPS or zymosan [499]. CTAP-III has previously been found in the 

blood circulation of RA patients, deposition of CTAP-III was found in the 

synovium and is associated with a partial processing to NAP-2 isoforms [500]. It is 

difficult to speculate on the importance of the upregulation of PPBP in RA blood 

monocytes due to its ability to be cleaved into several smaller forms which all 

have differing functions especially since cathepsin G, which can cleave PPBP, is 

present in RA serum [501]. Its main function may be to act as a neutrophil 

chemoattractant however further investigations are needed. 

The biological processes downregulated in RA PB compared to healthy control PB 

monocytes display three main functions: protein complex localisation 

(demonstrated by the two biological processes cellular protein complex 

localisation and protein complex localisation), selenocysteine incorporation 

(translational readthrough and selenocysteine incorporation) and negative 

regulation of cell movement (demonstrated by the three biological processes 

negative regulation of cell migration, locomotion and cell motion). A 

downregulation in protein complex localisation was indicated by the decrease in 

expression of SMAD7 (SMAD family member 7) and TMEM48 (transmembrane 

protein 48). SMAD7 is an inhibitor of TGF-β signalling, TGF-β is a multifunctional 

cytokine which regulates cell growth, adhesion and differentiation in a variety of 



194 

cell types and it is also a potent immunosuppressor. Therefore the RA PB 

monocytes downregulating SMAD7, the inhibitor of TGF-β, may be an 

autoregulatory mechanism to compensate for the increased inflammatory 

processes taking place. However SMAD7 had also been demonstrated to 

negatively regulate signalling intermediaries in pro-inflammatory signalling 

pathways such as NF-κB, in this pathway SMAD7 plays a role in increasing IκB 

expression [502]. Consequently the downregulation of SMAD7 by the RA PB 

monocytes may conversely enable NF-κB signalling and increase the production 

of pro-inflammatory cytokines therefore contributing to the increased pro-

inflammatory cytokines detected within RA serum. The other gene associated 

with protein complex localisation is TMEM48 that codes for the protein 

nucleoporin NDC1. This protein is required for nuclear pore complex assembly 

which are large multiprotein complexes that span the nuclear envelope forming 

a selective channel between the cytoplasm and the nucleus. There is very little 

information regarding nucleoporin NDC1 therefore at present the relevance of 

the downregulation of this gene in RA blood monocytes is unclear. 

Selenocysteine incorporation was also process downregulated by the RA PB 

monocytes indicated by the downregulation of the genes SEPSECS (Sep (O-

phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase) and TRSPAP1 (tRNA 

selenocyteine associated protein 1). Selenocysteine incorporation it is an 

essential process required for the production of at least 25 selenoproteins. 

Selenocysteine is comprised of the trace element selenium which is an 

antioxidant, deficiency of this element results in increase reactive oxygen 

species (ROS) [503]. Selenium levels are reduced in the serum and synovial fluid 

of RA patients compared to controls and this reduced selenium is associated with 

increased risk of the disease [504]. Hence, a reduction in the selenium levels in 

the serum of the RA patients could be the reason for the downregulation of 

genes associated with selenocysteine incorporation in RA PB monocytes. Of note, 

selenium deficiency in RAW 264.7 macrophages had significantly increased 

inducible nitric oxide synthase activity (iNOS) and subsequent nitric oxide (NO) 

production after stimulation with LPS [505] therefore a reduction in selenium 

and selenocysteine incorporation in RA PB monocytes may be one mechanism 

causing the increased iNOS and NO seen in RA [506]. 
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The third group of biological processes downregulated in RA PB monocytes was 

negative regulation of cell movement which again emphasises the importance of 

the process of chemotaxis and extravasation for the diseased monocytes. The 

downregulated RA genes associated with this biological process are SMAD7, 

which has been previously discussed, and VASH1 (vasohibin 1). Vasohibin 1 is a 

negative feedback regulator of angiogenesis which was originally identified in a 

microarray analysis designed to analyse the upregulated genes induced by 

vascular endothelial growth factor (VEGF) stimulation in endothelial cells [388]. 

Subsequent immunohistochemistry analysis has identified vasohibin 1 in the 

synovium of RA patients associated with synovial lining cells, endothelial cells 

and synovial fibroblasts [507]. At present there has been no vasohibin 1 

identified specifically in monocytes therefore our observation may represents a 

novel one. Inflammatory cytokines were shown to induce vasohibin 1 expression 

in RA synovial fibroblasts [507] and its expression is thought to help co-ordinate 

the formation of blood vessels and angiogenesis in the synovium. Consequently, 

the downregulation of vasohibin 1 in RA blood monocytes could be due to it not 

being required by the blood cells and may be upregulated again once the 

monocytes enter the inflamed synovium. Analysing the RA SF macrophage 

samples (which will be discussed thoroughly in the next comparison of this 

chapter) this hypothesis is correct. The RA PB CD14+ express a low level of 

vasohibin 1 compared to healthy controls and this expression is increased by a 

fold change of 13 in the patient matched RA SF macrophages. This result 

indicates that the monocytic cells downregulate their vasohibin 1 expression 

until they migrate into the synovial fluid of RA patients where its anti-angiogenic 

properties are needed to regulate and co-ordinate the formation of blood 

vessels.  

DAVID analysis was also performed on the differentially expressed genes 

between PsA PB monocytes and healthy blood monocytes. After removal of gene 

repeats in the list and genes with no designated function the list of 154 genes 

upregulated in PsA blood monocytes was reduced to 92 and the list of 129 genes 

downregulated in PsA blood monocytes was reduced to 66 genes. The two 

biological processes associated with the 92 upregulated genes in PsA were DNA 

packaging (demonstrated by the groups nucelosome assembly, chromatin 

assembly, protein-DNA complex assembly, DNA packaging and chromatin 
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assembly and disassembly) and chemotaxis (demonstrated by the groups 

chemotaxis and taxis). Again because genes can be part of several biological 

process groups each of the six biological process groups which had the shared 

general function of DNA packaging all had the same six genes from the PsA gene 

list associated with them. These genes were HIST1H2BK (histone cluster 1, 

H2bk), TSPYL5 (TSPY-like 5), HIST1H2AC (histone cluster 1, H2ac), HIST3H2A 

(histone cluster 3, H2a), NAP1L5 (nucleosome assembly protein 1-like 5) and a 

probe on the Affymetrix GeneChip which targets six histone cluster 1 genes. 

Surprisingly there is very little to no information on the function or role of any of 

these genes particularly the histone genes. The function of NAP1L5 is also 

unknown but its shows homology to nucleosome assembly protein 1 which is 

involved in the translocation of histones from the cytoplasm into the nucleus 

[508]. Given that the role of histones is to provide a core around which DNA is 

packaged to form a nucleosome, the basic unit of chromatin, it could be 

suggested that the PsA blood monocytes upregulating genes responsible for DNA 

packaging would therefore prevent any further gene transcription. However, the 

importance of this observation cannot be fully understood until the roles of the 

upregulated genes are discovered. 

The second group of biological processes associated with the genes upregulated 

in PsA PB monocytes had the general function of chemotaxis. This result is the 

same as that seen in the upregulated genes in RA PB monocytes, and the same 

genes such as FRP1, FRP2 and PPBP are upregulated in both cell subsets. Once 

again this highlights importance of chemotaxis to the arthritic blood monocyte 

as it is via chemotaxis that the cell will move into the diseased joint. The 

increased levels of chemokines and pro-inflammatory mediators detected in the 

serum of PsA patients compared to healthy controls may be one of the triggers 

causing the upregulation of chemotaxis related genes in the PsA monocytes [406, 

509]. 

The two main biological processes associated with the downregulated genes in 

the PsA blood monocytes have the main functions of cell morphogenesis 

(demonstrated by the biological processes cell projection morphogenesis, cell 

part morphogenesis, cell morphogenesis, cell projection organisation and 

cellular component organisation) and osteoclast differentiation (demonstrated 

by the biological processes regulation of osteoclast differentiation, regulation of 
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myeloid leukocyte differentiation and positive regulation of osteoclast 

differentiation). Downregulated PsA genes associated with the cell 

morphogenesis biological processes include DYNC1I2 (dynein, cytoplasmic 1, 

intermediate chain 2) and DST (dystonin). Dynein is an energy dependent motor 

protein found to be associated with microtubules which moves cellular cargo, 

such as organelles, vesicles and RNA, towards the minus end of the 

microtubules.  DYNC1I2 is one of two intermediate chains which are involved in 

intracelluar dynein cargo transport by binding to specific cargo although the 

mechanisms of this are not fully understood [510]. Dystonin is a cytoskeletal 

interacting protein which is known to play important roles in maintaining 

cytoarchitecture integrity in skin and in the neuromuscular system, it is thought 

to act as a ―linker‖ protein linking elements of the cytoskeleton to each other or 

to subcellular components such as adhesion structures [511]. Since there are no 

reports of disregulated cytoskeletal or microtubule transport in PsA the 

importance of these downregulated genes in PsA is yet to be understood. 

Downregulated genes associated with the osteoclast differentiation include GNAS 

(GNAS complex locus) and KLF10 (Kruppel-like factor 10). GNAS codes for the 

protein Gs α-subunit (Gsα) which is a subunit of G proteins. G proteins are 

membrane associated complexes that are primarily involved in signalling at the 

plasma membrane. Gsα plays a central role in receptor mediated signal 

transduction, coupling receptor activation with the production of cAMP [512]. It 

is well known that G-protein coupled receptors play a substantial role in arthritis 

as the signal transducing receptors for many molecules such as MMPs and 

chemokines [513, 514]. However, the GNAS complex locus has recently been 

identified as an incredibly complex gene which encodes multiple gene products 

through the use of alternative promoters and first exons [515] such as extra-

large isoform Gsα, which is thought to be localised to the Golgi apparatus, and 

NESP55 amongst others [512]. Consequently, this multiple gene product 

complexity renders it impossible to try and understand the significance of the 

down-regulation of this gene in PsA blood monocytes since we do not know 

which end product of the gene the PsA and healthy monocytes are translating 

and producing. 

KLF10 otherwise known as TGFβ early gene-1 (TIEG) is a zinc finger transcription 

factor which plays an important role in mediating the TGFβ Smad signalling 
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pathway. TIEG overexpression enhances Smad 4 activity and the induction of 

TGFβ target genes [516]. Overexpression of TIEG in an epithelial cell line 

induced apoptosis [517] and reduced cell proliferation in a human osteosarcoma 

cell line which was also seen in control cells stimulated with TGFβ [518]. Hence 

the PsA monocytes may be downregulating the TIEG gene in order to avoid TGFβ 

mediated apoptosis and suppression of cellular activation and proliferation. Of 

note, this mechanism is seen in cancer cells which are known to downregulate 

their TIEG expression at the protein and mRNA level in order to avoid cell death 

and reduced proliferation [519].  

In conclusion the diseased and healthy blood comparison has been very 

informative in defining the biological functions of the groups of genes up- or 

downregulated by each monocyte subset as well and allowing the investigation 

of individual genes. The PCA analysis performed on the entire set of microarray 

samples indicated the surprising result that the peripheral blood monocytes from 

healthy donors, RA patients and PsA patients all had a very similar genetic 

profile. In addition, performing statistical and fold change analyses on the data 

did result in the identification of just 24 genes which were differentially 

expressed between the RA and PsA blood monocytes. This low result 

demonstrates that within the blood the monocyte may not a cell type 

responsible for the differing clinical features seen in both diseases since this cell 

subset is showing a similar genetic profile in both diseases. 

The 12 genes which were upregulated in RA blood compared to PsA blood 

monocytes contained a group of genes which had roles in cell adhesion and 

interaction, such as the laminin subunit LAMC1, as well as genes that had been 

previously associated with RA including the IL-7 gene. This latter result is 

encouraging as the presence of differential expression in genes previously 

associated with RA validates this dataset. The 12 genes which were upregulated 

in PsA blood compared to RA blood monocytes contained two groups of genes, 

one group had functions involved in the response to stress and toxins such as 

EIF2AK3/PERK and the other group of genes were involved in transcription and 

its initiation. It would be interesting to perform validation experiments on some 

of these genes especially those which have not been previously associated with 

monocytes in inflammatory disease. Laminin and its receptor expression has 

previously been associated with synovial fibroblasts in RA [520] but we believe 
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this is the first time the expression of a laminin subunit (LAMC1) has been found 

in RA blood monocytes and further experiments are needed in order to elucidate 

the function of LAMC1 in particular whether the monocyte is producing and 

releasing laminin molecules. The upregulated expression of EIF2AK3/PERK in PsA 

monocytes is another novel and interesting finding since this molecule is 

involved in the ER stress induced unfolded protein response (UPR). The UPR has 

not previously been implicated in the pathogenesis of PsA but has been well 

researched in another spondyloarthropathy ankylosing spondylitis (AS) [466, 521] 

which shares some clinical features with PsA. Unfortunately time restrictions 

meant that no further experimental or validation assays were able to be 

performed on these genes. 

The RA PB vs healthy PB monocyte comparison was also very revealing in 

illustrating the overall functions of the differentially expressed genes. In 

comparison to healthy blood monocytes the RA PB cells showed an upregulation 

of genes involved in response to stimulus such as CLU and genes involved in 

cellular movement such as CXCL7. These two groups of genes are not surprising 

given that it is well known that the RA serum contains many pro-inflammatory 

mediators compared to healthy control serum which will be partly responsible 

for the upregulation of the response to stimulus genes. It is also known that the 

monocyte cells in RA need to undergo chemotaxis and migration in order to 

transmigrate from the blood vessels into the synovial joint where they 

accumulate and play a role in the damage and destruction of the joint.  

The downregulated genes in RA PB had functions in complex localisation, 

selanocysteine incorporation and negative regulation of cell movement. The 

down-regulation of two genes involved in selanocysteine incorporation was 

interesting as selenium, the main component of selanocysteine, is decreased in 

the serum and synovial fluid of RA patients but also selenium deficiency has 

been shown to induce increased iNOS and subsequent nitric oxide (NO) 

production in RAW 264.7 macrophages. Therefore a lack of serum selenium may 

directly be contributing to the increased NO and NO-induced damage seen in RA. 

Down-regulation of genes associated with the negative regulation of cell 

movement also reinforces the importance of the ability of the RA monocytes to 

undergo chemotaxis and cell migration. 
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The upregulated genes in PsA blood monocytes compared to healthy blood 

monocytes had roles in DNA packaging and chemotaxis. An upregulation of genes 

associated with DNA packaging could suggest that the PsA monocytes are 

reducing their overall transcription levels by packing their DNA into nucleosomes 

and chromatin. However, since there is little to no information on any of the six 

upregulated genes associated with the DNA packaging function it is difficult to 

speculate further on the reasons for their increased expression compared to 

healthy controls. The upregulated genes associated with chemotaxis are the 

same genes upregulated in RA PB monocytes such as CXCL7, FPR1 and FPR2. The 

increased expression of these genes in PsA blood compared to healthy control 

demonstrates the importance of the arthritis specific requirement for the 

monocyte to migrate out of the blood and into the diseased joint. The 

downregulated genes in PsA monocytes identified an interesting transcription 

factor TIEG which is known to induce apoptosis; therefore the PsA monocytes 

may be down-regulating molecules like TIEG in order to maintain and prolong 

cell survival as has been seen in cancer cells. 

Due to time restrictions only 5 healthy control blood monocyte samples were 

obtained which mainly were age- and sex-matched to the PsA patients. It is 

recognised that obtaining additional healthy donor samples which were age-

matched to the RA patients would have been advantageous and allowed us to 

investigate the age specific genes that may have changed in the monocytes. 

Nevertheless, the analysis performed with the 5 healthy donors has been very 

informative in identifying the differentially regulated genes in the monocytes 

including novel genes not previously associated with inflammatory arthritis. This 

analysis has also identified that the blood monocytes in RA and PsA have very 

similar genetic profiles which was also previously unknown. 
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3.7.2 Comparison 2: RA and PsA blood versus matched synovial 
fluid 

Given the important role of synovial macrophages in the pathogenesis of both RA 

and PsA one important question to be answered by this microarray analysis was 

what changes occur in the arthritic monocyte as it exits the blood and enters the 

synovium? This is an important question as it aims to identify not only the 

monocyte differentiation markers as it changes from a monocyte into an 

inflammatory macrophage but it will also identify the inflammatory genes that 

are upregulated once the monocyte is exposed to the pro-inflammatory synovial 

environment.  

In order to answer this question paired T tests were performed between the 

matched RA blood and synovial fluid samples and a separate set of paired T tests 

were performed between the matched PsA blood and synovial fluid samples in 

order to determine the up- and down-regulated genes in the synovial 

macrophages compared to the blood monocytes. Due to the substantial amount 

of differentially expressed genes between the PB and SF of each disease (10763 

in RA and 9533 in PsA) we applied a fold change cut off of 4 to the data since 

fold change values in microarray analysis are arbitrary and we were interested in 

genes with a high fold change difference between the blood and the SF. 

Ingenuity pathway analysis (IPA) was then used to determine the canonical 

pathways and molecular functions significantly associated with the differentially 

expressed genes in the RA SF compared RA PB CD14+ cells and those significantly 

associated with the differentially expressed gene in the PsA SF compared to the 

PB CD14+.  

3.7.2.1  RA PB CD14+ versus RA SF CD14+ 

Table 3.6 shows the top 5 canonical pathways significantly associated with the 

differentially expressed genes in the RA SF macrophages compared to the RA PB 

monocytes. The most significantly associated pathway is LXR/RXR activation 

pathway. LXR is a nuclear receptor ligand-activated transcription factor, it forms 

heterodimers with RXR before binding to the DNA sequences of target genes 

[522]. Analysing the list of RA SF differentially expressed genes associated with 

this pathway demonstrates the novel finding that one of the LXR isoforms LXRα 

which has been previously been shown to be expressed in 
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monocytes/macrophages [523] is upregulated in RA SF macrophages compared to 

RA PB. Other RA SF upregulated genes associated with this pathway include the 

a range of LXR target genes such as ABCA1, ABCG1, lipoprotein lipase (LPL), 

ApoE, ApoC1 and ApoC2 which are all involved in reverse cholesterol transport 

and cholesterol efflux [524, 525]. This process ensures the efflux of cholesterol 

from peripheral cells and its transport to the liver for metabolism and biliary 

excretion hence the LXR activation pathway is considered to be central in 

maintaining cholesterol homeostasis and is considered protective against 

atheroscleosis.  

However, LXR agonism has also been considered pro-inflammatory since LPS-

stimulated human macrophages treated with two synthetic LXR agonists 

increased TNFα expression though the ability of LXRs to increase Toll-like 

receptor 4 (TLR4) expression; this agonism also increased reactive oxygen 

species generation from the macrophages [526]. LXR agonism has also been 

demonstrated by our group to exacerbate articular damage in a murine model of 

arthritis suggesting LXRs have a pro-inflammatory role in arthritis [527]. In this 

study, LXR agonism induced a dose-dependent enhancement of the prevalence, 

incidence and severity of the collagen induced arthritis (CIA) mouse model. Ex 

vivo culture of RA PB derived monocytes which were LPS stimulated and treated 

with two LXR agonists showed an increase in IL-6 and TNFα production. 

Macrophages stimulated in the in vitro inflammatory model of arthritis by direct 

cell contact with Tcks also demonstrated an increase in pro-inflammatory 

cytokine and chemokine production in response to LXR agonism. Low density 

lipoprotein (LDL) is a natural agonists for LXR activation and has been found in 

the synovial fluid of RA patients [528] therefore the up-regulation of the LXR 

pathway in RA SF macrophages compared to PB monocytes along with the 

presence of its agonist in the synovial fluid indicates that this pathway may be 

promoting articular destruction through inducing the increased production of 

pro-inflammatory cytokines and chemokines from the synovial macrophages. 

However more work on the role of LXR activation in RA SF macrophages is 

required to test this hypothesis. 

The hepatic stellate cell activation canonical pathway is the second most 

significant pathway differentially expressed in RA SF CD14+ cells. This is due to 

the overlap of several MMPs, chemokines, cytokines and growth factors that are 
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implicated in both hepatic stellate activation and synovial macrophage 

activation. For example platelet-derived growth factor alpha polypeptide 

(PDGFA) and PDGFB were both upregulated in the RA SF macrophages and these 

genes have also been implicated in hepatic stellate cell induced hepatic fibrosis 

[529, 530]. PDGF is a potent mitogen, chemoattractant and angiogenesis 

promoter [531] and the level of this growth factor is increased in RA synovial 

tissue and fluid [532, 533]. PDGF has been implicated in RA through its function 

as a growth factor for fibroblast-like synoviocytes (FLS) [532, 533]. It has 

recently been shown that in combination with TGF-β, PDGF augmented TNFα or 

IL-1β induced MMP3, IL-6, IL-8 and macrophage inflammatory protein 1 alpha 

(MIP1α) secretion by FLS suggesting PDGF induces a more pro-inflammatory, 

aggressive phenotype in the FLS in response to TNFα [534]. Consequently, the 

increased expression and possible secretion of PDGFA and PDGFB by RA SF 

macrophages may be contributing to articular damage by activating synovial FLS.  

The remaining genes differentially expressed in RA SF macrophages which were 

associated with the hepatic stellate cell activation canonical pathway consist of 

many inflammatory cytokines, chemokines and growth factors which have 

previously been connected with RA. These genes include FN1 (fibronectin) which 

is detected in the synovial fluid of RA and can induce MMP expression from 

fibroblasts [425]; the gelatinases MMP2 and MM9 (matrix metalloproteinase 2 and 

9) which are both upregulated in the synovium of RA patients [535] and their 

levels are associated with increased joint erosions [536]; CCL2 (monocyte 

chemoattractant protein 1, MCP1) is also increased in the synovium and is a 

potent chemoattractant for immune cells [537]; and CSF1 (macrophage colony 

stimulation factor, M-CSF). M-CSF is a growth factor which controls the 

proliferation, survival and differentiation of mononuclear phagocytes, it is 

normally expressed by the tissue environment however macrophages can also 

produce and secrete M-CSF if the tissue cells are unable to supply large amounts 

of the growth factor [538]. In conclusion, the association of the hepatic stellate 

cell activation pathway with the genes differentially expressed in the RA SF 

macrophages compared to RA PB monocytes has highlighted the upregulation of 

several important inflammatory genes discussed above. However not only do the 

SF macrophages up-regulate genes which will contribute to the pro-inflammatory 

environment but they also demonstrate increased expression of the macrophage 
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differentiation and survival factor M-CSF which could help differentiate 

monocytes infiltrating into the joint into pro-inflammatory macrophages.  

The third canonical pathway is defined as the role of macrophages, fibroblasts 

and endothelial cells in RA. The association of this canonical pathway validates 

the genes that are differentially expressed by the RA SF macrophages as many of 

these genes are known to be expressed in the RA synovium. This pathway 

contains many of the upregulated genes which were associated with the hepatic 

stellate cell activation pathway such as fibronectin, MMP2, MMP9 and the two 

PDGFs as well as other genes such as TRAF5 (TNF receptor-associated factor 5), 

WNT5A (wingless type MMTV integration site family member 5A) and FZD7 

(frizzled homolg 7). 

TRAFs are cytoplasmic adaptor proteins for the TNF/IL-1/TLR receptor 

superfamily, they are responsible for transducing extracellular signals from cell 

surface receptors and activating intracellular signalling cascades such as the NF-

κB and the JNK signalling pathways [539]. The RA SF macrophages demonstrated 

a 5 fold increase in TRAF5 expression compared to matched blood monocytes 

and interestingly a SNP upstream of TRAF5 has been identified as an RA 

susceptibility gene [540]. TRAF5 interacts with lymphotoxin β receptor (LTβR) 

and CD40 and has shown functional redundancy with TRAF2 [541].  Both TRAF2 

and TRAF5 can mediate TNF-induced NF-κB activation and protection from cell 

death [539]. Hence, an upregulation of TRAF5 in the RA SF macrophage may 

imply that it plays a proinflammatory role such as increased cellular activation 

and transcription of other proinflammatory cytokines. However, a recent study 

into the role of macrophage TRAF5 in atherosclerosis found it to be anti-

inflammatory as murine monocytes deficient for TRAF5 demonstrated an 

upregulation of cell adhesion molecules implicated in cell adhesion and rolling 

and also enhanced migration and chemokine production [542]. Since macrophage 

TRAF5 has not been examined in RA at present further studies are required to 

distinguish whether TRAF5 plays a pro- or anti-inflammatory role in this disease. 

WNT5A was also upregulated in the RA SF macrophages compared to the blood 

monocytes, Wnt-5a is one of 19 Wnt proteins which are a family of secreted 

lipid-modified glycoproteins that display a highly regulated pattern of expression 

and have distinct roles during development and tissue homeostasis. The 
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importance of Wnt-5a in various developmental pathways is demonstrated in 

Wnt-5a knockout mice which die at birth and display many defective features 

such as facial abnormalities, truncated bodies and shortened limbs [543]. Wnt 

signalling pathways are activated by the binding of secreted Wnt to the cystolic 

domain of a family of transmembrane receptors called the Frizzled receptor 

proteins (Fz) [544]. The binding of Wnts to their receptors determines the type 

of downstream signalling pathway either canonical, which involves the 

transcriptional activation of β-catenin, or non-canonical which does not involve 

β-catenin. Wnt-5a is classed as a non-canoical Wnt which are generally 

considered to control morphogenic movement. In RA Wnt-5a has been shown to 

be upregulated in synovial fibroblasts where it binds to frizzled 5 (Fz5), and the 

downregulation of Wnt-5A or Fz5 both resulted in inhibition of synovial fibroblast 

activation [545]. 

Wnt-5a has also been demonstrated to be upregulated in human macrophages 

stimulated with bacterial pathogens in vitro as it was demonstrated that 

activation of TLR4 signalling cascade induced Wnt-5a expression. These 

macrophages also expressed Fz5 and it was demonstrated that Wnt-5a and Fz5 

regulated the microbially induced IL-12 release from these cells [546]. Wnt-5a 

has been demonstrated to be expressed in macrophages of murine and human 

atherosclerotic plaques associated with TLR4 [547] and has also been 

demonstrated to be critical for invasion and MMP7 and TNFα release from 

tumour associated macrophages which were found to be positive for Wnt-5a 

[548]. Consequently the upregulation of Wnt-5a in the RA SF macrophages may 

be as a result of increased TLR4 signalling since TLR4 ligands are present in the 

RA synovium [549]. Both synovial fibroblasts and macrophages have been 

demonstrated to express a Wnt-5a receptor Fz5 therefore the secretion of Wnt-

5a by synovial macrophages could be acting in an autocrine or paracrine manner 

by stimulating surrounding cells. This activation by Wnt-5a could cause 

inflammatory cytokine and proteinase secretion by synovial fibroblasts or 

macrophages thereby contributing to the synovial joint damage. 

FZD7 (frizzled homolog 7) was another gene upregulated by the RA SF 

macrophages which was associated with role of macrophages and fibroblasts in 

RA canonical pathway. As mentioned above frizzled molecules are the cell 

surface receptors for Wnt proteins and the subsequent binding of these two 
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molecules activates the Wnt signalling pathways. Frizzled 7 (Fz7) has previously 

been detected in RA synovial tissue [550] and a recent paper has demonstrated 

the Fz7 can associate with Ror2 to form a receptor complex to mediate Wnt-5a 

signalling and activation of the JNK signalling pathway [551]. Put together this 

novel data demonstrates the upregulation of a Wnt protein (Wnt-5a) and part of 

its receptor complex (Fz7) specifically in RA synovial macrophages, further work 

is required to elucidate the importance of these molecules in RA pathogenesis 

however they could play a role in the invasive potential, inflammatory mediator 

secretion and sustained activation of these cells. 

The differentially associated genes with the role of macrophages and fibroblasts 

in RA canonical pathway was also associated with genes that were 

downregulated in RA SF macrophages compared to their matched PB monocytes. 

Two of these downregulated RA SF macrophage genes were TLR5 and TLR7. The 

activation of TLRs by pathogen-associated molecular patterns (PAMPs) alters the 

host to presence of infection and triggers a variety of defense mechanisms, such 

as the production of pro-inflammatory cytokines and chemokines, depending on 

the receptor and cell type. Several TLRs have been detected in RA synovium as 

well as candidate endogenous TLR ligands [552] therefore the perpetual 

activation of TLR signalling has been identified as a potential mechanism for the 

maintenance of the chronic inflammation seen in RA. TLR5 has not previously 

been identified in the synovium of RA however stimulation of FLS from RA and 

JIA patients with the TLR5 ligand flagellin did induce IL-6, MMP1 and MMP3 

production suggesting that these FLS expressed TLR5 [553]. 

TLR7 has been demonstrated to be expressed within the RA synovium [554]. 

However, when DCs isolated from RA patients were stimulated with TLR7 ligands 

the level of cytokine production was similar between DCs from RA and those 

from healthy patients. This was in marked contrast to TLR2 or TLR4 stimulation 

which induces a much higher production of inflammatory mediators for RA DCs 

compared to healthy controls [554]. This result suggests that TLR7 may not as 

essential to the perpetuation of arthritis as TLR2 and TLR4, which is further 

verified by the observation that TLR2 and TLR4 deficient mice do not develop 

serum transfer or streptococcal cell wall-induced arthritis [555, 556]. 

Consequently, the downregulation of TLR5 and TLR7 by the RA SF macrophages 



207 

may be due to these receptors not being as vital in the pathogenesis of RA as 

some of the other Toll-like receptor members such as TLR2/TLR4. 

The LPS/IL-1 mediated inhibition of RXR was the fourth most significant 

canonical pathway associated with the RA SF differentially expressed genes. The 

associated genes include many of the same genes which were included in the 

LXR activation pathway such as APOC1, APOC2 and APOE. All three of these 

apolipoprotein molecules are constituents of the anti-inflammatory and athero-

protective high density lipoprotein (HDL) [418]. ApoE and another apolipoprotein 

ApoA1 have been detected at an increased level in the synovial fluid of RA 

patients compared to serum levels and total cholesterol was also at an increased 

level in the synovial fluid [557]. Accumulation of HDL particles in the inflamed 

joint has anti-inflammatory effects since HDL can block the pro-inflammatory 

cytokine production from monocytes induced by T cell contact through binding 

to the T cell surface activating factors [558]. However, it has also been proposed 

that the accumulation of HDL within the synovium of RA patients and thereby 

reducing the amount of circulating HDL may contribute to the increased 

cardiovascular risk seen in these patients [559]. Consequently, the upregulation 

of these genes in the RA SF macrophages as well as the lipid transporter ABCA1 

needed to assemble the HDL particles may be as a result of the activation of the 

LXR/RXR pathway, as indicated by the canonical pathway analysis, or it may be 

as a result of the macrophage trying to dampen down the immune response by 

producing anti-inflammatory HDL particles which will inhibit the local production 

of inflammatory cytokines.  

The presence of the LPS/IL-1 mediated inhibition of RXR canonical pathway also 

indicates that the LPS pathway may play a role in the RA SF CD14+. LPS is one of 

the ligands for TLR4 which is a protein expressed on the surface of immune cells 

such as monocytes and its activation triggers signalling pathways which in turn 

lead to the induction of inflammatory cytokines such as TNF-α [560]. TLR4 has 

been detected in the RA synovium [549] and a TLR4 agonist has shown 

therapeutic effect in two murine models of arthritis [561] indicating that it may 

play a role in pathogenesis. Therefore the association of this canonical pathway 

with RA SF CD14+ is unsurprising since many TLR4 agonists such as hyaluronan, 

fibrinogen and heat shock proteins have been detected in the RA synovium. 
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The coagulation system is the fifth canonical pathway that is significantly 

associated with the differentially expressed genes in the RA SF CD14+ cells due 

to the upregulation of genes such as coagulation factors and plasminogen 

activators such as UPA (plasminogen activator, urokinase). UPA can convert 

plasminogen into the less specific plasmin which has various substrates including 

fibrin, cytokines and proMMPs, and also has a role in matrix degradation [562]. It 

has been demonstrated that systemic inflammation in arthritis can activate the 

coagulation cascade [563]. Levels of UPA are increased in RA [564] and induction 

of CIA in UPA-/- mice resulted in a mild disease indicating a pro-inflammatory 

role for UPA in RA [565]. Therefore these results indicate that RA synovial fluid 

macrophages are expressing genes which are contributing to the increased 

coagulation cascade seen in RA as well as the increased matrix degradation and 

inflammation.  

The diseases and disorders associated with the differentially expressed genes in 

RA SF macrophages compared to their matched PB monocytes are all related to 

rheumatoid arthritis such as inflammatory disease and skeletal and muscular 

disorders. The presence of these diseases significantly associated with the 

differentially expressed gene list validates this dataset as they are all related to 

our disease of interest. 

The top 5 cellular functions significantly overrepresented in the RA SF gene list 

comprise functions which we would expect to upregulated in the monocytes 

once they move from the blood into the synovium. This is exemplified by two of 

the cellular functions being cellular movement and immune cell trafficking 

which would be expected to be upregulated as a result of the CD14+ 

transendothelial migration from the blood vessels into the synovium [258, 407]. 

Transendothelial migration is the mechanism via which leukocytes infiltrate into 

the RA joint and several adhesion molecules which assist in this process have 

been identified in RA [179]. Another cellular functions significantly associated 

with the up- and down-regulated genes in the RA SF gene list was cell-to-cell 

signalling and interaction which is unsurprising since it has been well 

documented that macrophages within the synovial compartment are known to 

participate in cellular interactions with several cell types such as fibroblasts 

[249], T cells [269, 314, 408], endothelial cells [407] and natural killer (NK) cells 

[251]. The final two cellular functions associated with RA SF CD14+ compared to 
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PB cells are cellular growth and proliferation and cellular development which is 

logical due to the maturation that the CD14+ cells undergo into fully activated 

macrophages once they are within the synovium and exposed to the pro-

inflammatory and hypoxic environment [409, 410]. An upregulation of genes such 

as CSF1 (M-CSF) which was previously discussed will be contributing to the 

maturation of the blood monocytes into synovial macrophages. 

In conclusion the RA PB versus RA SF analysis to determine the effect of the 

migration of the monocytes from the blood into the synovial fluid has been very 

informative. The IPA analysis demonstrated the association of the differentially 

expressed genes with several pathways such as the LXR/RXR activation pathway. 

This pathway could be contributing towards an anti-inflammatory effect, though 

the production of HDL, or a pro-inflammatory effect since research by our group 

has demonstrated LXR activation is pro-inflammatory in a murine arthritis model 

[527]. Further analysis of the IPA canonical pathways also demonstrated the 

upregulation of novel receptor ligand complexes in the RA SF macrophages such 

as Fz7 and Wnt-5a which warrant further investigation. The cellular and 

molecular functions associated with the RA SF gene list consisted of cellular 

migration, cell-to-cell interaction and cellular development. This result 

demonstrates that once the RA PB monocytes migrate into the synovial 

compartment they are expressing transcripts of genes involved in cellular 

interactions, which are know to promote the production of pro-inflammatory 

mediators, and also genes associated with monocyte maturation into a fully 

functional synovial macrophage. 
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3.7.2.2  PsA PB CD14+ versus PsA SF CD14+ 

The IPA analysis of the differentially expressed genes in the PsA SF CD14+ cells 

compared to the PB CD14+ cells resulted in remarkably similar results to those 

obtained from the IPA analysis of the RA SF gene list. Three of the five 

significantly associated canonical pathways were the same pathways found 

associated with RA SF macrophages: LXR/RXR activation, LPS/IL-1 mediated 

inhibition of RXR function and hepatic stellate cell activation. Many of the 

individual genes associated with these pathways were the same in the PsA and 

RA gene lists indicating similarities between the two types of arthritic synovial 

macrophages. LXR activation has not previously been demonstrated to be 

associated with PsA therefore this finding is a novel one. The LXR activation 

pathway could be playing one of two roles; it could be an anti-inflammatory 

pathway in PsA by producing components of HDL which prevents cytokine 

secretion from monocytes [558] or it is more likely to be playing a pro-

inflammatory role in PsA. As discussed in the previous section LXR agonism in 

LPS-stimulated monocytes resulted in increased TNFα production and LXR 

agonism also exacerbates a murine model of arthritis possibly through the 

increased cytokine and chemokine production [526, 527]. A natural agonist of 

the LXR activation pathway is LDL, which has been detected in the plasma of PsA 

patients therefore indicating a mechanism for the LXR activation [566]. The 

association of the LPS/IL-1 mediated inhibition of RXR pathway with the 

differentially expressed PsA SF macrophage genes is due to the upregulation of 

the same apoplipoproteins and lipid transporter genes which were upregulated 

in the RA SF macrophages including APOE, APOC1, APOC2, ABCA1 and ABCG1. As 

discussed for the RA SF CD14+ cells the upregulation of these genes would result 

in an increase in HDL which prevents monocyte cytokine secretion and therefore 

mediate an anti-inflammatory effect from the PsA SF macrophage. 

The association of the hepatic stellate cell activation canonical pathway with 

the PsA gene list is due the upregulation of growth factors, MMPs and 

chemokines which are also involved in hepatic stellate cell activation. It includes 

genes which have been previously associated with PsA such as MMP2, MMP9 

[567], fibronectin [426] and CCL2 [509] but also novel genes such as SMAD7 and 

TGFB2 (transforming growth factor beta 2). TGFβ exists in three isoforms TGFβ1, 

TGFβ2 and TGFβ3, it is a multifunctional cytokine which regulates cell growth, 
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adhesion and differentiation in a variety of cell types, it is a potent 

immunosuppressor but also helps to drive the differentiation of Th17 which can 

promote inflammation and augment autoimmune conditions [568]. Of note there 

are increased levels of circulating Th17 cells in the blood of PsA patients [569]. 

TGFβ has not previously been associated with PsA but one of its isoforms TGFβ1 

is present in the epidermis and serum of psoriasis patients and correlates with 

the psoriasis area and severity index (PASI), although the same study found no 

correlation between PASI and our TGF isoform of interest TGFβ2 [570]. 

Overexpression studies of TGFβ1 in keratinocytes of mice induces a psoriasis-like 

skin inflammation suggesting TGFβ is pro-inflammatory [571] however the 

mechanisms for this are not understood. In addition to an upregulation of 

TGFβ2, the PsA SF macrophages also upregulated SMAD7 which paradoxically is a 

negative regulator of TGFβ2 [572]. SMAD7 had also been demonstrated to 

negatively regulate signalling intermediaries in pro-inflammatory signalling 

pathways such as NF-κB, in this pathway SMAD7 plays a role in increasing IκB 

expression [502]. Therefore the upregulation of SMAD7 in the PsA macrophages 

may be as an auto-regulatory anti-inflammatory mechanism in order to decrease 

the amount of NF-κB pro-inflammatory gene transcription. TGFβ2 and SMAD7 

expression have not been analysed in PsA previously therefore our observation is 

an interesting one. It is difficult to determine the overall net effect of the 

upregulation of the potential pro- and anti-inflammatory molecule TGFβ2 along 

with its intracellular inhibitor SMAD7 therefore further expressional and 

functional studies would be required. 

The two canonical pathways which are specifically associated with the PsA SF 

macrophage differentially expressed gene list are pathogenesis of multiple 

sclerosis and the complement system. Numerous studies have implicated the 

complement system within rheumatoid arthritis; elevated levels of complement 

activation products have been detected within RA synovial fluid [573] and 

several animals models have provided evidence for the involvement of 

complement in arthritis such as C5-/- and C3-/- mice being resistant to CIA [574, 

575]. In comparison there are very few studies implicating the complement 

system in PsA, one study has found the presence of terminal complement 

complex in PsA serum [576] and another study indicated that erythrocytes from 

psoriatic patients had reduced expression of surface CD59 compared to healthy 
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controls and it was hypothesised that this may be an indicator of low tissue CD59 

expression [577]. CD59 (protectin) is an inhibitor of the membrane attack 

complex (MAC) therefore a reduction in its expression could result in the 

perpetual activation of the complement system and increased lysis of 

erythrocytes and synovial cells through the MAC. Contrary to this observation the 

data generated by our microarray indicates that the PsA SF actually have an 

increased level of CD59 expression compared to PB monocytes which may due to 

the macrophage trying to regulate the amount of complement activation taking 

place in order to prevent perpetual activation. Brought together these data 

suggest that the complement system may be involved in PsA as well as RA and 

the synovial macrophage could be a key cell type producing complement system 

components. 

The pathogenesis of multiple sclerosis canonical pathway is significantly 

associated with the differentially expressed genes in PsA SF CD14+ due to four 

chemokines which play a role in this small nine component pathway being 

present in the gene list (see Figure 3.12). The four chemokines involved in this 

pathway are CCL4, CCR5, CXCL9 and CXCL11. CCL4 otherwise known as 

macrophage-inflammatory protein-1 beta (MIP-1β) is produced by activated 

macrophages [578]. CCL4 has been identified as one of the chemokines 

significantly upregulated in the serum of PsA patients compared to healthy 

controls and it is significantly associated with cellular synovial tissue markers in 

PsA [237]. Studies performed in RA have demonstrated that mediators found 

within RA synovial fluid, such as osteopontin, can induce CCL4 production from 

monocytes [241] and there is also evidence that the interaction between CCL4 

and its receptor CCR5 plays a crucial role for trafficking Th1 and other immune 

cells into the RA joint [235, 579]. Apart from the identification of CCL4 within 

PsA serum and synovial fluid there is little known about the role of CCL4 within 

PsA; however it could be hypothesised that this chemokine plays a similar role in 

inflammatory cell recruitment that has been described for RA. 

CCR5 otherwise known as CC-CKR5 is a receptor found on macrophages and T 

cells which binds RANTES, MIP-1α and MIP-1β (CCL4) with high affinity [580]. As 

has been illustrated above it has been implicated in Th1 cell trafficking into the 

RA joint and its expression has been determined within the RA synovial tissue 

and on synovial fluid monocytes and T cells [581]. At present there is no 
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evidence for the presence of CCR5 within the PsA synovial compartment apart 

from the data presented here, however since its high affinity ligand CCL4 has 

been demonstrated to be present in the synovial fluid we can hypothesise that 

CCR5 is also present also and contributing to the inflammatory cell influx into 

the diseased joint. 

The third gene upregulated in PsA SF CD14+ cells and associated with pathogensis 

of MS pathway was CXCL9 otherwise known as monokine induced by IFN-γ (Mig). 

CXCL9 is produced by activated monocytes [582] and mRNA levels of this 

chemokines have previously been detected in the synovium of PsA [238] where it 

is thought to help regulate the influx of inflammatory cells. CXCL11 otherwise 

known as IFN-inducible T-cell alpha chemoattractant (I-TAC) was the fourth 

chemokine upregulated in PsA SF CD14+ cells, this chemokines is upregulated by 

LPS stimulated macrophages [583] and had been detected in PsA synovial fluid 

[584]. Consequently, from this result it is not assumed that the pathogenesis of 

multiple sclerosis (MS) plays a role in PsA only that several of the chemokines 

which are involved in the pathogenesis of MS are also upregulated in PsA synovial 

fluid macrophages. 

The diseases and disorders correlated with the PsA SF macrophage differentially 

expressed genes are the same as those found associated with the RA SF 

macrophage genes and are all related to arthritic disease such as inflammatory 

diseases and inflammatory response. Again the significant association of these 

disorders with the gene list validates our PsA dataset. 

The molecular and cellular functions associated with the up- and down-regulated 

PsA SF macrophages are highly similar to those correlated with the RA SF 

macrophage genes as 4 of the 5 associated functions are the same in RA and PsA. 

This data further substantiates the finding that the RA and PsA macrophages 

have very similar genetic profiles and upregulate analogous genes once the 

monocytes migrate out of the blood and into the synovial fluid. The molecular 

and cellular functions which were significantly associated with the PsA genes 

included cell movement and immune cell trafficking which will be due to the 

presence of up- and downregulated genes involved in transendothelial migration 

and movement of the cells into the synovial joint. The synovium of PsA patients 

is characterised by an inflammatory cell influx [7] and monocytes isolated from 
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PsA patients have been demonstrated to interact with cultured endothelial cells 

whilst down-regulating adhesion molecules which is thought to aid in their 

migration [411]. PBMCs from PsA patients are also have a significant increase in 

their adhesion to endothelial cells compared to healthy PBMCs [585] and the 

level of chemokines is significantly increased in the serum and synovium of PsA 

patients [259, 406, 509]. These data emphasize the importance of 

transendothelial migration in the pathogenesis of PsA and also emphasises why 

the PsA SF have a significant change in their migratory associated genes 

compared to PB monocytes. 

Another molecular and cellular function associated with the PsA SF macrophage 

expressed genes was cell-to-cell signalling and interaction. In comparison to RA 

there have been only two studies into the role of macrophage direct cell contact 

in PsA. These studies demonstrated that direct cell contact between PsA 

monocytes and NK cells was able to differentiate the monocytes into DCs [586] 

and direct interaction of PsA monocytes with endothelial cells aided in their 

transendothelial migration [411]. Despite the lack of information regarding the 

role of direct macrophage cell contact in PsA, due to the close proximity of 

macrophages to other immune cells in the synovium [124] we can hypothesise 

that direct cell interaction is one method through which macrophages exert 

their pro-inflammatory potential as has been extensively demonstrated in RA. 

The two other molecular and cellular functions associated with the PsA SF 

macrophage gene list are cellular growth and proliferation and cell mediated 

immune response. A reason for genes associated with both of these functions 

being differentially expressed in the synovial macrophages could be due the pro-

inflammatory environment into which the cells migrate. Previous studies have 

demonstrated the PsA synovium to be a hypoxic environment [587] containing 

many cytokines, chemokines and inflammatory mediators [237, 259] which would 

in turn cause the monocytes to differentiate into macrophages and illicit an 

immune response. 

In summary the PsA PB versus PsA SF microarray comparison to establish the 

effect of the PB monocyte migration into the synovium has identified the 

activation of novel pathways in the macrophages such as LXR/RXR activation as 

well as the identification of novel genes which have not previously been 

associated with PsA such as TGFβ2 and its inhibitor SMAD7. Nevertheless, the 
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most interesting observation to come out of this analysis is the similarity 

between the transcriptomes of the RA and PsA synovial macrophages which is 

investigated further in the following comparison. 

3.7.2.3  Identification of genes expressed in: both RA and PsA 
synovial fluid macrophages, only in RA macrophages or 
only in PsA macrophages  

The similarity between the transcriptomes of the RA and PsA samples first 

became apparent during the PCA comparison which indicated that the synovial 

fluid samples of both PsA and RA were clustered in the same area of the graph 

indicating that these samples had similar genetic expression. Investigating the 

two diseases individually during IPA analysis then demonstrated that the synovial 

macrophages in both RA and PsA shared many of the same canonical pathways 

and molecular functions. These results let us to hypothesise that the synovial 

fluid macrophages of PsA and RA shared many of the same genes. To investigate 

this hypothesis the differentially expressed genes from both disease PB versus SF 

comparison were subjected to a Venn diagram comparison to determine genes 

which were expressed in both diseases and also genes which were specific to the 

synovial fluid macrophages of each disease. 

Interestingly the Venn diagram demonstrated that 58% of the PsA differentially 

expressed genes and 52% of the RA differentially expressed genes were present 

in both diseases indicating that just under half of the genes expressed in the RA 

or PsA synovial fluid cell were disease specific. This result is in contrast to those 

of Dominique Baeten and his group who have previously described a differential 

macrophage phenotype in SpA (including PsA) compared to RA patients through 

revealing an increased number of CD163+ cells in the synovium of SpA patients 

[255] and demonstrating that the synovial fluid of SpA but not RA was able to 

polarise blood monocytes to express CD163 [253]. CD163 is a cell surface 

glycoprotein which is classed as a marker of alternatively activated macrophages 

(M2), M2 macrophages have been implicated in tissue remodelling and immune 

regulation and are in stark contrast to classically activated macrophages (M1) 

which are thought to be the main source of pro-inflammatory cytokines which 

are associated with tissue damage [185]. Consequently, Baeten et al suggest that 

the macrophage phenotype in RA and SpA are significantly different due to the 

presence of different markers of macrophage polarisation and the ability of the 
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diseased synovial fluid to induce these macrophage phenotypes. Our venn 

diagram data illustrates that in contrast to results of Baeten et al the genetic 

profile and therefore the phenotype of both RA and PsA macrophages are very 

similar and over 50% of the genes expressed by each diseased macrophage are 

shared between the diseases. This observation is further exemplified by 

analysing for the presence of genes associated with M1 and M2 phenotypes in the 

macrophage gene lists from both diseases. As although CD163 is not present in 

either the PsA or RA SF macrophages, possibly due to the strict inclusion criteria 

for the microarray analysis, other markers of M2 phenotype such as the mannose 

receptor (MRC1 and MRC2) and macrophage scavenger receptor (CD204) are 

upregulated by a similar fold change in both RA and PsA. MRC1 has a fold change 

(FC) increase of 73 in PsA and 61 in RA, MRC2 (FC 32 PsA, 32 RA) and CD204 (FC 

10 PsA, 8 RA). However, analysis of markers of M1 polarisation demonstrates 

that these markers are also upregulated to similar levels of magnitude in both 

RA and PsA SF macrophages such as CD86 (FC 11 PsA, 15 RA) and MHC class II 

molecules HLA-DOA (FC 7 PsA, 4 RA). Our results would suggest that rather than 

the RA and PsA SF macrophages being two separate phenotypes, as implicated by 

work of Beaten et al, they are both similar cell types and at the RNA transcript 

level appear to have no preferential expression of an M1 or M2 phenotype. This 

could be an indication of the high level of plasticity of macrophage cells and 

their ability to constantly change their phenotype in response to their 

environment. Despite there being very little differences in the expression of 

several M1 and M2 macrophage markers the results of the venn diagram did also 

demonstrate that both the RA and PsA have a subset of genes that were disease 

specific which could account for some of the differences in seen in the 

pathogenesis and cytokine profiles of the two diseases.  

The results of the Venn diagram were saved as three individual datasets; i) genes 

which were differentially expressed in both diseases, ii) genes which were 

expressed only in PsA and iii) genes which were expressed only in RA. These 

gene lists were then analysed by IPA to identify the canonical pathways and the 

molecular and cellular functions which were significantly associated with them. 

The canonical pathways associated with the gene list expressed by both PsA and 

RA consisted of pathways which had already been discovered from the previous 

IPA analyses of RA PB vs RA SF and PsA PB vs PsA SF. These five pathways were: 
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LXR activation which has been previously been described as being a potential 

pathogenic pathway in RA [527] but as yet no association has been demonstrated 

for PsA; LPS/IL-1 inhibition of RXR function is also associated with the gene list 

due to an upregulation of HDL constituents in both RA and PsA macrophages, the 

significance of this pathway is not fully understood but since HDL had been 

demonstrated to prevent monocytes from releasing pro-inflammatory mediators 

[315, 558] this pathway may be an anti-inflammatory mechanism through which 

the macrophages counter-balance their disproportionate pro-inflammatory 

response. The complement system was the third pathway associated with the 

genes expressed in both diseases, complement components have been detected 

in the serum and synovial fluid of RA and PsA patients [573, 576] and several 

animals models have already provided evidence for the involvement of 

complement in arthritis such as C5-/- and C3-/- mice being resistant to CIA [574, 

575]. Therefore the combination of this data with our microarray data indicate 

that synovial macrophages may be a specific cell type in both RA and PsA to be 

involved in the activation of the complement pathway. 

The hepatic stellate cell activation was the fourth associated canonical pathway, 

as described previously the presence of this pathway is due to the occurrence of 

pro-inflammatory chemokines, cytokines and growth factors that are expressed 

in both hepatic stellate cells and synovial macrophages during cellular 

activation. The final canonical pathway was the pathogenesis of multiple 

sclerosis, the association of this pathway to the gene list is due to the presence 

of three chemokines which play a role in both multiple sclerosis as well as RA 

and PsA pathogenesis. The three chemokines were CCL4 (MIP-1β) and its 

receptor CCR5 which are both associated with macrophages and play a role in 

trafficking immune cells into the arthritic joint [235, 579], and CXCL11 which 

has been previously detected in RA synovium [588] and PsA synovial fluid [584]. 

The molecular and cellular functions associated with the gene list expressed in 

both RA and PsA SF CD14+ cells had all previously been associated with the SF 

macrophages such as cell-to-cell signalling and interaction, cellular development 

and cellular movement. The one function which had not previously been 

correlated to the SF macrophages was cellular function and maintenance which 

may be due to genes associated with cellular homeostasis being expressed by the 

RA and PsA macrophages. 
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The canonical pathways associated with the genes specifically expressed in PsA 

SF macrophages were: B cell development, pathogenesis of multiple sclerosis, 

autoimmune thyroid disease signalling, altered T and B cell signalling in 

rheumatoid arthritis, and allograph rejection signalling. The pathogenesis of 

multiple sclerosis was previously associated with the PsA PB vs SF comparison 

but the four other canonical pathways are unique to the PsA SF macrophage 

gene list. All four of these novel canonical pathways appear to be specifically T 

and B cell related, however they are associated with the PsA SF specific gene list 

due to the presence of three genes within the gene list. These genes are CD40, 

HLA-DQA1 and HLA-DOA which were all upregulated in PsA SF macrophages 

compared to PB monocytes and these genes are found in all four canonical 

pathways. 

CD40 is a cell surface receptor found on macrophages/monocytes, B cells and 

myeloid DCs and it is activated by ligation with CD154 found on CD4+ T cells, 

platelets, mast cells and basophils [589]. Ligation of CD40 on monocytes and 

macrophages results in the induction of pro-inflammatory cytokine and 

chemokine synthesis such as IL-1α, TNFα, IL-6, IL-8, CCL2 and CCL4 [589]. CD40 

ligation on monocytes or macrophages also upregulates the expression of MHC 

class II and co-stimulatory molecules CD80 and CD86, as well as CD40 itself 

[590]. CD40 has previously been demonstrated to play a role in arthritis as 

blockade of the CD40:CD154 interaction inhibited the onset of collagen induced 

arthritis (CIA) [591]. Once again, in comparison to RA there have been few 

studies analysing the role of CD40 in PsA. However, soluble CD40 ligand (sCD40L) 

is present in the serum of PsA patients [592] and interestingly Stoeckman et al 

discovered that CD40 and its signalling intermediates were downregulated in PsA 

PBMCs compared to healthy controls which they suggested could be due to the 

migration of CD40-expressing cells out of the blood and into the synovium. Our 

data agrees with this hypothesis as we demonstrate that in comparison to PsA PB 

CD14+ cells there is an upregulation of CD40 gene expression in PsA SF CD14+ 

cells. The presence of CD40 on PsA synovial macrophages will be contributing to 

the inflammatory milieu within the synovium through its ligation with CD154 

present on the synovial T cells and sCD40L present within PsA patients. 

The remaining two genes associated with the four canonical pathways specific to 

the PsA macrophage differentially expressed genes are HLA-DQA1 and HLA-DOA. 
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Human leukocyte antigen (HLA) is coded for by the major histocompatibility 

complex (MHC) gene region and HLA molecules are critical for distinguishing self 

from non-self. Cell-surface HLA molecules function to present processed 

antigenic peptide, which is held within a groove in the HLA molecule, to T cell 

receptor molecules expressed on the surface of T cells. HLA class II DR, DQ and 

DP molecules are found on B cells and professional antigen presenting cells and 

present processed peptides derived from exogenous antigens to CD4+ T cells 

[593]. An increased expression of HLA genes within the PsA SF macrophage could 

indicate an increase in the amount of antigen presentation taking place within 

the synovium and is also a marker of increased cellular activation. HLA-DQA1 

alleles have been associated with susceptibility to a wide variety of 

inflammatory conditions such as multiple sclerosis [594] and coeliac disease 

[595]. The expression of this molecule has also been upregulated in 

oligoarticular JIA [596] and different alleles have been demonstrated to be a risk 

factor for susceptibility to RA [597] and susceptibility to psoriasis [598]. These 

results indicate that HLA-DQA1 has a role in immune disease and arthritis 

pathogenesis and despite there being no direct link to PsA increased levels of 

HLA-DQA1 in PsA macrophages may be playing a role in disease susceptibility and 

antigen presentation. The other gene associated with the PsA specific canonical 

pathways is HLA-DOA which is another HLA molecule involved in antigen 

presentation and is upregulated at the RNA and protein level in monocytes 

treated with GM-CSF [599]. A single nucleotide polymorphism (SNP) in HLA-DOA 

which is significantly associated with RA susceptibility has recently been 

identified [600] again emphasising the importance of antigen presentation in the 

pathogenesis of arthritic disease. 

The cellular and molecular functions specifically associated with PsA SF 

macrophages included two functions, cellular movement and cell-to-cell 

signalling and interaction, which have been previously discussed. However, the 

other three pathways: DNA replication, recombination and repair; cell cycle and 

cell death represent functions which are specific to PsA SF macrophages. Despite 

there being no direct link of DNA replication, recombination and repair to PsA 

pathogenesis this molecular function is associated with the PsA macrophages due 

to an increase in the expression of genes such as TOP2A (topoisomerase (DNA) II 

alpha 170kDa). TOP2A is an enzyme which transiently breaks and rejoins double 
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stranded DNA in order to resolve topological problems which arise as a result of 

supercoiling or knotting which can occur naturally in the DNA [601]. 

The molecular function of cell cycle is associated with the PsA gene list due to 

the upregulation of genes such as TOP2A (described above) and CDK1 (cyclin-

dependent kinase 1) which regulates cell division and controls cell-cycle 

transitions by associating with different cell-cycle stage specific cyclins [602]. 

The association of the cell death function with the PsA gene list is due to the 

differential expression of apoptosis related genes including the down-regulation 

of clusterin (CLU) in SF macrophages. Clusterin was discussed previously in this 

chapter as a protein which was highly upregulated in RA PB monocytes compared 

to healthy controls. Clusterin‘s cellular functions are context dependent and 

nuclear associated clusterin (nCLU) is a pro-apoptotic factor [489]. Hence the 

down-regulation of this gene within the SF macrophages may be a mechanism 

through which these cells evade apoptosis. This data demonstrates that as well 

as the proinflammatory pathways which are being upregulated in the synovial 

macrophages, as demonstrates by the pathways correlated with the genes 

expressed in both RA and PsA SF macrophages, the PsA macrophages are also up-

regulating cellular functions associated with the maintenance of homeostasis 

such as cell cycle and DNA replication as well as pro-survival factors.  

The canonical pathways associated with the gene list expressed specifically in RA 

SF macrophages compared to the PB monocytes consisted of two pathways, 

hepatic stellate cell activation and the role of macrophages, endothelial cells 

and fibroblasts in RA, which were previously associated with the primary RA PB 

vs RA SF comparison. This is due to the differential expression of genes such as 

CSF1 (M-CSF) and VEGFA which play a role in these pathways and the 

pathogenesis of RA. However, the IPA analysis of the genes expressed only in RA 

SF macrophages also revealed three RA specific pathways: atherosclerosis 

signalling, ERK5 signalling and p38 MAPK signalling. The presence of the 

atherosclerosis signalling pathway within the IPA analysis of the RA SF specific 

genes is interesting as inflammatory pathways have been implicated in both 

atherosclerosis and RA and this result emphasises the overlap in immune 

disregulation which exists in both diseases. RA patients also have a 30-60% higher 

risk of cardiovascular events compared to osteoarthritis patients or patients 

without arthritis [603]. This phenomenon is thought to be due to RA patients 
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being exposed to chronic inflammation which is known to be a driver of 

atherosclerosis. 

One of the RA SF macrophage genes correlated to this atherosclerosis signalling 

pathway was TNFRSF12A (tumour necrosis factor receptor superfamily, member 

12A) which codes for the TWEAK (TNF-like weak inducer of apoptosis) receptor 

otherwise known as fibroblast growth factor inducible 14 (Fn14). TWEAK has 

been demonstrated to induce proliferation as well as cell adhesion molecule and 

cytokine expression in human umbilical vein endothelial cells (HUVECs) [604] and 

has also been implicated in angiogenesis in vivo. Recently, studies using an anti-

human Fn14 monoclonal antibody have demonstrated that TWEAK-induced 

proliferation and migration is solely mediated by its Fn14 receptor [604]. The 

TWEAK/Fn14 interaction has been implicated in the pathogenesis of arthritis as 

serum levels of TWEAK were elevated in murine CIA and neutralising TWEAK in 

this model significantly reduced the clinical severity, paw swelling and 

infiltration of inflammatory cells [605, 606]. Recently, Fn14 has been detected 

in the RA synovium and on synovial fibroblasts where its ligation with TWEAK 

induced the production of pro-inflammatory cytokines and the expression of 

intracellular adhesion molecule (ICAM-1) [607]. This pro-inflammatory cytokine 

release has since been demonstrated to be mediated through the activation of 

the NF-κB pathway [608]. Fn14 is detected within the synovium of both RA and 

PsA where it has been demonstrated to be specifically expressed on 

macrophages and fibroblasts [609] and its ligand TWEAK is present in the serum 

of RA patients and correlates with disease activity [610]. Consequently, the 

upregulation of the Fn14 gene TNFRSF12A by the RA SF macrophages in our study 

demonstrates a mechanism through which these macrophages can contribute to 

the inflammatory environment in RA synovium. The TWEAK/Fn14 has been shown 

to play a role in the pathogenesis of atherosclerosis and cardiac dysfunction due 

to its ability to induce angiogenesis, exacerbate vascular damage and mediate 

lipid uptake by macrophages [611-613] and therefore may be a pathway causing 

the increased risk of cardiovascular events seen in RA. 

The remaining two canonical pathways associated with the RA specific gene list 

were ERK5 signalling pathway and p38 MAPK pathway, both of these pathways 

are members of the MAPK signalling family and their association with RA SF 

macrophages is due to the up- and down-regulation of genes coding for signalling 
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intermediates and transcription factors involved in these pathways. ERK5 

signalling pathway has not previously been associated with RA pathogenesis but 

some of its signalling components which were differentially expressed in the RA 

SF macrophages have been demonstrated to play a role. For example, FOSL1 is 

upregulated in the RA SF macrophages and this gene codes for the Fra-1 protein 

which dimerises with c-Jun to form the AP-1 transcription factor. AP-1 has been 

demonstrated to be constitutively active in rheumatoid synovium [614] and 

treatment of rheumatoid synoviocytes with TNFα and IL-1β induced the nuclear 

translocation of Fra-1 and induction of AP-1 transcription [615]. Consequently, 

despite no evidence for the ERK5 pathway being implicated in RA the 

components of this pathway have been demonstrated to play a role in the 

pathogenic phenotype of synovial cells.  

The p38 MAPK pathway is also correlated to the RA SF macrophages which is due 

to the upregulation of genes coding for IL-1 receptor type I, IL-1 receptor type II, 

IL-1 receptor-associated kinase 2 (IRAK2) and the anti-inflammatory molecule IL-

1 receptor antagonist. The ligation of  IL-1α or IL-1β to the IL-1 receptor type I 

on the cell surface activates IRAK and commences the activation of the p38 

MAPK signalling pathway and the subsequent translation of genes coding for pro-

inflammatory mediators such as IL-6, IL-8, CCL2 (MCP-1), IL-1α and IL-1β [616]. 

Interestingly the RA SF macrophages have also upregulated levels of IL-1 

receptor antagonist (IL-RA) and the decoy receptor IL-1 receptor II (IL-1R2) 

which are inducible negative regulators of IL-1 signalling and can terminate or 

limit IL-1 effects. Hence the RA SF macrophages are not only up-regulating 

activator components of the p38 MAPK pathway but also negative regulators of 

this pathway, the net effect of this gene expression is not known since IL-1RA 

binds IL-1R1 with a similar specificity and affinity as IL-1α and IL-1β [616]. Of 

interest, a recombinant version of human IL-1RA designated anakinra is used as a 

therapy for RA demonstrating the significant anti-inflammatory properties of IL-

1RA [266]. 

The molecular and cellular functions of the RA SF specific gene list highlight the 

same group of functions which were associated with the previous RA PB vs RA SF 

comparison such as cellular movement, cell-to-cell signalling and cellular 

growth. As discussed previously the differential expression of genes associated 

with these functions demonstrates the increased cellular migration undertaken 
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by the macrophages as well as the physiological growth and development which 

the PB monocytes undergo to mature into the synovial macrophages.  

In summary, the analysis of the genes similarly expressed in both RA and PsA SF 

macrophages as well as the genes expressed specifically in PsA SF macrophages 

or RA SF macrophages has been crucial in defining groups of genes specifically 

expressed in each disease. The Venn diagram analysis also revealed the 

significant similarity in gene expression in both RA and PsA macrophages 

compared to their matched disease blood monocytes with over 50% of the genes 

being shared in each disease. 

Apart from the identification of the shared expression of the LXR activation 

pathway which was an interesting finding this analysis unfortunately did not 

reveal any novel genes which change in expression as the RA monocytes move 

from the blood into the synovial fluid. For that reason it was decided to analyse 

the differentially expressed genes that changed in both RA and PsA SF 

macrophages to try and detect novel genes that had not previously been 

associated with arthritis. This was in the hope of finding novel pathways 

regulating the pathogenesis of the arthritic synovial macrophage. The genes 

which had been upregulated in the synovial macrophages compared to the blood 

monocytes were analysed starting with those that had the largest fold change 

difference. Analysing the genes using this method unsurprisingly resulted in the 

identification of genes coding for molecules which have previously been 

associated with arthritis such as FN1 (fibronectin), SPP1 (osteopontin) and 

CCL18. However, through this analysis we also discovered two novel genes; LGM 

which codes for the enzyme legumain and PLXA1 which codes for the cell surface 

receptor plexin A1. These two candidate genes were subsequently validated and 

further analysis was performed to determine their function within the arthritic 

synovium. These results are discussed in full detail in the following chapters. 
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Chapter 4 Investigation into the expression and 
function of the novel gene plexin A1 in rheumatoid 
and psoriatic arthritis patients  
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4.1 Introduction  

Plexin A1 is one of the genes found to be upregulated in RA and PsA SF CD14+ 

cells in the preceding microarray experiment; it has not been previously 

associated with arthritis and is one of the two genes that I selected for intensive 

investigation in the context of rheumatoid and psoriatic arthritis pathogenesis. 

Plexins are a homogenous family of proteins, which when first identified were 

shown to be neuronal cell surface molecules with a function in cell adhesion 

[442]. They are grouped into four categories (A-D) based on their overall 

homology, there are 4 type-A, three type-B, one type-C and one type D found in 

vertebrates and two plexins found in invertebrates (A and B) [617].  

Plexins are the receptors for semaphorins, which are both secreted and 

membrane associated proteins named for their properties which are analogous 

to the system of flags and lights used in rail and maritime communication for the 

direction of movement. Semaphorins were originally characterised in the 

developing nervous system as chemorepellent molecules which acted to initiate 

axonal collapse in areas where they were found in high concentration, thus 

resulting in axonal guidance [618, 619]. However, more recently they have been 

shown to have diverse functions in several physiological processes such as 

angiogenesis [620], tumor metastasis [621, 622], osteoclastogenesis [623] and 

immune regulation [624]. More than 20 types of semaphorins have been 

identified and are grouped into eight classes on the basis of their structural 

elements and amino acid sequence similarity [619]. The semaphorins found in 

invertebrates are grouped into classes 1 and 2, classes 3-7 are vertebrate 

semaphorins and the final group, group V, are viral semaphorins. Proteins in the 

semaphorin classes 1, 4, 5, 6 and 7 are membrane associated whereas those in 

classes 2, 3 and the viral semaphorins are secreted [617]. All semaphorins 

contain a conserved ~500 amino acid extracellular domain termed a sema 

(semaphorin) domain and a class specific C terminus. 

Plexins are single membrane spanning proteins that have an extracellular domain 

consisting of a ~500 amino acid sema domain, that is conserved among all 

semaphorin family members, followed by a cysteine-rich motif and several 

glycine-proline rich motifs [442]. Most plexin-semaphorin interactions are 

mediated through the sema domains of both proteins except for class 3 
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semaphorins, which, with the exception of sema 3E, bind to neuropillin-1 or 

neuropilin-2 along with plexin in a co-receptor complex [625-627]. Neuropilins 

have a very short cytoplasmic domain that cannot transduce intracellular signals, 

therefore the plexin receptor must act as the signal transducing components of 

the semaphorin-neuropilin-plexin complex [628]. Plexin A family members are 

the main receptors for the secreted class 3 semaphorins as shown in Figure 4.1, 

semaphorin 3A will only bind neuropilin-1 (NRP-1) in the plexin-neuropilin 

receptor complex whereas semaphorin 3C and 3F bind both NRP-1 and NRP-2 

[443]. 

 

Figure 4.1 Semaphorin ligands for type A plexin family members 
There are four members of the plexin A family which interact primarily with two classes of 
semaphorins, class 3 and class 6. Both plexins and semaphorins are characterised by a sema 
domain shown in red for the plexins and blue for the semaphorins. Arrows indicate binding 
interactions detected between semaphorins and plexins. Labels on the arrows indicate which 
specific semaphorins have been shown to interact with which plexin [443, 444, 617, 629-632]. Blue 
labels of semaphorin names indicate the necessity for neuropilin-1 (dark blue) or neuropilin-
1/neuropilin-2 (green). 
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Plexin A1 is the only receptor in the type A family of plexins that interacts with 

two different classes of semaphorins, class 3 and class 6 (Figure 4.1). It is our 

gene of interest based on the results of the microarray and it is one of the 

semaphorin receptors whose function has been widely investigated. It is known 

to be expressed in the heart, liver, brain, kidney, spleen and lung of 4 week old 

mice [623] and is specifically expressed on plasmacytoid DCs [633], mature 

dendritic cells [444] and at low levels on T and B cells [623]. Recently plexin A1 

has also been shown to increase in expression during M-CSF differentiation of 

human monocytes into macrophages [443], the same group also showed LPS 

stimulation suppressed plexin A1 expression in macrophages. Toyofuku et al first 

identified semaphorin 6D (sema 6D) as one of plexin A1‘s ligands during chick 

cardiac development. Plexin A1 was found to form site specific receptor 

complex with vascular endothelial receptor type 2 (VEGFR2) in the conotruncal 

segment or with Off-track in the ventricle segment. These specific complexes 

bound to sema 6D and were responsible for its specific effects in these regions 

[631]. It is thought that semaphorin binding relieves plexin autoinhibition, as 

plexin A1 lacking its sema domain is constitutively active [634]. 

Plexin A1 has been previously shown to play a role in axonal guidance in the 

developing nervous system by acting as a co-receptor with neuropilin-1 to bind 

sema 3A resulting in a chemorepulsive signal [635]. It also has a role in 

chemotaxis of carcinoma cells as expression of constitutively active plexin A1 in 

breast carcinoma cells impaired their ability to chemotax [636]. However, the 

first report of plexin A1 in immune cell function came as a result of a microarray 

that identified plexin A1 as a gene down regulated in CIITA-deficient DCs to 5% 

of that found in wild type cells [444]. CIITA (class II transactivator) is a 

transcription factor that controls MHC class II expression [637], it functions as a 

transcriptional scaffold to coordinate NF-Y and RFX5 transcription factors in 

binding the conserved promoter regions found in MHC class II promoters. The 

same group found plexin A1 to be highly expressed in mature DCs from wild type 

mice and it was established that depletion of plexin A1 in mature DCs by RNA 

interference led to a 50% reduction in T cell stimulation in vitro and in vivo 

indicating that plexin A1 expression is important for T cell-DC interactions. This 

reduced proliferation could not be attributed to decreased antigen processing, 

MHC expression or peptide loading; however a suggested function for plexin A1 
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on the DCs was to serve as a co-stimulatory marker that binds its partner ligand 

on the T cells therefore enhancing the T cell-DC interaction.  

A further study, [623], into plexin A1‘s role in immune responses found that 

plexin A1-/- DCs had an impaired ability to stimulate antigen-specific T cells as 

they had reduced proliferative responses and cytokine production, consistent 

with the previous work performed by Wong et al. The plexin A1-/- mice had 

reduced cellularity in their long bones compared to wild type litter mates and it 

was revealed that plexin A1 deficiency resulted in increased bone mass and the 

development of osteopetrosis. It was also shown that plexin A1-/- mice had 

decreased osteoclast numbers, lower osteoclast surface to bone ratio and 

reduced osteoclast bone turnover therefore implicating a role for plexin A1 in 

bone homeostasis. This group had previously identified sema 6D as the ligand for 

plexin A1 in chick cardiac development [631] and found sema 6D to be highly 

expressed in T cells, therefore they incubated DCs with soluble recombinant 

sema 6D and showed that it induced IL-12 production and upregulation of MHC 

class II suggesting that sema 6D is the ligand for plexin A1 in T cell- DC cellular 

interactions. Sema 6D was also found to be expressed on osteoclasts and soluble 

recombinant sema 6D promoted osteoclast differentiation again suggesting that 

sema 6D is the ligand for plexin A1 in bone homeostasis. To try and further 

understand the plexin receptor complex, the group screened molecules 

associated with plexin A1 in DCs and osteoclasts and identified TREM-2. Previous 

studies have indicated that TREM-2 forms a receptor complex with DAP12, an 

ITAM-bearing activating adaptor protein, through a positively charged amino acid 

in its transmembrane domain [638]. Several experiments using RNA interference 

and DAP12-/- cells suggested that plexin A1, DAP-12 and TREM-2 are the sema 6D 

functional receptor components on DCs and osteoclasts [623]. Interestingly, 

genetic mutations in TREM-2 or DAP12 result in a bone fracture syndrome called 

Nasu-Hakola disease further underscoring the importance of the association of 

plexin A1 with DAP12 and TREM-2 in bone homology [639]. 

Further studies into the localisation of plexin A1 in DCs found it to be associated 

with the DC-T cell immune synapse in approximately 70% of T cell- DC cellular 

conjugates where it was found to regulate actin polarisation in the DCs via 

activation of the small GTPase Rho [640]. Plexin A1 has also been found to 

associate with DAP12 and another TREM family member found specifically on 
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pDCs designated PDC-TREM. Sema 6D binding to the plexin A1-DAP12-PDC-TREM 

complex on pDCs induced the production of type I IFN [633]. 

Plexin A1 has recently been shown to play a crucial role in allowing murine DCs 

to enter the lymphatic system and track to the lymph node. This migration is 

dependent on the presence of semaphorin 3A (sema 3A), one of plexin A1‘s 

ligands, in the lymphatic system. Sema 3A is thought to promote DC 

transmigration by inducing actomyosin contraction, which allows the cells to 

pass through constricted areas, by regulating myosin II activity and 

phosphorylation. This was demonstrated by treating the DCs with the myosin II 

inhibitor blebbistatin or the Rho kinase ROCK inhibitor Y-27632 which abolished 

sema 3A induced transmigration across lymphatic endothelial cell monolayers 

[632]. 

Due to the identification of a novel gene, plexin A1, expressed in RA and PsA SF 

CD14+ cells, and its plausible biologic profile, I therefore sought to validate this 

expression by RT-PCR in the microarray samples and samples from other 

patients. I then sought to identify its potential function in macrophage cells by 

siRNA and to investigate the expression of its semaphorin ligands on stimulated 

T cells and synovial membrane. 
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4.2 Validation of plexin A1 in microarray samples 

Plexin A1 was one of the genes identified when the group of genes upregulated 

in both RA and PsA SF were analysed. It had a fold change increase from the PB 

to the SF of 26 in RA patients and 27 in PsA patients. Figure 4.2 (A) demonstrates 

the raw fluorescent data signals of plexin A1 obtained from the Affymetrix 

GeneChips. The PB samples from both disease groups have very low levels of 

signal intensity indicating that these samples had low levels of plexin A1 mRNA. 

In contrast the patient synovial fluid samples have much higher levels of signal 

intensity and therefore contained higher levels of plexin A1 mRNA. The reason 

for the variable levels of the mRNA expression may be due to different disease 

duration in the patients or differences in disease therapy. To verify and validate 

this expression qRT-PCR was used to analyse the expression of plexin A1 in the 8 

RA and 8 PsA matched PB and SF CD14+ samples. All of the samples were able to 

be analysed apart from one RA PB sample which consistently produced unusual 

results which could not be included in the analysis. This may have been due to a 

problem with the RNA sample therefore that PB sample and its matched SF were 

not analysed. Figure 4.2 (B) shows the results of qRT-PCR, the fold change values 

were calculated by comparing the level of plexin A1 expression in the synovial 

fluid compared to the PB. Each circle represents one patient and the line is the 

mean fold change, the RA samples had a mean fold change increase of 8 from 

the PB to the SF and the PsA samples had a mean fold change increase of 13.  

The results demonstrate that there was an increase in plexin A1 expression in all 

of the synovial fluid samples compared to their matched peripheral blood 

samples which agree with the results obtained from the microarray.  
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Figure 4.2 Plexin A1 expression in microarray samples 
(A) Demonstrates the raw signal intensities of the plexin A1 gene locus on the Affymetrix 
GeneChips. Each circle represents one patient sample which was hybridised to one genechip and 
the line represents the mean signal intensity. Plexin A1 mRNA levels were then measured in the 
RA and PsA paired PB and SF microarray samples by qRT-PCR. (B) The fold change of plexin 
expression in the SF samples was normalised to the matched patient PB sample, each circle 
represents one patient and the line the mean fold change  

 

4.3 Expression of plexin A1 in other patient samples 

Once the expression of plexin A1 had been validated in the microarray patient 

samples we then analysed the expression of plexin A1 in CD14+ of other arthritic 

patients to check that the increase in plexin A1 expression was generalizable. 

Figure 4.3 shows the results of this analysis, graph (A) indicated all the CD14+ 

cells that were obtained and tested for relative expression plexin A1 which was 

normalised to the housekeeping gene GAPDH. PsA SF cells have varying 
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expressions of plexin A1 depending on the individual patient but the mean 

relative expression is higher than the mean relative expression of the PsA PB 

samples. The RA SF samples also have variable amount of plexin A1 but the mean 

expression is similar to that seen in PsA SF.  An inflammatory polyarthritis and a 

juvenile idiopathic arthritis (JIA) SF sample were also obtained for this analysis 

and both samples contain plexin A1 RNA, unfortunately no matched peripheral 

blood CD14+ cells were acquired for either patient so we cannot determine 

whether the plexin A1 expression increases in the SF cells compared to the PB 

cells as is seen with RA and PsA patients. However, matched PB and SF CD14+ 

cells from a patient with osteoarthritis (OA) were also analysed and shows that, 

as with the RA and PsA from the microarray, plexin A1 expression is higher in the 

SF compared to the PB. This indicates that expression of plexin A1 on CD14+ cells 

is not confined to PsA and RA SF and could also be expressed in other arthritic 

diseases. These analyses should however be considered anecdotal and are 

included here for completeness at this stage. Five of the PsA patients analysed 

had matched SF and PB CD14+ cells therefore the fold change increase of plexin 

A1 from the PB samples to the SF samples was determined (graph B). In 

summary, these data indicate that in the majority, but not all, PsA patients 

plexin A1 RNA levels are higher in the SF compared to the PB CD14+ cells as was 

seen in the microarray experiment. 
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Figure 4.3 Plexin A1 expression in CD14
+
 cells from arthritic patients 

To verify the microarray results plexin A1 RNA levels were measured in CD14
+
 cells from several 

other arthritic patients (A). Five of the PsA patients analysed in (A) had matched PB and SF 
samples therefore the fold change increase of plexin A1 expression from the PB sample to the SF 
sample was measured for each of these patients and is shown in (B) each square represents one 
patient. Lines on each graph indicate the mean. 

(A) 

(B) 
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4.4 Immunohistochemistry of plexin A1 

Once plexin A1 expression had been validated as being present in the microarray 

samples and other patient samples by RT-PCR, immunohistochemistry (IHC) was 

used to investigate the presence of plexin A1 protein in RA synovial membrane 

tissue. Five RA membranes stained positively for plexin A1; Figure 4.4 shows the 

pattern of staining seen in a representative membrane. Panel (B) shows an area 

of the membrane at x10 magnification on the left and x40 magnification on the 

right. The synovial membrane can be seen to be positively stained (indicated by 

brown staining) around vascular structures and within cells in the area 

surrounding the vasculature possibly indicative of infiltrating cells (indicated by 

black arrows). Panel (C) indicates two more images taken from the same 

membrane and again demonstrates that the areas staining positively for plexin 

A1 are those surrounding blood vessels and in cells around vasculature area but 

there are also cells within the synovial membrane structure that have stained for 

plexin A1. The staining appears to be present in both the cytoplasm and the 

nucleus of the cells. The positive staining surrounding the vasculature could be 

indicative of endothelial cells but the identity of the positive cells within the 

membrane require double staining of plexin A1 and other cellular markers. Such 

experiments would be the focus of future analysis in order to confirm the extent 

of plexin A1 expression. 
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Figure 4.4 Plexin A1 staining in RA synovial membrane 
Five RA synovial membrane tissues were stained for the presence of plexin A1. This figure 
indicates the staining pattern seen in one of these membranes. Panel (A) indicates the isotype 
control at x 10 and x 40 magnification. Panel (B) and (C) show the positive plexin A1 staining 
(shown in brown) of two areas within the membrane (arrows identify infiltrating cells), the staining is 
shown at x 10 magnification on the left and x 40 magnification on the right. 
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4.5 siRNA knockdown of plexin A1 in M-CSF derived 
macrophages 

I next decided to establish the role of plexin A1 in macrophage biology using RNA 

interference (RNAi). RNAi is a pathway in eukaryotic cells by which sequence 

specific small interfering RNA (siRNA) is able to find and cleave complementary 

mRNA [641]. An enzyme known as Dicer can cleave double stranded RNA into 

siRNA fragments [642]. Once siRNA is present in the cell it is incorporated into a 

protein complex called the RNA induced silencing complex (RISC) [643] where 

argonaute-2 unwinds the siRNA. The activated RISC complex containing the 

antisense strand of siRNA will then find and degrade mRNA that is 

complementary to this strand resulting in specific gene silencing. Synthetic 

siRNA specific to a gene can be directly introduced into a cell allowing gene 

silencing of almost any mammalian gene thereby allowing analysis of specific 

gene function.  

So far most experimental work on plexin A1 has looked at plexin A1 expression 

and function in DCs, since our results showed that plexin A1 is upregulated in 

monocytes/macrophages in the arthritic synovial fluid we wanted to determine 

the role of plexin A1 in this cell type with the use of siRNA. M-CSF differentiated 

macrophages were used to work up the siRNA experiments as these are a 

relatively accessible cell source compared to the limited number of synovial 

fluid patient samples we obtain in the lab. 

4.5.1 Expression of plexin A1 in macrophages after 6 days of M-
CSF differentiation 

A preliminary experiment before starting the siRNA knockdown of plexin A1 was 

to first determine that macrophages expressed plexin A1 mRNA. A previous study 

had demonstrated that plexin A1 was upregulated in macrophages differentiated 

in M-CSF for 2 days [443]. In our experimental setup monocytes were 

differentiated with 50 ng/ml M-CSF for 6 days and analysed at day 0 and 6 for 

plexin A1 expression. Figure 4.5 shows the fold change in plexin A1 expression in 

day 6 differentiated macrophages compared to day 0. Once the presence of 

plexin A1 had been determined in these cells we could then set up the siRNA 

experiments. 
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Figure 4.5 Plexin A1 in M-CSF differentiated macrophages  
Monocytes were differentiated with 50 ng/ml M-CSF for 6 days. Fold change in plexin A1 mRNA 
expression was measured by qPCR. 

4.5.2 Transfection efficiency of N-TER reagent 

An N-TER nanoparticle transfection system was used to knockdown the plexin A1 

gene. In this transfection system the N-TER peptide binds siRNA non-covalently 

forming a nanoparticle. The nanoparticle then interacts with the lipids on the 

surface of the plasma membrane thus allowing the nanoparticle to diffuse across 

the cell membrane and delivering the siRNA to the cytoplasm.  

To test the efficiency of this transfection system a negative control siRNA with 

an Alexa Fluro 555 modification was used. The negative control siRNA will not 

knockdown any genes in the cell since it is a non-silencing siRNA with no known 

homology to any known mammalian gene. Since it is modified with a fluorescent 

tag it can be used to measure the transfection efficiency of the N-TER peptide as 

any cell that has been successfully transfected will fluoresce. To determine the 

concentration at which the N-TER peptide worked most effectively, cells were 

transfected with the negative control siRNA and analysed on a fluorescent 

microscope and by FACS.  

4.5.2.1  Inverted microscope images 

Day 6 M-CSF differentiated macrophages were transfected with varying 

concentrations of negative control siRNA for 24 hours in the presence or absence 

of fetal calf serum (FCS) as FCS can sometimes affect siRNA transfection. The 
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cells were then imaged on a fluorescent inverted microscope as seen in Figure 

4.6. In the cells transfected in medium plus FCS all concentrations of siRNA have 

resulted in positively transfected cells as shown by the orange fluorescence. 

However, the cells did not transfect as well at the 5 nM concentration of siRNA 

indicated by the less intense fluorescent staining of those macrophages. A 

similar staining pattern can be seen in the cells which were transfected without 

serum in the medium as all the concentrations of siRNA show positive 

transfection and fluorescent cells but some cells in the 10 nM and 5 nM 

concentrations are not stained as brightly as the cells in the 30 nM and 20 nM 

concentrations. The cells that were incubated without serum contained lots of 

cellular debris as can be seen in the 30 nM image indicating that this could be 

detrimental to the cells. Therefore, siRNA transfection was performed in the 

presence of FCS. 

 

 

Figure 4.6 siRNA transfection efficiency by imaging fluorescence on the microscope 
Macrophages were treated with M-CSF for 6 days and transfected with varying concentrations (30 - 
5 nM) of negative control siRNA for 24 hours in the presence or absence of fetal calf serum (FCS). 
The negative control siRNA has a fluorescent tag therefore cells that been successfully transfected 
cells will fluoresce. 
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4.5.2.2  FACS plots 

To quantify the amount of positive transfection with the N-TER transfection 

system macrophages were treated with the negative control siRNA for 24 hours 

in serum-containing media, the cells were then collected and analysed on the 

FACS for Alexa Fluro-555 fluorescence compared to untransfected cells. Figure 

4.7 shows the results of this FACS analysis and demonstrates that at least 93% of 

macrophages were positive for negative control siRNA in all of the 

concentrations tested. This indicates that the N-TER transfection system allows 

siRNA to successfully enter the macrophage cells even at 5 nM 

concentration.

 

Figure 4.7 FACS analysis siRNA transfected macrophages 
Monocytes were differentiated with M-CSF for 6 days and transfected with varying concentrations 
of a fluorescent tagged negative control siRNA for 24 hours in complete medium. Cells were then 
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collected and analysed by FACS for fluorescence which was indicative of positive siRNA 
transfection. 

4.5.3 Testing siRNA 1-4 at 3 concentrations 

Once the transfection system had been validated in macrophage cells the plexin 

A1 siRNA was tested in the macrophage cells to see if it changed the expression 

of plexin A1. The plexin A1 siRNA received from Qiagen consisted of four 

individual siRNA‘s designated 1-4. Each individual siRNA was tested on the 

macrophages at three concentrations 10, 20 and 30 nM. It was decided not to 

test the siRNA at 5 nM as from the fluorescent microscope experiment the 

macrophages did not appear to be as intensely stained at the 5 nM concentration 

as they did at the other concentrations. 

4.5.3.1  PLX1- 4 at 30, 20, 10 nM 

Macrophages were M-CSF treated for 6 days and then treated with negative 

control siRNA (designated control) and the four plexin siRNA (designated PLX 1-

4) at 10, 20 and 30 nM concentrations for 24 hours. After this time the cells were 

collected and put into trizol and the qRT-PCR was performed on the samples to 

determine whether the siRNA had decreased the amount of plexin A1 siRNA 

being expressed by the cells. Since the negative control siRNA is a non-silencing 

siRNA it should not affect the amount of plexin A1 expression and therefore the 

plexin A1 mRNA levels in the samples treated with siRNA PLX 1-4 were compared 

back to the negative control siRNA to look for a relative increase or decrease in 

expression. Figure 4.8 shows the results of this experiment; graph (A) 

demonstrates the expression of plexin A1 as a result of siRNA treatment. The 

values of the negative control siRNA are 1 and the line drawn on the graph is set 

at 1. It can be seen that at 30 nM concentration PLX 1, -2 and -3 siRNAs are 

causing an increase in Plexin A1 expression rather than knocking it down and at 

the 10 nM concentration PLX 2 and 3 siRNA are also causing an increase in plexin 

A1 expression in the cells compared to the control. 

 Figure 4.8 (B) shows the percentage inhibition of plexin A1 as a result of adding 

the 4 different siRNAs. The percentage inhibition was calculated relative to the 

negative control and a negative value indicates an increase in plexin A1 

expression whereas a positive value indicates a decrease in plexin A1 expression. 

At the 30 nM concentration PLX 1, PLX 2 and PLX 3 siRNA induced an increase in 
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plexin A1 expression of 89, 83 and 84% respectively. Also at the 10 nM 

concentration PLX 2 and PLX 3 siRNA increased the amount of plexin A1 mRNA by 

100 and 67% respectively. The reason for these siRNAs increasing the amount of 

expression is unknown. A recent study has shown when an siRNA sequence is 

complementary to the promoter region of a gene it can increase transcription of 

that gene [644]. However, the siRNAs used in this study are unlikely to target 

the promoter region of plexin A1 as the phenomenon of the PLX siRNA inducing 

expression of plexin A1 does not occur at all of the concentrations tested and 

only occurs at 30 nM and 10 nM concentrations.  

Due to the PLX 2 and PLX 3 siRNA producing an increase in plexin A1 levels at 30 

and 10 nM concentrations they were omitted from further experiments. PLX 1 

siRNA induced an increase of plexin A1 at the 30 nM concentration but otherwise 

induced a high amount (75%) of inhibition at the 20 nM concentration and also 

decreased plexin A1 levels at the 10 nM concentration. PLX 4 siRNA was the only 

siRNA to consistently decrease the level of plexin A1 mRNA. Consequently only 

PLX 1 and 4 were used in additional experiments. 
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Figure 4.8 Testing siRNA PLX 1-4 in M-CSF differentiated macrophages 
M-CSF differentiated macrophages were treated with 4 siRNAs PLX 1-4 and a negative control 
siRNA that should not affect the expression of plexin A1 at 3 different concentrations 10, 20 and 30 
nM for 24 hours. Using qRT-PCR the amount of expression of plexin A1 in the cells relative to the 
negative control, which is set at 1, was determined in graph (A). The line on the graph is set at 1 
therefore any bars above the line are showing an increase in plexin A1 expression and any lines 
below are a decrease in plexin A1 expression. The percentage inhibition of plexin A1 was also 
determined for this experiment as can be seen in graph (B). Positive values for the percentage 
inhibition indicate that there was a decease in plexin A1 expression compared to the negative 
control. 

4.5.3.2  PLX 1 and 4 at 30, 20, 10 nM 

To check the level of plexin A1 inhibition by the two siRNAs PLX 1 and PLX 4, M-

CSF derived macrophages were treated with 10, 20 and 30 nM siRNA for 24 

hours. Figure 4.9 (A) indicates that both PLX 1 and PLX 4 decreased the amount 

of plexin A1 mRNA expression in the macrophages compared to the negative 

control in all of the three conditions. The percentage inhibition of plexin A1, 

graph (B), ranged from 14% to 54%. The concentration at which the percentage 

inhibition was greatest was 20 nM, at this concentration PLX 1 and PLX 4 induced 

49 and 54% inhibition respectively compared to the negative control. Hence the 

20 nM concentration of PLX 1 and PLX 4 was used in the further experiments, a 

mixture of both siRNAs was also used to determine if combining the two siRNAs 

results in a greater amount of gene silencing. 

(A) 

(B) 
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Figure 4.9 Testing PLX 1 and PLX 4 siRNA in macrophages 
PLX 1 and PLX 4 siRNA were tested again to ensure that they were decreasing the amount of 
plexin A1 expression in M-CSF derived macrophages. The relative expression compared to the 
negative control is shown (A) as well as the percentage inhibition of plexin A1 expression (B). 

 

4.5.4 Effect of plexin A1 knockdown in M-CSF derived 
macrophages stimulated with LPS or Tck 

I next examined the effect of plexin A1 knockdown on macrophage activation. 

M-CSF derived macrophages were treated with 20 nM PLX 1, PLX 4 and PLX 1 + 

PLX 4 for 24 hours, the transfection media was then removed and the cells were 

either left unstimulated or stimulated with 10 ng/ml LPS or Tcks at a ratio of 4:1 

for 24 hours. The supernatants were then removed for cytokine analysis and the 

cells were analysed by qRT-PCR. This experiment was repeated three times and 

the following results are a representative example of the results achieved. 

(A) 

(B) 
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4.5.4.1  qRT-PCR data 

Prior to analysing the TNF ELISA data it was necessary to check that the plexin 

A1 expression had decreased as a result of treating the cells with siRNA. Figure 

4.10 shows the relative expression of plexin A1 in the macrophage samples 

relative to the negative control. In the unstimulated macrophages which were 

incubated with media after the siRNA treatment there is a decrease in the 

amount of plexin A1 being expressed by the cells which were treated with PLX 1 

siRNA. The amount of plexin A1 expression in macrophages treated with PLX 4 

siRNA is also decreased compared to control but the siRNA treatment producing 

the highest amount of gene silencing is the combined treatment of PLX 1+4. This 

same pattern is seen with the macrophages which were stimulated with LPS, 

where the greatest level of gene silencing is seen when the combination of 

PLX1+4 were used. The percentage inhibition of plexin A1 in the macrophages 

treated with PLX 1+4 siRNA was 43% and 55% for the macrophage samples which 

were subsequently incubated with media or LPS respectively. Despite this being 

a large percentage inhibition in the context of the experiment it indicates that 

there is still over 50% or just under 50% of the total amount of plexin A1 being 

expressed in the macrophages, which will therefore bias the results when trying 

to determine effect of silencing the plexin A1 gene in macrophages. It also 

indicates that there is a discrepancy of over 10% in the amount of gene 

knockdown obtained each time the macrophages are treated with PLX siRNA; 

this variability will also bias the results of the siRNA experiment. 

In Figure 4.10 the results from the macrophages which were subsequently 

stimulated with Tcks in a cell contact (c.c) indicate that there was very little 

gene silencing of plexin A1 in these cells since the level of plexin A1 relative 

expression in the cells treated with siRNA is similar to the level of plexin A1 in 

the cells treated with the negative control siRNA. This may be due to 

contaminating Tcks in the sample with the macrophages as although every effort 

was made to remove the Tcks before putting the cells in trizol some may have 

remained. T cells have been shown to express plexin A1 [623] and the presence 

of contaminating Tcks in the macrophage sample could have diluted out the 

effect of the siRNA gene silencing therefore producing the result of little or no 

plexin A1 gene knockdown in these samples. 
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Once the result of 43% and 55% gene knockdown in the macrophage samples had 

been determined, the pro-inflammatory output from these stimulated 

macrophages could be analysed. 

 

Figure 4.10 RT-PCR of plexin A1 knockdown in activated macrophages 
PLX 1, 4 or 1+4 siRNA were used to silence the plexin A1 gene in macrophages that were 
subsequently stimulated with LPS or Tcks. 

4.5.4.2  TNFα ELISA data 

To establish whether the plexin A1 knockdown had any effect on the pro-

inflammatory output of the macrophages stimulated with LPS or Tcks a TNFα 

ELISA was performed on the cell supernatants. Figure 4.11 shows the results of 

the ELISA, while there were small amounts of TNFα produced by the 

macrophages incubated for 24 hours in media alone the stimulated macrophages 

both produced elevated quantities of TNFα. The LPS stimulated macrophages 

produced less TNFα in the samples which had been treated with PLX siRNA 

compared to the samples which had been treated with the negative control 

siRNA. The lowest amount of TNFα produced is from the macrophage sample 

that was treated with PLX 4 which from the previous figure induced 31% 

inhibition of plexin A1 therefore inhibiting a relatively small percentage of 

plexin A1 in macrophages may be enough to change its pro-inflammatory profile. 

This decrease in TNFα using PLX 4 siRNA compared to the negative control 

sample is statistically significant using a 1 way ANOVA and a Turky‘s multiple 

comparison test. 
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The Tck cell contact activated macrophages do not appear to have changed their 

proinflammatory output as a result of siRNA silencing of plexin A1 since the 

amount of TNF produced by the cells treated with PLX siRNA is not significantly 

different to the TNF production from the negative control treated macrophages. 

This could indicate that plexin A1 may not be involved in the cellular cross talk 

between macrophages and T cells however plexin A1 was not fully silenced with 

the PLX siRNA and it is possible that in order to elucidate the role plexin A1 

plays in the cellular contact between macrophages and T cells the plexin A1 

gene must be fully knocked down. 

Figure 4.11 TNFα ELISA of siRNA treated macrophages 
A TNFα ELISA was performed on macrophages that had been treated with various siRNAs before 
being incubated with media alone, 10 ng/ml LPS or Tcks (c.c). Error bars are mean ±SEM. This is 
a representative of three individual experiments. Using a 1 way ANOVA with Tukey’s multiple 
comparison test on the LPS treated group there is a statistically significant difference between the 
–ve control LPS group and the PLX 4 LPS group in addition to a statistically significant difference 
between –ve control LPS and PLX1+4 LPS group (p<0.05). 

 

4.6  Investigation into the expression of the Plexin A1 
ligand semaphorin 6D on T cells 

Plexin A1 is known to have several semaphorin ligands including semaphorin 6D. 

In the context of the immune system semaphorin 6D is the most well studied 

plexin A1 ligand to date and several studies have indicated that plexin A1 

expressed on DCs may interact with T cells expressing semaphorin 6D [623]. A 

recent study investigated the regulation of semaphorin 6D expression on T cells 

and found that in vitro activation of murine CD4+ T cells using plate-bound anti-

CD3 and anti–CD28 antibody increased mRNA levels of sema 6D by 24 hours and 
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after 5 days induced 71% surface expression of sema 6D compared to control 

during the late phase of activation [645].  

Since plexin A1 is upregulated in RA and PsA synovial fluid CD14+ cells and 

macrophages are known to interact with T cells in the arthritic joint [408] we 

hypothesised that semaphorin 6D, one of plexin A1‘s specific ligands, is 

expressed on arthritic T cells and is one of the receptor-ligand interactions 

taking place within the synovium of diseased patients. It was decided to first 

test for the presence of sema 6D on cytokine activated T cells (Tcks) since these 

are an in vitro model of activated synovial T cells [298, 309]. As a positive 

control human T cells were also activated with anti-CD3 and anti-CD28 

antibodies as a previous study had shown 71% of murine cells stimulated in this 

manner were found to express semaphorin 6D after 5 days [645]. 

4.6.1 Semaphorin 6D FACS analysis 

T cells were isolated from normal donors and stimulated for 6 days with a 

cytokine cocktail to produce Tcks or CD3/CD28 microbeads to produce activated 

T cells. T cells were analysed for semaphorin 6D expression at day 0 

(unactivated T cells), day 3 and day 6. Since the semaphorin 6D antibody was 

unconjugated a secondary APC antibody was incubated with the cells to detect 

whether sema 6D had bound to the cells. As a control, an irrelevant antibody 

(CD68) that should not have bound to the T cells was incubated with the cells 

before adding the secondary antibody in order to detect any non-specific 

staining of the secondary antibody. 

4.6.1.1  Semaphorin 6D expression on CD3/CD28 stimulated T   
cells 

Figure 4.12 demonstrates representative results of the FACS staining for the T 

cells stimulated for 0, 3 and 6 day with anti-CD3, anti-CD28 microbeads. Isotype 

control is shown as the grey histogram, semaphorin 6D surface and intracellular 

staining is shown in blue on the left hand histograms. Irrelevant antibody 

staining is shown in red on the right hand panel of histograms. 

Unstimulated T cells on day 0 appear to have approximately 3.5% semaphorin 6D 

surface staining however upon comparison to the irrelevant antibody, which has 



248 

3.16% positive staining, it appears  that the majority of the staining seen at day 

0 is non-specific secondary antibody staining. The same pattern is seen at day 3 

where there is 3.5% positive surface staining from the irrelevant antibody which 

indicates that the 4.39% positive semaphorin 6D staining is unlikely to be a valid 

observation. The same observation is seen within the day 6 activated T cells.. 

The intracellular staining at day 6 is also negative for both semaphorin 6D and 

irrelevant antibody. However, the intracellular staining in the T cells at day 3 

appears to show a small increase in semaphorin 6D expression compared to 

isotype control as 9% of cells are positive for semaphorin 6D. The irrelevant 

antibody staining at this timepoint is 1.9% indicating that the semaphorin 6D 

expression could be valid observation. 

Consequently, day 3 intracellular staining is the only timepoint which shows 

expression of semaphorin 6D, the intracellular levels are negative at day 6 and 

there is no surface expression of semaphorin 6D at any of the three timepoints 

examined. These observations conflict with the results shown by O‘Connor et al 

[645] who demonstrated that over 70% of murine CD4+ T cells express 

semaphorin 6D on the surface after 5 days of stimulation with anti-CD3 and anti–

CD28 antibodies. 
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Figure 4.12 Surface and intracellular semaphorin 6D staining of CD3/CD28 stimulated T cells 
T cells were analysed at day 0, day 3 and day 6 after stimulation for surface and intracellular 
staining of semaphorin 6D (blue lines). The semaphorin 6D was not a directly conjugated FACS 
antibody therefore a secondary APC conjugated antibody was incubated with the cells after 
semaphorin 6D staining to detect the presence of the surface ligand. As a control an irrelevant 
antibody (CD68) was incubated with the cells before adding the secondary antibody in order to 
check for non-specific staining of the secondary antibody (red lines). Isotype control is shown as 
the grey histograms. The surface staining is a representative of n=6 experiments and the 
intracellular staining is a representative of n=2 experiments. 

4.6.1.2  Semaphorin 6D expression in cytokine stimulated T cell 
(Tcks) 

Tcks were also analysed for semaphorin 6D expression after 0, 3 and 6 days of 

activation (Figure 4.13). Semaphorin 6D staining is shown by the blue lines on 

the left hand panel of histograms and irrelevant antibody staining is shown by 

the red lines on the right hand panel of histograms. Since the same unactivated 

T cells were used as a control for both CD3/CD28 and Tck activated T cells 

before the cells were activated with either stimulus, day 0 T cells show the 

same results as in the previous figure. There is no surface semaphorin 6D 

expression due to a similar percentage of positive staining for the irrelevant 

antibody, indicating that the secondary antibody is binding non-specifically. 

There was no induction of surface semaphorin 6D expression after 3 and 6 days 

of cytokine activation (2.1% and 2.5% positive respectively) considering that the 
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secondary antibody was also positive (0.68% and 1.7% respectively) indicating 

non-specific staining. There was also no intracellular semaphorin 6D expression 

at day 6 since the percentage of positive cells for semaphorin 6D and irrelevant 

antibody were almost identical (3.93% and 3.75%). However, as was seen with 

the CD3/CD28 activated T cells the intracellular expression of semaphorin 6D in 

Tcks was increased at day 3, 17.1% of Tcks were positive for semaphorin 6D. The 

irrelevant antibody had a considerably lower expression at this timepoint (3.97%) 

suggesting that the semaphorin 6D staining was specific. 

As was seen with the CD3/CD28 activated T cells semaphorin 6D is only 

expressed in Tcks intracellularly after 3 days of activation but is not expressed 

on the surface of the cells during the 6 days of activation.  

 

Figure 4.13 Surface and intracellular semaphorin 6D staining of Tcks 
T cells were analysed at day 0, 3 and 6 after cytokine stimulation for surface and intracellular 
expression of semaphorin 6D (blue lines). Since the semaphorin 6D was not a conjugated FACS 
antibody a secondary APC conjugated antibody was incubated with the cells after semaphorin 6D 
staining to detect the presence of the ligand. As a control an irrelevant antibody (CD68) was 
incubated with the cells before adding the secondary antibody in order to check for non-specific 
staining of the secondary antibody (red lines). Isotype control is shown as the grey histograms. The 
surface staining is a representative of n=6 experiments and the intracellular staining is a 
representative of n=2 experiments. 
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4.6.2  Investigation into the level of semaphorin 6D mRNA in T 
cell samples 

Due to problems with repeated non-specific staining of the secondary antibody 

during the FACS analysis we therefore went on to analyse the levels of 

semaphorin 6D mRNA in cytokine- and CD3/CD28-activated T cells. A PCR was 

set up with these samples and no detectable bands could be observed (data not 

shown) therefore to verify this result the samples were analysed by qRT-PCR. 

4.6.2.1  qRT-PCR of T cell samples 

T cells were isolated from 2 donors and activated with cytokines or CD3/CD28 

for 6 days. CD3+ cells were also isolated from 3 PsA synovial fluids. The relative 

expression of semaphorin 6D compared to the GADPH of each sample is shown in 

graph (A) of Figure 4.14. All Tck and CD3/CD28 samples have very low relative 

expression values indicating that semaphorin 6D is almost certainly not being 

expressed. The Tck day 6 sample of one of the donors has a much higher relative 

expression compared to all of the other samples which could suggest semaphorin 

6D mRNA is being expressed. The three PsA synovial fluid CD3+ samples have 

varying levels of semaphorin 6D relative expression but the levels are still 

relatively low, again indicating that semaphorin 6D is unlikely to be expressed in 

these cells.  

The fold change of semaphorin 6D expression in the Tck and CD3/CD28 activated 

cells can be determined by comparing the semaphorin 6D expression of the 

activated samples to that of the corresponding inactivated day 0 T cell sample. 

Graph (B) of Figure 4.14 illustrates the fold change in semaphorin 6D in the 

activated T cell samples compared to inactivated T cells. The Tcks and 

CD3/CD28 T cells activated after 3 days in both donors demonstrated a decrease 

in the amount of semaphorin 6D compared to inactivated T cells. The day 6 Tcks 

and CD3/CD28 T cells had a decrease in the amount of semaphorin 6D (fold 

change of -141 and -28 respectively) in donor 1 and a slight increase in donor 2 

(fold change 11 and 1.9 respectively).  

The combined FACS and qRT-PCR data suggest that in the activated T cells there 

are donor specific variances in the mRNA level of semaphorin 6D, however these 

expression levels are very low and on the whole demonstrate a decrease in the 
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amount of semaphorin 6D mRNA compared to inactivated T cells. The levels of 

semaphorin 6D expression within CD3+ cells from PsA synovial fluid are also very 

low. Semaphorin 6D protein appears to be transiently expressed within the T cell 

during activation. Plexin A1 is a receptor for semaphorin 6D and can only form 

an interaction if its ligand is present on the cell surface. During the FACS 

analysis surface semaphorin 6D could not be detected in the Tck samples that 

have been previously demonstrated to be an in vitro model of synovial T cells 

[298, 309]. This data combined with the very low levels of semaphorin 6D mRNA 

in the CD3+ synovial fluid samples suggests that T cells within the arthritic joint 

may not be the source of plexin A1‘s ligand semaphorin 6D. 
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Figure 4.14 qRT-PCR of semaphorin 6D expression in T cell samples and patient CD3
+
 

samples 
T cells from two donors were stimulated for 3 and 6 days with cytokines (Tcks) or CD3/CD28 
microbeads. These activated T cells and inactivated T cell were then analysed for semaphorin 6D 
expression by qRT-PCR. T cells were also isolated from 3 PsA synovial fluids and analysed for 
semaphorin 6D. Graph (A) shows the relative expression of semaphorin 6D compared to the 
GAPDH levels in each sample. Graph (B) shows the fold change in expression in the Tck or 
CD3/CD28 activated T cells compared to the inactivated T cells (T cells d=0). 
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4.7 Investigation into the expression of other plexin A1 
ligands semaphorin 3A, 3F, 6D on RA synovial 
membrane 

The previous results suggested that semaphorin 6D is unlikely to be expressed on 

the T cells in the arthritic joint therefore it was decided to analyse the synovial 

membrane of RA patients for semaphorin 6D. If the membrane was positive for 

semaphorin 6D expression, this would imply that plexin A1‘s ligand is being 

expressed by other cell types rather than T cells. 

Plexin A1 is also known to interact with class 3 semaphorins namely semaphorin 

3A and semaphorin 3F [617]. As mentioned in the introduction class 3 

semaphorins will only bind plexin A1 if neuropilin is present as a co-receptor, 

semaphorin 3A will specifically bind neuropilin-1 (NRP-1) and semaphorin 3F will 

bind NRP-1 and NRP-2 [443]. Analysing the microarray data (presented in chapter 

4) for genes that are upregulated in addition to plexin A1 in the RA and PsA SF 

CD14+ cells reveals that these cells have upregulated NRP-1 with a fold change 

increase of 40 in PsA SF and 11 in RA SF and NRP-2 with a fold change increase of 

24 in PsA SF and 31 in RA SF. Since these cells had upregulated plexin A1 and the 

two co-receptors needed for semaphorin 3A and 3F signalling it was possible that 

plexin A1 could be binding to either of these ligands hence the presence of 

semaphorin 3A and 3F were also analysed in the RA synovial membrane. 

4.7.1 qRT-PCR on RA synovial membrane 

SYBR green analysis was performed on 10 RA synovial membranes to investigate 

the presence of three plexin A1 ligands. The results are shown in Figure 4.15 and 

indicate that all three semaphorins are expressed in the RA membranes however 

semaphorin 3A has the greatest relative expression in the samples compared to 

its housekeeping gene. Semaphorin 6D is also expressed in the RA membranes 

indicating that although we could not detect it on T cells it may be present on 

other cell types within the membrane. Consequently the level of these 

semaphorins on another cell type known to be present in the RA synovium was 

investigated. 
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Figure 4.15 Semaphorin 3A, 3F, 6D expression in RA synovial membrane 
qRT-PCR was used to determine the relative expression of 3 of plexin A1’s ligands in 10 RA 
synovial membranes. Each dot represents one patient sample and the line indicates the mean 
expression. 

4.7.2 SYBR green of RA synovial fibroblasts 

Given that it had been determined that three of the plexin A1 ligands were 

expressed in the RA synovial membrane it was hypothesised that fibroblasts may 

be a cell type expressing these semaphorins since macrophages and fibroblasts 

are known to interact in the inflamed synovial joint [646]. Consequently, the 

relative expression of semaphorin 3A, 3F and 6D compared to GAPDH was 

determined for RA synovial fibroblasts from 5 patients. Figure 4.16 outlines the 

results and reveals that semaphorin 3F was the most highly expressed 

semaphorin and all five samples expressed it at a similar level. Semaphorin 3A 

was also expressed but the levels varied between samples with 3 samples having 

a high level of expression comparable to semaphorin 3F samples whereas the 

remaining 2 samples having a low level of expression. The five RA fibroblast 

samples expressed semaphorin 6D but at a lower level compared to the other 

semaphorin‘s examined. The overall expression of the three semaphorin 

molecules is very low with all of the relative expression values being lower than 

0.02. Further analysis with more samples would need to be performed to 

determine whether synovial fibroblasts could be expressing the plexin A1 

ligands.  
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Figure 4.16 Semaphorin 3A, 3F and 6D expression in RA synovial fibroblasts 
Synovial fibroblasts from 5 RA patients were analysed for semaphorin (sema) 3A, 3F and 6D. qRT-
PCR was used to determine the relative expression of the semaphorins which were then 
normalised to GAPDH levels of each sample. The line represents the mean value. 



257 

4.8 Discussion 

Plexin A1 is a semaphorin receptor known to participate in axonal guidance 

[635], chick cardiac development [631], bone homeostasis [623], T cell-DC 

interactions [444, 623] and DC trafficking to the lymph node [632]. Plexin A1 had 

been previously shown to be expressed on human M-CSF differentiated 

macrophages [443] but has not been shown to be present or play a role in PsA or 

RA. After discovering plexin A1 to be a highly upregulated gene in RA and PsA 

CD14+ cells, showing a fold change increase of 26 and 27 respectively, we were 

interested in its previously identified role in T cell-DC interactions. In this 

setting plexin A1 is expressed on the DCs and is thought to act as a co-

stimulatory marker for a T cell ligand because plexin A1-/- DCs have a reduced 

ability to stimulate T cells [623] and plexin A1 has been shown to be localised at 

the T cell-DC interface [640]. Since macrophages have been demonstrated to 

interact with many cellular subtypes within the synovium of arthritis patients 

[249, 408, 646] we hypothesized that the increased levels of plexin A1 on 

synovial fluid CD14+ cells may play a role in enhancing cellular interactions 

within the diseased joint. In order to investigate this hypothesis we needed to 

demonstrate that plexin A1 was present within the synovial fluid cells and the 

synovium of arthritis patients, determine which plexin A1 ligands were present 

within the joint and investigate the effects of silencing plexin A1 on the pro-

inflammatory cytokine level obtained from activated macrophages. 

Plexin A1 was expressed at the mRNA level in all of the CD14+ cells isolated from 

the synovial fluid of RA and PsA examined which included the samples that had 

been analysed on the microarray and other patient samples. Plexin A1 mRNA was 

also detected in the CD14+ synovial fluid cells of a JIA, an inflammatory 

polyarthritis and an OA patient indicating that this cell surface molecule may 

also be playing a role in other arthritic diseases, although more patients would 

have to be analysed to verify this. In the patients where a matched synovial fluid 

and blood sample were available the mRNA level of plexin A1 was consistently 

increased in the synovial fluid CD14+ cells compared to the blood CD14+ cells 

verifying the microarray results and suggesting the pro-inflammatory 

environment within the diseased joint causes the CD14+ cells to upregulate 

plexin A1 once they exit the blood and enter the synovium. 
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We observed the presence of plexin A1 in five RA synovial membranes where it 

was mainly located in cells outlining vascular structures, possibly indicative of 

endothelial cells, and within cells surrounding the vasculature structures which 

could represent cells infiltrating into the membrane via the blood vessels. 

However, due to a lack of PsA synovial membrane this disease was unable to be 

analysed for plexin A1 staining.  

Plexin A1 is a receptor molecule for semaphorin ligands and previous work has 

indicated that the specific ligands which interact with plexin A1 are semaphorin 

3A, 3F and 6D [624]. The main focus of research involving plexin A1‘s role in the 

immune response has been its interaction with semaphorin 6D on T cells [623, 

640]. O‘Connor et al demonstrated that CD3/CD28 activation of murine CD4+ 

cells induced the surface expression of semaphorin 6D [645] therefore we 

investigated whether an in vitro system of cytokine activation previously shown 

to induce a T cell phenotype similar to that of synovial T cells [298, 309] could 

induce the expression of semaphorin 6D. The interaction of macrophages and T 

cells in the arthritic joint has been well documented [314, 408] therefore a 

plexin A1 – semaphorin 6D receptor ligand complex could be one of the 

interactions taking place. We observed no surface semaphorin 6D expression on 

the cytokine activated or CD3/CD28 activated T cells and no mRNA expression of 

semaphorin 6D in these cells or synovial fluid CD3+ T cells. The lack of surface 

semaphorin 6D on CD3/CD28 activated T cells conflicted with the results of the 

O‘Connor paper  which demonstrated CD3/CD28 antibody stimulation induced 

semaphorin 6D expression in 70% of T cells after 5 day [645]. However, this 

discrepancy may be explained by a species specific response as the O‘Connor 

paper analysed murine T cells whereas we investigated semaphorin 6D in human 

T cells.  

Despite semaphorin 6D being undetected in cytokine activated and synovial T 

cells there was a possibility that semaphorin 6D was being expressed in the 

synovium on other cell types. There was also the prospect of the macrophage 

plexin A1 interacting with one of its other ligands in the synovium such as 

semaphorin 3A or 3F. However, both of these semaphorins only interact with 

plexin A1 in the presence of neuropilin-1 or -2 acting as a co-receptor [647]. 

Analysis of the microarray study data indicated that compared to blood CD14+ 

cells RA and PsA SF CD14+ had increased levels of neuropilin-1 and -2 as well as 
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plexin A1 indicating that binding of semaphorin 3A or 3F would be possible in 

these synovial macrophages. We observed that 10 RA synovial membranes 

expressed semaphorin 3A mRNA at a higher level than that of semaphorin 3F or 

6D and so it appeared that semaphorin 3A could be the main receptor for plexin 

A1 in the synovial compartment. To try and elucidate which cell type expressed 

the plexin A1 ligands we investigated five RA synovial fibroblasts samples since 

synovial macrophages have been demonstrated to interact with synovial 

fibroblasts [249]. In these cells semaphorin 3F mRNA was expressed at a higher 

level compared to semaphorin 3A and 6D. However, the relative expression of 

these semaphorins were very low and further studies to analyse protein levels of 

expression should be conducted before a definitive conclusion can be made 

about the presence of semaphorins on synovial cell types. 

Despite being unable to define which cells were expressing the plexin A1 ligands 

we had shown that these ligands were present in the synovium of RA patients 

and therefore could hypothesize that the upregulation of plexin A1 in synovial 

macrophages was significant and may be playing a role in the progression of 

disease in RA and PsA. To try and elucidate the function of plexin A1, small 

interfering (siRNA) was used to silence the plexin A1 gene in M-CSF derived 

macrophages which had been shown to upregulate plexin A1 mRNA during their 

differentiation. The transfection efficiency was over 90% indicating that the 

siRNA was effectively entering the cells using the nanoparticle transfection 

system. Unexpectedly, two of the four siRNA induced an increase in plexin A1 

expression rather than knocking it down. siRNA‘s are known to have off-target 

effects as a result of a lack of specificity and can therefore silence other genes 

within the cell if the siRNA imperfectly pairs with sequence motifs residing in 

the 3‘ UTR of cellular mRNA [648]. There has been one report of siRNA 

treatment resulting in the upregulation of mRNA within cells. This was thought 

to be due to competition between the transfected siRNA and the cell‘s own 

endogenous miRNA. Hence the mRNAs targeted by the endogenous miRNA are 

not degraded and the cell demonstrates an upreglulation of these mRNA‘s [649]. 

However, despite this report of upregulation of mRNA levels occurring as a result 

of siRNA treatment there has been no report of upregulation of the siRNA target 

gene which is what occurred during the plexin A1 knockdown experiments. The 

reason for the observed upregulation of plexin A1 mRNA is unknown but could 
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have been due to badly designed siRNA which did not target the plexin A1 mRNA 

for degradation. As a result the two PLX siRNA which demonstrated increased 

plexin A1 expression were not used in further experiments. 

The TNFα cytokine profile of siRNA treated macrophages subsequently 

stimulated with 10 ng/ml of LPS or cell contact activated with Tcks for 24 hours 

were analysed. It was thought that these two treatments may mimic the pro-

inflammatory environment to which synovial macrophages may be exposed as 

TLR signalling may play a role in arthritis [650] and cellular contact with 

activated T cells is known to take place within the joint.  

In the experiment shown, treating macrophages with 20 nM PLX 1+PLX 4 resulted 

in a 43% inhibition of plexin A1 in the cells which were subsequently cultured 

with media alone and 55% inhibition in the macrophages which were 

subsequently stimulated with LPS. This discrepancy of over 10% in the amount 

gene silencing demonstrated the large variability of the siRNA treatment which 

was seen throughout all three siRNA experiments. The small amount of gene 

silencing also indicated that potentially there could be as much as 50% of the 

total amount of plexin A1 mRNA still present in the macrophage cells before 

activation which could therefore bias the results of the cytokine analysis. In the 

siRNA treated macrophages which were activated with Tcks there appeared to 

be little to no gene silencing with the maximal amount of inhibition being 10% 

with PLX 4 treatment. This observation could be the result of contaminating Tcks 

remaining in the culture wells as T cells have been shown to express plexin A1 

[623]. Consequently, contaminating T cells in the macrophage sample may have 

diluted out any effect of the siRNA treatment which resulted in the appearance 

of no plexin A1 knockdown. Due to this discrepancy we must assume that the 

level of gene silencing in the Tck-stimulated was at a similar level to the gene 

silencing seen in the other macrophage samples i.e. around 43 – 55% inhibition. 

The subsequent TNFα analysis of the macrophage samples demonstrated that the 

cytokine level did not change in the macrophages incubated in media alone, 

indicating that the siRNA treatment did not adversely activate the macrophages. 

The LPS stimulated macrophages produced less TNFα in the samples which had 

been treated with siRNA compared to the negative control. The sample 

producing the lowest amount of TNFα was the sample which had a 31% 
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knockdown of the plexin A1 gene suggesting that even a small decrease in the 

amount of plexin A1 may be enough to change the pro-inflammatory cytokine 

profile of the macrophage. This result would imply that plexin A1 is playing a 

pro-inflammatory role within the macrophage as a decrease in plexin A1 

expression causes less TNFα to be released by the cell as a result of TLR4 

stimulation. This observation is in contrast to that of Ji et al [443] who 

previously demonstrated that LPS stimulation of human monocytes alongside M-

CSF stimulation for 24 hours resulted in the inhibition of plexin A1 mRNA 

expression. The inconsistency could be due to the stage of monocyte activation 

as the Ji et al paper investigated day 0 monocytes which were M-CSF and LPS 

stimulated at the same time for 24 hours while our investigation analysed the 

effect of plexin A1 silencing in macrophages that had been treated with M-CSF 

for 6 days and therefore would have a more activated phenotype. It must also be 

noted that the plexin A1 inhibition in the macrophages of this experiment was 

55% therefore there is still 45% of the total plexin A1 mRNA level being 

expressed within these cells. Subsequently, it is difficult to draw definitive 

conclusions about the role of plexin A1 with regards to TLR-4 stimulation until 

complete knockdown of the plexin A1 gene is established. 

The TNFα levels measured in the siRNA treated macrophage activated with Tcks 

did not appear to have changed significantly in comparison to siRNA negative 

control macrophages. This result could indicate plexin A1 on the macrophages is 

not involved in the cellular cross talk which occurs between Tcks and 

macrophages since its knockdown did not affect the pro-inflammatory output of 

the macrophages. This conclusion is supported by our  finding that semaphorin 

6D, one of plexin A1‘s most studied ligands, is not present on Tcks or synovial 

CD3+ cells at the surface protein or mRNA level. However, as with the siRNA-

treated LPS stimulated macrophages it is difficult to draw conclusions about the 

role of plexin A1 within the macrophage - Tck cell contact when the plexin A1 

gene is incompletely silenced. The true function of plexin A1 may only become 

apparent once macrophage cells with 100% knockdown of plexin A1 are studied. 

In conclusion, the plexin A1 investigation has demonstrated that plexin A1 mRNA 

is highly upregulated in synovial fluid macrophage cells of PsA and RA and is also 

upregulated in synovial CD14+ cells of other arthritic conditions such as OA, JIA 

and inflammatory polyarthritis. It is present within the synovial membrane of all 
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5 RA patients examined although double staining is necessary to determine if the 

plexin A1 positive cells are predominantly macrophages. One of plexin A1‘s 

ligands semaphorin 6D could not be measured on cytokine activated T cells 

(Tcks) or CD3/CD28 activated T cells as had been previously described [645] and 

its mRNA levels could not be determined in the above cell types or synovial fluid 

CD3+ cells suggesting that macrophage plexin A1 was not interacting with T cells 

in the synovium. However, another of plexin A1‘s ligands, semaphorin 3A, was 

found to be highly expressed at the mRNA level in 10 RA synovial membranes 

indicating that this could be plexin A1‘s main ligand within the arthritic joint. At 

present the cell type expressing this semaphorin has not been discovered and 

analysis of RA synovial fibroblasts indicated that they expressed low levels of 

semaphorin. Investigation into the function of plexin A1 using siRNA has hinted 

at a possible pro-inflammatory role in macrophages as LPS induced TNFα 

secretion decreased in siRNA treated cells. However further investigations are 

needed to fully confirm this observation. 
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Chapter 5 Investigation into the expression and 
function of the novel gene legumain in rheumatoid 
and psoriatic arthritis patients 
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5.1 Introduction 

The second ‗novel articular‘ gene to be discovered during the analysis of the 

upregulated genes in RA and PsA SF CD14+ cells was legumain. Legumain, 

otherwise known as asparagine endopeptidase (AEP), is a lysosomal cysteine 

protease that specifically cleaves protein substrates on the C-terminal side of 

asparagine [651]. The mammalian form was cloned and sequenced in 1997 [651] 

after being described in leguminous plants [652] and the blood fluke Schistosoma 

mansoni [653]. There are four families of cysteine endopeptidases found in 

mammals, the most numerous of those belong to the papain family (C1), which 

are predominantly lysosomal enzymes and include cathepsin S, L, F, B, K and C 

[654]. These enzymes are responsible for proteolysis in the lysosomal/endosomal 

system and can also be secreted to act extracellularly. The other families of 

cysteine endopeptidases consist of calpain (family C2), caspase and legumain 

(family C13) [655]. 

Legumain is produced as an inactive zymogen that requires proteolytic cleavage 

to gain activity. Legumain activates itself autocatalytically which requires the 

sequential cleavage of a C-terminal 110-residue propeptide and then a shorter 

N-terminal 8-residue propeptide, this activation is pH dependent occurring 

optimally between pH 4.0-4.5 [656]. Initial studies of legumain found it to have 

the highest activity in the kidney of rat, rabbit and pig [651]. However, further 

studies of mouse legumain found it be expressed in all samples examined 

including placenta, spleen, kidney, heart, lung, liver, testis and thymus but the 

active legumain was particularly abundant in the kidney and placenta [657]. 

Legumain deficient mice have enlarged proximal renal tubule cells suggesting 

that material to be degraded is accumulating in the lysosomes; previous 

hypotheses proposed that legumain has a role in the biosynthesis of lysosomal 

enzymes [432]. Legumain has since been shown to be ubiquitously expressed in a 

large panel of human tissue at mRNA level [435] and is constitutively expressed 

in most cells types including macrophages and DCs [658]. 

Legumain is known to cleave and activate several substrates such as MMP-2 

[429]; fibronectin [431]; α-thymosin [430]; cathepsin B, H and L [432]; TLR9 in 

DCs [658] and it also processes microbial tetanus toxin antigen [659]. Due to this 

wide variety of substrates, the functional role of legumain is cell and tissue 
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context dependent. Manoury et al [659] first described a role for legumain as the 

enzyme which processes microbial tetanus toxin antigen (TTCF) for antigen 

presentation; legumain was isolated from disrupted lysosomes of the human B 

cell line EDR and exposed to TTCF in vitro. Peptide inhibitors to legumain slowed 

TTCF presentation to T cells while pre-processing of the peptide with legumain 

accelerated its presentation. The same group later showed that T cell responses 

to TTCF were still mounted in legumain-deficient mice but the in vivo kinetics of 

TTCF presentation was slower. Boosting legumain levels in the primary APCs 

accelerated TTCF processing and presentation in vitro indicating that legumain 

is the most efficient protease for TTCF processing but in its absence other 

enzymes can substitute to enable a slower immune response [660]. Recently, 

Sepulveda et al [658] showed that legumain plays a role in the processing of 

TLR9 in DCs as legumain deficiency resulted in decreased secretion of 

proinflammatory cytokines in response to umCpG DNA. They also showed that 

transfection of TLR9 deficient DCs with a mutant TLR9 lacking a legumain 

cleavage site did not restore TLR9 signalling, suggesting that TLR9 is a direct 

substrate for legumain.  

As well as its roles in antigen processing and TLR9 cleavage, legumain has also 

been shown to directly degrade fibronectin in vitro and in cultured mouse renal 

proximal tubular cells [431]. The processing of fibronectin was abrogated by 

chloroquine, an inhibitor of lysosomal degradation, and was enhanced by the 

overexpression of legumain revealing that fibronectin degradation occurs in the 

presence of legumain in the lysosomes of renal proximal tubular cells. Similarly, 

legumain-deficient mice exhibit renal injury induced protein accumulation of 

fibronectin and enhanced renal interstitial fibrosis which led to the hypothesis 

that renal proximal tubular cells take up and degrade fibronectin intracellularly 

thereby linking legumain to extracellular matrix remodelling. Legumain may also 

play an indirect role in matrix remodelling as it can cleave pro-MMP-2 into active 

MMP-2 [429]. MMP-2 is known to degrade the extracellular matrix due its wide 

variety of substrates including fibronectin, several MMPs and collagen types 

[661]. 

Despite playing an important role in extracellular matrix turnover and antigen 

processing legumain is also linked to various pathological conditions such as 

cancer, atherosclerosis and skin barrier function. Legumain was first 
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demonstrated to be involved in cancer when Liu et al showed that it was 

overexpressed in a panel of human solid tumours including breast, colon, lung, 

prostate and ovarian carcinoma [662]. The same study used fluorescent 

microscopy in tumour cells to show legumain expression associated with 

intracellular membranous vesicles, consistent with its function as a lysosomal 

protease, as well as on the cell surface and in membranous vesicles 

concentrated at the invadopodia of the tumour cell. HEK 293 cells stably 

expressing legumain were found to have increased migration and invasion in 

vitro and legumain expression was correlated with tumour invasion and 

metastasis in vivo [662]. Legumain was also found to be expressed specifically in 

tissue sections of a mouse tumour line CT26 where it was detected in vascular 

endothelial cells, macrophages and in the extracellular matrix associated with 

collagen I [663]. Cystatin E/M is a cysteine protease inhibitor and its relationship 

with legumain was investigated in human melanoma, legumain was expressed 

and active in most of the cell lines but was absent or at low levels in cell lines 

secreting cystatin E/M. When melanoma lines lacking cystatin E/M secretion 

were transfected with a plasmid containing full length cystatin E/M their 

intracellular legumain activity was inhibited, suggesting that it regulates 

legumain activity and hence its invasive potential [664]. 

Legumain was first associated with atherosclerosis when a microarray study 

comparing stable and unstable atherosclerotic plaques found legumain to be one 

of the genes upregulated in the unstable areas of plaques [434]. The same group 

demonstrated legumain mRNA to be co-localised with CD68 macrophages in the 

shoulder region of the plaque by in situ hybridisation and IHC. Another group 

followed on from this initial observation by using a microarray to study the aorta 

of aging Apolipoprotein E deficient mice with developed atherosclerosis, they 

found that legumain mRNA expression increased with the development of 

atherosclerosis while its expression remained at low unchanged levels in aged 

matched C57BL/6 control mice [665]. In both Apolipoprotein E deficient mouse 

arteries and human advanced atherosclerotic plaques legumain was 

predominantly expressed in macrophages. It was also shown to induce 

chemotaxis of primary human monocytes and human umbilical vein endothelial 

cells (HUVECs). The macrophage-specific expression of legumain in vivo as well 

as the ability of legumain to induce chemotaxis of cells in vitro suggests 
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legumain could play a functional role in atherogenesis. It has also subsequently 

been shown that human unstable plaques express twice the amount of legumain 

as stable plaques [666]. 

Cystatin C and cystatin E/M both bind to legumain with high affinity in vitro 

thereby inhibiting its activation [667]. Since cystatin E/M plays a regulatory role 

in epidermal differentiation, misregulation of this pathway leads to abnormal 

stratum corneum and hair follicle formation as well as severe disturbances of 

skin barrier formation [668]. Legumain is found in the epidermis and hair 

follicles of wild type and Cystatin E/M null mice (ichq mouse) but active 

legumain is only found in the epidermis of the ichq mouse suggesting that a role 

for cystatin E/M in vivo is to regulate legumain activity [669]. Regulation of 

legumain activity is important as it cleaves and activates cathepsin L which in 

turn activates transglutaminase 3 (TGM3). Active TGM3 was detected in skin 

extracts of cystatin E/M null mice at a time where skin lesions developed and 

caused abnormal cornification [669], therefore unrestricted legumain activation 

could play a role in irregular skin barrier formation. Ichq mice are a model of the 

human disorder type 2 harlequin ichthyosis which is a severe type of skin disease 

and as yet the presence of legumain in this disorder has not been determined. 

However, legumain mRNA has been detected in atopic dermatitis and psoriasis 

suggesting it may be contributing to the abnormal skin barrier seen in these 

conditions [435]. 

Since legumain was expressed at high levels in the SF of RA and PsA in my 

microarray samples and it is has been demonstrated to cleave and activate 

several substrates found in the arthritic joint, such as fibronectin [425-428], 

MMP-2 [670] and cathepsin B and L [671-673], it was decided to analyse legumain 

and its expression and activity in RA and PsA samples.  

Due to identification of a novel gene legumain which was highly upregulated in 

RA and PsA CD14+ SF cells I therefore sought to validate this expression in the 

microarray samples and samples from other patients. I also sought to determine 

the level of protein expression of legumain in the synovial membrane of 

diseased patients and in the CD14+ cells of diseased patients by IHC and western 

blot. Once the presence of legumain had been verified I sought to determine 
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whether the legumain that was present was active and still able to cleave 

substrates. 



269 

5.2 Validation of legumain expression in microarray 
samples 

Legumain had a fold change increase from PB CD14+ samples to the matched SF 

CD14+ samples of 167 in RA and 164 in PsA. However, since microarray results 

require validation and verification by an alternative and complementary gene 

expression profiling method qRT-PCR was used to determine  the expression of 

legumain in the 8 RA and 8 PsA pairs of samples that had been used for the 

microarray study. Figure 5.1 (A) shows the raw data signals of legumain on the 

affymetrix GeneChips for each patient sample. The signal values of legumain in 

the synovial fluid of both sets are considerably higher than those of the blood 

samples however the signal intensity varies between the synovial fluid samples 

of each patient indicating that the levels of legumain in the synovial fluid CD14+ 

cells are not consistent possibly due to differences in disease duration and 

treatment type of the patients. 

To validate these results qRT-PCR was used to determine the fold change in 

legumain expression in the SF samples compared to the PB samples. One RA 

patient was unable to be analysed due to a problem with the peripheral blood 

sample, as repeated measurements gave unusual results which could not be 

analysed. This could have been due to a problem with the RNA for that sample 

therefore the matched PB and SF samples from that particular patient were not 

analysed. Figure 5.1 (B) shows the results of the qRT-PCR and clearly 

demonstrates that legumain expression increases from the PB to the SF of each 

patient which reflects the results obtained from the microarray.  
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Figure 5.1 Legumain expression in microarray samples 
(A) Demonstrates the raw signal intensities of the legumain gene locus on the Affymetrix 
GeneChips. Each circle represents one patient sample and the line represents the mean signal 
intensity. Legumain mRNA levels were then measured in the RA and PsA paired PB and SF 
microarray samples by qRT-PCR. (B) The fold change of legumain expression in the SF samples 
was normalised to the matched patient PB sample, each circle represents one patient and the line 
the mean fold change. 

5.3 Expression of legumain in other patient samples 

Once it had been verified that legumain was expressed in the samples used in 

the microarray we then analysed legumain expression in more patient samples to 

check that increased legumain expression in the SF of RA and PsA occurred in 

other patients and not just the 16 who were examined on the microarray. Figure 

5.2 shows the legumain expression in all of the CD14+ samples tested. In graph A 
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it can been seen that there are varying levels of legumain in the PsA CD14+ SF 

samples but the mean level of expression is higher than that seen in PsA PB 

CD14+. Five of these PsA patients tested had matched PB and SF CD14+ cells and 

therefore the fold change increase in legumain expression from the PB to the SF 

was able to be measured as seen in Figure 5.2 (B). As was observed in the 

microarray samples some of the patients had a substantial fold change 

differences but the mean fold change difference in legumain expression was 133 

which is similar to the mean fold difference of 138 seen from the microarray 

samples. We were unable to obtain matched PB samples for the RA patients 

analysed however, in part (A) of Figure 5.2 the RA SF CD14+ and PsA SF CD14+ 

samples both have a similar mean relative expression of legumain which concurs 

with the results observed in the microarray samples. 

Graph (A) of Figure 5.2 also demonstrates the other arthritic patient samples 

from which we obtained CD14+ cells to analyse for legumain expression. The 

inflammatory arthritis and JIA CD14+ samples both appear to have lower levels of 

legumain expression compared to the RA and PsA SF samples however legumain 

is present in the samples. Unfortunately we were not able to obtain PB CD14+ 

samples from each patient to distinguish whether the legumain expression level 

increased from PB to SF CD14+ as has been seen with the RA and PsA patients. 

Matched OA PB and SF CD14+ cells from the same patient were measured for 

legumain expression and as with the RA and PsA microarray samples the level of 

mRNA expression increased from the PB to the SF. These data demonstrate that 

legumain is not specific to RA and PsA but is also expressed in other arthritic 

diseases. 
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Figure 5.2 Legumain expression in CD14
+
 cells from arthritic patients 

Legumain RNA expression was measured in the CD14+ cells from the PB or SF of arthritic 
patients. (A) Expression was measured relative to GAPDH. Five of the PsA patients had matched 
PB and SF samples, in these patients the fold change increase of legumain expression was 
measured and plotted in graph (B). 

(A) 

(B) 
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5.4 Immunohistochemistry 

Next immunohistochemistry (IHC) was performed to detect the enzyme in RA 

synovial membrane. The antibody staining was first optimised on tonsil sections 

before the RA synovial membranes were stained for legumain (data not shown). 

Five individual RA membranes were stained and they all displayed specific 

positive staining of legumain. Figure 5.3 shows representative staining from one 

of the RA synovial membranes. The x10 and x40 magnification isotype controls 

are shown in panel (A). Positive legumain staining at x10 and x40 magnification 

from two different areas of the same RA synovial membrane are shown in panel 

(B) and (C). The isotype controls show no non-specific staining indicating the 

antibody is specific for legumain. In panel (B) legumain staining is seen to be 

constitutively expressed throughout the membrane and analysing the x40 

magnification the staining is cytoplasmic with no nuclear staining and within 

some cells the staining is granular indicative of lysosomal staining.  

Panel (C) shows staining from the same tissue and demonstrates that positive 

legumain staining is seen on the edge of the membrane where it is contained 

within the cytoplasm of cells. Positive staining can also been seen in cells within 

follicular regions of the tissue (indicated by arrows). The staining appears to be 

present in macrophage-like cells but this cannot be verified until the membrane 

is double stained for legumain and CD68. 



274 

 

Figure 5.3 Immunohistochemistry staining of legumain in RA synovial membrane 
Five individual membranes were stained for legumain; this figure shows the results from one 
membrane that represents the staining pattern of legumain seen in the membranes. The isotype 
controls are shown in (A) at the x10 and x40 magnification. Images (B) and (C) define the positive 
legumain staining (shown in brown) seen in the RA membrane. Arrows in panel C denote positive 
follicular staining. The x10 magnification is shown on the left and the x40 magnification of an area 
of the x10 image defined by the box is shown on the right. 
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5.5 Western blot for legumain  

Since we had determined that legumain RNA was expressed in synovial CD14+ 

cells and IHC had indicated that legumain was present in RA synovial membrane 

we wanted to determine if arthritic synovial CD14+ cells were expressing the 

legumain enzyme at the protein level. Legumain has already been demonstrated 

to be upregulated in M-CSF macrophages [665, 674] therefore M-CSF treated 

macrophages were also analysed as a positive control. 

5.5.1 Legumain in M-CSF derived macrophages by RT-PCR 

To determine whether the presence of legumain increased as a result of M-CSF 

treatment, day 6 M-CSF treated macrophages from 5 individual donors were 

analysed by RT-PCR. As can be seen from Figure 5.4, M-CSF treatment induced 

legumain mRNA production in all 5 donors. The fold change difference between 

untreated monocytes and treated macrophages is donor dependent and varies 

between the lowest fold change of 26 and the highest fold change of 3567. 

 

Figure 5.4 Legumain expression in M-CSF treated macrophages for 6 days 
Monocytes were obtained from 5 healthy donors and treated with M-CSF for 6 days. Monocyte 
samples were taken at day 0 and compared to the M-CSF treated macrophages for legumain 
expression by RT-PCR. The graph shows the relative fold change in legumain expression from day 
0 monocytes to day 6 treated macrophages. 
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5.5.2 Legumain in M-CSF macrophages by western blot 

Once we had shown that legumain is present in M-CSF derived macrophages at 

the mRNA level we next wanted to verify expression at the protein level. 

Monocytes were isolated from three individual donors and analysed at day 0, 3 

and 6 days after M-CSF treatment for legumain and also for β-actin as a loading 

control (Figure 5.5). As described in the introduction legumain can exist in two 

forms, a pro form and an active form, to convert to the active form legumain 

must autocatalytically cleave itself in a pH dependent process [656]. In Figure 

5.5 the upper panel indicates the presence or absence of legumain in each 

sample. There appears to be no legumain in any of the day 0 - monocyte samples 

however day 3 M-CSF treated monocytes exhibit two bands representing pro-

legumain at 52 kDa and active legumain at 36 kDa. At day 6 in all three donors 

the amount of pro-legumain is reduced as well as the amount of active 

legumain. The lower panel of Figure 5.5 demonstrates the β-actin loading 

control of each macrophage sample. Despite the samples being analysed by BCA 

for protein concentration and 5 μg of protein being loaded to each well, the β-

actin blot indicates that the amount of protein loaded into each well varies due 

to the different intensity of the β-actin band in each sample. Also, there appears 

to be very little sample in day 0 monocytes of donor 1 due to a lack of a band for 

the β-actin control. However, regardless of the loading control we have 

demonstrated that macrophages express the pro- and active form of legumain 

when induced via M-CSF differentiation of monocytes. 
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Figure 5.5 Legumain western blot of M-CSF treated macrophages 
Three donors were analysed after day 0, 3 and 6 of M-CSF treatment for the presence of legumain 
(top blot) or β-actin as a loading control (bottom blot). Both pro- and active legumain were present 
at day 3 in all three donors whereas by day 6 the pro-legumain levels had decreased. 

5.5.3 Legumain in patient CD14+ samples by western blot 

We next wished to detect legumain by western blotting in RA synovial CD14 

cells.  The western blot assay had already been optimised for the detection of 

legumain using M-CSF derived macrophages as a control. CD14+ cells were 

isolated from five individual RA bloods, one PsA blood, two PsA synovial fluids 

and one RA synovial fluid and run on a western blot to detect legumain and the 

loading control β-actin.  

The upper panel in Figure 5.6 illustrates the presence of active legumain in 4 of 

the 5 RA bloods and in the PsA blood CD14+ cells which was not seen in the CD14+ 

cells at day 0 of the normal donors in Figure 5.5. Large amounts of pro- and 

active legumain were present in both of the PsA synovial fluid macrophage 
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samples however, there does not appear to be any legumain in the RA synovial 

fluid CD14+ cells. The lower panel of Figure 5.6 demonstrates the β-actin loading 

control of the samples as observed in the M-CSF macrophage western blot 

despite 5 μg of protein being added to each well there appears to be varying 

levels of protein in each well as indicated by the difference in intensity of the β-

actin bands. Also the two samples which appeared to contain no legumain in the 

upper panel, the RA PB sample and the RA SF sample, do not have a β-actin band 

suggesting that not enough of sample was loaded into these wells. These 

samples would have to be repeated to determine if they do contain the enzyme 

legumain. We have therefore demonstrated that active legumain is present in 

the peripheral blood CD14+ cells of arthritic patients which was not seen in 

normal donors day 0 CD14+ cells (Figure 5.5). We have also demonstrated that 

pro- and active legumain is expressed in the PsA synovial fluid CD14+ cells.  

 

Figure 5.6 Legumain western blot of patient CD14
+
 cells 

CD14
+
 cells from five RA bloods, one PsA blood, two PsA synovial fluids and one RA synovial fluid 

were analysed by western blot for the presence of legumain (upper panel) and β-actin control 
(lower panel). 

5.6 Legumain activity assay 

Legumain is a lysosomal enzyme that in its active form specifically cleaves 

protein substrates after an asparagine residue [651], despite showing that M-CSF 

derived macrophages and synovial fluid derived CD14+ cell express the active 
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form of legumain it was necessary to establish that this enzyme was still 

physiologically active and could still cleave its substrates. A legumain activity 

assay was therefore employed which uses a substrate Z-Ala-Ala-Asn-AMC. 

Incubating active legumain with this substrate results in its cleavage after the 

asparagine residue (Asn) thereby releasing the AMC (7-amino-4-methylcoumarin) 

flurophore. The amount of flurophore released can be detected on a 

luminescence reader.  

To determine the presence of active legumain in M-CSF derived macrophages 

and patient derived CD14+ samples, cells were resuspended in lysis buffer and 

then freeze thawed three times to disrupt the lysosomes where legumain is 

thought to reside [432]. 

5.6.1 Legumain activity assay of M-CSF derived macrophages 

Given that large amounts of the active form of legumain were visualised in the 

M-CSF derived macrophages by western blot it was decided to analyse these 

samples to determine if the legumain in these samples was physiologically active 

and still able to cleave its substrate. Clerin et al [665] previously demonstrated 

that legumain is more active and can cleave its substrate in day 3 M-CSF 

differentiated macrophages compared to monocytes however a timecourse of 

day 0, 3 and 6 activated macrophages has not been reported to my knowledge. 

Day 0, 3 and 6 M-CSF treated macrophages from two donors were analysed using 

the activity assay; the same number of cells (1 x 106) were examined per 

condition. Recombinant human (rh) legumain was also analysed on the assay as a 

positive control. Figure 5.7 illustrates the results of the activity assay; the rh 

legumain (black line) shows an increase in fluorescence units (FU) over time 

indicating that the legumain is active. The two donors tested are shown by the 

red line for donor 1 and blue line for donor 2 with the triangle symbol indicating 

day 0 monocytes, the square symbol indicating macrophages treated with M-CSF 

for 3 days and the diamond symbol indicates day 6 M-CSF treated macrophages. 

In both donors a similar pattern in legumain activity can be observed. The day 0 

monocytes have little or no legumain activity for the duration of the assay as the 

FU detected were less than the background fluorescence of the assay. This 

corroborates the legumain western blot of M-CSF macrophages (Figure 5.5) as 
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there was no legumain detected in the day 0 monocytes. The fluorescence units 

of day 3 M-CSF activated macrophages in both donors is high and increases over 

time to a maximum of 670 FU and 592 FU in donors 1 and 2 respectively 

indicating a high level of legumain activity. This discrepancy in the amount of 

legumain activity in these samples despite having the same number of 

macrophages may be due to donor specific variability or it is possible that the 

macrophages from donor 1 contain more legumain. 

In both day 6 activated macrophage samples the amount of fluorescence and 

therefore legumain activity is lower compared to the day 3 activated 

macrophages. The FU from donor one decreases by almost two thirds from 670 

to 177 FU at the 210 minute timepoint and the FU from donor two decreases 

from 592 to 346. This indicates that there could be less legumain present in 

these cells and therefore legumain may undergo a cyclic form of expression with 

no active legumain present in day 0 monocytes, a high level of activity and 

expression in 3 day differentiated macrophages which then decreases to a lower 

level at day 6. This observation agrees with the western blot of the M-CSF 

differentiated macrophages as there was a greater amount of active legumain 

expressed in the day 3 macrophages compared to the day 6 macrophages. 

Overall it has been demonstrated that legumain is expressed at varying levels in 

M-CSF activated macrophages depending on the duration of activation, this 

legumain is the active form of the enzyme and as a result is able to fulfil its 

physiological role and cleave its endogenous substrate.  



281 

 

Figure 5.7 Legumain activity assay in M-CSF derived macrophages 
M-CSF activated macrophages for 0, 3 and 6 days from two separate donors were analysed using 
a legumain activity assay to determine whether the legumain detected in these samples was active 
could cleave a substrate. Once the substrate is cleaved it releases a fluorophore which can be 
detected on a luminescence plate reader. The assay is incubated at 37ºC for 3.5 hours and the 
amount of fluorescence (measured in fluorescent units) is measured at set time points. Human 
recombinant legumain was used as a positive control and is indicated by the black line. Cells from 
donor 1 are shown by the red line and cells from donor 2 are shown by the blue line with the 
triangle symbol indicating day 0 monocytes, square symbol indicating M-CSF treated macrophages 
for 3 days and diamond symbol indicating M-CSF macrophages treated for 6 days. Each donor 
sample contained 1 x 10

6
 cells. 

5.6.2 Legumain activity assay of patient CD14+ samples 

Once we had determined that legumain was present and active in the M-CSF 

macrophage samples we then went on to establish whether the large amounts of 

legumain present in the CD14+ patient samples as seen on the western blot was 

active and able to cleave its substrate. Two RA synovial fluid samples, one with 

a matched blood, were obtained and CD14+ cells were isolated from each. Due 

to differences in the amount of synovial fluid obtained and donor variation there 

were slight differences in the total number of cells, analysed, RA patient 1 had 

7.2 x 105 SF CD14+ cells whereas RA patient 2 had 8.8 x 105 SF CD14+ cells. 

The results for the patient legumain activity assay are shown in Figure 5.8. As in 

the previous experiment rh legumain was used as a positive control. Despite 

having the lowest total cell number RA patient 1 SF (red line) exhibited the 

largest amount of legumain activity shown by the steady increase over time of 
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FU up to a maximum of 830 FU. However, the PB sample (red line) from the 

same patient contained a much lower amount of legumain; the fluorescence 

level of this sample was very low and did not increase above the background 

level of fluorescence indicated by the negative FU values. Nevertheless, it 

appears that this sample did contain a small amount of legumain as the FU can 

be seen to slowly increase towards the baseline which would suggest that 

legumain is present but there is not enough enzyme to create a strong 

fluorescent signal. This same pattern of activity can be visualised in the patient 

2 RA SF sample (blue line) where the fluorescence unit increase from -30 to -1 

FU over the duration of the assay indicating that active legumain is present in 

this sample but in small amounts. 

Synovial fluid from several patients including six RA, six PsA, one OA, one JIA 

and one inflammatory polyarthritis were analysed using the activity assay to 

investigate whether these samples contained active legumain that may have 

been excreted from the synovial cells. However, no activity was determined for 

any of the samples (data not shown). 

 

Figure 5.8 Legumain activity assay in CD14
+
 patient samples 

CD14
+
 cells isolated from patient blood or synovial fluid samples were analysed using a legumain 

activity assay to determine whether the legumain that was present in these cells was active and 
able to cleave a fluorescent substrate. The assay is incubated at 37ºC and the amount of 
fluorescence measured in fluorescence units (FU) is quantified at set time points. Human 
recombinant legumain (black line) was also assayed as a positive control. RA patient 1 is shown in 
red with the upwards facing triangle indicating blood CD14

+
 cells and the downwards facing triangle 

indicating synovial fluid CD14
+
 cells. RA patient 2 is shown by the blue line indicating synovial fluid 

CD14
+
 cells. 
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5.7  Analysing legumain expression under normoxic 
and hypoxic conditions 

Once we had established that legumain was present in RA synovial fluid 

macrophages and was physiologically active we decided to try and determine 

what potential factors could be inducing legumain expression. To do this we 

cultured healthy donor M-CSF differentiated macrophages in complete media or 

in complete media supplemented with 10% RA or PsA synovial fluid for 24 hours 

under normoxic (24% oxygen) or hypoxic (1% oxygen) conditions. This was in 

order to represent the conditions that the arthritic macrophages may be exposed 

to once they exit blood and enter the synovial compartment. The synovium has 

been shown to be a hypoxic environment [409] and the synovial fluid of arthritic 

patients contains many cytokines, chemokines, antibodies and extracellular 

matrix proteins [410, 537] which could interact with and induce differential gene 

expression in the macrophages. Therefore, we hypothesized that exposing 

macrophages to patient synovial fluid under hypoxic conditions may induce the 

expression of legumain within these cells. Three RA and three PsA synovial fluids 

were tested on the macrophages and the experiment was repeated three times. 

Figure 5.9 shows the fold change in legumain mRNA expression relative to the 

macrophage in complete media alone control. Graph (A) demonstrates those 

cells which were incubated with the six synovial fluids for 24 hours under 

normoxic conditions. The fold change in legumain expression increases with 2 of 

the RA synovial fluids but the addition of RA SF 2 seems to decrease the amount 

of legumain expression resulting in a negative fold change. In contrast, only one 

PsA SF appeared to increase the amount of legumain expression under normoxic 

conditions while PsA SF 1 and PsA SF 3 decreased the amount of legumain 

expression.  

On the other hand, culturing macrophages with synovial fluid under hypoxic 

condition increased legumain expression in all synovial fluid conditions relative 

to the macrophages incubated with media alone. The hypoxic conditions are 

shown in graph (B) of Figure 5.9; the three RA synovial fluids and three PsA 

synovial fluids all induced an increase in legumain expression compared to 

control indicated by the positive fold change values.  
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These results suggest that the combination of both synovial fluid and hypoxia are 

needed in order to induce legumain expression in macrophages. As the addition 

of synovial fluid under normoxic conditions induces both up and down regulation 

of legumain expression compared to control whilst the macrophages cultured 

under hypoxic conditions show an increase in legumain expression with all of the 

six synovial fluids examined. 

 

Figure 5.9 Legumain expression in the presence of synovial fluid under hypoxic and 
normoxic conditions 
M-CSF differentiated macrophages were cultured individually with three different RA synovial fluids 
or three PsA synovial fluids for 24 hours under normoxic (24% oxygen) (A) or hypoxic (1% oxygen) 
(B) conditions. The fold change in legumain expression is shown relative to the mo alone control for 
either the hypoxic or normoxic condition. This is a representative of three independent 
experiments.  



285 

5.8  Discussion 

The second gene identified from the microarray experiment as being highly 

expressed in both RA and PsA synovial macrophages was the enzyme legumain. It 

is an enzyme that specifically cleaves its substrates after an asparagine residue 

and has a role in the cleavage and activation of several substrates as well as in 

the processing of microbial antigen for MHC II presentation [659]. Legumain is 

known to be disregulated in several inflammatory conditions and diseased states 

such as breast cancer where it is specifically overexpressed on tumour 

associated macrophages [433]; atherosclerosis where it is upregulated in 

macrophages in unstable areas of plaques [434] and in inflamed skin where it is 

highly upregulated in lesional atopic dermatitis and psoriasis compared to 

normal skin [435].  

Legumain has not been previously associated with inflammatory arthritis 

however several of its substrates that it can cleave and activate are present 

within the synovium of arthritis patients. These substrates include fibronectin 

[431] a glycoprotein that has been found in the synovia of RA and PsA patients 

[426] whose cleaved fragments acquire catalytic activities which can stimulate 

cartilage chrondrolysis [675]; legumain can activate gelatinase A (MMP2) [429] 

which has been found a higher levels in RA patient blood compared to controls 

[670] and is also upregulated in the RA and PsA SF CD14+ cells in my microarray 

experiment (see chapter 3). Legumain has also been demonstrated to cleave 

several cathepsins including cathepsin B and L which are upregulated in RA 

synovial fluid [671]. Since active fibronectin, gelatinase A, cathepsin B and L are 

all known to degrade collagen and other components of the extracellular matrix 

we hypothesised that legumain is upregulated by synovial fluid macrophages as a 

result of the pro-inflammatory environment to function as an extracellular 

matrix degradation enzyme and therefore may be contributing to the cartilage 

and bone degradation that is often seen in these two diseases.  

These are the first data to investigate legumain expression in RA and PsA and 

using qRT-PCR we observed that all of the RA and PsA synovial fluid samples 

analysed were expressing legumain at varying levels and the amount of synovial 

fluid CD14+ legumain was always elevated in comparison to the CD14+ blood 

cells. We also demonstrated that legumain was expressed in the synovial fluid 
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CD14+ cells of an OA patient, a JIA patient and an inflammatory polyarthritis 

patient indicating that this enzyme was not exclusively expressed in RA and PsA 

and appeared to be a marker of other arthritic synovial macrophages. Research 

into the control of mRNA expression has uncovered small non-coding RNAs 

termed microRNAs (miRNA) that target and degrade mRNA thereby suppressing 

proteins synthesis [676] therefore observing mRNA expression of a gene such as 

legumain does not imply that it will be expressed at the protein level. 

Consequently, further studies took place to investigate the expression of 

legumain. Immunohistochemistry revealed a novel observation that legumain 

was consitutively expressed in five RA synovial membranes. At a higher 

magnification legumain was observed specifically in the cytoplasm of the cells in 

a granular pattern which is indicative of its role as a lysomomal enzyme [432] 

and cell surface staining was also observed. Legumain has previously been shown 

to be expressed on the cell surface and along the invadapodia of invading 

tumour cells where it correlated with increased tumour invasion and metastasis 

[662]. Further double staining of legumain and the plasma membrane would 

need to be carried out to verify legumain cell surface expression on synovial 

arthritic cells but a role for this surface expression could be to help invading 

synovial cells to further degrade the cartilage and extracellular matrix. Positive 

staining was also observed within follicular regions of the membrane and within 

cells on the outside edge of the synovium. We propose that the legumain 

positive cells on the outside of the membrane are well positioned to uptake 

substrates from the synovial fluid, such as fibronectin, in order to cleave them 

intracellularly. To establish whether this synovial legumain was present mainly 

in macrophages double staining would need to be performed but time 

restrictions meant this could not be performed. 

It had been observed that synovial fluid CD14+ macrophages expressed legumain 

at the mRNA level and arthritic synovial membrane expressed legumain at the 

protein level therefore we wanted to determine whether synovial fluid 

macrophages expressed legumain at the protein level by western blot. Legumain 

has been previously shown to be upregulated in M-CSF differentiated 

macrophages [665, 674] therefore these cells were used as a positive control for 

the western blot. We confirmed that M-CSF differentiated monocytes had 

increased legumain mRNA expression, the fold change increase in legumain 
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ranged from 26 to 3573 indicative of donor specific variability. A western blot 

was performed on 3 donors consisting of monocyte samples which were treated 

for 0, 3 and 6 days with M-CSF. We observed no legumain in the day 0 CD14+ 

monocytes but pro- and active legumain were visible at day 3 and 6 of all three 

donors analysed. There appeared to be more active legumain in all of the day 3 

samples but it is difficult to remark on levels of the enzyme since the β-actin 

loading control was not consistent among all samples despite the same amount 

of protein (5 μg) being loaded onto the assay. Repetition of these experiments 

would be helpful to formally define this issue – time precluded this analysis. 

Once we had validated the western blot assay, we analysed CD14+ cells from the 

blood and synovial fluid of RA and PsA patients. There has been no previous work 

illustrating legumain‘s presence in PB monocytes, however it has been 

demonstrated that other cysteine proteases are upregulated in monocytes in 

response to pro-inflammatory cytokines [677, 678]. The serum of PsA and RA 

patients is known to contain pro-inflammatory cytokines, growth factors, MMPs 

and adhesion molecules [679-681] which could be inducing active legumain in 

diseased blood monocytes, a phenomenon that is not seen in healthy donor 

blood monocytes. The two PsA synovial fluid CD14+ samples tested on the 

western blot were positive for high levels of pro- and active legumain but the RA 

SF CD14+ tested did not develop any protein bands. This result indicates that the 

legumain positive cells detected by IHC in the synovium are likely to be 

macrophages however the possibility that other cells express legumain cannot be 

discounted. The two RA PB and SF samples which did not develop a legumain 

band were also negative for a β-actin loading control band indicating either a 

problem with the samples or that perhaps not enough sample was loaded onto 

the western blot. Further analysis of the presence of legumain within RA SF 

CD14+ samples would be useful to verify that these cells express legumain at the 

protein level but time restrictions meant this was not possible.  

An activity assay was set-up to determine if the legumain protein detected in 

the samples was active. Clerin et al [665] had previously demonstrated that 

monocytes treated with M-CSF for 3 days contained physiologically active 

legumain however a timecourse of M-CSF treated monocytes had not been 

examined. The results of the western blot were replicated in the activity assay 

as day 0 monocytes showed no activity on the assay and no protein on the 
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western blot. Day 3 activated monocytes had high levels of active legumain 

which decreased in the day 6 activated macrophages. These observations 

demonstrate that legumain may undergo a cyclic form of expression with no 

active legumain present in day 0 monocytes, a high level of activity and 

expression in 3 day differentiated macrophages which then decreases to a lower 

level at day 6. At present there have been no other reports of legumain 

undergoing cyclic expression dependent on macrophage maturation as all other 

studies have analysed legumain levels at one timepoint. Further studies are 

required to understand the significance of this observation. 

Patient derived CD14+ cells were analysed on the activity assay to ascertain 

whether these cells contained physiologically active legumain. We examined 

matched RA PB and SF CD14+ samples and a RA SF CD14+ sample due to the 

variation in isolated cell numbers in patient samples the number of cells 

analysed in each sample was slightly different. Nevertheless, the SF patient 

sample containing the least number of cells had the highest amount of active 

legumain illustrating that individual macrophage cells may contain varying levels 

of legumain. The matched PB sample from this patient showed a low level of 

active legumain as did the other RA SF sample analysed again indicating that the 

level of legumain varies between patients. It would be interesting to determine 

if treatment type or disease duration was a factor determining how much active 

legumain was present within the synovial macrophages of arthritic patients. 

Unfortunately we did not receive any PsA patient samples to assay and time 

restrictions meant we could not continue collecting samples. 

The inflammatory synovium is known to be a hypoxic environment [409] and the 

synovial fluid of RA patients contains many cytokines, chemokines, antibodies 

and extracellular matrix proteins [410, 537, 682-685] which could interact with 

and induce differential gene expression in the cells entering the synovium. 

Establishing what factors could be causing the upregulation of active legumain in 

macrophages once they have transmigrated from the blood system into the 

diseased joint is vital in understanding legumain‘s role in disease pathology. 

Proinflammatory cytokines have been previously shown to induce expression of 

other cysteine proteases in monocytes [677, 678] therefore we hypothesised that 

the proinflammatory mediators and environmental stresses within the synovial 

environment may be inducing the large upregulation of legumain once the 
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macrophages entered the synovial compartment. To address this question we 

differentiated healthy monocytes with M-CSF for 6 days and cultured them in the 

presence of three RA synovial fluids and three PsA synovial fluids for 24 hours in 

hypoxic or normoxic conditions. We observed that under normoxic conditions 

macrophages had increased legumain mRNA expression when incubated with two 

of the three RA synovial fluids and one of the three PsA synovial fluids compared 

to macrophages incubated alone. However, under hypoxic conditions legumain 

mRNA expression increased in all of the macrophages incubated with the six 

synovial fluids indicating that a combination of the hypoxic environment with 

the proinflammatory mediators contained within the synovial fluid is necessary 

to induce upregulation of legumain. 

In summary, legumain is an enzyme which plays a physiological role in the 

biosynthesis of lysosomal enzymes in the proximal tubule cells of the kidney 

[431] and is expressed in macrophages and DCs where it is thought to play a role 

in cleaving peptides for antigen presentation [658, 659]. However it has now 

become apparent that legumain is involved in many inflammatory diseases and 

conditions including arthritis. We propose that legumain is a marker for cell 

activation demonstrated by its upregulation in macrophages but it is also an 

inflammatory enzyme induced and deregulated during inflammation. The 

perpetual inflammation that occurs during arthritis causes the upregulation of 

this enzyme. Legumain is induced in the arthritic blood monocytes by the pro-

inflammatory mediators contained within the serum and is also induced within 

the synovial fluid macrophages by the hypoxic inflammatory milieu found within 

the joint. Once upregulated within the synovial macrophages legumain is 

expressed on the cell surface and may be assisting the cells to invade and 

degrade the surrounding joint cartilage and extracellular matrix. Pro- legumain 

has recently been found to be excreted from macrophages and has been shown 

to induce chemotaxis of primary monocytes [665], therefore if the legumain 

positive macrophages visualised within the synovium were also excreting 

legumain this could be playing a role in increasing the number of infiltrating 

monocytes into the arthritic joint.  

Legumain is also expressed within the lysosomal compartment of the cells where 

it may cleave and active glycoproteins such as fibronectin either being produced 

by the cell or which have been taken up by the cell. One of legumain‘s primary 
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roles during homeostasis is to cleave microbial antigen for MHC II presentation 

and to activate several cathepsins which are also involved in antigen 

presentation [432, 686]. T cells specific to autoantigens such as collagen type II 

have been found within the arthritic joint [687] therefore an increase of 

legumain within synovial macrophages may play a role in the presentation of 

autoantigens to these T cells thereby aiding the perpetuation inflammation and 

destruction seen in RA and PsA. Figure 5.10 summaries these findings. 

 

 

Figure 5.10 Overview of legumain's expression and proposed role in arthritis 
A summary of legumain’s expression in patient blood monocytes and synovial fluid macrophages, 
the factors that could be inducing its expression and its proposed role in the synovium. 
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Chapter 6 Microarray analysis of cell contact 
activated macrophages 
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6.1 Introduction 

One critical mechanism whereby macrophages are thought exert their 

proinflammatory potential in the synovium is by direct cell-cell interaction with 

T cells. We and other groups have investigated this interaction in an in vitro 

model system of inflammatory arthritis. In order to set up this model monocytes 

and T cells are isolated from normal donors before activating T cells with a 

cytokine cocktail (IL-2, IL-6, TNFα) and maturing the monocytes into 

macrophages with M-CSF for 6 days each.  After this time the two cells types are 

put into direct contact for a period of 24 hours after which the supernatants are 

collected and analysed for cytokine release. Several groups have investigated 

this in vitro system and found it to be a robust model of inflammatory arthritis 

since both cytokine activated T cells (Tcks) and RA synovial T cells can induce 

production of TNFα and several CC and CXC chemokines in resting M-CSF treated 

macrophages in a cell contact dependent manner [269, 298, 308]. Also Brennan 

et al found that after 8 days of stimulation Tcks acquire an activated phenotype 

resembling RA synovial T cells, such as upregulation of adhesion molecules and 

activation markers. Neutralising these markers in both T cell types abolished the 

cell contact dependent TNFα production from resting macrophages [309]. 

However, apart from cytokine and chemokine production little is known about 

the effects of Tck direct cellular contact activation on the macrophages. 

Due to the lack of transcriptomic information of the cell contact activated 

macrophages it was decided to collect normal donor samples, which were age 

and sex matched to the RA and PsA patient samples collected for the 

microarray, and activate these using the cell contact model of inflammatory 

arthritis. These macrophages were then analysed on the microarray and the 

results were compared to the synovial CD14+ cell samples to determine how 

similar these Tck activated macrophages were to the synovial macrophages. The 

results should inform us how comparable the macrophages from the in vitro 

model of inflammatory arthritis are to synovial macrophages from RA and PsA 

patients. 

6.2 Patients and normal donors 

As described previously, inflammatory arthritis patients attending Gartnavel 

General Hospital (GGH) or Glasgow Royal Infirmary (GRI) fulfilled the American 
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college of Rheumatology criteria for RA [6], or met diagnostic criteria for PsA 

[346].  

Age-matched normal donors were recruited from the Glasgow Biomedical 

Research Centre (GBRC) building and all blood samples were taken with 

informed consent. 

6.3 Separating macrophages from the cell contact 

In order to analyse the transcriptomic profile of the activated macrophages after 

they had been in contact with the Tcks we had to first gain a pure population of 

macrophages that did not have any contaminating Tcks which would affect the 

results of the microarray. 

6.3.1 Live cell contact 

The in vitro cell contact model of inflammatory arthritis can be set up in a 

number of ways including using T cell membranes [294], fixed Tcks or live Tcks 

to activate the macrophages. For the microarray experiment we wanted to 

compare cell contact activated macrophages with patient derived SF CD14+ cells 

and therefore decided to set up the cell contact experiment with live Tcks. This 

would allow us to see the effects of direct cellular contact along with the 

soluble mediators that the Tcks released upon the activation of macrophages. 

The cell contact was set up at a ratio of 4 Tcks to 1 macrophage for 24 hours, 

the cells were separated by washing off the non-adherent Tcks (Tck fraction) 

and scraping the adherent macrophages from the wells (macrophage fraction). 

However, when the two cell fractions were analysed on the FACS for cell purity 

(Figure 6.1) the macrophage fraction (A) was 91% positive for CD3 cells and had 

no CD14 positive cells but a very small percentage (3.7%) of CD3 negative cells. 

This experiment was repeated n=5 times with the same or similar results 

occurring each time. The same experiment was set up with fixed Tcks as it was 

thought that fixed cells may be less likely to stick to the macrophages, however 

we obtained similar Tck contamination in the macrophage fraction in these 

experiments (data not shown). 
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Figure 6.1 Separation of cells from a live cell contact 
Cells were separated by washing the non-adherent Tcks from the wells designated Tck fraction (B) 
and scraping the adherent macrophages from the wells designated macrophage fraction (A). This 
is a representative FACS plot from n=5 experiments 
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6.3.2 FACS ARIA sorting of macrophages 

Due to the problem of being unable to fully separate the macrophages from the 

Tcks using the method of washing and scraping the wells, it was decided to try 

and separate the two cell fractions from the cell contact using the FACS ARIA.  

The Tcks were stained with carboxyfluorescein succinimidyl ester (CFSE) and 

fixed before being put into cell contact with the macrophages. After incubating 

the cell contact all the cells were collected and put through the FACS ARIA 

machine, separating the cells based on FITC-positive cells (Tcks) and FITC-

negative cells (presumably macrophages). Figure 6.2 shows the plots from one 

FACS ARIA experiment; figure A shows all the cells that were isolated from the 

cell contact experiment and the histogram shows the counts of cells that were 

FITC positive and FITC negative. On the histogram the gates p1 and p2 indicate 

the gates that were used to differentiate and collect FITC-negative (macrophage 

cells) and FITC-positive (Tck cells) respectively. The two gates did not overlap 

and a substantial gap was left between them, cells included in this area were 

not collected as it was important for the purpose of the microarray to be able to 

collect a pure population of macrophages with no contaminating Tcks. Figure B 

and C show the plots and histograms of the two separated cell fractions, Tcks 

and macrophages respectively. The cells collected in the Tck fraction (B) were 

all FITC-positive, as indicated by the histogram, and the forward and side scatter 

plot indicates the cells collected in this fraction are of the correct size and 

granularity for activated T lymphocytes. As expected all cells collected in the 

macrophage fraction (C) were FITC-negative and on the forward and side scatter 

plots show the cellular size and granularity of macrophage like cells. However, it 

must be noted from panel (C) that a large proportion of the events on the 

forward side scatter graph are in the bottom left hand corner which is indicative 

of cellular debris. This debris may be as a result of the removal of the 

macrophages from the culture wells after cell contact activation and the 

presence of this debris may ultimately affect the purity of the macrophages used 

for the microarray.  

Subsequently an aliquot of the FACS ARIA separated cells was used for cytospins 

which were stained with RAPI-DIFF reagents to check for cell purity and 

morphology. As can been seen in figure (D) the cells from the macrophage 

fraction had the correct shape and morphology of macrophage cells with no 
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visible contaminating Tck cells whereas the cells from the Tck fraction (E) were 

the morphology and size of T lymphocytes. 

It was decided therefore that using the FACS ARIA to gain a pure population of 

cell contact activated macrophages was the optimal method of separation for 

the normal donor samples that would be age and sex matched to the patient 

samples.  
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Figure 6.2 Separating the macrophages and Tcks from cell contact using the FACS ARIA 
The FACS ARIA was used to separate fixed CFSE stained Tcks from the macrophages after cell 
contact. (A) All cells from the cell contact experiment showing the forward and side scatter plot of 
the cells and the histogram plot with the gates used to separate the cells, gate p1 (FITC negative 
cells) and gate p2 (FITC positive cells). (B) Tck cell fraction after separation and (C) macrophage 
cell fraction. An aliquot of the two cell fractions from the macrophage fraction (D) and the Tck 
fraction (E) was stained with RAPI-DIFF to check for cell morphology. 
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6.4 Analysing cell contact RNA yield and quality 

Microarray experiments demand a high quality of RNA in order for correct 

interpretation of results and the amount of RNA obtained from the cells should 

be consistent between samples. Therefore before the cell contact activated 

cells are analysed on a microarray the RNA quality and yield from the 

macrophage cells must be examined (described in detail in chapter 3). 

 

6.4.1  Cell contact activated macrophages have variable RNA 
quality after 24 hours 

Fixing the Tcks before putting them into cell contact was found to help recover 

a more pure population of macrophages after FACS ARIA separation thus it was 

decided that fixed Tcks should be used in all cell contact experiments. Three 

independent macrophage – Tck cell contact experiments were set up at a 4:1 

ratio of fixed Tcks to macrophages, after 24 hours the Tcks and macrophages 

were separated and both cell types were put into Trizol reagent. The RNA was 

isolated from the cells and the quality was analysed on an Agilent 2100 

Bioanalyser. The principles of the agilent 2100 bioanalyser are described in 

section 3.3.2 of chapter 3, but briefly this equipment is used to ascertain the 

quality of the RNA and allows the user to obtain a plot indicating the RNA 

integrity. Figure 6.3 (A) shows an example of good quality RNA. It is 

characterised by three clear peaks, a peak for the RNA marker (1) and a peak for 

the 18 S (2) and 28 S (3) ribosomal RNA subunits. There should be a relatively 

flat baseline between the two rRNA peaks and minimal low molecular weight 

noise adjacent to the RNA marker peak. 

Figure 6.3 (B) shows the electropherogram of the three fixed Tck and 

macrophage samples after 24 hours of cell contact. The Tcks in all three 

experiments had degraded RNA indicated by the low molecular weight noise and 

the absence of 18 S and 28 S peaks. The degraded RNA for the Tcks was thought 

to be a consequence of fixing the Tcks with paraformaldehyde. However, the 

RNA from the macrophages was of poor quality in two of the three experiments. 

The macrophage RNA from experiment 2 shows good quality RNA with two sharp 

rRNA peaks and no low molecular weight noise but the RNA from experiment 1 

and 3 is of poor integrity with the complete absence of rRNA peaks. Due to the 
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large variability in quality of the macrophages RNA it was decided that a 

timepoint cell contact should be set up to try and discover why the macrophage 

RNA is degraded after 24 hours of cell contact. 

 

Figure 6.3 RNA integrity of macrophages and Tcks after 24 hours of cell contact 
An Agilent 2100 Bioanalyser was used to analyse the quality of the RNA from 3 macrophage and 3 
Tck samples after 24 hours of cell contact. (A) an example of good quality RNA (B) the agilent 
profile electropherograms of the three cell contact experiments. 
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6.4.2 Cell contact activated macrophage RNA quality over time  

A timecourse cell contact was set up three times and the macrophages were 

activated with Tcks for between 1 and 48 hours. Figure 6.4 shows the results of 

one timecourse experiment and consist of RNA electropherograms for the fixed 

Tcks, unactivated macrophages (Mø) and macrophages that have been cell 

contact activated for varying amounts of time. The fixed Tck RNA is once again 

badly degraded due to the paraformaldehye fixation process. The RNA from the 

macrophages that had not been cell contact activated (Mø) was of good integrity 

as indicated by the two sharp rRNA peaks and the absence of low molecular 

weight noise. The RNA from the macrophages that had been in cell contact for 1 

hour up until 8 hours is also of good quality showing similar electropherogram 

plots to the one for the inactivated macrophages. With the exception of 28 hr 

cell contact activated macrophages (t=28hrs) the plots for RNA isolated from 

macrophages after 8 hours of cell contact all showed blank electrophreogram 

plots, apart from the RNA marker peak, indicating that the RNA was either 

degraded or in such low concentration that the Agilent machine could not detect 

it. t=28 hrs RNA was the only exception to this observation as that sample was of 

high quality with no degradation. 
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Figure 6.4 Macrophage RNA quality after different durations of cell contact 
Macrophages were exposed to direct cellular contact with fixed Tcks for between 1 and 48 hours. 
The Tcks were removed from the macrophages and the quality of the Tck and macrophage RNA 
were analysed on an Agilent 2100 Bioanalyser 

 

6.4.3 RNA yield decreases after prolonged cell contact activation 

The total amount of RNA that was being recovered from the macrophages during 

the timecourse cell contact experiments was also investigated and measured on 

a nanodrop. Figure 6.5 shows a representative experiment from the three 

experiments that were set up, for comparison the amount of RNA from the fixed 

Tcks and macrophages alone (t=0) was also measured. It can be seen that 

compared to the unstimulated macrophages, designated t=0, the total amount of 

RNA decreases with increasing duration of cell contact activation. This trend 

continues until 26 hours of cell contact where the total amount of RNA increases 
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from 202 ng at cell contact t=26 hrs to 608 ng at cell contact t=28 hrs, however 

after this one timepoint cell contact the amount of RNA recovered from the 

sample decreases to 252 ng at t=48hrs. This trend of decreasing total yield of 

RNA from cell contact activated macrophages compared to the unstimulated 

macrophages was seen in the two other timecourse experiments set up (data not 

shown). Based upon the preceding results it was decided to analyse macrophages 

which had been cell contact activated for 2 hours on the microarray as well as 

unactivated macrophages from the same donor. The reasons for this were due to 

the large variability in the yield and quality of macrophage RNA after 8 hours 

and also because we were interesting in the early response genes that changed 

in a macrophage after Tck contact. 
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Figure 6.5 Total RNA yield from macrophages after increasing duration of cell contact 
activation by Tcks 
A fixed 4:1 cell contact between Tcks and macrophages was set up for varying amounts of time 
between 1 and 48 hours. Each cell contact was set up in an individual well of a culture plate. After 
the specified time the macrophages and Tcks were separated and the macrophages placed into 
Trizol reagent. RNA was extracted from all samples and the total yield measured. RNA was also 
extracted from Tcks (fixed Tcks) and macrophages alone (t=0). This graph is a representative of 
n=3 experiments. 
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6.5 Collecting patient samples 

Normal donors who were age and sex matched to patients (Table 3.2) were 

recruited and from these donors CD14+ cells were positively selected from the 

blood. An aliquot of unactivated CD14+ cells were put into trizol and the rest of 

the cells were differentiated with M-CSF for 6 days. After this duration the 

macrophages were cell contact activated for 2 hours with fixed Tcks that had 

been obtained from the same donor. The cell contact activated macrophages 

were isolated using the FACS ARIA and put into trizol as well as unactivated M-

CSF derived macrophages from the same donor. Once all the samples had been 

collected the RNA was extracted from all samples at GSK Stevenage and 

analysed for quality. The samples which were analysed by the microarray are 

summarised in table 3.3 of chapter 3. Six age and sex matched healthy controls 

were recruited and macrophage cells before and after Tck cell contact activated 

were collected from all of these controls. 
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Patient Gender Age Age and sex matched 

normal donor 

PsA 1 

PsA 2 

PsA 3 

PsA 4 

PsA 5 

PsA 6 

PsA 7 

PsA 8 

RA 1 

RA 2 

RA 3 

RA 4 

RA 5 

RA 6 

RA 7 

RA 8 

Female 

Female 

Male 

Male 

Male 

Female 

Male 

Female 

Female 

Male 

Female 

Male 

Female 

Male 

Female 

Female 

53 

40 

34 

34 

80 

58 

54 

58 

71 

56 

62 

69 

78 

69 

69 

77 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 

No 

Yes 

No 

No 

No 

No 

No 

No 

Table 6.1 Patient and normal donor samples collected 

 

6.6 Microarray analysis 

6.6.1 Signal histogram of normalised data 

The signal histogram of all the samples which were analysed by the microarray is 

shown in figure 3.3 of chapter 3. Upon inspection of the histogram it was 

discovered that one of the cell contact activated samples was an outlier as it 

clearly had a distinct signal intensity compared to the other samples which were 

analysed. The reasons for this sample being an outlier are unknown but since the 

other samples have similar signal intensities it is most likely to be due to a 

problem with the individual sample or the labelling of that particular sample. 

Due to this sample being an outlier it may potentially skew the data 

interpretation and therefore was removed from further data analysis. 
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6.6.2 Principle component analysis 

The PCA plot shown in Figure 6.6 has previously been shown in chapter 3 but it is 

represented in this chapter to demonstrate the outlier cell contact activated 

macrophage sample indicated by the blue circle on the left hand side of the 

graph in (A). Once this sample had been removed the PCA analysis graph was 

analysed to look for trends in the data since samples represented in the same 

area of the graph are considered to be genetically similar. Each circle on the 

graph represents a sample and each colour represents a condition.  

Figure 6.6 (B) demonstrates the PCA plot of the samples once the cell contact 

outlier sample had been removed. This plot demonstrates that the cell contact 

activated macrophages (blue circles) are genetically distinct from the M-CSF 

activated macrophages (red circles) indicating that transcriptional changes take 

place once the macrophages are put into cell contact with Tcks for 2 hours. 

However, it can also been seen that the cell contact activated samples (blue 

circles) appear to be genetically distinct from the synovial fluid activated 

macrophage samples (yellow circles) which could argue against the cell contact 

macrophages not having a similar genetic profile to the synovial fluid. This will 

be explored further in the following sections. 



306 

 

 

Figure 6.6 Principle component analysis of all microarray samples 
PCA was performed on the microarray samples to try and identify trends in the data. Graph (A) 
indicates the normalised samples before the outlier was removed. The blue circle on the left hand 
side of the graph represents the outlying sample and it can been seen that it is distinct from all the 
other samples indicating that its genetic profile is dissimilar to that of the remaining microarray 
samples. Figure (B) shows PCA graph once the outlying cell contact sample had been removed. 
Each circle represents a sample and samples clustered in the same area of the graph are 
considered to be genetically similar. Each colour represents a sample condition; red is M-CSF 
treated macrophages, blue is cell contact activated macrophages, gold is synovial fluid derived 
CD14+ cells, green is patient blood CD14+ cells and purple is healthy blood CD14+ cells. This 
graph was previously shown in chapter 3. 
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6.7  Cell contact activated macrophages compared to 
synovial fluid activated macrophages 

Cell contact dependent activation of macrophages by synovial T cells has 

previously been shown to play a role in arthritis and as a result an in vitro model 

of inflammatory arthritis has been developed by our group and others to mimic 

the cellular interactions taking place within the diseased joint. Investigations 

into the proinflammatory cytokines and chemokines released by the 

macrophages as a result of T cell interactions have taken place [269, 298, 308] 

as well as analysing the activated T cells [309]. One study by Gruaz et al [315] 

has also analysed the genetic profile of the macrophages after being stimulated 

by the isolated membranes of the human T cell line HUT-78. However there has 

been no comparative analysis of the in vitro cell contact stimulated 

macrophages and macrophages isolated from the arthritic joint.  

The cell contact activated macrophages were stimulated with fixed cytokine 

activated T cells (Tcks) for 2 hours as we were interested in the early response 

genes that were differentially expressed in the macrophages. Previous analyses 

indicated that one of the cell contact activated macrophage samples was an 

outlier due to its abnormal signal intensity. Therefore this sample and its 

matched unactivated macrophage sample was removed from further analysis.  

6.7.1.1  Statistical analysis of genes and elucidating similarly 
expressed genes between conditions using a Venn 
diagram 

All samples were pre-processed using the GC-RMA algorithm and quality control 

was performed on the three macrophage conditions i.e. cell contact, RA or PsA. 

In order to pass the quality control filter each gene had to have a signal value 

between 20 and 100% and be expressed in all of the samples of each condition. 

To establish the presence of differentially expressed genes in the three 

activated macrophage conditions paired T Tests were first performed with a p 

value cut off of 0.05 followed by the Benjamini and Hochberg multiple testing 

correction (MTC). However an MTC was unable to be used in the cell contact 

comparison as there were no significantly changed genes between the 

unactivated macrophages and cell contact activated macrophages. Since a p 

value cut off of 0.05 was used this means that 5% of the differentially expressed 
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genes may be false positives and appearing by chance alone, a way to overcome 

this is to look at the p values of each gene as the higher the p value of the gene 

the less chance of it being a false positive. This statistical analysis gave the 

following results:  

 Unactivated M-CSF macrophages vs cell contact activated macrophages 

(n=5 matched samples) 3902 significantly expressed gene entities 

 RA PB vs RA SF (n=8 matched samples) 10879 significantly expressed gene 

entities 

 PsA PB vs PsA SF (n=8 matched samples) 7401 significantly expressed gene 

entities 

The up- and downregulated genes with a p value <0.05 from each of the three 

comparisons were then inputted into a Venn diagram to distinguish if there were 

similar genes being expressed by the activated macrophages conditions. 
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Figure 6.7 Venn diagram of the significantly differentially expressed genes within the cell 
contact activated macrophages, RA synovial fluid macrophages and PsA synovial fluid 
macrophages 
Paired T Tests were performed between the unactivated and cell contact activated macrophages, 
RA blood and RA synovial fluid macrophages and between PsA blood and PsA synovial fluid 
macrophages. The up and downregulated genes in the activated macrophage samples were then 
put into a Venn diagram, blue represents the differentially expressed genes in the RA condition, 
green represents the PsA condition and red represents the cell contact activated macrophages. 
The genes that were expressed by cell contact macrophage samples and PsA or RA or by all three 
conditions were analysed further. 

Figure 6.7 shows differentially expressed genes in all three conditions, blue 

represents the significantly expressed genes between RA PB and RA SF CD14+ 

samples, green represents the significantly changed genes between PsA PB and 

PsA SF while red represents the significantly expressed genes between 

unactivated M-CSF macrophages and cell contact activated macrophages. 

Analysing the Venn diagram it can be seen that there are three groups of genes 

being expressed in cell contact activated and synovial fluid macrophages: 

 Genes expressed in all conditions (cell contact, RA SF and PsA SF 

macrophages). 590 genes 

 Genes expressed in cell contact macrophages and PsA SF macrophages. 

221 genes 

 Genes expressed in cell contact macrophages and RA SF macrophages. 664 

genes 
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The Venn diagram also indicates that only a small proportion of the genes 

expressed by the RA or the PsA synovial fluid are expressed within the cell 

contact activated macrophages. 10% (811 of 7401 genes) of PsA genes and 11% 

(1254 of 10879) of RA genes are expressed in the cell contact activated 

macrophages. 

The three gene groups listed above were then subjected to fold change analysis 

where the cut off threshold was set at a fold change ≥ 2. This analysis gave the 

following results: 

 149 genes expressed in all three conditions (c.c, RA SF, PsA SF) 

 40 genes expressed in both cell contact macrophages and PsA SF 

 146 genes expressed in both cell contact macrophages and RA SF  

Since the basis of this investigation was to determine how similar the cell 

contact activated macrophages were to the synovial fluid macrophages, the gene 

lists generated from the fold change analysis were scrutinised further to only 

include genes that were up or downregulated in both the cell contact samples 

and the synovial fluid samples. This is due to the discovery that many genes 

were being expressed in different directions, for example a gene that was 

upregulated in the cell contact activated samples was downregulated in the 

synovial fluid samples. As a result the number of similar genes from cell contact 

and synovial fluid macrophages decreased further: 

 110 genes expressed in all three conditions (72 downregulated genes and 

38 upregulated genes) 

 18 genes expressed in cell contact macrophages and PsA SF (6 

downregulated genes and 12 upregulated genes) 

 128 genes expressed in cell contact macrophages and RA SF (88 

downregulated genes and 40 upregulated genes) 
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6.7.1.2  DAVID analysis of the differentially expressed genes in 
cell contact activated macrophages and synovial fluid 
macrophages 

DAVID software was used to analyse the up- and downregulated genes that were 

changed in the cell contact macrophages and the synovial fluid macrophages to 

determine the overall biological functions of these genes. DAVID analysis did not 

find any significantly overrepresented processes within the gene list expressed in 

both the cell contact and PsA SF macrophage samples, which was likely to be 

due to the small number of genes within the list. Figure 6.8 demonstrates the 

top ten overrepresented biological processes associated with the upregulated 

genes found in all 3 macrophage conditions (A) and the downregulated genes 

found in all 3 macrophage conditions (B). The results of this analysis indicate 

that the macrophage samples are upregulating genes associated with immune 

response and response to stimulus and stress. The same macrophage samples are 

also downregulating genes associated with intracellular signalling cascade and 

regulation of myeloid cell differentiation. Figure 6.9 shows the biological 

processes associated with the upregulated genes found in both the cell contact 

and RA SF macrophages conditions (A) and the biological processes associated 

with the downregulated genes in both the cell contact and RA SF macrophage 

conditions (B). The upregulated genes are involved in processes such as 

intracellular signal transduction and phosphorylation. The downregulated genes 

are involved in processes such as cellular metabolism and T cell differentiation. 
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Figure 6.8 Up- and downregulated biological processes in cell contact, RA SF and PsA SF 
macrophages 
DAVID software was used to analyse the genes which were differentially expressed in all three 
macrophage conditions to determine overrepresented biological processes associated with the 
genes. The top ten significantly overrepresented processes are shown here with a p value <0.05 
which is equivalent to a –log p value > 1.30 
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Figure 6.9 Up- and downregulated biological processes in cell contact and RA SF 
macrophages 
DAVID software was used to analyse the genes which were differentially expressed in cell contact 
and RA SF macrophage conditions to determine overrepresented biological processes associated 
with the genes. The top significantly overrepresented processes are shown here with a p value 
<0.05 which is equivalent to a –log p value > 1.30 
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6.8  Discussion 

The in vitro model of inflammatory arthritis consists of direct cell contact 

activating M-CSF differentiated macrophages with cytokine activated T cells. 

Microarray analysis of one cell type requires a pure cell population as 

contaminating cells would have an effect on the genetic profiles obtained. 

Therefore we devised a method of isolating the activated macrophages from the 

T cells by CFSE staining the T cells and using the FACS ARIA to separate the cells 

based on their fluorescence. This method ensured that no antibody or CFSE 

staining of the macrophages took place as any manipulation of these cells may 

have altered their genetic profile. However, the FACS ARIA plots indicated that a 

large amount of cellular debris had been collected in the macrophage cell 

fraction which may have ultimately affected the macrophage purity and 

subsequently the transcriptomic profile of the cell contact activated 

macrophages. 

A 2 hour timepoint was demonstrated to be the appropriate duration of cell 

contact activation for the macrophages due to variability in the quality and yield 

of RNA after this time. It is difficult to fully explain these variable findings. 

However, the low quality RNA in the cell contact activated macrophages, as 

visualised by the empty electropherogram plots seen after t = 8hours in Figure 

6.4, may be due to very low amounts of RNA being run through the Agilent 

Bioanalyser The sequential decrease in the yield of macrophage RNA over the 

duration of the cell contact activation was also an unusual finding but may be 

due to increased apoptosis and cell loss which would therefore decrease the 

yield of RNA from the cells. As a result of these findings, we decided to analyse 

the macrophages after they had been cell contact activated for 2 hours, it was 

also decided that this timepoint was more appropriate for analysing the early 

response genes that would be differentially expressed within the macrophages. 

Crucially however this may not represent the gene profile present in a 

chronically activated macrophage derived from within the synovial compartment 

and in this sense the outcome was perhaps predictable. 

After completion of the microarray experiment and removal of the outlier cell 

contact macrophage sample from further analysis a PCA plot of the samples was 

setup to identify trends in the data since samples clustered within the same area 
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of the PCA graph are considered to be genetically similar [354]. This analysis 

identified that the M-CSF differentiated macrophages were genetically distinct 

from the Tck activated macrophages which suggests that being in cell contact 

with the Tcks for 2 hours induced a transcriptional change in the macrophages. 

However, the PCA analysis also demonstrated that the cell contact macrophages 

were genetically distinct from the synovial fluid macrophages. 

Previous work has demonstrated that the cytokine activated T cells (Tcks) used 

in this in vitro system are similar to RA synovial T cells, as they up-regulate the 

same cell surface activation markers and adhesion molecules and also induce the 

production of various cytokines and chemokines from macrophages in a cell 

contact dependent manner [298, 308, 309]. Recently, a microarray analysis of 

monocytes activated for 24 hours by PMA and PHA stimulated T cell membrane 

fragments was performed by Gruaz et al who analysed the anti-inflammatory 

effects of high-density lipoproteins (HDL) on the transcriptome of the activated 

monocytes. They discovered that 666 probe sets were altered in the activated 

monocytes compared to unactivated monocytes indicating that T cell contact 

activation of monocytes does have an effect on the transcriptome of the cells 

[315]. Hence, for our study it was hypothesised that cell contact activation of 

macrophages by fixed Tcks for 2 hours should indicate the early response genes 

upregulated by the macrophages. Given that the Tcks have been demonstrated 

to be similar to synovial T cells, the genes upregulated in these macrophages 

should be similar to those expressed in the synovial fluid CD14+ cells. 

The three macrophage conditions of cell contact, PsA synovial fluid and RA 

synovial fluid were compared to their matched unactivated or baseline samples, 

which in this comparison were unactivated M-CSF macrophages, RA PB CD14+ 

cells and PsA CD14+ cells. After determining the differentially up- and down-

regulated genes in these activated conditions a Venn diagram was used to 

discover if any genes overlapped with those of the other conditions. The initial 

results of the Venn diagram were disappointing as it demonstrated that only 10% 

of the total significantly expressed genes in the PsA SF condition and 11% of the 

total expressed genes in the RA SF condition were expressed in the cell contact 

macrophages indicating that these conditions were not significantly similar. A 2-

fold change analysis was subsequently performed on the gene lists which were 

then examined further to ensure that they were all differentially expressed in 
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the same direction. For example, if a gene was differentially expressed in both 

the cell contact activated and PsA synovial fluid conditions it had to be either 

up-regulated or down-regulated in both conditions but could not be up-regulated 

in one condition and down-regulated in the other since we were investigating 

the similarities between the conditions. This resulted in further decreasing the 

size of the gene lists and of the 54,675 probe sets on the Affymetrix GeneChips 

less than 130 were expressed in each of the three gene lists of i) expressed in 

cell contact, RA SF and PsA SF conditions, ii) expressed in cell contact and RA 

SF, iii) expressed in cell contact and PsA SF. 

DAVID analysis was performed on the up- and down-regulated genes in each of 

the three comparisons to determine the biological function of the similarly 

expressed genes. DAVID analysis of the genes present in all conditions indicated 

that all three macrophage types were up-regulating genes involved in response 

to stimuli. In the cell contact macrophages this would be as a result of Tck 

contact and in the synovial fluid macrophages this would be as a result of direct 

cell contact as well as the pro-inflammatory environment. All three cell 

conditions are also up-regulating genes associated with the immune response 

and its regulation, this would be expected in the synovial fluid macrophages 

since it has been well documented that the cellular influx into the joint is 

exposed to many pro-inflammatory mediators [537, 682-685] which would result 

in the up-regulation of these genes. However, it is reassuring to observe that the 

cell contact activated macrophages also up-regulate genes involved in immune 

system regulation since these cells are used as an in vitro model of arthritis. 

This also reflects the observations seen in the Gruaz et al microarray analysis of 

monocytes activated with PMA and PHA stimulated T cells which demonstrated 

an up-regulation of cytokines and mediators involved in the immune system 

[315]. The biological processes of the down-regulated genes in all three 

conditions include intracellular signalling cascade, RNA polymerase II 

transcription, and regulation of myeloid cell differentiation suggesting that the 

macrophages could be trying to regulate the increased transcription and 

signalling observed in cell contact activated and synovial cells as a result of 

extracellular stimuli. 

DAVID analysis of the genes up- and down-regulated in the cell contact 

macrophages and the RA synovial fluid macrophages demonstrated that the up-
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regulated genes were involved in processes such as signal transduction and 

intracellular signalling cascade. Signal transduction pathways provide an 

intracellular mechanism by which cells can respond and adapt to their 

environment. Proinflammatory stimuli found within the synovial environment 

can activate signalling cascades within a cell to alter gene transcription and 

protein expression. Several signal transduction pathways have been implicated in 

RA such as mitogen-activated protein kinase (MAPK) and NF-κB as well as the 

transcription factors janus kinase (JAK) and signal transducer and activator of 

transcription (STAT) [688, 689]. Signal transduction pathways, specifically NF-κB 

but not PI-3 kinase, have also previously been shown to play a role in the 

production and secretion of pro-inflammatory cytokines within the cell contact 

activated macrophages [298]. The results from this DAVID analysis highlight the 

importance of signal transduction and intracellular signalling in allowing the 

synovial macrophage to contribute to the pro-inflammatory milieu found in the 

synovium and also emphasises the ability of the cell contact model of arthritis to 

replicate this biological process found in the synovial macrophage.  

The biological processes of the down-regulated genes in RA synovial fluid and 

cell contact activated macrophages were metabolic process, T cell 

differentiation and regulation of IFN-α production. IFN-α is a proinflammatory 

cytokine that is present within the synovial fluid of RA patients and the 

macrophage cells may be down-regulating genes associated with its production 

as an anti-inflammatory regulatory mechanism [690]. The T cell differentiation 

process is a misleading title as two of the three genes associated with this 

function (the transcription factor Ikaros and the phosphatase PTPN22/Lyp) have 

been demonstrated to be expressed in macrophages as well as T cells [691, 692] 

and the third gene, ZNF278, a zinc finger repressor of gene expression has not 

been previously demonstrated to be present in T cells. This result highlights the 

point that the genes associated with each biological process may need to be 

analysed further to understand why the process is associated with the gene list 

since genes can appear in several biological process pathways and each gene can 

be expressed by more than one cell type.  

DAVID analysis could not be performed on the shared PsA synovial fluid and cell 

contact activated macrophages due to the small number of genes within this 

gene list. However, analysis of the gene list demonstrates that both PsA 
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macrophages and cell contact activated macrophages are upregulating 

inflammatory genes such as the cytokine TNFα which has a pronounced role in 

the pathogenesis of arthritis. These two macrophage types are also upregulating 

genes such as NRP2 (neuropilin 2) which is a surface receptor originally 

identified as a factor involved in nerve fibre repulsion during neuronal growth 

[693]. Neuropilin 2 positive nerve fibres have been detected in the synovium of 

rheumatoid arthritis patients and soluble neuropilin 2 has also been detected in 

the synovial fluid of these patients where it was hypothesised to aggrevate the 

loss of sympathetic nerve fibres which is observed in RA [694]. Consequently 

despite the low numbers of genes that are the same in the PsA and cell contact 

macrophages, the genes that are shared between the subgroups are of an 

inflammatory phenotype and have been demonstrated to be involved in the 

destructive phenotype of arthritis. 

The common genes between all three conditions and between cell contact 

activated macrophages and RA synovial fluid macrophages were revealed to 

share biological processes such as immune system regulation, which 

demonstrates that after just 2 hours the Tck contact activation is eliciting an 

immune response in the M-CSF macrophages similar to that seen in synovial fluid 

derived macrophages. Nevertheless, this study has also demonstrated that of all 

the genes differentially expressed between RA PB and RA SF CD14+ and between 

PsA PB and PsA SF CD14+ only 11% and 10%, respectively, of those genes are also 

differentially expressed between the M-CSF and cell contact activated 

macrophages. This result would indicate that the cell contact model of 

inflammatory arthritis may not be a suitable in vitro model for arthritis since the 

cell contact activation does not appear to effectively replicate the same level of 

transcriptional expression within the M-CSF macrophage compared to a synovial 

fluid macrophage isolated from a patient. 

Nonetheless, there are several possible reasons for this discrepancy. Firstly, the 

FACS ARIA separation suggested that a large proportion of collected events for 

the macrophage cell fraction was celluar debris which may have been created 

during the removal of the macrophages from the culture wells after cell contact 

activation. The presence of this debris would affect the overall purity of the 

macrophage cells and may have contained cellular components and nuclear 

material which could have affected the transcriptomic measurement and 
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analysis. In addition,  due to time restrictions only 6 normal donors were able to 

be recruited for the cell contact activation samples and since one of these 

samples was the outlier identified at the start of the microarray analysis its 

removal meant that only 5 matched cell contact samples were compared to 8 

matched RA and 8 matched PsA samples. Therefore the full spectrum of the cell 

contact transcriptome may not have been analysed. The cell contact donors 

were also only age and sex matched to the PsA patients who had a smaller mean 

age compared to the RA patients. Many papers have described the effect of 

aging on epigenetics such as altered DNA methylation and histone modification 

which in turn impact on chromatin folding [695], women are also more 

predisposed to rheumatic diseases due to hormonal as well as genetic 

differences between males and females [696]. Hence not including age and sex 

matched donors to the RA patients may have automatically discarded genes 

associated with these two factors.  

As noted at the outset of my discussion, the final and most important variable 

which may have affected the gene expression of the cell contact activated 

macrophages was the duration of activation. During the cell contact model the 

macrophages are usually stimulated for 24 hours with the Tcks before analysis, 

however due to our interest in the early response genes expressed in the 

macrophages and the variability in the macrophage quality and yield it was 

decided to analyse the cells after a shorter duration. Consequently trying to 

compare macrophages which have been activated for 2 hours to macrophages 

from the synovial fluid which have been activated for an unknown duration 

presents problems. A recent paper which analysed the stability and temporal 

changes in inflammatory gene expression in TNFα stimulated murine fibroblasts 

found three groups of mRNA expression: group 1 genes had a peak mRNA 

expression at 0.5 hours after stimulation but their expression was unstable and it 

fell to baseline after 1 hour; group 2 genes had a peak expression at 2 hours 

however upon the removal of the TNFα stimulus their expression fell to baseline; 

group 3 genes had peak expression 12 hours after the stimulus, these genes were 

transcribed at a slow rate but the resulting mRNA was very stable [697].  

Subsequently if the same pattern of mRNA expression was occurring within the 

cell contact activated macrophages then analysing these cells after 2 hours 

would only detect the group 2 genes as mRNA from the group 1 genes would 
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probably already be in the process of degradation and the group 3 genes would 

not be expressed at a detectable level. 

In summary, despite the cell contact activated macrophages only sharing 10-11% 

of the genes expressed in RA or PsA synovial fluid macrophages those genes 

involve a high proportion of immune system regulation genes indicating that this 

system is upregulating the types of genes thought to be involved in the perpetual 

immune activation seen in macrophages of the arthritic joint. However, to fully 

elucidate the appropriateness of this cell contact system as a model of 

inflammatory arthritis an extended microarray experiment would have to be set 

up in which each RA and PsA patient had an age- and sex-matched donor for the 

cell contact activation and particular care was taken when isolating the 

macrophage cells from the cell contact to ensure a high cell purity. The cell 

contact activated cells would ideally be activated over a timecourse of 1-24 

hours to determine the different groups of genes being expressed within these 

cells over time.  
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Chapter 7 Validation of an in vitro live cell imaging 
system 
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7.1 Introduction 

The macrophage – T cell co-culture experiment is a well established in vitro 

model of inflammatory arthritis. The method of cytokine activation of the T cells 

for this in vitro model confers a pro-inflammatory synovial phenotype which can 

induce the release of several cytokines and chemokine from the macrophages via 

direct cellular contact as has previously demonstrated by the vast amount of 

research performed by our group and several others [298, 308, 309, 408]. Whilst 

we have obtained a wealth of information regarding several aspects of the in 

vitro model such as the signalling pathways involved in the cytokine and 

chemokine release from the macrophages as well as the adhesion molecules 

upregulated by the cytokine activation of the T cells, there are still important 

facets of this model which have not been explored. One important question 

which we addressed in the previous chapter is how similar is the transcriptome 

of the Tck cell contact activated macrophage compared to the synovial 

macrophage. However, another important aspect of the cell contact model is 

determining how the macrophages and Tcks in this model interact and how long 

these interactions last for; this information can be determined using in vitro live 

cell imaging.  

Live cell imaging is a widely used technique which has become more sensitive 

and efficient in recent years with the introduction of new imaging techniques 

and machines such as two-photon laser scanning microscopy. A large amount of 

the current work using live cell imaging has focused on the in vivo interactions 

between DCs and T cells within the lymph node [698]. These studies have been 

very informative in determining the behaviour of the T cell – DC interactions 

during antigen presentation. Such studies have revealed that when T cells are 

moving around the lymph node they follow a chaotic trajectory with random 

movements and are not directed by chemotatic gradients over large distances as 

was previously thought [699]. Live cell imaging has also demonstrated that T cell 

may make several contacts of a short duration with antigen loaded DCs before 

forming a stable cell-cell immunological synapse contact with one DC. The use of 

live cell imaging has made it possible to visualise the movement of the T cells 

towards the DCs during antigen presentation and several papers have proposed 

models for the type of movements and behaviours observed by the T cells before 

they form stable, long-lived interactions such as ―drive by‖ which is a situation 
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where the T cell will have a short interaction with the DC but will then move 

away from the DC and carry on migrating [700]. 

Despite the wealth of knowledge about the interactions of T cells and DCs 

gained from live cell imaging there has been far fewer investigation into the 

interactions between T cells and macrophages either in vivo or in vitro. One 

study performed by Underhill et al imaged such interactions using OVA specific 

murine T cells containing a reporter construct which caused the cell to express 

green fluorescent protein (GFP) upon productive engagement with OVA 

presenting macrophages. Using in vitro live cell imaging this group demonstrated 

that 90% of the T cells appeared to move around the surface of individual 

macrophages and 50% of T cells migrated from one macrophage to another 

during 3 hours of time lapse imaging. Underhill et al also determined that the T 

cell — macrophage interactions had to be sustained for 2 hours for the T cell to 

become fully activated and express GFP however due to the behaviour of the T 

cells this activation may be the summing up of multiple activatory signals during 

the numerous interactions with the macrophages [701]. This study was analysing 

the T cell — macrophage interactions in the presence of antigen and at present 

there are no studies analysing such in vitro interactions in an antigen 

independent environment. 

Histological analysis of the inflamed synovium has shown that macrophages are 

found in close contact with T cells [286] indicating that direct cell contact may 

be a mechanism causing the production of pro-inflammatory cytokines. 

Subsequent studies using the in vitro cell contact model have demonstrated this 

observation to be correct since the incubation of synovial-like Tcks with 

macrophages induces the production of pro-inflammatory cytokines and 

chemokines as well as anti-inflammatory cytokines such as IL-10 [269, 308]. 

Despite the large amount of experimental work on the cell contact model of 

arthritis there are still gaps in our knowledge regarding the mechanisms of the 

cell—cell interactions and the behaviour of the cells during the co-culture. 

Therefore we set out to use an inverted microscope to image these antigen 

independent interactions in real time. We aimed to determine the number and 

duration of Tck—macrophage interactions and the overall area of these 

interactions. Different variables such as using inactivated T cells or fixed Tcks 

were analysed to visualise their effects on the interaction measurements. Once 
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the behaviour and movement of the cells during the cell contact model have 

been fully understood, the live cell in vitro imaging system could then be used 

to analyse the impact that blocking molecules or proteins may have on the Tck—

macrophage interaction. It was our intention to bring this imaging system 

together with the preceding microarray data to visualise the effect of altering 

key genes, which had identified as being differentially expressed in the synovial 

macrophages, on the cellular interactions taking place and also whether this 

may be affecting the cytokine/chemokine profile of the cell contact. 
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7.2 Real-time imaging 

Figure 7.1 demonstrates the experimental set up to allow real time imaging of 

the cell contact events. The conditions being compared may differ from those in 

the figure however the general experimental set up was the same. Macrophages 

were isolated from a healthy donor and stimulated for 5 days with M-CSF before 

being stained with the red fluorescent dye CMTPX and plated out onto a 

specialised imaging culture chamber for 24 hours to allow the cells to adhere. T 

cells isolated from the same donor which were treated under differing conditions 

were stained with the green fluorescent dye CFSE and cultured with the 

macrophages. The cultures were incubated for 2 or 24 hours (as indicated in the 

text) and then imaged on an inverted microscope. Each condition was imaged for 

varying lengths of time therefore each co-culture set up was often staggered for 

each condition to maintain a constant incubation time before being imaged.  
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Figure 7.1 Outline of in vitro real time imaging experimental setup 
An example of the experimental set up for real time imaging demonstrating how a comparative 
analysis between a macrophage (Mø) and Tck culture compared to a macrophage and 
unstimulated T cell culture would be set up. For this experiment macrophages and T cells are 
isolated from the donor, T cells are stimulated for 6 day with cytokines to generate cytokine 
activated T cells (Tcks) and the monocytes are stimulated for 5 days with M-CSF before being 
stained red with a CMTPX dye and plated out onto two imaging chamber for 24 hours to allow them 
to adhere to the chamber. On day 6 T cells are isolated from the same donor and stained green 
with CFSE and the Tcks are also stained green. Each of the two T cell conditions are then 
incubated with macrophages and the two cell contacts are incubated for a specified duration before 
being imaged on the microscope. 
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7.2.1 Imaging on the microscope 

Once the cell contact experiments had been cultured for the specified duration 

the co-cultures were imaged on an inverted microscope which had a heated 

stage to maintain the cultures at 37ºC. For each imaging condition three movies 

were taken of three separate areas of the co-culture chamber. Once the area to 

be visualised had been chosen the microscope was set up to take three images 

every 12 seconds. The three images consisted of a green fluorescent image, a 

brightfield image and a red fluorescent image as shown in Figure 7.2. The 

brightfield image was taken to ensure that the camera remained aligned while 

the green and red fluorescent images were merged to obtain a single timepoint 

image. When all of the merged imaged were played in sequence they produced a 

real time movie of the in vitro cell contact model of inflammatory arthritis. 

  

Figure 7.2 Example of the images taken by the inverted microscope for the real time imaging 
During the real time imaging the inverted microscope takes three consecutive images. An image of 
the green fluorescence, a brightfield image and an image in red fluorescence (top three images of 
panel). The red and the green fluorescent images are then merged to make the single timepoint 
image (bottom image of panel). The brightfield image is not used in the final timepoint image but is 
taken to ensure that the microscope remains aligned.  
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7.2.2  Quantitative measurements of imaging 

Once generated, the real-time images and movies were analysed to determine if 

there is a difference in the interactions between experimental conditions. 

Volocity is specific imaging software which allows factors such as the number 

and duration of T cell-macrophage interactions to be examined as well as the 

colocalization coefficient between the two cell types.  

7.2.2.1  Number and duration of interactions 

The number and duration of each macrophage-T cell interaction during the 

course of the real time movies were calculated using the Volocity software. This 

software has specific functions that can detect red fluorescence (representing 

the macrophage cells) and green fluorescence (representing the T cells) and 

then determine where these two fluorescence signals intersect i.e. where the 

two cell types are interacting. The software measures the interactions taking 

place in the field of view for the first time frame of the movie and then 

calculates how long these interactions last for the duration of the imaging. It 

also measures any new interactions and their duration taking place during the 

co-culture therefore enabling the user to determine exactly how many 

interactions took place between the two cell types and how long these 

interactions last for. The basis for how the software identifies these cell-cell 

interactions is shown in Figure 7.3. 

7.2.2.2  Colocalization coefficient 

The Volocity software can also be used to measure the colocalization coefficient 

of the macrophage-T cell interactions. In the context of digital fluorescence 

imaging, colocalization can be described as the detection of signal at the same 

pixel localisation in each of two channels. The two channels are made up of 

images of two different fluorochromes taken from the same sample area. The 

Volocity software therefore detects how many yellow pixels are in each time 

frame image as the yellow pixels are representing the position where the two 

fluorescent colours (green and red) are overlapping and hence where the two 

different cell types are interacting. The colocalization coefficient therefore 

analyses the area of interaction between the two cell types, it has an advantage 

over the number and duration analysis as statistical analyses can be made on the 
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colocalization coefficient values between two different experimental conditions 

to determine if there is a significant difference between the areas of 

colocalization. In summary there are two different methods of analysis for the 

real time movies generated of the in vitro model of inflammatory arthritis. They 

are both constructive methods of analysis and enable the amount and duration 

of interactions as well as the overall areas of interactions to be measured. 
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Figure 7.3  Volocity software method for determining the macrophage-T cell interactions 
Each macrophage-T cell culture movie is made up of individual frames taken by the microscope 
which, when played in sequence, produces the real time movie. To determine the number and 
duration of interactions taking place during each movie Volocity begins by analyses the first time 
frame of the movie. In this image Volocity identifies objects which are fluorescing green (T cells) 
and identifies objects which are fluorescing red (macrophages). It highlights each new object it 
identifies in a different colour. The software then identifies the areas of intersection between the red 
and green objects and each area is classed as an interaction between the two cell types. The 
software will then track these interactions and any new interactions which form during the movie 
and determine how long each interaction lasted for. The cartoons on the right hand side of the 
figure depict how the software views the cells and locates the areas of interaction. 
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7.3 Comparison of cytokine activated T cells to 
unstimulated T cells 

In the cell contact model of inflammatory arthritis the T cells are stimulated 

with a specific cytokine cocktail for 6 days, this stimulation induces an activated 

T cell (Tck) phenotype which resembles T cells isolated from an RA synovial 

joint. Not only do these Tcks express a similar cell surface ligand and activatory 

marker phenotype as the synovial T cells they also induce a similar pro-

inflammatory cytokine and chemokine profile in macrophages by direct cell 

contact [269, 298, 308, 309]. To establish whether the cytokine activation of the 

T cells induced more interactions with the macrophages or a larger area of 

interactions a comparative analysis of Tcks and inactivated T cells took place.  

Figure 7.4 is a representative of three independent experiments performed. 

Since each co-culture condition was imaged three times in separate areas of the 

culture chamber panel, Figure 7.4 (A) shows individual time frames of a 

representative movie for each culture condition taken at t=0, t=60 seconds and 

t=120 seconds for the macrophage—T cell co-culture (top panel) and the 

macrophage—Tck co-culture (bottom panel). The white arrows on the 

macrophage—Tck co-culture images indicate Tck cell movement during the 

course of the movie. Upon comparison of the two sets of images it can be seen 

that many Tcks are clustered around the macrophages which is not visualised in 

the non activated T cells images. Consequently, the cytokine stimulation of the 

T cells would appear to induce a higher rate of clustering and interaction with 

the macrophages compared to T cells from the same donor which have not been 

stimulated.  

This pattern of interaction can also been seen in the two real time movies 

represented by the panel of images in part (A) of Figure 7.4. The supplementary 

file designated movie 1 demonstrates the inactive T cell — macrophage 

interactions. It can be seen that there is little T cell movement within the field 

of view. There are also only a small number of interactions taking place between 

the T cells and the macrophages which appear to be stable. The movie for the 

Tck—macrophage co-culture is supplementary file movie 2 and from this short 

movie it can be seen that the majority of interactions are stable long-lived 

interactions where many Tcks have clustered around one macrophage indicating 
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their increased activation status compared to the inactivate T cells. There are 

only a small number of Tcks which have not formed stable interactions moving 

though the field of view therefore it is difficult to comment on the migration 

pattern of the Tcks. It is likely that in the 24 hours prior to the imaging of the 

co-culture the majority of the Tcks have already formed and established stable 

interactions with the macrophages therefore a shorter imaging timepoint may be 

necessary in order to visualise the how the Tcks migrate and behave. I note also 

that the experiment is not performed under formal flow conditions which might 

alter the adhesive activities of cells. 

Volocity analysis was used to analyse the movies in order to determine the 

number and duration of interactions which are shown in Figure 7.4 (B). These 

graphs show the number of interactions on the y axis and the duration of 

interactions in time frames on the x axis. One time frame is equivalent to a 

duration of 12 seconds since this is the unit of time between each image being 

taken on the microscope. The graphs represent the average number and duration 

of interactions throughout the three movies taken of each co-culture condition. 

The graph on the left hand side demonstrates that the Tcks (red line) have more 

sustained interactions with the macrophages. These interaction last for a longer 

duration which is identified by the peak of interactions just before time frame 

200 and at time frame 250 which is not seen in the T cell co-culture (black line). 

Due to the difficulty in visualising the difference in the number of short duration 

interactions between the two co-culture conditions all interactions which lasted 

up to 10 minutes, equivalent to 50 time frames, were plotted on a separate 

graph (demonstrated by the right hand side graph). Analysing this graph 

illustrates that as well as having more sustained interactions with the 

macrophages the Tcks also have a higher number of shorter duration 

macrophage interactions compared to the T cells. This can be most easily seen 

at time frames 5 to 10 where the Tcks consistently exhibit a higher number of 

interactions compared to the T cells. Volocity analysis of the colocalization 

coefficient in Figure 7.4 (C) reveals that the average area of interaction was 

significantly higher in the three movies of the Tck co-culture compared to the 

three movies of the T cell co-culture (p<0.0001). 

Hence these results demonstrate that cytokine activation of the T cells does 

induce more interactions with the macrophages, these interactions are more 
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sustained and have a significantly larger area. However, analysis of the movies 

demonstrates that there is little Tck movement towards the macrophages as 

most of the Tcks have migrated towards and maintained their interactions with 

the macrophages in the 24 hour period prior to microscope imaging. Since we 

are also interested in visualising how the Tcks migrate towards and interact with 

the macrophages it was decided to analyse the co-culture experiments after a 

shorter 2 hour duration of incubation.  
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Figure 7.4 Imaging Tcks or non-activated T cells incubated with macrophages for 24 hours 
The two co-culture experiments were analysed after 24 hours of incubation, three fields of view 
were imaged from each condition. Figure (A) shows single images from the real time movie taken 
at t=0, t=60 seconds and t=120 seconds from the cell contact containing macrophages and non 
activated T cells (top panel) and the cell contact containing macrophages and Tcks (bottom panel). 
The white arrows on the bottom panel of images indicate Tck cell movement during the course of 
the imaging. These images are a representative of the three movies which were taken of each 
condition. Figure (B) indicates the number and duration of macrophage-T cell interactions 
throughout the course of the movies. The duration of interactions is represented in time frames 
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where one time frame is equivalent to 12 seconds. The data points represent the average value 
taken from the three movies of the macrophage-T cell co-culture (black line) and the macrophage-
Tck co-culture (red line). The graph on the left indicates all the interactions which occur for the 
duration of the movies. Since the number of short interactions is difficult to visualise on this graph 
the short duration interactions lasting no longer than 10 minutes (50 time frames) have been 
plotted on the right hand side graph. Figure (C) demonstrates the average colocalization coefficient 
of the two co-cultures (mean plus standard deviation). Colocalization coefficient is a measure of the 
area of interaction between the macrophages and T cells and this result demonstrates that there is 
a significantly higher amount of interaction taking place in the Tck co-culture compared to the T cell 
co-culture (p<0.0001). 

 

7.3.1  Comparison of Tcks and T cells after 2 hours of co-culture 
with macrophages 

I next examined cellular contacts between macrophages and T cells/Tcks after a 

2 hour duration of incubation. Since we also planned to use this model system to 

analyse the effect of different proteins/molecules identified from the 

microarray on this inflammatory model of arthritis, analysing the co-culture 

system after 2 hours would also allow us to identify early effects of targeting or 

manipulating these proteins.  

Figure 7.5 is a representative of three independent experiments that measured 

the interactions between macrophages and non-activated T cells or Tcks after 2 

hours of co-culture. Figure (A) is displaying screen shots taken from the movie of 

the macrophages incubated with non-activated T cells (upper panel) or 

incubated with Tcks (lower panel). Examination of the two image panels 

revealed that even after 2 hours of incubation the macrophages and T cells are 

already in contact with one another. This demonstrates that the T cells require 

only a short duration of time in which to establish their interactions with the 

macrophages. Upon comparison of the two panels of screenshots, the 

macrophage-Tck co-culture appear to have substantial clustering of the T cells 

around the macrophages compared to the non-activated T cell –macrophage co-

culture. This clustering of the Tcks around the macrophages is not distributed 

evenly throughout the field of view and is localised to a subgroup of 

macrophages. The reason for this is unclear at present but it may be due to an 

increased activation of the macrophage subset causing increased expression of 

cell surface activatory markers or increased chemokine or cytokine expression 

from these cells which could be causing the Tcks to cluster around them. 
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The representative movie for the macrophage—T cell 2 hour co-culture is 

designated movie 3 in the supplementary files. Upon observing this real time 

movie it is clear, especially at the start of the movie, that all of the T cells are 

moving in the same direction and they all change their direction of movement at 

the same time. This would indicate that rather than undergoing independent 

random movement the T cells are all moving throughout the field of view as a 

result of an external variable which could possibly be the external airflow. 

Despite this variable, several of the inactive T cells have formed stable contacts 

with the macrophages indicating that the two cell types can establish stable 

interactions after just 2 hours of co-culture. Analysing the migrating T cells in 

the movie demonstrates that these T cells appear to only briefly interact with 

the macrophages before moving away. These short interactions may be due to 

the T cells being inactivate and therefore are not expressing the high level of 

adhesion molecules needed to form strong interactions upon the first encounter 

of the macrophages. In addition the external air flow could be playing a role in 

moving the T cells away from the macrophages before the establishment of the 

stable interactions. This is in contrast to the small number of stable interactions 

which have formed between the two cell types which may have formed during 

the 2 hour co-culture in a 37ºC incubator without the influence of external air 

flow. 

The representative movie for the macrophage—Tck 2 hour co-culture is 

designated movie 4 in the supplementary files. Analysis of this movie indicates 

that the Tcks have formed stable interactions emphasising the observation that 

the Tcks only need a few hours to form stable cell contacts with the 

macrophages. In the middle of the field of view in the movie there is a 

macrophage dense region around which many Tcks have clustered. This 

clustering of T cells was not seen in the inactive T cell movie indicating that the 

Tcks have a greater capacity for macrophage cell contact. As was visualised in 

the previous movie, the external air flow appears to be influencing the 

movement of the Tcks as all of the Tcks are moving in the same direction though 

the field of view, making it difficult to distinguish the migration pattern of the 

Tcks. However, although their movement appears to be influenced by the air 

flow the Tcks are demonstrating more short duration interactions with the 

macrophages compared to the inactive T cells. This observation is not due to the 
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selection of the field of view as three areas were selected at random for this 

analysis and the same pattern of airflow was visualised in all three fields of 

view. In addition, the Tcks appear to interact for longer with the macrophages 

before moving away in comparison to the inactive T cells which appear to only 

interact briefly. 

Panel (B) of Figure 7.5 is showing the number and duration of interactions 

occurring between the macrophages and the non-activated T cell or the Tcks. 

The left hand graph indicates the average number and duration of the 

macrophage-T cell interaction which took place during the two conditions. The 

interactions between the macrophages and Tcks are indicated by the red line 

and the interactions between the macrophages and the non-activated T cells are 

indicated by the black line. On the left hand graph it is difficult to visualise the 

number of interactions lasting for a short duration however both the Tcks and 

the non-activated T cells appear to have a similar number of interactions lasting 

for the maximal duration of 265 time frames (53 minutes). Due to the difficulty 

in viewing the number of interactions lasting for a short duration, this data was 

re-graphed specifically analysing interactions which lasted for up to 10 minutes 

in duration. This graph can be seen on the right hand side of panel (B) and 

demonstrates that the Tcks (red line) had an increased number of short 

interactions with the macrophages compared to the non-activated T cells (black 

line). Volocity analysis of the area of interaction (colocalization coefficient) 

within each of the movies was also calculated and the results are shown in panel 

(C). The colocalization coefficient is significantly higher (p<0.0001) when the 

Tcks are co-cultured with the macrophages compared to the non-activated T 

cells indicating a higher area of interaction. These results correspond with those 

that were observed during comparison of the images in panel (A) and 

supplementary movies 3 and 4 where it was observed that more Tcks appeared 

to be in contact and clustered around the macrophages compared to the non-

activated T cells.  

In summary, this 2 hour imaging condition has verified the results of the 

Tck/non-activated T cell imaging performed after 24 hours of co-culture as it 

has demonstrated at this timepoint that cytokine activated T cells have a higher 

number of interactions with the macrophages and these interactions have a 

larger area. The results of the 2 hour co-culture imaging also inform us that the 
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T cells interact with the macrophages after a relatively short duration of 

incubation and it is not necessary to incubate the co-culture for 24 hours before 

imaging. Performing imaging after such a short incubation has its advantages as 

the initial movement and interactions of the T cells with the macrophages can 

be visualised along with the early effects of adding inhibitory molecules or 

targeting specific genes within the co-culture system. 
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Figure 7.5 Imaging Tcks or non-activated T cells incubated with macrophages for 2 hours  
The two co-culture experiments were analysed after 2 hours of incubation. Figure (A) shows single 
images from the real time movie taken at t=0, t=60 seconds and t=120 seconds from the cell 
contact containing macrophages and non activated T cells (top panel) and the cell contact 
containing macrophages and Tcks (bottom panel). Figure (B) indicates the number and duration of 
macrophage-T cell interactions throughout the course of the movies. The data points represent the 
values taken from the macrophage-T cell co-culture (black line) and the macrophage-Tck co-
culture (red line). The graph on the left indicates all the interactions which occur during the movies. 
Since the number of short interactions is difficult to visualise on this graph the short duration 
interactions lasting for up to 10 minutes (50 time frames) have been plotted on the right hand side 
graph. Figure (C) demonstrates the average colocalization coefficient of the two co-cultures. 
Colocalization coefficient is a measure of the area of interaction between the macrophages and T 
cells and this result demonstrates that there is a significantly higher amount of interaction taking 
place in the Tck co-culture compared to the T cell co-culture (p<0.0001). 
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7.4 Comparison of fixed and live Tcks after 2 hours co-
culture with macrophages 

Once it had been established that the Tcks, which have a phenotype similar to 

RA synovial T cells, have more interactions compared to non-activated T cells we 

decided to develop and validate the in vitro imaging system further by 

comparing fixed Tcks to live Tcks. We hypothesised that the live Tcks would be 

able to actively migrate towards the macrophages and therefore would have a 

larger number of interactions with the macrophages compared to fixed Tcks. 

Figure 7.6 is a representative of five experiments which took place to image the 

fixed and live Tck co-culture conditions with live macrophages. For the fixation 

process 2% paraformaldehyde was used which fixes the cells through cross linking 

the proteins. Consequently, the fixed Tcks will still have the cell surface 

markers and adhesion molecules needed to interact with the macrophages but 

they will not be able to actively migrate or chemotax towards the macrophages 

or produce cytokines or chemokines which could activate the macrophages. 

Panel (A) of Figure 7.6 is showing the screen shots from one of the three fields 

of view taken for each imaging condition for this experiment. The screen shots 

are taken at 0, 60 and 120 seconds after the commencement of imaging. 

Comparison of the two sets of screenshots demonstrates that there are very few 

interactions taking place between the macrophages and fixed Tcks however the 

live Tcks have clustered around the macrophages and are interacting with them. 

This can also be visualised in the real time movies taken of these conditions. 

Supplementary file movie 5 is the representative field of view taken of the fixed 

Tcks—macrophages after 2 hours of co-culture. Upon analysis of this movie it is 

clear that there are very few interactions taking place between the fixed Tcks 

and the macrophages. Furthermore, there appears to be a very small number of 

stable interactions between the fixed Tcks and the macrophages, the Tcks which 

are moving around the field of view are seen to very briefly interact with the 

macrophages before moving away. The supplementary file movie 6 represents 

the live Tcks from the same donor imaged after 2 hours of co-culture. This movie 

demonstrates that the live Tcks are highly activated and have clustered around 

and acquired stable interactions with the macrophages. Some of the Tcks are 

interacting with two macrophages at the same time and can be visualised 
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spreading over the surface of the macrophage in order to increase the area of 

interaction. The external air flow does not appear to be playing a large role in 

the movement of the live Tcks as was seen in previous movies. In addition, it can 

also be visualised that once a Tck becomes within close proximity of a 

macrophage it is more likely to interact with the macrophage rather than 

migrate past it which is what is observed in the fixed Tck movie. 

Part (B) of Figure 7.6 reveals the average number and duration of interactions 

that took place throughout the imaging conditions. Each condition was imaged 

three times therefore the points on this graph represent the mean number and 

duration of interactions which took place. These results demonstrate that the 

live Tcks (red line) had substantially more interactions than the fixed Tcks; the 

difference was so striking there was no need to display the interactions lasting 

for up to 10 minutes in duration as was done in the previous figures. The graph 

also demonstrates that the live cells not only had numerous short interactions 

with the macrophages but also had interactions lasting for a long duration which 

is demonstrated by the peak of interactions at approximately 130 time frames. 

Panel (C) of Figure 7.6 demonstrates that the mean area of interaction between 

the macrophages and the Tcks was significantly higher (p<0.0001) in the live cell 

co-culture compared to the fixed cell co-culture. These results along with the 

preceding ones verify our hypothesis that the live Tcks would have more 

interactions with the macrophages compared to the fixed Tcks. Whilst this result 

was not surprising since fixed Tcks are unable to migrate, this condition was an 

important one to set up as it ensured that our in vitro system was functional and 

that our methods of analysis were accurate and reliable. 

Unfortunately time restrictions meant that no further experiments using our 

validated in vitro real time imaging system could be performed and therefore 

the imaging method could not be used for its intended purpose of imaging the 

effect of blocking proteins discovered during the microarray analysis to be 

upregulated in the synovial fluid macrophages. If time had permitted we would 

have imaged the cell contact after siRNA treating the macrophages to 

knockdown plexin A1 production. Plexin A1 is a gene which was highly 

upregulated in our RA and PsA synovial fluid microarray samples compared to 

their matched blood samples, it is a surface receptor for semaphorin ligands and 
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has been demonstrated to have a role in immune regulation and axonal guidance 

[444, 618]. Hence imaging the effect of siRNA knockdown of plexin A1 could 

have demonstrated if it played a role in Tck—macrophage interaction and 

whether silencing plexin A1 in the macrophage had an impact on the number, 

duration or area of cellular interactions. 

 



343 

 

Figure 7.6 Imaging fixed or live Tcks incubated with macrophages for 2 hours 
The two co-culture experiments were analysed after 2 hours of incubation. Figure (A) shows single 
images from the real time movie taken at t=0, t=60 seconds and t=120 seconds from the cell 
contact containing macrophages and fixed Tcks (top panel) and the cell contact containing 
macrophages and live Tcks (bottom panel). These images are a representative of the three movies 
which were taken of each condition. Figure (B) indicates the number and duration of macrophage-T 
cell interactions throughout the course of the movies. The data points represent the average value 
taken from the three movies of the macrophage- fixed Tck co-culture (black line) and the 
macrophage-live Tck co-culture (red line). Figure (C) demonstrates the average colocalization 
coefficient of the two co-cultures (mean plus standard deviation). Colocalization coefficient is a 
measure of the area of interaction between the macrophages and T cells and this result 
demonstrates that there is a significantly higher amount of interaction taking place in the live Tck 
co-culture compared to the fixed Tck co-culture (p<0.0001). 
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7.5 Discussion 

This project has demonstrated the validation work required to verify an in vitro 

imaging model of inflammatory arthritis, and we have illustrated the effects of 

changes to the model through fixing the Tcks or by adding unstimulated T cells 

to the culture. In addition, this work has allowed the visualisation of the 

dynamic nature of the interactions between the cytokine activated Tcks and 

macrophages. The inflammatory cell contact model has previously been 

demonstrated to be a robust model of arthritis since the cytokine activation of 

the T cells induces a phenotype similar to T cells found in the RA synovium [269, 

298, 308, 309]. However, previous work has only analysed the 

cytokine/chemokine profiles of the macrophage—Tck co-culture, the activatory 

markers present on the Tcks or the inflammatory signalling pathways which are 

activated in the macrophage as a result of co-culture. Hence, we set out to 

visualise and measure the interactions that take place within this co-culture 

model with the eventual aim of imaging the effect of blocking specific proteins 

shown to be upregulated in the synovial macrophage by combining this work with 

the microarray results of the preceding chapters.  

The first set of experiments which were performed compared the interactions 

between a macrophage—Tck to a macrophage —T cell co-culture that had been 

incubated for the standard duration of 24 hours. The results of these 

experiments revealed that on average the Tcks engaged in a higher number of 

interactions with macrophages compared to the unstimulated donor matched T 

cells. These Tck interactions also lasted for a longer duration and had a 

significantly higher surface area compared to the T cell interactions. Recently, 

Brennan et al showed that the cytokine activation of T cells results in the 

upregulation of T cell activation markers such as CD25, CD69 and HLA-DR as well 

as adhesion molecules such as L-selectin, integrin β-1 (CD29), integrin β-2 (CD18) 

and CD49d an integrin alpha subunit that in combination with CD29 make up the 

integrin very late antigen-4 (VLA-4) [309]. These adhesion molecules are known 

to interact with receptors which are present on the surface of macrophages, 

such as VCAM-1 which interacts with Tck VLA-4 and ICAM-1 which interacts with 

Tcks CD18. Consequently, the observations of increased interactions between 

Tcks and macrophages with a higher surface area compared to those between 

inactivated T cells and macrophages is unsurprising since the Tcks have 
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previously been shown to express adhesion molecules which will aid in their 

establishment and maintenance of interactions with the macrophages. Analysis 

of the numerous movies taken of the two co-culture conditions demonstrated 

that while many stable interactions had formed between the Tcks/T cells and 

the macrophages there were very few Tcks or T cells which were actively 

migrating or moving throughout the field of view. This result indicated that most 

of the Tcks/T cells had already established and maintained their stable 

interactions with the macrophages in the 24 hours prior to the commencement 

of the real time imaging. 

Since part of this investigation was to visualise the movement of the T cells 

within the cell contact system and visualise the establishment of these 

interactions it was decided to analyse the co-culture system after a shorter 

duration of incubation. An incubation period of 2 hours was decided upon before 

the commencement of the real time imaging. This short incubation period should 

allow the T cell movement to be observed and the establishment of short and 

stable interactions as a previous study analysing murine T cell macrophage 

interactions demonstrated that the T cells move from one macrophage to 

another after 2 hours of real time imaging [701]. In addition, using a 2 hour 

incubation period before imaging the co-culture would coordinate well with 

using this in vitro imaging system alongside the microarray results to visualise 

the function of particular genes. The microarray analysis took place after 2 

hours of co-culture to analyse the early response genes that are changed in the 

macrophages therefore imaging this co-culture system after 2 hours will allow 

the visualisation of the effect these early response genes have on the 

interactions between the Tcks and macrophages. 

Imaging the Tck—macrophage co-culture in comparison to the T cell—

macrophage co-culture after 2 hours of incubation correlated well with the 

previous analyses of the co-culture after 24 hours. The number of short duration 

interactions and the colocalization coefficient was higher in the Tck co-culture 

compared to the T cell co-culture however both co-culture systems had a similar 

average number of long-duration stable interactions. Hence not only are the 

Tcks having more short duration interactions with the macrophages but the area 

of these interactions is also significantly larger, this observation may be caused 

by the increased expression of adhesion molecules on the surface of the Tcks 
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after cytokine activation as previously described [309]. Analysis of the movies 

from these co-culture experiments unfortunately did not reveal a large amount 

of information regarding the independent movement of the T cells/Tcks due to 

external factors influencing their movement. In each movie the Tcks/T cells can 

be observed to all move in a single direction before changing their direction of 

movement simultaneously which leads to the conclusion that external air flow 

may be causing the movement of the T cells. 

Despite the external air flow, which was not consistent throughout the 

experiements, patterns of interaction can still be noted from these movies. 

During the numerous Tck—macrophage co-cultures which were set up the Tcks 

were seen to cluster around specific macrophages and were not evenly 

distributed throughout the field of view. Studies analysing murine T cell—DC 

interactions in the absence of antigen have demonstrated that the rate of 

contacts is not solely the result of random collision events. Chemokines, such as 

CCL3 and CCL4, produced at the site of T cell-DC conjugates increases the 

chance of migrating CCR5-expressing CD8+ T cells to contact DCs by a factor of 2 

to 4 [702]. In addition in vitro observations have revealed that T cell movement 

and behaviour can be influenced by the presence of surface bound chemokines 

on the DC. Friedman et al demonstrated that when T cells encounter APCs which 

have been pulsed with CCR7 ligands in the absence of antigen they remain 

attached to the APCs for several minutes by a uropodal tether. It was also 

demonstrated that this attachment was reduced by 62% in the presence of a 

blocking antibody to ICAM-1 [703]. In the human in vitro model of inflammatory 

arthritis Tcks have been demonstrated to express the chemokine receptor CCR5 

and to a lesser extent CCR7 [309] therefore the movement and cellular 

interaction of these Tcks could be influenced by the expression of chemokines 

from the macrophages. Since the CCR5 ligands CCL3 and CCL4, otherwise known 

as MIP-1α and MIP-1β, are expressed by activated macrophages [578] the 

clustering of Tcks around certain macrophages may the result of these subsets of 

macrophages expressing a higher level of chemokine ligands which causes the 

specific migration and interaction of Tcks to these cells. Once these Tcks are in 

close contact with the macrophages their cellular contacts and maintenance of 

stable interactions will be mediated by adhesion molecules previously associated 

with Tcks and macrophages such as L-selectin and ICAM-1. There is no clustering 
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pattern of inactive T cells around the macrophages seen in the T cell movies 

which is most likely due to the lack of chemokine receptors expressed on the T 

cells that ensures these T cells are not moving by a chemotactic gradient 

towards the macrophages and only interact with the macrophages by random 

chance. 

In conclusion imaging the co-culture after 2 hours of incubation rather than 24 

hours showed a similar pattern of colocalization coefficient but the advantage of 

imaging after such a short incubation allows the movement and brief 

interactions of the Tcks/T cells with the macrophages to be observed whereas 

the was very little T cell movement when the co-culture was analysed after 24 

hours. However, it must be noted that the Tck/T cell movement may not be 

entirely random during the real time imaging as the behaviour and motion of 

these cells may be influenced by the external air flow outside of the imaging 

chamber. 

Once it had been established that the Tcks, which have a phenotype similar to 

RA synovial T cells, partake in more cellular interactions with the macrophages 

compared to non-activated T cells it was decided to validate the in vitro imaging 

system further by comparing fixed Tcks to live Tcks after 2 hours of co-culture. 

Fixation of the Tcks before incubating them with the macrophages results in T 

cells which express all the surface bound chemokine receptors or adhesion 

molecules which are known to be upregulated on Tcks [309] but are unable to 

actively migrate towards the macrophages. Analysis of the graphs in Figure 7.6 

which represent one of five experiments clearly indicates that live Tcks have 

more interactions with the macrophages compared to fixed Tcks and these 

interactions last for a longer duration and have a significantly higher surface 

area. These results validated our hypothesis that the live Tcks are able to move 

towards the macrophages and respond to the chemokines and adhesion 

molecules present on the surface of the macrophages. Analysis of the 

representative movies demonstrated that fixed Tcks do form stable interactions 

with the macrophages, since these cells cannot actively migrate towards the 

macrophages this would indicate that these interactions are the result of random 

movement of the fixed Tcks possibly influenced by the external air flow aiding 

the cells in their movement. Combining these results would indicate that the 

formation of stable interactions between Tcks and macrophages are the result of 
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random movement as well as chemotaxis through the production of chemokines 

from the macrophages. Analysis of the fixed and live Tck co-cultures enabled the 

validation of the in vitro imaging system and ensured that this inflammatory 

arthritis model produced reliable and reproducible results. 

This imaging system had provided us with interesting results regarding the 

movement and interaction of cells within the cell contact model of arthritis but 

there are several areas of improvement for future experiments. One such area 

would be to reduce the influence of the external airflow on the T cell movement 

through the use of a heated chamber which surrounds the in vitro system. This 

modification would subsequently allow the observation of the independent T cell 

movement and migration rather than the cell movement being influenced by the 

air flow. The use of z stacks to take images at different focal depths of the field 

of view should also be considered as this would enable a 3D image of the cells 

within the field of view to be acquired. The z stack information would reveal the 

3D area of interaction between the Tcks and macrophages, which would be more 

informative than the current 2D area measured in the preceding experiments. 

Such z stack information would also enable a more accurate colocalization 

coefficient to be measured between the Tcks and the macrophages. Also the use 

of a 3D collagen matrix would make the movement of the cells more 

physiological and would be representative of the environment within the 

synovial joint. Several experiments were set up using a collage matrix (data not 

shown) but the inability to focus on the cells made it impossible to image their 

interaction. However, such imaging capacity is available using a confocal 

microscope which is more advanced than the inverted microscope used for the 

current study. In summary, the use of a collagen matrix in addition to measuring 

z stacks on more advanced confocal microscope would greatly enhance the 

amount of information gained from this in vitro imaging system.  

In addition, time restrictions meant that this imaging model could not be used 

for its intended purpose of imaging the effect of blocking genes identified from 

the microarray analysis performed in this project (see chapter 4) to ascertain 

whether the interactions between the macrophages and synovial-like Tcks were 

affected. For example imaging the effect of silencing the plexin A1 gene would 

be of interest as these experiments may determine whether this cell surface 
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associated protein, which was found to be highly upregulated in RA and PsA 

synovial macrophages, has a role in the synovial T cell—macrophage interaction. 
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Chapter 8: General Discussion 

At the outset of my studies many microarray investigations had been performed 

to analyse the trancriptomic signature of RA and PsA either by whole blood or 

whole tissue profiling [318-320, 325-327, 329, 330, 340, 341] but very few had 

analysed the individual cell subsets which drive the pathogenesis of disease. I 

therefore sought to determine the expressed genetic profiles of matched blood 

and synovial fluid CD14+ monocytes and macrophages from RA and PsA patients 

to determine how the macrophages change their transcriptome once they 

migrate from the blood into the inflamed synovial joint. I also sought to compare 

these profiles to those of healthy blood CD14+ monocytes and to cell-contact 

activated macrophages, representing an in vitro model of inflammatory arthritis. 

Analysis of the microarray data comparing i) healthy blood, ii) RA blood and iii) 

PsA blood CD14+ cells revealed the unexpected result that the overall genetic 

profiles of these three monocyte types were remarkably similar and there were 

very few genes that could distinguish one monocyte subset from another. This 

result was in contrast to previous microarray analyses which have found a 

distinct disease signature in RA and PsA blood compared to healthy control blood 

[326, 329, 330, 340, 341]. The discrepancy between microarray results may be 

due to differences in sample numbers as my study only included 5 healthy donors 

and were age- and sex-matched to the PsA patients only. Despite this, my results 

suggested that the monocytes within RA and PsA are not responsible for the gene 

expression differences seen in other PBMC microarray studies between healthy 

and arthritic patients indicating that other cells within the peripheral blood may 

be causing the diseased genetic signature. Numerous microarray studies have 

proposed the use of genetic data from patient PBMCs to discover molecular 

discriminators indicating a response to treatment or disease progression. 

However, since my data suggest that the RA and PsA blood monocytes do not 

have a differentiating disease signature compared to healthy controls it may not 

be appropriate to use this cell subset as a marker of disease or treatment 

response. 

Comparison of matched blood and synovial fluid CD14+ cells from the RA and PsA 

patients also revealed some novel findings. Unsurprisingly, the synovial fluid 

genetic signature was vastly different to that of the matched blood samples 
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therefore demonstrating that the monocytes only develop a disease specific 

signature once they exit the blood and enter the diseased joint. In addition, 

upon comparison of the differentially expressed genes it was discovered that 

over 50% of the expressed genes in the synovial fluid CD14+ cells compared to 

the blood cells were the same in both RA and PsA. This result was unexpected 

given previous analyses by Baeten et al who suggested that the macrophages in 

SpA and RA were different since they found SpA (including PsA) macrophages 

expressed higher levels of markers of alternative activation compared to RA 

macrophages [255] and SpA synovial fluid but not RA was able to polarise blood 

monocytes to express the alternative activation marker CD163 [253]. However, 

analysis of the genetic transcriptome generated by my study demonstrated a 

similar level of alternative activation markers, such as CD204 or mannose 

receptor, expressed in the PsA CD14+ and RA CD14+ SF cells. Indeed, I also found 

similar levels of classical activation markers such as CD86 expressed in both RA 

and PsA SF cells demonstrating that within this study the RA and PsA 

macrophages do not have a preferential activation phenotype which contradicts 

the previous findings. The reasons for this may be due to the Baeten et al study 

analysing the effects of SF on healthy blood monocytes rather than analysing the 

diseased macrophages isolated from the source of inflammation as was 

performed in our study as the effect of the cell-cell contact that takes place 

within the synovium in addition to the SF environment may play a role in the 

expression of activation markers and macrophage polarization. However, further 

studies on the phenotype of the macrophages and protein expression of 

activation markers are required to test this hypothesis.  

Due to the same genes being differentially expressed in the RA and PsA SF 

macrophages compared to their matched blood monocytes many of the same 

canonical pathways were significantly associated with these genes lists. 

Interestingly, the top pathway was LXR activation which has previously been 

associated with RA but is a novel finding for PsA. Work performed by our 

research group prior to this observation had demonstrated that LXR agonism 

exacerbated articular damage in CIA a murine model of arthritis. In addition, ex 

vivo culture of RA PB derived monocytes which were LPS stimulated and treated 

with two LXR agonists showed an increase in IL-6 and TNFα production, 

suggesting LXRs have a pro-inflammatory role in arthritis [527]. However in the 
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present investigation several of the RA and PsA SF macrophage genes associated 

with this LXR canonical pathway are constituents of the anti-inflammatory 

lipoptotein HDL. HDL has been previously shown to mediate anti-inflammatory 

effects within RA since HDL can block the pro-inflammatory cytokine production 

from monocytes induced by T cell contact through binding to the T cell surface 

activating factors [558]. Consequently, the net inflammatory effect of the 

upregulated LXR pathway in the RA and PsA SF macrophages is yet to be defined 

and should be the focus of further investigations. 

Analysis of the highly upregulated genes in both of the RA and PsA SF 

macrophage subsets compared to the PB monocytes resulted in the identification 

of two novels genes that had not been previously associated with arthritis. One 

of these genes was legumain which is a lysosomal cysteine protease that 

specifically cleaves protein substrates such as MMP2, cathepsins and fibronectin 

[429, 431] which are all found within the synovium of arthritis patients. My work 

revealed that legumain was found at the mRNA and protein level in RA and PsA 

SF CD14+ cells and was physiologically active; in addition M-CSF matured 

macrophages could be induced to express legumain when cultured in RA or PsA 

SF under hypoxic conditions. Therefore, I hypothesise that legumain is highly 

upregulated by macrophages once they enter the hypoxic pro-inflammatory 

environment of the synovium and is required by the cell to activate 

glycoproteins or enzymes being produced or taken up by the cell which therefore 

contribute to the destructive inflammation seen in the synovium. Legumain was 

also seen to be expressed on the cell surface of the synovial macrophages and 

has also been shown to be excreted from cells [665] and therefore could be 

activating destructive enzymes such as MMPs within the synovial fluid milieu. 

Plexin A1 was the second novel gene discovered by the microarray analysis to be 

highly upregulated in the RA and PsA SF macrophages compared to the blood 

monocytes. Plexin A1 is a cell surface receptor which binds to semaphorin 

ligands and has previously been shown to be important for T cell-DC interactions 

and subsequent T cell activation [444, 623]. Due to the large body of literature 

describing macrophage interactions with other cell types in the arthritic 

synovium causing subsequent activation and pro-inflammatory mediator release I 

hypothesised that plexin A1 expression on the synovial macrophages may be 

playing a role in the cellular contacts taking place between these and other 
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synovial cells. In our study, plexin A1 was shown to be expressed at the protein 

and RNA level and knocking down the gene using siRNA demonstrated that it may 

be playing a potential pro-inflammatory role. Nevertheless our studies were 

hampered by the inability to discover the presence of the most widely know 

plexin A1 ligand, semaphorin 6D, on activated or synovial T cells despite it 

previously being detected on activated murine T cells [645]. However, plexin A1 

is known to have several semaphorin ligands and whilst our initial studies 

suggested these may be expressed at the RNA level in synovial membrane and 

synovial fibroblasts more investigation is required to elucidate what role plexin 

A1 and its ligands could be playing in arthritic disease. 

Analysis of the expressed genetic signature of the Tck activated macrophages, 

(postulated to represent an in vitro model of inflammatory arthritis [298, 309, 

314]), in comparison to synovial fluid derived macrophages demonstrated that 

only 10% of the expressed genes in the cell contact activated macrophages were 

expressed in RA or PsA synovial fluid macrophages. This would imply that this in 

vitro system may not be a suitable model of arthritis; however my analysis was 

confounded by several variables particularly the duration of macrophage 

activation by the Tcks which was restricted to 2 hours. Therefore further 

investigation especially involving a more extensive timecourse of macrophage 

activation is required to fully elucidate the relevance of this in vitro model to an 

in vivo disease process. 

The real time imaging performed on the in vitro cell contact model of arthritis 

provided some interesting observations on the variables influencing the 

interactions between the T cells and macrophages. It was discovered that the 

number of individual interactions between the macrophages and T cells was high 

at 2 hours of co-culture due to the Tcks moving around the field of view and 

interacting with several macrophages. This observation may help to explain why 

there were so few genes in the 2 hour cell contact activated macrophages that 

were shared with the SF macrophages as stable interactions with the Tcks, which 

would activate the macrophages, were not fully formed after 2 hours of co-

culture. Unfortunately time restrictions meant that this imaging system could 

not be used for its intended purpose which was imaging the effect of blocking 

genes identified in the microarray analysis. These experiments may have allowed 

us to visualise whether these genes, i.e. plexin A1, played a role in the 
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interaction of macrophages with other cell types such as the synovial T cell like 

Tck. 

While this new evidence of the genetic signatures of RA and PsA synovial fluid 

macrophages has been informative, several avenues of investigation remain to 

be explored. Future studies must identify the role of plexin A1 within the 

synovial fluid macrophages and the semaphorin ligand it is potentially 

interacting with. In addition, understanding the consequences of high levels of 

active legumain within the RA and PsA synovium through the use of legumain 

knockout mice and further functional analyses is of paramount importance as it 

represents an entirely novel enzyme with arthritic disease relevant functions. 
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