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Abstract

The recent developments in using micro-organisms effectively for biofuels is the main

motivation to carry out this research work. In this thesis, we have investigated two main

aspects related micro-organisms: swimming behavior and bioconvection pattern formation.

In the first aspect, we have discussed the swimming of a biflagellated green algae named

as Chlamydomonas augustae in a Stokes flow in the absence and presence of the no-slip

stationary plane boundary. For a micro-organism with similarly sized spherical cell body

and flagella we have used Resistive Force Theory (RFT) for modelling the idealized flagellar

beat pattern. The unbounded swimming analysis was used to calculate the organism’s

swimming velocity and angular velocity by balancing the forces and torques acting on the

organism at every instant, and is a revision and improvement of the work carried out by

Jones et al. [76]. The model was developed in general terms for uniplanar locomotion

of the micro-organism. To facilitate analytical calculation a code in the software Maple

was developed, which produced results consistent with the results in [76] as discussed in

chapter 2. The model predicts a realistic swimming speed and showed that viscous torque

acting on the flagellum has significant contribution to the angular velocity of the organism.

The trajectories of swimming for one beat and for multiple beats were also plotted. In

chapter 3 we have extended the same swimming model for the case of the presence of

a no-slip stationary plane boundary. In order to satisfy conditions at the no-slip plane

boundary we have incorporated the image system singularities solution. Again using RFT

and the software Maple, we have calculated the micro-organism’s swimming velocity and

angular velocity for the different geometries such as swimming away/towards, angled and

parallel to the no-slip stationary plane boundary. The results were further compared with

the unbounded swimming case and found that the micro-organism’s swimming velocity

regressed close to the boundary and approaches the unbounded values, whereas angular

velocity approaches to zero, as it swims far from the plane boundary.

ii



ABSTRACT iii

For nutrient uptake and to optimize light for photosynthesis these micro-organisms

swim in directions biased by environmental cues, termed taxes. These taxes inevitably

lead to accumulations of micro-organisms that induce hydrodynamic instabilities due to

their density difference. The large scale fluid flow and intricate patterns formed are called

bioconvection. In chapter 4, we have for the first time, experimentally investigated pattern

formation in thin, long, horizontal tubes with and without imposed flow. With no flow,

the dependence of the dominant pattern wavelength at pattern onset on cell concentration

is established for the three different tubes of variable diameter. The vertical plumes of

micro-organisms are observed merely to bow in the direction of flow for the case of weak

imposed flow. However, for sufficiently large flow rates, the plumes progressively fragment

into piecewise linear diagonal plumes, inclined at constant angle and translating at fixed

speeds. The pattern wavelength generally grows with flow rate, with transitions at critical

rates that depend on concentration. The bioconvection is not wholly suppressed and

perturbs the flow field, even at large imposed flow rates. The contents of this chapter

have already been published in Physical Biology international journal with co authors Dr

Ottavio A Croze and Dr Martin A Bees.

In chapter 5, we have attempted for the first time to theoretically examine bioconvec-

tion in horizontal tubes in the presence of imposed flow to compare and verify the results

of the experimental investigations discussed in chapter 4. To avoid the cumbersome cal-

culation, we modelled the situation by considering the suspension flow between two plates

instead of tube. The aim is to predict a particular most unstable mode from equilibrium

solution and average inclination, speed of the plumes and flow transitions observed. The

investigation is still not finished as modelling of the problem is complete but numerical

analysis for the solution of the problem need to be done at this stage.



Acknowledgements

All praise to almighty Allah, the most benevolent and merciful, the creator of the

universe, who gave me potential and insight that enabled me to accomplish this research

work.

First of all it indeed a great pleasure and honor for me to express my sincerest gratitude

to my learned supervisor, Dr Martin Alan Bees (EPSRC fellow), under whose dynamic

supervision, propitious guidance, illustrative advice, the research work presented in this

thesis became possible. His caring attitude, suggestions, motivation and encouragement

have proved invaluable for me for the past four years.

I am indebted to Dr Ottavio A Croze for his expertise and co-operation throughout

the biolab project and research paper. I am also grateful to all Mathbio group members

specially Rosie and Stephen for group discussions and suggestions. I also thanks other

members of the faculty, in particular Professor Nick, Dr Watson, and Dr Chris Athorne

for guidance and discussions.

I would like to thank Pakistan Air Force (PAF), Ministry of Defence, Government of

Pakistan for financial assistance and providing me an opportunity to carry out this research

work. Additionally, i am greatly indebted to Department of Mathematics, University of

Glasgow for providing me conducive atmosphere for research, teaching opportunities, and

financial support for conferences and third year University tuition fee.

I also acknowledge the support and able company of my office mates Susan, Marjory,

Monica, Robert and Yunfei. I am really thankful to all my family friends at Glasgow

specially Imran, Muzahir, Amir, Jabbar bhai and Dr Asim who guided and helped us for

settling down in entirely new environment.

Words are wane in expressing my veneration for my parents, brothers, sister and

brother-in-law who prayed for my edification, endeavored for my betterment and cheerfully

took the burden of my studies throughout. Special thanks to my mother who always been

iv



ACKNOWLEDGEMENTS v

source of inspiration and encouraged me even underwent through stress after losing my

father meanwhile.

Last but by no means least, many thanks go to my wife Saba for being constant source

of support and encouragements and with understanding shared the burden throughout

this research work.

Ehsan E. Ashraf

December - 2010



Statement

This thesis is submitted in accordance with the regulations for the degree of Doctor

of Philosophy at the University of Glasgow UK. Chapter 1 includes the preliminaries

and introduction of the subject used throughout the thesis. Chapter 2 is the revision

and refinement of the unbounded swimming model of Jones et al. [76] by employing the

simplified flagellar beat model and use of software Maple. Chapter 3, 4, 5 and 6 are

authors original and novel work conducted under the supervision of Dr. Martin Alan Bees

(EPSRC fellow), except where explicitly credited to others. The contents of chapter 4

have already been published in Physical Biology international journal with co authors Dr

Ottavio A Croze and Dr Martin A Bees.

No part of this thesis has previously been submitted by me for a degree at this or any

other University.

vi



Contents

Abstract ii

Acknowledgements iv

Statement vi

1 Preliminaries 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hydrodynamics of swimming unicellular micro-organism . . . . . . . . . . . 2

1.3 Orientation mechanism of swimming unicellular micro-organisms . . . . . . 5

1.4 Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Singularity solution for spheres . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Translating motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.2 Rotating motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Flagellar hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.1 Resistive Force Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.2 Slender Body Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6.3 Comparison of RFT and SBT . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Bioconvection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7.1 Mathematical models of bioconvection . . . . . . . . . . . . . . . . . 24

1.7.2 Stochastic gyrotactic bioconvection model . . . . . . . . . . . . . . . 27

1.7.3 Recent development in bioconvection modelling . . . . . . . . . . . . 29

1.8 Applications and motivation of the study of biflagellate . . . . . . . . . . . 30

1.9 Review of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Biflagellate swimming in an unbounded domain 34

2.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



CONTENTS viii

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Resistive Force Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Force and torque balance for gyrotactic biflagellates . . . . . . . . . . . . . 37

2.5 Flagellar Beat Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 The Jones et al. flagellar beat model . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Modified implementation of the uniplanar flagellar beat model . . . . . . . 48

2.7.1 Computation of viscous force and viscous torque acting on one flag-

ellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7.2 Force-Torque balance equations . . . . . . . . . . . . . . . . . . . . . 58

2.8 Uniplanar vertical upward swimming . . . . . . . . . . . . . . . . . . . . . . 61

2.9 General unbounded uniplanar swimming . . . . . . . . . . . . . . . . . . . . 65

2.9.1 Calculation of effective gyrotactic re-orientation time . . . . . . . . . 69

2.10 Tracking of the swimming cell . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Bounded biflagellate swimming 75

3.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Swimming near the plane boundary . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Image singularities system . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.2 Solution for the translating motion of a sphere near a stationary

plane boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.3 Solution for the rotational motion of a sphere near a stationary plane

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Force-Torque balance for bounded biflagellate swimming . . . . . . . . . . . 88

3.4.1 Computation of viscous force and viscous torque acting on one flag-

ellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.2 Force-Torque balance equations . . . . . . . . . . . . . . . . . . . . . 99

3.4.3 Force-Torque balance equations without flagella contributions . . . . 102

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5.1 Uniplanar upward cell swimming away/towards the no-slip plane

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5.2 Comparison of swimming away and towards the no-slip stationary

plane boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



CONTENTS ix

3.5.3 Biflagellate cell swimming in the vicinity of the no-slip stationary

plane boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5.4 Biflagellate swimming parallel to the plane boundary . . . . . . . . . 119

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4 Experimental analysis of bioconvection 130

4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3 Breeding and concentration of green algae cells . . . . . . . . . . . . . . . . 133

4.3.1 Culturing of cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3.2 Concentration of cells . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3.3 Transfer of suspension of cells . . . . . . . . . . . . . . . . . . . . . . 138

4.3.4 Measuring concentration of cells in suspension . . . . . . . . . . . . 138

4.4 Environmental control and Methods . . . . . . . . . . . . . . . . . . . . . . 140

4.4.1 Light source control . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.2 Mixing of suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.3 Image recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4.4 Variation of cell concentration of suspension . . . . . . . . . . . . . . 142

4.4.5 Variation of tube diameter . . . . . . . . . . . . . . . . . . . . . . . 143

4.4.6 Variation of Flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.4.7 Statistical Investigations . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.6 Cleaning and processing of images . . . . . . . . . . . . . . . . . . . . . . . 146

4.6.1 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.6.2 Dominant wavenumber . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.6.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.6.4 Dominant wavenumber analysis . . . . . . . . . . . . . . . . . . . . . 151

4.7 Experimental results for no flow problems . . . . . . . . . . . . . . . . . . . 155

4.7.1 Investigating the initial instability wavelength pattern . . . . . . . . 156

4.7.2 Investigating the final stable pattern wavelength . . . . . . . . . . . 158

4.7.3 Investigating the dependence on variation of depth . . . . . . . . . . 160

4.7.4 Investigating the dependence on variations of concentration . . . . . 162

4.7.5 Investigating the time for initiation of pattern formation . . . . . . . 162

4.8 Experimental results for imposed flow experiments . . . . . . . . . . . . . . 166



CONTENTS x

4.8.1 Experiment protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.8.2 Investigating the trends of wavelength . . . . . . . . . . . . . . . . . 168

4.8.3 Investigating the first peak of wavelength . . . . . . . . . . . . . . . 168

4.8.4 Investigating the average angle and average drift speed . . . . . . . . 172

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5 Modelling of advected bioconvection in tube 180

5.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.3 Solution of the Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . 181

5.4 Modelling the linear bioconvection equations . . . . . . . . . . . . . . . . . 184

5.4.1 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.5 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6 Conclusions and future work 196

6.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A 201

A.1 Time dependent beat coefficients αij . . . . . . . . . . . . . . . . . . . . . . 201

A.2 Time dependent beat coefficients hij . . . . . . . . . . . . . . . . . . . . . . 202

A.3 Core integrals involved in beat coefficients αij . . . . . . . . . . . . . . . . . 203

A.4 Core integrals involved in beat coefficients αij . . . . . . . . . . . . . . . . . 205

A.4.1 Special integrals when point Q lies on the flagellum . . . . . . . . . 207

B 209

B.1 Maple11 programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.1.1 Instruction flow and code details . . . . . . . . . . . . . . . . . . . . 209

B.1.2 Programming code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

References 220



List of Figures

1.1 A schematic diagram of unicellular biflagellate green algae Chlamydomonas

augustae cell structure and inner structure of cross section of the flagellum.

The length of the cell body and both flagella is approximately equal to 10

µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A schematic diagram of forces acting on the swimming biflagellate green

algae Chlamydomonas augustae cell. The Gravitational torque arise due to

the centre-of-gravity offset and viscous torque is caused due to the strain

and vorticity in the fluid. V . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 A schematic diagram of U-tube experiment for gyrotaxis in Poiseuille flow.

Cells swim towards relatively downwards flowing fluid to form plume struc-

ture on right-hand side whereas swim away from upward flowing fluid and

gather close to the wall shown on the left hand side of the U-tube. . . . . . 6

1.4 Vector plot of Stokeslet singularity solution . . . . . . . . . . . . . . . . . . 9

1.5 Vector plot of Dipole (source doublet) singularity solution . . . . . . . . . . 10

1.6 Vector plot of stresslet singularity solution . . . . . . . . . . . . . . . . . . . 11

1.7 Vector plot of rotlet (couplet) singularity solution . . . . . . . . . . . . . . . 12

1.8 Schematic diagram of the flagellar propulsion of monoflagellate sea urchin

spermatozoon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 A sample of images of bioconvection pattern formation by suspension of

C. augustae recorded in a thin long horizontal tube while focusing on the

centre of the tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.10 A schematic diagram of an overturning Rayleigh-Taylor instability from

side. Cells which are denser than the fluid swim upward on average and

gather at the top to form a suspension of greater density (dark region) than

that of the fluid below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



LIST OF FIGURES xii

1.11 A schematic diagram of a gyrotactic instability without the upper boundary.

Cells swim towards the down welling fluid and this addition of mass make

the fluid more denser (dark region) resulting sink faster and form a plume

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.12 A design of tubular helical alga photobioreactor of 1000 L capacity at Mur-

doch University. Courtesy of Professor Michael Borowitzka, Murdoch Uni-

versity, Australia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 (a) A schematic diagram of uniplanar swimming of C. augustae cell: (i,k)

are fixed space and (p,q) are body coordinates respectively, H is centre-of-

gravity G offset from geometric centre C, θ is the Euler angle between k in

fixed space and primary axis of swimming p in body coordinate system, g is

the force due to gravity, Lgrv and Lvis represents torque due to gravity and

viscosity respectively. (b) Swimming cell motion calculated by its velocity

v and angular velocity Ω when embedded in the flow, with strain rate E

and vorticity ω, and Θ is the Euler angle between principal axes of the

rate-of-strain and k in fixed space coordinate system. . . . . . . . . . . . . 39

2.2 Tracing of one beat cycle of both flagella of C. reinhardtii mutant 622E.

Reproduced from Ruffer and Nultsch [128]. . . . . . . . . . . . . . . . . . . 43

2.3 A schematic diagram of step by step positions and height gained/lost by

vertical upward swimming of C. augustae cell during effective and recovery

stroke of one flagella beat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 The idealized model by Jones et al. [76] for flagellar beat pattern of C.

augustae for different positions of the flagellum during (a) effective stroke

and (b) recovery stroke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Generalized Jones et al. flagellar beat pattern during effective and recovery

stroke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Addition and subtraction of forces acting on the flagellar section due to

swimming in the (a) primary velocity direction p and (b) transverse velocity

direction q respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



LIST OF FIGURES xiii

2.7 Variation in uniplanar upward swimming velocity during one flagellar beat.

A discontinuity occurs at the changeover from effective to recovery stroke.

The dashed line represents the graph for constant angular velocity and

solid line zero moment recovery stroke case. (a) Reproduced from Jones et

al. [76], (b) Using generalized expressions and Maple code simulations. . . . 63

2.8 Uniplanar upward swimming speed plotted against ratio of resistance co-

efficients Kn/Kt for varying flagella length (l = 2a, 3a, 4a, from bottom to

top), where a is the radius of the cell’s body. . . . . . . . . . . . . . . . . . 65

2.9 Variation in uniplanar instantaneous swimming velocity in transverse di-

rection during one flagellar beat. The dashed line represents the graph

for constant angular velocity and solid line zero moment recovery stroke

case. With initial angle (a) θ = 40◦ i.e. angled swimming, (b) θ = 90◦ i.e.

horizontal swimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.10 Variation of angle θ from the initial angle θ0 during one flagella beat due

to the effect of gravitational torque only. With initial angle (a) θ = 40◦ i.e.

angled swimming, (b) θ = 90◦ i.e. horizontal swimming. . . . . . . . . . . . 68

2.11 Variation of the angle θ during one flagella beat when organism swims

horizontally i.e. θ = 90◦. The dashed line represents swimming organism

without flagella and solid line indicates with the flagella. . . . . . . . . . . . 69

2.12 Trajectory of the unbounded swimming cell in scales of the X and Z axes

with initial angle θ0 = 90◦, 80◦, 70◦ from bottom to top respectively. The

arrows represent the position of the cell after the flagella beat (effective and

recovery stroke) at any time t. . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1 The position of sphere and image sphere due to Stokeslet and potential

dipole singularities and no-slip stationary plane boundary at x3 = 0. The

distance h is measured from the centre of the sphere to the plane boundary,

whereas r and R represents the position vectors at any point P from the

centre of sphere and image sphere, respectively. . . . . . . . . . . . . . . . . 78

3.2 Streamlines for a sphere and an image sphere translating away from the no-

slip stationary plane boundary lies at the centre, x3 = 0. (a) Unbounded

sphere translating upwards. (b) Bounded sphere translating upwards away

from the plane boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



LIST OF FIGURES xiv

3.3 Streamlines plot when sphere translating towards the no-slip plane bound-

ary lies at the centre at x3 = 0. (a) Unbounded sphere translating upwards.

(b) Bounded sphere translating upwards towards the plane boundary. . . . 84

3.4 Streamlines plot when sphere translating parallel to the no-slip plane bound-

ary lies at the centre at x3 = 0. (a) Unbounded sphere translating hori-

zontally. (b) Bounded sphere translating horizontally parallel to the plane

boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Streamlines plot of the sphere and image sphere when rotating parallel to

the stationary no-slip plane boundary lies at the centre at x3 = 0. (a)

Unbounded sphere rotating horizontally. (b) Bounded sphere rotating hor-

izontally parallel to the plane boundary. . . . . . . . . . . . . . . . . . . . . 87

3.6 A schematic diagram of uniplanar swimming of C. augustae cell in the

vicinity of the stationary no-slip plane boundary: (i,k) are fixed space

and (p,q) are body coordinates respectively, H is centre-of-gravity G offset

from geometric centre C, θ is the Euler angle between k in fixed space and

primary axis of swimming p in body coordinate system, χ is the angle which

flagella makes with the p, g is the force due to gravity and h is the distance

of boundary from the centre of the cell body. . . . . . . . . . . . . . . . . . 90

3.7 Addition and subtraction of forces acting on the flagellar section due to

swimming in the (a) primary velocity direction p and (b) transverse velocity

direction q respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.8 Swimming cell in the vicinity of no-slip stationary plane boundary. (a)

Upward swimming away/towards the plane boundary, (b) Angled/parallel

swimming near the plane boundary. . . . . . . . . . . . . . . . . . . . . . . 104

3.9 Upward swimming of a biflagellate cell away from the stationary no-slip

plane boundary, where h is the distance of plane boundary from the centre

of the cell body, r and R are the position vectors at an element of flagellum

from the centre of sphere and image sphere, respectively. . . . . . . . . . . . 106

3.10 Variations of primary swimming speed vp with the increase of h ((a)-(f),

h = 2, 5, 10, 20, 50, h = 100) for one flagella beat, when cell is swimming

away from the no-slip plane boundary. The dashed line represents the graph

for the unbounded case whereas the solid line is for a bounded swimming cell.107



LIST OF FIGURES xv

3.11 Variations of a biflagellate cell’s change in position for one flagellar beat

with increasing of h when the cell is swimming away from the no-slip plane

boundary. The dashed line represents the graph for the unbounded case

whereas the solid line is for a bounded cell swimming away from the boundary.108

3.12 Upward swimming of a biflagellate cell towards the stationary no-slip plane

boundary, where h is the distance of plane boundary from the centre of the

cell body, r and R are the position vectors at an element of flagellum from

the centre of sphere and image sphere, respectively. . . . . . . . . . . . . . . 109

3.13 Variations of primary swimming speed vp with the decrease of h ((a)-(f), h =

100, 50, 20, 10, 5, h = 2) for one flagella beat, when the cell is swimming

towards the no-slip plane boundary. The dashed line represents the graph

for the unbounded swimming case whereas solid line is for a bounded cell

swimming towards the plane boundary. . . . . . . . . . . . . . . . . . . . . 111

3.14 Variations of transverse swimming speed vq with the decrease of h, (a)

h = 5, and (b) h = 2 for one flagella beat, when cell swimming towards the

no-slip plane boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.15 Variations of biflagellate cell’s change in position for one flagella beat with

the increase of h distance of the plane boundary from the centre of the cell

body, as cell swimming towards the no-slip plane boundary. The dashed

line represents the graph for unbounded case whereas solid line for bounded

cell swimming towards the boundary. . . . . . . . . . . . . . . . . . . . . . . 113

3.16 Variations of primary swimming speed vp with the increase of h ((a)-(f),

h = 2, 5, 10, 20, 50, h = 100) for one flagella beat, when cell swimming

away at an angle θ = 40◦ from the no-slip plane boundary. The dashed line

represents the graph for the unbounded case whereas the solid line is for a

bounded cell swimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.17 Variations of transverse swimming speed vq with the increase of h ((a)-(f),

h = 2, 5, 10, 20, 50, h = 100) for one flagella beat, when cell swimming

away at an angle θ = 40◦ from the no-slip plane boundary. The dashed line

represents the graph for the unbounded case whereas the solid line is for a

bounded cell swimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



LIST OF FIGURES xvi

3.18 Variations of angle θ with the increase of h ((a)-(f), h = 2, 5, 10, 20, 50, h =

100) for one flagella beat, when cell swimming away at an angle θ = 40◦

from the no-slip plane boundary. The dashed line represents the graph for

the unbounded case whereas the solid line is for a bounded cell swimming. . 117

3.19 Variations of biflagellate cell’s change in position and change in angle for

one flagella beat with the increase of h, as cell swimming away at an angle

of θ = 40◦ from the boundary. The dashed line represents the graph for the

unbounded case whereas solid line is for a bounded cell swimming towards

the boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.20 Swimming of biflagellate cell parallel to the stationary no-slip plane bound-

ary, where h is the distance of plane boundary from the centre of the cell

body, r and R are the position vectors at an element of flagellum from the

centre of the sphere and image sphere, respectively. . . . . . . . . . . . . . . 120

3.21 Variations of primary swimming speed vp with the increase of h ((a)-(f),

h = 2, 5, 10, 20, 50, h = 100) for one flagellar beat, when the cell is swim-

ming parallel to the no-slip plane boundary. The dashed line represents

the graph for unbounded case, dotted line for without Faxen’s correction

terms, dashdot line for without Faxen’s correction and gravity contribution

and solid line for bounded cell swimming. . . . . . . . . . . . . . . . . . . . 122

3.22 Variations of transverse swimming speed vq with the increase of h ((a)-

(f), h = 2, 5, 10, 20, 50, h = 100) for one flagellar beat, when the cell is

swimming parallel to the no-slip plane boundary. The dashed line represents

the graph for unbounded case, dotted line for without Faxen’s correction

terms, dashdot line for without Faxen’s correction and gravity contribution

and solid line for bounded cell swimming. . . . . . . . . . . . . . . . . . . . 123

3.23 Variations of change in angle θ of biflagellate cell for one flagellar beat with

the increase of h ((a)-(f), h = 2, 5, 10, 20, 50, h = 100), when the cell is

swimming parallel to the boundary. The dashed line represents the graph for

unbounded case, dotted line for without Faxen’s correction terms, dashdot

line for without Faxen’s correction and gravity contribution, longdashed line

for without flagella and solid line for bounded cell swimming. . . . . . . . . 124



LIST OF FIGURES xvii

3.24 Variations of position and angle with the increase of h as the cell is swim-

ming parallel to the no-slip plane boundary. The dashed line represents

the graph for unbounded case whereas solid line for bounded cell swimming

parallel to the boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.1 Cultures of green algae Chlamydomonas augustae in conical flasks. . . . . . 134

4.2 Snap shot of algae cells concentration procedure captured at our biofluids

laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Calibration of A the absorbance measurement from the spectrophotometer

readings with C cell concentration found using cell counting with hemocy-

tometer reproduced from Williams [147]. . . . . . . . . . . . . . . . . . . . . 139

4.4 Illustration of the formation of the bioconvection pattern formation in a

thin horizontal cylindrical tube as viewed from side. . . . . . . . . . . . . . 142

4.5 A schematic diagram of the experimental setup for recording images of

bioconvection in a thin horizontal cylindrical tube. The tube is clumped

at horizontal position and held fixed with two stands. The red LED light

source was fixed behind the centre of the tube and camera was mounted

on stand so that images could be recorded from the side of the cylindrical

tube. Suspensions were loaded via a plastic tube affixed to the left of

the bioconvection tube and flow was imposed using a syringe pump shown

schematically on the right of the tube. . . . . . . . . . . . . . . . . . . . . . 145

4.6 A sample of cropped image from experiments recorded in tube A, where

c = 1.84 × 106 cells cm−3. The mixing of cells suspension was performed

outside the tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.7 Sample of processed images from B0.42 experiment recorded in tube B

where c = 3.75× 106 cells cm−3. The images are captured every 2 seconds,

where mixing was performed outside the tube. . . . . . . . . . . . . . . . . 149

4.8 A sample fourier spectra from B0.42 experiment recorded in tube B where

c = 3.75× 106 cells cm−3. The images are captured every 2 seconds, where

mixing was performed outside the tube. The horizontal axis is wavenumber

and vertical axis is Fourier density. The logarithmic fitting function was

used to fit the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



LIST OF FIGURES xviii

4.9 Snap shots of the processed image sequence (a-g) of a representative biocon-

vection pattern formation in tube A with varying time for cell concentration

1.84× 106cells cm−3 when mixing was performed outside of the tube. . . . 152

4.10 A sample 3d plot from experiment recorded in tube A, where c = 1.84×106

cells cm−3. The images are captured every 2 seconds, where mixing was

performed outside the tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.11 A sample contour plot from experiment recorded in tube A, where c =

1.84 × 106 cells cm−3. The images are captured every 2 seconds, where

mixing was performed outside the tube. . . . . . . . . . . . . . . . . . . . . 154

4.12 Experimental data for the initial dominant wavelength λi as function of

concentration of tubes A, B and tube C (top three panels, as indicted) for

the cases of (a) mixing outside, and (b) mixing inside the tube. Straight line

fits to the data are shown (for tube C we only fitted for c > 1.45× 106 cell

cm−3). The last panel shows the fits without the data to allow a comparison

of magnitudes. The error bars are standard deviations over a sample or the

standard error in the mean over repeated experiments. . . . . . . . . . . . . 157

4.13 Experimental data for the final dominant wavelengths λf as function of

concentration of tubes A, B and tube C (top three panels, as indicated) for

the cases of (a) mixing outside, and (b) mixing inside the tube. Straight

line fits to the data are shown. The last panel shows the fits without the

data to allow a comparison of magnitudes. The error bars are standard

deviations over a sample or the standard error in the mean over repeated

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.14 Experimental data plotted for mean pattern wavelength λm and gradient

m for the three different diameter tubes for the initial instability and final

pattern wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.15 Experimental data for the variation of time to establish the initial instability

for different cell concentrations for tubes A, B and C and bottom panel

shows the comparison of linear fits to this variation. . . . . . . . . . . . . . 163

4.16 Variations of pattern wavenumber with respect to time for different cell

concentrations recorded in tube B. The images were captured every two

seconds, where mixing was performed outside the tube. . . . . . . . . . . . 164



LIST OF FIGURES xix

4.17 Variations of pattern wavenumber with respect to time for different cell

concentrations. The images were captured every two seconds, where mixing

was performed outside the tube. . . . . . . . . . . . . . . . . . . . . . . . . 165

4.18 Snap shot of the experimental apparatus used for recording bioconvection

pattern formation in a horizontal cylindrical tube with an imposed flow. . . 167

4.19 Bioconvection patterns recorded in tube B in the presence of imposed flow

in the range Up = 0−16.6cm s−1 (F=0-35 ml h−1) for cell concentrations (a)

c=1.26× 106cells cm−3 and (c) c=5.18× 106cells cm−3. (As indicated, the

second frame in (a) shows a frame for 3.4 cm s−1 rather than 2.8 cm s−1.)

(d) For Up = 13.8cm s−1 and concentration as in (b), we show three 5 s

interval snapshots of the dynamics of a bowed plume (indicated by arrows).

The figure to the right shows tracings of the plume with scale bar is 0.2 cm. 169

4.20 Variations of pattern wavenumber with respect to time for different flow

rates, experiment recorded in tube B. The images were captured every sec-

ond, where mixing was performed outside the tube. . . . . . . . . . . . . . . 170

4.21 Plots of (a) final pattern wavelength and (b) average top (positive) and

bottom (negative) plume angles to the vertical as a function of the flow

rate F for concentrations in the range 0.59× 106− 5.18× 106 cells cm−3, as

indicated. The peaks in the wavelength around certain critical flow rates

could be the signature of dynamic transitions in plume arrangement. The

error bars indicates standard deviations.. . . . . . . . . . . . . . . . . . . . . 171

4.22 Plot of (a) the average angles and (b) average plume drift speed as functions

of the mean flow speed for all concentrations. Neither of these measures

appears to depend strongly on concentration. Linear fits to data for all

concentrations are also shown, and in the case of (b) the plume drift speed,

the fit (solid line) is compared with the prediction for the mean (dot-dashed)

and maximum (dashed) flow speeds for the Poiseuille flow. . . . . . . . . . . 174

4.23 Evolution of cell positions for (a) Plug and (c) Poiseuille flows, according

to the simplified description, a line of cells (thin lines) released at equally

spaced positions across the tube collapses and deforms while advected for

(c), while it collapses vertically in (a). The stages in evolution are 20 s

apart. The upper envelope (thick line) is the trajectory of cells released at

the top of the tube, for the above defined two flow situations. . . . . . . . . 176



LIST OF FIGURES xx

5.1 Linear bioconvection subject to weak poiseuille flow between two plates. . . 184

A.1 Difference in length of r during angled section of recovery stroke. . . . . . . 207



Chapter 1

Preliminaries

1.1 Introduction

Unicellular micro-organisms are one of the oldest organisms found on earth. They can

not be seen by the human naked eye due to the smallness of the length scale. They play

an important role in the development of the earth’s atmosphere by photosynthesizing and

acting as a sink for carbon dioxide. There is diverse range of species of micro-organism

like bacteria found in our stomach causing health issues, algae and plankton affecting the

global weather by photosynthesizing in rivers and oceans worldwide. They are estimated

to make up more than half of the earth’s biomass and variation in their number could

have positive or negative effects in global warming or climate change (see Goodess and

Palutikof [50]). They are mostly ocean dwelling phytoplankton and form a strong link in

the food chain (see, Madigan et al. [100]). The study of these micro-organisms and their

swimming behavior, which may lead to aggregations of cells can give insight of the lifecycle

of these cells and we can further explore how they mate/die, regulate nutrients, control

light for photosynthesis and reproduce themselves to form colonies. In addition to that

investigations of motion in groups due to cell swimming, may reveal the details of phe-

nomena like self ordering or migration of groups of cells and results of these investigations

can be utilized to discuss other problems related to different species and organisms.

Many of these micro-organisms have lucrative industrial and commercial applications.

Some species of micro-organism produce ethanol as a byproduct during intracellular photo-

synthesis and respiration and other applications include fertilizers, waste water treatment

plants, plastics, and solid fuels. Recently different species of micro-organisms used to

produce hydrogen gas and biodiesel, and act as an efficient source of biofuels or biodiesel

1
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industry. Hence they can act as a potential source of renewable energy which reduces our

dependence on the running out fossil fuel reservoirs and biofuels extracted from the edible

crops like maze, corn, coconut, palm etc.

This thesis include the hydrodynamics of the bounded unicellular biflagellate swim-

ming micro-organism and investigations of pattern formation observed in suspension of

these motile cells. The results of these investigations may lead to improved designs and

enhanced production of renewable green energy through the production of hydrogen gas,

and biodiesel from alga photo bioreactors.

1.2 Hydrodynamics of swimming unicellular micro-organism

In this thesis, we will be investigating the swimming of unicellular micro-organisms

only. Generally micro-organisms can be classified into two broad categories: prokaryotic

cells, which do not have a cell nucleus, like cyanobacteria, and eukaryotic cells, which

include a nucleus and chloroplast, like green algae (see Madigan et al. [100]). The majority

of these micro-organisms are motile and propel or swim by employing either flagella, having

whip like projections, or cilia, having many smaller projections which beat synchronously

to cause the swimming of the organism. The length scales for these micro-organisms are

generally, of order 1− 10µm. There is a wide range of their body shapes, size, position of

flagella insertion, flagellar size and flagellar beat patterns depending upon the type of the

micro-organism (see, Lighthill [94]).

Different species of micro-organism have variable cell morphology and swimming styles.

As an example of small scale micro-organisms, the rod-like shaped bacterium Bacillus

subtilis has body length of 4 µm. The cell swims at a speed of 40 µms−1 by using

the flagella attached uniformly over the entire cell body, which come together to form a

helical bundle (see Hill and Pedley [63]). Euglena gracilis swims using its only flagellum

which passes a helical wave to power its swimming and shows up swimming tendencies

(see Wager [144]). The genus Tetrahymena has elongated cell body of body diameter

approximately 35 µm. The cell swims with the swimming speed of 500 µms−1 by using

the cilia attached along the cell body (see Pedley and Kessler [114]).

Even with different cell morphology and swimming style, most of these micro-organisms

swim at low Reynolds number due to the relative size of the cell in comparison with the

surrounding fluid medium. Childress [27] compared the low Reynolds number swimming
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of micro-organisms to humans swimming through a vat of warm pitch. In this case, viscous

forces are dominant as compared to the inertial forces. This prevents the sustained direc-

tional movement due to the reversible fluid flow, if a time-symmetric, ‘reciprocal’ swimming

stroke is employed by the cell (see Purcell [121]). Hence unicellular micro-organisms have

established non-time-symmetric swimming strokes which ensure the locomotion of the cell

in the desired direction.

Figure 1.1: A schematic diagram of unicellular biflagellate green algae Chlamydomonas

augustae cell structure and inner structure of cross section of the flagellum. The length of

the cell body and both flagella is approximately equal to 10 µm.

The type of unicellular micro-organism that will be discussed in this thesis is a biflagel-

lated green algae termed as Chlamydomonas augustae. It is found in aqueous environments

(ice, fresh and sea water). A schematic diagram of the C. augustae cell is shown in Fig-

ure 1.1, showing the different parts and location of chloroplast and the pyrenoid, which

stores starch, located at the posterior end of the cell. It has a roughly prolate spheroidal

body shape and length of the cell body is approximately 10µm. An eye-spot for light

detection is located at the cell equator close to the surface of the cell. It has two long

thin flagella attached at the anterior end of the cell body and are approximately 10µm

long as well. The trans-flagellum is located away from the eye-spot as compared to the
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cis-flagellum. The two flagella beat in a non-time-reversible breast stroke like motion to

cause the swimming of the organism. C. augustae is said to swim in a manner similar

to the human breast stroke with an effective-recovery stroke style, approximately in the

direction of its axis of symmetry. During the effective stroke, the cell starts its swimming

with both flagella directed vertically upward in the direction of cell swimming as shown

in the Figure 1.1. The cell gain some ground by pushing the flagella back towards the cell

body during the effective stroke. On the other hand ground is lost during the recovery

stroke where a bend travels from base to tip of both flagella, resulting in a pull of the both

flagella towards the cell body and re-positioned themselves to the starting position to un-

dergo effective stroke again. However the latest research shows that this is not exactly

the swimming style, actually the above defined two phases of beat overlap with each other

(see, Ruffer and Nultsch [128], [129], [130], [131], [132]). As more ground is gained during

the effective stroke as compared to ground lost during the recovery stroke, the net result

is the cell movement in desired direction after completion of one flagella beat. The cell’s

beat frequency is found to be approximately 45-50 Hz and swimming speed is calculated

as 55-67 µms−1 on average (see Hill and Hader [58]). The typical cell is bottom heavy

because the centre-of-mass is displaced towards the rear from the geometrical centre and

cell contents are distributed asymmetrically within the cell.

The experimental investigations of Ruffer and Nultsch [128] for biflagellate green algae

C. reinhardtii reveals that the flagella beat outside of the flagella plane and observed

unequal beating pattern for both flagella. They observed that the cis-flagellum beat

closer to the cell body in comparison to the trans-flagellum. This shows that the flagellar

beat is not symmetric, but found synchronous, due to the fact that both flagella usually

beat with approximately the same frequency. Recently, Polin et al. [118] investigated the

stochastical relationship between the synchronous and asynchronous flagella beating of the

cell.

Generally flagella and cilia have similar internal structure, Figure 1.1 shows different

parts of the inner structure of a cross-section of a C. augustae flagellum. The basic

structure comprise of micro-tubules running the length of the flagellum termed as axoneme

and most of the time they occur in doublet pairs ‘9+2’ format, 9 in a ring around 2 central

micro-tubules. However tip and basal section of the flagellum may have different internal

structure. A single bend usually occurs in a plane perpendicular to the plane formed by

the central pair of micro-tubules as shown in the Figure 1.1. Since we are interested only in
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the fluid flows around the swimming of the micro-organisms, consequently do not require

the details of the internal structure and bending mechanism of the flagellum.

Figure 1.2: A schematic diagram of forces acting on the swimming biflagellate green algae

Chlamydomonas augustae cell. The Gravitational torque arise due to the centre-of-gravity

offset and viscous torque is caused due to the strain and vorticity in the fluid. V

is the cell’s swimming velocity and g represents the force due to gravity.

1.3 Orientation mechanism of swimming unicellular micro-

organisms

The orientation of swimming green algae is not solely random as discussed by Wag-

ner [144] and more recently by Kessler and his collaborators [80], [87], [78], [86]. The genus

Chlamydomonas respond to the ‘taxes’ which bias the orientation of the swimming cell.

Taxes are the simple rules for biasing the direction in which organism swim and defined as

an innate behavioral response by a swimming organism away or towards a directional stim-

ulus or termed as ‘an orientation behavior due to directional stimulus’ (see Holmes [66]).

Taxes represent both the measurement of the surrounding environment and the physical

mechanism by which organism responses to the stimulus. Thus majority of organisms have
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evolved to use a combination of random movement and taxes (biased swimming directions)

in order to attain the optimal conditions to improve their status and living. The examples

of taxes include gravitaxis or geotaxis, a bias in direction of movement due to the gravity,

chemotaxis which is a directional to gradients in chemical concentrations, and phototaxis

which is a bias in direction of swimming away and towards the light.

Figure 1.3: A schematic diagram of U-tube experiment for gyrotaxis in Poiseuille flow.

Cells swim towards relatively downwards flowing fluid to form plume structure on right-

hand side whereas swim away from upward flowing fluid and gather close to the wall shown

on the left hand side of the U-tube.

Biflagellated green algae Chlamydomonas were found to be negatively gravitactic by

Kessler [80]. Due to the bottom heaviness which resulted from the anisotropic mass dis-

tribution, they have tendency to swim upwards on average. They are phototactic as they

swim towards weak light and away from strong light to evolve photosynthesis (see Foster

and smyth [40], Kessler [82], Vincent [143]). In addition to that these cells are ‘gyrotaxis’

a term defined by Kessler [79] to describe the phenomenon in which a balance between vis-
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cous and gravitational torques occurs due to the cell geometry and centre-of-gravity offset

as shown in the Figure 1.2. The gyrotaxis organisms swim vertically upwards on average

due to the gravitaxis in the absence of fluid flow, whereas in the presence of fluid flow

with the horizontal component of vorticity, they are tipped away from the vertical due to

the viscous torque. Thus the gyrotactic organisms preferably swim away from the locally

up flowing fluid and towards regions of locally down flowing fluid. Kessler demonstrated

this phenomenon by setting up an experiment in vertical U-tube as shown in the Figure

1.3. He employed C. nivalis cells in a Poiseuille flow using a peristaltic pump and found

that cells swam towards the edge of the tube and formed incoherent structure when fluid

flowed upwards as shown on the left hand side of the tube. On the right-hand side where

fluid flowed downwards, cells focused into a thin ‘plume’ structure in the centre away from

the wall of the tube, which is called gyrotactic focusing as shown in the Figure 1.3.

Now to model the gravitaxis, we need to calculate the sedimentation speed of the non-

swimming cells and the rotational torque caused by the this sedimentation. Following

the work by Pedley and Kessler [114], we calculated the sedimentation speed of a non-

swimming cell of spherical body shape as approximately 3 µms−1. This is much smaller

than the biflagellated swimming speed 60 µms−1, thus we can ignore the aspect of sed-

imentation in comparison with the cells swimming. Roberts [125] proposed that viscous

drag of the flagella on the cell body causes rotational orientation during the sedimentation

because heavy cell body sediments faster than the flagella even for the case of uniform

mass distribution of the cell. This mechanism as calculated by Roberts [126] also is of

order of magnitude less than that due to bottom heaviness of the cell. Thus following the

theoretical developments by Pedley and Kessler [114], we modelled gravitaxis in this thesis

as due to the centre-of-gravity offset that causes the cell to be bottom heavy and neglect

any rotational torque due to sedimentation.

It is also observed that Chlamydomonas cells swim away from the strong light termed

as negative phototaxis and swim towards the weak light called as positive phototaxis, being

a mechanical effect it involves complex detection and response phenomena (see Witman

[148]). In this thesis, we do not consider phototactic effects and performed experiments in

dark with room temperature of 24 ± 1◦C and under the perfect laboratory conditions to

avoid any bias in swimming due to light effects.

Hill and Hader [58] observed that the orientation of the swimming Chlamydomonas

cells has a random component, using the swimming trajectories data of the tracking C.
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nivalis cells. They found that the cells swim upwards on average and recorded some

noise in results causing a spread in the trajectories. The results were further improved

and investigated using laser velocimetry apparatus by Vladimirov et al. [142] to track

hundreds of cells at a time. It is also observed that cells swimming direction is random

which may be due to the unsynchronized growth of the cells which resulted in a population

of variable size, shape and behavior as investigated by Vladimirov et al. [142]. Another

reason can be the hydrodynamic interactions of the wall of the container and with each

other in the concentrated suspensions of the cells. In addition to that even minor random

changes in the flagella beating can cause the rotational variations, which can be due to the

noise in biochemical reactions within the cell itself. Thus the combination of above defined

factors may cause a stochastic effect to the orientation of cell swimming as mentioned in

Figure 1.3 and may be employed for gyrotactic modelling.

Since Navier-Stokes equations describes the conservation of momentum in a contin-

uum fluid. After defining the characteristic quantities as velocity (U), length (L), time

(L/U) and denoting dimensionless quantities by bars we can write Navier-Stokes equations

without body force in a non-dimensional form as

Re
(

∂ū
∂t̄

+ ū∇̇ū
)

= −∇p̄ +∇2ū,

where

p̄ =
pL

µU
and Re =

ρUL

µ
.

The dimensionless Reynolds number (Re) is the relationship between the inertial forces

and viscous forces.

1.4 Stokes Equations

In many problems in colloid science, microhydrodynamics, and nano scale fluid prob-

lems, the Reynolds number mostly assumed very small. This implies that viscous forces

are dominant as compared to negligible inertial forces. Under such circumstances, to a

good approximation, the flow is governed by the Stokes equation, where the inertial terms

are neglected and the governing Navier-Stokes equations and equation of continuity for

the fluid flow motion reduce to Stokes equations as

∇p = µ∇2u + b,

∇ · u = 0, (1.1)
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Figure 1.4: Vector plot of Stokeslet singularity solution

where p is the pressure, u the velocity vector field, µ is the dynamic viscosity of the

fluid and b is the applied body force. The Stokes equations are linear and easy to solve

as compared to Navier-Stokes equations. Due to linearity of the system of equations a

solution to a complicated problem can be derived by the superposition of solutions to

simpler problems.

The motion of a spherical body in a Newtonian fluid at low Reynolds number can be

described by the Stokes equations. The velocity at a point on the surface of the sphere

u, the force on the sphere F, and the torque about the centre of the sphere L, can be

calculated from the equations (1.1) as

u = u0 + Ω× r,

F =
∫

S
(σ · n)dS,

L =
∫

S
r× (σ · n)dS. (1.2)
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Here Ω is the angular velocity of the sphere about its centre, σ is the stress tensor, S is

the surface of the sphere and n is the outward drawn unit normal vector. The problem

of calculating the velocity u, given the forces and torques, is called the mobility problem,

whereas the problem of solving for the forces and torques given the motion of the sphere

is called the resistance problem.

Figure 1.5: Vector plot of Dipole (source doublet) singularity solution

There are many different methods to solve the Stokes equations for the motion of

sphere of radius a in a Newtonian fluid. Out of these, separation of variables leads to

general solution in which the velocity and pressure fields are represented by spherical

harmonics. Another simple approach is to use the solutions of Stokes equations generated

by a point force, a source dipole and higher order singularities. These solutions are known

as fundamental or singular solutions. As these solutions are linear in nature so they can be

combined so as to satisfy the boundary conditions of the problem of different situations.

This analytic approach is straight forward and easy to use thats why widely used in
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microhydrodynamics and is adopted in the Stokesian dynamics method.

Figure 1.6: Vector plot of stresslet singularity solution

The Oseen tensor or Stokeslet singularity (see Oseen [107]) is defined as

Sij =
δij

r
+

rirj

r3
∼ 1

r
, for large r,

which is of order 1
r . The derivative of the Stokeslet takes the form as

Sij,k =
∂Sij

∂rk
= −rkδij

r3
+

rjδik

r3
+

riδjk

r3
− 3rirjrk

r5
∼ 1

r2
,

which is of order 1
r2 , and known as Stokes doublet can be further rearrange as

Sij,k =
∂Sij

∂rk
=

(
riδjk

r3
− 3rirjrk

r5

)
+

(
rjδik − rkδij

r3

)
,

where the first term in brackets is symmetric term and is defined by Batchelor [4], a

stresslet, whereas the second term which is antisymmetric is called as couplet. Additionally

the antisymmetric term also named as rotlet in the literature (see Blake [14]).



CHAPTER 1. PRELIMINARIES 12

Differentiating again using ∂iδii = 3 gives the higher order singularities as

∇2Sij = Sij,kk =
∂2Sij

∂rk∂rk
=

2δij

r3
− 6rirj

r5
∼ 1

r3
,

which is known as source dipole singularity or source doublet and is of order 1
r3 .

Further differentiation leads to

∇2Sij,k =
∂2Sij,k

∂rk∂rk
= −6rkδij

r5
− 6rjδik

r5
− 6riδjk

r5
+

30rirjrk

r7
∼ 1

r4
,

which is of order 1
r4 , more complicated and called quadrapole singularity solutions.

Figure 1.7: Vector plot of rotlet (couplet) singularity solution

Out of different possible solutions, one of the most useful solutions to the Stokes

equation is that which describes the flow caused by a sphere of radius a propagating due

to an applied force f through an unbounded Newtonian fluid. If the sphere is far away from

the source, the velocity and pressure fields are similar to that due to a point force of equal

magnitude. This implies that the point-force solution gives a good far-field approximation

and constitutes the basis of the solutions to the Stokes equations.
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Now using the Dirac delta function δ to represent the point force f , the singularly

forced Stokes equations takes the form as

∇ · u = 0,

∇p = µ∇2u + δ(x)F. (1.3)

Oseen [107] found the solution of the above Stokes equations using the Green’s function.

Another approach is by taking the advantage of the relation between the Dirac delta

function and Fourier transform. So by finding the Fourier representation of the Dirac

delta function and solving the singular equations, the solution to the Stokes point-force

problem can be calculated as

uj(x) =
Fk

8πµ

(δjk

r
+

rjrk

r3

)
= FkSjk(x,y) (1.4)

where y is the location of the singularity and x is the general position of a particle within

the fluid. Here the multiple of F i.e. Sjk is the solution to the singularly forced Stokes

equation named as Stokeslet, Oseen tensor, Green’s function, fundamental solution and

propagator function (see Oseen [107], Blake [14]).

Due to the linearity of the Stokes equations the derivatives of the Stokeslet are also

fundamental solutions to the Stokes equations. For the tensorial strength σkl, the velocity

at the point x due to Stokes doublet acting at the point y will be

uj(x) =
σkl

8πµ

[(−δkl

r3
+

3rkrl

r5

)
+

(rlδjk − rkδjl

r3

)]
= σklS

D
jkl(x,y), (1.5)

where the multiple of σkl i.e. SD
jkl is the derivative of the Stokeslet known as Stokes-

doublet. Here the first part in brackets is symmetric and known as stresslet singularity

which corresponds to the straining motion of the fluid. The second term in the brackets

is antisymmetric and named as rotlet or couplet singularity which is due to the torque

acting on the fluid flow.

1.5 Singularity solution for spheres

Using the singularities as defined in section 1.4, we can construct the singularity so-

lutions for the velocity of the sphere of radius a either translating or rotating in the

Newtonian fluid (see Chwang and Wu [32], [33]).
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1.5.1 Translating motion

The velocity disturbance u caused by a translating sphere moving through an un-

bounded, Newtonian fluid under the influence of an applied force F can be calculated as

(see Binous and Philips [13])

ui(x) =
Fj

8πµ

[(
1 +

a2

6
∇2

y

)
Sij(x, y)

]
, (1.6)

which can be further simplified as

ui(x) =
Fj

8πµ

(
Sij(x, y) +

a2

6
∇2

ySij(x, y)
)

, (1.7)

now using the above values of the Stokeslet and Laplacian of Stokeslet i.e. source doublet

as defined in section 1.4, we can rewrite as

ui(x) =
Fj

8πµ

[
δij

r
+

rirj

r3
+

a2

6

(
2δij

r3
− 6rirj

r5

)]
. (1.8)

Now on the surface of the sphere of radius a, we calculate the combination using

Stokeslet and its Laplacian (source doublet) as (see Kim and Karrila [87])
(

1 +
a2

6
∇2

y

)
Sij(x, y) =

4
3a

δij

Using above calculations we can find the approximate singular solution for the motion of

the sphere translating with the steady velocity U as

ui(x) =
Uj

8πµ

[
δij

r
+

rirj

r3
+

a2

6

(
2δij

r3
− 6rirj

r5

)]
6πµa, (1.9)

which can further simplified as

ui(x) =
3a

4
Uj

(
δij

r
+

rirj

r3

)
+

a

4
Uj

(
δij

r3
− 3rirj

r5

)
, (1.10)

which is exactly the same solution as obtained by Oseen [107] for the translating motion

of the sphere of radius a in an unbounded fluid flow as

ui(x) =
3a

2
Ui

(
1
r

)
− a

4
Uj

∂2

∂ri∂rj

(
3r +

a2

r

)
, (1.11)

1.5.2 Rotating motion

The velocity disturbance u caused by rotation due to torque applied to a sphere in an

unbounded, Newtonian fluid at small Reynolds number can be written as

ui(x) =
1

8πµ
Rij Ωj =

1
8πµ

(
rjδik − rkδij

r3

)
Ωj =

1
8πµ

(εijkrk

r3

)
Ωj , (1.12)
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where Rij is the rotlet singularity and Ω is the applied torque.

Now again following Kim and Karrila [87], on the surface of the sphere of radius a, the

antisymmetric part of Stokes doublet i.e. rotlet as discussed in section 1.4 satisfies

Rij =
1
r3

(rjδik − rkδij) =
1
a3

(rjδik − rkδij) .

Hence the singular solution for the velocity of the sphere of radius a rotating with angular

velocity Ω takes the form as

ui(x) =
1

8πµ

[(εijkrk

r3

)
Ωj

]
8πµa3, (1.13)

which further simplified as

ui(x) = a3
(εijkrk

r3

)
Ωj = (Ω× r)

a3

r3
, (1.14)

which is exactly the same expression as calculated by Blake [15], the velocity field due to

the rotlet singularity for a unit sphere

ui(x) =
(εijkrk

r3

)
Ωj =

Ω× r
r3

. (1.15)

1.6 Flagellar hydrodynamics

The study of hydrodynamics of flagellar locomotion mostly involved swimming analysis

of monoflagellates micro-organisms like spermatozoa (see Taylor [138], Ramia [123], Smith

et al. [136]). These investigations mostly focused on the computations of forces and torques

produced by the beating flagellum and subsequently computing the velocity and angular

velocity of the micro-organism.

The first landmark model was proposed by Taylor [138] in 1951, who gave the math-

ematical model of the propulsion of a flagellum like object (two dimensional thin sheet)

due to traveling bending waves. He produced the first approximation to the velocity, the

stress and rate of working in the sheet. He advanced the main principle underlying self-

propulsion in a viscous flow that the resultant force which the fluid exerts on the body

must be zero. He further investigated the helical flagellar waves for the case when the

amplitude of the waves was small as compared to the radius of the flagellum. Due to this

condition, experimental analysis was therefore not consistent with the theory.

In 1953 Hancock [56] improved Taylor’s work and modelled the flagellum by distri-

butions of Stokeslet and potential source doublets chosen to satisfy the no-slip boundary
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Figure 1.8: Schematic diagram of the flagellar propulsion of monoflagellate sea urchin

spermatozoon.

condition on the flagellum. He showed that the approximation of a finite length flagellum

by an infinite length flagellum is most accurate for a zero radius flagellum. Hancock was

also able to show mathematically how an object translating tangential to its axis is sub-

ject to approximately half of the drag compared with if it translates normal to its axis, a

conclusion which is important to low Reynolds number fluid dynamics and the propulsion

of flagella and cilia. This forms the basis for an approximation for the hydrodynamical

modelling of a swimming micro-organisms known as Resistive Force Theory.

1.6.1 Resistive Force Theory

Resistive Force Theory (RFT) was developed by Gray and Hancock [51] in 1955. They

investigated an infinite flagellum of the spermatozoon and modelled a circular cross-section

of the flagellum by a Stokeslet and a Stokes’ dipole located at the centre. The theory states

that a reasonable approximation can be obtained by assuming that the force per length,

f , exerted on the fluid by the flagellum at a point s (arc length along a flagellum) is

proportional to the relative local centre line velocity, V(s, t) (in a coordinate frame in

which fluid is at rest at infinity). Hence, the tangential and normal components of force

per length take the form

ft = µKtVt, fn = µKnVn, (1.16)

where, µ is the fluid viscosity and the values of force per length coefficients proposed by

Gray and Hancock [51] for computing flagellar motions are

Kt =
2π

ln (2λ
b )− 1

2

, γ =
Kn

Kt
= 2, (1.17)
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where b is the cross-sectional radius of the flagellum and λ the wavelength. The ratio

γ = 2, is only valid for the limiting case of a vanishingly thin flagellum. Johnson and

Brokaw [75] rectify the problem and using Cox’s [36] result, they derived the value of Kn

as

Kn =
4π

ln (2λ
b ) + 1

2

, γ = 1.7. (1.18)

However, experimental measurements were obtained for a sea urchin spermatozoon of

γ = 1.8. So finally, Lighthill [94] considered the case of flagellum performing planar

bending waves of small amplitude and derived the force per length coefficients, which were

found to be consistent with experiments as

Kt =
2π

ln (2q
b )

, Kn =
4π

ln (2q
b ) + 1

2

, q = 0.09λ. (1.19)

In the above two cases, they assumed infinite length of the flagellum and zero thrust during

the calculation of the resistance coefficients for spermatozoa. As spermatozoa has large

flagellar length in comparison with the cell’s body diameter so that they could assume

negligible drag caused by head. Later, Johnson and Brokaw [75] verified that Lighthill’s

resistance coefficients were valid even for organisms other than spermatozoa whose flagellar

lengths approximately equal their body diameter.

RFT has been used for a variety of problems related to hydrodynamics of swimming

micro-organisms. Shack et al. [133] calculated the resistance coefficients for helical wave

form and found the results consistent with Lighthill [95]. Holwill and Sleigh [69] employed

RFT to a flagellum with mastigonemes (increases the surface area of the flagellum) and

found that organisms can propagate in the opposite direction to the direction of the prop-

agation of bending wave if the length of the mastigonemes exceeds the flagellar length.

Using RFT again Holwill [67] showed that the major production of thrust generated from

the flagellum and the cell body oscillate to balance the torque produced by the flagellum.

Blake [14] however investigated the flagellum locomotion near a plane surface and recal-

culated the resistance coefficients when flagella propel parallel and normal to the wall. He

concluded that organisms swim more rapidly near but not exactly at the plane boundary.

He also applied RFT for ciliated micro-organisms using methods to include the influence

of each cilium upon every other by computing the fluid velocity of one cilium relative to

mean fluid flow within the ciliate envelope. Chwang and Wu [31] approximated the viscous

torque by a flagellar element rotating around its own axis again using RFT and assumed
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the viscous torque dMflg produced by an element of the flagellum as

dMflg = KMΩrelds, (1.20)

where KM and Ωrel are the resistance coefficient and relative angular velocity of the

flagellum about its axis respectively.

Pironneau and Katz [115] used RFT to present insights into optimally energy efficient

flagella beating by investigating the small amplitude only. Brokaw [21], [22] investigated

using RFT to couple internal mechanics and fluid mechanics to realize the emergence of

oscillatory propulsive waves. Jones et al. [76] investigated the swimming of biflagellate

using RFT. Brokaw [23] analyzed beat pattern emergence in combination with detailed

modelling of flagellar internal mechanics. Kinukawa et al. [88] used RFT in finding new in-

terpretations of flagellar beat data and recently, Lauga et al. [89] investigated the trapping

of bacteria near surfaces using RFT.

There are certain limitations found in the RFT proposed by Gray and Hancock [51].

In the first observation, they applied RFT to sinusoidal waveforms only. This issue was

further investigated by Brokaw [20] who applied RFT to non-sinusoidal waves: arcs con-

nected by straight lines. Holwill and Miles [68] further applied RFT to exponentially

damped sinusoidal wave. They found good agrement with Gray and Hancock coefficients

in the absence of cell body or in the presence of inert cell body. Chwang and Wu [31]

investigated the helical wave form using RFT and found good agrement with the results.

Silvester and Holwill [137] concluded the independence of RFT to the shape of the wave

form for a small degree of accuracy. Secondly Gray and Hancock [51] assumed that each

element produced the same amount of force for given relative velocity and angular velocity.

They assumed flagellum as an infinitely long cylinder without considering the effects of

the free end of the flagellum and the cell body. Johnson and Brokaw [75] showed that

due to the end effect, the force produced by each element was not the same. Gray and

Hancock [51] also assumed the hydrodynamic effect of one element of the flagellum on the

other known as neighborhood effect, however Lighthill [94] found error in the weighting

effect. Later, Jones [77] investigated the interactions between non-neighboring elements

during the swimming biflagellates.
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1.6.2 Slender Body Theory

Slender Body Theory (SBT) is applicable to various problems where a slender body

micro-organism propels fluid or itself in a low Reynolds number Newtonian flow field. This

allows the micro-organism movement and surrounding fluid flow in a three dimensional

domain to be computed much more efficiently than by directly calculating the Stokes flow

equations. In SBT flagellum is modelled using Stokeslet and Stokes dipole singularities as

defined in section 1.4, as a series of small straight cylinders of length 2δs. The velocity

of the flagellar section as defined by Higdon [61] at any position xc can be written in the

form of an integral equation as

uc
i (x

c) =
∫

|Xc|<δs

[
1

8πµ
Sjk(xc,Xc)f c

k(Xc) +
1
4π

Djk(xc,Xc)dc
k(X

c)
]

dXc, (1.21)

where Xc is the local coordinate system of the section of the flagellum, f c is the force

tangential and normal to the flagellar section and dc is the dipole strength normal to the

flagellar section. Since the velocity at any point along the flagellum has contribution from

all flagellar sections, so we assumed the flagellar sections small so that the Stokeslet and

dipole strength become constant in each section. Now to find the velocity anywhere along

the flagellum, we divide the flagellum into N circular cylinders and sum the contributions

from each one of them as

u(x) =
N∑

n=1

f(s)
8πµ

∫ sn+δsn

sn−δsn

S(x,X(s)) ds +
N∑

n=1

d(sn)
4π

∫ sn+δsn

sn−δsn

D(x,X(s)) ds, (1.22)

using the above boundary velocity u(x), we can construct the force and torque balance

equations and subsequently find the micro-organism’s swimming velocity U and angular

velocity Ω.

In the mid-1970s, researchers turned their attention to incorporating boundary effects

for swimming micro-organisms which is of great importance for the case of mammalian

sperm locomotion near the uterus wall. At the same time it was possible to calculate

numerical solutions of the SBT integral equation for the force distribution on the flagellum.

Batchelor [4] and Cox [36] investigated the Stokes flow past the slender bodies using SBT

which was further investigated by Lighthill [94] who reduced the error by formulating his

famous theorem. The Lighthill [94] study was found more accurate for the case of zero-

thrust whereas for the case when flagellum is either finite or the organism is pushing a

large inert body, Batchelor [4] and Cox [36] results are more accurate. In general there

are two approaches that have been used while using SBT numerical calculations. In
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the first approach researchers applied surface-velocity collocation directly to Hancock’s

SBT as used by Higdon [61], Smith et al. [135], and Clarke et al. [34]. In the second

approach researchers worked out an approximation of Hancock’s representation based on

‘integrating out’ the local Stokeslet/dipole contributions as initially calculated by Lighthill

[94]. Further examples include Johnson [74], Gueron and Liron [55], Fulford et al. [41],

and Gueron and Levit-Gurevich [54].

1.6.3 Comparison of RFT and SBT

For modelling of the swimming micro-organisms both RFT and SBT are extensively

used. In general SBT is similar to the RFT, as in RFT force is directly proportional

to the velocity at each flagellar section, but it differs with each flagellar section for the

case of SBT. In RFT neighboring components of the flagella are not hydrocoupled as they

are in SBT. After summation, the Stokeslet and dipoles have a contribution from every

flagellar section to the flagellar velocity for SBT, which is termed as the neighborhood

effect. Gray and Hancock [51] ignored this neighborhood effect while computing RFT

coefficients, whereas Lighthill [94] recalculated these coefficients to improve the accuracy.

SBT is also better choice for investigating the end effects of the flagellum. Tillett [140]

found SBT a good first approximation at the free flagellar end in comparison to RFT.

Johnson and Brokaw [75] found Lighthill’s RFT resistance coefficients better than the

Gray and Hancock coefficients even in the case of non-zero thrust in the presence of a cell

body attached to the flagellum providing non-zero drag.

Since the SBT formulation involved an integral equation which further requires ex-

tensive numerical methods for the solution. Additionally, in SBT accurate representation

of an organism’s cell body is cumbersome as well. Additionally, Stokeslet and source

dipoles singularities require respective image singularities inside the cell body to satisfy

the no-slip boundary condition (see Blake [14]). Higdon [61] modelled the mono-flagellated

micro-organism, both free swimming and near the plane boundary, using the image sin-

gularities numerically. He compared RFT and SBT and concluded that SBT should be

employed to obtain accurate output. He also found that RFT with Lighthill’s coefficients

under-estimated the power output by the flagellum whereas Gray and Hancock coefficients

under estimated in the zero-thrust case and over-estimated the non-zero thrust case.

In 1994 Jones et al. [76] used RFT for the first time to model an external flow field acting

upon the swimming biflagellate, which made a radical revision of the RFT without any
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additional requirement. They assumed that neither flagellum of the biflagellate interacts

with the other hydrodynamically. To avoid the cumbersome numerical calculation, they

also assumed that there is no interaction of flagella with the body and the interaction

occurs only near the slowly moving section of the flagella which are areas of minimal

force production. This implies that they have negligible effect due to this interaction and

can be ignored for modelling. Using these assumptions Jones et al. [76] found RFT a

reasonable approximation for the analytical investigation of the locomotion of biflagellate

in a flow field. This provides motivation and guidance to employ RFT for further analytical

investigation of swimming biflagellates to different situations, like near the no-slip plane

boundary as discussed in chapter 3 of this thesis. Thus by not using the SBT here we also

not compromising the quality of results as by avoiding computing numerical methods for

the solutions.

1.7 Bioconvection

Pattern formation in a suspension of motile swimming cells such as C. nivalis, C.

cohnii, Euglena gracilis, E. viridis and Tetrahymena pyriformis was observed from long

time ago. These patterns resulted from the instabilities of suspensions of cells which were

denser than the surrounding fluid and appear as visually striking alternations of dark (high

cell concentration) and light (low cell concentration) arrays of falling strips or spots when

viewed from the top. This pattern formation may facilitate swimming micro-organisms

in different forms ranging from better oxygen or nutrient mixing, enhanced reproduction,

limited competition, optimize swimming speeds through hydrodynamic interaction.

In 1961 the term ‘bioconvection’ was first coined by Platt [116] to explain the process of

pattern formation in shallow suspensions of motile swimming micro-organisms. However a

literature survey reveals that the first ever experimental investigation of pattern formation

was done by Wager [144] back in 1911 and other investigations recorded later by Loeffer

and Mefferd [98], Nultsch and Hoff [106], Plesset and Winet [117], Kessler [80], Bees

and Hill [7], [9]. Initial investigations of bioconvection were mainly focused on studies

of pattern formations and effects by light, temperature, depth, concentration, and pH by

different species of micro-organisms in perfect laboratory conditions. However Kessler in

a series of papers [79], [80], [82], [84], has investigated pattern formation by C. nivalis

and aspects of gyrotactic focusing or plume structure, such as the U-tube experiment as



CHAPTER 1. PRELIMINARIES 22

(a) Image captured from top.

(b) Image captured from side.

Figure 1.9: A sample of images of bioconvection pattern formation by suspension of C.

augustae recorded in a thin long horizontal tube while focusing on the centre of the tube.

discussed in section 1.3. Blip or pulse instabilities which resulted into localized regions

of high concentration formed during down flowing plumes were also analyzed. They tend

to establish when the initial cell concentration is large or when the velocity of the stream

centreline is small.

Bioconvection results from the overturning and gyrotactic instabilities of suspensions of

cells denser than the surrounding fluid. Overturning instabilities occur when upswimming

cells accumulate at the top of the fluid in which they reside, forming a dense, unstable

layer which is similar to the Rayleigh-Bernard convection [26]. A schematic diagram

of the overturning instabilities by motile swimming micro-organism is shown in Figure

1.10. Gyrotactic instabilities arise from concentration fluctuations of sinking blobs of cells

driving flows which bias cells to swim towards the blob. This accumulation of cells causes

the blob to sink faster and leading to the formation of plumes structure anywhere in the

suspension of cells as shown in the Figure 1.11.

Bees and Hill [7] investigated the quantitative analysis of the aspects of bioconvection

pattern formations in suspension of C. nivalis. They used computational image analysis

to extract the wavelength of the initial pattern formed before any non-linear affects arose
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Figure 1.10: A schematic diagram of an overturning Rayleigh-Taylor instability from side.

Cells which are denser than the fluid swim upward on average and gather at the top to

form a suspension of greater density (dark region) than that of the fluid below.

and long term pattern wavelength establishes approximately 5 minutes after mixing of

the suspension for different suspension concentration and depths. They found the initial

pattern wavelength to be predominantly determined by depth of the suspension instead

of cell concentration. However Czirók et al. [37] using the bacteria Bacilus subtilis found

the results other way around in respect of suspension depth and cell concentration. This

may be because of the two different species ascribed particular taxes like gravity affects

gyrotactic cells throughout the layer whereas aerotactic bacteria accumulate in thin layers

where oxygen gradients exists. Taylor et al. [139] derived novel statistical measures for

the regularity of patterns, Yamamoto et al. [149] investigated the critical depth and cell

concentration required for pattern formation in the suspension of C. reinhardtii. Recently,

Williams [147] investigated the initial pattern formations as a function of concentration

and light intensity. The techniques presented in [7] and [37] are incorporated to analyze

the initial and stable/final pattern wavelength in horizontal cylindrical tubes as a function

of cell concentration, tube diameter, and flow rate in chapter 4 of this thesis.

Literature survey indicates that with the exception of few species of biflagellates and

dinoflagellate blooms found in sea of Galilee (see Kessler [83]), there is little evidence of

pattern formation found in real world environment. Thus majority of the micro-organisms

forms bioconvection patterns under the conducive laboratory conditions, which include
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Figure 1.11: A schematic diagram of a gyrotactic instability without the upper boundary.

Cells swim towards the down welling fluid and this addition of mass make the fluid more

denser (dark region) resulting sink faster and form a plume structure.

good optical and temperature conditions, high cell concentrations and still fluid which is

not very common in natural environment.

1.7.1 Mathematical models of bioconvection

Literature survey reveals that, there are many similarities between the bioconvection

patterns formed by motile micro-organisms and thermal convection, so we can employ the

techniques used in thermal convection problems in bioconvection analysis. Childress et

al. [29] and Levandowsky et al. [91] established the first self-consistent theory for the onset

of bioconvection. They incorporated purely upward swimming cells in a suspension with

stress free and rigid upper boundary. They assumed the continuous density distribution

and modelled cells as denser than the surrounding incompressible fluid. The sides of the

container were assumed far apart so that the layer effectively has an infinite width and cell

to cell interaction was negligible as suspension was modelled dilute. The cell’s velocity was

assumed to consist of random motion and steady upward drift in comparison to the media.

The effects of non-Newtonian stresses and flow around the single cell was negligible because

of the assumption that the length scale of the bulk motions were large in comparison with

cell size and cell spacing. They used the Boussinesq approximation which implies that the

cells affect the fluid flow through the change in density between the cells and the fluid.
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Thus the governing equations for the motion of the fluid and cells were found as

∇ · u = 0, (1.23)

and

ρ
Du
Dt

= −∇p + µ∇2u− ρ(1 + αec)gk, (1.24)

which are equation for the conservation of fluid and conservation of momentum or Navier-

Stokes equations respectively. Here D
Dt represents the convective derivative, u is fluid

velocity, p is pressure, ρ and µ are the density and viscosity of the fluid respectively, −gk

is acceleration due to gravity, and ραec is the extra density due to micro-organisms of cell

concentration c at a point. Similarly Childress et al. [29] modelled the cell conservation

equation as
∂c

∂t
= −∇ · J, (1.25)

where J is the net flux of cells through the fluid and consist of flux due to random motions

and flux due to negatively gravitactic drift and can be defined as

J = cU(c, z)k−D · ∇c, (1.26)

where U(c, z) is the cell swimming speed and D is the orthotropic diffusion tensor intro-

duced by Childress et al. [29] by taking account of random motions as

D =




Dh 0 0

0 Dh 0

0 0 Dv


 . (1.27)

It is also interesting to note that these equations are similar to the Rayleigh-Bénard equa-

tions for thermal convection problem (see Chandresekar [26]). Childress [29] investigated

an equilibrium solution for the case of no flow and found critical wavenumber zero cor-

responding to an infinite wavelength using linear analysis of the model. They have used

Tetrahymena cells and found good agreement between model predictions and experimen-

tal results. The next worthy improvement in bioconvection modelling was done by Pedley

and Kessler [111], who assumed the orientation of the spheroidal micro-organisms in a flow

field and calculated the total torque as

LT = Lv + Lg, (1.28)
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where Lv the viscous torque and Lg is the gravitational torque. For gyrotactic bottom

heavy micro-organism like Chlamydomonas nivalis, the gravitational torque using the sum-

mation convention takes the form as

Lgx = hmgεxyipyki, (1.29)

where h represents the centre-of-gravity offset from the geometric centre, m is the mass

of the cell, g is the magnitude of the acceleration due to the gravity, k is the unit vector

in the vertical direction and εxyi is the Levi-Civita symbol. The expression for the viscous

torque on a solitary body with zero Reynolds number (see Rallison [122]) takes the form

as

Lvx = −µv
[
Pxy(vy − uy) + Yxy

(
ωc

y −
1
2
Ωy

)
+ RxyiEyi

]
, (1.30)

where µ is the fluid velocity, v and v are the cell’s velocity and volume respectively, ωc is

the angular velocity of the cell, Ω is the vorticity and E is the rate-of-strain tensor. P, Y

and R are tensors depending on the surface geometry and orientation of the cell only and

for rigid prolate spheroid geometry can be defined as (see Batchelor [4])

Pxy = 0, (1.31)

Yxy = α‖pxpy + α⊥(qxqy + rxry), (1.32)

and

Rxyz = −α0Yxi(ripyqz − qipzry), (1.33)

where p,q and r form an orthonormal right-hand set of coordinates, α‖, α⊥ and α− are

shape parameters. The eccentricity α0 for the prolate spheroid shaped cell is given by

α0 =
a2 − b2

a2 + b2
, (1.34)

where a and b are the length and breadth of the cell. Since Eyz is symmetric, the equation

(1.30) for viscous torque takes the form as

Lvx = −µv
[
Yxy

(
ωc

y −
1
2
Ωy

)− α0YxiεzijpjpyEyz

]
. (1.35)

Using above equation and (1.29) and after substitution into equation (1.28) with setting

LT = 0 implies

hmgεxyipyki − µv
[(

α‖pxpy + α⊥(qxqy + rxry)
)(

ωc
y −

1
2
Ωy − α0εzyjpjpiEiz

)]
= 0. (1.36)
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Now using the identity εxyzεijk = δxiδyj − δxjδyi, and multiplying with εxijpi transform

equation (1.36) into

ṗ =
1

2B

[
k− (k · p)p

]
+

1
2
Ω× p + α0

[
E · p− pp ·E · p]

, (1.37)

where δxy is the Kronecker delta, ṗ = ωc × p and gyrotaxis number

B =
1
2

(
µα⊥
hρg

)
, (1.38)

as named by Pedley and Kessler [111] with units of seconds. The initial models for gyrotac-

tic bioconvection by Pedley et al. [112] and Hill et al. [64] were based on the upswimming

only and the cell swimming direction p was found using Pedley and Kessler [111], as a

function of vorticity and rate-of-strain tensor. The random motions were modelled by

cell diffusion with constant isotropic tensor D. Both models resulted in a finite, non-zero

critical wavenumber for gyrotactic cells in comparison to a zero critical wavenumber for

the earlier models [29], [91] of upswimming only.

1.7.2 Stochastic gyrotactic bioconvection model

In 1990, Pedley and Kessler [113] proposed a model, termed as new continuum model,

using the strongly random isotropic diffusion tensor. They modelled the cell swimming

direction in a probabilistic manner, using methods analogous to those of colloidal particles

subject to Brownian motion (see Hinch and Leal [65]). They assumed a cell swimming

direction probability density function f(p), defined on a unit sphere, where p is the cell

swimming direction unit vector, given by

p = ( sin θ cosφ, sin θ sinφ, cos θ )T , (1.39)

where θ, φ are spherical polar angles termed as colatitude and cell orientation angle mea-

sured relative to k and in the horizontal plane respectively. The probability density func-

tion f(p) defined above in equation (1.39) in spherical polar coordinates, satisfies the

Fokker-Plank equation which can be written as

∂f

∂t
+∇ · (ṗf) = Dr∇2f, (1.40)

where Dr is a constant rotational diffusivity associated with the rotational Brownian effects

during the swimming of cells. The above equation (1.40) can be solved using equation
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(1.39) for the rate of change of p to calculate f(p). Pedley and Kessler [113] defined the

mean cell swimming velocity as

q = 〈p〉 =
∫

S
p f(p) dS, (1.41)

where S is the surface of the unit sphere and notation q is used for simplification. The

cell diffusivity tensor D can be defined by following Pedley and Kessler [113] as

D(t) =
∫ ∞

0
〈Vr(t)Vr(t− t1) 〉 dt1. (1.42)

Here Vr is the cell velocity relative to its mean velocity. Using the assumption that the

average cell’s swimming speed Vs to be constant, Pedley and Kessler [113] removed the

integral over time by further assumption that cell takes τ seconds to settled down to a

preferred direction. This simplifies the equation (1.42) for diffusivity tensor to give

D ≈ V 2
s τ 〈 (p− q)(p− q) 〉, (1.43)

where τ is the direction correlation time scale. The basic equations and assumptions

for the stochastic gyrotactic model developed by Pedley and Kessler [113] are based on

the upswimming model proposed by Childress et al. [29]. Thus for the incompressible

suspension, the equation of continuity and Navier-Stokes equation with an additional term

due to the negative buoyancy of the cells takes the form as

∇ · u = 0, (1.44)

ρ
Du
Dt

= ρ
[ ∂u

∂t
+ (u · ∇)u

]
= −∇Pe + nv∆ρg +∇ ·Σ, (1.45)

where u(x) is the velocity of the suspension of swimming cells, Σ(x) the fluid stress tensor,

n(x) is the local cell concentration, µ is the fluid viscosity, pe(x) is the excess pressure over

hydrostatic, v is the mean volume of cell and ∆ρ is the difference between the cell density

and fluid density. The cell conservation equation can be defined by following Childress et

al. [29] and Pedley et al. [113] as

∂n

∂t
= −∇ · [n(u + Vs〈p〉 )−D · ∇n

]
, (1.46)

where 〈p(x)〉 is the mean cell swimming direction, Vs is the mean cell swimming speed

and D(x) is the cell diffusion tensor. In addition to the negative buoyancy effect, Pedley

and Kessler [113] considered all effects that cell may have on the bulk fluid motion and

defined the fluid stress tensor as

Σ = 2µE + Σ(d) + Σ(s) + Σ(p), (1.47)
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where Σ(d) are stresses associated with the effective particle rotation due to rotational

diffusion, Σ(s) are stresslets due to the swimming motions of individual cells and Σ(p) are

Batchelor stresses that are due to the fact that cells do not allow the fluid to deform in

the same way as it would in the absence of rigid cells. Pedley and Kessler [113] found that

in addition to basic Newtonian stress, stresslets makes notable contribution in comparison

to other stresses in fluid stress tensor expression (1.47).

Pedley and Kessler [113] used this new model to investigate the linear stability and

found good agrement with the Pedley et al. [112] gyrotaxis model. Bees and Hill [9] found

an equilibrium solution and investigate a linear stability analysis for a finite layer depth

with rigid boundary using Pedley and Kessler [113] model. They concluded from their

investigations that the introduction of gyrotaxis creates a non-zero critical wavenumber

associated with a finite wavelength and additionally, found that increasing gyrotaxis desta-

bilizes the system for large wavenumbers. Bees and Hill [9] predicted wavelength ≈ 1 mm

in comparison to experimental estimate of 4 − 7 mm (see Bees and Hill [7]) at the onset

of bioconvection.

1.7.3 Recent development in bioconvection modelling

In 1998 Bees et al. [9] computed analytic solutions of the Fokker-Planck equation in

terms of spherical harmonics for the orientation of dipolar particles in a steady shear flow

with a uniform external field. Using Pedley and Kessler [113] model, Bees and Hill [10]

performed a weekly non-linear analysis for a deep layer and found that the bifurcation to

the gyrotactic instability is supercritical in comparison to the subcritical for gravitactic

instability found by Childress and Spiegel [28]. This motivates to employ linear stability

analysis to predict initial wavelengths of pattern formation in suspensions of gyrotactic

swimming cells.

Hill and Bees [62] computed the first rational expression for the diffusion coefficients

of gyrotactic cells in vertical shear flow, using generalized Taylor dispersion theory. They

concluded that as vorticity approaches to infinity, consequently the effective diffusivity

approaches to zero because of the cells tumbling in the shear plane, in contrast to earlier

derived expressions for diffusivity by Bees et al. [8] and Pedley and Kessler [113]. This the-

ory was further extended by Manela and Frankel [101] for axisymmetric micro-organisms

which include local rate-of-strain and vorticity effects as well. Ghorai and Hill [45] numer-

ically study gyrotactic bioconvection using a vorticity stream function formulation of the
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Pedley et al. [112] model in 2D and 3D geometry. Ghorai and Hill [46] also computed the

first computational examples of the bottom-standing plumes structures found in pattern

formations and concluded that they are mostly transient, which implies the reason for the

unavailability of the analytic solutions for these structures. Williams [147] in her PhD

thesis extended the work of Bees and Hill [9] by including phototaxis using three physi-

cally diverse and novel methods. She performed linear stability analysis for each model

and the most unstable wavenumber for a range of parameters values was predicted. She

later performed experimental investigations and found good agrement with the theoretical

results.

Bees and Croze [11] analyzed the dispersion of swimming cells in a flow in a vertical

tube in the laminar regime and predicted the effective drift and diffusion in a gyrotactic

algae in plumes. Recent developments in theoretical studies of bioconvection comprise of

investigating thermo-bioconvection and bioconvection in the vicinity of the boundaries of

various geometries, pattern formation in a porous media etc.

1.8 Applications and motivation of the study of biflagellate

Recently, micro-organisms have been used in establishing algal photo-bioreactors for

biodiesel production and waste water treatment plants. Due to present price hikes of

fossil fuels and biodiesel from food crops, they can be act as the most efficient source of

feedstock for biofuels or biodiesel industry (see Chisti [30]). They can be also helpful to

reduce accumulation of carbon dioxide from using fossil fuels in the environment. Durham

et al. [38] showed that transient gyrotactic trapping of motile phytoplankton can generate

thin, high cell concentrated layers in the ocean which implies consequences for the ecology

of toxic algae and demonstrate the ecological importance of these micro-organisms.

Research in biotechnology applications has accelerated in recent years due to the pos-

sibility of using micro-organisms to produce hydrogen gas or biodiesel for the renewable

energy sector (see Melis and Happe [104] and Chisti [30]). There are two main methods

used for hydrogen production from micro-organisms as described by Williams [147]. The

first one called as photobiological process which require, light as energy source, a substrate

to donate electrons to the hydrogen production complex and a catalyst to combine pro-

tons and electrons to produce hydrogen gas (see Ghirardi et al. [43]). The second method

is called as fermentative process in dark where anaerobic bacteria grow on carbohydrate
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Figure 1.12: A design of tubular helical alga photobioreactor of 1000 L capacity at Murdoch

University. Courtesy of Professor Michael Borowitzka, Murdoch University, Australia.

rich substrates and produce hydrogen gas and CO2 as fermentation output (see Hawkes

et al. [60]).

For the optimal and commercially competitive production of the renewable energy

i.e. hydrogen gas or biodiesel from micro-organisms, existing bioreactors design require

scrutiny. In the presently used closed bioreactors, algae are cultured in laminar or tur-

bulent flows through arrangements of horizontal, inclined or vertical tubes, bubbled for

gas exchange, and concentrated by flocculation, filtration or centrifugation in a manner of

inert collides or mare chemicals (see Grima et al. [52], Chisti [30]). However, swimming

biflagellate micro-organisms like C. augustae or Dunaliella used for biofuels production do

not behave like inert chemicals or collides, their swimming trajectories close to boundaries

of various geometries, peculiar collective motions and consequent transport properties need

to be taken into account and investigated. The gyrotactic biflagellate motile cells form
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patterns while swimming in various geometries and alter the flow even it was laminar or

turbulent flow within that geometry.

There is a reasonable link between the bounded biflagellate swimming and bioconvec-

tion in a suspension of cells with renewable energy production. As most bioreactor design

involves arrangements of thin tubes as shown in Figure 1.12 then this definitely require

the study and understanding of the biflagellate swimming in the vicinity and away from

the boundary. The plume formation during bioconvection creates an uneven distribution

of the cells throughout the tubes of the bioreactors, which resulted in a non-uniform dis-

tribution of light and may optimize the output and efficiency of the bioreactors. Another

area include the cell clogging phenomena within the tubes of the bioreactors could be

investigated with this study of biflagellate swimming and bioconvection. Thus the inves-

tigations of the hydrodynamics of bounded cell swimming and pattern formation in thin

tubes are the main areas of research in this thesis which are inherently linked and lead to

the applications in renewable energy sector.

1.9 Review of the thesis

In this thesis we have investigated the bounded swimming using Resistive Force Theory

(RFT), and experimental and theoretical techniques to study the mechanics involved in

advected bioconvection in a suspension of gyrotactic swimming of unicellular biflagellated

green algae named as Chlamydomonas augustae.

Chapter 2 describes the mathematical modelling and analysis of swimming biflagellate

green algae in an unbounded domain using the Resistive Force Theory. The detailed

analytic calculations and technique was used similar to the work by Jones et al. [76]. In

order to simplify the tedious calculations we have simplified the implementation of the

flagellar beat pattern and employed the use of the software Maple. These additional steps

really worked well with verifying and improved the calculations done by Jones et al. [76]

for unbounded biflagellate swimming.

Chapter 3 involves the mathematical modelling and analysis of the swimming biflagel-

late green algae in the vicinity of the no-slip stationary plane boundary using the Resistive

Force Theory and image singularity solutions.

Chapter 4 investigates the experimental analysis of bioconvection in thin horizontal

tubes to obtain quantitative data on the pattern wavelength. The dependence of pattern
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formation on suspension concentration, time, tube diameter, and flow rate is discussed

in detail. The contents of this chapter have already been published in Physical Biology

international journal.

Chapter 5 details the modelling of the continuum model suggested by Kessler [85] with

the addition of random cell swimming speed between the two horizontal plates in the

presence of weak poiseuille flow for analytical linear analysis of the problem. The method

used here is similar to the investigations done by Bees and Hill [9].

Chapter 6 includes the conclusions of the work done, limitations and future research

directions in the projects involved in this thesis.



Chapter 2

Biflagellate swimming in an

unbounded domain

2.1 Synopsis

In this chapter, we investigate the unbounded swimming of a unicellular biflagellated

micro-organism. The swimming cell is modelled analytically using the Resistive Force

Theory of Gray and Hancock [51]. Here, we first reproduce the detailed method and

calculations of Jones et al. [76] for swimming biflagellates. This flagella beat pattern is

then modified by redefining the position vector to ease the solution method involving

cumbersome calculations. This arrangement results in a single position vector from the

centre of the cell body that satisfies the three different parts of the flagella beat and

become angle θ dependent when swimming in a plane. This modification also simplifies

the recovery stroke integration calculations in comparison with the integrals involved in

Jones et al. [76]. Later, we employe the software Maple to find analytical expressions for

the swimming velocity and angular velocity of the swimming cell when swimming vertically

upward and find good agrement with the Jones et al. [76] results. Additionally, using the

same Maple code we investigate the swimming cell for different orientations.

2.2 Introduction

In 1994 M. S. Jones, L. Le Baron and T. J. Pedley published a paper [76] in which they

presented a simplified mathematical model of the biflagellate Chlamydomonas nivalis at

small Reynolds number. They employed an approximation called Resistive Force Theory

34
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(RFT) to model and calculate the cell’s swimming velocity and angular velocity relative to

the ambient flow field as a function of the vorticity and strain rate in the vicinity of the cell.

The cell body was assumed to be spherical and both flagella beat symmetrically in a vertical

plane. For the simplified planar swimming model the ambient flow field lies in the same

vertical plane. They showed that RFT was quite adequate to reproduce the experimentally

observed swimming velocity and angular velocity of bottom-heavy biflagellated micro-

organisms.

By employing RFT Jones et al. [76] assumed no hydrodynamic interaction of flagella

with the cell body and no interaction between neighboring elements of each flagellum.

However, interactions might only take place at the slow moving sections of the flagella

during the recovery stroke, which caused negligible force production effects (Ruffer and

Nultsch [128]). Jones et al. [76] also assumed that the change in the body orientation

and change in ambient flow field during one beat is negligible. They further assumed

that one flagellar beat is equal to one traveling wave and approximately calculated the

flagellar wavelength as equal to double the flagellar length. The earlier continuum mod-

els of cell suspensions by Pedley and Kessler [113] and [114] assumed that the viscous

torque on a swimming cell same as the viscous torque on the spheroidal body, and cell

swims with constant speed in the direction of the axis of symmetry. They improved these

continuum models by considering the effects of the flagellum in addition to cell’s body

and conclude that the swimming speed and swimming direction of the organism could not

remain constant and parallel to the axis of symmetry respectively as found by Pedley and

Kessler [113]. The viscous torque was also found different in comparison with the Pedley

and Kessler [113] due to the presence of the flagellum not solely because of the organism’s

cell body alone.

2.3 Resistive Force Theory

Resistive Force Theory (RFT) was developed by Gray and Hancock [51]. They inves-

tigated an infinite flagellum of a spermatozoon, and modelled its circular cross-section by

Stokeslet and source doublet singularities located along the centre-line of the flagellum.

The theory states that a reasonable approximation can be obtained by assuming that the

force/length, f , exerted on the fluid by the flagellum at a point s (arc length along a

flagellum) is proportional to the relative local centre line velocity, v(s, t) (in a coordinate
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frame in which fluid is at rest at infinity). In other words, the viscous force exerted upon

an element of flagellum, dFflg, is linearly proportional to the velocity of fluid relative to

the element, urel:

dFflg = µ [Kt(urel · t) tds + Kn(urel · n)nds] , (2.1)

where, µ is the fluid viscosity, tds is an element of flagellum, t and n are unit vectors to

the element acting in the tangential and normal direction. The dimensionless resistance

coefficients Kt and Kn acting in the tangential and normal direction as proposed by Gray

and Hancock [51] for computing flagellar motions are

Kt =
2π

ln (2λ
b )− 1

2

, γ =
Kn

Kt
= 2, (2.2)

where b is the cross-sectional radius of the flagellum and λ is the wavelength measured

along the centre line of the flagellum. The ratio γ = 2 is only valid for the limiting case of

a vanishingly thin flagellum. Johnson and Brokaw [75] rectify the problem of consistency

of results with experiments and using Cox [36], they determine that

Kn =
4π

ln (2λ
b ) + 1

2

, (2.3)

such that γ = 1.7 for sea urchin spermatozoon. However, experimental measurements were

obtained for a sea urchin spermatozoon giving γ = 1.8. Finally, Lighthill [94] considered

the case of a flagellum performing planar bending waves of small amplitude and rederived

the resistance coefficients

Kt =
2π

ln (2q
b )

, Kn =
4π

ln (2q
b ) + 1

2

, q = 0.09λ, (2.4)

where q is a characteristic length representing the range of influence exerted by a force

acting on an element of the flagellum, which were found to be consistent with the ex-

periments. The above two cases assumed that the flagellum was of infinite length and

zero thrust, for the calculation of the resistance coefficients for spermatozoa. As sper-

matozoa have large flagellar length in comparison with the body diameter, so they have

assumed negligible drag caused by spermatozoa’s head. Later, Johnson and Brokaw [75]

verified that Lighthill’s resistance coefficients were valid even for organisms other than

spermatozoa whose flagellar length is greater than their body diameter.

RFT is an approximation which is best suited for the case when flagellar length l is large

as compared to the body radius a as in the case of spermatozoon and it takes no account
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Name with dimensions Dimensionless form

Distance - [L] x = a x̃

Velocity - [L S−1] v =
(

a
T

)
ṽ

Angular velocity - [S−1] ω =
(

1
T

)
Ω̃

Rate-of-strain - [S−1] E =
(

1
T

)
Ẽ

Vorticity - [S−1] ω =
(

1
T

)
ω̃

Function ξ - [Kg−1m−1s] ξ =
(

3µv
4π

)
ξ̃

Table 2.1: Table of non-dimensionalisation.

of the coupling between neighboring elements of the flagella. The neighboring effect is

dominant at the free ends of the flagella and close to the cell body. However, in our case,

the cell under consideration (Chlamydomonas) has flagellar length approximately equal

to body diameter. Johnson and Brokaw [75] suggested to employ slender-body theory

for the case when cell body produced significant drag, but slender-body theory involves

cumbersome calculations which require numerical methods for the solution. In order to

obtain analytical solutions, we follow Jones et al. [76] and employ RFT, and have computed

the results by using the two sets of resistance coefficients with (a) Gray and Hancock’s

and (b) Lighthill’s to investigate the errors of these resistance coefficients.

2.4 Force and torque balance for gyrotactic biflagellates

To model the swimming of a biflagellated bottom heavy single cell of C. nivalis in

a viscous fluid, consider C to be the geometric centre and G to be the centre-of-gravity,

where both lie on the major axis p of the cell. The unit vector p represents the orientation

of the cell. Let H be the displacement of the centre-of-gravity G from the geometric centre

C as shown in Figure 2.1(a). Below we shall summaries the arguments of Jones et al. [76].

Here we have used C. augustae (previously, and possibly mistakenly, termed C. nivalis

in the literature) as our model micro-organism for investigations of unbounded swimming.

In general, for swimming micro-organisms inertia is negligible because the Reynolds num-

bers for the motion of the cell and its flagella are very small (see chapter 1). This means

that the viscous forces in the fluid flow are dominant as compared to inertial forces. Thus

the orientation and motion of the organism can be modelled, by setting to zero the total
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force Ftot and total torque Ltot at any instant acting on the cell during the flagellar beat,

which is the sum of cell body (bdy), gravitational (grv) and flagella contributions (flg):

Ftot = Fbdy + Fgrv + Fflg = 0, (2.5)

and

Ltot = Lbdy + Lgrv + Lflg = 0. (2.6)

To determine the contributions due to the spherical body of the cell, we neglect the

presence of the flagella and assume only the hydrodynamic contributions on the body in

the Stokes flow. The viscous body force and viscous body torque for a spherical body

shape (e.g. see Kim and Karrila [87]) are

Fbdy = −6πµav, (2.7)

and

Lbdy = −8πµa3

(
Ω− 1

2
ω

)
, (2.8)

where, v and Ω are the velocity and angular velocity of the body respectively, ω is the

vorticity of the ambient flow, a is the radius of the cell body and µ is the viscosity of the

fluid.

Since for Chlamydomonas it is observed that the sedimentation speed (2.2 µm s−1)

is very low as compared to the swimming speed (60-100 µm s−1), (see Yoshimura et

al. [149] and Vladimirov et al. [142]) then as we know that sediment speed represents the

gravitational force so we can take

Fgrv =
(ρ− ρ0

v

)
g = 0, (2.9)

where ρ and v are the density and volume of the cell respectively and g is the gravita-

tional acceleration. The gravitational torque due to the centre-of-gravity offset H, the

displacement of G from C as mentioned in Figure 2.1(a), was investigated by Pedley and

Kessler [111] and can be written in terms of the cell body co-ordinates system (p,q, r̄) as

Lgrv = Hp×mgk = −mgH (sin θ sinψq + sin θ cosψr̄) , (2.10)

where k is the unit vector directed vertically upward and m is the mass of the cell. Also, θ

and ψ are the Euler angles between fixed space coordinates (i, j,k) and body coordinates
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Figure 2.1: (a) A schematic diagram of uniplanar swimming of C. augustae cell: (i,k) are

fixed space and (p,q) are body coordinates respectively, H is centre-of-gravity G offset

from geometric centre C, θ is the Euler angle between k in fixed space and primary axis

of swimming p in body coordinate system, g is the force due to gravity, Lgrv and Lvis

represents torque due to gravity and viscosity respectively. (b) Swimming cell motion

calculated by its velocity v and angular velocity Ω when embedded in the flow, with

strain rate E and vorticity ω, and Θ is the Euler angle between principal axes of the

rate-of-strain and k in fixed space coordinate system.
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Name with symbol Range for Chlamydomonas Stand. value for C. augustae

Cell radius - a 2 - 10 µm 5 µm (0.0005 cm)

Cell density - ρ 1.01 - 1.10 gm cm−3 1.05 gm cm−3

Cell volume - v 3×10−11 − 3× 10−8 cm3 5×10−10 cm3

Cell mass - m 5.25×10−10 gm 5.25×10−10 gm

centre-of-gravity offset - H 0 - 0.01 a 0.1 µm (0.00001 cm)

Flagellar length - l 1 - 2 a 10 µm (0.001 cm)

Flagellar radius - b 0.02 - 0.04 a 0.2 µm (0.00002 cm)

Gravitational acceleration - g 1000 cm s−2 1000 cm s−2

Viscosity - µ 0.01 gm cm−1 s−1 0.01 gm cm−1 s−1

Beat frequency - f 40 - 60 Hz 50 Hz

Time for one beat - T 0.015 - 0.025 s 0.02 s

Time for effective stroke - Te 0.4 - 0.6 T 0.5 T

Table 2.2: Table of values taken from Jones et al. [76] and Pedley and Kessler [113].

(p,q, r̄) (see Figure 2.1). Here we have used r̄ instead of r just to avoid repetition of

notation for position vector r used frequently in later sections.

In order to calculate the viscous forces and torques on the flagellum attached to the

cell body we use RFT. RFT states that the tangential, normal and binormal components

of force and torque on an element of a flagellum is directly proportional to the tangential,

normal and binormal components of the fluid velocity relative to that element of the

flagellum. Hence,

dFflg = µ
[
Kt(urel · t) tds + Kn(urel · n)nds + Kb(urel · b)bds

]
, (2.11)

where ds is the flagellar element, and t, n and b are unit vectors tangential, normal and bi-

normal to the element of the flagellum respectively. Also Kt, Kn and Kb are dimensionless

resistance coefficients in the tangential, normal and binormal directions.

Similarly the torque produced by an element of the flagellum can be calculated by

computing the cross product of the position vector r with the above calculated force dF

as

dLflg = r× dFflg, (2.12)

where r is the position vector of an element of the flagellum from the centre of the cell

body.
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The velocity of fluid relative to the element of the flagellum, urel, is then given by

urel = u− vflg, (2.13)

where u is the velocity of the fluid measured at the position of the element ds and vflg

is the velocity of an element of the flagellum. Thus the flow past the spherical body in a

general flow field u, is the sum of three parts: flow due to translation of the body, due to

vorticity of ambient flow relative to the rotation of the body and due to ambient straining

motion (see Pasol et al. [110]). Hence,

u = utr + urt + ust, (2.14)

where the velocity of the fluid due to translational motion of the sphere is

utr = −v +
3a

4

[ v
r

+
(v.r)r

r3

]
− a

4

[
− v

r3
+

3(v.r)r
r5

]
, (2.15)

the velocity of the fluid due to the vorticity and rotational motion of the sphere is

urt =
1
2
(ω × r)

[
1− a3

r3

]
+ (Ω× r)

a3

r3
, (2.16)

and that due to straining motion of the sphere is

ust = E.r
(
1− a5

r5

)
− r(r.E.r)

[ 5a3

2r5
− 5a5

2r7

]
, (2.17)

where a is the radius of the sphere (i.e. cell body of the organism).

The velocity of an element of flagellum relative to the spherical cell body, vflg, is given

by

vflg = Ω× r + ṙ, (2.18)

where r is the position vector of an element of the flagellum relative to the centre of the

cell’s body, and ṙ is the velocity of the flagellar element relative to body coordinates fixed

in the body.

Thus after calculations of the above equations using the RFT and substituting in force

torque balance equations (2.5) and (2.6), the total force produced by the fluid on one

flagellum and total viscous torque exerted on one flagellum can be obtained as

Fflg =
∫ l

s=0
dFflg, (2.19)

and

Lflg =
∫ l

s=0
r× dFflg, (2.20)
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where l is the total length of the flagellum. Similarly, the above integrals are calculated for

the second flagellum and added to the first to get the total force and total torque produced

due to both flagella (i.e. cis and trans flagella) during one flagellar beat. The flagellar

coordinates in terms of (n, t,b), position vector r and velocity vector ṙ of an element of

the flagellum will be obtained from a specific description of the flagellar beat pattern.

Finally, for one flagellar beat of the organism the force-torque balance equations (2.5)

and (2.6) reduce to six equations in six unknowns: three equations for components of force

and three for components of torque. In the body coordinates p,q and r̄ directions, we can

write the system of equations as

F

L


 =


 A B

BT C


 .


v

Ω


 , (2.21)

where the above square matrix is symmetric and is termed as the resistance matrix. The

inverse form of the above matrix equation can be written as

v

Ω


 =


 X Y

YT Z


 .


F

L


 , (2.22)

where the square matrix is also symmetric and is called a mobility matrix. The compo-

nents of these matrices involve unknown beat coefficients αij , which will depend upon the

flagellar beat pattern as defined by Jones et al. [76]. Finally after substitution of αij ,

the unknowns in the above system of equations are the components of the instantaneous

velocity v and the instantaneous angular velocity Ω of the organism.

2.5 Flagellar Beat Pattern

To explore the low Reynolds number swimming of micro-organisms, many authors

including Ringo [124] and Hyams and Borissy [70], investigated the flagellar beat patterns

of Chlamydomonas in detail. They classified the breast stroke like swimming into two

phases, the effective stroke and the recovery stroke. However, many observations reveal

that these phases overlap significantly and are not distinct. The typical cell swims forward

during the effective stroke and backward during the recovery stroke. In general the cell

swims forward after one beat because the contribution from the effective stroke exceeds

that from the recovery stroke, essentially due to increase of resistance coefficient Kn from

Kt. The two phases of cell swimming for one flagella beat are shown in the Figure 2.3.
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Figure 2.2: Tracing of one beat cycle of both flagella of C. reinhardtii mutant 622E.

Reproduced from Ruffer and Nultsch [128].

Ruffer and Nultsch [128] studied the swimming of biflagellate cell in detail using the

high speed digital microcinematography (100-500 f/s) and did frame-by-frame analysis as

shown in Figure (2.2). They also observed that the two phases of the one beat cause

net up-swimming and take place slightly out of the plane. The consequence is an anti-

clockwise rotation during the effective stroke. A typical cell swims in a helical path, and

experiences a change in the frequency in beat of the two flagellum for a short period of

time. This may cause an asymmetry in the beat pattern.

Finally, Ruffer and Nultsch [128] found experimentally that the flagellar beat frequen-

cies were approximately 40− 60Hz, the swimming speed of the cell was 100− 150µm s−1,

the rotation rate about the p-axis was 1.4 − 2.5 Hz and asymmetries occurred approxi-

mately once per 20 beats.

2.6 The Jones et al. flagellar beat model

To simplify the calculations, Jones et al. [76] formulated and used an idealized model

of the flagellar beat of the bottom heavy, biflagellated C. nivalis swimming cell. They
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Figure 2.3: A schematic diagram of step by step positions and height gained/lost by

vertical upward swimming of C. augustae cell during effective and recovery stroke of one

flagella beat.
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assumed a spherical cell body and that both flagella beat symmetrically in a plane con-

taining the longitudinal body axis. Thus they did not allow any rotation about this body

axis nor did they model the helical swimming path. They assumed that the effective and

recovery strokes are distinct and the beat pattern is unchanged by any variations in the

ambient flow. They also assumed that the change in body orientation during one beat and

interaction between the flagella are both negligible.

They assumed for simplification that the flagella beat within a single plane, so vorticity

is perpendicular to the rate-of-strain plane within the ambient flow field. Thus the rate-

of-strain plane coincide with the flagellar beat plane. The gravity also lies within the same

plane whereas torques will act perpendicular to the plane as shown in the Figure 2.1. The

time for one beat is T = 1
f where f is the flagellar beat frequency.

The transformation matrices RSB, from the fixed space (represented by S) coordinate

system (i, j,k) to the body (termed as B) coordinates system (p,q, r̄) and RBF , from body

coordinates (p,q, r̄) to flagellar (represented by F) coordinates system (n, t,b) defined for

the single plane flagellar beat are

RSB =




sin θ 0 cos θ

cos θ 0 − sin θ

0 1 0


 and RBF =




cosχ sinχ 0

sinχ − cosχ 0

0 0 1


 ,

where θ is the angle between principle swimming axis p and vertical axis k and χ is the

angle the flagellum makes with the principle swimming axis p. Similarly, from flagellar

coordinates (n, t,b) back to the cell’s body coordinate system (p,q, r̄), the transformation

matrix takes the form

RFB =




sinχ cosχ 0

− cosχ sinχ 0

0 0 1


 ,

and the rotation matrix from the rate-of-strain coordinates (e1, e2, e3) to fixed space

coordinate system (i, j,k) is

RPS =




cosΘ 0 sinΘ

0 1 0

− sinΘ 0 cosΘ


 ,

where Θ is the Euler angle between the principal axes of the rate-of-strain and the fixed

space coordinate system. The rate-of-strain tensor in the body coordinate system using
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the above transformation matrices, takes the form as

E =




−e cos 2γ e sin 2γ 0

e sin 2γ e cos 2γ 0

0 0 0


 ,

where γ = θ − Θ. The vorticity and gravity vector for the single plane using the above

transformation matrices in body coordinates system (p,q, r̄) become

ω =




0

ω

0


 and g =




0

0

−g sin θ


 .

The body coordinate axes for the single plane situation can be written as

p =




sin θ

0

cos θ


 , q =




cos θ

0

− sin θ


 and r̄ =




0

1

0


 .

As define by Jones et al. [76], for the case of planar swimming, the simplified model

beat begins with the flagella fully extended parallel to body axis p as shown in Figure 2.4.

The two phases of the beat are as follows.

(a) Effective Stroke

For an effective stroke swimming, the flagella rotate rigidly about their base O until

perpendicular to the body axis p as shown in Figure (2.4(a)). The angular velocity of

each flagellum about O is taken to be constant throughout the motion. The angle between

the flagellum and body axis p at any stage is denoted by χ. The other flagellum beats

symmetrically. The position vector and angular velocity of an element of the flagellum

relative to the centre of the cell in various coordinate systems are

rS
ef (s, t) = ap + st,

rB
ef (s, t) = (a + s cosχ)p + (s sinχ)q,

rF
ef (s, t) = (a sinχ)n + (a cosχ + s) t, (2.23)

where 0 ≤ χ ≤ π
2 , s is the variable along the length of the flagellum and the subscript

ef represents effective stroke and the superscript shows the respective coordinate system.

The element of flagellum moves through a right angle during the effective stroke. The

angular velocity of the flagellum is modelled as

χ =
π

2
t

Te
and χ̇ =

π

2
1
Te

, (2.24)
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where Te is the time to completion of the effective stroke. Also the velocity of an element

of the flagellum relative to (p,q, r̄) coordinates can be calculated by differentiating (2.23)

w.r.t χ. Using the transformation matrix RBF , the velocity of an element of flagellum

during the effective stroke takes the form

ṙF
ef = −sχ̇n. (2.25)

Figure 2.4: The idealized model by Jones et al. [76] for flagellar beat pattern of C. augustae

for different positions of the flagellum during (a) effective stroke and (b) recovery stroke.

(b) Recovery Stroke

During the recovery stroke a bending waves propagates up the flagellum from base

to tip. The propagation point P is moved in the direction of the body axis p, so that

the flagellum reaches the initial location as shown in Figure 2.4(b). The bend moves with

constant speed w. Thus the Jones et al. [76] model for the recovery stroke has two sections:

a stationary straight section and an angled section, as follows.

Stationary section: This section is parallel to the body axis and is stationary with

respect to the centre of the cell having length wt, where wt < l, as shown in Figure 2.4(b).

The position of an element of the flagellum in the stationary section is taken as

rS
st(s, t) = (a + s)p, ⇒ rF

st(s, t) = (a + s) t, (2.26)
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where subscript st indicates stationary section of the recovery stroke and superscript rep-

resent the respective coordinate system.

Angled section: The position and angular velocity of an element of the flagellum in

the angled section of the right-hand flagellum is

rS
ag(s, t) = (a + wt)p + (s− wt) t,

rB
ag(s, t) = [(a + wt) + (s− wt) cosχ] p + [(s− wt) sinχ] q,

rF
ag(s, t) = [(a + wt) sinχ]n + [(a + wt) cosχ + (s− wt)] t, (2.27)

where π
2 ≤ χ ≤ π, ag represents angled section of the recovery stroke and superscript

indicates the respective coordinate system.

Jones et al. [76] modelled angular velocity in two different forms. In the first scheme

they assumed that the angle increases with constant angular velocity w and bends through

a right angle during the recovery stroke. This will be termed as the constant angular

velocity case and gives the angular velocity of the flagellum as

χ =
π

2
+

π

2
wt

l
, and χ̇ =

π

2
w

l
, (2.28)

whereas, in the second case they calculated the moment of viscous forces about the bending

point P as shown in the Figure 2.4(b) using RFT and neglecting cell body. The angular

velocity is found by setting the moment equal to zero and is called the zero moment angular

velocity case, which gives

χ = 2 tan−1
[(

1− wt

l

)− 3
2
]
, and χ̇ =

3
2

w sinχ

(l − wt)
. (2.29)

Note that Jones et al. [76] and Jones [77] contain a few typos and a simple qualitative

mistake in the calculation of the velocity of the flagellum during the recovery stroke. They

have

ṙF
re = [w sinχ− (s− wt)χ̇]n + [w cosχ(cosχ− 1)]t, (2.30)

rather than the correct form

ṙF
re = [w sinχ− (s− wt)χ̇]n + [w(cosχ− 1)]t. (2.31)

2.7 Modified implementation of the uniplanar flagellar beat

model

By repeating the detailed calculations of Jones et al. [76], we found some misprints

which we have corrected at first step as one mentioned in the section 2.6. Secondly,
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Figure 2.5: Generalized Jones et al. flagellar beat pattern during effective and recovery

stroke.

we found the calculations cumbersome for extension to the swimming of the cell in the

proximity of a boundary (see chapter 3). This motivated us to modify the existing method

slightly for implementation on the software Maple using symbolic manipulation methods.

In particular, we modify the flagella beat description by redefining the position vector

for any section of the flagellum. The purpose of this scheme is to simplify the model and

detailed calculations. The position vector is defined in such a way that it will be valid for

all three cases of effective, recovery straight and recovery angled sections with general χ, b

and range for s as shown in Figure 2.5. The redefined position vector of an element of the

flagellum relative to the centre of the cell body in fixed space coordinates is thus defined

as

rS(s, t) = [b sin θ + (s− b) sin(θ + χ)] i + [b cos θ + (s− b) cos(θ + χ)] k, (2.32)

where χ is the angle of flagellum from the p axis, θ is measured from the k axis at any

time t and

b ≤ s ≤ l, a ≤ b ≤ l, and a ≤ (s− b) ≤ l.
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Using the transformation matrices we can write this in flagellar coordinates such that

rB(s, t) = [b + (s− b) cosχ] p + [(s− b) sinχ] q,

rF (s, t) = [b sinχ] n + [(s− b) + b cosχ] t. (2.33)

This generalized position vector of flagellum element eases the calculations as we incor-

porate general expression for a single section instead of the three different sections of the

beat defined by Jones et al. [76]. We shall also avoid splitting the integrals about the point

of closest approach to the centre of the body (as described in appendix A) by employing

Maple. This is particularly relevant for the bounded problem in chapter 3 where we require

many more troublesome integrals. The details of the different parts of the flagella beat

during effective and recovery stroke are shown in Figure 2.4.

2.7.1 Computation of viscous force and viscous torque acting on one

flagellum

Here, we will calculate the viscous force and torque acting on the flagellum and sub-

stitute into the force-torque balance equations. There are several methods for calculation

of viscous forces and torques on the cell that compute solutions of the Stokes equations at

every instant as the surface of the body and flagella change shape. The methods include

boundary integral/element method, immersed boundary method, slender body theory and

resistive force theory. Here, we follow Jones et al. [76] and employ Resistive Force Theory

(RFT) due to the relative analytical simplicity and clarity of the method. The velocity v

and angular velocity Ω of the organism in the flagellar coordinate system can be written

as

v =




vn

vt

vb


 =




vp(p · n) + vq(q · n) + vr(r̄ · n)

vp(p · t) + vq(q · t) + vr(r̄ · t)
vp(p · b) + vq(q · b) + vr(r̄ · b)




and

Ω =




Ωn

Ωt

Ωb


 =




Ωp(p · n) + Ωq(n · t) + Ωr(r̄ · n)

Ωp(p · t) + Ωq(t · n) + Ωr(r̄ · t)
Ωp(p · b) + Ωq(q · b) + Ωr(r̄ · b)


 , (2.34)
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respectively. The position vector, velocity and angular velocity of an element of flagellum

in flagellar coordinate system for the uniplanar case become

r =




rn

rt

0


 , v =




vn

vt

0


 and Ω =




0

0

Ωb


 , (2.35)

respectively.

Contribution of the translation of the spherical body

The velocity of the fluid due to the translation of a spherical body of radius a in a low

Reynolds number fluid flow is given by

utr = −v +
(

3a

4r
+

a3

4r3

)
+ (v · r)r

[
3a

4r3
− 3a3

4r5

]
. (2.36)

Now, using RFT, the force produced by an element of a flagellum within this flow with

a = 1 is given by

dFF
tr = Kn

[
−vn

(
1− 3

4r
− 1

4r3

)
+ (vnr2

n + vtrnrt)
(

3
4r3

− 3
4r5

)]
nds

+Kt

[
−vt

(
1− 3

4r
− 1

4r3

)
+ (vtr

2
t + vnrnrt)

(
3

4r3
− 3

4r5

)]
tds. (2.37)

The total force from the flagellum can thus be calculated by integrating along the length

of the flagellum to yield

FF
tr = Kn

[
−vn

(
I1 − 3

4
I2 − 1

4
I3

)
+ vnr2

n

(
3I3

4
− 3I4

4

)
+ vtrn

(
3J3

4
− 3J4

4

)]
n

+Kt

[
−vt

(
I1 − 3

4
I2 − 1

4
I3

)
+ vnrn

(
3J3

4
− 3J4

4

)
+ vt

(
3I7

4
− 3I8

4

)]
t, (2.38)

where Ii and Ji are specific integrals and will be defined in detail below and in appendix A

as calculated by Jones et al. [77]. Now using our generalized position vector these integrals

will be integrated w.r.t s (the distance along the flagellum) instead of r (the distance from

the geometric centre of the cell body), which will simplify the calculations here and later

on (see chapter 3). The integrals we now define here as

I1 =
∫

ds, I2 =
∫

ds
r

, I3 =
∫

ds
r3

, I4 =
∫

ds
r5

,

I5 =
∫

ds
r7

, I6 =
∫

r2
t ds, J1 =

∫
rtds, J2 =

∫
rt

r
ds,

J3 =
∫

rt

r3
ds J4 =

∫
rt

r5
ds, J5 =

∫
rt

r7
ds,
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I7 =
∫

r2
t

r3
ds = I2 − r2

nI3, I8 =
∫

r2
t

r5
ds = I3 − r2

nI5,

and

J6 =
∫

r3
t

r5
ds = J3 − r2

nJ4, J7 =
∫

r3
t

r7
ds = J4 − r2

nJ5. (2.39)

Therefore, the total force from one flagellum in the body coordinates system for uni-

planar locomotion, becomes

FF
tr · p = ᾱ11vp + α12vq,

FF
tr · q = α21vp + ᾱ22vq, (2.40)

where αij are the time dependent beat coefficients involving integrals Ii and Ji. The beat

coefficients ᾱij additionally incorporate the viscous forces and viscous torques contribution

and are defined in section 2.7.2. The detailed expressions for αij are listed in appendix A.

The viscous torque due to translating motion of the unit sphere with fluid velocity

(2.36) on an element of flagellum is given by

dLF
tr = r× dFF

tr.

Using equation (2.35) for r and equation (2.37) for dFtr
flg, the above equation becomes

dLF
tr =

[
Kt

{
−vt

(
1− 3

4r
− 1

4r3

)
+ (vtr

2
t + vnrnrt)

(
3

4r3
− 3

4r5

)}
rn

−Kn

{
−vn

(
1− 3

4r
− 1

4r3

)
+ (vnr2

n + vtrnrt)
(

3
4r3

− 3
4r5

)}
rt

]
bds.

The total viscous torque for the single flagellum can be calculated by integrating along

the length of the flagellum, giving

LF
tr =

[
Kt

{
−vtrn

(
I1 − 3

4
I2 − 1

4
I3

)
+ vnr2

n

(
3J3

4
− 3J4

4

)
+ vtrn

(
3I7

4
− 3I8

4

)}

−Kn

{
−vn

(
J1 − 3

4
J2 − 1

4
J3

)
+ vnr2

n

(
3J3

4
− 3J4

4

)
+ vtrn

(
3I7

4
− 3I8

4

)}]
b. (2.41)

Now finally, the total torque due to translational motion of the sphere on one flagellum

for the uniplanar case in body coordinates can be written as

LF
tr · r̄ = α61vp + α62vq. (2.42)

Contribution of the rotation of the spherical body

In general, the velocity of the fluid due to ambient vorticity ω, and rotational motion

of the spherical body of radius a in body coordinates is

urt =
1
2
(ω × r)

[
1− a3

r3

]
+ (Ω× r)

a3

r3
. (2.43)
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For simplicity in later chapters, the viscous force and torque due to rotational motion were

only calculated in terms of the angular velocity of the body Ω (i.e. with zero ambient

vorticity). Thus for ω = 0, we can rewrite (2.43) in body coordinates as

urt = −(Ω× r)
[
1− a3

r3

]
. (2.44)

Now, using RFT, the force on an element of a flagellum due to rotational motion of the

unit sphere is given by

dFF
rt = Kn

[
Ωbrt

(
1− 1

r3

)]
nds−Kt

[
Ωbrn

(
1− 1

r3

)]
tds. (2.45)

The total force can be calculated by integrating along the length of the flagellum as

FF
rt = Kn [Ωb(J1 − J3)]n−Kt [Ωbrn(I1 − I3)] t. (2.46)

Therefore, the total force due to rotational motion of the sphere on one flagellum for the

uniplanar case in body coordinates system becomes

FF
rt · p = α16Ωr,

FF
rt · q = α26Ωr. (2.47)

The viscous torque due to rotational motion of the unit sphere with rotational velocity

(2.44) on an element of flagellum is given by

dLF
rt = r× dFF

rt.

Using equation (2.35) for r and equation (2.45) for dFF
rt, the torque becomes

dLF
rt =

[
(KnΩbr

2
t ) + KtΩbr

2
n

(
1− 1

r3

)]
bds.

Hence, the total viscous torque can be calculated by integrating along the length of the

flagellum, to give

LF
rt =

[
KnΩb(I6 − I7) + KtΩbr

2
n(I1 − I3)

]
b. (2.48)

Now, finally, the total torque due to rotational motion of the sphere for uniplanar loco-

motion on one flagellum in body coordinates can be written as

LF
rt · r̄ = ᾱ66Ωr. (2.49)

Contribution due to the straining flow around the spherical body
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The velocity of the fluid due to an ambient straining motion about a spherical body

of radius a in a low Reynolds number fluid flow is given by

ust = E · r
(

1− a5

r5

)
− r(r ·E · r)

[
5a3

2r5
− 5a5

2r7

]
, (2.50)

where the rate-of-strain tensor for uniplanar case has been rotated into flagellar coordinate

system using

EF = RBFERT
BF =




e11 e12 0

e21 e22 0

0 0 0


 , (2.51)

where ejk are the individual components of the rate-of-strain tensor.

The viscous force due to the straining motion of the unit sphere from an element of a

flagellum using RFT is given by

dFF
st = Kn

[
(e11rn + e12rt)

(
1− 1

r5

)
− (e11r

3
n + 2e12r

2
nrt + e22rnr2

t )
(

5
2r5

− 5
2r7

)]
nds

+Kt

[
(e12rn + e22rt)

(
1− 1

r5

)
− (e11r

2
nrt + 2e12r

2
t rn + e22r

3
t )

(
5

2r5
− 5

2r7

) ]
tds.

(2.52)

The total force on one flagellum is obtained by integrating along the length of the

flagellum i.e.

FF
st = Kt

[
e12rn(I1 − I4) + e22(J1 − J4)− 5

2

{
e11r

2
n(J4 − J5) + 2e12rn(I8 − I9)

+e22(J6 − J7)
}]

t + Kn

[
e11rn(I1 − I4) + e12rn(J1 − J4)

−5
2

{
e11r

3
n(I4 − I5) + 2e12r

2
n(J4 − J5) + e22rn(I8 − I9)

}]
n. (2.53)

Therefore, the total force due to straining motion of sphere from one flagellum for uniplanar

case in body coordinates system becomes

FF
st · p = h11e11 + h12e12 + h13e22,

FF
st · q = h21e11 + h22e12 + h23e22, (2.54)

where hij are the time dependent beat coefficients involving integrals Ii and Ji defined in

Appendix A.

The viscous torque due to straining motion of the unit sphere with velocity (2.50) on

an element of flagellum is given by

dLF
st = r× dFF

st,
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Using equation (2.35) for r and equation (2.52) for dFF
st, the above equation becomes

dLF
st =

[
Kt

{
(e12r

2
n + e22rtrn)

(
1− 1

r5

)}
−Kn

{
(e11rnrt + e12r

2
t )

(
1− 1

r5

)}

−5
2
(Kt −Kn)

{
e11r

3
nrt + 2e12r

2
nr2

t + e22rnr3
t

}(
1
r5
− 1

r7

)]
bds.

The total torque for one flagellum is obtained by integrating along the length of the

flagellum i.e.

LF
st =

[
Kt

{
e12r

2
n(I1 − I4) + e22rn(J1 − J4)

}
−Kn

{
(e11rn(J1 − J4) + e12(I6 − I8)

}

−5
2
(Kt −Kn)

{
e11r

3
n(J4 − J5) + 2e12r

2
n(I8 − I9) + e22rn(J6 − J7)

}]
b. (2.55)

Therefore, the total torque due to straining motion of sphere for uniplanar case on one

flagellum in body coordinates system becomes

LF
st · r̄ = h61e11 + h62e12 + h63e22. (2.56)

Flagellar beating contribution

Following Jones et al. [76], we shall calculate the viscous force and torque due to the

imposed velocity of the flagella ṙ, beating relative to the cell body. For the effective stroke,

the velocity of an element of flagellum for the planar case can be rewritten from (2.25) as

ṙ = −sχ̇n.

Using RFT, the force produced during effective stroke due to the velocity of flagella relative

to cell body becomes

dFF
fl = −Kn (sχ̇)nds.

The total force from the flagellum can be calculated by integrating along its length to give

FF
fl = −Kn

(
l2

2
χ̇

)
n. (2.57)

Therefore, the total force due to the velocity of the flagellum during the effective stroke

for the uniplanar case in body coordinates system becomes

FF
fl · p = −Kn

(
l2

2
χ̇

)
(n · p) = −Kn

(
l2

2
χ̇

)
sinχ. (2.58)

The recovery stroke consists of two parts stationary, the straight section and the moving

angled section. The velocity of an element of flagellum during recovery stroke for the planar

case as defined earlier in (2.31) is

ṙ = [w sinχ− (s− wt)χ̇]n + [w(cosχ− 1)] t.



CHAPTER 2. BIFLAGELLATE SWIMMING IN AN UNBOUNDED DOMAIN 56

Using RFT, the force produced by the angled section during the recovery stroke due to

the velocity of the flagellum relative to the cell body is

dFF
fl = Kn

[
w sinχ− (s− wt)χ̇

]
nds + Kt

[
w(cosχ− 1)

]
tds, (2.59)

The total force from the flagellum can thus be calculated by integrating, giving

FF
fl = Kn

[
w sinχ(l − wt)− 1

2
(l − wt)2χ̇

]
n + Kt

[
w(cosχ− 1)(l − wt)

]
t. (2.60)

Thus, the total force due to velocity of the flagellum during the recovery stroke for the

uniplanar case in body coordinates system becomes

FF
fl · p = Kn

[
w sinχ(l − wt)− 1

2
(l − wt)2χ̇

]
sinχ + Kt

[
w(cosχ− 1)(l − wt)

]
cosχ.

The total force due to flagellar beating for the planar case in body coordinates can be

written as

FF
fl = f1p + f2q, (2.61)

where for the effective stroke we have derived

f1 = −Kn

(
l2

2
χ̇

)
sinχ, and f2 = Kn

(
l2

2
χ̇

)
cosχ, (2.62)

and similarly for recovery stroke we have found

f1 = Kn

[
w sinχ(l − wt)− 1

2
(l − wt)2χ̇

]
sinχ + Kt

[
w(cosχ− 1)(l − wt)

]
cosχ

f2 = −Kn

[
w sinχ(l − wt)− 1

2
(l − wt)2χ̇

]
cosχ + Kt

[
w(cosχ− 1)(l − wt)

]
sinχ. (2.63)

The viscous torque due to the velocity of the flagellum is given by

dLF
fl = r× dFF

fl,

Using equation (2.35) for r and equation (3.54) for dFF
fl, above equation for effective stroke

becomes

dLF
fl = Kn[sχ̇(s + cosχ)]bds

The total torque from the flagellum can be calculated by integrating as

LF
fl = Kn

[
χ̇

(
l3

3
+

l2

2
cosχ

)]
b. (2.64)

Therefore, the total torque due to the velocity of the flagellum during the effective stroke

for the uniplanar case in body coordinates system becomes

LF
fl · r̄ = Kn

[
χ̇

(
l3

3
+

l2

2
cosχ

)]
(b · r̄) = Kn

[
χ̇

(
l3

3
+

l2

2
cosχ

)]
. (2.65)
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Similarly, for the recovery stroke using equation (2.35) for r and equation (2.59) for

dFF
fl, the viscous torque becomes

dLF
fl =

[
Kt{(1 + wt)w(cosχ− 1)} −Kn{(1 + wt) cosχ(s− wt)}

w sinχ− (s− wt)χ̇}
]
bds.

The total force from the flagellum can be calculated by integrating as

LF
fl =

[
Kt{(1 + wt)w(cosχ− 1)} −Kn{(1 + wt) cosχ(s− wt)}

w sinχ− (s− wt)χ̇}
]
b. (2.66)

Thus, the total torque due to the velocity of the flagellum during the recovery stroke for

the uniplanar case in body coordinates system becomes

LF
fl · r̄ =

[
Kt{(1 + wt)w(cosχ− 1)} −Kn{(1 + wt) cosχ(s− wt)}

w sinχ− (s− wt)χ̇}
]
. (2.67)

The total torque due to flagellar beating for the uniplanar case in body coordinates system

becomes

LF
fl = f6r̄, (2.68)

where for the effective stroke we found

f6 = Kn

[
χ̇

(
l3

3
+

l2

2
cosχ

)]
, (2.69)

and for recovery stroke it takes the form

f6 =
[
Kt{(1 + wt)w(cosχ− 1)}−Kn{(1 + wt) cosχ(s−wt)}w sinχ− (s−wt)χ̇}

]
. (2.70)

Thus, the total viscous force and viscous torque produced by both flagella can be

calculated by substitution of the above equations in

Fflg = Ftr + Frt + Fst − Ffl, (2.71)

and

Lflg = Ltr + Lrt + Lst − Lfl. (2.72)
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2.7.2 Force-Torque balance equations

For the uniplanar unbounded swimming case the vorticity is perpendicular to the plane

of the straining motion within the ambient flow. The flagellar beat plane coincides with

the plane of the straining motion and gravity. Both flagella beat symmetrically and the

cell body is symmetric about the primary axis p, which leads to simplification of the

values of beat coefficients α12 = α21 = 0. Similarly, the fluid flow around the swimming

cell is also symmetric with no torque effect which further simplifies the values of unknown

beat coefficients as α16 = α61 = 0. So using the equation (2.9), the force-torque balance

equations (2.5) and (2.6) takes the form

Fbdy + Fflg = 0,

Lbdy + Lgrv + Lflg = 0. (2.73)

Now using the above defined assumptions for the uniplanar flagella beat pattern and

equations (2.40), (2.47), (2.54) and (2.58) for forces and (2.42), (2.49), (2.56) and (2.65)

for torques, the force-torque balance equations can be written in matrix form as



Fp

Fq

Lr


 =




ᾱ11 0 0

0 ᾱ22 α26

0 α62 ᾱ66







vp

vq

Ωr


 +




ᾱ11 0 0

0 ᾱ22 α26

0 α62 ᾱ66







0

0

ω/2


 +




0

0

−mgH sin θ




+




h11 0 h13

0 h22 0

0 h62 0







e11

e12

−e11


−




f1

0

0


 = 0,

which can be further simplified after rearrangement as



ᾱ11 0 0

0 ᾱ22 α26

0 α62 ᾱ66







vp

vq

Ωr


 =




f1

0

0


−




ᾱ11 0 0

0 ᾱ22 α26

0 α62 ᾱ66







0

0

ω/2


−




0

0

−mgH sin θ




−




h11 0 h13

0 h22 0

0 h62 0







e11

e12

−e11


 .

(2.74)

The coefficient matrix or resistance matrix from the above matrix equation can be defined

as

A =




ᾱ11 0 0

0 ᾱ22 α26

0 α62 ᾱ66


 ,
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where the diagonal terms ᾱij , incorporate viscous drag and viscous torque due to the

spherical body. These diagonal terms have been modified using equations (2.7) for viscous

drag and (2.8) for viscous torque as

ᾱ11 = α11 − 6π, ᾱ22 = α22 − 6π,

and

ᾱ66 = α66 − 8π.

The inverse of the above resistance matrix A, termed as the mobility matrix, can be

evaluated as

B = A−1 =




1/ᾱ11 0 0

0 −ᾱ66/Λ α26/Λ

0 α62/Λ −ᾱ22/Λ


 ,

where

Λ = α26α62 − ᾱ22ᾱ66.

After multiplication with the mobility matrix B, equation (2.74) takes the form



vp

vq

θ̇


 =




f1/ᾱ11

0

0


−




0

0

ω/2


−




0

−mgH sin θα26/Λ

mgH sin θᾱ22/Λ




−




h11/ᾱ11 0 h13/ᾱ11

0 (h62α26 − h22α̃66)/Λ 0

0 (h22α62 − h62ᾱ22)/Λ 0







e11

e12

−e11


 ,

(2.75)

where

Ωr = θ̇, e11 = e cos 2γ and e12 = e sin 2γ,

and γ is the angle between the p,q plane and the plane containing p and the flagellum.

Also, αij and hij are the time dependent beat coefficients and eij are the components of

the rate-of-strain tensor.

Finally, in component form, the total force and total torque are

ᾱ11vp + (h11 − h13)e cos 2γ = f1, (2.76)

ᾱ22vq + α26

(
θ̇ +

ω

2

)
+ h22e sin 2γ = 0, (2.77)

and

α62vq + ᾱ66

(
θ̇ +

ω

2

)
+ h66e sin 2γ = −mgH sin θ, (2.78)



CHAPTER 2. BIFLAGELLATE SWIMMING IN AN UNBOUNDED DOMAIN 60

Figure 2.6: Addition and subtraction of forces acting on the flagellar section due to swim-

ming in the (a) primary velocity direction p and (b) transverse velocity direction q re-

spectively.

where, vp and vq are the components of the organism’s tangential velocity parallel and

perpendicular to the body axis p, respectively. θ̇ is the angular velocity of the organism,

whereas αij and hij are time dependent beat coefficients depending on the flagellar beat

parameters. It is interesting to note that the velocity component vp in the forward/primary

direction is uncoupled from the other component vq in the transverse direction, whereas

vq and the angular velocity θ̇ are coupled with each other.

The forces acting on the section of flagella while swimming in the primary direction

p are shown in the Figure 2.6(a). Since the flagella beat symmetrically so the forces in

the q direction cancel each other, while those in the p direction will combine with each

other. However, motion in the q direction leads to the generation of torque due to the

asymmetric arrangement of the flagella about q. After rearrangement of terms we can

write explicitly vp and vq as

vp =
f1

ᾱ11
−

(h11

ᾱ11

)
e cos 2γ +

(h13

ᾱ11

)
e cos 2γ, (2.79)

vq = −
(

h62α26 − h22α̃66

α26α62 − ᾱ22ᾱ66

)
e sin 2γ +

(
α26

α26α62 − ᾱ22ᾱ66

)
mgH sin θ, (2.80)
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and θ̇ takes the form

θ̇ = −ω

2
+

(
h62ᾱ22 − h22α62

α26α62 − ᾱ22ᾱ66

)
e sin 2γ −

(
ᾱ22

α26α62 − ᾱ22ᾱ66

)
mgH sin θ. (2.81)

The unknown variables vp, vq and θ̇ can be solved at any time t throughout the beat. Fi-

nally, we can obtain the average velocity v and average angular velocity Ω of the organism

by integrating vp, vq and θ̇ with respect to time over one beat and dividing by the beat time.

2.8 Uniplanar vertical upward swimming

Now as a first step, consider the simple case of uniplanar vertical upward swimming

in a stationary flow field. In the present flagella beat model, this implies that there is

no gravitational torque and no contribution of vorticity and strain rate. Thus inserting

the corresponding values θ = 0 and ω = e = 0 into equations (2.79) to (2.81) gives the

force-torque balance for pure uniplanar vertical upward swimming as

vp =
f1

ᾱ11
, (2.82)

vq = 0, (2.83)

and

θ̇r = 0. (2.84)

The beat coefficients can be calculated using the modified beat pattern and integrals Ii, Ji

explained in Appendix A. For the effective stroke

f1 = −Kn

(
l2

2
χ̇

)
sinχ, (2.85)
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and

α11 = Kt

[
−l cos2χ +

3
2

cos2χ ln
∣∣∣[(l + cosχ)2 + sin2χ]

1
2 + (l + cosχ)2

∣∣∣ +
cos5χ
4 sin2χ

−3
2

cos2χ ln |1 + cosχ|+ {(l + cosχ)2 + sinχ2} cos2χ

4 sin2χ{(l + cosχ)2 + sin2χ} 1
2

+
3 cos3χ

4

−3{(l + cosχ)2 + sin2χ} cos2χ

4{(l + cosχ)2 + sin2χ} 1
2

+
sin2χ cosχ

4{(l + cosχ)2 + sin2χ} 3
2

+
sin2χ cosχ

2

− {(l + cosχ)2 + sin2χ}3 cos2χ

4 sin2χ{(l + cosχ)2 + sin2χ} 3
2

− cos3χ
4 sin2χ

− 3 sin2χ cosχ

4{(l + cosχ)2 + sin2χ} 1
2

]

+Kn

[
−l sin2χ +

3
4

sin2χ ln
∣∣∣[(l + cosχ)2 + sin2χ]

1
2 + (l + cosχ)2

∣∣∣− cos3χ
4

−3
4

sin2χ ln |1 + cosχ| − {(l + cosχ)2 + sin2χ}
2{(l + cosχ)2 + sin2χ} 1

2

− sin2χ cosχ
4

− 3 sin2χ cosχ

4{(l + cosχ)2 + sin2χ} 1
2

+
{(l + cosχ)2 + sin2χ}3

4{(l + cosχ)2 + sin2χ} 3
2

+
cosχ

2

+
sin2χ cosχ

4{(l + cosχ)2 + sin2χ} 3
2

+
3{(l + cosχ)2 + sin2χ} sin2χ

4{(l + cosχ)2 + sin2χ} 1
2

]
− 6π. (2.86)

For the recovery stroke we can calculate

f1 = Kt

[
w(cosχ− 1)(l − wt)

]
cosχ + Kn

[
w sinχ(l − wt)− 1

2
(l − wt)2χ̇

]
sinχ, (2.87)

α11 = Kt

[
−wt− 1

4
+

1
4(1 + wt)2

+
3
2

ln |1 + wt| − 2A cos2χ− (l − wt) cos2χ

+
3
2

cos2χ ln
∣∣∣∣
C + D

B

∣∣∣∣ +
3
2

cos2χ ln
∣∣∣∣
E

B

∣∣∣∣ +
D cos2χ
4CB2

− 3D cos2χ
4C

− D3 cos2χ
4B2C3

+
cos2χ
4B2

− 3 cos3χ
4

− cos5χ
4B2

− 3B sinχ cosχ
4(1 + wt)

− 3B sinχ cosχ
4C

+
3 sinχ cosχ

2
+

B sinχ cosχ
4(1 + wt)3

+
B sinχ cosχ

4C3
− sinχ cosχ

2B2

]

+Kn

[
−2A sin2χ− (l − wt) sin2χ +

3
4

sin2χ ln
∣∣∣∣
C + D

B

∣∣∣∣ +
3
4

sin2χ ln
∣∣∣∣
E

B

∣∣∣∣

−sin2χ cosχ
2B2

+
3D sin2χ

4C
+

D3 sin2χ

4B2C3
+

3 sin2χ cosχ
4

+
sin2χ cos3χ

4B2

−3B sinχ cosχ
4(1 + wt)

− 3B sinχ cosχ
4C

+
3 sinχ cosχ

2
+

B sinχ cosχ
4(1 + wt)3

−D sin2χ

2CB2
+

B sinχ cosχ
4C3

− sinχ cosχ
2B2

]
− 6π, (2.88)

where

A = (1 + wt) cosχ, B = (1 + wt) sinχ, C = [(A + (l − wt))2 + B2]
1
2 ,

D = A + l − wt, and E = A + 1 + wt.
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(a)

(b)

Figure 2.7: Variation in uniplanar upward swimming velocity during one flagellar beat. A

discontinuity occurs at the changeover from effective to recovery stroke. The dashed line

represents the graph for constant angular velocity and solid line zero moment recovery

stroke case. (a) Reproduced from Jones et al. [76], (b) Using generalized expressions and

Maple code simulations.
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Substituting the above beat coefficients into equation (2.82) we can calculate the in-

stantaneous upward swimming speed vp of the cell during the effective and recovery strokes.

Figure 2.7 shows results of calculations for the organism’s velocity for one complete flagel-

lar beat. The first graph (a) is reproduced from Jones et al. [76], whereas, graph (b) was

obtained using the generalized expressions and Maple code simulations.

In the above results for swimming velocity, the organism performs the effective stroke

during the first portion of the beat, which causes upward swimming with increasing ve-

locity. There is then discontinuity in the instantaneous velocity, and the organism swims

backwards during the recovery stroke. It is clear from Figure 2.7 that the integral of this

curve for one beat is positive resulting in upward swimming. The velocities during the

recovery stroke have been modelled in two different ways, zero-moment and constant an-

gular velocity cases. The Figure 2.7 indicates that backward velocity during the recovery

stroke for the case of zero moment angular velocity case is slightly less than the constant

angular velocity case. Jones et al. [76] computed average swimming velocity of 0.20 body

radius for zero moment case and 0.18 body radius per beat for constant angular velocity

case. For clarity, we will use zero-moment angular velocity model for future calculations.

Since resistance coefficients, Kt and Kn as mentioned in Section 2.3 depend upon the

ratio of the length l and radius b of the flagellum. So the ratio Kn/Kt, is a function of l/b

which is plotted against the upward swimming speed for Gray and Hancock’s resistance

coefficients [51] and Lighthill’s resistance coefficients [94] as shown in the Figure 2.8. Using

the values from Table 2.2 and Gray and Hancock’s resistance coefficients [51] i.e. Kn = 2.17

and Kt = 1.31, we have computed the organism’s swimming speed as 0.128 body radii

per beat or 32 µm s−1. On the other hand using Lighthill’s resistance coefficients [94] i.e.

Kn = 3.7 and Kt = 2.2, we found 0.197 body radii per beat or 49.3 µm s−1. The above

values show consistency with Jones et al. [76] as they found 0.6 body length or 31 µm s−1

and 0.1 body length or 50 µm s−1 respectively. Clearly Lighthill’s coefficients [94] gave

swimming speed closer to the experimental observations (see Ruffer and Nultsch [128]), so

for the further investigations we will use Lighthill’s resistance coefficients [94] i.e. Kn = 3.7

and Kt = 2.2. Jones et al. [76] found that during effective stroke organism swims upwards

a distance of 0.33 body diameters and during recovery stroke regress 0.23 body diameters.

So this combines to give an average instantaneous swimming speed of organism of 0.10

body diameters per beat. For cell body diameter 10 µm and with beat frequency of 50 s−1,

this provides a swimming velocity as 50 µm s−1. With many more time steps and using
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Figure 2.8: Uniplanar upward swimming speed plotted against ratio of resistance coeffi-

cients Kn/Kt for varying flagella length (l = 2a, 3a, 4a, from bottom to top), where a is

the radius of the cell’s body.

our Maple code, the organism’s upward swimming speed is calculated as 0.1967 body radii

per beat or 0.098 body diameter per beat providing excellent agrement with the upward

swimming speed of 0.10 body diameter calculated by Jones et al. [76] analytically.

2.9 General unbounded uniplanar swimming

Consider the force torque balance equations (2.79) to (2.81), and the assumptions for

the simplified symmetric flagellar beat in an unbounded domain. For simplicity, as we

have the bounded case in mind, we also assume no rate-of-strain and no vorticity. The

organism’s translational velocity parallel, vp and perpendicular, vq to the body axis p is

vp =
f1

ᾱ11
, (2.89)

and

vq =
(

α26

α26α62 − ᾱ22ᾱ66

)
mgH sin θ. (2.90)
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Similarly the organism’s angular velocity is

θ̇ = −
(

ᾱ22

α26α62 − ᾱ22ᾱ66

)
mgH sin θ. (2.91)

Using these equations, we shall investigate the swimming velocity and angular velocity

of the organism. We will explore the two initial values θ = 40◦ and θ = 90◦ (i.e. swimming

horizontally). As vp is uncoupled from θ, it remains the same as in Figure 2.7 even for the

two different initial values of θ. But this is not the complete picture as for the general case

the transverse swimming speed component vq is non-zero. The graphs for the transverse

component of the swimming velocity are shown in the Figure 2.9. For the case of cell

swimming horizontally initially i.e. θ = 90◦, we have computed that organism swims a

distance of 0.00046 body radii in the direction during effective stroke and 0.00049 body

radii during recovery stroke. This will sum up to give 0.00096 body radii per beat in the

q or transverse swimming direction. Interestingly here the values for vq are positive and

decreased to zero as θ tends to zero for one flagella beat. It is also observed that swimming

speed vq increases with the increase of the centre-of-gravity offset H.

The most interesting application of the unbounded swimming flagellar beat model is

the computation of angular velocity to provide estimates for the effective centre-of-gravity

offset and cell eccentricity over one flagella beat. The graphs for the variation of θ for two

different values of initial θ are shown below in Figure 2.10. Again for the case of horizontal

swimming i.e. θ = 90◦, we have found the change in the organism’s orientation angle from

θ = 90◦ to θ = 89.91◦. In both cases the value of θ decreases after the completion of the

beat, and curves are qualitatively are the same. This is because the swimming organism

is bottom heavy and cell tends to swim upwards on average. The angular velocity θ̇ again

increases by increasing the value of centre-of-gravity offset H.

In this uniplanar locomotion, viscous torque on the body and flagella will balance the

gravitational torque opposing the organism’s angular velocity θ̇ as shown in Figure 2.1.

In order to investigate the contribution of the flagella on the magnitude of the viscous

torque we have calculated the angular velocity and found the change in the angle θ of the

organism for one beat without the inclusion of flagella. After one beat the variation was

found from θ = 90◦ to θ = 89.8◦, which is approximately 50 % greater than the value with

the inclusion of the flagella as shown in Figure 2.11. This shows that flagella torque plays

a significant role for the calculation of the angular velocity of the organism.
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(a)

(b)

Figure 2.9: Variation in uniplanar instantaneous swimming velocity in transverse direction

during one flagellar beat. The dashed line represents the graph for constant angular

velocity and solid line zero moment recovery stroke case. With initial angle (a) θ = 40◦

i.e. angled swimming, (b) θ = 90◦ i.e. horizontal swimming.
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(a)

(b)

Figure 2.10: Variation of angle θ from the initial angle θ0 during one flagella beat due to

the effect of gravitational torque only. With initial angle (a) θ = 40◦ i.e. angled swimming,

(b) θ = 90◦ i.e. horizontal swimming.
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Figure 2.11: Variation of the angle θ during one flagella beat when organism swims hori-

zontally i.e. θ = 90◦. The dashed line represents swimming organism without flagella and

solid line indicates with the flagella.

2.9.1 Calculation of effective gyrotactic re-orientation time

Pedley and Kessler [114] in the analysis of gyrotaxis, found the rate of change of the

swimming direction as

ṗ =
1

2B
[k− (k · p)p] +

1
2
ω × p + α0p ·E · [I− ppT

]
, (2.92)

where p and k are the unit vectors directed along the major axis of the swimming cell

and vertically upwards respectively, ω, E are the vorticity and the rate-of-strain of the

ambient flow, respectively, α0 is cell’s eccentricity, I is the identity tensor and B is the

gyrotactic reorientation time. The above equation was derived by ignoring the viscous

flagellar torque contribution in the force-torque balance equations. This equation is similar

to equation (2.81) which includes the contribution due to the flagellar torque for the
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Name with symbol Values by Pedley et al. Values by Jones et al.

Swimming speed - vp 5− 10× 10−3 cm s−1 5× 10−3 cm s−1

Cell eccentricity - α0 0.31 0.08

Sedimentation speed - vs 3× 10−4 cm s−1 2.5× 10−4 cm s−1

Viscous torque parameter - α⊥ 6.8 12.6

Gyrotactic re-orientation time - B 3.4 s 6.3 s

Table 2.3: Table of values taken from Jones et al. [76].

uniplanar locomotion and can be rewritten as

θ̇ = −ω

2
+ ηe sin 2γ − ξmgH sin θ, (2.93)

where

η =
(

h62ᾱ22 − h22α62

α26α62 − ᾱ22ᾱ66

)
, and ξ =

(
ᾱ22

α26α62 − ᾱ22ᾱ66

)
.

Note that the dimensions of ξ are kg−1m−1s, whereas η is non-dimensional and both

are positive valued functions. Now comparing the two analogous equations (2.92) and

(2.93) gives

α0 = η, and B =
1

2ξ̃mgH
, (2.94)

where ξ̃ is the dimensional form of ξ. Now using the non-dimensional form of ξ from Table

2.1, the gravitational re-orientation time takes the form as

B =
3µv

8πξmgH
=

µα⊥
2Hρg

, (2.95)

where α⊥ is a non-dimensional parameter, termed the viscous torque parameter by Pedley

and Kessler et al. [111] and can be defined here as

α⊥ =
3

4πξ
. (2.96)

Using the idealized flagella beat pattern with the dimensions for C. nivalis in Table

2.2, the average values of the function are

η = α0 = 0.09 and ξ = 0.019, (2.97)

as in Jones et al. [76]. Using these values one may calculate the new values of the quantities

discussed above to improve the existing Pedley and Kessler [113] continuum model (see

Table 2.3).
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2.10 Tracking of the swimming cell

Using the equations (2.89) to (2.91), we can track the motion of the swimming micro-

organism in a flow field performing more than one beat. In the fixed space coordinates

system (using the transformation matrix RT
SB) we can write as




v1

Ω2

v3


 =




sin θ cos θ 0

0 0 1

cos θ − sin θ 0







vp

vq

θ̇


 , (2.98)

where v1, v3 are velocities in the x and z direction and Ω2 is the angular velocity. We can

write the differential equations for the position and angle of cell at any time t during the

flagella beat as

dx1

dt
= v1(t),

dx3

dt
= v3(t),

dΩ2

dt
= θ̇(t). (2.99)

We can use the Euler method to solve these first order ordinary differential equations

numerically, such that

xi+1
1 = xi

1 + dt( v1(t) )

xi+1
3 = xi

3 + dt( v3(t) )

θi+1 = θi + dt( θ̇(t) ). (2.100)

Thus at every time step vp, vq and θ̇ are calculated for the old position and orientation

in the body coordinate system and then converted into the fixed space coordinate system

v1, v3 and Ω2. These equations produce the a new position and orientation x1, x3 and θ

of the cell. It is also interesting to note that here we can use a higher order numerical

scheme like Runge-Kutta method but our analysis shows that Euler’s scheme is adequate

and works well in this case.

Using the above defined method we have plotted the trajectory of the swimming cell

for three different initial angles i.e. when θ = 70◦, θ = 80◦ and θ = 90◦ as shown in the

Figure 2.12. The tendency for the cells to swim upwards on average is clearly observed.
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Figure 2.12: Trajectory of the unbounded swimming cell in scales of the X and Z axes with

initial angle θ0 = 90◦, 80◦, 70◦ from bottom to top respectively. The arrows represent the

position of the cell after the flagella beat (effective and recovery stroke) at any time t.
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2.11 Conclusion

After reviewing the detailed calculations Jones et al. [76] and the PhD thesis of Jones

[77], we have found certain misprints. So as a first step we have revised and performed

all the calculations again for the uniplanar case to identify and rectify all misprints and

errors. Later we have generalized the Jones et al. [76] flagellar beat model to make it

simple to employ. Additionally this modification makes the model θ dependent which

enables computation of the trajectory of the swimming cell. To avoid lengthy and tedious

calculations we employed the software Maple for the verification of the swimming of cell

in an unbounded fluid flow problem. Our method showed good agreement with the results

found in Jones et al. [76].

The above idealized model using the RFT approximation, which is considered as a

compromised choice in comparison to the slender-body theory shows handsome qualitative

agreement with experimental observations for the cell swimming velocity in an unbounded

domain. It also reveals that the torque due to the flagella has a prominent role in the

calculations of the cell’s angular velocity, which was ignored in the previous continuum

models (see Pedley and Kessler [113]). After comparison with the Pedley and Kessler

[113] angular velocity equation, Jones et al. [76] found interesting results as shown in

Table 2.3. Our generalization of the beat pattern and Maple code procedure also showed

good agreement with the Jones et al. [76] results listed in Table 2.3. They conclude that

the interestingly the increased values of gyrotactic re-orientation time scale B and cell’s

eccentricity α0 are due to the flagellar torque which slows down the angular velocity of

the micro-organism. The lower angular velocity of the micro-organism ultimately implies

a lower angular deviation from the organism’s swimming path.

The comparison of the two different resistance coefficients used while employing the

Resistive Force Theory shows that Lighthill’s [94] resistance coefficients gave better results

in comparison to the experimental observations, as expected. Secondly the two procedures

for modelling the angular velocity during the recovery stroke of the flagella beat shows that

the zero moment angular velocity case results gave good agreement with the experimental

results.

To avoid cumbersome calculations Jones et al. [76] in their later computations have

used averaged values of the time dependent beat coefficients instead of instantaneous

values, which some how compromises the accuracy and consistency of the results. However

our generalized procedure based on modified position vector and Maple code can easily
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be used to simulate different results for extended time periods for the cell’s locomotion

in an unbounded domain. This also motivates the author to extend the procedure and

apply the same idealized model with generalization procedure adopted here and the RFT

approximation to further complex situations like swimming of the cell in the proximity of

a rigid no-slip plane boundary.

The main result of this chapter is that the method of Jones et al. [76] for the single cell

locomotion in an unbounded domain, can be generalized and implemented on the algebraic

manipulation software Maple, yielding good agreement with the already published results.



Chapter 3

Biflagellate swimming in the

vicinity of a plane boundary

3.1 Synopsis

In this chapter, we have studied the swimming motion of the bottom heavy micro-

organism in the vicinity of the no-slip stationary plane boundary. Here we have modelled

the bounded cell swimming problems using the method as discussed in chapter 2 and

image system singularities defined by Blake and Chwang [16] to satisfy the no-slip plane

boundary condition. Using Resistive Force Theory (RFT), an analytical modified method

for a biflagellated swimming cell which beats its flagella within a single plane near the

no-slip plane boundary was established. The cumbersome analytical calculations of the

problem were incorporated using the software Maple. The detailed analysis of the different

bounded swimming situations of a biflagellate that is swimming away, towards, angled and

parallel to the plane boundary was discussed. This analysis will help to understand the

swimming dynamics of the cell under the influence of the boundaries such as micro slides,

tubes and pipes etc. This will also help to improve the existing continuum model for

suspensions of gyrotactic biflagellate micro-organism. The analysis will assist in better

understanding of laboratory experiments of the trajectories of the bounded swimming

cells and improve the investigations of the collective behavior of the biflagellate cells.

75
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3.2 Introduction

The interaction of a wall and a particle depend upon the particle geometry, position,

and orientation, and shape, and geometry of the wall. We experience that most of the

laboratory experiments of swimming micro-organisms involve microscopic or macroscopic

study of suspensions on micro slides, petri dishes, thin cylindrical tubes etc. Due to the

smallness of the dimensions of the micro-organisms, typically a Chlamydomonas cell is of

radius 2-10 µm, we can expect some indisputable effect in the swimming cell locomotion

in the vicinity of the boundaries. Since the presence of the boundaries modify the hy-

drodynamic stresses acting on the swimming micro-organisms, this changes the motility

both physically and biologically from bulk motility near the boundaries (see Lauga and

Powers [90]). The applications of biological locomotion near the boundaries involve sper-

matozoa accumulation near uterus (Smith et al. [136]), biofilm formation (Ishikawa and

Pedley [71]), surface associated bacterial infections (Harkes et al. [57]), etc. Here, we are

interested in the fluid mechanics of the spherical shape biflagellate cell locomotion near

the plane boundary.

The modelling of the motion of slender bodies or spheres close to the boundary in a

viscous fluid in different situations were studied by Katz et al. [78], Barta and Liron [2], [3],

Pasol et al. [109], Binous and Phillips [13]. These involve mostly slender-body theory

and numerical techniques for the solutions of the different problems near the boundary.

Recently, Smith et al. [135] and [136] used a hybrid algorithm of boundary integral/slender-

body theory to model cilia and human sperms accumulation close to a boundary. The

inclusion of boundaries can modify the cell locomotion in different ways. In the first case

they can effect the cell swimming speed near the boundary and secondly boundaries can

influence some micro-organism’s swimming kinematics by modifying their trajectories (see

Lauga and Powers [90]). The inclusion of boundaries also influence cell-cell interactions

but here we are only interested in single cell locomotion and will investigate only aspects

of swimming speed and angular velocity changes due to the presence of the no-slip plane

boundaries.

In this chapter we extend the generalized analytical Jones et al. [76] flagella beat model

problem discussed in chapter 2 from unbounded to bounded problems. Here we discuss

the problems of swimming of a biflagellated C augustae cell in a viscous flow field in the

vicinity of the no-slip plane boundary. We use again the approximation Resistive Force

Theory (RFT) to model and calculate the biflagellate cell’s swimming velocity and angular
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velocity relative to the ambient flow field in the proximity of the no-slip stationary plane

boundaries. For the ease of calculations, we have assumed that the contributions from

ambient vorticity and rate-of-strain are negligible.

To model the biflagellate bounded swimming problems we mostly follow the assump-

tions of the unbounded generalized flagella beat pattern problem discussed in chapter 2.

we assume no hydrodynamic interaction of flagellum with the cell body and no interaction

between neighboring elements of the flagellum. We also assume the no-slip plane boundary

is at rest and lies at a distance h from the centre of the cell body.

3.3 Swimming near the plane boundary

As most of the laboratory experiments relating to swimming of micro-organisms involve

swimming situations close to the plane boundary, thus we will investigate the swimming

of C. augustae cell in the vicinity of the rigid stationary no-slip plane boundary. To satisfy

the no-slip conditions, we require the image system for the Stokeslet and potential doublet

singular solutions. The image systems for the fundamental singularities of viscous flow

near an infinite plane boundary were first discussed by Blake (see, Blake [14] and Blake

and Chwang [15]). Since the micro-organism under consideration is assumed to be of

spherical shape, so we first discuss and explain in detail about the image system for the

motion of a sphere in the vicinity of a no-slip stationary plane boundary.

3.3.1 Image singularities system

In chapter 1 we have briefly defined the singularities like Stokeslet and their derivatives

such as the Stokes doublet and source doublet, which we later used to establish the singular

solutions for the motion of the sphere in the Stokes fluid flow. Here we require the singular

solutions for motion of the sphere of radius a in the Stokes flow near the no-slip stationary

plane boundary. Now as we know that the Oseen tensor or Stokeslet singularity is defined

as

Sij(x, y′) =
1

8πµ

(
δij

R
+

RiRj

R3

)
∼

1
R

, for largeR,

where R is the position vector at any point P from the centre of the image sperm as shown

in the Figure 3.1 and its magnitude is defined as

R =
[
(x1 − y1)2 + (x2 − y2)2 + (x3 + h)2

] 1
2 .
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Figure 3.1: The position of sphere and image sphere due to Stokeslet and potential dipole

singularities and no-slip stationary plane boundary at x3 = 0. The distance h is measured

from the centre of the sphere to the plane boundary, whereas r and R represents the

position vectors at any point P from the centre of sphere and image sphere, respectively.

The differentiation of the above defined Stokeslet gives the Stokes doublet singularity

Sij,k(x, y′) =
∂Sij

∂Rk
=

1
8πµ

(
−Rkδij

R3
+

Rjδik

R3
+

Riδjk

R3
− 3RiRjRk

R5

)
∼

1
R2

,

and further differentiation leads to source doublet singularity as

Dij(x, y′) = ∇2Sij(x, y′) = Sij,kk =
∂2Sij

∂Rk∂Rk
=

1
8πµ

(
2δij

R3
− 6RiRj

R5

)
∼

1
R3

.

Blake [14] first derived the solution for the Stokeslet in the presence of the stationary

plane boundary and the exact solution for a force singularity in the presence of a no-slip

plane boundary was defined as

ui(x, y) = Fj

[
Sij(x, y) + Simg

ij (x, y′)
]
, (3.1)

where Simg
ij (x, y′) is the image Stokeslet and was found to be

Simg
ij (x, y′) =

[
−Sij(x, y′) + h(δjα̃δα̃k − δj3δ3k)

(
h∇2Sik(x, y′)− 2

∂

∂Rk
Si3(x, y′)

)]
,
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where α̃ = 1, 2, the tensor (δjα̃δα̃k − δj3δ3k) is non-zero when j = k and has values

(δjα̃δα̃k − δj3δ3k) =





1, for j = 1, 2,

−1, for j = 3,

which can be further simplified by substituting the differentials and can be rewritten as

Simg
ij (x, y′) =

1
8πµ

[(
−δij

R
− RiRj

R3

)
+ 2h2(δjα̃δα̃k − δj3δ3k)

(
δik

R3
− 3RiRk

R5

)

−2h(δjα̃δα̃k − δj3δ3k)
(
−δi3Rk

R3
+

δ3kRi

R3
+

δikR3

R3
− 3RiR3Rk

R5

)]
,(3.2)

where

α̃ = 1, 2, Rl = xl − yl, and R3 = x3 + h.

Blake and Chwang [16], derived the solution for the source doublet (Laplacian of

Stokeslet) in the presence of a stationary no-slip plane boundary, which can be written as

ui(x, y) = Dj

[
Dij(x, y) + Dimg

ij (x, y′)
]
, (3.3)

where Dimg
ij (x, y′), is the image source doublet and was defined by taking the gradient of

a source in the presence of the plane boundary and can be written after simplifications as

Dimg
ij (x, y′) = − 1

8πµ

(
2δij

R3
− 6RiRj

R5

)
− 3

2πµ
(δj3δiα̃ + δjα̃δi3)

Rα̃R3

R5

+
3δj3δiα̃

2πµ

(
−Rα̃x3

R5
+

5Rα̃R2
3x3

R7

)
−

3δjα̃δiβ̃

2πµ

(
−

δα̃β̃R3x3

R5
+

5Rα̃x3R3Rβ̃

R7

)

+
3δj3δi3

2πµ

(
−3R3x3

R5
+

5R3
3x3

R7

)
− 3δjα̃δi3

2πµ

(
−Rα̃x3

R5
+

5Rα̃R2
3x3

R7

)
, (3.4)

where

α̃, β̃ = 1, 2, Rl = xl − yl, and R3 = x3 + h.

3.3.2 Solution for the translating motion of a sphere near a stationary

plane boundary

The velocity and pressure fields for the unbounded translating motion of a sphere in a

Stokes flow obtained by Oseen [107] are

uj(x, y) = 6πµaUi

[(
1 +

a2

6
∇2

)
Sij(x, y)

]

= 6πµaUi

[
Sij(x, y) +

a2

6
Dij(x, y)

]

=
3a

4
Uk

(
δjk

r
+

rjrk

r3

)
− a3

4
Uk

(
−δjk

r3
+

3rjrk

r5

)
, (3.5)
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and

p =
3
2
µUk

(rk

r3

)
, (3.6)

where a is the radius and x is the position of the sphere.

Similarly, the velocity disturbance u caused by the image of a translating sphere of

radius a moving through the Newtonian fluid in the presence of the no-slip stationary

plane boundary under the influence of an applied force F can be calculated as

uimg
j (x, y) = Fi

[(
1 +

a2

6
∇2

)
Simg

ij (x, y′)
]

= Fi

[
Simg

ij (x, y′) +
a2

6
Dimg

ij (x, y′)
]

. (3.7)

As we know that on the surface of the sphere of radius a the above combination for Faxen’s

law (see Kim and Karrila [87]) takes the form as
(

1 +
a2

6
∇2

y

)
Simg

ij (x, y) =
4
3a

δij .

Therefore, the approximate singular solution for the motion of the image sphere translating

with the velocity U in the presence of the stationary plane boundary takes the form

uimg
j (x, y) = 6πµa Ui

[
Simg

ij (x, y′) +
a2

6
Dimg

ij (x, y′)
]

, (3.8)

Now using the equations (3.2) and (3.4), for image Stokeslet and image source doublet

respectively, we can rewrite after simplifications as

uimg
j (x, y) =

3a

4
Ui

[
−δij

R
− RiRj

R3
+ 2h2(δjα̃δα̃k − δj3δ3k)

(
δik

R3
− 3RiRk

R5

)

−2h(δjα̃δα̃k − δj3δ3k)
(
−δi3Rk

R3
+

δ3kRi

R3
+

δikR3

R3
− 3RiR3Rk

R5

)

−a2

3

(
δij

R3
− 3RiRj

R5

)
− 2a2(δj3δiα̃ + δjα̃δi3)

Rα̃R3

R5

+2a2δj3δiα̃

(
−Rα̃x3

R5
+

5Rα̃R2
3x3

R7

)
− 2a2δjα̃δiβ̃

(
−

δα̃β̃R3x3

R5
+

5Rα̃x3R3Rβ̃

R7

)

+2a2δj3δi3

(
−3R3x3

R5
+

5R3
3x3

R7

)
− 2a2δjα̃δi3

(
−Rα̃x3

R5
+

5Rα̃R2
3x3

R7

)]
,

where, α̃, β̃ = 1, 2. (3.9)

Now for the uniplanar translational motion of the sphere, the velocity field due to the

translating motion of the image sphere acting at any point within the fluid can be found

after substitutions U1 = v1, U2 = 0 and U3 = v3 and simplifications of above equation
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Figure 3.2: Streamlines for a sphere and an image sphere translating away from the no-slip

stationary plane boundary lies at the centre, x3 = 0. (a) Unbounded sphere translating

upwards. (b) Bounded sphere translating upwards away from the plane boundary.
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gives velocity in components form as

u∗1(x, y) = −3a

4
v1

[
1
R

+
R2

1

R3
+

2hx3

R3
− 6hx3R

2
1

R5
+ a2

(
1

3R3
− R2

1

R5
− 2x3R3

R5
+

10x3R
2
1R3

R7

)]

−3a

4
v3

[
R1R3

R3
− 2hR1

R3
+

6hx3R1R3

R5
+ a2

(
R1R3

R5
− 2x3R1

R5
+

10x3R1R
2
3

R7

)]
,

and

u∗3(x, y) = −3a

4
v1

[
R1R3

R3
− 2hR1

R3
+

6hx3R1R3

R5
+ a2

(
R1R3

R5
+

2x3R1

R5
− 10x3R1R

2
3

R7

)]

−3a

4
v3

[
1
R

+
R2

3

R3
− 2hx3

R3
+

6hx3R
2
3

R5
+ a2

(
1

3R3
− R2

3

R5
+

6x3R3

R5
− 10x3R

3
3

R7

)]
.

Therefore, the velocity field vector acting at any point within the fluid due to translating

motion of unit sphere in fixed space coordinates system takes the form as

ūS
tr(x, y) = u∗1(x, y) i + u∗3(x, y)k, (3.10)

ūS
tr(x, y) =

[
−3v1

4

(
1
R

+
R2

1

R3
+

2hx3

R3
− 6hx3R

2
1

R5
+

1
3R3

− R2
1

R5
− 2x3R3

R5
+

10x3R
2
1R3

R7

)

−3v3

4

(
R1R3

R3
− 2hR1

R3
+

6hx3R1R3

R5
+

R1R3

R5
− 2x3R1

R5
+

10x3R1R
2
3

R7

)]
i

+
[
−3v1

4

(
R1R3

R3
− 2hR1

R3
+

6hx3R1R3

R5
+

R1R3

R5
+

2x3R1

R5
− 10x3R1R

2
3

R7

)

−3v3

4

(
1
R

+
R2

3

R3
− 2hx3

R3
+

6hx3R
2
3

R5
+

1
3R3

− R2
3

R5
+

6x3R3

R5
− 10x3R

3
3

R7

)]
k,

where superscripts S represents fixed space coordinates. Also

R1 = Rt sin(χ + θ)−Rn cos(χ + θ), R3 = Rn sin(χ + θ) + Rt cos(χ + θ),

and x3 = Rn sin(χ + θ) + Rt cos(χ + θ)− h,

where h is the distance of the plane boundary from the centre of the sphere or image

sphere as shown in the Figure 3.1.

Now using the transformation matrices RSB and RBF defined in chapter 2, we can

finally write velocity due to the translating motion of the image sphere in flagellar coordi-

nates system for uniplanar locomotion as

ūF
tr(x, y) =

[
−3

4
vn

(
−R1R3

R3
+

R1R3

R5
+ 2x3

R1

R3
+ 2x3

R1

R5
+ 6hx3

R1R3

R5
− 10x3

R1R
2
3

R7

)

−3
4
vt

(
1
R

+
1

3R3
+

R2
3

R3
− R2

3

R5
+ 6x3

R3

R5
− 2hx3

R3
+ 6hx3

R2
3

R5
− 10x3

R3
3

R7

)]
t

+
[3
4
vt

(
−R1R3

R3
+

R1R3

R5
+ 2x3

R1

R3
+ 2x3

R1

R5
+ 6hx3

R1R3

R5
− 10x3

R1R
2
3

R7

)

−3
4
vn

(
1
R

+
1

3R3
+

R2
3

R3
− R2

3

R5
+ 6x3

R3

R5
− 2hx3

R3
+ 6hx3

R2
3

R5
− 10x3

R3
3

R7

)]
n,

(3.11)
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where F represents flagellar coordinates system.

Similarly, the velocity due to the translating motion of the sphere in an unbounded

domain in the flagella coordinates system using (3.5) can be calculated as

uF
tr(x, y) =

[
−vt

(
1− 3

4r
− 1

4r3

)
+ 3

(
vnrnrt + vtr

2
t

) (
1

4r3
− 1

4r5

)]
t

+
[
−vn

(
1− 3

4r
− 1

4r3

)
+ 3

(
vtrnrt + vnr2

n

)(
1

4r3
− 1

4r5

)]
n, (3.12)

The Green’s function or total velocity field acting on any point P within the fluid due

to the translating motion of a unit sphere near a no-slip plane boundary becomes

utr = utr + ūtr, (3.13)

where utr is the contribution from the sphere for uniplanar locomotion and found in

equation (3.12) and ūtr from the image sphere due to the presence of the plane boundary

which is calculated as in equation (3.11).

3.3.3 Solution for the rotational motion of a sphere near a stationary

plane boundary

The velocity and pressure fields for the unbounded rotational motion of a sphere of

radius a in a Stokes flow using Faxen’s law can be written as

ui(x, y) = 4πµa3

[
Djk(rkδij − rjδik)

4πµr3

]

≡ (εijkΩjrk)
a3

r3
≡ (Ω× r)

a3

r3
, (3.14)

and

p = −µDjk

(
δjk

r3

)
. (3.15)

The velocity and pressure fields for the solution of rotlet, characterized by the rotational

vector Ω in the vicinity of a stationary no-slip plane boundary was derived by Blake and

Chwang [16] as

uimg
i (x, y) = −εijkΩjRk

R3
+ 2hεkj3Ωj

(
δik

R3
− 3RiRk

R5

)
+ 6εkj3

(
ΩjRiRkR3

R5

)
, (3.16)

and

p∗ = −4µ
∂

∂Rk

(
εkj3ΩjR3

R3

)
, (3.17)
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Figure 3.3: Streamlines plot when sphere translating towards the no-slip plane boundary

lies at the centre at x3 = 0. (a) Unbounded sphere translating upwards. (b) Bounded

sphere translating upwards towards the plane boundary.
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Figure 3.4: Streamlines plot when sphere translating parallel to the no-slip plane boundary

lies at the centre at x3 = 0. (a) Unbounded sphere translating horizontally. (b) Bounded

sphere translating horizontally parallel to the plane boundary.
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where

R =
[
(x1 − y1)2 + (x2 − y2)2 + (x3 + h)2

] 1
2 .

Now for the uniplanar rotational motion of the sphere, the velocity field for the rota-

tional motion of the image sphere after substitution Ω1 = Ω3 = 0 and simplification of the

above equation gives

u∗1(x, y) = Ω2

(
−R3

R3
+

2h

R3
− 6hR2

1

R5
+

6R2
1R3

R5

)
, (3.18)

and

u∗3(x, y) = Ω2

(
R1

R3
− 6hR1R3

R5
+

6R1R
2
3

R5

)
, (3.19)

Therefore, the velocity field vector acting at any point P within the fluid due to the

rotational motion of the sphere in fixed space coordinate system takes the form as

ūS
rt(x, y) = u∗1(x, y) i + u∗3(x, y)k, (3.20)

ūS
rt(x, y) =

[
Ω2

(
−R3

R3
+

2h

R3
− 6hR2

1

R5
+

6R2
1R3

R5

) ]
i

+
[
Ω2

(
R1

R3
− 6hR1R3

R5
+

6R1R
2
3

R5

)]
k.

Now again using the transformation matrices RSB and RBF , we will derive the velocity

due to the rotational motion of the unit sphere acting on an element of flagellum in flagellar

coordinates system as

ūF
rt(x, y) =

[
Ωb sin(χ + θ)

(
−R3

R3
+

2h

R3
− 6hR2

1

R5
+

6R2
1R3

R5

)
+ Ωb cos(χ + θ)

(
R1

R3
− 6hR1R3

R5
+

6R1R
2
3

R5

)]
t +

[
Ωb sin(χ + θ)

(
R1

R3
− 6hR1R3

R5
+

6R1R
2
3

R5

)

+Ωb cos(χ + θ)
(
−R3

R3
+

2h

R3
− 6hR2

1

R5
+

6R2
1R3

R5

)]
n, (3.21)

where superscripts S represents fixed space coordinates. Also

R1 = Rt sin(χ + θ)−Rn cos(χ + θ), R3 = Rn sin(χ + θ) + Rt cos(χ + θ),

Ω2 = Ωb and x3 = Rn sin(χ + θ) + Rt cos(χ + θ)− h,

where h is the distance of plane boundary from the centre of the sphere and image sphere.
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Figure 3.5: Streamlines plot of the sphere and image sphere when rotating parallel to the

stationary no-slip plane boundary lies at the centre at x3 = 0. (a) Unbounded sphere rotat-

ing horizontally. (b) Bounded sphere rotating horizontally parallel to the plane boundary.
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Following the same procedure and using equation (3.14), the velocity due to the rota-

tional motion of the sphere in an unbounded domain in flagella coordinates system can be

found as

uF
rt(x, y) =

[
−Ωbrn

(
1− 1

r3

)]
t +

[
Ωbrt

(
1− 1

r3

)]
n, (3.22)

where F represents flagellar coordinates system.

The Green’s function or total velocity field acting at any point P within the fluid due

to the rotating motion of a unit sphere near a no-slip plane boundary becomes

urt = urt + ūrt, (3.23)

where urt is the contribution from the sphere for uniplanar locomotion and found in

equation (3.22) and ūrt is the corresponding image system due to the presence of plane

boundary which is calculated as in equation (3.21).

3.4 Force-Torque balance for bounded biflagellate swimming

To model the swimming of a biflagellated bottom heavy single cell of C. augustae in a

viscous fluid in the vicinity of the no-slip plane boundary, consider C to be the geometric

centre and G to be the centre-of-gravity, where both lie on the major axis p of the cell.

The unit vector p represents the orientation of the cell. Let H be the displacement of

the centre-of-gravity G from geometric centre C as shown in Figure 3.6. We also assume

that the no-slip plane is stationary and lies at a distance h from the centre of the cell

body, whereas cell body and flagella are moving with the change of time. For the ease of

calculations, we neglect the ω vorticity and e rate-of-strain of the ambient flow. Below we

shall follow the same steps for modelling the bounded swimming problems as mentioned

in chapter 2 for the unbounded swimming.

Since for low Reynolds number swimming of micro-organisms inertia is negligible, the

viscous forces in the fluid flow are dominant as compared to inertial forces. Thus the

orientation and motion of the organism can be modelled by setting to zero the total force

and total torque at any instant acting on the cell during the flagellar beat, which is the

sum of gravitational, cell body and flagella contributions, i.e.

Fbdy + Fgrv + Fflg = 0, (3.24)

and

Lbdy + Lgrv + Lflg = 0. (3.25)
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To determine the contributions due to the spherical body of the cell, we neglect the

presence of the flagella and assume only the hydrodynamic contributions on the body in

the Stokes flow. The viscous body force and viscous body torque for a spherical body shape

translating and rotating simultaneously in the presence of the no-slip plane boundary (e.g.

see Goldman et al. [48], [49]) are

Fbdy = 6πµa
(
vF ∗

tr + aΩF ∗
rt

)
, (3.26)

and

Lbdy = 8πµa2
(
vT ∗tr + aΩT ∗rt

)
, (3.27)

where v and Ω are the velocity and angular velocity of the body respectively, a is the

radius of the cell body and µ is the viscosity of the fluid. The subscript tr corresponds

to the translation and rt represents rotational motion of the sphere. The normalized non-

dimensional scalar force and torque components, F ∗
tr, F ∗

rt and T ∗tr, T ∗rt may be positive or

negative and are functions of
(

a
h

)
. The values of F ∗

tr and T ∗tr for translational motion as

defined by Goldman et al. [48] using the approximate solutions of Faxen [39], obtained by

the method of reflections, are

F ∗
tr = −

[
1− 9

16

(a

h

)
+

1
8

(a

h

)3
− 45

256

(a

h

)4
− 1

16

(a

h

)5 ]−1
,

and

T ∗tr =
3
32

(a

h

)4 [
1− 3

8

(a

h

)]
.

Similarly, the results for rotational motion of the sphere, F ∗
rt and T ∗rt are defined as

F ∗
rt =

1
8

[(a

h

)4
(

1− 3a

8h

) ]
,

and

T ∗rt = −
[
1 +

5
16

(a

h

)3]
.

Using the above values and ignoring the higher order terms, the viscous body force and

viscous body torque for a spherical body translating and rotating simultaneously in the

vicinity of the no-slip stationary plane boundary takes the form as

Fbdy = 6πµa
[{
−1− 9

16

(a

h

)}
v +

1
8

(a

h

)4
aΩ

]
, (3.28)

and

Lbdy = 8πµa2
[ 3
32

(a

h

)4
v +

{
−1− 5

16

(a

h

)3}
aΩ

]
, (3.29)
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Figure 3.6: A schematic diagram of uniplanar swimming of C. augustae cell in the vicin-

ity of the stationary no-slip plane boundary: (i,k) are fixed space and (p,q) are body

coordinates respectively, H is centre-of-gravity G offset from geometric centre C, θ is the

Euler angle between k in fixed space and primary axis of swimming p in body coordinate

system, χ is the angle which flagella makes with the p, g is the force due to gravity and

h is the distance of boundary from the centre of the cell body.
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whereas, in the absence of the plane boundary or for the case of h → ∞, i.e. cell body

at a very large distance away from the plane boundary, the above equations for the forces

and torques due to the spherical cell body reduce to equations (2.7) and (2.8) as discussed

in chapter 2.

For Chlamydomonas it was observed by Yoshimura et al. [149] that the sedimentation

speed (2.2 µm s−1) is very low as compared to the swimming speed (102 µm s−1, whereas

other studies found it to be in the range of 40-70 µm s−1, see Vladimirov et al. [142]).

Then, as we know that sedimentation speed represents the gravitational force, so we can

take

Fgrv =
(ρ− ρ0

v

)
g = 0, (3.30)

where ρ and v are the density and volume of the cell respectively and g is the gravitational

acceleration. The gravitational torque due to H centre-of-gravity offset, the displacement

of G from C as described in Figure 3.6, was investigated by Pedley and Kessler [111]

and can be written in terms of the cell body co-ordinate system (p,q, r̄) for uniplanar

locomotion as

Lgrv = Hp×mgk = −mgH sin θ r̄, (3.31)

where k is the unit vector directed vertically upward and m is the mass of the cell. Also,

θ is the Euler angle between fixed space coordinates (i, j,k) and body coordinates (p,q, r̄)

(see Figure 3.6). Here, we have used r̄ instead of r just to avoid repetition of notation for

position vector r used frequently in later sections.

3.4.1 Computation of viscous force and viscous torque acting on one

flagellum

Now for the last part of the force-torque balance equations, Fflg and Lflg, i.e. forces

and torques on the flagella, we again apply the RFT as we did in chapter 2. Now the

velocity of the fluid relative to the element of the flagellum in the presence of the plane

boundary takes the form as

urel = u− vflg, (3.32)

where u is the velocity of the fluid measured at the position of the element ds and vflg is

the velocity of an element of the flagellum in the presence of the plane boundary. Thus

the flow past the bounded spherical body, in a general flow field u, is the sum of three

parts: flow due to translation of the body, due to vorticity of ambient flow relative to the
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rotation of the body and due to ambient straining motion (see Pasol et al. [110]). For

the simplicity of calculations we ignore the contribution due to ambient straining motion.

Therefore the velocity of the fluid for uniplanar locomotion in the vicinity of the plane

boundary takes the form as

u = utr + urt = utr + ūtr + urt + ūrt, (3.33)

where utr and ūtr calculated earlier in equations (3.12) and (3.11) are the velocity of the

fluid due to translational motion of the sphere and image sphere respectively. The last

two terms urt and ūrt can be found in equations (3.22) and (3.21) are the velocity of the

fluid due to rotational motion of the sphere and image sphere, respectively.

The velocity of an element of flagellum relative to the spherical cell body, vflg, as

discussed in chapter 2, is given by

vflg = Ω× r + ṙ, (3.34)

where r is the position vector of an element of the flagellum relative to the centre of the

cell’s body, and ṙ is the velocity of the flagellar element relative to body coordinates fixed

in the body.

Thus, the total viscous force and viscous torque produced by both the flagella in the

presence of no-slip plane boundary can be calculated as

Fflg = Ftr + Frt − Ffl, (3.35)

and

Lflg = Ltr + Lrt − Lfl, (3.36)

where the underline terms on the right-hand side Ftr, Frt and Ltr, Lrt represents the forces

and torques due to the translational and rotational motion of the sphere in the presence

of plane boundary. To satisfy the no-slip boundary condition these terms include the

contributions from the image sphere in addition to the original contribution as discussed

in chapter 2.

The velocity v and angular velocity Ω of the organism in the flagellar coordinate system

for uniplanar locomotion can be written as

v =




vn

vt

0


 =




vp(p · n) + vq(q · n)

vp(p · t) + vq(q · t)
0



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and

Ω =




0

0

Ωb


 =




0

0

Ωr(r̄ · b)


 , (3.37)

respectively.

The position vector of an element of flagellum from the centre of the sphere and image

sphere in flagellar coordinate system for uniplanar case becomes

r =




rn

rt

0


 , and R =




Rn

Rt

0


 , (3.38)

respectively.

The generalized position vector of an element of the flagellum relative to the centre of

the cell body in fixed space coordinates is defined in chapter 2 as

rS(s, t) = [b sin θ + (s− b) sin(θ + χ)] i + [b cos θ + (s− b) cos(θ + χ)] k, (3.39)

where χ is the angle of flagellum from the p axis, θ is measured from the k axis at any

time t and

b ≤ s ≤ l, a ≤ b ≤ l, and a ≤ (s− b) ≤ l.

Using the transformation matrices RSB and RBF discussed in chapter 2, we can write this

in flagellar coordinates such that

rB(s, t) = [b + (s− b) cosχ] p + [(s− b) sin χ] q,

rF (s, t) = [b sinχ] n + [(s− b) + b cosχ] t. (3.40)

Using the same generalization, we now define the position vector of the same element of

the flagellum from the centre of the image sphere as shown in Figure 3.6 as

RS(s, t) = [b sin θ + (s− b) sin(θ + χ)] i + [2h + b cos θ + (s− b) cos(θ + χ)] k, (3.41)

where h is the distance of the plane boundary from the centre of the image sphere. Now

using the transformation matrices RSB and RBF , we can write the position vector in the

flagellar coordinates system such that

RB(s, t) = [b + (s− b) cos χ− 2h sin θ] p + [(s− b) sin χ− 2h cos θ] q,

RF (s, t) = [b sinχ + 2h sin(χ + θ)] n + [(s− b) + b cosχ + 2h cos(χ + θ)] t. (3.42)
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Contribution of the translation of the bounded spherical body

The velocity of the fluid due to the uniplanar translation of a spherical body of radius

a in the presence of no-slip plane boundary in a low Reynolds number fluid flow is given

by

utr =
[
−vn

(
1− 3

4r
− 1

4r3

)
+ 3

(
vtrnrt + vnr2

n

) (
1

4r3
− 1

4r5

)
+

3
4
vt

(
−R1R3

R3
+

R1R3

R5
+ 2x3

R1

R3
+ 2x3

R1

R5
+ 6hx3

R1R3

R5
− 10x3

R1R
2
3

R7

)
− 3

4
vn

(
1
R

+
1

3R3
+

R2
3

R3
− R2

3

R5
+ 6x3

R3

R5
− 2hx3

R3
+ 6hx3

R2
3

R5
− 10x3

R3
3

R7

)]
n

+
[
−vt

(
1− 3

4r
− 1

4r3

)
+ 3

(
vnrnrt + vtr

2
t

) (
1

4r3
− 1

4r5

)
− 3

4
vn

(
−R1R3

R3
+

R1R3

R5
+ 2x3

R1

R3
+ 2x3

R1

R5
+ 6hx3

R1R3

R5
− 10x3

R1R
2
3

R7

)
− 3

4
vt

(
1
R

+
1

3R3
+

R2
3

R3
− R2

3

R5
+ 6x3

R3

R5
− 2hx3

R3
+ 6hx3

R2
3

R5
− 10x3

R3
3

R7

)]
t.

The above expression of the fluid velocity is the sum of the contributions from the

translating sphere and corresponding image sphere as shown in Figure 3.6.

Now, using RFT the force produced by an element of a flagellum within this flow with

a = 1 is given by

dFF
tr = Kn

[
−vn

(
1− 3

4r
− 1

4r3

)
+ 3

(
vtrnrt + vnr2

n

) (
1

4r3
− 1

4r5

)
+

3
4
vt

(
−R1R3

R3
+

R1R3

R5
+ 2x3

R1

R3
+ 2x3

R1

R5
+ 6hx3

R1R3

R5
− 10x3

R1R
2
3

R7

)
− 3

4
vn

(
1
R

+
1

3R3
+

R2
3

R3
− R2

3

R5
+ 6x3

R3

R5
− 2hx3

R3
+ 6hx3

R2
3

R5
− 10x3

R3
3

R7

)]
nds

+Kt

[
−vt

(
1− 3

4r
− 1

4r3

)
+ 3

(
vnrnrt + vtr

2
t

) (
1

4r3
− 1

4r5

)
− 3

4
vn

(
−R1R3

R3
+

R1R3

R5
+ 2x3

R1

R3
+ 2x3

R1

R5
+ 6hx3

R1R3

R5
− 10x3

R1R
2
3

R7

)
− 3

4
vt

(
1
R

+
1

3R3
+

R2
3

R3
− R2

3

R5
+ 6x3

R3

R5
− 2hx3

R3
+ 6hx3

R2
3

R5
− 10x3

R3
3

R7

)]
tds. (3.43)

The total force from the flagellum can thus be calculated by integrating along the length

of the flagellum to yield

FF
tr = Kn

[
−vn

(
I1 − 3

4
I2 − 1

4
I3

)
+ vnr2

n

(
3I3

4
− 3I4

4

)
+ vtrn

(
3J3

4
− 3J4

4

)

+terms involving Ĩi and J̃i

]
n

+Kt

[
−vt

(
I1 − 3

4
I2 − 1

4
I3

)
+ vnrn

(
3J3

4
− 3J4

4

)
+ vt

(
3I7

4
− 3I8

4

)

+terms involving Ĩi and J̃i

]
t, (3.44)
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where Ii and Ji are specific integrals used and defined in chapter 2 for unbounded sphere

locomotion. The integrals Ĩi and J̃i correspond to the image sphere contributions and are

evaluated using Maple code and are defined as

Ĩ1 =
∫

ds, Ĩ2 =
∫

ds
R

, Ĩ3 =
∫

ds
R3

, Ĩ4 =
∫

ds
R5

,

Ĩ5 =
∫

ds
R7

, Ĩ6 =
∫

R2
t ds, J̃1 =

∫
Rtds, J̃2 =

∫
Rt

R
ds,

J̃3 =
∫

Rt

R3
ds J̃4 =

∫
Rt

R5
ds, J̃5 =

∫
Rt

R7
ds,

Ĩ7 =
∫

R2
t

R3
ds = Ĩ2 −R2

nĨ3, Ĩ8 =
∫

R2
t

R5
ds = Ĩ3 −R2

nĨ5,

and

J̃6 =
∫

R3
t

R5
ds = J̃3 −R2

nJ̃4, J̃7 =
∫

R3
t

R7
ds = J̃4 −R2

nJ̃5. (3.45)

Therefore, the total force from one flagellum in the body coordinates system for uni-

planar locomotion, becomes

FF
tr · p = (ᾱ11 + ᾱ11) vp + (α12 + α12) vq = β̄11vp + β12vq,

FF
tr · q = (α21 + α21) vp + (ᾱ22 + ᾱ22) vq = β21 vp + β̄22 vq, (3.46)

where αij are the time dependent beat coefficients involving integrals Ii and Ji, and cor-

responds to sphere locomotion. The beat coefficients αij involve Ĩi and J̃i and are due to

the image sphere locomotion. The special term ᾱij incorporates the effect of viscous forces

and drag. The detailed expressions of time dependent beat coefficients αij are defined in

appendix A.

The viscous torque due to translating motion of the unit sphere in the presence of the

plane boundary with fluid velocity (3.43) on an element of flagellum is given by

dLF
tr = r× dFF

tr.
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Using equation (2.35) for r and equation (3.43) for dFtr
flg, the above equation becomes

dLF
tr =

[
−Kn

{
−vn

(
1− 3

4r
− 1

4r3

)
+ 3

(
vtrnrt + vnr2

n

)(
1

4r3
− 1

4r5

)
+

3
4
vt

(
−R1R3

R3
+

R1R3

R5
+ 2x3

R1

R3
+ 2x3

R1

R5
+ 6hx3

R1R3

R5
− 10x3

R1R
2
3

R7

)
− 3

4
vn

(
1
R

+
1

3R3
+

R2
3

R3
− R2

3

R5
+ 6x3

R3

R5
− 2hx3

R3
+ 6hx3

R2
3

R5
− 10x3

R3
3

R7

)}
rt

+Kt

{
−vt

(
1− 3

4r
− 1

4r3

)
+ 3

(
vnrnrt + vtr

2
t

)(
1

4r3
− 1

4r5

)
− 3

4
vn

(
−R1R3

R3
+

R1R3

R5
+ 2x3

R1

R3
+ 2x3

R1

R5
+ 6hx3

R1R3

R5
− 10x3

R1R
2
3

R7

)
− 3

4
vt

(
1
R

+
1

3R3
+

R2
3

R3
− R2

3

R5
+ 6x3

R3

R5
− 2hx3

R3
+ 6hx3

R2
3

R5
− 10x3

R3
3

R7

)}
rn

]
bds.

The total viscous torque for the single flagellum can be calculated by integrating along

the length of the flagellum, giving

LF
tr =

[
Kt

{
−vtrn

(
I1 − 3

4
I2 − 1

4
I3

)
+ vnr2

n

(
3J3

4
− 3J4

4

)
+ vtrn

(
3I7

4
− 3I8

4

)

+terms involving Ĩi and J̃i

}

−Kn

{
−vn

(
J1 − 3

4
J2 − 1

4
J3

)
+ vnr2

n

(
3J3

4
− 3J4

4

)
+ vtrn

(
3I7

4
− 3I8

4

)

+terms involving Ĩi and J̃i

}]
b. (3.47)

Now finally, the total torque due to translation motion of sphere on one flagellum for the

uniplanar case in body coordinates can be written as

LF
tr · r̄ = (ᾱ61 + ᾱ61) vp + (α62 + α62) vq = β̄61 vp + β62 vq. (3.48)

Contribution of the rotation of the spherical body

The velocity of the fluid due to the uniplanar rotation of a spherical body of radius a

in the presence of no-slip plane boundary in a low Reynolds number fluid flow is given by

urt =
[
Ωbrt

(
1− 1

r3

)
+ Ωb sin(χ + θ)

(
R1

R3
− 6hR1R3

R5
+

6R1R
2
3

R5

)

+Ωb cos(χ + θ)
(
−R3

R3
+

2h

R3
− 6hR2

1

R5
+

6R2
1R3

R5

)]
n

+
[
−Ωbrn

(
1− 1

r3

)
+ Ωb sin(χ + θ)

(
−R3

R3
+

2h

R3
− 6hR2

1

R5
+

6R2
1R3

R5

)

+Ωb cos(χ + θ)
(

R1

R3
− 6hR1R3

R5
+

6R1R
2
3

R5

)]
t.

The above expression of the fluid velocity is the sum of the contributions from the

rotating sphere and corresponding image sphere as shown in the Figure 3.6.
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Now, using RFT the force produced by an element of a flagellum within this flow with

a = 1 is given by

dFF
tr = Kn

[
Ωbrt

(
1− 1

r3

)
+ Ωb sin(χ + θ)

(
R1

R3
− 6hR1R3

R5
+

6R1R
2
3

R5

)

+Ωb cos(χ + θ)
(
−R3

R3
+

2h

R3
− 6hR2

1

R5
+

6R2
1R3

R5

)]
nds

+Kt

[
−Ωbrn

(
1− 1

r3

)
+ Ωb sin(χ + θ)

(
−R3

R3
+

2h

R3
− 6hR2

1

R5
+

6R2
1R3

R5

)

+Ωb cos(χ + θ)
(

R1

R3
− 6hR1R3

R5
+

6R1R
2
3

R5

)]
tds. (3.49)

The total force can be calculated by integrating along the length of the flagellum as

FF
rt = Kn

[
Ωb(J1 − J3) + terms involving Ĩi and J̃i

]
n

−Kt

[
Ωbrn(I1 − I3) + terms involving Ĩi and J̃i

]
t. (3.50)

Therefore, the total force due to rotational motion of sphere on one flagellum for the

uniplanar case in the presence of plane boundary in body coordinates system becomes

FF
rt · p = (ᾱ16 + ᾱ16)Ωr = β̄16 Ωr,

FF
rt · q = (α26 + α26)Ωr = β26 Ωr. (3.51)

The viscous torque due to rotational motion of the unit sphere with rotational velocity

(2.44) on an element of flagellum is given by

dLF
rt = r× dFF

rt.

Using equation (2.35) for r and equation (3.49) for dFF
rt, the torque becomes

dLF
rt =

[
(KnΩbr

2
t ) + KtΩbr

2
n

(
1− 1

r3

)]
bds.

Hence, the total viscous torque can be calculated by integrating along the length of the

flagellum, to give

LF
rt =

[
KnΩb(I6 − I7) + KtΩbr

2
n(I1 − I3) + terms involving Ĩi and J̃i

]
b. (3.52)

Now, finally, the total torque due to rotational motion of the sphere in the presence of

plane boundary for uniplanar locomotion on one flagellum in body coordinates can be

written as

LF
rt · r̄ = (ᾱ66 + ᾱ66)Ωr = β̄66 Ωr. (3.53)
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Flagellar beating contribution

Following the unbounded biflagellate swimming discussed in chapter 2, we shall cal-

culate the viscous force and torque due to the imposed velocity of the flagella ṙ, beating

relative to the cell body in the vicinity of the no-slip plane boundary. For the effective

stroke, the velocity of an element of flagellum for the planar case can be rewritten from

(2.25) as

ṙ = −sχ̇n.

Using RFT again, and to avoid the same steps discussed in chapter 2 we can directly

rewrite the total force due to velocity of flagellum during effective stroke for uniplanar

case in body coordinates system as

FF
fl · p = −Kn

(
l2

2
χ̇

)
sinχ. (3.54)

Similarly, for the recovery stroke the total force due to velocity of flagellum for uniplanar

case in body coordinates system becomes

FF
fl · p = Kn

[
w sinχ(l − wt)− 1

2
(l − wt)2χ̇

]
sinχ + Kt

[
w(cosχ− 1)(l − wt)

]
cosχ.

Therefore, the total force due to flagellar beating for the planar case in body coordinates

can be written as

FF
fl = f1p + f2q, (3.55)

where for the effective stroke we have derived

f1 = −Kn

(
l2

2
χ̇

)
sinχ, and f2 = Kn

(
l2

2
χ̇

)
cosχ, (3.56)

and similarly for recovery stroke we have found

f1 = Kn

[
w sinχ(l − wt)− 1

2
(l − wt)2χ̇

]
sinχ + Kt

[
w(cosχ− 1)(l − wt)

]
cosχ

f2 = −Kn

[
w sinχ(l − wt)− 1

2
(l − wt)2χ̇

]
cosχ + Kt

[
w(cosχ− 1)(l − wt)

]
sinχ. (3.57)

Thus, the total viscous force and viscous torque produced by both flagella in the

presence of a no-slip stationary plane boundary can be calculated by substitution of the

equations (3.46), (3.51), (3.56) and (3.57) for forces and equations (3.48) and (3.53) for

torques in

Fflg = Ftr + Frt − Ffl, (3.58)

and

Lflg = Ltr + Lrt − Lfl. (3.59)
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3.4.2 Force-Torque balance equations

Now following the unbounded swimming case discussed in chapter 2 we can constitute

the force torque balance equations for the biflagellate cell swimming in the vicinity of the

no-slip plane boundary. Both of the cell’s flagella beat symmetrically but the flow around

the cell body does not remain symmetric because of the presence of the plane boundary.

Using equations (3.24) and (3.25), the force torque balance equations for the symmetric

flagella beat and non-symmetric fluid flow problem in a uniplanar locomotion takes the

form

Fbdy + Fflg = 0, (3.60)

Lbdy + Lgrv + Lflg = 0. (3.61)

Now using the above defined assumptions for the uniplanar flagella beat pattern and

equations (3.28) and (3.58) for forces and (3.29), (3.31) and (3.59) for torques (3.28), the

force-torque balance equations for biflagellate swimming in the presence of plane boundary

can be written in matrix form as



Fp

Fq

Lr


 =




β̄11 β12 β̄16

β21 β̄22 β26

β̄61 β62 β̄66







vp

vq

Ωr


 +




0

0

−mgH sin θ


−




f1

0

0


 = 0,

which can be further simplified in the absence of vorticity ω, and after rearrangement as



β̄11 β12 β̄16

β21 β̄22 β26

β̄61 β62 β̄66







vp

vq

Ωr


 =




f1

0

0


−




0

0

−mgH sin θ


 . (3.62)

The coefficient matrix or resistance matrix from the above matrix equation can be defined

as

C =




β̄11 β12 β̄16

β21 β̄22 β26

β̄61 β62 β̄66


 ,

where βij are the unknown beat coefficients, which are the sum of αij and αij , beat

coefficients due to sphere and image sphere locomotion respectively. The terms β̄ij , incor-

porates viscous drag and viscous torque due to the translational and rotational motion of

the spherical body in the presence of the plane boundary. The diagonal terms β̄ii have

been modified using equations (3.28) for viscous drag and (3.29) for viscous torque in the
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presence of a plane boundary as

β̄11 = β11 − 6π − 27π

8h
, β̄22 = β22 − 6π − 27π

8h
, and β̄66 = β66 − 8π − 5π

2h3
,

whereas, off diagonal terms β̄ij , again using equations (3.28) and (3.29), take the form as

β̄16 = β16 +
3π

4h4
, and β̄61 = β61 +

3π

4h4
.

The inverse of the above resistance matrix C, termed a mobility matrix can be evalu-

ated as

D = C−1 =
1
Λ∗




∆11 ∆12 ∆13

∆21 ∆22 ∆23

∆31 ∆32 ∆33


 ,

where

∆11 = β̄22β̄66 − β62β26, ∆12 = β̄16β62 − β12β̄66, ∆13 = β12β26 − β̄16β̄22,

∆21 = β̄61β26 − β21β̄66, ∆22 = β̄11β̄66 − β̄16β̄61, ∆23 = β̄16β21 − β̄11β26,

∆31 = β21β62 − β̄61β̄22, ∆32 = β12β̄61 − β̄11β62, ∆33 = β̄11β̄22 − β21β12,

and

Λ∗ = β̄61β12β26 − β̄61β̄16β̄22 − β21β12β̄66 + β21β̄16β62 + β̄11β̄22β̄66 − β̄11β62β26.

After multiplication with the mobility matrix D, equation (3.62) takes the form



vp

vq

θ̇


 =

1
Λ∗




∆11f1

∆21f1

∆31f1


−

1
Λ∗




−∆13mgH sin θ

−∆23mgH sin θ

−∆33mgH sin θ


 , (3.63)

where

Ωr = θ̇.

Thus for the symmetric flagella beat of a biflagellate cell in the presence of plane boundary

in a uniplanar locomotion, vp and vq can be written in components form as

vp =
(

β̄22β̄66 − β62β26

Λ∗

)
f1 +

(
β12β26 − β̄16β̄22

Λ∗

)
mgH sin θ, (3.64)

vq =
(

β̄61β26 − β21β̄66

Λ∗

)
f1 +

(
β̄16β21 − β̄11β26

Λ∗

)
mgH sin θ, (3.65)

and angular velocity θ̇ can be found as

θ̇ =
(

β21β62 − β̄61β̄22

Λ∗

)
f1 +

(
β̄11β̄22 − β21β12

Λ∗

)
mgH sin θ. (3.66)
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Figure 3.7: Addition and subtraction of forces acting on the flagellar section due to swim-

ming in the (a) primary velocity direction p and (b) transverse velocity direction q re-

spectively.
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Since, due to the presence of the plane boundary the flow around the swimming cell is not

symmetric, so we have observed that velocity component in the primary direction vp and

velocity component in transverse direction vq depend upon h distance from the centre of

cell to the boundary, angle θ and centre-of-gravity offset H. Similarly velocity component

vq also depend upon the h, θ and H respectively.

For the case of bounded cell swimming in the absence of gravitational forces and

torques, the components of swimming velocity and angular velocity, (3.64) to (3.66), takes

the form as

vp =
(

β̄22β̄66 − β62β26

β̄61β12β26 − β̄61β̄16β̄22 − β21β12β̄66 + β21β̄16β62 + β̄11β̄22β̄66 − β̄11β62β26.

)
f1,

(3.67)

vq =
(

β̄61β26 − β21β̄66

β̄61β12β26 − β̄61β̄16β̄22 − β21β12β̄66 + β21β̄16β62 + β̄11β̄22β̄66 − β̄11β62β26.

)
f1,

(3.68)

and angular velocity θ̇ can be found as

θ̇ =
(

β21β62 − β̄61β̄22

β̄61β12β26 − β̄61β̄16β̄22 − β21β12β̄66 + β21β̄16β62 + β̄11β̄22β̄66 − β̄11β62β26.

)
f1,

(3.69)

where β̄ij are special terms involving Faxen’s corrections due to the biflagellate cell’s body

translation and rotation in the vicinity of the no-slip plane boundary.

Furthermore in the absence of the Faxen’s correction terms as defined in equations

(3.28) and (3.29), the equations for cell swimming velocity and angular velocity without

the gravitational forces and torques further simplify to yield

vp =
(

β22β66 − β62β26

β61β12β26 − β61β16β22 − β21β12β66 + β21β16β62 + β11β22β66 − β11β62β26.

)
f1,

(3.70)

vq =
(

β61β26 − β21β66

β61β12β26 − β61β16β22 − β21β12β66 + β21β16β62 + β11β22β66 − β11β62β26.

)
f1,

(3.71)

and angular velocity θ̇ can be found as

θ̇ =
(

β21β62 − β61β22

β61β12β26 − β61β16β22 − β21β12β66 + β21β16β62 + β11β22β66 − β11β62β26.

)
f1.

(3.72)

3.4.3 Force-Torque balance equations without flagella contributions

To investigate the contribution of the flagella during the cell swimming in the vicinity

of a no-slip plane boundary, we derive again the equations of motion for cell swimming
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using force-torque balance equations without the flagella contribution. Following the same

assumptions discussed in section (3.4.2) and using equations (3.60) and (3.61), the force

torque balance equations for bounded symmetric cell without the flagella in the presence

of the no-slip plane boundary in a uniplanar locomotion takes the form as

Fbdy = 0, (3.73)

Lbdy + Lgrv = 0. (3.74)

Now using the above defined assumptions for the uniplanar flagella beat pattern and

equations (2.7), (2.8) and (2.10), the force-torque balance equations can be written in

matrix form as



Fp

Fq

Lr


 =




−6π − 27
8h 0 3π

4h4

0 −6π − 27
8h 0

3π
4h4 0 −8π − 5π

2h3







vp

vq

Ωr


 +




0

0

−mgH sin θ


 = 0,

which can be further simplified and after rearrangement as



−6π − 27
8h 0 3π

4h4

0 −6π − 27
8h 0

3π
4h4 0 −8π − 5π

2h3







vp

vq

Ωr


 = −




0

0

−mgH sin θ


 . (3.75)

The coefficient matrix or resistance matrix from the above matrix equation can be defined

as

F =




−6π − 27
8h 0 3π

4h4

0 −6π − 27
8h 0

3π
4h4 0 −8π − 5π

2h3


 ,

the inverse of the above resistance matrix F , termed as mobility matrix can be evaluated

as

G = F−1 =
1

Λ∗∗




−8π − 5π
2h3 0 − 3π

4h4

0 −8π − 5π
2h3 0

− 3π
4h4 0 −6π − 27

8h


 ,

where

Λ∗∗ =
(
−6π − 27

8h

)(
−8π − 5π

2h3

)
−

(
3π

4h4

)2

.

After multiplication with the mobility matrix G, equation (3.75) takes the form



vp

vq

θ̇


 =

1
Λ∗∗




− (
3π
4h4

)
mgH sin θ

0
(−6π − 27

8h

)
mgH sin θ


 . (3.76)
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(a)

(b)

Figure 3.8: Swimming cell in the vicinity of no-slip stationary plane boundary. (a) Upward

swimming away/towards the plane boundary, (b) Angled/parallel swimming near the plane

boundary.
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Thus for a biflagellate cell swimming without the flagella contribution in the presence of

a plane boundary in a non-symmetric fluid flow problem for a uniplanar locomotion vp

and vq takes the form as

vp =
1

Λ∗∗
(
− 3π

4h4

)
mgH sin θ, (3.77)

vq = 0, (3.78)

and angular velocity θ̇ can be found as

θ̇ =
1

Λ∗∗
(
−6π − 27

8h

)
mgH sin θ. (3.79)

Here we have observed that velocity component in the primary direction vp and angular

velocity θ̇ are depending upon angle θ, distance of centre of cell from the boundary h and

centre-of-gravity offset H. The swimming velocity in the transverse direction vq is found

to be zero which means no drift in the q direction without the inclusion of flagella.

3.5 Results

Now we will discuss the different situations of the uniplanar biflagellate swimmer C.

augustae in the vicinity of the stationary and rigid no-slip plane boundary, as shown in

Figure 3.8 in detail.

3.5.1 Uniplanar upward cell swimming away/towards the no-slip plane

boundary

In the first part of the bounded swimming problems we start with the most simple

case when the biflagellate cell swims away/towards the stationary no-slip stationary plane

boundary. It is clear from Figure 3.8(a) that for the uniplanar upward swimming case

θ = 0◦, which implies no contribution from the gravitational torque. Therefore, the

above derived equations (3.64) to (3.66) for the organism’s swimming velocity and angular

velocity reduced to equations (3.67) to (3.69) as discussed earlier in section (3.4.2).

Now we will discuss the two cases of the uniplanar upward swimming of biflagellate

cell in the vicinity of the stationary no-slip plane boundary in detail.

Case(a): Upward swimming away from the plane boundary

In the first case we will discuss the organism’s uniplanar swimming vertically upward

away from the rigid no-slip plane boundary, which lies at a distance h from the center of

the body as shown in Figure 3.9.
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Figure 3.9: Upward swimming of a biflagellate cell away from the stationary no-slip plane

boundary, where h is the distance of plane boundary from the centre of the cell body, r

and R are the position vectors at an element of flagellum from the centre of sphere and

image sphere, respectively.

The position vector and velocity vector from the centre of the image sphere at any point

on the flagellum for uniplanar swimming case can be calculated by substituting θ = 0◦ in

the generalized expression of the position vector for the image sphere defined in equation

(3.39) as

RS(s, t) = [(s− b) sinχ)] i + [2h + b + (s− b) cosχ)] k,

RF (s, t) = [(b + 2h) sinχ] n + [(s− b) + (b + 2h) cosχ] t. (3.80)

and

ṙ = [w(cosχ− 1)] t + [w sinχ− (s− wt)χ̇] n. (3.81)

Now using the above equations (3.67) to (3.69) and our Maple code, we have calculated

the uniplanar upward swimming velocity and angular velocity of the cell away from the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Variations of primary swimming speed vp with the increase of h ((a)-(f),

h = 2, 5, 10, 20, 50, h = 100) for one flagella beat, when cell is swimming away from the

no-slip plane boundary. The dashed line represents the graph for the unbounded case

whereas the solid line is for a bounded swimming cell.
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Figure 3.11: Variations of a biflagellate cell’s change in position for one flagellar beat with

increasing of h when the cell is swimming away from the no-slip plane boundary. The

dashed line represents the graph for the unbounded case whereas the solid line is for a

bounded cell swimming away from the boundary.

no-slip plane boundary. For comparison purpose and to test the convergence of the results

we have compared the results for the bounded swimming with the unbounded swimming

results explained in chapter 2. The detailed results are shown in the graphs plotted in

Figures 3.10 and 3.11.

Now after analyzing the results we conclude that the swimming velocity in the primary

swimming direction vp is suppressed during effective stroke and more regressed during

recovery stroke and with a slower swimming speed initially very close to the boundary due

to the presence of the no-slip plane boundary. The typical value of vp at a distance h = 2

from the plane boundary is calculated as 0.139 body radii per beat. After several beats,

as cell swims upward away from the plane boundary, the swimming velocity increases in

comparison with the previous velocity value due to the increased distance from the plane

boundary. We have found the swimming velocity vp at a distance h = 100 as 0.1945 body

radii per beat. For unbounded swimming biflagellate we have calculated vp as 0.1967

body radii per beat in chapter 2. Thus we conclude that for a large value of h, i.e. far
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away from the plane boundary, the boundary effect diminishes and the bounded swimming

speed approaches the unbounded swimming speed, as shown in the Figures 3.10 and 3.11.

The flagella beat is symmetric and θ = 0 is for swimming away from the boundary case

so the system is symmetric, so we expect component of velocity in the transverse direction

vq also equal to zero.

Case(b): Upward swimming towards the plane boundary

The second problem of uniplanar upward swimming is quite similar to the first problem

with the only change is now organism swims towards the plane boundary which is at a

distance h above the cell from the centre of the cell body. Here the distance h must be

enough to enables the flagella to move freely as shown in the Figure 3.12.

Figure 3.12: Upward swimming of a biflagellate cell towards the stationary no-slip plane

boundary, where h is the distance of plane boundary from the centre of the cell body, r

and R are the position vectors at an element of flagellum from the centre of sphere and

image sphere, respectively.

The position vector and velocity vector from the centre of the image sphere at any
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point on the flagellum for the uniplanar swimming case can be calculated by substituting

θ = 0◦ in the generalized expression of position vector for the image sphere defined in

equation (3.38) as

RS(s, t) = [(s− b) sinχ)] i + [−2h + b + (s− b) cosχ)] k,

RF (s, t) = [(b− 2h) sinχ] n + [(s− b) + (b− 2h) cosχ] t. (3.82)

and

ṙ = [w(cosχ− 1)] t + [w sinχ− (s− wt)χ̇] n. (3.83)

Now using the above equations for the position vectors, the equations (3.67) to (3.69)

and using our Maple code we have found the components of the swimming velocity and

angular velocity of the biflagellate swimming cell towards the stationary no-slip plane

boundary. The details of the results are shown in the graphs in Figures 3.13 to 3.15.

It is clear from the Figure 3.13 that at sufficiently far away from the plane boundary the

value of the primary swimming velocity component vp is consistent with the unbounded

uniplanar swimming velocity discussed in chapter 2. As the biflagellate swimming cell

approaches the plane boundary, the swimming velocity regressed gradually and reduced

significantly very close to the plane boundary. For swimming close to the boundary at

h = 2, we have calculated the swimming speed vp as 0.2221 body radii per beat which

gradually increases sufficiently at far away from the plane boundary.

The transverse velocity component vq and angular velocity θ̇ both are zero at far away

from the no-slip plane boundary which is also consistent with the results for unbounded

cell swimming case. In this case, the geometry of the problem is different from the previous

case, here biflagellate cell is facing towards the plane boundary. As θ = 0, in this case

as well so the system is symmetric again, but we have found some very small non-zero

contribution for vq swimming speed close to the boundary as shown in Figure 3.14. This

may be due to the calculation error and can be investigated in future.

3.5.2 Comparison of swimming away and towards the no-slip stationary

plane boundary

After analyzing the above two cases in detail and from Figures 3.11 and 3.15 we have

found few similarities in the cell’s locomotion. At Sufficiently far away from the no-slip

plane boundary the above two cases behaves alike and cell’s swimming speed approaches

to the unbounded swimming cell speed for one flagella beat for the both cases. However,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Variations of primary swimming speed vp with the decrease of h ((a)-(f),

h = 100, 50, 20, 10, 5, h = 2) for one flagella beat, when the cell is swimming towards the

no-slip plane boundary. The dashed line represents the graph for the unbounded swimming

case whereas solid line is for a bounded cell swimming towards the plane boundary.
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(a)

(b)

Figure 3.14: Variations of transverse swimming speed vq with the decrease of h, (a) h = 5,

and (b) h = 2 for one flagella beat, when cell swimming towards the no-slip plane boundary.
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Figure 3.15: Variations of biflagellate cell’s change in position for one flagella beat with

the increase of h distance of the plane boundary from the centre of the cell body, as cell

swimming towards the no-slip plane boundary. The dashed line represents the graph for

unbounded case whereas solid line for bounded cell swimming towards the boundary.

very close to the plane boundary the above two cases are not similar. For the case of

swimming away from the plane boundary, cell’s swimming speed is much reduced due to

the presence of the plane boundary in comparison with the unbounded case and gradually

start increasing as cell moves away from the plane boundary as shown in Figure 3.11.

On the other hand, when cell swimming towards and close to the plane boundary, cell’s

swimming speed gradually increases due to the presence of the plane boundary, position

of the flagella and geometry of the problem as shown in Figure 3.15. A sudden drop in

the swimming speed found as swimming cell approaches to the plane boundary and this

may be due to the close proximity of the flagella with the boundary which may restricts

the free flagella movement as clear from the Figure 3.12 and 3.15.
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3.5.3 Biflagellate cell swimming in the vicinity of the no-slip stationary

plane boundary

In the second part we now investigate the general problem of biflagellate cell swimming

at any angle near the no-slip stationary plane boundary. This case can be analyze by

changing the orientation of the cell from the previous case, which leads to the change

in force-torque balance equations with the involvement of gravity effects and we expect

some healthy contributions from transverse swimming speed vq and angular velocity θ̇.

Thus to keep the axes same as discussed in the previous section we define the problem of

swimming in the vicinity of the no-slip plane boundary as shown in Figure 3.6. Now the

position vector from the image cell at any point on the flagellum of the swimming cell for

the general case as defined earlier can be written as

RS(s, t) = [b sin θ + (s− b) sin(θ + χ)] i + [2h + b cos θ + (s− b) cos(θ + χ)] k,

RF (s, t) = [b sinχ + 2h sin(χ + θ)] n + [(s− b) + b cosχ + 2h cos(χ + θ)] t,

whereas the velocity of the any point of the flagellum as defined earlier in flagella coordi-

nates system is

ṙ = [w(cosχ− 1)] t + [w sinχ− (s− wt)χ̇] n.

Now as a general case we do the analysis of the biflagellate cell swimming at an angle of

θ = 40◦. Thus using the general force-torque balance equations (3.64) to (3.66) and our

Maple code with the substitution of θ = 40◦ we have calculated the components of the

swimming velocity vp, vq and angular velocity. The results of the simulations with the

variations of the distance h from the plane boundary from the centre of the biflagellate

cell body are shown in Figures 3.16 to 3.19.

Since the biflagellate cell is bottom heavy because of its centre-of-gravity offset we

have observed again more or less the same behavior as in the previous case for the case

of primary swimming velocity vp. The swimming velocity vp is regressed close to the

boundary and gradually increases as the cell moves further away from the plane boundary

as shown in the graphs on Figure 3.16. It is also intersecting to note that the swimming

velocity vp is more regressed close to the plane boundary: at h = 2 we found 0.1398 body

radii per beat. This is due to the fact that even if the beat is symmetric but the right-

hand flagellum is closer than the left-hand flagellum to the boundary in this position. This

closeness of flagellum to the boundary causes non-symmetric thrust and moves the body

at an angle to the vertical with rotation, inducing non-symmetric flow.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Variations of primary swimming speed vp with the increase of h ((a)-(f),

h = 2, 5, 10, 20, 50, h = 100) for one flagella beat, when cell swimming away at an angle

θ = 40◦ from the no-slip plane boundary. The dashed line represents the graph for the

unbounded case whereas the solid line is for a bounded cell swimming.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Variations of transverse swimming speed vq with the increase of h ((a)-(f),

h = 2, 5, 10, 20, 50, h = 100) for one flagella beat, when cell swimming away at an angle

θ = 40◦ from the no-slip plane boundary. The dashed line represents the graph for the

unbounded case whereas the solid line is for a bounded cell swimming.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Variations of angle θ with the increase of h ((a)-(f), h = 2, 5, 10, 20, 50, h =

100) for one flagella beat, when cell swimming away at an angle θ = 40◦ from the no-slip

plane boundary. The dashed line represents the graph for the unbounded case whereas

the solid line is for a bounded cell swimming.
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Due to the geometry of the problem, the gravitational effect plays a significant role in

the calculation of the transverse swimming velocity vq and angular velocity θ̇. Here, we

have observed some noticeable contribution for swimming velocity in the q direction close

to the boundary in comparison with the unbounded swimming. A typical value of 0.00177

body radii per beat for vq was found when biflagellate swimming as a distance h = 2 from

the plane boundary. Additionally, it is evident from the graphs in Figure 3.17, the values

of vq decays slow by even as after the cell moves away from the boundary, and converges

to the unbounded swimming velocity at very far distances from the boundary. This shows

that in this case the plane boundary has a significant effect on the swimming velocity vq.

On the other hand, angular velocity θ̇ is also effected enormously for one flagella beat in

this setup due to the presence of the plane boundary, as shown in the graphs in Figure

3.18. Here, we have also noticed that at very close to the plane boundary the net change

in the swimming cell’s angle for one flagella beat is positive, i.e. 0.002743 body radii per

beat at a distance h = 2, and at far from the plane boundary changes in angle became

negative, i.e. −0.00101 per beat at a distance h = 100 from the plane boundary, for one

flagella beat. This is consistent with the change in angle for an unbounded swimming cell

for one flagella beat. The transition from positive change in angle for one flagella beat into

negative change is observed again to slow as the cell swims away from the plane boundary

in this particular geometry, as shown in the graphs in Figure 3.18.

3.5.4 Biflagellate swimming parallel to the plane boundary

An important aspect of the swimming close to the boundary is to investigate the

biflagellate cell swimming parallel to the no-slip plane boundary. As most of our laboratory

experimental studies required investigation of cell suspensions in micro slides, thin tubes,

or petri dishes, this involves cells mostly swimming parallel to the boundary. Here, for

the ease of calculations, we have used a plane boundary which is stationary and lies at a

distance h from the centre of the biflagellate cell body as shown in the Figure 3.20.

The position vector of an element of flagellum from the centre of the image cell body

in generalized form again can be written as

RS(s, t) = [b sin θ + (s− b) sin(θ + χ)] i + [2h + b cos θ + (s− b) cos(θ + χ)] k,

RF (s, t) = [b sinχ + 2h sin(χ + θ)] n + [(s− b) + b cosχ + 2h cos(χ + θ)] t,

whereas the velocity of the any point of the flagellum as defined earlier in flagella coordi-
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Figure 3.20: Swimming of biflagellate cell parallel to the stationary no-slip plane boundary,

where h is the distance of plane boundary from the centre of the cell body, r and R are

the position vectors at an element of flagellum from the centre of the sphere and image

sphere, respectively.
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nates system is

ṙ = [w(cosχ− 1)] t + [w sinχ− (s− wt)χ̇] n.

Now to investigate the biflagellate swimming parallel to the plane boundary we substitute

θ = 90◦ in the generalized position vector as shown in the Figure 3.20. Using the force-

torque balance equations for the general uniplanar locomotion of the cell swimming in the

vicinity of the no-slip plane boundary, we have derived the equations for components of

the swimming velocity vp, vq and angular velocity θ̇ in equations (3.64), (3.65) and (3.66).

Thus using these equations and our generalized maple code we found the results for the

biflagellate swimming velocity and angular velocity for one flagella beat. As swimming

parallel to plane boundary is the most interesting case due to the geometry of the problem

of our analysis of biflagellate swimming close to the plane boundary, so we investigate a

few extra aspects of the biflagellate swimming.

To investigate the contribution of the Faxen’s correction terms for the cell body trans-

lational and rotational motion defined in equations (3.28) and (3.29), we have calculated

the components of swimming velocity and angular velocity without the Faxen’s correc-

tions and analyze the difference with results including them. Additionally, we also try

to explore the effects of gravitational torques upon the biflagellate swimming near the

plane boundary. For this purpose we have calculated the biflagellate swimming velocity

and angular velocity using our Maple code and equations (3.70) to (3.72) derived earlier,

which are without including the gravity and Faxen’s correction terms. Finally, in order

to investigate the contribution of flagella on the biflagellate cell swimming parallel to the

plane boundary, we compute the swimming velocity and angular velocity of the cell with-

out the flagella contribution using the equations (3.77) to (3.79) and our Maple code. The

difference of the two results, one with the flagellar and other without the flagellar con-

tribution, will reveal the desired information. The detailed graphs for the results of the

above discussed aspects of the biflagellate swimming parallel to the no-slip plane boundary

are shown in Figures 3.21 to 3.23.

The graphs in Figure 3.21 indicate that the swimming velocity in the primary direction

vp is regressed very close to the boundary and gradually increases as the biflagellate swims

at a large distance from the plane boundary. A typical value of 0.1440 body radii per beat

was found whereas without Faxen contribution we obtain 0.1677 body radii per beat at a

distance h = 2 from the plane boundary was recorded when cell swimming parallel to the

plane boundary. The swimming speed vp without the gravitational contribution was found
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: Variations of primary swimming speed vp with the increase of h ((a)-(f), h =

2, 5, 10, 20, 50, h = 100) for one flagellar beat, when the cell is swimming parallel to the

no-slip plane boundary. The dashed line represents the graph for unbounded case, dotted

line for without Faxen’s correction terms, dashdot line for without Faxen’s correction and

gravity contribution and solid line for bounded cell swimming.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Variations of transverse swimming speed vq with the increase of h ((a)-(f), h =

2, 5, 10, 20, 50, h = 100) for one flagellar beat, when the cell is swimming parallel to the

no-slip plane boundary. The dashed line represents the graph for unbounded case, dotted

line for without Faxen’s correction terms, dashdot line for without Faxen’s correction and

gravity contribution and solid line for bounded cell swimming.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: Variations of change in angle θ of biflagellate cell for one flagellar beat with

the increase of h ((a)-(f), h = 2, 5, 10, 20, 50, h = 100), when the cell is swimming parallel

to the boundary. The dashed line represents the graph for unbounded case, dotted line for

without Faxen’s correction terms, dashdot line for without Faxen’s correction and gravity

contribution, longdashed line for without flagella and solid line for bounded cell swimming.
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to be exactly the same, which means that primary swimming speed does not depend on

gravitational torque in general.

For the transverse swimming velocity vq we have observed some noticeable contribution

close to the boundary when the cell is swimming parallel to the plane boundary. The

swimming velocity vq increases by excluding the Faxen’s correction terms whereas we

found a decrease in vq values while ignoring the gravity contributions when the biflagellate

swims parallel to the plane boundary as shown in the graphs in Figure 3.22. This means

that drift in the q direction depends upon the gravitational torque, which may be due to

the centre-of-gravity offset from the geometric centre or asymmetric distribution of the

biflagellate cell contents.

Now the most important aspect of the biflagellate’s swimming parallel to the plane

boundary is to investigate the change in the angle during the flagella beat. This will

provide the right estimates for the effective centre-of-gravity offset, cell eccentricity and

gyrotactic reorientation time for one flagella beat. The results for the variations of angle θ

for one flagella beat when biflagellate swimming parallel to the plane boundary are shown

in graphs in Figure 3.23. It is clear from these graphs that the net change in swimming

angle θ is positive very close to the plane boundary at h = 2 and as the biflagellate cell

moves away or at a distance h > 2, we found the net change in angle θ to be negative.

Far away from the plane boundary the value of net change in angle θ approaches the value

for unbounded swimming of biflagellate cell, as clear from the Figure 3.24. It is also clear

from the results that excluding the Faxen’s correction causes some changes in the angular

velocity close to the boundary but as the cell moves far away from boundary the results

converge to those with Faxen’s correction term results. On the other hand, in the absence

of gravity torques, we have recorded some noticeable pattern in the change in swimming

angle for one flagella beat. We have noticed the positive net change in angle close to the

plane boundary, gradually goes to zero far away from the plane boundary as shown in the

graphs in Figure 3.23. Since the biflagellate generally is bottom heavy, so we can expect

the dependence of the angular velocity on the gravitational torques and conclude that in

the absence of gravitational torques the angular velocity of biflagellate is zero far from the

no-slip plane boundary as expected.

In order to investigate the contribution of the flagella while swimming parallel to the

plane boundary we have computed the results for the angular velocity without the inclusion

of the flagella. The result for the case of bounded biflagellate swimming after one flagella
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beat close to the boundary at h = 2 implies the change in angle from θ = 90◦ to θ = 90.15◦

whereas we have recorded the change of θ = 90◦ to θ = 89.81◦ for the case of biflagellate

swimming without the contribution of flagella. This implies that angular velocity increases

close to the boundary due to the right-hand flagellum facing the plane boundary within

the fluid, whereas without flagella angular velocity decreases close to the boundary. On

the other hand at far from the plane boundary h = 100 we have recorded the net change

in angle of biflagellate cell in the presence of plane boundary as from θ = 90◦ to θ = 89.91◦

which is consistent with the change for unbounded swimming and has the same sign of ∆θ

as for without the flagella contribution case where θ changes from θ = 90◦ to θ = 89.81◦.

This clearly shows that the inclusion of the beating flagella has a significant contribution

for the calculation of the angular velocity for the case of biflagellate swimming in the

vicinity of a plane boundary.

3.6 Conclusion

After successfully investigating biflagellate cells swimming in an unbounded domain

using the generalized method and our Maple code discussed in chapter 2, we have extended

the idea to apply to the more complex and practical situation of biflagellate swimming in

the vicinity of a stationary no-slip plane boundary. In order to satisfy the no-slip plane

boundary conditions we have added the contribution of the translational and rotating

image cell body, as derived for a sphere by Blake and Chwang [16]. Now, again using

the Resistive Force Theory (RFT) developed by Gray and Hancock [51] and employing

Lighthill’s resistance coefficients [95], we analytically model the problem following the

same procedure discussed in chapter 2. For the calculation of results we implemented the

problem in Maple and developed code to avoid cumbersome and laborious calculations.

In order to understand the bounded biflagellate swimming in detail, we have modelled

different possible positions of the cell swimming in the vicinity of the no-slip plane bound-

ary. In the first part, we have discussed the simple situations of a biflagellate swimming

upwards away and towards a no-slip plane boundary. Here, we have noticed a regressed

primary swimming speed vp for both cases close to the boundary in comparison with the

unbounded swimming speed for one flagella beat. The swimming speed in the transverse

direction vq and angular velocity θ̇ are equal to zero.

In the second part, we have modelled the general case of the biflagellate swimming
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in the vicinity of a no-slip plane boundary. Here, we have calculated the results for the

biflagellate swimming at an angle of θ = 40◦ away from the stationary plane boundary.

The primary swimming velocity results were found without any substantial change in the

values and patterns from the previous case. Due to the geometry of the problem and

contribution of the gravitational torques we have observed some non-zero contributions

for vq and θ̇ close to the plane boundary.

Finally, in the last section we have analyzed the biflagellate swimming parallel to the

no-slip plane boundary, which is the most important situation in the context of laboratory

experimental work. Here again we have observed a regressed swimming speed vp close

to the boundary as compared to the unbounded biflagellate swimming, and far from the

boundary the two cases coincide. Due to the position of the cell the right-hand flagel-

lum beats closer to the boundary than the left-hand flagellum and with the gravitational

torques constitutes some non-zero components of the swimming velocity vq and angular

velocity θ̇. These components tend to the values of unbounded swimming case far from the

plane boundary. Additionally, we have investigated the contributions of Faxen’s correction

terms by calculations of excluding them, and found higher values of the components of the

velocity and angular velocity without the Faxen’s correction terms. To analyze the effects

of the gravitational torque, we have computed the results without incorporating them and

found again higher values of the velocity and angular velocity close to the plane bound-

ary. The values of velocity components approach the values for the unbounded swimming

velocity components whereas angular velocity tends to zero far from the plane boundary.

Last but not least, we investigate the contribution of the flagella in the swimming of

the biflagellate swimming parallel to the plane boundary by excluding the flagella and

computing the velocity and angular velocity. Here, we have found higher values of the net

change in the angle of the biflagellate without the flagella for one flagella beat near the

plane boundary. This indicates that by including the flagella we will have lower value of

the angular velocity in the vicinity of the plane boundary. This could modify the existing

continuum model of Pedley and Kessler [114], which does not incorporate the flagellar

contributions. It will also assist to modify the values of the centre-of-gravity offset, cell

eccentricity, and gyrotactic reorientation time. As a first step this analysis gives some

insight to understand the interaction phenomena of biflagellate with the wall or other

geometries which can be extended to interaction with two or more biflagellates. This

analysis will help to better understand and analyze bioconvection phenomena, suspension
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behavior and may improve the efficiency and designs of hydrogen production and alga

photo bio-reactors for biodiesel production accordingly.

The main results from this chapter are that the swimming speed of the biflagellated

cell swimming towards or away from the no-slip stationary plane boundary are increasing

or decreasing respectively. For the case of swimming parallel to the stationary no-slip

plane boundary the cells are reoriented to swim away from the plane boundary.



Chapter 4

Experimental analysis of sheared

bioconvection in a horizontal

cylindrical tube

4.1 Synopsis

In this chapter, we have investigated the quantitative analysis of bioconvection patterns

in a long horizontal tube. Aggregations of populations of swimming micro-organism in

suspensions biased by environmental cues, are subject to instabilities generates interesting

bioconvection patterns. To date, quantitative experimental studies of pattern formation

experiments involved mostly in petri dishes by Bess and Hill [7], Czirók et al. [37] and

Williams [147]. Here we have performed experiments to quantitatively explore the onset

and long-time bioconvection of suspensions of biflagellate green algae Chlamydomonas

augustae in long horizontal tubes. First we described the full details of the experimental

procedures followed by an explanation of the image analysis techniques employed to collect

the useful data. Initial pattern wavelength λi and long time onset patterns wavelength

λf , by changing the concentration of the suspension using dilution procedure and by

changing the horizontal tubes with different tube diameter was explored with no imposed

flow. Additionally, changes in the wavelength was recorded and analyze for the weak

poiseuille flow in the tube by varying the cell concentration and the flow rate using syringe

pump. Initially vertical plumes of cells were observed to bend in the direction of the

flow and progressively fragment into piecewise linear diagonal plumes for comparatively

130
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increased shear rates. The nature of the patterns dynamics qualitatively and average

angle measurement found nearly unchanged with the variations of concentrations. It

is also observed that even at high imposed flow rates, bioconvection is not completely

suppressed and perturbs the flow field. The main application of our investigations involve

cell transport in tubular geometries used mostly in alga photo bioreactors. Literature

survey reveals that this is the pioneering attempt to quantitatively investigate the changes

in wavelength of bioconvection patterns by changing the concentration, tube diameter and

varying flow rate in a long horizontal cylindrical tubes.

4.2 Introduction

This chapter includes the analysis of the experimental work which we have carried

out in our departmental biofluids laboratory. Here we mostly focused our attention to

the experiments related to the bioconvection phenomena of swimming micro-organism,

the green algae in a thin long horizontal cylindrical tubes. The aim of this study is to

endeavor quantify observations of pattern formation in thin horizontal tubes by the swim-

ming micro-organism in a rational and reproducible manner. Micro-organisms are mostly

motile and bias their motion (taxis) in response to environmental cues to seek conducive

environment for their living. Many species of bacteria, (e.g. Escherichia coli) biasing their

locomotion towards nutrients and away from toxic chemicals, termed as chemotactic (see

Berg [12]). Green algae species Chlamydomonas and Dunaliella on average swim upward

due to centre-of-gravity offset from the geometric centre to find the water surfaces named

as gravitaxis. In addition to gravitaxis these species with in the fluid flow also display

gyrotaxis which is due to the biasing in the swimming direction resulting from the balance

of viscous and gravitational torques acting on them. A combination of these above defined

taxis often generates spatially localized structures and patterns, such as bioconvection

patterns observed in suspensions of Chlamydomonas sp. due to combination of gravitaxis

and gyrotaxis (see Pedley and Kessler [114], Hill and Pedley [63]). These patterns forma-

tion occurs due to the instabilities within the suspensions of cell which are denser than

the surrounding fluid (5% for Chlamydomonas sp.). These patterns appear as visually

striking alterations of dark (high cell concentration) and light (low cell concentration)

spots ar strips. In this chapter we will explain in detail of the methods and techniques

we have established for measuring the attributes of these patterns formed in suspensions
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of green algae in thin horizontal tubes. The qualitative study of pattern formation have

been reported earlier by the authors as Wager [144], Loeffer and Mefferd [98], Wille and

Ehert [146], Kessler [80] and Durham et al [38].

The important development in the study of bioconvection was carried out by Bees

and Hill [7], who conducted the set of 39 controlled experiments aimed at quantitatively

cataloguing aspects of the bioconvection patterns of green algae Chlamydomonas nivalis

in a petri dishes. The images of bioconvection patterns were captured for every 10 seconds

and long time patterns were also captured after 5-10 minutes. Later images were analyzed

in Interactive Data Language (IDL) using Fast Fourier Transform (FFT) to find a distri-

bution of wavenumbers of different Fourier densities. Using double Gaussian curve was

fitted to the Fourier spectra and finally extracted the most dominant wavenumber. They

found initial instability and final pattern wavelength as a function of cell concentration

of the suspension and depth of the petri dish and finally they compared the initial wave-

length with the mathematical model predictions by their own model [9]. Later, Czirók

et al. [37] used the same procedure to investigate trends in initial pattern wavelength as

a function of cell concentration and depth for the case of suspension of aerotactic bac-

teria Bacillus subtilis, by employing double logarithmic curve fit for the Fourier spectra.

The same techniques were employed for studying chemoconvection pattern formation in

the Methylene-Blue-Glucose system by Pons et al. [119]. Recently Williams in her PhD

thesis [147] quantitatively investigated the changes in initial wavelength of bioconvection

pattern as a function of light intensity and changes in concentration. She also formu-

lated an automated mixing regime and using the same technique devised by Bees and

Hill [7] found similarities while comparing her experimental results with the theoretical

predictions.

The purpose of this study is to experimentally investigate bioconvection in a horizontal

tube under conditions of no imposed flow and also in the presence of weak shear. Recently

Lewis [93] showed that gyrotactic algae in a homogenous and isotropic turbulent flow field

maintain their bias and only perturb the effective value of diffusivity of cell concentration

due to turbulence. Literature survey reveals that this is the first study of bioconvection

under shear, and first quantitative study of bioconvection in horizontal tubes. The only

other experimental investigations of bioconvection in horizontal tubes were carried out by

Wager [144] in which he placed the concentrated suspension of the alga Euglena viridis in

tubes and discussed the aggregations of cells (pattern formation). Here we aim to inves-
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tigate the transport of algae in a least perturb environment keeping in view of bioreactor

geometry and following the motivation of Bees and Croze [11], and with a spirit of under-

standing the coupled cell and fluid dynamics in bioreactors. We investigated the effects of

concentration and tube diameter on the initial and final pattern wavelength of the instabil-

ity, formed during pattern formation of gravitactic C. augustae swimming cells suspension

in the horizontal thin cylindrical long tube for the case of no flow experiments. However,

for the case of flow experiments changes in the final pattern wavelength by varying the

cell concentration and flow rate were investigated. Here again we have employed the same

technique for image analysis used by Bees and Hill [7] and used the logarithmic curve fit

for Fourier spectra as used by Czirók et al. [37]. The first instability that occurs before any

higher order, non-linear forms is most important for analysis as this is the only wavelength

that can be compared with those obtained from the linear analysis of the mathematical

models. We have repeated the experimental runs using the same cells suspension with

different cell concentrations and three different tubes of variable diameter, which ensures

the statistical measures of the standard deviation and standard error of the mean for cells

under the same experimental parameters.

4.3 Breeding and concentration of green algae cells

4.3.1 Culturing of cells

To analyze the bioconvection phenomena of green algae, we first required to breed a

homogeneous culture of cells which are fresh and in a actively motile phase of develop-

ment. This needs to be taken care as these organisms exhibits numerous forms depending

upon different environmental and laboratory conditions. Here we have carried out experi-

ments on motile green alga species called Chlamydomonas augustae, strain CCAP (Culture

Collection of Algae and Protozoa; 11/51B), delivered by Sciento, Manchester UK.

For culturing of algae there are different types of media researchers have used like Soil

water medium, Fish meal media, Bolds basal medium (BBM)and Tri Acetate Phosphorous

(TAP) medium. Out of these we mostly used BBM and recently modified (3N-BBM) Bolds

basal medium with three fold Nitrogen in our lab because these are found much clearer,

match the natural environmental conditions and are relatively easy to prepare in a standard

laboratory conditions, whilst being easily adaptable (Bold and Wynne [18]). We used this

medium in large Erlenmeyer or conical flasks of 1000ml or 500ml which not only even out
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Figure 4.1: Cultures of green algae Chlamydomonas augustae in conical flasks.

the light source but also allow moderate growth of the cells. In addition to that, the long

neck shape of these flasks is useful for the cell concentration process as defined in section

4.3.2. Later, the flasks were sealed with a cotton wool bung which was inserted within the

long neck of the flask and covered with aluminium foil to avoid bacteria and any other

contamination. We can stimulate the growth and motility of the cells by the addition of

vitamin B12 into the medium, but this sometimes caused abnormal growth of cells when

used repeatedly over a few months.

In general, we used modified 3N-BBM and cells were subcultured every four weeks.

For experiments purpose we required fresh, healthy and active cultures of green algae of

three to four weeks old. Since the cells are phototropic, so we illuminate the cultures using

eight strip cool white, fluorescent tubes which give a maximum light intensity of 1900 lux

measured just above the culture flask using a digital light meter. The lights are adjusted

on a cycle of sixteen hours of light followed by eight hours of darkness. The light cycle

was set to breed cells which are available in correct motile phase and do not effect their

own diurnal cycles of breeding, dividing and feeding. Like human beings these cells do

not behave actively during the first few hours of the light cycle and later at the middle of



CHAPTER 4. EXPERIMENTAL ANALYSIS OF BIOCONVECTION 135

No. Stocks with symbol Quantity Final medium

per 500 ml of 1 Liter

1. Sodium Nitrate - NaNO3 12.5 g 30.0 ml

2. Magnesium Sulphate - MgSO4 3.75 g 10.0 ml

3. Sodium Chloride - NaCl 1.25 g 10.0 ml

4. Potassium Phosphate dibasic - K2HPO4 3.75 g 10.0 ml

5. Potassium dihydrogen Orthophosphate - KH2PO4 8.75 g 10.0 ml

6. Calcium Chloride dihydrate - CaCl2.2H2O 1.25 g 10.0 ml

7. Trace elements solutions (see Table 4.2) - 1.0 ml

8. Boric Acid - H3BO3 5.7 g 1.0 ml

9. Ethylenediaminetetraacetic acid - EDTNa2 and 25.0 g 1.0 ml

Disodium salt dihydrate - KOH 15.5 g

10. Iron (II) Sulphate - FeSO4.7H2O and 2.49 g 1.0 ml

Concentrated Sulphuric acid - H2SO4 0.5 ml

Table 4.1: Table of ingredients for 3N-BBM modified (nitrogen enriched Bold’s basal

medium; Schlösser 1997).

No. Stocks with symbol Quantity

per 500 ml

a. Zinc Sulphate - ZnSO4.7H2O 4.41 g

b. Manganese(II) Chloride - MnCl2.4H2O 0.72 g

c. Molybdenum trioxide - MoO3 0.355 g

d. Copper(II) Sulphate - CuSO4.5H2O 0.785 g

e. Cobalt(II) Nitrate - CO(NO3)2.6H2O 0.245 g

Table 4.2: Table of ingredients for Trace elements solutions used in 3N-BBM modified.
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the day they behave best and swims effectively to generate most robust patterns, which

is not always true. The cells stop dividing when the suspension is well mixed and breed

maximum when the suspension is not agitated (see Thomson and Demets [141]).

Since cells are sensitive to sudden change of temperature, so we maintain the constant

temperature (24±2◦C) within the laboratory during the process of culturing and breeding

of the cells. To avoid contamination by bacteria and fungi all the laboratory equipment

was washed with liquid soap and rinsed with distilled water. We sterilized the equipment

and modified 3N-BBM recipe in flasks in an autoclave at 126◦C for 10 minutes. Later, we

left the sterilized, modified 3N-BBM flasks overnight to cool down to room temperature,

then we did the mixing of modified 3N-BBM flasks with existing grown cultures flasks

over a heat source using a sterile technique to avoid contamination. As contamination is

irreversible in this case so we must ensure the cleanliness of the all required equipment

used in the experiments.

4.3.2 Concentration of cells

Now after breeding and culturing we do the process of concentration of algae cells,

which we require for our experiments to observe suitable bioconvection patterns. We have

picked up the cultures of aged between two to four weeks for cells concentration procedure.

Since C. augustae are negatively gravitactic or gyrotaxis which means they tend to swim

upwards on average, this characteristic really facilitate us to concentrate them easily at

the top of long neck of the same culture flask (see Kessler [80], Bees [6]). First we top

up the conical flask with the culture from the other flask to fill up to the top of the neck

and over that added some fresh media (to attract cells for nutrition). Secondly as we

know cotton acts as a porous medium and cells can easily swim into, so we placed the

sterilized piece of cotton wool at the top and cover the conical flask with the aluminium

foil. The aluminium foil should not cover the long neck of the flask and acts as a lid of

flask, because cells required light for swimming upward into cotton wool. The cells swim

upward into the neck of flask and get stuck into the cotton wool and after three to five

days when white cotton wool turns into green and clear fluid left within the rest of the

flask, this indicates that concentrated suspension is ready at the top. This also ensures

that the concentrated cells are healthy, motile and good swimmers at that stage. Here we

avoid to keep this state for long time because cells will quickly run out of the nutrients

and may get into non-motile state. Now the concentrated suspension can be extracted



CHAPTER 4. EXPERIMENTAL ANALYSIS OF BIOCONVECTION 137

(a) Initial stage of cells concentration procedure as initially no cells accumulation in white cotton

wool bung held at the top of long neck of conical flask.

(b) Final stage of cells concentration procedure as the same conical flask after 4 days shows millions

of cells trapped in cotton wool bung which turns green.

Figure 4.2: Snap shot of algae cells concentration procedure captured at our biofluids

laboratory.
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from the cotton wool held in long neck of the flask using Pasteur pipette (avoiding shear

induced deflagellation) to either petri dish or any other container used for experiments.

The initial and final stages of the cell concentration procedure are shown in the Figure

4.2.

4.3.3 Transfer of suspension of cells

After three to four days of concentration process we extracted the cells from the cotton

held at the top neck of culture flasks using Pasteur pipette (avoiding shear induced de-

flagellation) gently, and transferred into clean new plastic bottle. The bottle was washed

with distilled water before pouring in the suspension. Later, we mixed the suspension

using magnetic stir mixer and measured the concentration. To record pattern formation,

the suspension then transferred into horizontal tube held fixed using the controlled flow

apparatus as mentioned earlier. To avoid sticking due to surfactant and chemicals used

in apparatus material we first rinsed the apparatus with distilled water. The cylindrical

glass tube washed with soap and rinsed with distilled water before the experiment as well.

To minimize the sticking of cells for repeated run of experiments in glass tube we intro-

duced double treatment of BSA (Bovine Serum Albumin) in our experiments, which limits

adhesion in micro channels (see Weibel et al. [145]). First we have soaked the glass tube

with 4.0% BSA with modified 3N-BBM medium over night, and secondly, we mixed 0.4%

BSA in our suspension using magnetic stirrer before transferred into the tube for pattern

formation. Repeated trial and experiments raveled that both of these procedures were not

proved effective at this scale as it slightly changed the concentration of the suspension, and

reduced the swimming speed which slightly suppressed the pattern as well. The decrease

of the concentration by surface fouling was not significant on the experimental timescale

(10 min). It is convincible that in the longer lasting experiments in the presence of flow,

the flow itself helped prevent adhesion. Thus we finally dropped the idea of BSA treatment

and stick to the distilled water treatment only to minimize the sticking of cells with the

inner walls of the tube.

4.3.4 Measuring concentration of cells in suspension

After concentrating the suspension of green algae, we extracted it from flask and stored

it in some container or clean plastic bottle. For our experiments a standard volume of

cultures suspension of 30-40 mL was used unless otherwise stated. The cell concentration



CHAPTER 4. EXPERIMENTAL ANALYSIS OF BIOCONVECTION 139

was measured using spectrophotometer apparatus (WPA CO7500 spectrophotometer),

which is an electronic device used for measuring the amount of light of a certain wavelength

that can pass through the sample compared to a reference state, called as absorbance A.

In our experiments, we mostly used the reference as 3.0 mL of modified 3N-BBM, and

measured the absorbance of the concentrated cells only not the medium.

Figure 4.3: Calibration of A the absorbance measurement from the spectrophotometer

readings with C cell concentration found using cell counting with hemocytometer repro-

duced from Williams [147].

The standard measuring concentration procedure involved first measuring the reference

modified 3N-BBM of 3.0 mL in a cuvette using spectrophotometer. Later, we transferred

the concentrated cells of 1.0 mL sample in another cuvette and diluted it with 2.0 mL of

modified 3N-BBM, and mix it with the pipette before measuring the cell’s concentration

using spectrophotometer. For highly concentrated suspension we can dilute more with

the modified 3N-BBM to get a reading that would be in the appropriate linear range of

the spectrophotometer readings as shown in the graph in Figure 4.3. This process was

repeated 4-5 times and the averaged measure of absorbance was then converted to a cell’s
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concentration of suspension using the relationship between absorbance and concentration

from the hemocytometer as explained by Williams [147] i.e.

c = (3.187A− 0.2678)× 106 cells cm−3. (4.1)

The measurement of concentration process had to be completed before the start of the

experiment and optionally can be done after the experiment for calibration. This process

required culture to be removed from the suspension and due to dilution with modified

3N-BBM could not be suitable for use again for other experiments.

4.4 Environmental control and Methods

4.4.1 Light source control

As C. augustae cells are phototactic as well which means sensitive to light source (see

Foster and Smyth [40]). They swim towards the light source and swim away from dark and

high intensity light. Instead of using white light we used here low intensity BL1960 LED

red light source (Advanced Illumination, Rochester, VT, USA) of wavelength of about 660

nm because these green algae do not respond phototactically (see Foster and Smyth [40]).

We also made sure that all other lights in our lab switched off and even brightness of

the computer monitors dimmed and directed in the opposite direction of the experiments

apparatus. Additionally, our lab established at basement of the department and has no

windows and even sunlight had no light effect on the experiments. Finally, we measured

the light intensity using the digital light meter and ensure that the light intensity for the

setup would not exceed 225 lux.

4.4.2 Mixing of suspension

In our experiments we have followed two different culture mixing protocols which we

named as mixing outside the tube and mechanical mixing inside the tube. For the first case

the mixing was performed with the magnetic stirrer after extraction of cells suspension

from the concentrated flask as shown in Figure 4.2(b). The suspension was later poured

into the tube. This ensures that cells are homogenously mixed when poured into the tube

for recording of images of the bioconvection pattern formations in horizontal tubes.

On the other hand, the mechanical mixing inside the tube was indigenously developed

procedure to mix the suspension homogenously even after pouring into the tube to record
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multiple set of recordings. The evolution of this procedure involved different setups and

we have tried different options like we have attached peristaltic pump with variable flow

rate at one end of the tube, syringe at one end or both ends of the tube and many other

setups to induce least shear prone homogenous mixing. All different setups and variable

arrangements were have multiple issues and short comings like causing bubbles within the

tube, sticking of cells with walls of tube, vibrations and violent shear. Finally after many

trials, we have devised indigenous setup by attaching switch control to adjust air pressure

at one end of the tube while on the other end we have attached flexible plastic tube of

larger diameter with small container. Thus before pouring the suspension in the main tube

we close the switch to stop the air to get in the tube and pour the suspension into the

attached container then gently open the switch to get the suspension into the main glass

tube. This will reduce the chances of bubble to establish into the suspension within the

tube. For mixing we open the switch completely and pull the attached container gently up

and then down, and repeat again then wait for few seconds than again pull up and down

gently. This protocol worked better and ensure nearly homogenous mixing for repeated

number of times.

Repeated experimental runs reveals that this indigenous mixing procedure resulted

best for low and medium level cell suspension concentration whereas not very suitable for

higher suspension concentration. This can be improved by more number of pulls up and

down with rush which is not effective because of generation of violent shear which is not

desired for these experiments. This mixing procedure also not suitable after two to three

runs as repeated mixing caused shear which resulted in break away of flagella and sticking

of cells with the walls of the tube.

4.4.3 Image recordings

Timelapse sequences of projected bioconvection patterns during our experiments were

captured from side using a black and white CCD camera (Camtek CL-1014) and from above

using an EOS digital camera (Canon SLR-350D) connected to frame grabber (Sensoray

611) controlled by customized SX11 C++ routines. To avoid any effects of vibrations on

pattern formation we kept the experiment apparatus and adjoining PC on different work

benches. For image recording we have used computer code written in C++ language in

which we could control the frequency of image capture and the total number of images.

Image recordings began at a specific time and images were taken every two seconds until
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Figure 4.4: Illustration of the formation of the bioconvection pattern formation in a thin

horizontal cylindrical tube as viewed from side.

the maximum number of images, typically 200 was reached. This arrangement of record-

ings can be altered by amending the computer code accordingly. The process of mixing

in the tube or before pouring in the tube followed by image recordings is termed as a one

experimental run. For different parameter values like diameter of the tube d, cell concen-

tration c, n experimental runs were performed with the same cells, with approximately

50-60 seconds between each experimental run unless otherwise stated. However for the

imposed flow experiments mixing was performed outside the tube before pouring in and

images were recorded every second until 49 images for each flow rate. The process was

repeated until we reached to obtain maximum flow rate typically 30-35 ml h−1 for different

cell concentrations. All images recorded were 768×576 pixels.

4.4.4 Variation of cell concentration of suspension

During the experiments of the bioconvection pattern formation we varied the cell con-

centration and investigate the effect on the initial instability and final pattern wavelength.

In all experiments we kept the lab conditions like temperature, light and tube diameter

constant. we initially started with the maximum concentration, cmax, and conducted n

experimental run. Later we took the suspension out of the tube and dilute it with the
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Tube Inner diameter Outer diameter length

No. (cm) (cm) (cm)

tube A 1.1 1.35 30.0

tube B 0.8 1.03 28.5

tube C* 0.6 0.81 33.0

tube D 0.2 0.71 25.0

Table 4.3: Table of details of different cylindrical pyrex glass tubes used for bioconvection

experiments whereas the tube C used is made of plastic material.

3N-BBM and measure the cell concentration using the spectrophotometer. Again we mix

the suspension and poured into the tube and performed the n experimental run. This

procedure was done without disturbing the tube and rest of apparatus, so that positioning

and mixing conditions were identical for each concentration. Since our tube experiments

required at least 30-40 ml of cell suspension for each experiment, which is well above than

petri dish experiments. This minimum quantity of cell suspension required much more cul-

ture flasks for concentration process. So concentration limitations restricted us to carry

out experiments involving suspensions with very high cell concentration.

4.4.5 Variation of tube diameter

As these experiments of pattern formation in horizontal long cylindrical tubes are one

of the unique attempt so we have tried to investigate the effect of variation of tubes by

using the cylindrical tubes of different diameters. Initially we have used four cylindrical

tubes of different diameters, smallest with inner diameter of 0.25 cm and largest with inner

diameter of 1.1 cm to analyze the bioconvection pattern formation. Repeated experiments

revealed that nearly no pattern formation was observed in the smallest tube of inner

diameter 0.25 cm and outer diameter 0.71 cm. This may be because of the effect of

shear caused and close proximity of cylindrical boundary of the tube. Thus we performed

detailed experiments on rest of three tubes i.e tube A, B made with pyrex glass and tube

C made with plastic material excluding smallest glass tube D. For the case of imposed flow

experiments we have used pyrex glass tube B of inner diameter 0.8 cm only. The details

of the inner/outer diameters and length of tubes used are listed in Table 4.3.



CHAPTER 4. EXPERIMENTAL ANALYSIS OF BIOCONVECTION 144

4.4.6 Variation of Flow rate

The most interesting aspect of our experiments of bioconvection patterns in horizontal

cylindrical tubes was investigated by variation of the flow rate of suspension in the tubes.

Here we have used the Graseby 3500 syringe pump (Graseby Medical Ltd., Watford, UK)

attached at one end of the experimental setup to induced the pressure from one side which

resulted in a weak poiseuille flow. We started with the zero or no flow, then initiate

very small flow rate with gradually increasing the flow rate lead to relatively high flow

rate and investigated the formation, distortion and breaking of pattern formation in the

horizontal tube. Thus we repeated the process of variation of flow rate until we have

obtained maximum flow rate typically 30-35 ml h−1 for different cell concentrations for

the case of tube B only.

4.4.7 Statistical Investigations

In order to investigate the patterns formation during the bioconvection in the hori-

zontal tube as tube diameter and concentration change, we perform some basic statistical

analysis on the data for initial instability wavelength λi of the bioconvection pattern and

final pattern wavelength λf . Linear fitting was performed on data for initial instability

wavelength and final pattern wavelength using gnuplot for each tube for the two different

mixing procedures. Using these linear fits we try to analyze the trends in pattern formation

using the gradients of the fits for the three different tubes. Asymptotic standard errors

and root mean square of residuals were also recorded using the fit analysis. Similarly we

have recorded Kolmorgorov-Smirnov statistic error for the pattern wavelength for both

cases of no flow and varying imposed flow experiments. To investigate the spread of data

we have calculated the standard deviation as well.

4.5 Experimental setup

The experimental setup involves the main glass tube clumped with two stands to hold

it horizontally balanced. The one end of the tube was attached with tube joints and T

junction. Further one end of T junction was attached with switch to control the air and

suspension flow into the tube, and other end was connected with syringe pump to initiate

the imposed flow for the case of flow problems only. The other end of the main glass

tube was attached with flexible plastic tube of higher diameter. This further attached
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(a) Side-view of the experimental setup.

(b) Top-view of the experimental setup.

Figure 4.5: A schematic diagram of the experimental setup for recording images of biocon-

vection in a thin horizontal cylindrical tube. The tube is clumped at horizontal position

and held fixed with two stands. The red LED light source was fixed behind the centre of

the tube and camera was mounted on stand so that images could be recorded from the

side of the cylindrical tube. Suspensions were loaded via a plastic tube affixed to the left

of the bioconvection tube and flow was imposed using a syringe pump shown schematically

on the right of the tube.
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with small container which will be used as buffer and will served important role in our

indigenously established mixing procedure within the tube. This further rested on the

stand of exceeded hight to control the flow within the main glass tube.

To improve the images visibility of the cell suspension within the tube and reduce the

optical distortion or rarefaction effect we modify the tube setup by passing the tube with

sealed glycerol filled perspex bottle. We ensured that this arrangement mounted at the

centre of the tube, and we setup digital camera mounted on the stand right in front of

the tube with glycerol filled perspex bottle setup. The red light held fixed behind the

perspex bottle with tube and the whole apparatus was kept on working bench aligned

and vibration free. The digital camera was further attached with the PC to record the

images which are 200 images after every 2 seconds for no flow experiments and 49 images

for every second for imposed flow problems. The schematic diagram of the experimental

setup is shown in the Figure 4.5.

4.6 Cleaning and processing of images

After setting up the apparatus we started recording the images and each image has

768×576 pixels. As mentioned earlier we have recorded 201 images for every 2 seconds for

no flow experiments and 49 images for every second for imposed flow experiments. Here

we follow the work of Bees and Hill [7] and Czirók et al. [37] to extract the dominant

wavenumber from each of our recorded images. To analyze the recorded images we have

used the digital image processing software IDL (RSI, Boulder, CO USA) which have been

programmed to extract dominant wavenumber using the fast Fourier transform method.

The recorded images have some unwanted additional information like tube markings,

labels, walls or surface of the tube etc. To get rid of all these unwanted information

we clean the recorded images using the subtraction of recorded images either from the

first homogenously mixed recorded image, or median of the recorded images. The first

image subtraction cleaning was performed for the case of mixing outside the tube with no

flow experiments whereas, for mixing inside the tube with no flow experiments we have

subtracted the saved homogenously mixed image (mostly 1st) for cleaning. Additionally,

we have cleaned the markings on the tubes by blanking markings on the tubes using

the IDL. On the other hand, for the case of imposed flow experiments we have used

subtraction from the median of the images for cleaning purpose. The cleaned image is
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cropped to 512×512 pixels.

(a) Original captured image.

(b) Clean image using IDL.

Figure 4.6: A sample of cropped image from experiments recorded in tube A, where

c = 1.84× 106 cells cm−3. The mixing of cells suspension was performed outside the tube.

4.6.1 Fast Fourier Transform

Fast Fourier transform is a method to compute discrete Fourier transform in O(Nlog2N)

operations with an algorithm. The first well known FFT algorithm was established by

Cooly and Tukey [35] and details of the FFT method can be found in Press et al. [120].

Bees and Hill [7] and Williams [147] used the FFT algorithm on the cropped images

and follow the same procedure as recorded image resolution good enough to use FFT

algorithm. Similarly we have used Hahn windowing function to reduce the consequence

of the brisk edges of the captured images. Hahn windowing function has property that

it has maximum value at the centre and zero at the edges of the image as desired in our

case. Additionally, it also help to take away oscillatory errors from the Fourier spectrum.

The Hahn windowing function in two dimension is defined as

WH(x, y) =
1
4
(1− cos

2πx

N
)(1− cos

2πy

N
), (4.2)

where the size of the recorded image is N ×N .
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After using the Hahn windowing function we used the FFT on cropped recorded images

which convert the real, two dimensional image array into a complex array of the same size.

The wavenumber information can be extracted from the data spread around the origin

of the image which is actually the measurement of the distance of the data from origin.

Additionally, this data enables us to specify the direction of the wave and extract the phase

information. Later, we employ this useful data to plot a bar chart for every processed image

and finally using appropriate fit we can extract the dominant wavenumber

4.6.2 Dominant wavenumber

The ultimate aim of the processing of the recorded images is to extract the dominant

or most unstable wavenumber from each image. After obtaining the bar charts Bees and

Hill [7] employed an un normalized double Gaussian distribution with the scheme that

first fit for the noise and less unstable wavenumber whereas, second fit for the dominant

wavenumber. Another approach introduced by Czirók et al. [37] using double logarithmic

fit which exhibit power law decay for both small and large wavenumber. The dominant

wave number will extract using the fitting function defined as

ln[I(k)] = α| ln(k)− ln(k0)| − β ln(k) + c, (4.3)

where k0 is the peak of the fit or dominant wavenumber, α and β are the fitting parameters

corresponds to different exponents for small and large wavenumber and c is a constant.

Additionally they conclude that this is equivalent to separating the logarithms and rewrite

as

I(k) ≈




k(−α−β) when k < k0,

k(α−β) when k > k0.

In our analysis we have used second approach of double logarithmic fit as it fits best mostly

as compared to double Gaussian fit to extract the dominant wavenumber.

4.6.3 Error Analysis

As we know that both of the above fitting functions are approximate fits which def-

initely required to calculate the error while using fit. Following the error analysis by

Bees [6] where he defined measure of error, the Kolmorgorov-Smirnov statistic error εKS .

This describes variations in the trends of cumulative data and measures only cumulative

error not the total error sum of the data. He defined the Kolmorgorov-Smirnov statistic
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Figure 4.7: Sample of processed images from B0.42 experiment recorded in tube B where

c = 3.75 × 106 cells cm−3. The images are captured every 2 seconds, where mixing was

performed outside the tube.
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Figure 4.8: A sample fourier spectra from B0.42 experiment recorded in tube B where

c = 3.75 × 106 cells cm−3. The images are captured every 2 seconds, where mixing was

performed outside the tube. The horizontal axis is wavenumber and vertical axis is Fourier

density. The logarithmic fitting function was used to fit the data.
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error as

εKS =
1∑N−1

n=0 ρn

max
n = 0..N − 1

N−1∑

j=0

|ρn − φ(X = n)|, (4.4)

where ρn is the Fourier spectrum at wavenumber n and φ(X = n) is the fitting function

distribution used for analysis like double logarithmic fit in our case. Higher values of εKS

reveals that the trend of the fitting function φ used mostly deviates from the original

data generally. Thus to get a more realistic fit the εKS values should be small enough as

suggested by Bees [6] as well. Thus we have observed smaller error values for the case of

double logarithmic fit as compared to double Gaussian, fit which confirms our preference

of double logarithmic fit for data.

4.6.4 Dominant wavenumber analysis

Here we first homogenously mix the suspension before pouring into the tube and then

slowly pour into the attached container with the tube. Later we allowed the suspension

to flow into the tube from the container gently to avoid air or bubbles in the tube. After

few minutes when cells have started making patterns we carried out our mixing regime

to homogeneously mix the suspension. Here we have used the slow, least vigorous mixing

setting to avoid any damage of either cells or cell’s flagellum.

A perfect mixing of suspension is one that seems thoroughly mixed in which swirling has

diminishes before the start of pattern formation. Thus after processing of the images we

estimated the dominant wavenumber from each processed image. To give it some physical

meaning we convert the wavenumber into wavelength. The relation between wavenumber

k, and physical wavelength λ, is given by

λ =
Iw

k
, (4.5)

where Iw is the image width calculated using ImageJ 1.42q (Wayne Rasband NIH, USA)

software and diameter of the tubes. The unit of diameter measured and image width is

cm so the wavelength λ has units of cm as well. The image width was found different

for three different tubes of variable diameter, and it slightly varies even for the single

tube diameter because of the location, positioning of the camera and tube while recording

images. The initial instability wavenumber and wavelength were denoted by ki and λi

whereas final pattern are denoted by kf and λf respectively. It is always not easy to

extract the exact dominant initial instability wavenumber, because of the noise produced

after cleaning of the image which some times grow with the time. Thus we always picked
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(a) 20 s

(b) 35 s

(c) 45 s

(d) 60 s

(e) 75 s

(f) 160 s

(g) 435 s

Figure 4.9: Snap shots of the processed image sequence (a-g) of a representative biocon-

vection pattern formation in tube A with varying time for cell concentration 1.84×106cells

cm−3 when mixing was performed outside of the tube.
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Figure 4.10: A sample 3d plot from experiment recorded in tube A, where c = 1.84× 106

cells cm−3. The images are captured every 2 seconds, where mixing was performed outside

the tube.
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(a) Results for first 49 images.

(b) Results for complete 201 images.

Figure 4.11: A sample contour plot from experiment recorded in tube A, where c = 1.84×
106 cells cm−3. The images are captured every 2 seconds, where mixing was performed

outside the tube.
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up the wavenumber when we have observed definite rise in the peak not because of mere

noise only. Secondly, we must observed the Fourier spectrum density at that wavenumber

increased with time which showed an evidence of development of pattern formation.

Thus using above defined procedure we analyzed the variations of initial instability

wavelengths and final pattern wavelengths as a function of cell concentration, tube di-

ameter, time and variable mixing procedures for the case of no flow and imposed flow

experiments.

4.7 Experimental results for no flow problems

In this section we discussed the experimental results of bioconvection in horizontal

tubes due to the variation of cell’s concentration, tube diameter and time in the absence

of flow. The calculated wavenumbers further normalized to the wavenumber per tube, as

we have employed three different tubes of variable diameter. This normalization process

will help us to compare the results for different tubes. This wavenumber further converted

into wavelength by dividing the image width using equation (4.5). The image width Iw is

not same for each case as it depends upon the tube diameter, position of the camera and

tube used while recording the images.

Now we report the results of our observations and quantitative analysis of he biocon-

vection in horizontal tubes in the absence of flow. In the absence of flow, the pattern

development was recorded after a cell suspension was mixed and poured into each tube.

Experiments were carried out using tubes A, B and C, varying cell concentration, c, in the

range 0.5×106−4×106 cells cm−3. The sequence in Figure 4.9(a)-(g) shows the evolution

of a typical bioconvection pattern in tube A with c=1.84×106 as viewed from the side. We

observed that a well mixed suspension (homogeneous in the first frame) quickly becomes

unstable, breaking up into a beautiful striated alterations of thin dark plumes (high cell

concentration) and white bands (low cell concentration). The observed pattern is seen

to sharpen in time, with plumes becoming spaced closer together which is consistent to

the observations for the case of different geometries. Since the geometry in our case is

cylindrical tubes of uniform diameter, statistically similar patterns are observed along the

length of the tube. The above observations are usefully quantified by analysis of the dom-

inant Fourier modes extracted from the images. Figure 4.11 shows the contour plots of

the power spectrum of the image sequence whereas, Figure 4.9(a)-(g) demonstrating the
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evolution of pattern wavenumber with time. The Fourier spectrum quantifies our obser-

vations: an initially homogeneous suspension quickly suffers an initial instability, with he

wavenumber ki (the first peak in Figure 4.11); the pattern then becomes unstable to other

modes, evolving to a structure with an average final wavenumber kf . The complex dynam-

ics with which modes evolve from the initial instability is also clear in Figures 4.10 and

4.11. For clarity of the evolution of pattern formation, variations of pattern wave number

with respect to time for different cell concentrations recorded in three different tubes in

the absence of flow are plotted and shown in Figures 4.16 and 4.17. Here we explain the

different results separately in different sections with details of trends found, observations

with recommendations and comparisons with other relevant work where required.

4.7.1 Investigating the initial instability wavelength pattern

The one of the important aspect of our experimental analysis is to explore the initial

instability wavelength of pattern formation before any non-linear fully developed pattern

established, as these wavelength can be compared to the trends calculated during linear

analysis of gyrotaxis models. It is really hard to exactly extract the initial instability

wavenumber from the processed data due to noise and cleaning issues. Here we compared

the processed images with the data obtained, contour plot drawn using data and bar plot

with the fit, to exactly figure out the dominant initial instability wavenumber ki. For

comparison purpose we have calculated the initial instability wavenumber ki per tube.

Later, we converted it into wavelength λi for physical significance by dividing the width

of the image Iw. The image width was found different for three different tubes depending

upon the tube diameter, position of the camera and the tube during recording of the

images.

Here we have employed two different mixing procedures to explore the trends in initial

instability wavelength patterns. The first mixing procedure involved mixing of suspension

with stirrer mixer outside the tube before pouring into the tube, and images were started

recording just after pouring into the tube. The suspension was found homogenously mixed

initially and after few seconds instability started developing due to gyrotaxis and gravitaxis

as discussed in section 4.4.2.

In the second mixing protocol, after pouring the suspension into the tube we waited

for few minutes to establish patterns then we moved the attached container at one end

up and down few times with certain routine and timings. This lead the suspension flow
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Figure 4.12: Experimental data for the initial dominant wavelength λi as function of

concentration of tubes A, B and tube C (top three panels, as indicted) for the cases of (a)

mixing outside, and (b) mixing inside the tube. Straight line fits to the data are shown (for

tube C we only fitted for c > 1.45× 106 cell cm−3). The last panel shows the fits without

the data to allow a comparison of magnitudes. The error bars are standard deviations

over a sample or the standard error in the mean over repeated experiments.
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back and forth and mixed the suspension homogenously within the tube. During the

mixing procedure we started again capturing the images and recorded the initial instability

wavenumber ki and time ti to establish it. While during processing of images in the case

of mechanical mixing we discard the first few images to remove the mixing of suspension

effect.

Now to explore the trends in initial instability wavelength we fit the recorded data

(≥ 1.45 million cells cm−3) only, using the linear fit for the three different diameter tubes

with two different mixing procedures. The low cell concentration data was neglected during

fit procedure to avoid the non-linear effect. Later, we have plotted the fit with the data

for the two different mixing procedures separately using gnuplot as shown the graphs in

Figure 4.12.

As its clear from the gradients of fit in graphs, that wavelength decreases with the

increase of suspension concentration for all the three tubes and both mixing procedures.

This dependence was observed more phenomenal for the case of very low cell concen-

trations. Thus higher wavelength per tube implies broader plumes which means lower

wavenumber per tube that leads to mathematically weekly non-linear problem. It is also

observed that the trends vary for the two different mixing procedures significantly for low

cell concentration and the disparity between the two graphs for two different mixing proce-

dures was quite evident. This may be due the fact that the mechanical mixing within the

tube was not proved efficient as for high concentrations the patterns were not completely

vanished which restricted the complete or homogenous mixing of the suspension with in

the tubes. Thus mixing outside of the tube was found more consistent and homogenous

so naturally, we appreciate the data obtained using this mixing procedure in comparison

to the mechanical mixing inside.

4.7.2 Investigating the final stable pattern wavelength

It is cumbersome to figure out when actually patterns get stable and how long they

stayed. During the process of image recordings patterns formed due to gyrotaxis and

gravitaxis instabilities, and plumes emerges and sometimes vanishes as time passes, and

this process continues within the tube. In our experiments we have recorded 200 images

for every two seconds for each concentration and both cases of mixing procedures. Later,

for the case of mixing outside of the tube we have processed first 196 images to get

14 × 14 array using IDL as explained earlier. For the mechanical mixing inside the tube
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Figure 4.13: Experimental data for the final dominant wavelengths λf as function of

concentration of tubes A, B and tube C (top three panels, as indicated) for the cases of

(a) mixing outside, and (b) mixing inside the tube. Straight line fits to the data are shown.

The last panel shows the fits without the data to allow a comparison of magnitudes. The

error bars are standard deviations over a sample or the standard error in the mean over

repeated experiments.
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we have excluded first few images depending upon the cell concentrations (more images

for higher suspension concentrations) again, to avoid images involved in mixing procedure

and processed them using IDL. To get the final pattern wavenumber kf we took the mean

of the last 50 images wavenumbers and then converted into final pattern wavelength λf by

dividing with image width Iw. Thus we have recorded all data extracted from all of our

experiments, for variable cell concentrations with two different mixing protocols for three

tubes of variable diameters.

The recorded data for final pattern wavelength λf for the three different tubes of

variable diameter and two different mixing protocol, further fitted using the linear fit to

investigate the trends. Here again for consistency with the previous case and to avoid

non-linearity we have fitted data for cell concentration (≥ 1.45 million cells cm−3) only.

The data points with linear fit plot for the three tubes of variable diameter and two mixing

procedures plotted, using gnuplot are shown in Figure 4.13.

In comparison to initial instability wavelength λi the above graphs showed less depen-

dence on variations of cell concentrations for final pattern wavelength λf specially for tube

A mixing outside the tube case. For the other tubes final pattern wavelength decreases

with the increase of suspension concentration for the case of mixing outside the tubes.

For mechanical mixing inside the tube the gradients of fits exhibits less dependence on

suspension concentrations for the case of tube B and C whereas, final pattern wavelength

λf decreases with the increase in suspension concentrations for the case of tube A.

4.7.3 Investigating the dependence on variation of depth

Initially we have started recording pattern formation in four tubes of variable diameters

ranging from tube D, 0.25 cm to tube A, 1.1 cm for variable cell concentrations. Repeated

experiments revealed that, approximately no pattern observed in the tube D of smallest

diameter. This may be due to large amount of shear and close proximity of the tube

walls. Later, we have focused only rest of three tubes A, B and C. To analyze the pattern

formation dependence on the depth or diameter of the tube, we have calculated the mean

initial instability wavelength and final pattern wavelength of the data for each tube for

the case of two different mixing protocol separately.

The plot of the data for initial instability mean wavelength for three tubes when mixing

was performed inside the tubes, showed that tube B and C shared almost same values

whereas tube A of largest diameter has higher initial instability mean wavelength. For the
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case of mixing outside of the tube the order of dependence is changed slightly for the case

of tube B, it showed less dependence as compared to tube A and C.

Similarly we have explored the depth dependence of final pattern wavelength by com-

puting the mean pattern wavelength, for the three tubes with two different mixing proce-

dures. In the case of mixing inside the tube the depth dependence varies in order, means

varies with increasing the tube diameter. For mixing outside the tube case, tube A and B

shared almost same value whereas lower final pattern wavelength value for small diameter

tube C was observed as shown in the Figure 4.14. Within the uncertainties of our experi-

ments, it is hard to ascertain any dependence of the wavelength on the tube diameter, but

it would be reasonable to infer that both the initial and final wavelengths are in general

larger for tube A than for tube B or C.
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Figure 4.14: Experimental data plotted for mean pattern wavelength λm and gradient m

for the three different diameter tubes for the initial instability and final pattern wavelength.
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4.7.4 Investigating the dependence on variations of concentration

As our experiments involved tubes of variable diameters and maximum of tube A with

inner diameter 1.1 cm which required minimum 30-40 ml of concentrated suspension for

one experiment run. This minimum requirement really narrow down the liberty to record

experiments for very high suspension concentrations. Thus we have managed at the most

of 4.13 million cells cm−3 suspension concentration for three tubes. To explore the pattern

formation dependence on the cell concentration, we have calculated the gradient of the

linear fit of data for each tube for two different mixing procedures. This will enabled us

to explore initial instability wavelength λi and final pattern wavelength λf dependence on

the cell concentration for the three tubes with two different mixing procedures.

The gradient varies linearly with the increase of the tube diameter when mechanical

mixing was performed inside the tube for the case of initial instability wavelength λi.

The lower gradient value was obtained for initial instability wavelength λi for the tube

B whereas, gradient increases with the increase of the tube diameter when mixing was

performed outside the tube.

For the case of final pattern wavelength λf we have observed small variations of gra-

dient with the variations of the tube diameters, which indicates the least dependence on

suspension concentrations. We have observed almost same gradient for tube B and C and

higher value for tube A when mixing was performed outside of the tube. On the other

hand for the mechanical mixing inside the tube we have observed that gradient decreased

slightly as the tube diameter increased.

4.7.5 Investigating the time for initiation of pattern formation

Another interesting aspect of our experiments is to explore the start time ti of estab-

lishment of first dominant instability, during the process of pattern formation within the

tube. This investigation can be best explored only in the case of mixing outside of the

tube, as mechanical mixing inside the tube was not perfectly homogenous which leads

inconsistent ti data. We set the time ti = 0 when we were pouring the suspension in, as

the suspension was homogenously mixed and just after pouring in it we started recordings

for every two seconds. As explained earlier its not always easy to exactly figure out the

initial instability wavenumber ki and corresponding time ti. Using the same procedure

as defined for initial instability wavenumber ki we have recorded the time ti to establish

initial instability.
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Figure 4.15: Experimental data for the variation of time to establish the initial instabil-

ity for different cell concentrations for tubes A, B and C and bottom panel shows the

comparison of linear fits to this variation.
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Figure 4.15 shows the time ti taken to establish the initial instability for the three

different tubes of variable diameters as tubes A, B and C. Like λi, ti falls linearly with

concentration, but without any obvious sudden rise at low c for tube C. Now again using

least square fit with a function of the form ti(c) = t0,i + γic (with t0,i and γi are fit pa-

rameters), we find γi = −6.0 ± 2.1 s ml/cells and t0,i = 43 ± 6 s for the case of tube A,

γi = −5.6 ± 1.9 s ml/cells and t0,i = 38 ± 5 s for the case of tube B and γi = −6.4 ± 2.7

s ml/cells and t0,i = 41 ± 7 s for the case of tube C. The analysis further reveals that

dependence on the tube radius again is not strong for the case of bioconvection with no

flow experiments.
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Figure 4.16: Variations of pattern wavenumber with respect to time for different cell

concentrations recorded in tube B. The images were captured every two seconds, where

mixing was performed outside the tube.
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Figure 4.17: Variations of pattern wavenumber with respect to time for different cell

concentrations. The images were captured every two seconds, where mixing was performed

outside the tube.
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4.8 Experimental results for imposed flow experiments

The most interesting aspect of our experimental work is to investigate the trends of

pattern formation within the horizontal cylindrical tube with imposed flow. To impose

the flow into the tube from one side we have used the syringe pump and ensured the

sealed setup, which enabled us to induced continuous and controlled flow within the tube.

Thus using the setup shown in the Figure 4.18, we have conducted 8 flow experiments

runs for different cell concentrations in pyrex glass tube B only. Each experiment involved

recordings for different imposed controlled flow rates ranging from no flow to maximum

flow rate of 30 − 35 ml h−1. For clarity of the evolution of pattern formation, variations

of pattern wave number with respect to time for different flow rates recorded for different

cell concentrations for tube B are plotted and shown in Figure 4.20.

In the presence of flow, patterns could be observed to be progressively distorted. The

pattern formation in tube B for cell concentrations (a) c=1.26×106 cells cm−3, (b) c=2.22×
106 cells cm−3, and (c) c=5.18 × 106 cells cm−3 as the mean flow speed Up is increased

in steps of 2.8 cm s−1 from no flow to a maximum speed of 16.6 cm s−1 in the direction

from right to the left as shown in the Figure 4.19. The qualitative behaviors observed is

generally similar for different concentrations investigated. In the absence of flow or zero

flow rate, the bioconvection plumes are parallel (on average) and slightly denser at the

bottom. For small to moderate flow rates, most plumes still span the tube, but are seen to

be curved so that the top and bottom of a plume are tilted at a characteristic angle to the

vertical on average. The bowed plume shape is not symmetric for low concentrations, with

plumes originating at the top stretching beyond the tube midpoint, before bending back at

the bottom. The observation of the flowed pattern sequences reveals that plumes translate

horizontally with the flow and that often high concentration pulses (blips) travel down a

plume. As the flow rate is increased further, the pattern gets distorted more and more,

with plumes tilting further away from the vertical at the top and bottom. The pattern

appearance for increased flow rates is less orderly, many plumes break up, with less plumes

spanning the tube. However, at higher flow rates, the plumes become more symmetric,

linear bottom standing plumes stretch to the tube midpoint. Interestingly, the plumes

maintain a constant average angle at the top and bottom of the tube, which increases

with flow rate, as plumes are tilted by the flow due to nontrivial reasons as discussed in

section 4.9.

It is also interesting to note that the plume behaviour discussed above is statistical,
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Figure 4.18: Snap shot of the experimental apparatus used for recording bioconvection

pattern formation in a horizontal cylindrical tube with an imposed flow.

sequences show that individual plumes are not stable, meandering and either focusing or

dispersing. For the maximum flow rates, all plumes fragment into very elongated structures

making a large angle to the vertical and top and bottom plumes become fully symmetric

about the tube midplane. Remarkably, as discussed above, the phenomenology described

is qualitatively similar for all concentrations investigated, although there are quantitative

differences.

4.8.1 Experiment protocol

Using the above defined setup we poured in homogenously mixed suspension into the

tube and wait for three to five minutes so that patterns got established with in the tube

B. Here we are not interested in initial instability wavenumber and only record the final

pattern wavenumber. After patterns established within the tube, we started recording the

images after every second un till 49 images to get an array of 7 × 7 images. This case

may be termed as zero or no imposed flow case. Later, we switched on the syringe pump

attached and initiate a small flow rate of 2.0 ml h−1 and waited for two minutes to allow

flow fully established. After two minutes we started another run of 49 images captured
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and then increased the flow rate to 4.0 ml h−1. Again after waiting two minutes recorded

49 images and then increased the flow rate and kept recording the images. Initially we

increased the flow rate by step size of 2 till 10 ml h−1 later, we increase by step of 5 till

30− 35 ml h−1 depending upon the cell concentrations and experimental setup.

4.8.2 Investigating the trends of wavelength

For each run we have recorded the wavenumber k of 49th image and then converted

into wavelength λ for physical meaning using equation (4.5) again. This can be achieved

by dividing with the image width Iw. The image width calculated using the tube diameter

and again found slightly varied for different recordings depending upon the position of

camera and tube while image captured. To investigate the trend of wavelength λ as a

function of cell concentrations and imposed flow rates, we have plotted the recorded data

as shown in the graphs in Figure 4.21.

A plot of dominant pattern wavelength λ as a function of the flow rate F shows a clear

concentration dependence of the flowed pattern dynamics as shown in Figure 4.21(a). For

all the concentration investigated, as the flow rate is increased, λ initially grows with

the flow rate. However, there are critical concentrations around which this growth is

interrupted by a sudden rise and fall of λ, which quantitatively demarcates a dynamical

transition in the pattern. These transitions represent a statistical change in the dynamics

which is not immediately obvious from the frame sequences; however, it is clear that these

statistical changes in wavelength are associated with the rearrangements of the plumes as

the flow rate is increased.

4.8.3 Investigating the first peak of wavelength

As we have noticed some interesting peaks while plotting the wavelengths λ against

the varying flow rates F for different cell concentrations c. Out of them for different cell

concentrations, we have tried to explore the trends for first peak found for different cell

concentrations. The wavelength λ corresponding to first peak with error was recorded

separately. Later, we have used linear fit to fit the first peak wavelength data and plotted

it with the error bars as shown in the Figure 4.21(a).

The gradient of the linear fit graph shows less dependence of wavelength of first peak

on suspension concentration. It also suggested that wavelength of the first peak increases

with the increase of suspension concentration.
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Figure 4.19: Bioconvection patterns recorded in tube B in the presence of imposed flow in

the range Up = 0−16.6cm s−1 (F=0-35 ml h−1) for cell concentrations (a) c=1.26×106cells

cm−3 and (c) c=5.18×106cells cm−3. (As indicated, the second frame in (a) shows a frame

for 3.4 cm s−1 rather than 2.8 cm s−1.) (d) For Up = 13.8cm s−1 and concentration as in

(b), we show three 5 s interval snapshots of the dynamics of a bowed plume (indicated by

arrows). The figure to the right shows tracings of the plume with scale bar is 0.2 cm.
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Figure 4.20: Variations of pattern wavenumber with respect to time for different flow rates,

experiment recorded in tube B. The images were captured every second, where mixing was

performed outside the tube.
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Figure 4.21: Plots of (a) final pattern wavelength and (b) average top (positive) and bottom

(negative) plume angles to the vertical as a function of the flow rate F for concentrations

in the range 0.59× 106− 5.18× 106 cells cm−3, as indicated. The peaks in the wavelength

around certain critical flow rates could be the signature of dynamic transitions in plume

arrangement. The error bars indicates standard deviations..
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4.8.4 Investigating the average angle and average drift speed

Now to quantify the inclination of plumes investigated, we measured the average angle

〈θ〉, a plume makes to the vertical when measured from the top and bottom of the tube

and average drift speed 〈V 〉 of the plumes. For the case of top plumes, θ is defined as

positive for tilt away from the vertical in the direction of flow, while for bottom plumes it

is negative. It is evident from the Figure 4.22(b), that plume tilt does not seem to vary

sensitively on concentration. The apparent independence of 〈θ〉 on concentration can be

made clearer by plotting all concentrations on the same graph, as shown in Figure 4.22(a),

where the change in 〈θ〉 with the flow rate F has been fitted with a linear trend constrained

to go through origin. This is because as we expect 〈θ〉 = 0 for F=0 ml h−1. The gradients

obtained are very close in absolute value 3.65±0.11 deg s cm−1 for the top plumes.

The average drift speed 〈V 〉 for all concentrations are plotted on the same graph as

shown in Figure 4.22(b). It appears to increase linearly with the flow rate in a manner

which appears generally independent of concentration. A constrained linear fit to data

yields a value 1.30±0.04 for the change in average plume speed with mean flow speed.

Also shown in Figure 4.22(b) for comparison is the linear prediction for the maximum

speed of the Poiseuille flow, Upoi ≡ U = 2F/πa2, and for equivalent plug flow, Up = U/2

(i.e. the mean Poiseuille speed), giving gradients of 2 and 1 respectively. The data appear

to fall between these two limits but closer to plug flow. The significance of these results

are discussed in the section 4.9 below.

4.9 Discussion

In this chapter we have presented the quantitative analysis of the bioconvection pat-

terns in thin long horizontal cylindrical tubes subject to imposed flow and without flow.

A homogenously mixed suspension of C augustae becomes unstable to cell concentration

fluctuations leading to a system of vertical plumes along the entire length of the tube. In

the absence of the flow we have found that the pattern sharpens with time, and the plume

spacing decreases, which is consistent with the observations by Wager [144]. After fourier

analysis of the images recorded from side we found that both initial and final dominant

pattern wavelengths decrease slowly with concentration. This is consistent with the obser-

vations of Bees and Hill [7] for bioconvection in shallow layers. They also recorded that the

initial wavelength increased linearly with depth, whereas the final wavelength found less
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sensitive to it. We found here similar weak dependence on the tube radius for a fixed con-

centration, but this cannot be inferred with confidence. It would be interesting to perform

experiments with greater range of tube diameters to explore these trends. Here we have

also studied projections onto a vertical plane which are three dimensional patterns. The

cross-sectional plume and flow structure may have a important role on the interpretations

of the results.

We have investigated the experimental study of bioconvection subject to imposed flows.

We find that plumes are simply distorted for weak flows and break for high flow rates.

Thus the average plume drift speed 〈V 〉 and inclination to the vertical 〈θ〉, for a given flow

rate, do not appear to depend appreciably on concentration in the range investigated. On

the other hand, the plots of the final pattern wavelength as a function of the flow rate for

different concentrations shows that transitions in the pattern dynamics occur at critical

flow rates that are sensitive to concentration.

Now we discuss our results in the context of approximations of the recent model of

bioconvection (see Pedley and Kessler [114]). For the case of no imposed flow, preliminary

calculations (not listed) shows the existence of a steady-state profile in a horizontal tube,

with most cells concentrated towards the top, consistent with the case of bioconvection

between two horizontal sheets. This kind of distribution may lead to an overturning

instability, as found by Hill et al. [64], Bees and Hill [9] for different geometries. Gyrotactic

instabilities may also happen where the cells are focused into plumes as a result of self-

driven flow. A question may arise that whether overturning or gyrotactic instabilities occur

before the steady state has been achieved. It is worth to mention that in the presence of

cells in the tube, fluid motion decay with a time scale, τv = a2/ν, where a is the radius

of the tube and ν is the kinematic viscosity. For the case of biggest tube diameter (tube

A) a = 0.55 cm, and taking ν = 10−2 cm2 s−1, we compute τv = 30s. An unstable

density profile will be established in the time it takes a cell to swim the lengthscale a,

τ0 = a/Vs, where Vs is the cell swimming speed and as found for Chlamydomonas as

Vs = 10−2cm s−1, τ0 = 55s. After comparing from the time for onset of initial instability

τi = 30s (see Figure 4.15), we infer for the tube A that τv w τi < τ0, the instability occurs

approximately when mixing effects have decayed but a little before the steady-state profile

has been established. Similarly we found τv w τi < τ0 and τv < τi w τ0 for tube B and

tube C (the steady-state has been established before pattern onset with negligible mixing

effects) respectively. Since patterns will likely be generated by an overturning instability
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Figure 4.22: Plot of (a) the average angles and (b) average plume drift speed as functions

of the mean flow speed for all concentrations. Neither of these measures appears to depend

strongly on concentration. Linear fits to data for all concentrations are also shown, and in

the case of (b) the plume drift speed, the fit (solid line) is compared with the prediction

for the mean (dot-dashed) and maximum (dashed) flow speeds for the Poiseuille flow.
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for lower concentration suspensions.

In the presence of the flow the evolution of patterns results from the coupling between

the imposed suspension flux and bioconvection circulation. In this study flow is laminar

for the flow rates investigated based on the maximum Poiseuille flow speed U is O(1). The

cells are advected horizontally, but the plumes of falling cells redistribute fluid, modifying

the flow. In general, the secondary flows significantly alter the mean flow profile from

its cell-less Poiseuille state, and the result suggest that the mean profiles are similar to

plug flow sometimes. Since C. augustae are spherical shape so a balance between viscous

and gravitational torques enables us to find the angle to the vertical, ψ at which these

gyrotactic cells swim in a shear flow with vorticity ω. Bees et al. found that stable

orientation requires ω ≤ ωc = 1/B = 0.3 s−1, where B is the gyrotactic reorientation

time, otherwise cells tumble. The vorticity for the Poiseuille flow profile can be defined

as ω(r) = 2Ur/a2, and for plug flow as ω(r) = 0. If Poiseuille flow is assumed with

the mean flow rates of 0.003 − 0.02 cm s−1, the largest shear is smaller than ωc, with

ωmax ≡ ω(a) = 0.03 − 0.2 s−1 and thus maximum inclinations ranging from 6◦ to 43◦.

Thus, we do not expect the formation of layers induced by gyrotactically trapped tumbling

cells, as investigated by Durham et al. [38], except perhaps near the boundaries for flatter

flow profiles.

The results of the investigation shows that for small to moderate flow rates, plume

remain whole but are distorted by the flow, starting at the top of the tube, tilting from

the vertical and then bending back at the bottom of the tube. This suggests that the

circulation caused by descending plumes dominates that due to the imposed horizontal

advection. An important aspect of the plumes is that they appear to translate horizontally

at a fixed average speed 〈V 〉, mostly preserving their shape during their lifetime. On

the other hand, it is hard interpret the progressive ‘braking’ of curved plume structures

into angled linear plumes as the flow rate is increased. It is also evident that stronger

imposed flow disrupt bioconvection circulation to some degree. One hypothesis is that

for small flows the bioconvective circulation cells adjust and translate with the mean flow

profile speed, but when the flow becomes too strong the plumes stagger, splitting the large

closed streamlines. The dynamical transitions highlighted from the measurements of the

dominant pattern wavelength are intriguing. We conclude from the results shown in the

Figure 4.21 that pattern transitions occur at higher flow rates for larger concentrations.

This makes sense intuitively if we consider that for higher concentrations we expect a
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stronger cell-induced circulation, which will be more stable to perturbations by the imposed

flow. This further infer that patterns are affected at all non-zero flow rates, but are severely

disrupted, with dramatic transitions in the plume dynamics, only beyond a concentration-

dependent critical flow rate. The transition only affect the bioconvective circulation and so

plume structure, which answer the question why the average plume speed 〈V 〉 and average

angle 〈θ〉 do not depend on the concentration of the suspension.
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Figure 4.23: Evolution of cell positions for (a) Plug and (c) Poiseuille flows, according to

the simplified description, a line of cells (thin lines) released at equally spaced positions

across the tube collapses and deforms while advected for (c), while it collapses vertically in

(a). The stages in evolution are 20 s apart. The upper envelope (thick line) is the trajectory

of cells released at the top of the tube, for the above defined two flow situations.

To further understand the cell dynamics in flows, we consider the plume structure in

a vertical plane at the centre of the tube, with two-dimensional (for simplicity) cartesian

coordinates (x, y) as shown in the Figure 4.23. At its simplest, the position of a cell is

subject to horizontal advection by the mean flow profile, u(y), and vertical advection in
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a plume, with constant speed V . Additionally, each cell swims at an angle to the vertical

due to gyrotaxis with velocity

Vc = Vs(−Bω(y),
√

1− (Bω(y))2),

such that

ẋ(t) = u(y)− VsBω(y),

and

ẏ(t) = −V + Vs

√
1−B2ω(y)2. (4.6)

The solution of the above equation (4.6) for the following initial conditions (x0, y0), with

B = 3.4 s, V = 0.0175 cm s−1, Vs = 0.01 cm s−1, a = 0.4 cm, and U = 0.01 cm s−1 are

shown in the Figure 4.23. Here, the thick line shows the path of a cell released at the top

of the tube (0, a) which represents a plume that is fed from the top. It is also interested

to note from Figure 4.23 that in Poiseuille flow, the path is curved due to the flow profile

and at the top and bottom shear induces diagonal gyrotactic reorientation (arrows). The

cells on average move diagonally downwards but swim upwards in the case of plug flow.

Additionally, the series of thin lines in Figure 4.23 shows the evolution of a vertical line

of cells, initially across the tube, at time interval of 20 s. The line translates with the

horizontal component of the swimming velocity at the bottom as it collapses and deforms

for the case of Poiseuille flow whereas for plug flow the line remains vertical as it collapses

and translates. Thus from this argument we infer that the behaviour of the plumes that

we observe experimentally could result mean flow that is intermediate between Poiseuille

and plug flow. In particular, the curved plumes are reminiscent of those for Poiseuille flow

but the curved plumes translate with a fixed shape as though they were in plug flow. In

addition to that Figure 4.22 illustrate the fact that plumes drift at a speed closer to plug

flow than Poiseuille flow. Thus we conclude that gyrotactic reorientation by the imposed

flow does not lead per se to focusing (convergent trajectories) because advection by the

flow and gravity are not collinear as found in vertical tubes (see Kessler [80]), although

locally cells drive the flow and will focus as a result.

The study and findings of transport of cells in tubes has enormous implications. For

the case of vertical tubes, cells are subject to a modified Taylor-Aris dispersion and are

transported within a plume parallel to the flow, with advective swimming and diffusive

contributions (see Bees and Croze [11]). On the other hand, in our case of horizontal
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tubes, results demonstrate different situation, with cells transported in numerous plumes

translating at fixed speeds, 〈V 〉.

4.10 Conclusion

In this chapter we have established the techniques and methodology, to quantitatively

record the attributes of bioconvection pattern formation in a horizontal cylindrical tube.

Here we have analyzed dominant initial instability and final pattern wavelength as a func-

tion of time, suspension concentration and tube diameter for the case of no flow problems.

On the other hand, for the case of imposed flow problems we have explored the final

pattern wavelength as a function of time, suspension concentration and rate of imposed

flow. A consistent methodology of sub-culturing and cell concentration for young and

motile cells was adopted to obtained repeatable and reproducible results for suspension

cell concentrations. We have employed three cylindrical tubes of variable diameter for

static experiments whereas tube B of diameter 0.8 cm was used only for imposed flow

experiments. Two different automated mixing protocol was employed to control the initial

concentration distribution from which pattern form. The first mixing procedure was con-

ducted outside the tube whereas the second method was performed mechanically inside

the tube to get homogenously mix suspension. After recording the images following the

method formulated by Bees and Hill [7] and using the double logarithm fit defined by

Czirók et al. [37] to the wavenumber, we have extracted the dominant wavenumber. The

most important case for no flow experiments is initial instability wavenumber before any

non-linear fully developed pattern, as these can analyzed and compared with the linear

analysis of the gyrotaxis models. Trends were found and investigated, for initial and final

pattern wavelengths by varying the cell concentrations and tube diameters for the two dif-

ferent mixing procedures. For flow experiments trends were found for pattern wavelength

as a function of cell concentrations and flow rate.

The results from experiments shows that even very weak laminar flows are sufficient

to perturb bioconvection patterns and complex structures persists in the flow for larger

flow rates, rather than flow simply having a mixing effect. The inclusion of motile cells

seems to modify the mean flow to be more like plug flow than Poiseuille flow. In future

experiments should be conducted to measure the (mean) horizontal flows using particle

tracking or PIV. Most of the bioreactors designs involved arrangements of horizontal,
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vertical and/or inclined tubes in which cells can be transient turbulent or turbulent flow

to maximize mixing and equalize light exposure (see Grima et al. [52], Garćia-González et

al. [42], Chisti [30]). It is important to establish the most efficient flow rates for maximum

biomass production with minimal energy consumption, and how the optical properties

of bioconvecting suspensions (transmittance) change with the flow and couple to growth.

Thus, insights into the transition to turbulence in the presence of motile cells will be

invaluable, as will an understanding of how cells are arranged within a developed turbulent

pipe flow (see Lewis [93]). The experiments performed in this chapter represent a first step

in this direction.

Advected bioconvection in horizontal tubes theoretically has not been solved in detail

yet. The main challenge is to predict the average inclination and speed of plumes formed,

as well as the flow transitions observed, as the function of concentration and tube diameter.

However, an open challenge is how to predict the effective transport properties of swimming

cells in laminar and turbulent regimes in tubes of arbitrary orientation.



Chapter 5

Linear analysis of advected

gyrotactic bioconvection in a

horizontal tube: derivations of

linear stability equations and

future research directions

5.1 Synopsis

In this chapter, we have analyzed the initiation of pattern formation due to the effect

of imposed weak Poiseuille flow on a fluid of finite depth, for Pedley and Kessler’s [113]

model of bioconvection. Here, we have followed the Bees and Hill [9] technique by incor-

porating the cell’s random swimming in a realistic geometry. The aim of the work is to

compare the results using linear analysis for the pattern wavelength with the experimental

observations and trends as discussed in chapter 4. The mathematical modelling of the

problem with equilibrium solution is carried out whereas numerical analysis is need to be

done for understanding and comparison with the experimental investigations mentioned

above.

180
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5.2 Introduction

Many micro-organisms such as green algae exhibits taxes or biased motion relative

to external or local cues. Chlamydomonas sp. due to he cenre-of-gravity offset from the

geometric centre is gravitaxis (see Kessler [82]). Additionally, a balance between viscous

and gravitational torque can bias these cells to swim towards the downwelling regions

termed as gyrotactic instability. After a series of experiments Kessler [82], [83] found that

for a suspension of gyrotactic Chlamydomonas nivalis in a vertical tube, cells focused at

the centre for down flowing flow and scattered towards the edge for up flowing flow. For

shallow containers such as petri dishes Bees and Hill [7] recorded intricate bioconvection

patterns formation in just tens of seconds, with characteristic length scales of millimeters

to centimeters. Recently, Bees and Croze [11] investigated the dispersion of the gyrotactic

swimming of micro-organisms in a vertically aligned tube using Taylor-Aris dispersion

theory. Literature survey reveals that bioconvection in horizontal tubes has not yet been

tackled theoretically.

The main purpose of this chapter is to investigate the most unstable mode from the

initial equilibrium solution for the suspension under an imposed weak poiseuille flow in

a thin, long horizontal tube. The theoretical results later can be compared with the

experimental observations discussed in chapter 4. Initially we derived an equilibrium

solution of the full linear equations for finite depth between the two plates and later doing

a small perturbation to investigate the effects of perturbation. Following the Bees and

Hill [9] initially we solve Fokker-Planck equation to find the mean cell swimming speed

and non-constant diffusion tensor. Bees and Hill [9] with minor corrections used the Pedley

and Kessler [113] and found the full linear equations for their finite depth bioconvection

model in petri dishes. Here we follow the same procedure and derived the full linear

equations for the weak poiseuille flow between the two stationary horizontal plates.

5.3 Solution of the Fokker-Planck equation

In this section, the linear solution of the Fokker-Planck equation on a sphere can be

found and used to calculate the mean cell swimming direction 〈p〉 and diffusion tensor D.

The probability density function (p.d.f.) for cell swimming direction on the unit sphere

can be written as f(p), where

p = ( sin θ cosφ, sin θ sinφ, cos θ )T , (5.1)
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and θ is the colatitude angle measured relative to k. Then, the mean cell swimming

direction for bottom heavy micro-organism can be defined as

q = 〈p〉 =
∫

S
p f(p) dS, (5.2)

where S is the surface of the unit sphere and cell diffusivity tensor D can be defined as

D(t) =
∫ ∞

0
〈Vr(t)Vr(t− t′) 〉 dt′ (5.3)

Here Vr is the cell velocity relative to its mean velocity. Using the assumption that the

cell’s swimming direction changes less than a fixed assumed angle as discussed by Bees

and Hill [9] and thus, we can write the diffusivity tensor as

D ≈ Dc 〈 (p− q)(p− q) 〉, (5.4)

where, Dc = V 2
s τ is the characteristic diffusion scale, Vs is the mean cell swimming speed

and τ is the direction corelation time scale.

The probability density function f(p) defined above in equation (5.1) in spherical polar

coordinates, satisfies the Fokker-Plank equation which can be written as

∂f

∂t
+∇ · (ṗf) = Dr∇2f, (5.5)

where ṗ

ṗ =
1

2B

[
k− (k.p)p

]
+

1
2
Ω ∧ p + α0E · p · [I− pp

]
, (5.6)

with

B =
µα⊥
2hgρ

and α0 =
a2 − b2

a2 + b2
,

are the gyrotactic reorientation time scale and eccentricity of the cell respectively. Here, Dr

is a constant rotational diffusivity associated with the rotational Brownian effects during

the swimming of cells, h is the centre-of-mass offset from the geometric centre, a and b

are the major and minor axis of the cell body respectively and α⊥ is the dimensionless

resistance coefficient for rotation about an axis perpendicular to p.

Following the method of solution by Bees and Hill [9], we assume the steady Fokker-

Planck equation for orientation of bottom heavy gyrotactic swimming cells at (x, t) as

∇ · (ṗf) = Dr∇2f, (5.7)

Since Ω is the local vorticity vector and E is the rate of strain tensor. We non dimen-

sionalize such that

Ω =
(

Dc

H2

)
ω and E =

(
Dc

H2

)
e,
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where, Dc is the characteristic diffusion scale and H is the depth of the suspension.

For spherical cell body shape we take cell eccentricity α0 = 0, then above steady

Fokker-Planck equation (5.7) using (5.6) takes the form as

k · ∇f − 2(k · p)f + ηω · (p ∧∇f) = λ−1∇2f, (5.8)

where

λ =
1

2DrB
, and η =

BDr

H2
. (5.9)

Here η is known as the non-dimensional gyrotaxis parameter. The expressions for mean

cell swimming direction (5.2) and diffusion tensor (5.4) can be obtained for all values of

ω by expanding equation (5.8) in spherical harmonics. Following the procedures used by

Bees and Hill [9] and to avoid the repetitions of the detailed calculations we can use the

expressions directly. In particular for vorticity ω = ωj, we shall write

q(x, t) = 〈p〉 =
∫

S




sin θ cosφ

sin θ sinφ

cos θ


 f(θ, φ) dS =




4π
3 A1

1

0
4π
3 A0

1


 =




q1(ς(x, t))

0

q3(ς(x, t))


 ,

and

D = Dc[ 〈pp〉 − 〈p〉2 ]

= ℵDc




4π
3 A0

0 − 4π
15 A0

2 + 8π
5 A2

2 − 16π2

9ℵ (A1
1)

2 0 4π
5 A1

2 − 16π2

9ℵ A1
1A

0
1

0 4π
3 A0

0 − 4π
15 A0

2 − 8π
5 A2

2 0
4π
5 A1

2 − 16π2

9ℵ A1
1A

0
1 0 8π

15 A0
2 + 4π

3 A0
0 − 16π2

9ℵ (A0
1)

2


 ,

= Dc




D11(ς(x, t)) 0 D13(ς(x, t))

0 D22(ς(x, t)) 0

D31(ς(x, t)) 0 D33(ς(x, t))


 ,

where, qi(ς(x, t)) and Dij(ς(x, t)) are the expressions for unknown functions in the spherical

harmonic expansion. Following Bees and Hill [9] and solving equations for second order

approximation results in the expressions as

A0
0 =

1
4π

,

A0
1 =

825(5589 + 2420ς2)
4π(1098075ς4 + 2363735ς2 + 2772144)

,

A1
1 =

1815(1887ς + 1210ς3)
4π(1098075ς4 + 2363735ς2 + 2772144)

,
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A0
2 =

605(11178 + 4235ς2)
8π(1098075ς4 + 2363735ς2 + 2772144)

,

A1
2 =

2495625ς
4π(1098075ς4 + 2363735ς2 + 2772144)

,

A2
2 =

1830125ς2

16π(1098075ς4 + 2363735ς2 + 2772144)
,

where ratio ℵ = <V 2>
V 2

s
and ς(x, t)) = ηω and ω represents the vorticity.

5.4 Modelling the linear bioconvection equations

Following Pedley and Kesseler [113], we assume that the suspension is incompressible,

then the equation of continuity takes the form as

∇ · u = 0, (5.10)

and the equation of momentum for dilute suspension of swimming cells, using the Boussi-

nesq approximation, takes the form

ρ
Du
Dt

= ρ
[ ∂u

∂t
+ (u · ∇)u

]
= −∇Pe + µ∇2u + nv∆ρg. (5.11)

where u(x) is the velocity of the suspension of swimming cells, n(x) is the local cell

concentration, µ is the fluid viscosity, pe(x) is the excess pressure over hydrostatic, v is

the mean volume of cell and ∆ρ is the difference between the cell density and fluid density.

Figure 5.1: Linear bioconvection subject to weak poiseuille flow between two plates.
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Name with dimensions Dimensionless form

Length - [L] x = H x̃

Velocity - [L S−1] u =
(

Dc

H

)
ũ

Time - [S] t =
(

H2

Dc

)
t̃

Cell concentration n = Nñ

Diffusion D = DcD̃

Peclet number Pe =
(

µDc

H2

)
P̃e

Table 5.1: Table of non-dimensionalisation.

The cell conservation equation can be defined as

−∇ · [n(u + Vsq )−D · ∇n
]

=
∂n

∂t
, (5.12)

where q(x) = 〈p(x)〉 is the mean cell swimming direction, Vs is the mean cell swimming

speed and D(x) is the cell diffusion tensor.

The no-slip boundary conditions for the suspension enclosed between the two rigid

horizontal stationary plates, can be defined as

u = 0, at z = −H, 0, (5.13)

and zero cell flux perpendicular to the plates wall gives,

k · [n(u + Vsq)−D · ∇n
]

= 0, at z = −H, 0. (5.14)

where k is a unit vector directed vertically upwards.

Now using the above non-dimensional terms given in the Table (5.1) and after dropping

the tildes we can write the system of equations again in non-dimensionalized form as

∇ · u = 0, (5.15)

S−1
c

Du
Dt

= −∇Pe − γnk +∇2u, (5.16)

and
∂n

∂t
= −∇ · [n(u + βq )−D · ∇n

]
, (5.17)

where

β =
HVs

Dc
, and Sc =

ν

Dc
,
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are the swimming Peclet number and Schmidt number respectively. The Rayleigh number

is defined as

r = γd =
Nvg∆ρH3

νρDc
, (5.18)

which is based on the depth of the whole layer not on the sub-layer depth as explained

in Bees and Hill [9]. The non-dimensionalized form of the boundary conditions can be

rewritten as

u = 0, at z = 0,−1 (5.19)

and

k · [n(u + βq )−D · ∇n
]

= 0, at z = 0,−1. (5.20)

Now for the weak Poiseuille flow between the two stationary parallel plates, we can

define the velocity of the suspension as

u = u0(z)i = −4U

H2
(z + H)zi, (5.21)

which satisfy the equation of continuity (5.15) and U is the maximum flow speed observed

at the centre of the two stationary plates as shown in the Figure (5.1). The mean speed

of the suspension can be calculated as

ū =
1
H

∫ 0

−H
u0(z)dz =

2U

3
, (5.22)

which can further simplifies to give

u0(z) =
6Ū

H2
(z + H)z. (5.23)

Thus using the Table (5.1) and dropping the tildes we can rewrite the velocity of the sus-

pension for the weak poiseuille flow between the two rigid parallel plates in non-dimensional

form as

u = u0(z)i = −4UH

Dc
(z + 1)zi, (5.24)

similarly, mean speed can be calculated in non-dimensional form as

ū =
Dc

H

∫ 0

−1
u0(z)dz =

2
3

uH

Dc
, (5.25)

which further can be written as

u0(z) = −6ūH

Dc
(z + 1)z. (5.26)
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Thus finally, velocity of the weak poiseuille flow between the two stationary parallel

plates using (5.26), can be defined as

u = u0(z)i = −6Pe(z + 1)zi, (5.27)

where

Pe =
ŪH

Dc

is the Peclet number. The solutions of this form can exists that are partially uncouple

from the cell problem. Thus using the velocity of the suspension for weak poiseuille flow

(5.27), Navier-Stokes equations (5.16) takes the form as

0 = −∂xpe + ∂2
z

[−6Pe(z + 1)z
]
, (5.28)

0 = −∂ype,

0 = −∂zpe − γn,

which further simplifies after integration to give

pe = −12Pex −
∫

γn(z) dz + constant. (5.29)

Now we define the vorticity for the weak poiseuille flow between the two rigid parallel

plates as

ω = ∇∧ u = −6Pe(2z + 1)j,

then equation (5.17) for cell conservation takes the form as

0 = −∂z

[
βn0q3 −D33∂zn

0
]
, (5.30)

which is the flux in the k direction and is zero at z = 0,−1 using the boundary condition.

Hence we solve the above equation to get

βn0(z)q3 = D33∂zn
0(z) = D33

d

dz
n0,

βq3

D33
=

1
n0(z)

d

dz
n0(z),

[
ln n0(z)

]z

0
=

∫ z

0

βq3

D33
dz,

which further simplifies to give the equilibrium solution

n0(z) = n(0) exp
[∫ z

0

βq3

D33
dz

]
. (5.31)
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Here if we substitute n(0) =: 1 then we have non-dimensional cell concentration with the

dimensional cell concentration at the upper surface (N =: dimn(0)). Also for no flow

equilibrium state we substitute Pe = 0, in equation (5.27) which implies u = 0, then we

have found q3 = k1 and D33 = k2 both constants as found by Pedley and Kessler [113].

Now using above values in equilibrium solution (5.31) we can rewrite as

n0(z) = exp
[
β

k1

k2
z
]
, (5.32)

which is exactly the same equilibrium solution as found by Bees and Hill [9] with different

notations. In general for non-zero flow situation i.e. Pe 6= 0, and u 6= 0, we need to

calculate equilibrium solution from equation (5.31) using the already known solutions for

the values of q3(ω) and D33(ω) from Bees et al. [8].

5.4.1 Stability analysis

After discussing the equilibrium solution now we consider a perturbation from this

equilibrium solution by substituting

u = u0(z) + εu1(x, z, t), (5.33)

n = n0(z) + εn1(x, z, t),

pe = pe0(z) + εpe1(x, z, t),

q = q0(z) + εq1(x, z, t),

D = D0(z) + εD1(x, z, t).

Also vorticity perturbation can be defined as

ω = ∇∧ u0(z) + ε∇∧ u1(x, z, t) = −6Pe(2z + 1)j + ε∇∧ u1(x, z, t),

where u0(z) and n0(z) are equilibrium solutions obtained in equations (5.27) and (5.31)

respectively.

For O(ε), the governing system of equations takes the form as

∇ · u1 = 0, (5.34)

S−1
c

∂u1

∂t
= −∇pe1 − γn1k +∇2u1, (5.35)

and

∂n1

∂t
= −∇ · [n1u0 + n0u1 + βn1q0 + βn0q1 −D1 · ∇n0 −D0 · ∇n1

]
. (5.36)
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Now to find the solution of the above five p.d.e’s in five unknowns we try to reduce

them into two p.d.e.’s in two unknowns. As a first step we take the divergence of the

equation (5.34) which gives

0 = −∇2pe1 − γ ∂3n
1, (5.37)

and secondly, we take the Laplacian of the third component of the equation (5.35) which

leads to

S−1
c ∂t(∇2u1

3) = −∂3(∇2pe1)− γ∇2n1 +∇2∇2u1
3,

which further simplifies by using equation (5.37) into

S−1
c ∂t(∇2u1

3) = −γ∂3∂3n
1 − γ∇2n1 +∇4u1

3. (5.38)

For the solution of the equation (5.36), we require an understanding of the q0, q1, D0,

and D1. These are the functions of the vorticity ω. As we know that

u = u0(z) + εu1(x, z, t),

then, we can define

ω = ω0(z) j + εω1(x, z, t) j, (5.39)

with

ω0 = −6Pe(2z + 1), and ω1 = ∂zu
1
1 = ∂zu

1
3.

Also

q =




q1

0

q3


 (ηω), (5.40)

now, using the Taylor expansion we can write as

q0
i + ε q1

i + O(ε2) = qi[η(ω0 + ε ω1)] = qi(ηω0) + εηω1q
′
i(ηω0) + O(ε2),

which further implies

q0
i = qi(ηω0), and q1

i = ηω1q
′
i(ηω0).

Hence equation (5.36) takes the form as

∂n1

∂t
= −∇·[n1u0+n0u1+βn1qi(ηω0)+βn0ηω1q

′
i(ηω0)−ηω1D

′
(ηω0)·∇n0−D(ηω0)·∇n1

]
.

(5.41)
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From now on words, the dependence of q and D on (ηω0) is implied. Also

ω0 = −6Pe(2z + 1), and ∂3ω
0 = −12Pe.

Using equation (5.34) we can rewrite equation (5.41) as

∂n1

∂t
= −u0 · ∇n1 − u1

3∂n0 − βq · ∇n1 − βηn1q
′
i∂iω

0 − βηq
′
iω

1∂in
0 (5.42)

−βηq
/
i n

0∂iω
1 − βη2n0ω1q

′′
i ∂iω

0 + η∂i(ω1D
′
i3∂3n

0) + ∂i(Dij∂jn
1),

which can be rearranged and takes the form as

[
∂t + u0

1∂1 + βqi∂i − 12Peβηq
′
3 + 12PeηD

′
3j∂j −Dij∂i∂j

]
n1 = (5.43)

−(∂3n
0) u1

3 +
[−βηq

′
3∂3n

0 − η∂iD
′
i3∂3n

0 − 12Peβη2n0q
′′
3

+ηD
′′
33∂3∂3n

0 + η∂3n
0D

′
i3∂i − 12Pe∂3n

0D
′′
33

]
ω1,

since

ω1 = ∂zu
1
1 − ∂xu1

3 = ∂3u
1
1 − ∂1u

1
3.

Thus we have now reduced from five to two p.d.e.’s (5.38) and (5.43), in terms of the

independent variables u1
1, u1

3 and n1.

Now we introduce a horizontal platform and an exponential component in t. The

particular choices of normal modes can be defined as

u1
1 = U(z)eikx+σt, (5.44)

u1
3 = W (z)eikx+σt, (5.45)

and

n1 = Φ(z)eikx+σt, (5.46)

then equation (5.34) takes the form as

ikU(z) + W
′
(z) = 0, (5.47)

since

ω1 = ∂zu
1
1 − ∂xu1

3 = U
′
(z)eikx+σt − ikW (z)eikx+σt,

using equation (5.47) we can write as

ω1 =
[−W

′′
(z)

ik
− ikW

]
eikx+σt =

i

k

[
W

′′
(z)− k2W (z)

]
eikx+σt,
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then equation (5.35) becomes

[
S−1

c σ + k2 − d2

dz2

](
k2 − d2

dz2

)
W (z) = −γk2Φ(z). (5.48)

Now substituting the above equations into equation (5.41) gives

[
D33

d2

dz2
− (βq3 + 12PeηD

′
33 − 2ikD13)

d

dz
D11k

2 − σ + {−ik(u0
1 + βq1 (5.49)

+12PeηD
′
31) + 12Peηβq

′
3}

]
Φ(z) =

[
n0 ′ − ηH2

d3

dz3
− ηH1

d2

dz2

+ηH2k
2 d

dz
+ ηH1k

2
]
W (z),

where

H1 = −β(q
′
3n

0 ′ + n0q
′
1ik − ηn0q

′′
312Pe)

i

k
+ (D

′
33n

0 ′′ + n0 ′D
′
13ik (5.50)

−ηn0 ′D
′
3312Pe)

i

k
, ,

H2 = (q
′
3n

0q
′
3 + n0 ′D

′
33)

i

k
.

Now for the case of no Poiseuille flow i.e. u = 0, we can find that q
′
3 = 0 and D

′
33 = 0

then equation (5.50) takes the form as

H1 = −βn0q
′
1 + n0 ′D

′
13 = dedz

[
J1

k2

k1
+ J1k1 − J2

]
, (5.51)

H2 = 0,

where

d =
βk1

k2
,

which is exactly same as found by Bees and Hill [9] for the equilibrium solution.

The equations (5.48) and (5.49) need to be solved subject to the boundary conditions

u = 0, on z = 0,−1,

and

k · [n(u + βq)−D · ∇n
]

= 0, on z = 0,−1, (5.52)

which can be written as

W (z) =
d

dz
W (z) = 0, at z = 0,−1,

and

n0W (z) + βnq3(ωη)−D13∂1n−D33∂3n = 0, at z = 0,−1, (5.53)



CHAPTER 5. MODELLING OF ADVECTED BIOCONVECTION IN TUBE 192

since W (z) = 0 at z = 0,−1 at O(ε) we can get

βn1q0
3 +βn0q1

3−D0
13∂1n

1−D0
33∂3n

1−D0
13∂1n

1−D1
33∂3n

0 = 0, at z = 0,−1, (5.54)

and now adopting the q and D notations we have used earlier and noting that

ω1 =
i

k

[
W

′′
(z)− k2W (z)

]
=

i

k
W

′′
(z), on z = 0,−1,

we can write

(
βq3−D33

d

dz

)
Φ−D13ikΦ+

i

k
η
(
βn0q

′
3−D

′
33n

0 ′) d2

dz2
W (z) = 0, on z = 0,−1, (5.55)

with

Φ = Φr + iΦi, and W = Wr + iWi.

Now we define the equations for the neutral curve such that

Reσ = 0, and σ = i σi,

then equation (5.48) takes the form as

− S−1
c σi

(
k2 − d2

dz2

)
Wi +

(
k2 − d2

dz2

)2
Wr = −γk2Φr,

and

− S−1
c σi

(
k2 − d2

dz2

)
Wr +

(
k2 − d2

dz2

)
Wi = −γk2Φi. (5.56)

Also equation (5.49) takes the form as

[
D33

d2

dz2
−Ar

3

d

dz
−D11k

2 + Ar
4

]
Φr −

[−Ai
3

d

dz
− σi + Ai

4

]
Φi =

[
n0 ′ − ηAr

1

d2

dz2
+ ηAr

1k
2
]
Wr −

[
n0 ′ − ηAi

2

d3

dz3
− ηAi

1

d2

dz2
+ ηAi

2k
2 d

dz
+ ηAi

1k
2
]
Wi,

and

[
D33

d2

dz2
−Ar

3

d

dz
−D11k

2 + Ar
4

]
Φi −

[−Ai
3

d

dz
− σi + Ai

4

]
Φr =

[
n0 ′ − ηAr

1

d2

dz2
+ ηAr

1k
2
]
Wi +

[
n0 ′ − ηAi

2

d3

dz3
− ηAi

1

d2

dz2
+ ηAi

2k
2 d

dz
+ ηAi

1k
2
]
Wr, (5.57)

where

Ar
1 = βn0q

′
1 − n0 ′D

′
13,

Ai
1 = −β

k
(q
′
3n

0 ′ − ηn0q
′′
312Pe) +

1
k
(D

′
33n

0 ′′ − ηn0 ′D
′
3312Pe),

Ar
2 = 0,
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Ai
2 =

1
k
(βn0q

′
3 + n0 ′D

′
33),

Ar
3 = βq3 + 12PeηD

′
33,

Ai
3 = −2kD13,

Ar
4 = 12Peηβq

′
3,

Ai
4 = −k(u0

1 + βq1 + 12PeηD
′
13),

whereas the boundary conditions (5.53) can be written as

Wi = Wr = 0, on z = 0,−1,

and
d

dz
Wi =

d

dz
W (r) = 0, on z = 0,−1, (5.58)

also equation (5.55) takes the form

(
βq3 −D33

d

dz

)
Φr −D13kΦi − η

k

(
βn0q

′
3 −D

′
33n

0 ′) d2

dz2
Wi = 0, on z = 0,−1,

and

(
βq3 −D33

d

dz

)
Φi −D13kΦr +

η

k

(
βn0q

′
3 −D

′
33n

0 ′) d2

dz2
Wr = 0, on z = 0,−1, (5.59)

5.5 Numerical analysis

In this section we will define the method for numerical solution of the full linear equa-

tions derived earlier in section 5.4 by following the methodology by Bees and Hill [9]. Here

we will incorporate a numerical scheme devised by Cash and Moore [25] and provided by

Dr. D. R. Moore, named ”NRK”, which is a fourth order finite difference scheme that

iterates using the Newton-Raphson-Kantorovich algorithm. The program is written in

FORTRAN77 and following the Bees and Hill [9] routines can be rewritten which enable

the program to search for the neutral curves of the equations given initial guesses for the

concentration and velocity fields, Φ and W , and Rayleigh number r. The procedure in-

volves substitution of an initial value of the wavenumber k and subsequent trial solutions

were guessed until a solution is found.

As the above solution formed the basis so in the next step we can use it to find the next

solution estimate for the higher value of k. Using the same methodology with small steps

in k we can trace the neutral curve with an efficient number of iterations. In this process
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guessing a reasonable initial value of r and the form of mesh used in the z direction are

really significant. Here we will use up to eighty-one grid points to find convergent solution

but this is not always true. In addition an accuracy of six significant figures is tried to

obtain for convergence.

The above defined numerical technique was devised by Bees and Hill [9] for the inves-

tigations of bioconvection pattern formation in petri dishes, which worked very well. This

gives motivation to employ the the same numerical technique for the tube or two plates

geometry, which is the case under considerations.

After doing numerical analysis we would be in a better position to compare and verify

the experimental results discussed in chapter 4.

5.6 Discussion

We have developed the linear model for the finite depth stochastic gyrotactic biocon-

vection pattern formation between the two fixed stationary plates geometry in the presence

of the flow. At the initial stage Fokker-Planck equations were solved to calculate the mean

cell swimming direction and diffusion tensor following Bees and Hill [9]. An equilibrium

solution of the full linear equations for finite depth and zero flow is found. Later, a small

perturbation is made which causes a weak ambient flow between the two fixed horizontal

plates.

For stochastic gyrotactic bioconvection pattern formation Bees and Hill [9] using linear

analysis found the possibility of obtaining a zero most unstable wavenumber or a non-zero

most unstable wavenumber. They found dependency of this on the values of the gyrotactic

orientation parameter α0 and variance of the cell swimming speed. They also showed that

modelling the organism’s swimming in a stochastic fashion rather than deterministic is

paramount important for the shape of the neutral curves. Bees and Hill [9] found that a

non-zero most unstable wavenumber will always exists for the large values of gyrotactic

orientation parameter.

Thus keeping in view of the method used and results of the investigations by Bees

and Hill [9], we will carry out the numerical analysis of the model to get the better

understanding of the experimental results of the investigations discussed in chapter 4.

The challenges include prediction of a particular most unstable mode from the initial

equilibrium solution, prediction of average inclination and speed of plumes and last but
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not least the flow transitions observed.

The main results of this chapter is that for the first time we have derived the linear

stability equations for bioconvection pattern formation in a flow between two stationary

horizontal plates.



Chapter 6

Conclusions and future work

6.1 Concluding remarks

The recent price hikes of fossil fuels and biofuels extracted from edible crops forced

the researchers to explore other possible options of feed stocks for biofuels. The one of

the tremendous option available is using microorganisms for biofuels. Initially scientists

and researchers used microorganisms in photobioreactors for biofuels and water treatment

plants and treated them as mere collides or inert chemicals instead of living organisms.

This motivates us to study and investigate the locomotion and orientation of an individual

flagellated microorganism and collective phenomena of bioconvection and cell dispersion

in closed or bounded geometries. Information of the forces and moments that are acting

on or produced by the flagellated microorganisms can help us to understand the cell swim-

ming trajectories and internal mechanism of the flagellum. The Individual microorganism

modelling can explain how an organism benefits from the proximity of the barrier for ei-

ther feeding or locomotion. In the presence of boundary or cell-cell interactions modelling

can aid in understanding how they influence one another and surrounding fluid and how

one organism feed, mate another. Additionally, on a larger scale, precise single microor-

ganism models are in demand for further investigations of bottom standing plumes or

bioconvection patterns, population dynamics, plankton bloom models, clogging in closed

geometries etc. To optimize light and nutrient uptake for growth, many microorganisms

swim in directions biased by environmental cues termed as taxis. These taxes inevitably

lead to accumulations of microorganisms can induce hydrodynamic instabilities due to the

density difference from the surrounding fluid. The large scale or bulk fluid flow and inter-

esting patterns that arise are known as bioconvection. The affect of bioconvection on the

196
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transport properties of microorganisms suspension within the closed or tubular geometries

is still a matter to be investigated.

In this thesis we have model the single spherical shaped biflagellated bottom heavy

microorganism named as Chlamydomonas augustae swimming within a shear flow in the

absence and presence of the no-slip plane boundary. In addition to that we have investi-

gated the attributes of the bioconvection pattern formation within the thin long horizontal

tubes without and with the imposed flow.

Chapter 2 includes the details of the idealized model for biflagellated swimming cell

after generalization of the beat pattern proposed by Jones et al. [76] using Resistive Force

Theory (RFT). The model is uniplanar in which the flow field, gravity and entire flagellar

beat all coincide. This generalization makes the model simple to employ and θ dependent

which enables computation of the trajectory of the swimming cell. We employed software

Maple for tedious computations to rectify the potential drawback of complexity of the

time dependent beat coefficients as mentioned by Jones [77]. Our method of generalization

and simplifications showed good agrement with the results found in Jones et al. [76] and

predicts the realistic swimming speed. The model shows handsome qualitative agreement

with the experimental observations for the cell’s swimming velocity and angular velocity in

an unbounded domain. Results reveals that the torque due to the flagella has an important

contribution in the calculations of the cell’s angular velocity, which was not incorporated

previously for continnum models. It is also verified that increased gyrotactic re-orientation

time scale B was recorded due to the flagellar torque which slows down the angular velocity

of the microorganism. The revised or increased values of B and cell’s eccentricity α0 due

to the presence of flagella were recorded which are the characteristics of single swimming

cell for the purpose of bioconvection modelling.

In chapter 3, we have model the biflagellate swimming cell in the vicinity of the sta-

tionary no-slip plane boundary. To satisfy the no-slip plane boundary conditions we have

incorporated the contributions of the translational and rotational motion for image cell’s

body as discussed by Blake and Chawang [16]. Again using the RFT and our simplified

beat pattern with Maple programming we modelled and calculated the cell’s swimming

and angular velocity near the plane boundary. For clarity we modelled all possible posi-

tion of the swimming cell in the vicinity of the plane boundary. For the simple situation

of biflagellate upward swimming away from the boundary we found regressed swimming

speed and nearly equal to zero angular velocity close to the boundary after one flagella
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beat in comparison to the unbounded swimming. For the case of swimming parallel to the

boundary we again observed the regressed swimming speed and non zero angular velocity

close to the boundary and at far from the boundary the results overlap to the unbounded

swimming velocity and angular velocity. The results were computed with and without

the inclusion of flagella close to the boundary to investigate the net change. The results

indicate that including the flagella will have lower angular velocity close to the bound-

ary which subsequently changes the values of centre-of-gravity offset H, eccentricity α0

and gyrotactic re-orientation time B. These changes will have to be incorporated while

modelling the bioconvection or suspension behavior in the bounded or closed domains as

previously were not entertained.

Chapter 4 deals with the experimental investigations of the bioconvection pattern

formation in thin horizontal tubes in the absence and presence of the imposed flow. This

is the first experimental study to quantify the patterns due to the suspension of the

gravitactic and gyrotactic biflagellate green algae Chlamydomonas augustae in horizontal

tubes subject to imposed flow. The dependence of the dominant pattern wavelength at

pattern onset on cell concentration is found for the three tubes of different diameters for

the case of no flow. In the presence of small imposed flows, the vertical plumes of cells are

observed merely to bow in the direction of the flow. The plumes progressively fragment

into piecewise linear diagonal plumes, inclined at constant angles and translating with

fixed speed for the sufficiently high flow rates. In general, pattern wavelength grows with

flow rate, with transition at critical rates that depend on suspension concentration. It

is also found that bioconvection is not wholly suppressed and perturb the flow field even

at high imposed flow rates. The results also conclude that even very weak laminar flows

are sufficient to perturb bioconvection patterns and complex structures persists in the

flow for higher flow rates, rather than mere mixing effect. The presence of the motile

microorganisms appears to modify the mean flow to be more like plug flow than Poiseuille

flow.

In chapter 5 we have carried out the linear analysis of the stochastic, gyrotactic biocon-

vection model in a suspension layer in horizontal tubes. Since theocratically bioconvection

in tubes has not yet been attempted before. Here we tried to first model the problem to

predict the average inclination and speed of plumes and flow transitions as the function of

concentration and tube diameter which were found in the experimental results of chapter

4. As a first step we tried to mathematically model the real problem by incorporating
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the cylindrical geometry but due to cumbersome calculations the aim was not achieved.

Later, for simplicity we model the problem by following Bees and Hill [9] for two horizontal

plates to investigate the most unstable mode from the initial equilibrium solution for the

suspension in the presence of weak Poiseuille flow. Initially we derived the equilibrium

solution of the full linear equations for the finite depth between the two plates and later

by doing a small perturbation investigated the pertaining effects using numerical tech-

niques similar to Bees and Hill [9]. At this stage project is incomplete as lineralization

of the model equations and equilibrium solution have been found and more inputs are

required to complete the numerical or asymptotic analysis to compare the results with the

experimental investigations.

6.2 Future work

As research is never ending passion and in this section i will record the shortcoming

and outline the possible research directions from this thesis.

In the first step i will complete the linear analysis project to get the mathematical

results using numerical and asymptotic analysis. This will help to compare and better

understand of the experimental results discussed in chapter 4. Additionally, instead of

two plates, a real cylindrical geometry for the mathematical modelling can be attempted

using appropriate numerical techniques.

For the case of swimming cell problem a useful extension is to model an organism

with a prolate spheroidal body to get a realistic feeling of the Chlamydomonas augustae

cell. However, it is hard to define the flow field around the cell body due to the diffi-

culty in construction of the straining motion of a spheroid in Stokes flow. More accurate

hydrodynamic method or computer intensive method can be incorporated to investigate

the inclusion of the interaction between the flagella, non planar beat pattern, rotation

around axis and realistic beat pattern as discussed by Ruffer and Nultsch [128]. In our

model flagellum does not directly interact with the plane boundary. To incorporate the

image flagellum contribution one may require more image singularities to satisfy the no-slip

boundary conditions which makes the model tedious and may be solved with appropriate

numerical techniques. Instead of plane boundary, tubular and other geometries can also

be investigated as majority of the alga bioreactors consists of arrangement of horizontal,

vertical and inclined tubes.
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In this thesis we have considered the swimming algae to be in the Newtonian fluids,

and this is perfectly reasonable as the algae’s natural environment is mostly water or

similar fluids and suspensions are dilute. However, it might be interesting to also consider

non-Newtonian fluids as is important for the case of spermatozoa or bacteria locomotion

(see Smith et al. [135], [136]). Turbulence is ignored throughout the analysis for ease of

calculations, but it is important to investigate the turbulence effects as most of the time

we have observed turbulent flow instead of laminar flow in alga photo bioreactors.

For the case of future experimental investigations, one should measure the horizontal

or mean flows of the suspension in tubes using particle tracking or PIV. Since in tubular

bioreactors the cells suspension in tubes can be in transient turbulent or turbulent flow

to maximize mixing and equalize light exposure. Therefore for the optimum efficiency, it

is important to establish the most efficient flow rates for maximum biomass production

with minimal energy consumption. Additionally to understand how the optical properties

of bioconvecting suspension or transmittance changes with the flow and couple to growth.

Thus understanding of the transition to turbulence in the presence of motile cells is really

important similar to understanding of how cells are arranged within a developed turbulent

pipe flow. Another challenge is to predict the effective transport properties of swimming

cells in laminar and turbulent flows in tubes of arbitrary orientation.



Appendix A

A.1 Time dependent beat coefficients αij

Jones [77] defined the time dependent beat coefficients αij separately for effective and

recovery stroke. Since we have modified the method by redefining the single position vector

for the three different sections of the flagella beat so this motivate us to define now single

expressions for the beat coefficients αij as:

Beat coefficients due to the forces

ᾱ11 = Kn

[
− sin2χ

(
I1 − 3

4
I2 − 1

4
I3

)
+

3
4

cosχ sinχ rn(J3 − J4) +
3
4

sin2χ r2
n

(I3 − I4)
]

+ Kt

[
− cos2χ

(
I1 − 3

4
I2 − 1

4
I3

)
+

3
4

sinχ cosχ rn(J3 − J4)

+
3
4

cos2χ(I7 − I8)
]
, (A.1)

α12 = Kn

[
cosχ sinχ
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I1 − 3

4
I2 − 1

4
I3

)
+

3
4

sin2χ rn(J3 − J4)− 3
4

sinχ cosχr2
n

(I3 − I4)
]

+ Kt
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− cosχ cosχ

(
I1 − 3

4
I2 − 1

4
I3

)
− 3

4
cos2χ rn(J3 − J4)

+
3
4

cosχ sinχ(I7 − I8)
]
, (A.2)

α21 = Kn

[
− sinχ cosχ

(
I1 − 3

4
I2 − 1

4
I3

)
− 3

4
cos2χ rn(J3 − J4)− 3

4
sinχ sinχr2

n

(I3 − I4)
]

+ Kt

[
− cosχ cosχ

(
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4
I2 − 1

4
I3

)
+

3
4

sin2χ rn(J3 − J4)

+
3
4

cosχ sinχ(I7 − I8)
]
, (A.3)

ᾱ22 = Kn

[
− cos2χ

(
I1 − 3

4
I2 − 1

4
I3

)
− 3

4
cosχ sinχ rn(J3 − J4) +

3
4

cos2χr2
n

(I3 − I4)
]

+ Kt

[
− sin2χ

(
I1 − 3

4
I2 − 1

4
I3

)
− 3

4
sinχ cosχ rn(J3 − J4)

+
3
4

sin2χ(I7 − I8)
]
, (A.4)
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α61 = Kn

[
sinχ
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cosχ rn
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]
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, (A.5)

α62 = Kn

[
− cosχ
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4
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4
J3

)
+

3
4

cosχr2
n(J3 − J4)− 3

4
sinχ rn
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]
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(
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Beat coefficients due to the torques

α16 = Kn

[
sinχ (J1 − J3)

]
+ Kt

[
− cosχrn (I1 − I3)

]
, (A.7)

α26 = Kn

[
− cosχ (J1 − J3)

]
+ Kt

[
− sinχrn (I1 − I3)

]
, (A.8)

ᾱ66 = Kn

[
I7 − I6

]
+ Kt

[
−r2

n(I1 − I3)
]
. (A.9)

A.2 Time dependent beat coefficients hij

These beat coefficients correspond to the straining motion which we have neglected in

our study. Following Jones [77] the values are reproduced for clarity of the readers. Here

again due to the generalization of the method we will have single expressions of hij for

different parts of the flagella beat which are defined as

Beat coefficients due to the forces

h11 = Kn

[
sin3χ rn(I1 − I4) + cos2χ sinχ(J1 − J4)− 5

2
sin3χ r3

n(I4 − I5) + 5 sin2χ cosχ r2
n

(J4 − J5)− 5
2

cos2χ sinχ rn(I8 − I9)
]

+ Kt

[
− cos2χ sinχ rn(I1 − I4) + cos3χ(J1 − J4)

−5
2

sin2χ cosχ r2
n(J4 − J5) + 5 cos2χ sinχ rn(I8 − I9)− 5

2
cos3χ(J6 − J7)

]
, (A.10)

h13 = Kn

[
cos2χ sinχ rn(I1 − I4) + cosχ sin2χ(J1 − J4)− 5

2
sinχ cos2χ r3

n(I4 − I5)− 5 sin2χ

cosχ r2
n(J4 − J5)− 5

2
sin3χ rn(I8 − I9)

]
+ Kt

[
cos2χ sinχ rn(I1 − I4) + cosχ sin2χ(J1 − J4)

−5
2

cos3χ r2
n(J4 − J5)− 5 cos2χ sinχ rn(I8 − I9)− 5

2
sin2χ cosχ(J6 − J7)

]
, (A.11)

h22 = Kn

[
−2 sinχ cos2χ rn(I1 − I4) + (sin2χ− cos2χ) cosχ(J1 − J4)− 5 cos2χ sinχ r3

n(I4 − I5)

−5(sin2χ− cos2χ) cosχ r2
n(J4 − J5) + 5 cos2χ sinχ rn(I8 − I9)

]
+ Kt

[
(sin2χ− cos2χ)

sinχ rn(I1 − I4)− 2 cosχ sin2χ(J1 − J4)− 5 sin2χ cosχ r2
n(J4 − J5)

−5(sin2χ− cos2χ) sinχ rn(I8 − I9) + 5 sin2χ cosχ(J6 − J7)
]
, (A.12)
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Beat coefficients due to the torques

h62 = Kn

[
−2 cosχ sinχ rn(J1 − J4)− (sin2χ− cos2χ)(I6 − I8)

]
+ Kt

[
(sin2χ− cos2χ) r2

n

(I1 − I4)− 2 sinχ cosχ rn(J1 − J4)
]
− 5

2
(Kt −Kn)

[
2 cosχ sinχ r3

n(J4 − J5)

+2(sin2χ− cos2χ) r2
n(I8 − I9)− 2 cosχ sinχ(J6 − J7)

]
, (A.13)

A.3 Core integrals involved in beat coefficients αij

Following the calculations of Jones et al. [76], we have calculated the core integrals for

three different sections of the beat namely effective stroke, straight section of the recovery

stroke and angled section of the recovery stroke are calculated below.

ds =
rdr

rt
,

which is also valid for the angled section of the recovery stroke whereas for the straight

section of the recovery stroke transformation becomes

ds = dr.

Lower limit s = b = a and Upper limit s = c =
[
(l + cosχ)2 + sin2χ

] 1
2 .

For the straight section of the recovery stroke, i = st, rn,st = 0 and the limits of

integration are calculated as

Lower limit r = 1 and Upper limit r = 1 + ωt.

The normal distance from the flagellum during the angled section of the recovery stroke,

i = ag, rn,ag = (1 + ωt) sinχ and the limits of integration found as

Lower limit r = 1 + ωt and

Upper limit r =
[
(l − ωt + (1 + ωt) cosχ)2 + ((1 + ωt) sinχ)2

] 1
2 .

The integrals Ij,i involve integration of powers of r2
t and r and defined as following

I1,i =
∫

ds =





l for i = ef

ωt for i = st

l − ωt for i = ag

I2,i =
∫

ds

r
=

∫
dr

rt
=





lnr for rn,i = 0

ln

∣∣∣∣∣
r+

√
r2−r2

n,i

rn,i

∣∣∣∣∣ for rn,i 6= 0
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I3,i =
∫

ds

r3
=

∫
dr

r2rt
=





− 1
2r2 for rn,i = 0

1
r2
n,i

(√
r2−r2

n,i

r

)
for rn,i 6= 0

I4,i =
∫

ds

r5
=

∫
dr

r4rt
=





− 1
4r4 for rn,i = 0

1
r4
n,i




√
r2−r2

n,i

r − 1
3

(√
r2−r2

n,i

r

)3

 for rn,i 6= 0

I5,i =
∫

ds

r7
=

∫
dr

r6rt
=





− 1
6r6 for rn,i = 0

1
r6
n,i




√
r2−r2

n,i

r − 2
3

(√
r2−r2

n,i

r

)3

+ 1
5

(√
r2−r2

n,i

r

)5

 for rn,i 6= 0

I6,i =
∫

r2
t ds =





l3

3 + l2 cosχ + l cos2χ for i = ef

(ωt)3

3 + (ωt)2 + ωt for i = st

(l−ωt)3

3 + (l − ωt)2(1 + ωt) cosχ + (l − ωt)(1 + ωt)2 cos2χ for i = ag

I7,i =
∫

r2
t ds

r3
=

∫
(r2 − r2

n,i)
dr

r2rt
= I2,i − r2

n,iI3,i

I8,i =
∫

r2
t ds

r5
=

∫
(r2 − r2

n,i)
dr

r4rt
= I3,i − r2

n,iI4,i

I9,i =
∫

r2
t ds

r7
=

∫
(r2 − r2

n,i)
dr

r6rt
= I4,i − r2

n,iI5,i

The integrals Jj,i involve integration of rt, r3
t and powers of r and defined as following

J1,i =
∫

rtds =





l
2 + l cosχ for i = ef

(ωt)2

2 + ωt for i = st

(l−ωt)2

2 + (l − ωt)(1 + ωt) cosχ for i = ag

J2,i =
∫

rtds

r
=

∫
dr = r

J3,i =
∫

rtds

r3
=

∫
dr

r2
= −1

r

J4,i =
∫

rtds

r5
=

∫
dr

r4
= − 1

3r3
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J5,i =
∫

rtds

r7
=

∫
dr

r6
= − 1

5r5

J6,i =
∫

r3
t ds

r5
=

∫
(r2 − r2

n,i)
dr

r4
= J3,i − r2

n,iJ4,i

J7,i =
∫

r3
t ds

r7
=

∫
(r2 − r2

n,i)
dr

r6
= J4,i − r2

n,iJ5,i

A.4 Core integrals involved in beat coefficients αij

Similarly we can define the integrals involved in the beat coefficients αij . Using the

generalized form of the flagella beat the expression for the position vector for the image

sphere takes the form as

RF (s, t) = [b sinχ + 2h sin(χ + θ)] n + [(s− b) + b cosχ + 2h cos(χ + θ)] t,

which is valid for the three different sections of the beat.

During the effective stroke the distance from the flagellum in the normal direction is

calculated as Rn = b sinχ + 2h sin(χ + θ) and the limits of integrations for effective stroke,

are given by

Lower limit s = b = a and Upper limit s = b + c = a + l.

For the straight section of the recovery stroke, Rn = 0 and the limits of integration are

calculated as

Lower limit s = b = a and Upper limit s = b + c = a + wt.

The normal distance from the flagellum during the angled section of the recovery stroke,

Rn = b sinχ and the limits of integration found as

Lower limit s = b = a + wt and Upper limit s = b + c = a + l − wt.

The integrals IIi involve integration of powers of R2
t and R which are defined and

calculated using the above defined limits of integrations as

II1 =
∫

ds =





wt for Rn = 0

l for Rn 6= 0

II2 =
∫

ds
R

=





ln |wt| for Rn = 0

ln |l| for Rn 6= 0
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II3 =
∫

ds
R3

=




− 1

2(wt)2
for Rn = 0

− 1
2l2

for Rn 6= 0

II4 =
∫

ds
R5

=




− 1

4(wt)4
for Rn = 0

− 1
4l4

for Rn 6= 0

II5 =
∫

ds
R7

=




− 1

6(wt)6
for Rn = 0

− 1
6l6

for Rn 6= 0

II6 =
∫

R2
t ds =





(wt)3

3 + (wt)2 + wt for Rn = 0
l3

3 + l2 cosχ + l cos2χ for Rn 6= 0

II7 =
∫

R2
t

R3
ds =

∫
(R2 −R2

n)
ds
R3

= II2 −R2
nII3,

II8 =
∫

R2
t

R5
ds =

∫
(R2 −R2

n)
ds
R4

= II3 −R2
nII4,

II9 =
∫

R2
t

R7
ds =

∫
(R2 −R2

n)
ds
R6

= II4 −R2
nII5,

where

R =
[
R2

t + R2
n

] 1
2 =

[
(s− b + b cosχ + 2h cos(χ + θ))2 + (b sinχ + 2h sin(χ + θ))2

] 1
2
.

The integrals JJi involve integration of Rt, R3
t and powers of R, which are defined and

calculated using the limits of integrations for effective and recovery strokes as

JJ1 =
∫

Rtds =





(wt)2

2 + wt for Rn = 0
l2

2 + l cosχ for Rn 6= 0

JJ2 =
∫

Rt

R
ds =





wt for Rn = 0

l for Rn 6= 0

JJ3 =
∫

Rt

R3
ds =




− 1

wt for Rn = 0

−1
l for Rn 6= 0

JJ4 =
∫

Rt

R5
ds =




− 1

3(wt)3
for Rn = 0

− 1
l3

for Rn 6= 0
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JJ5 =
∫

Rt

R7
ds =




− 1

5(wt)5
for Rn = 0

− 1
5l5

for Rn 6= 0

JJ6 =
∫

R3
t

R5
ds =

∫
(R2 −R2

n)
ds

R4
= JJ3 −R2

nJJ4

JJ7 =
∫

R3
t

R7
ds =

∫
(R2 −R2

n)
ds

R6
= JJ4 −R2

nJJ5

A.4.1 Special integrals when point Q lies on the flagellum

Figure A.1: Difference in length of r during angled section of recovery stroke.

Jones et al. [76] observed during the angled section of the recovery stroke that the

length r started decreasing with increasing s instead of increasing away from the fixed

point P until a point Q. Thereafter, r started increasing again with s as shown in the

figure (A.1). This shortest distance from point Q will be of length rn,i so point Q lies on

the flagellum at r = rn,i.

We need to find the time at which the point Q no longer lies on the flagellum during

the recovery stroke. This will occur after the time when

rn,i = (1 + ωt) sinχ =
[
(l − ωt + (1 + ωt) cosχ)2 + ((1 + ωt) sinχ)2

] 1
2
.

After rearrangement we can rewrite this as

cosχ =
ωt− l

1 + ωt
, (A.14)
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where, χ is a function of t only. Now to calculate the value of t which solves the above

equation we will use the value of angle χ for zero-moment angular rotation calculated

earlier as

χ = 2 arctan
(

1− ωt

l

)
,

which can be rewritten as

cosχ =
(l − ωt)3 − l3

l3 + (l − ωt)3
. (A.15)

Substituting equation (A.15) into (A.14) gives the cubic equation

(ωt)3 − 3l(ωt)2 +
[
(5l + 3)l2

1 + l

]
(ωt)− 2l4

1 + l
= 0, (A.16)

which will determine the time after which point Q no longer lies on the flagellum during

the recovery stroke. Using the method for solution for cubic equation (see Murray’s [105])

we find

TQ =
1
ω

λ + Te. (A.17)

λ = −2(−α)
1
2 sinhΘ− a = −2l

[
2l

3(1 + 2h)

] 1
2

sinh Θ + l. (A.18)

Θ =
1
3

sinh−1

(
β

2(−α)
3
2

)
=

1
3

sinh−1

(
1
2

[
2l

3(1 + l)

]− 3
2

)
, (A.19)

which further gives

a = −l b =
(5l + 3)l2

3(1 + l)
α =

−2l3

3(1 + l)
and β = l3,

Thus using above values of Θ and λ we have found the time TQ after which point Q

disappears from the flagellum during the recovery stroke as

Hence, the limits of integrals have to be amended when point Q lies on the flagellum

during the angled section of the recovery stroke as
∫ l

ωt
f(r)ds =

∫ Q

ωt
f(r)ds +

∫ l

Q
f(r)ds,

= −
∫ rn,i

1+ωt
f(r)

rdr

rt
+

∫ L

rn,i

f(r)
rdr

rt
, (A.20)

where L =
[
(l − ωt + (1 + ωt) cosχ)2 + ((1 + ωt) sinχ)2

] 1
2 . However when point Q disap-

pears from the flagellum during the angled section of the recovery stroke the limits of

integration again become simple, such that
∫ l

ωt
f(r)ds = −

∫ L

1+ωt
f(r)

rdr

rt
. (A.21)
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B.1 Maple11 programming

After solving analytically and reviewing the calculations of Jones et al. [76] we realized

that method involves lengthy and laborious calculations. The method also involves tedious

integrals, leaving much room for analytical error. To minimize the chance of error we have

employed software Maple11 for the symbolic manupulation.

Thus we have established a code which exactly solves the same problem and have

obtained the same results for the swimming velocity and angular velocity of the cell in an

unbounded fluid flow problem as shown in the sections below.

B.1.1 Instruction flow and code details

The aim of the program is to calculate the components of the swimming velocity and

angular velocity of the micro-organism during one flagellar beat. A flagella beat consist of

effective stroke during which micro-organism gain some ground and the recovery stroke,

during which ground is lost. The different steps and the flow chart of the Maple code is

shown below.

Input parameters

The input parameters are read into the code as a first step. The different inputs to be

specified and variable names are summarized below:

cell’s (sphere) radius: a

cell’s mass: m

Time to complete one flagella beat: T

centre of mass offset: h

Gravity: g

Bending waves constant velocity: w

209
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Resistance coefficients acting in the tangential and normal direction: Kt, Kn

Rotation matrix from fixed space (i, j,k) to body coordinates (p,q, r) system: RSB

Rotation matrix from body (p,q, r) to flagella coordinates (t,n,b) system: RBF

Position vector on any element of flagellum from the centre of the cell’s body in flagella

coordinates: rf

Velocity vector field due to the translating motion of the cell (sphere) in flagella coordinates

system: Uf

Dot product of force component in tangent direction with t and in normal direction with

n: Ut, Un

Torque vector field due to the translating motion of the cell (sphere) in flagella coordinates

system: Lf

Dot product of torque component in binormal direction with b and in normal direction

with n: Lb

Velocity vector field due to the rotational motion of the cell (sphere) in flagella coordinates

system: U1f

Dot product of force component in tangent direction with t and in normal direction with

n: U1t, U1n

Torque vector field due to the rotational motion of the cell (sphere) in flagella coordinates

system: L1f

Dot product of torque component in binormal direction with b and in normal direction

with n: L1b.

Resistive Force Theory (RFT)

Now we calculate the forces and torques action on an element of the flagellum due to the

translational and rotational motion of the cell (sphere) using RFT as

dF = [ (Kt UtdS), (Kn UndS), 0 ]

Forces acting on element of flagellum due to translational and rotational motion of cell:

dF, d1F

Torques acting on element of flagellum due to translational and rotational motion of cell:

dL, d1L

Total forces due to translational and rotational motion of cell acting on one flagellum by

integrating along the length of flagellum: F, F1

Total torques due to translational and rotational motion of cell acting on one flagellum by

integrating along the length of flagellum: L, L1.
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Time dependent beat coefficients αij

Using the equations of total forces and total torques acting on one flagellum we can

calculate time dependent beat coefficients αij as

Total forces acting on the flagellum in body coordinates system: Fb, F1b

Total torques acting on the flagellum in body coordinates system: Lb, L1b

Dot product of Fb with p gives α11 and α12

Dot product of Fb with q gives α21 and α22

Dot product of Lb with r gives α61 and α62

Dot product of F1b with p gives α16

Dot product of F1b with q gives α26

Dot product of L1b with r gives α66

Later we defined the core integrals and substitute back into the beat coefficients αij . Also

we defined the initial conditions like time t, angle θ.

Effective stroke

Now we define angle χ, and f1E velocity of the flagellum for effective stroke. Using the

initial conditions we calculate the beat coefficients αij for different values of time t for

effective stroke. Later using the do loop we calculate the vp, vq velocity components and

θ̇ angular velocity of the cell during the effective stroke.

Recovery stroke

Similarly we define angle χ and f1R velocity of the flagellum for recovery stroke. Using

the same procedure for effective stroke we will find the vp, vq velocity components and θ̇

angular velocity of the cell during the recovery stroke.

Plotting

Finally we plot the graphs of vp primary direction velocity component and vq velocity

component versus time for effective and recovery stroke. Additionally we plot the graph

of variation of angle θ from initial angle during the effective and recovery stroke.

B.1.2 Programming code

Here we have listed down the actual Maple code established to calculate the swimming

and angular velocity of the micro-organism in an unbounded domain. Here we have used

editor Kwrite and compiled the program in the software Maple11. To avoid repetitions

and lengthy details of the code we have not listed the bounded swimming code.
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