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Abstract 

Suppressor of Cytokine Signalling-2 (SOCS2) is a negative regulator of growth hormone (GH) 

signalling and bone growth via inhibition of the JAK/STAT pathway. This has been classically 

demonstrated by the overgrowth phenotype of SOCS2-/- mice which have normal systemic IGF-1 

levels. The local effects of GH on bone growth are equivocal and therefore this study aimed to 

understand better the SOCS2 signalling mechanisms mediating the local actions on epiphyseal 

chondrocytes and bone growth.  

SOCS2, in contrast to SOCS1 and SOCS3 expression, was increased in cultured chondrocytes 

following GH challenge; and gain-and-loss of function studies indicated that SOCS2 acts to 

negatively regulate GH stimulated chondrocyte STAT phosphorylation. This was confirmed by the 

observation that GH stimulates the longitudinal growth of cultured SOCS2-/- embryonic 

metatarsals and the proliferation of chondrocytes within. Consistent with this; bone growth rates, 

growth plate zone widths and chondrocyte proliferation were all increased in 6-week old SOCS2-/- 

mice as was the number of phosphorylated STAT-5 positive hypertrophic chondrocytes. The 

results of these studies indicate that the SOCS2-/- mouse represents a valid model for studying the 

local effects of GH and IGF-1 on bone growth. 

Chronic paediatric inflammatory diseases are well accepted to lead to growth retardation and this 

is likely due to raised inflammatory cytokine levels and reduced GH/IGF-1 signalling. Whilst SOCS2 

was not found to be increased in response to inflammatory cytokines, SOCS2-/- mice were 

protected from LPS-induced growth retardation indicating that SOCS2 antagonists may help 

ameliorate the negative effects of chronic inflammation on growth. 
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1. Introduction 

This chapter summarises bone biology and in particular endochondral bone growth, and how the 

growth hormone/insulin-like growth factor-1 (GH/IGF-1) signalling pathway acts to regulate it. 

Mechanisms of inhibition of bone growth are discussed; in particular the negative effects of 

chronic inflammation on bone growth. Finally, the role of suppressor of cytokine signalling (SOCS) 

proteins in regulating GH signalling is examined, in particular the hypothesis that SOCS2 acts to 

regulate growth by inhibiting chondrocyte GH signalling. It should be noted that many sections of 

this introduction are based on the published review on the role of inflammatory cytokines and 

SOCS2 in GH signalling and bone growth (Pass et al., 2009). 

1.1. Bone Biology 

1.1.1. Bone Structure and Function 

Bone is probably thought of by many as a fairly dead and inert substance, whose main function is 

to provide support and protection to the body, whilst containing bone marrow that is essential for 

supplying immune cells. Although bone does provide vital functions as a supportive framework 

and organ protector, it is also a complex and dynamic tissue that provides a calcium and 

phosphorus reserve for the body. 

There are two types of bone: trabecular (cancellous) and cortical (compact) bone. Cortical bone 

forms the thin outer layer of long bones, providing shape and support. It is designed to absorb 

weight-bearing stresses and strains on the bone (Sommerfeldt and Rubin, 2001). Trabecular bone 

is found within the cortical bone, and has a ‘spongy’ appearance as it is made up of rod and plate-

like structures, giving it a higher surface area but a weaker structure than cortical bone. It is 

designed to distribute forces out to the cortical bone. Both types of mineralised bone are made 

up of hydroxyapatite [Ca10(PO4)6(OH)2] crystals embedded in a collagenous rich matrix 
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1.1.2. Bone Growth 

There are two forms of bone growth: endochondral (longitudinal, e.g. tibiae) and 

intramembranous (flat, e.g. skull) (Farquharson, 2003). The first of these increases bone length, 

occurs mainly postnatal and relies on the growth plate. This is discussed in more detail in Section 

1.2. Intramembranous bone formation occurs when mesenchymal cells differentiate directly into 

osteoblasts which deposit bone, as described in Section 1.1.4. 

1.1.3. Bone turnover 

Bone remodelling, also known as bone turnover, is the dynamic process of bone resorption and 

bone formation that occurs throughout life. Bone remodelling is tightly regulated by autocrine, 

paracrine and endocrine factors and involves the actions of two cell types: osteoclasts (which 

resorb bone) and osteoblasts (which act to deposit bone on the surface) (Manolagas, 2000). A 

diagram depicting the process of bone turnover is shown in Figure 1.1. The process of bone 

turnover is not only important for repairing damage to the bone, following micro- or traumatic 

fractures, but also allows the bone to respond to changes in mechanical load, altered levels of 

calcium and a range of endocrine and paracrine factors (Sims and Gooi, 2008). Disrupted bone 

remodelling leads to bone diseases such as osteoporosis, Paget’s disease and osteopetrosis; so 

that the understanding of the bone remodelling process has high biomedical importance.  

This studentship has focused on endochondral bone growth and the actions of growth plate 

chondrocytes, so only brief descriptions of osteoblasts, osteoclasts and osteocytes (terminally 

differentiated osteoblasts) are given. 
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Figure 1.1. Bone turnover. Representation of resorption of bone by osteoclasts (1); osteoblast 
deposition of osteoid matrix (2); and osteoblast differentiation into an osteocyte (3). 
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1.1.4. Osteoclasts 

Osteoclasts are found on the bone surface, where they resorb bone to form resorption pits. This is 

reviewed well by Teitelbaum (2000), and the key points are highlighted here. Osteoclasts are 

derived from haemopoietic myelomononuclear progenitors, and like macrophages are 

multinuclear, migratory and contain lysosomal enzymes (Sommerfeldt and Rubin, 2001). 

Osteoclastogenisis is stimulated by factors such as macrophage colony-stimulating factor (M-CSF), 

receptor for activation of nuclear factor kappa B ligand (RANKL) and osteoprotegerin; and 

requires contact with osteoblasts and stromal cells. Osteoclast precursors polarize to specific sites 

on bone for resorption, and upon maturation, the osteoclast attaches to the bone surface by the 

formation of a ruffled membrane surrounded by an actin rich podosomal ring. Bone resorption 

occurs at this site through demineralisation by acidification, where transporting events occur in 

the ruffled membrane leading to secretion of HCl, lowering the pH and activating enzymes such as 

tartrate-resistant acid phosphatase (TRAP) (Sommerfeldt and Rubin, 2001). The remaining organic 

components of bone are degraded by various proteases including cathepsin K, a lysosomal 

protease. This process forms a resorption pit known as lacunae, to which osteoblasts are then 

recruited to deposit new bone. With age, osteoclast bone resorption occurs at a greater rate than 

bone deposition by osteoblasts and this imbalance in bone remodelling leads to bone loss and 

osteoporosis.  

1.1.5. Osteoblasts 

Osteoblasts are bone-forming cells also found on the bone surface. During bone resorption 

osteoblasts act to replace bone that has been removed by osteoclasts, a process that is tightly 

regulated by both local and endocrine factors. Osteoblasts closely resemble fibroblasts, and 

differentiate from mesenchymal cells during endochondral ossification and intramembranous 

ossification (Ducy et al., 2000). This differentiation occurs under transcriptional control by 

osteoblast-specific factors such as OSE1, OSE2 and Runx2 and by growth factors such as Indian 
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hedgehog (Ihh) (Ducy et al., 2000). Differentiated osteoblasts act to deposit extracellular matrix, 

known as osteoid, and regulate its mineralisation (Ducy et al., 2000; Sommerfeldt and Rubin, 

2001). Osteoid mainly consists of collagen (94%), in addition to proteoglycans and other non-

collagenous proteins such as osteocalcin (Sommerfeldt and Rubin, 2001). Mineralisation of this 

matrix occurs after its deposition, resulting in a mineralised bone (Sommerfeldt and Rubin, 2001). 

This process of osteoid deposition and mineralisation is controlled by Runx2 regulation of 

Osteocalcin, a gene expressed in terminally differentiated osteoblasts, and by endocrine factors 

such as Leptin, fibroblast growth factor (FGF) and IGF-1 (Hurley et al., 1996; Ducy et al., 2000). 

Following matrix deposition, osteoblasts either remain on the surface as inactive bone lining cells; 

undergo apoptosis; or become embedded in bone to transdifferentiate into osteocytes (Jilka et 

al., 1998; Dallas and Bonewald, 2010). 

1.1.6. Osteocytes 

Osteocytes are found embedded in the bone matrix within lacunae, and are the most abundant 

bone cell, accounting for 90-95% of all bone cells (Bonewald, 2007b). Osteocytes are smaller than 

their osteoblast derivatives, with a higher nucleus to cytoplasm ratio (Sommerfeldt and Rubin, 

2001). They have long dendritic processes that run through canaliculi tunnels to maintain contact 

with other bone cells; specifically other osteocytes, bone surface osteoclasts and osteoblasts, and 

bone marrow (Bonewald, 2007b). Osteocytes use these processes to send inhibitory signals to 

osteoclasts, and stimulatory signals to osteoblasts, thus controlling remodelling in response to 

mechanical stimuli (Bonewald, 2007a). Dying osteocytes, as a consequence of bone damage, are 

thought to send signals to osteoclasts to stimulate resorption and initiate the bone remodelling 

cycle (Bonewald, 2007b). It is thought that osteocytes extend dendrites in response to mechanical 

load, a process that is controlled by the transmembrane protein E11 (Bonewald, 2007b). E11, also 

called podoplanin and gp38, is a marker for early osteocytes while sclerostin is a marker for late 

osteocytes. Phosphate homeostatus is also regulated by osteocytes, which express Dmp1 (Dentin 
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Matrix Protein 1), PHEX (Phosphate Regulating Neutral Endopeptidases on Chromosome X) and 

FGF23 (Bonewald, 2007b). 

1.1.7. Chondrocytes 

Chondrocytes are found within growth plates, which are located at either end of long bones. 

Within the growth plate they are found organised in columns, embedded in a collagen rich matrix, 

and are responsible for controlling endochondral bone growth as they differentiate from a resting 

chondrocyte to a hypertrophic chondrocyte phenotype, as discussed in Section 1.2. There is a 

second type of chondrocyte within the body, named articular chondrocytes, which are found 

embedded in a collagen type-II and proteoglycan rich matrix forming the articular cartilage of 

synovial joints (Treadwell and Mankin, 1986). This cartilage is found at the end of long bones were 

it acts as a shock absorber and bone surface protector (Treadwell and Mankin, 1986). Unlike the 

growth plate, articular cartilage does not undergo the processes of vascular invasion and 

subsequent calcification to form bone. 

1.2. Endochondral Growth 

1.2.1. The Growth Plate 

Embryonic long bone growth begins within limb buds, which consist of mesenchymal cells that are 

committed to differentiate into chondrocytes (cartilage cells) and osteoblasts from haemopoietic 

precursors (Kronenberg, 2003; Shimizu et al., 2007). The mesenchymal cells increase in cell 

density to form pre-cartilage condensations, with cells held together in aggregates by adhesion 

molecules as they undergo transitions to pre-chondrocytes and begin to secrete an extracellular 

matrix (Dessau et al., 1980; Cancedda et al., 1995; Kronenberg, 2003; Shimizu et al., 2007). 

Proteins in the early matrix produced by differentiating pre-cartilaginous limb-buds include 

collagen type-I, chondroitin sulphate proteoglycans, tenascin and fibronectin; which are replaced 

by collagen type-II and cartilage-specific proteoglycans (e.g. aggrecan) in the extracellular matrix 
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of the cells as they enter chondrogenic differentiation (Dessau et al., 1980; Mackie et al., 1987). 

As this process is occurring, mesenchymal cells on the outside of the condensations form a 

perichondrium, consisting of fibrous connective tissue, and then differentiate into osteoblasts 

that deposit bone and form a collar around the condensation (Farquharson, 2003; Kronenberg, 

2003). The differentiation and cellular interactions of condensing mesenchymal cells leads to 

endochondral ossification, producing cartilage that is invaded by cells (osteoblast, osteoclasts and 

haemopoietic cells) to establish the primary and secondary centres of ossification, between which 

the growth plate is formed. This latter process takes place at birth in some species and after birth 

in others. As the skeleton matures, the ossification centres enlarge and replace the remaining 

cartilage and growth plates completely (Mackie et al., 2008). 

Postnatal endochondral bone growth occurs as a result of endochondral ossification at the 

epiphyseal growth plate (Figure 1.2) (Kember and Sissons, 1976; Farnum and Wilsman, 1987; 

Mackie et al., 2008). Growth plates are thin layers of cartilage found situated near the ends of all 

long bones and it is at these regions that growth occurs (Kember and Sissons, 1976; Farnum and 

Wilsman, 1993). The growth plate cartilage consists of both chondrocytes and matrix. The matrix 

comprises of proteoglycans (including aggrecan), collagens (primarily collagen type-II) and a 

variety of other non- collagenous proteins (Ballock and O'Keefe, 2003). The chondrocytes, which 

are arranged in columns that parallel the longitudinal axis of the bone, proceed through a series 

of differentiation and maturation stages whilst maintaining their spatially fixed locations (Kember 

and Sissons, 1976; Hunziker et al., 1987; MacRae et al., 2006c). Each column is thought to 

represent the clonal expansion of one stem cell, and the chondrocytes are held in their distinct 

spatial locations by both longitudinal and transverse septa, which consist of an extracellular 

matrix rich in proteoglycans and collagens (Breur et al., 1992). 
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Figure 1.2. The location and cellular organisation of the growth plate. The position and 
organization of the growth plate can be seen in the schematic representation (left) and image of a 
mouse growth plate (right). The chondrocytes within the growth plate are shown going through 
the different stages of differentiation and maturation. Examples of osteoclasts are indicated by 
black arrows, while blue arrows point to osteoblasts. Schematic representation from Farquharson 
(2003). 
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1.2.2. Resting chondrocytes 

The resting zone (Zone I or germinal layer) consists of resting chondrocytes and undifferentiated 

progenitors. Above the resting zone is the groove of Ranvier, which contains progenitor cells and 

stem cells. Resting chondrocytes have very low proliferation levels, synthesise small amounts of 

collagen type-II and proteoglycans, and are thought to store nutrients for later zones (Hunziker et 

al., 1987; Mackie et al., 2008). The resting chondrocytes are not found arranged in as distinct 

longitudinal columns found throughout the rest of the growth plate, but are found singly or in 

pairs surrounded by large volumes of extracellular matrix (Ballock and O'Keefe, 2003).  

1.2.3. Proliferating Chondrocytes 

The resting zone continues into the proliferative zone (Zone II) where the chondrocytes become 

flattened and undergo clonal expansion, forming clusters in longitudinal columns (Hunziker et al., 

1987; Hunziker and Shenk, 1989). The rate of proliferation is determined by many factors 

including endocrine signalling, circadian rhythm, age and cell kinetics (Farnum and Wilsman, 

1993). The width of the proliferating zone is proportional to the rate of growth, with wider zones 

exhibiting increased growth rate (Farnum and Wilsman, 1993).  

Following proliferation chondrocytes exit the cell cycle and enter the transition zone, where they 

begin to undergo terminal differentiation into hypertrophic chondrocytes. This zone consists of 

maturing chondrocytes with minimal DNA synthesis, which are post-mitotic and pre-hypertrophic, 

and they elongate in morphology to become tall spheres in the direction of growth (Buckwalter et 

al., 1986; Breur et al., 1994). 

1.2.4. Hypertrophic chondrocytes 

The chondrocytes then enter the hypertrophic zone (Zone IV), where they undergo hypertrophy 

to become rounded with increasing cell volume (up to 10 fold) and height (up to 5 fold) compared 

to proliferating cells, and greater synthesis of extracellular matrix (Hunziker et al., 1987; Hunziker 
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and Shenk, 1989; Farnum and Wilsman, 1993). The height of chondrocytes in the direction of 

growth increases continuously throughout hypertrophy, towards terminal differentiation 

(Hunziker et al., 1987). Hypertrophic chondrocytes have increased metabolic activity, associated 

with raised numbers of cytoplasmic organelles (rough endoplasmic reticulum, Golgi apparatus and 

mitochondria) (Hunziker et al., 1987). Matrix components produced by hypertrophic 

chondrocytes include type X collagen, osteonectin, osteopontin and chondrocalcin, with a 

reduction in collagen type-II synthesis (Hunziker et al., 1987; Farnum and Wilsman, 1987; Farnum 

and Wilsman, 1993). Late hypertrophic chondrocytes release matrix vesicles into the longitudinal 

septae and contain proteins and enzymes such as phosphate transporters, annexins, PHOSPHO1 

and alkaline phosphatases which are responsible for establishing mineralisation nucleation sites 

for calcification (Hunziker et al., 1987; Kirsch et al., 1997; Mackie et al., 2008).  

1.2.5. Terminal Differentiation 

The chondrocytes then enter the final terminal zone (Zone V) and the matrix of the longitudinal 

septa is mineralised by hydroxyapatite deposition through the actions of phosphatases such as 

PHOSPHO1 and alkaline phosphatase, which provide inorganic phosphate and hydrolyse 

extracellular pyrophosphate that otherwise acts to inhibit mineralisation (Anderson, 1969; 

Register et al., 1986; Kirsch, 2006; Yadav et al., 2011). This mineralised cartilage acts as a scaffold 

for deposition of osteoid by osteoblasts, which is then mineralised to form new trabecular bone 

(Hunziker et al., 1987; Cancedda et al., 1995). The transverse septa are resorbed by osteoclasts, 

along with terminal chondrocytes and remaining longitudinal septa (60%) during vascular invasion 

to allow invasion of blood vessels, osteoblast precursors and osteoclasts (Hunziker et al., 1987; 

Farnum and Wilsman, 1987; Farquharson, 2003). The fate of the terminally differentiated 

chondrocyte is likely to involve both apoptosis and autophagy, however the transdifferentiation 

of chondrocytes into the osteogenic phenotype has yet to be established (Farnum and Wilsman, 

1987; Roach et al., 1995; Cancedda et al., 1995; Shapiro et al., 2005). The width of the growth 
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plate decreases with age, due to a decrease in cell proliferation, so that eventually growth stops 

completely and under oestrogen control the growth plate closes and cartilage is replaced by bone 

by the formation of bony bridges between the primary and secondary ossification centres 

(Kember and Sissons, 1976; Nilsson et al., 2005). 

1.3. Regulation of Endochondral Growth Rate 

1.3.1. Chondrocyte Proliferation and hypertrophy 

The rate of growth of long bones varies greatly, for example different species display large 

differences in growth rate. Chicken and rat proximal tibia growth plates grow at 0.86mm/day and 

0.23mm/day respectively (Kember, 1972; Kirkwood et al., 1989), while human bones grow 

considerably slower at 0.04 mm/day (distal femur) (Kember and Sissons, 1976). Several different 

factors influence growth rate, including chondrocyte specific changes. The rate of proliferation 

and the width of the proliferating zone are associated with bone growth rate, with increased cell 

cycle times and larger zones found in longer bone lengths (Farnum and Wilsman, 1993; 

Farquharson, 2003). The greatest influence on growth rate comes from the volume and height of 

hypertrophic cells, which is positively correlated with the rate of endochondral growth (Hunziker 

and Shenk, 1989; Breur et al., 1991). 

1.3.2. Endocrine Factors 

The actions of chondrocytes are also influenced by several systemic (endocrine) and local 

(autocrine/paracrine) signalling molecules (Figure 1.3). The most significant endocrine factor to 

affect endochondral bone growth is GH, which is produced by somatotroph cells within the lateral 

wings of the anterior pituitary gland and is released in pulses to circulate in the blood and act on 

the liver, as well as other organs and tissue, to stimulate IGF-1 production and subsequent growth 

(Isaksson et al., 1982; LeRoith et al., 2001). The signalling pathways and effects of GH on growth 

are discussed in more detail in Section 1.4 below. 
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Figure 1.3. Endocrine, autocrine and paracrine factors affecting endochondral bone growth. 
Figure showing how various systemic factors, local secreted factors and transcription factors 
affect the different stages of chondrogenesis in the growth plate. Stimulation/activation is 
indicated by an arrow whereas inhibition is depicted by a crossed line. Only certain key molecules 
are shown here, more are discussed in the text. Image modified from Mackie et al. (2008). 
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Rising oestrogen levels are associated with increased mineralisation and bone formation at the 

growth plate, leading to eventual replacement of the growth plate by bone and epiphyseal fusion 

once adult height has been reached after a pubertal growth spurt (Kember and Sissons, 1976; 

Weise et al., 2001). Premature oestrogen production seen during early puberty causes premature 

fusion of the growth plate and thus short stature, while oestrogen deficiency prevents epiphyseal 

fusion resulting in increased adult height (Smith et al., 1994; Morishima et al., 1995; Juul, 2001; 

Nilsson et al., 2005). Oestrogen is thought to stimulate GH/IGF-1 signalling, as well as having 

direct effects on chondrocytes through oestrogen receptors α and β (Veldehuis et al., 1997; Juul, 

2001; Nilsson et al., 2003; Börjesson et al., 2010). Another group of sex steroids, androgens (e.g. 

testosterone), also act to stimulate longitudinal growth at puberty either through aromatase 

mediated conversion to oestrogen, or by acting directly on chondrocytes to stimulate 

proliferation, hypertrophic differentiation or both (Carrascosa et al., 1990; Schwartz et al., 1994; 

Öz et al., 2001; Nilsson et al., 2003).  

Hypothyroidism is associated with reduced growth, thinner growth plates and inhibition of 

chondrocyte hypertrophy, demonstrating the role of thyroid hormone in stimulating bone growth 

(Rivkees et al., 1988; Stevens et al., 2000). Thyroid hormones (triiodothyronine and thyroxine) 

stimulate hypertrophy of chondrocytes through thyroid hormone receptor-α together with the 

expression of collagen type-X and alkaline phosphatase which are important for matrix 

mineralisation (Burch and Lebovitz, 1982; Böhme et al., 1992; Ballock and Reddi, 1994). 

Glucocorticoids, for example dexamethasone, are administered to children with chronic diseases 

such as Crohn’s disease for their positive actions as immunosuppressant’s and anti-

inflammatories. Unfortunately, prolonged use of these drugs is associated with growth 

retardation, mediated by inhibition of chondrocyte proliferation and increased apoptosis (Simon 

et al., 2002a; Heino et al., 2008; Owen et al., 2009). Glucocorticoids act indirectly on the growth 
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plate by inhibiting expression of GHR and IGF-1, and subsequently IGF-1 stimulation of 

proliferation (MacRae et al., 2007a; Fernandez-Cancio et al., 2008). 

Rickets in mammals is a defect of bone growth as a result of vitamin D deficiency, with increased 

numbers of hypertrophic cells due to decreased apoptosis and abnormal mineralisation (Donohue 

and Demay, 2002). Vitamin D mediates absorption of calcium and phosphate which are critical for 

hydroxyapatite crystal formation; while vitamin D metabolites such as 1,25(OH)2D3, the active 

form of vitamin D3 directly stimulates chondrocyte differentiation, proliferation and matrix 

production (Dean et al., 2001; Boyan et al., 2002). 

1.3.3. Autocrine and Paracrine Factors 

In addition to endocrine factors controlling endochondral bone growth, there are also a number 

of local molecules that act by autocrine and paracrine mechanisms which are also shown in Figure 

1.3. Embryonic growth is largely controlled by IGF-1 and IGF-2 acting independently of GH. While 

postnatal IGF-1 production in response to GH is an important stimulator of chondrocyte 

proliferation as discussed in Section 1.4, IGF-2 is thought to be produced in response to GH and 

signals through the same receptor as IGF-1 but its role in growth plate function after birth is less 

clear and large species differences in growth plate IGF-2 expression have been reported (van der 

Eerden et al., 2003). Parker and colleagues (2007) found increased IGF-2 in rat growth plates 

compared to IGF-1 in young animals, with its expression decreasing rapidly from 1- to 6-weeks of 

age (Parker et al., 2007). One hypothesis is that, under GH control, IGF-2 acts to stimulate resting 

and proliferating chondrocytes while IGF-1 is important in the hypertrophic zone (LeRoith et al., 

2001). However many studies have demonstrated IGF-1 as important in stimulating proliferation, 

and IGF-1 mRNA has been found in proliferating chondrocytes (Nilsson et al., 1986; Lupu et al., 

2001). 

Prehypertrophic chondrocytes secrete Ihh, which acts to stimulate proliferation and inhibit 

hypertrophy of chondrocytes therefore regulating the rate of chondrocyte differentiation 
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(Vortkamp et al., 1996; St-Jaques et al., 1999). Ihh acts through the cell surface receptor patched-

1 to inhibit activation of transcriptional repressors, Gli proteins (Ehlen et al., 2006). Its effects on 

hypertrophy, but not proliferation, are mediated by Ihh stimulation of parathyroid hormone-

related peptide expression (PTHrP) (St-Jaques et al., 1999). Ihh secretion by prehypertrophic 

chondrocytes stimulates PTHrP production by periarticular chondrocytes in the perichondrium, 

which acts directly on late proliferating and transitional chondrocytes to keep the cells in a state 

of proliferation by delaying differentiation into hypertrophy (Vortkamp et al., 1996; Kronenberg et 

al., 1997). Ihh also stimulates perichondrial and periarticular cells to produce transforming growth 

factor-β (TGF-β), which in turn also stimulates PTHrP synthesis and inhibits chondrocyte 

hypertrophy (Serra et al., 1999). The resulting increased levels of PTHrP act on late proliferating 

chondrocytes that express its receptor, delaying the production of Ihh secreting cells thereby 

completing a negative feedback loop that acts to control chondrocyte differentiation rate 

(Vortkamp et al., 1996; Kronenberg et al., 1997; Farquharson et al., 2001). These signalling 

molecules are likely to exert their effects by adjusting cell cycle time (Ballock and O'Keefe, 2003). 

One of the ways PTHrP mediates its actions is through signalling via its receptor to activate 

phosphorylation of the transcription factor Sox9 (Sry-type HMG box binding protein 9), which is 

important for chondrocyte differentiation and delays chondrocyte hypertrophy (Huang et al., 

2001; Akiyama et al., 2002). Sox9 also acts independently of PTHrP, and is vital for the 

development of cells from mesenchymal condensations into chondrocytes before acting 

throughout chondrocyte proliferation and differentiation (Bi et al., 1999; Akiyama et al., 2002). 

Signalling through the PTHrP receptor also inhibits chondrocyte expression of Runx2, a 

transcription factor that acts to stimulate proliferating chondrocytes into hypertrophic 

differentiation and hypertrophy (Guo et al., 2006). Runx2 is also inhibited by histone deacetylase-

4 (HDAC4) and the activity of both Runx2 and HDAC4 is under regulation of oxygen tension, so 

that hypoxia leads to down regulation of Runx2 and stimulation of HDAC4 (Vega et al., 2004; 

Hirao et al., 2006). 
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Bone morphogenetic proteins (BMPs) are part of the TGF-β superfamily, and are capable of 

regulating growth rate independently of the PTHrP/Ihh loop. There are various BMPs, with some 

that are important for initiation chondrogenesis, and others that act to maintain chondrocyte 

proliferation (Pizette and Niswander, 2000; Minina et al., 2001; Yoon et al., 2006). BMPs have also 

been found to be important for simulating hypertrophic chondrocytes to produce collagen type-X 

(Grimsrud et al., 1999; Minina et al., 2001). Ihh can stimulate production of BMPs, and BMPs can 

in turn induce Ihh expression, so that these two signalling pathways act in parallel to each other in 

both dependent and independent manners during bone growth (Grimsrud et al., 1999; Minina et 

al., 2001; van der Eerden et al., 2003). 

There are several members of the fibroblast growth factor (FGF) family that regulate various 

stages of chondrogenesis including proliferation and differentiation (Ornitz, 2005). For example, 

FGF receptor 3 is expressed by proliferating and pre-hypertrophic chondrocytes, and its signalling 

negatively regulates proliferation and differentiation (Naski et al., 1998; Ornitz, 2005). FGF2 has 

been found to inhibit Ihh secretion, although inhibition of chondrocyte proliferation by FGFs can 

occur independently of Ihh (Minina et al., 2002). 

Vascular endothelial growth factor (VEGF) is expressed by hypertrophic chondrocytes and is 

important for mediating vascular invasion, terminal differentiation and chondrocyte apoptosis 

(Gerber et al., 1999; Ferrara, 1999; Horner et al., 1999). VEGF stimulates both the proliferation of 

vascular endothelial cells and vascular invasion of the mineralised hypertrophic chondrocyte 

matrix (Gerber et al., 1999; Ferrara, 1999; Carlevero et al., 2000). Its expression is regulated 

dependently and independently of hypoxia inducible factor-1α, and expression of VEGF has been 

linked to Ihh through the transcription factor Runx2 (Schipani et al., 2001; Zelzer et al., 2001; 

Takeda et al., 2001). 
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1.4. GH and IGF-1 Signalling 

1.4.1. GH Receptor Signalling 

GH exerts its actions on tissues through the GH receptor (GHR). Upon binding its receptor, GH can 

activate several different signalling pathways including: mitogen activated protein kinase 

(MAPK)/extracellular signal-regulated kinase (ERK); Insulin receptor substrate 1 (IRS-

1)/phosphatidylinositol 3-kinase (PI3K); phospholipase C/protein kinase C/Ca2+ (Argetsinger and 

Carter-Su, 1996). However, the majority of signalling occurs through the best characterised 

pathway Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling, 

which is important for endochondral growth and is described here. The GHR is a member of the 

class I cytokine receptor super family, and contains an extracellular domain (ECD) consisting of 

two fibronectin type III sandwich domains, which is connected to a helical transmembrane 

domain leading to the intracellular domain (ICD) consisting of two Box motifs (Flores-Morales et 

al., 2006; Brooks et al., 2008). GH signalling follows GH activation of the GHR, which causes 

dimerisation of the ECD, leading to phosphorylation of the ICD (Waters et al., 2006). This allows 

binding and phosphorylation of the tyrosine kinase JAK2 at Box 1 in the ICD, which, in turn, 

phosphorylates specific tyrosine (Tyr) residues on the associated ICD (Waters et al., 2006; 

Uyttendaele et al., 2007; Brooks et al., 2008). These phosphorylated residues create binding sites 

for Src homology 2 (SH2) domain proteins, including STAT1, STAT3 and STAT5 proteins (Waters et 

al., 2006; Brooks et al., 2008). STAT proteins often have two isoforms, for example STAT5a and 

STAT5b, thought to have separate and related functions (Smit et al., 1996; Herrington et al., 

2000). The identity of which GHR Tyr residues STAT5 preferentially binds is unclear, with evidence 

for stronger binding at Tyr534, Tyr566, and Tyr627, and weaker binding to Tyr595 and Tyr487 

(Uyttendaele et al., 2007). The STAT proteins are phosphorylated by JAK2 at the specific tyrosine 

and/or serine residues, leading to homo- or heterodimerisation and migration to the nucleus, 

activating gene transcription (Han et al., 1996; Decker and Kovarik, 2000; Herrington et al., 2000; 
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Waters et al., 2006; Brooks et al., 2008). Although GH signalling through STAT proteins is the 

primary signalling pathway (Figure 1.4), there are elements of this signalling cascade that are not 

yet fully defined, leading to different models. For example, the mechanisms by which GH activates 

its receptor is debated, and may involve GH activating GHR dimerisation as described above; GH 

binding causing GHR to internalise and auto-phosphorylate; or GH stimulating conformational 

change of a constitutively dimerised GHR (Uyttendaele et al., 2007; Brooks et al., 2008; Giustina et 

al., 2008). The latter model is becoming more favoured, and it has been proposed that the two 

GHR subunits constitutively bind JAK2 kinases so that, upon GH activation, the receptor subunits 

rotate to allow the aligned JAK2 proteins to activate each other (Waters et al., 2006). 

GH may regulate the phosphorylation of a range of STATs and this may depend on the cell type; 

for example, STAT5 is activated by GH in adipocytes but not in adherent epithelial cells (Han et al., 

1996). To date, the specific STAT family member(s) involved in mediating GH signalling in 

chondrocytes has focussed on STAT5b and a role for STAT1 and STAT3 is, as yet, unknown (Gevers 

et al., 2009). It has been shown that both GHR and STAT5 are localised to the resting, proliferating 

and pre-hypertrophic chondrocytes, and thus STAT5 phosphorylation in response to GH is likely to 

occur predominantly in these zones (Gevers et al., 2009). STAT5 null mice show growth 

retardation, with narrower growth plate proliferating zones and reduced circulating IGF-1, but 

their phenotype is slightly different to GHR knockout mice (Sims et al., 2000; Waters et al., 2006).  
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Figure 1.4. GH signalling through the JAK/STAT pathway. Upon binding its receptor, GH 
stimulates JAK2 and consequently STAT phosphorylation. Dimerised STAT proteins then 
translocate to the nucleus and activate gene transcription. 
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Growth retardation of STAT5 null mice appears earlier and is less severe than in GHR null mice, 

and appears to be due to an endochondral ossification fault as opposed to the premature growth 

plate senescence observed in GHR null mice (Sims et al., 2000; Waters et al., 2006). Also, STAT5 

null mice show normal bone remodelling, whereas GHR null mice have lowered levels of bone 

remodelling (Giustina et al., 2008). These different phenotypes suggest GH actions on 

chondrocytes have STAT5 independent effects. However, STAT5 null mice lack both STAT5A and 

STAT5B. Interestingly, growth retardation and reduced circulating IGF-1 are observed in STAT5b 

null mice but not STAT5a null mice, suggesting that STAT5b may be the important isoform in GH 

signalling in bones (Herrington et al., 2000). STAT3 knockout mice are embryonic lethal, while 

STAT1 knockout mice are of normal size (Durbin et al., 1996; Meraz et al., 1996; Takeda et al., 

1997). In humans, mutations of GHR or STAT5b that result in the inhibition of STAT5b signalling 

but maintain STAT1 and STAT3 and MAPK-ERK signalling result in severe short stature (Kofoed et 

al., 2003; Milward et al., 2004; Rosenfeld et al., 2005; Tiulpakov et al., 2005). 

1.4.2. IGF-1 Signalling 

One of the outcomes of GH signalling is induction of IGF-1 gene expression, the mechanisms of 

which are poorly understood (Herrington et al., 2000). Most evidence suggests that GH signalling 

through STAT5b leads directly to IGF-1 induction, although other transcription factors may also be 

involved (Herrington et al., 2000; Woelfle et al., 2003a; Woelfle et al., 2003b). IGF-1 signalling can 

occur both dependently and independently of GH. Prenatally, IGF-1 signalling is considered to be 

GH independent whereas postnatally, IGF-1 signalling is partly or fully GH dependent (Klammt et 

al., 2008). IGF-1 can be found in the circulation bound in a complex with IGF binding proteins, 

such as IGF binding protein-3 (IGFBP-3), and the acid-labile subunit (ALS) (Baxter and Martin, 

1989; Firth and Baxter, 2002). These complexes increase the half-life of circulating IGF-1 and 

target the ligand to its receptor (Rajaram et al., 1997). Other binding proteins, such as IGFBP-1, 
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inhibit IGF-1 bioactivity due to their greater affinity for IGF-1 than the IGF-1R (Jones et al., 1991; 

Rajaram et al., 1997). 

In chondrocytes, IGF-1 signalling (Figure 1.5) involves IGF-1 binding a cell surface receptor tyrosine 

kinase (IGF-1R) with high affinity to induce IGF-1R conformational change (dimerisation) (Klammt 

et al., 2008; Giustina et al., 2008). Upon binding, the IGF-1R undergoes auto-phosphorylation of 

the receptor intracellular domains (β subunits), creating phosphorylated tyrosine residues that act 

as specific docking sites for various substrates important for downstream signalling cascades 

(LeRoith, 2000). This includes various insulin receptor substrate (IRS) proteins (such as IRS-1) and 

Shc proteins which activate downstream pathways important for inducing proliferation and 

inhibiting apoptosis (Hoshi et al., 2004; Michaylira et al., 2006a; MacRae et al., 2007a). The main 

two downstream pathways of IGF-1 signalling that have been studied are the Shc meditated 

Ras/Raf/MAPK and the IRS-1 mediated PI3K/Akt/PKB pathways (LeRoith, 2000; Hoshi et al., 2004). 

It is worth noting that as IGF-1R does not contain specific tyrosine based motifs recognised by 

STAT proteins, IGF-1 is not thought to signal via the JAK/STAT pathway (Stahl et al., 1995; Decker 

and Kovarik, 2000). Despite this, there is limited evidence of IGF-1 stimulation of STAT3 via JAK1, 

which clearly warrants further investigation (Zong et al., 2000; Yadav et al., 2005). IRS-1 has been 

shown to be vital to bone growth as chondrocytes in IRS-1 knockout mice have lower levels of 

proliferation, undergo faster apoptosis and the growth plate closes early (Hoshi et al., 2004; 

Giustina et al., 2008). This results in decreased bone turnover and reduced animal growth and 

weight (Hoshi et al., 2004; Giustina et al., 2008). IRS-1 null mice also show impaired fracture 

healing, which can be restored by over expression of IRS-1 in transgenic mice (Shimoaka et al., 

2004). Furthermore, the addition of the PI3K inhibitor, LY294002, restricts the IGF-I mediated 

increases in chondrocyte proliferation and metatarsal growth, suggesting that the PI3K pathway is 

crucial in chondrocyte responses to IGF-1 (MacRae et al., 2007a; Ulici et al., 2008). 
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Figure 1.5. IGF-1 signalling. IGF-1 binds its receptor to stimulate signalling through a variety of 
pathways, mediated by SHC and IRS phosphorylation. + indicates activation and – indicates 
inhibition. Image from Klammt et al. (2008). 

 

 

 

 

 

 

 

 



Chapter 1                                                                                                                            Introduction 

 
 

23 
 

IGF-1 induces somatostatin which inhibits GH release and thereby forms a classical negative 

feedback loop (Giustina et al., 2008). 

1.4.3. GH and IGF-1 Regulation of Endochondral Growth 

It has long been recognised that GH plays an important role in postnatal, but not embryonic, bone 

growth. GH deficiency results in impaired postnatal growth, with growth retardation in GHR 

knockout mice after 2-weeks of age, while excess GH causes gigantism (Cuttler et al., 1989; Lupu 

et al., 2001). Indeed, recombinant human GH (rhGH) is widely used to treat a diverse group of 

conditions that are associated with short stature and poor growth and range from GH deficiency 

to conditions such as Prader-Willi syndrome and Turner’s syndrome (Hindmarsh and Dattani, 

2006). Therapy with recombinant human GH has also been used in humans with chronic 

inflammatory diseases and has shown variable extent of improvement in growth and even disease 

(Slonim et al., 2000; Mauras et al., 2002; Wong et al., 2007). IGF-1 deficiency inhibits growth both 

pre- and post-natal, with IGF-1 knockout mice exhibiting growth retardation and IGF-1 receptor 

(IGF-1R) deficient mice dying shortly after birth (Baker et al., 1993; Lupu et al., 2001). 

Furthermore, in humans with GH insensitivity due to a GH receptor defect, growth retardation 

and osteoporosis which are the result of IGF-1 deficiency are observed (Parks et al., 1997). More 

recently, abnormalities of STAT5b, the IGF-1 receptor gene itself and the binding proteins that 

influence bioavailability of IGF-1 at the tissue level have all been reported to be associated with a 

variable extent of short stature in humans (Walenkamp and Wit, 2007). IGF-1 signalling is also 

thought to be critical for bone healing following fracture (Hoshi et al., 2004). 

The original model implicating GH and IGF-1 as central regulators of bone growth was termed the 

somatomedin hypothesis (Salmon and Daughaday, 1957; Daughaday et al., 1972; Daughaday, 

1989). It proposed that GH exerted its effects on the growth plate by stimulating production of 

hepatic IGF-1 (previously known as somatomedin), which would in turn stimulate target tissues 

including bone and the growth plate (Daughaday et al., 1972; Daughaday, 1989; Lupu et al., 
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2001). The somatomedin hypothesis has been questioned by experiments reporting that low 

concentrations of GH directly infused into the growth plate stimulates longitudinal growth in 

comparison to the contralateral limb (Isaksson et al., 1982). The somatomedin hypothesis has 

been further challenged by studies showing that conditional liver-specific IGF-1 knockout mice 

exhibited body weights that were indistinguishable from wild-type littermates (Yakar et al., 1999; 

Sjögren et al., 1999; Liu et al., 2000). These studies showed that, although the liver is the main 

source of circulating IGF-1, it is local IGF-1 that is important for regulating postnatal growth (Yakar 

et al., 1999; Sjögren et al., 1999). These findings have been challenged by Stratikopoulos and 

colleagues, who found that inducing hepatic IGF-1 production in IGF-1 knockout mice, which 

lacked IGF-1 in all other tissues, resulted in an increase of growth demonstrating that liver derived 

endocrine IGF-1 does in fact contribute to 30% of adult body size and sustains postnatal 

development (Stratikopoulos et al., 2008).  

It is now thought that GH can act independently on the growth plate to increase chondrocyte 

proliferation, as well as stimulating local production of IGF-1 (Nilsson et al., 2005). Nilsson and 

colleagues found strong IGF-1 localisation in proliferating chondrocytes, with low levels of IGF-1 in 

hypertrophic cells, and they demonstrate that growth plate IGF-1 levels increased in response to 

GH (Nilsson et al., 1986). Interestingly, more recent studies found that IGF-1 mRNA expression is 

predominantly found in the perichondrium with comparatively very low expression in any of the 

growth plate zones, indicating that IGF-1 may diffuse into the growth plate (Parker et al., 2007). In 

combination with other similar studies, these observations have led to an alternative hypothesis 

termed the dual effector theory, where GH acts directly on germinal zone precursors of the 

growth plate to stimulate the differentiation of chondrocytes and the amplification of local IGF-1 

secretion. This locally produced IGF-1, in turn, stimulates both chondrocyte clonal expansion and 

hypertrophy and consequently bone growth in an autocrine/paracrine manner (Isaksson et al., 

1982; Green et al., 1985; Zezulak and Green, 1986; Wang et al., 1999). Thus, although liver-

derived IGF-1 is the main determinant of systemic IGF-1 levels, it is locally derived IGF-1 that 
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appears more important for postnatal growth (Yakar et al., 1999; Yakar et al., 2002). In fact, it 

seems likely that GH and IGF-1 have both dual and overlapping functions on chondrocytes, as 

both GH receptor (GHR) and IGF-1 mutant mice show reduced growth which is more severe in 

double GHR/IGF-1 mutants (Lupu et al., 2001; Giustina et al., 2008). There remain unanswered 

questions about the independent and combined relationships of GH and IGF-1 on the growth 

plate and bone growth, including whether or not GH mediates any IGF-1 independent effects on 

chondrocytes. Data on GH actions on chondrocyte proliferation have so far been largely 

conflicting; with some authors showing strong proliferative effects of GH while others show little 

or none (Madsen et al., 1983; Livne et al., 1997; Hutchison et al., 2007).  

1.5. Inflammatory Cytokine Inhibition of Bone Growth 

1.5.1. Paediatric Diseases Affecting Bone Growth 

Many chronic childhood inflammatory diseases, such as inflammatory bowel disease (IBD) and 

juvenile idiopathic arthritis (JIA), are associated with growth retardation coupled with elevated 

levels of inflammatory cytokines such as IL-6, TNFα, and IL-1β (MacRae et al., 2006a; MacRae et 

al., 2006c; MacRae et al., 2007a). Growth retardation in these patients is further exacerbated by 

the use of anti-inflammatory glucocorticoids such as dexamethasone which are known to inhibit 

bone growth and development (Ahmed et al., 2002; Ahmed and Sävendahl, 2009). Patients with 

inflammatory conditions can have variable levels of GH but generally reduced levels of circulating 

IGF-1, indicating GH resistance (Davies et al., 1997; De Benedetti et al., 2001a; Wong et al., 2010). 

They also show lower concentrations of IGFBP-3 (Davies et al., 1997; De Benedetti et al., 2001a). 

Treatment with relatively high doses of recombinant human GH has been shown to improve 

growth in children with JIA as well as IBD (Touati et al., 1998; Bechtold et al., 2001; Wong et al., 

2011). 

Mice over-expressing IL-6 or TNFα exhibit growth retardation, with IL-6 over-expression resulting 

in reduced IGF-1 and IGFBP-3 levels, as observed in patients (Siegel et al., 1995; De Benedetti et 
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al., 1997; De Benedetti et al., 2001a; Li and Schwartz, 2003). The IL-6 growth defect can be 

completely abolished by IL-6 neutralization (De Benedetti et al., 2001b). Treatment with IL-1β 

results in reduced plasma levels of IGF-1 and ALS (Barreca et al., 1998; Delhanty, 1998). There is 

also evidence that IL-1β stimulates IGFBP-1 protein expression, which will inhibit IGF-1 activity 

(Lang et al., 1996; Lang et al., 1999; Frost et al., 2000). 

1.5.2. Inflammatory Cytokines and Endochondral Growth 

Few studies have reported the effects of inflammatory cytokines on the growth plate. Elevated 

levels of IL-1β, TNFα and IL-6 during inflammatory synovitis lead to local destruction of the growth 

plate (de Hooge et al., 2003). IL-1β and TNFα decrease both the width of the proliferating zone 

and the rate of endochondral bone growth; a possible consequence of altered chondrocyte 

proliferation and apoptosis rates (Aizawa et al., 2001; Martensson et al., 2004; MacRae et al., 

2006b). Furthermore, IL-1β and TNFα reduce chondrocyte expression of proteoglycans including 

aggrecan and collagen types-II and -X (Goldring et al., 1988; Horiguchi et al., 2000; MacRae et al., 

2006b). IL-6, in combination with IL-6 receptor, has been shown to inhibit articular chondrocyte 

differentiation via the JAK/STAT pathway, but the addition of IL-6 alone appears to have little 

effect on growth plate chondrocytes (Legendre et al., 2003; Martensson et al., 2004). It therefore 

seems likely that IL-6 needs to be added in combination with soluble IL-6R to have an effect on 

chondrocyte proliferation and differentiation. Some of these effects, in particular those that result 

in destruction of the growth plate are likely to be a consequence of increased production of 

matrix metalloproteinase (MMPs) (Delhanty, 1998). The catabolic actions of MMPs on cartilage 

are well recognised and will counteract the anabolic actions of the GH/IGF-I axis (Reynolds et al., 

1994). 

It is likely that one of the cellular mechanisms through which inflammatory cytokines act on the 

growth plate is the inhibition of IGF-1 signalling (Broussard et al., 2004; Kenchappa et al., 2004). 

Neither TNFα nor IL-1β appear to affect IGF-1 signalling at its receptor level, although this has 
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been poorly investigated in chondrocytes (Matsumoto et al., 1994; Shen et al., 2002; Strle et al., 

2004; MacRae et al., 2006c). Alternatively, inflammatory cytokines may disrupt signalling 

downstream of the IGF-1R, for example IRS phosphorylation, MAPK signalling or PI3K signalling. It 

has been suggested that IL-1β is likely to inhibit the proliferative effect of IGF-1 on chondrocytes 

via the PI3K pathway (MacRae et al., 2007a). TNFα and IL-1β inhibit IRS-1 phosphorylation in 

myoblasts, and TNFα has been shown to inhibit Akt phosphorylation and MAPK-kinase 

phosphorylation in neuronal cells (Broussard et al., 2004; Kenchappa et al., 2004; Strle et al., 

2004). It is also possible that inflammatory cytokines act on GH signalling but to date little 

knowledge of the effects of inflammatory cytokines on STAT signalling in chondrocytes exists. IL-6 

and oncostatin M have been shown to activate JAK2, STAT1 and STAT3 (IL-6 only) in chondrocytes, 

leading to down-regulation of matrix components (Li et al., 2001; Legendre et al., 2003). IL-1β has 

been shown to antagonize GH signalling through STAT5 in hepatocytes whilst activating STAT3 in 

mouse kidney tumour cells (Boisclair et al., 2000; Liu et al., 2006). There is also evidence that IL-

1β, IL-6 and TNFα can induce the expression of SOCS proteins, which act to inhibit GH signalling 

(Denson et al., 2003; Shi et al., 2004). 

1.6. Suppressor of Cytokine Signalling-2 

1.6.1. SOCS Proteins 

Cytokine signalling is negatively controlled by a variety of proteins, including protein tyrosine 

phosphatases and the SOCS proteins (Rico-Bautista et al., 2006). There have been eight SOCS 

molecules identified to date, namely CIS and SOCS1-7, all of which are involved in negatively 

regulating cytokine signalling. SOCS proteins consist of a conserved C-terminal motif named the 

SOCS box, a central SH2 domain and a variable N-terminal domain (Tollet-Egnell et al., 1999; Rico-

Bautista et al., 2006). They can bind through their SH2 domains to phosphorylated tyrosines 

within the cytokine receptor-JAK complex and inhibit JAK signalling and downstream STAT 

activation (Hilton, 1999; Rico-Bautista et al., 2006; Pass et al., 2009).  
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Figure 1.6. SOCS regulation of cytokine signalling. Once released downstream of cytokine 
signalling, SOCS proteins act in a negative feedback loop to regulate cytokine signalling through 
JAK proteins. Shown are the mechanisms of inhibition by CIS, SOCS1 and SOCS3. The mechanisms 
of SOCS2 are unknown. Image from Krebs and Hilton (2001). 
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The way in which SOCS proteins are thought to interact with cytokine signalling is depicted in 

Figure 1.6. 

Expression of SOCS is normally stimulated by the very cytokines they inhibit, thereby creating a 

negative feedback loop (Turnley, 2005; Rico-Bautista et al., 2006). GH signalling is inhibited by CIS 

and SOCS1-3. These four SOCS proteins can be induced by: IL-2, IL-3, IL-4, IL-6, prolactin, 

interferon-γ (IFN-γ), erythropoietin (Epo), granulocyte colony-stimulating factor (G_CSF), 

granulocyte macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF); 

although the relationship between the SOCS proteins and these cytokines varies from cell to cell 

and between SOCS proteins (Krebs and Hilton, 2001). 

SOCS1 has been shown to inhibit signalling by IL-2, IL-3, IL-4, IL-6, GH, prolactin, erythropoietin, 

LIF, IFN-γ, IFN-α, oncostatin M (OSM), thymic stromal lymphopoietin (TSLP), thrombopoietin 

(TPO), thyrotropin and IGF-1 (Nicholson et al., 1999; Krebs and Hilton, 2001; Greenhalgh and 

Alexander, 2004). It can directly bind phosphorylated JAK proteins via its SH2 domain (Greenhalgh 

and Alexander, 2004). SOCS1-/- mice exhibit stunted growth and die young, before weaning, with 

immune cell infiltration of organs and liver fatty degeneration (Starr et al., 1998). Upon 

examination the mice also have small thymus and reduced numbers of mature B lymphocytes 

(Starr et al., 1998). Studies in SOCS1-/- mice have found that it is a key regulator of IFN-γ signalling, 

as administration of IFN-γ to the mice can prevent the fatal organ degeneration (Alexander et al., 

1999). The perinatal lethality of SOCS1-/- mice is also mediated by lymphocytes, so that SOCS1 

seems to act to regulate T cell function and/or differentiation and to inhibit IFN-γ signalling 

(Marine et al., 1999b). 

Studies have found that SOCS3 can inhibit signalling by IL-2, IL-3, IL-4, IL-6, GH, prolactin, 

erythropoietin, LIF, IFN-γ, IFN-α, IGF-1, ciliary neurotrophic factor, leptin, oncostatin M, and 

insulin (Nicholson et al., 1999; Pezet et al., 1999; Krebs and Hilton, 2001). Like SOCS1, it can 

directly bind activated JAK proteins through its SH2 domain (Greenhalgh and Alexander, 2004). 
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SOCS3-/- mice are embryonically lethal, dying between gestation days 11 and 13 (Roberts et al., 

2001). The premature death of SOCS3-/- embryos occurs as a result of faults with placental 

development, caused by increased cytokine signalling (Roberts et al., 2001). SOCS3-/- lethality is 

also associated with erythrocytosis, demonstrating that SOCS3 acts to negatively regulate liver 

erythropoiesis, and with IL-6 hyper-responsiveness (Marine et al., 1999b; Greenhalgh and 

Alexander, 2004). 

CIS can inhibit signalling by IL-2, IL-3, prolactin, erythropoietin, IGF-1 and GH (Krebs and Hilton, 

2001). CIS is thought to inhibit STAT signalling by interacting with the cytokine receptor to block 

STAT binding sites (Krebs and Hilton, 2001). CIS-/- mice exhibit no obvious phenotype, although 

over-expression of CIS results in growth retardation (Greenhalgh and Alexander, 2004). Studies 

using transgenic mice have demonstrated that CIS is an important regulator of T cell activation 

mediated by the T cell receptor (Li et al., 2000). 

SOCS2 has been shown to inhibit signalling by GH, IL-6, LIF, IGF-1 and prolactin (Minamoto et al., 

1997; Dey et al., 1998; Pezet et al., 1999; Greenhalgh et al., 2002b; Kamradt and Schubert, 2005). 

SOCS2-/- mice are viable and exhibit an overgrowth phenotype from 3-weeks of age, as discussed 

below (Metcalf et al., 2000). Inhibition of GH signalling by SOCS1 and 3 is complete whereas 

SOCS2 and CIS only cause partial inhibition and it is difficult to reconcile these actions with the 

observed growth of the transgenic mice (Adams et al., 1998; Hansen et al., 1999; Inaba et al., 

2005). Clearly, other interactions are important possibly involving the other SOCS proteins. The 

pathways inhibited by SOCS4, SOCS5, SOCS6 and SOCS7 are largely unknown, although SOCS5 has 

been shown to inhibit IL-6 and IL-4; SOCS6-/-mice exhibit mild growth retardation due to an 

unknown mechanism; SOCS7 can associate with growth factor receptor-bound protein 2 (Grb2), 

non-catalytic region of tyrosine kinase adaptor protein (Nck) and phospholipase C-γ (PLCγ) (Krebs 

and Hilton, 2001; Greenhalgh and Alexander, 2004).  
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1.6.2. SOCS2 Knockout Mouse 

The overgrowth phenotype of SOCS2 knockout (SOCS2-/-) mice has led to confirmation that the 

key pathway regulated by SOCS2 is the GH/IGF-1 axis, although SOCS2 also regulates other 

pathways including prolactin signalling (Metcalf et al., 2000; Rico-Bautista et al., 2005; Rico-

Bautista et al., 2006). Adult male SOCS2-/- mice are 40% heavier than their wild-type littermates 

and are more severely affected than females. However adult females still reach the same size as 

wild-type males (Metcalf et al., 2000). The increased body weight of SOCS2-/- is not as a result of 

any increase in fatty tissue, but rather a proportional increase in size of most internal organs, 

muscle and bones, due to hyperplasia and not hypertrophy (Metcalf et al., 2000). Consistent with 

increased bone size, SOCS2-/- mice have longer longitudinal bones (femur, tibia, radius and 

humerus) as well as increased body length (Metcalf et al., 2000; MacRae et al., 2009). Epiphyseal 

chondrocytes express SOCS2 and growth plates from SOCS2 null mice are enlarged with wider 

proliferative and hypertrophic zones (MacRae et al., 2009). Some studies have shown reduced 

trabecular and cortical bone mineral density (BMD) in SOCS2-/- bones, which is not consistent with 

the enhanced GH/IGF-1 signalling observed in the SOCS2-/- mice (Lorentzon et al., 2005; Rico-

Bautista et al., 2006). More recent studies using high resolution analyses of trabecular bone 

architecture and cortical bone geometry have found that SOCS2-/- mice exhibit no difference in 

BMD compared to wild-type littermates, coupled with increased trabecular bone volume (MacRae 

et al., 2009). This is consistent with the anabolic role of GH on the skeleton (Ohlsson et al., 1998; 

Andreassen and Oxlund, 2001). SOCS2-/- mice display elevated IGF-1 mRNA in some tissues (heart, 

lung, spleen but not liver, bone, fat, muscle), but interestingly circulating IGF-1 levels are not 

increased (Metcalf et al., 2000; MacRae et al., 2009). It is therefore likely that the increased bone 

growth and observed structural differences within SOCS2-/- growth plates is a direct consequence 

of altered SOCS2 mediated GH/IGF-1 signalling at the growth plate (Alexander et al., 1999; 

Turnley, 2005; MacRae et al., 2009). 
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Greenhalgh et al. demonstrated firm evidence that SOCS2 acts on the GH pathway by crossing 

SOCS2-/- mice with Ghrhrlit/lit mice, which are GH deficient due to a point mutation in the GH-

releasing hormone (LeRoith and Nissley, 2005; Greenhalgh et al., 2005). Both the double knockout 

mice and the Ghrhrlit/lit mice exhibited a similar 60% growth retardation (Greenhalgh et al., 2005). 

Furthermore, administration of GH to these double knockout mice caused an increase of growth 

to a size indistinguishable from SOCS2-/- mice (LeRoith and Nissley, 2005; Greenhalgh et al., 2005). 

An interaction between SOCS2 and GH signalling in regulating growth is consistent with the 

temporal increased expression of the GHR and the overgrowth phenotype with both occurring at 

around 3-weeks of age (Metcalf et al., 2000). Moreover, prolonged STAT5 activation in response 

to GH has been observed in hepatocytes cultured from SOCS2-/- mice, which may result in 

increased IGF-1 activation (Greenhalgh et al., 2002a; Turnley, 2005; LeRoith and Nissley, 2005). 

When SOCS2-/- mice are crossed with STAT5b-/- mice the overgrowth phenotype is attenuated, 

with normal growth observed demonstrating the importance of SOCS2 interactions of GH 

signalling (Greenhalgh et al., 2002a; LeRoith and Nissley, 2005; Flores-Morales et al., 2006). 

Similar phenotypes to the SOCS2-/- mice have been observed in high growth (hg) mice, a 

phenotype that occurs following a spontaneous mutation in mouse chromosome 10 that has been 

mapped to a genetic interval of 100 to 103 centimorgan from the top of human chromosome 12 

(Horvat and Medrano, 1995; Horvat and Medrano, 1998; Horvat and Medrano, 2001). Again these 

mice demonstrate 30-50% increases in postnatal growth, and the identification of the SOCS2-/- 

mouse phenotype has led to SOCS2 being mapped to the hg region (Horvat and Medrano, 1995; 

Horvat and Medrano, 2001). The only recognised difference between hg and SOCS2-/- mice is that 

hg mice have high plasma IGF-1, levels possibly due to another gene deletion in the hg region 

(Horvat and Medrano, 2001). 
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1.6.3. Over-expression of SOCS2 

Intriguingly, over-expression of SOCS2 using a human ubiquitin promoter does not limit growth as 

may be expected, but surprisingly results in a similar phenotype to SOCS2-/- mice (Greenhalgh et 

al., 2002b; Turnley, 2005). Transgenic expression of SOCS2 in male mice causes a 13-15% increase 

in body weight, with significant increases in female mice also (Greenhalgh et al., 2002b). It is, 

therefore, likely that the effects of SOCS2 on GH signalling is dose dependant, with dual effects 

(Greenhalgh et al., 2002b; Turnley, 2005; Flores-Morales et al., 2006). It has been proposed that 

at physiological levels, SOCS2 inhibits GH signalling by blocking sites of STAT activation on the 

GHR, but at higher doses it inhibits signalling of other, more potent GH inhibiting SOCS (SOCS1 

and 3) (Favre et al., 1999; Greenhalgh et al., 2002b; Turnley, 2005). This could be through 

association with SOCS3 binding sites on the GHR, thus blocking SOCS3 action, or by binding the 

other SOCS themselves and suppressing them through proteasomal degradation (Uyttendaele et 

al., 2007). 

1.6.4. SOCS2 and GH Signalling 

Expression of SOCS is usually stimulated by the very cytokines they inhibit, so that they create 

negative feedback loops (Turnley, 2005; Rico-Bautista et al., 2006). GH signalling is inhibited by 

CIS, SOCS1, SOCS2 and SOCS3, but this work in chondrocytes will focus on SOCS2. If the 

premature death of SOCS1-/- mice is prevented by using IFN-γ antibodies the mice do not display 

overgrowth, the role of SOCS3 has been poorly examined as SOCS3-/- mice are embryonic lethal 

and CIS-/- mice do not exhibit any phenotype (Greenhalgh and Alexander, 2004; Turnley, 2005). 

Inhibition of GH signalling by SOCS1 and 3 is complete, with SOCS3 thought to be the primary 

inhibitor, whereas SOCS2 and CIS only cause partial inhibition (Adams et al., 1998; Ram and 

Waxman, 1999; Hansen et al., 1999). Incidentally, these four SOCS proteins (CIS, SOCS1, 2 and 3) 

are the only ones that have been widely studied and it is possible other SOCS family members 

may also inhibit GH signalling (Inaba et al., 2005).  
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It has been well documented that GH signalling stimulates SOCS2 expression, in a dose and 

concentration dependant manner, with the maximum affect observed after 24hrs treatment with 

0.5 - 5.0µg GH/ml (Tollet-Egnell et al., 1999). Furthermore, it is thought that SOCS2 production is 

regulated by GH signalling through STAT5b, which is consistent with the importance of STAT5b for 

growth (Vidal et al., 2007). This confirms the hypothesis that SOCS2 acts in a negative feedback 

loop to control and regulate GH signalling under physiological conditions and offers a plausible 

explanation for the overgrowth phenotype of SOCS2-/- mice (Tollet-Egnell et al., 1999). High SOCS2 

expression has been found in the liver, a major source of circulating IGF-1, and in the heart 

(Tollet-Egnell et al., 1999). 

The precise mechanism by which SOCS2 regulates GH signalling is unclear. The strongest evidence 

indicates that SOCS2 may bind the SHP2-binding sites on the GHR (Tyr595 and Tyr487), which will 

prevent STAT5b activation (Greenhalgh et al., 2005; Yoshimura et al., 2007; Uyttendaele et al., 

2007). It has also been demonstrated that SOCS2 binds Elongins B and C, suggesting this complex 

may then bind cullin-2 and act as an E3 ubiquitin ligase to degrade the GHR or the GHR-JAK2 

complex (Ram and Waxman, 1999; Greenhalgh and Alexander, 2004; Rico-Bautista et al., 2006). 

Furthermore, it has been demonstrated that the SOCS2 SH2 domain directly binds a tyrosine in 

the activation loop of JAK2, inhibiting JAK2 tyrosine phosphorylation and activation of STATs 

(Rico-Bautista et al., 2006; Flores-Morales et al., 2006). Interestingly, SOCS2 actions may not be 

confined to regulating GH signalling. There is evidence that SOCS2 can directly bind the IGF-1R 

and therefore it is possible that SOCS2 also regulates IGF-1 signalling, although IGF-1 does not 

induce SOCS2 expression (Dey et al., 1998; Greenhalgh and Alexander, 2004; Michaylira et al., 

2006b). 

Glucocorticoids, including dexamethasone, are thought to desensitize GH signalling and thus 

suppress growth by up-regulating SOCS2 (Tollet-Egnell et al., 1999; Rico-Bautista et al., 2006). 

Oestrogen inhibition of GH signalling, through JAK2 inhibition, is also thought to be mediated by 
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SOCS2 (Leung et al., 2003). The effects of inflammatory cytokines on SOCS2 have however been 

poorly investigated, with evidence that some interleukins induce SOCS2 gene expression in 

specific cell types (IL-2, -3, -4, -5, -6) (Starr et al., 1997; Krebs and Hilton, 2001). For example, IL-1β 

has been shown to stimulate SOCS2 in tonsillar cells and B-lymphoma cells, whereas it does not 

increase SOCS2 expression in hepatic liver cells (Dogusan et al., 2000; Boisclair et al., 2000). 

Furthermore, TNFα stimulates SOCS2 expression in chondrocytes (MacRae et al., 2009). There is 

evidence that IL-1β, TNFα and IL-6 induce expression of SOCS3 in certain cell types (Denson et al., 

2003; Shi et al., 2004). 

There are still many aspects on the actions of SOCS2 that have yet to be investigated. The precise 

mechanism by which SOCS2 alters GH/IGF-I signalling have yet to be fully determined as are the 

resultant cellular events that occur at the growth plate and are responsible for normal growth. It 

is also unclear if SOCS2 mediates the deleterious effects of inflammatory cytokines on linear bone 

growth. 

1.7. Aims 

The overgrowth phenotype of SOCS2-/- mice occurs from 3-weeks of age, but the local cellular 

(chondrocyte) mechanisms behind the increased longitudinal growth from this age are largely 

unknown. Therefore, the aim of this studentship is to fully establish the role of SOCS2 on 

endochondral bone growth and the signalling pathways involved. This will be achieved both in 

vitro and in vivo using a range of cell and molecular biology techniques. The specific aims are: 

 Establish the role of GH and IGF-I signalling on STATs1, 3 and 5 phosphorylation and 

SOCS1-3 expression in growth plate chondrocytes  

 Conduct a detailed examination of the growth plate of SOCS2-/- mice to help 

understand better the overgrowth phenotype 
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 Using in vitro chondrocyte cultures (wild-type, SOCS2 null and SOCS2 over-expressing 

cells) and metatarsal organ cultures (wild-type and SOCS2 null) determine if the 

overgrowth phenotype of SOCS2-/- mice is a result of altered chondrocyte proliferation 

and STAT activation by GH  

 Examine the role of SOCS2 in mediating the effects of inflammatory cytokines on 

growth
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2. Materials and Methods 

2.1. Materials 

Unless stated otherwise: chemicals were obtained from Sigma (Poole, UK); cell culture reagents 

were purchased from Invitrogen (Paisley, UK); PCR oligonucleotides were generated by Eurofins 

MWG Operon (London, UK). All medium and buffer recipes are shown in Appendix 10.1. 

2.2. Cell Culture 

2.2.1. ATDC5 Cells 

The murine chondrogenic ATDC5 cell line has been widely used throughout the field of growth 

plate research. The cells were derived by Atsumi et al. from AT805 teratocarcinoma cells, and 

have been shown to be a good model of chondrocyte differentiation (Atsumi et al., 1990). 

Cultured ATDC5 cells can be used to study differentiation of mesenchymal cells into chondrocytes, 

followed by terminal differentiation from proliferating to hypertrophic chondrocytes (Mushtaq et 

al., 2002). 

ATDC5 cells were obtained from the RIKEN cell bank (Ibaraki, Japan), and maintained as described 

previously (Atsumi et al., 1990). Cells were cultured in T175 flask (Costar, High Wycombe, UK) in 

maintenance medium until sub-confluent, and then passaged as follows. Cells were washed in 

serum free DMEM/F-12 and then incubated in trypsin-EDTA (Sigma) until cells were rounded and 

detached. Maintenance media (containing serum to inactivate the trypsin) was then used to wash 

the cells into a universal and the cells pelleted, resuspended and counted with a 

haemocytometer. This allowed cells to be plated at the required density (6000/cm2) in multi-well 

plates for experimentation. Once confluent, cells were induced to differentiate by addition of 

differentiation medium (which contained insulin). For serum deprivation, differentiation medium 

without FBS and ITS was used. Cells were first incubated in serum free medium for 15mins at 37°C 
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to rid cells of serum components, which was replaced over night with fresh serum free medium. 

Cells were incubated in a humidified atmosphere (37°C, 5% CO2:95% air).  

2.2.2. Freezing/Thawing Cells 

For freezing, cells were first trypsinised and counted as described in 2.2.1. Cells were then re-

suspended in 50/50 maintenance medium and freezing mix to give 3 million cells per ml. 1ml of 

this was added to each cryovial (Corning, Surrey, UK) and wrapped in cotton wool within a 

polystyrene box at -80°C for 3-5 days before transfer to -150°C. 

To thaw cells, a cryovial (containing 3 million cells) was thawed from -150°C to 37°C and then had 

5ml maintenance medium added in a slow, drop wise manner. Cells were pelleted by 

centrifugation, to remove toxic DMSO, and resuspended in maintenance medium before being 

transferred to a T175 flask to grow to sub-confluency prior to plating in multi-well plates (see 

2.2.1.). 

2.3. In vivo Studies 

2.3.1. Animal Welfare 

Animals were maintained under conventional housing conditions with a 12h light/dark cycle. All 

animal experiments were approved by The Roslin Institute’s Animal Users Committee and the 

animals were maintained in accordance with Home Office guidelines for the care and use of 

laboratory animals. 

2.3.2. Generation of SOCS2 Knockout Mice 

The SOCS2 knockout mice were previously generated at The Roslin Institute by Dr. Simon Horvat, 

as described by MacRae et al. (2009). A summary taken from that paper is given here (MacRae et 

al., 2009). A previously isolated BAC clone (520L19) which contains the Socs2 locus was used to 

subclone a plasmid with a XbaI genomic fragment containing exons 2 and 3 of the Socs2 transcript 
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(Ensembl ID ENSMUST00000020215; 7517bp long; positions 94841854 to 94849370 bp on 

chromosome 10; mouse genome Ensembl release 45 – June 2007; 

http://www.ensembl.org/Mus_musculus/) (Horvat and Medrano, 1998). The reporter-selection 

marker cassette from plasmid pGT1.8Iresβgeo was inserted into exon 2 at the KpnI site (see 

Appendix 10.2), causing transcription to terminate prematurely and thus a lack of Socs2 function. 

Embryonic stem (ES) cells from the strain 129Sv were electroporated with NotI-linearised 

construct (Magin et al., 1992) and antibiotic resistant ES cell colonies selected using G418. 

Southern blot analysis of digested DNA was used to identify clones containing the expected 

fragment size of targeted and wild type alleles. Two karyotypically normal positively targeted ES 

clones were used to inject C57Bl/6J blastocytes and generate chimeras, which were then back-

crossed with C57Bl/6J mice. Agouti-coloured potential founder offspring were identified using 

southern blot analysis as above, and subsequent generations tested by PCR analysis of DNA. 

2.3.3. Tail/Ear Biopsies for Genotyping 

Genotyping was performed on tissue taken from ear clips at weaning, also used for animal 

identification, or from 1-2cm tail biopsies taken under halothane anaesthetic. The tissue was 

digested in lysis buffer (150µl for ear; 750µl for tail) overnight at 37°C, and then frozen at -20°C.  

2.3.4. DNA Isolation for Genotyping 

Digested tissue isolated as described in Section 2.3.3 was thawed to 37°C, then washed in 0.75 

volume phenol:chloroform:isoamyl alcohol (1 volume = 750µl for tail samples; 100µl for ear 

samples). Samples were vortexed and centrifuged to wash, then 0.75 volume of the supernatant 

transferred to a fresh Eppendorf. 0.025 volume of 20M sodium acetate and 0.75 volume of 

isopropanol were added, tubes inverted 15 times then left to stand for 15 minutes. DNA was 

pelleted by 1 minute centrifugation at 13,000rpm. The supernatant was removed and the pellet 

was washed in 1 volume 70% ethanol (Fisher Scientific, Leicestershire, UK), re-pelleted and air 

dried. The DNA was then re-suspended in 50-100µl dH2O overnight at 4°C. DNA concentration and 
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quality was read on a Nanodrop spectrophotometer (ND-1000; Labtech International Ltd, East 

Sussex, UK). Quality was assessed by the A260/A280 ratio, where 1.8 was considered optimum. 

Samples were finally diluted to 4ng/µl in dH2O for PCR. 

2.3.5. Genotyping 

Two separate PCR reactions were carried out for genotyping to identify wild-type (WT; SOCS2) 

and knockout (KO; neo-cassette) bands. Primer pairs are shown in Table 2.1. 

 
 
Table 2.1. Primers used for genotyping. Sequences and band sizes for primers used to genotype 
SOCS2 knockout and wild-type mice. 
 
 
For the WT PCR, each reaction contained: 3µl DNA (4ng/µl); 2.5µl 10X NH4 buffer (Bioline, London, 

UK); 0.75µl 50mM MgCl2 (Bioline); 2.5µl 2mM dNTPs (Invitrogen); 0.5µl 20pmol/µl forward and 

reverse SOCS2 primers; 16µl nuclease free H2O; 0.25µl 5U/µl Biotaq DNA Polymerase (Bioline). 

The PCR reaction was performed on a DNA Engine Dyad machine (Peltier Thermal Cycler, Bio-Rad 

Laboratories, Hertfordshire, UK) under the following conditions: 3mins denaturing at 94°C; 35 

thermocycles consisting of 20secs at 94°C (denaturing), 20secs at 54°C (annealing), and 45secs at 

72°C (extension); 10mins extension at 72°C. 

For the KO PCR, each reaction contained: 6µl DNA (4ng/µl); 1.68µl nuclease free H2O; 1.2µl 10X 

PCR buffer (Invitrogen); 1.2µl 2mM dNTPs (Invitrogen); 1.2µl 25mM MgCl2 (Invitrogen); 0.3µl 

10pmol/µl Neo Forward primer; 0.3µl 10pmol/µl Neo Reverse primer; 0.12µl 5U/µl Platinum Taq 

DNA Polymerase (Invitrogen). The PCR reaction was performed on the DNA Engine Dyad machine 

under the following conditions: 2mins denaturing at 92°C; 35 thermocycles consisting of 1min at 

92°C (denaturing), 1min at 55.7°C (annealing), and 1min at 72°C (extension); 10mins extension at 

72°C. 

Forward (5' to 3') Reverse (5' to 3') Band Size

SOCS2 (WT) TGTTTGACTGAGCTCGCGC CAACTTTAGTGTCTTGGATCT 569bp

Neo (KO) ACCCTGCACACTCTCGTTTTG CCTCGACTAAACACATGTAAAGC 100bp
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The PCR products were diluted 5:1 with 5X blue loading buffer (WT; Bioline) or 6X orange loading 

buffer (KO; New England Biolabs, Herts, UK). 12µl was loaded per sample in separate wells in 1.8% 

Agarose/1XTBE (Ambion, Cambridge, UK) gels containing 0.5µg/ml Ethidium Bromide. Gels were 

run in TBE buffer in an electrophoresis tank at 160V. HyperLadders I and V (Bioline) were used as 

molecular weight markers. Gels were imaged under UV light using a Gel Logic 200 Imaging System 

and software (Kodak, Hemel Hempstead, Herts, UK). Figure 2.1 shows typical bands for wild-type 

and SOCS2 knockout samples. 

2.3.6. Growth Analysis 

Growth analysis was measured by staff in the small animal unit at The Roslin Institute. Weekly 

measurements were taken for both male and female mice in 5 SOCS2-/- and 5 wild-type (WT) 

litters (33 WT and 40 SOCS2-/- mice in total) from 2-weeks until 7-weeks of age. Body lengths were 

established by measuring the crown to rump distance using digital callipers. Body weight was 

determined by placing the animal in a container on scales. 
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Figure 2.1. Genotyping. Typical bands gained for wild-type (WT), SOCS2 knockout (KO) and 
heterozygous (HT) samples, with molecular weight ladders. The bands are approximately 570bp 
(WT) and 100bp (KO). 
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2.3.7. Isolating Primary Chondrocytes 

Sternal primary chondrocytes were isolated from 1- to 3-day old WT Swiss mice and C57/BL6 WT 

or SOCS2-/- mice and cultured using a method previously developed by Lefebvre and colleagues 

(Lefebvre et al., 1994; MacRae et al., 2009). Mice were killed by decapitation and the rib cage and 

sternum were dissected, removing organs, the spine and excess tissue. Ribcages were washed in 

sterile phosphate buffered saline (PBS; 1X) and incubated at 37°C in 2mg/ml protease (from 

Streptomyces griseus) in PBS for 30mins, with shaking. The ribcages were then washed in PBS 

before being placed in sterile 3mg/ml collagenase type 2 (Worthington Biochemical Corporation, 

Lakewood, New Jersey, US) in DMEM (with 4.5g/l glucose and L-Glutamine) and incubated for 

15mins at 37°C, with shaking. Muscle and soft tissue were then removed from the ribs and 

sternum by gentle pipetting, and bones washed in sterile PBS. Figure 2.2 shows an example of a 

rib cage at this stage. 

The cartilage rods were then finally digested by incubation at 37°C in sterile collagenase type 2 

(3mg/ml in DMEM) for 3 to 4hrs with regular agitation. Cells suspended in collagenase were 

filtered through a 45µm sieve, pelleted by centrifugation and re-suspended in DMEM. The cells 

were counted using a haemocytometer (typically 1x106 cells were isolated per mouse), and plated 

at a density of 100,000 cells per cm2 in primary chondrocyte medium (supplemented with 

50µg/ml L-ascorbic acid phosphate (Wako Pure Chemicals Ltd, North Rhine-Westphalia, Germany) 

for the first 48hrs of culture). Medium was changed every 2 days. For experiments requiring 

serum deprivation, cells were cultured without FBS for 24hrs prior to challenge with growth 

factors or cytokines. Cells were incubated in a humidified atmosphere (37°C, 5% CO2). To ensure 

the chondrocytes did not de-differentiate, they were not typically cultured for longer than one 

week. 
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Figure 2.2. Isolation of sternal primary chondrocytes. Chondrocytes were isolated from the rib 
cage cartilage (the area between the red arrows) by collagenase digestion. Scale bar shows 1mm. 
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2.3.8. Isolating Primary Osteoblasts 

Primary osteoblasts were isolated from 4-day old C57/BL6 WT mice that were killed by 

decapitation. Calvaria were dissected and washed in sterile HBSS. They were then digested in 

sterile 1mg/ml collagenase 2 (Worthington Biochemical Corporation) in HBSS at 37°C for 10mins 

with shaking. The supernatant was discarded and the calvaria were digested with fresh 1mg/ml 

collagenase for 30mins. The supernatant was retained as fraction 1. The calvaria were washed in 

sterile PBS and incubated in 4mM EDTA for 10mins at 37°C with shaking. The supernatant was 

retained as fraction 2. The calvaria were then washed in sterile HBSS, which was added to fraction 

2. They were then digested in 1mg/ml collagenase at 37°C for 30mins, with shaking, and the 

supernatant removed as fraction 3. The calvaria were finally washed in sterile PBS which was 

added to fraction 3. The three fractions were pelleted by centrifugation and re-suspended in 

osteoblast medium. The cells were then distributed in T75 flasks (Costar) at a ratio of 3 calvaria 

per flask in 12ml osteoblast medium. Medium was refreshed following 3hrs culture to remove cell 

debris. Following 3-4 days of culture the osteoblasts were trypsinised and passaged as described 

in 2.2.1 and plated into multi-well plates at a density of 10,000/cm2. For experiments requiring 

serum deprivation cells were incubated without FBS. Cells were incubated in a humidified 

atmosphere (37°C, 5% CO2). 

2.3.9. Calcein Labelling 

C57/BL6 WT or SOCS2-/- mice received an intra-peritoneal (i.p.) injection of 10mg/ml calcein in 

sodium bicarbonate (NaHCO3; BDH Limited, Poole, UK) 4 days prior to sacrifice. Calcein aliquots 

were wrapped in foil to protect from the light and stored at 4°C prior to use. Calcein is 

incorporated into the mineralisation front and can be observed as green fluorescence under UV 

light and thus used to measure daily mineral apposition rate at the chondro-osseous junction 

(Owen et al., 2009). 
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2.3.10. BrdU Incorporation 

C57/BL6 WT or SOCS2-/- mice received an i.p. injection of 10µl/kg of 20mM BrdU (5-bromo-2’-

deoxyuridine) in 0.9% sterile saline (NaCl) 24hrs prior to sacrifice. BrdU is taken up by proliferating 

cells thus can be analysed by immunohistochemistry of tissue sections to assess proliferation 

(Farquharson and Loveridge, 1990). 

2.3.11. Isolating Embryonic Metatarsals 

Embryonic metatarsal cultures provide a well established ex vivo model of bone growth 

((Mushtaq et al., 2004); Figure 2.3). Plug dates were ascertained from matings of WT or SOCS2-/- 

mice, after which mating pairs were separated to give an accurate date of conception. 17 day old 

embryos were killed by decapitation and the middle three metatarsals were isolated under a 

dissecting microscope. Throughout the dissection the bones were kept moist with preparation 

medium that had been warmed to 37°C (from aliquots stored at -20°C).  

Metatarsals were cultured in 24-well plates (Costar) containing one bone in 300µl metatarsal 

medium per well. Metatarsals were cultured for up to 14 days, and medium changed every 2 

days. Their lengths were measured at X4 magnification every 2 days using a Nikon eclipse TE300 

microscope with a digital camera attached, using Image Tool (Image Tool Version 3.00, University 

of Texas Health Life Sciences Centre, San Antonio, TX). Bones were incubated in a humidified 

atmosphere (37°C, 5% CO2). 
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Figure 2.3. Metatarsal culture. The middle three metatarsals were dissected for 17-day old 
mouse embryos and cultured for up to 14-days to measure linear growth. 
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2.3.12. LPS Model of Inflammation 

The systemic administration lipopolysaccharide (LPS), a bacterial endotoxin, is a widely accepted 

model of inflammation that results in a reproducible production of pro-inflammatory cytokines. 

The LPS model was used for a small pilot study investigating the inflammatory response in the 

absence of SOCS2. 4-week old C57/BL6 WT or SOCS2-/- mice were weighed, measured crown to 

rump and anaesthetised by isoflurane gas to allow the acquisition of whole-body x-rays, which 

were then used to measure tibiae lengths. Twenty-four hours later they were injected i.p. with 

50µg/kg LPS (Serotype 0127:B8) in sterile 0.9% saline. Age and genotype matched control mice 

received i.p. injections of an equal volume of sterile 0.9% saline. The mice received LPS/saline 

injections as above every 24hrs for 7 days to induce an inflammatory response. The mice were re-

weighed after 4 days to ensure the dosage regime was correct, and crown to rump measured. 

Twenty-four hours following the final injection the mice were culled and weighed, measured from 

crown to rump, whole body x-rayed and the long bones dissected out. 

2.3.13. DSS Induced Colitis Model 

Oral administration of dextran sodium sulphate (DSS) has been shown to induce colitis in the 

distal colon, which slowly repairs upon removal of DSS. DSS is thought to have a toxic effect on 

intestinal cells, resulting in a breach of the mucosal barrier and exposure to luminal antigens 

which results in inflammation (Harris et al., 2009). This leads to a systemic increase in pro-

inflammatory cytokines, which in turn leads to decreased body weight associated with reduced 

bone length, growth plate width and bone mass (Williams et al., 2001; Hamdani et al., 2008; 

Harris et al., 2009). Mice received DSS (molecular weight 36,000-50,000; MP Biomedicals, Solon, 

OH, US) typically 4%, in their drinking water (tap water). They were given DSS treated water ad lib 

for 5 days, which was refreshed daily, following which they received normal tap water for a 10 

day recovery period. They were then culled by cardiac puncture, blood collected for serum 

analysis, and the long bones and distal colon dissected. The mice were weighed and the crown to 



Chapter 2                                                                                                          Materials and Methods 

 
 

50 
 

rump length was measured daily, as described in Section 2.3.6. Their health status was also scored 

daily, with particular attention paid to their coat condition, mobility, blood in stools and eye 

clarity. In accordance with Home Office legislation any mice that lost 25% of their starting body 

weight, or whose health severely deteriorated, were culled. The mice were anaesthetised with 

isoflurane gas and x-rayed at days 1, 8 and 15. To establish the weight loss that was due to 

inflammation and not lowered food intake, the quantity of food consumed daily (fed ad lib.) was 

weighed and then administered to pair-fed control animals the following day (who received no 

DSS). Control mice were also weighed and measured daily, x-rayed as above, and scored for 

health. All mice were housed individually to allow accurate measurement of food intake and 

health status. 

2.4. Proliferation Assays 

2.4.1. Cell [3H]Thymidine Proliferation Assay 

To assess proliferation (ATDC5 cells; primary chondrocytes and primary osteoblasts) cells were 

plated in 48-well plates. During the last 2hrs of culture the cells were incubated with 0.2µCi/ml 

[3H]-thymidine (Amersham, Buckinghamshire, UK). The cells were then washed in DMEM and 

fixed in ice-cold trichloroacetic acid (5%; TCA) for 15mins. They were then washed twice in PBS 

(5mins) and lysed in 0.1M NaOH for up to 20mins. The lysed cells were then added to a 

scintillation vial along with 3ml scintillation fluid (OptiPhase HiSafe 2; Fisons Chemicals, 

Loughborough, UK) and the amount of radiation measured using a liquid scintillation counter 

(Wallac 1410; Pharmacia Biotech, Uppsala, Sweden). 

2.4.2. Metatarsal [3H]Thymidine Proliferation Assay 

On day 4 of culture 3µCi/ml [3H]-thymidine was added to each metatarsal for the last 4hrs of 

culture (Mushtaq et al., 2004). The bones were then washed 3 times in PBS (15mins) and 

unbound thymidine extracted using two incubations with 5% TCA (30mins), in individual glass 
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vials. They were then washed twice in PBS and solubilised in a 5:1 mixture of dH2O and tissue 

solubiliser (NCS-II, 0.5N; Amersham) at 60°C for 1 hour. The solubilised mixture was added to 3ml 

scintillation fluid (OptiPhase HiSafe 2) in scintillation vials and the levels of radiation measured 

using a liquid scintillation counter (Wallac 1410). 

2.5. Processing Tissue 

2.5.1. Paraffin Embedding Tissue 

Femurs and tibias dissected from mice for histological analysis were fixed for 24hrs at room 

temperature in 10% NBF (tibias; neutral buffered formaldehyde) or 75% ethanol/5% acetic acid 

(femurs). Bones for histological analysis were then decalcified in 10% EDTA (pH 7.4) on rollers at 

4°C for ≥21 days, with regular EDTA changes. Metatarsals (post culture) were fixed in 4% 

paraformaldehyde (PFA) at 4°C for 24hrs, and then put into 70% ethanol (not decalcified). All 

tissue was then dehydrated through a series of alcohol steps on rollers at room temperature as 

follows: two washes in PBS; two 1hr incubations in 70% ethanol; two 1hr incubations in 80% 

ethanol; two 1hr incubations in 95% ethanol; 1hr incubation in 100% ethanol; overnight 

incubation in 100% ethanol. The bones were then put into embedding cassettes in glass jars 

(metatarsals into glass vials) and incubated with xylene for 1hr (twice) on rollers/shaker at room 

temperature. They were then placed into pre-melted paraffin wax at 60°C for 1hr, then into fresh 

wax overnight. 

The bones were then embedded at 60°C in appropriate sized plastic or metal moulds and left to 

cool. Excess wax was trimmed on a microtome (Ernst Leitz AG, Germany; blades used were MX35 

Premier+ Microtome Blades, Thermo Scientific, Cheshire, UK) at 10-15µm until the growth plate 

was visible. The samples were then cooled on ice before sections were cut at 5µm (tibias/femurs) 

or 2µm (metatarsals). Ribbons of sections were separated in water bath (45-50°C) and mounted 

onto poly-l-lysine coated slides (VWR International Ltd, Lutterworth, Leicestershire, UK), with 
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typically 2-3 sections per slide. The slides were then places in a 60°C oven overnight to adhere, 

and stored at room temperature until use. 

2.5.2. Frozen Tissue 

To analyse calcein labelling of the mineralisation front at the chondro-osseous junction sections 

were cut from frozen tissue. Tibias were dissected from mice and cut in half, then coated in 4% 

aqueous (wt./vol.) polyvinyl alcohol (PVA; Grade GO4/140, Wacker Chemicals, Walton-on-

Thames, UK) and snap frozen in a hexane bath (approximately -80°C) (Altman and Barrnett, 1975). 

The hexane bath was prepared approximately 30mins in advance, and consisted of a large glass 

jar containing a mix of dry ice and 100% ethanol, within which was a small beaker filled with n-

hexane (BDH, Poole, UK; grade low in aromatic hydrocarbons). The tissue was then stored at -

80°C until use. 
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CryoJane® Tape-Transfer Process 

   

 

 
 

 
 
 
Cutting 

After the block is trimmed, a cold adhesive tape is adhered to the 

block face. The tape supports and captures the section as it is 

being cut, eliminating the need for a brush or anti-roll device. 

 

 

 
Transfer to Slide 

A cold adhesive-coated slide is placed on a temperature-

controlled pad. The adhesive tape is placed section-side-down on 

the adhesive-coated slide, and is laminated to the adhesive layer 

using a cold roller. 

 

 
 

 
Curing the Adhesive Coating 

A flash of ultraviolet light passes through the slide to polymerize 

the adhesive layer on the slide into a hard, solvent-resistant 

plastic, tightly anchoring the section to the slide. 

 

 
 

 
Removal of Tape 

The tape is peeled away leaving the still frozen section tightly 

bonded to the plastic layer. 

The slide is then air-dried and fixed with the fixative of your 

choice. 

Figure 2.4. The CryoJane tape transfer system. Pictures depicting the steps of the CryoJane 
system, used to cut frozen section of calcified bone.  
Adapted from: www.instrumedics.com/cryojanetapetransferprocess.htm  
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Sections were cut from frozen tissue using a cryostat (OTF500/HS-001, Brights, Huntington, UK) 

and the CryoJane tape-transfer system (Instrumedics Inc, Richmond, IL, US). The Crojane tape-

transfer system was used as calcified bone is very difficult to cut without sections losing their 

morphology and/or shredding. A tungsten carbon knife (Brights) was used, with the blade angle 

set to 25°. Firstly, frozen tissue was embedded in OCT (optimal cutting temperature compound; 

Brights) and attached to a metal chuck using the cryostat quick-freeze plate (typically -40°C). 

Excess OCT was trimmed from the samples at 15µm until the growth plate was visible. Sections 

were then cut at 10µm using the CryoJane system, as follows. A piece of transfer tape was 

carefully attached to the surface of the tissue using a small hand roller, and as the section was cut 

tweezers were used to carefully pull the tape-attached section away. The tape was then placed 

section-down onto an adhesive slide (4X; Leica Microsystems, Milton Keynes, UK) and again the 

hand roller was used to attach the section flat and securely to the slide. This was repeated so a 

second section was placed on the slide, which was then zapped under a UV light. This activates 

the adhesive on the slide to harden and attach the section firmly. The back of the slide was then 

rubbed gently with a thumb to warm as the tape was peeled off, leaving the section on the slide. 

The slides were air dried and mounted with fluoromount (BDH Chemicals Ltd, Poole, UK). The 

steps of the CryoJane tape-transfer system detailed above are depicted in Figure 2.4. 

2.5.3. Immunohistochemistry of BrdU 

Paraffin embedded sections from tibias that had been fixed in 10% NBF and decalcified as 

described in Section 2.5.1 were used to measure proliferation by analysing BrdU uptake. Slides 

were dewaxed and rehydrated as follows: 2x5mins Histo-Clear II (National Diagnostics, Hessle, 

East Riding of Yorkshire, UK); 2x5mins 100% ethanol; 2x5mins 90% ethanol; 2x5mins 70% ethanol; 

5mins 50% ethanol; 2x5mins tap water. The number of cells with BrdU incorporated in their nuclei 

was detected using a streptavidin-biotin BrdU staining kit (Zymed laboratories, Invitrogen). 

Sections were quenched in peroxidise quenching solution consisting of a 9:1 mix of absolute 
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methanol and 30% H2O2 (10mins), and rinsed in PBS (3x2mins). Tissue antigen unmasking was 

achieved by digestion in a trypsin solution (25%) in a 37°C humidified chamber for 4mins, and 

rinsed in dH2O (3x2mins). The sections were then denatured to uncoil the DNA and allow antibody 

access to the incorporated BrdU in a denaturing solution for 20mins, rinsed in PBS (3x2mins) and 

blocked for 10mins at room temperature in blocking solution. Biotinylated mouse anti-BrdU was 

then added and incubated for 30mins, following 3 rinses in PBS (2mins), 10mins incubation with 

streptavidin-peroxidase and further PBS rinses (3x2mins). DAB (3,3’-diaminobenzidine) substrate 

was then added for 3mins, and slides rinsed well in dH2O. The sections were finally counterstained 

with haematoxylin for 4mins, followed by a wash in tap water and then submerged in PBS until 

the blue counter stain was visible (approx. 30secs), and rinsed in dH2O. 

The sections were then dehydrated as follows: 5mins 50% ethanol; 2x5mins 70% ethanol; 

2x5mins 90% ethanol; 2x5mins 100% ethanol; 2x5mins xylene. The slides were then mounted 

with histomount (Invitrogen). Quantification of proliferating cells was performed as previously 

described by Chagin and colleagues, were the number of BrdU positive cells in the whole growth 

plate (stained brown) were counted and normalised to the length of the growth plate (Chagin et 

al., 2004). Two sections were analysed per mouse. 

2.5.4. Toluidine Blue Staining 

Toluidine blue is a metachromatic dye that stains the nucleus blue and the cytoplasm light 

blue/purple, thus will stain the different zones of the growth plate (proliferating and 

hypertrophic) different shades of blue/purple making them more clearly defined. Paraffin 

embedded decalcified tibia sections (that had been fixed in 10% NBF) were dewaxed and 

rehydrated as described in Section 2.5.3. They were then placed into a 1% solution of toluidine 

blue in 50% isopropanol/50% dH2O for 2mins (room temperature). The slides were rinsed 

thoroughly in fresh isopropanol, then cleared in xylene (2x5mins) and mounted with histomount 

(Invitrogen). The zone widths were measured at 10 points along the whole growth plate at X10 
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magnification, using a Nikon eclipse TE300 microscope with a digital camera attached, using 

Image Tool (Image Tool Version 3.00). Two sections were analysed per mouse. 

2.5.5. Von Kossa and H&E Staining 

Paraffin embedded metatarsal sections that had been fixed and processed as described in Section 

2.5.1 were stained for Von Kossa (stains mineral dark brown/black), followed by haematoxylin 

and eosin (H&E; stains nuclei blue and cytoplasm pink), to allow measurement of growth plate 

zone widths and the mineralisation centre. The slides were dewaxed and rehydrated as described 

in Section 2.5.3. They were then incubated with 5% silver nitrate (BDH; in dH2O) for 30mins under 

a strong light, washed in dH2O (3x2mins) and fixed in 2.5% sodium thiosulphate (in dH2O). The 

slides were then immersed in Harris haematoxylin (freshly filtered) for 10mins; rinsed for 10mins 

in running tap water; put into 1% acid alcohol (HCl in 70% ethanol) for 5secs; dunked 10x in tap 

water; put into Scott’s tap water for 10mins (alkaline); immersed in 1% eosin for 10mins (in dH2O 

with 0.5µl/ml glacial acetic acid (Fisher Scientific, Loughborough, UK)). Slides were then 

dehydrated by 2 dunks (very quick as eosin leeches in water) in 90% ethanol; 2x1min in 100% 

ethanol; 2x1min xylene. They were then mounted in histomount (Invitrogen). The zone widths 

were measured at X4 magnification using a Nikon eclipse TE300 microscope with a digital camera 

attached, using Image Tool (Image Tool Version 3.00). 

2.5.6. Immunohistochemistry of Phosphorylated STAT5 

Paraffin embedded sections from femurs that had been fixed in 75% ethanol/5% acetic acid and 

decalcified as described in Section 2.5.1 were used to measure phosphorylated STAT5 by 

immunohistochemistry. The method described by Gevers et al. was followed, using a Tyramide 

Signal Amplification kit (TSA kit, Perkin Elmer, Cambridge, UK) that has been shown to enhance 

immunostaining (Gevers et al., 2002; Gevers et al., 2009) 
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Slides were dewaxed and rehydrated as described in Section 2.5.3. The sections were quenched in 

peroxidise quenching solution (3% H2O2 in methanol) for 12mins and washed in wash buffer. The 

slides were then unmasked of tissue antigens in 1mg/ml trypsin/PBS (12mins), washed and 

blocked in blocking buffer for 30mins in a humidified chamber at room temperature, with 

agitation. The blocking buffer was drained off the slides and primary antibody applied. Primary 

antibody used was rabbit anti-phosphorylated STAT5 (Zymed Laboratories, Invitrogen), which was 

diluted from 0.25mg/ml to 5µg/ml in blocking buffer. As a negative control rabbit IgG (Cell 

Signalling Technologies, New England Biolabs) was used in place of phosphorylated STAT5, to 

detect any non-specific binding. Slides were incubated with primary antibody overnight at 4°C. 

Following the overnight incubation, slides were washed in wash buffer (3x5mins). They were then 

incubated with secondary antibody, HRP-linked goat anti-rabbit (Dako, Cambridgeshire, UK) 

diluted 1:100 in blocking buffer, for 30mins at room temperature (in humidified chamber). 

Sections were washed in wash buffer (3x5mins), and then incubated with 200µl Biotynl Tyramide 

(Amplification Reagent) working solution for 10mins (at room temperature with agitation). Slides 

were washed 5x3mins in wash buffer, then incubated for 30mins (room temperature in 

humidified chamber) with Streptavidin-HRP (supplied with TSA Kit, Perkin-Elmer) that had been 

diluted 1:100 in blocking buffer. They were washed in wash buffer (3x5mins), and incubated with 

DAB solution for 5mins (in the dark) to allow visualisation, and rinsed well in dH2O. The slides 

were counterstained in Harris haematoxylin for 3.5mins and rinsed in running tap water for 

10mins, then put into Scott’s tap water for 10mins and dehydrated through alcohols as described 

in Section 2.5.3. The slides were then mounted with histomount (Invitrogen). The number of cells 

stained positive for phosphorylated STAT5 (brown) was quantified as a percentage of total cells in 

an area. 
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2.6. Transfecting ATDC5 Cells 

2.6.1. SOCS2 Over-expression and Control Plasmids 

pEF-FLAG-I/mSOCS2 (SOCS2 over-expression) and pEF-FLAG-I (control) plasmids were kindly 

obtained from Prof D. Hilton (The Walter and Eliza Hall Institute for Medical Research, Parkville, 

Victoria, Australia). The plasmids have been used previously by Hilton et al. to investigate the role 

of SOCS proteins in the differentiation of murine monocytic leukemic M1 cells to macrophages 

(Nicholson et al., 1999). The pEF-FLAG-I plasmid was made by digesting the pEF-BOS plasmid 

(plasmid map in Appendix 10.3.1.; (Mizushima and Nagata, 1990)) with Xba I and annealing to 

oligonucleotides encoding an ATG (with upstream Kozac sequences) and the FLAG epitope tag. 

This created an expression cassette that leads to the expression of intracellular proteins with a 

FLAG tag under the control of the Elongation Factor 1 alpha promoter. The plasmid map, 

expression cassette and sequencing primers for the pEF-FLAG-I plasmid are shown in Appendix 

10.3.2. The pEF-FLAG-I/mSOCS2 plasmid was made by cloning a SOCS2 coding region (minus ATG) 

that was Mlu I amplified into the Mlu I site of pEF-FLAG-I. The plasmid map and expression 

cassette for pEF-FLAG-I/mSOCS2 are in Appendix 10.3.3. 

The pEF-FLAG-I and pEF-FLAG-I/mSOCS2 plasmids confer resistance to ampicillin, which can be 

used for transformation into bacteria, but do not have resistance to any antibiotics suitable for 

selection when transfection into eukaryotic cells (ampicillin is not effective in eukaryotic cells). 

Thus the plasmids were co-transfected with the commercially available plasmid pcDNA3.1(+) 

(Invitrogen; derived from pcDNA3), which contains the neomycin gene which confers resistance 

to Geneticin (G418). The plasmid map and sequencing primers for pcDNA3.1(+) are in Appendix 

10.3.4.                                                                                                                                                                                                                                                                                                                                                                 
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2.6.2. Transformation of E. coli 

The three plasmids described in Section 2.6.1 were transformed into Escherichia coli (E. coli) to 

enable DNA amplification. JM109 competent cells (Stratagene, Agilent Technologies, Cheshire, 

UK) were used, which are endonuclease and recombination deficient thus improving the quality 

of DNA and stability. JM109 cells were thawed on ice (from -80°C) and aliquoted (100µl) in pre-

chilled Falcon polypropylene round-bottom tubes. The cells were incubated for 10mins with 0.8µl 

β-mercaptoethanol, on ice with regular swirling (to increase transformation efficiency). 5µl 

(10ng/µl in H2O) of experimental DNA or 1µl pUC18 control plasmid (0.1ng/µl in TE buffer; 

provided with JM109 cells to indicate transformation efficiency) was added to each aliquot and 

incubated for 30mins on ice. The tubes were then heat-pulsed for 45secs at 42°C and incubated 

on ice for 2mins. 0.9ml of pre-heated (42°C) S.O.C. medium (Super Optimal broth with Catobolite 

repression; Invitrogen) was added and the tubes were incubated at 37°C for 1hr with shaking at 

225-250rpm (loose caps). 200µl of the transformation mixture (5µl in 200µl SOC medium for 

pUC18 control) was spread on LB agar (Luria-Bertani Broth) plates and incubated at 37°C 

overnight. 

Individual colonies for each plasmid were streaked onto LB-agar ampicillin plates (100µg/ml) with 

a sterilised wire loop, and incubated at 37°C overnight for glycerol stocks and minipreps. The 

pattern used for streaking colonies is shown in Figure 2.5. 

2.6.3. Preparing Glycerol Stocks 

Single colonies of transformed E. coli, from plates streaked as described in Section 2.6.2, were 

incubated in 5ml liquid LB-broth containing 100µg/ml ampicillin at 37°C overnight with shaking 

(250rpm). 10µl of the overnight culture was added to 4ml LB-broth and incubated at 37°C with 

shaking (250rpm) for 7hrs, then mixed with 2ml 50% glycerol (molecular grade glycerol in H2O) 

and aliquoted (2ml in 15ml falcon tubes). The glycerol stocks were stored at -80°C. 



Chapter 2                                                                                                          Materials and Methods 

 
 

60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Streaking agar plates. A sterile wire loop (A) was used to streak single colonies onto 

agar plates. The bacteria are diluted by streaking along different sides of the plate (A, B and C) 

then finally into the middle of the plate (D) where individual colonies will grow. 
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2.6.4. Minipreparation of Plasmid DNA 

The remaining overnight liquid cultures from Section 2.6.3 were used for isolating the plasmid 

DNA using a PureLink Quick plasmid miniprep kit (Invitrogen). The cultures were centrifuged at 

11,000rpm for 15mins to pellet, all medium was removed and the cell pellets were resuspended 

in 250µl resuspension buffer, mixed gently by inverting 5 times, and incubated for 5mins at room 

temperature. The mixture was then precipitated by adding 350µl precipitation buffer and 

inverting to mix until a homogenous solution was achieved, then centrifuged at 13,500rpm to 

remove the lysis debris. The supernatant was loaded onto a spin column that contains silica 

membranes that selectively bind plasmid DNA. The column was centrifuged at 13,500rpm for 

1min, and the flow-through discarded. Contaminants were washed by adding 500µl wash buffer 

W10, incubating for 1min and centrifuging at 13,500rpm (flow-through discarded), then adding 

700µl wash buffer W9 and centrifuging at 13,500rpm for 2x1min (flow-through discarded). The 

DNA was then eluted by adding 75µl TE buffer (preheated to 67°C; 10mM Tris-HCl, pH 8.0; 0.1mM 

EDTA) to the centre of the column and incubating for 1min (room temperature) then centrifuging 

at 13,500rpm for 2mins. DNA concentration and quality was read on a Nanodrop 

spectrophotometer (ND-1000). Quality was assessed by the A260/A280 ratio, where 1.8 was 

considered optimum. 

2.6.5. Restriction Digest 

DNA purified by miniprep as described in Section 2.6.4 was assessed by restriction digest to 

ensure the plasmids were complete and the correct size. For the pEF-FLAG-I plasmid restriction 

enzymes Asc I (cuts within FLAG to produce a 5353bp band) and EcoR1 were used (cuts twice to 

produce 4614bp and 739bp bands). The pEF-FLAG-I/mSOCS2 plasmid was cut with Nde I (Nuclear 

disruption E protein-1; cuts within the FLAG/mSOCS2 to produce a 5953bp band) and EcoR1 (cuts 

twice to produce 1339bp and 4614bp bands). The pcDNA3.1(+) plasmid was cut with Nhe I (cuts 

once producing a 5428bp band) and Pst I (cuts twice producing 1356bp and 4072bp bands) 
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enzymes. To linearise DNA for transfection, all three plasmids were cut with Sca I (cuts once 

within the ampicillin gene). For Nde I and Asc I enzymes, 1µl DNA (1µg/µl) was added to 0.05µl 

enzyme (20U; New England Biolabs), 5µl NEB buffer 4 and 43.95µl H2O. For EcoR1, Nhe I, Pst I, 

and Sca I enzymes 1µl DNA (1µg/µl) was added to 0.25µl enzyme (10U/µl; Roche, West Sussex, 

UK), 2.5µl SuRE/Cut buffer H and 21.25µl H2O. The reactions were incubated at 37°C for 1hr and 

65°C for 25mins. The products were diluted 5:1 with 5X blue loading buffer (Bioline). 12µl was 

loaded per sample in separate wells in 1.2% Agarose/1XTAE gels containing 0.25µg/ml Ethidium 

Bromide. Gels were run in TAE buffer in an electrophoresis tank at 120V. HyperLadder I (Bioline) 

was used as molecular weight markers. Gels were imaged under UV light using a Gel Logic 200 

Imaging System and software (Kodak). 

2.6.6. EndoFree Maxipreperation of Plasmid DNA 

For transfection into mammalian cells, plasmid DNA needs to be free of endotoxins found in E. 

coli to improve the transfection efficiency. Therefore an EndoFree Plasmid Maxiprep kit (Qiagen, 

Crawley, UK) was used to purify DNA for transfection. The pEF-FLAG-I and pEF-FLAG-I/mSOCS2 

plasmids are classed as low copy, whereas the pcDNA3.1(+) plasmid is high copy, therefore they 

were treated slightly differently according to the kit instructions. Single colonies of transformed E. 

coli, from plates streaked as described in Section 2.6.2, were incubated in 5ml liquid LB-broth 

containing 100µg/ml ampicillin at 37°C for 7hrs (250rpm). For low copy plasmids, 500µl of the 

liquid culture was added to 250ml LB-broth containing 100µg/ml ampicillin and incubated at 37°C 

with shaking (250rpm) overnight. For high copy plasmid, 200µl of the liquid culture was added to 

100ml LB-broth containing 100µg/ml ampicillin (incubated at 37°C overnight, 250rpm). The cells 

were pelleted by centrifugation at 5,000rpm for 15mins at 4°C. The medium was removed and 

pellets resuspended in 10ml buffer P1 and 10ml lysis buffer P2 with thorough mixing, and 

incubated for 5mins (room temperature). 10ml chilled neutralization buffer P3 was added to the 

lysate and mixed, causing precipitation of genomic DNA, proteins, cell debris and SDS. The lysate 
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was poured into a QIAfilter cartridge and incubated for 10mins (room temperature), allowing the 

precipitate to separate to the top of the mixture thus ensuring efficient filtration. The plunger was 

then inserted and the lysate filtered through the QIAfilter cartridge into a sterile tube, removing 

SDS precipitates and bacterial lysates. 2.5ml endotoxin removal buffer (ER) was added to the 

filtered lysate, mixed by inversion and incubated on ice for 30mins. The lysate was then added to 

an equilibrated QIAGEN-tip 500 and allowed to enter the anion-exchange resin by gravity flow, 

which selectively bind plasmid DNA under low-salt and pH conditions. Contaminants (RNA, 

proteins, metabolites, and other impurities) were removed by washing the QIAGEN-tip twice with 

30ml medium-salt wash buffer QC. The DNA was then eluted with 15ml high-salt buffer QN, 

precipitated by addition of 10.5ml isopropanol and pelleted by 30mins centrifugation at 

11,200rpm (4°C). The supernatant was discarded and the DNA pellet washed in 70% ethanol 

(10mins, 11,200rpm), pellet air dried and resuspended in 50µl TE buffer. DNA concentration and 

quality was read on a Nanodrop spectrophotometer (ND-1000). Quality was assessed by the 

A260/A280 ratio, where 1.8 was considered optimum. 

2.6.7. Transfection of ATDC5 Cells 

For transfection into ATDC5 cells, endotoxin free DNA obtained as described in Section 2.6.7 was 

linearised using Sca I enzyme as described in Section 2.6.5. Linear DNA will incorporate into the 

genomic DNA more efficiently upon transfection, and the plasmids were linearised at the 

ampicillin gene site ensuring the genes of interest for transfection were intact. The cells were 

transfected using the transfection reagent FuGene 6 (Roche), which consists of a blend of lipids 

and other components in 80% ethanol, and has very low cytotoxicity. During lipid-based 

transfection the transfection complex (FuGENE 6 bound DNA) transports the cell membrane 

through endocytosis, as a result of the positive charge of the lipid fusing with the negatively 

charged cell membrane. ATDC5 cells were plated in 10cm culture dishes (Costar) in maintenance 

medium as described in Section 2.2.1. The cells were transfected when 50% confluent, in 
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maintenance medium without gentamicin (antibiotics can adversely affect the transfection 

efficiency). For transfection, 18µl FuGene 6 was incubated with 582µl DMEM/F-12 (1:1) with 

GlutaMAX I (Invitrogen) for 5mins (room temperature). DNA was then added to the mixture. As 

the pEF-FLAG-I and pEF-FLAG-I/mSOCS2 plasmids were being co-transfected with the pcDNA3.1(+) 

to give antibiotic resistance, they were co-transfected at a ratio of 5:1 to try and ensure that when 

pcDNA3.1(+) was successfully transfected, pEF-FLAG-I or pEF-FLAG-I/mSOCS2 would be also. 

Therefore, 5µg linearised pEF-FLAG-I or pEF-FLAG-I/mSOCS2 was mixed with 1µg linearised 

pcDNA3.1(+) and added to the DMEM/FuGENE 6 mixture, vortexed and incubated for 15mins 

(room temperature). The transfection reagent: DNA complex was then added to the ATDC5 cells 

in a drop-wise manner. Control cells were incubated with FuGENE 6/DMEM alone. The cells were 

incubated in a humidified atmosphere (37°C, 5% CO2). 48hrs after the transfection the medium 

was changed to maintenance medium containing Geneticin (500µg/ml; Gibco, Invitrogen) to 

select the successfully transfected cells. 

2.6.8. Growing Single Colonies of Transfected Cells 

Because the pEF-FLAG-I and pEF-FLAG-I/mSOCS2 plasmids were co-transfected with the 

pcDNA3.1(+), it was necessary to isolate colonies of cells that had a single transfected cell origin, 

grow them up and examine for SOCS2 over-expression. Cells that had been transfected as 

described in Section 2.6.7 and selected with Geneticin were seeded at low density in 10cm culture 

dishes (Costar), in maintenance medium containing Geneticin (500µg/ml; Gibco, Invitrogen). 

Single cells were marked and their growth monitored. When a large colony of cells had grown, 

they were isolated using cloning rings (8mm x 8mm). This was done by removing the culture 

medium, sticking the cloning ring over the colony and filling it with 100µl trypsin which was gently 

pipetted to encourage cells to detach. The cells were then pelleted in an Eppendorf, resuspended 

in 1ml maintenance medium (containing 500µg/ml geneticin) and put in 1 well of a 24-well plate 

(Costar). The cells were then grown up, seeded to larger plates: 6-well plate, T25 flask, T75 flask, 
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and finally 2xT175 flasks (all Costar). The cells were then frozen as described in Section 2.2.2. 

Examples of cell colonies are shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Individual cell clones. Pictures taken at X4 magnification of transfected ATDC5 single 

cell clones that are early in development (A) and late, just before being picked (B). The large black 

marks are pen marks to locate the colonies on the plate. Scale bars show 500µm. 
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2.7. PCR 

2.7.1. RNA Isolation 

Cells that had been cultured in 6-well plates were scraped in PBS, centrifuged at 13,000rpm for 

5mins and pellets stored at -80°C until use. RNA was isolated from the pelleted cells using an 

RNeasy Mini Kit (Qiagen). The cells were homogenized in highly denaturing guanidine-

thiocyanate-containing RLT buffer (10µl/ml β-mercaptoethanol) using a handheld homogenizer 

(IKA-Werke, D-79219 Staufen, Germany), in 10secs bursts. The buffer immediately inactivates 

RNAses so that the RNA purified is intact. 1 volume of 70% ethanol was added to the 

homogenized lysate and pipetted to mix. The sample was then placed in an RNeasy spin column in 

a 2ml collection tube and centrifuged for 15secs at 10,000rpm, allowing the RNA to bind to the 

silica membrane within the column. The flow through was discarded. The spin column was 

washed of contaminants once in 700µl buffer RW1 (15secs 10,000rpm; flow through discarded) 

and twice in 500µl buffer RPE (15secs 10,000rpm; flow through discarded). The RNeasy column 

was then placed in a fresh collection tube and RNA eluted by adding 50µl nuclease free H2O 

(10,000rpm 1min). RNA concentration and quality was read on a Nanodrop spectrophotometer. 

Quality was assessed by the A260/A280 ratio, where 2.0 was considered optimum. Samples were 

then diluted to the same concentration (that of the lowest sample) in RNAse free water. The RNA 

was stored at -80°C. 

2.7.2. Reverse Transcription 

Reverse transcriptase is a RNA-dependant DNA polymerase that is used by viruses to copy their 

RNA into DNA for integration into host genomic DNA. It can be used in a reverse transcription PCR 

reaction to transcribe RNA to single stranded cDNA, which can then be used for PCR. 10µl diluted 

RNA sample was denatured by incubating with 2µl random hexamers (random primers; 50ng/µl; 

Invitrogen) at 70°C for 10mins in a Hybaid PCR Express Thermal cycler (Thermo Scientific). Blanks 

were included as negative controls, containing 10µl nuclease free H2O instead of RNA. 8µl master 
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mix was then added to each sample, which contained 4µl First Strand Buffer (5X; Invitrogen), 2µl 

DTT (Dithiothreitol; 0.1M; Invitrogen), 1µl dNTP mix (10mM; Invitrogen) and 1µl Superscript II 

RNase H enzyme (200U/µl; Invitrogen). For RT-PCR, negative controls were set up with no 

Superscript enzyme in the master mix. The samples were then run on the following programme in 

the Hybaid PCR machine: 25°C for 10mins (annealing); 42°C for 50mins (elongation); 70°C for 

10mins (termination). The cDNA samples were stored at -20°C. 

2.7.3. Polymerase Chain Reaction (PCR) 

Reverse transcription polymerase chain reaction (RT-PCR) was performed on samples prepared as 

described in Sections 2.7.1 and 2.7.2 to amplify the gene of interest. cDNA samples were diluted 

to 100ng/µl in nuclease free H2O. Reaction tubes were set up containing 4µl cDNA (100ng/µl), 4µl 

primer pairs (1pmol forward and 1pmol reverse primers), 11.4µl master mix and 0.6µl 1:1 mix of 

Taq Polymerase (Invitrogen) and Taq Start (Clontech, Saint-Germain-en-Laye, France). PCR 

reactions were performed on a DNA Engine Dyad machine (Peltier Thermal Cycler, Bio-Rad 

Laboratories) under the following conditions: 2mins denaturing at 92°C; 30 or 35 thermocycles 

consisting of 1min at 92°C (denaturing), 1min at 55°C (annealing), and 1min at 72°C (extension); 

10mins extension at 72°C. Number of cycles was altered for different primers to optimize 

conditions. Primers used for collagen type-II, GH receptor (GHR), IGF-1 receptor (IGF-1R), and IL-

1β receptor 1 (IL-1βRI) are shown in Table 2.2, along with the number of cycles used. 18S primers 

(Ambion) were used as a loading control. 

Gene Forward Primer (5' to 3') Reverse Primer (5' to 3') No. of PCR Cycles

Collagen II CACACTGGTAAGTGGGGCAAGACCG GGATTGTGTTGTTTCAGGGTTCGGG 30

GHR CATTGGCCTCAACTGGACTT GACTTCGCTGAACTCGCTGT 30

IGF-1R CACCGAGAACAACGACTGCT CTGACCGAATCGATGGTTT 35

IL-1βRI ACCCCCATATCAGCGGACCG TTGCTTCCCCCGCAACGTAT 35

Table 2.2. PCR primer pairs. Details of primers used for RT-PCR and the number of thermocycles 
for each. 
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The PCR products were diluted 5:1 with 5X Blue DNA Loading Buffer (Bioline). 12µl was loaded per 

sample in separate wells in 1.5% Agarose/1XTAE gels containing 0.25µg/ml Ethidium Bromide. 

Gels were run in TAE buffer in an electrophoresis tank at 150V. A protein standard, Hyperladder I 

(Bioline), was run with the samples. Gels were imaged under UV light using a Gel Logic 200 

Imaging System and software (Kodak). 

2.7.4. Quantitative PCR (qPCR) 

qPCR was performed on samples prepared as described in Section 2.7.1 and 2.7.2. Primers for 

qPCR were selected within the gene of interest (genomic sequence obtained from Ensembl; 

www.ensembl.org) using the online resource Primer 3 (frodo.wi.mit.edu) ensuring that: the 

primers spanned two introns; the product size was 100-150bp; there were no repeats >3 

nucleotides; melting temperatures of each primer close to 60°C and close to that of the other 

primer; GC content of 40-60%. qPCR was performed using FastStart Universal SYBR Green Master 

Mix (ROX) (Roche), which allows real-time qPCR amplification and quantification of DNA with a 

ROX reference dye for normalisation of fluorescent signals. The fluorescent dye SYBR Green I 

intercalates with double stranded DNA, generating a measurable fluorescent signal that is directly 

proportional to the DNA concentration, and thus the amount of double stranded DNA generated 

during the PCR reaction. This master mix also contains dUTP, which ensure the prevention of UDG 

carryover. FastStart Taq DNA Polymerase is also included to ensure a “hot-start” (75°C) of the Taq 

activity.  

Primers were optimised by producing a standard curve, to ensure they worked and primer 

dimerisation wasn’t present. For this, undiluted cDNA produced from a sample predicted to 

contain a high level of the gene of interest was used to create a 1:10 dilution series from 10-10 to 

10-5, ensuring it spanned 10ng/µl (the concentration used for the experiment). Nuclease free 

water (NFW) was used as a no template control. Each sample was analysed in duplicate. 96-well 

plates (AbGene, Thermo Scientific) were used with MicroAmp Optical caps (8-strip; Applied 
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Biosystems, Cheshire, UK). Each well contained one reaction consisting of: 5µl cDNA/NFW; 0.5µl 

forward primer (10mM); 0.5µl reverse primer (10pmol/µl); 6.5µl NFW; 12.5µl FastStart Universal 

SYBR Green Master Mix (ROX) (Roche). The qPCR reaction was completed using a Stratagene 

Mx3000P qPCR machine and MxPro software, as follows: 1 cycle of 2mins at 50°C, 2mins at 95°C 

(UDG incubation); 40 cycles of 15secs at 95°C (denaturing), 30secs at 60°C (annealing and 

elongation); 1 cycle of 1min at 95°C (disassociation), 30secs at 60°C (reanneal), 15secs at 95°C 

(records temperature fluorescence drops off) and 30secs at 25°C. Results were analysed using 

MxPro software. Primers were considered acceptable if they met the following criteria: a standard 

curve with an R2 value of 0.9-1.0; amplification efficiency of 90-100%; a dissociation curve 

showing one clear peak and no other, smaller peaks (i.e. one product); an amplification curve with 

sigmoid curves at regular intervals along the dilution series. The optimisation results for primers 

used are shown in Figure 2.7. 

Following satisfactory standard curves, the qPCR reaction was carried out as above using 10ng/µl 

cDNA, with each sample analysed in triplicate and NFW used as no template control. 18S was 

used as a housekeeping gene upon which results were normalised. Primers used are shown in 

Table 2.3. The expression of genes was analysed by comparing Ct values between samples 

(following normalisation to housekeeping gene Ct Values).  

Gene Forward Primer (5' to 3') Reverse Primer (5' to 3')

18S (Housekeeping) GTA ACC CGT TGA ACC CCA TT CCA TCC AAT CGG TAG TAG CG

IGF-1 CAC ACT GAC ATG CCC AAG AC TGG GAG GCT CCT CCT ACA TT

Table 2.3. qPCR primer pairs. Details of primers used for real time qPCR. 
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Figure 2.7. Primer optimisation. Dissociation curves, amplification plots and standard curves for 
(A) 18S and (B) IGF-1 qPCR primers. 
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2.8. Western Blotting 

2.8.1. Extracting Protein 

Primary chondrocytes and ATDC5 cells were washed in PBS to remove excess medium. For 

experiments looking at phosphorylated protein (STATs), cells were scraped in Phospho-Safe 

Extraction Reagent (Novagen, Merck Biosciences, Nottingham, UK) containing 143µl/ml protease 

inhibitor cocktail mix (Roche, Burgess Hill, West Sussex, UK). Otherwise, cells were scraped in RIPA 

buffer, again containing protease inhibitors. Each well was scraped in 125µl buffer, and wells 

treated the same (typically 2 or 3 wells) were scraped into the same Eppendorf. Excess cell 

structure proteins were removed by centrifuging and the pellet discarded. Samples were then 

stored at -20°C. 

Protein content was determined using a DC (detergent compatible) protein assay (Bio-Rad 

Laboratories), which is a colorimetric assay for protein concentration based on the Lowry assay 

(Lowry et al., 1951). Standards were made using lyophilized bovine plasma gamma globulin 

protein (2mg/ml; Bio-Rad Laboratories) by doing serial dilutions ranging from 2mg/ml to 

0.125mg/ml, plus a blank (0mg/ml), using the same buffer that the cells were scraped in. For the 

assay, 96-well plates were used, and each well contained 5µl sample/standard, 25µl Reagent A’ 

(containing 20µl Reagent S per ml Reagent A) and 200µl Reagent B. The plate was incubated at 

room temperature for 15mins, then protein levels were measured by absorbance at 690nm using 

a Multiskan Ascent plate reader (Thermo Electron Corporation, Thermo Scientific). The protein 

concentration in each sample was calculated from the standard curve gained from the protein 

standards. 

2.8.2. Western Blot 

 The same quantity of protein was added for each sample, depending on the lowest yield achieved 

(typically 15µg of protein was loaded). Protein lysates were mixed with sample buffer (3:1; 
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Invitrogen) and reducing agent (10:1; Invitrogen), then denatured at 70°C for 10mins and cooled 

on ice. Pre-cast 3-8% Tris-Acetate or 10% Bis-tris gels (Invitrogen) were used with Tris Acetate or 

MOPS running buffer (1X; Invitrogen), respectively. The type of gel used depended on the size of 

the protein of interest. The gels were placed in a Novex Gel Tank (Invitrogen) and the denatured 

protein samples were loaded into the wells, with an All Blue Precision Plus Protein Standard (Bio-

Rad Laboratories) loaded as a weight marker. The gel tank was filled with running buffer, and the 

centre of the tank also contained an anti-oxidant (2.5µl/ml; Invitrogen; to preserve the reduced 

proteins). The gels were to run at 200V for 50mins. 

Following electrophoresis, the protein was transferred onto a membrane. This was done by 

placing a Hybond-ECL Nitrocellulose membrane (GE Healthcare, Amersham) on top of the gel and 

then sandwiching it in filter paper and foam pads that had been soaked in transfer buffer. This 

sandwich was then placed in an X-blot transfer module (Invitrogen) which was clamped into the 

electrophoresis tank. The module was filled with ice cold transfer buffer, and the rest of the tank 

filled with ice cold H2O. The proteins were transferred at 30V for 90mins (overnight for weak or 

small proteins) on ice. 

Following transfer, the nitrocellulose was washed 4x15mins in TBS/T. For weakly expressed 

proteins, a Pierce signal enhancer was used (Thermo Scientific) with the following steps: the 

nitrocellulose was washed in dH2O; incubated with reagent 1 for 2mins; rinsed 5x in dH2O; 

incubated with reagent 2 for 10mins; rinsed in H2O. The nitrocellulose was then blocked in 5% BSA 

(Albumin, Bovine Serum, Fraction V) in TBS/T for 1hr at room temperature or overnight at 4°C, 

and washed in TBS/T (4x15mins). Primary antibody was diluted according to manufacturer’s 

recommendations (typically 1:1000) in 5% BSA (Fraction V). The nitrocellulose was incubated with 

primary antibody at 4°C overnight or at room temperature for 1hr, according to manufacturer’s 

instructions. Diluted primary antibodies were reserved and re-used by adding a couple of Sodium 

Azide crystals and storing at 4°C. The nitrocellulose was washed in TBS/T (4x15mins) and then 
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incubated for 90mins with secondary antibody diluted 1:5000 in 5% non-fat milk (Marvel; Chivers 

Ireland Ltd, Dublin, Ireland). Table 2.4 shows all primary antibodies used, and the relevant 

secondary antibodies. The nitrocellulose was washed again in TBS/T. 

Primary Antibody Dilution Secondary Antibody 

SOCS1 (ab) 1:666 in 5% BSA HRP-linked rabbit anti-goat (d) 

SOCS2 (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

SOCS3 (ab) 1:369 in 5% BSA HRP-linked goat anti-rabbit (cs) 

HRP-linked β-Actin (s) 1:25,000 in 5% n/f milk n/a 

Phospho-STAT1 (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

STAT1 (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

Phospho-STAT3 (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

STAT3 (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

Phospho-STAT5 (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

STAT5 (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

Phospho-Akt (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

Akt (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

Phospho-p44/42 MAPK (Erk1/2) (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

p44/42 MAPK (Erk1/2) (cs) 1:1000 in 5% BSA HRP-linked goat anti-rabbit (cs) 

Table 2.4. Western blot antibodies. Primary and secondary antibodies used for western blotting 
and their dilutions used. BSA = Bovine serum albumin, Fraction V; n/f = non fat; HRP = horseradish 
peroxidise; cs = Cell Signalling Technology (New England Biolabs); s = Sigma; ab = Abcam 
(Cambridge, UK); d=Dako. 
 

Bound antibody was detected using Amersham ECL Western blotting detection reagents A and B 

(GE Healthcare) which were added to the nitrocellulose at a 1:1 ratio, incubated for 1min, poured 

off and the nitrocellulose sandwiched between transparent sheets in a film cassette. To visualise 

very faint bands, Amersham ECL Plus reagents were used (GE Healthcare), with 25µl reagent A 

added to 1ml reagent B, and incubated for 10mins on the nitrocellulose. Chemiluminescence was 

detected with Amersham ECL Hyperfilm (GE Healthcare), which was developed using a Medical 

Film Processor (SRX-101A; Konica Minolta, Bloxham, Banbury, UK). Band intensities were 

measured using Quantity One software (Bio-Rad Laboratories). 
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2.8.3. Stripping Nitrocellulose 

Nitrocellulose membranes were stripped of antibody by incubating in 20ml Restore Plus Stripping 

buffer (Thermo Scientific) at room temperature for 2-4hrs. Stubborn antibodies were removed by 

incubating at 37°C for 15-30mins. The nitrocellulose membranes were then washed in TBS/T. The 

membranes were probed again with the appropriate HRP-labelled secondary antibody, washed in 

TBS/T and detected with ECL reagents and Hyperfilm (as in Section 2.8.2) to test for complete 

removal of primary antibody. The nitrocellulose could then be re-probed with different 

antibodies. 

2.9. Statistical Analysis 

For most experiments data were analysed for statistical significance by analysis of variance 

(ANOVA), using Minitab 15 (USA). Groups were compared using a general linear model 

incorporating pair wise comparisons.  

For growth curve analysis, data was analysed by linear mixed-effect models, using R (version 

2.13.1, http://www.r-project.org/). These models had mouse identification nested within each 

litter as the random effects, measuring variance in weight gain taking into account mouse 

genotype and sex. In addition, a series of fixed effects were added to the model (week, genotype 

and sex) and the interactions between them investigated. For all models the residuals were 

checked for normality prior to examination of statistical significance. This examination revealed 

that the growth curve (body weight and lengths) data change with week was not linear, and was 

in fact curvilinear. Therefore the change with week was fitted as y = x + x2. The full model with all 

interactions was fitted first and non-significant interaction terms were then excluded sequentially 

until a final model of just those interactions and associated main effects remained.  
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Data are presented as mean plus standard error of the mean (SEM). In all cases P values <0.05 

were taken to indicate statistical significance, and are represented as follows: * P<0.05; ** 

P<0.01; *** P<0.001.  
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3. Establishing GH, IGF-1 and SOCS 
Signalling in the Growth Plate 

3.1. Introduction 

Postnatal endochondral bone growth is regulated by GH whose mode of action is thought to be 

direct via interactions with growth plate chondrocyte GH-receptors (GHR) and/or indirect through 

enhanced levels of systemically derived liver IGF-1 (Salmon and Daughaday, 1957; Isaksson et al., 

1982; Nilsson et al., 1986). GH signalling occurs through several signalling pathways, including the 

JAK/STAT, MAPK, and phosphatidylinositol-3 kinase (PI-3K) pathways. The most established 

pathway is the JAK/STAT pathway, which is required for the GH induction of IGF-1 production 

(Herrington et al., 2000). STAT1, STAT3 and STAT5 are known to be activated by GH through JAK2 

and it is well recognised that the JAK2/STAT5b pathway is pivotal for growth promotion, where 

inactivating mutations or elimination in mice of STAT5b result in reduced growth (Udy et al., 1997; 

Teglund et al., 1998; Davey et al., 1999; Sims et al., 2000). To date, the specific STAT family 

member(s) activated for mediating GH signalling in growth plate chondrocytes has focussed on 

STAT5b and a role for STAT1 and STAT3 is, as yet, unclear (Gevers et al., 2009). 

SOCS proteins are generated in response to cytokines including GH and can inhibit JAK signalling 

and downstream STAT activation (Hilton, 1999; Rico-Bautista et al., 2006; Pass et al., 2009). It is 

recognised that the GH/IGF-1 signalling cascade is inhibited by SOCS1-3. Whilst SOCS1-/- and 

SOCS3-/- mice are perinatal and embryonic lethal, respectively, mice missing the SOCS2 gene have 

increased linear bone growth and body mass due to increased signalling through the GHR (Marine 

et al., 1999a; Marine et al., 1999b; Metcalf et al., 2000; Roberts et al., 2001; Lorentzon et al., 

2005; MacRae et al., 2009). As SOCS2-/- mice do not have increased circulating IGF-1 levels it is 

likely that the increased bone growth and observed structural differences within SOCS2-/- growth 

plates are a direct consequence of altered SOCS2 mediated GH/IGF-1 signalling within the growth 

plate, which warrants investigation (Alexander et al., 1999; Turnley, 2005; MacRae et al., 2009). It 
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has been shown that SOCS2 localises to growth plate chondrocytes in all zones, with strong 

expression observed in the resting and proliferating zones (Figure 3.1), indicating a role in 

regulating GH signalling at the growth plate level (MacRae et al., 2009). 

The increased body mass and bone growth of SOCS2 null mice is not observed when mutants are 

mated with mice lacking the STAT5b gene (Greenhalgh et al., 2002a). This suggests that the 

SOCS2-/- overgrowth phenotype is dependent on STAT5b downstream signalling events and that 

uninhibited GH signalling through STAT1 and STAT3 does not contribute to the SOCS2-/- 

overgrowth phenotype. However, currently, there is no evidence that the increased growth of the 

SOCS2 null mice is due to increased STAT5 mediated GH signalling, specifically at the level of the 

growth plate.  

Many chronic paediatric inflammatory diseases, such as Crohn’s disease, are often associated 

with growth retardation and elevated inflammatory cytokines such as IL-1β and TNFα (Davies et 

al., 1997; MacRae et al., 2006c). Raised levels of such cytokines have been shown to inhibit 

chondrocyte proliferation and promote apoptosis leading to narrowing of growth plate zones and 

reduced endochondral growth (MacRae et al., 2006c). MacRae et al. (2009) found that SOCS2 is 

up-regulated by TNFα in chondrocytes, indicating that SOCS2 may play a role in inflammation 

induced growth retardation which requires further clarification and investigation (MacRae et al., 

2009). 
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Figure 3.1. Immunohistochemistry of SOCS2 expression. Image showing localization of SOCS2 in a 
3 week old mouse tibia (X10 magnification). Strong staining can be seen in the resting (R) and 
proliferating (P) zones of the growth plate, with weaker staining in the hypertrophic zone (H); as 
indicated by the black arrows. SOCS2 staining was also observed in osteoblasts (red arrows). Scale 
bar shows 50µm. Image adapted from MacRae et al. (2009). 
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3.2. Aims and Hypothesis 

3.2.1. Hypothesis 

SOCS2 is the primary SOCS protein to regulate endochondral growth by inhibiting chondrocyte GH 

signalling through the JAK/STAT pathway. Inflammatory cytokines, such as IL-1β, act to inhibit 

growth by stimulating SOCS2. 

3.2.2. Aims 

 Establish by RT-PCR that receptors for GH, IGF-1 and IL-1β are present in chondrocytes 

 Determine which STAT proteins are activated in chondrocytes by GH and the effects of IL-

1β on this 

 Investigate which SOCS proteins are involved in regulating chondrocyte GH signalling 

 Analyse SOCS2 expression in response to inflammatory cytokines 

3.3. Materials and Methods 

3.3.1. Cell culture 

ATDC5 cells were culture as described in Section 2.2.1. Primary chondrocytes were isolated from 

1- to 3-day old Swiss mice as described in Section 2.3.7. Primary osteoblasts were isolated from 4-

day old C57/Bl6 (WT) mice as described in Section 2.3.8. Cells were cultured in 6-well (for RT-PCR 

or western blot) plates in differentiation medium (ATDC5 cells), primary chondrocyte medium 

(primary cells) or osteoblast medium (osteoblasts) as described in Sections 2.2.1, 2.3.7 and 2.3.8 

respectively. Temporal expression of SOCS proteins was investigated by challenging cells with 

500ng/ml GH (Bachem), 50ng/ml IGF-1 (Bachem), 10ng/ml IL-1β (Autogen Bioclear, Calne, 

Wiltshire, UK), or 10ng/ml TNFα (Autogen Bioclear) at intervals from 8hrs to 72hrs. To investigate 

STAT signalling, cells were cultured in serum free medium (containing no FBS or ITS) 24hrs prior to 

stimulation with growth factors or cytokines (24hrs IL-1β; 15mins 500ng/ml GH; 15mins 50ng/ml 

IGF-1). 
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3.3.2. RT-PCR 

RNA was extracted from ATDC5 cells and primary cells that had not been serum deprived or 

exposed to any cytokines as described in Section 2.7.1. RT-PCR was performed using primers for 

GH, IGF-1 and IL-1β receptors; 18S (loading control); collagen II (chondrocyte marker) as described 

in Sections 2.7.2 and 2.7.3. Details of the primers used are in Table 2.2. 

3.3.3. Western Blotting 

Cells were cultured as described in Section 3.3.1 and scraped for protein as described in Section 

2.8.1. Western blotting was performed as described in Sections 2.8.2 and 2.8.3. Antibodies used 

are detailed in Table 2.4. 

3.4. Results 

3.4.1. Expression of GH, IGF-1 and IL-1β Receptors in Chondrocytes 

As the signalling pathways examined in this chapter are poorly studied in chondrocytes, it was 

first necessary to confirm the expression of specific ligand receptors. Accordingly, RT-PCR analysis 

was performed on ATDC5 cells and primary chondrocytes to confirm the expression of receptors 

for GH, IGF-1 and IL-1β (Figure 3.2). IL-1β has two receptors: receptor 1 (IL-1RI) and receptor 2 (IL-

1RII). IL-1RI was analysed here as it is capable of activating cells through its long cytoplasmic 

domain, unlike IL-1RII which has a short intracellular domain and no biological activity (Arend et 

al., 2008). Collagen type-II was analysed as a chondrocyte marker to confirm the cells had 

maintained their chondrogenic phenotype. Both primary chondrocytes and ATDC5 cells expressed 

collagen type-II indicating that the chondrocyte phenotype was maintained (Figure 3.2). 

 

 

 



Chapter 3                                      Establishing GH, IGF-1 and SOCS Signalling in the Growth Plate 

83 
 

 

 

 

 

 

 

 

Figure 3.2. Receptor expression. PCR results showing expression of GH receptor (GHR), IGF-1 
receptor (IGF-1R) and IL-1β receptor 1 (IL-1 R1). 18S shows equal loading and collagen type-II 
(collagen II) is a chondrocyte marker. Results are shown for a blank control (no cDNA; B) and two 
individual samples (S1 and S2). 

 

 

 

 

 

 

Figure 3.3. STAT signalling. Western blot results showing expression of phosphorylated (Phospho) 
STAT1, STAT3 and STAT5 in response to GH (500ng/ml) and IGF-1 (50ng/ml) in primary 
chondrocytes and ATDC5 cells, with total STAT proteins as loading controls. Where two bands are 
present, these represent the two subunits of the STAT protein. 
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3.4.2. STAT Phosphorylation in Response to GH and IGF-1 

Although it is well recognised that GH signalling is mediated by STAT activation in many cell types, 

the identity of the STATs involved in propagating GH intracellular signalling in growth plate 

chondrocytes is largely unknown (Smit et al., 1996; Han et al., 1996; Herrington et al., 2000; 

Waters et al., 2006; Brooks et al., 2008). Therefore, both primary chondrocytes and ATDC5 cells 

were stimulated by GH and IGF-1 for 15mins and the phosphorylation of STAT1, STAT3, and STAT5 

determined (Figure 3.3). Concentrations of GH (500ng/ml) and IGF-1 (50ng/ml) used are based on 

similar studies in 3T3 F442A cells (a murine adipocyte cell line) by Han et al. and in 293T cells (a 

human renal epithelial cell line) by Zong et al. (Han et al., 1996; Zong et al., 2000). 

In both ATDC5 cells and primary chondrocytes, GH increased the phosphorylation of STAT1, 

STAT3, and STAT5 (Figure 3.3). Exposure of primary chondrocytes or ATDC5 cells to IGF-1 had no 

effect on STAT phosphorylation. Total STAT1, STAT3, and STAT5 expression were unchanged by 

any treatment in both primary cells and ATDC5 cells. 

3.4.3. The Effects of Inflammatory Cytokines on STAT Signalling 

During chronic inflammatory conditions, such as Crohn’s disease, growth retardation is observed 

in association with raised levels of inflammatory cytokines. The raised levels of these cytokines, 

for example IL-1β and TNFα, are associated with inhibition of chondrocyte proliferation but the 

mechanisms behind this inhibition are poorly understood (MacRae et al., 2006b). Therefore STAT 

signalling in chondrocytes was further investigated by extending the previous experiment (Figure 

3.3) to include the inflammatory cytokine IL-1β, to determine its effects of GH stimulation of STAT 

phosphorylation (Figure 3.4). IL-1β was added to the culture medium 24hrs before the addition of 

GH or IGF-1 (15mins) at a concentration of 10ng/ml. The concentration of IL-1β used was based 

on previous publications in which proliferation and chondrocyte marker gene expression were 

shown to be down regulated in the same cells types (MacRae et al., 2006b). The experiment was 

repeated in three independent experiments. 
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Figure 3.4. STAT signalling with IL-1β. Western blot results showing activation of STAT1, STAT3 
and STAT5 in response to GH (500ng/ml), IGF-1 (50ng/ml) and/or IL-1β (10ng/ml) in chondrocytes. 
(A) Typical results gained for primary and ATDC5 cells of phosphorylated (Phospho) STAT proteins, 
with total STAT proteins as loading controls. Results from 3 independent experiments were 
quantified by densitometry and normalised against total STAT protein, giving (B) and (C) for 
primary and ATDC5 cells, respectively. Results were analysed statistically by ANOVA. Data are 
shown as mean±SEM; *P<0.05; **P<0.01; ***P<0.001 compared to Control. 
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The results in Figure 3.3 were repeated with GH stimulating a significant increase in 

phosphorylation of STAT1, STAT3, and STAT5 (P<0.01, P<0.05 and P<0.001 respectively) in primary 

cells (Figure 3.4a & b). ATDC5 cells showed increased activation of STAT1 and STAT5 in response 

to GH (P<0.05 and P<0.001 respectively), with a non-significant increase observed for STAT3 

(Figure 3.4a & c). Again IGF-1 had no effect on STAT phosphorylation. IL-1β stimulated 

phosphorylation of STAT1 and STAT3 in ATDC5 cells (P<0.01 and P<0.001 respectively), but only of 

STAT3 in primary cells (P<0.001; Figure 3.4). There was a trend of increased STAT1 and STAT3 

phosphorylation in ATDC5 and primary cells in the presence of GH and IL-1β compared with GH 

alone (significant only for STAT3; P<0.05 in ATDC5 cells, P<0.01 in primary chondrocytes), 

suggesting an additive effect of IL-1β stimulation. In contrast, there was an indication of 

decreased STAT5 phosphorylation in response to GH+IL-1β compared with GH treatment alone, 

however this did not reach significance. 

3.4.4. IGF-1 Signalling in Chondrocytes 

To confirm the lack of STAT signalling in response to IGF-1 it was necessary to establish that the 

IGF-1 recombinant protein being added to the cells was biologically active in this system. Hence, 

phosphorylation of Akt and P44/42 MAPK, two recognised downstream signalling molecules of 

IGF-1, were determined by western blot (Figure 3.5) in samples used and described Section 3.3.  
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Figure 3.5. IGF-1 Signalling. Western blot showing phosphorylation of P44/42 MAPK (P44/42) and 

Akt in response to GH (500ng/ml), IGF-1 (50ng/ml) and/or IL-1β (10ng/ml) in ATDC5 and primary 

cells. 

 

 

 

 

 

 

Figure 3.6. SOCS2 expression. Western blots showing temporal expression of SOCS2 in response 
to GH (500ng/ml), IGF-1 (50ng/ml) and IL-1β (10ng/ml) in ATDC5 cells and primary chondrocytes. 
β-actin is shown as a loading control. 
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Activation of P44/42 MAPK and Akt by the various ligands differed in the two cell types (Figure 

3.5). In ATDC5 cells, phosphorylation of both P44/42 and Akt was increased in response to GH and 

IGF-1. In primary cells, P44/42 MAPK was phosphorylated in response to GH, but not IGF-1. In 

contrast, Akt phosphorylation remained high in the unstimulated control cells and was not altered 

in response to any treatments. Of interest, IL-1β appeared to inhibit phosphorylation of P44/42 

MAPK and Akt in ATDC5 cells and this was also noted in cells cultured in the presence of GH and 

IL-1β where phosphorylation of P44/42 MAPK and Akt was lower than in cells challenged by GH 

alone. Although the lack of P44/42 MAPK and Akt phosphorylation by IGF-I in primary cells was 

unexpected, the IGF-I induced phosphorylation in ATDC5 confirms the IGF-1 used in the 

experiments was biologically active, which was the main aim of this experiment. It can therefore 

be concluded that the lack of STAT activation with IGF-1 noted in Figures 5, 6 and 7 is likely to be a 

true biological result. 

3.4.5. The Expression of SOCS Proteins in Chondrocytes 

Previous studies have shown that SOCS2 expression is up-regulated in response to TNFα in 

chondrocytes (MacRae et al., 2009). The results in Section 3.3 indicate that GH activation of STAT5 

is inhibited by the addition of inflammatory cytokine IL-1β. This effect could be mediated by 

SOCS2, so the studies by MacRae and colleagues were repeated and extended by examining the 

expression of SOCS2 in response to IL-1β over an 8 – 72 hrs incubation period (Figure 3.6). SOCS2 

is thought to negatively regulate GH signalling as part of a negative feedback loop, whereby it is 

produced downstream of GH signalling (Tollet-Egnell et al., 1999). There is also evidence that 

SOCS2 can act to regulate IGF-1 signalling (Dey et al., 1998; Michaylira et al., 2006b), so this study 

also looked at chondrocyte SOCS2 expression in response to GH and IGF-1 over the time period 

(Figure 3.6). 
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Figure 3.7. SOCS2 expression with inflammatory cytokines. Western blot results for SOCS2 
expression over time in primary chondrocytes in response to GH (500ng/ml), IL-1β (10ng/ml) and 
TNFα (10ng/ml). β-actin is shown as a loading control 

 

 

 

 

 

 

Figure 3.8. SOCS proteins in chondrocytes. Western blot showing expression of SOCS1, SOCS2 
and SOCS3 in primary chondrocytes in response to GH (500ng/ml), IGF-1 (50ng/ml) and IL-1β 
(10ng/ml) over time, with β-actin as a loading control. 

 

 

 

 

 

 

Figure 3.9. SOCS2 in osteoblasts. Western blot showing SOCS2 expression in response to GH 
(500ng/ml) over time in primary osteoblasts, with β-actin as a loading control. 
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In both ATDC5 cells and primary chondrocytes GH increased SOCS2 expression after 24 hrs and 

this stimulation was maintained for the duration of the experiment. Neither IGF-1 nor IL-1β 

affected expression of SOCS2. In fact, in ATDC5 cells, IL-1β appears to inhibit the expression of 

SOCS2 at the later time points. This latter result was inconsistent with the published data by 

MacRae et al. (2009) who reported that chondrocyte SOCS2 expression was stimulated by TNFα. 

Therefore to determine if this stimulation of SOCS2 expression was specific to TNFα the 

experiment was repeated but this time primary chondrocytes were challenged with TNFα or IL-1β 

(both 10ng/ml) (Figure 3.7). Again SOCS2 expression was increased in the presence of GH, but 

there was no increase in SOCS2 expression in response to IL-1β or TNF-α. 

Finally it was necessary to establish which of the other SOCS proteins known to inhibit GH 

signalling are activated in chondrocytes. Therefore the expression of SOCS1 and SOCS3 was 

examined in primary chondrocytes challenged with GH, IGF-1 and IL-1β (Figure 3.8).  

In contrast to SOCS2, whose expression was increased by GH confirming the data in Figures 3.6 

and 3.7, neither SOCS1 nor SOCS3 expression levels were altered by GH challenge at any of the 

time points studied. Similarly, the expression of SOCS1, SOCS2 and SOCS3 was not altered in 

response to IGF-1 or IL-1β at any time points studied. These data indicate that SOCS2 is the 

predominant GH regulated SOCS protein in growth plate chondrocyte. 

3.4.6. The Expression of SOCS2 in Osteoblasts 

SOCS2-/- mice have increased bone mass and this is consistent with the known anabolic effects of 

GH on the skeleton (MacRae et al., 2009). To determine if SOCS2 expression is increased in 

response to GH in osteoblasts in a similar manner to that observed in chondrocytes the temporal 

expression of SOCS2 was analysed in calvarial primary osteoblasts cultured with GH (500ng/ml) or 

IGF-1 (50ng/ml) (Figure 3.9). The data clearly indicated that SOCS2 was increased in response to 

GH in primary osteoblasts, an effect that peaked after 48hrs. 
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3.5. Discussion 

This study confirmed recent findings by Gevers et al. that STAT5 phosphorylation is activated in 

both primary chondrocytes and ATDC5 cells in response to GH (Gevers et al., 2009), and also 

found that STAT1 and STAT3 are activated in response to GH. According to the recognised GH 

signalling mechanisms it is likely that this STAT activation leads to increased IGF-1 expression, 

which acts via different signalling cascades to increase chondrocyte proliferation and thus 

endochondral growth (Hoshi et al., 2004; MacRae et al., 2007a; Klammt et al., 2008). Zong et al. 

have demonstrated previously that IGF-1 is capable of signalling via STAT3 in 293T cells (a human 

renal epithelial cell line) and in C2C12 cells (a mouse myoblast cell line) (Zong et al., 2000). It is 

possible that this is a cell type specific affect as this study has demonstrated in vitro that IGF-1 

does not stimulate STAT activation in chondrocytes. This result was expected as the IGF-1 

receptor does not contain the specific tyrosine motifs recognised by STAT proteins (Stahl et al., 

1995; Decker and Kovarik, 2000)  

IGF-1 signalling occurs through two primary signalling pathways: Shc/Ras/Raf/MAPK and IRS-

1/PI3K/Akt/PKB (LeRoith, 2000). In particular the latter pathway, involving IRS-1 mediated PI3K 

signalling, has been shown to be important in the regulation of endochondral bone growth (Hoshi 

et al., 2004; MacRae et al., 2007a). Therefore the phosphorylation of key downstream IGF-1 

signalling proteins, namely Akt and P44/42 MAPK (also known as Erk1/2), were investigated to 

confirm that the IGF-1 used was biologically active in the experimental system. Interestingly Akt 

and P44/42 MAPK showed different activation patterns in ATDC5 cells compared to primary 

chondrocytes. In ATDC5 cells, phosphorylation of both Akt and P44/42 MAPK was activated by GH 

and IGF-1, and inhibited by IL-1β. In primary chondrocytes only GH stimulated phosphorylation of 

P44/42 MAPK, whereas Akt was not activated by GH or IGF-I. Furthermore, IL-1β did not show 

inhibition or activation of either signalling molecule. The aim of the experiment was to 

demonstrate that the IGF-1 used in the system was biologically active, which is confirmed by the 



Chapter 3                                      Establishing GH, IGF-1 and SOCS Signalling in the Growth Plate 

92 
 

signalling in ATDC5 cells, but such large differences between the two cell types are unexpected. 

IGF-1 stimulation of Akt and P44/42 MAPK was expected in primary chondrocytes. Other authors 

have shown IGF-1 to stimulate phosphorylation of P44/42 MAPK and Akt in ATDC5 cells and 

primary chick chondrocytes, but little work has been done using murine chondrocytes (Koike et 

al., 2003; Phornphutkul et al., 2004; Kiepe et al., 2005; MacRae et al., 2007a). Phornphutkul and 

colleagues (2004) investigated primary chick chondrocytes in distinct stages of differentiation, 

demonstrating that proliferating chondrocytes show increased P44/42 MAPK activation in 

response to IGF-1 but that hypertrophic chondrocytes did not. It is therefore possible to propose 

that the lack of response found in these studies is a result of the primary murine chondrocytes 

being a mixed population of cells at various stages of differentiation, from resting to hypertrophic.  

The gigantism phenotype of the SOCS2-/- mice, and the observed increased length of longitudinal 

bones (Metcalf et al., 2000; MacRae et al., 2009), indicate that SOCS2 may have a predominant 

role in regulating growth plate GH signalling. GH signalling is thought to be inhibited completely 

by SOCS1 and SOCS3, and partially by CIS and SOCS2 (Adams et al., 1998; Starr et al., 1998; 

Hansen et al., 1999; Alexander et al., 1999; Roberts et al., 2001; Inaba et al., 2005). This study has 

shown that in chondrocytes, GH stimulates the expression of SOCS2 but not that of SOCS1 or 

SOCS3. Thus from this data it can be argued that, at the growth plate level, SOCS2 is the primary 

SOCS protein acting to regulate GH signalling. SOCS1 is predominantly expressed in the thymus 

and SOCS1-/- exhibit IFNγ dependant premature lethality due to lymphocyte deficiencies, 

monocyte infiltration and liver fat deposition (Starr et al., 1998; Naka et al., 1998; Alexander et al., 

1999; Marine et al., 1999b). In contrast, SOCS3 is required for liver haematopoiesis, and SOCS3-/- 

mice die embryonically due to erythropoiesis and placental defects (Marine et al., 1999a; Roberts 

et al., 2001). These findings support the above hypothesis as it appears that SOCS1 and SOCS3 do 

not act to inhibit GH signalling in the growth plate, but are involved in signal regulation in other 

tissues. It would be very interesting and informative to generate mice in which SOCS1 and SOCS3 

genes are knocked-out only in the epiphyseal cartilage (tissue specific knock-outs). This would be 
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possible through exploitation of Cre-Lox system and would permit the study of viable growing 

mice. To date these mice have not yet been generated. Conflicting reports exist on the phenotype 

of the CIS knockout mice. The mice have been reported to exhibit no remarkable phenotype or 

that they have a phenotype consistent with a role for CIS in the regulation of haemopoietic 

growth factors (Hilton, 1999; Yoshimura et al., 2005). 

MacRae and colleagues (2009) recently showed increased expression of SOCS2 in response to 

TNFα in chondrocytes, leading to the hypothesis that SOCS2 may mediate the negative effects of 

pro-inflammatory cytokines on endochondral bone growth. Therefore the effect of the pro-

inflammatory cytokine IL-1β on chondrocyte GH signalling through STAT proteins was 

investigated. On its own, IL-1β significantly increased the phosphorylation of STAT1 and STAT3 in 

ATDC5 cells and STAT3 in primary chondrocytes. When added in combination with GH, IL-1β 

suppressed the level of STAT5 phosphorylation compared to GH alone, an effect that may be 

mediated by the stimulation of SOCS2 expression. However, in contrast to the findings by MacRae 

et al. (2009), SOCS2 was not stimulated in response to IL-1β nor TNFα in ATDC5 cells or primary 

chondrocytes. This result was repeated several times (not all replicate data shown), indicating 

that the findings by MacRae and colleagues must be treated with some caution. Taken together 

the results of this part of the work provide no evidence to support the suggestion that pro-

inflammatory cytokines inhibit bone growth by reducing GH signalling through SOCS2 mediated 

mechanisms. 

SOCS2 expression was increased in osteoblasts in response to GH challenge, indicating it may also 

play a role in regulating bone formation in response to GH. This is consistent with findings by 

MacRae et al. (2009), where SOCS2 expression was observed in osteoblasts by 

immunohistochemistry (Figure 3.1). Furthermore, these authors found increased cortical bone 

area and increased levels of osteoblast and osteoclast markers, namely osteocalcin and TRAP5b 

respectively, indicating increased levels of bone turnover (MacRae et al., 2009). These combined 
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results indicate a role for SOCS2 in appositional bone growth, something that clearly warrants 

further investigation. Unfortunately this was not a priority of this studentship which was focussed 

on investigating the role of SOCS2 in the regulation of endochondral bone growth. 

3.6. Conclusion 

This study has demonstrated that in growth plate chondrocytes GH signals via STAT1, STAT3 and 

STAT5, with predominant signalling through STAT5. SOCS2 is the main SOCS protein to act in the 

growth plate, were it is stimulated by GH. The role of SOCS2 in inflammatory induced growth 

retardation is not clear, with conflicting results from this study and others requiring further 

investigation. 
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4. Analysing the SOCS2-/- Growth 
Phenotype 

4.1. Introduction 

Metcalf and colleagues first described the overgrowth phenotype of SOCS2-/- mice in 2000. They 

observed that the gigantism didn’t occur until weaning (about 3-weeks of age), and that male 

SOCS2 null mice grew to be 40% larger than their WT litter mates (Figure 4.1), while female SOCS2 

null mice demonstrated a more modest increase reaching a comparable size to WT males (Metcalf 

et al., 2000). This increase in body weight was not associated with more fatty tissue but rather an 

increase in organ size, muscle and bone (Metcalf et al., 2000). The increased size of organs has 

been reported as a result of increased cell number as opposed to an increase in cell size, and 

SOCS2-/- mice were found to have increased body length with longer bones (Metcalf et al., 2000).  

 

Figure 4.1. SOCS2-/- phenotype. Picture of a 2 month old male SOCS2-/- mouse (left) with a 2 
month old male WT mouse (right). Image taken from Metcalf et al. (2000). 

 

 

 



Chapter 4                                                                           Analysing the SOCS2
-/-

 Growth Phonotype 

97 
 

It was later confirmed that SOCS2 acts to negatively regulate GH signalling through the JAK/STAT 

pathway, in particular STAT5, by demonstrating that the SOCS2-/- overgrowth phenotype can be 

attenuated by crossing SOCS2-/- mice with STAT5b-/- mice (Greenhalgh et al., 2002a). These 

authors also reported that removal of GH from SOCS2-/- mice (by crossing with Ghrhrlit/lit mice 

which have no circulating GH) prevents the overgrowth phenotype, an effect that can be rescued 

by GH treatment (Greenhalgh et al., 2005). These experiments eloquently show that SOCS2 plays 

an important role in negatively regulating body growth through its inhibitory effects on GH 

signalling. It has also been shown that circulating levels of GH and IGF-1 are unchanged in SOCS2-/- 

mice and it is therefore likely that the overgrowth phenotype is the result of changes at local 

tissue levels (Metcalf et al., 2000; Greenhalgh et al., 2002a). Indeed, increased levels of IGF-1 have 

been found in many tissues in SOCS2-/- mice, and STAT5 activation was found to be prolonged in 

SOCS2-/- hepatocytes (Metcalf et al., 2000; Greenhalgh et al., 2002a). 

It is known that IGF-1 acts to regulate pre- and post-natal growth whereas GH acts to regulate 

postnatal growth only, with GH receptor null mice exhibiting impaired growth from approximately 

2-weeks of age (Lupu et al., 2001). The occurrence of the SOCS2-/- overgrowth from 3-weeks of 

age is consistent with the knowledge that GH activity occurs between postnatal days 20–40 

(Wang et al., 2004). Although no alterations to the growth plate were noted in the first 

description of SOCS2-/- mice (Metcalf et al., 2000), MacRae and colleagues found increased widths 

of growth plate zones in 7-week old SOCS2-/- mice compared to WT and this was associated with 

an increased long bone length (MacRae et al., 2009). They also found by μCT analysis at 7-weeks 

of age that SOCS2-/- mice had increased bone mass, demonstrated by increased bone volume, 

trabecular number and trabecular thickness but these authors reported no differences in bone 

mineral density between WT and SOCS2-/- mice (MacRae et al., 2009). This was contrary to 

previous findings by Lorentzon and colleagues, who found lower trabecular and cortical bone 

mineral density in SOCS2-/- mice (at 4- and 15-weeks of age) as well as reduced cortical cross-

sectional area and cortical thickness (at 4-weeks of age) (Lorentzon et al., 2005). Both studies 
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found raised levels of osteocalcin (a marker of bone formation) in serum from SOCS2-/- mice, with 

MacRae et al. also reporting elevated levels of TRAP5 (a marker of osteoclast number) (Lorentzon 

et al., 2005; MacRae et al., 2009). These results indicate an increase in bone turnover in SOCS2-/- 

mice. 

From previous studies it is clear that bones from SOCS2-/- mice are longer than their WT 

counterparts but the cellular basis at the growth plate level have not been identified. It is also 

unclear what the effect of increased GH signalling has on the cortical and trabecular compartment 

of SOCS2-/- mice. Therefore the aim of this chapter was to determine the bone phenotype and the 

underlying cellular basis for the increased endochondral bone growth in SOCS2-/- mice. 

Furthermore, as the overgrowth phenotype is not obvious until 3- to 4-weeks of post-natal age it 

was assumed that changes in growth plate indices, bone growth rate and bone structure and 

geometry would not be evident until the overgrowth phenotype had occurred. This hypothesis 

was also examined. 

4.2. Aims and Hypothesis 

4.2.1. Hypothesis 

Indices of bone accretion and increased linear growth will be evident within the cortical and 

trabecular bone compartments and the growth plate respectively of overgrowth SOCS2-/- mice but 

not in younger SOCS2-/- mice showing normal growth. 

4.2.2. Aims 

 Confirm the overgrowth phenotype and in particular the increased longitudinal bone 

growth in the colony of SOCS2-/- mice used for these studies. 

 Determine the cellular basis within the growth plate for the overgrowth SOCS2-/- 

phenotype by investigating growth plate zone widths, chondrocyte proliferation and 

longitudinal bone growth rate at 3-weeks (pre-overgrowth) and 6-weeks of age (post-



Chapter 4                                                                           Analysing the SOCS2
-/-

 Growth Phonotype 

99 
 

overgrowth). Use male mice for this as they have been reported to have a more 

prominent overgrowth phenotype. 

 Investigate trabecular and cortical bone parameters at 3- and 6-weeks of age in WT and 

SOCS2-/- mice by μCT analysis, again using male mice. 

4.3. Materials and Methods 

4.3.1. Growth Analysis 

Body weights and lengths (crown to rump) were established in 5 SOCS2-/- and 5 WT litters (33 WT 

and 40 SOCS2-/- mice in total) from 2- until 7-weeks of age, as described in Section 2.3.6. 

4.3.2. Analysis of Growth Plate Dynamics 

6 male SOCS2-/- and 6 male WT mice were used to analyse growth plate dynamics at 3- and 6-

weeks of age. The mice received an i.p. injection of 10mg/ml calcein at days 18 or 39 as described 

in Section 2.3.9. They also received an i.p. injection of BrdU at days 22 or 43 as described in 

Section 2.3.10. The mice were then sacrificed on days 23 or 44 (3- and 6-weeks respectively). Both 

tibiae and both femurs were dissected. 

One tibia was snap frozen in a hexane freezing bath and cryostat sections were cut for calcein 

labelling analysis, as described in Section 2.5.2. The distance between the chondro-osseous 

junction and the mineralising front was measured at 10 points along the whole growth plate on 

two sections per mouse under UV light using a Nikon Eclipse TE300 microscope. 

The other tibia was fixed in 10% NBF for 24hrs then decalcified in 10% EDTA, paraffin embedded 

and cut as described in Section 2.5.1. Sections were analysed for BrdU labelling as described in 

Section 2.5.3. Sections were also analysed for zone widths by toluidine blue staining, as described 

in Section 5.4.2. One femur was fixed in 70% ethanol and used for μCT analysis. 
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4.3.3. µCT Analysis 

One femur from each mouse used in Section 4.3.2 was fixed in 70% ethanol for micro computer 

tomography (μCT) analysis. The analysis was carried out in collaboration with Dr. Rob Van’t Hof at 

the Rheumatic Diseases Unit, The University of Edinburgh. µCT analysis was performed using a 

SkyScan 1172 instrument (SkyScan, Asrtselaar, Belgium). The bones were wrapped in parafilm to 

retain moisture and mounted in the machines sample holder (3 bones at a time). The instrument 

was set at 60kV/167µA with a resolution of 4.9µm, using an Alum 0.5mm filter and rotation step 

of 0.6°. The camera was set to 1000x524 pixels (medium). 

The images were reconstructed using the SkyScan NRecon program. Once reconstructed, a 

reference slice at the bottom of the growth plate was selected. This was recognised as the point 

where the last “bridges” of the primary spongiosa (fine bony structures) are broken. Trabecular 

analysis was done in the metaphysis, a section of 200 slices that was taken 50 slices down from 

reference slice. Cortical analysis was performed on a region of 100 slices taken 300 or 500 slices 

from the reference slice (for 3- or 6-week old mice respectively). Different areas were selected for 

cortical bone analysis as the bones were shorter at 3-weeks of age, and had been cut in half so it 

was not possible to take 500 slices down from the growth plate for 3-week old mice. The 

trabecular and cortical sections were analyzed using SkyScan CTAn software. 

4.4. Results 

4.4.1. SOCS2-/- Growth Curves 

Although the growth curves have previously been established in the line of SOCS2-/- mice used for 

the study by MacRae et al. (2009), there have been genotyping problems with the line in the past 

and a different generation of mice is now being used. Therefore, to ensure the SOCS2-/- 

overgrowth phenotype was maintained, it was necessary to repeat growth curves of body weight 

and length in WT and SOCS2-/- mice. This was performed in male and female mice from 5 litters 
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per genotype from 2-weeks until 7-weeks of age, representing a period where the majority of 

growth occurs (Figure 4.2). 

From 3- to 7-weeks of age there was increased weight and length change in male mice compared 

to female (P<0.001), and in SOCS2-/- mice compared to WT (P<0.001). During this time period male 

WT mice grew on average 3.40g and 0.66cm per week compared to male SOCS2-/- mice, which 

grew 5.24g and 0.79cm per week. Female WT mice grew on average 2.20g and 0.51cm per week, 

compared to female SOCS2-/- mice which grew 3.03g and 0.63cm per week.  

Furthermore, the relationship between weight change and sex was dependant upon genotype, 

with additional weight gain observed in male SOCS2-/- mice compared to WT than in female mice 

(P<0.001). These results are consistent with the knowledge that GH is the major regulator of post-

natal growth in mice, where peak GH activity occurs between postnatal days 20–40 (Wang et al., 

2004). 

4.4.2. Growth Plate Zone Widths in SOCS2-/- Mice 

MacRae and colleagues found that the SOCS2-/- mice displayed increased widths of maturational 

growth plate zone at 7-weeks of age. This was extended to analyse the growth plate widths, using 

toluidine blue staining, in tibiae from male mice at 3-weeks and 6-weeks of age, allowing a 

comparison of mice before and after the overgrowth phenotype (Figure 4.3A & B). 

There were no differences in zone widths between SOCS2-/- and WT mice at 3-weeks of age. At 6-

weeks of age, SOCS2-/- mice had wider growth plates (23%; P<0.05) with significantly wider 

proliferative and hypertrophic zones (20.7% (P<0.05) and 26.4% (P<0.05) respectively). 
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Figure 4.2. Growth curves. Growth curves of WT and SOCS2-/- (KO) mice from 2- until 7-weeks 
(Wk) of age. (A) Increased weight change in male compared to female mice (P<0.001) and in 
SOCS2-/- compared to WT mice (P<0.001), with the relationship between weight and sex 
dependant on genotype (P<0.001). (B) Increased body length in male mice compared to female 
(P<0.001) and in SOCS2-/- mice compared to WT mice (P<0.001), but with no additive effect of sex 
and genotype (P=0.9). Results are from 5 litters per group, expressed as mean±SEM. Data was 
analysed by linear mixed-effect model (see Section 2.9). 
 

 

 

0

5

10

15

20

25

30

35

Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7

W
e

ig
h

t 
(g

)

Age

Body Weights

WT males

KO males

WT females

KO females

6

7

8

9

10

Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7

Le
n

gt
h

 (
cm

)

Age

Body Lengths

WT males

KO males

WT females

KO females

A 

B 



Chapter 4                                                                           Analysing the SOCS2
-/-

 Growth Phonotype 

103 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Toluidine blue stained growth plate sections from 3wk and 6wk old mice. Analysis of 
growth plate zone widths in tibiae from 3-week (3wk) and 6-week (6wk) old male WT and SOCS2-/- 
(KO) mice. (A) Paraffin embedded sections were stained with toluidine blue to allow 
measurement of zone widths. Arrows show examples of total growth plate width (green), 
proliferating zone width (yellow) and hypertrophic zone width (red). Scale bars = 100µm. (B) 
Graph of results of growth plate zone widths, expressed as mean±SEM for 2 sections per mouse 
(n=6); * P<0.05 compared to 6-week WT. 
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4.4.3. Chondrocyte Proliferation in SOCS2-/- Mice 

It is likely that the increased zone widths observed at 6-weeks in Figure 4.3 are as a result of 

increased chondrocyte proliferation in the SOCS2-/- growth plates. Given the role of SOCS2 in 

inhibiting GH signalling it is expected that the SOCS2-/- mice exhibit increased STAT signalling, 

leading to increased chondrocyte proliferation. This would contribute to the overgrowth 

phenotype observed in the SOCS2-/- mice. Cell proliferation within the growth plate was assessed 

by analysing BrdU labelling of proliferating chondrocytes in the male 3-week and 6-week old mice 

used previously for Section 4.4.2 (Figure 4.4). 

At 3-weeks the number of proliferating chondrocytes in the growth plate was the same in WT and 

SOCS2-/- mice. Chondrocyte proliferation decreased with age but was significantly higher (26.9%; 

P=0.001) in the 6-week old SOCS2-/- mice compared to the similarly aged WT mice (Figure 4.4). 

4.4.4. SOCS2-/- Endochondral Growth Rate 

The observed increased length in SOCS2-/- mice from 3-weeks of age is likely to be the result of 

increased endochondral growth rate, as a result of increased cell proliferation as shown in 4.4.3. 

To confirm this, mineral apposition rate of endochondral growth was measured by analysing 

calcein labelling in tibiae from the 3-week and 6-week old male mice (Figure 4.5). 

At 3-weeks of age there was no difference in the mineral apposition rate between WT and SOCS2-

/- mice, whereas by 6-weeks SOCS2-/- mice displayed a significant increase in growth rate (26.98%; 

P<0.05) (Figure 4.5B). 
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Figure 4.4. BrdU labelling in 3- and 6-week old mice Measurement of chondrocyte proliferation 
in tibiae from 3-week (3wk) and 6-week (6wk) old WT and SOCS2-/- (KO) male mice by BrdU 
uptake. (A) Decalcified paraffin embedded sections showing proliferating cells labelled brown for 
BrdU and counterstained with haematoxylin. Examples are shown for WT and SOCS2-/- mice at 3- 
and 6-weeks of age, and a positive control section from mouse small intestine. Positive staining is 
indicated by black arrows. Scale bars = 100µm. (B) Quantification of proliferating cells expressed 
as number of BrdU positive cells per mm of the growth plate length. Analysis was performed on 2 
sections per mouse (n=6). Data are expressed as mean±SEM; ***P<0.001 compared to 6-week old 
WT. 
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Figure 4.5. Calcein labelling in 3- and 6-week old mice. Measurement of endochondral mineral 
apposition rate in tibiae from 3-week (3wk) and 6-week (6wk) old male WT and SOCS2-/- (KO) mice 
by calcein labelling. (A) Sections showing calcein labelling of mineralised trabecular bone in frozen 
tibia sections. Examples are shown for WT and SOCS2-/- mice at 3- and 6-weeks of age. Daily 
mineral apposition rate was calculated by measuring the distance from the chondro-osseous 
junction to the calcein labelled mineralisation front, as indicated by the red arrow, and dividing by 
the number of days from calcein injection to cull (4 days). Scale bars = 100µm. (B) Graph of results 
of mineral apposition rates (MAR), expressed as mean±SEM for 2 sections per mouse (n=6); * 
P<0.05 compared to 6-week old WT. 
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4.4.5. µCT Analysis of SOCS2-/- Mice 

Femurs from the 3-week and 6-week old male WT and SOCS2-/- mice were analysed by μCT. 

Previously the SOCS2-/- mice have been shown to have increased trabecular bone volume, 

number, and thickness at 7-weeks of age, with an increase in structural model index indicating a 

more ‘plate-like’ structure to the trabeculae and no change in BMD (MacRae et al., 2009). This 

was coupled with increased cortical bone area, again with no change in cortical BMD and no 

change in cortical thickness (MacRae et al., 2009). These results are consistent with higher bone 

mass and increased resistance to bending, consistent with increased GH signalling on the skeleton 

(MacRae et al., 2009). However, though consistent with the SOCS2-/- phenotype, these results 

contradicted those of Lorentzon et al. (2005) who found a decrease in cortical and trabecular 

BMD, cortical thickness and cortical bone area (these latter two results were found at 4-weeks but 

not at 15-weeks of age). 

Therefore it was necessary to firstly confirm the findings by MacRae et al, and also to compare 3-

week old and 6-week old mice, again expecting no changes in bone architecture and geometry at 

3-weeks of age with significant increase in bone volume by 6-weeks of age. µCT analysis was 

performed on femurs and the results obtained are shown in Table 4.1 and Figure 4.6.  

At 3-weeks of age there was no difference in any of the parameters measured for trabecular or 

cortical bone. In 6-week old mice, there was an increase in trabecular tissue volume and 

trabecular tissue surface (P<0.05), with no differences observed in the cortical parameters. 
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Parameter 3wk WT Mice 3wk KO Mice 6wk WT Mice 6wk KO Mice

Trabecular Analysis

Tissue Volume (x105 µm3) 11600 ± 451 13200 ± 813 284 ± 7.19 351 ± 1.50 *

Bone Volume (x105 µm3) 1210 ± 158 1230 ± 105 27.6 ± 2.75 27.9 ± 3.90

Percent Bone Volume (% BV/TV) 10.4 ± 1.20 9.31 ± 0.464 9.66 ± 0.881 7.88 ± 0.873

Tissue Surface (x104 µm2) 772 ± 21.6 835 ± 43.2 59.0 ± 1.13 68.7 ± 2.32 *

Bone Surface (x105 µm2) 138 ± 16.4 135 ± 95.2 12.3 ± 1.17 12.6 ± 1.32

Intersection Surface (x103 µm2) 660 ± 80.3 657 ± 65.3 19.8 ± 1.94 17.0 ± 1.66

Bone Surface/Volume Ratio (x10-3 1/µm) 115 ± 1.36 112 ± 5.53 448 ± 14.1 461 ± 26.3

Bone Surface Density (x10-4 1/µm) 119 ± 12.6 104 ± 6.75 431 ± 36.0 356 ± 26.1

Trabecular Thickness (µm) 34.2 ± 0.238 36.1 ± 1.86 7.74 ± 0.192 7.55 ± 0.345

Trabecular Separation (µm) 230 ± 14.8 274 ± 14.2 65.6 ± 3.75 76.2 ± 3.90

Trabecular Number (x10-4 1/µm) 30.3 ± 3.32 26.2 ± 1.84 125 ± 11.59 104 ± 8.18

Trabecular Pattern Factor (x10-3 1/µm) 27.6 ± 1.84 27.9 ± 1.92 199 ± 9.68 32.9 ± 24.0

Structure Model Index (x10-2) 182 ± 5.45 188 ± 5.80 63.5 ± 11.4 66.3 ± 26.3

Degree of Anisotropy (x10-2) 168 ± 7.32 171 ± 9.53

Cortical Analysis

Tissue Volume (x107 µm3) 53.9 ± 3.21 54.1 ± 4.87 79.1 ± 3.19 82.3 ± 7.46

Bone Volume (x107 µm3) 19.3 ± 1.35 20.5 ± 1.52 38.2 ± 1.51 41.2 ± 3.75

Percent Bone Volume (% BV/TV) 35.8 ± 0.546 38.3 ± 1.11 48.4 ± 1.46 50.7 ± 3.76

Tissue Surface (x105 µm2) 68.9 ± 2.37 70.9 ± 3.43 87.2 ± 2.06 90.4 ± 3.67

Bone Surface (x105 µm2) 58.2 ± 2.92 60.6 ± 1.90 75.6 ± 2.33 78.1 ± 2.94

Intersection Surface (x104 µm2) 72.6 ± 5.69 78.5 ± 6.03 152 ± 5.95 166 ± 15.9

Bone Surface/Volume Ratio (x10-3 1/µm) 30.4 ± 1.39 30.1 ± 1.51 20.0 ± 1.05 19.4 ± 1.28

Bone Surface Density (x10-4 1/µm) 109 ± 3.88 115 ± 7.07 96.1 ± 3.56 97.4 ± 7.50

 

Table 4.1. µCT analysis of 3- and 6-week old mice. µCT analysis of trabecular and cortical bone 

parameters in femurs from 3-week (3wk) and 6-week (6wk) old male WT and SOCS2-/- (KO) mice. 

Data are expressed as mean ± SEM (n=6 for 3-week KO and WT; n=6 for 6-week WT, n=5 for 6-

week KO). * = P<0.05 compared to 6-week old WT. 
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Figure 4.6. µCT analysis of 3- and 6-week old mice. Examples of 3D reconstruction images gained 
for trabecular bone in 3-week (3wk) and 6-week (6wk) old male WT and SOCS2-/- (KO) mice. 
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4.5. Discussion 

The SOCS2-/- overgrowth phenotype was confirmed in this study, with SOCS2-/- mice displaying 

increased growth from 3-weeks of age as demonstrated by increased body weight and body 

length compared to WT. By the end of the study period (7-weeks of age), SOCS2-/- male mice were 

35% larger than WT males while SOCS2-/- females were 18% larger than WT females (a similar size 

to WT males), consistent with previous findings (Metcalf et al., 2000; MacRae et al., 2009). This 

confirmed that the mice used in this study and throughout the work of this thesis were exhibiting 

the SOCS2-/- phenotype as expected. 

The increased growth of SOCS2-/- mice from 3-weeks of age is demonstrated by increased body 

length, with longer longitudinal bones (Metcalf et al., 2000; MacRae et al., 2009). It has previously 

been shown that the growth plates of SOCS2-/- mice have increased maturational zone widths 

compared to WT mice at 7-weeks of age (MacRae et al., 2007a). This has been confirmed and 

extended in this study by investigating growth plate phenotypes of male mice at 3-weeks and 6-

weeks of age, therefore looking for changes before and after the start of the increased growth 

rate in SOCS2-/- mice. The widths of the tibia growth plate maturational zones (total growth plate 

width, proliferating zone and hypertrophic zone) were found to be the same in WT and SOCS2-/- 

mice at 3-weeks of age. By 6-weeks of age, all maturational zones were significantly wider in 

SOCS2-/- mice compared with those from WT mice which is consistent with findings by MacRae et 

al. (2005). Growth plates become narrower with increasing age in association with decreased 

chondrocyte proliferation, with the growth plate closing in many species, but not rodents, once 

adult size has been reached (Kember and Sissons, 1976; Nilsson et al., 2005). The wider growth 

plate zones observed in SOCS2-/- mice are therefore indicative of a higher rate of endochondral 

bone growth and greater levels of proliferation. 

To investigate this further, growth plate proliferation levels were analysed in tibiae from 3- and 6-

week old male WT and SOCS2-/- mice by BrdU uptake and chondrocyte labelling. Again no 
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difference was observed between the two genotypes at 3-weeks of age, but SOCS2-/- 6-week old 

mice had higher levels of proliferating chondrocytes than WT. This is consistent with the zone 

widths, and is likely to lead to the increased growth of long bones from 3-weeks of age. Previous 

studies have shown a positive correlation between growth rate and chondrocyte proliferation, 

with increased proliferative cell cycle time and cell number associated with higher growth rate 

(Kember, 1985; Farnum and Wilsman, 1993; Wilsman et al., 1996a). Growth rate is, however, not 

only determined by proliferation but also by matrix synthesis and hypertrophic cell size (Hunziker 

et al., 1987; Breur et al., 1991; Wilsman et al., 1996b). To investigate if growth rate was altered in 

SOCS2-/- mice, the rate of endochondral growth (the mineral apposition rate) was measured in 

tibiae using calcein labelling. At 3-weeks of age, male WT and SOCS2-/- mice showed the same 

growth rate, but by 6-weeks of age male SOCS2-/- mice had a significantly higher mineral 

apposition rate than male WT mice. This is consistent with the increased levels of chondrocyte 

proliferation and increased growth plate zone widths at this age, and will result in the observed 

high growth of SOCS2-/- mice from weaning. Previous studies have found mineral apposition rate 

is reduced during conditions that inhibit bone growth (Altman et al., 1992; Owen et al., 2009), 

consistent with the increased bone growth in SOCS2-/- mice causing raised mineral apposition 

rate. 

SOCS2 is known to act by inhibiting GH signalling, particularly through STAT5 (Greenhalgh et al., 

2002a). GH signalling through the JAK/STAT pathway leads to downstream IGF-1 signalling, and in 

chondrocytes IGF-1 acts to stimulate proliferation (Isaksson et al., 1982; Wang et al., 1999). It 

therefore seems likely that in SOCS2-/- mice there is increased local GH signalling through STAT 

proteins from around 3-weeks of age, leading to increased production of IGF-1 and raised levels of 

proliferation. This hypothesis is consistent with the findings above, and is further investigated in 

subsequent chapters of this thesis. 
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GH is known to be anabolic for bone (Ohlsson et al., 1998; Andreassen and Oxlund, 2001) and 

therefore the increased GH signalling in SOCS2-/- mice would be expected to alter cancellous bone 

architecture (trabecular bone) and cortical bone geometry. Previous studies by Lorentzon et al. 

used DXA (Dual-emission X-ray absorptiometry) and pQCT (peripheral quantitative computed 

tomography) to analyse bone mineral density, and found a decrease in SOCS2-/- mice compared to 

WT at 4- and 15-weeks of age (Lorentzon et al., 2005). They also showed decreased cortical bone 

area and thickness in 4-weeks old, but not 15-weeks old, SOCS2-/- mice (Lorentzon et al., 2005). 

However MacRae et al. have recently used µCT analysis to show an increase in bone volume, 

trabecular number, trabecular thickness and trabecular separation in trabecular bone in 7-week 

old SOCS2-/- mice, coupled with increased cortical bone volume, tissue area and mean polar 

moment of inertias (MacRae et al., 2009). They saw no difference in bone mineral density, and 

their findings are more consistent with increased GH/IGF-1 signalling in the absence of SOCS2. In 

this study, μCT analysis was performed on male 3- and 6-week old mice to analyse bone 

parameters before and after the SOCS2-/- gigantism. At 3-weeks of age, there was no difference in 

any parameters of trabecular or cortical bone analysis, as expected. SOCS2-/- mice exhibited 

increased trabecular tissue volume and tissue surface at 6-weeks of age compared to WT. 

Increased tissue volume is consistent with the findings by MacRae et al. and with increased 

GH/IGF-1 signalling, however this study did not find the increased bone volume, trabecular 

number, trabecular thickness or trabecular separation. Nor were there any differences in cortical 

bone parameters. The reasons for the discrepancy in results between the results of this study and 

that of MacRae et al. (2009) are not immediately clear. There we`re however a number of 

differences between the studies that could have contributed to the different results obtained. 

Firstly, there was a lot of variation between samples observed in this study, which probably 

masked the strength of some results. Secondly, the mice used in this study were a week younger 

than in the study by MacRae and colleagues and they used female mice whereas male mice were 

used here due to their more significant overgrowth phenotype (and by Lorentzon et al. 2005). 
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Thirdly, analysis was done on femurs in this study as opposed to tibiae in the MacRae study, and 

the loading in these two bones is likely to be different which may cause different results (MacRae 

et al., 2009; Huesa et al., 2011). It is possible that by 6-weeks of age the trabecular and cortical 

bone have not changed as dramatically as by 7-weeks in the SOCS2-/- mice. The increased tissue 

volume and tissue surface are consistent with increased trabecular bone but these parameter 

changes would be expected to be coupled with increased bone volume. Unfortunately, it was not 

possible to measure bone mineral density in this study as density phantoms were not available for 

use. Clearly it would be worthwhile performing a larger study of μCT analysis with both tibiae and 

femurs from adult WT and SOCS2-/- mice, both female and male, to fully establish the bone 

parameters.  

4.6. Conclusion 

SOCS2-/- mice display an overgrowth phenotype that occurs from 3- to 4-weeks of age and is 

coupled with increased size of longitudinal bones. The increased longitudinal growth of SOCS2-/- 

mice is the result of raised levels of chondrocyte proliferation, wider growth plate zone and 

subsequent higher rates of endochondral growth. The signalling pathways responsible for these 

altered growth plate parameters are likely to involve the GH/IGF-1 signalling cascade and this is 

investigated in Chapter 5.
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5. The Effects of SOCS2 on GH 
Signalling through STAT Proteins in 
Chondrocytes 

5.1. Introduction 

GH signalling is known to be important for regulating post-natal endochondral bone growth, with 

GH deficiency resulting in growth retardation and excessive GH resulting in gigantism (Cuttler et 

al., 1989; Lupu et al., 2001). GH is thought to promote longitudinal growth through GHR signalling 

via the JAK/STAT pathway, which can lead to direct growth promoting actions or indirect 

production of IGF-1, with its consequential signalling cascades promoting chondrocyte 

proliferation and hypertrophy (Nilsson et al., 2005). While the liver is recognised as a key target 

organ of GH signalling, leading to increased circulating IGF-1 and subsequent growth promotion, 

GH is known to also act locally on other tissues, including bone (Isaksson et al., 1982; Green et al., 

1985; Spencer et al., 1991). Upon binding its receptor GH can signal through a variety of pathways 

(Figure 3.5, Chapter 3), however the most recognised is JAK/STAT signalling whereby JAK2 

activation leads to STAT phosphorylation, resulting in downstream transcription of target genes, 

including IGF-1 (Herrington et al., 2000). GH is capable of signalling through STAT1, STAT5 and 

STAT3 proteins (Waters et al., 2006; Brooks et al., 2008). Gevers et al. have demonstrated both in 

vitro and in vivo that GH signals through STAT5 in the growth plate (Gevers et al., 2009). In 

Chapter 3, GH was found to activate STAT1 and STAT3, in addition to STAT5, in both ATDC5 cells 

and primary chondrocytes. 

SOCS2 is known to negatively regulate growth by inhibiting GH signalling through the JAK/STAT 

pathway, with the SOCS2-/- mouse exhibiting an overgrowth phenotype from 3-weeks of age that 

is coupled with increased longitudinal growth (Metcalf et al., 2000; Rico-Bautista et al., 2006). In 

Chapter 4 the growth plate phenotype of SOCS2-/- mice was investigated, determining that the 

increased longitudinal growth observed in SOCS2-/- mice is associated with increased chondrocyte 
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proliferation and wider growth plate zone widths, resulting in a greater endochondral growth 

rate. Postnatal IGF-1 signalling is considered to be largely GH dependant, and as IGF-1 is known to 

increase chondrocyte proliferation it seems likely that the observed increased chondrocyte 

proliferation in the absence of SOCS2 could be the result of raised GH signalling through the 

JAK/STAT pathway leading to increased levels of local IGF-1 (Hoshi et al., 2004; Klammt et al., 

2008). This would suggest that physiologically SOCS2 acts to negatively regulate growth plate GH 

signalling, and that SOCS2 may be implicated in growth disorders that result in short stature.  

Of interest, it has been found that mice over-expressing SOCS2 do not exhibit stunted growth but 

in fact have an overgrowth phenotype also, with males growing to be 13-15% larger than WT 

(Greenhalgh et al., 2002b; Turnley, 2005). It seems that the effects of SOCS2 on GH signalling are 

dose dependant, and it has been proposed that SOCS2 normally acts to inhibit GH signalling but at 

higher doses can inhibit signalling of other SOCS proteins; SOCS3 and SOCS1, that are more potent 

GH inhibitors (Favre et al., 1999; Greenhalgh et al., 2002b; Turnley, 2005). Given the findings in 

Chapter 3 that neither SOCS1 nor SOCS3 are expressed by chondrocytes in response to GH, 

increased levels of SOCS2 in chondrocytes may act to inhibit GH signalling and STAT 

phosphorylation. 

5.2. Aims and Hypothesis 

5.2.1. Hypothesis 

SOCS2 acts to negatively regulate GH signalling through the JAK/STAT pathway, and the 

overgrowth phenotype in the SOCS2-/- mice is the result of increased chondrocyte GH signalling 

through STAT proteins leading to raised levels of IGF-1. Increased levels of SOCS2 in chondrocytes 

will result in diminished STAT phosphorylation in response to GH. 



Chapter 5             The Effects of SOCS2 on GH Signalling through STAT Proteins in Chondrocytes 

117 
 

5.2.2. Aims 

 Compare temporal STAT phosphorylation in response to GH in primary chondrocytes 

isolated from WT and SOCS2-/- mice 

 Generate a line of ATDC5 cells over-expressing SOCS2 and use these chondrocytes to 

compare temporal STAT phosphorylation in response to GH in chondrocytes over-

expressing SOCS2 with normal ATDC5 cells 

 Investigate in vivo STAT phosphorylation in growth plates from SOCS2-/- mice compared to 

WT mice at 6-weeks of age (post-overgrowth) 

 Analyse and compare expression levels of IGF-1 in primary chondrocytes from WT and 

SOCS2-/- mice 

5.3. Materials and Methods 

5.3.1. Cell Culture 

Primary chondrocytes were isolated from 1- to 3-day old WT or SOCS2-/- mice as described in 

Section 2.3.7. SOCS2-/- were previously generated as described in Section 2.3.2. All parents of 

litters used were genotyped as described in Sections 2.3.3, 2.3.4 and 2.3.5 to ensure litters used 

were the correct genotype. ATDC5 cells were cultured as described in Section 2.2.1. ATDC5 cells 

over-expressing SOCS2 were generated as described in Section 2.6. Cells were cultured in 6-well 

plates in differentiation medium (ATDC5 cells) or primary chondrocyte medium (primary cells). 

Temporal expression of STAT and SOCS proteins was investigated by challenging cells with GH 

(500ng/ml) at intervals from 15mins to 240mins. Cells were serum deprived for 24hrs prior to 

challenge with GH. 
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5.3.2. Western Blotting 

Cells were cultured as described in Section 5.3.1 and scraped for protein analysis as described in 

Section 2.8.1. Western blotting was performed as described in Sections 2.8.2 and 2.8.3. 

Antibodies used are detailed in Table 2.4. 

5.3.3. PhosphoSTAT5 Immunohistochemistry 

Femurs from 5 male SOCS2-/- and 5 WT mice at 6-weeks of age were used to analyse 

phosphorylated STAT5 in the growth plate. The femurs were fixed in 75% ethanol/5% acetic acid 

for 24hrs, then decalcified in 10% ETDA, paraffin embedded and sections cut as described in 

Section 2.5.1. Sections were analysed for phosphorylated STAT5 expression by 

immunohistochemistry as described in Section 2.5.6. 

5.3.4. qPCR 

RNA was extracted as described in Section 2.7.1 from freshly isolated primary chondrocytes from 

1- to 3-day old WT or SOCS2-/- mice as described in Section 2.3.2. For 6-week old mice, the growth 

plate and surrounding perichondrium were dissected from tibias and stored in RNA later (Qiagen). 

They were then homogenised using a held homogenizer (IKA-Werke) and RNA extracted as 

described in Section 2.7.1. Samples were reverse transcribed as described in Section 2.7.2. qPCR 

was performed using primers for 18S (housekeeping gene) and IGF-1 as described in Section 2.7.4. 

Details of primers used are in Table 2.3. 

5.4. Results 

5.4.1. Temporal STAT Phosphorylation in SOCS2-/- Chondrocytes in 

Response to GH 

Prolonged STAT5 signalling in response to GH has been reported in SOCS2-/- hepatocytes 

(Greenhalgh et al., 2002a), confirming that SOCS2 acts to negatively regulate GH signalling. The 

increased longitudinal growth observed in SOCS2-/- and greater chondrocyte proliferation 
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(Chapter 4) is likely to be due to increased or prolonged STAT activation by GH in chondrocytes. 

To test this hypothesis, the effects of GH on phosphorylation of STAT1, STAT3 and STAT5 in 

primary chondrocytes from WT and SOCS2-/- mice was analysed over a 15mins to 240mins time 

course (Figure 5.1). This extended the studies in Chapter 3, which showed activation of STAT1, 

STAT3 and STAT5 in chondrocytes from Swiss mice after 15mins stimulation. 

In chondrocytes from WT mice the activation of STAT1, STAT3, and STAT5 were increased after 

15mins GH treatment, with an effect still observed after 60mins GH exposure. No activation of 

STAT signalling was noted after 2 and 4hrs GH incubation. A similar temporal response was also 

observed in chondrocytes from SOCS2-/- mice. However, the phosphorylation status of all 3 STAT 

proteins, in comparison to WT cells, was both increased and in the case of STAT5 also prolonged 

where STAT5 activation was still evident after 4hrs GH treatment. 

5.4.2. Temporal Expression of SOCS1 and SOCS3 in SOCS2-/- Chondrocytes 

in Response to GH 

While chondrocytes from SOCS2-/- mice displayed enhance STAT activation by GH in comparison 

to WT mice there was still an obvious decrease with prolonged GH stimulation (Figure 5.1). 

Although it was found that neither SOCS1 nor SOCS3 were activated by GH in chondrocytes 

(Figure 3.8), it is possible that in the absence of SOCS2 one or both of these other GH inhibiting 

SOCS proteins may be responsible for this eventual decrease in STAT activation. Therefore the 

expression of both SOCS1 and SOCS3 were examined in primary chondrocytes stimulated with GH 

over a 15mins to 240mins time course, as in Section 5.4.1 (Figure 5.2). 
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Figure 5.1. Temporal STAT signalling. Western blot analysis of phosphorylated (P-) STAT1, STAT3 
and STAT5 in WT and SOCS2-/- chondrocytes challenged with GH (500ng/ml) for up to 240mins. 
Total STAT proteins are also shown as loading controls. Where two bands are present, these 
represent the two subunits of the STAT protein. 

 

 

 

 

 

 

Figure 5.2. Temporal SOCS1 and SOCS3 expression. Western blot analysis of SOCS1 and SOCS3 in 
WT and SOCS2-/- chondrocytes challenged with GH (500ng/ml) for up to 240mins. β-Actin is shown 
as a loading control. 
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The expression of both SOCS1 and 3 by SOCS2-/- cells did not change over the time course that 

showed a significant decrease in STAT activation with prolonged GH stimulation. Although, SOCS3 

expression appeared to be increased in SOCS2 null cells, this expression was not altered by GH 

stimulation. This shows that the reduction in STAT activation in chondrocytes from SOCS2-/- mice 

following prolonged GH stimulation decrease was not due to a temporal increase in expression of 

SOCS1 or SOCS3. 

5.4.3. The Effect of SOCS2 Over-Expression on STAT Signalling in 
Response to GH 

To further confirm the negative role of SOCS2 on GH signalling in chondrocytes, ATDC5 cells over-

expressing SOCS2 were produced. A western blot was completed to confirm the increased SOCS2 

expression in cells containing the SOCS2 over-expression plasmid compared to cells transfected 

with the control plasmid (Figure 5.3). The cells were then analysed for expression of 

phosphorylated STAT1, STAT3 and STAT5 in response to GH over a 15mins to 120mins period 

(Figure 5.4), encompassing the peak and decline of STAT signalling observed in WT chondrocytes 

in Figure 5.1. 

Cells expressing the control plasmid showed an increase in phosphorylation of STAT1, STAT3 and 

STAT5 over a 15mins to 60mins period of GH exposure, similar to the response seen in primary 

WT growth plate chondrocytes. Phosphorylation of STAT1, STAT3 and STAT5 did not respond to 

GH treatment at any time point in cells over-expressing SOCS2. This confirms that in growth plate 

chondrocytes SOCS2 acts to negatively regulate GH signalling through STAT proteins. 
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Figure 5.3. SOCS2 over-expression cells. Western blot showing increased expression of SOCS2 
protein in ATDC5 cells containing the SOCS2 over-expression plasmid (SOCS2+) compared to cells 
containing the control plasmid (con). The extra SOCS2 produced in over-expression cells is a 
higher weight than physiological SOCS2 as it is attached to a FLAG epitope. 

 

 

 

 

 

 

 

Figure 5.4. STAT expression in SOCS2 over-expressing cells. Western blot analysis of expression 
of phosphorylated (P-) STAT1, STAT3 and STAT5 in control and SOCS2 over-expressing ATDC5 cells 
in response to GH (500ng/ml) for up to 120mins. Total STAT proteins are also shown as loading 
controls. Where two bands are present, these represent the two subunits of the STAT protein. 
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5.4.4. Immunohistochemistry of Phosphorylated STAT5 in the Growth 

Plate 

In Section 5.4.1 chondrocytes from SOCS2-/- mice when maintained in vitro exhibited enhanced 

STAT signalling in response to GH, with increased and prolonged activation observed for STAT5. 

To extend these findings, growth plate chondrocyte STAT5 activation in vivo was analysed by 

immunohistochemistry in femurs from 6-week old WT and SOCS2-/- mice (Figure 5.5). By this age 

the gigantism phenotype of SOCS2-/- mice is established. 

Detectable phosphorylated STAT5 staining (brown) was seen in all zones of the growth plate, with 

stronger staining in resting and proliferating chondrocytes. Although these zones contained the 

highest number of positively stained cells, there was no difference in the number of STAT5 

positively stained cells in the proliferating zone of WT and SOCS2-/- growth plates. In contrast, 

quantification of the number of positively stained cells (taken as a percentage of total cells) 

revealed that more hypertrophic cells expressed phosphorylated STAT5 in SOCS2-/- mice 

compared to WT (P<0.001).  

5.4.5. IGF-1 Expression in Primary Chondrocytes 

GH signalling through STAT proteins is known to lead to IGF-1 transcription and chondrocyte 

proliferation (Nilsson et al., 1986; Nilsson et al., 2005). Therefore the increased STAT signalling 

observed in SOCS2-/- chondrocytes is likely to lead to increased IGF-1 expression in chondrocytes 

and explain the greater growth rate noted in SOCS2-/- bones (Figure 4.5; Chapter 4). In an attempt 

to directly determine if IGF-I expression was increased in growth plate chondrocyte of SOCS2-/- 

mice, growth plates dissected from tibiae of 6-week old WT and SOCS2-/- were used to analyse 

IGF-1 mRNA expression by chondrocytes. Unfortunately, inadequate amount of chondrocyte 

specific RNA could be extracted from the thinning growth plates in the 6-week old animals. 

Therefore, IGF-1 mRNA expression was analysed in chondrocytes isolated from 1- to 3-day old WT 

and SOCS2-/- mice (Figure 5.6).  
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Figure 5.5. Phosphorylated STAT5 immunohistochemistry. Analysis of phosphorylated STAT5 in 
growth plates of femurs from 6-week (6wk) old WT and SOCS2-/- (KO) mice. (A) Decalcified 
paraffin embedded sections showing phosphorylated STAT5 staining (brown) and counterstained 
with haematoxylin. Examples are shown for WT and SOCS2-/- mice and a negative control. Black 
arrows indicate some positive stained cells. Scale bars = 100µm. (B) Quantification of STAT5 
phosphorylation in the proliferating (PZ) and hypertrophic (HZ) zones expressed as a percentage 
of total cells. Analysis was done on two different areas in two sections per mouse (n=5). Data are 
expressed as mean±SEM; ***P<0.001. 
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Figure 5.6. IGF-1 qPCR. Graph showing IGF-1 expression in SOCS2-/- (KO) and WT mice, 
represented by relative change in IGF-1 expression (2ΔCT) normalised against 18S (housekeeping 
gene). Data are represented by a box plot displaying the median with upper and lower quartiles, 
and whiskers from minimum to maximum. RNA was isolated from chondrocytes taken from 1-day 
old mice; n=5 litters. 
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IGF-1 was greater in chondrocytes from costochondral cartilage of 1-day old SOCS2-/- mice 

compared to WT mice but the difference was not statistically significant (Figure.5.6). These data 

are consistent with the observation that the overgrowth phenotype is not clearly observed in the 

whole animal until after 3-weeks of age. 

5.5. Discussion 

The overgrowth phenotype observed in SOCS2-/- mice and associated increased growth rate 

(Chapter 4) is likely to be the result of increased chondrocyte GH signalling through STAT proteins 

leading to raised levels of IGF-1. To investigate this, the findings in Chapter 3 were extended to 

show that in chondrocytes isolated from SOCS2-/- mice phosphorylation of STAT proteins was 

increased and, in the case of STAT5, prolonged compared to WT. This is consistent with findings 

by Greenhalgh et al, who found prolonged STAT5 phosphorylation in hepatocytes from SOCS2-/- 

mice (Greenhalgh et al., 2002a). Increased GH signalling through STAT proteins will likely lead to 

raised IGF-1 levels, which will stimulate chondrocyte proliferation and the subsequent increased 

endochondral growth observed in SOCS2-/- mice (Isgaard et al., 1988).  

Although enhanced and prolonged STAT phosphorylation was observed in SOCS2-/- chondrocytes, 

the activation still decreased towards the end of the study period as in WT cells. The reasons for 

this decreased STAT activation are unclear. SOCS1 and SOCS3 are known to be potent inhibitors of 

GH signalling through the JAK/STAT pathway, and while we found in WT chondrocytes that their 

expression was not stimulated by GH, it is plausible that they have a redundancy role whereby in 

the absence of SOCS2 they do become active inhibitors of GH signalling in the growth plate. To 

test this hypothesis, the temporal expression of SOCS1 and SOCS3 was analysed in response to 

GH. Neither SOCS1 nor SOCS3 was stimulated by GH in WT or SOCS2-/- chondrocytes, indicating 

that they are not responsible for the decline in STAT signalling. It is possible the level of STAT 

phosphorylation decreased with time because all the available STAT protein has been activated or 

because of other signalling events deregulating GH signalling, for example the protein tyrosine 
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phosphatase SHP-1 (SH2 domain-containing protein tyrosine phosphatase) which can 

dephosphorylate JAK2 (Klingmüller et al., 1995). 

Consistent with the raised levels of STAT activation observed in the absence of SOCS2, 

chondrocytes over-expressing SOCS2 showed reduced STAT phosphorylation in response to GH. 

Previous studies have shown that SOCS2 has dual functions, acting to inhibit up to 50% GH 

signalling at low and physiological concentrations, but to enhance signalling up to 200% at high 

concentrations (Adams et al., 1998; Favre et al., 1999). Furthermore, transgenic mice that over-

express SOCS2 do not exhibit repressed growth, but in fact also exhibit an overgrowth phenotype 

similar to SOCS2-/- mice (Greenhalgh et al., 2002b). In these mice, SOCS2 was found to bind the GH 

receptor. One theory for the positive effect of SOCS2 on GH signalling is that at high 

concentrations SOCS2 can inhibit binding sites of the more potent GH inhibitors SOCS1 and SOCS3 

(Greenhalgh et al., 2002b). This hypothesis has been confirmed by studies showing that in vitro 

SOCS2 can block and restore the negative effects of SOCS1 and SOCS3 on GH signalling (Favre et 

al., 1999; Dif et al., 2001). In Chapter 3, and Figure 5.2, it was found that neither SOCS1 nor SOCS3 

responded to GH in chondrocytes. Consistent with this, Kiu and colleagues found that SOCS2 does 

not regulate SOCS3 signalling in hematopoietic cells (Kiu et al., 2009). These results indicate that 

high levels of SOCS2 can only act to influence other SOCS proteins in certain tissues, and that the 

overgrowth phenotype observed in mice with high levels of SOCS2 may be mediated by the 

systemic effects of GH signalling only. 

In vivo analysis of phosphoSTAT5 expression in growth plates from 6-week old WT and SOCS2-/- 

mice by immunohistochemistry showed an increase in the number of hypertrophic chondrocytes 

expressing phosphorylated STAT5 in SOCS2-/- compared to WT. There was no difference in the 

number of cells stained in the proliferating zones suggesting that STAT5 activation in these cells of 

WT and SOCS2-/- cells was similar. However, as immunohistochemistry is a poorly quantifiable 

technique, whilst allowing quantification of the number of cells stained for phosphorylated STAT5 
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it is not sensitive enough to establish the quantity of STAT5 activated by each cell. The increased 

number of hypertrophic cells stained for activated STAT5 confirms that the SOCS2-/- overgrowth 

phenotype is associated with altered STAT5 phosphorylation, consistent with the in vitro findings 

in Figure 5.1 where increased and prolonged STAT5 signalling in primary chondrocytes isolated 

from SOCS2-/- mice was noted. Gevers et al. reported parallel distributions of GHR and total STAT5 

protein in growth plates of normal mice, with staining observed mainly in resting chondrocytes, 

some proliferating cells and prehypertrophic chondrocytes (Gevers et al., 2009). Previous studies 

by the same group in rats found GHR protein expression in all zones of the growth plate, 

predominantly proliferating and early hypertrophic chondrocytes, which is more consistent with 

the localisation of phosphorylated STAT5 found here (Gevers et al., 2002). Studies by Parker and 

colleagues also found GHR mRNA expression by analysis of RNA from the different zones of the 

growth plate (resting, proliferative, prehypertrophic and hypertrophic), although the levels of 

GHR found were low (Parker et al., 2007). Gevers et al. reported greatly reduced GHR and total 

STAT5 expression in GH deficient mice, which have narrower growth plates and reduced growth 

(Gevers et al., 2009). After injection of murine GH, phosphorylated STAT5 expression was 

observed in resting and prehypertrophic chondrocytes in growth plates from GH deficient mice 

(Gevers et al., 2009). This distribution of phosphorylated STAT5 in the growth plate (Gevers et al., 

2009) had a more restricted distribution than observed in the WT and SOCS2-/- mice of this study. 

The reasons for this are unclear but were not due to the immunohistochemical procedure used 

which was identical in both studies. A possible explanation could be that Gevers and colleagues 

(2009) studied GH deficient mice which have lower levels of GHR and narrower growth plate 

zones. However, they also reported no detectable phosphorylated STAT5 staining in normal mice 

(4- to 5-week old Albino Swiss mice) that were GH-sufficient (Gevers et al., 2009). This is 

contradictory to our finding in WT mice, where phosphorylated STAT5 was found in all zones of 

the growth plate, particularly the resting and proliferating. This difference in results could partially 

be due to strain and age differences, but such stark differences are hard to reconcile. The 
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increased STAT5 activation in hypertrophic chondrocytes of SOCS2-/- mice indicates that SOCS2 

acts to mediate GH effects on hypertrophic chondrocytes, acting to regulate their size. This is 

consistent with the increased growth of SOCS2-/- mice as the size of hypertrophic chondrocytes is 

known to be a major determinant of growth rate (Hunziker and Shenk, 1989; Breur et al., 1991; 

Wilsman et al., 1996b). Increased GH signalling through STAT5 will lead to raised IGF-1 signalling, 

and studies by Mushtaq et al. have shown that IGF-I increases hypertrophic cells which is likely to 

contribute to increased growth rates (Mushtaq et al., 2004). Furthermore, IGF-I null mice have 

reduced growth that is associated with smaller hypertrophic chondrocytes (Wang et al., 1999). 

The observed increased STAT phosphorylation in chondrocytes from SOCS2-/- mice both in vitro 

and in vivo demonstrates that increased GH signalling in these mice occurs through the JAK/STAT 

pathway, which is likely to lead to IGF-1 production. RT-qPCR analysis did not find a significant 

change in IGF-1 levels in chondrocytes isolated from 1-day old mice. It seems likely that this is due 

to a lack of GH signalling at that age, consistent with the gigantism phenotype of SOCS2-/- 

occurring only from 3-to 4-weeks of age. Studies on microdissected growth plates found that IGF-

1 mRNA in the rat growth plate increased with age, with a 25 fold increase observed from 1- to 9-

weeks of age (Parker et al., 2007). However, this study found that IGF-1 was expressed at much 

lower levels in the growth plate than in surrounding tissue, so that growth plate IGF-1 may in fact 

largely originate from the surrounding perichondrium, plasma and bone (Parker et al., 2007). 

These findings may explain the lack of increase of IGF-1 in SOCS2-/- chondrocytes found here. This 

data is also consistent with a similar analysis of SOCS2-/- bone tissue where no change in IGF-1 

mRNA expression was noted (Metcalf et al., 2000). This analysis, however, was done on whole 

bone samples and did not separate cortical bone, trabecular bone, and epiphyseal cartilage 

(Metcalf et al., 2000). They also reported normal systemic levels of GH and IGF-1 indicating that 

the SOCS2-/- overgrowth phenotype is the result of tissue changes in GH signalling pathways, 

consistent with the findings in this study in chondrocytes (Metcalf et al., 2000; Greenhalgh et al., 

2002a). However, an increase in local levels of IGF-1 in the absence of SOCS2 has yet to be 
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demonstrated, with the analysis performed here incomplete as IGF-1 mRNA levels were not 

measured in growth plates from SOCS2-/- mice displaying the overgrowth phenotype. Such 

analysis could be performed in the future using the method of growth plate microdissection 

described by Parker et al, which would allow a more comprehensive analysis of the growth plate 

while retaining better RNA quality by using frozen tissue.  

5.6. Conclusion 

SOCS2-/- growth plate chondrocytes display increased phosphorylation of STAT proteins in 

response to GH in vitro. Also, chondrocytes over-expressing SOCS2 show decreased STAT 

signalling in response to GH, confirming the negative role of SOCS2 on GH signalling in the growth 

plate. Altered STAT5 phosphorylation was also observed in the hypertrophic chondrocytes of 

SOCS2-/- mice in vivo. This increased STAT phosphorylation may to lead to increased local IGF-1 

signalling and explain the altered growth plate phenotype and increased tibial growth rates 

(observed in Chapter 4) of the SOCS2-/- mice. Several studies have demonstrated that serum levels 

of IGF-1 remain unchanged in SOCS2-/- mice (Metcalf et al., 2000; MacRae et al., 2009), 

highlighting the importance of local GH/IGF-1 signalling. Whilst a role for locally increased 

chondrocyte IGF-I levels in mediating the increased growth rates of SOCS2-/- mice has yet to be 

confirmed the studies in this chapter clearly show that SOCS2 is capable of modulating 

chondrocyte STAT activation in response to GH. This confirms the importance of local 

(autocrine/paracrine) GH/IGF-I signalling events in the control of bone growth. 
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6. Direct Effects of Increased GH 
Signalling in SOCS2-/- Metatarsals 

6.1. Introduction 

The overgrowth phenotype of SOCS2-/- has lead to studies confirming that SOCS2 acts to 

negatively regulate GH signalling through the JAK/STAT pathway, in particular STAT5 (Metcalf et 

al., 2000; Greenhalgh et al., 2002a). In Chapter 4 the growth plate phenotype of SOCS2-/- mice was 

analysed, and the increased bone length from 3-weeks of age was associated with wider growth 

plate zones, increased chondrocyte proliferation and a higher rate of bone growth. These studies 

were extended in Chapter 5, where in comparison to cells from WT mice chondrocytes isolated 

from SOCS2-/- mice displayed increased activation of STAT1, STAT3 and STAT5 in response to GH, 

and immunohistochemistry of STAT5 disclosed increased numbers of hypertrophic cells 

expressing phosphorylated STAT5 in SOCS2-/- mice compared to WT mice. From the available 

evidence it seems probable that in SOCS2-/- growth plates raised levels of STAT phosphorylation in 

response to GH leads to increased bone growth and this is mediated by direct or indirect (via IGF-

1) stimulation of chondrocyte proliferation.  

Several authors have demonstrated the direct proliferative effect of IGF-1 on chondrocytes in 

vitro (Phornphutkul et al., 2004; MacRae et al., 2006a; Hutchison et al., 2007). However, similar 

studies investigating a proliferative response to GH have reported conflicting results. Hutchison 

and colleagues noted no chondrocyte proliferative response to GH, although interestingly they 

also reported that STAT5 was not phosphorylated in response to GH in chondrocytes which is 

contrary to studies by Gevers and colleagues and the results in Chapters 3 and 5 of this thesis 

(Hutchison et al., 2007; Gevers et al., 2009). In contrast Madsen and colleagues showed a 

concentration dependant increase in chondrocyte proliferation in response to GH, consistent with 

other studies showing that GH can induce proliferation (Madsen et al., 1983; Livne et al., 1997). 
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Due to the different results gained in these studies, it was felt necessary to establish ATDC5 and 

primary chondrocyte proliferation responses to GH and IGF-1 under the conditions of this model. 

Several investigators have used the foetal mouse metatarsal culture method to investigate the 

effects of IGF-1 on bone growth (Scheven and Hamilton, 1991; Coxam et al., 1996; Mushtaq et al., 

2004; Martensson et al., 2004; MacRae et al., 2006a; MacRae et al., 2007a). This culture system 

provides an ex vivo method of analysing endochondral bone growth that is more physiological, as 

the chondrocyte interactions with each other and with the surrounding matrix are preserved. 

Mushtaq and colleagues found increased metatarsal growth in response to IGF-1 which was 

coupled with increased proliferation (Mushtaq et al., 2004). These findings were extended by 

MacRae and colleagues who demonstrated that the IGF-1 stimulated increase in metatarsal 

growth and associated proliferation was through PI3K signalling via Akt and not Erk1/2 signalling 

(MacRae et al., 2007a). 

Growth retardation is frequently observed during chronic inflammatory conditions and although 

glucocorticoid use, disease associated malnutrition, and altered GH/IGF-1 signalling will all 

contribute to the growth retardation (Mushtaq and Ahmed, 2002; MacRae et al., 2007a), it is 

likely that increased levels of inflammatory cytokines such as IL-6, IL-1β and TNFα play a crucial 

role in mediating poor growth. These pro-inflammatory cytokines have been shown to inhibit 

chondrocyte proliferation, increase apoptosis, and reduce chondrocyte expression of important 

matrix proteins (Davies et al., 1997; Martensson et al., 2004; MacRae et al., 2006b; MacRae et al., 

2006c). The mechanisms by which these effects are mediated are poorly understood and while 

MacRae and colleagues found that TNFα increased chondrocyte expression of SOCS2, this result 

could not be replicated in this thesis (Chapter 3) (MacRae et al., 2009). These authors also 

investigated the growth of SOCS2-/- metatarsals challenged with TNFα and found their growth was 

inhibited to the same degree as WT metatarsals (MacRae et al., 2009). However, given the lack of 

GH induced growth in mice at this age (pre-weaning; 19-day old foetal and 1-day old neonatal) it 
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seems unlikely that SOCS2 would influence chondrocyte dynamics at that age, particularly given 

that the SOCS2 overgrowth phenotype only occurs from 3-weeks of age. As a direct link between 

STAT phosphorylation, chondrocyte proliferation and bone growth has yet to be confirmed, the 

aims of this study were to investigate this further.  

6.2. Aims and Hypothesis 

6.2.1. Hypothesis 

The increase in GH mediated STAT activation observed in chondrocytes of SOCS2-/- mice leads to 

increased chondrocyte proliferation and endochondral growth. 

6.2.2. Aims 

 Establish chondrocyte proliferation in response to GH and IGF-1 using primary 

chondrocytes and ATDC5 cells. Extend these studies to investigate proliferation in 

chondrocytes from SOCS2-/- mice and in cells over-expressing SOCS2. 

 Exploit the embryonic metatarsal culture model to investigate the growth response of WT 

and SOCS2-/- bones to GH and IGF-1.  

 Exploit the embryonic metatarsal culture model to investigate chondrocyte intracellular 

signalling in WT and SOCS2-/- bones in response to GH and IGF-1.  

 Establish the effects of the pro-inflammatory cytokine IL-1β in combination with IGF-1 or 

GH on WT and SOCS2-/- metatarsal growth.  

6.3. Materials and Methods 

6.3.1. Cell Culture 

ATDC5 cells were culture as described in Section 2.2.1. Primary chondrocytes were isolated from 

1- to 3-day old Swiss mice as described in Section 2.3.7. Cells were cultured in 48-well plates in 

differentiation medium (ATDC5 cells) or primary chondrocyte medium (primary cells) as described 
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in Sections 2.2.1 and 2.3.7 respectively. For the proliferation assay, cells were cultured in serum 

free medium for 24hrs prior to incubation with GH or IGF-1 (24hrs). 

6.3.2. Embryonic Metatarsal Culture 

Metatarsals were isolated from 17-day old embryos and cultured as described in Section 2.3.11. 

All parents of embryos used were genotyped as described in Sections 2.3.3, 2.3.4 and 2.3.5 to 

ensure embryos used were the correct genotype. Metatarsals were cultured with the addition of 

100ng/ml GH (Bachem); 100ng/ml IGF-1 (Bachem); 10µM LY-294002 (Sigma); 10ng/ml IL-1β 

(Autogen Bioclear). The diluent for LY-294002 was DMSO, which was added to cultures at a final 

concentration of 0.07% to all metatarsals (including controls) in experiments using LY-294002. 

6.3.3. [3H]Thymidine Proliferation Assay 

Cell proliferation was measured using a thymidine proliferation assay as described in Section 

2.4.1. Proliferation levels in metatarsals were analysed as described in Section 2.4.2. 

6.3.4. Metatarsal Von Kossa and H&E Staining 

Metatarsals were cultured for 4 days and then paraffin embedded and cut as described in Section 

2.5.1. Sections were stained for Von Kossa and H&E as described in Section 2.5.5. 

6.4. Results 

6.4.1. Chondrocyte Proliferation in Response to GH and IGF-1 

One of the downstream effects of GH binding to its receptor is IGF-1 signalling, which can lead to 

increased cell proliferation. This was investigated using tritiated thymidine uptake in ATDC5 cells 

and primary chondrocytes in response to GH (500ng/ml) and IGF-1 (50ng/ml) (Figure 6.1.). 

Proliferation was increased in response to IGF-1 (P<0.001), but not GH, in ATDC5 cells. Primary 

cells showed no increase in proliferation with either GH or IGF-I, and had greater variation in 

values between individual samples. As various investigators (Madsen et al., 1983; Ohlsson et al., 
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1992b; Hutchison et al., 2007) reported on the ability of different concentrations of GH and IGF-1 

to stimulate chondrocyte proliferation, a concentration curve was also carried out in primary 

chondrocytes to determine if GH and IGF-I induced proliferation was concentration dependent. 

Again neither GH nor IGF-1 increased proliferation in primary chondrocytes at any of the 

concentrations analysed (Figure 6.2). In fact, IGF-1 caused a decrease in proliferation at all 

concentrations examined (P<0.001); a result that was both unexpected and inconsistent with the 

literature (Ohlsson et al., 1992b; Kiepe et al., 2005; MacRae et al., 2006a; Hutchison et al., 2007). 

As there was no proliferation response to GH or IGF-1, these studies with primary cells were not 

extended into SOCS2-/- mice. 

6.4.2. Growth of WT and SOCS2-/- Metatarsals in Response to GH and IGF-1 

It has been well established that embryonic metatarsals grow in length in response to IGF-1 but 

the response to GH is more equivocal (Scheven and Hamilton, 1991; Mushtaq et al., 2004). It is 

possible that metatarsal growth is altered in SOCS2-/- mice, in particular in response to GH as 

SOCS2 acts to inhibit GH signalling. To investigate this, 17-day old embryonic metatarsals were 

cultured with GH or IGF-1 over a 13-day period and their growth measured (Figure 6.3). 

Concentrations of GH and IGF-1 used (both 100ng/ml) were based on similar studies in murine 

metatarsals (Mushtaq et al., 2004; MacRae et al., 2006a). 

In WT metatarsals, increased growth was seen in response to IGF-1 (P<0.05 from day 5, Figure 

6.3A), with no response to GH compared to controls over the duration of the experiment. In 

SOCS2-/- metatarsals increased growth was again observed in response to IGF-1 and also in 

response to GH, from day 5 of culture (P<0.01). In addition, in the SOCS2-/- metatarsals there was 

no difference in the growth of metatarsals in response to IGF-I and GH (Figure 6.3B). This indicates 

that in WT metatarsals, SOCS2 is acting to inhibit growth in response to GH. The growth of WT 

and SOCS2-/- metatarsals in response to IGF-I was similar indicating that SOCS2 does not regulate 

IGF-I functional effects on growth. 
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Figure 6.1. Proliferation assay. Uptake of tritiated thymidine was measured as depreciations per 
minute (DPM; Y-axis) in ATDC5 cells and primary chondrocytes in response to 24hrs exposure of 
GH (500ng/ml) and IGF-1 (50ng/ml). Results were analysed statistically by ANOVA (n≥6). Data are 
shown as mean ± SEM; ***P<0.001 compared to ATDC5 control. 
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Figure 6.2. Proliferation assay concentration curves. Results for tritiated thymidine uptake in 
primary chondrocytes measured by depreciations per minute (DPM; y-axis) in response to 24hrs 
exposure with different concentrations of GH (A) and IGF-1 (B). Results were analysed statistically 
by ANOVA. Data are shown as mean ± SEM; ***P<0.001 compared to control; n≥6. 
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Figure 6.3. Analysis of WT and SOCS2-/- metatarsals growth. Embryonic metatarsals were 
cultured with GH (100ng/ml) and IGF-1 (100ng/ml). (A) Growth of wild-type (WT) metatarsals in 
response to GH and IGF-1. Data are expressed as mean percentage change in length from day 0, 
±SEM. Results were analysed statistically by ANOVA (n≥6). *P<0.05, **P<0.01, ***P<0.001 
compared to control at the same time point (colour used matches that of treatment analysed 
statistically). (B) Growth of SOCS2-/- metatarsals in response to GH and IGF-1. Data are expressed 
as mean percentage change in length from day 0, ±SEM. Results were analysed statistically by 
ANOVA (n≥6). **P<0.01, ***P<0.001 compared to control at the same time point (colour used 
matches that of treatment analysed statistically). 
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6.4.3. SOCS2-/- and WT Metatarsal Proliferation in Response to GH and 

IGF-1 

A thymidine proliferation assay was used to investigate if the increased growth of WT metatarsals 

in response to IGF-1, and of SOCS2-/- metatarsals in response to GH and IGF-1 was due to 

increased chondrocyte proliferation. 17-day old WT and SOCS2-/- embryonic metatarsals were 

cultured for 4 days in the presence of GH or IGF-1 before analysis for proliferation by [3H]-

thymidine uptake (Figure 6.4.). This culture time was chosen as it falls within the period of 

maximum growth in both WT and SOCS2-/- metatarsals in response to GH and/or IGF-1 (Figure 

6.3). 

In WT metatarsals proliferation levels were increased in response to IGF-1 (P<0.05), but not GH. 

Proliferation levels in SOCS2-/- metatarsals increased in response to both IGF-1 and GH (P<0.05). 

This confirms that the increased growth of WT and SOCS2-/- metatarsals in Figure 6.3 is associated 

with increased chondrocyte proliferation. 

6.4.4. Zone Widths in SOCS2-/- and WT Metatarsals 

Von Kossa and H&E staining were used to measure zone widths in WT and SOCS2-/- metatarsals. 

17-day old WT and SOCS2-/- metatarsals were cultured with GH or IGF-1 for 4 days before being 

fixed, embedded and cut. Sections were then stained and zone widths analysed (Figure 6.5). Again 

this culture time was chosen as it falls within the period of maximum growth in both WT and 

SOCS2-/- metatarsals in response to GH and/or IGF-1. No significant changes were observed in 

zone widths of WT metatarsals, which was inconsistent with their increased length in response to 

IGF-1. In SOCS2-/- chondrocytes, IGF-1 caused an increase in width of the hypertrophic zone 

(P<0.01), with no significant changes observed for GH. Again, this latter finding is inconsistent 

with the observed increased metatarsal growth. It is possible that non-significant increases in 

zone widths contributed to the observed increase in metatarsal length for WT metatarsals 

challenged with IGF-1, and for SOCS2-/- metatarsals challenged with GH. 



Chapter 6                                     Direct Effects of Increased GH Signalling in SOCS2
-/-

 Metatarsals 

141 
 

 

 

 

Figure 6.4. Chondrocyte proliferation in metatarsals. Embryonic metatarsals were cultured for 4 
days with GH (100ng/ml) or IGF-1 (100ng/ml) then measured for levels of [3H]thymidine uptake as 
a measure of cell proliferation. (A) Proliferation levels in wild-type (WT) metatarsals measured by 
depreciations per minute (DPM). Data are expressed as mean±SEM and was analysed by ANOVA 
(n=4). *P<0.05 compared to control. (B) Proliferation levels in SOCS2-/- (KO) metatarsals measured 
by depreciations per minute (DPM). Data are expressed as mean±SEM and was analysed by 
ANOVA (n=4). *P<0.05 compared to control. 
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Figure 6.5. Metatarsals zone widths. Metatarsal sections were stained with Von Kossa, and H&E 
to allow zone width analysis. (A) An example of a stained section showing the areas measured - 
mineralising zone (MZ), hypertrophic zones (HZ) and proliferating zones (PZ). For HZ and PZ, 
measurements were taken from both sides of the MZ to give the total measurements. Results for 
total measurements for the three zones are shown for (B) wild-type (WT) metatarsals and (C) 
SOCS2-/- (KO) metatarsals cultured with GH or IGF-1 for 4 days. Results are mean±SEM and were 
analysed by ANOVA (n=6). **P<0.01 compared to control hypertrophic zone. 
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6.4.5. Investigating if GH Signals through IGF-1 in SOCS2-/- Metatarsals 

The GH induced growth observed in SOCS2-/- metatarsals (Figure 6.3) was associated with 

increased proliferation. To test whether this effect of GH was mediated through IGF-1, an 

inhibitor of IGF-1 signalling was used. MacRae et al. found that IGF-1 induced metatarsal growth 

was inhibited by the PI3K inhibitor LY-294002 (MacRae et al., 2007a). Their studies showed that 

an Erk1/2 inhibitor did not affect IGF-1 stimulated growth, therefore demonstrating that the 

primary pathway used by IGF-1 in chondrocytes is the IRS-1/PI3K/Akt pathway, as opposed to 

SHC/RAS/RAF/MEK/MAPK (Erk 1/2) (MacRae et al., 2007a). A concentration curve for LY-294002 

was carried out by MacRae and colleagues to establish the lowest concentration required to 

inhibit chondrocyte proliferation by IGF-1 and this was found to be 10µM (MacRae et al., 2007a). 

In this study WT and SOCS2-/- metatarsals were cultured with GH (100ng/ml), IGF-1 (100ng/ml), 

LY-294002 (10µM), LY-294002 (10µM) plus IGF-1 (100ng/ml) or LY-294002 (10µM) plus GH 

(100ng/ml) and growth measured (Figure 6.6). 

The results in Figure 6.3 were confirmed with increased growth in response to IGF-1 in WT and 

SOCS2-/- metatarsals, with SOCS2-/- metatarsals also responding to GH. LY-294002 inhibited 

growth compared to control metatarsals for both WT and SOCS2-/- (P<0.001 from day 4). The 

addition of GH or IGF-1 did not increase metatarsal growth in the presence of LY-294002, 

indicating that the IGF-1 stimulated growth in both WT and SOCS2-/- metatarsals is through 

signalling by PI3K, consistent with previous studies (MacRae et al., 2007a). This also indicates that 

increased growth of SOCS2-/- bones in direct response to GH is mediated by the actions of PI3K. 
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Figure 6.6. Metatarsal growth curves with IGF-1 signalling inhibitor. Embryonic metatarsals were 
cultured with GH (100ng/ml), IGF-1 (100ng/ml), LY-294002 (LY) (10µM), LY-294002+IGF-1 (LY+IGF-
1) or LY-294002+GH (LY+GH). (A) Growth of wild-type (WT) metatarsals. Data are expressed as 
mean percentage change in length from day 0, ±SEM. Results were analysed statistically by 
ANOVA (n≥5). *P<0.05, **P<0.01, ***P<0.001 compared to control at each time point (colour 
used matches that of treatment analysed statistically). (B) Growth of SOCS2-/- metatarsals (KO). 
Data are expressed as mean percentage change in length from day 0, ±SEM. Results were 
analysed statistically by ANOVA (n≥6). *P<0.05, **P<0.01, ***P<0.001 compared to control at 
each time point (colour used matches that of treatment analysed statistically). 
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6.4.6. The Effects of IL-1β on Metatarsal Growth 

MacRae and colleagues reported that the inflammatory cytokine TNFα caused a similar amount of 

growth inhibition in SOCS2-/- and WT metatarsals. However, this was in the absence of growth 

factors, in particular GH or IGF-1. It was interesting to speculate that the positive effect of GH on 

SOCS2-/- metatarsal growth observed in this study (Figure 6.3) may act to prevent the growth 

inhibition induced by inflammatory cytokines and offer therapeutic opportunities. To test this 

hypothesis, WT and SOCS2-/- metatarsals were cultured with GH (100ng/ml), IGF-1 (100ng/ml), IL-

1β (10ng/ml), IL-1β (10ng/ml) plus GH (100ng/ml), IL-1β (100ng/ml) plus IGF-1 (100ng/ml) (Figure 

6.7). The concentration of IL-1β used (10ng/ml) was based on similar studies using IL-1β in 

metatarsal cultures (Martensson et al., 2004; MacRae et al., 2006b; MacRae et al., 2007a). 

In WT metatarsals IL-1β significantly inhibited metatarsal growth, an effect that was seen from 

day 4 of culture and was not altered by the addition of GH or IGF-1. The growth of SOCS2-/- 

metatarsals was also significantly inhibited by IL-1β, by a comparable amount to WT metatarsals 

(P<0.001 from day 8). SOCS2-/- metatarsals exposed to both IL-1β and IGF-1 showed less growth 

reduction than those challenged with IL-1β alone, with significantly increased growth at day 6 

(P<0.05), day 8 (P<0.01) and day 10 (P<0.01) of culture compared to IL-1β alone; although their 

growth was still less than untreated SOCS2-/- metatarsals. A similar effect was observed in SOCS2-/- 

metatarsals cultured with IL-1β and GH, with no growth reduction from control, untreated, bones 

observed until day 10 of culture, resulting in a significant increase in growth at days 4, 6, 8 (all 

P<0.05) and day 10 (P<0.01) of culture when compared to IL-1β alone. 
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Figure 6.7. Metatarsal growth curves in response to IL-1β. Embryonic metatarsals were cultured 
with GH (100ng/ml), IGF-1 (100ng/ml), IL-1β (10ng/ml), IL-1β+GH or IL-1β+IGF-1. (A) Growth of 
wild-type (WT) metatarsals. Data are expressed as mean percentage change in length from day 0, 
±SEM. Results were analysed statistically by ANOVA (n≥5). **P<0.01, ***P<0.001 compared to 
control at each time point (colour used matches that of treatment analysed statistically). (B) 
Growth of SOCS2-/- metatarsals (KO). Data are expressed as mean percentage change in length 
from day 0, ±SEM. Results were analysed statistically by ANOVA (n≥5). *P<0.05, **P<0.01, 
***P<0.001 compared to control at each time point (colour used matches that of treatment 
analysed statistically). 
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6.5. Discussion 

GH stimulation of the JAK/STAT pathway is known to lead to downstream IGF-1 signalling, which 

in turn stimulates proliferation. This was investigated by examining the proliferation of 

chondrocytes in response to GH and IGF-1. ATDC5 cells showed increased proliferation in 

response to IGF-1, consistent with previous studies (Phornphutkul et al., 2004; MacRae et al., 

2006a). GH did not stimulate proliferation of ATDC5 cells. Previous studies investigating the 

effects of GH on chondrocyte proliferation have reported inconsistent results. Hutchison et al. 

have shown that GH does not stimulate proliferation, however other studies have found a 

proliferative response to GH (Madsen et al., 1983; Ohlsson et al., 1992b; Hutchison et al., 2007). 

Importantly, none of these studies used ATDC5 cells and different culturing conditions are likely to 

be crucial to the proliferative response, as demonstrated by Ohlsson et al. (1992). In primary 

chondrocytes, neither GH nor IGF-1 increased proliferation. The levels of proliferation in different 

samples within the replicates of each individual experiment varied greatly in primary cells and this 

is likely to have masked any GH mediated increases in cell proliferation. This is probably due to 

the fact that they are a mixed population of chondrocytes in different stages of differentiation, 

unlike ATDC5 cells which are a transformed cell line that show distinct stages of differentiation as 

they are cultured. However, as primary chondrocytes also did not show increased IGF-1 signalling 

it is possible the cells are not responsive to IGF-1 in this system. Other authors who have shown 

primary chondrocytes proliferating in response to IGF-1 have used chondrocytes isolated from 3- 

to 6-week old rats or rabbits (Madsen et al., 1983; Ohlsson et al., 1992b). An interesting study by 

Eden et al. (1983) showed that chondrocytes isolated from different locations demonstrate 

different binding affinities to GH, with rib cage chondrocytes showing very little specific binding 

compared to ear and epiphyseal chondrocytes (Eden et al., 1983). There are therefore several 

possible explanations for the lack of IGF-1 and GH responses seen in primary chondrocytes in this 

study: mixed chondrocyte population; age of mice; lack of GH binding activity; previous exposure 

to FBS containing growth factors that even upon removal mask results. The latter explanation 
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seems likely in this experimental model as recent experiments performed by a master student, 

Lorna Halley, has found that when cultured without FBS primary chondrocytes do proliferate in 

response to IGF-1 (P<0.001), but not GH. 

As the proliferation assay could not be used to measure the downstream effects of GH and IGF-1 

stimulation of WT and SOCS2-/- chondrocytes, the metatarsal culture model was exploited as a 

possible physiological alternative measure of bone growth. Both WT and SOCS2-/- metatarsals 

responded similarly to IGF-1 with increased growth, consistent with previous studies in murine 

metatarsals (Mushtaq et al., 2004; MacRae et al., 2007a). Increased bone growth was also 

demonstrated by SOCS2-/- metatarsals challenged with GH which is likely to be mediated through 

increased JAK/STAT signalling, taking into account the previous findings of increased GH 

stimulated STAT activation in chondrocytes of SOCS2-/- mice (Chapter 5). The IGF-1 response of 

SOCS2-/- metatarsals was coupled with increased hypertrophic zone width, but no zone width 

changes were seen in WT metatarsals stimulated with IGF-1 nor SOCS2-/- metatarsals with GH. 

These results are inconsistent with the increased growth observed in these metatarsals. This was, 

however, a rather crude method of measuring zone widths as due to their small size it was 

difficult to orientate the metatarsals accurately for sectioning along the same plane, and so slight 

differences resulting from this may account for the lack of significance noted. There was also 

significant variation between individual bones. Non-significant increases in hypertrophic zone 

width of WT metatarsals were noted in response to IGF-1, and in proliferating zone width of 

SOCS2-/- metatarsals in response to GH. Studies by Mushtaq and colleagues found increased 

hypertrophic zone widths in embryonic metatarsals challenged with IGF-1 for 4-days and 10-days, 

indicating that IGF-1 acts to stimulate endochondral bone growth by altering the dynamics of the 

hypertrophic zone, including increasing hypertrophic cell height (Mushtaq et al., 2004). This is 

consistent with findings in IGF-1-/- mice, which have short stature associated with decreased 

hypertrophic, but not proliferative, zone width and reduced hypertrophic cell size coupled with 

reduced expression of collagen type-X (Wang et al., 1999). These results indicate that IGF-1 
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primarily acts on the hypertrophic, not proliferative, zone of the growth plate. The GH response of 

SOCS2-/- metatarsals was associated with increased chondrocyte proliferation as was the IGF-1 

response in WT and SOCS2-/- metatarsals. This latter result is consistent with previous studies 

(Mushtaq et al., 2004). Furthermore, the addition of the PI3K inhibitor LY-294002 to SOCS2-/- 

metatarsals suppressed GH and IGF-1 promoted bone growth in a similar manner to that seen 

with WT metatarsals in response to IGF-1 (MacRae et al., 2007a). These results indicate that GH 

acts to stimulate bone growth by signalling through PI3K, which is likely to be stimulated by IGF-1 

or to act directly downstream of GH to increase IGF-1 production (Argetsinger and Carter-Su, 

1996; LeRoith, 2000; MacRae et al., 2007a). 

Increased levels of inflammatory cytokines such as IL-1β and TNFα are known to inhibit 

chondrocyte actions in the epiphyseal growth plate, contributing to the reduced endochondral 

growth associated with chronic inflammatory diseases such as juvenile idiopathic arthritis and 

inflammatory bowel disease (Martensson et al., 2004; MacRae et al., 2006b; MacRae et al., 

2006c). Given the increased growth observed in SOCS2 deficient mice, inhibition of SOCS2 

expression may have a positive effect on longitudinal growth in such patients and therefore offer 

potential as a therapeutic target. MacRae and colleagues (2009) found that the response of 

SOCS2-/- and WT metatarsals to TNFα were similar, with bone growth significantly inhibited in 

both genotypes. These findings were confirmed and extended in this study with reduced bone 

growth observed in WT and SOCS2-/- embryonic metatarsals exposed to the pro-inflammatory 

cytokine, IL-1β. The addition of GH or IGF-1 did not alter this negative effect on growth in WT 

metatarsals and this is contrary to findings by Martensson et al. (2004) who showed that the 

addition of IGF-1 to rat metatarsals did partially prevent IL-β induced growth retardation 

(Martensson et al., 2004). In these present studies however IGF-1 did act to reduce IL-1β induced 

growth retardation in SOCS2-/- metatarsals, although it did not completely rescue growth of 

SOCS2-/- metatarsals to the same level as control bones. In contrast, the addition of GH did 

completely prevent the IL-1β effect on SOCS2-/- metatarsals for the first 8 days of culture, with 
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comparable longitudinal growth achieved to control SOCS2-/- metatarsals. These results imply that 

the inhibitory actions of pro-inflammatory cytokines on growth plate chondrocyte actions can be 

partially rescued in the absence of SOCS2, where increased GH signalling can compensate for the 

inflammatory induced growth retardation. The observation that IGF-1 also partially rescued 

growth of SOCS2-/- metatarsals in the presence of IL-1β indicates that while SOCS2 primarily acts 

on the GH signalling cascade, it may also regulate IGF-1 signalling. This is consistent with studies 

showing that SOCS2 can bind the IGF-1 receptor, thus may be capable of regulating IGF-1 

signalling also (Dey et al., 1998; Michaylira et al., 2006b). This regulation, however, is not via STAT 

activation as in Chapter 3 it was clearly shown that IGF-1 does not stimulate STAT phosphorylation 

in chondrocytes. 

6.6. Conclusion 

Although a proliferative response in primary chondrocytes was not achieved, IGF-1, but not GH, 

did stimulate the growth of WT embryonic metatarsals. In contrast, SOCS2-/- metatarsals 

responded to stimulation by both GH and IGF-1, with both responses suppressed by the addition 

of the PI3K inhibitor LY-294002. The increased growth of metatarsals in response to GH or IGF-1 

was associated with increased chondrocyte proliferation. These data confirm that SOCS2 acts to 

negatively regulate GH stimulation of endochondral bone growth, and indicates that GH has the 

potential to directly increase bone growth when the SOCS2 inhibitory actions on chondrocyte 

STAT signalling are removed. This GH promotion of bone growth is, in part, regulated by increased 

chondrocyte proliferation via the PI3K pathway. The inflammatory cytokine IL-1β inhibited bone 

growth, an effect that could be partially overcome by addition of GH or IGF-1 in SOCS2-/-, but not 

WT, metatarsals. This suggests that the removal or inhibition of SOCS2 expression/activity may 

offer the potential for clinical intervention to suppress the inhibited endochondral growth 

observed during chronic inflammatory conditions. Indeed, potential target sites in the SOCS2 C 



Chapter 6                                     Direct Effects of Increased GH Signalling in SOCS2
-/-

 Metatarsals 

151 
 

terminus for low-molecular-weight protein interaction inhibitors have been identified and could 

be used to develop SOCS2 antagonists (Bullock et al., 2006). 
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7. Inducing Inflammation in SOCS2-/- 
Mice 

7.1. Introduction 

Paediatric inflammatory diseases are known to have adverse effects on the skeleton, with growth 

retardation and osteoporosis observed in chronic inflammatory conditions such as inflammatory 

bowel disease (IBD) and systemic juvenile idiopathic arthritis (JIA) (Simon et al., 2002b; MacRae et 

al., 2006c; Tilg et al., 2008). Studies investigating the use of GH to treat short stature in these 

patients have reported mixed results, with more recent data indicating that normal height can be 

achieved if therapy is started early (Simon et al., 2002b; Bechtold et al., 2007; Simon et al., 2007). 

Whilst it is very likely that there are disease specific issues that contribute to the impaired 

longitudinal growth in these conditions, inflammation remains a common factor. These diseases 

are often accompanied by elevated levels of pro-inflammatory cytokines, in particular IL-1β, TNFα 

and IL-6 (Hildebrand et al., 1994; Simon et al., 2002a). It is likely that pro-inflammatory cytokines 

compromise bone growth and bone mass by a number of different mechanisms, including 

interference with the systemic as well as the tissue-level GH/IGF-1 axis which has recognised 

anabolic actions on skeletal development (de Hooge et al., 2003; Martensson et al., 2004; MacRae 

et al., 2006b; MacRae et al., 2007b). Studies using a murine model of colitis have found that 

inhibited growth is associated with decreased IGF-1, and recovery is enhanced in the presence of 

elevated GH (Ballinger et al., 2000; Williams et al., 2001). Consistent with these findings, patients 

with inflammatory conditions have lowered levels of systemic IGF-1, but not GH (Davies et al., 

1997; De Benedetti et al., 2001a). Transgenic mice that over-express systemic IL-6 also have 

lowered levels of systemic IGF-1, and exhibit growth retardation that is rescued by the 

administration of an IL-6 receptor antibody (De Benedetti et al., 1997). Inflammatory cytokines IL-

1β and TNFα have been found to inhibit chondrocyte proliferation and differentiation, increase 

apoptosis and decrease chondrocyte production of matrix proteins aggrecan, collagen type-II and 
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-X; leading to decreased growth plate zone widths and impaired longitudinal growth (Goldring et 

al., 1988; Horiguchi et al., 2000; Aizawa et al., 2001; Martensson et al., 2004; MacRae et al., 

2006b; MacRae et al., 2006c). The mechanisms by which inflammatory cytokines exert these 

negative effects on chondrocytes are unknown, and it is possible that alteration of GH/IGF-1 

signalling is involved. 

It has been shown that pro-inflammatory cytokines can induce tissue-specific expression of SOCS 

proteins, with up-regulation of SOCS3 by IL-1β, TNFα and IL-6 in certain cell types (Denson et al., 

2003; Shi et al., 2004). The embryonic lethality of SOCS3-/- mice is partially cause by IL-6 hyper-

responsiveness, also demonstrating its important role in regulating inflammatory cytokine 

signalling. Studies in the SOCS1-/- have shown that it is important in IFN-γ signalling and T-cell 

function (Alexander et al., 1999; Marine et al., 1999b). However, the role of these SOCS proteins 

in mediating inflammatory cytokine signalling in the growth plate has not been investigated. In 

particular, the overgrowth phenotype of the SOCS2-/- mice, coupled with the altered growth plate 

dynamics observed in Chapters 4 and 5, make it a prime target when investigating the growth 

retardation observed in conditions such as IBD and JIA. The results by MacRae and colleagues 

showing that TNFα increased chondrocyte expression of SOCS2 could not be replicated in this 

thesis (Chapter 3) (MacRae et al., 2009). These authors also found that the addition of TNFα to 

primary chondrocytes from 1-day old mice inhibited the production of important matrix proteins 

aggrecan, collagen type-II and collagen type-X; an effect that was not altered in the absence of 

SOCS2 (MacRae et al., 2009). MacRae and colleagues extended their studies into the metatarsal 

mode of bone growth to confirm previous studies that the addition of the inflammatory cytokine 

TNFα inhibited metatarsal growth, again finding that this effect was also noted in the SOCS2-/- 

mice (MacRae et al., 2009). In Chapter 6 these latter findings were repeated using IL-1β and 

extended to show that the addition of GH or IGF-1 rescued the IL-1β mediated growth inhibition 

in SOCS2-/-, but not WT, metatarsals. These in vitro results indicate that in the absence of SOCS2, 

the negative effects of inflammatory cytokines on longitudinal bone growth are somewhat 
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diminished possibly through compensatory effects of enhanced GH signalling. The aim of this 

study was to extend these observations to an in vivo model of inflammation. 

7.2. Aims and Hypothesis 

7.2.1. Hypothesis 

SOCS2 plays a significant role in mediating the growth retardation observed during chronic 

inflammatory diseases and therefore the removal or inhibition of SOCS2 in inflammatory 

situations will help restore physiological endochondral growth. 

7.2.2. Aims 

 Conduct a pilot study using LPS to induce inflammation in 4-week old WT and SOCS2-/- 

mice and measure changes in body weight, body length and tibia length over a 7-day 

period. 

 Extend this study to the dextran sodium sulphate (DSS) experimental colitis model in 4-

week old WT and SOCS2-/- mice, using pair-fed genotype matched control mice. 

 Investigate the effect of colitis on the following parameters in WT mice compared to 

SOCS2-/-mice: growth (change in body weight, body length and bone lengths); bone 

phenotype (longitudinal mineral apposition rate, growth plate analysis); disease severity 

(health of mice scored daily and distal colon studied); speed of recovery upon DSS 

removal; serum analysis of inflammatory cytokines (TNFα, IL-1β and IL-6), bone turnover 

markers (alkaline phosphatase and N-terminal procollagen peptides), and IGF-1. 

7.3. Materials and Methods 

7.3.1. LPS Model of Inflammation 

LPS was used in a pilot study investigating the effects of inflammation on growth in SOCS2-/- mice. 

4 female WT and 4 female SOCS2-/- mice were challenged with LPS to induce inflammation as 

described in Section 2.3.12. 4-week old mice were injected with 50µg/kg LPS daily for 7 days, with 
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saline administered to age, genotype and sex matched control mice. To allow growth analysis 

mice were weighed, measured crown to rump and whole body x-rayed at days 0 and day 7. 

Scanned x-ray films were used to measure tibiae lengths using Image J.  

7.3.2. DSS Model of Colitis 

For the dose concentration pilot study 2 male WT mice were given 3% DSS, 2 male WT mice were 

given 4% DSS and 2 male WT mice were given 5% DSS. The mice were 8-weeks old and were 

housed individually. The mice were challenged with DSS in their drinking water for 5 days 

followed by a 10 day recovery. The mice were weighed, measured crown to rump and their health 

scored throughout the 14 day period. 

For the main DSS study 4-week old WT and SOCS2-/- mice were challenged with 4% DSS in their 

drinking water for 5 days, followed by a 10 day recovery period as described in Section 2.3.13. The 

amount of food consumed by each DSS treated mouse was weighed daily, and then given to a pair 

fed, genotype and sex matched control mouse, which received un-supplemented drinking water. 

The mice were then culled, blood collected and dissected. The distal colon was isolated and snap 

frozen in a hexane bath as described in Section 2.5.2. One tibia was also snap frozen, and the 

second tibia and two femurs were fixed in 10% NBF. The mice were x-rayed at days 1, 8 and 15 to 

allow measurement of long bone lengths. Daily measurements were taken for weight, crown to 

rump lengths and health scores. They were injected with calcein at day 10 and with BrdU at day 

14. The study design is shown in Table 7.1. 

 

Table 7.1. Main DSS study experimental design. 
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7.3.3. Analysis of Growth Plate Dynamics 

5 days prior to cull, mice received a calcein injection as described in Section 2.3.9. Upon sacrifice, 

tibias were dissected. One tibia was snap frozen in a hexane freezing bath and cryostat sections 

cut for calcein analysis, as described in Section 2.5.2. The distance between the chondro-osseous 

junction and the mineralising front was measured at 10 points along the growth plate on two 

sections per mouse under UV light using a Nikon Eclipse TE300 microscope. 

The other tibia was fixed in 10% NBF for 24hrs then decalcified in 10% EDTA, paraffin embedded 

and cut as described in Section 2.5.1. Sections were analysed for BrdU labelling as described in 

Section 2.5.3. Sections were also analysed for zone widths by toluidine blue staining, as described 

in Section 5.4.2. 

7.4. Results 

7.4.1. The Effects of LPS Challenge on Growth in WT and SOCS2-/- Mice 

Lipopolysaccharide (LPS) challenge has been widely used as a reproducible model of systemic 

inflammation. LPS is a bacterial endotoxin that causes a phagocyte mediated widespread increase 

in inflammatory cytokines such as IL-6, IL-1β and TNFα which have toxic effects including sickness, 

malaise, weight reduction and, at high doses, mortality (Rivera et al., 1998; Fortier et al., 2004; 

Ashdown et al., 2006). 
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Figure 7.1. Growth of mice treated with LPS. 4-week old WT and SOCS2-/- mice were injected with 
50µg/kg LPS for 7 days, with saline controls (Days 1-7). (A) Weight measurements were taken at 
days 0, 3 and 8. Results are expressed as mean±SEM (n=4). *P<0.05 for SOCS2-/- LPS treated mice 
vs SOCS2-/- saline controls; ##P<0.01 for SOCS2-/- LPS treated mice vs WT LPS treated mice. (B) 
Crown to rump length measurements were also taken at days 0, 3 and 8. Results are expressed as 
mean±SEM (n=4). 
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As a pilot study investigating the effects of inflammation on growth in the absence of SOCS2, 4 

week-old WT and SOCS2-/- mice (n=4) were injected with 50µg/kg LPS daily for a 7 day period, 

with saline controls. This dose of LPS was used as it is consistent with the dose used by Fortier et 

al, and is lower than that used by many other authors thus unlikely to cause mortality (Fortier et 

al., 2004). 4-week old mice were used as this is after the overgrowth phenotype appears in SOCS2-

/- mice, and is an age before adult height is reached so the mice are still growing, allowing any 

growth retardation to be observed. Body lengths and weights were measured at day 0 (24hrs 

before first LPS injection), day 3 and day 8 (24hrs after LPS injection) (Figure 7.1).  

WT mice treated with LPS showed a non-significant trend of reduced body weight and length over 

the 8-day period compared to WT controls. An opposite effect was observed in SOCS2-/- mice 

treated with LPS which grew more than SOCS2-/- mice treated with saline, with a significant 

increase in body weight by day 8 (P<0.05). SOCS2-/- mice treated with LPS showed much greater 

growth than WT mice treated with LPS, with significant increased body weight at day 8 (P<0.01). 

There was not a significant difference between SOCS2-/- mice treated with saline and WT mice 

treated with saline. These results indicate that the removal of SOCS2 may act to protect from LPS 

induced growth retardation. None of the groups exhibited significant changes in body lengths 

throughout the study, which is probably due to the small study size (4 mice per group) and 

because the crown to rump measurement is hard to take accurately. 
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Figure 7.2. Bone growth in mice treated with LPS. 4-week old WT and SOCS2-/- mice were 
injected with 50µg/kg LPS for 7 days, with saline controls. The mice were x-rayed at the start (day 
0) and end (day 8) of the study to allow measurement of tibiae lengths. (A) An example of an x-
ray. The red bracket indicates the distance measured for each tibia. Scale bar = 1cm. (B) 
Percentage change in tibiae lengths from day 0 to day 8 for SOCS2-/- and WT mice treated with LPS 
or saline. Data are expressed as mean±SEM for 2 tibiae per mouse (n=4); * P<0.05 compared to 
saline control for the same genotype; ## P<0.01 for SOCS2-/- LPS treated mice vs WT LPS treated 
mice. 
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Tibia lengths were measured using x-ray analysis at day 0 and day 8 (Figure 7.2), to measure bone 

growth following LPS treatment period. In WT mice, LPS caused a significant reduction in tibia 

growth (P<0.05). An opposite effect was observed in SOCS2-/- mice, with increased tibia growth 

observed in response to LPS (P<0.05). Consistent with the weight data, LPS treated SOCS2-/- mice 

showed significantly higher tibia growth than WT mice treated with LPS (P<0.01). There was no 

difference between the saline controls for the two genotypes, which is consistent with the results 

for weight gain and again indicates that inflammatory induced growth retardation may be 

prevented by the removal of SOCS2. 

7.4.2. The Effect of LPS Challenge on Growth Plate Morphology and 
Endochondral Growth Rate 

At the end of the LPS study described in Section 7.4.1, both tibiae were dissected from each 

mouse to analyse the effects of LPS treatment on growth plate dynamics. One tibia was used to 

analyse growth plate zone widths in WT and SOCS2-/- mice treated with LPS or saline (control), 

using toluidine blue staining (Figure 7.3). The second tibia was used to measure the mineral 

apposition rate of endochondral growth in LPS treated WT and SOCS2-/- mice, by analysing calcein 

labelling (Figure 7.4). 

WT mice treated with LPS had wider growth plates than WT control mice (P<0.05), associated 

with increased hypertrophic zone size (P<0.05) and no difference in the proliferative zone. There 

were no significant changes in zone widths of SOCS2-/- mice treated with LPS compared to control 

SOCS2-/- mice. Control SOCS2-/- mice exhibited wider growth plates than WT control mice (P<0.05), 

which was coupled with a significant increase in SOCS2-/- hypertrophic zones (P<0.01). Similarly, 

increased growth plate and hypertrophic zone widths were found for SOCS2-/- mice treated with 

LPS compared to LPS challenged WT mice (P<0.05). 
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Figure 7.3. Toluidine blue staining in growth plates from mice treated with LPS. Analysis of 
growth plate zone widths in tibiae from LPS treated WT and SOCS2-/- (KO) mice, with saline 
controls. (A) Paraffin embedded sections were stained with toluidine blue to allow measurement 
of zone widths. Arrows show examples of total growth plate width (green), proliferating zone 
width (yellow) and hypertrophic zone width (red). Scale bars = 100µm. (B) Graph of results of 
growth plate zone widths, expressed as mean±SEM for 2 sections per mouse (n≥3); *P<0.05 for 
WT LPS compared to WT saline; α P<0.05, ααP<0.01 for SOCS2-/- saline compared to WT saline; # 
P<0.05 for SOCS2-/- LPS compared to WT LPS. 
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Figure 7.4. Calcein labelling in mice treated with LPS. Measurement of endochondral mineral 
apposition rate in tibiae from LPS treated WT and SOCS2-/- (KO) mice, with saline controls, using 
calcein labelling. (A) Sections showing calcein labelling of mineralised trabecular bone in frozen 
tibia sections. Examples are shown for LPS and saline treated WT and SOCS2-/- mice. Daily mineral 
apposition rate was calculated by measuring the distance from the chondro-osseous junction to 
the calcein labelled mineralisation front, as indicated by the red arrow, and dividing by the 
number of days from calcein injection to cull (5 days). Scale bars = 100µm. (B) Graph of results of 
mineral apposition rates (MAR), expressed as mean±SEM for 2 sections per mouse (n≥3); # P<0.05 
for SOCS2-/- LPS compared to WT LPS. 
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There was no significant difference in mineral apposition rate of WT mice treated with LPS 

compared to WT control mice, nor in LPS challenged SOCS2-/- mice compared to SOCS2-/- controls. 

SOCS2-/- mice treated with LPS did show significantly increase in growth rate compared to LPS 

treated WT mice (P<0.05). 

7.4.3. DSS Induced Colitis Concentration Curve 

One of the most widely used murine models of experimental colitis is the use of DSS to induce 

colitis. DSS can be administered orally via the drinking water, and is toxic to intestinal epithelial 

cells causing the release of antigens and subsequent inflammation and damage to the intestinal 

crypts of the distal colon (Dieleman et al., 1998; Hamdani et al., 2008; Harris et al., 2009). This 

leads to the up-regulation of pro-inflammatory cytokines and subsequent negative effects on 

health, including inflammation of the intestine and associated bloody stools, impaired growth 

with decreased bone length and reduced bone volume (Cooper et al., 1993; Williams et al., 2001; 

Hamdani et al., 2008; Harris et al., 2009; DeBoer et al., 2010). DSS can be used to cause acute 

colitis (DSS administered in water for up to 14 days) or chronic colitis (DSS administered for up to 

14 days followed by a 1-5 week recovery period) (Cooper et al., 1993; Dieleman et al., 1998; 

Williams et al., 2001; Melgar et al., 2007). Williams and colleagues reported that transgenic mice 

over-expressing GH exhibited enhanced survival and better intestinal repair following DSS-

induced colitis (Williams et al., 2001). The LPS pilot study indicated that SOCS2-/- mice are less 

susceptible to inflammatory induced growth retardation. The DSS model of colitis is a more 

physiological method of measuring the effects of inflammation than LPS, and the results by 

Williams and colleagues support the hypothesis that SOCS2-/- mice are protected from the growth 

retardation, and associated impaired bone growth, that occurs following increased inflammatory 

cytokines. 
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Figure 7.5. DSS concentration curve. 8-week old WT mice were treated with 3%, 4% or 5% DSS for 
5 days, followed by a 10 day recovery period. (A) The mice were weighed regularly throughout the 

study to monitor their health and disease status. Results are expressed as mean (n=2). Any mice 
whose weight dropped more than 25% were culled in accordance with the home office licence. 
(B) The health of the mice was also monitored throughout the study and noted. This again 
allowed the disease status to be monitored, and any mice whose health deteriorated drastically 
were culled. 
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Previous authors have used different concentrations of DSS depending on the mouse strain, and it 

has also been reported that water intake varies between mouse strains (Tordoff et al., 2007). 

Therefore it was necessary to conduct a small pilot study investigating which concentration of DSS 

was appropriate in the SOCS2-/- line. For this, WT mice were given 3%, 4% or 5% DSS in their 

drinking water for a 5 day period, followed by a 10 day recovery. Their weights were measured 

throughout, and their health was scored (Figure 7.5). Any mice that lost more than 25% of their 

body weight were culled in accordance with the projects Home Office animal license regulations. 

Mice given 3% DSS showed very little signs of illness and minimal weight loss. 4% DSS induced a 

drop of weight between days 5 and 9 to approximately 80% of the starting weight, which was 

coupled with loose faeces and dull coats. This was followed by a recovery with weight increasing 

from day 9 onwards, and associated improved health. Mice receiving 5% DSS also lost weight 

from days 5 to 9 but this was a more severe weight loss, and was associated with ill health 

including hunched posture, inactivity and bloody anus. These mice were culled at day 9 as their 

weight had dropped by over 25%, and they were extremely unwell. 

7.4.4. Main DSS Study 

The results from the pilot studies detailed in Section 7.4.3 indicate that 4% DSS is the best dose to 

use, as 5% caused severe illness and extreme body weight loss while 3% DSS had little effect. 4% 

DSS resulted in weight loss from day 5, associated with some illness including loose stools and dull 

coat, followed by a recovery phase were the mice gained weight again and their health recovered. 

This is similar to studies by other authors (Williams et al., 2001; Melgar et al., 2007), and was 

considered to be a good protocol for investigating the effects of inflammatory disease on growth 

in SOCS2-/- mice. The weight loss observed in DSS treated mice may be attributed to a reduction in 

food intake (Harris et al., 2009; DeBoer et al., 2010). In order to separate weight loss as a result of 

reduced food intake from inflammation-induced weight loss it is necessary to pair feed control 

mice with DSS treated mice. This method has been previously described by Ballinger et al, who 
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used a different model of colitis (trinitrobenzenesulphonic acid (TNBS) induced) to demonstrate 

that mice whose food intake was paired with that of the TNBS treated mice grew less than control 

mice that had access to unlimited food, but still grew more than the colitic mice (Ballinger et al., 

2000).  

In order to investigate the effects of DSS induced colitis on growth SOCS2-/- mice, 4-week old male 

SOCS2-/- and WT mice were treated with 4% DSS for 5 days followed by a 10 day recovery. Their 

daily food intake was weighed every 24hrs and administered to genotype matched control mice. 

All mice were weighed, measured crown to rump and scored for health daily (Figure 7.6). The 

experiment started with 3 male SOCS2-/- and 3 male WT mice, as these were the mice available at 

the desired age, with the intention to continue with more mice when available to achieve 6 mice 

within each control and experimental group. Within each genotype, two mice were challenged 

with DSS and the third mouse was used as a pair fed control to one of the DSS treated mice. The 

weight of food consumed daily for the other DSS treated mouse in each genotype was recorded 

so that it could be administered to a pair fed control at a later date. 
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Figure 7.6. Main DSS study. 4-week old male mice were treated with 4% DSS for 5 days, followed 
by a 10 day recovery period. Control mice were pair fed to a DSS treated, genotype-matched 
mouse. (A) The mice were weighed daily throughout the study to monitor their health and disease 
status. Results are shown for (i) WT and (ii) SOCS2-/- mice. Any mice whose weight dropped more 
than 25% were culled in accordance with the home office licence. (B) The mice were also 
measured from crown to rump daily as another indication of their health and growth. Results are 
shown for (i) WT and (ii) SOCS2-/- mice 

 
 
 
 

 

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

%
 o

f 
St

ar
ti

n
g 

Le
n

gt
h

Time (Days)

WT Lengths

DSS 1
Control 1

DSS 2

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

%
 o

f 
St

ar
ti

n
g 

Le
n

gt
h

Time (Days)

SOCS2-/- Lengths

DSS 1
Control 1

DSS 2

B i 

ii 



Chapter 7                                                                              Inducing Inflammation in SOCS2
-/-

 Mice 

170 
 

The results from this first group of mice were unexpected. One of the DSS treated WT mice 

remained healthy throughout the study and had minimal weight loss, while the other had much 

more significant weight loss that breached the 25% loss threshold and had to be culled. It showed 

signs of illness, including a bloody anus and hunched body. The control mouse was pair fed to this 

latter DSS treated mouse, and lost some weight but not as much as the DSS treated mouse. 

SOCS2-/- mice treated with DSS gave very similar results, with one mouse losing a small amount of 

weight before gaining weight while the other lost a significant amount of weight and died. This 

latter mouse was extremely ill from day 4 with a lot of blood loss from the anus, dehydration and 

a hunched body, shown by the body weight measurements. To try and aid recovery its food was 

soaked in water, but its health deteriorated very rapidly and it died on day 6. The SOCS2-/- control 

mouse was pair fed with the first DSS treated mouse, and it showed a similar pattern of weight 

fluctuations over the study, and gained slightly less weight than the DSS treated mouse. 

Such dramatic changes in response to DSS in different mice of the same genotype were 

unexpected. To confirm the result was not an anomaly, the study was repeated using 3 SOCS2-/- 

and 8 WT mice (each genotype consisting of littermates). All mice were treated with 4% DSS, so 

that if there was still a 50% cull/death rate pair fed control mice would not be wasted. The mice 

were again 4-weeks old, and this time were a mix of males and females as limited numbers of 

male mice were available. The mice received 4% DSS for 5 days followed by a 10 day recovery. All 

mice were weighed, measured crown to rump and scored for health daily (Figure 7.7). The daily 

weight of food consumed for each mouse was recorded so that it could be administered to a pair 

fed control (genotype, age and sex-matched) at a later date. 
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Figure 7.7. SOCS2-/- and WT mice treated with DSS. 4-week old mice were treated with 4% DSS 
for 5 days, followed by a 10 day recovery period. The mice were weighed daily throughout the 
study to monitor their health and disease status. Results are shown for WT and SOCS2-/- mice. Any 
mice whose weight dropped more than 25% were culled in accordance with the home office 
licence. 
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Again there were large mouse to mouse differences, with some mice showing very little ill health 

and weight loss in response to DSS while others became very ill and were culled due to large 

weight loss and/or ill health. This was seen in both genotypes, with both genders showing the 

same results. Because of these vast differences the colitis model was considered unreliable, and 

the study was stopped. The planned additional analysis was therefore not carried out, i.e. bone 

lengths, bone phenotype (mineral apposition rate and growth plate analysis), and serum analysis 

(inflammatory cytokines, bone turnover markers and IGF-1). 

7.5. Discussion 

Growth retardation is frequently observed during chronic inflammatory IBD and JIA (Simon et al., 

2002b; MacRae et al., 2006c; Tilg et al., 2008). In Chapter 6, it was found that the addition of GH 

or IGF-1 to SOCS2-/- metatarsals reduced their growth inhibition in response to the inflammatory 

cytokine IL-1β. This suggests that the removal or inhibition of SOCS2 and the consequent increase 

in GH signalling can help restore physiological endochondral growth in inflammatory situations, 

offering an alternative to GH therapy which can have undesired side effects such as insulin 

resistance. To test this hypothesis further, the growth of SOCS2-/- and WT mice was analysed in a 

small pilot study using LPS to induce systemic inflammation.  

Analysis of weight as an indication of growth showed that SOCS2-/- mice challenged with LPS grew 

significantly more that WT mice challenged with LPS over a 7 day period, and also grew more than 

saline control SOCS2-/- mice. The same changes were seen for tibia lengths. In contrast, WT mice 

treated with LPS grew less than WT saline controls, a difference that was not significant for weight 

but was significant for tibia length. The fact that SOCS2-/- mice treated with LPS grew more than 

LPS treated WT mice, but that there was not a significant difference between WT and SOCS2-/- 

saline controls, indicates that the removal of SOCS2 does appear to offer protection from growth 

retardation during chronic inflammation. The increased growth of SOCS2-/- mice treated with LPS 

compared to saline control SOCS2-/- mice indicates that in the absence of SOCS2, inflammatory 
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cytokines may actually stimulate growth. Martensson and colleagues found that the inflammatory 

cytokine IL-1β can stimulate metatarsal growth at low concentrations, indicating that the effects 

of inflammatory cytokines are dose dependant (Martensson et al., 2004). Inflammatory cytokines 

have been shown to stimulate STAT signalling, as demonstrated using IL-1β in Chapter 3, so it is 

possible that in the absence of SOCS2 inflammatory cytokines act to stimulate growth through 

activation of the JAK/STAT pathway. However, closer analysis of the growth plate and of 

endochondral growth rate did not find a difference between SOCS2-/- mice treated with saline and 

LPS. Consistent with increased endochondral growth rate, SOCS2-/- mice treated with LPS had 

wider growth plates than WT mice treated with LPS, with increased hypertrophic zones. 

Hypertrophic cell height has been positively correlated with endochondral bone growth in 

previous studies. The same was seen for SOCS2-/- saline controls compared to WT saline controls, 

which is consistent with the fact that the overgrowth phenotype occurs in SOCS2-/- mice from 3-

weeks of age and is associated with wider growth plates, as shown by MacRae and colleagues and 

in Chapter 4 (MacRae et al., 2009). However these groups of mice didn’t show significant changes 

in weight or tibia length, probably because it is soon after the start of the overgrowth phenotype 

and weight is very variable between individuals so small changes are hard to detect with a small 

number of mice. WT mice treated with LPS also had wider growth plates than WT saline control 

mice as the result of increased hypertrophic, but not proliferative, zone width. This could be the 

result of an inflammatory induced arrest in chondrocyte differentiation and apoptosis and 

therefore not indicative of increased bone growth. There was no difference in mineral apposition 

rates between LPS treated mice and their saline controls, indicating the increased growth plate 

widths did not lead to increased endochondral growth. There was an increase in mineral 

apposition rate in SOCS2-/- mice challenged with LPS compared to LPS treated WT mice. This is 

consistent with the increased tibia length and wider growth plate widths observed and suggests 

that SOCS2-/- mice are protected from inflammatory cytokine induced growth retardation. 
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To extend the LPS pilot data into a more physiological disease setting, a DSS-induced model of 

colitis was used. This is a widely used and well studied disease model that leads to the up-

regulation of pro-inflammatory cytokines which have negative effects on health, including growth 

retardation (Cooper et al., 1993; Williams et al., 2001; Hamdani et al., 2008; Harris et al., 2009; 

DeBoer et al., 2010). It was necessary to carry out a concentration curve with DSS in the mice to 

establish which concentration should be used in the SOCS2-/- mouse line. The results for this were 

promising; with 3% DSS causing very minimal signs of illness, while 4% DSS induced a period of 

weight loss and ill health followed by a recovery and 5% DSS caused more severe illness and 

weight loss that resulted in the mice being culled in accordance with the home office regulations. 

These results were consistent with similar studies by other authors (Williams et al., 2001; Harris et 

al., 2009), and indicated that for this mouse line 4% DSS was the optimum concentration required 

to induce colitis. Therefore a study was carried out to investigate the effects of colitis on growth 

in SOCS2-/- mice compared to WT. Unfortunately this study was not completed as the results in 

the pilot study were not reproduced, with individual mice reacting very differently to the DSS 

treatment. Some mice showed very little signs of illness, with minimal weight loss, similar to those 

treated with 3% DSS in the pilot study. Other mice became very ill and died or had to be culled 

due to severe weight loss, similar to those treated with 5% DSS in the pilot study. These mixed 

results were very confusing, and were not influenced by genotype, sex or the starting weight of 

the mice. Unfortunately, due to the time and financial constraints of this studentship the study 

could not be continued. It is possible the different results between the mice was due to their age 

as the pilot study was conducted in 8-week old mice that were available and not required for 

other studies, whereas the main study used 4-week old mice so that they were at an age of rapid 

growth so that the effects on growth could be monitored. These mice had therefore only recently 

been weaned and separated from their mother and littermates; so that it is possible the change in 

environment had a negative effect on some mice. The majority of other studies using DSS have 

been performed in 7- to 9-week old mice (Sävendahl et al., 1997; Dieleman et al., 1998; Melgar et 
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al., 2007; Hamdani et al., 2008), however Harris and colleagues used 4-week old C57BL/6 mice 

(the same strain as SOCS2-/- mice) to induce colitis using 5% DSS (Harris et al., 2009). They were 

able to induce colitis characterised by inflammatory bowel disease, decreased body weight and 

reduced bone mass (Harris et al., 2009). However, in accordance with American animal ethical 

approval, their mice were allowed to drop their body weight to approximately 66% of their 

starting weight, which is almost 10% more than permitted for this study (Harris et al., 2009). A 

study by Williams and colleagues showed that mice over-expressing GH enhanced the survival of 

mice treated with DSS, and that this occurred despite the GH transgenic mice consuming more 

DSS treated water than WT mice (Williams et al., 2001). The quantity of water consumed by each 

mouse was not measured in this study, but it is likely that the amount consumed will affect 

disease severity. 

7.6. Conclusion 

A pilot study using LPS to induce inflammation in WT and SOCS2-/- mice found that SOCS2-/- mice 

treated with LPS grew more than LPS treated WT mice, demonstrated by increased body weight, 

tibia length, growth plate width, hypertrophic zone width and mineral apposition rate. WT mice 

treated with LPS grew less than WT saline controls, although this was only significant for tibia 

length. These findings indicate that the removal of SOCS2 may help to protect from inflammation 

induced growth retardation. To further test this hypothesis, the DSS model was used to induce 

colitis in SOCS2-/- and WT mice. However, the results from this study were inconclusive as there 

was a large mouse to mouse variation for WT and SOCS2-/- mice. The reasons for this are unclear 

and further investigations are required. 

 

 

 



Chapter 8                                                                                    General Discussion and Future Work 

176 
 

 

 

 

 

 

 

 

CHAPTER 8 

GENERAL DISCUSSION AND FUTURE WORK 

 

 

 

 

 

 

 

 



Chapter 8                                                                                    General Discussion and Future Work 

177 
 

8. General Discussion and Future 

Work 

8.1. General Discussion 

It is well recognised that GH/IGF-I signalling is negatively regulated by SOCS proteins, in particular 

CIS and SOCS1-3, but little information exists on the effects of SOCS proteins in regulating 

endochondral bone growth. Greenhalgh and colleagues have confirmed that the GH/IGF-1 axis is 

the key signalling pathway regulated by SOCS2 and that increased linear bone growth occurs in 

SOCS2-/- mice despite normal systemic IGF-I levels (Metcalf et al., 2000; Rico-Bautista et al., 2005). 

Studies by MacRae and colleagues have demonstrated that SOCS2 plays an important role in 

negatively regulating longitudinal bone growth (MacRae et al., 2009). These data emphasise the 

importance of local GH signalling in endochondral growth and confirms the value of the SOCS2 

null mouse for studying the autocrine/paracrine effects of GH on chondrocyte dynamics and bone 

growth. The aim of this study was to determine the role of SOCS2 in mediating chondrocyte GH 

signalling, proliferation and linear bone growth. 

It is recognised that local GH infusion into the growth plate stimulates growth by inducing 

proliferation of the growth plate germinal cells (Ohlsson et al., 1992a), however it is unclear if 

these effects are direct or independent of local IGF-I production (Govoni et al., 2007). The precise 

STAT family member(s) activated during GH signalling in growth plate chondrocytes is largely 

unknown, although studies by Gevers and colleagues have suggested a role for STAT5 activation 

(Gevers et al., 2009). This present study has shown that in addition to STAT5 activation GH also 

phosphorylates STAT1 and STAT3 in chondrocytes. Although IGF-I independent effects cannot be 

ruled out, it is likely that this STAT activation leads to increased IGF-1 expression, which serves to 

initiate multiple signalling pathways to cause increased chondrocyte proliferation and linear bone 
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growth (Hoshi et al., 2004; MacRae et al., 2007a; Klammt et al., 2008). No evidence was obtained 

to suggest that IGF-1 is capable of signalling via STATs in chondrocytes and despite the 

observations by Zong and colleagues this was expected as the IGF-1 receptor does not contain 

specific tyrosine motifs recognised by STAT proteins (Stahl et al., 1995; Zong et al., 2000; Decker 

and Kovarik, 2000). 

The in vitro experiments clearly showed that SOCS2 expression influenced the ability of GH to 

activate STAT1, STAT3 and STAT5 in chondrocytes. This was particularly noticeable with STAT5, 

whose activation in SOCS2-/- cells was greatly increased and prolonged in response to GH 

challenge, suggesting that STAT5 is the major STAT responsible for regulating the pace of 

endochondral bone growth. The importance of STAT5 in this process is also suggested by the 

observation that the SOCS2-/- overgrowth phenotype is dependent on STAT5b downstream 

signalling events (Greenhalgh et al., 2002a). Consistent with the raised levels of STAT signalling 

found in SOCS2-/- mice, chondrocytes over-expressing SOCS2 show reduced STAT activation in 

response to GH. Of interest, mice that over-express SOCS2 do not show limited growth as may be 

expected, but in fact, also exhibit an overgrowth phenotype (Greenhalgh et al., 2002b). It seems 

likely, therefore, that SOCS2 exhibits dual effects on GH signalling that are dose dependant 

(Greenhalgh et al., 2002b; Flores-Morales et al., 2006). One hypothesis is that at physiological 

levels, SOCS2 inhibits GH signalling by preventing STAT activation at the GHR, but at higher levels 

SOCS2 can inhibit the actions of other SOCS proteins (such as SOCS1 and 3) which are more 

effective at inhibiting GH signalling (Favre et al., 1999; Greenhalgh et al., 2002b). It was found that 

neither SOCS1 nor SOCS3 respond to GH in growth plate chondrocytes, thus at the growth plate 

level increased levels of SOCS2 may only act to inhibit STAT signalling and not influence other 

SOCS proteins. This is consistent with recent findings by Kiu and colleagues who reported that 

SOCS2 does not regulate SOCS3 signalling in hematopoietic cells (Kiu et al., 2009). Therefore, in 
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transgenic mice over-expressing SOCS2, the overgrowth phenotype may be mediated by the 

systemic effects of GH signalling (Greenhalgh et al., 2002b).  

The increased STAT signalling in SOCS2-/- chondrocytes is likely to be responsible for the increased 

chondrocyte proliferation and linear growth observed in SOCS2-/- metatarsals in response to GH. 

The observation that WT and SOCS2-/- metatarsals responded similarly to IGF-1 in culture is 

consistent with the observed lack of IGF-I induced STAT phosphorylation in SOCS2-/- chondrocyte 

and raises doubts as to the physiological significance of the reported SOCS2 binding to the IGF-I 

receptor (Dey et al., 1998; Michaylira et al., 2006b). Stimulation of metatarsal growth by IGF-I has 

been previously reported, with some investigators also reporting a lack of GH effect on metatarsal 

growth (Coxam et al., 1996; Mushtaq et al., 2004; Martensson et al., 2004; MacRae et al., 2006a; 

MacRae et al., 2007a). However, Scheven and Hamilton did report GH stimulatory effects on 

metatarsal length, which is in contrast to the data of this present study (Scheven and Hamilton, 

1991). These studies did show that SOCS2-/- metatarsals increased in growth in response to GH, 

suggesting that modulation of SOCS2 expression may be a critical method of altering GH 

insensitivity and raising local IGF-1 concentration. The stimulation of growth of SOCS2-/- 

metatarsals by GH, which was associated with increased chondrocyte proliferation, was 

suppressed by the PI3K inhibitor LY-294002. Whilst not clarifying if the direct effects of GH on 

bone growth are IGF-I dependent or not, these studies do show that the positive effects of GH on 

bone growth are mediated by PI3K either through the downstream signalling actions of IGF-I or by 

directly increasing steady state IGF-I mRNA levels (Shoba et al., 2001). 

If the increased linear bone growth observed in the SOCS2-/- mice is an IGF-I dependent 

mechanism operating at the level of the growth plate then IGF-I mRNA expression should be 

increased in the chondrocytes of SOCS2-/- mice. Attempts to analyse IGF-I expression in 6-week 

old growth plates were unsuccessful but there were no changes in IGF-1 levels in chondrocytes 

isolated from 1-day old mice. This may be due to a lack of increased GH signalling at this age, 
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consistent with the overgrowth phenotype of SOCS2-/- occurring only from 3-weeks of age. 

Alternatively, the growth plate chondrocyte may not be the primary source of IGF-I. Recently a 

combination of growth plate microdissection and quantitative PCR has revealed that IGF-I mRNA 

levels are very low in growth plate chondrocytes suggesting that the biological importance of this 

source of IGF-I may be negligible (Parker et al., 2007). Interestingly, these authors suggest that the 

source of IGF-I interacting with its chondrocyte receptor maybe derived from the surrounding 

perichondrium and/or bone (Parker et al., 2007). 

The divergence in body length and weight in SOCS2-/- mice was noted to occur at about 3-weeks 

of age and this is consistent with the knowledge that GH is the major regulator of post-natal 

growth in mice, where peak GH activity occurs between postnatal days 20–40 (Wang et al., 2004). 

This divergence in body length between WT and SOCS2-/- mice from approximately 3-weeks of age 

was associated with increased rate of bone growth in which mineral apposition rate was similar in 

3-week old WT and SOCS2-/- mice but was significantly greater in the SOCS2-/- mice at 6-weeks of 

age. This was consistent with the in vivo analysis of growth plate structural composition and 

chondrocyte proliferation measured by BrdU incorporation. The alteration in growth rate was 

reflected in growth plate architecture; the 6-week old SOCS2-/- mice had wider growth plates with 

significantly wider proliferative and hypertrophic zones whereas no differences were noted at 3-

weeks of age. Increased STAT activation within the SOCS2-/- growth plate is likely to lead to 

increased chondrocyte proliferation which, in part, may explain the enhanced growth of the 

SOCS2-/- mice. 

These findings confirm and extend previous data and raise the possibility that the changes, 

suggested by the in vitro studies, are a consequence of altered chondrocyte STAT activation 

(MacRae et al., 2009). Whilst there were no difference in the number of proliferating cells stained 

positively for phosphorylated STAT5 in the SOCS2-/- growth plates it was not possible, due to the 

non-quantitative nature of immunohistochemistry, to estimate levels of activated STAT5 
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expression. The presence of STAT5 phosphorylation in hypertrophic chondrocytes is consistent 

with GHR expression in these cells (Gevers et al., 2002), and the increased number of positively 

stained hypertrophic cells in the SOCS2-/- growth plates suggests that SOCS2 can regulate 

longitudinal growth through the modulation of hypertrophic cell size. This notion would be 

consistent with the known positive effects of IGF-I on hypertrophic chondrocyte size and the 

recognised relationship between hypertrophic cell size and rate of bone growth (Kember, 1985; 

Breur et al., 1991; Wang et al., 1999; Mushtaq et al., 2004). 

Contrary to studies by MacRae and colleagues (MacRae et al., 2009), chondrocyte expression of 

SOCS2 was not altered by inflammatory cytokines, indicating that inflammatory cytokines do not 

cause growth retardation by up regulating SOCS2. However, in SOCS2-/- metatarsals the addition 

of GH and IGF-1 acted to reduce the negative effects of inflammatory cytokines on bone growth. 

This indicates that in the absence of SOCS2, increased GH signalling can help combat the 

inhibitory actions of inflammatory cytokines on longitudinal growth. To further investigate this 

hypothesis, chronic inflammation was induced in SOCS2-/- mice. SOCS2-/- mice were protected 

from LPS induced growth retardation, shown by increased body weight, tibia length and mineral 

apposition rate compared to LPS treated WT mice. These studies were extended using DSS 

induced colitis as a more physiological model of inflammation, but unfortunately the results were 

inconclusive as there was considerable variation in response to the inflammation by both 

genotypes. 

The crucial importance of SOCS2 in mediating the local effects of GH on chondrocyte STAT 

activation, chondrocyte proliferation and bone growth has been demonstrated. The SOCS2-/- 

mouse model represents an important model for studying the effects of GH through local IGF-1 

production. Modulating SOCS2 may represent an effective method for improving growth, 

particuarly during inflammation, and warrants further investigation. While recombinant human 

GH therapy has had promising results in treating inflammatory induced growth retadation 



Chapter 8                                                                                    General Discussion and Future Work 

182 
 

(Bechtold et al., 2007; Simon et al., 2007), its use has been associated with unpleasant side effects 

such as alterated carbohydrate metabolism so that the develpment of SOCS2 antagonists may 

provide an alternative treatment (Bullock et al., 2006). Very recent findings by Suda and 

colleagues, which were presented at the conference Endo 2011 in Boston, reported a patient 

presenting with increased height and weight as the result of a heterozygous mutation in the 

SOCS2 gene (Suda et al., 2011). These data represent the first documentation of a human SOCS2 

mutation, confirming that SOCS2 has a role in regulating GH signalling in humans and further 

highlights the potential clinical importance of SOCS2. 

8.2. Future Work 

The results found in this studentship have confirmed that SOCS2 is a critical regulator of 

endochondral bone growth. However there are many more questions regarding the role of SOCS2 

in bone growth yet to be investigated. It has not been confirmed if the actions of SOCS2 on 

systemic levels of GH influence bone growth, or if the overgrowth phenotype of SOCS2-/- mice is 

the result of increased local signalling in chondrocytes. A way of investigating this would be to 

generate tissue specific knockout mice with a targeted deletion of SOCS2 in growth plate 

chondrocytes. This could be done using the Cre recombinase-LoxP system. Similarly, while the 

results here suggest that neither SOCS1 nor SOCS3 regulate chondrocytes GH signalling, this could 

be investigated further using mice generated with SOCS1 or SOCS3 knocked-out in the growth 

plate. To date none of these mice have been generated. 

The cellular pathways responsible for poor growth in patients with chronic inflammatory diseases 

such as IBD and JIA are poorly understood, and a role for SOCS2 is yet to be fully established. This 

study found that although SOCS2 expression was not altered in chondrocytes in response to 

inflammatory cytokines, the growth of SOCS2-/- metatarsals was improved with the addition of GH 

and SOCS2-/- mice appear to be protected from LPS induced inflammation. However, the use of 

DSS to induce colitis and associated inflammation gave mixed results with large mouse to mouse 
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variation in response, in both SOCS2-/- and WT mice. It is possible that systemic signalling 

pathways are influencing the response, so that it would be interesting to use the conditional 

SOCS2 knockout mice described above in the DSS model of inflammation. However, a different 

model of inflammation may be necessary to induce a more consistent inflammatory disease 

model. There are other models of colitis available, for example through administration of 2,4,6-

trinitrobenzenesulphonic acid (Ballinger et al., 2000), in addition to models of arthritis such as 

collagen type-II induced or glucosephosphate-isomerase induced arthritis (Courtenay et al., 1980; 

Kamradt and Schubert, 2005). 

Osteoblast expression of SOCS2 increased in response to GH, indicating a role for SOCS2 in 

regulating signalling during bone formation. It would therefore be interesting to know if other 

bone cells, namely osteoclasts and osteocytes, express SOCS2 also, and the role of SOCS2 in 

signalling events controlling bone turnover in diseases such as osteoporosis. Studies by MacRae 

and colleagues found an increase in circulating osteocalcin and TRAP5b, indicating a role of SOCS2 

in bone turnover. Changes in osteoblast and osteoclast number in SOCS2-/- mice could be 

examined in sections from methyl methacrylate embedded bones. Further µCT analysis of bone 

architecture at different ages using femurs and tibias from both sexes is required in the SOCS2-/- 

mice given the different results gained by me, MacRae et al. and Lorentzon et al. (Lorentzon et al., 

2005; MacRae et al., 2009). These techniques could also be used to examine changes in bone cells 

during inflammation in the absence of SOCS2 using models of arthritis or colitis as described 

previously. 

The increased GH signalling through STAT proteins observed in SOCS2-/- mice is likely to lead to 

raised local levels of IGF-1 in chondrocytes, which acts to stimulate proliferation and therefore 

growth. Local levels of IGF-1 in the growth plate in the absence of SOCS2 have not been 

determined. This analysis should be performed in the future to determine if the SOCS2 regulated 

effects of GH on chondrocytes acts via IGF-1 or through independent signalling pathways. This 
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could be performed using a cryostat to cut sections of frozen bones, allowing microdissection of 

the tissue as described by other authors while retaining the quality of the RNA (Parker et al., 

2007). Furthermore, the IGF-1R inhibitor picropodophyllin could be used in metatarsal cultures 

and/or injected into SOCS2-/- mice to determine if the increased growth is dependent on IGF-1 

signalling (Duan et al., 2009; Tomizawa et al., 2010). 

There are other signalling pathways that SOCS2 is thought to regulate, which could also be 

involved in chondrocyte function. Investigation into this could commence with a microarray 

analysis of chondrocyte genes from SOCS2-/- mice compared to WT mice, highlighting possible 

signalling pathways for further study. Others have shown that SOCS2 is involved in regulating 

signalling by IL-6, LIF and prolactin in other cell types (Minamoto et al., 1997; Nicholson et al., 

1999; Pezet et al., 1999), the latter of which have also been shown to influence chondrocyte 

function (Suntornsaratoon et al., 2010).  
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10. Appendix 

10.1. Appendix 1: Buffer Recipes 

10.1.1. Cell Culture 
Maintenance medium: 

DMEM/F-12 (1:1) with GlutaMAX I, supplemented with 5% FBS, 3x10-8M sodium selenite, 10µg/ml 

human transferrin (Sigma), 1mM sodium pyruvate, and 0.05mg/ml gentamicin 

Differentiation medium: 

DMEM/F-12 (1:1) with GlutaMAX I containing 5% FBS, 1X insulin transferring selenium (ITS; 

Sigma), 1mM sodium pyruvate and 0.05mg/ml gentamicin 

Freezing mix: 

60% DMEM/F-12; 20% FBS; 20% dimethyl sulfoxide (DMSO). 

10.1.2. In Vivo Studies 

Lysis buffer (Promega): 

0.3M sodium acetate; 10mM TrisHCl (pH 7.9); 1mM EDTA (pH 8.0); 1% SDS; 200µg/ml Proteinase 

K 

Primary chondrocyte medium: 

DMEM with 4.5g/L glucose and L-Glutamine containing 10% FBS and 0.05mg/ml gentamicin 

Osteoblast medium: 

α-MEM (Minimum Essential Medium, alpha) supplemented with 10% FBS and 0.05mg/ml 

gentamicin 

Metatarsal preparation medium: 

Each aliquot contained: 0.8ml αMEM medium (without ribonucleosides), 10.45ml sterile PBS, 

22.5mg Bovine Serum Albumin (BSA; Fraction V) 

Metatarsal medium: 

αMEM medium (without ribonucleosides) supplemented with 0.2% BSA (Fraction V); 5µg/ml L-

ascorbic acid phosphate (Wako Pure Chemicals Ltd); 1mM β-glycerophosphate; 0.05mg/ml 

gentamicin; 1.25µg/ml fungizone 
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10.1.3. Processing Tissue 

DAB substrate: 

DAB substrate buffer (20X), DAB chromogen solution (20X) and substrate solution (20X) all diluted 

approx. 1:20 in H2O 

Scott’s tap water: 

0.2% sodium hydrogen carbonate and 2% magnesium sulphate in dH2O 

STAT5 immunohistochemistry wash buffer: 

0.1M TRIS-HCl, 0.15M NaCl, 0.05% Tween 20 in dH2O; pH 7.5. 

STAT5 immunohistochemistry blocking buffer: 

0.1M TRIS-HCl, 0.15M NaCl, 0.5% Blocking Reagent (supplied with TSA kit, Perkin Elmer). The 

blocking reagent was added slowly to the buffer, in small volumes, with constant stirring. The 

solution was gradually heated to 60°C with stirring until the blocking reagent had fully dissolved. 

The solution was filtered using a syringe filter (0.45µm) and stored in aliquots at -20°C. 

STAT5 immunohistochemistry Biotynl Tyramide (Amplification Reagent) working solution 

Biotynl tyramide (provided with TSA kit, Perkin Elmer) was reconstituted in DMSO to provide a 

stock solution and stored at 4°C. Prior to use this was diluted 1:50 using 1X amplification diluent 

(supplied with TSA kit, Perkin Elmer) to make the working solution. 

STAT5 immunohistochemistry DAB solution 

30mg DAB, 50ml PBS, 50µl H2O2. 

10.1.4. Transfecting ATDC5 cells 

S.O.C. medium (Invitrogen): 

2% tryptone, 0.5% yeast extract, 10mM NaCl, 2.5mM KCl (Potassium chloride), 10mM MgCl2, 

10mM MgSO4 (Magnesium sulphate), 20mM glucose  

LB agar: 

1% tryptone, 0.5% yeast extract, 10mg/ml NaCl, pH 7.0; supplemented with 1.5% bacto-agar) 

ampicillin (100µg/ml 

Miniprep resuspension buffer (Invitrogen): 

50mM Tris-HCl, pH 8.0; 10mM EDTA, 20mg/ml RNase A). 250µl lysis buffer (200mM NaOH, 1% 

wt./vol. SDS 

NEB buffer 4 (1X; New England Biolabs): 
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20mM Tris-acetate, 50mM potassium acetate, 10mM magnesium acetate, 1mM dithiothreitol; pH 

7.9  

SuRE/Cut buffer H (10X): 

50mM Tris-HCl, 10mM MgCl2, 100mM NaCl, 1mM dithioerythritol; pH 7.5 

Maxiprep buffer P1 (Qiagen): 

50mM Tris-Cl, pH8; 10mM EDTA; 100µg/ml RNase A; 0.1% LyseBlue as an indicator of optimum 

mixing 

Maxiprep buffer P2 (Qiagen): 

200mM NaOH, 1% SDS (wt./vol.) 

Maxiprep buffer P3 (Qiagen): 

3M potassium acetate, pH 5.5 

Maxiprep medium-salt wash buffer QC (Qiagen): 

1M NaCl; 50mM MOPS, pH 7.0; 15% isopropanol (wt./vol.) 

Maxiprep high-salt buffer QN (Qiagen): 

1.6M NaCl; 50mM MOPS, pH 7.0; 15% isopropanol 

Maxiprep TE buffer (Qiagen): 

10mM Tris-HCl, pH 8.0; 1mM EDTA 

10.1.5. PCR 

RT-PCR master mix: 

11mM Ammonium Sulphate, 4.5mM MgCl2, 45mM Tris-HCl (pH8.8), 4.5µM EDTA, 6.7mM 2-

mercaptoethanol, and 1mM dNTP mix (Promega)  

10.1.6. Western Blotting 

RIPA buffer: 

20mM Tris-HCl (pH8), 135mM NaCl, 10% Glycerol, 1% IGEPAL, 0.1% SDS, 0.5% Na Deoxycholate, 

2mM EDTA 

Transfer buffer: 

100ml 10X transfer buffer, 200ml 98% Ethanol, 700ml dH2O.  

10X transfer buffer: 
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29.3mg/ml glycine, 58mg/ml Tris Base (trismethylamine), 18.8µl/ml 20% SDS (lauryl sulphate) in 

dH2O 

TBS/T: 

Tris-buffered saline/Tween-20 consisting of 50mM Tris-HCl, 300mM NaCl, 0.1% Tween-20 

 

10.2. Appendix 2: Targeting for Construction SOCS2-/- Mice 

 

 

 

 

 

 

 

 

 

 

 
Targeting construct and wild-type (+) allele for creating SOCS2-/- mice. A 7.8kb insert containing 
IRES-_-geo cassette has been inserted into exon 2 of the Socs2 transcript at the KpnI site (Ensembl 
ID ENSMUST00000020215; coding region in black). Positions within the mouse genome are 
indicated by numbers above the restriction sites (Ensembl release 45 - Jun 2007; 
http://www.ensembl.org). 
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10.3. Appendix 3: Plasmid Maps 

10.3.1. pEF-BOS Plasmid 

 

Plasmid map of pEF-BOS, a mammalian non-viral plasmid that contains SV40ori, human EF-1alpha 

promoter, ampicillan resistance, poly-A from human G-CSF. 

(www.lablife.org/p?a=vdb_view&old_id=5493&id=) 

 

 

 

 

 

 

 

http://www.lablife.org/p?a=vdb_view&old_id=5493&id=
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10.3.2. pEF-FLAG-I Plasmid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pEF-FLAG-I Expression Cassette: 
                                                     M   A   R   Q 

TTCTTCCATTTCAGGTGTCGTGAGGAATTCTCTAGACTAGTGCTAGCCACC ATG GCG CGC CAG 

                        EcoRI Xba I      Nhe I        Asc I  

 

 

 D   Y   K   D   D   D   D   K   T   R   *   * 

GAC TAC AAG GAC GAC GAT GAC AAG ACG CGT TAA TAG CTAGCACTAGTCTAGAGTGAG 

          FLAG EPITOPE          Mlu I         Nhe I       Xba I 

 

 

 

GGTCCCCACCTGGGACCCTTGAGAGTATCAGGTCTCCCACGTGGGAGACAAGAAATCCCTGTTTAATA 
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10.3.3. pEF-FLAG-I/mSOCS2 Plasmid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
pEF-FLAG-I/mSOCS2 Expression Cassette: 
 

 M  A  R  Q  D  Y  K  D  D  D  D  K  T  R  T  L  R  C  L  E  P  S  G 

ATGGCGCGCCAGGACTACAAGGACGACGATGACAAGACGCGTACCCTGCGGTGCCTGGAGCCCTCCGGG 

                     FLAG                   mSOCS2 coding region 

 

 

                P  L  P  T  R  L  K  D  Y  L  E  E  Y  K  F  Q  V  * 

...............CCTTTACCAACAAGACTAAAAGATTACTTGGAAGAATATAAATTCCAGGTATAA 
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10.3.4. pcDNA3.1.(+) Plasmid 
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10.4. Appendix 4: Published Paper 

The published review “Inflammatory cytokines and the GH/IGF-1 axis: novel actions on bone 

growth” follows this page. 

Permission to reproduce this article has been granted by the publishers (John Wiley & Sons, Inc), 

license number: 2744120316218. 

 



cell biochemistry and function
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REVIEWARTICLE
Inflammatory cytokines and the GH/IGF-I axis: novel actions
on bone growth
C. Pass 1,2*, V. E. MacRae 1, S. F. Ahmed 2 and C. Farquharson 1

1Bone Biology Group, Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The
University of Edinburgh, Roslin, Midlothian, UK
2Bone & Endocrine Research Group, Royal Hospital for Sick Children, Glasgow, UK
Longitudinal bone growth is a tightly regulated process that relies on complex synchronized mechanisms at the growth plate. Chronic
paediatric inflammatory diseases are well accepted to lead to growth retardation and this is likely due to raised inflammatory cytokine levels
and reduced growth hormone (GH)/insulin-like growth factor-1 (IGF-I) signalling. The precise cellular mechanisms responsible for this
inhibition are unclear and therefore in this article, wewill review the potential interactions between inflammatory cytokines and the GH/IGF-I
axis in the regulation of bone growth. In particular, we will emphasis the potential contribution of the suppressors of cytokine signalling
(SOCS) proteins, and in particular SOCS2, in mediating this process. Copyright # 2009 John Wiley & Sons, Ltd.
key words—GH; IGF-1; growth plate; chondrocytes; inflammatory cytokines; SOCS2
INTRODUCTION

Postnatal longitudinal bone growth is a tightly regulated
process that relies on the growth plate1. The actions of
chondrocytes within the growth plate are controlled by
various signalling pathways, including growth hormone
(GH) and insulin-like growth factor-1 (IGF-1) signalling.
Inhibition of these signalling pathways will result in growth
retardation, as seen in a number of clinical disorders of the
GH/IGF axis2.

Impaired linear growth is commonly encountered in
children suffering from chronic inflammatory conditions
such as inflammatory bowel disease (IBD). In these children,
maintenance of growth is a complex process that is
influenced by a number of different mechanisms, including
not only the administration of anti-inflammatory drugs but
also other factors such as the disease process, and in the case
of IBD, the malabsorption of nutrients3,4. Clinical studies
have shown that growth and skeletal development are
reversibly impaired during periods of intensive therapy and
especially during treatment with prednisolone and dexa-
methasone5. However, it is widely recognized that a
contributing factor to the growth retardation observed in
IBD and other inflammatory conditions is the raised levels of
*Correspondence to: C. Pass, Division of Developmental Biology, The
Roslin Institute and R(D)SVS, The University of Edinburgh, Roslin, Mid-
lothian. EH25 9PS. UK. Tel: 0131 5274244. Fax: 0131 440 0434.
E-mail: chloe.pass@roslin.ed.ac.uk

Copyright # 2009 John Wiley & Sons, Ltd.
inflammatory cytokines such as interleukin-1b (IL-1b),
interleukin-6 (IL-6) and tumour necrosis factor a (TNFa)6,7.
The mechanisms by which these inflammatory cytokines
inhibit the actions of the growth plate chondrocytes are
poorly understood but an involvement of members of the
suppressor of cytokine signalling (SOCS) family have been
proposed. Although definitive studies have yet to be
completed, SOCS2 may be central to this process, as
SOCS2 knockout mice display an overgrowth phenotype
and SOCS2 has been shown to inhibit GH signalling8,9.
Therefore, during chronic inflammation, raised levels of
inflammatory cytokines may induce SOCS2 expression
resulting in an inhibition of GH signalling and growth
retardation.

ENDOCHONDRAL GROWTH: THE GROWTH
PLATE AND CHONDROCYTES

Postnatal linear bone growth occurs as a result of
endochondral ossification at the epiphyseal growth plate
(Figure 1)10–12. Growth plates are thin layers of cartilage
found situated near the ends of all long bones and consist of
both chondrocytes and their extracellular matrix11,13. The
matrix comprises of collagens, proteoglycans and a variety
of other non-collagenous proteins14. The chondrocytes,
which are arranged in columns that parallel the longitudinal
axis of the bone, proceed through a series of differentiation
and maturation stages whilst maintaining their spatially
fixed locations6,11,15.
Received 23 December 2008
Revised 3 February 2009
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Figure 1. The growth plate. Schematic representation (left) and mouse growth plate (right), illustrating the position and organization of the growth plate,
showing the different stages of chondrocyte maturation

120 c. pass ET AL.
The first layer (Zone I or germinal layer) consists of
resting chondrocytes, with low proliferation levels, thought
to store nutrients for later zones10,15. Zone II is a
proliferating zone, where the chondrocytes undergo pro-
liferation to become flattened, forming clusters in longi-
tudinal columns15,16. The third zone consists of maturing
chondrocytes, also known as pre-hypertrophic chondro-
cytes, similar in morphology to those in Zone II but with
minimal DNA synthesis10,17. The chondrocytes then become
hypertrophic in Zone IV, increasing cell volume and height,
with greater synthesis of extracellular matrix13,15,16. Matrix
components produced in Zone IV include type X collagen,
osteonectin and chondrocalcin, with a reduction in collagen
type II synthesis12,13,15. The matrix of the longitudinal
septae of the hypertrophic zone mineralizes through the
formation of calcium phosphate crystals and the deposition
of hydroxyapatite10,15. The chondrocytes then enter the final
terminal zone (Zone V), and the matrix is resorbed during
vascular invasion to allow invasion of blood vessels,
osteoblast precursors and osteoclasts12,15. The fate of the
terminally differentiated chondrocyte is likely to involve
both apoptosis and autophagy, however, the transdifferentia-
tion of chondrocytes into the osteogenic phenotype has yet
to be established12,18–20. In Zone V, the mineralized cartilage
remaining after vascular invasion acts as a scaffold for bone
deposition by the invading osteoblasts15,17.
The rate of endochondral bone growth is determined by a

complex interplay of proliferative kinetics, size of the
proliferative pool, matrix production and hypertrophic
chondrocyte enlargement21. The precise control of these
processes is still a matter of debate and any perturbation of
these synchronized variables may underlie the growth
modulatory effects of external agents such as inflammatory
cytokines. The width of the growth plate decreases with age,
due to a reduction in cell proliferation and eventually growth
stops completely. Rising oestrogen levels are associated with
increased mineralization and bone formation within the
growth plate leading to eventual replacement of the growth
plate by bone and epiphyseal fusion11,22.
Copyright # 2009 John Wiley & Sons, Ltd.
GH AND IGF-1 SIGNALLING AND
ENDOCHONDRAL GROWTH

Many factors contribute to the rate of bone growth such as
hypertrophic cell volume and proliferation rates13,16,23.
There are also a number of mediators of bone growth that act
to regulate the actions of chondrocytes, including transcrip-
tion factors such as Sox9 and growth factors including bone
morphogenetic proteins24,25. This review will focus on the
systemic growth factor GH and the autocrine/paracrine
factor IGF-1.
It has long been recognized that GH plays an important

role in postnatal, but not embryonic, bone growth. GH
deficiency results in impaired postnatal growth, with growth
retardation in GH receptor (GHR) knockout mice after
2weeks of age, while excess GH causes gigantism26,27.
Indeed, recombinant human GH (rhGH) is widely used to
treat a diverse group of conditions that are associated with
short stature and poor growth and range from GH deficiency
to conditions such as Prader–Willi syndrome and Turner’s
syndrome28. Therapy with rhGH has also been used in
humans with chronic inflammatory diseases and has shown
variable extent of improvement in growth and even
disease29–31. IGF-1 deficiency inhibits growth both pre-
and postnatal, with IGF-1 knockout mice exhibiting growth
retardation and IGF-1 receptor (IGF-1R) deficient mice
dying shortly after birth26,32. Furthermore, in humans with
GH insensitivity due to a GHR defect, growth retardation
and osteoporosis that are the result of IGF-1 deficiency are
observed.33 More recently, abnormalities of STAT5b, the
IGF-1 receptor gene itself and the binding proteins that
influence bioavailability of IGF-1 at the tissue level have all
been reported to be associated with a variable extent of short
stature in humans2.
The original model implicating GH and IGF-1 as central

regulators of bone growth was termed the somatomedin
hypothesis34. It proposed that GH exerted its effects on the
growth plate by stimulating production of hepatic IGF-1
(previously known as somatomedin), which would in turn
Cell Biochem Funct 2009; 27: 119–127.
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stimulate target tissues including bone and the growth
plate26,34,35. The somatomedin hypothesis has been ques-
tioned by experiments reporting that low concentrations of
GH directly infused into the growth plate stimulated
longitudinal growth in comparison to the contralateral
limb36. The somatomedin hypothesis has been further
challenged with the recent observation that whilst IGF-1
knockout mice are growth retarded, targeted removal of
hepatic IGF-1 alone does not affect growth, demonstrating
that although the majority of IGF-1 is produced by the liver it
is not required for postnatal growth37. Furthermore, growth
of complete IGF-1 knockout mice do not respond to GH
administration whereas hepatic IGF-1 knockout mice do37.
It is now thought that GH can act independently on the
growth plate to increase chondrocyte proliferation, as well as
stimulating local production of IGF-122. In combination
with other similar studies, these observations have led to an
alternative hypothesis termed the dual effector theory, where
GH acts directly on germinal zone precursors of the growth
plate to stimulate the differentiation of chondrocytes and the
amplification of local IGF-1 secretion. This locally produced
IGF-I, in turn, stimulates both chondrocyte clonal expansion
and hypertrophy and consequently bone growth in an
autocrine/paracrine manner36,38–40. Thus, although liver-
derived IGF-1 is the main determinant of systemic IGF-1
levels, it is locally derived IGF-1 that appears more
important for postnatal growth41,42. In fact, it is likely that
GH and IGF-1 have both dual and overlapping functions on
chondrocytes, as both GHR and IGF-1 mutant mice show
reduced growth which is more severe in double GHR/IGF-1
mutants26,43. However, it is yet unclear if GH mediates any
IGF-1 independent effects on chondrocytes. Data on GH
actions on chondrocyte proliferation have so far been largely
conflicting; with some authors showing strong proliferative
effects of GH while others show little or none44–46.

The GHR is a member of the class I cytokine receptor
superfamily, and contains an extracellular domain (ECD)
consisting of two fibronectin type III sandwich domains,
which is connected to a helical transmembrane domain
leading to the intracellular domain (ICD) consisting of two
box motifs47,48. GH signalling follows GH activation of the
GHR with dimerization of the ECD, leading to phosphoryl-
ation of the ICD49. This allows binding and phosphorylation
of the tyrosine (Tyr) kinase Janus kinase 2 (JAK2) at Box 1
in the ICD, which, in turn, phosphorylates specific Tyr
residues on the associated ICD48–50. These phosphorylated
residues create binding sites for Src homology 2 (SH2)
domain proteins, including signal transduction and activa-
tors of transcription (STAT)1, STAT3 and STAT5
proteins48,49. STAT proteins often have two isoforms, for
example STAT5a and STAT5b, thought to have separate and
related functions51,52. The identity of which GHR Tyr
residues STAT5 preferentially binds is unclear, with
evidence for stronger binding at Tyr534, Tyr566 and
Tyr627, and weaker binding to Tyr595 and Tyr48750. The
STAT proteins are phosphorylated by JAK2 at the specific
Tyr and/or serine residues, leading to homo- or hetero-
dimerization and migration to the nucleus, activating gene
Copyright # 2009 John Wiley & Sons, Ltd.
transcription48,49,52–54. Although GH signalling through
STAT proteins is the primary signalling pathway (Figure 2)
there are elements of this signalling cascade that are not yet
fully defined, leading to different models. For example, the
mechanisms by which GH activates its receptor is debated,
and may involve GH activating GHR dimerization as
described above; GH binding causing GHR to internalize
and auto-phosphorylate or GH stimulating conformational
change of a constitutively dimerized GHR43,48,50. The latter
model is becoming more favoured, and has been supported
by the hypothesis that upon ligand binding the cytoplasmic
domains of the two GHR subunits constitutively bind JAK2
kinases, permitting the receptor subunits to rotate to allow
aligned JAK2 proteins to activate each other49. GH may
regulate the phosphorylation of a range of STATs and this
may depend on the cell type; for example, STAT5 is
activated by GH in adipocytes but not in adherent epithelial
cells53. To date, it is unclear which STATs are utilized by GH
signalling in growth plate chondrocytes. STAT5 null mice
show growth retardation, with narrower growth plate
proliferating zones and reduced circulating IGF-1, but their
phenotype is slightly different to GHR knockout mice49,55.
Growth retardation of STAT5 null mice appears earlier and is
less severe than in GHR null mice and appears to be due to
an endochondral ossification fault as opposed to the
premature growth plate senescence observed in GHR null
mice49,55. Also, STAT5 null mice show normal bone
remodelling, whereas GHR null mice have lowered levels
of bone remodelling43. These different phenotypes suggest
GH actions on chondrocytes have STAT5 independent
effects. Interestingly, growth retardation and reduced
circulating IGF-1 are observed in STAT5b null mice but
not STAT5a null mice, suggesting that STAT5b may be
the important isoform in GH signalling in bones52.
STAT3 null mice are embryonic lethal, while STAT1 null
mice are of normal size56–58. In humans, mutations in
STAT5b are associated with GH insensitivity and severe
short stature59.

One of the outcomes of GH signalling is induction of IGF-
1 gene expression, the mechanisms of which are poorly
understood52. Most evidence suggests that GH signalling
through STAT5b leads directly to IGF-1 induction although
other transcription factors may also be involved52,60,61. IGF-
1 signalling can occur both dependently and independently
of GH. Prenatally, IGF-1 signalling is considered to be GH
independent whereas postnatally, IGF-1 signalling is partly
or fully GH dependent62. IGF-1 can be found in the
circulation bound in a complex with IGF binding proteins
such as IGF binding protein-3 (IGFBP-3) and the acid-labile
subunit (ALS)63,64. These complexes increase the half-life
of circulating IGF-1 and target the ligand to its receptor.65

Other binding proteins, such as IGFBP-1, inhibit IGF-1
bioactivity due to their greater affinity for IGF-1 than the
IGF-1R65,66.

In chondrocytes, IGF-1 signalling (Figure 3) involves
IGF-1 binding a cell surface receptor Tyr kinase (IGF-1R) to
induce IGF-1R conformational change (dimerization),
leading to autophosphorylation of the receptor intracellular
Cell Biochem Funct 2009; 27: 119–127.
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Figure 2. GH signalling via the JAK/STAT pathway. A representation of howGHmay signal through JAK/STAT proteins in the cell, leading to gene transcription.
Briefly, GH binds its receptor, leading to JAK2 and STAT activation. STAT proteins can then dimerize and translocate to the nucleus to initiate gene transcription
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domain62. The receptor then phosphorylates immediate
downstream substrates, insulin receptor substrate-1 (IRS-1)
and Shc, which activate downstream pathways important for
anti-apoptosis and proliferative effects7,67,68. For example,
IRS-1 provides binding sites for phosphoinositide 3-kinase
(PI3K) that causes downstream signalling through other
molecules including Akt7,52,67. It is worth noting that as
IGF-1R does not contain specific Tyr based motifs
recognized by STATs, IGF-1 is not thought to signal via
the JAK/STAT pathway54,69. Despite this, there is a small
amount of evidence of IGF-1 stimulation of STAT3 via
JAK1, which clearly warrants more in depth investi-
gation70,71. IRS-1 has been shown to be vital to bone
growth as chondrocytes in IRS-1 knockout mice have lower
levels of proliferation, which undergo faster apoptosis and
the growth plate closes early43,67. This results in decreased
bone turnover and reduced animal growth and weight43,67.
IRS-1 null mice also show impaired fracture healing, which
can be restored by overexpression of IRS-1 in transgenic
mice72. The addition of the PI3K inhibitor, LY294002,
restricts the IGF-I mediated increases in chondrocyte proli-
feration and metatarsal growth, suggesting that the PI3K
pathway is crucial in chondrocyte responses to IGF-17,73.
IGF-1 induces somatostatin which inhibits GH release and
thereby forms a classical negative feedback loop43.
Copyright # 2009 John Wiley & Sons, Ltd.
INHIBITION OF BONE GROWTH BY
INFLAMMATORY CYTOKINES

Many chronic childhood inflammatory diseases, such as
IBD and juvenile idiopathic arthritis (JIA), are associated
with growth retardation coupled with elevated levels
of inflammatory cytokines such as IL-6, TNFa and
IL-1b 6,7,74. Growth retardation in these patients is further
exacerbated by the use of anti-inflammatory glucocorticoids
such as dexamethasone that are known to inhibit bone
growth and development5. Patients with inflammatory
conditions have unchanged levels of GH but reduced
levels of circulating IGF-1, indicating GH resistance75,76.
They also show lower concentrations of IGFBP-375,76.
Treatment with relatively high doses of recombinant human
GH has been shown to improve growth in children with
JIA77,78.
Mice overexpressing IL-6 or TNFa exhibit growth

retardation, with IL-6 overexpression resulting in reduced
IGF-1 and IGFBP-3 levels, as observed in patients75,79–81.
The IL-6 growth defect can be completely abolished by IL-6
neutralization82. Treatment with IL-1b results in reduced
plasma levels of IGF-1 and ALS83,84. There is also evidence
that IL-1b stimulates IGFBP-1 protein expression, which
will inhibit IGF-1 activity85–87.
Cell Biochem Funct 2009; 27: 119–127.

DOI: 10.1002/cbf



Figure 3. The IGF-1 signalling pathways, showing how IGF-1 signals
through IRS-1 to activate downstreammolecules important for cell survival.
Image adapted from MacRae et al.135
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Few studies have reported the effects of inflammatory
cytokines on the growth plate. Elevated levels of IL-1b,
TNFa and IL-6 during inflammatory synovitis lead to local
destruction of the growth plate88. IL-1b and TNFa decrease
both the width of the proliferating zone and the rate of
endochondral bone growth; a possible consequence of
altered chondrocyte proliferation and apoptosis rates89–91.
Furthermore, IL-1b and TNFa reduce chondrocyte expres-
sion of proteoglycans including aggrecan and collagen types
II and X89,92,93. IL-6, in combination with IL-6 receptor, has
been shown to inhibit articular chondrocyte differentiation,
but IL-6 appears to have little effect on growth plate
chondrocytes90,94. Some of these effects, in particular those
that result in destruction of the growth plate are likely to be a
consequence of increased production of matrix metallopro-
teinase (MMPs)84. The catabolic actions of MMPs on
cartilage are well recognized and will counteract the
anabolic actions of the GH/IGF-I axis95. This topic is not
covered further in this review as these actions are likely to be
independent of SOCS2 function.

It is likely that one of the cellular mechanisms through
which inflammatory cytokines act on the growth plate is by
inhibiting IGF-1 signalling96,97. Neither TNFa nor IL-1b
appear to affect IGF-1 signalling at its receptor level
although this has been poorly investigated in chondro-
cytes6,98–100. Alternatively, inflammatory cytokines may
disrupt signalling downstream of the IGF-1R, for example,
IRS phosphorylation, MAPK signalling or PI3K signalling.
It has been suggested that IL-1b is likely to inhibit the
proliferative effect of IGF-1 on chondrocytes via the PI3K
pathway7. TNFa and IL-1b inhibit IRS-1 phosphorylation in
myoblasts, and TNFa has been shown to inhibit Akt
phosphorylation and MAPK-kinase phosphorylation in
Copyright # 2009 John Wiley & Sons, Ltd.
neuronal cells96,97,100. It is also possible that inflammatory
cytokines act on GH signalling but to date little knowledge
of the effects of inflammatory cytokines on STAT signalling
in chondrocytes exists. IL-6 and oncostatin M has been
shown to activate JAK2, STAT1 and STAT3 (IL-6 only) in
chondrocytes, leading to down-regulation of matrix com-
ponents94,101. IL-1b has been shown to antagonize GH
signalling through STAT5 in hepatocytes, and has been
shown to activate STAT3 in mouse kidney tumour
cells102,103. There is also evidence that IL-1b, IL-6 and
TNFa can induce the expression of SOCS proteins, which
act to inhibit GH signalling104,105.

ACTIONS OF SOCS2

Cytokine signalling is negatively controlled by a variety of
proteins including protein Tyr phosphatases and SOCS8.
There have been eight SOCS molecules identified to date,
namely, CIS and SOCS1–7, all of which are involved in
negatively regulating cytokine signalling. SOCS proteins
consist of a conserved C-terminal motif named the SOCS
box, a central SH2 domain and a variable N-terminal
domain8,106. SOCS proteins act to inhibit JAK/STAT
signalling pathways thus down-regulating cytokine and
growth factor signalling8.

Expression of SOCS is normally stimulated by the very
cytokines they inhibit, thereby creating a negative feedback
loop8,107. GH signalling is inhibited by CIS, SOCS1, 2 and 3,
but more information is available on the actions of SOCS2
on growth as SOCS1 and SOCS3 knockout mice die
prematurely albeit with retarded growth108–110. In contrast,
SOCS2 knockout mice are viable and exhibit an overgrowth
phenotype from 3weeks of age9. Inhibition of GH signalling
by SOCS1 and 3 is complete, whereas SOCS2 and CIS only
cause partial inhibition and it is difficult to reconcile these
actions with the observed growth of the transgenic mice111–
113. Clearly, other interactions are important, possibly
involving the other SOCS proteins (4–7) but their role in
growth regulation are unknown to date.

The overgrowth phenotype of SOCS2 knockout
(SOCS2�/�) mice has led to confirmation that the key
pathway regulated by SOCS2 is the GH/IGF-1 axis although
SOCS2 also regulates other pathways including prolactin
signalling8,9,114. Adult male SOCS2�/� mice are 40%
heavier than their wild-type littermates and are more
severely affected than females. However, adult females still
reach the same size as wild-type males9. The increased body
weight of SOCS2�/� is not as a result of any increase in fatty
tissue, but rather a proportional increase in size of most
internal organs, muscle and bones, due to hyperplasia and
not hypertrophy9. Consistent with increased bone size,
SOCS2�/� mice have longer longitudinal bones (femur,
tibia, radius and humerus) as well as increased body
length9,115. Consistent with this, the growth plates in
SOCS2�/� mice are wider, with wider proliferative and
hypertrophic zones115. Some studies have shown reduced
trabecular and cortical bone mineral density (BMD) in
SOCS2�/� bones, which is not consistent with the enhanced
Cell Biochem Funct 2009; 27: 119–127.
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GH/IGF-1 signalling observed in the SOCS2�/� mice8,116.
More recent studies using high resolution analyses of
trabecular bone architecture and cortical bone geometry has
found that SOCS2�/� mice exhibit no BMD difference
compared to wild type littermates, coupled with increased
trabecular bone volume115. SOCS2�/�mice display elevated
IGF-1 mRNA in some tissues, but interestingly circulating
IGF-1 levels are not increased115,117. Greenhalgh et al.
demonstrated firm evidence that SOCS2 acts on the GH
pathway by crossing SOCS2�/� mice with Ghrhrlit/lit mice,
which are GH deficient due to a point mutation in the GH-
releasing hormone118,119. Both the double knockout mice
and the Ghrhrlit/lit mice exhibited a similar 60% growth
retardation118,119. Furthermore, administration of GH to
these double knockout mice caused an increase of growth to
a size indistinguishable from SOCS2�/� mice118,119. An
interaction between SOCS2 and GH signalling in regulating
growth is consistent with the temporal increased expression
of the GHR and the overgrowth phenotype with both
occurring at around 3-weeks of age9. Moreover, prolonged
STAT5 activation in response to GH has been observed in
hepatocytes cultured from SOCS2�/� mice, which may
result in increased IGF-1 activation107,118,120. When
SOCS2�/� mice are crossed with STAT5b�/� mice the
overgrowth phenotype is attenuated, with normal growth
observed47,118,120.
It has been well documented that GH signalling stimulates

SOCS2 expression, in a dose and concentration dependant
manner, with the maximum affect observed after 24 h
treatment with 0.5–5.0mg GH /mL106. Furthermore, it is
thought that SOCS2 production is regulated by GH
signalling through STAT5b, which is consistent with the
importance of STAT5b for growth121. This confirms the
hypothesis that SOCS2 acts in a negative feed back loop to
control and regulate GH signalling under physiological
conditions and offers a plausible explanation for the
overgrowth phenotype of SOCS2�/� mice106. High SOCS2
expression has been found in the liver, a major source of
circulating IGF-1, and in the heart106.
The precise mechanism by which SOCS2 regulates GH

signalling is unclear. The strongest evidence indicates that
SOCS2 may bind the SHP2-binding sites on the GHR
(Tyr595 and Tyr487), which will prevent STAT5b acti-
vation50,119,122. It has also been demonstrated that SOCS2
binds elongins B and C, suggesting this complex may then
bind cullin-2 and act as an E3 ubiquiton ligase to degrade the
GHR or the GHR-JAK2 complex8,117,123. Furthermore, it
has been demonstrated that the SOCS2 SH2 domain
directly binds a Tyr in the activation loop of JAK2,
inhibiting JAK2 Tyr phosphorylation and activation of
STATs8,47. Interestingly, SOCS2 actions may not be
confined to regulating GH signalling. SOCS2 directly binds
the IGF-1R and therefore it is possible that SOCS2 also
regulates IGF-1 signalling although IGF-1 does not induce
SOCS2 expression117,124,125.
Similar phenotypes to the SOCS2�/� mice have been

observed in high growth (hg) mice, a phenotype that occurs
following a spontaneous mutation in mouse chromosome 10
Copyright # 2009 John Wiley & Sons, Ltd.
that has been mapped to a genetic interval of 100–103 cM
from the top of human chromosome 12126–128. Again, these
mice demonstrate 30–50% increases in postnatal growth and
the identification of the SOCS2�/�mouse phenotype has led
to SOCS2 being mapped to the hg region126,127. The only
recognized difference between hg and SOCS2�/� mice is
that hg mice have high plasma IGF-1, possibly due to
another gene deletion in the hg region126.
Intriguingly, overexpression of SOCS2 using a human

ubiquiton promoter does not limit growth as may be expected,
but in fact results in a similar phenotype to SOCS2�/�

mice107,129. Transgenic expression of SOCS2 in male mice
causes a 13–15% increase in body weight, with significant
increases in femalemice also129. It is, therefore, likely that the
effects of SOCS2 on GH signalling is dose dependant, with
dual effects47,107,129. It has been proposed that, at physio-
logical levels, SOCS2 inhibits GH signalling by blocking sites
of STATactivation on the GHR, but at higher doses it inhibits
signalling of other, more potent GH inhibiting SOCS (SOCS1
and 3)107,129,130. This could be through association with
SOCS3 binding sites on the GHR, thus blocking SOCS3
action, or by binding the other SOCS themselves and
suppressing them by proteasomal degradation50.
Glucocorticoids, including dexamethasone, are thought to

desensitize GH signalling and thus suppress growth by up-
regulating SOCS28,106. Estrogen inhibition of GH signalling,
through JAK2 inhibition, is also thought to be mediated by
SOCS2131. The effects of inflammatory cytokines on SOCS2,
however, have been poorly investigated with evidence that
some interleukins induce SOCS2 gene expression in specific
cell types (IL-2, -3, -4, -5, -6)132,133. For example, IL-1b has
been shown to stimulate SOCS2 in tonsillar cells and B-
lymphoma cells whereas it does not increase SOCS2
expression in hepatic liver cells102,134. Furthermore, TNFa
stimulates SOCS2 expression in chondrocytes115. There is
evidence that IL-1b, TNFa and IL-6 induce expression of
SOCS3 in certain cell types104,105.
There are still many aspects on the actions of SOCS2 that

have yet to be investigated. The precise mechanism by
which SOCS2 alters GH/IGF-I signalling have yet to be fully
determined as are the resultant cellular events that occur at
the growth plate and are responsible for normal growth. It is
also unclear if SOCS2 mediates the deleterious effects of
inflammatory cytokines on linear bone growth.

CONCLUSIONS

Inflammatory cytokines may play a key role in mediating
growth retardation frequently observed in patients with
chronic inflammatory diseases such as JIA and IBD. Such
growth disorders are likely to be multifactorial involving a
myriad of pathways and mechanisms such as MMP driven
catabolic effects and poor nutrition in IBD patients. Growth
is further compromised by the use of glucocorticoids as anti-
inflammatory agents. However, other mechanisms involving
the mediatory actions of SOCS proteins on GH/IGF-1
signalling may be implicated. By examining further the
effects of inflammatory cytokines and of SOCS proteins, in
Cell Biochem Funct 2009; 27: 119–127.
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particular SOCS2, on growth plate chondrocytes we will
gain a better understanding of the mechanisms behind
growth retardation in chronic paediatric diseases, which may
lead to enhanced clinical interventions and outcomes.
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