
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Chia, Julian Yan Hon (2002) A micromechanics-based continuum 
damage mechanics approach to the mechanical behaviour of brittle 
matrix composites. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/2856/ 
 
 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



A Micromechanics-Based Continuum Damage Mechanics 

Approach to the Mechanical Behaviour of Brittle Matrix 

Composites. 

by 

Chia Yan Hon, Julian 

Submitted to the University of Glasgow 

for the degree of 

Doctor of Philosophy 

in 

Mechanical Engineering 

© Chia Yan Hon, Julian, Sept 2002 



I 

Abstract 

The thesis describes the development of a new continuum damage mechanics 
(hereafter, CDM) model for the deformation and failure of brittle matrix composites 

reinforced with continuous fibres. The CDM model is valid over sizes scales large 

compared to the spacing of the fibres and the dimensions of the damage. The composite 
is allowed to sustain damage in the form of matrix micro-cracking, shear delamination, 

tensile delamination and fibre failure. The constitutive equations are developed by 

decomposing the composite compliance into terms attributable to the fibre and matrix, 

and modelling the competing failure modes by intersecting failure surfaces based on 

maximum stress theory. The fibres are treated as being weakly bonded to the matrix so 

that the fibres only transmit axial loads, and fail in tension. The matrix is modelled as 
isotropic linear elastic and is treated as transversely-isotropic after damage has initiated. 

The effect of multiple matrix cracking on the stiffness was determined from 

experimental data, while failure was modelled by a rapid decay in the load bearing 

capacity. Although the model is motivated largely to proportional loading, matrix 

unloading and damage closure has been modelled by damage elasticity. During 

compression, the matrix stiffness is identical to the undamaged state with the exception 

that the fibres are assumed not to transmit compressive loads. The model was 
implemented computationally through a FORTRAN subroutine interfaced with the 

ABAQUS/Standard finite element solver. 

The CDM model was validated by comparing experimental and computational 

results of test specimens with unidirectional and balanced 0°-90° woven fibres of a 

brittle matrix composite, fabricated from polyester fibres in a polyester matrix. This 

composite system exhibits low elastic mismatch between fibres and matrix, and has 

similar non-dimensionalised stress-strain response to a SiC/SiC composite proposed for 

the exhaust diffuser unit of the Rolls-Royce EJ200 aero-engine. Test specimens 

reinforced with aligned and misaligned fibres have been uniaxially tensioned to the 

tensile axis to produce a range of damage mechanisms and failure processes. To 

demonstrate the ability of the model to analyse engineering structures, a range of 

idealised parts from the exhaust diffuser unit of the Rolls-Royce EJ200 aero-engine 

were tested and analysed in bending. The sub-structural specimens included a simple 

rectangular bar, a bar with a thickened cross-section, and a T-shaped component. These 
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sub-structures showed the full range of damage mechanisms, which often occurs 

simultaneously in engineering structures made from brittle matrix composites. 

The behaviour of the fibre-matrix interface is central to the behaviour of fibre 

reinforced composites. It is argued that a full range of interfacial properties can be 

modelled by treating the interface as imperfect such can be formalised as an infinite 

periodic array of cracks. Interfacial elements were developed to model the properties of 

an imperfect interface. The result support the simplification used to represent the fibres 

as simple axial load bearing components in the CDM model, and gave insight into the 

behaviour of imperfectly bonded interfaces. 
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Nomenclature 

Stresses, Strains and Elasticity 

C A., Stiffness tensor of a material 
el, e2, e3 Unit vectors of three mutally perpendicular co-ordinate axis x1, x2, and 

x3. 

sl, Strain tensor 

Resultant strain vector 

cn Normal strain vector 

ss Shear strain vector 
Mean strain 

sSý Hydrostratic strain tensor 

-C� Volumetric or dilatational strain 

eu Deviatoric strain tensor 
E Young's modulus 
FI Body force 
G Shear modulus 
G Transformation matrix for the stress and strain tensor 
H Transformation matrix for engineering strain 

y Engieering shear strain 

71 172 ' 73 Principal engineering shear strain 

SZ Complementary energy denisty or the complementary energy per unit 
volume 

ll; Direction cosine between the co-ordinate axes x, 'and xj 
Ii 13 Invariants of stress tensoro 

I]' 
-b 

', 13 ' Invariants of strain tensors 
Jl, J2, J3 Invariants of the deviatoric stress tensor s1; 
J J2 'I J3' Invariants of the deviatoric strain tensor e 

n Unit normal of a plane in a continuous body. 

ni, n; Direction cosines between n and el, e2, e3- 
(1) nn(2), n(3) Principal directions 

v Poisson's ratio 

6f Cauchy's stress tensor. 

ßn Normal stress vector 

6S Shear stress vector 

6 Principal stress 
& Mean stress 
6(5; j Hydrostratic stress tensor 

Sy Deviatoric stress tensor 
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s Principal deviatoric stress tensor 
S,, Jk/ Compliance tensor of material 

191 091 , 
93 Principal shear strain 

T, T; Cauchy's stress (or traction) vector. 

Ui Displacement vector 
W Strain energy density or the strain energy per unit volume 
bW Rate of change of the strain energy density W 

Damage Mechanics 

Tf Kachanov (1958) scaler damage variable 

CO Robotnov (1968) scaler damage variable 
0 Murakami & Ohno (1981) second-order damage tensor 
D Cordebois & Sidoroff (1981) second-order damage tensor 
Dyk, 1 Lemaitre & Chaboche (1978) fourth-order damage tensor 

wo Void area density in a plane 
A Net area 
A/z Apparent area 
6 Net stress or effective stress 

s Entropy density 

S Entropy 

Internal state variables (where a1..., n) 

u Internal energy density 

p Density 

r Body heating and radiation 

q Heat flow vector 
T Absolute temperature 

F Internal entropy production 

yr Helmholtz free energy denisty 

77 Gibb's free energy density 

y Internal entropy production per unit mass 

Composites Terminology 

a ratio of E,,, V� over EfVf 

Emu ultimate failure strain of matrix 

£ ultimate failure strain of fibres 

y applied shear strain 
fracture work to form a matrix crack surface 

7db energy used to debond fibres bridging a unit area of matrix crack 
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6b fibre bundle stress 

a-bu ultimate failure stress of fibre bundle 

o, composite stress 

6Cu ultimate failure stress of composite 

6f fibre stress 

6fu ultimate failure stress of fibres 

brr mean ultimate failure stress of fibres 

0f fibre stress when matrix cracks 
6b fibre bundle stress 
6bu ultimate failure stress of fibre bundle 

Um matrix stress 
6mc matrix crack initiation stress 

6mc(sat) matrix crack saturation stress 

6MS matrix softening stress 

6�ZU ultimate failure stress of matrix 
007M radial stress in matrix with respect to fibre axis 
6Sd shear delamination stress of composite 

a-td tensile delamination stress of composite 

a_ far field stress 
interfacial shear stress 

dUf change in fibre strain energy per unit area 
AU7z change in matrix strain energy per unit area 
dW work done to create a steady state matrix crack per unit area 

Aw or dl additional displacement of fibres during matrix cracking 

a crack length 

ao transient crack length 

E, Young's modulus of composite 
Ef Young's modulus of fibres 

Em Young's modulus of matrix 
Evoigt Young's modulus of a composite by Voigt 

ERuess Young's modulus of a composite by Ruess 

G, Shear modulus of composite 
Gf Shear modulus of fibres 

G�Z Shear modulus of matrix 
Gvoigt Shear modulus of a composite by Voigt 

GRuess Shear modulus of a composite by Ruess 

G1 fracture energy release rate of matrix per unit area 
G11 debond energy release rate of fibre-matrix interface per unit area 

L fibre length 

K' effective stress intensity factor of composite 
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K effective stress intensity factor of matrix 

KID critical stress intensity factor of composite 

K; ' critical stress intensity factor of matrix 

m Weibull modulus 
Pf probability density failure function 

Pf probability of failure 

PS probability of survival 
r0 fibre radius 

p closure pressure at matrix crack surface 
R centre-to centre separation distance of fibres 

T closure traction by bridging fibres 

u displacement at crack surface 
U matrix crack surface energy per unit area 
US energy dissipate due to frictional sliding per unit area 
Vf volume fraction of fibres 

Vf crit critical fibre volume fraction at which multiple matrix crack forms 

V. volume fraction of matrix 

x' critical load transfer distance 

x mean load transfer distance 

X normalised distance at crack surface 

Computational Model 

6 - stress Subscripts 

£ - strain c - composite 
S - compliance f - fibre 

C - stiffness m - matrix 
E - Young's modulus me - matrix cracking 
G - shear modulus mc(sat) - matrix crack saturation 

v - Poisson's ratio ms - matrix softening 
T - transformation td - tensile delamination 

d - an increment of sd - shear delamination 

V - volume fraction u - ultimate failure 

A - area fraction 
{} -3x1 vector Supers cripts 

-3x3 matrix n - current increment 

- magnitude of n-1 - previous increment 

c- composite position system 
f- fibre position system 
m- matrix principal stress position system 
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CHAPTER 1 

Introduction 

1.1 An Overview of the Development of Brittle Matrix Composites 

The development of low density, high strength, tough materials with good 

corrosion resistance is a primary aim in many engineering applications. Ceramics 

show many of these properties. However, their use is limited by low toughness, 

typically of the order of 1 MPa-ým`. Nevertheless, since the 1980s, interest in ceramics 

has increased following the discovery that toughness could be improved by grain 

refinement or by composite technologies. Marshall & Ritter (1987) and Evans (1990) 

have reviewed these approaches. Grain refinement has improved toughness by a factor 

of two. The modification of grain shape to an elongated microstructure also results in 

further enhancement of toughness. However, the most important contributor to 

toughness enhancement in this field is the creation of microstructures using second 

phases, such as zirconia additives, which cause stress-induced phase transformations at 

the wake of crack tips: a process termed transformation toughening (Marshall (1986), 

Heuer (1987)). Toughness values of up to 20 MPa-ým__ have been reported. The 

mechanics of transformation toughening are described by McMeeking & Evans (1982) 

and Budiansky et al (1983). However, greater levels of toughening in ceramics have 

been achieved through composite technologies, in which high strength ductile fibres 

are incorporated into a ceramic matrix. Toughness values in excess of 30 MPa_ým_ 

have been reported. The micro-mechanics and computational modelling of such brittle 

matrix composite materials is the subject of this thesis. 

Lewis (1995) has given a historical overview of the development of ceramic 

composites. The development of tough ceramics using embedded fibrous 

reinforcements followed the successes of fibre reinforced plastics during the 1950-60s. 

Fibre reinforced plastic materials are capable of tensile strengths approaching 1 GPa 

and toughnesses equivalent to metals, and densities approximately half that of 

aluminium and one-sixth that of steel. A primary motivation for developing ceramic 

composites is the need for better high-temperature structural materials for aero-engine 

I 
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applications and high Mach number airframe components. Superalloys are already 

approaching their limit as operation temperatures approach melting points. An early 

success was the British work on tough carbon fibre-reinforced glasses by Tinklepaugh 

(1965), Sambell et al (1972) and Levitt (1972). The key development in understanding 

the toughening mechanisms was provided by Cook & Gordon (1964), Aveston, 

Cooper & Kelly (1971), hereafter ACK, and Hale & Kelly (1972), who demonstrated 

the significance of weak fibre-matrix interfaces. In the work of ACK and Hale & 

Kelly (1972), interfacial shear strength of the order of a few MPa was shown sufficient 

to achieve improved toughness levels. 

Despite these early results, the control of interfacial strength in ceramic fibre- 

ceramic matrix composites was difficult to achieve. The high processing temperatures 

and the reactivity of most ceramics often resulted in well-bonded interfaces. 

Significant advances only started with the introduction of a high strength-toughness 

NicalonTM SiC-fibre reinforced glass ceramic composite in the early 80s by Prewo and 

Brennan (1980,1982) and Brennan & Prewo (1982) at the United Technology 

Research Centre (UTRC). Generally known as CompglasTM, the weak interface 

contributing to improved toughness was achieved by using Nb205 as the nucleating 

agent for a lithium aluminium silicate (LAS) glass-ceramic matrix. This resulted in the 

formation of a weak carbon interfacial layer. First, carbon from the fibre reacts with 

Nb to form a NbC layer. As the reaction saturates, the formation of a weak carbon 

layer within the carbide layer occurs because further diffusion of carbon into the glass 

ceramic is prevented. The formation of the carbon layer is illustrated in Fig 1.1-1. 

Following these developments, Rice (1981a, b, 1984) and Rice et al (1982), Jamet et al 

(1984), Brender et al (1990) at the National Research Laboratory (NRL) demonstrated 

that ceramic fibres with chemical-vapour-deposition (CVD) coatings of BN could 

provide the necessary weak interface in many ceramic matrix composites. When there 

is reactivity between BN and the matrix ceramic, a bi-layer BN/SiC coating is 

introduced. To date, the carbon, BN or BN/SiC interfaces have produced the best 

composite strength and toughness. 

1.2 Benefits and Applications 

A recent review of the benefits and applications of ceramic composites has been 

presented by Richlen (1995). The basis of his review was the need for improved 
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energy efficiency, productivity and competitiveness in the United States. Following 

proposals by the National Critical Technologies Panel in the United States on 

advanced materials, both ceramic and composite systems were identified as crucial 

technologies. A forecast by the US Department of Energy estimated a potential annual 

energy saving of 1.2 x 1018 Joules if ceramic composites were used. This would result 

in increased cost-competitiveness of industrial products and a decrease of national 

dependence on imported energy sources resulting in reduced emissions and improved 

environmental health. 

The sectors most likely to benefit from ceramic composite technology were 

identified as: industrial, aerospace/defence and biomedical sectors. In the industrial 

sector, potential applications include heat management systems, power generation, 

processing, separation systems and structural applications. The potential economic 

impact was estimated at US$400 billion. In the aerospace/defence sector, the potential 

applications include propulsion systems, thermal protectors and structural components, 

while, in the biomedical sector, applications such as re-constructive surgery and 

implants were recommended. A table of the potential applications is given in Tables 

1.1 to 1.3. 

The application of ceramic composites in gas turbine engines has attracted 

particular attention. The market includes electrical power generation and aero- 

propulsion engine systems. In electrical power generating turbines, ceramic 

composites are strategic choices for rotors, stators, combustion chamber liners, cross 

fire tubes, combustor to turbine transition piece, turbine shrouds and blade tip seals, 

first-stage nozzles and buckets, and regenerators. Their use allows higher operation 

inlet temperature, which results in increased thermodynamic energy conversion 

efficiency and reduced fuel consumption. Because of the higher operation temperature 

range, areas of incomplete combustion are eliminated. More discharge air from the 

compressor is freed for combustion, hence reducing undesirable emissions of carbon 

monoxide and unburned hydrocarbons into the atmosphere. The increased volume of 

air also acts as a heat sink to reduce flame temperatures such that oxidation of nitrogen 

proceeds too slowly to produce NO, gases. A potential reduction of NO, emissions by 

272 x 106 kg/yr has been estimated. Between 2000 to 2009, the utility industry in US 

projects an additional capacity requirement of 135 x106 KW. If mature ceramic 

composite technology were successfully implemented into gas turbine power 
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generators, a potential electrical capacity of 530 x 109 KWh/yr could be generated. In 

aero-propulsion engines, the other advantage is improved thrust-to-weight ratios. 

Ceramic composites will offer the potential for higher fracture toughness, higher 

strength and thermal stability at lower densities than metallic counterparts. 

Aerospace/Defence Applications Specific CFCC Components 

Propulsion Engine Systems 

Gas Turbine Engines, Rocket Engines, 
Aircraft Engines, and Vehicles 

Rotors, airfoils, guide vanes, blades, tip 
seals, disks, augmenters, compressors, stators 

Combustor Combustor plates, combustor linings 

Engine Exhaust Nozzle components, flaps 

Thermal Protection Fasteners, aero-brakes, ablators, insulators 

Structural Components 

Aerospace Structures 
Missiles, radomes, aircraft structures, 
modified signature structures 

Table 1.2-2. Recommended Aerospace/Defense Applications for Ceramic 
Composite (adapted from Richlen, 1995). 

Type of Applications Specific CFCC Components 

Dental implants 

Jaw bone reconstruction 
l t dI ti S mp an s urgery an ve Re-construc 

Bone and joint surgery 
Bone plates 
Long bones 

Table 1.2-3. Recommended Biomedical Applications for Ceramic Composites 
(adapted from Richlen, 1995). 
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CFCC Product Area/Typical Examples Likely Industrial Markets 

Heat Management Systems 

Waste incineration systems Conventional MSW/RDF facilities, advanced 
Handling equipment, furnace intemals, toxic or hazardous waste facilities; 

clean-up with/without energy recovery 

Heat recovery equipment internals 
Any indirect heating uses; energy intensive 

Air preheaters, recuperators 
industrial processes (aluminium remelters, 
steel reheaters, glass melters) 

Burners and combustors 
Potentially any indirect-fired, high 

Radiant tube burners temperature and/or controlled atmosphere 
heating/melting/heat treating use 

Burners and combustors and 
Low NO, clean fuel heating applications, 

combustors Catathermal 
including - gas turbine combustors, industrial 

process heat 

Burners and combustors 
Low NO, clean fuel heating applications, 

Low temperature radiant combustors 
including small scale (space heating) and 
large scale (industrial processes) 

Refractories and related products 
High temperature industrial heating/ 

crucibles Furnace linings milting/heat treating processes (primary 
, retrofit applications) 

Power Generation 

Primary high temperature gas turbines 
Stationary engines (especially combustors); possibly adiabatic Combustors/liners, wear parts diesels, S-1 engines 

Long-term program; potential power source Fusion reactor for electric utility industry after 2040 

Processing 

Process equipment Chemical process industry; petroleum Reformers, reactors, high pressure heat 
refining; corrosives handling and storage 

exchangers, burners, pyrolysis tubes 

Separation Systems 

Gas turbine, combined cycle, and IGCC 
Separation/filtration systems configurations; diesel exhaust particle traps; 

Filters, substrates, centrifuges molten metal filters; sewage treatment 

Structural Applications 

Possible niche uses for ENU shielding, Structural components corrosive/abrasive environments, fire or 
Beams, panels, decking, containers missile protection, infrastructure repair 

Table 1.2-1 Recommended Industrial Applications for Ceramic Composites 
(adapted from Richlen, 1995). 

1.3 Problems 

Although ceramic composite materials are potentially useful and economical, 

their use in engineering components and structures is slow due to the lack of efficient 



Chapter 1: Introduction 6 

and reliable methods for material analysis during the early design stages. One of the 

key factors is due to a lack of confidence in current failure criteria. Hinton & Soden 

(1998) have reported this finding following the observations of current commercial 

design practices in fibre-reinforced polymer composites in which fabrication and 

mechanical testing are commonplace. In the less mature field of fibre reinforced 

ceramic composites, the "make and test" approach is also commonly practised. 

Nonetheless, it is realised that the traditional approach is clearly inefficient, and a 

computational approach to design and analyses must be considered. 

The computational modelling of brittle matrix composites is however not an 

easy task. This is because the mechanical properties of the composite material are 

highly anisotropic and non-linear. This is due to the fibre architecture, mismatches in 

modulus and thermo-expansion coefficient of the fibres and matrix, and damage in the 

fibre, matrix and fibre-matrix interface. 

A literature review of fibre-reinforced composites has identified two different 

approaches to modelling anisotropy and non-linearity. In the first approach, a 

macroscopic viewpoint is taken in which the composite is treated as single material 

and deformation and failure is modelled at a composite level. The fibre direction 

establishes the axes of anisotropy and classical anisotropic elastic equations are used 

to model deformation (Hull & Clyne (1996) and Jones (1999)). Failure is predicted 

with interactive failure criteria such as the quadratic polynomial curve fits proposed by 

Tsai-Hill (Tsai, 1968) and Hoffman (1967) or non-interactive failure criteria such as 

the maximum stress or maximum strain criteria (Hull & Clyne (1996) and Jones 

(1999)). Non-linear and anisotropic effects due to damage are considered by using 

continuum damage mechanics (Lemaitre, 1996) based on the framework of the 

thermodynamics of irreversible processes (Lubliner, 1972). Examples of macro- 

damage model include Talreja (1985), which allowed crack formations normal or 

parallel to the fibre reinforcement direction. In the Gerard & Baste (1994) model, 

active and passive cracks were considered normal to the maximum principal stress 

direction of the composite and Matzenmiller et al (1995) have considered fibre 

breakage or buckling failures. From a design perspective, the advantage of the macro 

approach is that the analysis is simplified, so that the number of parameters required to 

model the composite is few. However, its disadvantage is that no distinction is made 

between the matrix and fibre phases. As such, local effects such as fibre-matrix 
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interaction and stress-redistribution caused by damage in the matrix or fibres are not 

considered. Consequently, the specific contribution of the fibre and matrix to the 

deformation and failure of the composite is not understood. 

In the second approach, a micro-mechanical viewpoint is taken. In such 

approaches, the matrix and fibres are treated separately in local analyses which are 

linked to describe the composite behaviour. The advantages over the macro-models 

are that any damage or failure in the matrix or fibres is identified, and the deformation 

of the matrix and fibres are specifically accounted for. In the linear elastic regime, an 

example of a micro approach is the linear elastic micro-mechanics theory of 

composites described in Hull & Clyne (1996) and Jones (1999). In the damage regime, 

the use of micro-mechanics with continuum damage mechanics is found in the work of 

Voyiadjis & Kattan (1993) and Burr et at (1995,1997) and Hild et at (1996). In the 

approach by Voyiadjis & Kattan (1993), micro-mechanics was integrated into 

continuum damage mechanics by modelling damage, stress and strain at a constituent 

level. The advantages of the approach are that tensile, compressive and shear damage 

in the matrix and fibres can be considered. However, the approach does not explain the 

mechanistic principles of the damage processes. To overcome this limitation, Burr et 

at (1995) and Hild et at (1996) have introduced a mechanistic continuum damage 

model which models matrix cracking and fibre breakage Burr et at (1997). 

Advances in the micro-mechanical approach to model damage in continuum 

damage mechanics are significant, however further developments are still required to 

extend their use for the design and analysis of structural composites. An area for 

development is to provide an ability to model delamination. This is important because 

the stress to show delamination is significantly lower than the stress to initiate matrix 

cracking or fibre breakage. This ability has not been developed in the damage models 

that have been reviewed. Recently, McCartney (1998,1999) has introduced crack 

models to predict the tensile delamination stress of glass-reinforced plastic cross-ply 

laminates. This is based on the micro-mechanics of transverse cracks propagating 

parallel to the fibre reinforcement direction when loaded normal to the fibre direction. 

The treatment however does not consider shear delamination nor cracking in the 

matrix or the fibres. To date a computational model capable of modelling matrix 

cracking, fibre breakage, and tensile and shear delamination in brittle matrix 

composites has yet to be developed. 



Chapter 1: Introduction 8 

1.4 Scope 

The novel work of this thesis is concerned with developing a damage mechanics 

approach by which damage such as matrix cracking, fibre breakage and tensile and 

shear delamination in brittle matrix composites can be comprehensively modelled and 

studied computationally. The specific application is intended for analysing fibre- 

reinforced ceramic composite structures. 

In order to establish such a damage model, the preliminary theories of stress, 

strain, elasticity and continuum damage mechanics are reviewed in Chapter 2. This is 

followed by reviews of mechanical theories on deformation and strength of brittle 

matrix composites in Chapter 3. The development of a computational model requires 

physical bases for damage modelling and experimental data for benchmarking and 

validation. This necessitates mechanical testing which typically involves high 

manufacturing costs and long manufacturing times. For these reasons, a polymer 

material system that has similar characteristics to a ceramic composite has been used. 

Chapter 4 introduces the polymer material systems and configurations that are tested 

in tension and shear. In Chapter 5, the mechanical testing of the polymer system 

formed into simplified sub-structures replicating components in the exhaust unit of an 

aero-engine are tested. The development of a computational model using a finite 

element method first requires an understanding of the advantages and disadvantages of 

current finite element modelling techniques. These are briefly reviewed and discussed 

in Chapter 6. In Chapter 7, the damage mechanics approach for modelling damage in 

finite element theory is presented. This includes a description of the concepts and 

explanation of the FORTRAN algorithm that implements the damage model, and 

benchmarking of the damage model for simple stress-state. In Chapter 8, the damage 

model is applied to analyse misaligned composites in tension and the engineering sub- 

structures of Chapter 5. Significantly, this chapter serves to demonstrate the 

capabilities and limitations of the model. Because the behaviour of fibre-matrix 

interfaces is not well understood, a damage model using imperfect interfacial spring 

was developed to analyse imperfect interfaces. This is applied to interfaces that are 

elastic and is presented in Chapter 9. Finally, in Chapter 10, the conclusion of the 

thesis and a brief discussion on future work are presented. 
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Fig. 1.1-1 Schematic diagram of in situ formation of the weak carbon debond layer 

in CompglassTM , which leads to increased composite toughness (adapted 

from Lewis, 1995). 



CHAPTER 2 

Modelling Preliminaries 

2.1 Introduction 

The concepts of stress, strain and stress-strain relations form the basis of any 

discussion of the mechanical behaviour of engineering materials. This chapter 

establishes these fundamental concepts and introduces the basic notation that will be 

used in the thesis. The chapter concludes with a review of continuum damage 

mechanics theories by introducing the concept of damage as a tensor, the state 

potential relating damage with stress-strain relations, and the evolution law of damage. 

2.2 Stress and Equilibrium 

The concept of stress is a mathematical characterisation of the average internal 

force intensities in a material element that is large compared to micro-structural 

dimensions. The dimensions of the element must also be small compared to the size of 

the global specimen so that stress gradients across the element are negligible. Consider 

such an element in a continuous body under load. The element in Fig 2.2-1 is 

sectioned into parts I and II by a plane Ap1z having an area AA with direction defined 

by the unit normal n. Let P, be the resultant force acting across the area AA from I to 

II with an equal and opposite resultant force -P/z acting from II to I when in 

equilibrium. In the limit as AA approaches zero, the resultant internal force intensity in 

the element is given as: 

11 T= lim 
P� 

(2.2.1) 

This is commonly known as Cauchy's stress (or traction) vector and is independent of 

the element size but dependent on the orientation of the element plane Ap7z. 

123 

To describe the stress-state at a point, the stress vectors T, T, T on three 

mutually perpendicular planes are defined for the resultant stress vector T using the 

Cartesian system of axes xl, x2, x3 illustrated in Fig 2.2-2: 

10 
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123 

T=Tn, +T n, + Tn3 (2.2.2) 

The unit normal n defining the plane Ap7z written in component form is: 

n= (n1, n2, n3) (2.2.3) 

and has direction cosines ni, n2 and n3 given by: 

n1 = COS (e,, n) 

n, = cos (e, 
, n) (2.2.4) 

n3 = COS (e3, n) 

Here el, e2 and e3 are the unit vectors for the three mutually perpendicular co-ordinate 

axis XI, x2, and x3. 

All stress vectors consist of a stress component normal to the plane Apn and 

two shear stress components parallel to the plane. These stress components are 

represented by the symbol o7y. The combination of suffices i =j represents normal stress 

components and the combination i#j represents shear stress components. The suffix i 

indicates the positive directions of the three orthogonal axis x1 while suffix j indicates 

the direction of the force component on the plane (see Fig 2.2-3). In general, the three 

123 
orthogonal stress vectors T, T, T can be expressed as: 

i 

T= 6e (2.2.5) 

T 611 612 (713 6xz Uxy 6xß 

where 6T= U21 6� 623 = UP 6YY 6Y_ (2.2.6) 

3 
T 631 632 633 6cx U. U. 

This alludes to the concept of stress as a second-order tensor in which oyis recognised 

as Cauchy's stress tensor. Substituting eqn(2.2.5) into eqn(2.2.2), the expression for 

the resultant stress vector T can be rewritten in tensor notation as: 
/I 

T; =a11ni=6ini (2.2.7) 

where the stress tensor 6y is symmetric, i. e. cu = 6,. The stress tensor o defined with 

respect to the xi co-ordinate system can be expressed as a-ý' for a new xi' co-ordinate 

system. This is given as: 

a-; 1' = l; k l. a 6kß (2.2.8) 
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where l; k, l;, are the direction cosines with respect to the primed and unprimed co- 

ordinate axes. 

In Fig 2.2-4, the definitions of a normal and shear stress vector 6� and ßs are 

shown. The magnitude of the normal stress vector is given by: 

n il 

6,, =T"n=T; n; (2.2.9) 

where " denotes dot-product of two vectors. Substituting eqn (2.2.7) into eqn (2.2.9) 

gives the resultant normal stress vector in terms of the stress tensor as: 

an=6; jn; nj (2.2.10) 

The magnitude of the resultant shear stress vector is: 

US 
2 11 

') 

=(T) -6 (2.2.11) 

where 
(T) 

is obtained from (2.2.7) as: 

(n)2 nnnn 
T= To T= Tj Ti _ 

(6ünj j(6iknk) 
= 6JUtknjnk (2.2.12) 

Mathematically, it is possible for the resultant stress vector T to consist only of 

normal stress vector components 6� such that there are no shear stress vectors (ßs 0). 

The direction parallel to the plane normal n is called principal direction while the 

plane Apn is called the principal plane at the point. The normal stress vector 6� is then 

called the principal stress vector at that point and the following definition develops 

(see Fig 2.2-5): 

11 T=6� =a- n (2.2.13) 

or in component form: 

Ti 11 
= uni (2.2.14) 

where 6 is the principal stress vector consisting of only three normal stress 

components. Substituting eqn (2.2.7) into eqn (2.2.14) leads to: 

(6; 
1-a'8, 

)ni=0 (2.2.15) 

where (5y is the Kronecker delta ( 6i =1 if i=j and by =0 if i#j). By allowing the 

determinants of the coefficients to vanish, i. e. 

6ýj -65; j =0 (2.2.16) 
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a characteristic equation of cubic nature is derived, which upon solving yields three 

possible magnitudes for the principal stress tensor a. Commonly recognised as the 

Hamilton-Cayley equation, the characteristic equation written in terms of principal 

stresses is: 

63- 1162+1., 6-13=O (2.2.1 7) 

in which (II, 12,13) are invariants of stress tensor. The invariants have the same values 

regardless of the orientation of the axes. The invariants can be expressed in terms of 

the stress tensor o or the principal stress tensor o 7j, o-ý, o-, as: 

1I = 611 + 61-7 + 633 = 6xx + 6yy + 6__ = 61 + 61- +63 

622 623 
+ 

611 613 
+ 

611 622 

632 633 631 633 631 623 

= 
6vv 6v- 

+ 
6xx 6x: 

+ 
6xx 6vv 

(2.2.19) 
6y 6-- 6_x 6-- 6_x 6y_ 

= 6161 + 6763 + 6361 

611 0712 613 6xx 6xy ° 
x: 

I3 = 6,1 6� ° 23 = 6vx 6vv 6yZ = 616,63 (2.2.20) 

631 632 U33 6ax 6-ry 6-- 

Substituting al, 62 and (Y3 into eqn (2.2.15), respectively, and using the identity 

n2 +n; +n3 =1 (2.2.21) 

the principal directions at the point are determined. For each value of o-, the 

components of these princi 

n (1) 

n(2) 

n(3) 

pal direction vectors are: 

_(n(l), n(l), n(i)) fora=61 

_ 
(n(2), 

n(2) n(2)) for 6= o7,, (2.2.22) 

_ 
(n, (3) 

, 
ný3), n33)) for 6= (73 

The absolute nature of the stress invariants (11,12,13) simplifies the description of stress 

at a point. As such, alternative forms have also been introduced and are described by 

Chen & Saleeb (1994). 

When the principal axes are rotated to bisect the angle between principal planes, 

the stress vector 6s assumes stationary values. These stresses are called principal shear 

stresses and have values of 6, -6, , 
'- a-, -a73 and 2o -63 I. The largest value of 

the principal shear stresses is commonly termed the maximum shear stress (zmax). The 

planes on which the principal shear stresses occur are however not pure shear planes. 
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This is because the normal stress vector defined in eqn (2.2.10) expressed in terms of 

the principal stress co-ordinate system is: 

all =61nß +6, n2 +63n3 (2.2.23) 

Instead, a state of pure shear is defined when the stress tensor at a point is devoid of all 

normal components, i. e. 

II = a1 + 611 + 633 = 6)C +6 
yy 

+ (7= = a1 + 61 + 63 = brr =0 (2.2.24) 

This is shown in Fig 2.2-6. 

To model the stress-state of a material, it is sometime useful to decompose the 

stress tensor oy into a hydrostatic stress component 68;, to describes volume changes 

and a deviatoric stress component sý to describe shape changes, i. e: 

6ý = SU + 6Sýi (2.2.25) 

Here, & is the mean stress such that: 

&= 36", = 3(6x+ 6y+6_) 3I, 
(2.2.26) 

and the hydrostatic stress tensor &S is shown to be an invariant. The deviatoric stress 

tensor sy determined from eqn (2.2.25 & 26) is: 

2s, ,- S2z - s33 
3 

siz si3 
sý, s12 s1, (2.2.27) 

_ 

2SZ1 
- S33 - SI 1 

Sij = S12 S22 S23 = S12 
3 

S23 

S13 S23 S33 2s33 
- SI I- S22 

si3 s23 3 

or, in terms of principal stress is, 

2s, -S, -s3 00 
3_ (2.2.28) 

SU 0 gis' 33-s' 0 
2s3-s1-s2 

3 

and is recognised as a state of pure shear. As for the principal stress tensor 6, a cubic 

characteristic equation in principal deviatoric stress space is obtainable, i. e. 

I s; 1 -s5,, =0 (2.2.29) 

or s3- J, s2+J3s-J3=0 (2.2.30) 

such that s is the principal deviatoric stress tensor and J1, J2, J3 are the deviatoric stress 

invariants: 

J1 = St; = S11 + S22 + S33 = sl + SZ + S3 =0 (2.2.31) 
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J=; s1s1 =2 
(S, 

+S; +S3 

_7 
(S1 21+ 

S22 +S33 + 2612 + 26; 
3 

+ 263 

= -S S -S S- SS +6- +6- -I-6- = -(SS+S s3 +S S 11 22 22 33 33 11 12 23 31 122331 

1 (2.2.32) 
=6 

[(s11 
- S?? 

) ý+ (S?? 
- S33)2 + 

(333 
- Sl1)21 + 612 +X23 + 631 

= 16x - Uy I2 + 
(a 

- 6_ I +(6- - 6x2} + Zxy + Z-2 +T 
Y 

_, 
[(61 

- 6, 
)2 +(6, - 63)2 +(63 - 61)2] 

Sx r, 77x: 

`J =3 Sy S/k Ski = iyx Sy iy, _3 (S13 i- Sý + S3) - S]S2S3 (2.2.33) 
Zzx 2', S_ 

or in terms of the hydrostatic stress invariants (I1, '2,13), 

J, =0 
J, _3 (' - 3I, ) (2 2.34) 

J3 = , 
'-ß(2I; -9I, I, +2713) 
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Finally, for any continuous body of volume V with surface area A, equilibrium 

condition is satisfied if: 

6; 1,1+F. =0 (2.2.3 5) 

Here FI represents the body forces and the comma indicates differential notation, i. e. 

o is differentiated with respect to j= (1,2,3 or x, y, z). 

2.3 Strain and Compatibility 

Forces when applied to a body cause stresses; they also cause deformation via 

rigid-body-motion and strain. In rigid-body-motion, the relative distances or angles 

between points in a body are unchanged. Examples include translation and rotation. 

However, when a body is strained, the relative distances or angles between points in 

the body are changed and a new geometry is formed. Examples include extension, 

compression and distortion. 

Extension and compression are causes of normal or direct strain s, which is 

defined as the unit change in length in the direction of the original length. Consider a 

one-dimensional problem where two points A and B in a stress free body are separated 

by a length dx as shown in Fig 2.3-1. When stressed, the points A, B are displaced to 

A', B' such that the displacement of A to A' is u and the displacement of B to B' is 
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u+ ax dx. If the displacements u and u+a dx are not equal, then direct strain in the x 

axes has occurred and is given as: 
(u+äxdx) 

-u äXdx au 
, sý __= ax 

When the direct strain is positive, then extension is indicated, else a negative direct 

strain indicates compression. In two-dimensional problems, the number of direct strain 

components is increased to two. To show this, consider an element ABCD in a state of 

plane strain described in the Cartesian axes x, y and z such that: 

u= u(x, y) v= v(x, y) w= 0 (2.3.2) 

Here, u, v and w are the displacements in the respective x, y and z axes. When stressed, 

the element undergoes translation and strain and it's new position is described by 

A'B'C'D' as shown in Fig 2.3-2. Now if the displacements of A to A' are u and v, and 

the displacements of B to B' are u+ ax dx and v+ a" dx 
, 
it follows that: 

(A'B')' _ [dx(1+sx)l' = dx+ +ä (2.3.3) 
au ( aV )2 

so that sX + 2s, +l =1 +2 
au 

+'+ (2.3.4) C ax c9x 
If the distance and displacements of the points A and B are infinitesimal, then the 

higher order terms in eqn (2.3.4) can be ignored and the direct strain with respect to 

the x axis is: 

61 \= 
au 
ax 

(2.3.5) 

which is identical to eqn (2.3.1). Similarly, if the displacements of D to D' are 

u+ ay dy and v+ ay dy, and infinitesimal strain is assumed, the direct strain component 

with respect to they axes is: 

cy -v (2.3.6) 
ay 

In the case of distortion, the angles between points of a body are changed and 

shear strain y is induced. Like shear stress, shear strain is associated with two 

orthogonal directions and is defined as the change in the original right angle between 

two axes measured in radians. Shear strain is positive if the right angle between the 

positive directions of the co-ordinate axes x, y, z decreases. Referring to Fig 2.3-2, 

shear strain yam, in the x-y plane is: 
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Yxy = -/3 =0 -A. (2.3.7) 

17 

where the negative 2 indicates that counter-clockwise angles of rotation with respect 

to they axis are defined as positive. It follows that: 

a,, dx 
0 as (2.3.8) 

dx + ax dx 

when strain is infinitesimal since for small angles tan 0=0. Neglecting az as being 

small compared to 1, eqn (2.3.8) reduces to 

and similarly, 

e= aV (2.3.9) 
ax 

A-- (2.3.10) 

Substituting eqn (2.3.9 & 10) into (2.3.7), the definition of shear strain yxy in terms of 

the in plane displacements u and v is: 

_ 
öu 

+ 
av 

(2.3.11) %/ 
xy 

O-y ax 

and is called the engineering shear strain. 

The definitions of direct strain and engineering shear strain for the two- 

dimensional case when extended to a three-dimensional case require the displacements 

to be: 

u= u(x, y, Z) v= v(x, y, z) w= w(x, y, Z) 

Explicitly, the components of strain are: 

£x Yxy Yx: 

£= Yyx £y Yy_ _ 

Yx Yy £. 

au au av au aw 

+ + ax äy ax az ax 

+ C + 
i 

ýy J av a ay 
au aw av aw ow 

+ - 
) 

- +- az ax az Öy az 

(2.3.12) 

(2.3.13) 

where the suffix i denotes the Cartesian directions x, y, z and the suffix j indicates the 

direction of strain. 

The description of strain in eqn (2.3.13) however does not represent strain as a 

second-order tensor, though it properties are symmetric. This is because it does not 

satisfy the transformation properties of a tensor, as described for the stress tensor in 
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eqn (2.2.8). To establish a strain tensor to describe the strain-state at a point, consider 

the case of two points Ao and A in a body with initial positions of 
(x; ' 

, x2 , x3) and 

(x, 
�2,3) as shown in Fig 2.3-3. When the body is strained, the displacement of 

larl the ýx °ý. Simi point A to A, ', i. e. +u x +u ° +u is u. ° 
ýx° 

x° x 0 1° 10 2 2I x31 2ý 3 yý 

displacement of point A to A'at position 
(x, +ul , x, +u2 , x3 +u7ý is u; 

(x, 
�7,3). 

By expanding ui into a Taylor series around A0, the displacement vector u; becomes 

o 
3u; ( )+ 1 a2u (ý >) 

; ... 
(2.3.14) u; =u+x. -xý xý -x, ý x, -X" + 

2! öxJöxk 

and assuming infinitesimal strain, the expression further simplifies to 

öu. öu 
u; = u, +' 

(x, 
-xj 

)= 
u' +` dx, (2.3.15) 

. ii 

The gradient of the vector ui, i. e. au; /ax1 
, 

is itself a second-order tensor and may be 

decomposed into symmetric and anti-symmetric parts. As such, eqn (2.3.15) can be 

rewritten as: 

1 öu . 
au 

'. 1 öu . 
Ou 

' (2.3.16) u. =u° + '+ dx+ - dx 
2 ax ax; '2 ax; äx; 

or u, = u; +sij+ irr (2.3.17) 

_1 
öu au 

ax. 
(2.3.18) in which '% 2 ax +s 

.i 

1 au. 
- 

au . 2.3.19 ) and w;; =2ýa 
xi 

.i 

The former symbol, cu, is the symmetric part of the second-order tensor au; laxj and 

is itself a symmetric second-order tensor. It is called the strain tensor and its 

components are: 
au all L3U Öul L3U3 

, 

ax, 2 ax, ax, 2 ax3 ax, 2 2 s1' ý'' X13 
1 au au2 1 au, 1 au. ( aU3 i 

ys 
%ýy_ 

E{; _ £Z, £22 £23 = 
2 C ax, 

+ 
ax, 2 äx3 + x, 

2 s. yy 2 

£31 X32 e33 
1 all aZl3 1 all, 03u, 

au3 y yy 

, 

( ) 

+ 2 2 2 äx3 ax, 2 ax, äx2 äx3 

(2.3.20) 
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The latter symbol, wu, is the anti-symmetric part of öu; /ax1 
. It 

is called the rotation 

tensor and its components are: 

0I au, 
_ 

au, 1 au, aua 
2 ax, ax, 

) 

2 ax, ax, 
0)11 CoI2 0)13 

1 öu au, 1 au, au3 (2.3.2 1) 

0)- = CO- _0- 2( ax, ax, 

) 

2( ax3 ax, 
(031 X32 0)33 

1 Öu, Öu3 1 Öu, 
_ 

Öu3 
0 

2( ax, ax, 

) 

2( ax3 ax, 

Like the stress tensor, the relationship between the strain tensor s;; in the x; co- 

ordinate system and in the x; ' co-ordinate system is given as: 

ýý =llnýýý (2.3.22) 

where l; b i;, are the direction cosines with respect to the primed and unprimed co- 

ordinate axes. 

At a vector level, the state of strain at a point (as is in the definition of stress) 

with unit normal n having components (ni, n2, n3) is defined as: 
23 11 

s =ý n, +E n, +E n3 =s; = e. ji n1 = s; j n1 (2.3.23) 

I' 

Here, s is the resultant strain vector with three mutually perpendicular components 

123 

s, s and s in the direction of the co-ordinate axes x j, x? and x3. Alternatively, the 

resultant strain vector may be decomposed into it normal and shear components, as 

shown in Fig 2.3-4. The magnitude of the normal strain vector is given by: 

nn 

s� =s"n=s; n; = E; I n; nj (2.3.24) 

For a unit vector s having components (sl, s2, s3) normal to direction n, the magnitude 

of the shear strain vector is given by: 
il il 

s, =s. s=s; s; = s; j n1s; (2.3.25) 

i] 

When the resultant strain vectors is in the direction of the unit normal n, i. e. the shear 

strain vector has zero magnitude, a state of principal strain occurs. The direction at 

which this occurs is the principal strain direction or axis and is shown in Fig 2.3-5. 

Thus, 
n 

8=r3� =en (2.3.26) 

or in component form: 
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,1 

s; =sn; (2.3.27) 

where e is the principal strains consisting of only three normal strain components. 

Substituting eqn (2.3.23) into eqn (2.3.27) leads to: 
( 

1-ss1 
) 
n. 1=0 (2.3.28) 

where 5ij is the Kronecker delta. By allowing the determinants of the coefficients to 

vanish, i. e. 

&; 1 -s8; » =0 (2.3.29) 

a characteristic equation of a cubic nature, as is for principal stress (see eqn 2.2.17), is 

derived. Solution to the cubic equation yields three possible magnitudes for the 

principal strain tensor c. The characteristic equation is given by: 

s3 - Ili s' + I, s- 13 =0 (2.3.30) 

where the strain invariants 11'147' and 13' are given by: 

II _ Ell + £22 + £33 = £zX + £yy + £__ _ £1 -f-£, -F£3 (2.3.31) 

£22 

o- 

£23 
+ 

l £13 
+ 

£11 £22 

£32 £33 £31 £33 £31 £23 

_ 
£vv v= + 

£xx ý £x 
+ 

£Xx vv (2.3.32) 
9 -Y C-Z Czx Czz YZ 

£x£2 +£, £3 +£3£1 

£11 
12 13 xx 

£xy £x. 

I3' =£21 £22 £23 -£yx £yP £y- =£1£, £3 
(2.3.33) 

£31 £32 £33 £ £y £: 
_ 

By substituting £l, £, an d £3 into eq n (2.3.28) , the principal directions n(l), n(2) and n(3) 

is obtained. 

When the principal axes are rotated such that the strain vector ES assumes 

stationary values, principal shear strains are determined. Magnitudes of the tensorial 

principal shear strains are: 
2 '2 3j 

, ýz = '- s, -s3 I (2.3.34) 

93 -z 

while the magnitude of the engineering principal shear strains are: 
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YI - 16 2 -E3 
Yz =161-611 (2.3.35) 

Y3 

The largest value of the principal shear strains is the maximum shear strain. Hence for 

£j>E2>£3, the maximum shear strain is given as: 

Yin 
ax 

= 2,9,,, 
a. 

= £1 -£3 . 
3. J 

Like the stress tensor (see eqn (2.2.25)), the strain tensor is comprised of a 

spherical part that describes volumetric changes and a deviatoric part that describes 

shape changes (distortion), i. e. 

s=e;, + e8,1 (2.3.3 7) 

Here s=3 skk =3x+sy +s _) =3h' is the mean or hydrostatic strain while, e1ý, the 

deviatoric strain tensor is the difference between the strain tensor Cu and the spherical 

strain tensor c( 5, j i. e. 

2s 
,- 

e12 - C33 

3 
8j2 £j2 

eII e12 e, 
3 2E, 

2 _£33 -g� (2.3.38) 
e;; = e, 

2 
e22 e23 = E12 

3 
E23 

e13 e23 e33 2£33 
-Ell - £22 

E13 e13 
3 

or, in terms of principal strains, 

2e, -£, -£3 00 
3 

2£, -£; -£, (23.39) 
e=00 3 

00 
2£3 -£1 -£, 

Importantly, the strain deviator ey represents a pure shear state (£hk = 0). Seen from eqn 

(2.3.22), this also implies that ey and £u have similar principal axes. 

The invariants for the strain deviator tensor ey are analogous to those of the 

stress deviator tensor sy. Solving for: 

e, j - e8; ß =0 (2.3.40) 

a cubic expression for the principal values of the deviator strain tensor is obtained: 

e3 - J1'e2 + J, 'e - J3' =0 (2.3.41) 

where the invariants of the deviatoric strain tensor are given as: 
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JI' = e� = ell + e22 + e33 = el + e2 + e3 =0 (2.3.42) 

J, ' _2S_', - e, +e2 +e3 

_; 
(el 

+e22 +e33 +2e;, +2e 23 +2e 
31 

) 

= -elle, 2 -e�e33 -e33e11 +E12 +£, 
3 

+£31= -(e1 e, +e, e3 +e3e1 ) 

(2.3.43) 
12 

+E, 
3+E3] 

j(e1-e22)2 
+(e22-e33)2 + 

(e33-e11) 
s 

6[(Fx -£y)2 +(6 
y-£_ 

)2 
+ 

(£_-Ex), 
IT£xy+Eý, y+£ 

x 

+ 
(E, 

-E3 
)2 

+ 
(£3 

-£1 
)2 

L\£1 -£, 
)2 

Jex 

exy exs 

J3' = 3eß 
ejý ek = eyx ey ey_ = 3(el 

+e' +e3) = ele, e3 (2.3.44) 

e_., ey e_ 

or in terms of the spherical strain invariants (I1', 12', 13'), 

J, ' =0 
J, ' -(1, 

(2.3.45) 

1 3' _ , 
'-, (2I'; -9I', I', +271'3 ) 

22 

The volumetric or dilatational strain s� is defined as the relative change in 

volume (volume change per unit volume) between the strained and the unstrain state. 

Consider a unit cube with edge normal parallel to the principal strain axes 1,2 and 3. 

When strained, the axes remains orthogonal and has new edges (1+£j), (l+£, ) and 

(1+s3). Therefore, sv is given by: 

, C� =V= (1+ý, ý(l+ý, Xl+s3ý-1 (2.3.46) 

and for small strain, the above reduces to: 

AV2.3.47 
£y= V =£1-I-£2+£3 =`ý1=£kk 

That is, the spherical strain tensor is proportional to volumetric changes. 

In the definition of strain given in eqn (2.3.20), the state of strain at a point is 

completely described through the definition of the displacements vectors u;. However, 

it is apparent that the converse is untrue since there are six equations to three unknown 

functions of u;. To ensure a single-valued continuous displacement function ui, 

compatibility conditions are imposed on the strain tensor cZ , which gives: 

E? j, ki + 5kl, ij - £ik, Ji - £j/ ik =0 (2.3.4 8) 

or, explicitly, 
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a'ex a2£Y a2SXY 

ay 2 ax 2 axöy 

32s Y a'E + = 
a2s (2.3.49) Y° 

az 2 ay 2 ayaz 
a2s_ a'ýx a'Ex 
ax' +_ ax' azax 

aEY. aE a£xY a' Ex 

ax ax ay az ayaz 
a 

- 
aý_x 

-+ 

a£xY a£Y' 

+ 
a? EY 

_ (2.3.50) 
ay ax ay az azax 

ac a£Ya a£x 

az ax ay az axay 

2.4 Elastic Stress-Strain Relations 

23 

To establish a general formulation for solving the mechanics of a continuous 

body, it is necessary to define the governing relations between the state of stress and 

strain. In the case of a general linear elastic material, the stress-strain relation is given 

by Hooke 's law in which: 

6, j = C, 
jki Ekr (2.4.1) 

or conversely, 6U = S; /k, o-k/ (2.4.2) 

Here, the constants Q, and S;; R., are the stiffness and compliance of a linear elastic 

material and are fourth-order tensors composed of 34 (= 81) components called elastic 

constants. Owing to the symmetric properties of both the stress and strain tensors, 

C; 
jk-l = C, 

ijik = C>>k-r = CJ, 
/k 

(2.4.3) 

Sijki = Sijlk = Slikl = Sjilk (2.4.4) 

and an inherent material symmetry C(; J)(k/) = C(k, )(U) , the total number of independent 

elastic constants are reduced from 81 to 36 and 36 to 21, respectively. Using a 

contracted notation in which: 

a31 = a1 > a22 = 62 , 0733 = 63 , a12 = 212 = a4 1 613 = z13 = 65 I 623 = z23 = 66 (2.4.5) 
Ell = 61 1 

612 = Eý ' 
E33 = E3 

1 
612 _2 712 _ 84 1"5121 

£23 =2 723 = E6 

where y; and z; (where i#j) represent engineering shear strains and stresses, the 

constitutive relations of a general linear elastic material, i. e. a material which does not 

exhibit material symmetry (anisotropic), are defined as: 
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61 CH CI2 C13 2Cl4 2C15 2C16 El 

6, C, 
2 

C23 2C, 
4 

2C25 2C, 
6 E2 

U3 
_ 

C33 2034 2''35 2036 E3 
(2.4.6) 

64 2C44 2045 2046 E4 

65 symmetric 2055 2C56 E5 

66 2C66 E6 

EI Sll S1,5t3 514/2 SI5/2 sI6/2 0I 

S,, S, 3 S1412 S1512 S, 12 6, 
and 

E3 

_ 

S33 S34 /2 S35 /2 S36 /2 63 
(2.4.7) 

84 S44/2 S45/2 S46 /2 64 

E5 symmetric S55/2 S56 /2 65 

E6 S66/2 66 

or, in terms of the engineering definitions: 

61 CIl CI, C13 C14 C15 C16 EI 

6 C,, C, 
3 

C24 C5 C26 E2 
(2.4.8) 

63 
_ 

C33 C34 C35 C36 E3 
_ Z2' C44 C45 C46 723 

r13 symmetric 
C55 C56 713 

ZI2 C66 %ßl2 

EI SII SI2 S13 S14 S15 SI6 61 

E2 S22 
''S73 

S24 S25 S26 62 

and 83 
_ 

S33 
`s34 

S35 S36 63 (2.4.9) 
723 S44 S45 S46 1-23 

713 symmetric S55 S56 r3 

712 S66 Z l2 

Such materials are also termed triclinic. 

If the body posseses some material symmetry, the correspon ding stiffness and 

compliance can be determined through a group of orthogonal linear co-ordinate 

transformations or transformation laws. This is obtained by considering the 

transformation law governing a first order tenso r: 
(ill 112 

1 13 

r= 'ij 1/= 121 122 /23 r1 
l31 132 133 

where l;, represents direction such that in general l;; # l;; and have properties: 
l;, +l; 

2 
+1,3 =1 , 

11 All + 1,212, + 113123 =0 

Z' +1 +12 =1 111131 +112132 +113133 0 (2.4.11) 
2 22 23 

32 =1 41131 +l�l;, +1,3133 =0 

due to orthogonality, l;; -1 = lijT. This implies that the transformation laws given in eqn 

(2.2.8) and eqn (2.3.22), for engineering stresses and strains expressed in contracted 

notation (see eqn (2.4.5)) become: 
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61 61 61 6e1 g' cI El E'ý 

6, 61 61 6, E2 S2 EZ E, 

63 

_ 
(G 63 63 

= 
(GJ `_l 63 E'3 

- 
(H E3 E3 

= 
(H\_I ) 

E'3 

Z 23 
723 Z23 Z 

23 
Y 23 723 723 7 23 

13 
Z13 ZI3 r 13 7'13 713 713 7'1 3 

Zý12 Z12 712 Z' 12 7'l2 7! 2 1712 
7'l2 

where 

11 
l12 l13 2 112113 2111113 2111112 

12 2 122 2 l23 21221,3 21,11,3 21221,1 

(G) 
_ J 

2 131 2 lit 2 133 2 132133 2 131133 2 131132 

121131 122132 123133 122133 + 123132 121133 + 123131 121132 + 1� 131 

111131 112132 113133 112133 +113132 111133 +113131 111132 +112131 

111121 112122 113123 112123 + 113122 111113 + 1131,1 
1711,2 + 111 

12 2 l12 2 l13 112113 113111 111112 

121 122 123 112123 113121 ', 
1122 

(H) 
_ 

2 /31 2 132 2 133 132133 133121 131132 

2'121131 2 122132 2 123133 122133 + 123132 121133 + 123131 121132 + 122131 

2 111131 2 112132 2 113133 112133 + 113132 l11133 + 113131 '11132 + 112131 

2 11 
1121 

2 112122 2 113123 112123 + 113122 11 
1123 

+ 113121 111 '22 + 112121 

l 
11 

l21 l3l 2 121131 2 111131 2 111121 

G; 2 
122 l3,2 111132 2 112132 2 122112 

(Gý_7 
= 

l13 h3 l3 2 123133 2 113/33 2 113123 

112113 132123 132133 122133 + 132123 112133 + 132113 112123 + 122113 

111113 121123 131133 121133 +131123 111133 +131113 11143 + 111113 

11 
1112 

121112 131123 
111131+131/22 111132+131112 

111122+121112 

ill /21 131 
21131 

111131 11141 

'12 '22 '32 122123 112132 112122 

ýHý-I 
_ 

113 123 
(33 

123133 113133 113123 

2 121131 2 122132 2 123133 '22'33 + 123132 121133 + 123 131 121132 + 122131 

2 111113 2 121123 2 131133 121133 + 131 123 111133 + 131 113 /11123 + 121113 

'2111112 

2 121122 2 131132 121131 + 131 122 111132 + 131 112 111'22 + 111112 

(2.4.12) 

(2.4.13) 

(2.4.14) 

(2.4.15) 

(2.4.16) 

Thus, the transformation law of the stiffness and compliance of a linear elastic 

material given in tensor notation are obtained as: 

Cl ijk/ = Iim1. inikollpCnmop 
(2.4.17) 

5, ilk! = lint l, 
nikollpSn, nop 

(2.4.18) 

or in contracted notation: 

{a-'} _ (G)tu} _ (G)[C]{s} _ ýG)[CXH) ' {ý'} 
(2.4.19) 

[C] _ (G)[C](H)-' 
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and 
{s'} = (H){--} = (H)[S]{6} = (H)[S](G)-' {a-'} 

(2.4.20) 
[S] = (H)[S](G) 

Therefore, if the anisotropic body contains a plane of elastic symmetry, for 

example the plane x -y, the direction cosines in eqn (2.4.10) becomes: 

100 
l; i =010 

(2.4.21) 

00 -1 

Substituting for eqn (2.4.13 to 16 & 19 to 20), the plane of elastic symmetry requires 

that: 

C14 =0 C15 =0 C24 =0C, 5 =0 
C34 =0 C35 =0 C46 =0 C56 =0 (2.4.22) 
S14 =0 S15 =0 S24 =0 S25 =0 
S34 =0 S35 =0 S46 =0 S56 =0 

Thus, the number of independent elas tic constants is redu ced from 21 to 13, which 

gives the constitutive relations for a monoclinic material as: 

61 C11 C12 C13 00 CI6 61 

6, Cl, C21 C, 
3 

00C, 
6 E, 

(2.4.23) 
6, 

_ 
C13 C, 3 C33 00 C36 E3 

T23 00 0 C44 C45 0 723 

T13 00 0 C45 C5; 0 713 

z12 C16 C, 6 C36 00 C66 712 

E1 Sll S12 S13 00 S16 61 

E, SI2 S� S13 00 S16 62 

and E3 S13 S13 S33 00 S36 (2.4.24) 63 

723 00 0 S44 S45 0 r23 

713 00 0 S45 S55 0 T13 

Y12 S16 S26 S36 00 
''S66 ZI2 

Similarly, if elastic symmetry occurs at plane x-z, the elastic constants of the 

anisotropic material must satisfy: 
C14 =0 

C16 =0 C14 =0 
C26 =0 

C34 =0 
C36 =0 C46 =0 C56 =0 (2.4.25) 

S14 =0 S16 =0 S24 =0 S16 =0 

S34 =0 S36 =0 S46 =0 S56 =0 

For elastic symmetry at plane y-z, requ irements of the elasti c constants are: 
C15 =0 C16 =0 C, 

5 =0C, 6 =0 

C35 =0 C36 =0 C45 =0 C46 =0 (2.4.26) 
S15 =0 S16 =0 S25 =0 

S16 =0 

S35 =0 S36 =0 S45 =0 S46 =0 
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From eqn (2.4.22,25 & 26), it is seen that when an anisotropic material has two 

mutually orthogonal planes of elastic symmetry, elastic symmetry invariably exists 

relative to a third orthogonal plane, i. e. the material possesses three orthogonal planes 

of symmetry. Such materials are termed orthotropic. This implies that the elastic 

constants must satisfy: 

C14 =0 C15 =0 C16 =0 C, 4 =0 
C25 =0 C16 =0 C34 =0 C35 =0 
C36 =0 C45 =0 C46 =0 C56 =0 

(2.4.27) 

S14 =0 S15 =0 S16 =0 S24 =0 

S15 =0 S'6 =0 S� =0 S35 =0 
S36 =0 S45 =0 S46 =0 S56 =0 

which reduces the total num ber of independent elastic constants from 13 to 9. The 

constitutive relations for an orthotropic material are then defined as: 

61 CII C12 C13 000 6I 

6, C11 C22 C23 000 
63 C13 C23 C33 000 E3 

(2.4.28) 

r23 0 0 0 C44 0 0 723 

r13 0 0 0 0 C55 0 713 

712 0 0 0 0 0 C66 Y12 

EI sit S1. S13 000 61 
6o SI2 S22 S23 000 a2 

and 63 S13 S23 S33 000 63 
(2.4.29) 

y23 000 S44 00 z23 

YI3 0000 S55 0 zl3 

1Y 12 00000 S66 TI, 

In such materials, the normal strains are a function of only normal stresses while the 

shear strains are only a function of the shear stresses on the same plane. 

When a material exhibits a rotational elastic symmetry about one of the co- 

ordinate axes, i. e. contains a symmetric plane in which the properties are invariant, the 

material is termed transversely isotropic. If the rotational symmetry occurs about the 

z-axis, the stiffness and compliance is derived from an orthotropic material by 

imposing the additional requirement that eqn (2.4.13-20) must also satisfy for any 

rotational transformation l of the form: 

1cos 0 sin 00 

l= -sin 0 cos 00 
(2.4.30) 

001 
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in which 0 represents the angle of rotation about the axis of elastic symmetry (z-axis). 

This requirement reduces the number of independent elastic constants from 9 to only 

5, giving the constitutive relations as: 

6, C11 C12 C� 000 sl 

62 Cl, C, C13 000s, 

63 Cl2 C73 C22 000 E3 
(2.4.31) 

r23 000 C55 00 Y23 

zl3 0000 C55 0 Y13 
212 00z (C1 

- 
CI, ) 

7I2 

El Sll S12 S12 000 61 

E, S12 S72 S23 0006, 
and 83 S12 S23 S22 000 63 

(2.4.32) 

Y23 000 S55 00 223 

713 0000 S55 0 z13 

712 00000 2(S22 - S,, ) 21, 

Finally, if the elastic properties are independent of direction, i. e. isotropic, the 

number of independent elastic constants is reduced to two and the constitutive 

relations become: 

61 ll C� Cl, 000 

6, C12 C11 C12 000 E2 

63 
_ 

CJ2 C12 Cl, 000 £3 
(2.4.33) 

z23 000 (Cl 
l-C 2 11) 00 723 

r13 0000 2(C�-C2) 
0 Y, 3 

z12 00000i (C� 
-C1 2) Y, 2 

El S11 S12 S12 000 61 

E, S12 S11 S12 000 62 

and 
83 S12 S,, S1,0 00 63 

(2.4.34) 

723 000 2(S , I- S,, ) 00 T23 
713 0000 2(Sli 

-s12) 
0 ZI3 

712 00000 2(S11 -S ,)z,, 

For these constitutive relations to be useful in engineering practice, it is 

necessary that the independent elastic constants be related to mechanical properties 

determined through experimental tests, i. e. engineering constants. Consider a uniaxial 

tension test such that the applied stress 6 =aj (where i=1 or 2 or 3) while all other 

stresses are zero. The resistance to elastic strain in the x; -direction represented by 

Young's modulus, E;, is defined as: 

E. - 
6' (2.4.35) 
ei 
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Poisson's ratio, v;, defined as the ratio between the transverse strain s; in the x; 

direction and the axial strain s; due to the applied stress in the x; direction, is: 

S. 

=-- (2.4.36) Vii 
S' 

C'i 

In simple shear, the applied stress z=o (where i=4 or 5 or 6) and all other stresses 

are zero. The resistance to shear deformation defined through the shear modulus or 

modulus of rigidity, G,, is given by: 

G; = 
(Ti ' (2.4.37) 
Y; 2£; 

Having defined the above engineering constants, the strain-stress relations for 

an orthotropic material (see eqn (2.4.29)) in terms of engineering shear strains are: 

£, 1/E, -v,, /E, -v31 lE3 0 0 0 6, 

£, -v,, /E, 1/E, -v;, /E; 0 0 0 a, 

£3 -V13 /E, -V, 3 /E, 1/E3 0 0 0 63 (2.4.38) 

y4 0 0 0 1/G12 0 0 64 

y5 0 0 0 0 11G13 0 65 

76, 0 0 0 0 0 1 /G,; 66 

Because of the inherent material symmetry in linear elastic materials, i. e. Si = $i, it 

also implies that: 

V.. Vj. 
(2.4.3 9) 

Ei E. 
f. 

that is, for an orthotropic elastic material v,, # v71 when El # E2. Relations between 

the stiffness and compliance is defined by: 

L[C1' 
]_ [S// ]_i 

_ 

[co S; j 
]T 

(2.4.40) L S; i 
in which the stiffness matrix [C j] is the adjoint of [S], [co S; U]T is the transpose of the 

cofactor matrix of [S. ] and jS I is the determinant of the matrix [S j], or explicitly for an 

orthotropic material: 
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(S22S33 
-S23ý (`13`23 -S12 

S33) (S12S23 
-S13S22) 0 

DDD 
2 )ID (S12S13-S23SII) 

0 
(S31S32 

- 
SI2S33) (S33SII-_13 

DDD 
(S_. S__ -S_. S__) (S_. S.. -S,. S.. )I D (S.. S� S' 1 

C=1 

00 

0 
I- zl- JL - S1-LLI 1-L1 -1I -IL-11. - I- u- GL l2/ (i fi 

D 

0 

0 

0 

D 

0 

0 

0 

D v v 
1 

0 0 
S44 

0 0 
S55 

0 0 0 

0 

0 

0 

0 

S66 

(2.4.41) 

Where D= S1IS"»S33 
- 

Sl1'S23 
- "S27S13 -` 33512 

+2S17S, 3S31 . 
Substituting for the 

components of the compliance matrix in eqn (2.4.38), the corresponding stress-strain 

relations of an orthotropic elastic material is: 

Ell-V23V32) E1(V21 
-V31V23) 

EI(V31 
-V21V32) 

E2 (V12 
- V13V32) E2 (1- V31V12) E2 (V32 - V12V31) 

O O O 61 
072 

' 
E3(V13-V13V32) 

qj 
E3(V23-V21V13) 

T 
E3ý1-V12V21ý 

0 0 0 

El 
E2 (2.4.42) 

63 Ip `v `v E3 

64 0 0 0 
G23 

0 0 74 
65 1 

75 

G 
0 0 00 

G, 
73 

0 y 

0 0 0O 0 
1 

GI2 

where W=1-v, 2v2, -v23v3z -v31v, 3 -2v,, v3zv, 3. If s;, (i#j) is used instead of 

« , (i :# j) ,a 
factor of 2 must be included before C44, C55 and C66 to satisfy the 

condition of c, = ; yý . 
For a transversely isotropic material, e. g. having a rotational symmetry about 

the z-axis, the engineering definition of the strain-stress relations in eqn (2.4.32) 

become: 

s, 1/E -v/E -VIE' 000U, 

C, -v/E 1/E -VIE' 000 

s3 -VIE' -VIE 11E' 000 (2.4.43) 

723 000 11G' 00z, 3 
713 0000 1/G' 0 r13 

y, 00000 1/ G' r,, 

where the unprimed engineering constants indicates material properties in the plane of 

isotropy while the primed engineering constants are material properties normal to the 

plane. Eqn (2.4.41) is reduced to: 
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C; =1 

(S22-s23 (Slz`S23-'S12S2, ) (S12S2 -Si2S'zs) 
HHH 

(S12S13 -Sizsxz) (S22Sii -Sz) (S12 -Sz3Su) 
HHH 

) (S12S2, -Si2S22) (Siz-S21Sii) (S, 2Sii-S1 
22 

HHH 

000 

000 

000 

oo0 

oo0 

oo0 
100 

2(S21 -s23) 
010 S66 

00 
S66 

where H= S1 S;, _S � S; 3 - 2S,, S,; + 2S, 3 S;, and the 

relations for transversely isotropic materials is: 

(1-v2) V'(v+1) V'(v+1) 0 0 0 
AEZ AE 2E, AE2E' 

ý' 
v'(v+l) 11 v'2 ý ) 1 v'2 v' 

+ 
ý 

0 0 0 
AE2E AE EE E AE' E' 

V'(v+l) 1 (v2 
v'1 ) V'2 1 

0 0 0 
- AE E AE' E' E AE, E E'J 

X23 
0 0 0 

1 
0 0 

T13 G 

T11 0 0 0 0 0 
G' 

0 0 0 0 0 
I 
G' 

(2.4.44) 

corresponding stress-strain 

Ez (2.4.45) 
E3 

723 

713 

712 

1-v 2 2v'' (+V) E 
_ where A= 

E'E' 
and G 

E'' E = 2(1+v) 

For isotropic elastic materials, Young's modulus and Poisson's ratio are 

independent of direction. Therefore, the constitutive relations are simply: 

S1 1/E -v1E - v1E 0 00 61 

s, -v1E 1/E - v/E 0 00 6, 

s; -v/E -v1E 1/E 0 00 63 (2.4.46) 

723 00 0IIG 00 T23 

y,; 00 00 1/G 0 TO 

712 00 00 0 11G_ z,, 

and 
(1-v) vv000 

6i v (1-v) V000 

62 vv (1-v) oo0 E2 (2.4.47) 
63 E000 

(1-2v) 
00 63 

223 _ (1+vX1-2v) 2 723 (1-2v) 
z3 000020 713 

z12 00000 
(1-2v) r12 

Alternatively, the constitutive relations expressed in tensor notation are: 



Chapter 2: Modelling Preliminaries 32 

O. (l 
Ev) 

S'' + (l+v)(1-2v) 5kk 8, (2.4.48) 

(l+ v) v 
and s=E a-ý +E6, (5 ;j (2.4.49) 

For isotropic linear elastic materials, the principal directions of the stress and 

strain tensor coincide. Also, the engineering constants E and G must be positive, i. e. E 

>0 and G >0, and values of Poisson's ratio must satisfy: 

-1<_v< 0.5 (2.4.50) 

Most materials in practice have positive values of Poisson's ratio. If v=0.5, it implies 

that the material is elastically incompressible and the shear modulus G= E/3. 

When reduced to two dimensional plane stress condition (e. g. 6, =z, =z� = 0), 

the constitutive relations for isotropic linear elastic materials are: 

S, 1-v06, 

S. = -v 106 (2.4.51) 
E 

712 00 2(1+ v) z,, 

61v0E 
and 6, =E, v10E, 

(2.4.52) 

V12 
1-v 

00 
(1-v) 

12 2 

where the strain normal to the stress plane with zero stress is: 

s3 
E 

(61+6, ) 
1 v(s1+£, 

) (2.4.53) 

In two dimensional plane strain conditions (e. g. s, = y, = y� = 0), the constitutive 

relations are simply: 

V -v 0 

s, = 
(I+V) 

-v 1-v 0 6, (2.4.54) 
E 

Y, Z 
002 

ß1 1-v V0 1181 
and (I + vXE1 - 2v) 

v I- V (1 
-02v) 

s, 
(2.4.55) 

Z-12 002 712 

such that the stress components z, = z� =0 while the stress component normal to the 

plane where -, =0 is given by: 

d-3 = v(61 + a7) (2.4.56) 
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2.5 Continuum Damage Mechanics 

The mechanical properties and behaviour of materials are dependent on atomic 

bonding and microstructure. In metals and crystalline ceramics, the crystal structure is 

usually imperfect due to the presence of voids, microcracks and crystal defects. These 

imperfections induce local stress and strain concentrations, which nucleate new 

defects. Consequently, irreversible changes, which can be regarded as damage, modify 

mechanical properties such as strength, stiffness and fracture toughness and lead to 

final failure. 

The effective use of materials demands ways of modelling damage and its 

effects on mechanical properties. Kachanov (1958) and Rabotnov (1968) have 

pioneered phenomenological approaches using a continuous internal state variable to 

characterise damage. By incorporating the damage state variable into constitutive 

theories, such as elasticity (Cordebios & Sidoroff, 1981; Krajcinovic & Fonseka 

(1981), Krajcinovic (1983)) and plasticity (Lemaitre, 1984; Marquis & Lemaitre, 

1988; Ju, 1989), an ability to analyse damaged material behaviour has been 

established. In the past four decades, these approaches have matured into a distinct 

field known as continuum damage mechanics, which is supported within a framework 

of the thermodynamics of irreversible processes with internal variables (Lubliner, 

1972). A range of damage models have been proposed and these are reviewed in Sect. 

1.3. 

In the following sections, the theory of continuum damage mechanics is 

reviewed. Central to the theory is the concept of an internal state variable such as 

damage which defines the damage condition of the material; the thermodynamic 

principles and state potential which relates the internal state variables; and the 

evolutionary laws of the internal state variables. Following Krajcinovic & Fonseka 

(1981), the term damage limits the discussion to defects such as cracks or voids while 

defects such as dislocations are treated separately through the theory of plasticity. To 

satisfy continuity, damage at a point x implies a representative volume element V 

around x, which is large enough to include damage, and yet sufficiently small for the 

state of stress, strain and damage distribution to be homogenised. Further, damage is 

assumed to be time-independent and isothermal. The arguments presented are 

generally set within the framework of small deformation elasticity theory. 
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2.5.1 The Damage State Variables 

34 

Chaboche (1987) suggest that: "The first step in developing a damage theory 

concerns the definition of the damage variable ". This involves establishing the tensor 

nature of the damage state variable and identifying suitable measures to quantify 

damage. 

The mathematical properties of damage variables have undergone significant 

developments. Initially, Kachanov (1958) introduced a scalar variable yr to represent 

creep damage, such that yr= 1 specified the initial undamaged state and yr= 0 the final 

ruptured state. The physical meaning of yr is interpreted as the ratio of the load- 

carrying capacity of the net area A, and the apparent area A (Murakami, 1987): 

yr=A�1A (2.5.1.1) 

Subsequently, Rabotnov (1968) introduced a scalar damage variable: 

w=1-y. ' (2.5.1.2) 

in which co is interpreted as the area fraction in the apparent area A which does not 

bear load due to damage. As such, the net stress or effective stress ß- due to damage is: 

66 
a=-_ (2.5.1.3) 

yr 1-w 

which shows that stress in a damaged material is magnified due to the reduction in net 

area. 

The scalar variable introduced by Kachanov (1958) and Rabotnov (1968) 

assumes that damage is isotropic. Hayhurst (1972), however, showed that the 

orientation of microcrack planes in high temperature creep cavitation occurs normal to 

the direction of maximum principal stress, i. e. damage is anisotropic. Subsequently, 

Hayhurst & Leckie (1973) and Leckie & Hayhurst (1974) refined the Kachanov 

(1958) and Rabotnov (1968) approach by applying a scalar variable to selected 

component of the principal stress tensor. 

At the same time, Davison and Stevens (1973) introduced a vector damage 

variable to represent spall in elastic bodies. This approach was further advanced by 

Krajcinovic & Fonseka (1981) and Krajcinovic (1985) to include damage by both 

cleavage and slip modes, and, the effects of active (open) and passive (closed) cracks, 

in brittle materials. In general, the damage vector co is defined locally by the void area 

density a in a plane defined by a normal el: 
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Co = w�el (2.5.1.4) 

where (1,2,3) is the principal damage (void) co-ordinate system corresponding to the 

principal stress co-ordinate system with a-, > a, > 63 . 
A second-order tensor damage variable has been introduced by Murakami & 

Ohno (1981) and Murakami (1983). The second-order damage tensor Q is symmetric 

and has principal components as in Cauchy's stress tensor. In its principal axes, 

damage is defined as: 

S2=ýS2ini©ni 
i=3 

(2.5.1.5) 

where S2; and ni are the principal values and principal directions of the damage tensor 

S2 and the symbol O denotes cross product. The components of the damage tensor 

S2; are interpreted as the void area density in the plane perpendicular to the principal 

direction n; of the damage. 

Cordebois & Sidoroff (1981) also introduced a second-order damage tensor D 

based on the concept of net stress or effective stress 6, given in (2.5.1.3). In terms of 

the principal stress co-ordinate system, the effective principal stress tensor is: 

ß. = 
6' 

- D; 
(2.5.1.6) 

1 

where the damage tensor D in principal stress space is defined as: 

D, 00 

D=0D, 0 (2.5.1.7) 

00D, 

To obtain an explicit description of the components of the damage tensor, an 

equivalence of strain energy hypothesis was adopted. The hypothesis assumes "the 

elastic energy for a damaged material is equivalent inform to that of the undamaged 

(effective) material except that the stress is replaced by the effective stress in the 

energy formulation. " (Voyiadjis & Kaftan, 1999). Corresponding to the effective stress 

tensor (2.5.1.6), an effective strain s; tensor is introduced: 

s; = (1- D; ) s; (2.5.1.8) 

where sj is the apparent strain tensor of the damage material. Limiting discussion to 

uni-axial tension, Cordebois & Sidoroff (1981) provide explicit expressions for the 
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components of the damage tensor D using the effective stress, effective strain concepts 

and Hooke's law. These are: 

E= E(1-D, )' 
(2.5.1.9) 

F= v(1-D, )/(1-D, ) 

where, E and v denotes Young's modulus and Poisson's ratio, while E and v are the 

corresponding effective properties measured from experiment. An important 

difference between the approach of Cordebois & Sidoroff (1981) and Murakami & 

Ohno (1981) approach is that the former characterised the damage state by the change 

of elastic constants, which is easy to obtain, while the latter characterises damage 

through measured cavities area in crystal structure, which is experimentally difficult. 

A fourth-order damage tensor was introduced by Lemaitre & Chaboche (1978) 

and Chaboche (1979,1981), which characterised the damage tensor using changes in 

the elastic constants. To derive a fourth-order damage tensor, an equivalent strain 

hypothesis (Lemaitre, 1971) was adopted, which states: "Any strain constitutive 

equation for a damaged material may be derived in the same way as for a virgin 

(effective) material except that the usual stress is replaced by the effective stress. " For 

a one-dimensional problem, the following relations are derived: 

666 

£EE 1- DE 
(2.5.1.10) 

6 E6 
D=1-E '6_ -1-D _E (2.5.1.11) 

A discussion of the advantages of using a fourth-order damage tensor compared 

to other forms of tensor representation is given by Krajcinovic & Mastilovic (1995). 

To compare the different tensorial representations of damage, a dilute concentration 

model was adopted to model planar and monoclinic distribution of cracks. Comparing 

the computed effective compliance with exact solutions Krajcinovic & Mastilovic 

(1995) concluded that: 

" The scalar representation of damage is limited to isotropy and ceases to be viable 

for any other case. 

" Second-order damage tensors are applicable to isotropic and transversely 

anisotropic cases and provide a reasonably close fit (5% to 10% error) for other 

distributions. 
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" Both fourth-order and higher-order damage tensors give identical predictions to 

exact solutions. Thus computations using tensors of order higher than the order of 

four are unnecessary. 

The debate on the appropriate tensorial nature of a damage variable is now 

narrowed to the second- and fourth-order tensors. The advantage of a second-order 

damage tensor is its simplicity. It is simple to manipulate and is familiar to 

mechanicians and engineers. These views are however subjective and may still be 

contentious since implementing changes in the components of a fourth-order damage 

tensor are easy to do in contracted-tensor notation. In addition, simple algebraic 

relations for manipulating fourth-order tensor are well established and are widely 

available. 

The major advantages of the fourth-order damage tensor is that, it is described 

using affined mechanical properties such as Young's modulus which are readily 

measurable. The concept is consistent with the thermodynamic framework (Chaboche, 

1981), independent of size effects (Krajcinovic and Basista, 1991) and insensitive to 

stress concentration, crack distribution and crack interactions. This is because Young's 

modulus is directly related to the nature of atomic bonds and damage distribution. 

Moreover, Young's modulus is widely used in micro-mechanical and continuum 

theory, which facilitates its implementation in computational algorithms. Unlike its 

other counterparts, it can be implemented directly to construct an effective compliance 

or effective stiffness tensor and is computationally efficient. In comparison to the 

approach of Cordebois & Sidoroff (1981), the fourth-order damage tensor has the 

ability to consider all forms of anisotropy. 

The different ways to quantify damage experimentally have been identified by 

Murakami (1983), Chaboche (1987) and Lemaitre (1992). Excluding measurements of 

changes in damage area and elastic modulus, other measures include density, micro- 

hardness, electrical resistance, cyclic plasticity response, ultrasonic wave propagation, 

tertiary creep response and acoustic emission. 

Micro-mechanics has been used by Burr et al (1997) to model matrix cracking in 

brittle matrix composites. Damage by matrix cracking can be described by considering 

an elementary cell of size 2L x2W containing a crack size of 2a as shown in Fig 2.5.1- 

1. The matrix in the elementary cell is isotropic elastic and has a Young's modulus E, 
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and the effective Young's modulus E of the cell normal to the circular crack is 

approximated as: 

E 
(2.5.1.12) 

E 1+2ä 2 

in which 2ra2/4LW is the crack density. Comparing with the damage relationship of 

Lamaitre & Chaboche (1978) given in (2.5.1.11), the micro-mechanical description of 

damage variable defining matrix cracking is given by: 

fQ2 

D=2 4LW (2.5.1.13) 
z 1+24LW 

2.5.2 The State Potential 

The state potential is a scalar energetic descriptor of the physical (state) 

processes within a body. Essentially, the state potential defines the state laws 

governing the relationships of the state variables. This is derived using the framework 

of the thermodynamics of irreversible processes with internal variables, which 

originates from Coleman & Noll (1963). Following Lubliner (1972,1990), a review of 

the thermodynamic principles and the state potentials is now given. 

The local thermodynamic state of a body can be assumed to be a unique function 

of the strain tensor sy, the entropy density s and a set of internal state variables 

ýa (where a=1.., n) which represents phenomenological events such as matrix 

cracking, creep, etc... ). In addition, the internal state variables ýa may be a tensor of 

any order. Since internal energy is a descriptor of thermodynamic states, it follows 

that the internal energy density or the internal energy potential u can be written as: 

u=u(s;;, s, ýa) (2.5.2.1) 

in which its time derivative, defined as partial derivative of its functions, is: 

au £.. + aus + au (2.5.2.2) 
as;; '' as aha a 

An expression for the rate of change in internal energy density can also be 

obtained using the first law of thermodynamics. In the absence of changes in kinetic or 

potential energy, the change of internal energy density in a body should be equal to the 

sum of mechanical and heat energies, i. e.: 

= 07Us;. -p4 (2.5.2.3) 
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Here, o-y is the Cauchy's stress tensor, q is the specific heat flux out a body, and V is 

the gradient operator. 

The second law of thermodynamics states that the entropy (which is a measure 

of disorder) of an isolated system increases in all real processes (spontaneous or 

irreversible). If this is true during the deformation of a body, then the Clausius-Duhem 

inequality for a irreversible process, which describes the second law of 

thermodynamics, must be satisfied, i. e.: 

+VJ >_ 0 (2.5.2.4) 
T 

Here, T denotes the absolute temperature. Substituting eqn (2.5.2.3) into (2.5.2.4), it 

can be shown that 

CT - 
au 

Js 
+6- 

au 

EI/ - 
au 

-q 
VT 

>0 (2.5.2.5) 
as as;; T 

Because the strain rate tensor s;, and entropy density rates is arbitrary in a given 

thermodynamic state, their coefficients must vanish, giving: 

T= 
au 

(2.5.2.6) 
as 

6 
au (2.5.2.7) p aEý; 

and 
a+ VT T0 (2.5.2.8) 

For an isothermal body, eqn (2.5.2.8) reduces to: 
aa>0 

(2.5.2.9) 

Using the Legendre transformation of the internal energy, two other state 

potentials may be derived. The first is the Helmholtz firee energy density yr : 

yr=u-Ts =yr(£, j, T, ýj (2.5.2.10) 

with the properties sa aT 
(2.5.2.11) 

a V/ T, (2.5.2.12) 
Ö£, 

ý 

and 
h0 (2.5.2.13) 

aýa 
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The second is the Gibbs free energy density (or free enthalpy, or complementary 

free energy) i: 

77-Ujl£;; -Vi -77(6ýýT, ýa (2.5.2.14) 

with the properties s= 
aý 

(2.5.2.15) 

a 77 T, (2.5.2.16) 
Ö£11 

and aa 
0 (2.5.2.17) 17 

a 
Essentially, any set of eqns (2.5.2.6-7), (2.5.2.11-12) and (2.5.2.15-16) are 

sufficient to define the thermo-mechanical constitutive relations for a material. 

Furthermore, any one of the eqns. (2.5.2.9), (2.5.2.13) and (2.5.2.17) is sufficient to 

describe the state law of the phenomenological events. The physical interpretation of 

the equation states that the phenomenological events reduce the internal energy and 

the Helmholtz free energy of a body while the Gibbs free energy is increased. Also, if 

the thermodynamic force Y (or energy release rate) associated with the 

phenomenological events is: 

Y 
aýa aýa aýa 

(2.5.7. I8) 

then the evolution of the phenomenological eventsa must be a non-negative 

function. 

2.5.3 Evolution Laws for the Damage State Variable 

To model the damaged stress-state of a body the evolution law of the damage 

variable must be defined. In cases where damage is isotropic, Lemaitre (1996) has 

postulated that the damage evolution law can be derived from a damage potential FD 

which is a scalar continuous and convex function of the damage energy release rate Y. 

Assuming that normality condition is satisfied during damage, the evolution law of the 

damage variable can be given as: 

D=WD 
ay 

(2.5.3.1) 

in which the symbol A, is a multiplier that takes account of the damage strain rate. 
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Alternatively, experiments can also be used to derive the evolution of damage. 

This is achieved by measuring the damage development as a function of applied strain, 

i. e. D=D (s). Lemaitre (1984) first showed this for metals by performing a repetition 

of unloading-reloading tension tests followed by measuring the elastic moduli of the 

specimen. Substituting into eqn (2.5.1.11), a plot of the damage as a function of strain 

is obtained in which the evolution of damage is derived. This procedure is shown in 

Fig 2.5.3-1. In comparison with micro-mechanics approaches, the experimental 

approach is simpler. Also, it is more accurate because the Young's moduli measured 

directly relate the nature of atomic bonds and the damage accumulated in the material. 

The stress-state of a material during damage is achieved by incorporating the 

experimental damage into the damage stress-strain relation, such as in eqn (2.5.1.10). 

In cases where damage is anisotropic, the theory that evolution of damage can be 

derived from a scalar damage potential is inappropriate. This is because the evolution 

of damage with respect to each direction is different. A typical example of this is 

found in uni-directional fibre reinforced brittle matrix composites when loaded in 

tension. Depending on the fibre orientation, Evans (1990) has shown that the 

composite can suffer from matrix cracking or delamination. In matrix cracking, the 

composite exhibits gradual cracking, however in delamination, unstable cracking 

occurs and the composite fails catastrophically. As such, the evolution of damage is 

different. To derive the evolution of matrix cracking in ceramic composites, Burr, Hild 

and Leckie (1995,1997) have used the experimental approach determined by Lemaitre 

(1984) to measure the effective Young's moduli of the composite. McCafferty (1994) 

has used an experimental-analytical approach to determine the effective tangent 

moduli of the matrix during matrix cracking of a ceramic composite. Chia & Hancock 

(2000,2002) have extended the experimental-analytical approach by McCafferty 

(1994) to model matrix cracking evolution whereas the evolution of delamination was 

mathematically modelled with an exponential decaying function, as elaborated in 

Chapter 7. 
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X2 

Legend: 

Pi external forces 

n. unit normal defining cut plane App. 
AA : area of cut plane ppn. 

n 
T stress vector at a point due to resultant force P 

associated with plane Apn. 
X3 

P2 

X1 

Fig. 2.2-1 Illustration of forces and Cauchy's stress vector in a loaded continuum. 

X2 

xi 

X3 

Fig. 2.2-2 Relationship between the stress vector on the arbitrary plane n and the 
three stress vector acting on the orthogonal planes defined by base vector 
ei, e2, e3. 
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X1 

X3 

123 

Fig. 2.2-3 Cartesian components of the stress vector T, T, T originating from point 0 

in association with the Cartesian plane. Positions of these planes have been 

exaggerated from point 0. 

Gn 

n 

Fig. 2.2-4 The normal and shear components of the stress vector T acting on the 
arbitrary plane n. 



Chapter 2: Modelling Preliminaries 

Fig. 2.2-5 Concept of Principal Stress axes. 

y 

44 

Fig. 2.2-6 A state of pure shear: a+ 6y +a=0, where ßx >o>0 and 6Z < 0. 

n 
T=an =an 
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Fig. 2.3-1 Normal strain of a one-dimensional body. 
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Fig. 2.3-2 Translation and normal and shear strains of a two-dimensional body 
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Fig. 2.3-3 Displacements of points based on Lagrangian co-ordinate system 

xt(xJ, x2, x3)" 

n 

X3 

Fig. 2.3-4 Normal component 6 and shear component c and of the resultant strain 

vector at point P with unit normal n. 

X2 

n 

E=En 

P 

xi 

X3 

Fig. 2.3-5 The principal strain vector E and the principal strain direction n. 
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2L 

47 

Fig 2.5.1-1 The elementary cell model of a cracked composite proposed by Burr 

et al (1997). 

Fig. 2.5.3-1 Experimental derivation of the damage trend D(s) of copper 99.9% 

where damage D= 1- E/E (adapted from Lemaitre 1984). 
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CHAPTER 3 

Mechanical Properties of Brittle Matrix Composites 

3.1 Introduction 

The mechanical behaviour of unidirectional fibre-reinforced brittle matrix 

composites is highly non-linear and anisotropic. The ability to model composite 

behaviour and failure requires an understanding of composite's micromechanics, which 

depends on the matrix, fibre, fibre-matrix interface, damage, and fibre alignment. In this 

chapter, the mechanics of the elastic moduli, tensile stress-strain behaviour, matrix 

cracking initiation, and ultimate tensile strength are reviewed. This chapter concludes 

with a discussion of the effects of fibre misalignment on the composite strength. 

3.2 Elastic Moduli 

A central problem in predicting the elastic properties of composite materials 

arises from the complexity of the local stress and strain distributions when the 

constituents are elastically mismatched. Although exact solutions are difficult, bounds 

based on the theorems of minimum potential energy and minimum complementary 

energy can be used to make useful predictions. 

When a shear strain y is applied to a composite, the Voigt analysis (Hull & 

Clyne, 1997) assumes that the strain in the constituents is identical to that applied to the 

composite as a whole. As such, the shear stress in the composite is: 

z=G,, y= 
(V,,, G,,, +VfG f) y (3.2.1) 

where G,, Gm, Gf are the shear modulus of the composite, matrix and fibres. The 

symbols V,, and Vf are the volume fractions of the matrix and fibres such that: 

V, +Vf =1 (3.2.2) 

The shear modulus of the composite from eqn (3.2.1) is then: 

Gv,,, 
g, =VG,,, + VfG f (3.2.3) 

However, the assumption of homogeneous strain generally (G, # Gf) violates the 

equilibrium equations because the stresses at the constituent boundaries are not in 

equilibrium. As such, Voigt's assumption is inadmissible. However, the theorem of 

48 
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minimum potential energy indicates that, "The strain energy obtained from 

displacement compatible with any boundary conditions, integrated over the entire 

volume, is a minimum for the exact displacement distribution. " (McClintock and Argon, 

1966). Equivalently, the strain energy U* of a body only satisfying compatibility 

conditions must be greater or equal to the strain energy U associated with actual strain 

distribution (when both equilibrium and compatibility are satisfied), i. e. 

U<_U* 

The strain energy is defined as: 

U=1v6; 1 s, 1 dV 

and the stress-strain relations are (see eqn (2.4.48)): 

E vE 
6° (1+ v) 

£° + 
(1+v)(1-2v) £kk ý7' 

(3.2.4) 

(3.2.5) 

(3.2.6) 

Given that the internal strain field, satisfying compatibility condition only, is such that: 

33 = 723 = Ysi =0 (3.2.7) 712 =7 and £11 = £22 _6 

the inequality defined by eqn (3.2.4) becomes: 

'-J G 2dV<_'-f G 2dV+'-f G I72dV (3.2.8) 
vý 

%ý 2,12 vw 

V Gay' <_ 
V (VG,,, +VfG f) y2 (3.2.9) 

22 

G, <_ (Gr,, 
jg, =VG,,, + Vf G f) (3.2.10) 

Thus, Voigt's solution gives an upper bound to the shear modulus of the composite. 

The lower bound estimate is associated with the name of Reuss (Hull & Clyne, 

1997) and assumes that the stress in the constituents is identical to the stress in the 

composite. As such, the shear strain in the composite is: 

Y=G= V"1 +Vfý (3.2.11) 

and the corresponding composite shear modulus is: 

V» Vf 
GRe,,. 

s. = Gc 
+G (3.2.12 

The Reuss stress assumption however generally (Gm -4-, Gf) violates compatiblity at the 

constituents boundaries. As such, the assumption is inadmissible. However, the theorem 

of minimum complementary energy states that, "Among the stress distribution which 

satisfy equilibrium at every point and are in equilibrium with the external load, the 
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strain energy found for such distribution is a minimum for the exact distribution. " 

(McClintock & Argon, 1966). This means that the strain energy U° determined for 

equilibrium state is greater or equal to the strain energy U at which both equilibrium and 

compatibility is satisfied, i. e. 

U<_U0 (3.2.13) 

Given that the internal stress field, for satisfying equilibrium condition only, is such 

that: 

To =Z and CO =O= a3 = Z-" = Z-" =0 
(3.2.14) 

12 11 22 3 23 31 

the inequality defined in eqn (3.2.13), after substituting for eqns (3.2.5 & 14), gives: 

2 
lJvz dV<_; Jvv-dV+; JvVZ dV (3.2.15) 

G. GfG 

T- V< 
V'» 

+ 
Vf 

V (3.2.16) 
2G, 2 GG f 

The shear modulus of the composite is then defined as: 

G, GReIISS _»+ (3.2.17) 
G,,, Gf 

where Reuss solution is a lower bound to the shear modulus of the composite. The 

composite shear modulus thus is bounded by: 

GReuss ý Gc < Gvoigi 

as shown in Fig 3.2.1. 

(3.2.18) 

Using the energy theorems, Young's modulus of a composite E, can also be 

bounded in similar fashion. However, for Voigt's analysis, compatibility requires that 

Poisson's ratio of the composite constituents is identical. The Young's modulus of the 

composite is then bounded by: 

EReu. 
S: s :! ý E, :! ý Evo�gi (3.2.19) 

-1 

or 
Vs 

< E, VE,,, +VfEf (3.2.20) 
E,,, Ef 

A detailed derivation is given by Jones (1999). A particularly important case is that of a 

composite reinforced with continuous parallel fibres loaded in simple tension parallel to 

the fibre axis. In this case the Voigt analysis satisfies both equilibrium and compatibility 
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and as such is the exact solution, given that the Poisson's ratio of the matrix v,, and 

fibres of are identical, i. e. 

E,, = V,,, E,,, +VfEf 
(V 

.f=v,,, 
) (3.2.21) 

3.3 Stress-Strain Behaviour 

Aveston, Cooper & Kelly (1971) (henceforth ACK) first established the 

micromechanics for uni-directional fibre reinforced brittle matrix composites tensioned 

parallel to the fibre direction. These composites use fibres with strength of,, and an 

ultimate failure strain -f, that is greater than the matrix strength 6"u and the ultimate 

strain of the matrix cmu. When the composite is subject to uniaxial tension parallel to the 

fibres, the Young's modulus of the composite E, is initially: 

(3.3.1) Eý = V,,, E,,, +VfE 
.f 

and the stress of the composite o is: 

6c =6f Vf + a-1,, VIn (3.3.2) 

where of and Um are the stress in the fibres and matrix. When the applied strain c 

exceeds the ultimate strain of the matrix Smu, the matrix will crack. At the crack plane, 

the load on the composite is entirely borne by the fibres. The fibre will fail at the crack 

plane if the fibres are unable to sustain the load: 

(6c 
= 6nný V. + 6, r V. rý >_ °-. f" Vs (3.3.3) 

Here, 6-'r is the stress in the fibres when the matrix breaks. It includes the additional 

load transferred from the cracked matrix. However if fibres are able to bear the load 

transferred from the cracked matrix, i. e. 

`6, " = 6nnu Vin + 6'r Vrý < 6.111 Vf (3.3.4) 

the matrix will exhibit multiple matrix cracking and the composite will have a non- 

linear stress-strain response. The stress-strain responses for multiple matrix cracking 

and single crack failure are shown schematically in Fig 3.3-1. The inequality given by 

eqn (3.3.4) indicates that there is a critical fibre volume fraction Vf at which single 

fracture changes to multiple fracture: 

Vf 
crit 

aw +6f� 
(3.3.5) 

6fii - Emu -6 
.f 

which is schematically shown in Fig 3.3-2. 
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To describe the non-linear stress-strain response of the composite during multiple 

matrix cracking, ACK developed a shear-lag model, which is shown in Fig 3.3-3. The 

fibre-matrix interface is assumed to be unbonded and is frictionally constrained from 

slipping. At the crack plane (x = 0), the stress in the matrix is zero. This is because the 

stress borne in the matrix is totally transferred to the fibres. Following eqn (3.3.4), the 

total stress in the fibres at the crack plane is: 

6f 
X= = 

171 

= 6'. f + 6,,, ý, 
V», 

= a' f+ Au (3.3.6) 
o ff 

where 61zu (V/Vf) = Ao is the stress transferred onto the fibres. If the frictional shear 

stress z at the fibre-matrix interface is constant, the transferred stress will be linearly 

transmitted back to the matrix by friction as x- x', such that at x= x', the stress in the 

matrix and fibres is: 

U,, 
-X, =6 and hflX_ =a-'f (3.3.7) 

X », u x, 

Equilibrating the axial forces on the fibres over the region 0 <_ x <_ x', i. e. 

Fx_o + dF = F,, 
=x, 

(3.3.8) 

V 
or ?r Yý 6'. f + 6,,, ý- - 27r r0 x' 2= 9L T",, o7' f 

(3.3.9) 
Vf 

the critical distance x' to transfer load is defined as: 

x' = 
amuro 

», (3.3.10) 
2z Vf 

ACK analysis shows that the minimum distance separating a new crack from the 

original crack cannot be less than x'. If another crack occurs at a distance less than 2x' 

from the original crack, the stress in the matrix would not reach the ultimate stress of 

the fibre and this prevents the creation of a new crack between the two existing cracks. 

As such, the minimum crack separation distance at saturation for multiple matrix 

cracking lies between x' and 2x'. Kimber and Keer (1982) have used a statistical 

analysis to show that the matrix crack separation distance at saturation is 1.337x' or 

approximately 4/3x', i. e. 

XT N 
36, 

, rý V,,, (3.3.11) 
2z Vf 

Assuming that the matrix cracking strain is constant, matrix cracking will occur at 

a constant composite stress of Ecsnu until the matrix is saturated with cracks with 
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separation distances between x' and 2x'. At the matrix crack, the additional strain 

induced in the fibres As is: 

Aa 6»uß Vin Em V 

A£__ ==£», »a 
(3.3.12) 

Ef Ef Vf EfVf 

where Au is defined in eqn (3.3.6) and 

a_VE», (3.3.13) 
Vf J 

Over a crack separation distance of 2x', the average strain induced in the fibres is 

aE�, u12. When the crack separation is x', the distance over which the fibre transmit stress 

back into the matrix is halved. As such, at a distance x'/2 from the crack plane, half of 

the transmitted matrix stress will remain within the fibres and the average stress 

transferred into the fibres is Da- =3 o-, nu(V, t/Vf)/4. Substituting for eqn (3.3.12), the 

corresponding average strain induced in the fibre is 3 aa"u/4. Consequently, the total 

strain of the composite at matrix cracking saturation s�zc(sarý is bounded by: 

1+ < ýCmc(. sa/) < si nn 

(1 
+ 

4) (3.3.14) 
2ý 

When further load is applied to the composite, the fibres will elongate resulting in 

sliding between the matrix and fibres so that the cracked matrix bears no additional 

load. Only the fibres are capable of sustaining additional load applied after matrix crack 

saturation. At this stage, the composite's Young's modulus becomes EfVf and failure of 

the composite occurs when the fibres break, i. e. o=f,,, Upper and lower bounds for 

the composite failure strain sau are obtained using the crack separation distance at 

saturation of 2x' and x'. Solving for the composite modulus: 

Vl EI = 
6f�Vf - E,, -,. (3.3.15) 

£ccu - En, 
C(-) 

The bounds for the composite failure strain after substituting eqn (3.3.14) into eqn 

(3.3.15) are: 

£! _ 
CC£ýnu 

< £cu < CA _ 
ac- 

(3.3.16) 
2f4 

The stress-strain curve resulting from the ACK analysis is shown in Fig 3.3-4. 

Aveston and Kelly (1973) extended ACK analysis by considering fibre-matrix 

interfaces that remain bonded during matrix cracking. In this case, the interfacial shear 

stress z is assumed a function of the distance x along the fibre. Consequently, the stress 
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transferred onto the fibres due to matrix cracking is also a function of the distance x. 

Following the shear-lag analysis, see Fig 3.3.5, the transferred matrix stress Au and the 

shear stress z as a function of x are: 

Da- = Day, exp( ý_Ox) (3.3.17) 

rl, 
and r=A., exp( jx) (3.3.18) 

1/2 

where = 
2G"' E° 1 

(3.3.19) 
E. 1 E», V,,, r, [ln(R/r0 )]1/2 

Here, G,, denotes the shear modulus of the matrix and 2R is the centre-to-centre 

separation of the fibres. For a hexagonal array R= r� 
[7rl2V-3 Vf 

11/2. 
The symbol 

Da-� denotes the stress transferred onto the fibres at the matrix crack plane which is 

given as: 
Au� =6-Ef E77171 (3.3.20) 

following eqn (3.3.6) in which o denotes the applied stress. Importantly, the interfacial 

shear stress -cis independent of the fibre radius ro due to the perfect bonding at the fibre- 

matrix interface. This differs significantly from the case where the fibre-matrix interface 

is not bonded. Further the maximum interfacial shear stress z, i. e. zm� , occurs at x=0: 

Zx-p= Zmaw= 

Ao0 
VY' 

r0 

2 
(3.3.21) 

The fundamental equilibrium equation governing load transfer between the fibres 

and the matrix can be re-written generally as: 

dF 2Vf 

dx r0 
(3.3.22) 

Substituting for eqn (3.3.18), the axial force F in the cracked matrix, as a function of 

distance 1 from the crack surface, is given as: 

F= VfAu, 
[1 

-exp( 
JO x)] (33.23) 

The relation shows that multiple matrix cracking can only occur if AU,, increases. For 

small increments of Aa( , the crack spacing would be between the critical load transfer 

distance x' and 2x'. The critical load transfer distance x' can be determined by letting F 

= amuV, z, when: 
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x' =-1 In 1- 671,,, V,,, 
(3.3.24) 

V Aa0Vf 

If Aa 
,, 

is greater than a,,,,, V,,, /Vf 
, the critical load transfer distance x' reduces to: 

X1 =16, »711V», 
V 06,, Vf 

(3.3.2 5) 

Essentially, the critical load transfer distance x' for the bonded case is the same as the 

critical load transfer distance x' for the unbonded case. The interfacial shear stress z in 

eqn (3.3.10) is replaced by Do-,, V r0 /2, which is the maximum shear stress rm at the 

fibre-matrix interface (see eqn (3.3.21)). 

The critical load transfer distance x' given by eqn (3.3.24) allows the stress-strain 

response of the brittle matrix composite during multiple matrix cracking to be deduced. 

This can be achieved by determining the average additional strain increment in the 

fibres (or the composite) due to each matrix cracking event, i. e.: 

0s . 
Ow 

x' 
(3.3.2 6) 

Here, Aw denotes the total additional displacement of the fibres during a single matrix 

crack event which is defined as: 
1/2 

fox /'- 06 
dx _2A 

[i_(i_ 
6nn, Vin 

(3.3.27) Aw =2 (33- 
Er E. f 

V Aa0Vf 

Substituting eqn (3.3.24 & 27) into eqn (3.3.26) gives 

2A° 1-(1-6 V /Aao Vf )1/2 
Ac =- (3.3.28) 

Ef 1n 1- 6,,, UV,,, 
/06°V 

f 

This expression shows that the additional strain increment in the composite is initially 

zero when a matrix crack forms. As Ao increases, the additional strain increment As 

increases to Ao /E 
f. The predicted stress-strain curves of steel reinforced Portland 

cement with perfectly bonded and unbonded fibre-matrix interface is shown in Fig 3.3.6 

following Aveston & Kelly (1973). The predicted stress-strain curves show that the 

bonded interface analysis allows the stress in the matrix cracked region of the stress- 

strain curve to increase smoothly towards final failure of the composite. In the case of 

unbonded interfaces, a smooth increase in the matrix cracking region of the stress-strain 

curve is only possible if the matrix cracking strain is taken to be statistically distributed. 
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3.4 Matrix Crack Initiation 

56 

The initiation of matrix cracking is an important feature of fibre reinforced brittle 

matrix composites. It signifies the start of permanent damage to the matrix and results in 

the exposure of the fibres to environmental attack, e. g. corrosion and oxidation. In this 

section, the theoretical approaches used to predict matrix cracking initiation in 

unidirectional fibre reinforced brittle matrix composites are reviewed. These approaches 

can be divided into two categories: energy balance approaches and fi°acture mechanics 

approaches. 

3.4.1 Energy Balance Approach 

In the energy balance approach, the initiation of matrix cracking is predicted by 

an energy balance before and after a matrix crack is formed. The displacement at the 

crack surfaces is assumed to be uniform and the fibres bridging the crack remain intact, 

i. e. steady-state matrix cracking. The argument was originally introduced by ACK when 

analysing the tensile behaviour of unidirectional fibre reinforced brittle matrix 

composites loaded in the fibre direction (see Sect. 3.3). Steady-state matrix cracking is 

postulated to occur if the external work done AW equals or exceeds the energy 

consumed during the internal matrix cracking processes, i. e. 
(U,. +)Id,, +U,, +4Uf-AU,,, 

) < AW (3.4.1.1) 

Here, UU is the matrix crack surface energy consumed and is given as: 

U,. =2 Y� V (3.4.1.2) 

in which Im is the fracture work required to form a crack surface in the matrix. The 

energy ydb consumed to debond all fibres bridging a unit area of the matrix crack over 

the critical load transfer distance of 2x' is given as: 

_ 
2G116,,,,, V,,, 

(3.4.1.3) Yd/ 
T 

in which GI, is the critical energy required to debond a unit area of fibre-matrix 

interface. The increase in strain energy of the fibres AU f after overcoming the constant 

frictional stress z at the fibre-matrix interface is given as: 

AUf = 
Ef 2V 

£�»ar� 
L1+ 3ý (3.4.1.4) 
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and the loss in matrix strain energy AU,,, due to the strain relaxation in the fibre 

direction is: 

AU 
Ef E� V�, 

3 (3.4.1. AU", 
- 3Z 

£rmra No 

The energy dissipated due to frictional sliding US per unit area of the matrix crack is: 

U. = 
EfE,,, V», 

£, ar�(1+a) (3.4.1.6) 
6z 

The work done AW by the applied stress to create a steady-state matrix crack is given 

as: 

AW = 
Ef E 

2z 
», 

V£�t, 
a r0 (1 + a) (3.4.1.7) 

Substituting eqn (3.4.1.2 to 7) in eqn (3.4.1.1) gives: 

EE s3�a'r 
2V,,, + G� 6,,, Z, <f» (3.4.1.8) 

6z- 

If the debond energy of the fibre-matrix interface G11 is assumed to equal the surface 

energy for a matrix crack yn, eqn (3.3.1.8) can be re-written as: 

<f 
c111a r �3 

'Y», 
+ 

6""` EE 
2V (3.4.1.9) 

Z' 6z 

If the fibre-matrix interface is purely frictional, i. e. GII = 0, the lower limit to eqn 

(3.4.1.8) is: 

E, E s3 a'r 
2V, 

» Y,,, ýýf,,, u (' (3.4.1.10) 
6z 

which gives the strain to initiate steady-state matrix cracking as: 

12zy,,, EfVf 
_ (3.4.1.11) 

EcE», r,, V 

Eqn (3.4.1.11) indicates that the strain to initiate matrix cracking increases if the fibre 

radius r0 is decreased or if the frictional stress at the interface z is increased. For 

sufficiently low ro or high z, matrix cracking can be suppressed and the composite 

would be brittle. 

Aveston and Kelly (1973) extended the ACK analysis to predict the strain to 

initiate steady-state matrix cracking with perfectly bonded fibre-matrix interface. Since 
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no energy is consumed for debonding or frictional sliding, the energy criterion given in 

eqn (3.4.1.1) simplifies to: 

Uý <_ AW (3.4.1.12) 

The work done AW by the applied stress to create a steady-state matrix crack is given 

by the product of the stress in the composite Ecs,, u and increased fibre length Aw due to 

the transferred stress 060 = a-,,,,, V lVf 
, 
in which 

, /z 
Aw =2 Jö dx =-$ 060 exp V Ox)dx = 

20 
= las»�O I/2 (3.4.1.13) 

.fr 
using eqn (3.3.13 & 17). The work done by the applied stress is given as: 

0W = E,, s,,,, Aw = E, s',,, a -1/2 (3.4.1.14) 

and eqn (3.4.1.12) is re-written as: 

62 "a 
0 1/2 (3.4.1.15) 

The strain to initiate steady-state matrix cracking with perfectly bonded fibre-matrix 

interface is then given as: 

= 
[2i,,, V», 0 1/2 

1/2 

= 
2YV777 2G777E, 

1/2 

(3.4.1.16) 
7777! 

a EC r» a E, ßE f E,,, V,,, 

where /3 = ln(R/ro) 
. 

The ratio of the strain initiating a matrix crack with perfectly 

bonded interface (eqn (3.4.1.16)) to the unbonded case (eqn (3.4.1.11)) is: 

£nrrý(AK) 6mvý 

ýmu(ACK) 3Z 
(3.4.1.17) 

If z<6,,,,, /3, the strain to initiate a matrix crack with perfectly bonded fibre-matrix 

interface would be greater than the unbonded case. 

Budiansky, Hutchinson and Evans (1986) have generalised the approaches 

developed by ACK and Aveston & Kelly (1973) using the principle of virtual work and 

the shear-lag model developed by Aveston & Kelly (1973). Partial debonding was 

allowed and the effects of thermal stresses were considered in the analysis. A schematic 

diagram of the virtual steady-state crack extension model used is shown in Fig 3.4-1. 

Initially, the composite contains a steady state matrix crack of length s in a wide 

specimen of width W and unit thickness and length 2L. The matrix crack is then allowed 

to virtually advance a distance As from the initial crack front CC to the new crack front 

C'C' in which that the average applied stress 6 remains constant. This means the 
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stresses at the crack front, averaged through the thickness, remains unchanged during 

crack growth, and the stress states far ahead of and behind the crack front (hereafter, 

upstream and downstream stress-state) do not change. Assuming that the composite is 

elastic and solving the net upstream and downstream potential energy per unit cross- 

sectional area of the composite during steady-state matrix crack propagation, the steady- 

state matrix crack stress of a composite is generally given as: 

(3.4.118) 6mc =0o- 
Ec 

r 6111 E,,, 

where ra-,,, is the axial residual stress in the matrix. 

For composites with unbonded fibre-matrix interfaces that are constrained with a 

constant interfacial frictional shear stress z, 

6zG,,, VfEfE 1/3 
(3.4.1.19) 

VE ro 

and for composites with bonded fibre-matrix interfaces, 

VfEfEcGIý 
1/2 

07" = (3.4.1.20) 
E, 

where is defined in eqn (3.3.19) and GI denotes the critical mode I matrix fracture 

energy release rate. If initially no residual stresses exist in the matrix, i. e. "6 = 0, the 

matrix cracking stresses predicted in eqn (3.4.1.19 and 20) are essentially the equivalent 

result of ACK for the unbonded case and Aveston & Kelly (1973) for the bonded case. 

For composites with initially bonded-debonding fibres, 

6VfG, EJET 1/4 

6o =B VE(l+v,,, )r(, 

4V1l d GIl 
1+ 

V r,, GI 

1/2 

1+ 
B2 6E, ld 

V Ef(1+v,,, ) r0 

1/2 

(3.4.1.20) 

59 

1/4 

where B= 
6log R1r. 

and log R/r =- 
2logVf +V(3-Vfý 

4V,,; 

(3.4.1.2 1) 

(3.4.1.22) 
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According to Budiansky, Hutchinson and Evans (1986), the composite matrix cracking 

stress during debonding is expected to be less than the bonded case given in eqn 

(3.4.1.20). 

In the limit, the matrix cracking strain c7mc and stress O"mC estimated using the 

energy balance approach apply only if the matrix cracking stress is single valued and 

independent of pre-existing crack size. In practice, however, the matrix is brittle which 

means that the matrix cracking stress 6�ßc is both sensitive to the distribution of pre- 

existing flaws and flaw sizes. This implies that non-steady state matrix cracking can 

occur, however this possibility has not been considered by ACK, Aveston & Kelly 

(1973) or Budiansky, Hutchinson and Evans (1986). To overcome the limitation from 

the energy balance approaches, stress-intensity approaches have been developed and are 

reviewed next. 

3.4.2 Stress Intensity Approach 

Marshall, Cox & Evans (1985) first used a stress-intensity approach to analyse 

the stress required to initiate non-steady-state and steady-state matrix cracking. 

Essentially, a matrix crack bridged by the fibres in a uni-directional fibre reinforced 

composite can be represented as a semi-infinite crack centrally located in an infinite 

homogeneous elastic body which is subjected to a uniform far-field stress o and an 

opposing closure pressure 

p(X) = T(X)Vf (3.4.2.1) 

at the crack surface, as shown in Fig 3.4.2-1. Here, T(A) denotes the closure traction 

applied by the bridging fibres along the normalised crack surface position X, which is 

the ratio of the distance x along the crack surface and the half-crack length a. The net 

pressure at the crack surface is the difference between the far-field stress or., and the 

fibre pressure p(. 

Following Lawn & Wilshaw (1975) and Sih (1973), the effective stress intensity 

of the composite K° can be approximated as: 

K'=2 
Fa 

ýo 
{a 

-1, 
(X)]dV 

(3.4.2.2a) 
1-X 

if the matrix crack is straight or 

_2 

ra ' [(T. 
- 

P(X)IX 
CLV (3.4.2.2b) Jo 

l-X2 
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if the matrix crack is penny shaped and K° is a function of the matrix stress intensity K. 

To determine the relationship between Kc and K, Marshall, Cox & Evans (1985) 

assumed that just ahead of the crack-tip the composite and matrix strain are equal and 

the composite and matrix stress intensities scale with the stresses. This implies that: 

Ký = K,,, (E, /E,,, (3.4.2.3) 

Crack propagation in the matrix occurs when the stress intensity factor of the matrix K' 

reaches a critical value, i. e. K; ý 
. 

Similarly, matrix crack propagation in the composite 

occurs when: 

K` = KIC =1"-IC I E», ý (3.4.2.4) 

By substituting eqn (3.4.2.4) in eqn (3.4.2.2), the far field stress required to initiate 

matrix cracking, i. e. a-, = 6,,, c, can be found. 

However, before eqn (3.4.2.4) and eqn (3.4.2.2) is solved, the crack closure 

pressure p(X) given in eqn (3.4.2.1) must be defined. For a composite with unbonded 

frictionally constrained fibre-matrix interfaces, the fibre traction T(A) along the crack 

surface has been defined as: 

T(X) =A juX (3.4.2.5) 

where A=2 (E 
fz 

(I 
+ a-' /r(' 2 (3.4.2.6) 

Here, Ef is the elastic modulus of the fibres, z is the constant frictional stress at the fibre- 

matrix interface, ro is the fibre radius, a is the elastic constant given in eqn (3.3.13) and 

u(A) is the crack surface displacement as a function of the normalised distance X. For 

steady-state matrix cracking u(A) is constant. The fibre traction - crack opening 

displacement relation, given in eqn (3.4.2.5), was derived based on the ACK shear-lag 

analysis for steady-state matrix cracking (see eqn (3.3.6 to 13)). Along the crack 

surface, Sneddon & Lowengrub (1969) give the crack surface displacement as: 

4a1-v2ý s , 
[a- 

-p(t)]dt ds (3.4.2.7a) u(X) =Jx jS 
A' 2 ýcEc s- -XZ s -t 

if the matrix crack is straight or 

UM ý. 1 
'1X 

-'p(t)]t dt 
ds (3.4.2.7b) 

ýE, s -X st 

if the matrix crack is penny shaped. Here, s and t denotes normalised position co- 

ordinates and v denotes the Poisson's ratio of the composite. 
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Marshall, Cox & Evans (1985) have estimated that the stress to initiate steady- 

state matrix cracking is: 

1ý 3 [(1-v ')K; c zEfVfV 
(l+a-')2 

6,, ý =8 (3.4.2.8) 
E r, 

where 5' is a dimensionless constant. Defining the transient crack length, i. e. the 

distance from the crack-tip before the crack surface displacement becomes uniform, as: 
2/3 

a= 
K'c (3.4.2.9) 

1.44Vf w 

in which w= 
8(1-v2)zVfEf(I+a-') 

[E, r0 
(3.4.2.10) 

non-steady state matrix cracking was shown to occur if a pre-existing matrix crack 

length was less than - a,, /3. In that region, the stress inducing crack propagation was 

shown to increase as the pre-existing crack length decreases. 

The stress intensity approach by Marshall, Cox & Evans (1985) is however 

questionable. The equal stress or strain condition assumed just ahead of the crack-tip to 

derive the stress intensity relations given in eqn (3.4.2.3 and 4) is arbitrary and possibly 

inappropriate. Stress concentration at the crack-tip can cause the stress and strain fields 

to be non-uniform. As such, the equal strain condition assumed for the composite and 

matrix may not be valid. McCartney (1987) has shown that the effective stress 

intensities of the composite given in eqn (3.4.2.3 and 4) are energetically inconsistent 

based on an energy balance framework. Instead, the effective critical stress intensity of 

the composite in eqn (3.4.2.4) should be: 

Ke = Kic = Kic (VE, /E», 172 (3.4.2.11) 

ý 
where KIý (2Y,,, E,,, /1- V2 

1- (3.4.2.12) 

which is (E, IV E,,, )1/2 times the estimate by Marshall, Cox & Evans (1985). When 

implemented into the stress intensity framework introduced by Marshall, Cox & Evans 

(1985), the McCartney (1987) analysis shows that the stress required to initiate steady- 

state matrix cracking is: 
1/ 3 

[3,, y,,, Ec21 /12 (3.4.2.13) 
2 2ýc1-v- 
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Vf 2; EfEc 1/2 

where /1= 2- (3.4.2.14) 
V, r,, E,,, 

and the transition crack length is: 

a,, = 
(K/22)2I3 

(3.4.2.15) 

The steady-state matrix cracking stress is identical to the estimate by ACK for plane 

strain condition. Non-steady state matrix cracking is shown to occur if the pre-existing 

crack lengths are less than -IOao. 
Danchaivijit & Shetty (1993) have questioned the fibre traction - crack opening 

displacement relation given in eqn (3.4.2.5). They argued that the mechanics used to 

derive the traction-displacement relation is valid only during steady-state matrix 

cracking. However, near the crack-tip, a transient region exist in which non-steady state 

matrix cracking occurs. As such, eqn (3.4.2.5) is inappropriate. To improve the stress 

intensity approach, Danchaivijit & Shetty (1993) introduced a modified shear lag model 

to include the transient effects near the crack-tip. The new fibre traction - crack opening 

displacement relation is given as: 
1/2 

6ý 16(1+a-1)2a2EfVf zu 
T= 1+ +1 (3.4.2.16) 

2aVf l+a ' 6ýr 

In addition, by using the effective critical stress intensity relation developed by 

McCartney (1987), i. e. eqn (3.4.2.12), the steady-state matrix cracking stress was 

estimated to be: 

12(1-v2 )KI, 2 
zEfVfV(I+a-1)3 

1/3 

(3.4.2.17) 
E,,, ro 

(2 + 3a 

and the transient crack length was defined as: 

Kjc c 
2/3 

a, = ýz V,, 
I 
(l 

+a' 
)2 (3.4.2.18) 

6(1-v2)-r V, VfEf (l+a-1)2 
in which (3.4.2.19) 

E,,, r,, 

Compared to the analysis of Marshall, Cox & Evans (1985) and McCartney (1987), an 

important result of Danchaivijit & Shetty (1993) is that the critical crack length for non- 

steady state matrix cracking is dependent on a, i. e. as a decreases the critical crack 

length for non-steady state matrix cracking increases. 
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Cao et al (1990) have shown that the theoretical steady-state matrix cracking 

stress correctly estimate the proportional limits for several uni-axially tensioned aligned 
SiC (Nicalon) fibre reinforced glass and glass-ceramic matrix composites. This was 

achieved using estimates of the interfacial friction stress independently assessed from 

the saturation crack spacing on tensile specimens and theoretical estimates of the 

composite residual stress. The result suggest that the pre-existing flaw length prior to 

the proportional limit is greater than the critical crack length required for non-steady 

state matrix cracking. The study by Kim & Pagano (1991) supports the finding of Cao et 

al (1990). However, their study also detected matrix micro-cracking at stresses 35% to 

85% of the proportional limit based on acoustic emission and optical microscopy data. 

To reconcile the discrepancy between experiment and theory, Kim & Pagano (1991) 

reasoned that the micro-cracking at low stresses is sensitive to non-uniform fibre 

distribution. In regions where the fibre volume fraction is low or non-existent, the stress 

to propagate a matrix crack would be less than the matrix cracking stress calculated for 

the average fibre volume fraction. Numerical results on the matrix cracking stress as a 

function of crack size for different unbridged zone size in a penny shape crack of a SiC- 

LAS composite by Shetty (1995) have verified Kim & Pagano's argument. For 

increasing unbridged zone sizes, the stress required to extend the penny shaped matrix 

crack was shown to decrease. Hence, matrix microcracking can occur below the steady- 

state matrix cracking stress. The study by Baaklini & Batt (1991), Beyerle et al (1992), 

Wang & Parvizi-Maljidi (1992) and Karandikar & Chou (1993) on SiC fibre reinforced 

ceramic composites also detected the early initiation of micro-cracks which 

progressively accumulates before reaching the steady-state matrix cracking stress. 

Consequently, these studies illustrate the limitations of the current steady-state matrix 

cracking stress analysis. 

3.5 Ultimate Tensile Strength 

After matrix cracking has saturated, the ultimate failure of a fibre reinforced 

brittle matrix composite occurs when the fibres are unable to withstand the load on the 

composite. To predict the ultimate failure, deterministic or statistical approaches can be 

used. 

For simplicity, the ultimate tensile strength of the composite can be estimated by 

assuming the fibre strength to be single-valued. Following ACK, the ultimate strength 

of the composite can be defined as: 
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CCU = Vfa f. (3.5J) 

where of,, denotes the ultimate strength of the fibres. Prewo (1986) has compared the 

results from ACK model with experimental data of a unidirectional SiC-LAS 

composite. The ultimate strength of the fibres 6o,, was determined by individually testing 

fibres extracted from the composite in uniaxial tension. The strength of the extracted 
fibres was found to be 30% to 40% lower than the as received fibres. However, 

comparison with the ultimate tensile strength of the composite after multiplying the 

measured 6f, ß with the fibre volume fraction Vf showed good agreement. 

Alternatively, statistical approaches can be used. Weibull (1951) first considered 

the distributive strength characteristic of fibres. Conceptually, a fibre of length L can be 

likened to a chain with links of incremental lengths AL,, AL, , etc. When subjected to 

an applied stress 6, failure of the chain occurs when one of the links break, i. e. the fibre 

breaks when one of the incremental lengths contains na critical number of cracks per 

unit length - Weakest Link Theory. In the first incremental length, the probability of 

failure can be defined as: 

P,,, = n, A-L, (3.5.2) 

and the probability of survival is: 

PS, =I - PF1 (3.5.3) 

If so, the probability of survival of the entire fibre can be given as the product of the 

probabilities of survival of each of the N incremental lengths making up the fibre, i. e. 

PS =(1-PF1X1-P,., ).... (1-PFN) (3.5.4) 

For infinitesimal incremental length, eqn (3.5.4) can be approximated as: 

PS =exp[-(P 1 +Pi:, +... Prw)]= exp[ Ln, ] (3.5.5) 

since (1- x) , exp(- x) when x«1 and substituting from eqn (3.5.2). In addition, for 

brittle materials, Weibull (1951) proposed that the critical number of crack per unit 

length sufficient to cause failure is of the form: 
/it 

n, L0 =6 (3.5.6) 
co 

in which m is called the Weibull modulus and o is a normalising strength expected 

from a fibre of length Lo. Substituting into eqn (3.5.5), the probability of failure of a 

fibre of length L for an applied stress o- is: 
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Pý = 1- exp -L6 (3.5.7) 
Ln a, 

The distribution of the fibre failure strengths, i. e. the probability density of failure, can 

be obtain by differentiating eqn (3.5.7) with respect to the stress (a-/6,, ), i. e. 

m-1 
L6 

PF - Lý 6ý 

m L6 

exp--- L0 6ý 
(3.5.8) 

The role of the Weibull modulus m can be seen from the results obtained from eqn 

(3.5.7 & 8). For high values of m, a low probability of failure is implied which mean 

that the fibre is very reliable. Conversely, low values of m would imply a high 

probability of failure and that the fibre is unreliable. The mean fibre failure stress can be 

obtained by differentiating the fibre failure probability density function PF and equating 

it to zero, which gives 
l/ n! 

6fü - 6o 1- 
11 L° 

(3.5.9) 
m) L 

In the case of a loose bundle of fibres, the failure stress of the bundle is dependent 

on its fibres (Daniel (1945), Colemen (1958) & Rosen (1970)). When the bundle is 

stressed, the weaker fibres will break and the load previously borne is transferred to the 

stronger fibres. If the stronger fibres are able to withstand the load transferred by the 

broken fibres, the fibre bundle will not break. At a given stress (a/o-,, ), the stress in the 

bundle is: 

_ 
07b ,7 (1-pl, _- exp -L 

6 (3.5.10) 
O"', 6,, 60 Lý 6 

The ultimate strength of the bundle is obtained by differentiating eqn (3.5.10) and 

equating it to zero, i. e. 

170 
1 La 

(3.5.11) ý� = (7b. 
Lm L 

The ratio of the ultimate bundle strength and the mean fibre strength is: 

1/in 
6'"` 

(3.5.12) == 
(1 

6rl M-1 

The strength ratio shows that the ultimate bundle strength is less than the mean strength 

of a fibre and it decreases as the fibre becomes more unreliable (small values of m). The 
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reduction in the ultimate bundle strength can be overcome by increasing the number of 

fibres in the bundle. Daniel (1945) has showed that for a bundle with N number of 
fibres, the distribution of bundle strength is Gaussian and the standard deviation is 

proportional to N 1. Therefore, as N increases to infinity, the deviation in strength 

reduces which ultimately produces a highly reliable bundle with a single-valued 

strength. Davidge & Briggs (1989) and Bhatt & Phililps (1990) have used the bundle- 

mean fibre strength ratio with eqn (3.5.1) to estimate the ultimate strength of SIC-RB SN 

and Nicalon-BSG composites. Reasonable agreement with experiment was obtained. 

In applying the fibre bundle analysis to fibre composites, the load from the broken 

fibres is assumed to be homogeneously distributed to the unbroken fibres. However, in 

reality, the matrix does bear some load transferred from the broken fibres. Rosen (1970) 

has developed a cumulative weakening model to consider the matrix effect. To 

determine the composite strength, the composite is treated as a string of fibre bundles 

each with a unit length L,. For each bundle, the probability of survival below a stress 

(a/cj is: 

111] 
(1-Pr)=exp 

-6 (3.5.13) 
6/, 

For a composite L times the unit bundle length L, the probability of survival is the 

product of the probabilities of survival of each of the unit bundle, i. e. 

(1- Pf )L 
= exp -L6 Lc 60 

(3.5.14) 

By following the argument which leads to eqn (3.5.9), the bundle strength is given as: 

Uh =o1/mm expl- 
mI 

(3.5.11) 

The stress in a composite, which allows multiple failure of the fibres, is given as: 

6, =V f6fi, nl6 m 
(3.5.1 2) 

where a',,, denote the stress in the matrix when the fibre breaks. Substituting eqn 

(3.5.11) into eqn (3.5.12) in place of the maximum fibre stress 6fu, the stress of the 

composite is estimated to be: 

6c. =V f60 
m° 

1/ m 

exp(- 
mI+ 

Vr�6'r� (3.5.13) 
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The statistical approaches presented so far are not designed specifically for 

ceramic matrix composites. In such composites, matrix cracking modifies the failure 

process. To include these effects, Cao & Thouless (1990) have used a statistical and 

micro-mechanical approach to estimate the composite strength. Assuming that the stress 

transferred at the fibre-matrix interface is controlled by a constant friction stress z 

following ACK, the composite stress is approximated as: 

6c =VfEI 
r0 

exp -1 (3.5.14) 
Im 

(m+1)rL m 
11 

AS z(m+1) m, 1 2ýy L 
where and So = 6o (3.5.15) 

L2 7r r, A0 

Here, L denote gauge length (i. e. the length of the specimen) and Ao is a normalising 

factor (= 1 m2). For Nicalon-LAS composites, the agreement between theory and 

experiment was fairly good. 

In the statistical and micro-mechanical approach by Curtin (1991), the ability to 

consider multiple fibre failure was included. The strength of the composite is given as: 

6, = VfS 
2 m+l (3.5.15) 

m+2 m+2 

L 
where S= (3.5.16) 

The model has been shown to predict the ultimate tensile strength of the different 

Nicalon-LAS composites reported by Prewo (1986). 

3.6 Failure Criteria 

Three dominant failure processes may occur when a unidirectional composite is 

loaded in uniaxial tension at an arbitrary angle to the fibres. These are axial failure, 

tensile delamination and shear delamination. Schematic diagrams of these processes are 

shown in Fig 3.6-1. Following the maximum stress theory (Hull & Clyne, 1997), the 

criteria for these failure processes are: 

(Ti ý 61n 

62 6z� (3.6.1) 

Z12 ý Z12u 
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Here, 071,62, z12 are the axial, transverse and shear stress components on the composite 

with respect to the material-position-system 1 and 2 while a,,,, (31?,, Z-12, are the 

corresponding composite strengths. To relate the composite stresses in the material- 

position-system to the stress system (a-x, (7y, z, ) applied to the composite, the tensor 

transformation law described by eqn (2.4.12) may be used: 

61 6x 

6, _ [G] 6y (3.6.2) 1712 

7 
xy 

The transformation matrix [G] is given by: 

cos' B sin 202 cos B sin e 
[G] = sin 2B cos 28-2 cos B sin 9 (3.6.3) 

-cos0sinB cos Bsine cost 0 -sin' 0 

Here, 8 is the angle between the loading axis and the fibre axis of the material-position- 

system. From these relations, it is possible to determine the stress to cause failure of a 

misaligned composite. The maximum stress criteria for axial failure, tensile 

delamination and shear delamination as a function of the loading angle 8 is: 

01u 

6x > 
cos_ 0 

6ý"l (3.6.4) 
6x 

sin' 8 

6> 
ZLrt 

sin 0 cos 8 

The failure surface with respect to the loading angle 9 is indicated by the solid line in 

Fig 3.6-2. 

The predictions of anisotropic failure processes for unidirectionally reinforced 

composites can also be described by the Tsai-Hill criterion (Tsai, 1966). Hill (1950) 

first proposed this criterion as a modification of the von Mises yield criterion for metals 

with orthotropic symmetry. In plane stress, the criterion is: 

222 
61 

+ 
62 

- 
6162 

- 
6162 

+ 
6162 

-F 
Z12 

=1 (3.6.5) 
77222-0 
1Y 

62y 0 1Y a2 63y Z12Y 

where 61, O, zl2 are the stress components in the orthotropic material position system 

and a-ly, 0y, oy, T12Y are the corresponding orthotropic yield strengths in tension and 

shear. The criterion was later modified by Tsai (1966) to model transverse-isotropic 

composites, i. e. a 2y = 63y, where Hill's criterion becomes: 
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222 
a1 

+ 
07z 

_ 
(71 a2 

+ 
z '12 

=1 (3.6.6) 
flu ýZiý 61tß Z12u 

Here, 61,6?, z1? are the composite stresses in the material-position system which can be 

related to an arbitrary applied stress system by the stress transformation given in eqn 
(3.6.2). In uniaxial tension, i. e. 6y = -cy = 0, the equation reduces to: 

61 =6xCOS2e 

6, = 6x sin2 0 
Z'12 = -6a COS0sin0 

Substituting into eqn (3.4.6), the Tsai-Hill criterion gives the applied stress to cause 
failure as a function of loading angle as: 

6- 
cos' o- (cos2 9- sinn e) 

+ 
sin' 6+ cost 9 sin'- 8_2 

(3.6.8 x(0) -, 
Ulu 62ti 212u 

The failure surface predicted by Tsai-Hill's criterion is compared with the maximum 

stress criterion in Fig 3.6.2. 

The attractive feature of Tsai-Hill criterion is that the prediction of failure is 

compacted into a single expression which is simple to implement computationally. 

However, the criterion does not indicate a failure mode, in contrast to the maximum 

stress theory. This short-fall suppresses information necessary for improving the design 

of composites. Other failure criteria, similar in nature to the Tsai-Hill criterion, have 

also been proposed. These include the Hoffman failure criterion (Hoffman, 1967) and 

the Tsai-Wu failure criterion (Tsai & Wu, 1971), which also predicts the strength of a 

uni-directional composite in uniaxial tension to decrease smoothly as a function of 

loading angle. This is because the anisotropic strengths are assumed to be interactive, i. e 

the critical stress to trigger one failure process is affected by the stresses which trigger 

other failure processes. The interactive nature of the composite strengths has, however, 

recently been challenged. Hart-Smith (1993) has argued that the failure processes are 

unrelated (non-interactive) because composites are heterogeneous and the failure 

processes are different, unlike isotropic metals undergoing plastic deformation. Hence, 

the failure surface of composites arguably cannot be continuously smooth. Instead, it is 

more reasonable to expect the number of criterion for failure to correspond with the 

different failure processes, predicted by the maximum stress criterion. 

To date, the issue of the interactive nature of failure criterion for composites is 

still contentious. A round-robin exercise to asses the merits of different failure criteria 
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has recently been undertaken by Hinton & Soden (1998). However, the results to 

compare the predictions of the failure criteria with experimental data are currently not 

available. The failure criteria considered includes McCartney (1998) fracture-energy- 

based approach, the mechanistic theory of Puck & Schurmann (1998), Rotem (1998) 

and Sun and Tao (1998), a strain-energy based-failure theory by Wolfe & Butalia 

(1998) and the Maximum-Strain and Truncated Maximum-Strain failure theories of 

Hart-Smith (1998), as well as a micromechanics model developed by NASA (Gotsis, 

Chamis & Minnetyan, 1998), British design codes for GFRP (Eckold, 1998), and the 

failure model of the aerospace company AEA (Edge, 1998). 
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Fig. 3.2-1 Bounds for composite moduli. 
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Fig. 3.3-1 Stress-strain behaviours of brittle matrix composite due to single fracture 

and multiple matrix fracture. 
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Fig. 3.3-2 Schematic diagram of the transition from single to multiple matrix fracture 

in ductile-fibre/brittle-matrix composites such that efu >Emu and 6f. >6�tu. 
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Fig. 3.3-3 Schematic diagram of the shear-lag model by ACK (1971). 
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6fu Vf 

6'fVf + 6muVm 
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Legend :6: fracture strength of the fibre. 

O', �u fracture strength of the matrix. 

8f fracture strain of the fibre. 

&, fracture strain of the matrix. 

E _f : the composite strain at which multiple matrix cracking saturates . 
Eu : fracture strain of the composite. 

O'f stress in fibre reinforcement when the strain of the composite reaches 
Vf volume fraction of fibre. 
V, � : volume fraction of matrix. 

(1) Initiation of matrix cracking. 
(2) : Saturation point of the multiple matrix cracking. 
(3) Final failure of composite due to fibre fracture. 

Fig. 3.3-4 Tensile stress-strain curve of a brittle matrix composite during matrix 

cracking as proposed by ACK. 
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Fig. 3.3-5 Shear-lag model for matrix cracking with perfectly bonded elastic matrix 

and fibres following Aveston & Kelly (1973). 

20 

15 

Q 

6 

. IM 
. 

i 

C 0.1 0.2 0.9 04 Qä 0.6 0.7 4a 0.9 
Stein (%) 

Fig. 3.3-6 Predicted stress-strain curve for Portland cement reinforced by long steel 

fibres with Vf = 1% : Solid curve - perfectly bonded interface, broken curve 

- unbonded interface. Adapted from Aveston & Kelly (1973). 
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Fig. 3.4.1-1 The virtual crack extension model by Budiansky, Hutchinson and Evans 

(1986). 
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Fig. 3.4.2-1 Schematic representation of a steady-state matrix crack in a fibre 

composite following Marshall, Cox & Evans (1985). 
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Fig. 3.6-1 Schematic illustration of the three dominant failure processes in a uni- 

directional composite in an arbitrary stress state (a) axial failure, (b) 

transverse failure and (c) shear failure. 
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Fig. 3.6-2 Predicted failure surface for polyester/polyester composite with 18.5% 

fibres using Maximum Stress theory and Tsai-Hill criterion. 



CHAPTER 4 

The Experimental System 

4.1 Introduction 

Ceramic composites have the potential to revolutionise the design of high 

temperature engineering components and structures. In high temperature environments, 

their potential performance surpasses that of super-alloys. Rolls-Royce has considered 

replacing the super-alloy exhaust diffuser units of an EJ200 aero-engine with one made 

of ceramic composites (McCafferty, 1994). This non-critical component served as a test 

bed for subsequent introduction of other composite engine components. Of particular 
interest is the use of a SiC/SiC composite. This material has the ability to function at 

temperatures between 1200°C to 1500°C, which avoids the need for cooling systems in 

exhaust diffuser units. This results in weight saving and higher thrust-to-weight ratios. 

SiC/SiC composites exhibit low modulus and thermal expansion coefficient mismatch 

characteristics between fibres and matrix. This is a crucial factor for ceramic 

composites. In the manufacture of ceramic composites, two problems dominate - 

porosity and matrix microcracking. Porosity is a bi-product of the densification 

processes and kinetics of vapour deposition. Matrix microcracking results from residual 

stress fields arising from cooling from the manufacture temperature, and are caused by 

mismatches in elastic modulus and thermal expansion coefficient between fibres and 

matrix. By reducing the level of mismatch (i. e. using SiC/SiC composites), the extent of 

matrix microcracking can be minimised during fabrication. 

To optimise the structural use of materials such as SiC/SiC composites, it is 

necessary to establish design and analysis guidelines. However, the material is relatively 

new and data is scarce. Typically, mechanical tests such as tensile and bend tests on 

plates and simple structures elements are done to determine constitutive relations and 

failure criteria. The mechanical data are then used for computational modelling, which 

is advantageous because it allows the analysis of full structures and complicated 

geometries that are not simple to manufacture or test. Computational modelling is also 

78 
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cost effective because the manufacture of SiC/SiC composites by chemical vapour 

deposition is both expensive and slow. 

In this chapter, the mechanical tests conducted to establish the constitutive 

relations and failure criteria of a SiC/SiC analogue in tension and shear are presented. 

Both uni-directional (one-dimensional) and balanced 0°-90° woven (two-dimensional) 

fibre architecture were considered. The objective was to establish a physical basis for 

computational modelling the mechanical behaviour of brittle matrix composites in 

general. 

4.2 Materials 

Characterisation of the mechanical behaviour of SiC/SiC composites involves 

mechanical tests, which are both expensive and time consuming to the manufacture 

process of the material. To overcome these constraints, Butler (1992) has proposed an 

analogue material system, which replicates the mechanical behaviour of SiC/SiC 

composites at ambient temperatures. The analogue material system exhibits low 

mismatch in elastic moduli and thermal expansion coefficient between the fibre and 

matrix. As a polymer system, it is cheap and easy to manufacture in the laboratory. 

McCafferty (1994) has compared the mechanical properties of the analogue system with 

a SiC/SiC composite with a balanced 0°-90° woven fibre architecture. The uniaxial 

tensile stress-strain response of both material systems parallel to the fibre direction is 

shown in Fig 4.2-1. The stress-strain response of the two materials are quite different. 

However, when normalised by the stress at which matrix cracking initiates and the 

corresponding matrix cracking strain, the normalised response of both material systems 

are similar. This is shown in Fig 4.2-2. The polymer system is used in the current thesis 

to establish the necessary basis and physics for computational modelling of SiC/SiC 

composites. The following sections contain descriptions of the analogue composite 

systems. 

4.2.1 The Matrix 

The matrix was a mixture of 85% polyester resin (471PALV) and 15% styrene 

monomer (Monomer C) by weight (Scott Bader, 1994). Preparation of the matrix first 

required the liquid polyester-styrene mixture to be degassed in an ultrasonic bath for 5- 

10 minutes. After eliminating entrapped gas bubbles, 2% weight of hardener (Catalyst 
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M) was introduced. At an ambient temperature of 20°C, the pot life of the liquid matrix 

was 12 minutes. To achieve the final solidified state, the polymer was cured at ambient 

temperature for 24 hours and post-cured in an oven for 16 hours at 40°C. To minimise 

the build up of residual stresses within the matrix, the solidified matrix was finally 

allowed to cool slowly in the oven to ambient temperature. 

To determine the mechanical properties of the polyester matrix, the liquid matrix 

(prior to curing) was manually injected into a mould to form a square panel with 

dimensions of 240mm x 240mm x 4mm. Dog-bone shaped tensile specimens were CNC 

milled according to the dimensions illustrated in Fig 4.2.1-1. The tensile specimens 

were tested on a Lloyds 30R testing machine at a displacement rate of 2 mm/min with a 

strain gauge mounted directly on either side of the specimen to detect the normal and 

transverse strains. The stress-strain behaviour of the polyester matrix is shown in Fig 

4.2.1-2. The polyester matrix was brittle linear elastic with a modulus Em of 4.3GPa, a 

failure stress 6�ßu of 32.4MPa, a failure strain Emu of 7.54E-3 and Poisson's ratio v/, of 

0.32. 

4.2.2 The Fibres 

The fibres were made of extruded polyester extracted from a woven polyester 

fabric. The average number of fibres in each tow was optically determined to be 210, 

with an average fibre diameter of 22.6µm ±0.2µm. The properties of the fibre were 

obtained from mechanical tests of the fibre tows. The tows were bonded at each end 

with thick industrial adhesive tapes, which served as tabs held in the grips of the test 

machine. General-purpose adhesive was also applied to improve load transfer and 

minimise stress concentrations at the grips. Fibre tows of length 180mm were loaded in 

tension at a displacement rate of 2 mm/min. The extensions were measured using a 

Lloyds laserscan 200 extensometer. The gauge length of each fibre tow, i. e. the 

separation between the leading edges of two reflective tapes adhered onto the fibre tow, 

was 125mm. The accuracy of the laser extensometer was ±0.5% of the working length. 

The average stress-strain response of a typical polyester fibre tow compared with 

the matrix stress-strain relation is shown in Fig 4.2.2-1. The fibres are non-linear, 

having an initial average modulus of 4.3GPa at strains less than 0.005. At the failure 

strain of 0.014, the secant modulus of the fibre was - -7.15GPa, which is about 1.66 
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times the initial modulus. The average fibre failure stress o was 800MPa and the 

corresponding fibre failure strain efu was 0.157. 

4.2.3 The Composite 

A description of the fabrication of one and two-dimensional polymer composites 

is now presented. 

4.2.3.1 One-Dimensional Composite 

One-dimensional polyester composite specimens were fabricated using 6 layers of 

lightly hand-tensioned continuous fibres, which were pre-aligned and secured in a 

custom-made mould. The fibres were obtained by discarding the transverse fibres from 

a balanced 0°-90° woven polyester fabric as described in Sect. 4.2.2. To impregnate the 

fibres, the polyester resin was initially poured onto the aligned fibres and distributed 

using paddle rollers. The roller facilitated the release of air bubbles trapped in the resin 

between fibre tows. This was performed in a ventilation chamber with an average air 

velocity of 0.47 m/sec to remove fumes. A cover was applied to seal the mould and the 

composite allowed to set (see Sect. 4.2.1). The thickness of the composite panel was 

controlled using height-adjustment attachments on the mould cover and an applied load 

of 100N. The quality of the composite panel is shown in Fig 4.2.3-1a. The composite 

panel exhibited highly aligned fibres with small levels of residual stress, as indicated by 

the slight curvature of the panel. However, a disadvantage of the fabrication technique 

was that the top surface of the panel was plagued with porosity. This was probably due 

to entrapment of air between the cover and the liquid resin during closure. 

To overcome the porosity problem, a resin injection technique was developed. 

The contact between the cover and the mould was sealed to prevent leakage. The mould 

was then left standing on one edge with the aligned fibres in the horizontal direction. 

The polyester resin was slowly injected into the mould through an inlet located near the 

bottom edge. To allow the release of air from the mould, the top edge of the mould was 

opened. The quality of the composite panel is shown in Fig 4.2.3-lb. The porosity 

problem in the previous fabrication technique was eliminated, while retaining the good 

fibre alignment and low residual stress characteristics. This fabrication technique was 

used to fabricate one-dimensional polyester composite test specimens. A diagram of the 

mould with the encased impregnated fibres is shown in Fig 4.2.3-2. 
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4.2.3.2 Two-Dimensional Composites 

82 

Two-dimensional composites with a balanced 0°-90° array of fibres were 
fabricated using a hand-layup technique. The matrix was formed using a polyester gel- 

coat, Resin B, and 2% weight of hardener Catalyst M (Scott Bader, 1998). The 

mechanical properties were identical to the resin used for the one-dimensional 

composite. The work surface of the mould was coated with gel to provide an even 

surface finish for the composite. A woven fibre layer was then applied onto the gel. To 

ensure good impregnation, a subsequent layer of gel was applied to the woven layer and 

evenly distributed using a paddle roller. The process of fibre laying and gel application 

was repeated till the required amount of fibre layers was obtained. The mould cover, 

which was pre-coated with gel, was applied to finish the composite. A force of 100N 

was applied onto the cover during the curing process. Both the cure and post-cure 

duration were identical to the one-dimensional composite. The hand-layup technique 

was preferred over the liquid resin injection method because of better fibre 

impregnation, but this was achieved at the expense of fibre alignment. 

4.3 Mechanical Tests 

The mechanical test programme had two objectives. The first was to determine the 

anisotropic stress-strain relations and failure criteria for one-dimensional composites. 

The second objective was to compare the mechanical response of one and two- 

dimensional composites to determine the influence of transverse fibres. The mechanical 

test programme was intended to provide the data and physical basis for computational 

modelling. 

4.3.1 Test Procedure 

To measure the stress-strain relations and characterise the failure of one- 

dimensional composites, tensile tests were performed at fibre alignment angles, a, from 

0° to 90° in ten degree intervals, plus 45°. Two test configurations were used: tabbed 

rectangular coupons and dog-bone specimens. The former follows the recommendations 

of national test standards such as BS EN ISO 527-5: 1997 for polymer matrix 

composites. The latter follows recommendations from an American national standard 

ASTM E8M-88 for tensile testing metals. 
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The rectangular coupons were bonded with square tabs. The square tabs were 

fabricated using a two-dimensional composite with reinforcement off-axis at ±45° to the 

loading direction. The dimensions of the rectangular coupon specimen and the square 

tabs are shown in Fig 4.3.1-1. The dimensions of the dog-bone shaped specimens are 

given in Fig 4.3.1-2. Specimens with fibre alignment of between 0° to 45 ° were 

considered. The average fibre volume fraction Vf the rectangular coupons and dogbone 

shaped specimens was 0.185 and 0.189. This was determined by calculating the average 

area of the fibres per unit area at the gauge section. The average fibre area was obtained 

by multiplying the area of the fibres per tow by the number of fibre tows in the section. 

Further details are given in sect. 4.2.2. For specimens with a fibre alignment of a= 0° 

to 45°, a displacement rate of 2 mm/min was used, while for fibre alignment of a= 60° 

to 90° a displacement rate of 0.2 mm/min was used. The Lloyds Laserscan 200 

extensometer was used to measure the applied strains for specimens with fibre 

alignments between 0° to 60° while strain gauges of gauge length 6.5mm were used for 

the other tests. The temperature of the test environment was approximately 20°C. A 

Lloyds 30R test machine was used to load the specimens. 

For specimens with a fibre alignment of a= 0°, the evolution of matrix cracks as 

a function of strain was determined using both tabbed-coupon and dogbone shaped 

specimen by counting the number of cracks along the gauge length and recording the 

applied strain of the composite. Tabbed rectangular coupons were also used to 

investigate the debond characteristics of fibre tows caused by matrix cracking at applied 

strains of 0.02,0.0.06,0.10 and 0.12. The information was used to determine the 

interfacial shear strength of the fibre-matrix interface. 

Rail shear tests (ASTM D4255/D4255M-83) were used to measure the shear 

strength and shear modulus of the one-dimensional composite. A schematic diagram of 

the rail shear specimen and its dimensions, following Method A, are shown in Fig 4.3.1- 

3. A photograph of the rail shear test configuration is shown in Fig 4.3.1-4. The strains 

were measured with strain rosettes of 0° and ±45° using an Orion 3531D data 

acquisition system (Schlumberger, 1987). The through thickness delamination stress of 

the one-dimensional composite was measured using the test configuration shown in Fig 

4.3.1-5. The two-dimensional composite was also tested in tension and in shear. 

Tabbed-coupons with the dimensions are shown in Fig 4.3.1-6 and fibre alignment 



Chapter 4: The Experimental System 84 

angles between 0° to 45° were used for the tensile tests. The dimensions of the rail shear 

specimen are as shown in Fig 4.3.1-3. The shear was applied parallel to one of the 

reinforcement directions. The test parameters were identical to the one-dimensional 

composites. A Lloyds 10000 testing machine with an applied displacement rate of 

0.2mm/min was used in these tests. 

4.3.2 Results 

Photographs of the broken one-dimensional tabbed rectangular coupons and the 

dogbone shaped specimens, for each fibre alignment angle tested in tension, are shown 

in Fig 4.3.2-1 and Fig 4.3.2-2. The corresponding stress-strain curves are shown in Fig 

4.3.2-3. Material properties such as Young's modulus E, the ultimate tensile strength 

Ecu and strain e are given in Table 4.3.2-1. The table also gives the failure mechanism 

as well as the matrix cracking stress 0mc and strain ýmC. 

Tabbed Coupons Dogbone Damage 
a 

(ý 
6cQ ßmc 

( MPa) 
Ecu & £mc 

* 10' 
Ec 

(GPa ) 
ßcu & ßmc 

(MPa) 
Ecu & ýmc 

* 10"' 

Ec 

(GPa) Mechanism 

0 
118 
59.5 

126 
13.4 

4.44 
150 
53.3 

136 
12.8 

4.16 Matrix cracking 

0 
116 
52.7 

124 
11.6 

4.54 
134 
47.6 

126 
11.8 

4.03 Matrix cracking 

10 51.5 15.3 3.37 51.0 10.4 4.90 
Matrix cracking 
& delamination 

10 50.8 10.7 4.75 54.5 15.2 3.56 
Matrix cracking 
& delamination 

20 23.1 6.54 3.53 3.69 9.77 3.78 
Matrix cracking 
& delamination 

20 28.0 8.17 3.43 37.5 9.16 4.09 
Matrix cracking 
& delamination 

30 10.2 3.81 2.67 22.4 6.10 3.68 Delamination 

30 20.4 4.76 4.28 18.3 5.93 3.09 Delamination 
45 11.1 3.81 2.91 12.6 3.82 3.30 Delamination 

45 10.5 3.81 2.75 - - - Delamination 

60 8.26 2.78 2.97 - - - Delamination 

60 5.99 1.61 3.72 - - - Delamination 

70 9.31 2.34 3.98 - - - Delamination 

70 9.76 2.98 3.28 - - - Delamination 

80 7.40 2.07 3.57 - - - Delamination 

80 8.83 1.85 4.77 - - - Delamination 

90 7.78 1.86 4.18 - - - Delamination 

90 7.73 2.34 3.30 - Delamination 

Table 4.3.2-1 Test data of the one-dimensional polyester/polyester composite. 
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Photographs illustrating the evolution of matrix cracks during tensile testing of the 

tabbed-coupon are presented in Fig 4.3.2-4. A plot of the matrix crack density as a 
function of applied strain for a one-dimensional tabbed-coupon and dogbone shaped 

specimen tension parallel to the reinforcement direction is shown in Fig 4.3.2-5. The 

crack density p is defined as the number of matrix cracks per unit length. This was 

normalised by the density at saturation plat, i. e. the maximum number of matrix cracks 

per unit length in the gauge length when the composite finally failed. The matrix crack 

density at saturation plat for the tabbed-coupon and the dog-bone shaped specimens 

were 6 cracks/cm and 7cracks/cm, respectively. The evolution of matrix cracks in the 

composite was initially a linear function of strain. However, prior to failure the damage 

density was constant as the matrix cracking had saturated. 

A photograph of fibre debonding at a matrix crack is shown in Fig 4.3.2-6. From 

such micrographs, the average fibre debond lengths were determined for strains of 0.02, 

0.06,0.1 and 0.12. The results are presented in Table 4.3.2-2. A plot of the average fibre 

debond length (± 2 standard deviations) with respect to strain is shown in Fig 4.3.2-7. 

This shows that the debond length tends to increase with applied strain, although there 

is a great deal of scatter in the results. 

Applied Strain No. of data Ave. debond length 
(mm) 

1 Standard Deviation 
(mm) 

0.02 72 0.508 0.146 

0.06 152 0.569 0.155 

0.1 287 0.744 0.213 

0.12 54 1.005 0.155 

Table 4.3.2-2 The measured debond length for one-dimensional composites. 

A photograph of a broken one-dimensional Rail Shear specimen is shown in Fig 

4.3.2-8. A distinct delamination plane parallel to the fibre reinforcement direction was 

observed near the rail-grips. The average shear modulus and the average shear strength 

obtained from the rail shear tests were 2.1 GPa and 9.9MPa. Two specimens were 

examined. A plot of the typical shear stress-strain relations is shown in Fig 4.3.2-9. 

A photograph of the one-dimensional composite delaminating in the thickness 

direction is shown in Fig 4.3.2-10. A plot of the stress-strain relation of the specimen is 
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shown in Fig 4.3.2-11. The average through-thickness delamination stress was 
12.3MPa. 

The uniaxial stress-strain relations of the two-dimensional tabbed-coupons for 

fibre alignments between 0° and 45° are shown in Fig 4.3.2-12. The stress-strain 

relations for all fibre alignment angles were similar in form to the aligned one- 
dimensional specimens. Failure occurred by matrix cracking and subsequent fibre 

failure. Photographs of the cracked specimens for the different fibre alignment angles 

are shown in Fig 4.3.2-13, indicating that matrix cracks were inclined to the principal 

reinforcement directions. Table 4.3.2-3 gives the stress 6ync and strain amc at which 

matrix cracking initiated, the final failure stress 6-, u and strain Eau, Young's modulus E, 

and matrix crack orientations with respect to the loading direction. 

a 
(°) 

o-,,, C 
(MPa) 

em, 
*10"3 

17c� 
(MPa) 

CC� E, 
(G Pa) 

Crack plane angle 
NN7. r. t. loading 

00 20.0 5.58 132 0.155 4.01 90° 
10° 15.0 4.40 118 0.165 3.55 65° 
20° 14.6 4.48 918 0.199 3.71 70° 

30° 10.0 2.84 852 0.237 2.87 80° 
45° 17.0 10.4 937 0.306 2.07 90° 

Table 4.3.2-3 Test data of the two-dimensional polyester/polyester composite. 

A photograph of the broken two-dimensional composite from the rail shear test is 

shown in Fig 4.3.2-14. Matrix cracks orientated at 45° to the applied shear direction 

were observed. No in-plane delamination was visible. 

4.4 Discussion 

4.4.1 One-Dimensional Composites 

Three types of damage were observed in the tensile tests. The first was matrix 

cracking followed by failure of the fibres, causing failure of the composite. This failure 

mechanism was observed in specimens loaded parallel to the reinforcement, i. e. at a 

fibre alignment angle of 0°. Matrix cracks give rise to a non-linearity in the composite 

stress-strain relations (Fig 4.3.2-3a). The second type of damage was delamination, in 

which the composite failed through the fibre-matrix interface, resulting in a catastrophic 

loss of strength. This failure mechanism was observed for specimens with fibre 
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alignment angles between 30° and 90°. The third type of damage involved a mixture of 

matrix cracking and delamination, and was observed in specimens with a fibre 

alignment angle between 10° and 20° (Fig 4.4.1-1). The damage consisted of a 
delamination plane along the fibre-matrix interface and matrix crack planes with normal 

n rotated 10°-20° from the loading axis, but in the opposite sense to the fibres. Fig 

4.4.1-1 also shows that the damage zone becomes localised along the delamination 

plane as the fibre alignment angle approached 20°. 

The ultimate tensile strength and the failure strain of the tabbed-coupons and 
dogbone shape specimens are shown in Fig 4.4.1-2 and Fig 4.4.1-3. The results show 

that one-dimensional composites exhibit the greatest strength and ductility parallel to 

the fibres. As the fibre axis rotates towards an orientation at right angles to the loading 

direction, the strength and ductility decrease due to delamination. 

A comparison of the strengths predicted by the maximum stress and the Tsai-Hill 

(Tsai, 1966) failure criteria with the experimental data is shown in Fig 4.4.1-2. The 

shear strength obtained from the rail shear test and the tensile delamination stress for a 

= 90° and the ultimate tensile strength at a= 0° were used to establish the critical values 

in both criteria. Good agreement between both failure theories and experiments was 

obtained. In particular, the maximum stress criterion predicted multiple matrix cracking 

damage between 0° to 3°, shear delamination between 4° and 37° and tensile 

delamination between 38° and 90°. However, the maximum stress theory has 

limitations. Matrix cracking is assumed to occur normal to the direction of maximum 

stress of the composite, that is the matrix crack planes are implied to be normal to the 

fibre direction. Hence when the fibre orientation rotates, the orientation of the crack 

planes is expected to remain normal to the fibre direction. However, the off-axis tension 

test showed that the crack planes were inclined at an angle to the fibre axis. The results 

support the view that the matrix crack planes had initiated normal to the direction of the 

maximum principal stress in the matrix. This issue is further elaborated in Chapter 8. 

Fig 4.4.1-4 shows a comparison of the ultimate tensile strength obtained from the 

dogbone shaped specimens and the tabbed-coupons. This is expressed as a ratio 

between the strength of the dogbone shaped specimen and the tabbed-coupons as a 

function of fibre alignment angle. The dogbone shaped specimens were generally 

stronger than the tabbed-coupons, except for a= 10°. The superior strength of the 
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dogbone shaped specimens may be explained by comparing the failure location (Fig 

4.3.2-1 and 2). For the tabbed-coupons, failure for a= 0°, 20° and 30° occurred near the 

tabs indicating that the strengths measured were sensitive to the stress concentration at 
the tabs. For the dogbone shaped specimens, failure occurred within the gauge lengths. 

Based on the superior strengths measured from the dogbone shaped specimens, the 
dogbone configuration is recommended for tensile test of one-dimensional composites, 
for both aligned and off-axis conditions. 

In Fig 4.4.1-5, the uniaxial tensile stress-strain behaviour of the one-dimensional 

composites parallel to the fibres is divided into three regions. The first region is linear 

elastic until the initiation of matrix cracking. Young's modulus of the composite E, was 

well described by the rule of mixtures: 

Eý =E fV1 + E,,, V, (4.4.1-1) 

In the second region multiple matrix cracking occurs. The tangent modulus reduced to 

approximately 6% of the initial modulus and the density of matrix cracks increased with 

strain (see. Fig 4.3.2-5). In the third region, matrix cracking saturated and the load in the 

composite was largely borne by the fibres. The average tangent modulus of the 

composite was close to EfVf. 

Included in Fig 4.4.1-5 are the load bearing capacities of the fibres and matrix per 

unit area as a function of applied strain, i. e. crjVj and q,, V,,. The load bearing capacity of 

the fibre weighted by it volume fraction was obtained by multiplying by the fibre stress 

of determined from the experimental stress-strain of the fibre at the composite strain 

multiplied by Vf. The load bearing capacity of the matrix per unit area, 611V�ß, was 

obtained by subtracting the stress of the volume fraction of fibres ofVf from the 

composite stress q, Comparison of these stress-strain relations and the normalised 

matrix crack density plot in Fig 4.3.2-5 showed that the fibres become the dominant 

load bearing component when the level of matrix crack damage is approximately 

halved. The composite finally failed when the fibres failed, i. e. a-, = oy Vf 

The average stress-strain relation of the damage matrix shows four important 

regions. The first region is linear elastic with a Young's modulus of E,, until matrix 

cracking initiated. During matrix cracking, the matrix initially tension-hardened until 

the tangent modulus reduced to zero. Subsequently, as the applied strain increased the 
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matrix began to tension-soften at a constant tangent modulus of -0.277GPa. At a matrix 

crack damage level of 0.9, i. e. near saturation, the tangent modulus of the matrix 
becomes close to zero. 

During matrix cracking, it is commonly assumed that the interfacial shear stress z' 

of the debonded fibres near the matrix crack planes is constant. ACK (1971) give the 

interfacial shear stress z' as (see eqn (3.3.10)): 

6,,, 1 r 
V», 

(4.4.1-3) 
2x' Vf 

Here, x' is the debond length in the fibres, r is the fibre radius and 0-mu is the matrix 

cracking stress of the composite. To determine if the interfacial shear stress is a function 

of applied strain is, two scenarios are considered. The first assumes the matrix cracking 

stress of the composite is constant at 56MPa, while the second uses the composite stress 

corresponding to the applied strain. In both scenarios, the fibre radius was 11.3µm and 

Vf was 0.185. The debond length as a function of applied strain is given in Fig 4.3.2-6. 

The interfacial shear stress ±2 standard deviations, are plotted in Fig 4.4.1-7. Using eqn. 

(4.4.1-3) to determine za decrease in interfacial shear stress with respect to strain is 

indicated. For a matrix cracking stress which is a function of strain, i. e. 

z, (£) = 
°, »» 

(£) rV (4.4.1-5) 
2 x'(e) Vf 

the average values are more nearly constant despite the large standard deviations. 

A photograph of the distribution of fibres in a fibre tow is shown in Fig 4.4.1-8. 

This shows the local volume fraction of fibres in fibre tows is significantly greater than 

in the composite. To determine the interfacial shear stress of the debonded fibres in a 

fibre tow, the same analysis was repeated by using a fibre volume fraction of 0.5. 

Results of the average interfacial shear stress for the fibres in fibre tows are plotted in 

Fig 4.4.1-9. The interfacial shear stress of the debonded fibres in the fibre tows was 

approximately one fifth of the average value calculated for the composite, which shows 

that shear failure could initiate at the interface of the fibres within the fibre tow. 

4.4.2 Two-Dimensional Composites 

The tensile stress-strain relation of all the balanced 0°-90° two-dimensional 

composites is broadly similar to the aligned one-dimensional composite. This is because 
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the two-dimensional composite fails by matrix cracking followed by fibre failure, 

irrespective of fibre alignment angle. The ultimate tensile strength and the failure strain 

of the two-dimensional composites as a function of fibre alignment angles are shown in 

Fig 4.4.2-1 and Fig 4.4.2-2. The results indicate that when the fibre alignment angle 
increased from 0° to 45°, the strength decreased by 30% but the ductility increased by a 
factor of 2. 

To compare one- and two-dimensional composites, a plot of the uniaxial tensile 

stress-strain relations of the composites for a fibre alignment angle of 0° is shown in Fig 

4.4.2-3 using tabbed-coupons specimens. The one-dimensional specimen shows a 
higher matrix micro-cracking stress. To investigate the reason for the lower matrix 

cracking stresses in the two-dimensional composites, the stress-strain relation of the 

matrix in the two-dimensional composite was derived following eqn. (4.4.1-2). This is 

given in Fig 4.4.2-4 with the stress-strain relations of the two-dimensional composite 

and fibre. The form of the matrix stress-strain relation is the same as the one- 
dimensional composite shown in Fig 4.4.1-6. Next, the stress-strain relation of the 

matrix in the two-dimensional composite and the stress-strain relation of the one- 

dimensional composite with a fibre alignment of a= 90° are compared in Fig 4.4.2-5. 

This shows the initiation stress (0.2% proof stress) for matrix cracking in two- 

dimensional composite was approximately 1.5 times the in-plane tensile delamination 

stress of the one-dimensional composite. The comparison suggests the low matrix 

cracking stress in the two-dimensional composite was influenced by the weak fibre- 

matrix interface of the fibres perpendicular to the applied stress. The crack initiation 

stress in the matrix was greater than the in-plane tensile delamination stress because of 

the strengthening effects of the woven fibre architecture. 

4.5 Conclusions 

The stress-strain relations and failure criteria of the one-dimensional composite 

are strongly anisotropic. Three modes of failure were observed: matrix cracking, 

delamination and a combination of the two. During matrix cracking, the orientation of 

the crack plane was not normal to the fibres or the tensile loading direction. The 

interfacial shear stress of the fibre-matrix interface was approximately constant. 

Because the tensile strengths measured using the dog-bone shaped specimens were 

greater than the tabbed-coupons, the dog-bone configuration is recommended for on- 
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and off-axis tensile testing of brittle matrix composites. The anisotropic stress-strain 

relations of two-dimensional composites were also determined. In comparison to the 

one-dimensional counterpart, the strength and ductility of the two-dimensional 

composites were significantly improved as a function of orientation. However, the 

stresses at which matrix cracking initiated were generally lower due to the weak fibre- 

matrix interfaces. 
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Fig 4.2-1 Absolute stress-strain response of balanced 0°-90° woven SiC/SiC and the 
SiC/SiC analogue system (Polyester/Polyester) in uniaxial tension parallel 
to the fibre direction (adapted from McCafferty, 1994). 
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and the SiC/SiC analogue system (Polyester/Polyester) in uniaxial 
tension parallel to the fibre direction (adapted from McCafferty, 1994). 
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Fig 4.2.1-1 Schematic diagram of tensile specimen for polyester resin. 
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Fig 4.2.3-1 Quality of the one-dimensional polyester composite panel fabricated 
through (a) hand-laying technique and (b) resin injection technique. 
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Fig 4.3.2-1. Photographs of the fractured one-dimensional analogue tabbed-coupons 
in uniaxial tension at various fibre alignment angle: (a) a= 0°, (b) a= 
10°, (c) a= 20°, (d) a= 30°, (e) a= 45°, (f) a= 60°, (g) a= 70°, (h) a 
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Fig 4.3.2-2. Photographs of the fractured one-dimensional analogue dogbone shaped 
specimens in uniaxial tension at various fibre alignment angle: (a) a= 
0°, (b) a= 10°, (c) a= 20°, (d) a= 30° and (e) a= 45°. 
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Fig 4.3.2-5 The normalised damage density plot for the one-dimensional analogue 
composite tensioned in the reinforcement direction. The damage density 

at saturation for the tabbed-coupon and dogbone specimen were Psat =6 
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Fig 4.3.2-6 Photograph of typical debond lengths of fibre tows during multiple 
matrix cracking. 
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Fig 4.3.2-7 The average fibre tow debond lengths during matrix cracking as a 
function of applied strain. 
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Fig 4.3.2-8 Photograph of the rail sheared one-dimensional polymer composite. 
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Fig 4.3.2-10 Photograph of the delamination in the through thickness direction. 
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Fig 4.3.2-11 Stress-strain relations of the one-dimensional composite tensioned in the 
thickness direction. 
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Fig 4.3.2-12 Uniaxial stress-strain relations of the two-dimensional composite at fibre 

alignment angle a= 0°, 10°, 20°, 30° and 45°. 
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Fig 4.3.2-13 Photographs of the crack orientation in the two-dimensional tabbed 
coupons for a= 10°, 20°, 30° and 45° 
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Fig 4.3.2-14 Photograph of the two-dimensional composite tested using the Rail Shear 
method. 
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Fig 4.4.1-1 Photographs of the damages in the one-dimensional composite with a= 
100. 
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Fig 4.4.1-3 A plot of the ultimate tensile strength (UTS) of the one-dimensional 
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Fig 4.4.1-4 A ratio of the average tensile strengths between the dogbone shaped 
specimen and tabbed-coupon specimens with respect to fibre alignment 
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Fig 4.4.1-6 Stress-strain relations of the one-dimensional composite, fibres, matrix 
and monolithic matrix. Note, the fibre response is truncated. 
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Fig 4.4.1-7 The average interfacial shear stress of debonded fibre tows in the 

analogue composite with respect to applied strain. 
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Fig 4.4.1-8 Photograph of the number of fibres in fibre tows. 
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Fig 4.4.1-9 The average interfacial shear stresses of debonded fibres in a fibre tow 
with respect to applied strain. 
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Fig 4.4.2-1 The ultimate tensile strength plotted with respect to fibre alignment angle 
for the two-dimensional analogue composite. 

0.35 

0.25 
R 

0.3 

0.2 y 

0.15 

E 

5 0.1 

0i iiiiiiii; 
0 10 20 30 40 50 60 70 80 90 

Fibre Alignment Angle (Deg) 

Fig 4.4.2-2 The ultimate tensile strain plotted with respect to fibre alignment angle 
for the two-dimensional analogue composite. 

0.05 



Chapter 4: The Experimental System 123 

160 

140 

120 

One-Dimensional 

100 Composite 

a 

(80 
U) 

60 r Tw o-Dimensional 
Composite 

40 

20 

C 
0 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 

Strain 

Fig 4.4.2-3 Comparison of the stress-strain relations of the one- and two-dimensional 
tabbed-coupons. 
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Fig 4.4.2-4 Stress-strain relations of the two-dimensional composite, fibres and 
damaged matrix. The fibre response is truncated. 
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CHAPTER 5 

Sub-Structures 

5.1 Introduction 

In Chapter 4, the mechanical properties and damage mechanisms of one- and two- 

dimensional composites were measured in uni-axial tension. The purpose of the tests 

was to provide data to establish the physical basis for computational modelling brittle 

matrix composites. From this base, an ability to consider more complex geometries and 
loadings is a step towards full structural analysis. Following McCafferty (1994), three 

different geometries known as sub-structures are considered. These were suggested by 

Rolls-Royce as features which were representative of a structures found in the exhaust 

diffuser unit of the EJ200 aero-engine. Fig 5.1-1 to 3 show the sub-structures. These 

include a rectangular bar, a T-shaped bar and a wedged bar. These sub-structures were 

fabricated using the material system discussed in Chapter 4, using both one- and two- 

dimensional reinforcements. The work described in this chapter has two objectives. The 

first is to describe the role of one- and two-dimensional reinforcements for different 

sub-structures. The second is to derive experimental data to check the numerical model 

developed for brittle matrix composites 

5.2 Fabrication Techniques 

Two techniques were used to fabricate the sub-structures. In the first, liquid 

polyester resin was injected into a mould with pre-aligned fibres as described in Chapter 

4. This technique was used to make rectangular bars with one-dimensional 

reinforcements. To make the `T' and wedged shaped sub-structures, a hand lay-up 

technique was adopted. This allowed better control of the fibre orientation. The moulds 

for fabricating the `T' and wedge shaped sub-structural elements are shown in Fig 5.2-1 

and Fig 5.2-2. The mould surfaces were coated with a PTFE release agent. A polyester 

gel-coat (Resin B) with 2% weight of hardener (Catalyst M) from Scott Bader (1994) 

was then applied to the mould surfaces and the corresponding fibre layer applied. The 

lamina was allowed to harden to a tacky state before repeating the procedure for the 

125 
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required number of fibre layers. The curing procedure is described in Sect. 4.2.3. To 

make the sub-structures with two-dimensional reinforcements, hand-laying technique 

was used as this allowed better wetting and control of the reinforcements. 

5.3 Experiments 

The sub-structures were all loaded in three-point bending using a Lloyd 10000 

testing machine at a displacement rate of lmm/min. The test configurations and the 

dimensions are given in Fig 5.1-1 to 3. The sub-structures were tested to complete 
failure or until the displacement limit of the test configuration. The sub-structures test 

were also tested until the initiation of damage was detected visually or audibly. After 

testing, optical microscopy was used to determine the damage mechanisms and the 

extent of damage. 

5.4 Results and Analysis 

5.4.1 Bend Bars 

Typical load-displacement response of the rectangular bend bars with one- and 

two-dimensional fibre reinforcements are shown in Fig 5.4.1-1. The initial elastic 

stiffness were 292KN/m and 235KN/m, respectively. 

For the sub-structures with one-dimensional reinforcements, matrix cracking 

started at an applied displacement of 0.618mm and load of 202N. The formation of a 

matrix crack was audible and was reflected distinctly in the force-displacement curve as 

a sudden loss in load. As the applied load increased, subsequent matrix cracking was 

heard and load drops occurred in the force-displacement curve. The test was stopped at 

an applied displacement of -3mm and a load of 578N. The damage zone is shown in 

Fig 5.4.1-2. Matrix cracks and debonding of the fibre-matrix interfaces adjacent to the 

crack planes were observed. The length of the damage zone along the reinforcement 

direction was 8mm and contained approximately 5 matrix cracks. A photograph of the 

corresponding crack depths is given in Fig 5.4.1-3. The average crack depth was 

1.71 mm and the average crack separation distance was 1.37mm. 

For sub-structures with two-dimensional reinforcements, matrix cracking started 

at an applied displacement of 1.36mm and load of 309N. The event was audible but was 

not clearly reflected in the force-displacement curve. As the applied load increased, 

further cracking sounds were heard. The test was stopped at an applied displacement of 
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3.8mm and a corresponding load of 556N. A photograph of the damaged zone is shown 
in Fig 5.4.1-4. Approximately 7 evenly distributed matrix cracks were seen along the 

length of the damage zone. The average crack separation distance was l. lmm in a 
damage zone of 8.6mm in length. A photograph of a section of the specimen side profile 
is shown in Fig 5.4.1-5. The average crack depth was 0.87mm. 

The sub-structure with two-dimensional reinforcement was observed to be less 

stiff than the one-dimensionally reinforced sub-structure after matrix cracking had 

initiated. An explanation of this phenomenon can be derived by considering the findings 

given in Sect. 4.4.2, in which the matrix cracking stresses of two-dimensional 

composites were shown to be significantly lower due to the low interfacial strength of 

the orthogonal reinforcements. As such, the early development of matrix cracks in the 

two-dimensionally reinforced sub-structure gives rise to a lower stiffness. This agrees 

with the optical observations of matrix cracking. However, the acoustic data suggests 

that matrix cracking in the two-dimensionally reinforced sub-structure occurred at a 
higher applied load than in the one-dimensionally reinforced sub-structures. An 

explanation may be obtained by comparing the matrix cracks of the sub-structures (see 

Fig 5.4.1-2 to 5). The matrix cracks in the two-dimensionally reinforced sub-structures 

are smaller, suggesting that matrix cracks in the two-dimensionally reinforced sub- 

structure may have developed from the accumulations of microcracks, which might not 

have been sufficient to be detected acoustically. 

5.4.2 T-Shaped Sub-Structures 

The load-displacement curves of T-shaped sub-structures with one- and two- 

dimensional reinforcements are shown in Fig 5.4.2-1. The initial elastic stiffness of the 

sub-structures were 418KN/m and 343KN/m, respectively. 

In the sub-structure with one-dimensional reinforcements, damage initiated by 

matrix cracking at the fillet was reflected as a load drop in the force-displacement curve. 

The matrix crack occurred at an applied displacement of 0.677mm and a load of 271N. 

The maximum load borne by the sub-structure was 299N with a corresponding 

displacement of 1.5mm. The test was finally stopped at an applied displacement of 

2.23mm and a load of 224N because the sub-structure had slipped from the outer load 

points. 

The damaged T-shaped sub-structure with one-dimensional fibres are shown in 

Fig 5.4.2-2. Three types of damage were observed: matrix cracking at the fillet, 
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delamination along the fillet and cracks in the matrix core. The delamination plane in 

the fillet was not initially obvious. This was verified after sectioning the specimen and 

optically inspecting the fillet, when a distinct delamination plane became visible. The 

delamination plane was formed by the linkage of debonded fibre-matrix interfaces in 

fibre tows and cracks in the matrix separating the fibre tows. A photograph of the 
delamination plane is shown in Fig 5.4.2-3. 

Optical microscopy and the force-displacement curve allow the sequence of 
damage events to be reconstructed. In bending, the tensile stress is highest at the outer 

surface of the fillet. When the stress in the matrix reaches a critical value the matrix 

cracked. The cracks propagated across the layers of reinforcement but stopped at the 

matrix core. Across the matrix crack plane, some debonding of the fibre-matrix 

interfaces also occurred. Due to these weakened interfaces and the shear stresses 
introduced by the applied load, the formation of a delamination plane developed, as 

observed in Fig 5.4.2-3. The initial load loss in the force-displacement curve shown in 

Fig 5.4.2-1 is believed to encompass all these damage mechanisms. When further load 

was applied, the extent of delamination in the fillet increased until the maximum load 

was reached. Finally, when the stress was sufficiently high, cracks initiated in the matrix 

core. The load drop near the end of the force-displacement curve reflects this. The 

location of cracking in the matrix core is shown in Fig 5.4.2-2c. 

For the T-shaped sub-structures with two-dimensional reinforcements, cracking 

was audible at an applied displacement of 0.58mm and a load of 169N. This correspond 

to the first departure from linearity in the force-displacement curve. As the applied 
displacement increased, a maximum load of -236N was obtained at a displacement of 

' 1.08mm. With further displacement applied, the load bearing capacity gradually 

reduced to approximately 200N. This was followed by a catastrophic load drop near the 

end of the force-deflection curve when the sub-structure delaminated. A micrograph of 

the T-shaped sub-structure fillet surface, loaded to the first departure from linearity in 

the force-displacement curve, is shown in Fig 5.4.2-4a. Some microcracks were 

observed in the matrix. In addition, the colour of the matrix at the fillet turned white, 

indicating delamination. In Fig 5.4.2-4b, a photograph of the delamination plane at the 

end of the test is shown. 

McCafferty (1994) has described the damage mechanisms and failure of T-shaped 

sub-structures with two-dimensional reinforcements. The author has attributed the 

failure mechanism to be caused by tensile delamination, as the tensile delamination 
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stress obtained from experiment was -0.6MPa and is significantly lower than the matrix 

cracking stress of the composite. 

5.4.3 Wedged-Shaped Sub-Structure 

The load-displacement curves of a wedged-shaped sub-structure with one- and 
two-dimensional reinforcements are shown in Fig 5.4.3-1. The initial elastic stiffness of 
the sub-structures was 318KN/m and 185KN/m, respectively. This is because the 

thickness of the sub-structure with one-dimensional reinforcements was thicker. The 

total thickness for the wedged-shaped sub-structure with one- and two-dimensional 

reinforcements was -9.4mm and -7mm. 
For the wedged-shaped sub-structure with one-dimensional reinforcements, 

matrix cracks were observed and heard at an applied load of 554N and a displacement 

of 1.82mm. The matrix cracks occurred at the wedge, and resulted in load drops in the 

force-displacement curve. When further bending was applied, the load on the sub- 

structure continued to increase until a maximum load of 1.01 KN and a deflection of 
3.78mm. This was followed by matrix cracking in the undamaged wedge of the sub- 

structure, which resulted in the final load drop in the force-displacement curve. A 

micrograph of the damage in the sub-structure is shown in Fig 5.4.3-2. 

For the wedged-shaped sub-structure with two-dimensional reinforcements, 

cracking was audible at an applied load of 280N and a deflection of 1.9mm. Subsequent 

cracking was heard at an applied load of 415N and a deflection of 3.4mm and finally at 

a maximum load of 50ON and a deflection of 5.2mm. The initial cracking events were 

not distinctly reflected in the force-displacement curve. Only the final cracking event 

was seen in the force-displacement curve by catastrophic load loss. As in the one- 

dimensionally reinforced sub-structure, matrix cracks were observed in the wedge. This 

is shown in Fig 5.4.3-3. 

5.5 Conclusions 

Experimental analyses of composite sub-structures with one- and two- 

dimensional reinforcements were conducted in three-point bending. It was found that 

the type of reinforcement influenced the force-deflection response of the sub-structures. 

Generally, the damage force-deflection response of sub-structures with two-dimensional 

reinforcements was less stiff than sub-structures with one-dimensional reinforcements. 
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In the rectangular bend bar, the difference in force-deflection response during damage 

was due to the different matrix cracking stresses induced by the reinforcements. The 

two-dimensional reinforcement exhibited in a lower matrix cracking stress due to the 

weak interfacial strength of the orthogonal reinforcements. In the T-shaped sub- 

structure, the orthogonal fibres in the two-dimensional reinforcement architecture 

significantly reduced the tensile delamination stress. In the case of the wedge-shaped 

sub-structures, results were not conclusive because the geometries of the sub-structure 

were differently. Finally, the experimental data collected from the tests on the 

substructures formed a basis for numerical modelling. 
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Fig. 5.1-1 Three point bend test configuration for rectangular polyester composite 
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Fig. 5.2-1 Mould for fabrication of T-shaped composite specimens 
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(a) 

(b) 

Fig. 5.2-2 Mould for fabrication of Wedge-shaped composite specimens 
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Fig. 5.4.1-4 Damage in two-dimensionally reinforced rectangular sub-structure after 
three-point bending with an applied displacement of 3.8mm. 
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Fig. 5.4.1-5 Side profile of two-dimensionally reinforced rectangular sub-structure 
after three-point bending with an applied displacement of 3.8mm. 
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Fig. 5.4.2-1 Experimental force-displacement curves of the T-shaped sub-structures 
with one- and two-dimensional reinforcements. 
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(a) 
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Fig. 5.4.2-2 Photographs of damaged T-shaped sub-structure with one-dimensional 
reinforcements after three-point bending: 
(a) profile showing matrix crack and delamination region. 
(b) profile showing delamination plane and cracks in matrix core. 
(c) close-up of cracks in the ligament of the matrix core. 
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Fig. 5.4.2-3 The delamination plane in the fillet of the T-shaped sub-structure with 
one-dimensional reinforcement. 
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Fig. 5.4.2-4 Photographs of the fractured two-dimensionally toughened T-shaped sub- 
structure (a) Matrix crack plane at fillet, and (b) Delamination plane 
along fillet. 
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Fig. 5.4.3-1 Experimental force-displacement curves of the wedged-shaped sub- 
structures with one- and two-dimensional reinforcements. 
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Fig 5.4.3-2 Photographs of the fractured one-dimensionally toughened wedged shape 
specimen. 
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Matrix cracks 

(a) 

(b) 

Fig. 5.4.3-3 Photographs of fractured surfaces of the two-dimensionally toughened 
wedged-shaped sub-structure: (a) left wedge and (b) right wedge. 



CHAPTER 6 

Finite Element Modelling Techniques for Composites 

6.1 Introduction 

Finite element methods are extensively employed in the analysis of solids and 

structures (Bathe 1996). In essence, the method involves solving engineering problems 
by solving a set of governing algebraic equations using fast digital computers. In the 

finite element analysis of composites, the central issue is how to reinforcement is 

represented. Three main modelling techniques are used: embedded, discrete and 
distributed representation. 

The embedded reinforcement representation was developed in the early 1970s to 

analyse civil engineering composite materials such as steel-reinforced concrete. The 

technique models the concrete using two- or three dimensional isoparametric elements, 

while the steel reinforcements are represented by line elements embedded into the 

isoparametric elements. Significant contributors to the development and application of 

this technique include Zienkiewicz et al (1972), Phillips & Zienkiewicz (1976) and 

Hibbitt, Karlsson & Sorensen (1998a). The line elements are only capable of a one- 

dimensional response and their shape functions are similar to isoparametric elements. 

As such, compatibility between the line elements and the isoparametric element is 

satisfied, since the displacement fields of the line elements and the isoparametric 

elements are identical. However, line elements do not contribute to the mass or volume 

of the model. This is not a problem when modelling reinforced concrete as the volume 

fraction of reinforcement is very low, typically of the order of 1% to 2%. Hence when 

developing a mesh to model reinforced concrete, the overall geometrical properties of 

the isoparametric elements represents the reinforced concrete. Because the technique 

allows strategic placement of the line elements within isoparametric elements, the 

ability to analyse composites with complex reinforcement architectures is advantageous. 

In the discrete reinforcement representation, the individual constituents of a 

composite are also modelled using separate element types. However, the underlying 

difference to the embedded reinforcement technique stems from the elements used to 

145 
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model the reinforcement. Typically, one-dimensional (truss/bar) elements or two/three- 
dimensional (beam/solid/shell) elements are used. These are connected to the elements 

representing the matrix, typically two/three-dimensional elements, by node sharing or 

node tying techniques. In one-dimensional reinforcements, only the axial force of the 

reinforcements is taken into account. In two/three dimensional reinforcements, the axial 
force, shear and bending effects are taken into account. The response of the 

reinforcement and matrix is coupled such that the integrated response of the assembly of 

elements is modelled. This implies that both equilibrium and compatibility between the 

constituents is satisfied. This has advantage over the embedded reinforcement 

representation, which satisfies only compatibility. Another advantage of the technique is 

the ability to model interfacial effects, such as friction and damage, of the constituents. 
This is significant because the mechanical properties of composites, such as strength 

and stiffness, are dependent on interfacial behaviour. Connector elements such as line- 

springs elements have also been used to model the interface. 

Examples of the discrete reinforcement representation include Grande et al 
(1988), Needleman (1990), Mukherjee & Rao (1995), Goda (1999) and Cox et al 
(1994). To predict the interfacial shear and tensile strength when debonding occurred, 
Grande et al (1988) used two-dimensional elements to model both the fibre and matrix. 
The plane of nodes at which the constituent elements met, defined the interface. To 

model the decohesion process, Needleman (1990) modelled the imperfect interfaces 

using spring elements whose traction-displacement relations was the differential of a 

potential function. The use of one-dimensional elements to model the interface however 

does have the major limitation that the compatibility condition along the interface is not 

perfectly satisfied. The shape function of the one-dimensional element is not necessarily 

compatible with higher order elements modelling the matrix as the reinforcement 

response is limited to discrete nodal points and not the entire length of the element. 

Under a compressive normal force, overlapping of nodal points commonly occurs, 

which violates the interface compatibility conditions. As a solution, Mukherjee & Rao 

(1995) utilised six noded isoparametric-interface elements, which allowed improved 

modelling of interfaces in whisker reinforced ceramic matrix composites. Recently, 

Goda (1999) utilised the discrete reinforcement representation to establish a macro 

model for unidirectional fibrous composites tensioned parallel to the fibres. The matrix 

was modelled using 4-noded isoparametric elements, the fibres were represented by 2- 
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noded truss elements and the interface using 2-noded spring elements. Using a Monte- 

Carlo simulation technique, the effects of interfacial debonding on strength and 

reliability were analysed. The approach is similar to the Binary Model of Cox et al 
(1994). However in the case of Cox et al (1994), the Monte-Carlo technique was used to 

model random fibre strength resulting from irregular fibre positioning. 

In the distributed reinforcement technique, the composite is modelled as a 

continuum. The reinforcements are assumed to be homogeneously smeared-out within 
the matrix. The composite is represented using second or third order continuum 
(solid/shell) elements, in which lamina theory or anisotropic elasticity theory is used to 

model the average mechanical response of the composite (Hibbitt, Karlsson & Sorensen 

(1998b)). Advances to the distributed technique have been introduced by the 

development of damage mechanics (Sect. 2.5), that is the smearing out of damage such 

as inter-lamina and intra-lamina cracks. To model the resulting response, damage 

variables and damage evolutionary laws are introduced into the constitutive relations of 

the composite. Chen & Saleb (1994) have used the technique to analyse steel reinforced 

concrete structures. Voyiadjis and Kattan (1999) have studied the effects of damage in 

metal matrix composites. To alow the analysis to include damage in laminated 

composites, (Hibbitt, Karlsson & Sorensen (1998b) have also introduced layered 

continua that allow the damaged mechanical behaviour of individual layers of a 
laminate to be modelled using a single element. 

In this chapter, the suitability of the embedded, discrete and distributed 

reinforcement techniques for modelling brittle matrix composites with high fibre 

volume fraction in structural analysis is considered. Specifically, the technique should: 

" satisfy both equilibrium and compatibility and the appropriate boundary conditions 

" allow efficient representation of the composite constituents architecture, and 

" have a physical based interpretation of damage 

To compare existing modelling techniques, simple benchmark studies are initially 

considered. These are described in detail in the following section. The finite element 

analysis was conducted using the ABAQUS/Standard solver, developed by Hibbitt, 

Karlsson & Sorensen (1998a). 
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6.2 The Benchmark Studies & Model 

Four simple benchmark studies were considered to assess the suitability of each 

modelling technique for uni-directional composites: 

Case (1): Tension parallel to the reinforcement direction with no modulus mismatch 
(Vf = V7, = 0.5 and Ef = E, n = 4.732GPa), 

Case (2): Tension parallel to the reinforcement direction with a higher fibre volume 
fraction but no modulus mismatch (Vf = 3V, ß = 0.75 and Ef = E7, = 
4.732GPa), 

Case (3): Tension parallel to the reinforcement direction with modulus mismatch (Vf 

= V,, = 0.5 and Ef =10E1z = 47.32GPa), and, 

Case (4): Tension normal to the reinforcement direction with no modulus mismatch 
(Vf = V�z = 0.5 and Ef = Em = 4.732GPa). 

Here, V,, and V1 are 'the volume fraction of the matrix and fibres; E,, and Ef is the 

Young's modulus of the matrix and fibres. The Poisson's ratio of the composite and its 

constituents were taken to be identical, i. e. vv = of = v, = 0.3. The dimensions of the 

composite were 0.015m x 0.015m x 0.002m and magnitude of the applied displacement 

in the global 1-direction was 0.001m. The composite constituents were assumed to be 

isotropic linear elastic and perfectly bonded. Diagrams of the benchmark studies are 

shown in Fig. 6.2-1. The figure also defines the Cartesian co-ordinate and node 

numbering systems 

In the embedded reinforcement model, the matrix was represented using a 4- 

noded plane stress solid element with in plane dimensions of 0.015m x 0.015m. The 

thickness of the elements were 0.002m and 0.001m; the first thickness follows current 

modelling practice and represents the thickness of the composite while the latter models 

the area of the matrix only. The fibres were modelled using an embedded line element 

positioned central to the element. For cases 1 to 3, the line element was aligned in the 

global 1-direction, while in case 4 the line element was aligned in the global 2-direction. 

The cross-sectional area of fibres was represented by specifying in the finite element 

code. In cases 1,3 & 4, a fibre cross-sectional area of 1.5E-5m2 was used while a fibre 

cross-sectional area of 2.25E-5m2 was used in case 2. 
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In the discrete reinforcement model, the matrix was represented by a 4-noded 

plane stress solid element. In all cases, the in-plane cross section dimensions were 
0.015m x 0.015m. In cases 1,3 & 4, the thickness of the matrix was 0.001m while a 
thickness of 0.0005m was used in case 2. The reinforcement was modelled using two 

truss elements. In cases 1 to 3, the truss elements were connected between nodes 1&2 

and nodes 4&3. In case 4, the truss elements were connected between nodes 1&4 and 

nodes 2&3. In cases 1,3 & 4, the area of each truss element was 0.75E-5m2 while the 

area of each truss element in case 2 was 1.125E-5m2. 

In the distributed reinforcement model, a 4-noded plane stress solid element with 
dimensions 0.015m x 0.015m x 0.002m was used to represent the composite, which 

consisted the properties of the matrix and reinforcements. In case 3, where modulus 

mismatch was present, the composite was modelled as transversely-isotropic linear 

elastic. 

In the models, the applied boundary conditions were identical. Node 1 was 

pinned in the global 1&2 direction while a displacement ul in the global 1-direction of 
0.001m was applied onto node 2 and 3. Node 4 was constrained from moving in the 

global 1-direction to prevent rigid body motion. 

6.3 The Benchmark Results 

To compare solutions from the modelling techniques, exact solutions were 
determined where possible. For cases 1,2,3 & 4, the composite reduces to a simple 

isotropic homogeneous elastic solid. The relevant numerical results are presented in 

Table 6.3-1 to 6.3-4. Incorporated into the tables are the finite element results for the 

embedded, discrete and distributed reinforcement models. The results are defined in 

terms of the global co-ordinate system as shown in Fig. 6.2-1. The symbols F, F7, and 

Ff denote the applied force on the composite, matrix and fibres. The symbols o, o and 

6f denote the stress in the composite, matrix and fibres and s, is the strain in the 

composite. The suffices 1 and 2 denote components with respect to the global co- 

ordinate system. To emphasise discrepancies in the finite element results, italic values 

are used. 
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Embedded Mod el 

Exact 
Solution 

Matrix 
thickness 
0.002m 

with fibres 

Matrix 
thickness 
0.002m 

w/o fibres 

Matrix 
thickness 
0.001m 

with fibres 

Discrete 
Model 

Distributed 
Model 

Fm, (KN) 4.72 9.46 9.46 4.72 4.72 - 
Ff, (KN) 4.72 4.72 - 4.72 4.72 - 
F, 1 (KN) 9.45 14.2 9.46 9.46 9.45 9.45 

c7ml (MPa) 315 315 315 315 315 - 
6f1 (MP a) 315 315 - 315 315 - 
6i, (MP a) 315 473 315 315 315 315 

s., 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 
'e2 -0.020 -0.020 -0.020 -0.020 -0.020 -0.020 

Table 6.3-1: Case 1 Tension parallel to reinforcement where Vf = V�, = 0.5 and Ef = 
Em = 4.732GPa. 

Embedded Model 

Exact 
Solution 

Matrix 
thickness 
0 002m 

with fibres 

Matrix 
thickness 
0.0005m 

with fibres 

Discrete 
Model 

Distributed 
Model 

Fmi (KN) 2.37 9.46 2.37 2.36 - 
F17 (KN) 7.08 7.08 7.08 7.08 - 
FF. 1 (KN) 9.45 16.54 9.45 9.45 9.45 

6,,, I (MP a) 315 315 315 315 - 
arj (MPa) 315 315 315 315 - 
a-, I (MP a) 315 551 315 315 315 

-'C1 0.0666 0.0666 0.0666 0.0666 0.0666 
sc, -0.020 -0.020 -0.020 -0.020 -0.020 

Table 6.3-2: Case 2 Tension parallel to reinforcement with Vf = 3V, Z = 0.75 and Ef = 
Em = 4.732GPa. 

Embedded Model 

Exact 
Solution 

Matrix 
thickness 
0.002m 

with fibres 

Matrix 
thickness 
0.0011n 

with fibres 

Discrete 
Model 

Distributed 
Model 

F,,,, (KN) 4.72 9.54 4.77 4.72 - 
F17 (KN) 47.23 47.23 47.23 47.23 - 
FFl (KN) 52.00 56.77 52.00 52.00 52.05 

6�I (MP a) 315 315 318 315 - 
a17 (MPa) 3149 3149 3149 3149 - 
q, I (MP a) 1735 1892 1733 1732 1735 

'CI 0.0666 0.0666 0.0666 0.0666 0.0666 

sc2 -0.020 -0.020 -0.020 -0.020 -0.020 

Table 6.3-3: Case 3 Tension parallel to reinforcement with Vf = V,, = 0.5 and Ef = 
IOEm = 47.32GPa. 
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Exact 
Embedded Model 

Discrete Distributed 
Solution Matrix thickness 

0.002m with fibres 
Model Model 

F, �I (KN) 4.72 9.45 4.95 - 
Fm7 (KN 0 0 0.74 - 
Ff, (KN) 4.72 - - - F12 (KN) 0 -1.42 -0.74 - 
F, 1 (KN) 9.45 9.45 4.95 9.45 
FF, (KN) 0 -1.42 0 0 

amj (MPa) 315 315 330 - 
amz (MPa) 0 0 4.95 - 
crf7 (MPa) 315 - - - 
q12 (MP a) 0 -94.4 -4.95 - 
a(J (MP a) 315 315 330 315 
a..? (MPa) 0 -94.4 0 0 

, C] 
0.0666 0.0666 0.0666 0.0666 

'c2 -0.020 -0.020 -0.0105 -0.020 

Table 6.3-4: Case 4 Tension transverse to reinforcement with Vf = V, n = 0.5 and Ef = 
IOE,, = 47.32GPa. 

6.4 Discussion 

6.4.1 The Embedded Reinforcement Model 

In general, the forces in the embedded reinforcement model were not correctly 

equilibrated when the matrix element was modelled using the overall geometry of the 

complete composite. In case 1, the composite force is overestimated by 50% compared 

with the exact solution. The overestimate can be understood by comparing with the 

results for a matrix element without the embedded line element (see Table 6.3-1). The 

total force of the matrix element without the line element was identical to the total force 

of the matrix in the embedded model. This showed that the stiffness of the line element 

was not included into the analysis and that equilibrium was only satisfied in the matrix 

element, giving an erroneous estimate of the composite force. This may be acceptable 
for composites with low volume fractions of reinforcement such as reinforced concrete, 

but presents significant difficulties for composites with a high volume fraction of 

reinforcement. The forces obtained in case 4 also support this finding. Though the 

transverse line element developed a compressive force, no counteracting force occurred 

in the matrix. The composite thus has a compressive force component, which is not 

equilibrated with the externally applied loads. 

To satisfy equilibrium using the embedded reinforcement technique, the geometry 

should represent the matrix and not the composite. This is shown in cases 1&3 where a 
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matrix thickness of 0.001m was used and in case 2 where a matrix thickness of 0.0005m 

was used. In all these cases, the total force applied onto the composite was reported to 
be correct. The correct force is however obtained at the expanse of geometrical accuracy 

of the model. For three-dimensional modelling, this approach maybe undesirable, 
though application can be justified for two-dimensional applications. 

Alternatively, the applied force on the composite can be correctly obtained by 

substituting the matrix stress and the stress from the line element into the rule of 

mixture and multiplying the composite stress by the composite area. This results in 

correct composite force and stress. In three-dimensional models and models involving 

many elements, this approach is cumbersome, but has the advantage that no alteration to 

the mesh is involved. 

6.4.2 The Discrete Reinforcement Model 

An advantage of the discrete reinforcement technique is that the forces in the 

matrix and the reinforcement are in equilibrium. Compatibility between the different 

elements is also satisfied. This allows the response of the composite to be correctly 

modelled for loading parallel to the reinforcement. A problem arises when the 

reinforcement is transversely aligned to the loading direction. This occurs because the 

truss elements are incapable of representing transverse loading effects. 

The meshing procedure is cumbersome. The dimensions of the mesh have to 

represent the volume of the matrix instead of the composite. In two-dimensional 

modelling, this was controlled by the varying the thickness of the matrix element. In 

three-dimensional modelling, the predicted response is questionable since the 

dimensions of the mesh are not representative of the composite dimensions. Also, the 

implementation of the reinforcement is node dependent. For off-axis reinforcement 

problems, the diagonal implementation of the reinforcement would require the matrix 

mesh dimensions to correspond to the required alignment angle. In complicated 

geometries, the implementation of the reinforcement would be extremely difficult and 

cost-ineffective. 

6.4.3 The Distributed Reinforcement Model 

The distributed reinforcement technique correctly models the composite response 

regardless of the reinforcement orientation, in that both equilibrium and compatibility 
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are satisfied. The technique is simple and efficient to implement. The mesh represents 
the geometry of the composite, unlike the embedded and discrete reinforcement 
techniques. Changes in material properties such as volume fraction of the constituents 
do not require any changes to the mesh geometry. However, a setback in the model was 
that the forces and stresses of the composite constituents were not reported directly in 

ABAQUS. 

6.4.4 Summary 

The objective of the chapter is to assess the suitability of current finite element 
techniques for modelling high fibre volume fraction composites, subjected to the criteria 
listed in Sect. 6.1. 

The embedded model has the advantage that it allows arbitrary positioning of 

reinforcements within each matrix element. In the discrete model, implementation of the 

reinforcement is node dependent. In off-axis problems, the dimensions of the matrix 

element have to be fixed to implement the reinforcement orientation. This is highly cost 
ineffective and computationally inefficient. In the distributed model, implementation of 
the reinforcement was achieved by defining appropriate stiffnesses in the finite element 

code. This did not affect the meshing process, which is advantageous. However, the 

technique assumes the reinforcements within composite to be homogeneously 

distributed over an element. 

If complicated reinforcement architectures are to be implemented, both the 

embedded and discrete technique require more elements or special elements to sustain 

the simulation. Both methods result in an increase in computation cost. In the case of 

the distributed technique, the complicated reinforcement geometry only requires 

appropriate material constants or components of the stiffness matrix of the elements 

modelling the composite. This is easy to implement and cost effective. 

Finally, the embedded and discrete models do not satisfy equilibrium condition 
for the entire composite. In the embedded technique, equilibrium of the matrix element 
is satisfied only. To obtain the correct applied force in the composite, post-processing of 

the constituent stress using the rule of mixtures or by changing the mesh geometry to 

represent the volume of matrix has to be adopted. In the discrete technique, equilibrium 

is not satisfied when the one-dimensional reinforcements are transverse to the loading 

direction. To obtain the stress of the composite post-processing is involved. In the 
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distributed model, the geometry of the mesh represents the whole composite and 
equilibrium is satisfied for all reinforcement orientations. However, a problem with the 

model is that the forces and stresses of the composite constituents had to be obtained by 

post-processing with a specially written procedure. 

6.5 Conclusion 

A comparative study of three finite element modelling techniques was conducted 
to assess their suitability for modelling high fibre volume fraction composites. In 

meeting the criteria listed in Sect. 6.1, the distributed reinforcement technique was 
preferred over the embedded and discrete reinforcement technique. The technique 

satisfies both the equilibrium and compatibility conditions of the composite, and, allows 

an efficient representation of composite constituents architecture, orientation and 
damage. The distributed reinforcement technique is therefore selected as the basis for 

development of a micromechanics-based continuum damage mechanics model for 

numerical modelling brittle matrix composites. 
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Fig. 6.2-1 Schematic diagrams of the benchmark studies for (a) cases 1,2 & 3, and 
(b) case 4. 



CHAPTER 7 

A Damage Mechanics Approach to Model Deformation and 
Failure of Brittle Matrix Composites 

7.1 Introduction 

Computational models of the deformation of brittle matrix composite materials 

require the ability to deal with general stress states and anisotropy. The anisotropy is 

primarily caused by fibre architecture, modulus mismatch between the fibres and 

matrix, and damage. McCafferty (1994) developed a computational model that allowed 

the mechanical behaviour of the fibre and matrix to be modelled explicitly. This is an 

attractive approach since it allows a comprehensive description of factors such as fibre 

architecture and damage. The undamaged matrix was modelled using isotropic two- 

dimensional continuum elements, while the fibres were modelled separately using 

embedded one-dimensional line elements. However, this approach has limitations. First, 

damage was limited to matrix cracking and delamination could not be considered. 

Second, the full equilibrium conditions of the composite were not properly accounted 

for, as discussed in Chapter 6. The force in the embedded line element was a function of 

the displacements in the matrix element, as such the force in the line element was not 

equilibrated with adjacent elements. 

In this chapter, a computational damage model, which overcomes the limitations 

faced by McCafferty (1994) is presented. The computational model is developed using a 

micromechanics-based continuum damage mechanics approach to model deformation 

and failure. It is under-pinned by the micromechanics theory of Aveston, Copper and 

Kelly (1971), which allows mechanical behaviour of a composite to be modelled 

through the tangent-stiffness of its constituents obtained from monotonic experiments. 

The advantages are that the approach is able to model damages such as matrix cracking, 

delamination and fibre failure as well as fibre architecture, and satisfies equilibrium. 

The approach is unlike classical continuum damage mechanics theory reviewed in Sect 

2.5, which requires a formal thermo-mechanical analysis of a state potential with 

associated state variables. However, both approaches are similar in that the tensor nature 

156 
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of damage in a composite is recognised and the evolution of damage is modelled. 
Despite the differences, the need to segregate the current proposed micromechanics- 
based continuum damage mechanics approach from classical continuum damage 

mechanics approach is considered to be philosophical. Hence, attempts to discriminate 

in the current thesis are considered unnecessary and are avoided. 
The computational damage model was implemented through FORTRAN 

algorithms in the user-defined material (UMAT) subroutine of the finite element solver 
ABAQUS/STANDARD (Hibbitt, Karisson & Sorenson, 1998a), hereafter ABAQUS. 

The following sections briefly describe the subroutine UMAT and the constitutive and 

strength theories for modelling the deformation of composites with one- and two- 

dimensional reinforcements. To limit the scope, only plane stress conditions are 

considered. For two-dimensional reinforcements the fibre directions are orthogonal, 

although it would not be difficult to include non-orthogonal fibre architectures. 

7.2 Nomenclature and Position Systems 

A nomenclature table is given at the start of the thesis, but is usefully summarised here: 

Symbols Subscripts 

a- - stress c - composite 
E - strain f - fibre 
S - compliance m - matrix 
C - stiffness me - matrix cracking 
E - Young's modulus mc(sat) - matrix crack saturation 
G - shear modulus ms - matrix softening 
V - Poisson's ratio td - tensile delamination 
T - transformation sd - shear delamination 
D - an increment of u - ultimate failure 
V - volume fraction 
A - area fraction Superscripts 
{} -3x1 vector n - current increment 

-3x3 matrix n-1 - previous increment 

- magnitude of c - composite position system 
f - fibre position system 
m - matrix principal stress 

position system 

A contracted tensor notation described in Chapter 2 is used with a labelling 

system, which is shown below: 
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position system increment no. 

. 
fn fn 

component no. Y12 

Tensor notation Type of material Symbol notation 

Three Cartesian position systems were used: the composite system is denoted with the 

superscript, c, the fibre system is denoted with the superscript, f, and the matrix- 

principal-stress system is denoted with the superscript, m. A schematic diagram of the 

position systems is shown in Fig 7.2-1. The composite position system defines the axes 
in which the UMAT subroutine interacts with ABAQUS and is identical to the global 

co-ordinate system of the finite element analysis. The interaction between the UMAT 

subroutine and ABAQUS is explained in sect. 7.3. The fibre position system 
implements the constitutive relations of the fibres and the constitutive relations of the 

matrix after delamination has initiated. For one-dimensional reinforcements, the 1- 

direction defined the fibre reinforcement direction (fibre axis) while the 2-direction is 

normal to the fibre axis. For composites with two-dimensional reinforcements, the l- 

and 2-directions define the fibre axes of the first and second set of fibres. The matrix- 

principal-stress position system was used to define the mechanical properties of the 

matrix during matrix cracking. 

7.3 The User-Defined Material Subroutine (UMAT) 

The UMAT subroutine is a computational interface to ABAQUS, which allows 

mechanical constitutive models to be implemented. Its primary functions are to update 

the stress and solution-dependent state variables to their values at the end of each 

increment, and, to define the incremental stiffness matrix in the composite position 

system. To compute the stress and solution-dependent state variables, the incremental 

strain in the composite position system in each new increment n is provided by 

ABAQUS. Symbolically, the composite stress at the end of each increment is: 

`{6"}= ` {6ý''}+ `{d"} (7.3.1) 

where ` {dc" }=` [dC" ]` {dsc' } (7.3.2) 
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Here c {ß 
ý' 

} 
and c {6c1-' } denote the composite stress defined in the composite position 

system for the current increment n and in the previous increment n-1. The terms 

{da-" } 
and ` {dc" } denote the incremental stress and incremental strain of the 

composite in the composite position system for the current increment n. The 

incremental stiffness of the composite ` [dCC' ] 
can also be expressed in terms of an 

incremental compliance: 

c[dCil]-c[dSý, ]-' (7.3.3) 

Substituting into eqn (7.3.2), the stress at the end of each increment becomes: 

c {ail l=C 16c, -, l+ c fdsc 1-' c id. " } (7.3.4) 

7.4 The Damage Model 

7.4.1 General 

The model is based on a micro-mechanics damage approach, which allows a 

mechanistic description of the composite behaviour through the undamaged and 
damaged properties of its constituents. The following simplifying assumptions are used 

to develop the model: 

1. Firstly, the fibres and micro-cracked or delaminated matrix are regarded as a 

continua, so that discrete cracks and fibres are not represented. Their contribution to 

the behaviour of the composite is modelled in a way which can be sensibly 
interpreted over size scales large compared to the fibre or micro-crack spacing. 
Over such distances the average strain in the fibres, matrix and composite are 

identical. 

2. The fibres are assumed to be weakly bonded to the matrix. This is a good 

assumption for ceramic composites, which are deliberately designed to have weak 

fibre-matrix interfaces. As a result fibres do not contribute significantly to the 

stiffness normal to the fibre axis, and their main role is to transmit axial loads. 

3. Before damage, the matrix is assumed to be isotropic linear elastic while the fibres 

are one-dimensionally elastic along the fibre axis and the Poisson's ratio of the 

matrix, fibre and composite are identical. 
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4. Micro-cracking of the matrix is assumed to occur normal to the maximum principal 

stress direction in the matrix. The orientation of the crack planes is fixed in 

subsequent deformation, so that the model essentially considers proportional 
loading. 

5. Tensile or shear delamination in the composite is assumed to occur parallel to the 
fibre axis, at a critical direct or shear stress. 

To develop the damage model, elasticity theory is used at an incremental level. 

The stress-state of the composite before and during damage is defined by eqn (7.3.4) in 

which the incremental compliance of the composite 
[dS" ] 

consists of matrix and fibre 

terms. In the following sections, the structure and components of the incremental 

compliance of the matrix and fibres used to model the undamaged and damaged 

mechanical behaviour is described for plane stress conditions. 

7.4.2 Pre Damage Constitutive Relations 

Before damage, the matrix is treated as isotropic elastic while the fibre is one- 
dimensionally elastic. The incremental stiffness of the composite in the composite 

position system is given as: 

T]ý' [dS; ]' [T ] (7.4.2.1) 

Here, [s,,, ] is the isotropic elastic compliance of the volume fraction of matrix: 

1 -v 0 
EnV m 

EmV,, 

rs ý_ -v 1 (7.4.2.2) 0 Lm 

EmVm EmVm 

001 
Gm Vm 

in which the shear modulus of the matrix Gm is defined as: 

G,,, 
E'n 

(7.4.2.3) 
2(1+v) 

The symbols Em and V,, denote the Young's modulus and volume fraction of the matrix, 

and the symbol v denotes Poisson ratio of the matrix. 
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The symbol 
f LdS fI denotes the incremental compliance of the fibres in the fibre 

position system. For one-dimensional fibre reinforcement, 

100 

]=E fVf. [dS; 000 (7.4.2.4) 

000 

for two-dimensional fibre reinforcements, 

100 
Ef, Af, 

f [dS 
f010 

(7.4.2.5) 
f E, A, 

000 

and Afl + Af2 = Vf (7.4.2.6) 

in which Efl & Ei are the tangent modulii and Afl & Ap are the area fractions of the 

fibres in the 1- and 2-directions of the fibre position system. Eqns (7.3.2.4 & 5) indicate 

that the fibres are assumed to make negligible contributions to the shear and transverse 

deformation of the composite in the fibre position system. This simplification can be 

relaxed if transverse stiffness terms are available. 

The terms [TT ] and [TE ] denote the transformation matrix for stresses and 

engineering strains in fibre position system with respect to the composite position 

system. For plane stress condition, 

l;, l,; 2 
(7.4.2.7) [7Q]= 42,1,2111112 

L1112 121122 111127 +11-1112 

following eqn (2.4.15), and 

hi hz hihi 
(7.4.2.8) [TEý = h, 122 4241 

21111,1 21121� 1111,2 +1121,1 

following eqn (2.4.16), while ly is the direction cosine of the fibre position system with 

respect to the composite position system which is defined as: 
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Z� 112 113 cos a sin a0 
l,, Z� 123 = -sin a cos a0 

(7.4.2.9) 

131 '32 133 001 

Here, a denotes the fibre alignment angle. 

7.4.3 Damage Criteria 

Maximum stress theory is used to model the initiation of matrix cracking and 
delamination. The damage criteria are defined with respect to the current increment n. 

Matrix cracking is assumed to initiate when 

6m(max) 
>1 (7.4.3.1) 

ionic 

Here, o ßc denotes the critical matrix cracking stress while 6, (,,, ax) 
denotes the 

maximum principal stress in the matrix. The principal stress position system at which 

matrix cracking first initiated is fixed to model the subsequent constitutive response of 

the cracked matrix. Matrix cracking thus is allowed to occur on two orthogonal planes, 

which are not permitted to rotate after matrix cracking has initiated. In addition, the 

ultimate failure of the composite is modelled when the fibres failed, i. e. 

f 07 
(f' 

>_ 1 or 
f 07f2 

>_ 1 (7.4.3.2) 
6f (e 

) 6f (e ) 

Here, f 07f i and f6f, are the direct stress component of the fibres in the fibre position 

system while ar f (s, 
� 
) denotes the average stress in the fibres at the failure strain of the 

composite when tensioned parallel to the fibre axis. 

Maximum stress theory (Hull & Clyne, 1996) incorporates two delamination 

modes: tensile and shear delamination. The normal to the failure plane in both modes is 

normal to the fibre axis. The theory agrees well with the delamination experiments 

reported in Sect. 4.4. However, the correlation for shear delamination is not simple. The 

experiments showed that shear delamination occurred concurrently with matrix 

cracking, so that a range of potential failure planes form at the same time. Because the 

mechanics of damage interaction are not fully understood, the criteria for modelling 

cannot be implemented at this time. Although maximum stress theory for shear 

delamination may be a simplification of the experimental observations, the need to 
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develop a tractable computational procedure advocates its use. As such, maximum 

stress theory is used to model both tensile and shear delamination. Because the fibres do 

not contribute to the shear and transverse deformation of the elements, tensile 
delamination is modelled when 

f 

(7.4.3.3) 
61d 

and shear delamination occurs when 

f 
ztit] 2>1 (7.4.3.4) 

Here, the symbols 6td and f u,,,, denote the tensile delamination strength of the 

composite and the transverse stress component of matrix in the fibre position system. 

The symbols I zsdj and 
f 

z,,,,, denote the magnitude of the shear strength of the 

composite and the magnitude of the matrix shear stress in the fibre position system. 
When delamination initiates, constitutive modelling of the matrix was implemented 

using the fibre position system. 

To simplify the computational procedures, each integration point in the composite 

elements can exhibit either matrix cracking or tensile or shear delamination. Thus, 

simultaneous occurrences of different damages at the same integration point are not 

permitted. However, since each composite element comprises several integration points, 

it implies that the modelling procedure allows different damages to be modelled in a 

single composite element. 

7.4.4 Constitutive Relations Incorporating Damage 

7.4.4.1 Matrix cracking and Fibre failure 

During matrix cracking, the incremental stiffness of the composite in the 

composite position system is given as: 

ýrdS`, 1 
=[P, 

]-' », [dS»`, ] I[ PE ý+ ýT, ý r[ds; J' {TE] (7.4.4.1.1) 

Here, [P, ] and [PE ] denotes the transformation matrix of the matrix stresses and strains 

in the matrix position system with respect to the composite position system. Explicitly, 
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b� b,; 2 b�b,, 

, b12 (7.4.4.1.2) [PQ]= b2, b, 2 b2 [b1b12 
b,, b, 

z 
bub22 +b,, b,, 

following eqn (2.4.15), and 

b� b; b�b,, 
{i ý= b, b, b�b,, (7.4.4.1.3) 

2b�b,, 2b1zb� b�bz, + b,, bz, 

following eqn (2.4.14). The symbol bu denotes the direction cosine of the matrix stress 
in the matrix position system with respect to the composite position system and is 

defined as: 

b� b1, b13 cos B sin 00 

b; 1 = b,, b� b, 3 = -sin B cos B0 (7.4.4.1.4) 

b;, b3, b� 001 

where 0 denotes the maximum principal stress direction in the matrix before cracking 
initiated. 

The symbol "ý [dS, ] denotes the incremental compliance of the cracked matrix 

defined in the matrix position system and its components are dependent on the effective 

stress-strain response of the cracked matrix. For brittle matrix composites in tension 

parallel to the fibres, the effective response of the cracked matrix can be derived from 

ACK theory. At any applied strain state, the effective stress in the cracked matrix can be 

obtained by subtracting the stress of the volume fraction of fibres from the composite 

stress, and dividing the resultant stress with the matrix volume fraction, i. e. 

6n, = if (sý 
_= sý. _ý) (7.4.4.1.5) 

V. 

Here, s, Sm and cf denote the strain components in the composite, matrix and fibres 

parallel to the loading direction and e is the applied strain. Eqn (7.4.4.1.5) allows the 

effective tangent modulii of the cracked matrix which is a function of the applied strain 

to be obtained from experimental data. 

The effective stress-strain response of the cracked matrix is shown schematically 

in Fig 7.4.4.1-1 to consist of hardening and softening regions. The hardening region 

describes the effective behaviour of the matrix from the onset of matrix microcracks to 

the initiation of steady-state matrix cracking, which is the maximum effective stress in 
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the matrix. The softening region models steady-state matrix cracking through cracking 

saturation and fibre failure. After which, the matrix response is unloaded exponentially. 
During matrix cracking, ACK, Prewo (1986) and McCafferty (1994) have shown 

the tensile response of brittle matrix composites is inelastic when cyclically loaded in 

the fibre direction. This is due to frictional sliding at the fibre-matrix interface during 

matrix crack opening, crack closure and crack re-opening (Evans & Marshall, 1989). In 

the current damage model, the frictional effects during crack-opening (I), crack-closure 
(II) and crack-reopening (III) modes of deformation are modelled in both the hardening 

and softening regions of the damage matrix response by treating the matrix as an elastic- 
damaged material. The incremental compliance of the cracked matrix is assumed 

transversely-isotropic in the matrix position system and modifications to the effective 

engineering constants allow the components of the incremental compliance in the 

different deformation modes to be represented. The case where the matrix crack plane is 

normal to the 1-direction of the matrix position system is now described. During crack 

opening (mode I), the incremental compliance of the cracked matrix is given as: 

1 vmc 0 
Emc Emc 

m[dS ]= Vmc 10 (7.4.4.1.6) 
m Emc Vm Em 

00 
/ý 

1 

/" 
Vm Gm 

Here, E,,, denotes the effective tangent modulii of the volume fraction of matrix derived 

from experiments (see eqn (7.4.4.1.5)). Experiments on one- and two-dimensional 

polyester composites conducted in Chapter 4 observed that the matrix strain parallel to 

the crack plane is relaxed during matrix cracking. To model this relaxation, a damaged 

Poisson's ratio term v7zc was introduced which smoothly decays the isotropic 

undamaged Poisson ratio value v of the matrix to zero: 

v=v- (0.37v - 0.00 1) exp 1- a 
\, 

(7.4.4.1.7) 
(n'8ml 

/ 

Here, denotes the matrix strain component normal to the crack plane and a is a 

constant. Poisson's ratio for the cracked matrix v1mc is given as a function of different 

initial Poisson's ratios v as a function of the matrix strain component "'s,,,, in Fig 
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7.4.4.1-2. To improve numerical stability, a constant ß of a magnitude of 1.0E-6 is 

introduced to eliminate the matrix shear modulus G/z. This circumvents `shear locking' 

of the composite element during plane stress in-plane bending. 

To model crack opening (mode I) and reopening (mode III) the incremental 

matrix strain normal to the crack plane must be positive while for crack closure (mode 

II) the incremental strain normal to the crack plane must be negative. The incremental 

compliance of the matrix during crack closure and crack reopening (modes II & III) is 

defined as: 

I Vmc 0 Esec Esec 

n, [dS 
= 

V" 10 (7.4.4.1.8) 
m Esec Vm Em 

001 
/' 

Vm Gm 

where ESec is the secant modulus of the matrix with respect to the origin. 
During matrix cracking, it is assumed that the fibres remain elastic and the 

incremental compliance of the fibres is defined either by eqn (7.4.2.4 or 5). However 

when the fibres start to break, the fibres unload and eqn (7.4.2.4 & 5) are invalid. For 

one-dimensional fibre reinforcement, the incremental compliance of the fibres in the 

fibre position system during unloading is: 

100 
Efi, 

(7.4.4.1.9) s[dSsý 
=000 

000 

and for two-dimensional fibre reinforcements, 

100 
E fit 

r[dSr 010 
(7.4.4.1.10) 

Er2 Ar2 
000 

when fibre failure occurred in the fibre 1-direction. The symbol Efu denotes the effective 

modulus of the failed fibres which decays to zero by an expression of the form: 
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Eý, _ -a 
f 

6fß' expb 
f 

sfl 

Here, a, b and c are curve fitting constants while 
j6 fi' and 

rs fý' are the stress and 

strain magnitudes of the volume fraction of fibres in the 1-direction of the fibre position 

system from the previous increment n-1. Concurrently, the modulus of the cracked 

matrix E7mc in eqn (7.4.4.1.6) during fibre unloading is modelled as: 

a exp b �i c) (7.4.4.1.12) n 

in which ýýý a-, `�1' and M s, 'ý' denotes the matrix stress and strain magnitudes in the 1- 

direction of the matrix position system from the previous increment n-1. 

7.4.4.2 Tensile delamination 

During tensile delamination, the damage response of the composite is modelled 

through the effective properties of the matrix as the fibres are assumed to be one- 
dimensional. The matrix is transversely-isotropic in the fibre position system while the 

fibres remain one-dimensionally non-linear elastic. The corresponding effective stress- 

strain response of the matrix in the 2-direction of the fibre position system during tensile 

delamination is shown in Fig 7.4.4.2-1. As with matrix cracking, three modes of tensile 

delamination are allowed: crack-opening (I), crack-closure (II) and crack-reopening 
(III). 

Crack-opening (I) is modelled using the incremental matrix compliance: 

1V Id O 
EmVn, EmVm 

f ýdSn 
-V /a 10 (7.4.4.2.1) 

m Em Vn, E, 

001 
GldVm 

where Eid denotes the effective incremental modulus of the volume fraction of the 

matrix during tensile delamination. The transition from an undamaged composite to full 

delamination is modelled by an exponential decay curve such that: 

Eid = -a 
f 

6,,, 2' exp bf; C) (7.4.4.2.2) 
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in which 
fa /I12' and 

f 
s,,;; ' are the matrix stress and strain magnitudes in the 2- 

direction of the fibre position system from the previous increment n-1, and a, b, c are 

constants. Poisson's ratio during tensile delamination vtd is modelled as: 

Vid _ -V 
E'ý 

(744 3) 

while the matrix shear modulus is modelled as: 

G 
Id = 

EIn 
(7.4.4.2.4) 

2(l+Vid) 

Modelling crack opening (mode I) requires that the matrix incremental strain normal to 

the delamination plane is positive. 

During crack closure and crack reopening (modes II & III), the incremental 

compliance of the matrix is defined as: 

n 1 Vi 0 
En'ýýn E±1 " (7.4.4.2.5) [dS, n 

,0 EVEsec 

00 
G, d V,,, 

Here, v; j' denotes the matrix Poisson's ratio during tensile delamination in the 

previous increment. Crack closure (II) is modelled when matrix strain increment normal 

to the delamination plane is negative while a positive incremental strain models crack 

reopening (III). During crack reopening (III), deformation of the matrix is modelled by 

eqn. (7.4.4.2.1) when the matrix stress exceeds the stress at which crack closure 

initiates. 

The incremental stiffness of the composite in the composite position system is 

given as: 

c"(dSL, I ý_ [Tý}_ý r[dS�] [TEJ +[ Taý 1 f[dSf]-1 [TE] (7.4.4.2.6) 

7.4.4.3 Shear delamination 

During shear delamination, the damage response of the composite is also 

modelled by the effective properties of the matrix and the incremental stiffness of the 

composite in the composite position system is given by eqn (7.4.4.2.6). The effective 
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shear stress-strain response during shear delamination in the fibre position system is 

shown in Fig 7.4.4.3-1. Shear delamination can occur in both positive and negative 

shear stress-strain spaces. In each of these regions, the shear delamination plane can 

exhibit open (I), closed (II) and re-opening (III) modes of deformation. 

In either polarity, mode I in the matrix was modelled when the magnitude of the 

incremental shear strain was greater than zero. The incremental compliance of the 

volume fraction of matrix was modelled as: 

I =v 0 
E, d E,. d 

[dS ]_ =v 
10 (7.4.4.3.1) 

m E, d E, 
nV,, 

001 
G, dVn, 

in which Gad, the effective incremental shear modulus of the delaminated matrix, was 

allowed to decay from the undamaged to the fully delaminated state by a relation of the 

form: 

C 

G, d af zm12 exp -bf Y�12 (7.4.4.3.2) 

Here, f Jz�i; and 
f 

y;;, 12 are the shear stress and shear strain magnitudes of the matrix 

in the fibre 12-plane in the previous increment, and, a, b, c are constants. The tangent 

modulus of the matrix in the fibre axis Ed was modelled by: 

Esd = E», V,,, {2(1+V)2] (7.4.4.3.3) 

This procedure ensured numerical convergence. 

To model both mode II and mode III, the matrix incremental compliance was 

defined by: 

I =v 0 
Ecd Ecd 

'fds 1_ _v 10 (7.4.4.3.4) 
L mJ E, 

sd 
EmVm 

001 
Gsec 

where GSec denotes the matrix secant shear modulus. The criteria for modelling mode II 

in the positive stress & positive strain space were: 
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(f 
Yin 12 > 0) and 

(d f y�nz < 0) (7.4.4.3.5) 

while the criteria for modelling in the negative stress & negative strain space were: 

( 
1m1, < 0) and 

(df 
y1112 > 0) (7.4.4.3.6) 

The criteria for modelling mode III in the positive stress & positive strain space were: 

(f 
Ym12 > 0), (-fY,,, 

l2 > Y,,, (II)) and 
(d fY,,,, 

7 > 0) (7.4.4.3.7) 

while the criteria for modelling in the negative stress & negative strain space were: 

(f 
Y,,, 12 < 0), (f 

Ym12 > Y», (ll) and 
(d f )l, » 1, < 0) (7.4.4.3.8) 

Here, r y,,, (11) 
1 is the magnitude of the shear strain at which closure initiated. 

7.5 The Computation Algorithm 

7.5.1 Overview 

The computation algorithms of the damage model implemented in the subroutine 

UMAT were developed using FORTRAN77 (Ellis, 1993). A generalised flow chart of 

the damage model is shown schematically in Fig 7.5.1-1. Essentially, it consists of the 

subroutine UMAT, which initialises the local material variables and the state-dependent 

variables, and checks the damage analysis required. If a matrix cracking analysis is 

required only the subroutine KDMC is activate, otherwise the subroutine KDMCDEL is 

activated to allow matrix cracking or delamination analyses. The options are introduced 

to allow a comparison of results from different subroutines. In either case, before 

damage the subroutine KELAS is inherently active by default. During damage, the 

subroutines KMC or KDEL are made active to perform matrix cracking or delamination 

analysis through the subroutine KDMCDEL while the subroutine KDMC activates the 

subroutine KMC to perform only matrix cracking analysis. 

The algorithm of the subroutine UMAT is presented schematically in Fig 7.5.1-2. 

Initially, a logical variable TEST with a default value of FALSE, and the global common 

block ABA INPUT. INC and local common blocks INPUTA. INC, INPUTB. INC, ... etc, 

are defined. The function of the local common blocks is to store the material properties 

of individual element sets listed in the `. inp' file. Through a logic loop of the variable 

TEST, the material data are read by subroutines KPROP3A, KPROP3B, ... etc, during 
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the first incremental analysis and stored into the respective local common blocks 

INPUTA. INC, INPUTB. INC, ... etc. Unlike the local common blocks, the function of 

the global common block ABA INPUT. INC is to provide the material data required 

during the current analysis. To update the global common block ABA INPUT. INC, the 

variable CMNAME which contains the material names of the element sets listed in the 

`. inp' file is used in an `if-loop'. Corresponding to the material names, i. e. MATO, 

MATT, ... etc, the respective subroutines KCBA, KCBB, ... etc, are activate to perform 

the corresponding updates. A list of the variables in the local and global common blocks 

is shown Table 7.5.1-1. After preliminary initialisations, the subroutines KDMCDEL or 

KDMC are activate depending on the value of the variable PTYPE. If PTYPE is zero, 

the subroutine KDMCDEL is activate while a value of one activates the subroutine 

KDMC. If any other values occur, an error message is written to the ABAQUS 
. 
dat file 

and the analysis terminates using the subroutine XIT provided by ABAQUS. 

The algorithm of the subroutine KPROP3A, which reads in material data from the 

element set with a material name MATO, is shown schematically in Fig 7.5.1-3. First, 

material data are read from two locations: the `. inp' file and data files located in a 

remote directory. The `. inp' file passes material data into the subroutine UMAT through 

the variable PROPS(NPROPS). The material data are listed in Table 7.5.1-2. To 

simplify presentation, only two element sets are considered. Separately, the effective 

stress-strain data of the matrix and fibres are stored in remote data files. After reading in 

the effective stress-strain data, the tangent modulii of the volume fraction of matrix and 

fibres are evaluated. The effective stress at which matrix tension-softening initiates is 

determined through the subroutine KMAX and the subroutine KCONVER converts the 

fibre orientations from degrees to radians. The algorithms of the subroutines KMAX 

and KCONVER are shown in Fig 7.5.1-4 and 5. 

For element sets with the material names MAT], MAT2, ... etc, the subroutines 

KPROP3B, KPROP3C, ... etc, are used to update the local common blocks 

INPUTB. INC, INPUTC. INC, ... etc. In general, the structure of the subroutines 

KPROP3B, KPROP3C, ... etc, are similar to KPROP3A. However, instead of using the 

local common block INPUTA. INC and having the letter `A' precede every local 

variable, the local common blocks INPUTB. INC, INPUTC. INC, ... etc. are use and the 

local variables that are preceded with letters B, C, 
... etc. An example is shown in Table 

7.5.1-1 & 2. 
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The algorithm of the subroutine KCBA, which updates the global common block, 

is shown schematically in Fig 7.5.1-6. In general, the structure of the subroutine KCBA 

is similar with the subroutines KCBB, KCBC, ... etc. The exceptions are that the local 

common block and local variable must be replaced with the one in use. Finally, the 

algorithm of the subroutines KDMCDEL and KDMC, which permits matrix cracking or 

delamination analysis and only matrix cracking analysis are shown schematically in Fig 

7.5.1-7 & 8. 

Before presenting the algorithm of the subroutine KELAS, KMC and KDEL, it is 

appropriate here to introduce the state dependent variables STATEV(NSTATV) which 

must be updated at every analysis. In Table 7.5.1-3, a list of the state-dependent 

variables are presented and briefly described. 

CMNAME NPROPS Variables CMNAME NPROPS Variables 

1 APOIS 25 BPOIS 
2 ASSD 26 BSSD 
3 ASTD2 27 BSTD2 
4 ANDATAM 29 BNDATAM 
5 AGCONST 30 BGCONST 
6 ANOF 31 BNOF 
7 AANG1 32 BANG1 
8 AVFI 33 BVF1 

E- 9 AAF1 34 BAR 
10 ANDATAF 1 35 BNDATAF 1 
11 AANG2 36 BANG2 
12 AVF2 37 BVF2 
13 AAF2 38 BAF2 
14 ANDATAF2 39 BNDATAF2 
15 APTYPE 40 BPTYPE 
16 AFIB 41 BFIB 
17 ASMC1 42 BSMC1 

18-24 Unused 43-48 Unused 

Table 7.5.1-2 The data PROPS(NPROPS) supplied from the . inp file into the 
subroutine UMAT. 
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Global Common Block Local Common Block Description 

ABA_INPUT. INC INPUTA. INC INPUTB. INC 
ANGI AANG1 BANG1 Angle (Deg. units) between the 

composite 1-dir and the fibre 1-dir. 
ANG2 AANG2 BANG2 Angle (Deg. units) between the 

composite 2 dir and the fibre 2 dir. 
POIS APOIS BPOIS Poisson's ratio v 
SMC1 ASMCI BSMCI Matrix cracking initiation stress. 
SMC2 ASMC2 BSMC2 Effect stress in vol. fraction of matrix 

when softening initiates. 
SMC3 ASMC3 BSMC3 Effective stress in vol. fraction of 

matrix when fibres fails. 
SSD ASSD BSSD Shear delamination stress qd 
STD2 ASTD2 BSTD2 Tensile delamination stress 6, d 
VFI AVF1 BVFI Vol. fraction of fibres in fibre 1-dir. 
VF2 AVF2 BVF2 Vol. fraction of fibres in fibre 2-dir. 
VMI AVM1 BVM1 Vol. fraction of matrix in fibre 1-dir. 
VM2 AVM2 BVM2 Vol. fraction of matrix in fibre 2-dir. 
NDATAM ANDATAM BNDATAM Number of rows of data in remote file 

datam. exp 
NDATAF 1 ANDATAF 1 BNDATAF 1 Number of rows of data in remote file 

dataf exp 
NDATAF2 ANDATAF2 BNDATAF2 Number of rows of data in remote file 

datafexp 
NMAX ANMAX BNMAX Date row number of remote file 

datam. exp when softening initiates 
GCONST AGCONST BGCONST Constant '3 
PCONST APCONST BPCONST Constant P 
AF I AAFI BAF 1 Area of fibres in the fibre 1 dir. 
AF2 AAF2 BAF2 Area of fibres in the fibre 2 dir. 
NOF ANOF BNOF Number of fibre reinforcement 

directions : (1 or 2) 
STRESM(34) ASTRESM(34) BSTRESM(34) Effective stress data of matrix. 
STRANM(34) ASTRANM(34) BSTRANM(34) Effective strain data of matrix. 
EMODM(34) AEMODM(34) BEMODM(34) Effective tangent modulii of matrix. 
STRESFI(34) ASTRESFI(34) BSTRESFI(34) Experimental stress data of fibres in 

fibre 1-dir. 
STRESF2(34) ASTRESF2(34) BSTRESF2(34) Experimental stress data of fibres in 

fibre 2-dir. 
STRANFI(34) ASTRANFI(34) BSTRANFI(34) Experimental strain data of fibres in 

fibre 1-dir. 
STRANF2(34) ASTRANF2(34) BSTRANF2(34) Experimental strain data of fibres in 

fibre 2-dir. 
EMODFI(34) AEMODFI(34) BEMODFI(34) Experimental tangent modulii of 

fibres in fibre 1-dir. 
EMODF2(34) AEMODF2(34) BEMODF2(34) Experimental tangent modulii of 

fibres in fibre 2-dir. 
FIB AFIB BFIB Compressive modulus of fibres: 

0 => zero modulus 
1 => modulus same as in tension 

TEST - - Logical variable (default FALSE) 

PTYPE APTYPE BPTYPE Compressive modulus of fibres: 
0 => zero modulus 
1 => modulus same as in tension 

Table 7.5.1-1 The variables listed in the global and local common blocks of the 
subroutine UMAT. 
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STATEV Descriptions 

1-3 Z», 17 

4-6 HI In ni 6m1 
, 

6m2 
I 

Zm12 

7-9 f 6»el' f° 
m2 If 

Zm12 

10-12 »r5l, m£2' m712 

13-15 fEl, f-02, f712 

16-24 

The direction cosine when matrix cracking initiated: 
16-18 - component (11,12,13 ), 
19-21 -ý component (21,22,23 ), 
22-24 4 component (31,32,33 ) 

25 S,,,, - strain at which matrix cracking initiated in the matrix 1-direction. 

26 s,,, c. - strain at which matrix cracking initiated in the matrix 2-direction. 

27 S, d - strain at which tensile delamination initiated in the fibre 2-direction 
. 

28 y s. d - shear strain at which shear delamination initiated in the fibre 12-plane. 

29 
State of matrix cracking in the matrix 1-direction 
0= no damage, 1=tension stiffening, 2=tension softening, 3=final failure 

30 
State of matrix cracking in the matrix 2-direction 
0= no damage, l=tension stiffening, 2=tension softening, 3=final failure 

31 POISM- matrix Poisson's ratio as a function of strain 

32 
Material state: 
O=Pre-damage, 1=Matrix cracking, 2=Shear Delamination, 3=Tensile Delamination 

33 6», 1 6mc1 

34 6m2 6», 
cl 

35 f 6, »2 
/6rd 

36 f z», 1? 
/z, 

sa 

37 "'6,,, 
1 at which mode II initiates during matrix cracking in matrix 1-direction 

38 °2 at which mode II initiates during matrix cracking in matrix 2-direction 

39 dC33 
40-42 fO"f1, f 6. f2, 

f "f 12 

43-45 `6f1, `6f� `zjl, 

46 Subroutines used to implement the incremental stiffness of the matrix 

47 "'ds 
1 

48 E,,, 
cl 

49 Eiiic2 

50 
State of tensile delamination in the fibre 2-direction 
0= no damage, 1= mode I, 2= mode II, 3= mode III, 4= compressive state 

51 
State of shear delamination in the fibre 2-direction 
0= no damage, 1= mode I, 2= mode II and III 

52 Iat which mode II initiates after tensile delamination 

53 f s, at which mode II initiates after tensile delamination 

54 fz,,, 
l, at which mode II initiates after tensile delamination 
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55 f 112 at which mode II initiates after tensile delamination 

56 E, at which mode II initiates during matrix cracking in matrix 1-direction 

57 6, at which mode II initiates during matrix cracking in matrix 2-direction 
State of fibre deformation in fibre I -direction: 

58 0= linear elastic, 1= non-linear elastic, 2= broken fibres with +'ve f del 

3= broken fibres with -'ve 
f del 

,4= compressive state 
State of fibre deformation in fibre 2 -direction: 

59 0= linear elastic, 1= non-linear elastic, 2= broken fibres with +'ve f ds, 

3= broken fibres with -'ve 
f d, 4= compressive state ,, 

60 Broken fibre strain when +'ve f de initiates 
. l 

61 Broken fibre strain when +'ve f dc initiates , . 
62 Broken fibre strain when -'ve 

f de, initiates. 

63 Broken fibre strain when -'ve 
f de, initiates. 

Table 7.5.1-3 Definition of the solution-dependent state variables (STATEV) at the 
end of each increment 

7.5.2 The Elastic Subroutine KELAS 

The function of the subroutine KELAS is to model the undamaged elastic stress- 

strain behaviour of the composite according to the micro-mechanical theory described 

in Sect. 7.4.2, and introduce the damage criteria described in Sect. 7.4.3. The structure 

of the algorithm is presented in Table 7.5.2-1. 

Subroutine KELAS 

1. Initialisation of internal variables. 
2. Matrix Analyses in the Composite Position 

System 
2.1 Calculation of strain. le" }+` {ds" } 

2.2 Definition of stiffness for the vol. fraction of 
matrix matrix 

S� 
fds� 

L ýý 

l 

Jelas -LtI- 

2.3 Calculation of stress in vol. fraction of matrix. e j6� l_er 
l ,n1[ 

s� 1 
, 1, l 

JE� 1 1c 
erax lI 

3. Matrix Analyses in the Matrix Position System 
3.1 Calculation of principal stresses and principal 

strain and principal direction cosines. 
ta±ý le }& [b 

4. Matrix Analyses in the Fibre Position System 
4.1 Definition of stress transformation matrix. [T,, 

4.2 Definition of strain transformation matrix. [TE 

4.3 Calculation of stress in volume fraction of 
matrix. 

f [T ic ý6� l 

4.4 Calculation of strain. 1 J£� 1_ 
l1 

ITE 1J c 1£ýý 1 
l1 
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5. Fibre Analyses in the Fibre Position System 
5.1 Calculation of strain increment {ds" ]C {d. " } }= [T 

E 

5.2 Definition of the incremental stiffness of vol. 
fraction of fibres 

r [dS" ] 
f 

1 

5.3 Calculation of stress increment in vol. fraction 
of fibres 

f {do-" } 
f =f 

[dS" ]'f {de" } 
t 

5.4 Calculation of stress in vol. fraction of fibres r� 
6r 

{d6, } 
=f 

10-f 
+f r} 

6. Fibre Analyses in the Composite Position System 
6.1 Definition of transformation matrix IT, 

1 
1-1 

L 
6.2 Definition of the fibre incremental stiffness c [dS" 1_ 

I 
[T ]-' f [dS" ]-I IT, 1 QIE 

6.3 Calculation of stress increment of vol. 
fraction of fibres 

` Ida 
f ` fdS"l 

LfJ 
'c dc" 

6.4 Calculation of stress in vol. fraction of fibres c ja. r, 1 
l f1 =C 

{ ; _i 1 
+" 

{d6" } 
lf1I 

7. Composite Analyses in the Composite Position 
System 
7.1 Definition of composite incremental stiffness c [dS" c [dS" ] 

+C 
[dS" i 

7.2 Calculation of stress increment c {d6" } 
_° 

[dS" 1c {dc" } 

7.3 Calculation of stress ` {a Y1 } 
_` 

{a "1} +C 
{da "} rr 

8. Updating of solution-dependent state variables. 

Table 7.5.2-1 Computation algorithm of KELAS 

The flow diagram of KELAS is shown schematically in Fig 7.5.2-1. The 

subroutine KELAS begins with several initialising procedures. First, STATEV(32) is 

given the value 0 while the subroutine KZEROVEC and KZEROMAT, shown 

schematically in Fig 7.5.2-2 & 3, initialises the internal variables of the subroutine 

KELAS with zero values. KZEROVEC is designed for 3x1 vectors while KZEROMAT 

is designed for 3x3 matrices. Next, the subroutine KINI (Fig 7.5.2-4) updates the 

variables SFF3 and SF3 with the fibre stresses 
f {a f-' } 

and ` {a- f stored in STATEV 

(40-42 and 43-45). 

After initialisation, analyses of the stresses and strains in the volume fraction of 

matrix (hereafter, matrix) in the composite, matrix and fibre position systems are 

performed. In the composite position system, the matrix strain STRAN is determined 

using the incremental strain DSTRAN provided by ABAQUS and the subroutine 

KVECTPLUS3 (Fig 7.5.2-5), which performs vector addition of two 3x1 vectors. After 
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defining the stiffness of the matrix CM through the subroutine KCPM1 (Fig 7.5.2-6), 

the matrix stress STRESM3 is determined through the subroutine KFILLVECT3 (Fig 

7.5.2-7), which calculates the product of a 3x3 matrix with a 3x1 vector. In the matrix 

position system, the principal stresses of the matrix SPM, its direction cosines PTRANS, 

and the principal strains EP, are analysed by implementing the matrix stress STRESM3 

and strain STRAN in the ABAQUS subroutines SPRIND and SPRINC. In the fibre 

position system, the matrix stress and strain are obtained by first defining the stress 

transformation matrix TFT3 and the engineering-strain transformation matrix TFTTI3, 

using the subroutines KT3 (Fig 7.5.2-8) and KTTI3 (Fig 7.5.2-9). After implementing 

the transformation matrices TFT3 and TFTTI3 with the stress STRESM3 and strain 

STRAN in the subroutine KFILLVECT3, respectively, the matrix stress STRESMF3 and 

strain STRANF3 in the fibre position system are obtained. 

After analysing the stresses and strains in the matrix, analyses for the stresses in 

the volume fraction of fibres (hereafter fibres) in the fibre and composite position 

systems are performed. In the fibre position system, the incremental strain of the fibres 

DEF3 is first calculated using the subroutine KFILLVECT3. Next, the direct strain 

components of the fibres in the previous increment are rename as X1 and X2 by the 

subroutine KX (Fig 7.5.2-10). This is followed by a procedure which renames 

STATEV(58,59,40,41,13,14,60 to 63) and DEF3 to B1, B2, C1, C2, D1, D2, El, E2, 

G1, G2, F1 and F2. Essentially, the variables with digits 1 or 2 denote the fibres in the 1 

or 2 axes of the fibre position system. To determine the tangent modulus of the fibres 

corresponding to the level of applied strain in the fibre position system, the renamed 

variables and experimental stress-strain data of the fibres are submitted to the subroutine 

KEMF (Fig 7.5.2-11). After which, the embedded subroutine KEMOD (Fig 7.5.2-12) 

acquires the fibres tangent modulus in a piece-wise linear fashion. In addition, the 

subroutine KEMF also implements the failure criterion for the fibres and defines the 

tangent modulus to unload the fibres. After the tangent modulus is determine, the 

subroutine KCPSFF2 (Fig 7.5.2-13) then defines the incremental stiffness CFF of the 

fibres. To determine the incremental stress DSFF3 and the total stress SFF3 of the 

fibres, the subroutines KFILLVECT3 and KVECTPLUS3 are used. To determine the 

fibre stresses in the composite position system, a stress transformation matrix TFTI3 is 

initially defined by the subroutine KTI3 (Fig 7.5.2-14). After which, the incremental 

stiffness of the fibres CFF in the fibre position system is transformed to the composite 
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position system through the 3x3 matrix multiplication subroutine KMATPRODUCT 

(Fig 7.5.2-15). By substituting the new incremental fibre stiffness CF and the 

incremental strain DSTRAN into the subroutine KFILLVECT3, the fibre stress 
increments DSF3 are solved. By further substituting DSF3 into KVECTPLUS3, the 

total stress SF3 in the fibres in the composite position system is obtained. 

To determine the composite incremental stiffness in the composite position 

system DDSDDE, the incremental stiffnesses CF and CM are submitted to the 

subroutine KMATPLUS3 (Fig 7.5.2-16); essentially the subroutine performs addition of 

two 3x3 matrices. The corresponding incremental stress of the composite DSTRESS is 

calculated using the subroutine KFILLVECT3 and the variables DSTRAN and 

DDSDDE. After which, the composite stress STRESS in the composite position system 

is determine by substituting the variable DSTRESS into the subroutine KVECTPLUS3. 

To update the solution-dependent state variables STATEN five subroutines are 

used. The subroutine KSDVA (Fig 7.5.2-17) updates STATEV (1-3) while the 

subroutine KSDVB (Fig 7.5.2-18) updates STATEV (4,5,10,11,25,26,29,30,32- 

34,37,38,56,57) and checks for matrix cracking. Both the subroutines KSDVC (Fig 

7.5.2-19) and KSDVCELAS (Fig 7.5.2-20) updates STATEV (7-9,13- 

15,27,28,32,35,36,50-55). However, the former is active when the variable PTYPE=O 

and checks for tensile and shear delamination while latter is active when the variable 

PTYPE=1. The subroutine KSDVPORIEN (Fig 7.5.2-21) updates STATEV(16-24) and 

finally the subroutine SDVFIB (Fig 7.5.2-22) updates STATEV(40-45). 

7.5.3 The Matrix Cracking Subroutine KMC 

The function of the subroutine KMC is to model the damage stress-strain 

behaviour of the composite during matrix cracking according to the micro-mechanical 

theory described in Sect. 7.4.4. The structure of the computation algorithm is presented 

in Table 7.5.3-1. 

Subroutinc KNIC 

1. Initialisation of internal variables. 
1.1 Internal variable with zero value 
1.2 Definition of the matrix stresses and strains in 111 107,1 

the matrix position system and the fibres ni 'lff 
stresses in the fibre and composite position 
system, from the previous increment. 



Chapter 7: A Damage Mechanics Approach to Model Deformation & Failure of Brittle Matrix 
Composites 179 

1.3 Definition of the stress transformation matrix. Ip 
p1 

1.4 Definition of the inverted stress transformation 
matrix 

rp 1-I 
L°1 

1.5 Definition of the strain transformation matrix Ipp 

2. Matrix Analyses in the Matrix Position System 
2.1 Calculation of the incremental strain »7 j l= f1c Jds 1 

ld£" J LPE J l" J 
2.2 Definition of the incremental stiffness of the 

volume fraction of matrix 
r 
L dS� i 

2.3 Calculation of stress increment in matrix {d6 } 17' [dS,, ] X71 {dc" } l »i »i 

2.4 Calculation of stress in matrix (6� 1 
+, » 

=, 
77 jd I 

,» 6», 6, » 
3. Matrix Analyses in the Composite Position System 

3.1 Calculation of stress in matrix ` 1)6" = 
iP ' 711 

6 ` ,,, 

} 

QI », 

} 

3.2 Calculation of strain c{i` {»-' }+C {d--" } 

3.3 Calculation of incremental stiffness of the 
volume fraction of matrix in the composite 
position system 

cr �' Ir 1-1 », [� 1-' r LdS,, - LPa JL dS,,, LPE 

4. Matrix Analyses in the Matrix Position System 
4.1 Calculation of strain in {E� }_ [P {s" } 

E 

5. Matrix Analyses in the Fibre Position System 
5.1 Definition of stress transformation matrix. IT, 1 

5.2 Definition of strain transformation matrix. IT, 1 

5.3 Calculation of stress in matrix. J1= fT 1C j6� l 
l »lJ L 0. J 

5.4 Calculation of strain. f j__ n}_ 
[TE ]` {£� } 

6. Fibre Analyses in the Fibre Position System 
6.1 Calculation of strain increment f Iden I= [T ]c Ids" } E 

6.2 Definition of the fibre incremental stiffness f fdS� 1-1 
L rJ 

6.3 Calculation of stress increment in fibres f ld6" }=f [dS" ]-I 
'f 

{de" } 
IJ 

6.4 Calculation of stress in fibres f {" } 
=f 

{6n-1 } 
+f 

{da-" } 
IIJ 

7. Fibre Analyses in the Composite Position System 
7.1 Definition of transformation matrix 1-1 IT, 

1 
7.2 Definition of the fibre incremental stiffness of 

vol. fraction of fibres 
° [dS" 

_ 
[T 1-' ' 

f 
[dS" ] 

f 
1 [T 

E 
7.3 Calculation of stress increment in fibres c {d6" }=C [dS" ]-1 C {ds» } 

Jf 
7.4 Calculation of stress in fibres ` {6" } 

_° 
{6»-i } 

+' 
{do'" } 

JJf 
8. Composite Analyses in the Composite Position 

System 
8.1 Definition of composite incremental stiffness c rdS" ] I=C [dS" 1-1 

+c 
[dS" 1 -1 
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8.2 Calculation of stress increment in composite c {d6" 
l} 

[dS" {de" } 

8.3 Calculation of stress in composite {6I } 
_` 

{6" } 
+c 

{d6" } 
II 

9. Updating of solution-dependent state variable. 

Table 7.5.3-1 Computation algorithm of KMC 

The flow diagram of the subroutine KMC is shown schematically in Fig 7.5.3-1. 

The subroutine begins with several initialisation procedures. First, STATEV(32) is given 

a value of 1 and the internal variables are initialised with zero values using the 

subroutines KZEROVEC and KZEROMAT. After which, the subroutine KINIMC (Fig 

7.5.3-2) updates the variables SFF3 & SF3 with the fibre stresses 
f {a- f'} and ` Jo 

-f '} 

that are stored in STATEV (40-42 and 43-45), and updates the variables SPM and EP 

with the matrix stress and strain "' {{"-' } 
stored in STATEV (4-6 and 10-12). 

In addition, the stress and engineering-strain transformation matrices PTRANS3, 

PTRANSI3 and PTRANE3 are defined by the subroutines KPTRANS3, KPTRANSI3 

and KPTRANE3 (Fig 7.5.3-3 to 5). Here, PTRANS3 and PTRANE3 describe the 

transformation to the fibre position system with respect to the composite position 

system, while PTRANS13 is the inverse of PTRANS3. 

After initialisation, the stresses and strains of the matrix are analysed in the 

matrix, composite and fibre position systems. First in the matrix position system, the 

local strain increment DEP is determined by transforming the strain increment DSTRAN 

in the composite position system using the subroutine KFILLVECT3 (Fig 7.5.2-7) and 

the transformation matrix PTRANE3. The local incremental stiffness of the matrix C3 is 

defined by the subroutine KSTRIFFCRIT3MC (Fig 7.5.3-6). After which, the 

incremental stress of the matrix DSPM is determined as a product of the incremental 

stiffness C3 and incremental strain DEP through the subroutine KFILLVECT3. To 

determine the matrix stress SPM, the subroutine KVECTPLUS3 (Fig 7.5.2-5) adds the 

incremental stress DSPM to the stress SPM from the previous increment. In the 

composite position system, the local stress in the matrix STRESM3 is determined by 

transforming of the matrix stress SPM with the transformation matrix PTRANS13 in the 

subroutine KFILLVECT3. The local incremental stiffness of the matrix is determined 

by transforming the incremental stiffness C3 using the subroutine KMATPRODUCT 
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(Fig 7.5.2-7) and the transformation matrices PTRANSI3 and PTRANE3. The matrix 
strain STRAN is determined by adding the strain increment DSTRAN and the strain 
STRAN from the previous increment. In the matrix position system, the matrix strain EP 
is determined by transforming the matrix strain STRAN using the transformation matrix 
PTRANE3 in the subroutine KFILLVECT3. 

The subroutine KSTIFFCRIT3MC shown in Fig 7.5.3-6 models matrix cracking 

when the normal of the matrix crack plane is in the 1 or 2 direction of the matrix 

position system; this is dependent on the values of STATEV(29) and STATEV(30), 

respectively. If either state variable is 1 or greater, matrix cracking is indicated in the 

respective matrix direction and the subroutine KSTIFFCRIT3MC1 (Fig 7.5.3-7) or 
KSTIFFCRIT3MC2 (Fig 7.5.3-8) is correspondingly active. Locally, the values of 
STATEV(29) or STATEV(30) are check to establish the matrix cracking mode in the 

previous increment. The meanings of the different values of the state variables 
STATEV(29) and STATEV(30) are shown in Table 7.5.1-3. Base to these reference 

states, the polarity of the current strain increment in the 1 or 2 direction of the matrix 

position system, i. e. DSTRAN3M(1) or DSTRAN3M(2), indicates the matrix cracking 

mode in the current increment and activates the subroutine KSTIFF3 to define the local 

incremental stiffness of the matrix. The convention use to name the subroutines which 
implements the incremental stiffness of the matrix is as follows: 

Direction of crack 
plane normal 

Matrix incre. Matrix cracking 
stiffness in STIFF 2 ý- state as plane stress described by 
condition STATEV(49) 

In the hardening region, subroutine KSTIFF311 or KSTIFF321 is active (see Fig 7.5.3-9 

& 15) while in the softening region subroutine KSTIFF314 or KSTIFF324 (see Fig 

7.5.3-12 & 18) is active. The effects of crack closure (mode II) and crack re-opening 
(model III) are modelled by subroutines KSTIFF312 and KSTIFF313 (see Fig 7.5.3-10 

& 11) or KSTIFF322 and KSTIFF322 (see Fig 7.5.3-16 & 17). During fibre failure, the 

subroutine KSTIFF3111 and KSTIFF3112 (see Fig 7.5.3-13 & 14) or KSTIFF3211 and 

KSTIFF3212 (see Fig 7.5.3-19 & 20) are active to model the corresponding matrix 
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The algorithms to analyse the matrix stress and strain in the fibre position system 
are identical to the subroutine KELAS. Similarly, the algorithm to analyse the stress, 
strain and incremental stiffness of the fibres and the composites are identical to the 

subroutine KELAS. 

Finally to update the state variable STATEV, subroutines KSDV3A (Fig 7.5.2- 

17), KSDV3BMC (Fig 7.5.3-21), KSDV3CELAS (Fig 7.5.2-23), KSDVPORIENMC 

(Fig 7.5.3-24) and KSDVFIB (Fig 7.5.2-25) are active. In subroutine KSDV3BMC, the 

subroutines KSDV3BMC1 (Fig 7.5.3-22) and KSDV3BMC2 (Fig 7.5.3-23) update the 

relevant STATEV when the normal of the crack planes is in the 1 or 2 direction of the 

matrix position system. 

7.5.4 The Delamination Subroutine KDEL 

The subroutine KDEL models the mechanical behaviour of the composite during 

tensile or shear delamination. The structure of the computation algorithm is presented in 

Table 7.5.4-1. 

outine KDEL 

1. Initialisation of internal variables. 
1.1. Internal variable with zero value 
1.2. Definition of the matrix stresses and strains in 

the fibre position system and the fibres 
stresses in the fibre and composite position 
system, from the previous increment. 

f! �_Il f r_1 t �_Il c _I 1' 
ý£ 1' 1°-. 

t 1' 
ýO-f 

2. Analyses in the Composite Position System 
2.1. Calculation of strain c° {-- '1-i }+c {de" } 

3. Matrix Analyses in the Fibre Position System 
3.1. Definition of strain transformation matrix. ITE 1 

3.2. Calculation of incremental strain. f Iden }- [T 
E 

c {de" } 

3.3. Definition of the incremental stiffness of the 
volume fraction of matrix 

fr 
L dS"l 

»/ J 
3.4. Calculation of stress increment in matrix J'ji1 l 

=f d6,,, J 
r�11 
LdS», j-' .fj�l ld£ I 

3.5. Calculation of stress in matrix f {a "1 -f 
I 

11 UM 
}+ 

M 

f {d6" } 
111 

3.6. Calculation of strain f J£� 1= 
lJ 

ITE 
J1 I. _1 c J£n 1 

l) 
4. Matrix Analyses in the Composite Position 

Cvctm 
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4.2. Calculation of stress in matrix. {U,,, }= IT, 
j1f 1° m 

4.3. Definition of the incremental stiffness of the 
volume fraction of matrix 

c�1i dS,,, J= r 1_l fr �-1 r1 
LTA J LdS, LTE 

5. Matrix Analyses in the Matrix Position System 
5.1. Calculation of principal stresses and principal 

strain and principal direction cosines. 
` in j�[1 
Jý t£ & LP1 

6. Fibre Analyses in the Fibre Position System 
6.1. Definition of the fibre incremental stiffness 

for the vol. fraction of fibres 
f � [dS fý 

-i 

6.2. Calculation of stress increment in fibres f {d6ý } 
f =f 

[dS" ] 
f 

'' {de" } 
6.3. Calculation of stress in fibres j {6» }= 

J ir 
{a. �_ 1 

+f 
{da "} 

JJ 
7. Fibre Analyses in the Composite Position System 

7.1. Definition of the fibre incremental stiffness c [dS" ]-I 
= f 

{T }-' f [dS" ]i [T 
JE 

7.2. Calculation of stress increment of fibres c {d6" } 

f 
_ 

`. 
[dS"]' C {dc" } 

f 
7.3. Calculation of stress in fibres ` {a 1, }_ 

f 
` {a "-1 } +c 

{d6" } 
ff 

8. Composite Analyses in the Composite Position 
System 
8.1. Definition of composite incremental stiffness c [dS� J-' 

lC _ 
`' [dS" ]1 

+C 
[dS" ]' 

», f 
8.2. Calculation of stress increment in composite c {da"} 

=` 
[ds, ' ]-1 ` {ds" } 

C 
8.3. Calculation of stress in composite `s 10-11 } 

_` +c 
{do'" } 

f 
9. Updating of solution-dependent state variable. 

Table 7.5.4-1 Computation algorithm of KDEL 

A flow diagram of KDEL is shown in Fig 7.5.4-1. The subroutine begins with 

several initialisation procedures. The subroutines KZEROVEC and KZEROMAT are 
initially active to initialise the internal variables with zero values and the subroutine 
KINIDEL (Fig 7.5.4-2) initialises the variables SFF3, SF3, STRESMF3 and STRANF3 

with the fibre stresses in the fibre and composite position system and the matrix stress 

and strain in the fibre position system. 

After initialisation, the stresses and strains of the matrix are analysed in the fibre, 

composite and matrix position system. Before the analyses in the fibre position system, 

the matrix strains in the composite position system STRAN is first determined through 

the subroutine KVECTPLUS3 (Fig 7.5.2-5). In addition, the subroutine KTTI3 is active 

to define the engineering strain transformation matrix TFTTI3 for the fibre position 
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incremental strain of the matrix DEF3 is determined as the product of the engineering 
strain transformation matrix TFFTI3 and the incremental strain of the matrix in the 

composite position system DSTRAN through the subroutine KFILLVECT3 (Fig 7.5.2- 
7). The subroutine KSTIFFCRIT3DEL (Fig 7.5.4-3) defines the incremental stiffness of 
the matrix C3. After which, the incremental stress of the matrix DSTRESMF3 is 
determined as the product of C3 and DEF3 while the stress in the matrix STRESMF3 is 

the sum of DSTRESMF3 and STRESMF3, which is the matrix stress in the previous 
increment. The subroutine KFILLVECT3 defines the local strain in the matrix 
STRANF3 by transforming the matrix strain STRAN with the transformation matrix 
TFFTI3. 

To initiate the analyses of the matrix properties in the composite position system, 
the subroutine KTI3 (Fig 7.5.2-14) first defined the inverse stress transformation matrix 
TFTI3. After which, the product of TFTI3 and STRESMF3, which is the matrix stress in 

the fibre position system, determines the local matrix stress STRESM3. The local 

incremental stiffness of the matrix CM is determined as the product of TFTI3, C3 and 
TFTTI3, which is calculated using the subroutine KMATPRODUCT (Fig 7.5.2-15). 

A description of the subroutine KSTIFFCRIT3DEL (Fig 7.5.4-3) is given next. 
During delamination, identification of tensile or shear delamination is through the state 

variables STATEV(50) and STATEV(51). For tensile delamination, the value of 
STATEV(50) must be one or greater. For shear delamination, the same criterion applies 
for STATEV(51). During tensile delamination, the subroutine KSTIFFCRIT3TD (Fig 

7.5.4-4) is active to determine the tensile delamination mode of the composite and 
define the incremental stiffness of the matrix. The subroutines KSTIFFTD31 (Fig 7.5.4- 

5), KSTIFFTD32 (Fig 7.5.4-6), KSTIFFTD33 (Fig 7.5.4-7) and KSTIFFTD34 (Fig 

7.5.4-8) are active to model the deformation modes (I, II & III) of the composite during 

tensile delamination and during compression. In the case of shear delamination, the 

subroutine KSTIFFCRIT3SD (Fig 7.5.4-9) is active to determine the shear delamination 

mode of the composite and define the incremental stiffness of the matrix. 

During mode I deformation, the subroutines KSTIFFSD31 (Fig 7.5.4-10) is active while 

the subroutine KSTIFFSD32 (Fig 7.5.4-11) is active for modes II and III deformation. 

The subsequent sequences of the algorithm in the subroutine KDEL are identical 
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KSDV3BDEL (Fig 7.5.4-12) and KSDV3CDEL (Fig 7.5.4-13) to update the state 
variables. In the subroutine KSDV3CDEL, the subroutine KSDV3CTD (Fig 7.5.4-14) is 

active during tensile delamination while the subroutine KSDV3CSD (Fig 7.5.4-15) is 

active during shear delamination. 

7.6 Benchmarking 

Benchmarking is necessary to verify the damage model. In this section, 
benchmark procedures were developed for the UMAT subroutine. Initially, a single 
first-order quadrilateral plane stress solid element with dimensions 0.015m x 0.015m x 
0.002m to represent a composite material was tested in simple stress states where exact 

solutions or bounds exist. After which, the composite was tested for matrix cracking, 
tensile delamination and shear delamination, and benchmarked using the experimental 
data of the one-dimensional polyester composite described in Chapter 4. 

7 . 6.1 Pre Damage State 

7.6.1.1 Problem description 

The benchmark studies are summarised in Table 7.6.1.1-1. For load cases 1,2,5 

& 6, the composite was uniaxially tensioned parallel to the fibre axis, while in load 

cases 3&4, uniaxial tension was applied transverse to the fibre axis. In all load cases, 
Poisson's ratio of both the fibre and matrix was 0.3 and Young's modulus of the matrix 

was 4.732GPa. The volume fractions of the fibre and matrix were 0.5. The boundary 

conditions and position system of the composite and the fibres are shown in Fig 7.6.1.1- 

1. A displacement of 0.001m was applied in the composite 1 direction. 

Load Cases Description 

1 One-dimensional composite tension parallel to fibre Ef = E,,, 
2 One-dimensional composite tension parallel to fibre Er= 10E,,, 
3 One-dimensional composite tension transverse to fibre Ef= E,,, 
4 One-dimensional composite tension transverse to fibre Er= 1 OE, 
5 Two-dimensional composite tension parallel to fibre Ef= E,,, 
6 Two-dimensional composite tension parallel to fibre Er= 10E,,, 

Table 7.6.1.1-1 Load cases for benchmarking the pre-damage state 
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7.6.1.2 Reference Solutions & Bounds 

To benchmark the solutions from the damage model, exact solutions or bounds 

were determined. For load cases 1,3 & 5, the composite reduces to an isotropic 
homogeneous elastic solid. A bound for load case 2 was calculated using Voigt's 

analysis (see Sect. 3.2). No exact solution exists for load case 4. Instead, bounds were 

established using the Voigt and Reuss analyses. To verify the computational algorithm 
for load case 4, Voigt's analysis for a matrix containing voids was used as the fibre- 

matrix interface is taken to be very weakly bonded or unbonded so that the fibres make 

no contribution perpendicular to their length. The use of the Reuss analysis is not 
helpful in this case because the transverse modulus of the composite is only established 
to be greater than zero. No exact solution is available for load case 6. As such, Voigt's 

analysis was used to provide an upper bound to benchmark the numerical solution of the 
damage model. The exact solutions and bounds for the load cases are shaded in Table 

7.6.1.3-1 and Table 7.6.1.3-2. 

7.6.1.3 Results & Analyses 

The numerical solutions for the load cases of the one- and two-dimensional 

composites in the composite position system are presented in Table 7.6.1.3-1 and Table 

7.6.1.3-2. For load cases 3 to 6, a compressive strain was generated in the fibres and the 

analyses have been performed with both zero and a finite fibre moduli in compression. 
The label (a) indicates that the compressive modulus of the fibres was zero while the 

label (b) indicates that the same modulus was used in tension and compression. The 

stress-strain relations of the one- and two-dimensional composites, the fibres and matrix 

are shown in Fig 7.6.1.3-1 to 4 and Fig 7.6.1.3-5 to 6. 

For load cases 1 and 2, where loading is applied parallel to the fibres, the 

numerical and exact solutions agree. For loading transverse to the fibres with no 

modulus mismatch (load case 3), the numerical solutions were underestimated by 50% 

if the fibres are taken to be fully bonded to the matrix. However treating the fibres as 

unbonded inherently gives agreement. In the case of modulus mismatch (load case 4), 

the numerical solution was less than Reuss's estimate by a factor of -3. However, the 

numerical solution was identical to the upper bound for a matrix containing voids when 
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to the upper bound. For two-dimensional composites, the numerical solution for load 

case 5 agreed with the exact solution when the fibre modulus in compression was zero. 
By introducing a finite compressive fibre modulus, the numerical solutions were greater 
than the exact solution by 2%. In the case of modulus mismatch (load case 6), the 

numerical solution was lower than the upper bound. 

From these results, the simplification of the fibres as a one-dimensional load 

bearing member may underestimate the transverse modulus and stress of a fully bonded 

one-dimensional composite. However, the assumption that the fibre-matrix is weak or 

unbonded is well represented by the simplification that the fibres only transmit axial 
loads. The results also showed that the damage model usefully represents the elastic 

response of two-dimensional composites. 

7.6.2 Matrix Cracking 

7.6.2.1 Problem description 

A one-dimensional composite was stretched parallel to the fibres until matrix 

cracking initiated. After cracking, the composite was cyclically unloaded and reloaded 

until the composite finally failed by fibre failure. A schematic diagram of the composite 

and the boundary conditions is shown in Fig 7.6.1.1-1a. The mechanical properties of 

the one-dimensional polyester composite presented in Chapter 4 were used to model the 

composite. The volume fraction of the fibres was 0.185 and simulations of the 

composite with and without a compressive fibre modulus were considered. 

7.6.2.2 Results & Analyses 

The numerical stress-strain relations for the composite and the volume fraction of 
fibre and matrix are shown in Figs 7.6.2.2-1 to 3. Superimposed on the data are the 

experimental stress-strain data for the one-dimensional dogbone specimen, the fibre and 

the average response of the damaged matrix. The results show that the UMAT algorithm 

is able to model the non-linear elastic response of the fibres, and the non-linear elastic- 

damaged response of the composite and the matrix response. Further, after fibre failure, 

the damage model is able to unload the composite in an elastic-damage manner. 

In Fig 7.6.2.2-4, the deformed meshes before matrix cracking and at final failure 
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that the crack plane normal was parallel to the composite 1 direction, i. e. the direction of 
the applied displacement. This however is not shown in the deformed mesh. 

7.6.3 Tensile Delamination 

7.6.3.1 Problem description 

A schematic diagram of the composite and the applied boundary conditions is 

shown in Fig 7.6.1.1-lb. The composite was initially stretched transverse to the fibre 

axis to induce tensile delamination. Subsequently, the composite was cyclically 

compressed and reloaded. The mechanical properties of the composite are as described 

in Sect. 7.6.2.1. The tensile delamination stress of the composite was 7.79MPa while the 

transverse modulus of the composite was 3.74GPa (see Sect. 4.3.2). The analysis was 

performed for fibres with zero and a finite compressive modulus. 

7.6.3.2 Results & Analyses 

The numerical stress-strain response of -the composite, matrix and fibres are 

shown Fig 7.6.3.2-1. The result shows that the composite was successfully modelled as 

non-linear damaged elastic. The composite delaminated at approximately 8MPa, which 
is close to the experimental value. This indicates that the damage criterion modelling 
tensile delamination was correctly implemented. The modulus of the composite normal 
to the fibre axis, when the fibres compressive modulus was zero and finite, was 

predicted as 3.50GPa and 3.67GPa, respectively. In comparison to the experimental 
data, the predicted modulus was underestimated by between 2% and 7%, which suggest 

that the transverse modulus of the polyester fibres have little contribution to transverse 

modulus of the composite. As such, the fibres may be treated as one-dimensional and 
the modulus of the volume fraction of matrix may be used to model the transverse 

modulus of the composite. The deformed mesh after tensile delamination is shown in 

Fig 7.6.3.2-2. The deformed mesh demonstrates that the composite strain parallel to the 

tensile delamination plane was relaxed. 

7.6.4 Shear Delamination 

7.6.4.1 Problem description 
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are shown in Fig 7.6.4.1-1. First, the composite was subjected to a positive shear 
parallel to the fibre 12-plane. After shear delamination, the composite was cyclically 

unloaded and reloaded. Next, the test was repeated with a negative shear. Finally, the 

composite was cyclically sheared in the positive and negative direction sequentially. 
Mechanical properties of the polyester composite mentioned in Chapter 4 were used. 
The fibre volume fraction was 0.185, the composite shear modulus was 2. l OGPa and the 

shear delamination stress was 9.96MPa. 

7.6.4.2 Results & Analyses 

The numerical shear stress-strain response of the composite, matrix and fibre 

tested in the positive and negative shear directions are shown in Fig 7.6.4.2-1. The shear 

stress and shear strain response of the composite changing from the positive to the 

negative shear direction is shown in Fig 7.6.4.2-2. These results demonstrate that the 

composite was successfully modelled after shear delamination and that the damage 

criterion for shear delamination was not dependent on the polarity of the shear stress. 
The predicted shear delamination stress of the composite was 10.2MPa. This slightly 

overestimated the shear stress of the composite by about 2%. The agreement 
demonstrates that the shear delamination criterion was correctly implemented. The 

shear modulus of the composite was predicted to be 1.34GPa, which is 19% less than 

the upper bound estimate of the composite shear modulus of 1.65GPa. In Fig 7.6.4.2-3, 

the deformed mesh in the positive shear direction is shown. The deformation modelled 

after shear delamination is shown to be correct. 

7.6.5 The Damage Criterion 

7.6.5.1 Problem description 

During uni-axial tension, the experiments described in Chapter 4 have shown that 

damage modes in one-dimensional composites change with fibre alignment. To 

benchmark the damage model ability to model the damage mechanisms with respect to 

fibre alignment, a series of fibre alignment angles ranging from a= 0° to 90° was 

considered. A schematic diagram of the mesh and the boundary conditions and position 

system of the composite and fibre is as shown in Fig 7.6.5.1-1. To compare the 
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stress of the composite was taken as 55.3MPa and the critical shear and tensile 
delamination stresses of the composite were 9.94MPa and 7.79MPa. 

7.6.5.2 Results & Analyses 

The predicted ultimate tensile strengths of the one-dimensional composite as a 
function of the fibre alignment angles are plotted in Fig 7.6.5.2-1. The damage model 

predicted matrix cracking for fibre alignment angles of a= 0° to 9°, shear delamination 

for a= 10° to 38°, and tensile delamination for a= 39° to 90°. The figure also show the 

experimental data points and estimates using the maximum stress and Tsai-Hill criteria. 
The predicted strengths are shown to be in close agreement with the experimental 

data. In addition, the predicted strengths agree well with the estimates from the 

maximum stress criterion, which implies that the subroutine UMAT correctly 
implemented the delamination criterion in the subroutine KSDVC. During matrix 

cracking, the predicted strength of the composite decreased as the fibre alignment angle 
increased. This is because the composite was allowed to fail when the fibres failed. The 

decrease in UTS predicted is different to the estimates of the maximum stress theory, 

which suggest that the composite strength increase initially with fibre misalignment. 
However, it supports the Tsai-Hill criterion, which predicts a decrease in UTS with 

respect to fibre misalignment. Though no experimental data are available to validate the 

controversy surrounding the UTS trend at small fibre misalignments, mechanistically 

the current damage mechanics approach shows that the strength of the composite does 

decrease with fibre misalignment, but at a lower rate than expected from the Tsai-Hill 

criterion. 

7.7 Discussion 

The analysis of composites tensioned parallel to the fibre axis established the 

abilities of the model to represent the axial properties of the composite. Before damage 

(see load cases 1& 2), the numerical solutions agreed with the exact solutions. During 

matrix cracking, the numerically determined stress-strain curve of the composite 

modelled the experiment as required. Crack-closure and crack-reopening were 
demonstrated through the unloading and reloading paths of the damage-elastic matrix 
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cracks showed no influence on the axial properties of the composite after crack closure; 
the modulus of the matrix in compression was described by the Young's modulus of the 

volume fraction of matrix. 

Experiments by ACK and McCafferty (1994) have shown that when brittle matrix 
composites are cyclically tensioned parallel to the fibre axis, a permanent strain results 
in the composite. ACK (1971) has attributed this phenomenon to slippage at the 
debonded fibre-matrix interfaces near the matrix cracks. As such, the composite 

modulus during unloading and reloading will initially be E, but decrease to the limiting 

value of EfVf. Though the damage model did not attempt to model the permanent strain, 
the approach adopted to model the unloading and re-loading path of the composite was 

simple and appropriate for handling stress-redistribution during largely proportional 
loading. It is observed that by treating the matrix as elastic-damage and the fibres as 

non-linear elastic, the unloading and reloading response of the composite is non-linear 
due to the non-linear fibre responses. 

When transversely loaded, load cases 3&4 show that the damage model 

underestimates the elastic response of the composite if the matrix and fibres are 
isotropic and perfectly bonded. This is because in the model the fibres do not contribute 

any stiffness normal to the fibre axis. To overcome this problem, the fibres can be 

modelled as transversely-isotropic. In load case 5a, the numerical results satisfied the 

exact solutions after the transverse modulus of the fibres were introduced. The added 
flexibility of representing the fibre with two-dimensional stiffness however requires the 

transverse modulus of the composite to be known. In the case of the one-dimensional 

polyester composite, the effective transverse modulus of the fibres was obtained as a 
difference between the transverse modulus of the composite and the modulus of the 

volume fraction of matrix, divided by the volume fraction of fibres, which was deduced 

to be 1.27GPa. In comparison with the fibre axial modulus of 4.3GPa, the transverse 

modulus of the fibres is shown to be lower, which indicates the polyester fibres may be 

transversely-isotropic. This is possible since the fibres were fabricated by extrusion. An 

alternative may be due to an imperfect fibre-matrix interface, which would reduce the 

transverse stiffness of the composite. This has been studied in Chapter 9. 

During tensile delamination, the unloading-reloading stress-strain curve of the 
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compression normal to the delamination plane, delamination was shown to have no 
influence on the response of the composite after crack closure since the modulus of the 

composite in compression was allowed to be the same as in tension. Similarly, the 
damage model is able to account for both positive and negative shears. After shear 
delamination in either direction, the composite was able to unload by softening in the 
direction of the shear damage. When the direction of the shear strain was reversed, i. e. 
`closed', the unloading response was modelled using the secant modulus with respect to 

the origin. 

The analysis of the two-dimensional composites indicated that the modulus did 

not exceed the established upper bound. For composites without modulus mismatch, the 

transverse strain of the composite was best modelled by eliminating the fibre modulus 

when the fibres are in compression. This recommendation may apply for modelling 

two-dimensional composites with modulus mismatch. However, this recommendation 

could not be verified, as a lower bound was not established. 

7.8 Conclusion 

A damage mechanics approach for modelling the deformation and failure of brittle 

matrix composites with one- and two-dimensional reinforcements was developed. This 

was achieved first at a micro-level in which the effective incremental compliance of the 

matrix and fibres were modelled separately for matrix cracking, fibre failure, and shear 

or tensile delamination. During damage the matrix was assumed to be transversely- 

isotropic, capable of crack opening, crack closure and crack re-opening. Before damage 

the matrix was treated as isotropic linear elastic. The fibres were assumed to transmit 

only axial loads and follow a non-linear elastic response until failure. The composite 

compliance was modelled as the sum of the matrix and fibres compliances within the 

context of ACK (1971) theory. The damage mechanics approach was developed into a 

computation algorithm using FORTRAN and implemented into the finite element solver 

ABAQUS through the interface subroutine UMAT. The code was successfully 

benchmarked for a first order plane stress quadrilateral solid element in the pre-damage 

regime and during matrix cracking, shear delamination and tensile delamination. 
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6 

Fig 7.4.4.2-1 The effective stress-strain behaviour and deformation modes of the 

matrix during tensile delamination. 

Fig 7.4.4.3-1 The effective shear stress-strain behaviour and deformation modes of the 
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DAMAGE MODEL 

UMAT 

" Initialise local material data and state dependent variabl s 
" Perform checks on the type of analysis require 

KDMC KDMCDEL 

Matrix Cracking Analysis) I Matrix Cracking or 
only Delamination Analysis 

KLEAS KMC KLEAS KMC KDEL 

Linear Elastic Matrix Cracking Linear Elastic Matrix Cracking Tensile or Shear 

Analysis Analysis Analysis Analysis Delamination 
Analysis 

END 

Fig 7.5.1-1 

Flow diagram of the general computation algorithm of the Damage Model. 
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UMAT 

LOGICAL TEST 

ABA_INPUT. INC 
INPUTA. INC 
INPUTB. INC 

... etc 

KPROP3A 

NOT. TESI, ->--J 
KPROP3B 

TEST = TRUE. 

. etc 

NO 
CMNAME E YES KCBA 

NO 
'MATZ' 

MNAMEE YES KCBB 
MATZ' 

MNAME E YES KCB.. etc 'MAT.. etc' 

NO PTYPE 
. 
EQ. YES KDMCDEL 

N0 PTYPE EQ. YES KDMC 

Print error 
message 

XIT 

End 

Fig, 7.5.1-2 Flow diagram of the subroutine UMAT. 
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KPROP3A 

INPUTA. INC 

Initialising matrix parameters from Jnp file 
APOIS = PROPS(1) AANG2 = PROPS(11) 
ASSD = PROPS(2) AVF2 = PROPS(12) 
ASTD2 = PROPS(3) AAF2 = PROPS(13) 
ANDATAM = PROPS(4) ANDATAF2 = PROPS(14) 
AGCONST = PROPS(5) APTYPE = PROPS(15) 
ANOF = PROPS(6) AFIB = PROPS(16) 
AANG1 = PROPS(7) APCONST = 0.37 * APOIS - 0.001 
AVF1 = PROPS(8) AVM 1= 1- AVF1 
AAF1 = PROPS(9) AVM2 =1- AVF2 
ANDATAF1 = PROPS(10) ASMC1 = PROPS(17) * AVM1 

Initalising experimental matrix strain ASTRANM(34), stress 
ASTRESM(34) from remote file (. exp file) 

DO K1 = 1, ASTRESM(K1) = AVM1 * ASTRESM(K1) ANDATAM 

Continue 

AEMODM(1) = ASTRESM(1) / ASTRANM(1) 

77> YES AEMODM(K1) _ DO K1 = 2, (ASTRESM(K1) - ASTRESM (K1-1)) / ANDATAM (ASTRANM(K1) - ASTRANM(K1-1)) 

Continue I 

NO 
-------- --- ------------ ASTRES M, KMAX ASMC2, ANMAX ANDATAM 

I ASMC3 = ASTRESM(ANDATAM) 

KP1 

Fig, 7.5.1-3a Flow diagram of the subroutine KPROP3A (partl/2) 
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KP1 

Initalising experimental fibre strain ASTRANF1(34) & 
stress ASTRESF1(34) from remote file ( dataf exp) 

DO K1 =1 
ASTR F2(K1) = ASTR Fl (K1) 

ANDATAFI ASTRES ESF2(K1) = ASTRES ESFI(K1) 
ASTRESFI(K1) = AVF1 * ASTRESFI(K ) 

Continue 

AEMODF1 (1) = ASTRESFI (1) / ASTRANF1 (K 

YES-1 DO K1 = 2; 

ANDATAFI GT. 1 
ANDATAFI 

NO 

OF EQ. YES 
DO K1 = 1, 
ANDATAF2 

Continue 

L-j[ý 

Continue 

AEMODF1 (K1) = 
(ASTRESF1(K1) - ASTRESFI (K1-1)) / 
(ASTRANFI(K1) - ASTRANFI(K1-1)) 

ASTRESF2(K1) = AVF2 * ASTRESF1(K1 

AEMODF2(1) = ASTRESF2(1) / ASTRANF1(F 1) 

-, --YES-7 DO K1 = 2, 
DATAF2. GT. ý ANDATAFI 

Continue 

AEMODF2 (K1) = 
(ASTRESF2(K1) - ASTRESF2 (K1-1)) / 
(ASTRANF1(K1) - ASTRANF1(K1-1) 

ANG1 (deg) KCONVER AANG1 (rad) 

2ANG2 (deg) KCONVER --º AANG2 (rad) 

Return 
End 
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KMAX 
W => Maximum of the variable Y(Z) 
X => The length/size of the variable Y(Z) when at max. 

W= Y(1) Y => A variable. 
Z => The length/size of the varaible Y. 

DO K1=1, 
z 

Y(K1) >W }- yes 

W= Y(K1) 
X=K1 

Continue 

Return 
End 

Fig 7.5.1-4 Flow diagram of subroutine KMAX 

KCONVER 

P1=3.1415926536, ZERO=0.0, NINETY=90.0 

no-` ANGLE=ZERO? }- yes -ý ANGLE = ANGLE + 0.1E-8 

NGLE=NINETY? >-yes-j ANGLE = ANGLE - 0.1E-8 

no 

ANGLE = ANGLE * PI / 180.0 

Return 
End 
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KCBA 

ABA INPUT. INC 
IN PU TA. INC 

SMC1 = ASMC1 
SMC2 = ASMC2 
SMC3 =ASMC3 
NMAX =ANMAX 
POTS = APOIS 
SSD =ASSD 
STD2 = ASTD2 
NDATAM =ANDATAM 
GCONST =AGCONST 
PCONST =APCONST 
VM1 =AVM1 
VM2 =AVM2 
NOF = ANOF 

ANG1 =AANG1 
VF1 = AVF1 
AF1 = AAF1 
NDATAFI =ANDATAF1 

ANG2 =AANG2 
VF2 = AVF2 
AF2 = AAF2 
NDATAF2 = ANDATAF2 

DO K1 = 1, STRESM(K1) =ASTRESM(K1) 
NDATAM STRANM(K1) = ASTRANM(K1) 

EMODM(K1) = AEMODM(K1) 

Continue 

DO K1 =1 
STRESFI(K1) = ASTRESF1(K1) 

NDATAFI STRANF1(K1) = ASTRANF1(K1) 
EMODFI(K1) = AEMODF1(K1) 

Continue 

NOF EQ. 2 yes DO Ki = 1, 
STRESF2(K1) = ASTRESF2(K1) 

NDATAF2 STRANF2(K1) = ASTRANF2(K1) 
EMODF2(K1) = AEMODF2(K1) 

no, 

Continue 

Return 
End 
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KDMCDEL 

ABA_INPUT. INC 

no STATEV(32) . EQ. 0 yes KELAS 

no STATEV(32) EQ. 1 yes KMC 

STATEV(32) 
yes KDEL 

. EQ. 2OR3 

no I 

Error in KDMCDEL: STATEV(32) 

XIT 

Return 
End 

Fig 7.5.1-7 Flow diagram of subroutine KDMCDEL 

KDMC 

ABA_INPUT. INC 

no STATEV(32) . EQ. 0 yes KELAS 

no STATEV(32) E Q. 1 yes KMC 

Error in KDMC: STATEV(32) I 

XIT 

Return 
End 
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KELAS 

ABA_INPUT. INC 

STATEV(32) =0 
---------------------- STRESM3, SPM, EP, STRESF - 

I ----------- i 
STRANF3, DEF3, DSSF3, DSF3, KZEROVEC = 0.0 

DSTRESS 
---------------------- - -------------------- PTRANS, TFT3, TFTI3, TFTTI3, - 

I CM, CF, CFF, TC3 I KZEROMAT = 0.0 1 

- ----------- STATEV, NSTATV KINI SFF3, SF3 
I 

DSTRAN, STRAN KVECTPLUS3 STRAN 
L--------------- -' 

I 
--------_-- 

-__---___-_----_ 
NTENS, NSTATV 

--I 
º KCPSM1 

-_--------_ 
CM, STATEV 

L--------------- -- ___----_--- 

STRAN, CM KFILLVECT3 STRESM3 
L--------------- -' 

I 
-----------I 

- 
1 LSTR=1, STRESS, NDI, NSHR 

-- 
-º SPRIND 

----------- 
SPM, PTRANS 

L------------------- -- 
l 

--_----___- 

1 LSTR=2, STRAN, NDI, NSHR I SPRINC EP 
L------------------- --I 

- 
-_-_-------I 

NTENS º KT3 TFT3 

V, 
_______________ 

STRESM3, TFT3 
_ I -I 

KFILLVECT3 
-____-_--_-- 

STRESMF3 
--------------- - ----------- 

NTENS r --º KTT13 TFTTI3 
L_______________ _- _-__------- 

- -- _______________ 

STRAN, TFTTI3 
_ 4I 

KFILLVECT3 
11- -----_ _-- 

STRANF3 
L--------------- - - ----------- 

- - - ---------------- 

DSTRAN, TFTTI3 
-- I 

º KFILLVECT3 
--- ----- - 

DEF3 
L_______________ _- __--__ 

--------- ------------- -- 1 STATEV, NSTATV KX 
-- --- 

X1, X2 
L--------------- 

-ý ---- 

B1 = STATEV(58) El = STATEV(60) 
B2 = STATEV(59) E2 = STATEV(61) 
Cl = STATEV(40) G1 = STATEV(62) 
C2 = STATEV(41) G2 = STATEV(63) 
Dl = STATEV(13) Fl = DEF3(l) 
D2 = STATEV(14) F2 = DEF3(2) 

--------------- Al, B1, Cl, D1, E1, G1, X1 - 
F1, EMODF1, STRANF1, KEMF Al 

NDATAF1, FIB _-----I L________ __ 

KELAS 
1 

Fig 7.5.2-1a Flow diagram of the subroutine KELAS (Part 1/2) 
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KELAS 
1 

no NOF EQ. 2 yes 

--- -------------- A2 = 0.0 A2, B2, C2, D2, E2, G2, X2, ----i 
B2 = 0.0 : F2, EMODF2, STRANF2, KEMF A2 I 

NDATAF1, FIB 

-------------- 
NTENS, A1, A2 ýº - 

KCPSFF2 N 
----------- 

CFF 
L-------------I 

_ 

STATEV(58) = B1 STATEV(61) = E2 
STATEV(59) = B2 STATEV(62) = G1 
STATEV(60) = El STATEV(63) = G2 

---------------- 
CFF, DEF3 i - 

KFILLVECT3 
----------- 

DSFF3 
L---------------- I 

-----------I 

DSFF3 KVECTPLUS3 SFF3 
L----------------ý I 

------ 
I 

NTENS º KTI3 
ll 

TFTI3 
L--------. - 

- 
----------- 

NTENS, CFF, TFTTI3 KMATPRODUCT TC3 
L----------------- I 

---------_ 

NTENS, TFTI3, TC3 KMATPRODUCT CF 
L---------------- I 

----------- 
------------------ 

CF, DSTRAN º KFILLVECT3 DSF3 
L----------------i , 

----------- 

DSF3 
I- 

KVECTPLUS3 
. 

SF3 
L----------------J I 

----------- 

CM, CF º KMATTPLUS3 DDSDDE 
L---------------- I 

----------- 
----------------ý 

DDSDDE, DSTRAN 
I. 

KFILLVECT3 
--------... 

DSTRESS 
L---------------- ----------- 

DSTRESS º KVECTPLUS3 STRESS 
L---------------- 

-----------------I - ----------- 
STRESM3, NSTATV KSDV3A STATEV 

`------------------ -------------- 
NSTATV, SPM, EP, NOEL, I 

----------- 

KSDV3B STATEN NPT, KSTEP, KINC 

-----------------I 
- -----------I 

0 PE. EQ. O }-yes 

PTYPEEQ. 1 yes NSTATV, STRESMF3, ii ------ P TYPE 
NOEL, NPT, KSDV3C STATEV 

-------------- KSTEP, KINC ------ 
NSTATV, STRESMF3, ------------ 

STRANF3, NOEL, NPT, KSDV3CELAS 
i 

STATEV 
KSTEP, KINC -----------I 

-------- ------ no 
---------------i - ------- 

PTRANS, NSTATV KSDVPORIEN STATEV 

I_-_-_-_-_-_-_-_-_-_-_-_-_-_-- L--------- 

NSTATV, SFF3, SF3, 
STRANF3 KSDVFIB 

--STATEV -- 
Return 

End 
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KZEROVEC 

DO K1 = 
1, NTENS 

VECTOR(K1) = 0.0 

Continue 

Return 
End 

Fig 7.5.2-2 
Flow diagram of subroutine KZEROVEC 

KINI 

A(1) = STATEV(40) 
A(2) = STATEV(41) 
A(3) = STATEV(42) 

B(1) = STATEV(43) 
B(2) = STATEV(44) 
B(3) = STATEV(45) 

Return 
End 

Fig 7.5.2-5 
Flow diagram of subroutine KINI 

KZER0MAT 

DO K1 = 
1, NTENS 

DO K2 
1, NTENS 

Continue 

Continue 

Return 
End 

I VMATRIX(K1, K2) = 0.0 1 

Fig 7.5.2-3 
Flow diagram of subroutine KZEROMAT 

KVECTPLUS3 

DO K1 = 
1, NTENS 

VECT1(K1) = VECT1(K1) + 
VECT2(K1) 

Continue 

Return 
End 

Fig 7.5.2-5 
Flow diagram of subroutine KVECTPLUS3 
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KCPSM1 

ABA_INPUT. INC 

ý C3, NTENS KZEROMAT = 0.0 i L_-------- -------- 

'OIS > 0.499 & 
yes POTS = 0.499 POTS < 0.5001 

ESHR = EMODM(1) / (2`(1+POIS)) 
POISM = -P01S 

STATEV(30) = POISM 

DS(1,1) = 1.0 / EMODM(1) 
DS(2,2) = DS(1,1) 
DS(1,2) = POISM * DS(1,1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)**2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)**2 / DS(1,1)) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR 
STATEV(35) = C3(3,3) 

Return 
End 

Fig 7.5.2-6 Flow diagram of subroutine KCPSMI. 

KFILLVECT3 

---------- 

--------- 1=3, VECT1 -º KZEROVEC = 0.0 
----------_' 

L------_DO 

K1 = 
1, NTENS 

DO K2 
1, NTENS 

VECT1(K1) = VECT1 + 
VMATRIX(K1, K2) * VECT2(K2) 

Continue 

Continue 

Return 
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KT3 

ABA_INPUT. INC 

C= COS(ANG1) 
S= SIN(ANG1) 

C2 = CA2 
S2 = SA2 

KTTI3 

ABA_INPUT. INC 

C= COS(ANG1) 
S= SIN(ANG1) 

C2 = CA2 
S2 = SA2 

-------- i H=°° 
KZEROMAT T 

ii 
KZEROMAT = 0.0 , NTENS 

--------- 

TFT(1,1) = C2 TFTTI(1,1) = C2 
TFT(1,2) = S2 TFTTI(1,2) = S2 
TFT(1,3) = 2.0 *C*S TFTTI(1,3) =C*S 
TFT(2,1) = S2 TFTTI(2,1) = S2 
TFT(2,2) = C2 TFTTI(2,2) = C2 
TFT(2,3) = -2.0 *C*S TFTTI(2,3) = -C *S 
TFT(3,1) = -C *S TFTTI(3,1) = -2.0 *C*S 
TFT(3,2) =C*S TFTTI(3,2) = 2.0 *C*S 
TFT(3,3) = C2 - S2 TFTTI(3,3) = C2 - S2 

Return Return 
End 

C 
End 

Fig 7.5.2-8 Fig 7.5.2-9 
Flow diagram of subroutine KT3 Flow diagram of subroutine KTTI3 

KX 

ABA_INPUT. INC 

A= STATEV(13) 
B= STATEV(14) 

Return 
End 

Fig 7.5.2-10 Flow diagram of subroutine KX 
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KEMF 

1 or 4 yes 

A => Fibre tangent modulus (current) 
B => State of fibre deformation 

0 => linear elastic 
1 => non-liear elastic 
2 => Fibre are broken but DFE is 
3 => Fibre are broken but DFE is 
4 => Fibre in compression 

C => Fibre stress in previous incre. 
D => Fibre strain in previous incre. 
E => Broken fibre strain when unloading starts 
G => Broken fibre strain when '-' unloading starts 
FE => Fibre incre. strain 
EMODF => Experi. fibre tangent modulus trend 
STRANF => Experi. fibre strain trend 
NDATAF => No. of experi. data of EMODF or STRANF 
H => Compressive capability of fibre 

FE . 
GE. 0&A= EMODF(1) 

E< STRANF(1 10 yes B=0 

no 

GE. STRANF(1) 
< STRANF(NDAT. 

EMODF, STRANF, 
NDATAF, FE__Jý KEMODF 

no I B=1 
I_ 

B =2 
FE GE. Ti = -50 

RANF(NDATAF yes T2 = -0.01 
T3 = -0.01 
A =T1*C*EXP 

no yes - 

FE<0 yes H=0 nod 

no - 

A 

A=0 1 

A= EMODF(1) 

B =2 
Ti = -40 
T2 = -0.01 
T3 = -0.01 
A= Ti *C* EXP(T2* IDIAT3) 

B =3 
A=C/D 
E=D 
G=C 

B =2 
Ti = -40 
T2 = -0.01 
T3 = -0.01 
A =T1 'C' 

B =3 
A=G/E 

Return 
End 
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KEMODF 

DO K1 = 2, 
NDATAF 

: EI GE. STRANF(K1-1 
& IFEI < STRANF(K1) 

no I 
yes 

A= EMODF(K1) 

Continue 

Return 
End 

Fig 7.5.2-12 
Flow diagram of subroutine KEMODF 

KCPSFF2 

ABA_INPUT. INC 

C3, NTENS H KZEROMAT i=0.0 
L-----. 

-ý 
L--_-ý 

C3(1,1) =A 
C3(2,2) =B 

Return 
End 

Fig 7.5.2-13 
Flow diagram of subroutine KCPSFF2 

KMATPR0DUCT 

TFTI, NTENS 

KTI3 

ABA_INPUT. INC 

C= COS(ANG1) 
S= SIN(ANG1) 

C2 = CA2 
S2 = S^2 

KZEROMAT 

TFTI(1,1) = C2 
TFTI(1,2) = S2 
TFTI(1,3) = -2 *C*S 
TFTI(2,1) = S2 
TFTI(2,2) = C2 
TFTI(2,3) =2*C*S 
TFTI(3,1) =C*S 
TFTI(3,2) = -C *S 
TFTI(3,3) = C2 - S2 

Return 
End 

DO K1 = 
1, NTENS 

FD-O 
K2 = 

, NTENS 

VMATA(K1, K2) = 0.0 

= 0_0 
DO K3 = 
1, NTENS 

VMATA(K1, K2) = VMATA(K1, K2) + 
VMATB(K1, K3) * VMATC(K3, K2) 

Continue 

7ontinue 

Return 
End 
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KMATPLUS3 

VMAT, I KZEROMAT = 0.0 

CKSDV3AD 
DO K1 
1, NTENS 

DO K2 = 
STATEV(1) = STRESS3(1) 

1, NTENS STATEV(2) = STRESS3(2) 
STATEV(3) = STRESS3(3) 

VMAT1(K1, K2) _ 
VMAT2(K1, K2) +VMAT3(K1, K2) Return 

End 

Continue 

Continue 

Return 
End 

Fig 7.5.2-16 Fig 7.5.2-17 
Flow diagram of subroutine KMATPLUS3 Flow diagram of subroutine KSDVA 

KSDV3B 

I ABA_INPUT. INC 

STATEV(4) = SP(1) 
STATEV(5) = SP(2) 
STATEV(10) = EP(1) 
STATEV(11) = EP(2) 
STATEV(33) = SP(1) / SMC1 
STATEV(34) = EP(2) / SMC2 
STATEV(37) = SP(1) 
STATEV(38) = SP(2) 
STATEV(56) = EP(1) 
STATEV(57) = EP(2) 

P(2) < SMC1 <_ SP(1) Yes 

no 

SP(1) < SMC1 <_SP(2) yes 

no 

SP(1) < SMC1 
SP(2) < SMC1 yes 

Matrix cracking in principal 1 dir. 
STATEV(25) = EP(1) 

STATEV(26) =0 
STATEV(29) =1 
STATEV(30) =0 
STATEN 32 =1 

Matrix cracking in principal 2 dir. 
STATEV(25) =0 

STATEV(26) = EP(2) 
STATEV(29) =0 
STATEV(30) =1 
STATEV(32) =1 

No matrix cracking 
STATEV(25) =0 
STATEV(26) =0 
STATEV(29) =0 
STATEV(30) =1 
STATEV(32) =1 

Ratiirn 
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KSDV3C 

ABA_INPUT. INC 

STATEV(7) = FSTRESS3(1) 
STATEV(8) = FSTRESS3(2) 
STATEV(9) = FSTRESS3(3) 
STATEV(13) = FSTRAN3(1) 
STATEV(14) = FSTRAN3(2) 
STATEV(15) = FSTRAN3(3) 
STATEV(35) = FSTRESS3(2) / STD2 
STATEV(36) =I FSTRESS3(3) / SSD I 
STATEV(52) = FSTRESS3(2) 
STATEV(53) = FSTRAN3(2) 

STATEV(32) =0 yes 
STATEV(54) = IFSTRESS3(3)I 
STATEV(55) = IFSTRAN3(2)1 

Tensile delamination in 
TD2 S FSTRESS3(2) & reinforcement 2 dir. 
FSTRESS3(3) I< SSD yes STATEV(27) = FSTRAN3(2) 

STATEV(28) =0 
STATEV(32) =3 

no 
STATEV(50) =1 
STATEV(51) =0 

'TD2 > FSTRESS3(2) & 
SSD <_ 1 FSTRESS3(3) FSTRESS3(2) > 0.0 

plane 
STATEV(27) =0 
STATEV(28) = FSTRAN3(3) 

no no STATEV(32) =2 
n o STATEV(50) =0 

STATEV(51) =1 
Shear delamination in 12 
plane 
STATEV(27) =0 
STATEV(28) =0 
STATEV(32) =0 

TD2 5 FSTRESS3(2) & STATEV(50) =0 
SSD <_ 1 FSTRESS3(3) STATEV(51) =0 

yes 

Tensile & Shear 
delamination 
STATEV(27) = FSTRAN3(2) 
STATEV(28) = FSTRAN3(3) 
STATEV(32) =3 
STATEV(50) =1 

Matrix cracking 
STATEV(51) =1 

STATEV(27) =0 no 

STATEV (32) =1 yes 
STATEV(28) =0 
STATEV(32) =1 
STATEV(50) =0 
STATEV(51) =0 

no 

Shear delamination in 12 
plane 
STATEV(27) =0 
STATEV(28) = FSTRAN3(3) 
STATEV(32) =2 
STATEV(50) =0 
STATEV(51) =1 

Return 
End 
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KSDV3CELAS 

ABA_INPUT. INC 

STATEV(7) = FSTRESS3(1) 
STATEV(8) = FSTRESS3(2) 
STATEV(9) = FSTRESS3(3) 
STATEV(13) = FSTRAN3(1) 
STATEV(14) = FSTRAN3(2) 
STATEV(15) = FSTRAN3(3) 
STATEV(27) =0 
STATEV(28) =0 
STATEV(35) = FTRSESS3(2) / STD2 
STATEV(36) =1 FSTRESS3(3) / SSD 1 
STATEV(50) =0 
STATEV(51) =0 
STATEV(52) = FSTRESS3(2) 
STATEV(53) = FSTRAN3(2) 
STATEV(54) = JFSTRESS3(3)I 
STATEV(55) = IFSTRAN3(2)I 

Return 
End 

Fig 7.5.2-20 Flow diagram of subroutine KSDVCELAS 

KSDVPORIEN 

ABA_INPUT. INC 

STATEV(16) = PTRANS(1,1) 
STATEV(17) = PTRANS(1,2) 
STATEV(18) = PTRANS(1,3) 
STATEV(29) = PTRANS(2,1) 
STATEV(20) = PTRANS(2,2) 
STATEV(21) = PTRANS(2,3) 
STATEV(22) = PTRANS(3,1) 
STATEV(23) = PTRANS(3,2) 
STATEV(24) = PTRANS(3,3) 

Return 
End 

Fig 7.5.2-21 
Flow diagram of subroutine KSDVPORIEN 

KSDVFIB 

ABA_INPUT. INC 

STATEV(40) = A(1) 
STATEV(41) = A(2) 
STATEV(42) = A(3) 
STATEV(43) = B(1) 
STATEV(44) = B(2) 
STATEV(45) = B(3) 
STATEV(13) = C(1) 
STATEV(14) = C(2) 
STATEV(15) = C(3) 

Return 
End 

Fig 7.5.2-22 
Flow diagram of subroutine KSDVFIB 
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KMC 

ABA_INPUT. INC 

STATEV(32) =1 

-------------- DEP DSPM STRESMF3 STRANF3 i i 
, , , KZEROVEC = 0.0 

DEF3, DSFF3, DURESS 
------------------------- 

PTRANS3, PTRANSI3, PTRANE3, C3, TC3, ------------------------- 
KZEROMAT = 0.0 CM, TFT3, TFTT13, TFTI3, CFF, TCF3, CF 

--- L--------------------------- --------- 

STATEV, NSTATV KINIMC SFF3, SF3, SPM, EP 
L------------------I L-------------J 

------------------ 
STATEV, NSTATV KPTRANS3 

I------. 
PTRANS3 

------------------ 

PTRANS3, NTENS - º KPTRANSI3 
.-- 

PTRANSI3 

------------------ 
STATEV, NSTATV KPTRANSE 

--i 
PTRANE3 

L------------------ ------------ 
------------------ 

DSTRAN, PTRANE 
i 

KFILLVECT3 
---- 

I 
DEP 

ST4TEV, NSTÄTV, KSTIFFCRIT3MC STATEN C3 
L NTENS, PM, EP, DEP__J , i 

----------- 

DEP, C3 
L----------------J 

º KFILLVECT3 DSPM 
, 

----------- 
---------------- 

SPM, DSPM KVECTPLUS3 SPM 
L ---------------- J ----------- 

I ---------. ---I 
SPM, PTRANSI3 I KFILLVECT3 

11 I------------ 
--N STRESM3 

L----------------J -----------I 

------------------ 
STRAN, DSTRAN KVECTPLUS3 

I----------- 
STRAN 

L----------------J - 

----------------- 

PTRANSI3, C3, NTENS KMATPRODUCT TC3 
L---------------- -----------I 

F---------------- 
TC3, PTRANE3, NTENS KMATPRODUCT 

I------------ 
CM 

L---------------J 
, 

-----------I 
I------------------I 

STRAN, PTRANE3 
L----------------J 

º KFILLVECT3 
I------------ 

EP 

---------------- 
NTENS KT3 

------------ 
TFT3 

------------ ----------------- I STRESM3, TFT3 º KFILLVECT3 
I 

STRESMF3 
L ---------------- J ----------- 

I 

---------------- 
NTENS KTTI3 TFTTI3 

-- I------------------, 
STRAN, TFTTI3 r- 

L----------------J 
º KFILLVECT3 

I 
STRANF3 

I-----------I 

,.. - -------------- 

DSTRAN, TFTT13 
L-----------------J 

KFILLVECT3 
--- 

DEF3 

----------- 

---------------- ------------ 

STATEV, NSTATV 

----------------J 

º KX X1, X2 

--- I 

WMr. 1 
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KMC1 

B1 = STATEV(58) El = STATEV(60) 
B2 = STATEV(59) E2 = STATEV(61) 
Cl = STATEV(40) G1 = STATEV(62) 
C2 = STATEV(41) G2 = STATEV(63) 
D1 = STATEV(13) Fl = DEF3(1) 
D2 = STATEV(14) F2 = DEF3(2) 

---------------- 
Al, 

r--ý 
B1, Cl, D1, E1, G1, X1, ----- 

F1, EMODFI, STRANFI, KEMF Al 
NDATAFI, FIB ------ 

r-no NOF EQ. 2 yes -, 

------------------- 
A2 = 0.0 A2, B2, C2, D2, E2, G2, X2, i ----i 
B2 = 0.0 I F2, EMODF2, STRANF2, KEMF Al 

NDATAF1, FIB L-- 
------------------- 

------------- -----------i 
NTENS, A1, A2 KCPSFF2 CFF 

-------------- 
I-----------I 

STATEV(58) = B1 STATEV(61) = E2 
STATEV(59) = B2 STATEV(62) = G1 
STATEV(60) = El STATEV(63) = G2 

IciI LIII-------- 

º KFILLVECT3 I-----------I 

DSFF3 KVECTPLUS3 SFF3 

NTENS j- º KT13 TFTI3 
L ---------------- J ----------- 

----------- "----------------- 

NTENS, CFF, TFTTI3 KMATPRODUCT 
- 

TC3 

----------------- 

NTENS, TFT13, TC3 ý 
L---------------- 

º KMATPRODUCT 
------------ 

CF 

------------ 
I 

"---------------- 

CF, DSTRAN KFILLVECT3 
------------ 

DSF3 

------------------ 
DSF3, - 

L---------------- 
º KVECTPLUS3 

----------- 
SF3 

----------- 

----------------- 
CM, CF KMATTPLUS3 

-- --------- 
DDSDDE 

"---------------- 

DDSDDE, DSTRAN ý- 
L-----------------' 

º KFILLVECTED 
------------ ", 

DSTRESS 
----------- 

DSTRESS KVECTPLUS3 STRESS 
----------- 

---------------- - 

STRESM3, NSTATV --- º KSDV3A 
ý- ---------- 

STATEV 

_------------- -------------- - -- 
NSTATV, SPM, EP, DEP, 

-- º KSDV3BMC STATEN 
NOEL, NPT, KSTEP, KINC i 

----------- 
STRESMF3, STRANF3 

I 
------------ - 

KSDV3CELAS STATEV 

-- 
STATEV, NSTATV - 

---------------- 
º KSDVPORIENMC STATEV 

----------- 
---------------, 

SFF3, SF3 KSDVFIB 
---------- 

STATEV 

---------------- L----------J 

Return 
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KPTRANS3 
KINIMC 

ABA_INPUT. INC 

ABA_INPUT. INC IiF 

Al = STATEV(16) 
A2 = STATEV(19) 

A(l) = STATEV(40) B1 = STATEV(17) 
A(2) = STATEV(41) B2 = STATEV(20) 
A(3) = STATEV(42) 

B(1) = STATEV(43) i 
PTS3,1=3 KZEROMAT 

i 
= 0.0- 

B(2) = STATEV(44) L 
B(3) = STATEV(45) L_ 

C(l) = STATEV(4) PTS3(1,1) = Al**2 
** C(2) = STATEV(5) PTS3(1,2) = Bl 2 

* * C(3) = STATEV(6) PTS3(1,3) =2 Al B1 
** PTS3(2,1) = A2 2 

D(l) = STATEV(10) PTS3(2,2) = B2**2 
* * D(2) = STATEV(11) PTS3(2,3) =2 A2 B2 

* D(3) = STATEV(12) PTS3(3,1) = Al A2 
* PTS3(3,2) = B1 B2 

PTS3(3,3) = Al * B2 + B1 * A2 

Return 
Return End 

End 

Fig 7.5.3-2 Fig 7.5.3-3 
Flow diagram of the subroutine KINIMC Flow diagram of the subroutine KPTRANS3 

KPTRANSI3 )( KPTRANE3 

ABA_INPUT. INC I)(I ABA_INPUT. INC 

Al = STATEV(16) Al = STATEV(16) 
A2 = STATEV(19) A2 = STATEV(19) 
B1 = STATEV(17) B1 = STATEV(17) 
B2 = STATEV(20) B2 = STATEV(20) 

_ r----I 

LEiIiH =3 KZEROMAT = 0.0 PTE3,1=3 KZEROMAT 

PTSI3(1,1) = Ai**2 PTE3(1,1) = Ai**2 
PTSI3(1,2) = A2**2 PTE3(1,2) = B1**2 
PTSI3(1,3) =2* Al * A2 PTE3(1,3) = Al * B1 
PTSI3(2,1) = B1**2 PTE3(2,1) = A2**2 
PTSI3(2,2) = B2**2 PTE3(2,2) = B2**2 
PTSI3(2,3) =2* B1 * B2 PTE3(2,3) = A2 * B2 
PTSI3(3,1) = Al * B1 PTE3(3,1) =2* Al * A2 
PTSI3(3,2) = A2 * B2 PTE3(3,2) =2* 61 * B2 
PTSI3(3,3) = Al * B2 + B1 * A2 PTE3(3,3) = Al * B2 + B1 * A2 

= 0.0 

Return Return 
End End 
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KSTIFFCRIT3MC 

ABA_INPUT. INCI 

1 <_ STATEV(29)>yes 

no I------1 
STATEV, NSTATV, --- 

JNTENS, STRESS3M, KSTIFFCRIT3MC1 C3, STATEV 
STRAN3M, DSTRAN3M 

I- ---- STATEV, NSTATV, 
NTENS, STRESS3M, KSTIFFCRIT3MC2 C3, STATEVI 

STRAN3M DSTRAN31ý -- 

no 

Return 
End 

Fig 7.5.3-6 Flow diagram of the subroutine KSTIFFCRIT3MC 
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KSTIFFCRIT3MC1 

ABA_INPUT. INCI 

TATEV(29) = 1'-yes 

'TN 
, 

STÄTEV, STATEV(46) E- INSTATV, STRESS3 KSTIFF311 C3 STATEVI 
no 

- 
STRAN3M J 

no 
NTENS_ , 

STATE_N' STATEV(46) =2- (NSTATV, STRESS3d KST 
STRAN3M IFF312 C3, STATE 

ý- -- 
V(29) =2 yes 

no I NSTATV, STRESS3N 
STRAN3M 

STATEV(29) =3 yes 
NT ENS STATEN, 

no I NSTATV, STRESS3Mr 
STRAN3M 

STATEV(29) =4 yes 

DSTRAN3M(1)> } 

r- TENS, STÄTEV, 
INSTATV, STRESS3(4 

no cTRnniznn 

no 

M1A 

STRA 3M(1)> yes 

NTENS, STÄTEV, STATEV(46) =1ý- JNSTATV, STRESS3 KSTIFF311 ýC3, 
STATEV1 

STRAN3M 

_ 
no 

_ NTENS, STATEN' STATEV(46) =2- (NSTATV, STRESS3(4-º KSTIFF312 C3, STATE 
STRAN3M ý- -- 

? yes 

NTENS, STATEV, --' STATEV(46) =2-- NSTATV, STRESS3 KSTIFF312 3, STATEVI 
STRAN3M -- 

no 
NTENS, STATEV, 

NSTATV, STRESS3* 
STRAN3M 

N3M(1)> yes 

NTENS, STATEN, 
NSTATV, STRESS3r 

STRAN3M 
1 

NTENS, STATEV, (NSTATV, 
STRESS31 

STRAN3M 

STATEV(46) =2 
KSTIFF312 

STATEV(46) SKS 
IFF313 

3I 

STATEV(46) =4 
KSTIFF314 

STATEV(46) =2 
KSTIFF312 

STATEV(46) =3 
KSTIFF313 

STATEV(46) =2 
KSTIFF312 

i C3, STATEVI 

rC3, 
STATE 

I- -- 

rC3, 
STATE 

I- -- 

rC3, 
STATE 

1- -- 

rC3, 
STATEV1 

1-- 

rC3, 
STATE 

MlB 
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M1A 

STATEV(29) =6 yes 

DSTRAN3M(1)> yes- 
NTENS, STÄTEV, 

no NSTATV, STRESS3f4-' 
STRAN3M J 

NTENS, STATEV, --' 

STATEV(29) =7 

(NSTATV, 
STRESS3M, 

STRAN3M 

yes 
no rNTENS, STATEV 

NSTATV 
STATEV(29) =8 yes 

STRESS3M(1)> ye 

NTENS, STATEV, 
no INSTATV, STRESS3d 

STRAN3M 

no 

STATEV(29) =9 
NTENS, STATEVI, 

NSTATV I- 

yes 
no 

NTENS_ , 
_STATE, 

_ 
n 

Imo( 
Jý 

NSTATV 
STATEV(29) = 10 yes 

MlB 

1 
STATEV(46) =3 rC3, 

STATE vl KSTIFF313 
_ 

STATEV(46) =2 1 H 
KSTIFF312 3, STATE 

_ 

STATEV(46) = 71 1 rC3 
STATE\ KSTIFFTD34 , 

s 

STATEV(46) =3 STATE C3 KSTIFF313 , 

STATEV(46) =7 STATE 
U 

KSTIFFTD34 
[ ýL 

, 

STATEV(46) =7 rC3 
STATE\A KSTIFFTD34 , 

STRESS3M(1)> 
-- 

yes 

no 
ýNTENS, STATEv STATEV(46) 

Jý- 
no INSTATV, STRESS3 

- 

C3, STATEa ITI 

-i -I 
STRAN3M KSTIFF313 

ATEV(2)) = 11 yes 
I 

1\1 CZ ATATEVý, 

no 

no 

XIT 

DSTRAN3M(1)> yes 

NTENS, STATEV' INSTATV, STRESS3M, STATEN 

STRAN3M KSTIF 

_no NTENS, STATEV7 STATEV(4 INSTATV, STRESS3 KSTIFFT 
STRAN3M 

J 

= 12 yes 
1TENS, STATEN, STATEV(46) = 12 

L. NSTATV KSTIFF3112 

DSTRAN3M(1)> yes 

NTENS, STATEVT IN STATV, STRESS3Mh 
STRAN3M 

_ 
no 

_ NTENS, STATEV7 
INSTATV, STRESS3 

STRAN3M 

STATEV(46) =9 rC3, 
STATE KSTIFFTD34 1__ 

STATEV(46) = 12! I 
_rC3, STATEl 

KSTIFFTD34 L. _ 

STATEV(46) = 11 I 
**C3, STATE KSTIFF3111 

rC3, 
STATE 

Return 
End 
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KSTIFFCRIT3MC2 

ABA_INPUT. INCI 

ATEV(30) = 

no 
' NSTATV, STRESS3M I 

STRAN3M 'l 

STATEV(30) =3 yes 
r NTENS, STATEN, 

no INSTATV, STRESS3Mý 

ýý 
STRAN3M 

STATEV(30) = 

US I HAN3M(2)> yes 

TENS, STATEN, 
INSTATV, STRESS34 

no STRAN3M J 
no 

NTENS, STATEN-' r 
(NSTATV, STRESS3tý1 

STRAN3M 
J' 

L 

STATEV(46) = 21I I4T 
3, STATEVJ KSTIFF321 

_- 

STATEV(46) = 22 
KSTIFF322 

rC3, 
STATE 

I- -- 

STATEV(46) = 22 
KSTIFF322 

STATEV(46) 
KSTIFF323 

23I 

U5I HAN; iM(L)>U yes 

NTENS, STATEV7 STATEV(46) _ INSTATV, STRESS3 KSTIFF324 
no STRAN3M 

no 
NTENS, STATEV7 STATEV(46) _ NSTATV, STRESS3M[, * KSTIFF322 

STRAN3M 

ATEV(30) =5 yes 

DSTRAN3M(2)> yes 

NTENS, STATEV,. 
INSTATV, STRESS3 

STATEV(46) 

STRAN3 
KSTIFF323 

M 

no no- 
NTENS STATEV-1 STATEV(46) = 22 

NSTATV, STRESS3MI, * KSTIFF322 
STRAN3M 

NTENS, STATEV7. 
INSTATV, STRESS3 

no STRAN3M 

no 
NTENS, STATEV7 

J---- 

NSTATV, STRESS3MH 
STRAN3M 

ATEV(30) =5 yesj, 

no 

M2A 

NTENS, STATEV, -'. 
)TATV, STRESS3M, 

STRAN3M 

STATEV(46) = 
KSTIFF324 

STATEV(46) =2 
KSTIFF322 

r-- 
C3, STATEVI 1-- 

-- 

rC3, 
STATE 

rC3, 
STATE 

rC3, 
STATE 

t- -- 

rC3, 
STATE 

-C3, STATE 
I-- 

M2B 

Fie 7.5.3-8a Flow diagram of the subroutine KSTIFFCRIT3MC2 (Part 1/2) 
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M2AI IM2B 

STATEV(30) =6 yes 

DSTRAN3M(2)> 
NTENS, STP, TEý 

no NSTATV, STRESS 
STRAN3M 

DSTRAN3M(2)> yes- I 

NTENS, STPESS3 STATEV(46) = 23 ra no NSTATV, STRSS3 C3 STATE KSTIFF323 

_ 
STRAN3M J 

no_ 
- - NTENS, STATEV 
, 

' 
STATEV(46) =D STATEV(30) =7I NSTATV, STRESS3Mýº KSTIF46) 

rC3 
STATE 22 IL AN3M 

: 
L-yes 

no 1TENS, STATEV, 
_ 

STATEV(46) = 27 r 
C3 STATE º , NSTATV KSTIFFTD34 

STATEV(30) =8 yes 

STRESS3M(2)> yes 

NTENS, STATEN, 
no STATEV(46) = 23 -- INSTATV, STRESS3 KSTIFF323 C3, STATE 

STRAN3M J 
i- -- 

no 

STATEV(30) =9 
rNTENS, STATEN, STATEV(46) = 27 r 

C3 STATE , NSTATV KSTIFFTD34 L 

yes 

rNTENS, STATEVI, STATEV(46) = 27 r 
C S 3, TATE NSTATV º KSTIFFTD34 L 

STATEV(30) = 10 yes I-- 

STRESS3M(2)> yes 

no 
NTENS, STATE Vý STATEV(46) = 26 - 6) C3 STATEa INSTATV STRESS3 

, KSTIF 
STRAN3M - 

no 

V(30) = 11 yes 
rTENS, STATEVI, 

fº 
STATEV(46) = 29 -STATE 

C3 NSTATV KSTIFFTD34 , 

DSTRAN3M(2)> yes 
NTENS, STATEV 

STRESS3M NSTATV 
STATV(46) = 211 j- -- 

C3 STATEVI 
, , 

no STRAN3M 
KSTIFF3211 , 

no 
NTENS, STATEV, 

INSTATV, STRESS3 
STATEV(46) = 21 -C -- 

3, STATE 
STRAN3M 

KSTIFFTD34 ý- -- 

i LV(30) =12 yes 
rNTENS, STATEN, STATEV(46) = 212 F 

NSTATV KSTIFF3212 C3, STATE 

no 
L 

--J-- 

XIT 
Return 

End 
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KSTIFF311 

ABA_INPUT. INCI 

DS, 2 KZEROMAT = 0.0 

rC3, 
NTENS KZEROMAT 0.0 

D=PCONST*EXP(1.0-10.0001/EP(1)A I) 
POISM = POIS -D 

STATEV(31) = POISM 

P(1) < STRESM yes-ºIEMC = EMODM(f 

no 
TRESM(K1-1 

DO, K1= 1) < STRESM Yes 

2, NMAX 
no I EMC = EMODM(K1 

KSTIFF312 

ABA_INPUT. INCI 

DS, 2j KZEROMAT = 0.0 

C3 NTEN KZEROMAT 0.0 

D =PCONST* EXP ( 1.0 - 10.0001 /EP(1)A I) 
POISM=P01S-D 
EMC1 =I STATEV(37) / STATEV(56) 
EMC2 = EMODM(1) 
ESHR = EMC1 / (2 * (1+POISM)) 

STATEV(31) = POISM 
STATEV(48) = EMC1 
STATEV(49) = EMC2 

CONTINUE 

JIHICVý4 0) =C IVI li 

ESHR = EMC / (2*(1+POIS )) 
DS(1,1) = 1.0 / EMC 
DS(2,2) = 1.0 / EMODM(1) 
DS(1.2) = POISM * DS(1.1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

DS(1,1) = 1.0 / (EMC1I 
DS(2,2) = 1.0 / JEMC2I 
DS(1,2) = POISM * DS(1,1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)**2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)**2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) I DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-9 Fig 7.5.3-10 
Flow diagram of the subroutine KSTIFF311 Flow diagram of the subroutine KSTIFF312 
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KSTIFF314 

KSTIFF313 

ABA_INPUT. INCI 

Is, 2 KZEROMAT 
r 

0.0 

IC3, NTE J KZEROMAT 
r 

0.0 

D= PCONST * EXP (1.0 - 10.0001 / EP(1)A2 
POISM = P01S -D 
EMC1 = ISTATEV(37) / STATEV(56)1 
EMC2 = EMODM(1) 
ESHR = EMC1 / (2 * (1+POISM)) 

STATEV(31) = POISM 
STATEV(48) = EMC1 
STATEV(49) = EMC2 

DS(1,1)=1.0 /1 EMC1 I 
DS(2,2) = 1.0 /I EMC2I 
DS(1,2) = POISM * DS(1, ) 

ABA_INPUT. INC 

DS, 2 KZEROMAT = 0.0 

IC3, NTEN -b>KZEROMAT 0.0 

D= PCONST * EXP (1.0- 10.0001 / EP(1)A21 ) 
POISM=P01S-D 

STATEV(31) = POISM 

D0, K1= RESM(NM 
< SP(1 Yes 

NMAX, 
NDATAM- no EMC = 

EMODM(NMAX+ 

I 
RESM(K1+1 

1) < STRESM Yes 
I 

no EMODM(K1+1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)**2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)**2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

ESHR = EMC / (2*(1+POIS )) 
STATEV(48) EMC 
DS(1,1) = 1.0 / EMC 
DS(2,2) = 1.0 / EMODM(1) 
DS(1,2) = POISM * DS(1,1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 

Re C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) = DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-11 Fig 7.5.3-12 
Flow diagram of the subroutine KSTIFF313 Flow diagram of the subroutine KSTIFF314 
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KSTIFF31 11 

ABA_INPUT. INC 

-7ý 
DS, 2 KZEROMAT 0.0 

C3, NTEN KZEROMAT 0.0 

POISM = STATEV(31) 
A= -50 
B= -0.01 
C= -0.01 
X2 = IEP(1)I 
Y2 = ISP(1)I 
EMC =A* Y2 * EXP(B*X2AC) 
ESHR = EMODM(1) / (2 * (1+POISM)) 

DS(1,1) = 1.0 / EMC 
DS(2,2) = 1.0 / EMODM(1; 
DS(1,2) = POISM * DS(1,1 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-13 
Flow diagram of the subroutine KSTIFF3111 

KSTIFF3212 

ABA_INPUT. INCI 

DS, KZEROMAT = 0.0 

CC3, NTEN KZEROMAT 0.0 

POISM = STATEV(31) 
EMC = STATEV(37) / STATEV(56) 
ESHR = EMODM(1) / (2 * (1+POIS )) 

DS(1,1) = 1.0 / EMC 
DS(2,2) = 1.0 / EMODM(1) 
DS(1,2) = POISM * DS(1,1 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-14 
Flow diagram of the subroutine KSTIFF3112 
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KSTIFF321 

ABA_INPUT. INCI 

r 
DS, 2 KZEROMAT H= 0.0 

EC3, 
NTENS KZEROMAT 0.0 

D=PCONST*EXP(1.0-10.0001 IEP(2)A j) 
POISM=POIS -D 

STATEV(31) = POISM 

(2) < STRESM7: -yes-ºJEMC = EMODM( 

KSTIFF322 

ABA_INPUT. INCI 

DS, 2 KZEROMAT 0.0 

IC3, NTEN KZEROMAT 0.0 
--J 

D= PCONST * EXP (1.0 - 10.0001 / EP(2)A2 
POISM = POIS -D 
EMC1 = EMODM(1) 
EMC2 = STATEV(38) / STATEV(57) 
ESHR = EMC2 / (2 * (1+POISM)) 

TRESM(K1-1 

DO, K1= 2) < STRESM yes 

2, NMAX EMC = EMODM(K1) no 

CONTINUE 

TATEV 49 = EM 
ESHR = EMC / (2*(1+POIS )) 
DS(1,1) = 1.0 / EMODM(1) 
DS(2,2) = 1.0 / EMC 
DS(1.2) = POISM * DS(2,2) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-15 
Flow diagram of the subroutine KSTIFF321 

STATEV(31) = POISM 
STATEV(48) = EMC1 
STATEV(49) = EMC2 

DS(1,1) = 1.0 /I EMC1I 
DS(2,2) = 1.0 /( EMC21 
DS(1,2) = POISM * DS(2, 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)**2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)**2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-16 
Flow diagram of the subroutine KSTIFF322 
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KSTIFF323 

ABA_INPUT. INCI 

F 
DS, 2 KZEROMAT = 0.0 

rC3, 
NTENS KZEROMAT 0.0 

D= PCONST * EXP (1.0 - 10.0001 / EP(2)A21 
POISM = P01S -D 
EMC1 = EMODM(1) 
EMC2 =I STATEV(38) / STATEV(57) 
ESHR = EMC1 / (2 * (1+POISM)) 

STATEV(31) = POISM 
STATEV(48) = EMC1 
STATEV(49) = EMC2 

DS(1,1) = 1.0 /I EMC1I 
DS(2,2) = 1.0 /I EMC2I 
DS(1,2) = POISM * DS(2, 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)**2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)**2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR*GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

ESHR = EMC / (2*(1+POIS )) 
STATEV(49) EMC 
DS(1,1) = 1.0 / EMODM(1) 
DS(2,2) = 1.0 / EMC 
DS(1,2) = POISM * DS(2,2) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-17 
Flow diagram of the subroutine KSTIFF323 

Fig 7.5.3-18 
Flow diagram of the subroutine KSTIFF324 

DS, 2 
L_1 
C3, NTEO 

_-J 

KSTIFF324 

ABA_INPUT. INC 

KZEROMAT 0.0 

KZEROMAT 0.0 

) D= PCONST * EXP (1.0- 10.0001 / EP(2)A21 
POISM = POIS -D 

STATEV(31) = POISM 

D0, K1= RESM(NM 
< SP(2) yes 

NMAX, 
NDATAM- no EMC = 

EMODM(NMAX+ 
RESM(K1+1 

2) < STRESM yes 

no EMODM(K1+1) 

CONTI 
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KSTIFF3211 

ABA_INPUT. INC 

DS, 2 KZEROMAT = 0.0 

C3, NTEN KZEROMAT 0.0 

POISM = STATEV(31) 
A= -50 
B= -0.01 
C= -0.01 
X2 = IEP(2)l 
Y2 = ISP(2)I 
EMC =A* Y2 * EXP(B*X2AC) 
ESHR = EMODM(1) / (2 * (1+POISM)) 

DS(1,1) = 1.0 / EMODM(1 
DS(2,2) = 1.0 / EMC 
DS(1,2) = POISM * DS(2, 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 I DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-19 
Flow diagram of the subroutine KSTIFF3211 

KSTIFF3212 

ABA_INPUT. INCI 

DS, 2T0.0 

IC3, NTE9zI T 0.0 

TATEV(57) 
2* (1+POI SS )) 

DS(1,1) = 1.0 / EMODM(1 
DS(2,2) = 1.0 / EMC 
DS(1,2) = POISM * DS(2, 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR * GCONST 
STATEV(39) = C3(3,3) 

Return 
End 

Fig 7.5.3-20 
Flow diagram of the subroutine KSTIFF3212 
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KSDV3BMC 

ABA_INPUT. INC 

STATEV(4) = SP(1) 
STATEV(5) = SP(2) 
STATEV(10) = EP(1) 
STATEV(11) = EP(2) 
STATEV(33) = SP(1) / SMC1 
STATEV(34) = EP(2) / SMC2 
STATEV(47) = DEP3(1) 

kTEV(29) = 
AT EV(30) yes 

SP(2) < SMC1 < SP(1) yes 

no 

no 

P(1) < SMC1< SP( 

STATEV(29 
TATEV(30) = 

no LL 

ATEV(29)= 0 
yes 1. < STATEV(30 

no 

CXIT D 

Matrix cracking in principal 1 dir. 
STATEV(25) = EP(1) 

STATEV(26) =0 
STATEV(29) =1 
STATEV(30) =0 
STATEV(32) =1 

STATEV(37) = SP(1) 
STATEV(38) = SP(2) 
STATEV(56) = EP(1) 
STATEV(57) = EP(2) 

Matrix cracking in principal 2 dir. 
STATEV(25) =0 

STATEV(26) = EP(2) 
STATEV(29) =0 
STATEV(30) =1 
STATEV(32) =1 

STATEV(37) = SP(1) 
STATEV(38) = SP(2) 
STATEV(56) = EP(1) 
STATEV(57) = EP(2) 

KSDV3BMC1 

KSDV3BMC2 

Return 
End 

Fig 7.5.3-21 Flow diagram of the subroutine KSDVBMC 
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KSDV3BMC1 

ABA_INPUT. INCI 

ATEV(29) dyes 

no 

STATEV(32) =1 
STATEV(57) =0 

>, 
yes STATEV(29) =4 

yes 
STATEV(37) MAX (SP(1), STATEV(37 

SMC2<SP(1 
STATEV(56) = EP(1) 

STATEV(29) =1 
no STATEV(37) = MAX ( SP(1), STATEV(37) 

no STATEV(56) = EP(1) 

STATEV(29) =2 

yes 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

EP3(1) > yes STATEV(29) =1 
STATEV(37) = SP(2) 

Yes STATEV(56) = EP(2) 
ATEV(37)<SP 

STATEV(29) =3 
no lb STATEV(37) = STATEV(37) 

STATEV(56) = STATEV(56) 

no STATEV(29) =2 
STATEV(37) = STATEV(38) 
STATEV(56) = STATEV(57) 

STATEV(30) =7 
STATEV(38) = STATEV(37) 
STATEV(57) = STATEV(56) 

>ý-yes 
STATEV(29) =1 

ATEV(37)<SP 
STATEV(37) = MAX (SP(1), STATEV(3' 

yes STATEV(56) = EP(1) 

STATEV(29) =3 
no STATEV(37) = STATEV(37 

, 
__ýSTATEV(56) 

= STATEV(56 

STATEV(29) =2 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

STATEV(29) =4 yes STATEV(37) = MIN (SP(1), STATEV(37) 

-no STATEV(56) = EP(1) 

STATEV(29) =5 

yes 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

13(1) > yes STATEV(29) =4 
yes STATEV(37) = SP(2) 

ATEV( STATEV(56) = EP(2) 
SP(1 STATEV(29) =6 

noº STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

I STATEV(29) =5 
STATEV(37) = STATEV(37 
STATEV(56) = STATEV(56) 

STATEV(29) =9 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

MC1 

. TATEV(29) dyes 
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MC1A 

yes -a 
ATEV(29) = yes ATEV(37)<SP 

EP3(1) > yes 
no 

STATEV(29) = 4 
STATEV(37) = SP(1) 
STATEV(56) = EP(1) 

STATEV(29) = 6 
STATEV(37) = STATEV(3 
STATEV(56) = STATEV(5 

no 
STATEV(29) =5 

Lno 

STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

TATEV(29) = yes STATEV(29) =7 

EP3(1) es STATEV(37) = STATEV(37 
no 

y STATEV(56) = STATEV(56 
LSTATEV(29) 

=8 
101 TATEV(29) =yes 

no STATEV(37) = STATEV(37 
STATEV(56) = STATEV(56) 

T 
P(1) < yes 

EP3(1) < 
yes 

no 
no 

no 

STATEV(29) =7 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

STATEV(29) =8 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

STATEV(29) =3 
STATEV(37) = STATEV(37 
STATEV(56) = STATEV(56) 

TATEV(29) = yes 
STATEV(29) =9 

EP3(1) < yes STATEV(37) = STATEV(37 
no STATEV(56) = STATEV(56 

no STATEV(29) = 10 

TATEV(29) =1 yes 
STATEV(37) = STATEV(37 
STATEV(56) = STATEV(56) 

SP(1)<0 yes 

no yes 
EP3(1) < I 

no 
no -, 

EP(1)< 0 

no yes 

L no-, 

ATEV(29) = g>-yes 

STATEV(29) =9 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

STATEV(29) = 10 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

STATEV(29) =6 
STATEV(37) = STATEV(37) 
STATEV(56) = STATEV(56) 

STATEV(29) = 11 
STATEV(37) = SP(1) 
STATEV(56) = EP(2) 

STATEV(29) = 12 
STATEV(37) = SP(1) 
STATEV(56) = EP(1) 

s ISTATEV(29) = 12 
STATEV(37) = STATEV( 

1STATEV(56) = STATEV( 

STATEV(29) 7-17] 

ISTATEV(37) = SP(1) 
STATEV(56) = EP(1) 

0 

MC1 

eturn 
End 
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KSDV3BMC2 

ABA_INPUT. INCI 

ATE (30) = yes STATEV(32) _ 11 
STATEV(56) =0 

DEP3(2) > yes STATEV(30) =4 
no yes 

STATEV(38) = MAX (SP(2), STATEV(38) 

MC2<SP(2 STATEV(57) = EP(2) 

STATEV(30) =1 
no STATEV(38) = MAX (SP(2), STATEV(38) 

no STATEV(57) = EP(2) 
ATEV(30) = yes 

STATEV(30) =2 
SP( >0 yes 

STATEV(38) = STATEV(38) 
STATEV(5) = STATEV(57) 

EP3(2) > yes STATEV(30) =1 
rb- STATEV(38) = SP(2) 

yes STATEV(57) = EP(2) 
no ATEV(385SP 1STATEV(30) 

=3 
no STATEV(38) = STATEV(38) ) 

STATEV(57) = STATEV(57) 

no STATEV(30) =2 
no STATEV(38) = STATEV(38) 

STATEV(57) = STATEV(57) 

ATEV(30) = yes STATEV(30) =7 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

STATEV(30) =1 

no ATEV(38)<SP 
STATEV(38) = MAX (SP(2), STATEV(3 

yes STATEV(57) = EP(2) 

STATEV(30) =3 
no STATEV(38) = STATEV(38 

no-, STATEV(57) = STATEV(57 

TA EV(30) = yes 
STATEV(30) =2 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

no DEP3(2) >0 STATEV(30) =4 yes STATEV(38) = MIN (SP(2), STATEV(38) 
no 

ATEV(30) = yes 
STATEV(57) = EP(2) 

STATEV(30) =5 
SP(2) >0 yes 

STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

no 

MC2A 

Eyes 

V( yes 
(2 

no 
no 

STATEV(30) =4 
STATEV(38) = SP(2) 
STATEV(57) = EP(2) 

STATEV(30) =6 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

STATEV(30) =5 
-º STATEV(38) = STATEV(38 

STATEV(57) = STATEV(57) 

STATEV(30) =9 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

MC2 
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MC2A 

yes -i 
ATEV(30) = yes 

ATEV(38)<_ SP 

EP3(2) > yes 
no 

STATEV(30) = 4 
STATEV(38) = SP(2) 
STATEV(57) = EP(2) 

STATEV(30) = 6 
STATEV(38) = STATEV(3 
STATEV(57) = STATEV(5 

no 
STATEV(30) =5 Lno> 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

TATEV(30) = yes STATEV(30) =7 

EP3(2) < yeS STATEV(38) = STATEV(38 
no STATEV(57) = STATEV(57 

STATEV(30) =8 
TATEV(30) = yes no º STATEV(38) = STATEV(38 

STATEV(57) = STATEV(57) 

F 
P(2) < yes 

EP3(2) < 
yes 

no 
no 

no 

STATEV(30) =7 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

STATEV(30) =8 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

STATEV(30) =3 L-º STATEV(38) = STATEV(38 

TATEV(30) = yes 
STATEV(57) = STATEV(57) 

STATEV(30) =9 
EP3(2) < yes STATEV(38) = STATEV(38 

no STATEV(57) = STATEV(57 

no STATEV(30) = 10 

TATEV(30) =1 yes 
STATEV(38) = STATEV(3E 
STATEV(57) = STATEV(57 

P(2)< 0 yes 

no yes 
P3(2) 

no 
no -, 

DEP(2)< 0 

no yes 

no 

ATEV(30) = 1-Z>--yes 

STATEV(30) =9 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

STATEV(30) = 10 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

STATEV(30) =6 
STATEV(38) = STATEV(38) 
STATEV(57) = STATEV(57) 

STATEV(30) = 11 
STATEV(38) = SP(2) 
STATEV(57) = EP(2) 

STATEV(30) = 12 
STATEV(38) = SP(2) 
STATEV(57) = EP(2) 

sI STATEV(30) = 12 
STATEV(38) = STATEV(38 
STATEV(57) = STATEV(57 

STATEV(30) = 11 
I STATEV(38) = SP(2) 

STATEV(57) = EP(2) 

0 

MC2B 

Return 
End 
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KS DV PO RI EN MC 

ABA_INPUT. INCI 

STATEV(16) = STATEV(16) 
STATEV(17) = STATEV(17) 
STATEV(18) = STATEV(18) 
STATEV(29) = STATEV(19) 
STATEV(20) = STATEV(20) 
STATEV(21) = STATEV(21) 
STATEV(22) = STATEV(22) 
STATEV(23) = STATEV(23) 
STATEV(24) = STATEV(24) 

Return 
End 

Fig 7.5.3-24 Flow diagram of the subroutine KSDVPORIENMC 
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KDEL 

ABA_INPUT. INC 

STRESM3 SM DSTRESMF3 rDEF3 
, , , , KZEROVEC 0.0 

EP, DSSF3, DSF3, DSTRESS 
--- 

TFTT13, TFT13, TC3, PTRANSý, KZEROMAT 0.0 
CFF, TCF3, OF, C3, CM, I 

- 
= 

SFF3, SF3, STRESMF' 
STATEN, NSTATV KINIDEL STRANF3, 

DSTRAN, STRAN 
1 

KVECTPLUS3 STRAN 

NTENS KTTI3 TFTTI3 

TFTTI3, DSTRAN KFILLVECT3 DEF3 

NTENS STATEN NSTATV ) 
, , , STRESMF3, STRANF2, DEY KSTIFFCRIT3DE C3, STATEN 

C3, DEF3 KFILLVECT3 DSTRESMF3 

STRESMF3, DSTRESMF KVECTPLUS3 STRESMF3 

TFTTI3, STRAN KFILLVECT3 STRANF3 

NTENS KT13 TFT13 

STRESMF3, TFT3 KFILLVECT3 STRESM3 

C3, TFTT13, NTENS KMATPRODUCT TC3 

TFTI3, TC3, NTENS KMATPRODUCT CM 

LSTR=1, STRESS, NDI, NSHR SPRIND SP, PTRANS 

LSTR=2, STRAN, NDI_NSHR SPRINC EP 

STATEV, NSTATV, STRANF KX X1, X2 

B1 = STATEV(58) El = STATEV(60) 
B2 = STATEV(59) E2 = STATEV(61) 
Cl = ST ATEV(40) G1 = STATEV(62) 
C2 = ST ATEV(41) G2 = STATEV(63) 
Dl = ST ATEV(13) Fl = DEF3(1) 
D2 = ST ATEV(14) F2 = DEF3(2) 

FA1, B1, C1, D1, E1, G1, X1, -- 
F1, EMODF1, STRANFI, KEMF Al 

-NDATAF1, 
FIB - 

KDEL1 
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KDEL1 

no NOF 
. 
EQ. yes 

A2 = 0.0 A2, B2, C2, D2, E2, G2, X2, I 

B2 = 0.0 F2 , EMODF2, STRANF2, KEMF Al 
NDATAFI, FIB `- - 

NTENS, A1, A2 KCPSFF2 CFF 

STATEV(58) = B1 STATEV(61) = E2 
STATE V(59) = B2 STATEV(62) = G1 
STATEV(60) = El STATEV(63) = G2 

CFF, DEF3 KFILLVECT3 DSFF3 

DSFF3 KVECTPLUS3 SFF3 

CFF, TFTT13, NTENS KMATPRODUCT TCF3 

TFT13, TCF3, NTENS KMATPRODUCT CF 

CF, DSTRAN KFILLVECT3 DSF3 

DSF3 KVECTPLUS3 SF3 

CM, CF KMATTPLUS3 DDSDDE 

DDSDDE, DSTRAN KFILLVECT3 DSTRESS 

DSTRESS KVECTPLUS3 STRESS 

r 
STRESM3, NSTATV KSDV3A STATEV 

NSTATV, SPM, EP, DEP 
NOEL, NPT, KSTEP, KIN 

KSDV3BDEL STATEN 

[NSTATV STRESMF3, STRÄN 3, KSDV3CDEL STATEN 
NOEL, NPT, KSTEP, KIND 

--- 

PTRANS, NSTATV KSDVPCRIEN STATEV 

SF3 NST KSDVFIB STATEN 
STRANF3 

Return 
End 

Fig 7.5.4-lb Flow diagram of the subroutine KDEL (Part 2/2) 
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KINIDEL 

DO, 
K1=1,3 

A(K1) = STATEV(39+K1) 
B(K1) = STATEV(42+K1) 
C(K1) = STATEV( 6+K1) 
D(K1) = STATEV(12+K1) 

CONTINUE 

Return 
End 

Fig 7.5.4-2 Flow diagram of the subroutine KINIDEL 

KSTIFFCRIT3DEL 

º ABA_INPUT. INCº 

< STATEV(50 
3TATEV(51) < 

STATEV, NSTATV, NTENS 
STRESS3M, STRAN3M, 

DSTRAN3M 

ISTATEV, NSTATV, NTENI, 
STRESS3M, STRAN3M, r 

DSTRAN3M 

I STATEV, NSTATV, NTENI, 
STRESS3M, STRAN3M, r 

DSTRAN3M 
J 

Fig 7.5.4-3 Flow diagram of the subroutine KSTIFFCRIT3DEL 
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KSTIFFCRIT3TD 

ABA_INPUT. INCI 

TATEV(50) =1 yes 

DSTRAN3M(2)> yes 
NTENS, STATEN 

no STATEV(46) =8 INSTATV, STRESS3 
KSTIFFTD31 

C3, STATEý 
STRAN3M 

no 
rS STATEV(46) =9 TATEV(50) =2 yes NSTATV, STRESS3t KSTIFFTD32 C3, STATES 

STRAN3M J- 

DSTRAN W(2)> yes 

no 
NTENS, TATEN, STATEV(46 = iC IN STATV, STRESS3 C3, STATE 

STRAN3M 
KSTIFFTD33 

J 

_no _ NTENS, STATE-' STATEV(46) =9 INSTATV, STRESS31jj C3, STATE TATEV(50) yes STRAN3M 
KSTIFFTD32 

STRAN3M(2)> yes 

r 9TE 5 STATEV(46) = 10 NSTATV, STRESS3 3, STATEVI 
no 

- 
STRAN3M J 

KSTIFFTD33 
no 

ýNTENS, STATEv, STATEV46) =9 STATEVI 
, 

(NSTATV, STRESS3Kj* 
: U*ýL 

I 
STRAN3M 

KSTIFFTD32 

----J 
TATEV(50) =4 ves 

T FNTENS, STATEVI, 
º 

STATEV(46) = 11 63, STATEa L NSTATV 
Jf 

KSTIFFTD34 

: V(50) =5 yes 

DSTRANM3(2)> yes 
ýNTENS, STATEN, STATEV(46) = 10 INSTATV, STRESS3 KSTIFFTD33 

STRAN3M C3, STATEVI 

no 
V(46) 11 C 3, STATEa TENS, STATE 

[ETD! 

34; NSTATV FF- 
-- 

Return 
End 

Fia 7.5.4-4 Flow diagram of the subroutine KSTIFFCRIT3TD 
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KSTIFFTD31 

ABA_INPUT. INC 

r DS_2 KZEROMAT = 0.0 J 

I 
C3, NTEN KZEROMAT = 0.0 l 

A= -0.1 
B= -0.01 
C= -0.01 
X2 =I FSTRAN3(2) ý 
Y2 = FSTRESS3(2) 
EDEL2 =A* Y2 * EXP (B * X2A2) 
POISM =-I EDEL2 / EMODM(1) * POIS 
STATEV(31) = POISM 
ESHR = EMODM(1) / (2 * (1 + POISM) 

DS(1,1) = 1.0 / EMODM(1) 
DS(2,2) = 1.0 / EDEL2 
DS(1,2) = POISM * DS(1,1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) _- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) _- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR 
STATEV(39) = C3(3,3) 

KSTIFFTD32 

ABA_INPUT. INCI 

DS, 2 KZEROMAT 0.0 

L03, NTE J KZEROMAT Hi 0.0 

EDEL2 =I STATEV(52) / STATEV(53) I 
POISM =-I STATEV(31) 
STATEV(31) = POISM 
ESHR = EMODM(1) / (2 * (1+POISM)) 

DS(1,1) = 1.0 / EMODM(1) 
DS(2,2) = 1.0 / EDEL2 
DS(1,2) = POISM * DS(1,1) 

C3(1 
, 1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 

C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR 
STATEV(39) = C3(3,3) 

Return 
End 

Return 
End 

Fig 7.5.4-5 Fig 7.5.4-6 
Flow diagram of the subroutine KSTIFFTD31 Flow diagram of the subroutine KSTIFFTD32 
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KSTIFFTD34 

KSTIFFTD33 

ABA_INPUT. INCI 

ABA_INPUT. INCI 

FC3, 
NTENSý KZEROMAT = 0.0ý 

r DS, 2 KZEROMAT = 0.0 1 

(03, NTEN KZEROMAT X0.01 

EDEL2 =I STATEV(52) / STATEV(53) 
POISM =-I STATEV(31) 
STATEV(31) = POISM 
ESHR = EMODM(1) / (2 * (1+POISM)) 

DS(1,1) = 1.0 / EMODM(1) 
DS(2,2) = 1.0 / EDEL2 
DS(1,2) = POISM * DS(1,1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR 
STATEV(39) = C3(3,3) 

Return 
End 

JIS > 0.499 
OIS < 0.500 

POIS = 0.49 

ESHR = EMODM(1) / (2*(1+POIS]) 
POISM = -POTS 

STATEV(31) =STATEV(31) 

DS(1,1) = 1.0 / EMODM(1) 
DS(2,2) = DS(1,1) 
DS(1,2) = POISM * DS(1,1 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)A2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)A2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR 
STATEV(35) = C3(3,3) 

Return 
End 

Fig 7.5.4-7 Fig 7.5.4-8 
Flow diagram of the subroutine KSTIFFTD33 Flow diagram of the subroutine KSTIFFTD34 
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KSTIFFCRIT3SD 

ABA_INPUT. INCI 

TATEV(51) =ýýes 

ua i HA JIviýO)> yes 

NTENS, STATEV- STATEV(46) = 12 r 
no 

I 
NSTATV, STRESS3 KSTIFFSD31 C3, STATE 

STRAN3M 

no 
NTENS, STATEN- STATEV(46) = 13 [-C -- INSTATV, STRESSfvf KSTIFFSD32 3, STATE 

STRAN3M 
TRAN3M(3 < yes 

no IF 

U51 HHIV: $M(i)< yes 

NTENS, STATEV7 STATEV(46) = 12 INSTATV, STRESS3 FC3, 
STATE 

no STRAN3M KSTIFFSD31 

_no_ NTENS, STATE STATEV(46) = 13 IF INSTATV, STRESS3fý º KSTIFFSD32 

]*C;, 
STATE 

QTRANgM I-- 

D>-yes 

EID 
yes 

NTENS, STATEVl 
INSTATV, STRESS3f- 

I STRAN3M 
J 

D 

STATEV(46) = 13 C3, STATE KSTIFFSD32 II_ 

no 

Return 
End 

Fig 7.5.4-9 Flow diagram of the subroutine KSTIFFCRIT3SD 
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KSTIFFSD31 

ABA_INPUT. INC 

DS, 2 KZEROMAT 0.0 

ýC-3, 
N SL--,. KZEROMAT 0.0 

A= -0.01 
B= -0.01 
C= -0.01 
X3 =I FSTRAN3(3) 
Y3 =( FSTRESS3(3) 
EDEL12 =A* Y3 * EXP (B * X3A2) 
POISM =- POTS 
STATEV(31) = POISM 
T= (1 + POISM)A2 

DS(1,1) = 1.0 /( EMODM(1) *2*T 
DS(2,2) = 1.0 / EMODM(1) 
DS(1,2) = POISM * DS(1,1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)**2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)"2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = EDEL12 
STATEV(39) = C3(3,3) 

KSTIFFSD32 

ABA_INPUT. INCI 

DS, 2 KZEROMAT 0.0 

EC3, 
NTENS KZEROMAT 0.0 

EDEL2 = STATEV(54) / STATEV(55) 
POISM =-I STATEV(31) 
STATEV(31) = POISM 
T= (1 + POISM)A2 

DS(1,1) = 1.0 / (EMODM(1) *2* T) 
DS(2,2) = 1.0 / EMODM(1) 
DS(1,2) = POISM * DS(1,1) 

C3(1,1) = 1.0 /( DS(1,1) -( DS(1,2)**2 / DS(2,2) 
C3(2,2) = 1.0 /( DS(2,2) -( DS(1,2)**2 / DS(1,1) 
C3(1,2) =- DS(1,2) * C3(2,2) / DS(1,1) 
C3(2,1) =- DS(1,2) * C3(1,1) / DS(2,2) 
C3(3,3) = ESHR 
STATEV(39) = C3(3,3) 

Return 
End 

Return 
End 

Fig 7.5.4-10 Fig 7.5.4-11 
Flow diagram of the subroutine KSTIFFSD31 Flow diagram of the subroutine KSTIFFSD32 
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KSDV3BDEL 

ABA_INPUT. INC 

STATEV(4) = SP(1) 
STATEV(5) = SP(2) 
STATEV(10) = EP(1) 
STATEV(11) = EP(2) 
STATEV(25) = 0.0 
STATEV(26) = 0.0 
STATEV(29) = 0.0 
STATEV(30) = 0.0 
STATEV(33) = SP(1) / SMC1 
STATEV(34) = EP(2) / SMCe 
STATEV(37) = SP(1) 
STATEV(38) = SP(2) 
STATEV(56) = EP(1) 
STATEV(57) = EP(2) 

Return 
End 

Fig 7.5.4-12 Flow diagram of the subroutine KSDV3BDEL 

KSDV3CDEL 

ABA_INPUT. INCI 

STATEV(7) = FSTRESS3(1 
STATEV(8) = FSTRESS3(2 
STATEV(9) = FSTRESS3(3 
STATEV(13) = FSTRAN3(1 
STATEV(14) = FSTRAN3(2 
STATEV(15) = FSTRAN3(3 

TATEV(32) =3 yes 
STATEN, NSTATV, I 

FSTRESS3, FSTRANd, 
KSDV3CTD STATEN -1 

no I DFSTRAN3, NOEL, 
NPT, KSTEP, KINO 

')TATEV(32) = yes 
STATEN, NSTATV, II 

FSTRESS3, FSTRAN3, KSDV3CSD STATEV 1 
DFSTRAN3, NOEL, 

LNPT, KSTEP, KINC 

no 

Return 
End 

Fig 7.5.4-13 Flow diagram of the subroutine KSDV3CDEL 
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KSDV3CTD 

ABA_INPUT. INCI 

STATEV(27) 
STATEV(28) 
STATEV(32) 
STATEV(35) 

ATEV(50) = yes 
STATEV(36) 

4 STATEV(51) 

0< FSTRESS3( yes 

no yes 
FSTRAN3(2) > 

no, no- 

= STATEV(27) 
= 0.0 
=3 
= FSTRESS3(2) / STD2 
= FSTRESS3(3) / SSD 
=0 

STATEV(50) =1 
STATEV(52) = MIN ( FSTRESS3(2), STATEV(52 
STATEV(53) = MAX ( FSTRAN3(2), STATEV(53) 

STATEV(50) =2 
STATEV(52) = STATEV(52) 
STATEV(53) = STATEV(53) HSTATEV(50) =4 

50) STATEV(52) = STATEV(52) 
=D>-yes STATEV(53) = STATEV(53) 

FSTRESS3(2) > yes 
yes 

no <DFSTRAN3( 

no 
no- 

STATEV(50) =3 
STATEV(52) = MAX ( FSTRESS3(2), STATEV(5 
STATEV(53) = STATEV(53) 

STATEV(50) =2 
STATEV(52) = STATEV(52) 
STATEV(53) = STATEV(53) 

H 
STATEV(50) =4 

STATEV(53) = STATEV(53) TI%STRAN3( yes 
STATEV(52) = STATEV(52) 

yes 
yes 

TRESS3(2) > STATE 

n0l no 

I 
TATEV(50) = yes 

no 
FSTRAN3(2ý)< 

STATEV(50) =2 
STATEV(52) = STATEV(52) 
STATEV(53) = STATEV(53) 

STATEV(50) =1 
STATEV(52) = FSTRESS3(2) 
STATEV(53) = STATEV(53) 

STATEV(50) =3 
STATEV(52) = STATEV(52) 
STATEV(53) = STATEV(53) 

STATEV(50) =4 
s STATEV(52) = STATEV(52) 

STATEV(53) = STATEV(53) 

no STATEV(50) =5 -lý 
i0) = yes STATEV(52) = STATEV(52) 

STATEV(53) = STATEV(53) 

STRESS3(2ý yes 
yes 

FSTRAN3(2) < 

no no 
STATEV(50) =3 
STATEV(52) = STATEV(52) 
STATEV(53) = STATEV(53) 

no 

STATEV(50) =4 
STATEV(52) = STATEV(52) 
STATEV(53) = STATEV(53) 

STATEV(50) =5 
STATEV(52) = STATEV(52) 
STATEV(53) = STATEV(53) 

Return 
End 
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KSDV3CSD 

ABA_INPUT. INC 

STATEV(27) = 0.0 
STATEV(28) = STATEV(28) 
STATEV(32) =2 
STATEV(35) = FSTRESS3(2) / STD2 
STATEV(36) =I FSTRESS3(3) / SSD 
STATEV(50) =0 

ATEV(51) = yes STATEV(51) =1 
STATEV(54) = FSTRESS3( 
STATEV(55) = FSTRAN3(3) 

FSTRAN3(3) yes 
n no STATEV(55) STATEV(51) =2 

STATEV(54) = STATEV(54) 
STATEV(55) = STATEV(55) 

no 
ATEV(51) = yes 

STRAN3(3 
STATEV(51) =1 

Yes STATEV(54) = FSTRESS3(< 
STATEV(55) STATEV(55) = FSTRAN3(3) 

no 

STRAN3(3 STATEV(51) =2 
STATEV(55) yes STATEV(54) = STATEV(54) 

STATEV(55) = STATEV(55) 

no 

Return 
End 

Fig 7.5.4-15 Flow diagram of the subroutine KSDV3CSD 
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(a) Case Studies 1&2 
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Fibre position system 

2r 
UI 

2' 

Composite position 
system 

1` 

(b) Case Studies 3&4 
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(c) Case Studies 5&6 

Fig 7.6.1.1-1 Schematic diagrams of the benchmark problems for the pre-damage 

states. 
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Fig 7.6.1.3-1 Stress-strain relations by UMAT for Load Case 1 
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Fig 7.6.1.3-2 Stress-strain relations by UMAT for Load Case 2 
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Fig 7.6.1.3-3a Stress-strain relations by UIv1AT for Load Case (3a) 
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Fig 7.6.1.3-3b Stress-strain relations by UMAT for Load Case (3b) 
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Fig 7.6.1.3-4a Stress-strain relations by UMAT for Load Case (4a) 
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Fig 7.6.1.3-4b Stress-strain relations by UMAT for Load Case (4b) 
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Fig 7.6.1.3-5b Stress-strain relations by UMAT for Load Case (5b) 
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Fig 7.6.1.3-6a Stress-strain relations by UMAT for Load Case (6a) 
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Fig 7.6.1.3-6b Stress-strain relations by UMAT for Load Case (6b) 
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Fig. 7.6.2.2-1 The numerical stress-strain response of the composite when the 
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Fig. 7.6.2.2-2 The numerical stress-strain relations of the volume fraction of fibres 

when the compressive modulus of the fibres is (a) zero and (b) finite. 
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Fig. 7.6.2.2-3 The numerical stress-strain relations of the volume fraction of matrix 

when the compressive modulus of the fibres is zero and finite. 
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Fig. 7.6.2.2-4 Deformed meshes of the composite (a) before matrix cracking and (b) 
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Fig. 7.6.3.2-1a Stress-strain relations of the composite and volume fraction of matrix 

and fibre during tensile delamination (without compressive fibre 

modulus) 

a 

E 

0 aq 

c 

_4 

- V. 
hfl Vf 

- Experiment 

0.005 0.05 Mi0.15 0.2 0.25 0.3 0.35 O. M 

L 

Applied Strain 

Fig. 7.6.3.2-lb Stress-strain relations of the composite and volume fraction of matrix 
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Fig. 7.6.3.2-2 Deformed mesh after tensile delamination. 
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Fig. 7.6.4.2-1 The numerical shear stress-strain curves of the composite and volume 

fraction of matrix and fibre during shear delamination. 
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Fig. 7.6.4.2-2 The numerical shear stress-shear strain curves of the composite and 

volume fraction of matrix and fibre transiting between a positive and 
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Fig. 7.6.4.2-3 The deformed mesh of the composite in simple shear 
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Fig. 7.6.5.1-1 Schematic diagrams of the one-dimensional composites, boundary 

conditions and position systems used to benchmark the maximum stress 

criterion in the subroutine UMAT. 
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CHAPTER 8: 

Computational Analysis 

8.1 Introduction 

In Chapter 5, sub-structures representing idealised structural parts of an aero- 

engine exhaust diffuser unit were tested experimentally. The test specimens included 

rectangular, T-shaped and wedge-shaped bars (see Fig. 5.3-1 to 3). The experimental 

programme established the force-deflection response and the damage mechanisms. 
However, reliance on experiments for design and analysis is slow and cost ineffective. 

The alternative is to design and analyse sub-structures computationally. In this chapter, 

the computational model developed in Chapter 7 is used to model the behaviour of the 

sub-structures tested in Chapter 5. 

8.2 Composites with Misaligned Fibres 

As a preliminary to sub-structure modelling, the analysis of the deformation and 

failure of composites with misaligned one and two-dimensional fibre reinforcements in 

uniaxial tension is considered. The composites tested in Sect 4.3 provide the data for the 

analysis. 

8.2.1 Uniaxial Tension Tests of 1-D Composites 

8.2.1.1 Mesh and Model Descriptions 

The meshes of the one-dimensional composite coupon specimens are shown in 

Fig. 8.2.1.1-1. The meshes comprised between 240 and 720 first-order plane stress 

quadrilateral solid elements CPS4 with an aspect ratio approximately 0.125 times the 

specimen width. Mesh (a), (b), (c) and (d) represent composites with fibre alignment 

angles a= 0°, 10°, 20° and 30°, while mesh (e) modelled misalignments between a= 

45° to 90°. The figure also shows the position systems, boundary conditions and the 

fibre orientation a. The boundary conditions are indicated using red arrows. 
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delamination in the normal elements were given as 50. OMPa, 7.79MPa and 9.96MPa, 

while the failure stresses in the weakened elements were lower. The perturbation 

allowed matrix cracking and delamination to developed from one site rather than 

occurring simultaneously across the full gauge length. Uniaxial tension was modelled 
by displacing the node set RIGHT in the composite 1-direction. 

8.2.1.2 Results & Analyses 

The deformed meshes are shown in Fig. 8.2.1.2-1. The distorted or elongated 

elements indicate the damaged regions. 

The predicted tensile stress-strain responses for the full range of the fibre 

alignments are shown in Figs 8.2.1.2-2 to 10. The material constants used to model fibre 

failure, matrix crack saturation, shear delamination and tensile delamination in eqns 
(7.4.4.1.11 & 12), eqn (7.4.4.3.2) and eqn (7.4.4.2.2) are given in Table 8.2.1.2-1. The 

figures also show contour plots of the damage zones at different stress levels. The state 
dependent variables (hereafter SDV) 50,51 and 30 indicate the various deformation 

modes during tensile delamination, shear delamination and matrix cracking, 

respectively, whereas SDV 32 symbolises the global damage state variable which 

indicates the damage mechanisms in the composite according to the nomenclature in 

Table 7.5.1-3. For fibre alignments between 90° and 45° the composite failed by tensile 

delamination while at 30° the composite failed by shear delamination. As the fibre 

misalignment decreased, a mixture of shear delamination and matrix cracking was 

predicted at a= 20° and 10°, and finally for aligned fibres the composite failed by 

matrix cracking followed by fibre failure. The predicted damage agrees with 

observations from experiments (see Sect 4.3.2). At a= 20° and 10°, the numerical and 

experimental results show that the transition from shear delamination to matrix cracking 

occurs by simultaneous shear delamination and matrix cracking. 

The damage plots in Figs 8.2.1.2-2 to 6 demonstrate the development of a clear 

tensile delamination plane from the perturbation parallel to the fibres. As the 

misalignment reduces from 90° to 45°, the orientation of the failure plane in the 

composite rotates in agreement with experimental observations. The damage plots show 

that the stress-strain response of the misaligned composites unload when more than half 

the cross-sectional area of the composite parallel to the fibre has undergone tensile 
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a 

Fibre Failure 

eqn (7.4.4.1.11) 

Matrix Crack 
Saturation 

eqn (7.4.4.1.12) 

Shear 
Delamination 

eqn (7.4.4.3.2) 

Tensile 
Delamination 

eqn (7.4.4.2.2) 

a a a a 

00 50 50 - - 
100 50 50 1 - 
200 50 50 20 - 
30° 50 50 20 - 
45° - - - 50 

60° - - - 20 

70° - - - 50 

80° - - - 50 

900 - - - 50 
hole: Lvlagnltuue oI constants n ann c in all niese equations is u. u1. 

Table 8.2.1.2-1 The material constants of the misaligned one-dimensional. 

Figs 8.2.1.2-7 to 10 show the development of shear delamination and matrix 

cracking for misalignments between 30° and 0°. The orientation of the failure plane is 

not obvious. To clarify the failure plane, the maximum principal strain direction in the 

composite (or the matrix) is plotted in Fig. 8.2.1.2-11 using blue arrows superimposed 

on the deformed meshes, while the normal to the fibre axis is indicated with W. The 

figure also show the predictions for a= 45° to 90°. During matrix cracking or tensile 

delamination, the maximum principal strain direction of the composite is normal to the 

failure plane while the maximum principal strain direction during shear delamination is 

inclined at 45° to the direction of shear. This is demonstrated in the maximum principal 

strain plots in Fig 8.2.1.2-11, which verified that the orientation of the failure plane in 

the aligned and misaligned one-dimensional composites is correctly predicted. For fibre 

alignments between 30° and 10°, the results show that failure is caused mainly by shear 

delamination. 

The predicted Young's modulus of the one-dimensional composite is plotted as a 

function of the fibre alignment angle a in Fig 8.2.1.2-12. Agreement with the 

experimental data is demonstrated. The Young's modulus of the composite is almost 

constant at small fibre misalignment angles (a <_ 10°) but decreases as the fibre 
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is due to the assumption that the fibres are weakly bonded to the matrix and only 
transmit axial load. 

8.2.2 Uniaxial Tension Tests of 2-D Composites 

8.2.2.1 Mesh and Model Descriptions 

The two-dimensionally reinforced composite coupons described in Fig. 4.3.1-6 

were modelled using the meshes shown in Fig 8.2.1.1-1. For fibre alignment angles a= 
0° and 20°, mesh (c) was used. For a= 10°, 30° and 45°, meshes (b), (d) and (e) were 

used. The meshes were uniaxially tensioned by displacing the node set RIGHT in the 

composite 1-direction. The average strain was determined over the gauge length used in 

the one-dimensional experiments. The mesh of the two-dimensional composites and the 
boundary conditions used are shown in Fig. 8.2.2.1-1. The stress to initiate matrix 

cracking was 24MPa. 

8.2.2.2 Results & Analyses 

The deformed meshes are shown in Fig 8.2.2.2-1. The predicted stress-strain 

response of the two-dimensional composites is shown in Figs 8.2.2.2-2 to 6, and these 

include damage plots at various stress levels. In addition, the predicted Young's moduli 

are compared with the experimental data in Fig 8.2.2.2-7. The results confirm that the 

stress-strain response of the composite is correctly modelled for different fibre 

alignments. The agreement with experimental data indicates that the decrease in 

composite modulus is caused by the fibre alignment. 

Fibre Alignment 
An le (De ) 

Angle of Matrix Crack Plane Normal w-. r. t. 
Loading axis 

g g 
Damage Model Experiment 

00 0° 0° 

10° 26° 25° 

20° 20° 20° 

30° 12° 10° 

45° 0° 0° 

Table 8.2.2.2-1 The angles between the normal to the matrix crack plane and the tensile 
axis for misaligned two-dimensional composites. 
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The local maximum principal strain directions of the composite shown in Fig 

8.2.2.2-8 indicate the normal to the matrix cracks. The predicted orientations of the 

crack plane normal with respect to the loading axis are presented in Table 8.2.2.2-1 as a 
function of fibre alignment angle. The predictions indicate that the matrix cracks are not 

orthogonal to the fibres. Significantly, the predicted orientations of the matrix cracks 

agree well with the experimental data, which confirms that matrix cracking occurs 

normal to the maximum principal stress direction of the matrix as oppose to normal to 

the fibre axis as assumed by Hull & Clyne (1996). 

8.3 Sub-Structure Analyses 

In this section, the sub-structures with one and two-dimensional reinforcements 

tested in Chapter 5 are analysed computationally. The test configurations, which include 

rectangular, T and wedge-shaped sub-structures, loaded in three-point bending are 

shown in Figs 5.1-1 to 3. The problems are symmetric allowing meshes representing a 

symmetric half of the test specimens to be used to model the sub-structures. 

8.3.1 Rectangular Bars 

8.3.1.1 Mesh and Model Descriptions 

Meshes representing the rectangular composite bars are shown in Fig 8.3.1.1-1. 

The meshes are based on second-order quadrilateral solid elements, and use four levels 

of mesh refinement: 4x10,8x20,12x30 and 16x40. The aspect ratio of the elements was 

maintained at 2.5. The one-dimensionally reinforced composite bar had a fibre volume 

fraction of 0.182 and a matrix crack initiation stress of 55MPa. In the two-dimensional 

composite bar, the volume fraction of fibres was 0.364 and the matrix crack initiation 

stress was 24.2MPa. 

8.3.1.2 Results and Analysis 

The deformed mesh of the one-dimensional composite is shown in Fig 8.3.1.2-1. 

The matrix cracking zone at an applied deflection of 2.62mm is shown in Fig 8.3.1.2-2 

and the predicted force-deflection responses are shown in Fig 8.3.1.2-3. The results 

show that deformation of the rectangular bar during three-point bending is correctly 

modelled, and that the solution is only weakly dependent on mesh refinement unless 
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Figs 8.3.1.2-4 and 5 show the predicted force-deflection response and matrix 

cracking zone at the initiation of matrix cracking, matrix softening and the final applied 
deflections of the one- and two-dimensional composite bars. The material constants 

used to model fibre failure and matrix cracking saturation are given in Table 8.3.1.2-1. 

The predicted stiffness, matrix cracking load and maximum load of the composite bars 

are compared with the experimental data in Table 8.3.1.2-2. The results demonstrate 

that the force-deflection response and matrix cracking load of the composite bars are 

correctly predicted. The analysis also correctly indicates the damaged and final load 

borne by the composite bars. The damage plots in Fig 8.3.1.2-4 and 5 show that the 

extent of the matrix cracking zone of the two-dimensional composite is greater than the 

one-dimensional composite at the same deflection, as the two-dimensional composite 
has a lower matrix cracking stress. 

1-D Composite bar 2-D Composite bar 
Description 

a b e a h C 

Fibre Failure 
Eqn (7.4.4.1.11) 50 0.01 0.01 20 0.01 0.01 

Matrix crack saturation 
Eqn (7.4.4.1.12) 50 0.01 0.01 1 0.01 0.01 

Table 8.3.1.2-1 The material constants modelling rectangular composite bars in three- 
point bending. 

1-D Reinforcement 2-D Reinforcement 

Damage Damage 
Model 

Experiment Error 
Model 

Experiment Error 

Stiffness 
429 371* +15.5% 388 323* 20 1% 

(KN/m) . 
Matrix Cracking 

223 202 +10.4% 136 177+ 23 2% 
Load (N) . 

Maximum Load 629 578 +8.8% 557 556 +1.8% (N) 
Legends: indicates the ettect of slip during me initial stage of bending is excluded. 

+' indicates the point where the force-deflection curve becomes non-linear w. r. t. the origin. 

Table 8.3.1.2-2 Comparison of the stiffness, matrix cracking load and maximum load 
of the rectangular bars obtained computationally and experimentally. 

The maximum- principal strain direction of the matrix is plotted in Fig. 8.3.1.2-6. 



Chapter 8: Computational Analysis 267 

inclined. The crack planes obtained from experiment (see Fig. 5.4.1-3) show similar 

changes in the orientation of the matrix cracks. This demonstrates the model's ability to 

correctly predict changes in the matrix crack orientation 

8.3.2 Wedge-Shaped Bars 

8.3.2.1 Mesh and Model Descriptions 

Symmetric halves of the one and two-dimensionally reinforced wedge-shaped 

sub-structures are shown in Fig 8.3.2.1-1. The figure gives the dimensions of the sub- 

structures, and the position systems used to define the boundary conditions and 

mechanical properties. The meshes comprised 96 and 168 second-order quadrilateral 

plane-stress solid elements. At the thickest section of the sub-structures, the fibre 

volume fractions were 0.0528 & 0.120, while in the thinner section the volume fractions 

were 0.117 & 0.218. In the tapered section, the fibre volume fraction was assumed to 

vary linearly between these limits. Figs 8.3.2.1-2 and 3 show the detail of the fibre 

alignment of the composites. To load the sub-structures, a deflection of 6mm was 

applied. 

Matrix cracking was taken to occur at stress of 50. OMPa in the one-dimensionally 

reinforced sub-structure and at 27.4MPa in the two-dimensionally reinforced sub- 

structure. The shear and tensile delamination strength of the one and two-dimensional 

composites as a function of fibre area fraction was derived by an interpolation 

procedure. The shear and tensile delamination strength trends estimated are shown in 

Fig 8.3.2.1-4. The shear and tensile delamination strengths used in the one and two- 

dimensionally reinforced sub-structure are shown in Figs 8.3.2.1-5 & 6. 

8.3.2.2 Results and Analysis 

The deformed meshes shown in Fig 8.3.2.2-1 demonstrate that the boundary 

conditions used were correctly applied. The predicted force-deflection curves are 

plotted in Fig 8.3.2.2-2 and 3. The material constants modelling fibre failure, matrix 

crack saturation, and tensile and shear delamination are given in Table 8.3.2.2-1. The 

predicted stiffness, matrix cracking load and maximum load of the sub-structures are 

shown in Table 8.3.2.2-2. In comparison with the experimental results, the 

computational analyses show: 

1. Good agreement in the force-deflection behaviour of the one and two-dimensionally 
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2. Matrix cracking initiation and final failure of the sub-structures were correctly 

predicted. 

3. Delamination has little influence on the force-deflection behaviour of wedge-shaped 

sub-structures. 

Description 
1-D Composite bar 2-D Composite bar 

a b c a b c 
Fibre Failure 
Eqn (7.4.4.1.11) 1.0 0.01 0.01 0.1 0.01 0.01 

Matrix crack saturation 
Eqn (7.4.4.1.12) 5&2.0 0.01 0.01 0.1 0.01 0.01 

Tensile Delamination 
Eqn (7.4.4.2.2) 2 0.01 0.01 0.1 0.01 0.01 

Shear Delamination 
Eqn (7.4.4.3.2) 0.1 0.01 0.01 0.1 0.01 0.01 

Table 8.3.2.2-1 The material constants modelling the wedge-shaped polyester bar in 
three-point bending. 

1-D Reinforcement 2-D Reinforcement 

Damage 
Experiment Error 

Damage 
Experiment Error Model Model 

Stiffness 
(KN/m) 326 318 +2.5% 179 185 3.2% 

Matrix Cracking 
469 564 -16.6% 179 280 36 1% Load (N) . 

Maximum Load 
1020 1008 +1 2% 518 500 +3 6% (N) . . 

Table 8.3.2.2-2 Comparison of the stiffness, matrix cracking load and maximum load 
of the wedge-shaped sub-structures obtained computationally and 
experimentally. 

The damage mechanisms at different load levels are shown in Figs 8.3.2.2-2 & 3. 

Blue indicates no damage, green indicates matrix cracking, while the orange & red 

colours indicate shear and tensile delamination respectively. Matrix cracking initiates in 

the fillet where the highest tensile stress is located. As the applied deflection is 

increased, further matrix cracking is predicted to occur in the tapered and thick sections. 

The orientations of the crack planes are indicated in Fig 8.3.2.2-4, and the predictions 

agree well with the experimental observations shown in Fig 5.4.3-2 & 3. 

The analyses also predicts shear delamination in the fillet of the one and two- 
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deflection of 3.87mm. The analyses indicate the tendency for delamination at low shear 

and tensile delamination stresses. In the experiments by McCafferty (1994) and Gibson 

(1993), delamination was observed in the fillets of wedge-shaped SiC/SiC composite 
bars during three-point bending. A micrograph of the matrix cracked and delaminated 

SiC/SiC wedge-shaped sub-structure is shown in Fig 8.3.2.2-5. 

The reason for shear delamination is shown in Fig 8.3.2.2-6. The matrix shear 

stress contour of 9.5MPa is plotted in the composite and fibre position systems. In both 

position systems, the shear band (in red) passes through the fillet. Since the shear 
delamination stress in the tapered section is greater than the fillet, shear delamination 

initiates in the fillet. The analysis also shows that the tapered section near the fillet is 

vulnerable to tensile delamination as illustrated by the contour of stress normal to the 

fibre plotted in Fig 8.3.2.2-7. 

8.3.3 T-Shaped Bars 

8.3.3.1 Mesh and Model Descriptions 

A mesh representing a symmetric half of the composite bar is shown in Fig 

8.3.3.1-1. The mesh consists of 119 plane-stress second-order quadrilateral solid 

elements, and comprised a matrix core and fibre reinforced sections. In the fibre 

reinforced sections, the fibres are aligned parallel to the edge of the elements and the 

fibre alignment angles are given in Fig 8.3.3.1-1. 

The one-dimensionally reinforced T-bar was modelled with a fibre volume 
fraction of 0.142. This was determined using optical microscopy. The stresses to initiate 

matrix cracking, shear and tensile delamination were 50.6MPa, 13MPa and 16MPa. In 

the two-dimensionally reinforced T-bar, the fibre volume fraction was 0.284 and the 

matrix cracking stress, and shear and tensile delamination stresses were 20.3MPa, 

5.2MPa and 5.6MPa. The matrix core was treated as linear elastic and cracking initiated 

at a stress of 50MPa. After which, the matrix was unloaded rapidly by softening the 

matrix stress-strain curve. The T-bar with the one and two-dimensional reinforcements 

were subject to displacements of 2mm and 2.25mm. 

8.3.3.2 Results & Analysis 

The deformed meshes shown in Figs 8.3.3.2-1 confirm that the boundary 

conditions imposed are correct. The predicted force-deflection responses of the T-bars 
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suppressing and not suppressing delamination. The material constants modelling the 

deformation are given in Table 8.3.3.2-1. The stiffness, matrix cracking load and 

maximum load are compared with the experimental data in Table 8.3.3.2-2. 

1-D Composite bar 2-D Composite bar Description 
a b c a b c 

Fibre Failure 
Eqn (7.4.4.1.11) 1.0 0.01 0.01 1.0 0.01 0.01 

Matrix crack saturation 
Eqn (7.4.4.1.12) 5.0 0.01 0.01 3.4 0.01 0.01 

Tensile Delamination 
Eqn (7.4.4.2.2) 0.5 0.01 0.01 0.01 0.01 0.01 

Shear Delamination 
Eqn (7.4.4.3.2) 6.8 0.01 0.01 0.92 0.01 0.01 

Table 8.3.3.2-1 The material constants for the T sub-structure. 

1-D Reinforcement 2-D Reinforcement 

Damage Damage 
Experiment Error Experiment Error 

Model Model 
Stiffness 
(KN/m) 409 404 +1.2% 387 369 +4.8% 

Matrix Cracking 
Load (N) 225 271 -17.0% 116 169 -31.3% 

Maximum Load 
416 299 +39.1% 264 236 11.8% (N) 

Table 8.3.3.2-2 Comparison of the stiffness, matrix cracking load and maximum load of 
the T sub-structures obtained computationally and experimentally. 

The nature of the damage developed in the T sub-structures is shown in Figs 

8.3.3.2-2(b) & 3(b). For the one-dimensionally reinforced T sub-structure, matrix 

cracking and shear delamination developed in the fillet where the maximum matrix 

principal stress and the maximum matrix shear stress defined with respect to the fibre 

axis occurred. The maximum principal stress plot in Fig 8.3.3.2-4 and the maximum 

shear stress plot in Fig 8.3.3.2-5 of the matrix showed this. In addition, the predicted 

damage sites agree with experiment. From the data file of the computational analysis, 

the printed damage warnings indicated that matrix cracking initiated before shear 

delamination. When further load was applied, the shear delamination plane developed 

along the curved surface of the matrix core. Subsequently, the matrix core cracked, due 
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final damage plot demonstrates that the sudden load drop observed in the force- 

deflection curve at an applied deflection of -2mm is caused by extensive cracking in the 

matrix core. The predicted evolution of damage is in agreement with the experimental 

observations 

For the two-dimensionally reinforced T sub-structure, the damage initiation 

sequence and locations are predicted to be the same as the one-dimensional 

reinforcement. Shear delamination adjacent to the matrix core develops parallel to the 

curvature of the matrix core. However, unlike the one-dimensionally reinforced sub- 

structure, the core does not crack and shear and tensile delamination initiates in the 

region surrounding the core ligament, at an approximately constant applied load. The 

damage evolution described by the computational analysis agrees well with the 

experimental observations for two-dimensionally reinforced T sub-structures described 

in Sect 5.4.2. 

To summarise, the results demonstrate four important capabilities of the model: 
1. The model is able to represent the response of the T sub-structures before damage; 

the error in the stiffness being less than 5%. 

2. The model is able to predict the applied load and location at which matrix cracking 

starts. The load at which the sub-structure's response became non-linear agrees with 

the experimental data. 

3. The model can model the damage behaviour of the T sub-structure. The results 

show that both matrix cracking and delamination can reduce the stiffness of the sub- 

structures. However, the significant loss in stiffness is largely due to delamination 

while matrix cracking plays a less significant role. 

4. The model is able to model complex damage evolution of the T sub-structure. 

8.4 Discussion 

8.4.1 The Computational Model 

The results of the misaligned brittle matrix composites and sub-structures have 

demonstrated four important abilities of the computational model. Firstly, the model can 

model the behaviour of the composite before damage. The Young's modulus of the 

offaxis one and two-dimensionally reinforced composites and the stiffness of a wide 
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Secondly, the model is able to model the initiation of matrix cracking, shear 
delamination and tensile delamination, and the orientation of the crack or delamination 

plane. This confirms the advantages of using intersecting failure criteria developed at a 

constituent level compared to failure criteria applied at a composite level, i. e. Tsai-Hill 

theory or maximum stress theory. In the current work the matrix crack plane is allowed 
to form normal to the maximum principal stress direction of the matrix and not 

orthogonal to the fibre axis. In addition, the delamination plane during shear or tensile 

delamination is allowed to develop parallel to the fibres. 

Thirdly, the computational model is able to predict delamination failure. The 

tensile stress-strain response of the misaligned one-dimensional composites begins to 

unload when more than half the composite cross-sectional area parallel to the fibres 

undergoes tensile delamination. In the case of shear delamination, softening initiates 

when the entire cross-sectional area of the composite suffers shear delamination. 

Arguably, the computational model can predict composite failure when the fibres 

break. However, this is limited to tension applied parallel to the fibre axis. A difficulty 

associated with predicting failure of misaligned fibres arises from the stress 

concentration introduced in the fibres at the matrix crack plane as shown in Fig 8.4.1-1. 

When the matrix cracks, the fibres in the crack plane align with the maximum tensile 

stress direction of the composite. Consequently, the fibres experience localised bending, 

which results in stress concentration in the fibres, and the premature failure of a 

misaligned composite as indicated in Figs 8.3.2.2-2 to 6. In addition, the localised bends 

in the fibres may affect slip at the fibre-matrix interface hence the overall stress-strain 

behaviour of the composite. This may explain why the predicted damage response of 

the misaligned two-dimensional composites in tension showed problems agreeing with 

the experimentally measured responses at fibre alignments of a= 10° and 45°. 

Fourthly, the computational model is able to model damage evolution and the 

mechanical behaviour of damaged composites. The predicted force-deflection curve of 

the sub-structures shows agreement with experiment data. In addition, the predicted 

matrix crack zone and delamination plane agrees with experimental observations. 

Significantly, the ability to model damage evolution and behaviour has been 

demonstrated in situations where damage interaction is present. This is possible because 

the non-interacting damage criteria used are uniquely applied to the integration points. 
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single composite element can exhibit multiple damage mechanisms hence model 
damage interaction. 

Arguably, the presence of damage interaction suggests the use of interactive 

damage criteria, e. g. Tsai (1966) and Hoffman (1967). However, these criteria are 
developed at a composite level and lack a physical base. This is due to their curve- 
fitting nature. In comparison, the current approach to using non-interactive damage 

criteria at a constituent level captures the influence of stress-redistribution, which is the 

mechanism controlling damage interaction. In this respect, the current approach is 

considered superior to using interactive damage criteria. 

Stress redistribution in the matrix is treated to be damage-elastic while the fibre is 

non-linear elastic. These simple assumptions are used to provide the simplest damage 

formulation for modelling stress redistribution during unloading and reloading. 
However, cyclic experiments by Aveston, Copper & Kelly (1971) and McCafferty 

(1994) have shown that inelasticity and hysteresis are present, which depend on the 

extent of debonding and frictional sliding at the fibre-matrix interface. It is possible that 

neglecting these interfacial effects contributed to the mildly higher load predicted for 

the T-shaped sub-structures. 

Alternatively, the mild overestimate may be caused by the mesh and mechanical 

properties of the T-shaped substructures. It is assumed that the substructures are 

symmetric and contain homogeneously positioned fibres. Cox et al (1994) have argued 

that heterogeneous positioning of the fibres can influence the average moduli and 

strength. In the substructure specimens, some non-symmetric features in the fillets and 
heterogeneous fibre positioning are observed. As such, these experimental factors could 

have caused the experimental load to be mildly lower than the computational 

predictions. 

Finally, the computational model is motivated towards solving problems with 

proportional loading. The first step in developing any model must be to deal with the 

physis of proportional loading before addressing non-proportional loading. Experiments 

have shown that some damage interaction exists. To determine the mechanics of 

damage interaction, non-proportional loading tests may be explored as a means to 

advance the computational model. The data obtained could be used to establish and 

verify a mechanistic law governing stress-redistribution. 
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8.4.2 The Sub-Structures 

First, the predicted force-deflection response confirmed that the non-linearity in 

the force-deflection behaviour was caused by damage developed in the sub-structures. 
Matrix cracking was shown to be the damage mechanism causing the rectangular and 

wedge sub-structures to fail, while shear delamination caused the failure of T sub- 

structure. 

Secondly, the sub-structures with two-dimensional reinforcement are more prone 
to matrix cracking, shear, or tensile delamination, compared with the one-dimensionally 

reinforced case. This is caused by the weak interfaces of the transverse fibres. 

Finally, a matrix core in the fillet of the T sub-structure can delay delamination 

initiation and provide higher load bearing capability. McCafferty (1994) analysed the T 

sub-structure with two-dimensional reinforcement and observed that tensile 

delamination initiate in the fillet as shown in Fig 8.4.2-1. The T sub-structure used 
however did not contain a matrix core. In the current analyses where a matrix core is 

present in the fillet, matrix cracking was shown to initiate before delamination. Since 

the stress for matrix cracking is higher than the delamination stress, a greater load is 

borne by the T sub-structure with a matrix core before failure. 

8.5 Conclusions 

Computational analyses of composites and substructures using the simple 

computational model developed in Chapter 7 were performed. In comparison to 

experimental data, the computational model has demonstrated the ability to model 
damage initiation, orientation, development, interaction and mechanical behaviour. In 

addition, the computational model is able to identify the damage mechanism and 
location of the final failure in the composite substructures. To improve the 

computational model, factors such as frictional sliding at the fibre-matrix interface, fibre 

bending at matrix cracks and non-proportional loading could be explored. However, the 

existing computational model shows promise for the analysis of engineering 

components and structures. 
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Fig 8.3.1.1-1 The meshes and boundary conditions of the rectangular polyester 

composite bar during three-point bending: (a) 4x10, (b) 8x20, (c) 12x30 
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(a) 

(b) 

(c) 

(d) 

Fig 8.3.1.2-1 The deformed meshes of the one-dimensional polyester composite bar 

at the applied deflection of 2.62mm with (a) 4x10, (b) 8x20, (c) 12x30 
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Fig 8.3.1.2-2 The matrix cracking zone of one-dimensional polyester composite bar 

at an applied deflection of 2.62mm with mesh refinements (a) 4x10, (b) 
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Fig 8.3.1.2-3 The predicted force-deflection response of the one-dimensional 

polyester composite bar at different levels of mesh refinement. 
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Fig 8.3.1.2-5 The (a) numerical and experimental force-deflection responses and (b) 
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Fig 8.3.1.2-6 Vector plot of the maximum principal strain directions of the one- 
dimensional composite bar. 
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Fig 8.3.2.1-1 The mesh of the wedge-shaped polyester composite bar with (a) one- 

dimensional and (b) two-dimensional reinforcement, and the boundary 

conditions modelling three-point bending. 
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Fig 8.3.2.1-2 The fibre alignments of the wedge-shaped test specimens in Chapter 5. 
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Fig 8.3.2.1-4 Plots of the tensile and shear delamination strength of the one and two- 

dimensional polyester composite as a function of the fibre area fraction. 
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Section Fibre Volume 
Fraction 

Shear Delamination 
Stress (MPa) 

Tensile Delamination 
Stress (MPa) 

a 0.0528 28.5 35.1 

b 0.0545 28.1 34.5 

c 0.0623 26.2 32.1 

d 0.0728 23.8 29.2 

e 0.0876 20.7 25.5 

f 0.1098 17.2 20.8 

g 0.1172 15.9 19.7 

Fig 8.3.2.1-5 The fibre volume fraction and the tensile and shear delamination 

strength used to model the different sections of the one-dimensionally 

reinforced wedge-shaped sub-structure. 

One-Dimensional Reinforcement 
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Two-Dimensional Reinforcement 

Section Fibre Volume 
Fraction 

Shear Delamination 
Stress (MPa) 

Tensile Delamination 
Stress (MPa) 

a 0.121 21.2 32.3 

b 0.125 25.7 31.6 

c 0.146 23.4 28.7 

d 0.175 20.2 24.5 

e 0.218 15.8 20.3 

f 0.249 13.2 16.2 

g 0.291 10.7 13.1 

h 0.317 9.5 11.6 

Fig 8.3.2.1-6 The fibre volume fraction and the tensile and shear delamination 

strength used to model the different sections of the two-dimensionally 

reinforced wedge-shaped sub-structure. 

abI r4 
f 9f h 

Hý ý 



Chapter 8: Computational Analysis 
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(b) 

309 

Fig 8.3.2.2-1 The deformed mesh of the wedge-shaped polyester composite bar with 

(a) one-dimensional and (b) two-dimensional reinforcement. 
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Fig 8.3.2.2-3 The (a) numerical force-deflection responses and (b) the predicted 
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(a) 

(b) 

Fig 8.3.2.2-4 Vector plot of the maximum principal strain direction of the one and 

2 
DISPLACEMENT MAGNIFICATION FACTOR = 1.30 
RESTART FILE = udtk5c del STEP 1 INCREMENT 180 
TIME COMPLETED IN THIS STEP 0.360 TOTAL ACCUMULATED TIME 0.360 

2 
DISPLACEMENT MAGNIFICATION FACTOR = 1.56 

1 RESTART FILE = wtkla_2del75 STEP 1 INCREMENT 180 

TIME COMPLETED IN THIS STEP 0.360 TOTAL ACCUMULATED TIME 0.360 



Chapter 8: Computational Analysis 313 

ý., ý' 
... a,.. 

ýý.. 
LJ, '". ýq t -. , ý. .. ý; ý.. ý 

ý. 
ý;; 

z-ý 

Fig 8.3.2.2-5 Micrograph of the matrix cracks and delamination in the wedge-shaped 

SiC/SiC sub-structure tested by McCafferty (1994). 
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(a) composite and (b) fibre position system. 
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Fig 8.3.2.2-7 Contour plot of the stress normal to the fibre alignment during three- 

point bending of the two-dimensional reinforced wedge-shaped 

polyester composite bar. 
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Fig 8.3.3.1-1 The half-sectioned mesh of the T-shaped bars with one and two- 

dimensional reinforcement. 
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Figs 8.3.3.2-4 Contour plot of the matrix maximum principal stress after matrix 
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Fig 8.4.2-1 Micrograph of the tensile delaminated polyester/polyester T sub- 

structure three-point bent by McCafferty (1994). 



CHAPTER 9 

Modelling Imperfect Interfaces 

9.1 Introduction 

The development of composites has introduced structural integrity problems 

which depends on the properties of the interface between the phases. The hypothesis is 

that interfaces may posses a range of properties between perfectly bonded and 

completely unbonded. Intermediate states maybe formalised by considering an interface 

with a periodic array of cracks. As the area fraction of cracks changes from zero to one, 

the behaviour of the interface changes from being perfectly bonded to being de-cohered. 

The formality of representing an imperfect interface as one containing a periodic array 

of interfacial cracks can be rationalised in two ways. Firstly, it is reasonable to regard 

this as a physical model of an interface, which is strongly bonded in some sites and 

weakly bonded in others. Alternatively, at a larger size scale, it is possible to smear the 

specific cracks into a continuum description of an interface, which can have a range of 

strengths. With this hypothesis, the work initially examines the properties of interface 

containing an infinite periodic arrays of cracks, as a preface to modelling interface 

properties due to imperfection as a continuum. 

The line-spring concept first developed by (Rice & Levy, 1972) will be extended 

to model the properties of imperfect interfaces at a continuum level. Line springs are a 

computationally efficient tool for modelling complicated three-dimensional fracture 

mechanics problems. The technique allows a three dimensional surface crack to be 

represented by one-dimensional line-springs with traction-displacement relations 

corresponding to the stiffness contribution of the crack. Comparison with the full three 

dimensional solutions such as Raju & Newman (1979) shows the stress intensity factor 

KI obtained by line-springs to be within 3.5% of the full three-dimensional solution over 

the range of maximum relative crack depths to plate thickness of 0.2 to 0.6. The study 

demonstrates that the line-springs is an effective compromise between cost and a full 

three-dimension description of crack problems. In developing line-springs for modelling 
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provide data on interfacial stress concentrations, stress intensity factors K7, and strain 

energy release rates qof elastic interface cracks. Secondly, its application to composites 
is intended to provide a quantitative description of losses in stiffness due to imperfectly 

bonded interfaces. 

9.2 An Imperfect Interface Model 

9.2.1 The Model 

The analysis is based on the hypothesis that interfacial imperfection can be 

represented as an infinite periodic array of co-linear cracks located on the interface 

between a matrix and a substrate as shown in Fig. 9.2.1-1. For simplicity, the substrate 
is assumed to be rigid while the matrix is deformable. The length of the cracks is 

denoted by a and the separation of the crack tips is W-a, where W is the width of a 

representative unit cell of an infinite interface (shaded). The area fraction of the cracked 
interface, fl, (which is a measure of interface damage) is defined as the ratio of the 

crack length a to the cell width W. 

9.2.2 Mesh Design and Boundary Conditions 

Finite element meshes of the representative unit cell with crack area fractions f3 = 
0.25,0.50,0.75 and 0.90 are presented in Fig 9.2.2-1. The unit cell comprised 500 to 

1200 second-order isoparametric plane strain solid quadrilateral elements while the rigid 

substrate was modelled by fully restraining the interface nodes. The interfacial length of 

the matrix cell is denoted L and its width W. The aspect ratio W/L of all the meshes was 
1/3. The smallest elements at the crack tip were approximately 3x10-4 W. 

The meshes were subjected to a series of load cases representing tension, shear, 

and mixed-mode loading by displacing the nodes at the top of the meshes at angles 0= 

0°, 30°, 45°, 60°, 80° & 90° to the global 2 axis. Periodic boundary conditions were 

imposed by enforcing identical but undefined displacements on the transverse sides of 

the matrix cell. The matrix is treated as elastic with Young's modulus E set at 3. OE11 

and Poisson's ratios set at v=0.49. 
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9.2.3 Numerical Results 

The elastically deformed unit cells for ß=0.25,0.50,0.75 and 0.90 during mode I 

and II displacement loading are given in Fig 9.2.3-1 for v=0.49. The deformed meshes 
demonstrate that the imperfect unit cells dilated by void growth under mode I and 

mixed-mode loadings, while no dilation occurred in pure mode II loading. The total 

reaction force and stiffness of the unit cells when subjected to a pure mode I and pure 

mode II displacement of 200 units are given in Table 9.2.3-1. To normalise the 

numerically determined stiffnesses, the stiffness of the matrix for a perfectly bonded 

interface was used. In mode I, the normalising stiffness was obtained by multiplying the 

matrix bulk modulus B= E/3(l - 2v) with the aspect ratio of the unit cells (W/L). In 

mode II, the normalising stiffness was obtained by multiplying the matrix shear 

modulus G= E/2(1 - v) with WIL. The normalised stiffnesses are plotted in Fig 9.2.3-2 

as a function of crack area fraction 8. The figure shows that the normalised mode I 

stiffness of the interface decreases as f3 increases while the normalised mode II stiffness 

is unaffected by fi, accept when ß approaches 1. The the normalised mode I stiffness of 

the interface as a function of ,ß can be approximated as: 

k'' 
= -8.3865ß5 +l7.433ß4 -10.642/33 +l. 0644ß2 -D. 4683ß +1 (9.2.3-1) 

where k0I is the mode I stiffness of the perfect interface. 

Cracks Model Modelt 
Area 

Fraction 6 
Reaction 

Force 
Stiffness *Normalised 

Stiffness 
Reaction 

Force 
Stiffness +Normalised 

Stiffness 

0 342 x 1012 1.71 x 1012 1.03 6.70 x 1012 33.6 x 109 1.00 

0.25 281 x 1012 1.41 x 1012 0.84 6.68 x 1012 33.4 x 109 1.00 

0.50 176 x 1012 0.882 x 1012 0.53 6.76 x 1012 33.8 x 109 1.01 

0.75 94.5 x 101' 0.472 x 1012 0.28 6.54 x 1012 32.7 x 109 0.98 

0.90 56.0 x 1012 0.280 x 1012 0.17 6.10 x 1012 30.5 x 109 0.91 

1.0 0 0 0 0 0 0 

fi 1 he normalising mode I strictness k,, 1 = 1.67 x lU". 
+ The normalising mode II stiffness k�, I = 33.6x 109. 

Table 9.2.3-1 The mode I and mode II reaction forces and stiffnesses of the unit cell 
models for an applied displacement of 200 units. 
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A,. _ 
; T2 ab (9.2.3-2) 

in which a and b denote the crack surface distances on the principal axes of the void as 

shown in Fig 9.2.3-3. In Table 9.2.3-2, the void area as a function of crack area fraction 

during mode I loading is given. 

Cracks Area Unit Cell Model Interface Model Error 
Fraction ß u b A. (unit') uno A� (unit) °o 

0.25 125 182 35.7 x 103 32.6 32.6 x 103 -10.09 
0.50 250 247.3 97.1 x 103 95.5 95.5 x 103 -1.43 
0.75 375 244.2 143.8 x 103 144.4 144.4 x 103 +0.32 

0.90 450 229.3 162.1 x 103 167.2 167 x 103 +3.16 

Table 9.2.3-2 The void area of the unit cell model and the interface model for mode I 
loading of an applied displacement of 200 units 

9.3 The Interfacial Element 

The one-dimensional spring-like element (JOINT2D) implemented in 

ABAQUS/Standard (HKS, 1998a) was used to develop the interface element. To 

validate its use, it is necessary to benchmark the interfacial element stiffness as a 
function of the crack area fraction. A simplified interface model of the unit cell models 

of Sect. 9.2.1 was developed for benchmarking and is shown in Fig. 9.3-1. The 

undamaged matrix was represented using a first-order plane-strain continuum element 

with a aspect ratio (W/L) of 1/3, while the damage interface was represented using two 

zero length interfacial elements pinned to a rigid surface. The mechanical properties and 
boundary conditions are defined in Sect. 9.2. The local 1&2 position system of the 

interfacial element and the global 1-2 position system of the model are also shown in 

Fig 9.3-1. 

The interfacial element is conceptually similar to the elastic line-spring 

introduced by Rice & Levy (1972). This requires the introduction of a stiffness as a 

function of the crack area fraction /3. The elastic in-plane force-displacement relations 

of the interfacial element are modelled through the expression: 

fVI=[k,, 0] Tu''1 (9; 1) 
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Here, V denotes the axial load in the local 1 direction and H denotes the normal load in 

the local 1 -2 plane. The symbols kl y and k22 , denote the corresponding axial and 
transverse stiffnesses of the interfacial element while symbols ulý(i) and u2, (i) denotes the 
displacement components of the interface element in the local position system. 

The total displacement uTotal of the interface model shown in Fig. 9.3-1 is given 

as 

UTolal - U(, ) + u(m) (9.3.2) 
in which u(m) denotes the remote displacement of the matrix for a perfectly bonded 

interface. The remote displacement components of the matrix are determined by 

considering a simple homogeneous state of stress in the matrix cell, i. e.: 

-"(1n) = 
F'ý 

xL (9.3.3) ur(I�) = 
FI 

xL BWGW 
in which F1, and F2, are the remote loads in the local 1'& 2' position system. 

To benchmark the elastic interfacial elements, the simplified interface model 

shown in Fig 9.3-1 was subjected to a remote pure mode I and pure mode II 

displacement of 200units. The deformed meshes are shown in Fig 9.3-2. The stiffnesses 

of the interface element used in the benchmark are given in Table 9.3-1. The stiffnesses 

were determined using eqns (9.3.1 to 3). The predicted reaction forces and stiffnesses of 

the simplified interface model are given in Table 9.3-2. The corresponding normalised 

stiffnesses of the imperfect interface model are compared with the unit cell models in 

Fig. 9.3-3. In addition, a comparison of the void area predicted by the interface model 

and unit cell model is given in Table 9.2.3-2. The results show good agreement between 

the estimates from the interface model and the unit cell model, which establishes the 

interfacial element as an acceptable representation of the imperfect interface under 

elastic deformation. 

Cracks Area Fraction 13 4"1 <<ý kz, 2, (, ) 
0 1x 1020 1x 102° 

0.25 4.47x 1012 3.57x 1012 

0.50 0.932x 1012 2.17x 1012 

0.75 0.330 x 1012 0.640 x 1012 

0.90 0.168x 1012 0.167x 1012 

1.0 1x 10-20 1x 10-20 
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Cracks Mode I Mode 11 
Area 

Fraction (ß 
Reaction 

Force 
Stiffness Normalised 

Stiffness 
Reaction 

Force 
Stiffness Normalised 

Stiffness 

0 342 x 1012 1.71 x 1012 1.03 6.71 x 1012 3.36x1010 1.00 

0.25 287 x 10'' 1.44 x 10'2 0.86 6.68 x 10'' 3.34 x 1010 1.00 

0.50 179 x 1012 0.894 x 1012 0.54 6.66 x 1012 3.33 x 101s 0.99 

0.75 95.2 x 1012 0.476 x 1012 0.29 6.54 x 1012 3.27 x 1010 0.97 

0.90 56.2 x 1012 0.281 x 1012 0.17 6.10 x 1012 3.05 x 10'0 0.91 

1.0 0 0 0 0 0 0 
111c 11u1111au)1u5 111vue 1 Nulllless Rol = 1.0/ XIU 

+ The normalising mode II stiffness k,, I, = 33.6x 109. 

Table 9.3-2 The mode I and mode II reaction forces and stiffnesses of the interface 
model for an applied displacement of 200 units. 

9.4 The Fibre Problem 

9.4.1 General 

In fibre-reinforced composites, the mechanical properties of the composite normal 

to the fibre axis depend on the integrity of the fibre-matrix interface. The interfacial 

element developed in Sect. 93 has the potential to quantify the degradation in 

mechanical properties and its use is explored in this section. 

A unit cell model of the composite is schematically shown in Fig. 9.4.1-1. The 

model approximates the infinite medium solution for an embedded inclusion developed 

by Goodier (1933). The fibre can be modelled as a rigid cylindrical inclusion embedded 
in a deformable matrix that is infinite and the imperfect interface can be represented by 

an array of periodic cracks. The figure shows the cylindrical position system used 

following Goodier (1933). The cylindrical co-ordinates (r, co) are located at the centre of 

the fibre and the direction of the remotely applied tensile stress 6, under plane strain 

condition is at co = 0. 

9.4.2 Stress Concentration Fields 

9.4.2.1 Perfect Interface 
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Fig. 9.4.1-1). Subject to a remotely applied uniaxial tensile stress o-ý at co = 0, the stress 
field in the matrix is given by: 

a r, = 2G -A+ 2 
3B -2 

C 
cos 2w 

) 1+(1os2w) 
Y 

4 
r 

2 
r 2 

6u, u, = 2G 
A- 

3 
B) 

cos 2w + 
6' (1 

- cos 2ro) (9.4.2.1.1) 
Y2 r 2 

6, ý = 2G 
1- 

3B +2C 
) 

sin 2w - 
a-ý (sin 2w) 

Y4 Y2 J2 

where v denote Poisson's ratio and G is the elastic shear modulus. The constants A, B, C 

are defined as: 

A=- 
R2 (1-2v) 

B=- 6ý R4 
(9.4.2.1.2) 

4G (3 
- 4v) 

C=- 7R, (3 
- 4v) 

in which R is the radius of the rigid inclusion. On the interface (r = R), the maximum 

radial and hoop stresses occur in the direction of the applied stress where Co = 0. For 

incompressible deformation, i. e. v=0.5, the maximum radial and hoop stresses at Co =0 

reduce to: 

u, = O"ww = 1.56 (9.4.2.1.3) 

The maximum shear stress at the interface is equal magnitude to the applied stress at co 

= ±45°. 

9.4.2.2 Imperfect Interface 

A finite element mesh of a symmetric half of the rigid inclusion problem is 

illustrated in Fig. 9.4.2.2-1. The ratio of the fibre radius R to the dimension of the matrix 

cell is 0.028 and the unit fibre volume fraction is 0.641E-3. The matrix consists of 

approximately 4100 first-order plane-strain continuum elements and the interface 64 

interfacial elements. 

For remote uniaxial tension, the deformed mesh for v=0.49 with a perfect 

interface is shown in Fig 9.4.2.2-2. The corresponding finite element solution of the 
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stress concentrations agree well with Goodier's solution. The corresponding stress 

concentrations for different crack area fraction ß undergoing near incompressible 

deformation (v = 0.49) are presented in Fig. 9.4.2.2-3 to Fig. 9.4.2.2-4. As the level of 
imperfection ß increased from zero to 1.00, only small changes in stress concentrations 

are observed for all the stress components. In addition, the maximum hoop stress 

concentration is shown to be interpolated from co = 0° to 90°. 

9.4.3 The Interface Stress Intensity Factors K& Strain Energy Release Rates S 

To determine the stress intensity factors K and the strain energy release rates X99' 
associated with cracks on the interface of a rigid cylindrical fibre, the fracture modes of 
interfacial cracks under periodic conditions (see Sect 9.2) are examined. This can be 

achieved by considering the displacements between the free and rigid surfaces near the 

crack tip. The plots of the displacement ratios ux/uy as a function of the normalised 
distance from the crack tip x and crack length a are presented in Fig. 9.4.3-1. The sign 

conventions following Westergaard are shown in Fig. 9.4.3-2, in which x and y are the 

local right hand Cartesian system, r is the radial distance from the crack tip and the 

symbol B denotes a positive anticlockwise angle from the local x-axis. The interfacial 

crack is shown to be mixed-mode when remotely tensioned or sheared. 

For mixed-mode fracture, the displacement ratios uX/uy can define the crack tip 

stress intensity factor ratios KII/KI, which define the mixity of the crack tip singularity 

through Westergaard's equation of the crack tip displacement fields for mode I: 

r 0[ 
U. = 

2G 

ý 
cos -J x -1 +2 sin' 

(ý )(9.4.3.1) 
r 0)[ 

uy= 2G ý 
sin(- x+ 1- 2 cos' 

(2 

and for mode II: 

ux =KI, 
ý2; 

r 
sin(+1+2 

(0) 

(9.4.3.2) 

uý 
2G 2ý 

cos 21K -1- 2 sin' 
B 

CJ 
ýJ 

where for plane strain x=3- 4v and for plane stress x= (3 - v) / (1 + v). By 

substituting 0= 180° into (9.4.3-1) and (9.4.3-2), 
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ui 
_ 

Klr 

u, K, 
(9.4.3.3) 

The ratio KI/KII is plotted in Fig. 9.4.3-3 as a function of the crack area fraction /3. 
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Rice (1968) defined the energy release rates of linear elastic cracks through a 

path-independent contour integral J which is identical to the strain energy release rate, cý' 
introduced by Irwin (1956 & 1957). For cracks under mixed mode I& II loading, the 

strain energy release rate expressed in terms of stress intensity factors are related to J 

and ý by: 

KT' Kir 

EE 
(9.4.3.4) 

Here E' =E in plane stress and E' = E/(1 - v2) in plane strain. The c values of the 

interfacial cracks were determined using the domain integral method of Shih, Li & 

Needleman (1986) which is implemented in ABAOUS and are presented in Table 3.42- 

1 and Table 3.4.2-2 as a function of a. Substituting (9.4.3.3) into (9.4.3.4) establishes 

the corresponding KI & KI, components. These are normalised by: 

K0(t)=o J or K,, (s)=z Ica (9.4.3.5) 

The former is the stress intensity factor due to the remotely applied tensile stress 6 

(mode I loading) while the latter is caused by the remote applied shear stress z (mode II 

loading). The normalised stress intensity factors are plotted in Fig. 9.4.3-4 and Fig. 

9.4.3-5. 

The stress intensity factors for interfacial cracks are given as: 

K' 
_ Ica 

K/,, 
(t) 

K/ 

0 
(s) l6 (9.4.3.6) 

K� Kra 
K, (t) 

Krr 
K,, (S) 

where o-, and z, are the local interfacial stress components. These interfacial K, values 

are normalised by Ko(t) and are plotted in Fig. 9.4.3-6 for the different applied strain. 
Substituting eqn (9.4.3.6) for eqn (9.4.3.4), the energy release rate along the imperfect 

fibre-matrix interface is determined. These are normalised by Kö / E' and are 

presented in Fig. 9.4.3-7. 
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9.5 A Finite Fibre Problem 

9.5.1 General 

In this section, the analysis of a finite fibre embedded in an elastic matrix is 

considered. The fibre is treated as either rigid or elastic, with a fibre volume fraction of 
0.185 matching the experimental material described in Chapter 4. Also, the bonding at 

the fibre-matrix interface is allowed to degrade by introducing interfacial imperfections. 

9.5.2 Mesh & Model Descriptions 

The finite element mesh of the rigid and elastic fibre problem is shown in Figs 

9.5.2-1 and 2. The rigid fibre was modelled by restraining the interface nodes while the 

elastic fibre was modelled using 268 second-order plane strain quadrilateral elements. 
The elastic matrix was modelled using 1024 second-order plane strain quadrilateral 

elements and 65 interface elements were used to represent the fibre-matrix interface. 

The properties of the fibre were identical to be the matrix which are described in Sect 

9.2.2. To model the degradation of the fibre-matrix interface, the stiffnesses of the 

interface element for the crack area fractions /3 = 0,0.25,0.50,0.75,0.90 and 1.00 were 

used. To introduce periodic boundary condition, the sides of the meshes were restrained 

to have identical translation. A uniaxial stretch was applied by displacing the top nodes 

of the matrix by 200 units. 

9.5.3 Stress Concentration Fields 

The deformed meshes of the rigid fibre problem are shown in Fig 9.5.3-1, and the 

stress concentrations in the matrix adjacent to the interface and at the interface are 

plotted as a function of the angular co-ordinate co in Figs 9.5.3-2 & 3. The predicted 

stress concentrations for a perfect interface agrees with Goodier's solution (see 

(9.4.2.1.1)). The maximum stress concentrations are insensitive to interfacial 

imperfections until the crack area fraction 8 is greater than 0.9. For bonded fibre-matrix 

interfaces, the maximum stress concentration in the matrix adjacent to the interface and 

at interface occurs at co = 0°. However, when the interfaces becomes unbonded, the 

maximum stress concentration in the matrix was interpolated to w= ±70.3°. This 
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unbonded matrix, the maximum stress concentration was approximately twice the 
bonded matrix. 

The deformed mesh of the elastic fibre problem is shown in Fig 9.5.3-4. The 

stress concentrations of the matrix and the interface are plotted as a function of the 

angular co-ordinate co in Figs 9.5.3-5 and 6. Like the rigid fibre problem, the stresses at 

the fibre-matrix interface are insensitive to imperfections unitil the crack area fraction 
,6 

approaches 1. No stress concentrations exist at the fibre-matrix interface when the 

interface is bonded as a homogeneous stress and strain field is recovered. However 

when the interface becomes unbonded, the matrix adjacent to the interface has a hoop 

stress concentration of 2.84 in the angular range +76° to +90° and -76° to -90°. The 

stress state in the deformable fibre and deformable matrix with bonded and unbonded 
interfaces is contour plotted in Fig 9.5.3-7. 

9.5.4 Stiffness 

The stiffnesses of the unit cell model for the rigid fibre and elastic fibre problem 

are presented in Table 9.5.4-1 and 2 with respect to interfacial damage f3. For plane 

strain condition, the composite stiffness EE is defined as: 

E,, =6 
(1-v2) (9.5.4-1) 

in which 6 and e are the remote stress and strain and v is the Poisson's ratio of the 

matrix. The stiffnesses for the rigid fibre and elastic fibre problem are normalised by the 

stiffness E, at /3 = 0, the Young's modulus of the matrix (Em = 3.00E11), and V,, E,, (1 - 

v2) and are plotted in Figs 9.5.4-1 and 2 as a function of the interfacial damage ß. 

For both the rigid and elastic fibre problem, the stiffness of the composite is 

significantly reduced when the interfacial damage approached 1. For the rigid fibre 

problem, the composite stiffness with unbonded fibres is 0.4 times the bonded fibres. 

When no modulus mismatch is present, the stiffness of the composite with unbonded 

fibres is 0.64 times the bonded fibres. In both problems, interpenetration of the fibre and 

matrix surfaces is shown to have little effect on the composite stiffness. 
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Crack Area 
Fraction 6 a E, E. E, / E,,, E, 

0 3.616 x 1010 4.809 x 10" 1.00 1.60 2.59 

0.25 3.609 x 1010 4.800 x l0i' 1.00 1.60 2.58 

0.50 3.593 x 1010 4.778 x 10" 0.99 1.59 2.57 

0.75 3.551 x 1010 4.722 x 10" 0.98 1.57 2.54 

0.90 3.465 x 1010 4.607 x 10" 0.96 1.54 2.48 

1.00 1.427 x 1010 1.898 x 10" 0.39 0.63 1.02 

* 1.00 1.449 x 1010 1.943 x 10" 0.40 0.65 1.05 

nluIcaLe mnai imerpenetrauon at the nnre-matrix interlace noes not exist 

Table 9.5.4-1 Stiffness of a composite reinforced with rigid cylindrical fibres, 
determined as a function of interfacial imperfection. 

Crack Area 
Fraction 8 6 Fc E, l E, ýß= n Ei I E. E, l 1/, E, il 

0 2.256 x 1010 3.000 x 10 1.00 1.00 1.61 

0.25 2.255 x 1010 2.999 x 10' 1 1.00 1.00 1.61 

0.50 2.252 x 1010 2.995 x 101, 1.00 1.00 1.61 

0.75 2.245 x 10'0 2.986 x 10" 1.00 1.00 1.61 

0.90 2.233 x 1010 2.969 x 10" 0.99 0.99 1.60 

1.00 1.427 x 1010 1.898 x 10" 0.63 0.63 1.02 

* 1.00 1.449 x 1010 1.927 x 10' 1 0.64 0.64 1.04 

-- inuicate mat interpenetration at the nnre-matrix mtertace Goes not exist 

Table 9.5.4-2 Stiffness of a composite reinforced with deformable cylindrical fibres, 
determined as a function of interfacial imperfection. 

For composites with weakly bonded fibre-matrix interfaces, the numerical results 

show that the composite stiffness in plane strain conditions depends solely on the 

matrix, i. e.: 

Eý, = V,,, E,,, (1- 
v 2) (9.5.4-2) 

For very stiff fibre composites the error from eqn (9.5.4-2) is of the order of 5%, and for 

a composite with no modulus mismatch the error is of the order of 4%. The stiffness 

predicted by eqn (9.5.4-2) is less than the upper bound stiffness estimated by Voigt. 

This can be shown by following the minimum potential energy theorem analysis given 

in eqns (3.2.4 to 10) for plane strain conditions and using the boundary conditions: 
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i. e. 
E,. (1- vj < 

VE(1- v,,, ) 
(1+v, Xl-2v, ) (1+vX1-2v,,, ) (9.5.4-4) 

Assuming that the Poisson's ratio of the composite vv is identical with the Poisson's 

ratio of matrix v, the composite stiffness E, satisfying both equilibrium and 

compatibility conditions must be greater than Voigt's estimate, is: 

E, < (E, 
(vo; g, ) = E», V) (9.5.4-5) 

Comparing eqn (9.5.4-2) with the Voigt's estimate in eqn (9.5.4-5), the inequality 

defined in eqn (9.5.4-4) is satisfied. This implies that the stiffness given in eqn (9.5.4-2) 

is admissible for plane strain condition. For plane stress condition, the transverse 

stiffness given in eqn (9.5.4-2) simply reduces to: 

E,, = V,,, E,,, (9.5.4-6) 

For the polyester composite described in Chapter 4, the average transverse 

modulus measured was 3.45GPa, and the transverse modulus predicted for plane strain 

and plane stress conditions is 3.19GPa and 3.50GPa. Given that errors are only -7.5% 
and +1.58%, eqns (9.5.4-2 and 5) are verified for a unidirectional fibre composite 
having no modulus mismatch. The results also validate the computational model 
developed in Chapter 7 for the transverse deformation of a uni-directional fibre 

reinforced composite. 

9.6 Conclusion 

The use of interfacial elements have shown to be cost effective way to modelling 

the interfacial response due to periodic imperfections at the interface of an elastic 

cylindrical fibre and a elastic matrix. The interface element is able to derive the stress 

concentrations, mixed-mode stress intensity fields and the crack energy release rate of 

periodically cracked interfaces. For composites with very weakly bonded fibre-matrix 

interface, the composite stiffness normal to the fibre direction in plane strain and plane 

stress condition can be approximated as EmV�, (l-v) and EmV, n, which validates the 

assumption used to developed the computational model developed in Chapter 7. The 

hoop stress concentration developed in the weakly bonded matrix show the possibility 

of pre-mature matrix cracking, which explains the lower matrix cracking stress observed 

in brittle matrix composites with woven fibres as opposed to the higher matrix cracking 
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r-w 
Deformable Matrix 

Unit 
Representative 

L 
Cell 

Co-linear Cracks 

xl 

W -cl a W-a 

Rigid Substrate 

Fig 9.2.1-1 Representation of an imperfect bimaterial interface using an infinite 

periodic array of co-linear cracks. 



M 
M 

O 
a1 

- 

cd 

El 
mo 

O 

- 
O 

. Ü 

0 

Cd 
Q) 
s., 
ccS 

U 
cct 
U 

>C 

E 

Q. % 

fy 

,., 



Chapter 9: Modelling Imperfect Interfaces 340 

ß Mode I Mode II 

0.25 

4-1 
liýiý II III ý; ýý-ý 

0.50 
'l�ý I ii 

0.75 
Ii 

i' 

0.90 
I ý, Jill 4 

Fig 9.2.3-1 The elastically deformed mesh for )6= 0.25,0.50,0.75 and 0.90 with v= 

0.49 during mode I and mode II displacement loading. 
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Fig 9.4.2.2-1 Schematic of the unit cell model of a rigid cylindrical fibre embedded in 

a deformable matrix. 
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CHAPTER 10 

Conclusions 

The thesis describes a micromechanics-based continuum damage mechanics 

approach to model the mechanical behaviour of brittle matrix composites. The aim was 

to develop a computational tool for the design and analysis of engineering components 

made of brittle matrix composites with continuous fibres. 

To develop the damage mechanics model, the micromechanics of the deformation 

and failure of brittle matrix composites were established by mechanical testing 

polyester/polyester composite systems with unidirectional and a balanced 0°-90° woven 

fibre architectures. The polymer system was considered because it exhibits low elastic 

mismatch between the fibres and matrix, and shows similar non-dimensionalised stress- 

strain response to a SiC/SiC composite proposed for the exhaust diffuser unit of the 

Rolls-Royce EJ200 aero-engine. The polymer system was cheap to manufacture and the 

lead-time was shorter than the SiC/SiC composite. Specimens are translucent which 

allowed damage in the composite to be easily observed optically. 

In specimens with aligned and misaligned unidirectional fibres, uniaxial tension 

tests demonstrated that matrix micro-cracking, delamination and fibre failure caused 

anisotropic non-linear deformation and fracture. Matrix micro-cracking did not 

necessarily form normal to the fibre direction as assumed by Hull & Clyne (1996). 

Instead, the micro-crack normal was inclined at an angle to the fibres when the applied 

load was greater than 10° off-axis to the fibre direction. When the angle between the 

applied load and the fibre direction was greater than 30°, delamination developed 

parallel to the fibres. When matrix micro-cracking was in transition to delamination, 

both matrix micro-cracking and delamination were shown to occur simultaneously. 

In test specimen reinforced with woven fibres, off-axis uniaxial tension tests 

revealed that matrix micro-cracking caused the composite to deform non-linearly and 

the composite failed when the fibres failed. The normal to the matrix cracks was shown 
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direction, the crack initiation stress of the matrix was lower than the matrix cracking 

stress of the composite reinforced with unidirectional fibres. The reduction in matrix 

strength implied that the weakly bonded interface of the orthogonal fibres influenced the 

matrix crack initiation stresses. 

To provide experimental data to verify the damage mechanics model, a range of 
idealised structures of the exhaust diffuser unit of the Rolls-Royce EJ200 aero-engine 
have also been manufactured and tested in bending. The sub-structural specimens 
included a simple rectangular bar, a bar with a thickened cross-section, and a T-shaped 

structure. These sub-structures showed the full range of damage mechanisms, which 

often simultaneously occurred in brittle matrix composite engineering structures. 

It is advantageous to model damage at a constituent level as opposed to the 

composite level, since the anisotropic non-linear deformation and fracture of brittle 

matrix composites are caused by damage in the matrix and fibres. The damage 

mechanics approach developed in the thesis modelled the constitutive relation of the 

composite by decomposing the composite compliance into terms attributable to the fibre 

and matrix. This approach is valid over sizes scales large compared to the spacing of the 

fibres and the dimensions of the damage, and has been shown to satisfy both the 

equilibrium and compatibility conditions of a composite through the computational 

study of the distributive fibre representation scheme. The matrix has been allowed to 

sustain damage in the form of matrix micro-cracking, shear delamination and tensile 

delamination, and the matrix compliance has been modelled as transversely-isotropic 

damage-elastic. The fibres were allowed to break in the fibre direction, and were treated 

as weakly bonded to the matrix in which the fibre compliance have been modelled as 

one-dimensionally elastic until failure. The initiation of damage in the matrix and fibre 

failure were modelled using maximum stress theory, in which matrix micro-cracking 

was taken to occur normal to the maximum principal stress direction of the matrix, and 

shear or tensile delamination occurred parallel to the fibres. The model requires the 

evolution of matrix micro-cracking to be modelled using experimental data of the 

damaged stress-strain response of the matrix. Delamination failure was modelled by 

rapidly decaying the matrix stiffness to reduce the load bearing capacity of the 

composite. During compression, the matrix stiffness was identical to the undamaged 

state with the exception that the fibres were assumed not to transmit compressive loads. 
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plane stress and integrated into the ABAQUS/Standard displacement based finite- 

element solver, through a user-defined subroutine. 

Uniaxial tension test specimens containing aligned and misaligned fibres and the 

idealised structures of the diffuser unit of the Rolls Royce EJ200 aero-engine have been 

analysed. The computational and experimental results show that the damage mechanics 

model was able to correctly predict the damage mechanisms, failure processes and non- 
linear deformation of brittle matrix composites. In particular, the damage mechanics 

model was able to model competing and co-existing damage mechanisms, as 
demonstrated by the agreement between the experimental and computational force- 

deflection responses and damage zones of the composite sub-structural components. 
The computational model identified the factors that determined the integrity of the 

idealised structures as follows: 

1. Matrix micro-cracking caused the initial loss in stiffness in the sub-structures. 

2. In the rectangular and wedged-shaped structures, the subsequent loss in stiffness 

was determined by the level of multiple matrix cracking, whereas the T-shaped sub- 

structure stiffness was largely dependent on the extent of shear delamination. 

3. The structures containing woven fibres were more prone to damage compared to the 

structures reinforced with unidirectional fibres. The weak bonding at the fibre- 

matrix interface caused the lower cracking stress. As such, the stiffness of the sub- 

structures with woven fibres during multiple matrix cracking has been shown less 

stiff than the same structure reinforced with unidirectional fibres. 

4. In the T shaped structure, the formation of a core of matrix centrally located in the 

fillet can delay the initiation of delamination and increase the load bearing capability 

to the structure. This is because the shear strength of the matrix was greater than the 

shear strength of the composites, which was weakened by the fibre-matrix interface. 

A reason for the success of the damage mechanics model was that the criteria 

modelling matrix cracking, shear delamination and tensile delamination initiation have a 

physical base. Matrix cracks were allowed to form normal to the maximum principal 

stress direction of the matrix and not orthogonal to the fibre axis, and the orientation of 

shear and tensile delamination were necessarily fixed by the orientation of the fibres. 

The other reason attributing to the success was that the criteria modelling damage were 

imnlemented at a constituent level and not at a composite level. This establishes an 
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advantage over macroscopic failure criteria, which do not provide information on the 

physical nature of damage or failure. 

The success of the damage mechanics model supports the technique used to obtain 

the experimental matrix stress-strain response during multiple matrix cracking. The 

technique is based upon the micromechanics of composites developed by Aveston, 

Cooper & Kelly (1971), which allows the average matrix response to be obtained by 

subtracting the response of the volume fraction of fibres from the composite response. 
An advantage of using the experimental matrix data is that the nature of the atomic 
bonds and the effects of stress concentration, fibre distribution, crack size, crack 
distribution and crack interaction in the matrix were considered. As such, the prediction 

of matrix crack initiation would be better than the predictions given by the energy 
balance theories and stress intensity theories reviewed in Sect 3.4, which do no 

comprehensively consider the factors influencing matrix crack initiation. The other 

advantage is that damage is treated as a fourth order tensor and the evolution of multiple 

matrix cracking modelled through the experimental matrix stress-strain response did not 

violate any thermodynamic laws. 

The effect of imperfect fibre-matrix interfaces on the mechanical properties of 

composites has been studied. Interface elements, which could represent the stiffness of 

imperfect interfaces, were developed to do this. For composites reinforced with 

cylindrical fibres, the stress concentration fields at the fibre-matrix interface were 

shown sensitive to imperfections only when the fibre-matrix interface was imperfect. 

For an imperfect interface, i. e. unbonded fibre-matrix interface, a maximum hoop stress 

concentration factor of 2.84 was reported in the matrix adjacent to the fibre-matrix 

interface at the angular co-ordinate of + 76 ° <_ w <_ + 90 ° and - 76 ° <_ w<- 90 °. These 

stress concentration regions indicated the possibility of pre-mature and also explain the 

lower matrix micro-cracking stress observed in the polyester/polyester composite 

reinforced with woven fibres. Another important finding from the computational study 

was that the presence of interfacial perfection reduced the stiffness. The transverse 

stiffness of composites with weakly bonded interface was approximated to be E" V" in 

plane stress. Significantly, this approximation is similar to the stiffness used in the 

damage mechanics model. As such, a numerical validation for treating the fibre as a 

one-dimensional load bearing component in the damage mechanics model was 
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