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Abstract 

In this work, some developments in the theory of modelling integrated optical devices 

are discussed. The theory of the Beam Propagation Method (BPM) to analyse longitudinal 

optical waveguides is established. The BPM is then formulated and implemented 

numerically to study both two and three-dimensional optical waveguides using several 
Finite-Difference (FD) techniques. For the 2-D analysis, comparisons between the 

performance of the implicit Crank Nicholson (CN), the explicit Real Space (RS) and the 

Explicit Finite-Difference (EFD) are made through systematic tests on slab waveguide 

geometries. For three-dimensional applications, two explicit highly-parallel three- 
dimensional FD-BPMs (the RS and the EFD) have been implemented on two different 

parallel computers, namely a transputer array (MIMD type) and a Connection Machine 

(SIMD type). To assess the performance of parallel computers in this context, serial 

computer codes for the two methods have been implemented and a comparison between the 

speed of the serial and parallel codes has been made. Large gains in the speed of the 

parallel FD-BPMs have been obtained compared to the serial implementations; both 

methods, in their parallel form, can execute, per propagational step, a large problem 

containing 106 discretisation points in a few seconds. In addition, a comparison between 

the performance of the transputer array and the Connection Machine in executing the two 
FD-BPMs has been discussed. To assess and compare the two methods, three different rib 

waveguides and three different directional couplers have been analysed and the results 

compared with published results. It has been concluded from testing these methods that the 

parallel EFD-BPM is more efficient than the parallel RS-BPM. Then, the linear parallel 
EFD-BPM was extended to model nonlinear second harmonic generation process in three- 
dimensional waveguides, where the source field is allowed to deplete, using the transputer 

array and the Connection Machine. The new nonlinear version of the EFD-BPM has the 

same features of the linear counterpart in using two separate computational windows, one 
for the fundamental field and the other for the second harmonic field The implementation 

and the application of this method to a nonlinear rib waveguide using the Quasi-Phase- 

Matching technique are discussed in this work. It has been concluded that the new 

nonlinear parallel EFD-BPM is accurate, efficient and very useful for the analysis of large 

complicated optical devices. 
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Symbols 
Symbol Description Value Dimension 

A Transverse cross sectional area m2 
a» Normal unit vector - - T B Vector magnetic flux density - 
c Speed of light in vacuum 3x 108 m/s 
D Vector electric displacement - C/m2 

6 Delta function - - 
Oz A small longitudinal step in the z-direction - m 
Ax The mesh spacing in the x-direction - m 
Ay The mesh spacing in the y-direction - m 
Ak The wave vector mismatch - 1/m 
E Vector electric field - V/m 
E Scalar electric field - V/m 
E Normalised Electric field - V/m 

c Permittivity - F/m 

EO Free space permittivity 8.85x 10-12 F/m 

Relative permittivity equals to (1+X) - - 
A scalar electric field without a reference phase - V/m 
A parabolic scalar electric field of c - V/m 

H Vector magnetic field - A/m 
H Scalar magnetic field - Alm 
9{ Normalised magnetic field - A/m 
J Current density - A/m2 

j Complex numbers notation () - 
k0 Wave vector in vacuum - 1/m 
kx Wave vector in the direction x (transverse) - 1/m 
ky Wave vector in the direction y (transverse) - 1/m 
kZ Wave vector in the direction z (propagation) - 1/m 

A The grating period of second order nonlinearity - m 

x Linear susceptibility - - 
X(2) Second order nonlinear susceptibility - m/V 

X 3> Third order nonlinear susceptibility - m2N2 
L Line shape function - - 
Lý Coupling length - m 

Wavelength - m 
V2 The Laplacian operator - Um 2 

V2 The transverse Laplacian operator - 1/m2 

V2 The x Laplacian operator - Um2 

V2 The y Laplacian operator - 1/m2 
Mx The total number of mesh points in the x-direction - - 
My The total number of mesh points in the y-direction - - 

Permeability - H/m 

µ Micro 10-6 prefix 
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90 Free space permeability 4nc10-7 H/m 

µr Relative permeability - - 
n Refractive index equals to Ef - - 
no A reference refractive index - - 
II. ff Effective index - - 
au Angular frequency (radians) - s_1 
P Nonlinear Polarisation - V/m 
P Power (for two dimensional waveguides) - W/m 

Power (for three dimensional waveguides) - W 

yr One dimensional z-dependent electric field - V/m 
v Normalised frequency - - 
r Vector space location (x, y, z) - m 
Reo The real part of the quantity in the bracket - - 
p Charge density - C/m 3 
S Poynting vector W/m2 
T The Transpose of a matrix - - 
t Time - s 
(x, y, z) Cartesian co-ordinate system - m 
w(z) Window Function in the longitudinal direction - - 
Z Total longitudinal distance - m 
* Complex conjugate - - 
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Abbreviations 
Term Description 

1-D One Dimension 
2-D Two Dimensions 
3-D Three Dimensions 
ADI Alternating Direction Implicit 
BC Boundary Conditions 
BPM Beam Propagation Method 
CM Connection Machine 
CM-FORTRAN Connection Machine FORTRAN 
CN Crank Nicholson 
EFD Explicit Finite Difference 
EIM Effective Index Method 
FD Finite Difference 
FDTD Finite Difference Time Domain 
FE Finite Element 
FFf Fast Fourier Transform 
MEFD Modified Explicit Finite Difference 
M MD Multiple Instruction Multiple Data 
NGM Number of Guided Modes 
NP Number of Processors 
QPM Quasi Phase Matched 
RSM Real Space Method 
SHG Second Harmonic Generation 
SIMD Single Instruction Multiple Data 
SIPIM Shifted Inverse Power Iteration Method 
TBC Transparent Boundary Conditions 
TB Transverse Electric field 
IM Transverse Magnetic field 
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Chapter 1 

Introduction 
1.1 General 

Lightwave technology has become increasingly important to the future of the 
telecommunication field due to the high bandwidth of light (- 100 THz). The inventions, 

first the laser in 1960 as an optical source and later the low-loss optical fiber as a key 

communication link, have made optical communication becomes a reality [1-7]. However, 
due to losses and dispersion, the optical signal has to be regenerated (re-amplified) along 
the path of transmission. Then it was realised that a complete optical system has to be 
integrated upon a single substrate to allow for efficient optical signal processing [1]. 
Following these lines the idea of integrated optics emerged. Such complicated circuits of 
integrated optics use optical waveguides to execute various different functions. In most 
practical applications, these waveguides have a rectangular geometry (e. g. rib waveguides), 
where the main purpose of designing the rib waveguide structure is to confine the optical 
field in two dimensions, vertically by refractive index changes and horizontally by 

geometrical changes. In some devices the rectangular waveguide has to split into two other 

waveguides forming a branch coupler (Y junction) such as the Mach-Zehnder switch, 

which is the basic element of many integrated optical signal processing devices, and the 
junction of a ring laser [1]. The practical reason for designing the branch coupler 
waveguide is to divide the input power into two output waveguides or, conversely, to 
combine the power from two input waveguides. 

In the current state of integrated optics, switching of light between two output 
channels is executed using the electro-optic effect, where an external dc electric field is 

used to change the refractive index of the medium resulting in a phase change, over a 
certain distance, to the guided wave [8]. However, the involvement of electronics in optical 
communication degrades greatly the use of the allowed bandwidth of light due to the speed 
limitation of electronics and opto-electronics devices [9]. It seems that large bandwidth is 

only obtainable using all-optical integration where the modulation and the switching have 



to be executed in the optical domain. In this context nonlinear optics plays a very important 

role for developing an all-optical switch [8,9]. Initially, most of the research was focused 

on intensity-dependent nonlinear materials in which the wave produces its own phase shift 

and hence selects, according to its power level, its own output path [8]. Such an effect, 

where the refractive index of the material depends on the intensity of the wave, has been 

demonstrated using the x(3) nonlinear response of the material, sometimes referred to as the 

Kerr-effect [8,9]. X 3) here is the third-order nonlinear susceptibility of the material. 
Recently, theoretical and experimental studies of the x(2) response of the material showed 

that a large nonlinear phase shift to the wave can be obtained, where X(2) here is the 

second-order nonlinear susceptibility [9-12]. In the past, x(2) response was mainly used to 

generate a wave that oscillates with double the original frequency (Second Harmonic 

Generation (SHG)). Initial comparison studies between the two responses of x(2) and xx3>, 
for GaAs material, showed that the X 2) switching device may be more efficient than the 

X 3> counterpart [ 11]. 

1.2 The Objective of the Thesis 

All these developments in the area of integrated optics show that there is a great need 
for theoretical studies, in order to understand and improve these devices. In addition, 
modelling avoids the fabrication of devices by trial and error, and therefore reduces the 

cost and the time of fabrication [13]. From the previous discussion, we can distinguish two 

classes of linear three-dimensional optical devices, the directionally non-varying 

waveguides (z-invariant), such as the rib waveguides, and the directionally varying 

waveguides (z-variant), such as the Y -junction. z-invariant waveguides can be modelled 

only numerically, because the rectangular geometry of the dielectric waveguide does not 
have an exact analytical solution. Therefore, efforts have been devoted to try to find the 

optimum solution using numerical techniques [14] 1. On the other hand, modelling z-variant 

waveguides is much more complicated than the previous class of waveguides, because they 

contain variations in the z-direction and this leads to a very involved analysis [13]. For 

example, the Y-junction is not a three-port device but a four-port one, where the three arms 

are connected with guided modes and the fourth is connected with radiation modes. With a 
field incident upon the junction from the combined waveguide, it is required to find the 

power transmitted to the two output waveguides, the reflected power in the input 

waveguide and the power radiated from the junction into the surrounding medium. 
Modelling z-variant waveguides using Coupled Mode Theory is very challenging, because 

1A review to some of these techniques is given in chapter 2. 
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it is not easy to deal with the continuous mode spectrum of radiation modes. However, if 

the device is enclosed inside an artificial box then these radiation modes can be 

approximated [1]. But the size of the artificial box is a very critical parameter in solving 

these kinds of problems; the larger the box, the more the method converges to the correct 

results. In addition, inaccurate calculation of radiation modes may lead to misleading 

results. On the other hand, nonlinear waveguides are very difficult to model using 

analytically-based techniques like the Coupled Mode theory, and even more difficult when 

the devices have geometrical and/or material change in all three directions. Other methods, 
based on numerical analysis, are much better suited to such devices. In this context, 

numerical modelling of integrated optics devices is of great importance. In addition, the 

continuous rapid development of hardware helped to produce new powerful computers 

specifically for the purpose of numerical studies. This has also helped to produceladd new 

numerical techniques to improve the accuracy and the efficiency of the solution. 

One of the numerical methods that can be used to study optical devices is the Finite- 

Difference Time-Domain technique (FDTD) [16-20]. The method was first used by Yee in 

1966 [16] and later has been used by many workers to model electromagnetic wave 
interaction with arbitrary structures [17]. Recently, the technique was used to model two- 
dimensional optical devices [18-20]. For a time independent refractive index, the FDTD 

can be employed by discretising, using centred finite-difference approximations, the 

electric and the magnetic fields of the full set of Maxwell's equations and uses a time 

stepping mechanism, using again the centred finite-difference approximation for time 

derivatives, to update the discrete field values [17]. The time-stepping is continued until 

the sinusoidal steady state is achieved at each point. This technique is conditionally stable, 

where the time step size depends on the space grid size [17]. As the space grid size 

decreases, the time step size must also decrease for the method to remain stable. For 

practical applications the time step is very small, resulting in a very long simulation time. 

While this method combines many features of scattering problems, it requires enormous 

computer resources even for simple two-dimensional waveguides [191. In addition, in 

many applications of cw operation, the transient response of the problem is not very 
important; however, the computation of this response, using the FDTD, is essential in order 

to find the steady state response, and that takes most of the computing time in a FDTD 

simulation. 

Another attractive method to analyse complicated structures of integrated optics is 

the Beam Propagation Method (BPM). From the large volume of literature on this method, 

one can conclude that the method has established itself as a prime numerical tool for the 
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analysis of two and three-dimensional linear and nonlinear optical devices [1512. This is 

mainly due to its simplicity and applicability to a variety of optical devices. This method 
depends on the idea of marching the optical field along the direction of propagation using a 

one-way propagation principle. The main advantage of the BPM over the Coupled Mode 

Analysis is that it predicts both the guided and the radiation modes in the same formalism 

and its propagational ability makes it a good tool in the analysis of longitudinally varying 
devices. The original method was based on the FFT algorithm; however, recently new 

techniques to improve the accuracy and the efficiency of the method have been reported, 

mainly based on the Finite-Difference (FD) approximation. Broadly speaking, the FD- 

BPM proves to be more efficient than the classical FFT-BPM in terms of computational 

time and flexibility. The most popular FD-BPM is an implicit method based on the 

Alternating Direction Implicit (ADI) approximation. On the other hand, the explicit FD- 

BPMs are becoming more popular due to their simplicity and high efficiency. The explicit 

Real Space (RS) method, depends on splitting the finite-difference matrix operator into 

two matrix operators where each matrix contains small sub-matrices that are solved 

analytically. The Explicit Finite-Difference (EFD) technique is another attractive method 
for the BPM, and is a very simple technique to implement. 

Generally the BPM is very efficient for the analysis of two-dimensional optical 
structures but consumes a lot of time when applied to three-dimensional devices, due to the 
following reasons3. Three-dimensional problems always lead to very large computational 
tasks. In addition, practical integrated optical circuits contain multiple coupled linear and 

non-linear waveguides which are generally longer than several hundreds of wavelengths. 
On top of that, the existence of large-contrast media will force the BPM to use small 

transverse mesh sizes and/or small longitudinal step sizes for convergence or stability 

reasons. When all of these are added together, the computational problem becomes very 
large, and conventional serial computers are not adequate for this kind of problem. 
Therefore, it is very natural to turn to parallel processing implementations in order to 

achieve practical run times for realistic devices [21-27]. On the other hand, parallel 
computers are built for the purpose of speeding up the execution time of large 

computational problems. In addition, the very intensive research activity in the area of high 

performance computation shows that most standard mathematical application can gain 

speed in the parallel environment [28-29]. However, not all serial methods are readily 
adapted to the parallel environment, and care needs to be exercised in selecting the 

2 See also the references of chapter 3. 
3 As mentioned before, practical devices of integrated optics have three-dimensional geometries. 
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appropriate method for parallel implementation. Generally, problems that can be divided 

into smaller sub-problems where each is spatially localised, to minimise the 

communication cost, are most suitable for parallel implementation. Therefore, this work 

was motivated to investigate and develop efficient numerical BPMs for the analysis of 

three-dimensional linear and nonlinear optical waveguides using parallel-processing 

computers. In the nonlinear domain, waveguides that contain second order nonlinear 

processes of X 2) of the material will be considered, as an example of one of the demanding 

topics of the current nonlinear optics research investigation [9-12]. It has to be noticed that 

analysing waveguides containing x(2) requires slightly more than double the computation 

effort of the linear counterpart in which parallel computers are very useful for efficient 

modelling. To the best of my knowledge, the first numerical methods for the analysis of 3- 

D linear optical devices using large scale parallel computers were first reported from the 

output of this thesis [21-23]. In addition the first efficient parallel BPM for the analysis of 

Second Harmonic Generation in 3-D optical waveguides is also published using the results 

of this work [24-27]. 

1.3 Organisation of the Thesis 

This thesis consists of three parts in addition to an introduction and a conclusion; part 
I is Theory, part II is Implementations (Analysis and assessments) and part III is Nonlinear 

optical waveguides. The theory part consist of three chapters, the implementation part 

consists of two chapters and the nonlinear optical waveguides part contains only one 

chapter. The description of these chapters is as follows: 

Chapter 1 is this introductory chapter to the entire work that provides a general survey on 

the current issues of lightwave technology and modelling integrated optical devices and 

also gives the motivation of this study. 
Chapter 2 is an introductory chapter to the theory of linear optical waveguides. The 

analysis in this chapter is restricted to z-invariant waveguides. The linear three- 

dimensional wave equation is derived from Maxwell's equations for general linear 

waveguides. The theory of guided modes of two-dimensional slab waveguides is also 

given including TE and TM modes. In addition, radiation modes of two-dimensional 

waveguides are also discussed. Then the rest of the chapter deals with modelling three- 

dimensional rectangular optical waveguides with a review of some of the techniques used 

to approximate the solution of 3-D waveguides. 
Chapter 3 contains the theory of the Beam Propagation Method. The start of the chapter 

gives a literature review of the method, then the derivation of the parabolic equation from 

the Helmholtz equation and the relationships between the eigenvalues and the eigenvectors 
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of the two equations are shown. The formulation of the classical FFT-BPM and three 
different FD-BPM techniques for the analysis of 3-D waveguides are described. The 

chapter also shows two different techniques to compute the modes' propagation constants 

and their three-dimensional field distributions from the BPM field for z-invariant 

waveguides. 
Chapter 4 describes two different advanced parallel computers; the Multiple Instruction 

Multiple Data (MIMD) machine and the Single Instruction Multiple Data (SIMD) 

machine. The MIMD is a PARSYTEC super-cluster transputer array and the SIMD is a 
Connection Machine (CM-200). These computers are used for the implementation of the 

linear and the non-linear BPM of this work. The chapter concentrates on the differences 

between these two parallel machines and how applications can be implemented on them. 
The chapter also describes two different compilers for developing parallel algorithms on 

these two computers. 
Chapter 5 shows the formulation and the implementation of three FD-BPMs for the 

analysis of 2-D waveguides (slab geometry). These methods are the Crank Nicholson, the 
Real Space and the Explicit Finite Difference BPMs. Detailed comparisons between the 

accuracy and the efficiency of the three techniques are shown. A new modified EFD-BPM 

that improve the stability of the EFD-BPM is discussed at the end of the chapter. The 

chapter also contains the application of the FD-BPM to analyse practical directional 

couplers and Y junction. 
Chapter 6 first shows an approximate attempt to parallelise the three-dimensional ADI- 
BPM on the MIMD and the SIMD machines. Then the chapter shows the detailed 
implementations of the two explicit BPMs (the RS and the EFD) on the transputer array 

and the CM-200 for the analysis of 3-D waveguides. In addition the chapter shows 

comparisons between the performance of these parallel methods. Then these methods have 

been used to analyse practical devices of 3-D nature (rib waveguides and directional 

couplers) where comparisons between their accuracy are made and their results have been 

compared with published data of serial techniques. Simulation examples for the 

propagation of light inside 3-D three-core directional couplers are also shown. 
Chapter 7 investigates the phenomenon of SHG. In this chapter the parallel EFD-BPM is 

extended to study 3-D waveguides in the presence of a second order nonlinearity x(2). The 

chapter shows the derivation of the nonlinear coupled wave equations both in 3-D (for the 
SHG-EFD-BPM) and in 1-D, which is commonly used in the literature to validate 

experimental results and to study possible concepts for optical devices. The chapter also 

shows the implementation of the SHG-EFD-BPM on the two parallel machines used in the 
linear implementations. Then the parallel SHG-EFD-BPM is used to analyse 

semiconductor rib waveguides containing a second order nonlinearity. In one of the 
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simulation, Quasi Phase Matching (QPM) technique has been used to model the relative 
phase between the fundamental and the second harmonic fields. In addition the parallel 
SHG-EFD-BPM results have been compared with the solution of the reduced 1-D coupled 

wave equations where the Runge-Kutta numerical technique has been used for the solution 

of the 1-D model. 
Chapter 8 contains a summary and a conclusion for the entire thesis work with suggestions 
to future work of this study. 
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Part I 

Theory 



Chapter 2 

Modelling Optical Waveguides 

2.1 Introduction 

In this chapter, we start with the basic equations of electromagnetic theory which are 

based on the solution of Maxwell's equations that describe precisely the propagation and 

the distribution of electromagnetic energy in dielectric waveguides. In order to model the 

complicated theory of nonlinear waveguides, it is essential initially to understand the 

analysis of the simpler linear counterparts. Therefore, this part of the thesis will deal with 

practical linear two and three dimensional optical waveguides. In addition, this chapter is 

written as an introduction to the rest of this thesis where the information of this chapter is 

the starting point to derivations or a reference for the later chapters. Further, we will 

restrict the analysis, in this chapter, to waveguides that are uniform along the direction of 

propagation (z-invariant). 

The derivation of the linear three-dimensional vector wave equation from Maxwell's 

equations is given in detail in the next section, where these equations can be considered as 

a fundamental mathematical tool that describes the full behaviour of electromagnetic fields 

in dielectric media. Then, in section 2.3, the analysis of an asymmetric slab waveguide is 

considered, based on the solution of the simplified wave equation. The slab waveguide 

consists of three regions of different dielectric constants in which light can be confined in 

the middle layer (one dimensional confinement). Although the treatment of two- 

dimensional waveguides is simple, the concept of the analysis can be extended to 

understand the more complicated theory of three-dimensional waveguides. For practical 

waveguide theory, generally it is required to find all information about guided fields in the 

waveguide and the condition of guidance. The derivations of the field distributions and the 

eigenvalue equations of the TE and the TM guided modes of the slab waveguides are given 
in section 2.3. In addition, radiation modes of the slab waveguide are discussed, which is 

very important for waveguides that have discontinuities in the direction of propagation 



because the total transverse field at any position of the waveguide can be written as a 

superposition of all orthogonal transverse modes. 

Section 2.4 contains a discussion about different types of practical rib waveguides 
(three-dimensional waveguides) which are the skeleton of integrated optics circuits. As a 

closed form analytical solutions of this type of waveguide are not usually known, the 

section contains a review of some methods used to approximate the solution of rib 

waveguides, ranging from simple and fast to accurate and time consuming. The limited 

Effective Index Method (EIM), known for its simplicity, is discussed in section 2.4 as an 

extension to the solution of slab waveguides. Then the section shows some of the more 

rigorous analysis used, based on the solution of the wave equation in its vectorial, semi- 

vectorial and scalar forms, using the well-known finite-difference approximation. 

2.2 The Wave Equation 

We start with Maxwell's equations [1-6]. These equations are very accurate 

mathematical representations that describe the propagation of electromagnetic energy in 

materials from a macroscopic perspective. They combine relations between all 

electromagnetic fields and can be described in differential form as 

VxH= äD+J 
(2.1a) 

VxE=- aB 
(2.1b) 

V. D=p (2.1c) 

V"B=O (2.1d) 

where respectively, E(r, t) and H(r, t) are the electric and the magnetic field vectors, D(r, t) 

and B(r, t) are the electric and magnetic displacement vectors and J(r, t) and p (r, t) represent 

the current and the charge sources. r and t represent the vector space location (x, y, z) and 

the time variable respectively. In this thesis, we restrict the analysis for source free cases in 

which j and p are set to zero. Each of the vector fields, in Eq. 2.1, contains three unknown 

quantities (a total of 12 unknowns). For isotropic materials the magnetic flux density 

vector B has a direct relation with the magnetic field vector H through the scalar magnetic 

permeability µ and can be written as 
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B=µH (2.2) 

where µ= µoµr, µr being the relative magnetic permeability that can be approximated as 

unity for non-magnetic material (optical waveguides), and po is the free space magnetic 

permeability. Also for isotropic materials the electric displacement D can be written in a 
Taylor series as a function of the electric field E, as [7,8] 

D(r, t) =c 
[E(r, t) + XE(r, t) + x(2)E2 (r, t) + x(3)E3 (r, t)+" " "] (2.3a) 

or 
D(r, t) =e (1 + X)E(r, t) + c0P(r, t) (2.3b) 

where co is the free space permitivitty, x is the scalar linear susceptibility, x(2) and x(3) are 

the second and the third order nonlinear susceptibilities respectively. P in Eq. 2.3b is the 

nonlinear polarisation vectors. The relation in (2.3) is valid for instantaneous response of 

the material [7]. 

Now let us write the first two equations ( Eqs. 2.1a and 2.1b) for the linear case after 

substituting D and B in Eqs. 2.3 and 2.2 respectively; then we arrive at 

äVxH=e. 
c 

E (2.4a) r 

VxE=-µo äH 
(2.4b) 

where £(x, Y, z) is the relative permitivitty equals to (l+X). As a common practice, we will 

derive an equation that contains only the electric field E by eliminating the magnetic field 

H. A similar equation could be derived for the magnetic field using the same approach 
below. If we take the curl ( Ox) of Eq. 2.4b as 

VxVxE=Vx{-µoaH} 
at 

_-µoä {VxH} (2.5) 

and using the following vector identity for the double curl in Eq. 2.5 acting on the vector E 
as 

i Later in this thesis, we will consider only x C2i response of the material. 
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VX(VXE)=V(V. E)-V2E (2.6) 

and substituting Eq. 2.4a in (2.5), then we can rewrite (2.5) in terms of the electric field 

only as 

a V(V " E) - V2E = -µo at 
{£°£r 

at 
} 

a2E _ -µoEo£r ate 
(2.7) 

Now we can use Eq. 2.1c for a source free field (p = 0), which can be written in this form 

V D=V (CrE)=E"VEr+ErV"E=0 

or 

V. E=-E"! (2.8) 
Er 

substituting (2.8) in (2.7) we get the following equation 

z 
V2E +VE"! L= µ0-0-r 

E (2.9) 
Er 

) 

For a monochromatic field that oscillates with an angular frequency co, the electric and the 

magnetic fields can be written as2 

E(r, t) 
= 

E(r) 
eis H(r, t)] H(r) 

(2.10) 

Then the second derivative with respect to tin Eq. 2.9 can be replaced with -0, leading to 

the following vectorial wave equation where, as throughout this work, the time dependence 

term (e& (O`) will be removed from equations as a matter of convenience 

Zj=I/cl" 

V2E+D E" 
2 

+kön2E=0 (2.11) 
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where 
n= cr 

k =2n o-c oc o 

n(x, y, z) is the refractive index, c is the speed of light in vacuum and ? is the wavelength of 
the wave. Eq. 2.11 is a very complicated and involved equation as the three components of 
the electric field are coupled through the second term which can be expanded in Cartesian 

co-ordinates3 as 

One a 
0E 

2= ax 
1 ant 
2E 

1 
+ 2E 

ant 
- 

1 
+ 2 EZ 

ant 
n ax n . ax n y f 3y n az 

! z 1 z an z 
+a'a 

Y 

[- 
n ay + 

+a 
a 

Zaz 
lganz 
n2 ax +lE 

n2 Y 

anz 
a +lE 2Z 

anz 
(2.12) az y n 

where a, ay and aZ are unit vectors in the x, y and z directions respectively. In order to find 

a solution for Eq. 2.11, all three components must be solved simultaneously. For a 
homogenous medium this term will be zero, and the dropping of this term simplifies the 

equation because the three components of the electric field are decoupled and the following 

Helmholtz equation 

V2E + k2n2E =0 (2.13) 

results. The equation could be written for any of the electric field components separately as 

V2Ex +k2. n2Ex 
V2Ey + kön2Ey =0 (2.14) 
, V2Ex + kon2Ex 

A similar approach to the derivation of Eq. 2.13 will lead to a similar equation for the 

magnetic field H as 

3 The Cartesian co-ordinate system has been used because it is very convenient for the analysis of most 
integrated optics devices. 
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VZH + k2n2H=O (2.15) 

OI 
OZHX + kön2Hx 

V2Hy +k 2n2 Hy -0 (2.16) 
O2HZ + kön2Hz 

For dielectric waveguides which consist of different homogenous media, the fields at 

the interface between two layers must obey Boundary Condition (BC) requirements. In 

other words, the solution of a certain problem that consists of two (or more) media could 

be solved locally by means of Maxwell's equations (or the derived wave equation) and then 

coupled together using BC. BC equations can be derived from the integral form of 

Maxwell's equations [1]. Let us consider two dielectric media with different refractive 

indices nj and n2. All the fields at the interface between the two media must be linked 

through 

aoa,,, x (E2 - E, ) =0 EZ g =E (2.17a) 

ao«,,, x (H2 - H1) =0 H2 I=H; '°g (2.17b) 

ao, m " 
(B2-B1)0 = B2"=Blý H'=Harm (2.17c) 

a, o,, " 
(D2 - Dl) =0D "m = D'° = n2Eý' = nl Elamº (2.17d) 

where the subscripts 1 and 2 refer to medium nj and n2 respectively. a.. is a unit vector 

normal to the interface between the two media, "norm" and "tang" refer to the normal and 

the tangential components of the fields. From the above boundary conditions, we may 

observe that the tangential components of E and H and the normal of H must be 

continuous across the interface of the two dielectric media. On the other hand, the normal 

of D is continuous at the boundary but the normal of E is discontinuous. 

2.3 The Dielectric Slab Waveguide 

In this section we will be dealing with the analytical solution of one-dimensional 

confinement of light using three layers (slab waveguide). For simplicity, we will consider 

materials which are linear, lossless and piece-wise homogeneous. Although the slab 

waveguide mathematical treatment is simple and physically easy, the analytical solution of 

this waveguide helps to understand other more complicated structures (e. g. three- 
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dimensional and/or nonlinear, etc. ). In addition, the slab waveguide theory could be easily 

extended to multi-layer waveguides solutions using the same concept of this section [2]. 

When we say that we are interested to find the analytical solutions of a waveguide, this 

means the physical distribution of the electromagnetic fields inside and outside the 

waveguide, which must satisfy Maxwell's equations. In other words, it is required to find 

the modes that can exist in the waveguide. A mode is defined here as any transverse field 

distribution whose magnitude is independent of position along the direction of propagation. 

Fig. 2.1 shows a dielectric slab waveguide consisting of three homogeneous and 
lossless layers: the cladding, the guiding and the substrate, where respectively the 

refractive indices of these layers are n,, ng and ns. 

x 

Cladding layer nc 

x=d/2 

Guiding layer ng 

x=-d/2 

Substrate layer n. 

Fig. 2.1 The dielectric slab waveguide. 

Z 

It has been assumed that z is the direction of propagation where the light does not 

encounter any changes. The guiding layer where the guided (or trapped) light exist is 

surrounded by two semi-infinite layers (the guide extends to infinity in the positive and 

negative y-direction) with refractive indices lower than the value of the refractive index of 

the guiding layer. Typical values of the refractive indices, for semiconductor materials 
(GaAs), are n,. =1 (air), ng = 3.44 and n8 = 3.4 and a thickness d of the order of 1 µm. 

Since we are concerned with only two-dimensional geometry, all derivatives with respect 

to y in the wave equation can be set to zero 
(---y 

= 0, and 
ä2=0. 

Then the wave equation 
Y 

in (2.13) can be written, for each region of Fig. 2.1, as [2] 

aZE a2E 
+ kZnZE =0 (2.18) ax2 + aZZ ° 
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where nr denotes the refractive index of one of the three layers. Further we may assume 
that the variation of the fields in the positive z-direction as e jkhz where kZ is the 
longitudinal propagation constant. We may rewrite Eq. 2.18 for the three regions separately 
as 

where 

aE2° 
-r E,, =0 

a2 Eg 
+r 2Eg =O 

a EL 
-r. E. =0 aX2 

r2 = k2 
-k 

2n2 
czoC 

222 
g kung - kz r2 =go z 

r2 = k2 
-k2n2 

(The cladding region) (2.19a) 

(The guiding region) (2.19b) 

(The substrate region) (2.19c) 

Note that in Eq. 2.19, the term ej("`-t=z) has been dropped from the equation as a matter of 
convenience. At this stage, we have to distinguish between the two polarisations that can 
be supported in slab geometry; the Transverse Electric (TE) field and the Transverse 

Magnetic (TM) field. 

2.3.1 Transverse Electric (TE) Guided Modes 

In TE waves, Ey, Hx, and HZ are the only non zero field components, and we may 

write Eq. 2.19 in terms of Ey only; from Maxwell equations (Eq. 2.4b), we can obtain H., 

and HZ from the value of Ey as 

Ey (2.20a) Hx =- 
(090 

21-- 

HziI 
z wo ax (2.20b) 

It is important to note, from the above, that the electric field is always tangential to the 
interfaces between the dielectric layers of the slab waveguide. Under guiding condition it is 

required to have most of the power confined to the central region of the slab waveguide 
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(guided region of Fig. 2.1). This implies that oscillatory behaviour in the middle layer and 

exponential decay (evanescent) behaviour in the outer regions are required to satisfy this 

requirement, and the solution of Eq. 2.19. This requirement can be enforced on the 

coefficients of Eq. 2.19 as r2, r2 and r, 2; 
->O 

and combined to give the following 

inequalities4 

kong >_ kz z kon, z konc (2.21) 

Using the above, we may write the guided mode solutions for the asymmetric slab 

waveguide for the electric field Ey as [2] 

[Acos(rg d/2)+Bsin(rg d/2)]e xz d/2 

Ey = Acos(rax)+ Bsin(rgx) - d/2: 5 xS d/2 (2.22) 

[Acos(r` d/2) - Bsin(rg d/2), e`"(*''d/2) x: 9 -d/2 

Eq. 2.22 has been written so that the boundary condition requirements for the continuity of 
the electric field Ey at the both interfaces of the slab waveguide are satisfied. If Ey is 

continuous, then from Eq. 2.20a H,, is continuous as well. The other requirement for 

boundary conditions to satisfy is the continuity of H. at x= d/2 and x= -d/2. From Eq. 

2.20b HZ can be written from Ey of (2.22) as 

-rc[Acos(rg d/2)+ Bsin(ra d/2)]e '°ýx-`'ý) xz d/2 

HZ = rg [-A sin(rgx) +B cos(rgx)] - d/2: 9 x: 5 d/2 
0*o 

[r1[Acos(rg 
d/2) - Bsin(r. d/2)]e`"("+ )xS -d/2 

The continuity of HZ at x= d/2 gives 

-rc , 
[A cos(ra d/2) + Bsin(rg d/2)] = rg[-A sin(rg d/2) +B cos(rg d/2)] 

4 Note that it has been assumed that n$ > nc. 

(2.23) 
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and at x= -d/2 gives 

rg[Asin(rg d/2)+ Bcos(rg d/2)] = r1[Acos(rg d/2) - Bsin(rg d/2)] 

From the above two relations, one can eliminate the ratio A/B and with some tedious but 

straight forward algebra we arrive at the following relation 

tan(drg) - 
rg(r` +r°) (TE) (2.24) 

rg - r, rc 

Eq. 2.24 is the eigenvalue (characteristic) equation for the TE guided modes where the 

only unknown quantity is the propagation constant kZ (kZ is embedded in r8, r,, and rr; see 
below Eq. 2.19). 

2.3.2 Transverse Magnetic (TM) Guided Modes 

Using a similar approach to the derivation of the TE guided modes, we can obtain the 

guided modes for the TM polarisation. For this polarisation the only non-zero field 

components are Hy, Ex, and E. The wave equation in (2.19) can be written in terms of Hy 

only, and we may also assume that the fields vary as e jk z in the in z-direction. From 

Maxwell's equation (Eq. 2.4a), we can obtain Ex, and EZ from the value of Hy using 

Ex = 
kZ 

Z Hy (2.25a) 
wxonr 

(2.25b) EZ = -j axy 
wEon, ax 

where nr refers to the refractive index of the layers n., ng and ns. The Hy solution for the 
TM guided modes can be written similarly to the Ey of the TE in (2.22) as [2] 

[Ccos(ra d/2) +D sin(rg d/2)]e-`° (x-`'/2) xz d/2 

Hy =C cos(rgx) +D sin(rex) - d/2 S x: 5 d/2 (2.26) 

[Ccos(rg d/2) -Dsin(rg d/2)]e`1(* W2) x: 5 -d/2 
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Eq. (2.26) has been written so that Hy is continuos across the two interfaces of the slab 

waveguide (at x= d/2 and -d/2). From Eq. 2.25b it follows that E. could be written as 

- 
nc [Ccos(rg d/2) + Dsin(rg d/2)]e '`fix-ý2l 

r EZ 
wý ngý-Csin(rgx)+Dcos(rgx)] 

n2 [Ccos(rg d/2) - Dsin(rg d/2)]e`1(x+ai2) 

The continuity of EZ in Eq. 2.27 at x= d/2 gives 

x>_d/2 

-d/25 x5 d/2 (2.27) 

x5-d/2 

- 
nc [Ccos(rg d/2)+ Dsin(rg d/2)] = 

ng [-Csin(rad / 2) +D cos(rgd / 2)] 

and at x= -d/2 gives 

nz [-Csin(r`d / 2) +D cos(r, d / 2)]= nz [C cos(re d/2) - Dsin(r d/2)] 
Q, 

Eliminating the ratio C/D from the above two equations and with some algebraic 

manipulations we arrive at 

r n2(ncr + n2r ggce, c (2.28) tan drg --n, 

nýrä - nBr1r 
(TM) 

c 

Eq. 2.28 is the eigenvalue (characteristic) equation for the TM guided modes where again 

the only unknown quantity is the propagation constant kZ. 

2.3.3 Guided Mode Computations 

For guided modes kZ s are discrete values which can be computed using Eqs. 2.24 

and 2.28. It is a usual practice to normalise the propagation constant kZ in terms of the free 

space propagation constant ko, as 

kz, N = nCI, Nka, (N = 0,1,2,.... ) (2.29) 
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where neff, N's are the discrete normalised effective indices of guided modes. N is added to 

the definition of effective index just to refer to the mode number where 0 is the highest 

value of effective index (sometimes referred to as the fundamental mode or the . 0th order 

mode). N also refers to the number of nodes in the transverse field distribution. From Eq. 

2.21, the discrete values of the effective indices of guided modes that satisfy the eigenvalue 

equations should be 

ng>nefrN>ns (2.30) 

It is important to note that a waveguide supports a finite number of guided modes where 
the cut-off condition is always given by n ff,, = n, or k2. 

c = kon,. 

The eigenvalue equations (2.24 for TE and 2.28 for TM) could be solved graphically 

to find the exact values of the propagation constants and the total number of guided modes 
[4,5]. From such a plot, the intersections between the left side of these equations (tan 

function curves) and the curves of the right hand side of the equations indicate the discrete 

values of the propagation constants where the number of intersections is the total number 

of guided modes. On the other hand, simple numerical methods could be used to solve the 

eigenvalue equations (e. g. a zero finding routines like Muller's method [9]). In these 

methods a guess near the eigenvalue is needed as an input and the routine improves this 

value iteratively toward the true eigenvalue, within an achievable limit, until it converges. 
From the eigenvalue equations of both the TE and the TM we may write the following 

equation to find the total number of guided modes for the TE or the TM [2,5] 

zzz 
Tj( Number of modes =v- tan-' n2 

- 
n? (2.31) 

7C 
, 

where the subscript "int" refers to the next largest integer of the curly bracket and v is the 

normalised frequency defined as 

)1/2 (2.32) 

and the parameter TI in Eq. 2.31 is defined as 

for TE modes 
22 

In,, 
/nc 

, for TM modes 
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From the above equations of both the TE and the TM, we may conclude that there 

are three factors that determine the total number of guided modes supported by a slab 

waveguide. The first is the difference between the values of the refractive indices of the 

three layers where, for example, increasing the value of the refractive index of the guiding 

region will increase the total number of guided modes. The second factor is the thickness 

of the slab waveguide d where the total number of guided modes increases by increasing d. 

And the third is the wavelength of the field (or the frequency) where increasing the 

wavelength will decrease the total number of guided modes. 

2.3.4 Guided Modes Power Flow 

Once the propagation constants of guided modes are known, then we can compute 

the time-average Poynting power P carried by guided modes along the direction of 

propagation z. However, the slab waveguide considered in our analysis extends to infinity 

in the y-direction, so in this case we assume P as power per unit length (in the y-direction) 

with a unit W/m. The guided power flow P in the z direction is given by the integral over 

the waveguide cross section of the z-component of the Poynting vector SZ [2] 

P=f- SZdx = 
1/ý f- Re(E x H`) dx (2.33) 2 -- Z 

where P is a real and a positive quantity and the asterisk * refers to the complex conjugate. 
For TE modes, the electric field E is given by (2.22) (only the y-component of E exists) 

and the magnetic field can be computed from Ey using (2.20a). Then (2.33), can be written 
as 

P=-2 Re J 
_EyHxdx 

= 2ý 
kJ 

»IEyIZdx 
(TE) (2.34a) 

µa 

In a similar manner, the guided power flow in the z-direction for the TM modes can be 

computed using Hy in (2.26) and E,, in (2.25a) 

P= 
! 

Ref- Re J H; E=dx = 2k 
j ý(1/n2(x))IHy12dx (TM) (2.34b) 

0 

n(x) in (2.34) is a reminder that the refractive index is different in the three regions of the 

slab waveguide. It is convenient to normalise the field distribution to the power carried by 

the mode. First let us write the transverse fields as 
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Ey (x) = any (x) (For TE) (2.35a) 

Hy (x) = a9fy (x) (For TM) (2.35b) 

where the fields Ey and 54 are the transverse fields, normalised so that the mode is carrying 

a power of 1W/m and are defined as [3] 

Ey(x) = 
EY(x) 

(TE) (2.36a) 
JEy(x)H: (x)dx 

2 

and 
y(x) Hy (x) =2 

1H 
(TM) (2.36b) 

-x 
-r 

and a's are amplitude coefficients. Then we may write the power in (2.34) as 

P=2j 
-IEyrdx 

= 2kZ 
f Ial2I E 2dx 

= ßa12 (For TE) (2.37a) 
o 

p= 
2z 

J 
ý(1/n2(x) 

i_ )ýHyl dx =2j 
ýýlýn2 

(x))ýa12ISyI2dx = jal2 (For TM) (2.37b) 
0 

2.3.5 Radiation Modes 

The number of guided modes of dielectric waveguides, as described previously, is 

always finite, but in order to provide a complete set of orthogonal modes, there must exist 

other modes, which also must satisfy both the solution of Maxwell's equations and the 

boundary conditions [2,4]. These modes do exist and are called radiation modes [2,4]. 

Unlike the guided modes, which have evanescent solutions outside the guiding region, 

radiation fields could satisfy the wave equation and the boundary conditions by having 

sinusoidal solutions outside the guiding region which extend to infinity. In addition, the 

time and the z variations for these fields, can be also described by the factor eJ(m`-k'=) 
Thus, we may say that these fields qualify with all the characteristics to be called modes, 
except that their energy is not confined to the guiding region but reaches to infinite 
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distance in the x-directions. The other main difference between radiation modes and guided 
modes is that the propagation constants of radiation modes are not discrete but form a 
continuum. At this stage we must distinguish between two types of radiation modes which 
may describe the slab waveguide solution (both as TE or TM); namely the substrate 
radiation modes and the cladding (cover) radiation modes. The first could be described by 

sinusoidal solutions in the guided and the substrate regions and evanescent waves in the 

cladding region while the second type has sinusoidal variations in all three regions. Fig. 2.2 

shows a schematic diagram for the location of the effective indices of all possible modes in 

the asymmetric slab waveguide of Fig. 2.1. From the figure, we see that radiation modes' 

propagation constants are below the cut-off condition of guided modes (see section 2.3.3). 

0 nc n. n` 

nen 

Cladding Substrate Guided 
radiation radiation 

Fig. 2.2 The location of the effective indices of all possible modes in asymmetric slab waveguide. 

Radiation modes are necessary to model dielectric optical devices, because they are 

part of the description of the total field solution of dielectric waveguides. In practice, the 

study of z-variant waveguides (waveguides that have discontinuities in the refractive index 

along the direction of propagation z) requires the solution of both guided and radiation 

modes. For example, guided modes travelling inside z-variant waveguides will excite an 
infinite number of radiation modes. This means that discontinuities in waveguides are the 

cause of transferring energy from guided to radiation modes and consequently the energy 

will travel away from the guided region toward the infinite space around the waveguide. 
For z-invariant waveguides, radiation modes will exist if the waveguide is excited with an 
initial input field distribution (e. g. at z= 0) different from those of the guided fields (e. g. 
Gaussian field). 

Orthogonality of modes 

One of the important relations between modes (guided and radiation of TE and TM) 

of waveguides is that all modes are orthogonal. This relation can be expressed as [3,6] 

5Et` x Hi'dA = 0, kZ # ki (2.38) 
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where t indicates the transverse field distribution, A is the transverse cross sectional area of 
the waveguide, and u and ti refer to two different modes whose propagation constants are 

different. This equation (2.38) is written in such away that it can be used for three 

dimensional waveguides where A could contain x and y dimensions. For TE modes of the 

slab waveguide of section 2.3.1, the orthogonality relation can be simplified into 

L 
Ey Ey *dx = 0, kZ * kZ (2.39) icog, 

and for the TM of section 2.3.2, the relation is 

V 

J n2 H; H; *dx = 0, 
kz 

kz (2.40) 
o 

In addition to the orthogonality relation of modes, both guided and radiation modes form a 

complete set. This feature is also important which indicates that any arbitrary transverse 
field at a constant z can be written as a superposition of guided and radiation modes as [5] 

NOM k. n, 

Ey(x)= aNEN(X)+ Jb(kZ)E(X, kZ)dk, (FE) (2.41a) 
N0 

NGM k0n1 

Hy(x)= Y, aNxN(X)+ jb(kZ)H(x, k. )dk, (TM) (2.41b) 
Np 

In Eq. 2.41 the discrete summation is over the guided modes and the continuos summation 
(integral) is over radiation modes. NGM denotes the number of guided modes, a's are the 

amplitude coefficient of the guided modes and b's the amplitude coefficient of radiation 

modes. We have to note that radiation modes can not be normalised to a finite power 
because the distribution of the fields extend to infinity in the x-directions of the slab 

waveguide. 

Due to the necessity of radiation modes in the analysis of optical waveguides, some 

of these modes can be computed approximately using the idea of metallic waveguide 
theory, also the method helps to understand the physical behaviour of radiation modes in 

dielectric waveguides [4,5]. If we enclose the slab waveguide of Fig. 2.1 with two metal 
walls (with a conductivity ß= oo) at x= d/2+L and -d/2-L (see Fig. 2.3), then the problem 
is transformed into a metallic waveguide with an insert of dielectric waveguide in the 
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middle. In other words, the propagation constants kZ of radiation modes are now discrete 

rather than continuum. The summation integral of Eq. 2.41 is transformed into a discrete 

summation over the new discrete radiation modes. The slab waveguide geometry is 

obtained in the limit of allowing L to approach infinity. As L increases, the spacing 
between the discrete values of radiation modes propagation constants decreases and in the 
limit of infinite L they merge into a continuum. 

for TE) 

for TM) 

x--: d/2 

x=-d/2 
5 

Fig. 2.3 Two metal walls surrounds the slab waveguide of Fig. 2.1 to approximate the analysis of radiation 
modes. 

2.4 Modelling Three-Dimensional Waveguides 

Rectangular (rib) dielectric waveguides proved to be the practical way to control 
light for the use in optical processing circuits. One of the purposes of rib waveguides is to 

confine energy in both transverse directions x (horizontally) and y (vertically), in the y- 
direction by material changes and in the x-direction by geometrical changes. Although 

more complicated waveguides are used in many practical applications, the rib waveguide is 

considered to be the essential element in such devices. Fig. 2.4 shows a three-dimensional 

view of a typical dielectric rib waveguide. Similar to the operation of the slab waveguide 
for guiding light, the refractive index of the middle layer (the guided layer) ng must be 

grater than the refractive indices of the outer regions nc and n8 [2,4]. Practical devices are 
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always surrounded by air, where in such a case nr- can be set to the refractive index of air 

which is unity. 

Y 
7 

t 

air 

ng 

Fig. 2.4 Three dimensional view of a dielectric rib waveguide (n g>n 6>n c). 

In this section we will be dealing with piece wise homogenous z-invariant rib waveguides. 
Z-invariant three dimensional waveguides are sometimes referred to as two dimensional 

variation waveguides. Fig 2.5 shows a cross sectional view of different common types of 

three-dimensional waveguides that exist in practical optical processing [2,4,5]. 

nQ 

(a) 

nc 
n5 

(b) 

Fig. 2.5 Cross sectional view of different types of three dimensional waveguides geometries. (a) Strip 
waveguide, ng>na>nc. (b) Embedded strip waveguide, ng>n, >nc (c) Rib or ridge waveguide, ng>na>nc. (d) 
Strip loaded waveguide, ng>ngi>na>nc. 

The shape of three-dimensional optical waveguides can be classified into two types, 

the circular geometry of optical fibers and the rectangular geometry of rib waveguides 
(Figs. 2.4 and 2.5). The circular dielectric geometry can be solved analytically using Bessel 

functions (2,3), but modelling rectangular rib waveguides analytically is not possible 
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because there is no analytical function that can fit the rectangular refractive index 

distribution. Due to the great interest in modelling optical rib waveguides, there is an 

enormous number of techniques which can be divided into four categories, the simple, the 

approximate, the semi-rigorous, and the rigorous. The simplest method of all is the one 

based on the classical semi-analytical Effective Index Method (EIM) [2,4]. Apart from this 

technique, other methods are based on the approximation of the solution of Maxwell's 

equations numerically, mostly based on the finite-difference or the finite-element methods 

while others are based on the expansion in terms of orthogonal functions [10-25]. It can be 

summarised that the main differences between these methods are the trade off factors of 

being simple, accurate, efficient and flexible [10,11]. The general idea involved in 

approximating the wave equation numerically is to transform the differential equations of 

the wave equation into a matrix eigenvalue problem which can be solved using standard 

matrix manipulations [10]. The finite-difference approximation method is the most 

common technique used for a long time for the solution of microwave problems and other 

applications. In addition to its simplicity, it has some advantages over the finite-element 

approach of being free from producing spurious numerical fields and computationally more 

efficient [10,22]. In the following discussion we will review briefly some of the finite- 

difference techniques that have been used for the analysis of three-dimensional optical 

dielectric waveguides. As a common practice for z-invariant three dimensional waveguides 

the z-dependence can be always assumed as e jkfZ where the second derivative with respect 

to z can be replaced by -kz. Before we progress to the complicated methods, it is a good 

idea to start with the simplest one. 

2.4.1 The Effective Index Method 

The EIM is the oldest and the fastest to produce results for the analysis of three 

dimensional waveguides. The basic idea of the EIM is to transform the three dimensional 

geometry of the rectangular waveguide into two dimensions where it can be solved using 

the theory of slab waveguides. Let us consider the analysis of the rib waveguide in Fig. 

2.5c using the EIM, as an example of rectangular waveguides where analysing the others 
follow similar approaches. Assume that the rib waveguide can be divided, in the x- 
direction, into three independent regions as in Fig. 2.6. 
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iI 
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ng 
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Region 1 Region 2 Region 3 

Fig. 2.6 The division of the rib waveguide into three slab waveguides using the EIM approach. 

Also we assume that the three regions of Fig. 2.6 of three independent slab waveguides 

where each region can be solved using the theory of slab waveguide of the previous 

section. The outer regions (1 and 3) are identical slab waveguides with a width of D and 

the inner region is a slab waveguide with a width D+H. The EIM can be viewed from the 

scalar wave equation using the separation of variables (x and y) approach, where either 

polarisation TE or TM can be assumed. Let us call the effective indices of solving the two 

slab waveguides, the outer and the inner, of Fig. 2.6 as ne11 and null respectively. The three 

regions can be considered now as a slab waveguide in the y-direction with a thickness W 
(see Fig. 2.7). This slab waveguide can be solved by considering the effective indices nerv 

and ne« as its refractive indices. The effective index resulting from solving the slab 

waveguide of Fig. 2.7 (in the y-direction) is the effective index of the rib waveguide based 

on the EIM approximation. 
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Fig. 2.7 The equivalent slab waveguide formed from the effective indices of the separate solutions of the 
three regions of Fig. 2.6. 

We may notice from the above analysis that the field continuity at the interfaces of 

the three regions has not been met. Thus we may conclude that the method is most accurate 

when the rib height H is small and the rib width W is much larger than H. In addition, the 

method will break down if the outer regions of the rib waveguide do not support a mode. 
However, to get out of the break down situation one can replace the outer n: ff with the 

cladding refractive index nc [19]. 

2.4.2 Solutions to the wave equation 

We start with the rigorous approaches which are based on the numerical solution to 

the vector wave equation in Eq. 2.11. This equation contains three unknown fields 

(Eý, Ey, EZ) and can be written in terms of the following coupled equations that depend on 

only x and the y components of the vector field E [12,15] 

a2E 
z 

a2E a1 ant 1 ant 
ax 2+ aZz + ax n2 

Ex 
ax +Q2 EY 

a+ 
(kon2 

- ki )Ex =0 (2.42a) 
YY 

a2E a2E a an 21 anZ 
ax2y +a ZY +a n2 

E" 
ax + 

n2 
Ey 

a+ 
(k0n2 

- ki )Ey =0 (2.42b) 
YYy 
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where n(x, y) is assumed to be a function of x and y only. For practical three-dimensional 

waveguides (piece wise homogenous media) of the rib family, the third and the fourth 

terms of Eq. 2.42 are zero except at the dielectric interfaces. The remaining four field 

components can be obtained from the values of Ex and Ey in (2.42) as [12] 

EZ 
n2k cox 

[. 
(fl2E)+a(fl2E)] (2.43a) 

z a2E Hx 
wµ kZ ax 

yaa- k°n2Ey (2.43b) 
Y 

2 

Hy 
k ay 

x 
2axay 

-k o2 n2Ex (2.43c) 
ZY 

H=jL- 
äE. 

ZW. ax ay (2.43d) 

The coupled equations 2.42a and 2.42b could be solved numerically using finite difference 

approximations [15]. In order to discretise the optical fields (Ex and Ey) to get a finite 

number of equations, the optical device has to be limited in both directions (x and y), 
which could be done by placing the device inside an artificial box. The box should be large 

enough to contain all significant field points. This will lead to a finite number of field mesh 
points which correspond to the field equations. These equations can be written in the 
following matrix eigenvalue equation 

A,, 
E_ 

= k, 2, 
E" 

Eq Ey (2.44) 

where Av is a large real sparse matrix of a dimension of 2M by 2M, where M is the total 

number of mesh points of the fields E,, or Ey. The subscript v of A� denotes that the matrix 
belongs to the vector approach. A similar approach in terms of H,, and Hy fields could be 
found in [16]. 

The solution of the discretised vector wave equation in (2.44) will lead, eventually, to 
two groups of field polarisations, the quasi TE and the quasi TM. The quasi TE is 

considered when the Ex component is much larger than the Ey component and the quasi 
TM is considered when the Ey component is much larger than the Ex component. Under 
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the situation that one of the field component is much larger than the second component, 
then it can be assumed that the second one is zero which leads to a much simplified 
equation. This kind of assumption is called the semi-vectorial approximation which is 
based on the usual laboratory definition of horizontal and vertical polarisations of the 

optical field [17]. The semi-vectorial quasi-TE (horizontal) field assumes that the y field 

component of the electric field is zero (Ex, O, EZ) while the semi-vectorial quasi-TM 
(vertical) field assumes that the x field component of the electric field is zero (0, EyEL). 

This will lead to the decoupling of the two equations in (2.42) as 

zzz DE+ a2E 
+aZE. + (kön2 

- kz )E1 =0 (For quasi TE) (2.45a) 2 ay ax n ax ax 

D2 2 a EL 
+a 

Ey 
+a 

(-L 
E. 

21n) 
+ (k2n2 

- kZ )Ey =0 (For quasi TM) (2.45b) 
aX2 ay 2 ay n Dy 

which can be solved independently. Again the finite difference approximations can be 

employed in the decoupled equations above, which will lead to the following eigenvalue 
equations for the quasi TE and the quasi TM [ 17] 

A 16Ex = kZEx (For quasi TE) (2.46a) 

A. I. MEy =k 2 Ey (For quasi TM) (2.46b) 

where A-M and ATM are real non-symmetric band matrices. On the other hand, the semi- 

victorial approach could be simplified further using the scalar approximation. This 

approximation is used when there is no interest in distinguishing explicitly between 

different polarisations. In addition, if the discontinuity of the refractive index at the 
interfaces between layers is small or the field amplitude is small where there is a large 

change in the refractive index, the third term of Eqs. 2.45a and 2.45b could be ignored 
leading to the scalar wave equation [ 10,17,19,22,23] 

a2 E 
ax + ay, 2 + (kön2 

- kZ )E =0 (2.47) 

where E represent any component of the vector electric field E. The application of the 
finite difference approximation to the scalar wave equation in (2.47) will give the 
following simple eigenvalue equation [17] 
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A, E=k2E 

where A. is real symmetric band matrix. 

2.4.3 Solving the matrix eigenvalue equation numerically 

(2.48) 

The question of solving the eigenvalue problem in (2.44), (2.46) or (2.48) 

numerically is an important issue because, this will reflect seriously in the overall accuracy 
and efficiency of the algorithm. We have to remember that the requirements for solving 
these eigenvalue equations are to find the eigenvalues (kz) and the eigenvectors (the two 
dimensional field distributions). Generally, the methods of solving an eigenvalue equation 
numerically can be classified as matrix methods and iterative methods [9,26]. The matrix 
approach has the disadvantage of requiring to store or sometimes invert a large matrix. The 
iterative methods such as the relaxation method demand less storage facility and do not 
require an inversion of the matrix. The operation of the relaxation method is very simple; it 
determines the solution by starting with a guess for the eigenvector and improving upon it 
iteratively until convergence is reached, where the eigenvalue kZ also has to be guessed at 
the beginning and updated after a few iterations using, for example, the Rayleigh quotient 
equation [21]. The solution, using the relaxation method, converges to the dominant 

eigenmode, and it can be modified to compute higher order modes [15]. However, in order 
to find the mth mode all m-1 lower order modes have to be computed. and stored in 

advance. Eventually, we expect that as the mode order increases, the accuracy decreases 
due to accumulating errors, and more storage memory is needed. On the other hand, the 

matrix methods like the Shifted Inverse Power Iteration Method (SIPIM) for example 
[9,17,26] coupled with LU factorisation of the eigenvalue matrix, can be employed to solve 
for any eigenvalue (not necessarily the dominant one) and its corresponding eigenvector. 
The search for a particular eigenvalue and eigenvector using the SIPIM is independent of 
other modes; a guess for the eigenvector and a guess near the eigenvalue must be provided 
to start the algorithm. Apparently, the accuracy from the SIPIM for higher order modes is 

expected to be very high compared with the relaxation method since each mode is 

computed independently. 
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Chapter 3 

The Beam Propagation Method 

3.1 Introduction 

The Beam Propagation Method (BPM) is a numerical technique invented in the late 

1970's by Feit and Fleck [1-7], to approximate the solution of the wave equation when 

applied to optical waveguides. The method is very suitable for both classes of 
longitudinally varying and non-varying dielectric devices. The basic idea of the BPM is to 

march any arbitrary transverse field distribution, inside an optical device, from one 
position to another, in the propagation direction over a small distance, where this process 

could be repeated several times to cover the entire length of the optical device. In 

mathematical terms this reads as writing a relationship between two transverse fields 

spaced by a small longitudinal distance using an approximate numerical formula for the 

wave equation where one of the field is always known (the input). The BPM is attractive to 
the designer of optical devices, because it overcomes the difficulties of mode theory when 
applied to complicated structures and because of its flexibility as a propagational 
technique. The main advantage of the BPM over the traditional mode approach is that it 

computes both guided and radiation modes of linear z-variant devices, in the same 
formalism; no special arrangement is needed to account for radiation modes. In addition, 

optical devices containing nonlinear effects are very difficult to analyse using the mode 
theory. On the other hand, it is very simple for the BPM to include the nonlinear part in the 
formulation using little adjustment to the linear version. Generally, the application of the 
BPM to model optical devices proves to be very useful in terms of simplicity and accuracy 
[1-391. 

The classical BPM has been used widely, in the past decade or so, to analyse many 
optical waveguides structures [1-10]. It is mainly an approximation to the scalar wave 
equation in its parabolic form using the Fast Fourier Transform (thus called FFT-BPM). In 
the FFT-BPM, the discretised optical field is simulated by a spectrum of plane waves, for 



the transverse variations, in the spectral domain and a phase correction due to the 

inhomogeneity of the media is introduced in the spatial domain. The role of the FFT is to 

provide a transformation between the spectral domain and the spatial domain, where the 

optical field has to be transformed several times between the two domains for each 

propagational step. Although the computation of the transverse variations using the FFT is 

highly accurate, nevertheless the use of the FFT restricts the overall efficiency of the 

algorithm. In addition to the poor efficiency of the FFT-BPM, a large variation in the 

transverse refractive index profile of optical waveguides will force the method to use 

extremely small propagational steps, resulting in very large computational time. Also, the 

restriction imposed by the FFT makes the method inflexible of using nonuniform grid 

spacing and radiation boundary conditions [10]. 

The original FFT-BPM was based on a split-operator, which is an approximation to 

the scalar paraxial wave equation for small contrast media and only as a forward-going 

technique [1-7]. The scalar approximation of the method neglects the difference between 

different polarisations (see chapter 2), the paraxial approximation restricts the method for 

propagation with small angles with respect to the axial direction, and the one-way 

propagation does not account for any backward scattered reflections. However, since the 

first BPM until now there have been many techniques reported in the literature to improve 

the efficiency and the accuracy of the classical BPM. Generally, it has been found that 

using other approaches than the FFT approximation will lead to a much more efficient and 

flexible method [10-23]. In addition, much work has been done to include other features in 

the BPM such as wide-angle propagation [24-27], backward reflections [28-31], vectorial 
formulation [32-39] and boundary conditions [40-41]. The wide-angle BPM uses a Padd 

approximant technique that overcomes the paraxial limit and accounts for the neglected 

second derivative with respect to the direction of propagation of the field [24-27]. For large 

longitudinal index discontinuity, the bi-directional BPM in [28] , for example, could be 

employed to account for backward reflections. In this method, the field is propagated 
forward and then backward while reflections are computed and stored, and this process is 

repeated several times, to update the forward and backward reflections, until a stable 

solution is obtained. The BPM techniques in [32-38] solves the three-dimensional vector 

wave equation which contains two coupled paraxial equations, to account for the two field 

components (x and y), where they are solved simultaneously. Also the three-dimensional 

semi-vectorial BPM based on the paraxial approximation has been reported in [39]. It uses 

the assumption that the two field components could be decoupled, resulting in two separate 

paraxial wave equations, one for each polarisation, that could be solved independently. The 

decoupling of the two equations reduces the computation time substantially compared to 
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the vector counterpart. In addition, the work in [27] has combined the wide angle feature 

and the vector feature into one BPM. Finally, a technique for the BPM's boundary 

conditions to account for fields that reach the edges of the computational window has been 
implemented using a so-called transparent boundary condition (TBC) [40-41]. This 
technique is particularly useful in modelling waveguides that contain significant scattered 
radiation (e. g. Y -junction). If such scattered radiation is not properly absorbed at the edges 
of the computational window, it tends to reflect back to the region of interest causing 
unwanted interference. 

On the other hand, -improvements of the efficiency and flexibility of the classical 
BPM were mainly concentrated on the replacement of the FFT. An alternative numerical 
technique to the FFT is to-solve the BPM wave equation in the spatial domain using Finite- 
Difference (FD) approximations to replace the partial derivatives in the wave equation 
(thus called FD-BPM) [10-22]. The prime advantage of this process is to avoid the 

excessive time loss in the multiple operation of changing from spatial domain to spectral 
domain for each propagation step. Finite-Elements (FE) also could be used to approximate 
the BPM wave equation in the spatial domain, however FD-BPM has the advantage of 
being simpler to program and more efficient than the FE-BPM [14]. FD-BPM proved to be 

much more efficient and more flexible than the FFT-BPM [10-22], and some algorithms 
are very well suited to parallel computers [45-46]. In terms of efficiency, for example, the 
FFT BPM requires, per propagation step, O(M logM)l operations per transverse dimension 

whereas the corresponding count for the FD methods is O(M) [17]. In addition, the FD 

technique allows for nonuniform discretisations of the transverse fields, and radiation 
boundary conditions can be used at the edges of the computational window [14,22,40,41]. 

Recently, the FD-BPM approach has received wide attention from many workers [10- 

22,32-39,42-441 using different techniques. Strictly speaking, FD-BPMs have two classes 

of expressing the operator formulation, the implicit approach and the explicit approach 
[47,48]. The implicit methods are based on the split-operator using the idea of the 
Alternating Direction Implicit (ADI) approximation (sometimes referred to as Crank 

Nicholson), are the most popular [10-16,19-22], are unconditionally stable, but require 
inversion of a large system of matrix equations for each propagational step. On the other 
hand, the explicit approach has mainly two ways of formulating the problem. The first is 
by using the same operators of the ADI and the FFT and is called the Real Space method 
(RS-BPM) [42-44] which is based on the idea of splitting the finite-difference matrix 
operator into two other matrix operators. The splitting is chosen such that each matrix is 

1M is the total number of discretisadons in one of the transverse direction (x or y). 
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block-diagonal where each block contains a small sub-matrix which may be exponentiated 
analytically [42]. The RS-BPM is unconditionally stable and proves to be much more 
efficient than the ADI because it does not involve solving a system of equations but 

multiplication of small independent matrices [42]. The second approach is truly explicit, 
and thus called the Explicit Finite-Difference method (EFD-BPM) [17,18] which is based 

on applying the finite-difference approximation directly to the wave equation. This leads to 

an algorithm that involves multiplication of the initial optical field with a very sparse 
matrix. However, the EFD-BPM is only conditionally stable, but proves to be very 
efficient indeed. It is important to note that a stable algorithm does not necessarily produce 
correct results. All the three finite-difference methods mentioned before are discussed later 

in this chapter. 

The main emphasis of this chapter is to show the theory of the BPM and to give a full 

understanding of the differences between the different techniques of the method. Some of 

the numerical details are not shown here but they will be given in the following chapters 

when the methods are implemented. In this chapter, the derivation of the parabolic 

equation from the scalar Helmholtz equation is given directly in the next section where the 

relationships between the eigenvalues and the eigenvectors of the two equations are shown. 
These relationships are very useful, since they enable the characteristic solution of the 

Helmholtz to be determined from the parabolic characteristic solutions. All the 

formulations in this chapter will be derived for three-dimensional structures where the two- 

dimensional version (slab waveguides) could be extracted easily, for most cases, from the 

3-D equations by setting off one of the transverse dimension. In section 3.3, the 

formulation and the derivation of the FFT-BPM and the three different FD-BPMs 

mentioned before are shown. Then in section 3.4, two different techniques to compute the 

modes' propagation constants and their three-dimensional field distributions from the BPM 

field for z-invariant waveguides are shown in details. 

3.2 The Parabolic Equation 

The scalar wave equation in (2.13) contains second derivatives with respect to the 

propagation direction z which takes care of propagation in both directions of z. It is very 
convenient to transform the scalar wave equation into an approximate one way equation. 
Let us expand the Helmholtz equation (2.13) into Cartesian co-ordinates as 
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2E22E2+ äy2 
+ 

äZ2 
+ kon2(x, Y, z)fi =0 (3.1) 

We extract a rapidly changing phase factor in the direction of propagation z and write the 

field E(x, y, z) in Eq. 3.1 as 

E(x, y, z) = 4)(x, y, z)e-jk'"°Z (3.2) 

where no is a reference refractive index and ko is the vacuum wave number. It is to be 

remembered for later discussion that c(x, y, z) also represents the solution of the Helmholtz 

equation without the reference phase. Subsisting (3.2) in (3.1) will give the following 

equation 

a24D 
e jkn, z + 

a2W 
e jk, n, z + 

a2W 
e 

jk, n, z 
ax2 ay. az2 

-2 jkono 
ä0-e jk°°"Z -k 2no4be jk°°°Z +k 2n2be jk°°°Z =0 (3.3) 

Now we may rewrite Eq. 3.3 under the parabolic approximation (sometimes referred to as 

the slowly varying envelope approximation) which assumes that the change of field 0 in 

the direction of propagation is very small over a wavelength. This assumption 

mathematically reads as 

a2d' 
« 2k n (3.4) 

az2 °° aZ 

Choosing the reference refractive index no as a representative index value from the 

propagation effective indices of the modes minimises the error caused by the parabolic 

approximation [14]. Then Eq. 3.4 can be simplified into the following parabolic or Fresnel 

wave equation 

22 

2jk°n° 
a ax + 

äY 
+ kö(n2 - no» (3.5) 

where 4, is the parabolic field which is the paraxial approximation to the Helmholtz field 4. 

Both the Helmholtz equation and the parabolic equation have the same set of 
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eigenfunctions and the Helmholtz eigenvalues can be obtained from those of the parabolic 
equation. Let us assume that the solution of the Helmholtz equation can be written as [4] 

(D(x, Y, Z) = Uh (x, Y)e jk`"Z (3.6) 

and the solution of the parabolic equation can also be written as 

$(x, y, Z) = UN (X' Y)e jk. N= (3.7) 

where h and p notations refer to the Helmholtz and the parabolic solutions respectively, 
k= N and kZ, N are the propagation constants of the Nth modes based on the Helmholtz 

equation and the parabolic equation respectively. The functions u(x, y) are the transverse 

mode distributions, and the prime on the Helmholtz propagation constant (h') is just a 

reminder that a carrier phase constant (kono) has been removed from the true value. 
Substituting Eqs. 3.6 and 3.7 into Eqs. 3.3 and 3.5 respectively, gives 

; [(ks: 
N)2 +2konokz'xluN = V2Uh +k2(n2 - n; )u' (3.8a) 

2konoki. NUN = OlUN + ko(n2 
- nö)ur° (3.8a) 

where the transverse Laplacian operator is defined as Di = 
ßx2 

+ä 
ZZ 

. Since the operators 
y 

on the right hand side of Eqs. 3.8a and 3.8b are the same then uN (x, y) = uN (x, y) which 

means that the eigenfunctions are identical and also from the same equations the 

relationship between the Helmholtz propagation constant and the parabolic one can be 

written as [4] 

or 

(ki; 
N 

)2 + 2konokh'x = 2k, noks. N (3.9a) 

ki N 
)Z + 2konokz, N kz. x - 2kono (3.9b) 

then the true Helmholtz propagation constant k= 
,N 

(after adding the carrier phase constant) 

can be computed from the parabolic propagation constant using [4] 
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2kz, N kz, N = kono 1+ 
kono 

(3.10) 

The above relationships are very useful since they enable the eigenvalues and the 

eigenvectors of the Helmholtz equation to be computed from the parabolic counterparts. 

3.3 The BPM Solutions 

As mentioned in the introduction, there are many ways to solve the parabolic 

equation in (3.5) numerically. In this section the formulation of the FFT-BPM and the FD- 

BPMs based on the solution of the parabolic equation are shown. Let us start with the 

famous split-operator which is the basic equation for the FFT-BPM, ADI-BPM and RS- 

BPM. If we write the parabolic equation in (3.5) as 

ý aý(X, , Z) = G4(x, y, z) (3.11) 

where 
iz2 

G 
2kn ßx2 +a2 +k°2 

2 (n2 - n°) ' 
0o Y 

then the solution of (3.11) can be written formally as [47,49,50] 

$(X, Y, Z+ Az) = e(-i&O)4(x, Y, z) (3.12) 

where Az is the propagation interval along the z-axis which should be small. In order to put 

Eq. 3.12 into a computational form, the equation can be rewritten as the following well- 

known symmetrised split operator which is accurate to the second order in Oz as [1-7] 

_jý'ý ýi 
)e(_. 

jam V rl l-jý"d. l 
((-j '82 Vl 

l3 
e(x, y, z+ Oz) = el eee za. e(x, y, z) + O((Az)) (3.13) 

where 

ao = 2kon, 

do(x, y, z) = kö[n2(x, y, z) - n21 
s 

O« = 
aaz (a = X, y) 
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Eq. 3.13 is now suitable for generating a numerical solution. It must be noted that the 

operators in the above equation are unitary for real refractive index and thus the numerical 
solution is unconditionally stable. 

3.3.1 The Fast Fourier Transform (FFT-BPM) 

Eq. 3.13 could be solved numerically using Fourier transforms to compute some 
operators in this equation [1-7]. The transverse space for both the field 4(x, y, z) and the 

refractive index n(x, y, z) is discretised into 2-D mesh points with equal mesh spacing for 

each direction. In the Fourier space the partial derivatives of the transverse directions 
(px, vY) are equal to (-kx, 

-ky) where kx and ky are the transverse wave numbers equal to 

[1-7] 

k=2ni Ml 
xL i= O, tl, t2........ t2I 

xl 

kyMl rLm=O, tl, t2........ t2 
rJ 

where Lx and Ly are the total length of the computational windows in the x and y direction 

respectively and M,, and My are the total number of mesh points in the x and y directions 

respectively. Now Eq. 3.13 can be executed numerically using the following steps; first, 
the discretised field is transformed into Fourier space X(kky, z) and multiplied by the last 

two operators on the right hand side of Eq. 3.13 in Fourier space. The result of these two 

multiplications is inverted back into spatial space and multiplied with the operator that 

contains the refractive index. The result is then transformed again into Fourier space for the 

multiplication with the first two operators on the right hand side of Eq. 3.13 and finally 
inverted into spatial domain to find the field 4 (x, y, z+iz) which is a small distance spaced 
from the field 4 (x, y, z). The operation of transforming from Fourier space and its inverse 

can be executed numerically using the well known algorithm Fast Fourier Transform 
(FFT). Then the field can be propagated to any distance by repeating the same process 
above [1-71. 

3.3.2 The Finite Difference BPM (FD-BPM) 

Another way to solve Eq. 3.13 numerically, other than the FFT approximation, is to 
use finite-differences (FD). FD methods are well known for their simplicity and flexibility 
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where it is desirable to transform complicated mathematical problems into simpler forms. 
This section discusses three different FD methods to solve the parabolic equation 
numerically. 

3.3.2.1 The Alternating Direction Implicit method (ADI-BPM) 

We start again with the split operator equation in (3.13) where this time the operators 
that contain the partial derivatives can be approximated using finite-difference techniques 

rather than the Fourier transform. We use the following Cayley form for the representation 
of these operators, which is second order accurate [49,50] 

AZ a2 
,, 4ao aal 

1+j 
Az a2 

(a = x, y) (3.14) 

4ao aal 

The form of (3.14) could operate on any field F at any stage of the split operator equation 
(e. g. at s) as [49] 

F' (a) (3.15) +J 
Az aal 

I''ýe J&a 
a2 

00 

where s+i is an intermediate stage for F in the split operator. The partial derivatives in 

(3.15) can be replaced by their finite-difference approximations; if the second order central 
difference approximation is used, then the right hand side of (3.15) involves a direct 

multiplication of the discretised field with a tridiagonal matrix, and the operator on the left 

side involves an inversion of a tridiagonal matrix. This method is stable because the 

operator in (3.14) is unitary. On the other hand, if the operator is approximated as [50] 

or 

Az Vi. 
1- 

4 
Az 

aaa2 

] 

l (3.16a) 

-JA 0°J a2 -1 

e=1+j 4[]a 
!o 

aal (3.16b) 
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then this will lead to unstable algorithms, because neither of these two operators is unitary 
[50]. Inserting Eq. 3.14 in (3.13) leads to the most popular ADI-BPM which is an implicit 

finite-difference algorithm that is unconditionally stable [50]. 

3.3.2.2 The Real Space method (RS-BPM) 

Another easy method to deal with the operators that contain the partial derivative, in 

Eq. 3.13, is to use the Real Space method which is an explicit finite difference algorithm 
and also unconditionally stable [42-44]. Let us consider the operator that contains V (as 

the other operator which contains V follows exactly a similar pattern) and assume a 

discrete even number of mesh points M, Using the second order finite-difference 

approximation to the partial derivative acting on a field F, then 

(Fi - 2F1 + F, +, äX2 
(3.17) 

where Ax is the mesh spacing in the x-direction. Expanding Eq. 3.17 into the following 

tridiagonal matrix form gives [42] 

-2 1 
1 -2 1 

1 -2 

[Vx 
Ox2 (3.18) 

-2 1 
1 -2 1 

1 -2 

A similar matrix equation to (3.18) could be written for the second transverse direction y, 

where the diagonal elements in (3.18) and of the second transverse direction could be 

combined with the middle term of Eq. 3.13 ( the one that contains the refractive index); 
(_iu) 

22 
then we may rewrite this term as e where U(x, y, z) = do (x, y, z) - AX2 -2. The 

Y 
matrix of Eq. 3.18 can be written, after the removal of the diagonal elements, as 
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01 
101 

10. 

I°x 
=L 

X2 

01 
101 

10 

(3.19) 

This matrix in (3.19) can be split into two block diagonal matrices, where the splitting will 
be chosen such that each matrix contains independent small sub-matrices (in our case 2 by 

2) which may be easily exponentiated. The splitting of (3.19) is 

01 
100 

001 

_110 
[S"l 

Ax2 

". 00 (3.20a) 

001 
10 

00 
001 

100 

o_100 Sx 
AR2 ` 

01 (3.20b) 

100 

00 

where the operator after splitting can be written as 

elý-2ý 
ox) 

_ eI 
. j_! s= 

(-j2Az 
s; 

l 

Jel 
) 

(3.21) 
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The block diagonal structure of Sx and Sx simplifies the calculation of the operator 

tremendously, because the problem has been reduced to an exponentiation of 2 by 2 

matrices of the form [421 

10 1 
Ax = 10 

(3.22) 

The eigenvalues of Ax are ý1 =1 and ý2= -1 and the corresponding eigenvectors are v1= 

(1,1)T and V2 = (1, -1)T respectively. The exponentiation of (3.21) can be carried out 

analytically as 

e(-n. ý. ) . Ce(-JT. )C-1, ti - 
Az (3.23) 

2a0Ax' 

where 

11 1 
C=[v,, v2]= 1 -1 

C-1 
1 C22 -C12 1 [-l -1 

-1 1 10 
-C21 C11 2 

[e-JT, 0 
0 eJTx 

Then (3.23) is equal to 

-; Sx 

21 -1 0 eftx -i i 

Combining all terms we reach [42] 

e(-n, A. ) _ 
COS 'C- -i sin tix 

= 
[cxx ßx 

(3.24) 
-jsintix cos; Pa 
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Thus we may now show how the operator in Eq. 3.21 can be implemented when it is acting 
on a discretised field F: 

e(-; 
Zao; 

) F, `_e(-; sx)e`-; sý)[Fils 
3.25a 

[F1ý1j 
[FI+J () 

which may be written as 

e"+e _j 
e o. ( 

-JAL S, 
e(za, 

Fý 
= e-; Zý. s, ) F1 

_ 
Fý 

(3.25b) 
[Fý11 

Fi+ý F1+ý 

where 
{ AZ 

a F' 
= e(_ 2a" 

S; F1 
= 

ax ßx Fr 

[FI+1] Fi+, ß= ax Ft+l 

with (i =1,3,5 ............ M, -1) 

+e ez 
S. s" a" F -ý- _) F I=e za, i= ax ßx F, 

{F1+1] 
Fi+i ßx ax F1+i 

with (i = 0,2,4............ Mx) 

Periodic boundary conditions are used for the boundary field points at Fo and FM. +, to 

ensure the unitarity of the operators. This means that the value of FO is set equal to the 
value of FMi and then on the opposite side Fm, +1 is set equal to the value of F1. We must 

note that all the computational operations in Eq. 3.25 are simple summations of two local 

points which makes the method very efficient and highly parallel [45-46]. Now we can 

write the full equation of the RS-BPM which is accurate to the second order in z[ 10,42] 

( ýrý (qs; ) (psr) 
lps: 

) (9S' o 1&U 
ý(X, y, z+ OZ) =eeeee 

)e(psx)e 
"` 

. e(psr)e(ýr)e(ýr)e(ý: )e(ý')e(ý* e (x, y, z) + O((ez)3) (3.26) 

where 
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22 U(x, y, z)=do(x, y, z)-Oxz -0Y2 

__j 
Az 

=9 2a 
2p 

0 

It is to be noticed from Eq. 3.26 that to regain second order accurate formula with respect 

to z, the operator splitting, for each dimension, must be written as three operators rather 

than two operators of Eq. 3.21 [421. 

3.3.2.3 The Explicit Finite-Difference method (EFD-BPM) 

The Explicit Finite-Difference (EFD) Method is the simplest and the most 

attractive BPM method. It involves a direct application of the central finite-difference 

approximation to the parabolic equation [17-18]. Let us consider the parabolic equation in 

(3.5) where we use the following central difference approximation to replace the partial 

derivatives which are second order accurate formulas 

a2F(a) 
_ 

F(a - Da) - 2F((x) + F(a + Da) 
aal Aal 

((x = x, Y) 
(3.27) 

= -F(z + Oz) - F(z - Az) . 2ý) 

az AZ 

Then the Explicit Finite Difference BPM (EFD-BPM) can be expressed simply by the 

following numerical equation [17-18] 

*äz ýi, 
m\Z 

+ OZ) _ 4i, 
m 

(Z - iZ) -äe 
[4)i_i, 

m(Z) 
ýi+1, 

m(Z/, 
° (3.28) 

2jAz 
-ae 

[ei, 
m-i 

(Z) + 4)i, 
m+l 

(Z)l - 
Za0 

Ui, 
m4i, m 

(Z) 

where i and m represent the discretisation of the transverse co-ordinates x and y 

respectively. The propagation of the optical field in Eq. 3.28 is straight forward since it 

involves a multiplication of the input field with a very sparse matrix with only five 

elements in each row, which makes the method very efficient and highly parallel [45,46]. 

This algorithm is stable under the following condition [18] 

-1 
Az < 2kono 

&2 + 
eye + kö Ins 

,- nol (3.29) 
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3.4 The Spectral Method 

In chapter 2, we have reviewed some numerical methods to compute propagation 
constants and field distributions of guided modes for three-dimensional z-invariant 
waveguides. The BPM also could be employed to compute guided-mode propagation 
constants and field distributions. There exist two methods that can compute the 

characteristics of z-invariant waveguides from the evolution of the BPM field. The first is 

called the imaginary distance propagation technique [9,14] and the second is called the 

spectral technique [3,6]. The imaginary distance propagation method first computes the 
field distribution and then calculates the propagation constant from the computed field 
distribution. Opposite to this, the spectral method first calculates the propagation constant, 
and then the field distribution is computed using the computed propagation constant. In the 
imaginary distance propagation method, the parabolic equation is transformed into a 
diffusion equation by replacing the -j in the numerical solution of the equation by unity. 
Then the new numerical imaginary distance solution is used to propagate an arbitrary input 
field to a certain distance while constantly normalising the field to avoid numerical 
instability (overflow). From guided-wave theory, it is known that the lowest order mode 
has the largest propagation constant therefore during propagation it has the highest 

amplification compared to the other modes, and in the limit of large distance the lowest 

order mode dominates. Once the lowest order mode distribution is found, the parabolic 

propagation constant can be obtain using the following relation [9] 

kz = 
55[-(v±e)2 +kö42(n2(x, y) - no)]dxdy 

(3.30) 
55 2nok0e2 dxdy 

The above imaginary distance propagation method can be modified to generate a number 

of lowest order modes [9,14]. On the other hand, the spectral method simply uses the 

spectral correlation function of the BPM field and the initial field to locate the parabolic 
propagation constants in the spectral domain. During propagation of the BPM field (using 

any of the BPM solutions in section 3.3), we may write the correlation function between 
the initial and the BPM fields as [3,6] 

Pa(z) = J54'(x, y, 0) (x, y, z)dxdy (3.31) 
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If the BPM field O(x, y, z) is expressed as the superposition of orthogonal eigenfunctions of 
the z-invariant waveguide 

4(X, y, Z) = aNUN (X, y)e Jk&N= 
N 

(3.32) 

where uN(x, y) and ki N are the eigenfunctions and the parabolic propagation constant of 
the Nth mode of the z-invariant structure. Substituting (3.32) into (3.31) leads to 

PA(Z) = YIaNI 2e-Jk; "z (3.33) 
N 

The Fourier transform of (3.33) is 

Pý (kZ) _ ý' +aN'2S(kz - ki N) (3.34) 
N 

The delta functions in Eq. 3.34 indicate that in the spectral representation` of the correlation 
function Pa(z), there is a series of resonance peaks at kz = kZ. N, and their height values are 

proportional to the mode weight coefficients Ja 42. Thus, we may obtain any parabolic 

propagation constant kz, N, of a z-invariant structure, by performing the numerical 

calculation of the Fourier transform of the correlation function in Eq. (3.31) and then 
locating the position of the peaks in the Fourier spectrum. In the ideal case of infinite 

propagation distance, the Fourier transform of (3.33) gives (3.34), but in practice the field 

can only be propagated to a finite distance. To account for the finite length of z, the 

correlation function in (3.33) is multiplied with a window function w(z) before being 

Fourier transformed [3,50]. A typical Hanning window function can be used which is 

given as [3,50] 

W(z) = 
Ji- cosh 

2Zz ), 
05 z5 Z (3.35) 

0, 
`z>Z 

where Z is the total propagation distance. Then the Fourier transform of the correlation 
function becomes [3) 

N , N) (3.36) P° = IaNJ L(kZ - kp 
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where the line shape function is given by 

Z 

L(kZ - ki. N) =Zj ej(rs-rar 
)=w(Z)dz (3.37) 

0 

After computing this line function numerically, then the parabolic propagation constant can 

,; 
increasing the propagation distance Z will increase be extracted from the spectrum of P, * 

the accuracy of the computed propagation constant (more sampled points). But it is far 

more efficient to use a line shape fitting technique that computes accurately the value of 

the propagation constant from the peak value and its two adjacent neighbouring points (see 

the appendix of [3]). Once the parabolic propagation constant is found, then the Helmholtz 

propagation constant can be computed using the relation in Eq. 3.10. Now, the field 

distribution of any mode can be found using the calculated parabolic propagation constant. 
If both sides of Eq. 3.32 are multiplied by Z-'w(z)eJka' and integrated from 0 to Z, we get 

[4] 

Z 

4(X, y, kZ) =ZJ O(x, y, z)w(z)e 
)t 

szdz (3.38a) 
0 

= laNuN(x, y)L(kZ -k=. N) (3.38b) 

The function in 4(x, y, k, ) in the above equation will show a maximum if kz = k". where 

we can write 4(x, y, kz 
a) as (4] 

$(X, y, ki, 
M1) = aaua(R, y)L(O)+ IaNuN(x, y)L(kZ -kZ. N) (3.39) 

Non 

The second summation is negligible if most of the excited power belongs to the mode 
kz = kZ X, which can be achieved by exciting the input field with a distribution that 

resembles the desired mode. Then the numerical computation of a particular mode field 
distribution from the BPM field can be obtained using Eq. 3.38a with kZ = kZ where the 

integral is performed numerically. 

To summarise, any desired mode of a z-non-varying dielectric waveguide can be 

computed from any BPM field solutions, of section 3.3, using the spectral method, by 

propagating an input field which is very close to the shape of the desired mode field, to a 

certain distance. To find the propagation constant of the mode, first the correlation function 
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in (3.31) is evaluated numerically during the course of propagation, then the result is 

multiplied with the Hanning window function in (3.35) and Fourier transformed. The 

parabolic propagation constant is computed by locating the peak of the mode in the 
spectral domain. To find the field distribution of the mode, the same input field is re- 
propagated using the BPM while performing the integral in Eq. 3.38a numerically after 
replacing the propagation constant in that integral with the already computed one. The 

main advantage of this method over the imaginary distance technique is that it is not 
restricted to computing the lowest order modes, but can be applied to cases where all 
modes, including radiation modes, can be present in the structure [3,4,6,7]. 
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Chapter 4 

Parallel Computing 

4.1 Introduction 

Parallel computers have evolved from many stages of conventional computers 

through the last three decades: the main-frame stage in the 1960s; the mini-frame stage in 

the 1970s; and the personal computers in the 1980s. They are designed specifically to 

speed up the execution of large numerical algorithms using the idea of breaking the 

problem into small pieces and arranging to solve for all pieces simultaneously [1-7]. They 

may contain a few or thousands of processors connected via communication links for 

exchanging data. The original idea of producing a fast computational tool was mainly 
driven by the need of solving large computational problems (e. g. problems containing 

partial differential equations). However, scientific problems are not always the same, 

which means that a multi-purpose parallel machine is required that can solve all kinds of 
large computational problems efficiently (which is not feasible), or that a more realistic 

approach must be adopted, consisting of different flexible designs [1-7). There are two 

principal parallel architectures that can solve most scientific applications efficiently; the 

first is the fine-grain architecture known as Single Instruction Multiple Data (SIMD) 

machines, and the second is the medium-grain architecture known as Multiple Instruction 

Multiple Data (MIMD) machines [2]. Each of these machines has its advantages and 
disadvantages compared to the other, and each has its own application. In addition, some 

applications are well suited to both of them. 

On the other hand, the existence of large scale processors created a new challenge 
for scientists in terms of the difficulty of dealing with such large machines, and in terms of 

reformulating many existing algorithms which were originally derived for serial 

computers. It has to be noticed, however, that the variety and the flexibility of parallel 

computers made it difficult for researchers to program algorithms in the new environment, 
but this has eased the difficulty of finding a new parallel algorithm because it gives the 



freedom of parallelising applications efficiently using different, or combinations of, 

approaches. 

In this chapter, we are concerned mainly with two issues, namely the differences 

between the two parallel machines used in this thesis, and how applications can be 

implemented on these machines. Section 4.2 shows the configurations of the transputer 

array (MIMD computer) and the Connection Machine (SIMD computer) where the 

definitions and the differences between the two parallel mechanisms are illustrated using a 

simple example. The issues of programming MIMD and SIMD machines are discussed in 

section 4.3. These issues deal with new parameters that must be considered in parallel 

programming that were never encountered in serial one. Due to the variety of parallel 

machines and techniques of parallelising applications, it is very difficult to derive strict 

rules for parallel programming as for the serial counterpart. For this reason, section 4.3 

gives important parameters that affect the performance of a certain parallel application. 

Also in the same section, two advanced compilers for developing parallel algorithms on the 

two parallel machines are summarised. Both of these compilers use ordinary FORTRAN 

coding system, which is one of the most popular scientific computer languages. 

4.2 The Parallel Machines 1 

Throughout this thesis, we will be concerned with the following two kinds of parallel 

machines: 
1- The transputer array is a Multiple Instructions Multiple Data (MIMD) which is a 

PARSYTEC super-cluster consisting of 64 IMS-T800 processors each with 4 Mbytes 

RAM and the front end computer to the machine is a SUN-SPARC station 2 [8-9]. 

2- The Single Instructions Multiple Data (SIMD) Machine is a Connection Machine 

CM-200 consisting of 16k (16,384) bit serial processors plus 512 floating-point 

accelerator co-processors and a total of 0.5 G bytes, where the front end computer is 

a SUN (4/370) [10-13]. 

Both of the above machines represent the most common types used frequently in the 

literature [2,7,14,15]. MIMD computing means that many processors can execute 

simultaneously different instructions on different data. We can imagine these processors as 

'These machines were available for use during the course of my PhD program. The PARSYTEC was in the 
Department of Electronics and Electrical Engineering at the University of Glasgow (Glasgow, UK). The 
Connection Machine was in the Edinburgh Parallel Computing Centre at the University of Edinburgh 
(Edinburgh, UK) and was operated on remotely from the University of Glasgow. 
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separate computers without a central control unit. The processors are configured and 
connected explicitly according to the application. This flexibility of the MIMD computer 
means that the programming is more difficult to control in terms of operational 
synchronisation and efficient distribution of computations between processors. However, 

generally this computer is very useful when the algorithm contains several heterogeneous 

tasks to be executed concurrently. Fig. 4.1 shows different common topologies for 

configuring these processors. In the figure, the boxes mean processors and the arrows mean 

communication links between the processors for exchanging data. With these flexible 

arrangements, different algorithms or subroutines could be executed separately and 

simultaneously on different processors [8,9]. 

On the other hand, the SIMD Machine is the most powerful computer available, and 
its application is very useful for massively parallel scientific computing. SIMD means that 
the central control unit of the machine broadcasts a stream of identical instructions to all 
processors, then these instructions are executed simultaneously by all processors on all 
local data that exist in the private memory of each processor. In other words the 

synchronisation mechanism is achieved globally, rather than locally as in the MIMD 

machine. The Connection Machine (CM), in Fig. 4.2, has a SUN computer as a central 
control unit where the code of instructions resides and is executed serially [ 12]. 

To understand the practical mechanisms of these two large computers, the following 

simple example shows how to sum two numerical arrays using two different 
implementations (MIMD and SIMD) for both of the architectures described before. 
Although the following example is very simple, it is intended to focus 'on the principal 
difference between the two machines, and also to help in understanding parallel 

programming languages in the following section. 
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a-Pipeline Topology 

b-Ring Topology 

c-Farm Topology 

d-2-D Grid Topology 

Fig. 4.1 Common transputer topologies. 
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Fig 4.2 The SIMD Machine 

Example 4.1 

Suppose that it is required to sum two large one-dimensional arrays B and C With M 

elements each. 

1-MIMD Implementation: 

Let the summation of these arrays can be divided into equal blocks of data as 

Ai B1 +C1 
A2 B2 C2 B2 +C2 

A= + 

ANP BNP CNP BNP +CNP 
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where the dimension of each block of the arrays is equal to an integer m= M/NP, and NP 
is the total number of processors available in the MIMD system. The summation of each 
block can be executed simultaneously by different processors, as shown in the following 
figure 

Computation 

of Al 

Processor 1 

Computation 

of A2 

Processor 2 

Computation 

of A3 

Processor 3 

Computation 

of A(NP) 

Processor NP 

We can see from the configuration above that each processor executes one block of the 

total summation serially, hence the time for executing this problem will be reduced by 

1/NP compared to the serial execution of using one processor. It has to be noticed that if 

the data blocks of the arrays are not of equal sizes then the overall load is not balanced. In 

another word, some processors have more work to do than others and consequently the 

speed up is reduced from the load balanced case which is the optimum level of speed up. 

2-SIMD implementation: 

Let A also be the summation of the two arrays as (A=B+C) where each element of A 

and its corresponding values from B and C are stored in the same memory of a single 
processor of the CM (M = NP). The mechanism of executing this operation is simply as 
follows. The front end computer sends the summation instruction (A=B+C) to the CM. 

Then all the CM's processors receive and execute the summation instruction 

simultaneously (see the Figure below). 
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C(2) 

A(3) 
B(3) 
C(3) 

The Connection Machine 

P(NP) 

A(NP) 
B(NP) 
C(NP) 

It can be observed from the previous example that there are some similarities 

between the two implementations on both machines. In the MIMD implementation the 

arrays were divided into blocks of data, where as in the SIMD implementation the arrays 

were divided into scalar elements that could be solved concurrently. However, there is a 

feature in MIMD application that has not been revealed in this example, which is the 

ability to execute multiple different tasks (e. g. subroutines or algorithms) at the same time. 

On the other hand, the synchronisation in the MIMD implementation has to be forced by 

the application, but in the SIMD implementation the synchronisation is automatically 

there. 

4.3 Parallel Programming 

Due to the diversity of applications, techniques and parallel machines, it is difficult 

to generalise rules for parallel programming. However, we may write some guidelines that 

are applicable for most situations. As mentioned before, the goal of parallel techniques is 

to speed up the execution of large applications efficiently; thus it is very important to note 

that parallel programming is not a simple extension of serial programs. Although in some 

situations, blind extension of serial programs to parallel may lead to a speed up of the 

execution of the algorithm, a very low efficiency may result. In the parallel environment, 

we must think in parallel terms in order to exploit the maximum efficiency out of the 
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parallel machine. The starting point to design a parallel algorithm would follow one of the 
three following methods [4]: 

1- A modification of an existing serial algorithm. 
2- An invention of a new parallel scheme. 
3- Adapting another parallel method that solves a similar problem. 

The most important element that decides which method to adopt in developing a parallel 

algorithm is the type of the machine involved. In other words, some algorithms are better 

suited to a MIMD machine than to a SIMD machine, and the opposite is also true. From 

the three methods above, the first method may be well suited to the SIMD environment 

since the instruction codes of this computer are executed serially. The second method is 

usually difficult and time consuming; however, for some applications it is the only 

solution. The third method is the most convenient because there is a reasonable amount of 
literature for parallel techniques of scientific problems from different areas of research [7]. 

In most circumstances, the solution of scientific problems of partial differential equations 
is very similar. In addition, there is a great interest in research for parallelising generic 

matrix manipulation methods for both types of machines MIMD and SIMD (e. g. 

multiplication, summation and inversion of different kinds of matrices) [7]. 

The existence of a multi-processor environment, for MIMD computers in particular, 

means that there are several important issues in parallel implementations that are not 

usually addressed in conventional serial computations; namely: task allocation, 

conununication and synchronisation [1]. Task allocation is the first step of MIMD parallel 
implementation, which means breaking the total algorithm into smaller sub-tasks to be 

assigned to different processors. For some applications, this issue could be the bottle neck 
in which there exist sub-tasks that can not be computed concurrently with the others. On 

the other hand, other applications are naturally highly parallel, and the task allocation 

could be a straight forward job. It is also important from the efficiency point of view to 

spread the total workload uniformly across working processors. This is known as load 

balancing, which means that no processor is left idle while others are computing. The 

communication which take place between processors is another very important factor in 

the parallel implementation which reflects seriously on the total performance of parallel 

algorithms. Ideally (see example 4.1), NP processors solving a single problem will be NP 

times faster than a single processor, if zero communication between processors is 

considered. However, practically this is very difficult to achieve because most applications 
require movement of information between different tasks of the problem. In terms of 
parallel computing, very efficient parallel computing requires minimum communications 
overhead. The third issue to be considered is the synchronisation of the computations of 
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sub-tasks, where at some point in parallel algorithms processors must wait for the arrival of 
data or the completion of a certain computation. Consequently, this also could have an 
effect on the total performance of the parallel algorithm. Finally, it has to be said that 
combing all of the above issues for MIMD implementation is not trivial. On the other 
hand, for the SIMD environment the task allocation and the synchronisation issues are 
enforced by the design of the machine, although the communication is also enforced by the 

machine for which processors send and receive data from each other automatically (it does 

not have to be written explicitly). But attention should be paid, for example, to allocating 
corresponding elements of different numerical arrays (when the two arrays have different 

sizes) to the same processor avoiding movement of data inside the machine. 

We may conclude that writing programs for parallel computers is as complex as the 

serial ones, but the debugging could be much more difficult2. Due the difficulties of 
efficient parallel programming and error debugging, here follows some guidelines that we 
use to write a parallel program [2,4,8,9,12]: 

1- Serial: The first version of the application should be tested on a serial computer. 
The test should be in the framework of typical validation of numerical methods : 
accuracy, convergence, stability, and parameters affecting the overall algorithm. It 

could be a big mistake and a waste of time if one were to start to write a parallel 
program without writing a serial one first. In addition, the results of the serial 

program can be used as references for the parallel ones. 
2- Reliability: The first version of the parallel program should not require all the 
features to be fast and complex. It should be reliable, and produce identical results 
to the serial program. Trying to include all the features from the start is almost 

an impossible task especially for complicated applications. For MIMD applications, 
it is always recommended that the first program should be written to run on a few 

processors (e. g. two or three). 
3- Efficiency: If the program is reliable enough then it should be made as efficient as 
possible by balancing the load and minimising the communication overhead 
between processors (some attention should be paid to blind spots especially in 
MIMD applications). 
4- Functionality and Flexibility: We may now increase the range of the problem and 
add other parameters to make the program flexible. 

2. A famous dictum: perfect software never exists. 
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Throughout this work , the PARIX 1.2 operating environment software [8,9] has 

been used to develop parallel algorithms for the transputer array (MIMD machine) and 

CM-FORTRAN 2.1.1 [10-13] has been used to develop parallel algorithm that run on the 

Connection Machine. In the following sub-sections we will discuss these two compilers 

briefly. Some of the operations, and the overall understanding of parallel programming, 

may be clarified during practical implementations of applications on these machines. 

4.3.1 Programming under PARIX [8,9] 

This subsection shows some of the essential elements to develop a parallel algorithm, 

using PARIX and FORTRAN 77, for the implementation on the super-cluster. PARIX is a 

powerful operating software built for PARSYTEC systems, which runs under UNIX 

commands where ordinary FORTRAN 77 could be used for local computations and 

parallel processing commands (e. g. communication) are realised through built-in library 

subroutines. Under PARIX, one main program is needed to run all processors from the 

start to the end, and a copy of this program is loaded, at run time, to all processors. The 

system of processors is arranged into a 2-D grid (see Fig. 4.3). 

4 

x-direction 

Fig. 4.3 The physical network structure of a 2-D configuration for a4 by 3 network. The numbers shown are 
the identification position of processors in term of the 2-D grid. 

Through this arrangement, and using an identification parameter for each processor with 

respect to position in the 2-D grid, different or similar instruction mechanisms by all 

processors can be achieved, where conditional FORTRAN statements are used to execute 
different instructions. To get information about the processors' network topology, Table 4.1 

shows some of the subroutines that could be called, in the main program, to obtain full 
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information about the system such as the number of processors used, the co-ordinates in 
terms of the 2-D grid and the total dimension in the x- and y-directions. 

Instructions Definitions 
Deines the processor identification position in terms of the 2-D 

IDslýYPROCID ( 
grid. 
Determines the total number of processors used. ) NP " ýtPROCS ROCS( ( 

POS (MYPX, MYPY, MYPZ) LL CA 
Determines the co-ordinates of the processor in terms of 2-D grid 

YPZ=1 not used for the super-cluster)- 

CALL GETDIN (DIMX, DIMY, DIMZ) 
Determines the physical dimensions of the 2-D grid (DIMZ=1, not 
used for the super-cluster). 

Table 4.1 Functions under PARIX to determine information about the system in use. 

One of the main features of PARIX is that the number of processors can be decided 

at run time. This feature gives the freedom to write only a single computer code where the 

number of processors and the dimensions in both x and y-directions are variables in the 

main program. Consequently, the same program can run on different number of processors 
without the need to alter the computer code. This feature is very important and desirable in 
MIMD environments' from two points of view. The first is that a multi-user environment 
for the transputer array does not guarantee the availability of the required number of 
processors. The second is that it gives a flexible parameter to the application to be tested 

and applied using different configurations and arrangements without any new 

programming effort. The second step in programming under PARIX is to decide the kind 

of topology that connects the processors by which information is transferred from one 
processor to another. This step depends entirely on the application. A specific virtual link 
from one processor to another could be made explicitly and/or a whole topology (e. g. ring, 
farm, 2-D grid, pipe) could be built using a library call to one of the subroutines in Table 

4.2. Finally, after establishing a topology or links between processors then exchange of 
data from one processor to another is possible through send and receive commands (see 

Table 4.3). 
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Instructions Definitions 
Makes a topology with NL links, where IDTOP is a reference 

IDTOP-NEWTDP (NL) integer to this topology. 
Add a new explicit link between the processor executing the 

LN. 71DDN8WLINR (IDTOP, IDL, IREQ) 
command to the processor of ID=IDL, IREQ is any integer and LN 
is the link reference inte er. 
Makes a ring between NP processors using processors between 

IDTOP-NAXERING (IREQ, NP, XMIN, XM XMIN to XMAX and YMIN to YMAX and LINK contains the link 

AX, YMIN, YNAX, zMIN, ZKAX, ID, reference number. ZMIN and ZMAX not used and should be made 
-1. 

LINK()) 

IDTOP"NARg2DGRID (IREQ, IDIMX, IDI 
Makes a 2-D grid topology between processors (other details see 
above) 

NY, XNIN, XUIAX, YNIN, YNAX, ZNIN, ZMA 

X, MYPX NYPY LINRO) 

Table 4.2 Some intrinsic functions under PARIX to establish virtual links and/or whole topologies for 
processors. (There are similar functions for making FARM and PIPE topologies). 

Instructions Defmitions 

CALL SSND(IDTOP IDR V, L) 
Sends a variable V with length L to a processor with ID=IDR. 

Receives a variable V with length L from a processor with ID=IDS. 
CALL RECV (IDTOP IDS V L) 

Table 4.3 Functions under PARIX for sending and receiving information between processors. 

4.3.2 Programming under CM-FORTRAN [ 10-13] 

CM-FORTRAN is an extension of FORTRAN 77 with the addition of array 

processing operations from FORTRAN 90. It combines the familiarity of FORTRAN 77, 

being one of the best language for scientific computing, the power of FORTRAN 90 which 
is a rich language for manipulating arrays, and the power of the CM as a fast computational 

tool that can handle large arrays using one instruction mechanism. In FORTRAN 77, 

operations on arrays require the usual explicit stepping through all elements to execute 

scalar opeartions. For example, if A is a three-dimensional array, then updating A by a 

scalar requires the following 

DO 10 I1=1, N1 
DO 20 12=1, N2 
DO 30 13=1, N3 

A(I1, I2, I3)=A(I1, I2,13)+10 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 
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Chapter 4 Parallel Computing 

On the other hand, FORTRAN 90 treats arrays as first class objects where it is not 

necessary to reference array elements separately but the whole array may be referenced in 

the operation which means referring to all elements as one block. In FORTRAN 90, 

updating the above A array would simply be 

A=A+10 

From the above, FORTRAN 77 evaluates the updating of A in the order specified by the 

DO loops, but FORTRAN 90 allows the operations on A to be in any order including 

concurrent operations. Therefore in CM-FORTRAN, the (A=A+10) operation is treated as 

a parallel operation where all the elements of A are operated on by different processors. 

Unlike the transputer array (as mentioned before), synchronisation and load balancing in 

the CM do not need any special arrangements because they are enforced by the design of 

the machine. In CM-FORTRAN, there are many intrinsic functions (e. g. FORALL, 

WHERE, etc. ) that enable operations, on arrays or particular sections of arrays, to be 

executed or manipulated concurrently. These functions use the mechanism of one 

instruction operating on multiple data, where the instruction is fully synchronised at all 

processors. One feature of the CM-FORTRAN is that serial and parallel computations can 

be handled in the same computer code, and the declaration of arrays can take either of 

these two modes (serial or parallel). In other words, arrays can have their home in the front 

end computer memory or the CM machine distributed memory in which computations in 

the front end computer are executed serially and computations in the CM machine are 

executed in parallel (see Fig. 4.4). 

Front-End 
Computer 

cm 

Fig. 4.4 The distribution of data between the front end and the CM 
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Both the front end computer and the CM machine work as one unit, but the front end runs 

all the commands of the CM-FORTRAN code (serial and parallel), thereby executing all 

serial or scalar operations locally and sending all parallel operations to the CM for 

execution. All the data of a parallel array are distributed to all CM processors' memory, 

one element per processor. However, large problems may have data sets that are larger 

than the number of processors. In such a situation, the system will create a virtual 

processing mechanism which means that each physical processor simulates a number of 

virtual processors by dividing its local memory in order to accommodates all assigned data. 

The CM receives the instruction from the front end, and distributes it to all processors. 

Then the instruction is executed simultaneously by all processors on their local data. In the 

case that a processor has many virtual processors, the instruction is looped serially around 

all local data for execution. This means that the more virtual processors exist the slower the 

code runs. Due to the synchronisation of instructions, no processor is allowed to execute 

the next instruction until all processors have finished the current one. In the situation where 

processors are excluded from a certain computation, due to a conditional instruction, they 

remain idle until they are reactivated by another instruction. A conditional instruction 

means that the operation is intended for part of the CM array (e. g. summing a part of an 

array). 

Since the memory of the CM is distributed between processors, there are some 
flexible mechanisms that enable processors to access each others memories, where each 

access mechanism depends on the function used to get the data. There are three methods 
for the CM processors to access data. These are the nearest neighbour (news) 

communication mechanism in which each processor gets data from its neighbouring 

processor, all at the same time; the general purpose (router) communication mechanism in 

which each processor gets the data from any arbitrary processor and finally the global 

communication mechanism which takes place in cumulative computations along grid axis 

of arrays or reduction of CM arrays to single values (e. g. the total sum of an array 

SUM (A) ). It is important to note that all of these communications that take place inside the 

CM and the communication between the front end and the CM are transparent to the user. 

The CM-FORTRAN computer code can be also visualised as a program that can 

control two separate systems with separate memories (the front end and the CM). Due to 

this flexibility of having two different data structures of arrays (serial and parallel) in the 

same code, any computational operation that mixes between the two array structures will 

cause the operation to be executed serially in the front end. Consequently, the CM array 
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will be moved element by element to the front end computer to perform the operation, 

resulting in a large reduction in the efficiency of the program. To show this home mixing 

explicitly, suppose that A is a CM array; then the following statement 

A=A+10 

will be executed in the CM and the following statement 

DO 10 I1=1, N1 
DO 20 12=1, N2 
DO 30 I3=1, N3 

A(I1, I2, I3)=A(I1, I2,13)+10 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 

will be executed in the front end despite the fact that the array A is declared as a CM array 

and its elements are distributed among the processors of the CM. Such an operation must 

be avoided when writing a CM-FORTRAN computer code; however, in the event that the 

algorithm demands a mixed home operation, then it is recommended to use CM- 

FORTRAN utility routines to transfer the whole array from one machine to the other. On 

the other hand, the above operation of mixing scalar with CM arrays (A=A+10) results in 

parallel operation where the scalar element, which is residing in the front end, is broadcast 

to all processors for executing the operation . 
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Part II 

Implementations 
(Analysis and assessments) 



Chapter 5 

Two-Dimensional 
Beam Propagation Methods 

5.1 Introduction 

As a first step toward the implementation of the 3-D finite-difference Beam 

Propagation Methods discussed in chapter 3, this chapter shows the implementations of the 
2-D FD-BPMs. Although the aim of this thesis is to model three-dimensional rectangular 

optical waveguides, the 2-D analysis of the BPM is very useful because it is much simpler 
to implement than the 3-D BPM, and also the results of the 2-D BPM can be compared, in 

terms of accuracy, with closed form analytical solutions of z-invariant 2-D waveguide 

structures. In addition, this chapter can be used as a guide for simulation of 2-D 

waveguides and the results of the accuracy analysis can be used as a reference or as an 
indicator for the 3-D implementations. On the other hand, a close look at the literature of 
the BPM theory shows that the analysis and the assessment of the CN-BPM (ADI) are well 

established for 2-D [1-9] and 3-D [10-12] models with comparisons with the FFT-BPM. 

The RS-BPM and EFD-BPM, however, are only implemented and tested using the 3-D 

models [12-17]. In addition, there is no comparison between the performance of all the 

three FD-BPMs in 2-D or 3-D in terms of accuracy and efficiency. 

This chapter consists mainly of three parts in addition to a conclusion at the end of 
the chapter. The first part, section 5.2, contains the 2-D formulation of the three FD-BPMs 

(CN, RS and EFD) of chapter 3. In this section, also the details of implementing the FD- 
BPMs numerically are given. For the 2-D algorithm of the CN-BPM which requires the 
inversion of a tridiagonal matrix for each propagation step, a more efficient recursive 
numerical technique that solves a tridiagonal system of equations avoiding the process of 
storing and inverting the matrix has been discussed numerically. The second part, section 
5.3, contains the results of validating the three 2-D FD-BPM computer codes. As an initial 

experiment to test the mechanism of the FD-BPMs, the propagation of different input 



fields (Gaussian and guided modes) in homogenous and 2-D structure has been considered. 
The second step involves detailed tests on the influence of the discretisation parameters of 
the FD-BPMs, and on the accuracy of the fields and the propagation constants of guided 
modes inside a z-invariant slab waveguide. The spectral method of chapter 3 is used to 
compute the propagation constants of the guided modes from the BPM fields after testing 
the spectral method itself using a simple example. These results are then compared with 
the analytical solutions of the slab waveguide. In addition, comparisons between the 

performance of all the three FD-BPMs are discussed at the end of the section. Section 5.4 

contains a discussion on a modification made to the EFD-BPM to improve the stability 
constraints on the propagational step size. Although the stability of the EFD-BPM is 
improved by this modification it adds a spurious field to the true solution. The third part, in 

section 5.5, contains the application of the CN-BPM to devices that have some practical 

value, like directional couplers and Y -junctions. 

5.2 Two-Dimensional BPM Implementations 

In this section, the three-dimensional finite-difference BPMs of chapter 3 are reduced 

to 2-D and numerically prepared to analyse 2-D waveguides. 

5.2.1 Formulation 

The treatment of two dimensional waveguides, using the BPM, assumes that one of 
the transverse variations of the three-dimensional is zero. Let us assume the TE 

polarisation case (see the analysis of slab waveguides of chapter 2) where we may set the 

y-variation to zero and rewrite the parabolic equation in (3.5) as 

D2 
2jk°n° 

az ax + k°(nZ n°)ý (5.1) 

In the above equation, it has been assumed that the refractive index is a function of x and z 
(n(x, z)). We may now write the three 2-D FD-BPM solutions of Eq. 5.1 based on the 
derivation of chapter 3. 
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5.2.1.1 The Crank Nicholson method (CN-BPM) 

Crank-Nicholson is always referred to as the two dimensional version of the ADI 

[18]. Combining Eqs. 3.11,3.12 and 3.14 for two-dimensions leads to 

1-fie-G 
$(x, z+ Az) = el-jäzo)e(x, z) = ez 4(x, z) (5.2) 

1+j ZG 

where s [a7- 
2 

ö( 2 0) G- 
2kono ax 2kn-n 

Rewriting (5.2) as 

1+ j 
Az a22 

+kö(n2 -na) ý(x, z+Az)= 
{i 

-jaZ+ kö(n2 -no) 4(x, z) (5.3) 
2ao ax Zao ax 

11 

Note that in Eq. 5.2 the refractive index term is combined with the spatial variation. 

Discretising the electric field 4) and the refractive index n in the x-direction, with equal 

mesh spacing Ax, where we apply the second order central finite-difference approximation 

to the partial second derivative with respect to x (see Eq. 3.27), then Eq. 5.3 can be written 

to second order accuracy with respect to z and x as 

Z+AL Z+AZ 

Z+ 

"ý-1 
, f- kö (lný 

_ no 
)4, +eZ _ $Z+ez , ý; 

2a 

OZ Cl $ý+- 24 

Ax I 

ýi -" 
AZ Cm -2$2+$i i +k2(n+ _no14ý (5.4) 
2ao Ox 1 

where i represent the discretisation of the field and the refractive index (i = 1,2,3, ....., Mx). 

Simplifying Eq. 5.4 into a more convenient form of 

Z+DZ Z+AZ Z az 
=Ly $j+j + h14 + $ý-1 -ýý+i + Of - Vi-t (5.5a) 

Ot 

where 

; +°z + hA+Az + ýi+°ý = fii (5.5b) 
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hi =2 
ýeý2 

-2+ex2ko(ni -n0 

gi = 
2aoex2 

+2- ex2kö(n+ - no) 
jeZ 

fl; = -4 +l 
+ gioi - $i 1 

We may notice from Eq. 5.5 that the right hand side S2; is a known quantity containing 

the initial field at z and the left hand side of the equation contains three unknown fields (at 

i+1, i and i-1). Actually, Eq. 5.5 is a tridiagonal matrix equation that can be expressed as 

[181 

hl 1 $ýAZ 

1 h2 1 02 -1 g2 -1 02 

1 -1 
1 -1 

(5.6) 

1 hMý_, 1 $Mx-ý -1 9M. _1 
$M. 

-I 1 hM, $M, 
-1 gM1 $M, 

In writing (5.6), zero boundary conditions for the field points at both edges have been 

assumed. The implementation of the CN method in (5.6) involves two steps; first the initial 

field 4zj has to be multiplied with the tridiagonal matrix on the right hand side of Eq. 5.6, 

and the second step is inverting the matrix on the left hand side of Eq. 5.6. This process is 

repeated several times to cover the entire length of the device. Instead of storing and 

inverting the left hand side matrix of equation 5.6 for each propagational step, a more 

efficient recursive technique that deals with tridiagonal system of equations can be used 

[3,18,19]. Let us consider Eq. 5.5b and assume that one of the unknown fields in (5.5b) can 

be written in terms of one of the other two unknowns [3,18,19] 

ýi+A' = Ri+i'ri+i + Q1+i (5.7) 

where Ri+l and Qj+i are unknown auxiliary functions. If Eq. 5.7 is written in terms of i =i-1 

V+Az = Rini+Az + Qi (5.8) 

and the substitution of (5.8) into Eq. 5.5 will lead to 
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i+z+Az l+ 
(h, + Ri)4i+Az + Qi = Of (5.9) 

We rearrange (5.9) as 

ýi+Az i+i Z+ `Q _ Q1) 
(5.10 (h++R1) (hi+R1) 

and observe the similarity between Eq. 5.10 and Eq. 5.7; the comparison between these 
two equations leads to the relationships between the coefficients by equating their 
corresponding auxiliary functions 

11 
Ri+t -- (h; + R; ) 

R; =- --hi (5. l la) Ri+i 

Qi+i =-- + 
Qº+i 

(S. l lb) (h+ + Ri) Ri+I 

From the above equations, the i values of R and Q depend on the i+l values of these 
coefficients where the coefficients hi and l; are known quantities. The above recursive 

relations for R; and Qi can be solved using the initial values for these two coefficients. 
These initial values can be obtained from the boundary conditions at the extreme ends of 
the computational window. For simplicity we may assume that the fields at the two 
boundaries are zero (00 =x+1= 0). Using OMx+l =0 in Eq. 5.5b when i= Mx gives 

hm. $M + 4M 
-1 _ ýM, (5.12) 

and comparing this with Eq. 5.7 for i= Mx-1 

$M 
-1= 

RM, OM °z + Qu= - RM. 4 °L + eM ýl = QM, (5.13) 

leads to the initial values for the auxiliary coefficients which are 

RM. = -hm. 

QM. =i 
(5.14) 
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The other values of R; and Qi can be computed from Eq. 5.11. Knowing the auxiliary 
coefficients, the field at z+Az can be computed using the recursive relation in (5.7) which 
can be written as 

+äz 

i+Az = 
4i -Qi+i e (5.15) 

R1+I 

The other boundary condition (1o= 0) can be used to start the computation in (5.15) where 
this equation is equal to (for i =0) 

+ez -Q, (5.16) ei 

Here is a summary for the use of the recursive method discussed before. Given an 
optical field which needs to be marched from z to z+ez through a given refractive index. 
The first step is to compute the L1 function in (5.5b) by multiplying the input field (4; ) at 
z with the right hand side tridiagonal matrix in (5.6). Then the auxiliary functions R; and Qi 

can be computed using the recursive relations in (5.1 la) and (5.11b) and starting with the 
initial values in (5.14). Note that the auxiliary functions' recursive equations start the 
computations in the direction of decreasing i, from the top end of the computational 
window, at i= Mx, to the bottom end at i=1. Finally the field (4; ''°Z) at z+Az can be 

computed using the recursive relation in (5.15) and starting with the initial values in (5.16). 

The main advantage of the above recursive method over the usual inversion of a 
tridiagonal matrix is that it requires far less storage memory of the computer [3,18,19]. 

From the discussion above we may notice for z-invariant refractive index the coefficients 
h;, g; and R; can be computed and stored once during the whole calculation. This means 
that two numerical arrays Qi and the field at z+b. z need to be updated. 

5.2.1.2 The Real Space method (RS-BPM) 

From the three-dimensional formula (Eq. 3.26) of chapter 3 we may write the two- 
dimensional Real Space BPM representation as [20] 

$(x, z+ Oz) = e(ps: 
)e(ý: )e(ý: )e(-jýv)e(ps; )e(ýý)e(ý0) 

x, z+0 Az ' 5.17 () $( ) «)) 

where 
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U(x, z)=kö[n2(x, z)-nö]- 
22 

ex 

__j 
ez_ 

q 2a 
2p 

0 

The numerical application of Eq. 5.17 follows a similar pattern to the one discussed in 

chapter 3. Let us expand that discussion to show the practical implementation of Eq. 5.17 

numerically. We may notice that the first three operators and the last three operators of Eq. 
5.17 are exactly the same and obviously their implementations are also the same. The 
implementation of the middle operator (exp(-jOzU/ao)) of Eq. 5.17 is straightforward since 
it involves a multiplication of the discretised component of this operator with its 

corresponding field mesh point (one to one multiplication of mesh points). On the other 
hand the three split operators that represent the transverse variation in Eq. 5.17 could be 
implemented on any discretised field F; as [20] 

ei 

e 
-ý Za' F' 

= e(_i--s: 
) 
e(-J 

s: ) 

% 

rFý 
LFi+ý 

IFi+I 

IF we i 
FI+i 

The execution of the right-most operator on the right hand side of (5.18) could be done by 

replacing the operator with the analytical solution in (3.24). Then the computation of this 

operation reduces to the multiplication of every two neighbouring discrete field points with 

a2 by 2 matrix as (see the derivation in chapter 3) 

where 

1Fi ax P. F, 
F1+ý ßx ax F1+j (5.19) 

with (i = 0,2,4............ Mx) 

ax = cost1, ßx = -jsintix and ;= 
Az 

4aoAX2 

and Mx should be even. The same could be done for the middle operator of Eq. 5.18 where 
the operation can be written as 

79 



a** s" Fi ax ßx Fº 

FI+j ß: ax F1+ý (5.20) 

with (i= 1,3,5............ Mx-1) 

where 
Az 

ax = costix, ßx = -jsin; and tix = 2a0Ax2 

Obviously the application of the left-most operator of Eq. 5.18 is exactly the same as the 

right-most one in (5.19). To summaries the implementations of the three previous steps, 
Fig. 5.1 shows the application of these operators on an even number of mesh points. 

7 (Boundary) 

6 

5 

4 

3 

2 

1 

0 (Boundary) 

i 

Fig. 5.1 A diagram showing the operation of the RS-BPM split operator of Eq. 5.18 on an even number of 
points (in this case the number of mesh points is equal to 6 and two boundary points). The circles represent 
field mesh points and the lines refer to the dependence of the computation of that field mesh point on the 
previous step field mesh points by multiplying with the coefficients in (5.19) and (5.20). 

5.2.1.3 The Explicit Finite-Difference method (EFD-BPM) 

From chapter 3 we may re-write the three-dimensional equation in (3.28) as a two- 
dimensional Explicit Finite-Difference BPM (EFD-BPM) [13-17] 

a, 
2jAz 

ex 
ý$ (z) + $i+1(z)] - 

2ä0 Z Uý$ý (z) (5.21) 
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Also the stability condition for the above equation can be written, from (3.29), as 

r1 
Oz < 2konol 4+ 

ko2ln; 
,ý- nol nax 

l 
(5.22) 

i+2 000 

i+1 

i 

i-i 

i-2 000 

z-Az z z+Az 

Fig. 5.2 A diagram showing the operation of the two dimensional EFD-BPM of Eq. 5.21. The circles 
represent field mesh points and the lines refer to the dependence of the computation of that field mesh point 
on the previous two steps field mesh points by multiplying with the coefficients in (5.21). 

Fig 5.2 shows a simple diagram that describes the dependence of the ith mesh points on the 

previous two steps. The application of two-dimensional EFD-BPM numerically is very 

simple compared to the CN-BPM and the RS-BPM. During the propagation of the EFD- 

BPM field, three 1-D numerical arrays are needed; two to store the field at z and z-Az and 

the third to compute the field at z+Az. We may notice from the EFD-BPM that two fields 

(at z-Az and z) are required to start the algorithm. One may use any other BPM (FFT, CN 

or RS) to find the field at z given an initial field at z-Az and then continue the rest of the 

propagation using the EFD-BPM. A second approach is to calculate the first step of the 
EFD-BPM using a forward difference approximation instead of the central difference of 

the EFD-BPM of Eq. 3.27, which results in an algorithm similar to the EFD-BPM [13,14]. 

On the other hand, we may assume that the field does not change over the first step where 

the refractive index profile can be assumed to be independent of z and the propagational 
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step distance is very small; then the fields at z and z-Az may be assumed to be equal to the 
initial field. For simplicity, the last approach has been adopted in the implementations of 
the EFD-BPM. 

5.3 Analysis and Assessments 

All the three Finite-Difference BPMs (CN, RS and EFD) discussed in the last section 
have been programmed using FORTRAN 77 with double precision accuracy. This section 
shows the results of applying and testing the FD-BPMs using 2-D waveguides. In addition, 
comparisons, in terms of accuracy and efficiency, between all these methods are discussed. 
The most important parameters that affect the overall performance of the BPM are the 
mesh spacing Ax, the propagational step Az, the reference refractive index no and the 
boundary conditions at the edges of the computational window. The choice of the reference 

refractive index no should not break down the parabolic approximation made in (3.4) 

where it was assumed that the envelope is varying slowly. In the case of a single mode 
analysis, no could be chosen as the effective index of the mode (or very close to it if the 
exact value is not known). For multi-mode waveguides, no could be chosen as a 
representative (an average) value of the values of effective indices of the modes [5,21]. On 

the other hand, the choice of the boundary conditions is also important for implementing 

the BPM, particularly for waveguides that produce many scattering fields (e. g. Y-junction). 
If such scattered radiation is not properly absorbed at the edges of the computational 
window, they tend to reflect back to the region of interest causing an unwanted interference 

with guided modes. One way to absorb some of the radiation at the edges of the 

computational window is by placing an absorbing material at the boundary. The practical 
implementation of this absorbing material is to add an imaginary part to the refractive 
index profile near the boundary where the choice of this imaginary value and the thickness 

of the absorbing material need to be investigated properly for every problem [2]. Another 

method is to use what is called transparent boundary conditions (TBC) [22,23]. The TBC 
depends on the idea of allowing the travelling waves toward the boundary to pass through. 
For example, the application of the TBC at one of the boundary (e. g. at x= MX Ax) 

requires that the field should satisfy the following [22,23] 

a= 
-Jkx$ (5.23) TX 

or could be written in a discretised form as [22,23] 
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z+Az z+Az - jk�Az ein. em. -je (5.24) 

where the complex wave vector kX is computed from the previous step by evaluating the 

, -2), 
In order to ensure that only radiation outflow occurs from the ratio 2 

computational window, the real part of kx in Eq. 5.24 must be restricted to positive values. 
The TBC has been applied successfully using the CN-BPM [22,23]. However in some 
circumstances it produces unwanted numerical noises [23]. On the other hand, tests of 
applying the TBC to the RS-BPM showed that the TBC breaks the unitarity of the split 
operators of the RS-BPM after a few propagation steps. For simplicity and to focus on the 
influence of the numerical discretisation parameters in the following analysis, zero 
boundary conditions at the edges of the computational window have been used for both the 
CN-BPM and EFD-BPM methods and periodic boundary conditions have been used for 

the RS-BPM. The periodic BC for the RS-BPM is to ensure that the split operator of the 

method remains unitary. These BC choices are good enough if the boundaries are not 
influencing the propagated field. This can be avoided by setting the boundaries far away 
from the region of interest (e. g. the waveguides regions). The following assessment for the 
FD-BPMs consists of three parts; first the mechanism of propagating different initial fields 
(Gaussian and guided modes) in homogenous and 2-D structure is tested. The second part 
involves detailed tests on the influence of the discretisation parameters (Ax and Az). The 

third part (in section 5.5) is the application of the FD-BPM to some practical devices 

(directional coupler and Y -junction). In addition, the performance of each of the three FD- 
BPMs is also compared. 

The first numerical test involves the propagation of a Gaussian field distribution in 

a homogenous medium. The CN-BPM has been used to propagate a Gaussian field with an 
input half beam width of wo = 2.0 gm and a wavelength of X=1.0 µm inside a 
homogenous medium that has a refractive index of n=1.0 (air). Fig. 5.3 shows the 
evolution of the 2-D Gaussian beam, using the CN-BPM, in the air to a distance of 50 tm 

with ex = 0.05 µm, Az =0" 1 µm and a total window size of X= 50 µm. The same results of 
Fig. 5.3 have been observed using the RS-BPM and the EFD-BPM1. We may observe from 

the figure the spread of the beam during the propagation where the half beam width at z= 
50 µm is equal to 8.2 (w(50)) which agrees with the analytical prediction when using the 
following exact expression for the computation of half beam width of a Gaussian spreading 
at any distance z (24] 

1 As a matter of convenience, all data/figures of similar nature will not be shown. 
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w(z) = wo 1+f z2/(7Cwö/k)2 
] 

(5.25) 

-, , 

i- : Z=So 
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z=30 
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z=10 
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x (micron) 

Fig. 5.3 The evolution of the amplitude of a 2-D Gaussian field in free space at several propagational 
distances using the CN-BPM with an input beam width of 4, Ax = 0.05, Az = 0.1 and A. = 1.0 (all dimensions 

are in µm)" 

Fig 5.4 The symmetric slab waveguide used to validate the accuracy of the FD-BPMs with a wavelength X= 
1.0 (all dimensions are in µm). 
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The second numerical test for all FD-BPMs involves the propagation inside a 

symmetric slab waveguide of Fig. 5.4 with a wavelength of X=1.0 µm. The choice of z- 

invariant waveguide to test the BPM is very useful because this geometry has a well- 
known analytical solution, and comparing the results of the BPM with the analytical 

solution of the slab waveguide of chapter 2 will give an indication for typical values of the 

numerical parameters of the BPM (e. g. Ox and Oz). The 2-D geometry of Fig. 5.4 supports 

two guided modes where the computed effective indices of the first and the second TE 

polarisation modes, using a zero finding routine [25] for the eigenvalue equation in (2.24), 

are neff, 0 = 1.152946585 and neff, 1 = 1.028537146. In the following computations the 

internal interfaces of layers are set half-way between two adjacent mesh points [26]; tests 

showed that this minimises the error caused by the transverse discontinuities. 

Fig. 5.5 shows the propagation of a Gaussian field with a beam width of 1.0 µm 

and a wavelength of 1.0 µm inside the waveguide of Fig. 5.4 using the EFD-BPM. The 

figure shows radiation modes escaping from the waveguide in the course of propagation 

where the evolution of the first guided mode of the structure is taking place. This result, as 
discussed before, shows the ability of the BPM to compute both guided and radiation 

modes in the same formalism. Figs. 5.6,5.7,5.8, respectively, show the propagation of the 

first, the second and the summation of the first and second guided modes of the waveguide 

of Fig. 5.4, using the CN-BPM, the RS-BPM and the EFD-BPM respectively (see the 

figures captions for details). The guided modes used as the initial input for these 

simulations are computed numerically from the slab waveguide theory of chapter 2 (see 

Eq. 2.22). We have to notice, as discussed in chapter 3, that the field distribution of Eq. 

2.22 which are based on the Helmholtz equation are identical to their corresponding field 

distribution based on the parabolic equation. Since the initial fields of the simulations in 

Figs. 5.6,5.7 and 5.8 are the guided modes of the waveguide, the fields propagate in the 

waveguide undisturbed. However, there is some very little disturbance (unnoticeable in the 

figures) at the early stages of the propagation process which is due to the mismatch 

between the exact analytical guided field and the approximated numerical guided field of 

the initial input. This disturbances can be minimised by reducing the transverse mesh 

spacing [5]. 
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Fig. 5.5 The evolution of the amplitude of a 2-D Gaussian field inside the waveguide of Fig. 5.4 at several 
propagational distances using the EFD-BPM with an input beam width of 1.0, Ax = 0.1, Az = 0.025 and .% _ 
1.0 (all dimensions are in µm). 
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Fig. 5.6 The propagation of the first guided mode (amplitude) inside the waveguide of Fig. 5.4 at several 

propagational distances using the CN-BPM with Ax = 0.05, Az = 0.1 and X=1.0 (all dimensions are in µm). 
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Fig. 5.7 The propagation of the second guided mode (amplitude) inside the waveguide of Fig. 5.4 at several 
propagational distances using the RS-BPM with Ax = 0.05, Az = 0.00625 and I =1.0 (all dimensions are in 
µm). 
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Fig. 5.8 The propagation of the sum of the first and the second guided modes (amplitude) inside the 
waveguide of Fig. 5.4 at several propagational distances using the EFD-BPM with Ax = 0.05, ßz = 0.00625 
and A. = 1.0 (all dimensions are in µm). 

Generally, it has been noticed from testing all FD-BPMs, and will be shown later in 

this section, that the accuracy increases by reducing the mesh spacing Ax. This agrees with 

the prediction of the numerical theory where the error reduces by increasing the mesh 

points (more sampled points). On the other hand, the three algorithms of the FD-BPMs 

converge differently by changing the longitudinal step size A z. The accuracy of the CN- 

BPM is almost unaffected by the size of Az, the accuracy of the EFD-BPM is also 

unaffected by the size of the Az, provided that Az is lower than the stability limit in (5.22) 

and the accuracy of the RS-BPM converges by reducing Az. Fig. 5.9 shows the output RS- 

BPM fields after propagating the first guided mode of the waveguide of Fig. 5.4 to a 
distance of z= 100 µm using different longitudinal step size Oz for each simulation. The 
figure shows that as Oz is reduced the field of the RS-BPM converges to the right shape. In 

order to show the influence of Ox on the accuracy of the FD-BPMs, the first guided mode 

of the waveguide of Fig. 5.4 was propagated, using all three FD-BPMs, to a distance of z= 
100 µm with a small fixed Az = 0.00625 µm and computing the absolute field difference 

between the analytical field and the output field which is defined as 
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Error = 
ýIaualcW 

- $sPM 1 (5.26) 

and for several values of Ax. Figs. 5.10,5.11 and 5.12 show, respectively, the absolute 
field difference for all three FD-BPMs using different Ax of values equal to 0.25,0.1 and 
0.05. From the three figures, generally the field error decreases as the mesh spacing Ax is 

reduced where the largest error occurs near the interface between layers and this is due to 

the large difference between the guided refractive index and the substrate refractive index. 
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Fig. 5.9 The convergence of the RS-BPM field for the propagation of the first guided mode of the waveguide 
of Fig. 5.4 to a distance of 100 µm with Ax a 0.1 and using different longitudinal step size Az for each 
simulation. The numbers on plots refer to the size of Az used in the computation (all dimensions are in µm). 
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Fig. 5.10 The absolute field difference (Eq. 5.24) produced by the CN-BPM, the RS-BPM and the EFD-BPM 
after propagating the first guided mode of the waveguide of Fig. 5.4 to a distance of 100 using Az = 0.00625 
and Ax = 0.25 (all dimensions in run). 
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Fig. 5.11 The same as Fig. 5.10 except Ax = 0.1 µm. 
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Fig. 5.12 The same as Fig. 5.10 except Ax = 0.05 µm. 

In the following assessment, the influence of Ax and Az on the value of the effective 
index of the mode is studied by computing the BPM effective index and comparing it with 
the analytical value. The computation of the BPM effective index of the mode was carried 

out by the spectral method which is discussed in chapter 3. First the accuracy of the 

spectral method was examined by assuming that the function Pc(z), in (3.31), consists of a 

sum of [27] 

io 
P, (Z) = jt"= (5.27) 

N. 1 

where the assumed values of kZ, N are ranging from 400 to 800 cm-1 in an increment of 40 

cm-1. The weight of all the ten functions are taken to be unity. The function in (5.27) was 
computed numerically using a total of IZ = 8192 steps with an increment of 10 µm. Then 

Eq. 5.27 was multiplied with the Hanning window function (see Eq. 3.35) and the result 
was Fourier transformed to obtain P: (kZ. N) . In the Fourier domain the function Pw(kZ, N ) 

was then analysed to re-compute the numerical values of the kz, N. Fig. 5.13 shows the 
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modal spectrum of P, * (kZ, N) versus kz where kZ = (2ni)/Z, U= 0, ±1, ±2, ±3 . ............ ±V2) 

and Z is the total z distance. The figure shows ten peaks of equal amplitude near the 

assumed eigenvalues. From the data of Fig. 5.13, the line-shape fitting technique [28] was 
then employed to compute the exact location of the eigenvalues. Table 5.1 shows a 
comparison between the true and the calculated kz, N. From the table, we can observe the 
high accuracy of the spectral method with a maximum error of the order of 4x 10-6. Figs. 

5.14 and 5.15 show, respectively, the modal power spectrum for the 2-D slab waveguide of 
Fig. 5.4 excited with the first guided mode and a Gaussian field with a half beam width of 
0.5 µm. The only peak of Fig. 5.14, which is in the positive portion of the plot, belongs to 

the TEp mode. On the other hand, Fig. 5.15 shows the a large peak in the positive section 

of the plot which belongs to the TEO mode and many peaks in the negative section of the 

plot that are associated to radiation modes (see Fig. 5.5). 
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Fig. 5.13 The modal spectrum of the assumed ten harmonics of Eq. 5.27 (see text for details). 

92 



N True k Computed kz. N 
1 400.000000 400.000002 

2 440.000000 440.000004 
3 480.000000 480.000004 

4 520.000000 520.000003 

5 560.000000 560.000002 

6 600.000000 600.000002 
7 640.000000 640.000001 
8 680.000000 680.000001 

9 720.000000 720.000001 
10 760.000000 759.999999 

Table 5.1 Comparison between the true and the computed eigenvalues of the assumed ten harmonics of Eq. 
5.27 using the spectral method. 
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Fig. 5.14 The modal Power spectrum for the slab waveguide of Fig. 5.4 excited with the TEO guided mode 
using the CN-BPM with Ax = 0.05, Oz = 0.1 and a total distance Z =102.4 (all dimensions are in µm). 
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Fig. 5.15 The same as Fig. 5.14 except the initial input field is a Gaussian beam with a half beam width of 0.5 

pm and? -1A. 

To study the influence of Ax and Az on the effective indices of the three FD-BPMs, 

the TEp of the symmetric slab waveguide of Fig. 5.4 was used as an initial input field 

where it has been propagated to a fixed distance of z= 102.4 µm using all FD-BPMs. The 

spectral method is used to compute the effective index of the TEO (n ) from the BPM 

field. Fig. 5.16 shows the percentage error difference which is defined as 

Percentage error difference = Ins ö ý' -n (x 100 (5.28) 
Offlo 

as a function of Oz for different Ax using the CN-BPM, the RS-BPM and the EFD-BPM. 

From the figure we can observe that the error generally decreases as Ax is decreased for the 

three algorithms. The figure also shows that the accuracy of both the CN-BPM and the 
EFD-BPM are not very sensitive with the change of Oz but Oz for the EFD-BPM must be 

less than the limit of the stability condition of (5.22). We must note from this stability 

condition of the EFD-BPM that as Ax is decreased, Az must be also decreased. On the 

other hand, Fig. 5.16 shows the convergence of the RS-BPM as a function of Az and also 

noticing, as for the EFD-BPM, that Az must decrease as Ax is reduced. 
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Fig. 5.16 The percentage error difference of the first guided mode FD-BPMs' effective index using the CN- 
BPM (+), the RS-BPM (*) and the EFD-BPM (o) as a function of the longitudinal step size Az for a) Ax 
0.5, b) Ax = 0.25, c) Ax = 0.1 and d) Ax = 0.05 (all dimensions are in pm). 

In order to compare between the efficiency of all the implemented FD-BPM 

methods, Fig. 5.17 shows the CPU time per propagational step as a function of the total 
transverse mesh points M,, for the three algorithms discussed before. The speed of the 2-D 
FFT-BPM has been included in the figure for comparison. It can be observed from the 
figure that the speeds of the three FD-BPMs are much faster than the FFT-BPM. On the 

other hand, comparisons between the three FD-BPMs show that the EFD-BPM is 2.4 faster 

than the CN-BPM and 3.2 faster than the RS-BPM when M. = 1100. A 486 personal 
computer with a speed of 33 MHz has been used for the speed computations of Fig. 5.17. 
Finally, using the results of Figs. 5.16 and 5.17, we may conclude the following. Both the 
EFD and the CN are more efficient than the RS since the latter converges using smaller Az 

than the first two and also the speed of the RS is slower, per propagation step, than the 
speed of EFD and the CN. For large Ax, both the EFD and the CN produce similar results 
near the same Az, and that shows the EFD is more efficient since it is faster per 
propagational step. As Ax decreases, the EFD requires smaller Az for stability constraint 
and that implies that the CN is more efficient for very small ex. 
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Fig. 5.17 Comparison between the 2-D speed of the CN-BPM, the RS-BPM, the EFD-BPM and the FFT- 
BPM as a function of the transverse mesh points (Mx). 

5.4 The Modified EFD-BPM 

The simplicity and the high efficiency of the EFD-BPM make it a very attractive 
technique to analyse optical devices especially for three-dimensional applications. It turns 
out that a slight modification to the EFD-BPM improves the stability limit on the 
longitudinal step size of the method by many fold. If the field ýi (z) in Eq. 5.21 is replaced 
by the following relation [18,291 

ei (Z) =2 
[ei 

\Z + OZ) + ei (Z 
- Az)] (5.29) 

then this will lead to 

4, i (z + Az) =V4i (z - Az) - Vi [ei-i (Z) + ei+i (z)] (5.30) 
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where 

_2+V, V` (2-V, ) 

V+ - 
(2Az)/(jkon0Ax2) 

(2-Vi) 

Az 2_+ iz Vi 
jk no AX2 

ko(ni (Z) -n2. ) 

The above method is referred to in the literature as the Du Fort-Frankel scheme [ 18, 

29], and for simplicity we will refer to it as the Modified Explicit FD or in short as the 

MEFD-BPM. Tests for the MEFD-BPM showed that the technique is stable for 

propagational steps higher than those of the EFD-BPM and produced very close results to 

those of the CN-BPM. In addition the computations in Eq. (5.30), along the direction of 

propagation, can be divided into two separate sets (see Fig. 5.18) in which one of these sets 

could be used in the computation. This splitting for the total mesh points reduces the 

amount of computation by half while retaining the same accuracy. However, during the 

analysis of the MEFD-BPM, a spurious field was observed which restricts the usefulness 

of the method. Fig. 5.19 shows the power spectrum for the 2-D slab waveguide in Fig. 5.4, 

excited with the first guided mode using the MEFD-BPM. Comparison between this figure 

and the results of the CN-BPM in Fig. 5.14 shows that there exists an extra peak on the 

right hand side of the guided mode peak of Fig. 5.19, which is believed to belong to a 

spurious field. The height of this peak gets smaller by reducing the step size Az. Although 

the height of the peak is small compared to the height of the guided mode peak, it was 

concluded that the MEFD-BPM is not useful unless the fake field is fully removed. 

However, recently the MEFD-BPM has been published in [30] without any reference to 

this spurious field2. From [30], the Von Neumann strategy was used to give the following 

relation for the stability of the MEFD-BPM for real refractive index 

AZ :5n? 
_ nz 

Ax where n> no (5.31) 
0 

2 This reference was found during the time of writing this chapter. 
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Fig. 5.18 The split of the total mesh points of the MEFD-BPM into two independent sets (black circles set 
and white circles set) which reduces the total computational time by half. The gray circles indicates the total 
mesh points of the input. 
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Fig. 5.19 The modal power spectrum for the slab waveguide of Fig. 5.4 excited with the TEO guided mode 
using the MEFD-BPM with Ax = 0.05, Az = 0.1 and a total distance Z= 102.4 (all dimensions are in µm). 
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Chapter 5 Two-Dimensional Beam Propagation Methods 

5.5 Applications 

In this section, the CN-BPM is applied to practical devices of two-dimensional 

directional couplers and Y-junctions. The directional coupler consists of two coupled slab 

waveguides of Fig. 5.4 separated by a distance s. Fig. 5.20 shows the dimensions of the 

directional coupler used in the analysis with a wavelength of ?. =1.0 µm. 

X 

Fig 5.20 The directional coupler geometry used in the analysis with a wavelength ?=1.0 (all dimensions are 
in µm). 

In order to validate the results of the BPM, the following well-known expression, 

obtained from the coupled mode theory for the computation of the coupling length, has 

been used [2) 

_ 
Tt r2rze(-rs) ga (5.32) L` 
2ý kZ[1 + (r d/ 2)][rg + r6 

where ý is the coupling coefficient of the coupled slab waveguides of Fig. 5.20 (the rest of 

the parameters are defined below Eq. 2.19). In the following computations, the TEO guided 
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mode of the slab waveguide of Fig. 5.4 was used as an input to one of the slab waveguides 
of Fig. 5.20. Fig. 5.21 shows the propagation of the field to a distance equal to one 
coupling length of Eq. 5.32 with a separation of s=1 µm. The figure shows the exchange 

of power from one waveguide to the other, and also shows the close agreement of the 
coupling lengths between the analytical, which is equal to Lc = 358.8 µm, and the CN- 

BPM. The same has been repeated to two more analyses, one is by decreasing the 

separation distance s and the other is by increasing it. The results of Figs 5.22 and 5.23 are 
for separation distances of s=0.5 and 1.5 µm respectively, under the same conditions of 
that of Fig. 5.21. The analytical coupling lengths when the separation s=0.5 and 1.5 µm 
are Lc = 59.15 and 2176.6 µm respectively. These values agree with the CN-BPM analysis 
in the two figures, noting that the BPM simulation in Fig. 5.22 is for a distance of two 

coupling lengths. 
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Fig. 5.21 The propagation of the T'EO guided mode of the single slab waveguide in Fig. 5.4 inside the coupled 
slab waveguide of Fig. 5.20 with a separation distances = 1, The total propagation distance used is equal to 
one coupling length, 0x = 0.05 and dz = 0.1 (all dimensions are in µm). 
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Fig. 5.22 The same as Fig. 5.21 except s=0.5 µm and the total propagation distance of two coupling lengths. 
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Fig. 5.23 The same as Fig. 5.21 except s=1.5 µm and the total propagation distance of one coupling length. 
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The second practical application for the CN-BPM is to simulate the Y-junction in 
Fig. 5.24 with a wavelength of ?=1.0 µm. In the simulation, the TEO guided mode of the 

combined waveguides was used as an input to the Y-junction. Fig. 5.25 shows the 

simulation, using the CN-BPM, when the half branching angles are equal (al = (X2 = 2.5 

degrees) forming a symmetric Y-junction. It has to be noticed that the branched 

waveguides support only one guided mode. From the figure, we may notice that the input 

field has been separated into two equal and symmetrical output fields, each having the 

shape of the guided mode of the branched waveguide. The separation between the two 

output peaks of the fields is equal to 4.875 µm which is very close to the expected value. 
The second test involves the simulation of an asymmetric Y-junction. Fig. 5.26 shows the 

results of modelling the asymmetric Y-junction where the half branching angles are equal 
to a1=0 and a2 = 2.5 degrees. The figure shows that the two fields split asymmetrically 

compared to the previous analysis. We may also notice that the peak of the field of the 

straight waveguide is shifted toward the centre of the branched waveguide. 

i 

1.0 

Fig 5.24 The Y -junction geometry used in the analysis with a wavelength ?, =1.0 (all dimensions are in µm). 
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Fig. 5.25 The simulation of a symmetric Y -junction, of Fig. 5.24 where al = a2 = 2.5 degrees, using the CN- 

BPM with Ax = 0.025 and Az = 0.1 (all dimensions are in pm). 
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Fig. 5.26 The simulation of an asymmetric Y -junction, of Fig. 5.24 where a 1= 0 and a2 = 2.5 degrees, using 
the CN-BPM with Ox = 0.025 and Oz = 0.1 (all dimensions are in µm). 
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5.6 Conclusion 

In this chapter, the formulations and the numerical implementations of the three 2-D 
FD-BPMs of chapter 3, have been discussed. A recursive numerical technique has been 

used which solves the tridiagonal system of equations, created by the CN-BPM algorithm, 

and which uses a very low computer storage memory. The three FD-BPM computer codes 
have, been tested, on a normal serial PC, to propagate different initial fields in a 
homogenous medium and a 2-D slab waveguide. To assess the accuracy analysis for the 

three methods, the spectral technique was tested and used to compute the propagation 

constants from the BPM fields for the propagation of guided modes of z-invariant slab 

waveguides. It has been observed that the accuracy, compared to the analytical solutions, 

of the three algorithms improves by decreasing the mesh spacing Ax. On the other hand, 

while the accuracy of the RS-BPM converges by reducing the longitudinal step Az, the 

accuracy of both the CN-BPM and the EFD-BPM is not sensitive to the change in Az, 

provided that Az of the EFD-BPM is less than the stability limit of the method. Also it has 

been noticed that Az for both the RS-BPM and EFD-BPM must be decreased when Ox is 

reduced for the first to converge and for the second to remain stable. Then a comparison 
between the speed of all the three FD-BPMs with the speed of the 2-D FFT-BPM showed 

that the FD-BPMs are much faster, per propagational step, than the FFT-BPM. On the 

other hand, comparison between the speed per propagational step of the three FD-BPMs 

showed that the EFD-BPM is faster than the other two methods and the CN-BPM is faster 

than the RS-BPM. Finally, it has been concluded that both the EFD-BPM and the CN- 

BPM are more efficient than the RS-BPM since the later converges using smaller Az than 

the first two and also the speed of the RS-BPM is slower per propagational step. The 

comparison between the EFD-BPM and the CN-BPM shows that the EFD-BPM is more 

efficient than the CN-BPM at large Ax, since both algorithms produced similar results 

using the same Oz and the EFD-BPM is faster, per propagational step, than the CN-BPM. 

On the other hand as Ax decreases, the EFD-BPM requires smaller Az for stability 

constraint, which might suggest that the CN-BPM is more efficient for very small Ax. To 

improve the stability limit of the propagational step of the EFD-BPM, a slight modification 

to the EFD-BPM equation was needed. Although this modification has improved the 

stability of the EFD-BPM, it also introduced a spurious field to the true solution. Then, as a 
final check on the mechanism and the accuracy of the FD-BPMs, the CN-BPM was used to 

model practical 2-D devices, where it has been applied to simulate the propagation of 

guided modes in a directional coupler and aY -junction. 
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Chapter 6 

Parallel Three-Dimensional 
Beam Propagation Methods 

6.1 Introduction 

The previous chapter showed that the three FD-BPMs are very efficient when applied 
to the analysis of 2-D structures, because the computation involves only one-dimensional 

numerical arrays. On the other hand the FD-BPMs are time-consuming when used to 

analyse 3-dimensional devices accurately, for several reasons [1-3]. First, the 3-D nature of 
the rectangular waveguides leads to a large computational problem; second, some practical 
devices contain multiple coupled linear and non-linear waveguides which are generally 
longer than several hundreds of wavelengths; third, the existence of large-contrast media 

will force the BPM to use small transverse mesh sizes and/or small longitudinal step sizes 
for convergence or stability reasons. Obviously 

, this will multiply the computational effort 
many-fold. The computational resources used (conventional serial computers) are not 
adequate for this kind of problem. In these circumstances, it is natural to turn to parallel 

processing implementations in order to achieve practical run times for realistic devices [I - 
31. Already, substantial improvements in the speed of parallel over serial computation have 

been achieved for a number of major mathematical applications [4,5]. However, not all 

serial methods are readily adapted to the parallel environment and care needs to be 

exercised in selecting the appropriate method for parallelisation. Generally, as discussed in 

chapter 4, problems that can be divided into smaller sub-problems where each is spatially 
localised to minimise the communication cost, are most suitable for parallel 
implementations. For example, the 3-D FFT-BPM is inefficient in the parallel environment 
because it requires, for each propagational step, information from the entire spatial domain 
for the computation of each spatial point, and this involves extensive communication time 
[3]. This adds also to the poor efficiency of the FFT-BPM compared to the FD-BPMs 1. 

I gee chapters 3 and 5. 



On the other hand, comparison between all of the 3-D FD-BPMs described before 

shows that both the RS-BPM and the EFD-BPM are explicit and therefore highly parallel 
due to the locality of the spatial points, which reduces the movement of data between 

processors [1-3,6-8]. On the other hand, the ADI-BPM is much less efficient in the 

parallel domain than the explicit methods because of the required inversion of large 

matrices for each propagational step which is again not naturally localised [3]. Although 

the propagational step of the ADI-BPM is considerably larger than that of the explicit 

methods, the explicit methods are more efficient than the implicit method in two ways: 
first, they are much more efficient per propagational step in normal serial form; and 

second, they gain a larger speed up when run on parallel computers [1-3]. These two 

reasons more than compensate for the constraints imposed on both methods2. 

This chapter shows that the implementation of two explicit finite-difference BPMs 

on the transputer array and the Connection Machine (CM) speeds up the execution of these 

algorithms tremendously. Due to the fact that parallel computers can execute large 

problems rapidly, the parallel FD-BPM allows optical devices to be modelled accurately, 
by increasing the number of mesh points, and gives the freedom to study complicated 
devices that contain multiple waveguides [2]. 

The organisation of this chapter is as follows. Section 6.2 shows an approximate 

attempt to parallelise the first order ADI-BPM on the transputer array and the CM. Section 

6.3 describes the details of implementing the second order EFD-BPM and the second order 
RS-BPM on the transputer array and the CM. In addition the section shows the results and 
full comparisons between the performance of these parallel methods. Section 6.4 contains 

the accuracy assessment of the two parallel 3-D explicit BPMs, where three different rib 

waveguides and three different directional couplers have been analysed and the results 

compared with other serial techniques. Also the section shows some simulation examples 
for propagation inside three-core directional couplers. Section 6.5 contains discussion and 

conclusions for the results of the parallel implementations of this chapter. 

2 Also we section 6.5 for full discussion. 
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6.2 The Alternating Direction Implicit Method (ADI-BPM) 

6.2.1 Formulation 

For simplicity, the first order ADI-BPM will be studied for the implementation on 

serial and parallel computers to analyse the three-dimensional waveguides of chapter 2. 

From Eq. 3.13, the first order three-dimensional split operator can be written as [9] 

JAIV2 
( 

ý(x, y, z+Az)=e `° e °" e '° ý(x, y, z)+O((ez)z) (6.1) 

Using the approximation in (3.14), we may write (6.1), after combing the second and the 

third terms [10], as (see also Eq. 5.3) 

+j 
AZ vx 1+ AZ (v; +da) 4(x, y, z+Az) _ 2ao 2ao 

{1_J-v}{1_J.. (v; + do) O(x, Y, z) (6.2) 
2ao x 2ao 

Equation (6.2) contains four steps to advance the two-dimensional profile of the field from 

z to z+Az. To simplify the process of Eq. 6.2, let us write these four steps as four separate 

equations to be executed in the following order 

$Z*(x, y)= 1-j2az (v +do) e(x, y, z) (6.3a) 
0 

Qz(x, y) = 
läZ 1V2 1- j 

Ox 
10' 

(x, y) (6.3b) 
0 

1+j -2a� Vx $t+äz*(x. y)=fl`(x, y) (6.3c) 

1+j2Z (Vr+do) O: +ez(x, y) =e : +ez"(X, Y) (6.3d) 
0 

Applying the central difference approximation to the partial derivatives in (6.3) leads to the 

following four discrete equations 
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where 
= 

jAz b°` 
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CR, ý =1+ 2by -j 
Az 

di m 
2ao 

c; m=1-2by+j 
Az d1m 
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In the above derivations, zero boundary conditions have been assumed at the edges 

of the computational window. The numerical implementation of the first two equations 

(6.4a and 6.4b) is straightforward because it involves direct multiplication of the fields 

with tridiagonal matrices. On the other hand, the execution of Eqs. 6.4c and 6.4d involves 

inversion of matrices for each propagational step. It should be noticed from the 

implementation of 6.4 that the splitting of the operators into x and y dependence means 

that the operation for computing the variation of the field in one direction can be achieved 

by fixing the variation in the other direction. In other words, the numerical execution of 

Eqs. 6.4a and 6.4d, which represent the y-variation of the field, are computed by fixing i 

for all values of m forming independent numerical lines from the y perspective (see Fig. 

6.1a). Similarly, Fig. 6.1b shows the independent numerical lines for computing Eqs 6.4b 

and 6.4c which are the x-variation of the field. From the two figures, we may observe that 

the computation of each numerical line is equivalent to the numerical computation of the 

two-dimensional CN-BPM. Thus we may imagine the computation of the split operator of 

the three-dimensional ADI-BPM as the computation of multiple (Mx+My) two- 

dimensional CN-BPMs for each propagational step. 
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Vertical numerical line 
m 

(a) 

m 
Horizontal numerical line 

0-45-0-0-ý 0-ý 

i 

(b) 
Fig. 6.1 The numerical execution of Eq. 6.4 by forming independent numerical lines in the x and y directions. 

a) The independent lines for computing Eqs. 6.4a and 6.4d. b) The independent lines for computing Eqs. 
6.4b and 6.4c. 

In the following implementation of the first order ADI-BPM in Eq. 6.4, the recursive 

technique in section 5.2 has been used to solve the tridiagonal system of equations in 

(6.4d) where it has been used for every numerical line of Fig. 6. la. On the other hand, we 

may observe from Eq. 6.4c, for a fixed bx, that the matrices involved are the same and the 

solution requires the multiplication of W. with the inverse of one of the matrices. For 

simplicity, the solution of the tridiagonal matrices of Eq. 6.4c are computed by inverting 
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one of the matrices, using a simple inversion routine [11], and the inverted matrix is stored 
and used for multiple steps propagation. 

6.2.2 Parallel implementations 

The first order ADI-BPM has been implemented on the parallel machines discussed 

in chapter 4. In order to implement the ADI-BPM algorithm on the transputer array, an 

efficient topology to connect the processors has to be selected. Fig. 6.2 shows the 

transputer topology used in the computations. It should be pointed out that the choice of 
the topology in Fig. 6.2 is made because of its simplicity and flexibility to program the 
ADI-BPM on the transputer array, where as other topologies may lead to a better 

performance. Processor 0 in Fig. 6.2 is an interface processor used for user information, 

input data and to facilitate file operations; this processor is not used for computations and 

can be ignored in the following discussion. 

Processor Processor Processor 

fl 
Processor Processor 

0123 NP_1 

Fig 6.2 The transputer topology used in the implementation of the parallel ADI-BPM where NP stands for the 
total number of processors. 

The idea of the parallel implementation is to distribute the work load of the 

numerical computations of the four stages in Eq. 6.4 to all processors equally. Before 

executing the propagation process the matrix in Eq. 6.4c is inverted and stored in the 

memory of each processor of the topology in Fig. 6.2. To execute the computation in Eq. 
6.4a, the discretised initial field «; 

m 
has to be distributed to all processors. In the topology 

of Fig. 6.2, processor 1 is called the "master" processor where all the operations begin and 

end; all the other processors are called the "slaves" and they perform exactly the same 
instructions. The process of broadcasting the numerical array of the initial field to all 

processors is executed using send and receive commands. For example, processor N 

receives the array from processor N-1 and sends a copy of that array to processor N+1. 

Since Eq. 6.4a can be computed using the idea of independent numerical lines of Fig. 6.1a, 

each processor can compute a number of these lines concurrently. The 2-D transverse mesh 
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has been divided horizontally, as shown in Fig. 6.3a, into a number of sections where each 
section, having Mx/(NP-1) points, is assigned to one processor for the computation of m 

in Eq. 6.4a. This arrangement ensures the overall balance of the system. Then the master 

processor (1) passes an array, using the process of send and receive, to collect all the 

computed sections of the array and place them into one array. The process of collecting all 

the sections of the array is necessary because the next step involves the computation in the 

other direction. To compute Eq. 6.4b, the collected field ý; m is distributed to all 

processors. Similar to the previous computation of Eq. 6.4a, the 2-D transverse mesh has 

been divided this time vertically, as shown in Fig. 6.3b, into equal sections of data where 

each section has My/(NP-1) points and each data section has been assigned to one 
processor for the computation of Q'm in Eq. 6.4b. The computation of Eq. 6.4c does not 

need any movement of data because the local points of Eqs. 6.4b and 6.4c are the same; 

then the execution of Eq. 6.4c follows immediately after the completion of computing Eq. 

6.4b. As mentioned before, this step involves the multiplication of the previously inverted 

matrix with SZ; . to find 4, ý, °z'. Finally, the computation of Eq. 6.4d is exactly the same as 

for the computation of Eq. 6.4a in terms of local spatial points. All parts of the computed 
i m&' have been collected into one array, and this array is distributed to all processors for 

the computation of 'j, °z in Eq. 6.4d. To summarise the previous process of parallelising 

the first order ADI-BPM, Fig. 6.4 shows a flow chart describing all the implemented 

parallel steps. 
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Data section for processor NP-1 

Data section for processor 4 

Data section for processor 3 

Data section for processor 2 

Data section for processor 1 

(b) 
Fig. 6.3 The division of the two-dimensional transverse mesh points of the field into equal sections where 
each section is assigned to a separate computer. a) For the computation of the y-variation operator (Eqs. 6.4a 

and 6.4d). b) For the computation of the x-variation operator (Eqs. 6.4b and 6.4c). 

A computer code for the previous parallel ADI-BPM has been implemented on the 

transputer array. The code was written such that the number of processors and the number 

of mesh points in both directions are variables to test the performance of the parallel . 
algorithm by varying these parameters. In addition, the ADI-BPM of Eq. 6.4 has been also 
implemented on the Connection Machine of chapter 4. First, as mentioned before, the 
inverse of the matrix in Eq. 6.4c is computed in the front-end computer serially and the 

result transformed to the CM memory. Eqs. 6.4a and 6.4b are simple complex number 

multiplications and are executed numerically using a single instruction mechanism. In Eq. 
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6.4a, each element of c, ̀,, m and its corresponding element from ý;, forced to reside in the 

same memory of the CM to eliminate data movement. The execution of Eq. 6.4c has been 

made using global CM matrix multiplication, by multiplying the inverted matrix with O, 

to find Finally, the solutions of the independent numerical lines of Eq. 6.4d are 

computed simultaneously using the mechanism of a single instruction; however the 

solution of each line is computed serially, since the recursive technique used is a serial 

method. Also the CM computer code is written such that the number of mesh points in 

both directions are variables. 

the matrix 

Broadcasting *a,, m 
I The input 

Computing 40i mI Eq. 6.4a 

1 Collecting 4, in 
m1 

Broadcasting 4o+ *1 

Computing fl7 
ln 

I Eq. 6.4b 

Computing 4pi ýI Eq. 6.4c 

Collecting "ý mI 

Broadcasting dim 

Computing aI Eq. 6.4d 

Fig. 6.4 Flow chart for the mechanism of paraüelising the first order ADI-BPM of Eq. 6.4 on the transputer 
array using the topology in Fig. 6.2. 
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6.2.3 Speed 
In order to show the performance of the two parallel implementations of the ADI- 

BPM, the algorithm has also been implemented serially using one processor of the 

transputer array. Fig. 6.5 shows the total (computation + communication) execution time 

per propagational step of the serial, the transputer array and the CM implementations of the 
first order ADI-BPM versus the number of mesh points in one of the transverse directions 

Mx (My = Mx). The two curves marked with "CM-8k" and "CM-16k" mean that half and 
full CM resources have been used, respectively. We can notice in Fig. 6.5 that the serial 

and the transputer plots do not contain results exceeding M. = 140, due to memory 
limitations of the computer. The figure shows that as the number of processors increases 

the speed of the transputer implementation increases until NP = 11 with an optimum speed 

up of around five times the serial implementation when M. = 140. Increasing the number 

of processors to more than eleven processors results in a decrease in the speed of the 

algorithm and this is due to the increase in the communication time between processors. 

The figure also shows that the CM implementations are far faster than the transputer 

implementation because of the. larger capability of the CM compared to the transputer 

array. 

100 

60 9I 

50 E 

40 

9OF ............. ............. .......... i ............. , ............................ 
SOF ............. ............. 

70F .......... .....:........................ 

/Sera1. 

NP: 3 .... . 
x NP"6 

....................... NP. 11... . 

.......... ........ 
NP-41 

............ ............. . I..... . i.............................. ! I. 

............. .............;.........................,............................ 
30 ............. ..:...............:.......... ................ ............. .. CM-gk. 

20 ............. ýý" ............ ......... 

:...,... 
CM-16k 10 .......... ............. 

00 50 100 150 200 250 300 Number of mesh points. 

Fig. 6.5 Comparison between the speed, per propagational step, of the serial and the two parallel 
implementations of the transputer array and the CM for the first order ADI-BPM versus the number of mesh 
points in one of the transverse directions with Mx = My (see text for details). 
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6.3 The Explicit Finite Difference Methods 

6.3.1 Equations 

In this section the three-dimensional second order equations of the RS-BPM in Eq. 

3.26 and the EFD-BPM in Eq. 3.28 will be used for the parallel implementations. As a 

matter of convenience these equations are repeated below to show their implementations 

on the parallel computers. The RS-BPM equation is 

"(x, y, z+ Az) = T, Txe(-J'U)° T, T1$(x, y, z) (6.5) 

and the EFD-BPM equation is 

eI. 
m 

(z + Az) = ei. 
m 

(Z 
-, 

&Z) 
-0Z Lý1-l. m 

(Z) + $I+1. 
m 

(z)] 

- 
2jAz 

(Z) + ei,. 
+l 

(Z)] - 
2ýý 

U1 
m$I. m 

(Z) (6.6) 
a, Ay 

o 

where 
T, = e(psr)e(qsr)e(psr) 

T= e(ps')e(4s`)e(ps') 

U(x, y, z)=d0(x, y, z)- 
2 

-e Z 

y 
q=-j-=2p 

0 

It is to be noticed that the implementation of the above two equations is much simpler than 

the ADI-BPM. We may also observe from these equations, as for the ADI-BPM, that the 

idea of independent vertical and horizontal numerical lines of Fig. 6.1 is also applicable. 

However the computation of each numerical line consists of computing independent 

numerical spatial points. For the RS-BPM, the computation of every two spatial points 
from each numerical line is independent (see Fig. 5.1) and for the EFD-BPM, the 

computation of every point is independent (see Fig. 5.2). 
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6.3.2 Parallel implementations 

In order to implement the explicit methods on the transputer cluster, a topology for 

connecting the processors has to be carefully selected to ensure that maximum efficiency is 

gained from parallelising these methods. The 2-D grid topology shown in Fig. 6.6 has been 

chosen for the implementation of both the EFD-BPM and the RS-BPM on the transputer 

array [1,2]. It is to be noticed that this topology is the best arrangement to parallelise these 

algorithms in terms of efficiency and transputer memory distribution. Comparison between 

the 2-D topology and other topologies (e. g. Ring, Farm), for implementing the two explicit 

FD-BPMS, will show that the choice of the topology, in Fig. 6.6, reduces the 

communication overhead between processors to its minimum which is a very important 

factor in parallel implementations. Excluding the processors at the borders of the topology 

shown, each processor has four links connected to its neighbours, where each link is a bi- 

directional communication channel for exchanging information. In the figure, dim(x) and 

dim(y) are the number of processors in the x and y direction, respectively, of the 2-D grid 

topology. 

(l, dim(Y)) -- (2, dim(y)) -------- 
(dim(xý 

dim(y)) 

(1,2) (2,2) -------- (dim(x), 2) 

i 
i 
i 

(1,1) (2,1) -------- (dim(x)1) 

Fig. 6.6 The 2-D grid topology used for the implementation of both the parallel EFD-BPM and the parallel 
RS-BPM. The number shown indicates the position of each processor in terns of the 2-D grid. 

Both the EFD-BPM and the RS-BPM have been implemented on the 2-D grid topology, by 

dividing the total 2-D transverse mesh into 2-D identical blocks of mesh points (see Fig. 
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Chapter 6 Parallel Three-Dimensional Beam Propagation Methods 

6.7) where the size of each block is equal to (Mx/dim(x), M, /dim(y)). Each block of data 

is assigned to one processor for computation [1,2]. 

Y 

Block of mcsh points 

r-- =--. 

QoQo 
A 

Fig. 6.7 The division of the total transverse mesh points of the EFD-BPM and the RS-BPM into equal blocks 
of computational data for the implementation on the transputer array. 

The arrangement of the 2-D topology in Fig. 6.6 and the 2-D blocks of data in Fig. 6.7 will 
ensure that all processors carry out equal amounts of computation, without the need to 
load-balance the transputer system. In addition, it gives the freedom to change both the 

number of processors and the number of mesh points without altering the parallel computer 

code. For every propagational step the processors need to exchange the local mesh points 

at the border of each computational block. The process of transferring the local border data 

to the neighbouring process is required only once for the EFD-BPM and twice for the RS- 

BPM one for each of the spatial variations (TX Ty) of Eq. 6.5. Each processor, as shown in 

Fig. 6.8, has four numerical arrays to store the local border data in addition to the main 

numerical array for the computation of local data block. These four local border arrays are 
transferred to all four neighbouring processors using the mechanism of send and receive 
between processors where four separate subroutines to execute the communication process 
have been used. Fig. 6.9 shows the mechanism of transferring the four local border arrays 

where the arrows refer to send and receive commands. 
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North border Local data block 
0,000 

rig 

+ 
1 

South border 
Fig. 6.8 The local computational data block and the border data for each processor of the 2-D grid topology 
of Fig. 6.6. 

(a) 

(c) 

(b) 

(d) 
Fig. 6.9 The communication mechanism for transferring the border data arrays to neighbouring processors of 
the 2-D grid topology for the execution of each propagational step of the parallel EFD-BPM and the parallel 
RS-BPM; a) local east border transfer, b) local west border transfer, c) local south border transfer and d) local 
north border transfer. 
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These communication instructions were written such that each instruction is executed 

simultaneously along the vertical (of Figs. 6.9a and 6.9b) or the horizontal (of Figs. 6.9 d 

and 6.9c) lines of the 2-D topology of the processors. For example, to transfer the east 
border arrays of Fig. 6.9a, the process starts from the far left processors, along the vertical 
line of the 2-D grid, to the far right processors where all vertical instructions are executed 
in parallel. The same has been done for the other three border arrays (see Fig. 6.9). 

In order to study the gain in speed by using the transputer array both, of the explicit 

methods were also implemented on a single processor (serial computation) of the 

transputer in addition to the parallel implementations. On the other hand the 

implementation of the two explicit methods on the Connection Machine of chapter 4 was 

performed using the single instruction mechanism described before. One global parallel 

instruction is needed to execute the EFD-BPM equation in (6.6). The execution of the RS - 
BPM, however, consists of thirteen serial stages three stages: for each TX or Ty of Eq. 6.5 

and one stage for the middle operator that contains the refractive index profile. Each stage 

was executed using a global parallel instruction [1,2]. All computer codes were written in 

FORTRAN with a double precision accuracy3. 

6.3.3 Speed 

The computer codes of the explicit methods have been tested to analyse practical 

rectangular waveguides4. In this section, the speeds of both parallel explicit methods are 

examined. To concentrate on the efficiency issue of parallel machines, the number of mesh 

points in both directions is set to be equal (MR = My) with uniform grid spacing (Ax and 
Dy). The best way to compare between the two explicit methods and between the 

performance of the two machines is by computing the total CPU time per propagational 

step for different numbers of transverse mesh points and by changing the number of 

processors as well. Fig. 6.10 (in log-log scale) shows the total CPU time of both the second 

order EFD-BPM and the second order RS-BPM per propagational step versus the number 

of mesh points in one of the transverse direction x [1,2]. The figure shows both the serial 

and the transputer results in addition to the CM results for comparison. In the figure, 'serial' 

means a single processor and '2 x 2' means that four processors of the transputer array have 

been used in the computations; other notations can be understood accordingly. 'CM-8k' and 

3 More details are in chapter 4. 
4 See the following section for this analysis. 
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'CM-16k' means that half and full CM resources have been used, respectively. It can be 

seen from the figure that for a fixed Mx the speed of both methods increases as the number 

of processors of the transputer increases. On the other hand, generally the CM speed is 
faster than the best performance of the transputer array. For example at Mx = 400, the CM- 

16k is faster than the 64 processors of the transputer array by 11 times for the EFD-BPM 

and 6.8 times for the RS-BPM. We can notice in Fig. 6.10 that the serial plot does not 

contain results exceeding Mx = 240 for the EFD-BPM and Mx = 250 for the RS-BPM, due 

to memory limitations of the computer. 

To assess the performance of the parallel implementations, let us define the 
following terms: 

and 

Speed up 
Serial Speed 

Parallel Speed 
(6.7) 

Efficiency = 
Speed up (6.8) 

Number of processors 

It has to be noticed that the efficiency calculation, defined by Eq. 6.8, is only for the 

transputer array results; it is meaningless to do that for the Connection Machine because 

the processors are different from those of the transputer array. Fig. 6.11 shows the speed up 
for both of the explicit methods. The figure shows that the speed up for both algorithms, 
for a fixed number of mesh points, increases as the number of processors increases. At Mx 

= 240, the speed-up factors for the EFD-BPM when using the full transputer size (8 by 8) 

and the full CM resources (CM-16k) are around 54 and 547.3 respectively, while the 

speed-up of the RS-BPM when using 8 by 8 of the transputer array and the CM-16k is 

around 60 and 369 respectively. The other performance indicator of the transputer, the 

efficiency, is shown in Fig. 6.12 for both of the explicit methods. It can be seen from the 

figure, for both methods, that for a fixed number of processors the efficiency increases as 
the number of mesh points increases. For MX = 240 the percentage efficiencies of the EFD- 

BPM and RS-BPM are around 98% and 100%, respectively, when using four processors. 
On the other hand, at the same number of mesh points (M X= 240) but using 64 processors, 

the percentage efficiencies of the EFD-BPM and the RS-BPM are around 84% and 94% 

respectively. It can be also seen from Fig. 6.12 that the efficiency of the RS-BPM is always 
higher than that of the EFD-BPM. The reason for this is that the ratio of the computational 
time to the communicational time between processors for the RS-BPM is higher than that 

of the EFD-BPM" 
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Fig. 6.10 Comparison between the speed of the serial and the parallel implementations of the explicit 
methods using the transputer array (M1MD) and the Connection Machine (SIMD-CM). Top) the EFD-BPM; 
Bottom) the RS-BPM. 
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Fig. 6.11 Speed up of both of the parallel explicit methods using the MI MD and the SHAD computers, Top) 
the EFD-BPM; Bottom) the RS-BPM. 
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Top) the EFD-BPM; Bottom) the RS-BPM. 
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Chapter 6 Parallel Three-Dimensional Beam Propagation Methods 

Finally, the comparison between the speed of the two parallel methods shows that the 

parallel EFD-BPM is always faster than the parallel RS-BPM; for example, when using 
16k of the CM at Mx = 1000 the speed of the EFD-BPM is around 6.8 times faster than 

the RS-BPM. 

6.4 Analysis and Assessments 

In this section, the results of the accuracy analysis of testing the two parallel 

explicit methods are shown [2]. Although the accuracy of the serial EFD-BPM has been 

verified by [12], in order to compare between the two parallel algorithms both of the 

parallel explicit methods were tested to analyse three well-known different z-invariant rib 

waveguides. Fig. 6.13 shows the rib waveguide geometry and Table 6.1 shows the 

parameters used in the analysis for the three structures. All the three structures were 
designed for single mode operation using an operating wavelength X =1.55 µm [131. The 

first structure with strong confinement in both lateral and vertical direction is very useful 
for curved waveguides where radiation loss is kept to its minimum. The mode of the 

second structure extends laterally because of the small size of the rib height; this 

waveguide is useful for directional coupler structures, as strong coupling between adjacent 

waveguides shortens the coupling length. The third structure was designed to give a 

relatively symmetric circular shape for efficient coupling to optical fibers [ 13]. 

Computational window 
Y 

X 

Fig 6.13 The rib waveguide used in the analysis of the three-dimensional FD-BPMs. The parameters are in 
Table 6.1. 
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From Table 6.1, the transverse computational window size of structure 1 is small because it 

is a strong guide, whereas structure 3 is a very weak guide; thus the window size must be 

large to minimise the influence of the boundary. In the following calculations, the internal 
interfaces of layers of different refractive indices have been set to be half-way between two 
adjacent mesh points and the reference index no to be the substrate refractive index n. 
[1,2,12,141. 

Structure ng ns nc Xs W Ys D H Yc X- 

window window 
1 3.44 3.34 1.0 3.0 2.0 5.5 0.2 1.1 1.2 8.0 8.0 

2 3.44 3.36 1.0 15.0 3.0 3.0 0.9 0.1 1.0 33.0 5.0 
3 3.44 3.435 1.0 63.0 4.0 25.0 3.5 2.5 2.0 130.0 33.0 

Table 6.1 The rib waveguide parameters used in the computations (see Fig. 6.13) with an operating 
wavelength of ?. =1.55 Nm. 

The first check involves the computation of the fundamental mode indices (n ff) for the 

three structures. The second test is the computation of the coupling lengths (Lc) of 
directional couplers consisting of two-core rib waveguides using the same parameters of 
Fig. 6.13 with a separation gap of s=2 µm (see Fig. 6.14). 

Comnutatinnal win. inw 

Y 

x 

Fig 6.14 The directional coupler rib waveguide used in the analysis of the three-dimensional FD-BPMs. The 
parameters are the same of Fig. 6.13 with a separation distance of s=2 µm. 
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Chapter 6 Parallel Three-Dimensional Beam Propagation Methods 

The power spectral methods has been used to compute the mode indices of the three 

structures from the BPM fields. In the following analysis, the input field is set to be a 

Gaussian field centred in the middle of the guiding layer to excite the fundamental mode of 

the structure. Fig. 6.15 shows the normalised Gaussian input field used to excite the 

fundamental mode of structure 1. 
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8 

Fig. 6.15 The normalised Gaussian input field for structure 1 with a half beam width of 0.65 µm. 

For the computation of the coupling length of the directional coupler, the even and the odd 

super mode indices (ne« and ne«) have to be computed, and the following relation is used 

to compute the coupling length [13,15] 

(6.9) 2l n 
eR -nett 

) 

5 Discussed in chapters 3 (page 50) and 5 (page 91). 
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Fig. 6.16 The normalised Gaussian input field for the directional coupler of structure I with a half beam 

width of 0.65 µm; Top) the even Gaussian input used to excite the even super mode and Bottom) die odd 
Gaussian input used to excite the super odd mode. 
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In order to excite the even super mode, a sum of two equal-amplitude Gaussian fields 

centred in the middle of each arm of the coupler has been launched as an input (see Fig. 

6.16a). The same has been done to excite the odd super mode of the coupler, except that 

the two Gaussian fields have opposite sign (see Fig. 6.16b). 

In the following analysis, the longitudinal distance z is around 0.5 mm which 

involves 65,536 steps when Oz is 0.008 µm (see Table 6.2). Fig. 6.17 shows contour plots 

for the propagation of the Gaussian beam of Fig. 6.15 inside structure 1 at several distances 

using the parallel EFD-BPM and Fig. 6.18 shows the modal power spectrum of this 

analysis. The only sharp peak in the positive portion, of Fig. 6.18, refers to the fundamental 

mode; the other peaks in the negative portion belong to radiation modes. 
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Fig. 6.18 The modal power spectrum for the propagation of the Gaussian beam of Fig. 6.17. 

Tables 6.2,6.3 and 6.4 show the fundamental mode indices neff and the coupling 

lengths Lc of structures 1,2 and 3 respectively, computed by both of the parallel EFD- 

ßPM and RS-BPM [2]. Table 6.2, shows values of neff and Lc for various transverse mesh 

sizes Ax and Ay of both algorithms, as well as for various step sizes Az for the RS-BPM. 

The EFD-BPM is not stable for values of Az larger than those given in Table 6.2. As for 

the 2-D analysis of chapter 5, the results converge as the grid spacing decreases; the 

convergence of the two methods is clearly demonstrated in Table 6.2. In order for the RS- 

BPM to converge, Az should be decreased as the transverse mesh sizes are decreased. It 

can be observed from Table 6.2 that both methods produce similar results around almost 

the same step size, thus we can conclude that the parallel EFD-BPM is more efficient than 

the parallel RS-BPM since it is faster. The results of Tables 6.3 and 6.4 indicate similar 

conclusions to those of Table 6.2; however, it has been noticed that the values of the mode 
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index and the coupling length produced by the EFD-BPM for structure 2, are larger than 
the values of the RS-BPM. To test this further, Ax is decreased to 0.05 for the EFD-BPM 

and the new values of neff and Lc calculated, which are 3.395641865 and 0.8299 mm 
respectively. These are in good agreement with the values of the RS-BPM. 

To validate the results of the parallel explicit methods, Table 6.5 contains published 

results of references [13] and [14] of the same structures for comparisons. FD(1) and FD(2) 

of [ 13] are the solution of the scalar wave equation in (2.47) using the finite-difference 

approximation with different treatment to the interfaces between layers and WAVE is also 

a solution to the scalar wave equation using a function fitting technique. On the other hand, 

the results of [14] are based on the solution of the scalar parabolic equation using the FFT- 

]BPM. It can be observed that the results of the EFD-BPM and the RS-BPM are as accurate 

as the results of Table 6.5 and very close to those in reference [13]. It has been pointed out 
by [14], and can be seen from Table 6.5, that the coupling lengths of the FFT-BPM are 
always shorter than any other method. In addition to the discussion given in [14], Az 

should be decreased further, as for the RS-BPM, in order to arrive at better results. 

Figs. 6.19a, 6.19b and 6.19c show, respectively, the fundamental modes of structures 
1,2 and 3 using the parallel EFD-BPM. Fig. 6.20 shows a three-dimensional plot for the 
fundamental mode of the directional coupler of structure 1, while the second-order mode 

profile is the same except that one of the peaks is reversed (not shown). In order to 
demonstrate the mechanism of the directional coupler, the parallel EFD-BPM was used to 

propagate the fundamental mode profile of structure 1 where this input field is launched in 

the left waveguide of structure 1 of the directional coupler in Fig. 6.14 and using a 
separation distance s=0.4 gm. Fig. 6.21 shows three-dimensional plots for the power 

exchange between the two waveguides using the parallel EFD-BPM at several 

propagational distances. The propagation in Fig. 6.21 was allowed to cover two coupling 
lengths, and the input field is totally recovered at a distance of around z=3.808 mm. 
Finally, the parallel EFD-BPM is used to compute the coupling length in Eq. 6.9 as a 
function of the separation distances between the two waveguides of structure 1. Fig. 6.22 

shows the computed coupling length versus the separation distance s. 
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Ax zy AZ n . ff L, (mm 
(µm) (µm) (µm) EFD-BPM RS-BPM EFD-BPM RS-BPM 

0.2 0.1 0.25 - 3.390792451 - 285.45 
0.125 - 3.392857134 - 300.27 
0.0625 - 3.393297053 - 303.45 
0.035 3.393440335 - 304.52 - 

0.03125 - 3.393403764 - 304.28 
0.015625 - 3.393430250 - 304.52 

0.1 0.1 0.25 - 3.388004414 - an 
0.125 - 3.391420992 - 293.56 

0.0625 - 3.392132577 - 315.68 
0.03125 - 3.392304294 - 321.44 
0.025 3.392362259 - 323.46 - 

0,015625 - 3.392346865 - 322.78 
0.0078125 - 3.392357486 - 323.19 

0.1 0.05 0.125 - 3.382249421 - - 
0.0625 - 3.389903808 - 299.00 
0.03125 - 3.391376826 - 326.32 
0.015625 - 3.391718884 - 333.05 
0.0124 3.391831397 - 335.50 - 

0.0078125 - 3.391802926 - 334.63 

0.05 0.05 0.0625 - 3.388289549 - 256.88 
0.03125 - 3.390725915 - 305.00 

0.015625 - 3.391287509 - 331.34 
0.008 3.391472234 - 340.66 - 

0.0078125 - 3.391425235 - 338.28 
0.00390625 - 3.391459065 - 340.21 

0.025 0.025 0.03125 - 3.375348807 - 24.08 
0.015625 - 3.388199074 - 214.33 
0.0078125 - 3.390513402 - 308.15 
0.00390625 - 3.391051924 - 335.208 

0.002 3.391228915 - 358.80 - 

Table 6.2 The fundamental mode indices and the coupling lengths of structure 1, computed using the parallel 
EFD-BPM and the parallel RS-BPM. 
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Ax Ay L mm) 
(µm) (µm) (µm) EFD-BPM RS-BPM EFD-BPM RS-BPM 

0.1 0.05 0.125 - 3.385005863 - 0.84325 
0.0625 - 3.393453043 - 0.82987 
0.03125 - 3.395147688 - 0.83523 

0.015625 - 3.395536853 - 0.83702 
0.0124 3.395678682 - 0.91000 - 

0.0078125 - 3.395632373 - 0.83731 

Table 6.3 The fundamental mode indices and the coupling lengths of structure 2, computed using the parallel 
EFD_BPM and the parallel RS-BPM. 

Ax Ay A mm 
(µrn) (µm) (µm) EFD-BPM RS-BPM EFD-BPM RS-BPM 

0.1 0.05 0.125 - 3.4364715439 - 1.40587 
0.0625 - 3.436979326 - 1.81475 

0.03125 - 3.437084489 - 1.24674 
0.012 3.437155943 - 1.25277 - 

Table 6.4 The fundamental mode indices and the coupling lengths of structure 3, computed using the parallel 
EFD-BPM and the parallel RS-BPM. 

Stru 

cture 

nff L (mm) 

FD(I) 13 FD(2)13 WAVE13 PBM-FPT14 1 13 13 WAVE13 PBM-FFI'14 

1 3.390617745 3.391291712 3.390449 3.3913 357 341 ai 65.1 

2 3.395166250 3.395429873 3.394888 3.3960 0.797 0.811 0.827 0.71 

L__3 ___ &m3.436842513 
3.436863500 3.436724 3.4365 1.273 1.347 1.968 0.93 

Table 6.5 The fundamental mode indices and the coupling lengths in references 13 and 14 used for 
comparisons. 
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Fig. 6.19 Contour plots for the fundamental modes of (Top) structure 1, (Middle) structure 2 and (Bottom) 
structure 3. 
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Fig. 6.20 The fundamental super mode profile of the rib waveguide directional coupler of structure 1. 
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Fig. 6.21 The power exchange between the two waveguides of the directional coupler of structure I using the 
EFD_BPM with Ox = Ay = 0.1 and Az = 0.025 (all dimensions are in µm). The input field is the fundamental 

mode profile of structure 1. 
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Fig. 6.22 The computed coupling length versus the separation distance s for the directional coupler of 
structure 1 using the parallel EFD-BPM with Ox = Ay =0.1 and Az = 0.025 (all dimensions are in µm). 
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Examples 
In the following demonstrations, the parallel EFD-BPM is used to show the 

propagation of the fundamental mode profile of structure 1 inside the three-core coupler 

shown in Fig. 6.23 with the same parameters of structure 1 in Table 6.1. Three different 

cases of propagating the same initial field inside the three-core coupler were considered; 

the first and the second cases are a symmetric structure when the two separating distances 

are equal (s 1= S2 = 0.4 µm) and the third case is an asymmetric structure when the two 

separating distances are not equal (Si = 0.4 µm and s2 = 0.8 µm). In the first case, the input 

field is launched in the left waveguide while observing, during propagation, the coupling to 

the middle and the right waveguides. The second and the third cases consider the launching 

of the input field in the middle waveguide. Symmetric propagation in the second case is 

expected since the waveguide is symmetric. On the other hand, the structure of the third 

case is asymmetric; thus, an asymmetric propagation effect must be observed. Figs. 6.24, 

6.25 and 6.26 show the propagation of the initial field for the three cases 1,2 and 3 

respectively. From Fig. 6.24, the power exchange mechanism from the left to the middle 

and then to the right waveguides is clearly demonstrated; in addition the opposite process, 

where the field is coupled from the right waveguide back to the left waveguide, is also 

shown. In Fig. 6.25, the expected symmetric coupling from the middle waveguide to the 

outer waveguides is taking place with the reverse process, after a complete coupling to the 

outer waveguides, is also observable where the initial field recovers its original shape. On 

the other hand, Fig. 6.26 shows the asymmetric coupling effect compared to the one in 

Fig. 6.25. 

Computational window 
Y 

X 

Fig 6.23 The three core coupler rib waveguide. The parameters are the same of Fig. 6.13 and the values of sl 
and s2 are given in the text. 

140 



Chapter 6 Parallel Three-Dimensional Beam Propagation Methods 

0 
ýo 

o. 

o. 

06 

06 

0.2 

02 

0 
6 

2 

z 

t 

ýo 

I ao 

0 

2 

x 

y00-y00- 

Fig. 6.24 Case 1, the propagation of the fundamental mode profile of structure I inside the symmetric three- 

core coupler of Fig. 6.23 using the parallel EFD-BPM with Ax = Ay = 0.1, SI = s2 = 0.4 and Az = 0.025 (all 

dimensions are in µm). The input is launched in the left waveguide. 
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Fig. 6.25 Case 2, the same as in Fig. 6.24 except that the input is launched in the middle waveguide forming a 

symmetric propagation profile. 
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Fig. 6.26 Case 3, the same as in Fig. 6.25 except that s2 = 0.8 forming an asymmetric structure. 
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6.5 Discussion and Conclusion 

In this chapter, the implementations of the three FD-BPMs on the transputer array 

and the Connection Machine have been shown in detail. It has been demonstrated that 

implementing the finite-difference explicit versions of the BPM on a supercomputer results 
in a large speed-up of the execution of these algorithms in comparison to the serial 

execution. These methods are very well suited to the parallel environment because they 

inherit the locality of spatial points, which reduces the communication overhead between 

parallel processors. The implementations of the EFD-BPM and the RS-BPM on the 

transputer array showed that around 90-100 percent efficiency could be achieved. On the 

other hand, the implementations of the same methods on the Connection Machine have 

produced even faster parallel computer codes compared to the best performance of the 

transputer array implementations. Comparisons between the two parallel explicit methods 

have indicated that the EFD-BPM is several times faster than the RS-BPM per 

propagational step. The accuracy of the two methods is confirmed by analysing 3- 

dimensional rib waveguides and directional couplers, and the results have been compared 

with other serial techniques. It has been concluded that the EFD-BPM is more efficient 

than the RS-BPM since the latter converges at a similar step size to that of the EFD-BPM. 

On the other hand, the computation of the field at any given spatial point using the 
ADI-BPM requires information from all parts of the problem, due to the necessity of 
inverting large matrices, which is very expensive in terms of parallel computing. An 

approximate attempt, given in this chapter, to parallelise the first order ADI-BPM showed 
indeed that the communication cost reduces the overall efficiency. 

Recently, a method has been published in [16]6 that parallelises the ADI technique in 

a more efficient manner than the one given in this chapter. The work in [ 16] solves the heat 

equation using the ADI technique with the forth-order finite-difference approximation to 

the transverse directions. The idea of the 'divide-and-conquer' strategy in conjunction with 
the domain decomposition technique is used to parallelise the inversion of numerical lines. 

Similar to the implementations of the explicit methods on the transputer array in this 

chapter, the work in [16] divides the two dimensional transverse mesh points into 2-D 

blocks of data and also uses a 2-D topology of processors, where each computational data 

block is assigned to one processor. This arrangement avoids global communication and, as 

a result, increases the total efficiency of the parallel algorithm. Each numerical line to be 

6 This work was found during the time of writing this thesis. 
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inverted is divided, using the 'divide-and-conquer' technique, into several segments in 

which each segment can be inverted independently. In other words, each numerical line is 

inverted using one line of the 2-D topology of processors, where each segment is mapped 
into its corresponding processor. However, using the 'divide-and-conquer' technique to 
invert each numerical line in parallel adds additional computations to the normal inversion 

of a system of equations for evaluating, recursively, new parameters. As for the parallel 
RS-BPM, the four local border boundary must be transferred to neighbouring processors 

after computing vertical and horizontal numerical lines. In addition, diagonal data passes 

along the diagonals of the 2-D topology are also needed, to exchange the information at the 

corners of each local data block. Also another communication mechanism is needed along 

each line of processors for the serial computation of the new parameters. The above 

parallel ADI was tested in [16] using CM-5 in the MIMD mode by varying the number of 

processors and the number of total mesh points to assess the performance of the method. 
From these tests, the speed of the algorithm increases to an optimum level and decreases 

afterward where the decrease is due to the increase in the communication cost compared to 

the computational cost. 

As mentioned in the introduction, the propagational step size of the ADI-BPM is 

considerably larger than that of the explicit methods; however, comparison between the 

parallel implementations of the explicit methods, in particular the parallel EFD-BPM, with 

the parallel ADI in [16] shows that the explicit methods are still more efficient than the 

parallel ADI-BPM for several reasons. The following comparisons more than compensate 
for the constraints imposed on the explicit methods: 

1- The ordinary operation counts of the explicit methods are far less than the ADI- 

BPM. 
2- The explicit methods use far less computer memory than the ADI. 
3- All of the parallel-processing performance indicators, for the explicit methods, 

improve with increasing number of grid points and/or the number of processors where on 
the contrary, the efficiency of the ADI in [16] reaches a maximum level and decreases 

afterwards due to the increase in the communication cost. It should be noticed that the 

method in [16] uses the fourth-order finite-difference approximation for the transverse 

variations which means an increase in the local computations. In other words, the second- 
order approximation of the ADI may lead to a less efficient parallel algorithm. In addition, 
the communication speed for transferring information between processors is around 20 M 
bytes/s for the CM-5 and is around 1M bytes/s for the supercluster. 
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4- The parallel implementation of the ADI in [16] remains restricted to MIMD 
implementations, but the explicit methods are suitable for both MIMD and SIMD 
implementations. 

5- The parallel explicit methods are very simple to program where, on the other hand, 

the implementation of the ADI in [16] is very complicated. As a matter of fact, the EFD- 
BPM equation is the most simple formulation for approximating the parabolic equation. 
Also the EFD-BPM is easily extendable to analyse nonlinear structures7. 

6- The implementation of the fourth-order finite-difference approximation to the 

transverse variations of the EFD-BPM results in a relaxation for the transverse mesh sizes 

and as a consequence a larger propagational step size could be used. It is to be observed 
that this extension can be included easily to the existing parallel EFD-BPM for both 

MJMD and SIMD implementations. 
7- There is a possibility to improve the stability of the EFD-BPM using the MEFD- 

BPM techniques. 

Finally, the solution of the parabolic equation, discussed in this chapter, is common 
for many large major mathematical applications; the same implementations of parallel 
explicit techniques could be used to speed up their execution times. 
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Part III 

Nonlinear Optical Waveguides 



Chapter 7 

Parallel Second Harmonic 
Generation BPM 

7.1 Introduction 

The process of converting energy from one optical wave, with a frequency cw, to 

another wave that oscillates with double (2w) the original frequency is known as the 
Second Harmonic Generation (SHG) process. This phenomenon exists in nonlinear 
materials containing second-order nonlinear susceptibility x(2)[1]. In the past, most of the 

research on this effect was focused on an efficient method to convert to second harmonic 

[2-4]. However, the existence of second order nonlinearity leads also to another interesting 

and important effect, in addition to the conversion, which is a nonlinear phase shift to the 
fundamental beam [5]. At low conversion, and off phase-matching between the 
fundamental and the second-harmonic, this nonlinear phase shift behaves similarly to the 
Kerr effect of x(3)[5]. Recently this nonlinear phase shift process has received much 

attention experimentally, and theoretically to achieve all optical switching [5-7]. These 

advances in the nonlinear effects of optical waveguides show that there is a need to model 

such devices accurately and efficiently [2-7] in order to understand the behaviour of such 
effects. On the other hand, waveguides that contain second-order nonlinear susceptibility 
(and nonlinear effects in general) are very difficult to model using analytically based 

techniques like Coupled Mode Theory, and even more difficult when the devices contain 
multiple waveguides in which they have geometrical and/or material change in all three 
directions. Other methods, based on numerical analysis like the BPM, are much better 

suited to such devices. For second-harmonic optical devices, the BPM has been used to 

simulate 2-D [8,9] and 3-D [10] (fibers, with the assumption that the source field is 

undepleted) devices in both FFT and Finite-Difference (FD) forms. 

The previous chapter of this thesis shows that the implementations of the linear 

versions of the Explicit FD method (EFD-BPM) and the Real Space method (RS-BPM) on 



parallel machines will speed up their execution times tremendously because of their nature 

as explicit methods which reduces communication between the parallel processors [ 11-13]. 

On the other hand, other BPM methods do not possess this feature and consequently are 

not highly parallel and will not gain as much in speed up in the parallel environment. Also 

it has been demonstrated that the parallel EFD-BPM is several times faster, per 

propagational step, than the parallel RS-BPM [11-13]. 

In this chapter, the parallel EFD-BPM is extended to study three-dimensional 

waveguides in the presence of a second order nonlinearity X 2) where the source field is 

allowed to deplete. In the following, this method is referred to as the Second Harmonic 

Generation EFD-BPM (or in short SHG-EFD-BPM) [14-17]. The rest of this chapter 

consists of three parts in addition to a conclusion at the end. Section 7.2 shows the 

derivation of the nonlinear coupled wave equations both in 3-D (for the SHG-EFD-BPM) 

and in 1-D, which is commonly used in the literature to validate experimental results and to 

study possible concepts for optical devices [5-7]. Section 7.3 shows the implementation of 

the SHG-EFD-BPM on the two parallel machines, the transputer array and the Connection 

Machine of chapter 4. Then, in section 7.4, the parallel SHG-EFD-BPM is used to analyse 

semiconductor rib waveguides containing a second order nonlinearity. As a first test, a 

phase-matching case of a semiconductor rib waveguide where the effective indices of the 
fundamental and the second harmonic are equal, has been analysed. The second test 

consists of a non-phased match case in which the two effective indices of the fundamental 

and the second harmonic are not equal. In this case, the Quasi Phase Matching (QPM) 

technique has been used to model the relative phase between the fundamental and the 

second harmonic fields. Also in the same section the parallel SHG-EFD-BPM results have 

been compared with the solution of the reduced 1-D coupled wave equations where the 

Runge-Kutta numerical technique has been used for the solution of the 1-D model. 

7.2 Formulation 

In this section the derivation of the scalar 3-D (BPM) and the 1-D (plane wave) 
equations for the analysis of second harmonic generation will be shown. The 3-D is based 

on the EFD-BPM approach where the 1-D is used later in the analysis to validate the 

results of the 3-D BPM. 
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7.2.1 The Second Harmonic Generation EFD-BPM 

Combining Eqs. 2.3 and 2.14 of chapter 2, the scalar wave equation for the 

propagation of an electric field E of a given polarisation in a material with a refractive 
index n and a homogenous second order nonlinear susceptibility x(2) can be written as 
[1,15] 

atE 
2 

+µ°£° t 
(7.1) V2E = µ°£°n2 

a2 

where P is the nonlinear polarisation in the material which can be approximated, for c. w. 
operation, as P= x(2)EE. Here it is assumed that the fields are linearly polarised and that 

the vector nature of the fields can be ignored. This is a good first approximation for 

paraxial problems of the type considered here for which the BPM is appropriate. Let us 
consider at the moment the propagation of three fields at three different frequencies owl, o 

and 0)3, while extracting a common reference phase in the direction of propagation z. 
These fields can be written as [1] 

E" (x, y, z, t) =2 
(cm, (x, y, z)e1(oat-ki1.2) + c. C. 

] (7.2a) 

E al (R, Y, Z, t) = 
(0mß (X, y, z)el(olt-k=o. z) + c. c (7.2b) 

Em3 (x, y, z, t) =! 
((Dm3 (x, y, Z)eJ(m)t-r, o. z) + c. c. ] (7.2c) 

where no is a reference refractive index for the problem, k 1, k2 and k3 are the free space 
wave numbers at the three frequencies wl, t02, and 0)3 respectively, where (03 = 0)1 + (02 

and c. c. is the complex conjugate. Inserting (7.2) in (7.1) gives respectively [1] 

v2m, e1(mit-ti". Z) +c. c. 
] 

= µoconi 
[(_co )(Dm, 

el(mlº-r, D. z) +c. c. J 

2[X2 ()«01)(0)3 
_(02)2ým, 0*m=euI(m, -m=)t-(k3-k1)n. z) +c. c. } (7.3a) 

2J 

v2[ b j(ro2t-k2n. z) +c. C. J =l. 10£0112[(-(02)om2ei(mzt-kzn. z) +C. C. J 
µ2 ýX (2) (032)«03-(ßi )2 40 (D*" ei((m3 + c. c. 

] (7.3b) 
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v210a03 e1(0st-t, ". Z) + c. c. ] = llo£ri2 (_(»2)(DO3PJ(m3t-r'". Z) +C. C. J 
-µ2 

[x(2)«»s)(to1 
+w2)2(b° b°: e, 

)t-(t, +k2)n. zJ +C. C. 1 
(7.3b) 

Where x(2)(wl) = x(2)(01; 03, (0i), x(2)02) = x(2)(w2; w3, -(oi) and x(2)(co3) = x(2)03; 01,01). 

Let us consider Eq. 7.3a and rewrite it, after multiplying with e j°°'`, as 

-Jkl°e= + 
kixý2ýrýmý 

ý"m: e-J[(ts-rz)°. Z1ý =0 (7.4) V2rVm'e'] + k2n"2ý°°'e 
2l l 

Expanding the Laplacian operator above into 

Z ý, aim, a e-jkln. Z -2 jklno e ikln. z 
- kl n2VD, e-Jr11. z + Di [4D'D' 

6 jkln. z J 

az2 az 
+kint0°°le-; tl°. = + 

kiX(2(o l) (00,0°m=e J[<ý`'-k')°°Z] 
2I=0 l (7.5) 

where 
a2 a2 

z vl = aX + aye 

Eq. 7.5 is similar to the linear counterpart in (3.3). Under the parabolic approximation in 
(3.4), we may rewrite Eq. 7.5, after neglecting the term containing the second derivative 

with respect to z, as 

=2m222m co *m -1l(k'-ki -k: )n'zl 
2jk'n° az 

v'+k, (n1 
- n0 '+2 

lý ýý e] (7.6a) 

Using a similar approach to the derivation of Eq. 7.6a, the other two equations in (7.3b) 

and (7.3c) can be written as 

m=2 
m3 222 m= 

k2x(2'(ý2 
m "m -1[(k, -rt-kx)n. zl 2jk2n° 

2aýz ýI + kz(nz - n°» + 
2[ý 

'ý 'e ] (7.6b) 

2jk, no 
a= vle°°' +k3(n2 _ n2)e03 + 

kixý2 w3)rým, em, eJ((t3-ki-k=)o. z1] (7.6c) 
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where 4O', 402 and 41°' are the parabolic fields which are paraxial approximations to the 

4Ds (the Helmholtz fields). 

For SHG, two of the three fields in (7.6) are of the same frequency, therefore let (01= 

(02 = co and the third is the summation of these two frequencies with 0)3 = CD! +u)2 = 2w. 

and k1= k2 = k3/2. Thus Eqs. 7.6a and 7.6b are the same and one only of them is needed in 

the analysis. From Eqs. 7.6a and 7.6c we may write the following coupled parabolic wave 

equations in three-dimensions for both the fundamental and the second harmonic waves 
[14-17] 

aef 
. 

a2e aZef 222f2 (2) es f' 2 Jkono az -+ +k 0 
(nf 

- n0 +k 0 (7.7a) 

4jkono 
ads 

= 
a-2 

+ 
a2+4kö(n$ 

-n0 
2)ýs +2kox(Z)ýf0 f (7.7b) 

az ax ay 

where ko = k1,4 f= 4°°' and ý` = 403. For convenience, throughout the rest of this work 

subscripts or superscripts for both f and s are related to the fundamental wave and the 

second harmonic wave respectively. In Eq. 7.7, it is assumed that the second order 

nonlinearity is homogeneous and is defined through x (2) = x(2)(2 w; w, (o) = x(2)(o ;2o- w)/2 

[5-7] and the source field 4, f is allowed to deplete during propagation. 

As for the EFD-BPM, let us use the central finite-difference approximations in Eq. 

3.27 to replace the partial derivatives in Eq. 7.7. The discretisation of Eq. 7.7 leads to the 

following coupled formulation which is second-order accurate with respect to z [14-17) 

ei. 
m(Z+i 

z)=ei. 
m(Z-Az)+dx[ei+i. m(Z)+ei-i. mýzý} 

Oi. 
m-1(Z)J+ 

bfoim(Z) + (7.8a) 

ei, 
m 

(Z + &Z) = `Yi. m 
(Z - äz) f2 [ýi+1 

m 
(Z) +4im (Zý] 

+2 
[ei, 

m+, 
(z) + ýi. 

m-1 
M] + bg4'i. 

m 
(z) (? )ei. 

m 
(z) (7.8b) 

where 
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__ 
Az d° jt (p = X, Y) Op n0k 0 

bf =-jri k 
zo ii 

- e2 +kölnf -ný) 
0o Y2 

_ 
Az 22 b` = 2n0k0 

[-ßx2 
_ eY2 

+ 4k2 , 
(n= - n, ', )] 

__ 
Azk0X 

aX ý 
no 

where i and m represent the discretisation of the transverse co-ordinates x and y. The above 

two equations represent the propagation of the fundamental and the second harmonic fields 

or the SHG-EFD-BPM. 

7.2.2 The simplified 1-D Second Harmonic Generation 

Let us also write the usual approximate 1-D coupled wave equations for the 

nonlinear wave equation; later in this work the solution of the 1-D equations will be used 

to compare with the results of the SHG-EFD-BPM. The derivation of the 1-D 

approximation is the same as for the 3-D approach without x and y variations. If we project 

the fields onto the 3-D eigenfunctions (the mode distributions) and write the 3-D fields in 

Eq. 7.7 as [14-17] 

ýt = W`(z)_`(x, Y) 
R, R2 

_ 
1'(Z)ý(R, y) 

(7.9) 

R1 

where 
- 

SO Rl 
Si ' 

R2 
S2 

S1= JJ(Ef)2dA , Sz = jj(')2dA 
AA 

So = 
Jj('Er)2E1dA 

A 

the yr(z)'s are dependent only on z, Vx, y)'s are the 3-D z-independent linear mode fields 

and A is the cross sectional area. Inserting (7.9) in (7.6a) and (7.6c) leads to 
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k 2 
(E1 

ý 
tom[ 

Z 
k 2 

fE[ 

J °n az RR RRJ ii 
-ýn )) ý (n 

R1R2 

+kox(2) WRY'14R1R2] fe j°r z (7. l0a) 
1 

ý (Y: ) 
4jk°n`" 

az R= 
Vl R +4kö(n. - (nýrr)2) TR 

rar rar 
2X(2) W J°rý (7. lOb) LIRIRZ AIRIR2 

where the wave vector mismatch is Ak' = 2ko (n: R - n') (note that the extracted reference 

phase is not common for both fields; the reason for that is to derive the usual 1-D relations 

used in the literature). Noticing that the summation of the first and the second terms in the 

right hand sides of Eq. 7.10 is zero (see Eq. 2.47), then multiplying Eq. 7.10a by yrf and 
Eq. 7.1Ob by yrs and integrating over the cross sectional area A leads to 

r [if (Ef )2dA !J (Er )2 VdA 

2jk°n°tt 
aARR= 

kýýzýWWr" AR 
R1R 

_j (7. l la) 
1212 

[JJ(E)2dA' (ff (Ef )Z VdA 
2Jkon: rr 

aW' w =k2 X(z)V Va 
je'z 

(7.11b) 
az R, R1R2 

The above two equations may be simplified into the following familiar 1-D nonlinear 

coupled wave equations as [5-7] 

dW 
= -i 

ýx 
*ff vsvf'e', A`z (7.12a) 

dz 2nf 

dz J 2n of if ej°ý`"z (7.12b) 

The relationship between the 3-D model and 1-D model can be extracted from the power 
relation by inserting Eq. 7.9 in the power equation which leads to [14-17] 
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22 

pf 
2Z R` 

ff (Ef )ZdA = 
n`f Ný 

Aeff (7.13a) 
0 1R2 A 2Zo 

xx 
Pa 

2Z Rjx ! 1(V )xdA = Aeff (7.13b) 
O1A 2Zo 

where the effective area Aeff is defined as [14-17] 

and Zo is the free space impedance. 

S2 A 
. ff = 

SZ 
- 

S1 2 

eý = 
SR1R2 

R2 _ So 
(7.14) 

For perfect phase matching (ek' = 0), Eq. 7.12 leads to the well known solution for 

the normalised intensities of the fundamental and the second harmonic as [5] 

where 

If 
I= Sec h2 (rz) 

$ (7. l s) 
I= 

tanh2(rz) 
Io 

kax`2' we 
t. 2nf. nn 

and Ia and WO' are the initial intensity and field respectively of the fundamental at z=0. 
For the non-phased-matched case Eq. 7.12 can be solved using Jacobian elliptic functions 

[3,6] or numerically using the Runge-Kutta method [19]. In the following analysis, the 
fourth order Runge-Kutta method was used to solve the 1-D coupled wave equation in 
(7.12) [19]. 

7.3 Parallel Implementations 

Two parallel computer codes for the SHG-EFD-BPM in Eq. 7.8 have been developed 

which run on the 64-transputer array and the Connection Machine (CM-200) of chapter 4, 

using the same techniques of the linear EFD-BPM discussed in section 6.3 [11-13]. Two 

separate computational windows, one for the fundamental field and the other for the 
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Chapter 7 Parallel Second Harmonic Generation BPM 

second harmonic field, have been used while allowing them to share common data for the 

calculations of the coupled terms. The implementation of the SHG-EFD-BPM on the 

transputer array has been done by dividing the transverse mesh points of the discretised 

fundamental field into 2-D equal blocks of data where each block is assigned to one 

processor of the 2-D topology of the transputer array. The same has been done for the 

second harmonic transverse mesh points field using the same 2-D topology of the 
fundamental field computations. In other words, each processor computes the local 

computational block data of both the fundamental and the second harmonic fields and they 

exchange only values at the local border points at the edges of the blocks with 

neighbouring processors (see Fig. 7.1) [14,15]. 

The computational window The computational window 
of the fundamental of the second harmonic 

Is 

Fig. 7.1 The implementation of the SHG-EFD-BPM on the transputer array (see text for details). 
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The alternative choice of parallelising the SHG-EFD-BPM on the transputer is to 

assign the computations of the fundamental and the second harmonic fields to two different 
2-D topologies (e. g. each of 32 processors), since the computations of both fields at z+Az 

are independent and could be solved concurrently. However both topologies, in the latter 

case, need to exchange all field points values for each propagational step and obviously 
this involves a massive communication time. Comparison between the two parallel 
techniques above shows that the first method of using the same 

, 
2-D topology for both 

fields is more efficient because the transverse mesh points of both fields are local to each 

processor, which means that no time is lost in transferring blocks of data. For this reason 
the first technique was used in the following analysis. On the other hand, the 
implementation of the SHG-EFD-BPM on the CM is almost similar to our linear one in 

chapter 6; first the fundamental field at z+Az is computed, then the second harmonic field 

at z+Oz is computed, where all the field points are operated on concurrently using a single 

instruction. 

It has been observed from testing the SHG-EFD-BPM that the method is stable for 

propagation steps Az very close to the limiting values of the linear EFD-BPM in (3.29) 

[ 11-13,18]. The reason for this is that the nonlinear term in Eq. 7.8 has very little effect on 
the stability of the method due to the small value of x(z), which is in the order of 10-12 m/V 
for practical devices [6]. As expected, the speeds of the parallel SHG-EFD-BPM 

implementations are more than twice as slow as the corresponding linear parallel EFD- 
BPM in chapter 6. 

7.4 Analysis and Assessment 

In this section the SHG-EFD-BPM will be used to analyse three-dimensional 
semiconductor waveguides that contain second order nonlinearity. Some of the results of 
the SHG-EFD-BPM will be assessed by the solution of the simplified 1-D model using the 
fourth order Runge-Kutta technique. As mentioned before, the solution of the SHG 

equations consists of two different cases; one is called the phase-matched condition in 
which the two phases of the fundamental and the second harmonic waves are equal (tom = 
0), and the second involves a more realistic situation and is called the non-phased match 
case where the two phases are different from each other (&' * 0). These two cases will be 

analysed using two different semiconductor waveguides. 
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The Phase-Matched Case 

The first numerical test for the parallel SHG-EFD-BPM involves a nearly perfect 

phase-matched waveguide. The rib waveguide in Fig. 6.13 has been used with the 

following parameters (all length dimensions are in gm): Xf = 1.55, Xs = 0.775, of = 3.44, 

ng = 3.4062406, ns = 3.34, x(2)= 300 pm/V. Other parameters are the same as those of 

structure 1 in Table 6.1. The second order nonlinear term x(2) will be restricted to the 

guiding region of the waveguide. In this example, ng is chosen such that the two modes' 

effective indices are equal. Using Ax = Ay = 0.1 gm and equal lengths of 8 p. m for the x 

and y window sizes, the computed first guided mode effective indices of both fields, using 
Az = 0.025 and n, = n8, are n=3.39236226 and n: ff = 3.39236228. In the following 

analysis, the first guided mode of the fundamental waveguide is used as an input, and zero 

initial field is assumed for the second harmonic waveguide. Fig. 7.2 shows the normalised 

intensities of both the fundamental and the second harmonic versus the longitudinal 

distance z(9m) for the phase-matched case with an input power of 27.2 W. 
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Fig. 7.2 The normalised intensity of a phased matched waveguide for both of the fundamental and the SHG 
versus the longitudinal distance z(µ=), using the parallel SHG-EFD-BPM (3-D) and the solution of Eq. 7.12 
(1-D), with an input power = 27.2 W. 
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The figure shows the complete power exchange from the fundamental to the SH due to the 
matching between the two modes' effective indices (Ak = 0). The computation of the 

normalised intensities of the modes has been carried out numerically by evaluating the 
square of the magnitude of the projected total BPM field onto the normalised mode and 
then normalising with respect to the input intensity, which can be expressed as 

2 Iff 

Ef ``ýf`(z)dA 
if's , (z) ! jlEf'A` 12 dA jjlßf(0)( cý. ý6) dA 

AA 

where f, s means the fundamental or the second harmonic. In the same figure, the solution 
of Eq. 7.12 has been included for comparison, using an effective area (computed from Eq. 
7.14) of the 3-D fields of 1.896 µm2. Clearly, the figure shows the excellent agreement of 
the two results. 

The Quasi Phase-Matched Case 

The second numerical test for the SHG-EFD-BPM involves a more practical 
waveguide that contains a second order nonlinear coefficient x(2). The rib waveguide in 
Fig. 6.13 was used to study a nonlinear semiconductor device with the same parameters as 
for the phased-matched case except for the following alterations (all dimensions are in 
µm): ns = 3.4, of = 3.5, ng = 3.6 and X 26 300 pm/V (the parameters of this waveguide are 

chosen to match real values [6]). The design of this structure shows that it is strongly 
guiding at both frequencies although it is a single mode waveguide at the fundamental 
frequency and a multi-mode waveguide at the second harmonic frequency. Using equal 
lengths of 8 µm for the x and y window sizes and Ax = Ay = 0.1, the computed first guided 
mode effective indices of both fields, using Az = 0.025 and no = n6, are nfff = 3.45299169 

and n: ff = 3.58591145. Fig. 7.3 shows the normalised field distribution of the first guided 

mode of the fundamental waveguide. The computed effective area, using Eq. 7.14, of the 
3-D fields is 1.92 µm2. The parameters of this structure show that it is a non-phase 
matched waveguide in which Quasi Phase Matching (QPM) techniques could be used to 
alter the relative phase difference between the two fields [2]. QPM is used for efficient 
optical SHG and other nonlinear optical processes [2,5-7]. In practical terms, QPM is 

achieved by introducing structural periodic gratings, in the direction of propagation, of the 
nonlinear medium. The BPM mismatch wave vector, for QPM, is defined as 
Ok = kZ" - 2kZ'` - 2n/A, where k=, f and kz"' are the parabolic wave numbers of the 
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fundamental and the second harmonic fields respectively, and A is the grating period. The 

computed grating length, for Ak =0 (between the first guided modes of both frequencies), 

of this waveguide is equal to 5.63269267 µm. In the following simulation a grating was 

used in which the second order nonlinear coefficient x(2) has either its full value or is zero 

in alternate half-periods of the grating (see Fig. 7.4). 
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Fig, 7.3 The normalised field distribution of the first guided mode of the fundamental waveguide which has 

been used as an input for the analysis of QPM case. 
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Fig. 7.4 The rectangular periodic grating of the nonlinear medium x(2) used for the quasi phased-matched 

case. 
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This geometry might be realised in a semiconductor asymmetric quantum-well by 

selective-area disordering, which periodically annihilates the x(2) coefficient produced by 

the quantum-well breaking the symmetry of the bulk martial [20]. It is known that QPM 

reduces the effectiveness of the second order nonlinear coefficient x(2) by a factor 2/n in 

the case of domain reversal and by a factor of 1/n in the case of domain disordering ( 

where x(2) is periodically reduced to zero) [2]. In the following computations, the first 

guided mode of the fundamental frequency of Fig. 7.3 has been launched as an input to the 

waveguide, and zero initial field is assumed for the second harmonic. 

Fig. 7.5 shows the normalised intensities for both the fundamental and the second 
harmonic modes along the propagation direction z for a grating length A= 5.64 pm (AkL = 
1.445252). On the other hand, Fig. 7.6 shows the total normalised fields in the fundamental 

and second harmonic windows at different propagational distances using the parameters of 
Fig. 7.5. From these two figures, the power exchange mechanism between the two modes 
is clearly shown, where the effect of the QPM has been demonstrated through the coupling 

and the ripple of the intensities shown in Fig. 7.5 (bottom) with the grating periodicity. Fig. 
7.6 shows that some power has coupled into radiation in the second harmonic window. The 

computed radiation power is very small compared with the power carried by the first 

guided modes in both windows. Also it has been observed that there is very little coupling 
to the third order mode of the second harmonic where this can be explained from the 

overlap integral between the first order mode at the fundamental frequency and the modes 

at the second harmonic frequency which is zero for the second order mode and very small 
for the third order mode [10,151 (see also So below Eq. 7.9). In addition, the grating length 

used, in this simulation, results in non-phase-matching for these modes. 

The other important case for QPM situation in nonlinear optics, apart from efficient 
SHG, is the study of nonlinear phase change to the fundamental field [5-7]. In the 
following analysis, the parallel SHG-EFD-BPM was used to compute the output depletion 

and the nonlinear phase change of the fundamental field after a distance of L= 1 mm for 

different grating lengths along the direction of propagation. By varying the grating length, 

the relative wave vector ik changes while exciting predominantly the first guided mode of 

the second harmonic frequency. It has been assumed that the phase of the fundamental 

field is changing as e where 9N, is the nonlinear phase shift of the fundamental 

field. Figs. 7.7 and 7.8 show the power exchange between the fundamental and the second 
harmonic and the nonlinear phase shift of the fundamental as a function of the propagation 
distance for AkL =n and 2n respectively. 
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Fig. 7.5 (Top) The normalised intensity for both of the fundamental and the second harmonic fields versus 
the longitudinal distance z(µm), using the parallel SHG-EFD-BPM with an input power = 125.6 W and a 
grating length A=5.64 pm . (Bottom) A portion from the top figure enlarged to show the ripple caused by 
the QPM. 
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In the following analysis, the depletion and the nonlinear phase shift of the 
fundamental after L=1 mm will be computed as a function of the input power. In order to 

check the results of the parallel SHG-EFD-BPM, the solution of the approximate 1-D 

coupled wave equations (of Eq. 7.12) using the fourth order Runge-Kutta with the same 

parameters, was used. There are two methods to simulate QPM technique using the 

solution of Eq. 7.12. The first method is to use exactly the same procedure of the 3-D BPM 

with actual structural periodic gratings for the second order nonlinear coefficient x(2) along 

the z direction, and the second method is to reduce the value of x(z) by the QPM factor 1/n 

or 2/n (without structural grating), while changing explicitly Olc' to 

Ak' = 2ko(n -n «) - 2n/A, in Eq. 7.12, to simulate the existence of second-order 

nonlinear gratings [2,10,14,15]. Both of these methods were tested numerically using the 

fourth order Runge-Kutta and an excellent agreement between the two results was 

observed. In the following simulation, the second method was used to compare with the 

SHG-EFD-BPM results. Fig. 7.9 shows the dependence of the depletion and the nonlinear 

phase shift 9NL of the fundamental on the input power using the parallel SHG-EFD-BPM 

and the approximate 1-D Runge-Kutta for AkL = it and 27t (Ak'L = AkL). From this figure 

we notice that the two methods agree very closely at low power with some little deviation 

at high power. 
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Fig. 7.9 The depletion intensity (left) and the nonlinear phase shift IONLI (right) of the fundamental as 
functions of input power using the parallel SHG-EFD-BPM (circles) and the 1-D Runge-Kutta (solid line) for 
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Fig. 7.10 shows the depletion intensity and the nonlinear phase shift O NL of the 
fundamental as functions of AkL for both the parallel SHG-EFD-BPM and the approximate 
1-D Runge-Kutta (i\k'L = AkL) for different input powers. The figure shows close 

agreement between the two results. Also from the figure we can see that the nonlinear 

phase shift can be positive or negative, depending on the grating period, and this phase 

shift is increasing when the input power is increased. This effect has been studied 
theoretically [6], and has been observed experimentally in KTP [5]. The propagation step 
size Az used in the last computations (Fig. 7.10) was 0.01µm, although the SHG-EFD- 

BPM algorithm is stable for Oz--0.025 . tm, but in order to model the exact grating lengths 

mentioned before using a common step size, Az had to be reduced. 
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Fig. 7.10 The depletion intensity (left) and the nonlinear phase shift 9NL (right) of the fundamental as 
functions of AkL (AkZ = AkL) using the parallel SHG-EFD-BPM (circles) and the 1-D Runge-Kutta 
(solid line) for (a) input power = 0.51 W and (b) input power = 3.02 W. 

Finally, the total execution time for each run of the parallel SHG-EFD-BPM (of Fig. 
7.10) is around 10.3 min. on the Connection Machine (CM-200) using 16k processors and 
around 76.3 min. using 64 processors of the transputer array [14-17]. Since the transputer 
implementation runs at around 54.2 % efficiency (see chapter 6) [11-13], the serial 
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execution time on one processor would be 2646.7 min., or 1.84 days. Therefore all the 

results in Fig. 7.10 consumed 4.12 hours on the CM and 30.52 hours on the 64 transputer 

array and will take 44.16 days using one processor of the transputer array. 

7.5 Conclusion 

A numerical method to model three-dimensional optical waveguides containing a 

second-order nonlinearity has been presented in this chapter. The formulation of the 3-D 

(SHG-EFD-BPM) and the simplified 1-D nonlinear coupled wave equations, to study 

second order nonlinear effect, have been shown in detail. The 1-D method was derived to 

validate some of the 3-D results. The new nonlinear method, which is an extension to the 

linear parallel EFD-BPM of chapter 6, is also highly parallel. In this chapter, the 

implementations of the SHG-EFD-BPM on parallel computers have been also shown. Then 

the parallel SHG-EFD-BPM was used to model semiconductor rib waveguides in the 

presence of the second order nonlinearity x(2) where the source field is allowed to deplete, 

using the two different supercomputers models (SIMD and MIMD). The Quasi Phase 

Matching (QPM) technique has been realistically incorporated in the analysis of the 

waveguide in order to change the relative phase mismatch between the two fields. 

Excellent agreement between the results of the parallel SHG-EFD-BPM and the solution of 

approximate 1-D, using the numerical Runge-Kutta method, has been observed. Finally, it 

has been concluded that the new parallel algorithm is simple, efficient and very useful for 

modelling large complicated nonlinear optical devices. 
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Chapter 8 

Summary and Conclusion 
In this work the theory of modelling three-dimensional optical devices has been 

discussed. For z-invariant rectangular waveguides, several numerical techniques can be 

employed to find the characteristics of the waveguides, ranging from simple and fast to 

accurate and time consuming. A review of some of these methods has been given in this 

thesis. On the other hand, modelling 3-D z-variant rectangular waveguides is more difficult 

than the z-invariant waveguides due to the involvement of radiation modes which are 
complicated to predict accurately. The Beam Propagation Method (BPM) proved to be an 
excellent numerical technique to analyse a wide range of optical devices, specially those of 
longitudinal variations. A review on the latest developments of this method was discussed 

and the formulation for the most common three BPM techniques, based on the Finite- 
Difference method (FD), were also shown in detail. The three methods are the Alternating 
Implicit Direction (ADI), the Real Space (RS) and the Explicit Finite-Difference (EFD) 
BPMs; the first is an implicit method and the last two are explicit methods. The FD-BPMs 

proved to be much more efficient than the classical FFT-BPM. As a first step toward 
implementing the 3-D FD-BPMs, the 2-D versions of the FD-BPMs were first 

implemented and tested using a normal serial computer to analyse slab geometries. 
Comparisons between the BPM results and the analytical solution of the slab waveguide 
have been made. The accuracy analysis of these implementations showed that the 
accuracies of all the three FD-BPMs improve by reducing the mesh spacing. The 

comparison between the speed per propagational step of the three FD-BPMs showed that 
the EFD-BPM is faster than the other two methods and the CN-BPM is faster than the RS- 
BPM. It has been concluded in the analysis of the 2-D BPM that both the EFD-BPM and 
the CN-BPM are more efficient than the RS-BPM since the latter converges using a 
smaller longitudinal step size than the first two, and also the speed of the RS-BPM is 

slower per propagational step. On the other hand, comparison between the EFD-BPM and 
the CN-BPM showed that the EFD-BPM is more efficient than the CN-BPM at large mesh 
spacing, since both algorithms produced similar results using the same longitudinal step 
size and the EFD-BPM is faster, per propagational step, than the CN-BPM. However as 



mesh spacing decreases, the EFD-BPM requires smaller longitudinal step size for stability, 
which might indicate that the CN-BPM is more efficient for very small mesh spacing. A 

new technique to the EFD-BPM, to improve the stability limit of the propagational step of 
the method, has been suggested which requires a slight adjustment to the EFD-BPM 

numerical equation. This modification has improved the stability of the EFD-BPM, but it 

also introduced a spurious field to the true solution. Then for 2-D analysis the CN-BPM 

was used to model practical 2-D devices, where it has been applied to simulate the 

propagation of guided modes in directional couplers and Y -junctions. 

On the other hand, analysing three-dimensional linear optical devices using the BPM 

requires much more computational effort than the 2-D counterparts. For this reason parallel 

processing computers have been used to speed up the execution of the BPM. First a review 

of the field of parallel computation was given, concentrating on the most common parallel 

machines; namely the transputer array (MIMD) and the Connection Machine (SIMD). Also 

this thesis discussed the difficulties in developing numerical algorithms for parallel 

computers. In order to gain maximum efficiency out of parallel implementations, care must 
be exercised in selecting the appropriate method for parallel implementations. Second, the 

thesis discussed in detail the implementations of the three-dimensional FD-BPMs, to 

analyse linear optical devices, on the transputer array and the Connection Machine. It has 

been demonstrated that a large speed up of the execution of the finite-difference explicit 
versions of the BPM (the RS-BPM and the EFD-BPM) on parallel computers in 

comparison to the serial execution can be easily achieved. These methods are very well 

suited to the parallel environment because they inherit the locality of spatial points, which 

reduces the communication overhead between parallel processors. On the other hand, the 

computation of the field at any given spatial point using the implicit ADI-BPM requires 
information from all parts of the problem, due to the necessity of inverting large matrices, 

which is very expensive in terms of parallel computing. 90-100 percent efficiency has been 

observed by implementing the EFD-BPM and the RS-BPM on the transputer array. In 

addition the implementations of these methods on the Connection Machine have produced 

even faster parallel computer codes compared to the best performance of the transputer 

array implementations. All of the parallel-processing performance indicators improve with 
increasing number of grid points. The comparisons between the two parallel explicit 
methods showed that the EFD-BPM is several times faster than the RS-BPM per 
propagational step. In terms of accuracy, the two methods have been used to analyse three- 
dimensional rib waveguides and directional couplers, and the results have been compared 
with other serial techniques. It has been concluded that the EFD-BPM is more efficient 
than the RS-BPM since the latter converges at a similar step size to that of the EFD-BPM. 
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In the last part of this thesis three-dimensional nonlinear optical waveguides, 
containing second-order nonlinearity x(2), have been analysed using a new numerical 
technique. The new nonlinear method, which is an extension to the linear parallel EFD- 
BPM, is also highly parallel. The formulation of the 3-D (SHG-EFD-BPM) coupled wave 
equations, to study second order nonlinear effect, have been shown in detail. The 
implementation of the SHG-EFD-BPM on parallel computers was also discussed, where 
two separate computational windows have been used, one for the fundamental field and the 

other for the second harmonic field. Then the parallel SHG-EFD-BPM was used to model 
semiconductor rib waveguides in the presence of the second order nonlinearity X 2> where 
the source field is allowed to deplete, using the two different supercomputers models 
(SIMD and MIMD). In these analyses, detailed information for the nonlinear phase shift of 
the fundamental field has been studied. In the simulation, the Quasi Phase Matching 

(QPM) technique was used in the analysis to change the relative phase mismatch between 

the two fields. In order to validate some of the 3-D results, the familiar simplified 1-D 

nonlinear coupled wave equations have been formulated from the 3-D models and have 
been implemented numerically using the fourth-order Runge-Kutta method. Excellent 

agreement between the results of the parallel SHG-EFD-BPM and the solution of the 

approximate 1-D was observed. Finally, the output of this thesis is very important for 

modelling large complicated linear and nonlinear optical devices due to the simplicity and 
the high efficiency of the methods used. In addition, this work is also very useful for other 
mathematical applications where the parabolic equation is used. 

Future Work 

Many developments to the existing work of this thesis could be studied further, and here 

are some of these: 
1- As new faster parallel computers are emerging, the implementations in this thesis 
become increasingly useful. For example, the implementations of the EFD-BPM (linear 

and nonlinear) on the new Cray-T3D* machine can be easily applied with little 

modifications to the existing computer codes**. This machine consists of 320 processors 
(MIMD type), with a peak performance of 40 GFLOPS where each processor has 64 
Mbytes RAM with a speed of 150 MHz. Data can be transferred between processors with a 
rate of 100 Mbytes/s. 

* This machine has just been installed in the Edinburgh Parallel Processing Centre (EPCC), Edinburgh, UK. 
** This work is currently under development. 
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2- The work in this thesis could be easily used to investigate many new current research 

problems: 
a) Three-dimensional study of segmented linear rib waveguides. 
b) Three-dimensional study of second-order nonlinearity x(z) using coupling between 

the guided fundamental field with Cerenkov radiation at the second harmonic 

frequency [1-2] *`. 

c) Three-dimensional study of spatial solitons using the second order nonlinearity 
X 2) [3-4] .. 

d) Three-dimensional study of directional couplers containing X(2)**. 

3- The extension of the three-dimensional EFD-BPM to study nonlinear materials 

containing x3>. 
4- The extension of the three-dimensional EFD-BPM to vector fields to study the effect of 

polarisation dependence both for linear and nonlinear cases. 
5- Investigation of Boundary Conditions at the edges of the computational window of the 

BPM. 
6- Extension for the EFD-BPM to the fourth order finite-difference approximation which 

enables one to use larger propagational step size. 
7- Investigation of the modified EFD-BPM (MEFD-BPM), discussed in chapter 5, to 

improve the stability of the EFD-BPM. 

8- Extension for the EFD-BPM to a wide-angle BPM to overcome the paraxial limit. 
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