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In the name of God, Most Gracious, Most Merciful.

“God is the Light of heavens and the earth. The parable of His Light is as
if there were a Niche and within it a Lamp: The Lamp enclosed in Glass:
The glass as it were A brilliant star: Lit from a blessed Tree, An Olive,
neither of the East nor of the West, Whose Oil is well-night Luminous,
Though fire scarce touched it: Light upon Light! God doth guide whom

he will To His Light: God doth set forth Parables For men (people): and
God doth know all things.”

The Holy Qura'an
Al-Noor chapter (35)
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Abstract

In this work, some developments in the theory of modelling integrated optical devices
are discussed. The theory of the Beam Propagation Method (BPM) to analyse longitudinal
optical waveguides is established. The BPM is then formulated and implemented
numerically to study both two and three-dimensional optical waveguides using several
Finite-Difference (FD) techniques. For the 2-D analysis, comparisons between the
performance of the implicit Crank Nicholson (CN), the explicit Real Space (RS) and the
Explicit Finite-Difference (EFD) are made through systematic tests on slab waveguide
geometries. For three-dimensional applications, two explicit highly-parallel three-
dimensional FD-BPMs (the RS and the EFD) have been implemented on two different

parallel computers, namely a transputer array (MIMD type) and a Connection Machine

(SIMD type). To assess the performance of parallel computers in this context, serial
computer codes for the two methods have been implemented and a comparison between the
speed of the serial and parallel codes has been made. Large gains in the speed of the
parallel FD-BPMs have been obtained compared to the serial implementations; both
methods, in their parallel form, can execute, per propagational step, a large problem
containing 10° discretisqtion points in a few seconds. In addition, a comparison between
the performance of the transputer array and the Connection Machine in executing the two
FD-BPMs has been discussed. To assess and compare the two methods, three different rib
waveguides and three different directional couplers have been analysed and the results
compared with published results. It has been concluded from testing these methods that the
parallel EFD-BPM is more efficient than the parallel RS-BPM. Then, the linear parallel
EFD-BPM was extended to model nonlinear second harmonic generation process in three-
dimensional waveguides, where the source field is allowed to deplete, using the transputer
array and the Connection Machine. The new nonlinear version of the EFD-BPM has the
same features of the linear counterpart in using two separate computational windows, one
for the fundamental field and the other for the second harmonic field. The implementation
and the application of this method to a nonlinear rib waveguide using the Quasi-Phase-
Matching technique are discussed in this work. It has been concluded that the new

nonlinear parallel EFD-BPM is accurate, efficient and very useful for the analysis of large
complicated optical devices.
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Symbols

Transverse Ccross sectional area
Normal unit vector
Vector magnetic flux density

Speed of light in vacuum

Vector electric displacement

Delta function
A small longitudinal step in the z-direction

The mesh spacing in the x-direction
The mesh spacing in the y-direction
The wave vector mismatch

Vector electric field
Scalar electric field

Normalised Electric field
Permittivity
Free space permittivity

Relative permittivity equals to (1+X)

A scalar electric field without a reference phase

A parabolic scalar electric field of ®

Vector magnetic field
Scalar magnetic field

Normalised magnetic field

Current density

Complex numbers notation

Wave vector 1n vacuum

Wave vector in the direction x (transverse)
Wave vector in the direction y (transvers_e) '
Wave vector in the direction z (propagation)

The grating period of second order nonlinearity
Linear susceptibility

Second order nonlinear susceptibility
Third order nonlinear susceptibility

Line shape function
Coupling length

Wavelength
The Laplacian operator

The transverse Laplacian operator

The x Laplacian operator

The y Laplacian operator

The total number of mesh points in the x-direction
The total number of mesh points in the y-direction

Permeability

Micro

1/m

1/m
1/m

prefix
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(X,Y,Z)
w(Zz)

Free space permeability
Relative permeability

Refractive index equals to /g,

A reference refractive index
Effective index

Angular frequency (radians)
Nonlinear Polarisation

Power (for two dimensional waveguides)
Power (for three dimensional waveguides)

One dimensional z-dependent electric field
Normalised frequency

Vector space location (X,y,z)

The real part of the quantity in the bracket

Charge density

Poynting vector

The Transpose of a matrix

Time -

Cartesian co-ordinate system

Window Function in the longitudinal direction
Total longitudinal distance

Complex conjugate
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Term

1-D
2-D
3-D
ADI
BC
BPM
CM

CM-FORTRAN

EIM
FDTD

MEFD

NGM

QPM
RSM
SHG
SIMD
SIPIM
TBC

Abbreviations

Description

One Dimension

Two Dimensions

Three Dimensions
Alternating Direction Implicit
Boundary Conditions

Beam Propagation Method
Connection Machine

Connection Machine FORTRAN
Crank Nicholson

Explicit Finite Difference
Effective Index Method

Finite Difference

Finite Difference Time Domain
Finite Element

Fast Fourier Transform

Modified Explicit Finite Difference
Multiple Instruction Multiple Data
Number of Guided Modes
Number of Processors

Quasi Phase Matched

Real Space Method

Second Harmonic Generation
Single Instruction Multiple Data

Shifted Inverse Power Iteration Method
Transparent Boundary Conditions
Transverse Electric field

Transverse Magnetic field
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Chapter 1

Introduction

1.1 General

Lightwave technology has become increasingly important to the future of the
telecommunication field due to the high bandwidth of light (= 100 THz). The inventions,

first the laser in 1960 as an optical source and later the low-loss optical fiber as a key
communication link, have made optical communication becomes a reality [1-7]. However,
due to losses and dispersion, the optical signal has to be regenerated (re-amplified) along
the path of transmission. Then it was realised that a complete optical system has to be
integrated upon a single substrate to allow for efficient optical signal processing [1].
Following these lines the idea of integrated optics emerged. Such complicated circuits of
integrated optics use optical waveguides to execute various different functions. In most
practical applications, these waveguides have a rectangular geometry (e.g. rib waveguides),
where the main purpose of designing the rib waveguide structure is to confine the optical
field in two dimensions, vertically by refractive index changes and horizontally by
geometrical changes. In some devices the rectangular waveguide has to split into two other
waveguides forming a branch coupler (Y-junction) such as the Mach-Zehnder switch,
which is the basic element of many integrated optical signal processing devices, and the
junction of a ring laser [1]. The practical reason for designing the branch coupler
waveguide is to divide the input power into two output waveguides or, conversely, to
combine the power from two input waveguides.

In the current state of integrated optics, switching of light between two output
channels is executed using the electro-optic effect, where an external dc electric field is

used to change the refractive index of the medium resulting in a phase change, over a
certain distance, to the guided wave [8]. However, the involvement of electronics in optical

communication degrades greatly the use of the allowed bandwidth of light due to the speed
limitation of electronics and opto-electronics devices [9]. It seems that large bandwidth is
only obtainable using all-optical integration where the modulation and the switching have
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to be executed in the optical domain. In this context nonlinear optics plays a very important
role for developing an all-optical switch [8,9]. Initially, most of the research was focused
on intensity-dependent nonlinear materials in which the wave produces its own phase shift
and hence selects, according to its power level, its own output path [8]. Such an effect,

where the refractive index of the material depends on the intensity of the wave, has been
demonstrated using the %) nonlinear response of the material, sometimes referred to as the

Kerr-effect [8,9]. x@® here is the third-order nonlinear susceptibility of the material.
Recently, theoretical and experimental studies of the (? response of the material showed
that a large nonlinear phase shift to the wave can be obtained, where v (2) here is the
second-order nonlinear susceptibility [9-12]. In the past, %(?) response was mainly used to
generate a wave that oscillates with double the original frequency (Second Harmonic
Generation (SHG)). Initia'lcomparison studies between the two responses of %2 and x©®,
for GaAs material, showed that the ¥ switching device may be more efficient than the
v(3) counterpart [11].

1.2 The Objective'of the Thesis

All these developments in the area of integrated optics show that there is a great need
for theoretical studies in order to understand and improve these devices. In addition,
modelling avoids the fabrication of devices by trial and error, and therefore reduces the

cost and the time of fabrication [13]. From the previous discussion, we can distinguish two
classes of linear three-dimensional optical devices, the directionally non-varying
waveguides (z-invariant), such as the rib waveguides, and the directionally varying
waveguides (z-variant), such as the Y-junction. z-invariant waveguides can be modelled
only numerically, because the rectangular geometry of the dielectric waveguide does not
have an exact analytical solution. Therefore, efforts have been devoted to try to find the
optimum solution using numerical techniques [14]1. On the other hand, modelling z-variant
waveguides is much more complicated than the previous class of waveguides, because they
contain variations in the z-direction and this leads to a very involved analysis [13]. For
example, the Y-junction is not a three-port device but a four-port one, where the three arms
are connected with guided modes and the fourth is connected with radiation modes. With a
field incident upon the junction from the combined waveguide, it is required to find the

power transmitted to the two output waveguides, the reflected power in the input

waveguide and the power radiated from the junction into the surrounding medium.
Modelling z-variant waveguides using Coupled Mode Theory is very challenging, because

1 A review to some of these techniques is given in chapter 2.
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it is not easy to deal with the continuous mode spectrum of radiation modes. However, if
the device is enclosed inside an artificial box then these radiation modes can be
approximated [1]. But the size of the artificial box is a very critical parameter in solving
these kinds of problems; the larger the box, the more the method converges to the correct
results. In addition, inaccurate calculation of radiation modes may lead to misleading
results. On the other hand, nonlinear waveguides are very difficult to model using
analytically-based techniques like the Coupled Mode theory, and even more difficult when
the devices have geometrical and/or material change in all three directions. Other methods,
based on numerical analysis, are much better suited to such devices. In this context,
numerical modelling of integrated optics devices is of great importance. In addition, the
continuous rapid development of hardware helped to produce new powerful computers
specifically for the purpose of numerical studies. This has also helped to produce/add new

numerical techniques to improve the accuracy and the efficiency of the solution.

One of the numerical methods that can be used to study optical devices is the Finite-
Difference Time-Domain technique (FDTD) [16-20]. The method was first used by Yee in
1966 [16] and later has been used by many workers to model electromagnetic wave
interaction with arbitrary structures [17]). Recently, the technique was used to model two-
dimensional optical devices [18-20]. For a time independent refractive index, the FDTD
can be employed by discretising, using centred finite-difference approximations, the
electric and the magnetic fields of the full set of Maxwell's equations and uses a time
stepping mechanism, using again the centred finite-difference approximation for time
derivatives, to update the discrete field values [17]. The time-stepping is continued until
the sinusoidal steady state is achieved at each point. This technique is conditionally stable,
where the time step size depends on the space grid size [17]. As the space grid size
decreases, the time step size must also decrease for the method to remain stable. For
practical applications the time step is very small, resulting in a very long simulation time.
While this method combines manyfeatures of scattering problems, it requires enormous
computer resources even for simple two-dimensional waveguides [19]. In addition, in
many applications of cw operation, the transient response of the problem is not very
important; however, the computation of this response, using the FDTD, is essential in order
to find the steady state response, and that takes most of the computing time in a FDTD
simulation.

Another attractive method to analyse complicated structures of integrated optics is
the Beam Propagation Method (BPM). From the large volume of literature on this method,
one can conclude that the method has established itself as a prime numerical tool for the
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analysis of two and three-dimensional linear and nonlinear optical devices [15]2. This is
mainly due to its simplicity and applicability to a variety of optical devices. This method
depends on the idea of marching the optical field along the direction of propagation using a
one-way propagation principle. The main advantage of the BPM over the Coupled Mode
Analysis is that it predicts both the guided and the radiation modes in the same formalism
and its propagational ability makes it a good tool in the analysis of longitudinally varying
devices. The original method was based on the FFT algorithm; however, recently new
techniques to improve the accuracy and the efficiency of the method have been reported,
mainly based on the Finite-Difference (FD) approximation. Broadly speaking, the FD-
BPM proves to be more efficient than the classical FFT-BPM in terms of computational
time and flexibility. The most popular FD-BPM is an implicit method based on the
Alternating Direction Implicit (ADI) approximation. On the other hand, the explicit FD-

BPMs are becoming more popular due to their simplicity and high efficiency. The explicit
Real Space (RS) method, depends on splitting the finite-difference matrix operator into
two matrix operators where each matrix contains small sub-matrices that are solved
analytically. The Explicit Finite-Difference (EFD) technique is another attractive method
for the BPM, and is a very simple technique to implement.

Generally the BPM is very efficient for the analysis of two-dimensional optical
structures but consumes a lot of time when applied to three-dimensional devices, due to the
following reasons3. Three-dimensional problems always lead to very large computational
tasks. In addition, practical integrated optical circuits contain multiple coupled linear and
non-linear waveguides which are generally longer than several hundreds of wavelengths.
On top of that, the existence of large-contrast media will force the BPM to use small
transverse mesh sizes and/or small longitudinal step sizes for convergence or stability
reasons. When all of these are added together, the computational problem becomes very
large, and conventional serial computers are not adequate for this kind of problem.
Therefore, it is very natural to turn to parallel processing implementations in order to
achieve practical run times for realistic devices [21-27]. On the other hand, parallel
computers are built for the purpose of speeding up the execution time of large

computational problems. In addition, the very intensive research activity in the area of high
performance computation shows that most standard mathematical application can gain
speed in the parallel environment [28-29]. However, not all serial methods are readily
adapted to the parallel environment, and care needs to be exercised in selecting the

2 See also the references of chapter 3.
3 As mentioned before, practical devices of integrated optics have three-dimensional geometries.
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appropriate method for parallel implementation. Generally, problems that can be divided
into smaller sub-problems where each is spatially localised, to minimise the
communication cost, are most suitable for parallel implementation. Therefore, this work
was motivated to investigate and develop efficient numerical BPMs for the analysis of
three-dimensional linear and nonlinear optical waveguides using parallel-processing
computers. In the nonlinear domain, waveguides that contain second order nonlinear
processes of % (2) of the material will be considered, as an example of one of the demanding

topics of the current nonlinear optics research investigation [9-12]. It has to be noticed that
analysing waveguides containing ¥(2) requires slightly more than double the computation

effort of the linear counterpart in which parallel computers are very useful for efficient
modelling. To the best of my knowledge, the first numerical methods for the analysis of 3-
D linear optical devices using large scale parallel computers were first reported from the

output of this thesis [21-23]. In addition the first efficient parallel BPM for the analysis of

Second Harmonic Generation in 3-D optical waveguides is also published using the results
of this work [24-27].

1.3 Organisation of the Thesis

This thesis consists of three parts in addition to an introduction and a conclusion; part
I is Theory, part II is Implementations (Analysis and assessments) and part III is Nonlinear
optical waveguides. The theory part consist of three chapters, the implementation part
consists of two chapters and the nonlinear optical waveguides part contains only one
chapter. The description of these chapters is as follows:

Chapter 1 is this introductory chapter to the entire work that provides a general survey on
the current issues of lightwave technology and modelling integrated optical devices and
also gives the motivation of this study.

Chapter 2 is an introductory chapter to the theory of linear optical waveguides. The
analysis in this chapter is restricted to z-invariant waveguides. The linear three-
dimensional wave equation is derived from Maxwell's equations for general linear
waveguides. The theory of guided modes of two-dimensional slab waveguides is also
given including TE and TM modes. In addition, radiation modes of two-dimensional
waveguides are also discussed. Then the rest of the chapter deals with modelling three-

dimensional rectangular optical waveguides with a review of some of the techniques used
~ to approximate the solution of 3-D waveguides.

Chapter 3 contains the theory of the Beam Propagation Method. The start of the chapter
gives a literature review of the method, then the derivation of the parabolic equation from
the Helmholtz equation and the relationships between the eigenvalues and the eigenvectors
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of the two equations are shown. The formulation of the classical FFT-BPM and three
- different FD-BPM techniques for the analysis of 3-D waveguides are described. The
chapter also shows two different techniques to compute the modes’ propagation constants
and their three-dimensional field distributions from the BPM field for z-invariant
waveguides.

Chapter 4 describes two different advanced parallel computers; the Multiple Instruction
Multiple Data (MIMD) machine and the Single Instruction Multiple Data (SIMD)
machine. The MIMD is a PARSYTEC super-cluster transputer array and the SIMD is a
Connection Machine (CM-200). These computers are used for the implementation of the
linear and the non-linear BPM of this work. The chapter concentrates on the differences
between these two parallel machines and how applications can be implemented on them.
The chapter also describes two different compilers for developing parallel algorithms on
these two computers.

Chapter 5 shows the formulation and the implementation of three FD-BPMs for the
analysis of 2-D waveguides (slab geometry). These methods are the Crank Nicholson, the
Real Space and the Explicit Finite Difference BPMs. Detailed comparisons between the
accuracy and the efficiency of the three techniques are shown. A new modified EFD-BPM
that improve the stability of the EFD-BPM is discussed at the end of the chapter. The
chapter also contains the application of the FD-BPM to analyse practical directional
couplers and Y-junctions. |

Chapter 6 first shows an approximate attempt to parallelise the three-dimensional ADI-
BPM on the MIMD and the SIMD machines. Then the chapter shows the detailed
implementations of the two explicit BPMs (the RS and the EFD) on the transputer array
and the CM-200 for the analysis of 3-D waveguides. In addition the chapter shows
comparisons between the performance of these parallel methods. Then these methods have
been used to analyse practical devices of 3-D nature (rib waveguides and directional
couplers) where comparisons between their accuracy are made and their results have been
compared with published data of serial techniques. Simulation examples for the
propagation of light inside 3-D three-core directional couplers are also shown.

Chapter 7 investigates the phenomenon of SHG. In this chapter the parallel EFD-BPM is
extended to study 3-D waveguides in the presence of a second order nonlinearity % (2). The
chapter shows the derivation of the nonlinear coupled wave equations both in 3-D (for the
SHG-EFD-BPM) and in 1-D, which is commonly used in the literature to validate

experimental results and to study possible concepts for optical devices. The chapter also
shows the implementation of the SHG-EFD-BPM on the two parallel machines used in the

linear implementations. Then the parallel SHG-EFD-BPM is used to analyse
semiconductor rib waveguides containing a second order nonlinearity. In one of the



Chapter 1 Introduction

simulation, Quasi Phase Matching (QPM) technique has been used to model the relative
phase between the fundamental and the second harmonic fields. In addition the parallel
SHG-EFD-BPM results have been compared with the solution of the reduced 1-D coupled
wave equations where the Runge-Kutta numerical technique has been used for the solution
of the 1-D model.

Chapter 8 contains a summary and a conclusion for the entire thesis work with suggestions
to future work of this study.
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Chapter 2

Modelling Optical Waveguides

9.1 Introduction

In this chapter, we start with the basic equations of electromagnetic theory which are
based on the solution of Maxwell's equations that describe precisely the propagation and
the distribution of electromagnetic energy in dielectric waveguides. In order to model the
complicated theory of nonlinear waveguides, it is essential initially to understand the
analysis of the simpler linear counterparts. Therefore, this part of the thesis will deal with
practical linear two and three dimensional optical waveguides. In addition, this chapter is
written as an introduction to the rest of this thesis where the information of this chapter is
the starting point to derivations or a reference for the later chapters. Further, we will
restrict the analysis, in this chapter, to waveguides that are uniform along the direction of

propagation (z-invariant).

The derivation of the linear three-dimensional vector wave equation from Maxwell's
equations is given in detail in the next section, where these equations can be considered as
o fundamental mathematical tool that describes the full behaviour of electromagnetic fields
in dielectric media. Then, in section 2.3, the analysis of an asymmetric slab waveguide is
considered, based on the solution of the simplified wave equation. The slab waveguide

consists of three regions of different dielectric constants in which light can be confined in
the middle layer (one dimensional confinement). Although the treatment of two-

dimensional waveguides 1s simple, the concept of the analysis can be extended to
understand the more complicated theory of three-dimensional waveguides. For practical
waveguide theory, generally it is required to find all information about guided fields in the
waveguide and the condition of guidance. The derivations of the field distributions and the

eigenvalue equations of the TE and the TM guided modes of the slab waveguides are given
in section 2.3. In addition, radiation modes of the slab waveguide are discussed, which is

very important for waveguides that have discontinuities in the direction of propagation



because the total transverse field at any position of the waveguide can be written as a
superposition of all orthogonal transverse modes. |

Section 2.4 contains a discussion about different types of practical rib waveguides
(three-dimensional waveguides) which are the skeleton of integrated optics circuits. As a
closed form analytical solutions of this type of waveguide are not usually known, the
section contains a review of some methods used to approximate the solution of rib
waveguides, ranging from simple and fast to accurate and time consuming. The limited
Effective Index Method (EIM), known for its simplicity, is discussed in section 2.4 as an
extension to the solution of slab waveguides. Then the section shows some of the more
rigorous analysis used, based on the solution of the wave equation in its vectorial, semi-
vectorial and scalar forms, using the well-known finite-difference approximation.

2.2 The Wave Equation

We start with Maxwell's equations [1-6]. These equations are very accurate
mathematical representations that describe the propagation of electromagnetic enérgy in
materials from a macroscopic perspective. They combine relations between all
electromagnetic fields and can be described in differential form as

dD

VXH=—
X o +J (2.1a)
oB
VXE=—-—
X o (2.1b)
V:-D=p (2.1c)
V-B=0 (2.1d)

where respectively, E(r,t) and H(r,t) are the electric and the magnetic field vectors, D(r,t)
and B(r,t) are the electric and magnetic displacement vectors and J(r,t) and p (r,t) represent
the current and the charge sources. r and t represent the vector space location (x,y,z) and
the time variable respectively. In this thesis, we restrict the analysis for source free cases in
 which J and p are set to zero. Each of the vector fields, in Eq. 2.1, contains three unknown

quantities (a total of 12 unknowns). For isotropic materials the magnetic flux density

vector B has a direct relation with the magnetic field vector H through the scalar magnetic
permeability | and can be written as

11



B=uH (2.2)

where § = U M, U, being the relative magnetic permeability that can be approximated as
unity for non-magnetic material (optical waveguides), and |, is the free space magnetic

permeability. Also for isotropic materials the electric displacement D can be written in a
Taylor series as a function of the electric field E, as [7,8]

D(r, 1) = eO[E(r, )+ xE(r, ) + Y DE(r,1) + Y VB3 (r, )+ ] (2.3a)

D(r,t) =€4(1 + x)E(r,t) + g, P(r, t) (2.3b)

where €, is the free space permitivitty,  is the scalar linear susceptibility, x(®) and () are

the second and the third order nonlinear susceptibilities respectively. P in Eq. 2.3b 1s the
nonlinear polarisation vector!. The relation in (2.3) is valid for instantaneous response of
the material [7].

Now let us write the first two equations ( Egs. 2.1a and 2.1b) for the linear case after
substituting D and B in Egs. 2.3 and 2.2 respectively; then we arrive at

JE
VxH=¢g.t, m (2.4a)
VXE=-, %I;I- _ - (2.4b)

where €.(x,y,2) is the relative permitivitty equals to (1+X). As a common practice, we will
derive an equation that contains only the electric field E by eliminating the magnetic field

H. A similar equation could be derived for the magnetic field using the same approach
below. If we take the curl ( V) of Eq. 2.4b as

VxVxE=Vx{-po%?-}

=—flo =-{V X H} (2.5)

and using the following vector identity for the double curl in Eq. 2.5 acting on the vector E
as

e —————————————— e

11 ater in this thesis, we will consider only x(:") response of the material.
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2 VECE UL

Vx(VXE)=V(V-E)-V’E (2.6)

and substituting Eq. 2.4a 1n (2.5), then we can rewrite (2.5) in terms of the electric field
only as

o’E (2.7)

Now we can use Eq. 2.1c for a source free field (p = 0), which can be written in this form
V-D=V.(¢,E)=E-Ve, +¢,V-E=0

V.E=-E-~& (2.8)

Er
substituting (2.8) in (2.7) we get the following equation

Ve, J’E
V2E+V( - ) Ho€os 37 (2.9)

For a monochromatic field that oscillates with an angular frequency , the electric and the
magnetic fields can be written as?
E(r,t E
(mt) | _|E() | 210
H(r! t) H(l’ )

Then the second derivative with respect to t in Eq. 2.9 can be replaced with -w?, leading to

the following vectorial wave equation where, as throughout this work, the time dependence
term ( & @) will be removed from equations as a matter of convenience

(2.11)

13



where

n=+e,

W 27
kO:;-:mﬂ’anO:T ’

n(x,y,z) is the refractive index, c is the speed of light in vacuum and A is the wavelength of

the wave. Eq. 2.11 is a very complicated and involved equation as the three components of
the electric field are coupled through the second term which can be expanded in Cartesian
co-ordinates® as

Vn* 0| 1_ on* 1 an dn’
VIE =a,—|—<E, —+—=E, —+—E. —
( n’ ) a""ax[n2 " Ox 2E ay E‘ az]
of1_dn* 1_ on> 1_ on?
+a,—| —E & 4 g 8 L2
% By[n2 *ox n’E dy n’ e az]
ol 1_on* 1_odn* 1 _ on?
B T be 2 en

where ax, ay and a; are unit vectors in the x, y and z directions respectively. In order to find

a solution for Eq. 2.11, all three components must be solved simultaneously. For a
homogenous medium this term will be zero, and the dropping of this term simplifies the
equation because the three components of the electric field are decoupled and the following
Helmholtz equation

V'E+kn’E=0 (2.13)

results. The equation could be written for any of the electric field components separately as

V’E, +k2n’E,
V’E, +K n’E, =0 (2.14)
V’E, +k2n’E,
A similar approach to the derivation of Eq. 2.13 will lead to a similar equation for the
magnetic field Has

3 The Cartesian co-ordinate system has been used because it is very convenient for the analysis of most
integrated optics devices.
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ing Or .

V' H+Kn*H=0 (2.15)
or
V*H, +k2n’H_
V*H, +k;n’H, ;=0 _ (2.16)
V*H, +k’n’H,

For dielectric waveguides which consist of different homogenous media, the fields at
the interface between two layers must obey Boundary Condition (BC) requirements. In
other words, the solution of a certain problem that consists of two ( or more) media could
be solved locally by means of Maxwell's equations (or the derived wave equation) and then
coupled together using BC. BC equations can be derived from the integral form of
Maxwell's equations [1]. Let us consider two dielectric media with different refractive
indices ny and njy. All the fields at the interface between the two media must be linked

through

a . .X(E,—E)=0 = EM=-E" (2.17a)
a..x(H,-H)=0 = H =H!"s (2.17b)

B (B, ~B)=0 =BX"=B"" = H™ =H"™ (2.17¢c)
a__(D,-D)=0 =D"=D"" = nlEX™=nE™ (2.17d)

where the subscripts 1 and 2 refer to medium n; and n, respectively. apom i8S 2 unit vector
normal to the interface between the two media, "norm" and "tang" refer to the normal and

the tangential components of the fields. From the above boundary conditions, we may
observe that the tangential components of E and H and the normal of H must be
continuous across the interface of the two dielectric media. On the other hand, the normal
of D is continuous at the boundary but the normal of E is discontinuous.

2.3 The Dielectric Slab Waveguide

 In this section we will be dealing with the analytical solution of one-dimensional
confinement of light using three layers (slab waveguide). For simplicity, we will consider
materials which are linear, lossless and piece-wise homogeneous. Although the slab

waveguide mathematical treatment is simple and physically easy, the analytical solution of
this waveguide helps to understand other more complicated structures (e.g. three-
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dimensional and/or nonlinear, etc.). In addition, the slab waveguide theory could be easily
extended to multi-layer waveguides solutions using the same concept of this section [2].
When we say that we are interested to find the analytical solutions of a waveguide, this
means the physical distribution of the electromagnetic fields inside and outside the
waveguide, which must satisfy Maxwell's equations. In other words, it is required to find
the modes that can exist in the waveguide. A mode is defined here as any transverse field
distribution whose magnitude 1s independent of position along the direction of propagation.

Fig. 2.1 shows a dielectric slab waveguide consisting of three homogeneous and

lossless layers: the cladding, the guiding and the substrate, where respectively the
refractive indices of these layers are nc, ny and ns.

Cladding layer
x=d/2

Guiding layer
x=-d/2 '

Substrate layer n

Fig. 2.1 The dielectric slab waveguide.

It has been assumed that z is the direction of propagation where the light does not
encounter any changes. The guiding layer where the guided (or trapped) light exist is
surrounded by two semi-infinite layers (the guide extends to infinity in the positive and
negative y-direction) with refractive indices lower than the value of the refractive index of

" the guiding layer. Typical values of the refractive indices, for semiconductor materials
(GaAs), are nc = 1 (air), n; = 3.44 and ng = 3.4 and a thickness d of the order of 1 pm.

Since we are concerned with only two-dimensional geometry, all derivatives with respect
y.
to y in the wave equation can be set to zero (—a% = O,and-éa—z- = OJ. Then the wave equation
y
in (2.13) can be written, for each region of Fig. 2.1, as [2]

0’E J’E
"é-;;+%;2—+kﬁn3E =0 (2.18)
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where n; denotes the refractive index of one of the three layers. Further we may assume
that the variation of the fields in the positive z-direction as e ’™* where k, is the
longitudinal propagation constant. We may rewrite Eq. 2.18 for the three regions separately

as

OE,
ox>

J’E

— 8 riEs =) (The guiding region)

ox?

’E
ox?

where

2 Yy
k; —k n;
2,.2 2
kon, —k;
2
r /

=k’ -kn?

0" "8

.-

2
C
2
8
2

-
i

j(ot—k

Note that in Eq. 2.19, the term e

r’E,_ =0 (The cladding region)

-r,E, =0 (The substrate region)

(2.19a)

(2.19b)

(2.19¢)

) has been dropped from the equation as a matter of

convenience. At this stage, we have to distinguish between the two polarisations that can
be supported in slab geometry; the Transverse Electric (TE) field and the Transverse

Magnetic (TM) field.

9 3.1 Transverse Electric (TE) Guided Modes

In TE waves, Ey, Hy, and H, are the only non Ze10 field components, and we may
write Eq. 2.19 in terms of Ey only; from Maxwell equations (Eq. 2.4b), we can obtain H,,

and H, from the value of Ey as
Hx = — kz Ey
WU,
g o=_J 9B
©op, ox

(2.20a)

(2.20b)

It is important to note, from the above, that the electric field is always tangential to the

interfaces between the dielectric layers of the slab waveguide. Under guiding condition it is
required to have most of the power confined to the central region of the slab waveguide

17



(guided region of Fig. 2.1). This implies that oscillatory behaviour in the middle layer and
exponential decay (evanescent) behaviour in the outer regions are required to satisfy this

requirement, and the solution of Eq. 2.19. This requirement can be enforced on the

coefficients of Eq. 2.19 as rﬁ,r: and r; 20 and combined to give the following

inequalities?

k,n, 2k, 2k.n, 2k,n, (2.21)

Using the above, we may write the guided mode solutions for the asymmetric slab
waveguide for the electric field Ey as [2]

| Acos(r, d/2) + Bsin(r, d/2) e~ x 2 df2
E, = At_:os(r‘x) + Bsin(rgx) ~d/2S xS d/2 (2.22)
| Acos(r, d/2) - Bsin(r, d/2)]e™*+*? x < —df2

Eq. 2.22 has been written so that the boundary condition requirements for the continuity of
the electric field Ey at the both interfaces of the slab waveguide are satisfied. If E, is

continuous, then from Eq. 2.20a H, is continuous as well. The other requirement for
boundary conditions to satisfy is the continuity of H, at x = d/2 and x = —d/2. From Eg.

2.20b H can be written from Ey of (2.22) as

_rc[Acos(r, d/2)+ Bsin(r, d/2)]e""-("'"m x> d/2
H, = m:l 0 r,|-Asin(r,x)+ Bcos(r,x)| ~d2<x<df2  (2.23)
r,;[Acos(ra d/2) - Bsin(ra d/2)]e"(“"’2) xs—-d/2

The continuity of H;, at x = d/2 gives

. —rc[A cos(rl d/2) + Bsin(r‘ d/2)] = rg[-A sin(rl d/2) + Bcos(r‘ d/Z)]

4 Note that it has been assumed that ng > n.
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and at x = -d/2 gives
rg[Asin(rIl d/2) + Bcos(r' d/Z)] = r,[A cos(r, d/2) - Bsin(rg d/2)]

From the above two relations, one can eliminate the ratio A/B and with some tedious but
straight forward algebra we arrive at the following relation

tan(er:Ml (TE) (2.24)

2
[y —I,I,

Eq. 2.24 is the eigenvalue (characteristic) equation for the TE guided modes where the
only unknown quantity is the propagation constant k, (k, is embedded in rg, r5, and r.; see

below Eq. 2.19).
2.3.2 Transverse Magnetic (TM) Guided Modes

Using a similar approach to the derivation of the TE guided modes, we can obtain the
guided modes for the TM polarisation. For this polarisation the only non-zero field
components are Hy, Ex, and E,. The wave equation in (2.19) can be written in terms of Hy
only, and we may also assume that the fields vary as e in the in z-direction. From

Maxwell's equation (Eq. 2.4a), we can obtain E,, and E; from the value of Hy using

k

Ex - WHY (2.253a)
_i oH

E, =— an -—ax' (2.25b)

where n; refers to the refractive index of the layers n¢, ng; and n,;. The Hy solution for the
TM guided modes can be written similarly to the Ey of the TE in (2.22) as [2]

[C cos(r‘ d/2) + Dsin(rll d/2)]e"’“(""’2) x2d/2
H, = Ccos(r‘x) + Dsin(r.x) -d/2<£x<d/2 (2.26)
[C cos(rll d/2) -D sin(r8 d/2)]er.(x+d/2) x < —d/2
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Eq. (2.26) has been written so that Hy is continuos across the two interfaces of the slab
waveguide (at x = d/2 and -d/2). From Eq. 2.25b it follows that E, could be written as

-—%|Ccos(r, d/2) + Dsin(r, 4/2) e+ x> d/2
E, =—L{ —&[-Csin(r,x)+ Deos(r,x]] -d/25x$d2 27)
0 g | |
?rl-'i-[C cos(rg d/ 2) — Dsin(rg d/2)]e"(“"’ 2) x<-d/2

The continuity of E, in Eq. 2.27 at x = d/2 gives

-T:%[C cos(r, d/2) + Dsin(x, d/2)] = [ ~Csin(r,d / 2) + Deos(r,d / 2)]

2
n!

and at x = -d/2 gives

%[—Csin(r'd /2)+ Deos(r,d/ 2)] = - [Ceos(r, ¢/2) - Dsin(r, ¢/2)}

Eliminating the ratio C/D from the above two equations and with some algebraic
manipulations we arrive at

r.n¥(n’r. +n?
tan(dr, ) = 3;(2 i ) (TM) (2.28)
ninlrl —nir,r

Eq. 2.28 is the eigenvalue (characteristic) equation for the TM guided modes where again
the only unknown quantity is the propagation constant k,.

2.3.3 Guided Mode Computations

For guided modes k,'s are discrete values which can be computed using Eqs. 2.24

and 2.28. It is a usual practice to normalise the propagation constant k, in terms of the free
space propagation constant k, as

kz.N = netf.Nko’ (N = 0, 1, 2,) (2.29)
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where negN's are the discrete normalised effective indices of guided modes. N is added to
the definition of effective index just to refer to the mode number where 0 is the highest
value of effective index (sometimes referred to as the fundamental mode or the .Oth order
mode). N also refers to the number of nodes in the transverse field distribution. From Eq.
2.21, the discrete values of the effective indices of guided modes that satisfy the eigenvalue
equations should be

N, >0, >0, (2.30)

It is important to note that a waveguide supports a finite number of guided modes where
the cut-off condition is always given by n . =n, or k, . =kn,.

The eigenvalue equations (2.24 for TE and 2.28 for TM) could be solved graphically
to find the exact values of the propagation constants and the total number of guided modes
[4,5]. From such a plot, the intersections between the left side of these equations (tan
function curves) and the curves of the right hand side of the equations indicate the discrete

values of the propagation constants where the number of intersections is the total number
of guided modes. On the other hand, simple numerical methods could be used to solve the

eigenvalue equations (¢.g. a zero finding routines like Muller's method [9]). In these
methods a guess near the eigenvalue is needed as an input and the routine improves this
value iteratively toward the true eigenvalue, within an achievable limit, until it converges.
From the eigenvalue equations of both the TE and the TM we may write the following
equation to find the total number of guided modes for the TE or the TM [2,5]

1/2
] } (2.31)

int

Number of modes = -l- v-tan“{n[n

=~
O N

- Il
-1

n n

C Y
- W

where the subscript "int" refers to the next largest integer of the curly bracket and v is the
normalised frequency defined as

v=dk,(n? -n?)" (2.32)
and the parameter 7 in Eq. 2.31 is defined as

n= {1, forr TE modes
n2/nl, for TM modes
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From the above equations of both the TE and the TM, we may conclude that there
are three factors that determine the total number of guided modes supported by a slab
waveguide. The first is the difference between the values of the refractive indices of the
three layers where, for example, increasing the value of the refractive index of the guiding
region will increase the total number of guided modes. The second factor is the thickness
of the slab waveguide d where the total number of guided modes increases by increasing d.

And the third is the wavelength of the field (or the frequency) where increasing the
wavelength will decrease the total number of guided modes.

5 3.4 Guided Modes Power Flow

Once the propagation constants of guided modes are known,' then we can compute
the time-average Poynting power P carried by guided modes along the direction of
propagation Z. However, the slab waveguide' considered in our analysis extends to infinity
in the y-direction, so in this case we assume P as power per unit length (in the y-direction)
with a unit W/m. The guided power flow P in the z direction is given by the integral over
the waveguide cross section of the z-component of the Poynting vector S; [2]

N e _1 oo *
P= __Szdx——z- _“RC(EXH )zdx . (233)

where P is a real and a positive quantity and the asterisk * refers to the complex conjugate.
For TE modes, the electric field E is given by (2.22) (only the y-component of E exists)
and the magnetic field can be computed from Ey using (2.20a). Then (2.33), can be written

as

P= ——;-Re E H LAX = —-*—J'__'E | dx (TE) (2.34a)

204,

In a similar manner, the guided power flow in the z-direction for the TM modes can be
computed using Hy in (2.26) and Ey in (2.25a)

P-—;-Re H,E,dx = __;_ j (Vn*x)H, |dx (TM)  (2.34b)

n(x) in (2.34) is a reminder that the refractive index is different in the three regions of the

slab waveguide. It is convenient to normalise the field distribution to the power carried by
the mode. First let us write the transverse fields as '
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E, (x) = af, (X) (For TE) (2.352)

H, (x) =a# (x) (ForTM) (2.35b)

where the fields Ey and #§ are the transverse fields, normalised so that the mode is carrying
a power of 1W/m and are defined as [3]

E
E, (X) = ——— A (TE) (2.36a)
: [ B ooH; e
and
A, (X) = — 2, &) (TM) (2.36b)
~|JH (E, (x)dx

and a's are amplitude coefficients. Then we may write the power in (2.34) as

k, (- kK, (-
P= -z—a)ﬁ:_[__‘E,rdx = m __|a|2|£y “dx = lal* (For TE) (2.37a)
k, (- 2k, (-
P = ot [ (Vo oY, ax = 3= [ (Vo o)l [ax = f  Bor T™) @370
2.3.5 Radiation Modes

The number of guided modes of dielectric waveguides, as described previously, is
always finite, but in order to provide a complete set of orthogonal modes, there must exist
other modes, which also must satisfy both the solution of Maxwell's equations and the
boundary conditions [2,4]. These modes do exist and are called radiation modes [2,4].
Unlike the guided modes, which have evanescent solutions outside the guiding region,
radiation fields could satisfy the wave equation and the boundary conditions by having
sinusoidal solutions outside the guiding region which extend to infinity. In addition, the
time and the z variations for these fields, can be also described by the factor gl®-kit),

Thus, we may say that these fields qualify with all the characteristics to be called modes,
except that their energy is not confined to the guiding region but reaches to infinite
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distance in the x-directions. The other main difference between radiation modes and guided
modes is that the propagation constants of radiation modes are not discrete but form a
continuum. At this stage we must distinguish between two types of radiation modes which
may describe the slab waveguide solution (both as TE or TM); namely the substrate
radiation modes and the cladding (cover) radiation modes. The first could be described by
sinusoidal solutions in the guided and the substrate regions and evanescent waves in the
cladding region while the second type has sinusoidal variations in all three regions. Fig. 2.2
shows a schematic diagram for the location of the effective indices of all possible modes in
the asymmetric slab waveguide of Fig. 2.1. From the figure, we see that radiation modes'
propagation constants are below the cut-off condition of guided modes (see section 2.3.3).

4—bpd4——pe————PD
Cladding Substrate Guided

radiation radiation

Fig. 2.2 The location of the effective indices of all possible modes in asymmetric slab waveguide.

Radiation modes are necessary to model dielectric optical devices, because they are
part of the description of the total field solution of dielectric waveguides. In practice, the
study of z-variant waveguides (waveguides that have discontinuities in the refractive index
along the direction of propagation z) requires the solution of both guided and radiation
modes. For example, guided modes travelling inside z-variant waveguides will excite an
infinite number of radiation modes. This means that discontinuities in waveguides are the
cause of transferring energy from guided to radiation modes and consequently the energy
will travel away from the guided region toward the infinite space around the waveguide.
For z-invariant waveguides, radiation modes will exist if the waveguide is excited with an

initial input field distribution (e.g. at z = Q) different from those of the guided fields (e.g.
Gaussian field).

Orthogonality of modes

One of the important relations between modes (guided and radiation of TE and TM)
of waveguides is that all modes are orthogonal. This relation can be expressed as [3,6]

JE:’ x HY dA =0, k, #k’ (2.38)
A
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where t indicates the transverse field distribution, A is the transverse cross sectional area of
the waveguide, and v and 7 refer to two different modes whose propagation constants are

different. This equation (2.38) 1s written in such away that it can be used for three
dimensional waveguides where A could contain x and y dimensions. For TE modes of the
slab waveguide of section 2.3.1, the orthogonality relation can be simplified into

[ _ku .
| =+EEfdx =0, k? # k¢ (2.39)
and for the TM of section 2.3.2, the relation is

I -———*——_k H“H‘ dx =0, kY #k; (2.40)

In addition to the orthogonality relation of modes, both guided and radiation modes form a
complete set. This feature 1s also important which indicates that any arbitrary transverse
field at a constant Z can be written as a superposition of guided and radiation modes as [5]

NGM kon,
E,(x)= ZaNEN(xH jb(k E(x,k, )dk, (TE) (2.41a)
KN,

H, (x) = EaN}( (x) + j b(k,)H(x,k, )dk,

(TM) (2.41b)

In Eq. 2.41 the discrete summation is over the guided modes and the continuos summation
(integral) is over radiation modes. NGM denotes the number of guided modes, a's are the
amplitude coefficient of the guided modes and b's the amplitude coefficient of radiation
modes. We have to note that radiation modes can not be normalised to a finite power
because the distribution of the fields extend to infinity in the x-directions of the slab
waveguide.

Due to the necessity of radiation modes in the analysis of optical waveguides, some
of these modes can be computed approximately using the idea of metallic waveguide

theory, also the method helps to understand the physical behaviour of radiation modes in

dielectric waveguides [4,5]. If we enclose the slab waveguide of Fig.2.1 with two metal
walls (with a conductivity G =o0) at x = d/2+L and -d/2-L (see Fig. 2.3), then the problem

is transformed into a metallic waveguide with an insert of dielectric waveguide in the
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middle. In other words, the propagation constants k, of radiation modes are now discrete
rather than continuum. The summation integral of Eq. 2.41 is transformed into a discrete
summation over the new discrete radiation modes. The slab waveguide geometry is
obtained in the limit of allowing L to approach infinity. As L increases, the spacing

between the discrete values of radiation modes propagation constants decreases and in the
limit of infinite L. they merge into a continuum.

E, =0, (for TE)
E.=0, (for TM)

metal

x=d/2 Z

metal

Fig.2.3 Two metal walls surrounds the slab waveguide of Fig. 2.1 to approximate the analysis of radiation
modes.

2.4 Modelling Three-Dimensional Waveguides

Rectangular (rib) dielectric waveguides proved to be the practical way to control
light for the use in optical processing circuits. One of the purposes of rib waveguides is to
confine energy in both transverse directions x (horizontally) and y (vertically), in the y-
direction by material changes and in the x-direction by geometrical changes. Although
more complicated waveguides are used in many practical applications, the rib waveguide is
considered to be the essential element in such devices. Fig. 2.4 shows a three-dimensional
view of a typical dielectric rib waveguide. Similar to the operation of the slab waveguide

for guiding light, the refractive index of the middle layer (the guided layer) ng must be
grater than the refractive indices of the outer regions n. and n, [2,4]. Practical devices are
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always surrounded by air, where in such a case n. can be set to the refractive index of air
which is unity.

Fig. 2.4 Three dimensional view of a dielectric rib waveguide (n>n>n,).

In this section we will be dealing with piece wise homogenous z-invariant rib waveguides.
7-invariant three dimensional waveguides are sometimes referred to as two dimensional

variation waveguides. Fig 2.5 shows a cross sectional view of different common types of
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