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Summary

This work represents an investigation of the corrosion behaviour of primarily high-
grade alloys in marine environments. A range of marine conditions of varying severity

has been considered and their effect on the electrochemical corrosion characteristics
assessed. The study has utilised a range of electrochemical monitoring techniques,

light and scanning electron microscopy and other surface techniques to assess the
extent and morphology of corrosion attack under certain conditions.

Principal components of the study include the effect of elevated temperature (up to
60°C) on corrosion initiation and propagation in static and high velocity impinging
seawater. In addition, the effect of micro and macro fouling has been assessed using
immersion tests and a hydrodynamic model. Continuation of the biological effects on

corrosion looked at the effect of the presence and activity of Sulphate Reducing

Bacteria (SRB) on corrosion mechanisms. Correlations between accelerated laboratory
tests and the real time behaviour of materials have been successfully made. Methods to
counteract fouling often include the use of biocides and, in this study, the effect of high
levels of hypochlorite dosing has been investigated.

Mechanical and corrosion effects by liquid impact and by liquid-solid impact constitute
a major part of this work and the use of electrochemical tests has enabled the
proportions of weight loss on a given material attributed to corrosion, erosion and a
synergistic factor to be elucidated. Several options exist to combat excessive
deterioration due to mechanical wear. Two processes, shot-peening and laser

irradiation, have been assessed primarily for corrosion resistance in a marine
environment.
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between adjacent laser runs on SAF 2205.
Fig. 6.38. Corrosion between laser runs on UNS S32760 after anodic polarisation at
S0°C

Fig. 6.39. Plan view of surface of SAF 2205 after laser treatment increasing the
amount of overlap

Fig. 6.40. Higher magnification of plan view of surface of SAF 2205 after laser
treatment increasing the amount of overlap.
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Fig. 6.41. Uniform layer on SAF 2205 cut along one run

Fig. 6.42. Uniform thickness of laser treatment across several runs on UNS S32760 on
increasing the overlap.

Fig. 6.43. Uniform thickness of laser treatment along one run on UNS S31254 on
increasing the overlap

Fig. 6.44. Uniform thickness of laser treatment across several runs on UNS S31254 on
increasing the overlap

Fig. 6.45. Measured microhardnesses on the duplex and austenitic stainless steels after
laser treatment in a nitrogen atmosphere

Fig. 6.46. Microstructure within the laser layer on UNS S32760

Fig. 6.47 Interface between duplex microstructure and the laser treated layer on SAF
2205

Fig. 6.48. Microstructure of the laser layer on UNS S31254
Fig. 6.49. Laser layer on UNS S31254 showing the porous structure

Fig. 6.50. Dark field illumination of the laser treated layer showing the fine

precipitates. Etched electrolytically in 40%KOH
Fig. 6.51. Increased Ep on SAF 22035 after laser treatment in seawater at 50°C

Fig. 6.52. Increased Ep on UNS S32760 after laser treatment in seawater at 50°C

Fig. 6.53. Pitting at the boundary between laser runs on UNS S32760 after anodic
polarisation in seawater at 50°C

Fig. 6.54. Decreased resistance to the onset of localised corrosion in seawater at 50°C
on laser treated UNS S31254

Fig. 6.55. Crevice attack at the metal/sealing lacquer boundary on UNS S31254 after
anodic polarisation in seawater at S0°C

Fig. 6.56. Detrimental effect of laser treatment on austenitic stainless steel UNS
S31603 at 18°C and at 50°C in seawater

Chapter 7
Fig. 7.1. Vessel used for anaerobic SRB culturing

Fig. 7.2. Trends in free corrosion potential and hydrogen sulphide level over longest
immersion period in SRB

Fig. 7.3. Anodic polarisation contrasting characteristics on (a) SAF 2205 after 4 hours

immersion and (b) on UNS §32760 after 4 days immersion in SRB-containing seawater
and SRB-free seawater

Fig. 7.4 (a) Progression of current up to the current transient peak, I, on the stainless

steels and (b) much lower current at a similar transient peak on titanium after 4 days
immersion in SRB

Fig. 7.5. Anodic polarisation to a potential more noble than the potential at which
current transient is observed
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Fig. 7.6. Corrosion products emanating from the metal/resin interface during anodic
polarisation on UNS S31254

Fig. 7.7. Sulphide-containing corrosion products at the crevice of UNS S31254 after
anodic polarisation in SRB

Fig. 7.8. Pitting under a cluster of sulphide-containing corrosion products on UNS
S32760 after 4 days immersion and anodic polarisation

Fig.7.9. Comparison of anodic polarisation curves after 4 hours immersion in SRB-
containing and SRB-free seawater

Fig. 7.10. Anodic polarisation on UNS S31254 after 4 days immersion
Fig. 7.11. Anodic polarisation on 25Cr duplex after 4 hours immersion
Fig. 7.12. Current transient after 3 weeks and 3 months immersion on UNS S32760

Fig. 7.13. Anodic current transient after <1 week and 6 months immersion on UNS
S31254

Fig. 7.14. Anodic polarisation on SAF 2205 after 4 hours and 3 months immersion

Fig. 7.15. Anodic polarisation on UNS S31254 after 3 weeks immersion
Fig. 7.16. Anodic polarisation and slight ennoblement of Ep, after 6 months immersion

Fig. 7.17. Anodic polarisation on SAF 2205 after 8 days in SRB

Fig. 7.18. Etching of the duplex structure and formation of sulphide film on the
austenite phase of 25Cr duplex after anodic polarisation
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