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Abstract 

Multiple sclerosis (MS) is a chronic disease of the human central nervous system 
(CNS) in which repeated episodes of inflammatory demyelination result in 
formation of persistently demyelinated plaques of gliotic scar tissue associated 
with varying degrees of axonal loss.   MS is now considered a “complex trait” 
that is triggered in genetically susceptible individuals by environmental factors.  
The disease is also considered to contain an autoimmune component where both 
the adaptive and innate immune systems have been implicated in disease 
pathogenesis.  There has been a steady accumulation of circumstantial evidence 
from both clinical and experimental studies that implicate a role for 
autoantibody dependent mechanisms.  However this issue remains controversial 
in the absence of formal evidence that patients actually develop a pathogenic 
autoantibody response.  The aim of this thesis was to resolve this question.   
 
To do this we developed an in vitro bioassay based on a dissociated myelinating 
culture system from embryonic rat spinal cord.  We demonstrated that this in 
vitro system could reproduce many features of in vivo myelinated axons.  To 
validate this model as a viable screening assay characterised complement 
mediated autoantibody responses using a series of monoclonal antibodies and 
anti-sera.  Due to their significance in the literature we focussed in particular on 
the MOG specific and Nfasc specific responses and comprehensively 
demonstrated that our bioassay offered a robust screening strategy in which to 
detect pathogenic antibody responses in the presence and absence of exogenous 
complement.   
 
To determine whether we could use our model to detect pathogenic 
autoantibody responses in MS patients, we purified the IgG fraction from a 
cohort of MS patients (n=20), OND (n=10) and healthy controls (n=13).  Using this 
patient purified IgG we demonstrated a MS specific demyelinating activity, 
which was present in ~50% of samples screened.  However in 10% of patients 
demyelination occurred secondary to pronounced axonal injury.  These effects 
were dependent on exogenous complement and were unique to the MS cohort.  
Pathogenic antibody responses tended to be most prevalent in those patients 
with an aggressive disease course.  In addition to complement mediated CNS 
injury we also demonstrated that this pathogenic MS IgG could disrupt myelin 
formation in developing myelinating cultures.  Attempts to define the specificity 
revealed that this was heterogeneous, however in one MS patient we discovered 
that Nfasc155 provided a dominant antigen for pathogenic autoantibody 
responses.    
 
Together these data provide formal demonstration that MS is associated with 
pathogenic autoantibody responses.  This has significant long term consequences 
for the clinical management of the disease.   
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1 

1 Introduction 

1.1 Multiple Sclerosis 

Multiple sclerosis (MS) is a chronic disease of the human central nervous system 

(CNS) in which repeated episodes of inflammatory demyelination result in 

formation of persistently demyelinated plaques of gliotic scar tissue associated 

with varying degrees of axonal loss (review: Steinman et al., 2001). MS affects 

approximately 100,000 people in the UK and its incidence in Scotland 

(approximately 200 per 100,000) is among the highest worldwide (Handel et al., 

2011).  It is typically diagnosed between the ages 20 and 40 and is a leading 

cause of non-traumatic neurological disability in young adults. It not only 

severely compromises the quality of life of the patient and their families, but 

also has far wider adverse socioeconomic effects, costing the UK economy in 

excess of £1.5 billion (review: Kolbelt et al., 2000; review: Trisolini et al., 

2010).   

The macroscopic neuropathological changes associated with MS were first 

described by Carswell in 1838 (Murray, 2009), but it was only formally defined as 

a clinical entity thirty years later by Charcot who named it “sclerose en plaques” 

(Charcot, 1868).  Over a century later it is accepted the diverse symptoms of MS 

are associated with perivascular inflammatory infiltrates, demyelination, axonal 

loss and astrogliosis in the brain and spinal cord (review: Frohman et al., 2006), 

but there is still no fully effective treatment for this devastating condition.  

MS is now considered a “complex trait” that is triggered in genetically 

susceptible individuals by environmental factors (review: Sospedra and Martin, 

2005). The complexity of the genetic component is evident from familial studies 

and more recently genome wide genetic screens.  Monozygotic twins have a 20-

35% increased risk of developing MS and first degree family members of patients 

have a 2 - 5% increased risk (Haines et al., 2002; Dyment et al., 2004). This can 

be attributed predominantly to the effects of specific HLA-DR and –DQ alleles 

that confer a greater risk of developing the disease (Haines et al., 2002; 

Barcellos et al., 2003), although an increasing number of other susceptibility 

genes are now being identified that include contribution from specific IL7R and 
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IL2R alleles (Hafler et al., 2007).  However relatively low concordance for 

clinically definite MS in monozygotic twins implies additional environmental 

factors must be involved in its aetiology. Numerous environmental factors are 

implicated in the pathogenesis of MS including viral infections, smoking and 

vitamin D deficiency but as yet no single factor has been identified that acts a 

trigger for disease in genetically susceptible individuals (review: Handel et al., 

2010).   

The clinical classification of MS patients largely relies on the disease course 

[Figure 1.1].  The majority of MS patients develop initially a relapsing remitting 

form of the disease (RRMS), characterised by the appearance of new symptoms 

or the worsening of existing symptoms, followed by periods of recovery.  

Relapses vary in severity and duration and periods of remission may be relatively 

transient or last for many months or even years.  If 10 to 20 years after the 

initial diagnosis, symptoms have not progressed and there is little disability, 

patients may be classified as having benign MS.  However, most RRMS patients 

eventually develop secondary progressive MS (SPMS) which is characterised by a 

progressive worsening of symptoms in the absence of clearly defined acute 

relapses; an estimated 65% of RRMS patients will develop SPMS within 15 years of 

disease onset (Koch et al., 2008).  The other major clinical variant is primary 

progressive MS (PPMS) which occurs in approximately 15% of cases of MS 

patients.  This is characterised by a progressive increase in clinical deficits from 

onset of disease and lacks any superimposed relapses or remissions.  PPMS 

differs from the other MS subtypes in a number of ways; men are as likely to 

develop primary progressive disease as women, disease onset is usually later in 

life (mid-30s to early 40s), initial disease activity is often in the spinal cord 

although there is later brain involvement and is characterised by severe atrophy 

and axonal degeneration (Review: Sospedra and Martin, 2005).  

 

 

 

 



3 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  The four major MS subtypes 
There are four major MS subtypes.  The most common of which is relapsing remitting MS 
(RRMS).  The majority of patients with RRMS go on develop secondary progressive disease 
characterised by the progressive worsening of symptoms.  However if there is little to no 
disease progression or neurological deficit then the patient is classed as having benign MS.  
In ~15% of all MS cases present with primary progressive disease mediated by gradual 
deterioration without superimposed relapses or periods of recovery.  Figure adapted from 
Lublin and Reingold (1996).   

The introduction of sensitive magnetic resonance imaging (MRI) protocols has 

shown that the pathomechanisms responsible for disease progression in PPMS 

and SPMS differ from those associated with relapses in patients with RRMS. In 

early relapsing remitting disease the development of clinical deficits is 

associated with an ongoing inflammatory process in the CNS as defined by the 

presence of gadolinium enhancing lesions by MRI. Disease-modifying agents that 

significantly reduce the relapse rate also suppress the development of 

gadolinium enhancing lesions in RRMS. Intriguingly, not only is little or no 

inflammatory activity detected by MRI in the brains of patients with established 

progressive forms of the disease and SPMS, but disease modifying anti-

inflammatory agents also appear to have no appreciable effect on the 

progressive accumulation of disability (Bradl and Lassmann, 2009).  These 
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observations indicate that different mechanisms can contribute to the formation 

of chronically demyelinated plaques of scar tissue in the CNS, the end stage 

pathology of the disease. This interpretation is supported by immunopathological 

studies describing four distinct lesion types in different MS patients (Lucchinetti 

et al., 2000).  

There are also a number of other diseases that mimic clinical, neuroradiological 

and pathological features of MS but which are clearly distinct clinical entities. 

These include acute disseminated encephalitis (ADEM), a post-infectious 

inflammatory demyelinating disease and neuromyelitis optica (NMO) an 

inflammatory demyelinating disease triggered by a primary autoimmune 

response to directed against aquaporin-4 which is expressed by astrocytes in the 

CNS.  More problematic are patients diagnosed with clinically isolated syndrome 

(CIS) classified by the presence of a single demyelinating event at disease onset 

often will subsequently go onto develop RRMS but cannot be given this diagnosis 

at presentation (Polman et al., 2005). 

Understanding how demyelination and axonal injury occur in MS is essential if we 

are to treat the disease efficiently, but our understanding of the 

pathomechanistic basis of MS remains limited despite fifty years of intense 

research. There is circumstantial evidence for the involvement of an 

autoimmune component, but whether MS is an autoimmune disease per se 

remains controversial. For many years it was assumed MS was a purely a CD4+ T 

cell mediated disease. This hypothesis was based on the identification of 

particular HLA class II haplotypes as susceptibility genes and the demonstration 

that MHC class II restricted T cells specific for myelin antigens could induce 

experimental allergic encephalomyelitis (EAE), an MS-like disease in 

experimental animals (review: Zamvil and Steinmann, 1990). Over the past 75 

years EAE has provided a powerful tool, enhancing our understanding of 

neuroinflammatory disease mechanisms (review: Gold et al., 2006).  Two 

approved immunomodulating therapies for MS, glatiramer acetate and 

natalizumab, were developed from initial studies in EAE (Sela et al., 1990; 

Yednock et al., 1992).  Nonetheless, the “T-cell centric” view of MS 

pathogenesis is now regarded as an oversimplification and it is now accepted 

that in addition to T cell dependent inflammation other pathomechanisms 

contribute to lesion formation.  
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There has been a steady accumulation of circumstantial evidence from both 

clinical and experimental studies that implicate a role for autoantibody 

dependent mechanisms. However, in the absence of formal evidence that 

patients actually develop a pathogenic autoantibody response, the 

clinical/pathological significance of autoantibodies remains controversial. This is 

the question addressed in this thesis. The following sections will therefore focus 

on reviewing the evidence that MS is associated with a pathologically significant 

autoantibody response, rather than on the details of purely T cell and/or 

monocyte dependent mechanisms that could contribute to disease development. 

 

1.2 The broad spectrum of autoantibody mediated 

diseases 

Early in the last century Ehrlich introduced the concept of “horror autotoxicus”, 

the generation of antibodies against self antigens. However Ehrlich also 

described that “by certain contrivances” these self-reactive autoantibodies were 

unable to mediate disease. This led to the belief that autoimmune disease could 

not occur, a dogma that persisted well into the mid-1950s, when it was 

challenged by the discovery of pathogenic antibodies in experimental thyroid 

disease (Witebsky et al., 1957; Commentary: Silverstein, 2001). Over the 

following 50 years a broad spectrum of autoantibody mediated diseases have 

been identified that can affect almost every tissue in the body, either by 

targeting tissue-specific autoantigens, as is the case in Addison’s disease and 

Myasthenia Gravis or recognition of tissue non-specific targets such double 

stranded DNA in patients with systemic lupus erythematosus (SLE) (Wellmann et 

al., 2005).  A number of autoantibody mediated diseases of the CNS have also 

been identified including Morvan’s syndrome and Neuromyelitis Optica [Table 

1.1]. Although autoantibody mediated diseases are very diverse with respect to 

antigen specificity, target and mode of action they do exhibit a number of 

commonalities including gender bias (generally with a higher prevalence in 

females), genetic predisposition and the involvement of an environmental 

component in their aetiology. 
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Table 1.1: A selection of human autoimmune diseases mediated by autoantibodies (either 
completely or partly).   
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1.2.1 Criteria for recognising autoantibody mediated disease 

Demonstrating that autoantibody-dependent mechanisms are involved in disease 

pathogenesis is complicated by the presence of pathologically irrelevant 

autoautoantibodies within the normal repertoire, and their potential expansion 

following tissue damage. So what criteria should be used to decide whether an 

autoantibody response plays a significant role in disease pathogenesis?  Koch 

proposed a set of postulates to identify pathogens responsible for a specific 

disease. These were adapted by Witebsky and subsequently Rose (Witebsky et 

al., 1957; Rose and Bona, 1993) as criteria to identify pathogenic autoantibodies 

actively involved in disease development.  For an antibody to be universally 

accepted as pathogenic most if not all of the following criteria must be fulfilled. 

a: It must be present in most patients. 

b: It must be present at the site of injury. 

c: Passive transfer antibody should reproduce the clinical/pathological 

characteristics of the disease. 

d: Immunisation with antigen induces disease and autoantibody 

production in experimental animals. 

e: Demonstration of pathogenic antibody activity using target cells. 

f:  Reduction of antibody levels ameliorates the disease. 

Table 1.2 summarises antibody mediated autoimmune diseases fulfilling these 

criteria for pathogenic antibodies, of which myasthenia gravis is the best known, 

whilst neuromyelitis optica, an inflammatory demyelinating disease reproducing 

some of the features of MS illustrates the difficulties of using the Witebsky/Rose 

criteria to define a pathologic autoantibody response in CNS disease.  
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Table 1.2: A selection of autoimmune diseases which fulfil the some if not all criteria for 
pathogenic autoantibodies.   
There are a number of autoimmune diseases both organ-specific (neurological and non-
neurological) and systemic which can be described as pathogenic autoantibody mediated using a 
series of postulates which define pathogenic activity.  ND= not done or unknown.  
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1.3 Myasthenia Gravis 

Myasthenia Gravis (MG) is characterised by severe muscle weakness and 

fatiguability due to autoimmune destruction of the post synaptic membrane at 

the neuromuscular junction (NMJ) leading to a loss of muscle innervation.  The 

disease can affect any muscle (except the heart) and can be fatal if the 

respiratory muscles become paralysed (known as myasthenic crisis).  Research 

into the potential role of autoantibodies in MG pathogenesis began over 50 years 

ago when Simpson first introduced the concept of “antibodies to an endplate 

protein” (Simpson, 1960).  This endplate protein was later identified as the 

acetylcholine receptor (AChR) (Patrick and Lindstrom, 1973; Lindstrom et al., 

1976). MG is regarded the “textbook” example of an autoantibody mediated 

disease and one which satisfies all six criteria listed previously.   

a: Autoantibodies are frequently present in patients. 

Antibodies to AChR are present in ~80% of MG patients and were seldom found in 

healthy controls or in association with in other diseases (Lindstrom et al., 1976).  

A subset of MG which lack anti-AChR antibodies (~40%) have been shown to have 

high titres of antibodies against muscle specific kinase (MUSK) (Hoch et al., 

2001; Evoli et al., 2003).  

b: Detection of antibody at the site of injury. 

Injury at the neuromuscular junction has been associated with deposition of IgG 

and complement activation products (C3 and MAC) at the post synaptic 

membrane (review: Engel, 1984).  Injury is accompanied by a loss of AChR either 

via internalisation or via shedding (Fambrough et al., 1973).   

c: Reproduction of disease features by passive transfer of autoantibodies. 

Transfer of MG patient IgG confers a MG-like disease in mice.  Mice with 

experimental MG reproduced clinical pathology with a marked loss of AChR 

expression at the NMJ.  Electrophysiology confirmed that disruption of the NMJ 

was accompanied by a loss of muscle innervation (Toyka et al., 1977).   
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Antibodies are also able to mediate pathology via maternal transfer across the 

placenta.  The majority of women with MG give birth to healthy babies or with 

minor transient MG.  Unfortunately in a small number of cases children are born 

with arthrogryposis, a severe congenital disorder resulting in lifelong disability.  

Barnes et al. demonstrated that these severe birth defects were due to high 

maternal antibody titres against the foetal specific form of the AChR.  Passive 

transfer of this patient serum into pregnant mice resulted in antibody-mediated 

arthrogryposis in the offspring (Barnes et al., 1995).     

d: Immunisation with antigen induces disease and autoantibody production. 

Rabbits injected with purified AChR develop experimental MG the clinical 

symptoms greatly improved upon intravenous injection of edrophonium (an 

acetyl-choline esterase inhibitor) (Patrick and Lindstrom 1973).   

e: Demonstration of pathogenic antibody activity using target cells. 

Serum or IgG purified from MG patients downregulates expression of AChR on 

cultured muscle cells (Review: Drachmann, 2003).   

f: Reduction of antibody levels ameliorates the disease. 

MG patients respond well to therapies such as plasma exchange or intravenous 

IgG that remove pathogenic immunoglobulins from the blood which correlates 

with a marked improvement in clinical symptoms (Newsom-Davies, 1979).   

Robb et al, observed a reduction in clinical severity in MG in response to immune 

suppression using azathioprine and prednisolone which corresponded to a 

marked reduction in AChR antibody titre (unpublished observations by Robb et 

al., communicated by Dr C. Buckley, European School of Neuroimmunology, 

October 2010).   
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1.4 Neuromyelitis Optica  

Neuromyelitis optica (NMO) was first described over a century ago by Allbutt 

who reported a patient with a "sympathetic disorder of the eye" after an acute 

episode of myelitis (Allbutt, 1870). The disease was further characterised by 

Devic (1894) and is now also known as Devic’s disease.  NMO is classified as an 

inflammatory demyelinating disease characterised by a selective involvement of 

the spinal cord and optic nerve and which typically spares the brain.  MRI studies 

of the spinal cord reveal extensive central longitudinal lesions which results in 

severe disability and respiratory failure in those patients with lesions affecting 

the brain stem whilst optic neuritis may be unilateral or bilateral.  It was 

assumed for many years that NMO was simply a rare anatomical variant of MS.  In 

fact an optic-spinal variant of MS, which accounts for 15-40% of all MS cases in 

Japan (Misu et al., 2002; Kira et al., 2003) shares many common features with 

NMO.  However the identification of NMO-Ig as a specific biomarker for NMO lead 

to it being identified as a distinct disease entity (Lennon et al., 2004; [Table 

1.3]. The antigenic target of NMO-Ig is aquaporin-4 (AQP-4) (Lennon et al., 

2005).  AQP-4 is the major water channel expressed by astrocytes in the CNS 

where it is preferentially localised within astrocytic end feet at the blood-brain 

barrier.  Knockout studies in mice demonstrate AQP-4 is involved in maintaining 

the integrity of the blood brain barrier and loss of this protein causes the blood 

brain barrier to become hyper-permeable allowing free translocation of 

molecules in to the CNS (Zhou et al., 2008).  NMO is the first proven example of 

an autoantibody mediated disease of the CNS that results in extensive loss of 

myelin, despite not fulfilling all of the Witesbsky/Rose citeria.   

• Passive transfer of disease by NMO-Ig requires permeablisation of the 

blood brain barrier (Bradl et al., 2009). 

• Active immunisation of rodents with AQP-4 does not induce disease 

(Kalluri et al., 2011).  

These points demonstrate the problems of strictly applying Witebsky/Rose 

criteria to CNS disorders.   
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Table 1.3: The key features of NMO and MS 
Although MS and NMO are inflammatory demyelinating diseases of the CNS, comparison of the 
key features of both diseases reveals significant differences in their pathology and aetiology.   

 

 

 

 

 

 

 

 

 

a: Autoantibodies are frequently present in patients. 

The presence of NMO-IgG in the serum of patients of NMO patients was first 

described in 2004 by Lennon et al. using an indirect immunofluorescence 

staining by applying patient serum to murine CNS tissue.  The staining pattern of 

NMO-IgG is unique, outlining CNS microvessels, pia, subpia and Virchow-Robin 

spaces.  From a cohort of 45 patients with clinically definite NMO, 73% were 

seropositive for NMO IgG.  In contrast, NMO-IgG was only detected in 2% of 

classic MS patient samples screened (n=20).  Interestingly, in the small group of 

Japanese patients with Asian optic-spinal MS, 58% were seropositive for NMO-IgG 

(Lennon et al., 2004).  A range of AQP-4 specific assays are also now available 

and that identify AQP-4 specific autoantibodies in most patients with clinically 

confirmed NMO (McKeon et al., 2009).   
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b: Detection of antibody at the site of injury. 

Binding of NMO-IgG to AQP-4 to astrocytes at the blood brain barrier has been 

demonstrated in both murine (Lennon et al., 2005) and primate CNS sections 

(Vincent et al., 2008).  In each case NMO-IgG binding patterns show a linear 

perivascular localisation in the white matter and granular layer.  This staining 

pattern is unique to NMO-IgG and a subset of patients with optic-spinal MS but is 

not observed in classic MS samples (Lennon et al., 2004; Roemer et al., 2007; 

Vincent et al., 2008).  Histopathological analysis of NMO autopsy samples shows 

perivascular inflammatory demyelinating lesions associated with extensive 

deposition of immunoglobulins and complement activation products at the 

perivascular rim or in a rosette pattern surrounding vessels.  These lesions 

correlate to significant vascular fibrosis (Lucchinetti et al., 2002).  Lesion 

formation is accompanied by loss of AQP-4 expression irrespective of lesion 

localisation or the extent of necrosis or demyelination.  In early spinal cord 

lesions, demyelination is preceded by loss of AQP-4.  In MS, significant AQP-4 

loss was only detectable in inactive MS lesions (Roemer et al., 2007).  

c: Reproduction of disease features by co-transfer of autoantibodies. 

In MG the antigenic target is readily accessible to circulating antibody, but this 

is not the case for CNS antigens, which are sequestered behind the blood brain 

barrier (BBB). It is well established that the BBB will normally inhibit entry of 

antibody into the CNS, and as a consequence circulating CNS specific 

autoantibodies will cause no clinical or pathological deficits in healthy animals 

(Litzenburger et al., 1998).  However, the pathogenic potential of NMO 

associated autoantibodies can be demonstrated either by direct injection in to 

the CNS (Saadoun et al., 2011: in press) or passive transfer into animals with EAE 

(Bradl et al., 2009). In the latter case NMO patient-derived autoantibodies not 

only exacerbated clinical disease but also resulted in formation of NMO-like 

lesions characterised by immune complex deposition, AQP-4 and astrocyte loss 

and inflammatory cell infiltrates. Similar observations were made in adoptive 

transfer studies using patient-derived AQP-4 specific monoclonal antibodies 

(Bennett et al., 2009). 
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Transfer of immunoglobulins purified from NMO patients into rats with EAE 

mediated by encephalogenic MBP specific T cells augments clinical disease.  

Associated histopathology demonstrates the formation of NMO-like lesions 

characterised by immune complex deposition, AQP-4 and astrocyte loss 

accompanied by extensive immune cell infiltrates (Bradl et al., 2010).  These 

observations replicate those reported previously when transferring an AQP-4 

specific monoclonal antibody into rats with T cell mediated EAE (Bennett et al., 

2009).   

d: Immunisation with antigen induces disease and autoantibody production. 

There is as yet no formal AQP-4 based in vivo animal model of NMO, although 

some rodent models of MOG-induced EAE do exhibit notable NMO-like pathology 

(i.e. lesions restricted to spinal cord and optic nerve) (Stefferl et al., 1999; 

Krishnamoorthy et al., 2006; Bettelli et al., 2006). Immunisation of mice with a 

full length AQP-4 peptide or peptides corresponding to immunogenic T cell 

epitopes did not induce spinal cord injury or optic neuritis (Kalluri et al., 2011). 

This lack of observed pathology may be due to dependence on conformational 

epitopes similar to that described in some forms of MOG induced EAE (Stefferl et 

al., 1999). Although active immunisation with AQP-4 peptides is insufficient to 

induce injury, it has been reported that immunisation is capable of producing 

high titre AQP-4 anti-sera in rodents (Review: Graber et al., 2008). 

e: Demonstration of pathogenic antibody activity using target cells. 

Binding of NMO-IgG to astrocytic AQP-4 can be shown both in vivo and in vitro 

using cultured astrocytes. In active NMO lesions there is a loss of perivascular 

GFAP+ astrocytes (Misu et al., 2007), but the exact mechanism leading to 

astrocyte loss remains unclear, although incubation of rat astrocytes in vitro 

with NMO-Ig mediates complement dependent lysis (Kinoshita et al., 2009). 

Using an in vitro BBB model Vincent et al. demonstrated that incubation of 

astrocytes in culture with NMO-IgG caused internalisation of AQP-4 and enhanced 

BBB permeability (Vincent et al., 2008). However, it still remains unclear how 

autoantibodies that attack the end feet of astrocytes trigger demyelination. 

Incubation of co-cultures of astrocytes and oligodendrocytes with NMO-IgG 

resulted in major astrocyte dysfunction and a marked loss of oligodendrocytes. 
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This observation was reproduced in ex vivo optic nerve tissue preparations.  One 

potential mechanism may due to increased glutamate cytotoxicity, as incubation 

of treated co-cultures with a NMDA receptor antagonist partially protected 

oligodendrocyes (Marignier et al., 2010). 

f: Reduction of antibody levels ameliorates the disease. 

Antibody depleting therapies such as plasma exchange are useful in the clinical 

management of NMO (Keegan et al., 2002) as is B cell depletion (Cree et al., 

2005). Immune modulation using rituximab, azathioprine and cyclophosphamide 

is associated with reduced AQP-4 antibody titres and reduced relapse rates. 

Conversely, a three fold increase in AQP-4 antibody titres was detected shortly 

before relapse (Jarius et al., 2008).  

In conclusion, the demonstration that antibody-dependent mechanisms were 

involved in NMO and the identification of AQP-4 as a target for this response 

radically improved the clinical management of NMO. If it can be shown that 

autoantibody mediated mechanisms contribute to the pathogenesis of MS, it is 

likely that this will result in a similar improvements in disease diagnosis and 

treatment. 

 

 

 

 

 

 



16 

1.5 Antibody involvement in multiple sclerosis- the 

supporting evidence 

1.5.1 The presence of oligoclonal bands in the CSF 

It has been known since the 1940s that MS is associated with elevated levels of 

intrathecal immunoglobulins within the CSF (Kabat et al., 1948). Resolution of 

patient CSF Ig by agarose gel isoelectric focusing (IEF) produces an oligoclonal 

banding pattern completely distinct from the polyclonal “smear” obtained when 

analysing serum IgG (Johnson et al., 1977). Oligoclonal bands (OCB) are present   

in the CSF in a majority of MS patients and are considered a diagnostic hallmark 

of the disease. Despite their presence in the majority of patients, the banding 

pattern and specificity varies (Andersson et al., 1994). The significance of this 

heterogeneity remains unclear. There is evidence to suggest that OCBs may be 

useful relevant prognostic biomarkers as OCB-negative MS patients tend to 

follow a benign disease course (Farrell et al., 1985). Conversely, in a 

retrospective study, elevated intrathecal IgG synthesis and number of OCBs were 

correlated with a progressive disease course (Avasarala et al., 2001), although a 

more recent study failed to validate this observation (Koch et al., 2007) 

therefore their true value is difficult to determine. In RRMS the presence of 

oligoclonal IgM in the CSF of RRMS patients is indicative of an increased 

probability of developing secondary progressive disease (Villar et al., 2002) and 

enhanced intrathecal IgM production was associated with rapid disease 

progression (Villar et al., 2003). However once again, other groups failed to 

replicate these findings as they were not confirmed by an independent study 

(Schneider et al., 2007), so the value of these CSF measurements as informative 

biomarkers remains controversial and their clinical relevance obscure. 

 

1.5.1.1 Source of oligoclonal bands  

B cells and antibodies do not normally cross the intact BBB to any significant 

extent. However, at sites of inflammation not only are B cells are recruited into 

the CNS, but passive diffusion of serum proteins into the lesion is also greatly 

increased due to localised damage to the BBB. B cells were first described in the 



17 

CNS of MS patients by Prineas, who detected ectopic lymphoid-like structures in 

some autopsy samples (Prineas, 1979). These follicle-like aggregates of B cells 

are reported to be a relatively common finding in SPMS, where they are localised 

within the meninges. Moreover, their presence correlates with a more aggressive 

disease course (Serafini et al., 2004; Magliozzi et al., 2007). The presence of 

these follicles, together with the observation that synthesis of individual OCB 

can persist for many years, suggests the CNS in MS provides niches that support 

sustained B cell survival and differentiation (review: Meinl et al., 2006). 

Unfortunately there is as yet no formal evidence that OCB IgG is actually derived 

from B cells within these aggregates. However, analysis of the IgG CSF proteome 

revealed that this overlapped with the IgG transcriptome obtained from a single 

representative of clonally expanded CSF B cell populations in individual patients 

(Obermeier et al 2008). This formally demonstrates that at least some OCB 

components are derived from clonally expanded CNS B cell populations in MS. 

However it must be stressed that OCB are not specific for MS, and ectopic B cell 

follicles are also present at sites of chronic inflammation in other autoimmune 

diseases such as rheumatoid arthritis (Revew: Aloisi and Pujol-Borrell, 2006). 

 

1.5.1.2 Potential specificities of OCBs in MS 

As stated above, the presence of OCB in CSF is not unique to MS, but is also 

common in infectious diseases of the CNS such as measles encephalitis (Vandvik 

and Norrby, 1973), Lyme neuroborreliosis (Halperin et al., 1989) and 

neurosyphilis (Pedersen et al., 1982).  In these cases OCB are generally directed 

against the causative pathogen, which lead to numerous attempts to identify a 

pathogen-specific OCB response in MS patients.  Some OCB associated with MS do 

actually recognise common pathogens such as the measles, rubella and varicella-

zoster viruses (Sindic et al., 1994) or Chlamydia pneumoniae (Derfuss et al., 

2001). However these specificities are normally associated with minor OCB 

components and are generally considered to represent a sample of the patient’s 

immunological/infectious history (Reiber et al., 1998). The failure of these 

studies to identify prominent intrathecal B cell responses to pathogens 

stimulated speculation that OCB associated with MS were directed against CNS 

autoantigens. However, no study has identified a verified autoimmune target 

(see Owens et al., 2009; reviewed in Sospedra and Martin, 2005).  
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1.5.2 Evidence from histopathogical studies of MS lesions 

One of the most recent influential contributions to our understanding of the 

pathogenesis of MS was an immunopathological study performed by Lucchinetti 

and colleagues.  The study was the product of extensive international 

collaboration that allowed the authors access to a large collection of biopsy and 

autopsy samples from actively demyelinating MS lesions (Lucchinetti et al., 

2000).  Although this study was extensively criticised as the majority of biopsy 

samples came from patients with clinically or radiologically atypical disease who 

may not therefore be representative of “classic” cases of MS (Poser et al., 

2000), nevertheless, it is still of great interest and significance.  Lesions were 

classified using a number of criteria including the phenotype of cells infiltrating 

the lesion, presence of complement activation products (C9neo) and 

immunoglobulin deposition [Table 1.4].  Type I lesions were characterised by 

extensive demyelination associated with infiltrating macrophages/microglia, 

whilst the most common type II was characterised by deposition of 

immunoglobulins and C9neo at the site of myelin injury.  The least common 

lesion patterns observed were type III and type IV lesions.  These lesions were 

not associated with immune mediated demyelination via macrophages or 

antibodies/complement but were reminiscent of viral or toxin induced models of 

demyelination.  Interestingly, signs of remyelination were reported only in 

association with immune mediated/ inflammatory lesion (types I and II). 

Most importantly, this study demonstrated that while MS is not only clinically but 

also pathologically heterogeneous, in any one patient the pattern of 

demyelination in active lesions seems to be homogeneous. This observation has 

major implications for the clinical management of MS.  In particular, the study 

highlighted the possibility that humoral mechanisms play a significant role in 

lesion formation in the majority of patients (as high as 50%); suggesting that 

targeting this arm of the immune response could provide significant clinical 

benefits.    

This study has been extremely influential in developing our understanding of MS, 

but its findings remain controversial.  The concept that demyelination in MS may 

be mediated by several different effector pathways was challenged by Breij et 
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al. who analysed actively demyelinating lesions in autopsy material from 39 

patients.  In this study all cases of active demyelination were associated with 

complement activation products, immunoglobulins and phagocytic macrophages. 

This supports the hypothesis that humoral mechanisms play a significant role in 

demyelination and calls into question the involvement of other effector 

mechanisms (Breij et al., 2006).  However deposition of immunoglobulins and 

complement within CNS many not be unique to MS lesions.  Analysis of autopsy 

samples from 25 MS and 24 OND patients failed to identify any specific 

association between MS and deposition of immunoglobulins and complement 

activation products in the CNS.  The authors interpreted their observations as 

evidence that white matter injury in general is associated with complement 

activation irrespective of the identity of the disease (Barnett et al., 2009). 

 

Table 1.4:  Heterogeneous characteristics of MS lesions as described by Lucchinetti et al. 
(2000). 
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1.5.3 The efficacy of B cell/ antibody targeted therapies 

Most therapeutic agents routinely used in MS such as corticosteroids, interferons 

and Tysabri target the inflammatory component of the disease. These 

treatments provide a significant clinical benefit in patients with RRMS but do not 

specifically target antibody/humoral pathomechanisms. However, as our 

understanding of MS pathogenesis has advanced there is more interest in 

exploring the potential role of antibodies and B cells as therapeutic targets.  

1.5.3.1 Plasma exchange 

Plasma exchange is an extracorporeal therapy designed to remove and replace 

plasma from the patient’s blood. For many years it has been used with great 

success in treating a wide range of autoantibody mediated diseases such as 

myasthenia gravis, SLE and Guillain-Barre syndrome.  However, plasma exchange 

is not a widely accepted therapy for MS.  This is despite clinical studies dating 

back to the 1990s that suggest ~45% of MS patients with acute steroid non-

responsive exacerbations disease may benefit from therapeutic plasma exchange 

(TPX; Rodriguez et al., 1993; Weinshenker et al, 2001).  In view of the reported 

pathological heterogeneity of MS it is unlikely that TPX would be beneficial in all 

patients.  This concept is supported by a recent retrospective study which 

demonstrated the therapeutic potential of plasma exchange correlated with the 

presence of immunoglobulin and complement activation products in biopsied 

lesions (Keegan et al., 2005).   C9neo immunoreactivity is a defining feature of 

pattern II type lesions as defined by Lucchinetti, Lassmann and colleagues and 

only these patients benefited significantly from TPX (Keegan et al., 2005). 

1.5.3.2 B cell depletion therapies  

Following these observations suggesting that humoral pathomechanisms may 

drive disease activity in at least some patients, several clinical studies were 

initiated to investigate whether depletion of B cells might also prove beneficial 

(Review: Cross and Waubant, 2011).  The agent of choice for these studies was 

Rituximab, a monoclonal chimeric antibody that selectively targets and depletes 

CD20+ B cells and which is already licensed to treat lymphoma and rheumatoid 

arthritis.   A recent phase II trial of Rituximab in relapsing-remitting MS 
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indicated substantial clinical benefit (Hauser et al., 2008).  A single infusion of 

Rituximab resulted in a rapid and sustained depletion of B cells (> 24 weeks) 

associated with dramatic reductions in both the total number of MRI lesions and 

the number of newly appearing gadolinium enhancing lesions in the brain 

compared to controls.  This decrease in lesion activity/load was accompanied by 

a reduction in clinical disease activity as determined by the relapse rate.  This 

rapid response was unexpected CD20 is not expressed by plasma cells and it 

occurred before there was any significant effect on serum immunoglobulin levels 

(Hauser et al. 2008).  An independent study also failed to demonstrate any 

effect of Rituximab on CSF IgG levels, rate of synthesis or removal of oligoclonal 

bands (Cross et al., 2006).  These observations indicate that the pathogenic role 

of B cells in MS extends beyond their role as a source of autoantibodies, but at 

present how B cell depletion modulates the inflammatory response in the CNS 

remains unclear.  Rituximab has also been trialled in PPMS and in parallel with 

the findings in RRMS it also suppressed inflammatory disease activity as 

determined by MRI (Hawker et al., 2009).  
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1.6 Myelinated axons- the target of autoantibodies in MS  

The studies outlined above suggest antibody-dependent mechanisms contribute 

to disease development in some patients with MS, but the specificity of this 

response remains obscure.  As demyelination is the most obvious pathological 

feature of MS it was assumed that any clinically significant autoantibody 

response would be directed against a CNS myelin-specific autoantigen.  This 

concept was supported by numerous studies in EAE that identified several myelin 

associated antigens as targets for autoantibody mediated demyelination in vivo 

(review: McLaughlin and Wucherpfennig, 2008).  The spectrum of potential 

targets is actually wider, as it is now recognised that axon-specific 

autoantibodies may also contribute to disease development (Mathey et al., 2007; 

review: Derfuss et al., 2010).  Yet of the numerous potential targets identified 

over the past four decades, none were ultimately found to be MS specific [Table 

1.5].  Indeed, it is rash to assume that all autoantibody responses are 

pathogenic, as an increasing body of evidence demonstrates that some 

components of the autoantibody repertoire can actually stimulate remyelination 

in vivo  (review: Schwab et al., 2004; Reindl et al., 2003; Mi et al., 2007).  

Nonetheless, it remains possible that an MS-specific autoantibody response will 

be identified and that this in turn will provide new diagnostic/prognostic tools to 

improve disease management.  This section reviews this concept, focusing on 

recent advances in our understanding of the MOG-specific autoantibody 

response.   

 

 

 

 

 

 



23 

Table 1.5:  Antibodies to myelin and other CNS autoantigens implicated in MS 
Decades of MS research have yielded a number of potential targets for autoantibodies in MS.  
These antibody responses have varying functions in disease.  Some are described as being 
involved in mediating disease pathogenesis (MOG, Nfasc, GalC) and whereas others are thought 
to be involved in promoting remyelination and repair (Lingo-1, heat shock proteins, Nogo-A).  
Antibody responses have also been reported as potential prognostic markers (neurofilament, 
phosphatidyl choline).     
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1.6.1 Myelin oligodendrocyte glycoprotein (MOG) 

Myelin oligodendrocyte glycoprotein (MOG) is a CNS-specific autoantigen 

sequestered at the outer surface of the myelin sheath and oligodendrocyte 

(Linington et al., 1988; Brunner et al., 1989; Kroepfl et al., 1996).  MOG was 

first identified as a dominant target for demyelinating autoantibodies in animals 

with EAE induced by immunisation with CNS tissue homogenates in Freunds 

complete adjuvant (Lebar et al., 1986). Subsequently passive transfer 

experiments demonstrated that anti-MOG antibodies augments disease severity 

and leads to extensive demyelination in animals with (Linington et al., 1988; 

Genain et al., 1995). These properties are attributed to the accessibility of the 

extracellular IgV-like domain of MOG to antibody in the extracellular milieu 

(Gardinier et al., 1992). Demyelination mediated by MOG-specific antibodies in 

these EAE models is associated with co-deposition of immunoglobulin and 

complement activation products (Genain et al., 1999; Raine et al., 1999; Storch 

et al., 1998), reproducing the immunopathology of pattern II MS lesions as 

defined by Lucchinetti and colleagues (Lucchinetti et al., 2000). It should be 

noted that transfer of antibodies recognising intracellular MBP epitopes does not 

induce widespread demyelination in EAE (Schluesener et al., 1987).   

These animal experiments stimulated a plethora of studies in which MOG-

specific antibody responses were investigated in MS and other neurological 

diseases. To date there are hundreds of papers relating to the MOG-specific 

response in MS were published the results of which may be summarised as being 

generally conflicting and controversial [Table 1.6]. Some studies report that MS 

is associated with elevated serum or CSF MOG-specific antibody titres (Sun et 

al., 1991; Lalive et al., 2006; Lindert et al., 1999; Gaertner et al., 2004) whilst 

others find no significant differences between MS patients and patients with 

other neurological inflammatory diseases or healthy controls (Haase et al., 2006; 

Reindl et al., 1999; Lampsona et al., 2004; Xiao et al., 1991;). The frequency of 

seropositive patients in these studies ranges from 0 to 88% in MS and 0 to 67% in 

healthy controls depending on the source of antigen and assay protocol.  The 

observation that MOG-specific antibodies were pathogenic in EAE also stimulated 

attempts to attribute some clinical significance to these responses detected in 

patients. A potential prognostic role was first reported by Berger et al. who 
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studied a cohort of 103 CIS patients and reported that those with high levels of 

serum anti-MBP and anti-MOG IgM were most likely to suffer relapses earlier and 

more frequently than seronegative patients (Berger et al., 2003). However these 

observations could not be reproduced in subsequent report using an identical 

protocol (Kuhle et al., 2007).  

In retrospect the lack of reproducibility between studies reflects a failure to 

accept that any autoantibody response that may play a primary role in disease 

pathogenesis has to recognise its target as it exists in vivo. In other words any in 

vitro assay to detect such responses should reproduce as closely as possible the 

targets three-dimensional structure, post-translational modifications and 

membrane topology as they occur in vivo. Unfortunately this was not the case in 

the majority of published studies, as these either relied on using denatured 

recombinant MOG expressed in E.coli or synthetic peptides in ELISA or Western 

blot based assays. The importance of retaining the native 3-D structure of MOG 

if one is to detect pathogenic i.e. demyelinating antibody responses is now 

apparent from the crystal structure of MOG complexed with the Fab fragment of 

a demyelinating MOG-specific mAb. In both rodent and marmoset models of EAE 

demyelinating MOG-specific antibody responses are directed against 

conformational/discontinuous epitopes (Bourquin et al., 2000; Brehm et al., 

1999; von Budingen et al., 2004). A demyelinating response which is not 

observed when animals are immunised with linear MOG derived peptides. These 

observations are consistent with the published crystal structure of the MOG/anti-

MOG Fab complex. This demonstrated the demyelinating MOG-specific mAb 8-

18C5 recognised a discontinuous and conformation-dependent epitope focused 

on the FG loop of the proteins Ig-V like fold (Breithaupt et al., 2003). 

Subsequently it was confirmed this conformation-dependent epitope is the 

immunodominant target of the demyelinating MOG-specific response in several 

strains of mice and the Dark Agouti rat (Breithaupt et al., 2008). In vitro it is 

also essential to retain the correct conformation of MOG to detect pathogenic 

MOG-specific antibodies targeting the oligodendrocyte surface (Lolli et al., 2005; 

Marta et al., 2005). 
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To identify potentially pathogenic responses in MS patients a number of groups 

adopted cell based assay systems that use mammalian cell lines manipulated to 

express MOG on their surface (Haase et al., 2006; Gaertner et al., 2004; Lalive 

et al., 2006; Zhou et al., 2006). Theoretically these cell based assays will detect 

antibodies against native MOG embedded in a membrane which will go 

undetected by other methods. Crucially this approach detects MOG-specific 

antibodies in only a small percentage of patients indicating that it is unlikely to 

be the dominant target for demyelinating antibodies in MS. A conclusion 

supported by the failure of fluid phase assays using correctly folded and 

glycosylated recombinant MOG preparations to detect high affinity MOG-specific 

antibodies in patient sera (Lampsona et al., 2004; O’Connor et al., 2005).  

Nonetheless MOG-specific antibodies are present in acutely demyelinating MS 

lesions where they are associated with myelin debris (Genain et al., 1999), and 

can be recovered from MS autopsy samples (O’Connor et al., 2005).  In the latter 

study in 50% of the MS cases these antibodies were highly specific for MOG 

compared to 13% in non-MS controls and exhibited higher affinities for MOG than 

antibodies isolated from the patients serum or CSF. The clinical significance of 

these MOG-specific autoantibody responses is still to be determined in classical 

forms of MS, but there is increasing evidence that the presence of antibodies to 

the native antigen may define a specific subset of patients with paediatric 

inflammatory demyelinating disease.  
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Table 1.6: Overview of selected publications investigating serum antibody responses (IgG) 
to MOG in patients with adult-onset MS 
There have been numerous contributions over the past 20 years to determine the frequency of 
antibody responses against MOG in patients with adult-onset MS.  Some studies have reported 
elevated MOG specific autoantibody responses in MS patients but other reports suggest no 
significant difference between MS and other neurological diseases or healthy controls.  The 
reported frequencies of α-MOG responses in MS patients range from 0-82% depending on the 
method of detection and antigen source used in each study.   
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1.6.1.1 MOG antibody responses in paediatric demyelinating diseases 

Paediatric MS defined as having disease onset before the age of 16 is thought to 

represent between 2 to 5% of all MS cases (Chitnis et al., 2009), although it’s 

precise incidence is unclear. In the majority of cases (>90%) the disease follows 

a relapsing remitting disease course, but tends to be more aggressive than its 

adult-onset equivalent being characterised by higher relapse rates (Gorman et 

al., 2009) and rapid accumulation of neurological disability (Renoux et al., 

2007). Unlike adult onset disease, paediatric MS has no strong gender bias (pre 

puberty) and is present across many ethnic groups (review: Banwell et al., 

2011).  

In contrast to previous reports on adult-onset MS, paediatric MS is associated 

with a far higher frequency of patients seropositive for MOG-specific 

autoantibodies as determined using cell based assays.  This was demonstrated 

beautifully by McLaughlin et al. (2009) using a FACS based assay with MOG 

transfectants to compare the frequency of anti-MOG antibody responses in 

paediatric and adult-onset MS patients with appropriate age matched controls 

for each group.  Within the adult cohort there was no significant difference 

between those donors with or without MS (4% and 5% respectively), whereas. 21% 

of paediatric MS cases were seropositive compared to only 6% of age matched 

OND controls (McLaughlin et al., 2009). 

Intriguingly the major differential diagnosis for paediatric MS is acute 

disseminated encephalomyelitis (ADEM) and these patients also exhibit elevated 

responses to MOG in both cell and fluid phase based immunoassays.  Early in 

disease it is extremely difficult to distinguish between the two diseases.  ADEM 

is a demyelinating disease of the CNS which usually has a monophasic disease 

course and is most prevalent in children but can also occur in adults. The 

incidence of ADEM is estimated at approximately 1 per 100,000 and in 50 - 75% 

of cases, disease onset occurs shortly after a viral or bacterial infection or 

vaccination (review: Menge et al., 2005) which lead to speculation that MOG-

specific responses in these patients may occur by virtue of molecular mimicry.  

Cross reactive pathogenic antibody responses between viral and myelin antigens 

have been previously demonstrated experimentally involving mimicry between 

MOG and rubella virus (Besson-Duvanel et al., 2001). 
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Over the past five years significant progress has been made in cataloguing MOG-

specific antibody responses in children with MS and ADEM [Table 1.7].  The 

reported frequencies vary from 2 to 21% for paediatric MS and 18 to 54% for 

ADEM.  These variations probably reflect technical differences in the assays 

employed by different groups of researchers, including the selection of the 

threshold used to define a positive response.  However it is becoming 

increasingly clear that not only does this particular antibody response define a 

specific subset of young patients with MS, but may also provide a useful 

diagnostic biomarker to help differentiate patients with ADEM from those with 

other acute encephalopathies (Lalive et al., 2011).  Yet it has still to be 

demonstrated whether these MOG-specific antibodies actively contribute to 

disease pathogenesis by exacerbating demyelination, as would be anticipated 

from studies in EAE.  
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Table 1.7: Overview of selected publications investigating serum antibody responses (IgG) 
to MOG in paediatric MS and ADEM 
Within the last 5 years there have been a small number of reports demonstrating that children with 
MS or ADEM have elevated titres of MOG specific autoantibodies.  The pathogenic significance of 
these autoantibody responses has not been yet demonstrated.   
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1.6.2 Myelin lipids as MS autoantigens 

Myelin proteins are generally considered the most probable target for 

pathogenic autoantibodies in MS.  However, ~70% of the myelin sheath is 

composed of lipid (Norton, 1984) and historically lipid-specific autoantibodies  

have also been investigated as causative agents in the context of immune-

mediated demyelination, in particular antibodies recognising myelin associated 

glycosphingolipids such as galactocerebroside and sulphatide.    

1.6.2.1 Galactocerebroside 

Galactocerebroside (GalC) is a major component of the myelin sheath, 

accounting for about 25% of myelin lipid.  GalC is integrated into the outer 

surface of the membrane bilayer where it is accessible to antibody in the 

extracellular milieu.  Historically there are a number of publications implicating 

GalC-specific antibodies in the pathogenesis of immune mediated demyelination 

in EAE (Raine et al., 1981; Fierz et al., 1988) but their significance in MS remains 

obscure (Rostami et al., 1987; Kanter et al., 2006).  However, it was recently 

reported that GalC-specific antibodies provide a stage specific biomarker in that 

they were detected preferentially in patients with RRMS compared to CIS, SPMS, 

PPMS and other neurological diseases (Menge et al., 2005). 

1.6.2.2 Sulphatide 

In addition to GalC, myelin is also enriched in sulphatide (3-O-sulphogalactosyl 

ceramide; Sulph).  This glycolipid is present in the outer leaflet of the myelin 

bilayer where it can bind Sulph-reactive antibodies if present in the extracellular 

compartment.  Intriguingly not only are elevated levels of Sulph-specific 

antibodies present in the CSF of patients with MS compared to controls, but 

active immunisation with Sulph or the passive transfer of a Sulph-reactive mAb 

exacerbates EAE (Kanter et al., 2006).  The later observation confirms that Sulph 

can provide a physiological target for autoaggression, but as yet whether Sulph-

reactive antibodies detected in patients are pathogenic remains unproven.  
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1.6.2.3 Other lipid specificities associated with MS  

The presence of oligoclonal IgM bands has been described as a potential 

prognostic marker in MS (Villar et al., 2002). These IgM antibodies recognise a 

number of myelin lipids, in particular phosphatidylcholine were most frequently 

observed in patients with an aggressive disease course (Villar et al., 2005). 

However as is the case for both GalC- and Sulph-specific responses there is no 

conclusive evidence that these responses actively contribute to immune 

mediated demyelination. Indeed with respect to antibodies present in CSF 

repeated studies have failed to demonstrate these are able to bind to 

oligodendrocytes (Lubetzki et al., 1986) or any major myelin antigen (Owens et 

al., 2009).    

  
1.6.3 Axonal/ neuronal autoantigens 

Although MS was long described as a demyelinating disease characterised by 

primary oligodendrocyte loss and demyelination in which there was extensive 

sparing of axons, it is now recognised that MS lesions are often associated with 

profound axonal loss.  Acute axonal injury as demonstrated by axonal swellings 

and enhanced immunoreactivity for beta-amyloid precursor protein (APP) is most 

pronounced in regions of active inflammation and demyelination and is 

associated with varying degrees of axonal transection (Ferguson et al., 1997; 

Trapp et al., 1998).  The mechanisms involved are still being elucidated but 

there is now evidence suggesting these may involve an autoantibody-mediated 

component. Screening MS sera for reactivity to cell surface antigens expressed 

by neuronal cell lines identified neuronal reactivity in the sera of at least 70% of 

PPMS patients and in 25% of those with RRMS (Lily et al., 2004). The antigen 

specificity of these responses was not reported, but other studies have reported 

neurofilament, ganglioside and neurofascin-specific responses in some MS 

patients.  
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1.6.3.1 Neurofilament  

It is suggested that autoantibodies recognising against the neurofilament light 

chain (NF-L) provide a biomarker for axonal injury. Increases in NF-L-specific 

antibody titres are present in the serum of patients with PPMS (Ehling et al., 

2004; Silber et al., 2002) and correlate with increased disability as scored using 

expanded disability status scale (EDSS; Silber et al., 2002) and brain atrophy as 

visualised by MRI (Eikelenboom et al., 2003).  

1.6.3.2 Gangliosides  

Gangliosides are glycosphingolipids which decorate the surface of both CNS and 

PNS axons.  It is reported that pathogenic autoantibody responses against 

gangliosides are associated with Bickerstaff’s encephalitis (GQ1b) (Odaka et al., 

2001), Miller-Fisher syndrome (GQ1b) (Chiba et al., 1992) and are also present in 

patients with Gullian-Barre syndrome (review: Willison and Yuki, 2002).  In MS 

the situation is less clear, but some patients do develop responses to GD1a 

(Acarin et al., 1996) and GM3 (Sadatipour et al., 1998).  These anti-ganglioside 

responses tend to be most frequent in patients with progressive disease 

(Sadatipour et al., 1998), but their pathophysiological relevance, if any, remains 

unknown.  

1.6.3.3 Neurofascin  

Neurofascin (Nfasc) is cell adhesion molecule of the L1 Ig superfamily which 

exists as two major isoforms, Nfasc186 and Nfasc155, in myelinated fibres. 

These are structurally and functionally distinct [Figure 1.2]. Nfasc186 is a 

neuronal product localized at the nodes of Ranvier and axonal initial segments 

(AIS) where it interacts with voltage gated sodium channels and cytoplasmic 

proteins such as ankyrin G and ßIV-Spectrin (Zhang et al., 1998a; Ratcliffe et al., 

2001). In contrast, Neurofascin-155 (Nfasc155) is an oligodendroglial protein 

sequestered at septate-like junctions formed where the paranodal loops of the 

myelin sheath contact the axonal surface. Here Nfasc155 interacts with an 

axonal Caspr-Contactin complex to form electron dense assemblies 

characteristic of the paranodal junctional complex (Tait et al., 2000; Charles et 

al., 2002).   
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Figure 1.2: Nfasc exists as two structurally and functionally distinct isoforms.   
A: Nfasc 155 (upper) consists of six immunoglobulin (Ig) and 4 fibronectin (FN) III domains.  
Nfasc186 (lower) shares the same structure as Nfasc155 apart from the presence of an alternate 
FNIII domain and a mucin like domain.  Image modified from Tait et al., 2000.  B: Nfasc155 is 
expressed by the oligodendrocyte at the paranode where it interacts with caspr-1/contactin.  
Nfasc186 is expressed by the axon at the node of Ranvier forming interactions with the voltage 
gated sodium channels and ankyrin G.  Image taken from Trapp and Kidd, 2000.  

 

 

 



35 

Nfasc was identified as a candidate autoantigen in MS using a proteomics 

approach (Mathey et al., 2007) in which immunoreactivity of serum samples with 

myelin glycoproteins was screened by western blotting.  Approximately 20% of 

patients tested had significant antibody responses to a 150-180kDa protein which 

was subsequent identified as Nfasc.  Further characterisation by ELISA revealed 

that ~30% of patients had high titres against the extracellular domain of 

Nfasc155 and that this response was most pronounced in patients with chronic 

progressive disease.  However, it should be noted that this response as detected 

by ELISA was not MS-specific as similar responses could also be identified in some 

patients with other neurological diseases, as well as healthy controls.  The 

authors demonstrated that this Nfasc-reactive antibody repertoire contained a 

cross reactive component that recognised the extracellular domain of Nfasc186 

and Nfasc155 expressed on transfected cells.  Co-transfer studies in EAE using a 

pan-Nfasc specific mAb (A12/18.1) revealed the dominant pathological target for 

antibodies with this specificity in the inflamed CNS was Nfasc186 expressed at 

the node of Ranvier.  In vivo antibody recognition of Nfasc at the node 

exacerbated disease severity in EAE and was associated with complement 

deposition and axonal injury.  In vitro studies demonstrated acute conduction 

block mediated by A12/18.1 in hippocampal slice cultures was complement-

dependent (Mathey et al., 2007).  However, as yet these findings have not yet 

been reproduced using patient-derived Nfasc-specific antibodies therefore the 

exact role of this response in MS remains undefined. 

In conclusion autoantibodies recognising axonal antigens can induce primary 

axonal injury in the CNS, but whether this is a significant factor in the 

pathogenesis of MS is still a matter of speculation. 
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1.7 To what extent are autoantibodies involved in the 

pathogenesis of MS? 

The simple answer to this question is that we still do not know.  

Application of the Rose-Witesby to MS [Table 1.8] suggests that if a myelin-

specific autoantibody response is involved then this is only the case in a subset 

of patients.  Specifically, it is important to note myelin-specific autoantibody 

responses are not MS specific, but are also observed in many other neurological 

disorders.  Similarly there is no consensus as to the pathological significance of 

complement activation products in the CNS.  With respect to third postulate 

“Induction of disease by passive transfer of antibodies” as far as I am aware 

there is no report of maternal transfer of disease in MS, as reported myasthenia 

gravis.  Moreover, the only study in which passive transfer of Ig is reported to 

exacerbate demyelination in vivo is flawed (Zhou et al., 2006).  Although the 

baseline burden of disease in this study was minimal, passive transfer of patient 

Ig failed to exacerbate clinical disease severity and although a minimal level of 

demyelination was detected the authors failed to confirm their supposition this 

pathology was mediated by a MOG-specific autoantibody response.  The 

technical difficulties associated with this approach are apparent from studies 

investigating the pathogenic potential of AQP-4 specific autoantibodies in NMO 

(Bradl et al., 2009).  In this case reproducible exacerbation of disease severity 

and its pathological correlates in EAE was dependent on achieving circulating 

anti-AQP-4 titres similar to those seen in patients.  

In summary we are left in a quandary in that we suspect antibody-dependent 

mechanisms contribute to disease pathogenesis in a subset of patients but in the 

absence of any defined target we can neither identify these patients nor address 

the crucial question, “Is this response clinically relevant?”  One solution to this 

problem is to develop an in vitro assay that will identify those patients with a 

demyelinating or axopathic serum autoantibody response without requiring prior 

knowledge of its specificity.   The next section reviews contributions made in 

this direction over the past 70 years.   
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Table 1.8:  To what extent do anti-myelin antibodies in MS patients fulfil the Rose-Witesby 
postulates?   
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1.8 In vitro studies of demyelinating disease 

1.8.1 Complement fixation assays 

In vitro studies of autoantibody responses associated with MS began over 80 

years ago.  In 1934 Sachs and Steiner conducted a novel study in which they 

measured the ability of MS brain extracts to activate complement in patient sera 

with brain extracts from patients with arteriosclerosis as a negative control. 

They defined a sample as positive if the serum selectively reacted with the MS 

brain extract but not the control.  Using this assay almost half the MS patients 

they screened were positive.  In contrast complement fixing antibodies were 

seldom detected in OND (<5%) or healthy (<5%) controls (Sachs and Steiner, 

1934).  Over the next 30 years, attempts to confirm and expand these findings 

led to conflicting reports and divided opinions [Table 1.9].  Some laboratories 

reproduced these observations, the most prominent being the study by Raskin 

which used a similar complement fixation assay but where Sachs and Steiner 

used a single antigen source, this study used MS and control brain extracts but 

also purified brain proteolipid fractions (Raskin, 1955).  The results of the two 

studies were in broad agreement in that complement fixing activity was 

consistently higher in patients with MS compared to controls. The studies are 

remarkable as they provide the first indication that MS may be associated with a 

serological response to CNS antigens.  However, this complement fixing activity 

was not MS-specific, an observation that suggests this approach to identify a 

clinically relevant response in patient sera was not ideal.  Indeed later studies 

criticised several technical aspects of these assays and using somewhat modified 

approaches were unable to reproduce the initial findings (MacLeod et al., 1962).  
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Table 1.9: A selection of studies investigating anti-CNS serological responses using an in 
vitro complement fixation assay 

 

 
 

 

 

 

 

 

 

1.8.2 Tissue culture studies of demyelination 

1.8.2.1 EAE and serum anti-myelin activity 

It was recognised in the late 1950’s that tissue culture models that reproduce 

the topology and organisation of the target tissue may provide an elegant 

method to demonstrate the presence of pathogenic autoantibodies in vitro.  In 
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Bornstein who demonstrated sera from rabbits with EAE induced by 

immunisation with CNS tissue homogenates in Freunds adjuvant mediated 
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activity in EAE sera was found in the IgG2 fraction and could be abolished by 
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demyelination in this model was associated with antibodies binding to the myelin 

and oligodendrocyte surface (Appel and Bronstein, 1964). Demyelination induced 

using EAE sera not only spared axons but could be followed by remyelination, as 

demonstrated by removal of the pathogenic sera after the initial demyelinating 
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event (Bornstein and Appel, 1961; Raine and Bornstein, 1970).  Antibody-

mediated demyelination in this and similar model systems is complement 

dependent (Grundke-Iqbal et al., 1981) and associated with the formation of 

membrane attack complex (C5b-C9) (Liu et al., 1983).  In addition to mediating 

complement-dependent effects, in the absence of complement these myelin-

reactive antiserum also block myelin formation in vitro (Bornstein, 1970).  

To identify the antigen(s) responsible for these pathological effects studies were 

performed using sera from animals immunised with purified CNS myelin antigens. 

In the case of MBP (Lebar et al., 1976; Seil et al., 1968; Kies et al.1973; Seil et 

al., 1975), PLP (Agrawal et al., 1984; Mithen et al., 1980; Seil and Agrawal, 

1980) and MAG (Seil et al., 1981) no in vitro demyelinating or myelination 

inhibiting responses were detected, whilst anti-sera from animals immunised 

with GalC (Fry et al., 1974; Hruby et al., 1977) or GM1/GM4 gangliosides (Roth 

et al., 1985) were demyelinating and in the absence of complement also blocked 

myelin formation.  

A similar approach in vitro was used to investigate the pathogenic potential of 

anti-sera raised against the axolemma enriched fraction derived from rat brain. 

These sera inhibited neuronal outgrowth and mediated destruction of mature 

axons in embryonic mouse spinal cord-dorsal root ganglion cultures. However 

axopathic activity was not detected in the spinal cord and was confined to axons 

within the dorsal root ganglion and the outgrowth zone (Bourdette et al., 1986; 

1988). Similarly an anti-serum to the ganglioside GM1 did not have axopathic 

activity in vitro (Bourdette et al., 1989).  Extensive investigation of the 

axopathic potential of serum antibodies is lacking but is certainly warranted 

given the level of axonal injury observed in MS lesions. 

 

1.8.2.2 The identification of an in vitro demyelinating factor within MS serum 

The ability of sera from some patients with acute MS to mediate demyelination 

in vitro was first reported almost 50 years ago (Bronstein and Appel., 1965). 

Subsequent studies have in general supported this initial observation [Table 

1.10] (Review: Caspary et al., 1977).  However, its clinical relevance remained 
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controversial largely because of the presence of demyelinating activity some 

healthy controls but also in a high proportion (~60%) of OND patients, in 

particular those with motor neurone disease (MND) (Bronstein and Appel., 1965; 

Hughes and Field 1967). Attempts to reconcile this observation with the 

presence of secondary demyelination in MND patients proved controversial 

(Wolfgram and Myers, 1973; Horwich et al., 1974). 

It was assumed that this demyelinating activity was due to the presence of anti-

myelin antibodies.  This concept is supported by reports that the demyelinating 

activity is associated with the serum IgG fraction (Dowling et al., 1968; 

Wolfgram and Duquette, 1976) and the demonstration that absorption of IgG 

(IgG1, IgG2 and IgG4) using Staphylococcus aureus protein A results in a small 

but significant reduction in serum demyelinating activity (Grundke-Iqbal and 

Bornstein, 1979).  However interpretation of all these studies is complicated by 

reports that some sera contain myelin-toxic factors that are both IgG and 

complement independent (Bradbury et al., 1984).  Nonetheless, ultrastructural 

studies of in vitro demyelination mediated by samples from some MS patients 

revealed that this phenomenon reproduces many of the features observed using 

an anti-myelin serum from animals with EAE (Raine et al., 1970; Raine et al., 

1973).  Attempts to define the specificity of this demyelinating activity suggest 

it may be directed against oligodendrocytes rather than myelin (Wolfgram and 

Duquette, 1976).  This concept was supported by the identification of antibodies 

that recognised cultured oligodendrocytes were identified in MS patients but not 

in sera from patients with OND or healthy controls (Abramsky et al., 1977). 

However, this staining of oligodendrocytes was later shown to be nonspecific 

(Traugott et al., 1979).  

In retrospect these studies demonstrate that myelinating cultures can provide a 

tool to identify pathogenic antibody dependent effects in vitro, but their 

application as a screening tool not only requires standardised methods to 

generate purified Ig preparations from human sera, but also object 

methodologies to quantify myelin and/or axonal loss.  
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Table 1.10: A selection of studies demonstrating the presence of a factor in MS serum that 
can mediate demyelination in vitro.   
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1.9 Aims of this thesis  

A large body of circumstantial evidence implicates the involvement of antibody-

dependent mechanisms in the development of MS in some patients.  If this is the 

case then it has important clinical implications.  Complement inhibitors, plasma 

exchange and intravenous immunoglobulins are just some of the strategies now 

used to inhibit pathogenic events triggered by autoantibodies in other human 

diseases, and which in theory could also benefit some patients with MS.  

This defines the aim of my thesis which was to provide a definitive answer to the 

question: “Is MS associated with a pathogenic autoantibody response?”  

To achieve this goal it was necessary to:  

• Determine whether myelinated axonal segments within an in vitro 

myelinating culture model faithfully reproduce the antigenic profile and 

molecular organisation of myelinated fibres in vivo.  

• Validate these cultures as a screening tool to detect and quantify 

demyelinating and/or axopathic autoantibody responses in vitro. 

• Use the resulting bioassay to determine the frequency of 

demyelinating/axopathic IgG responses cohorts of patients with MS, OND and 

healthy controls. 
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2 Materials and methods 

2.1 Biochemical techniques 

2.1.1 ELISA 

ELISA was performed using 96-well polyvinyl ELISA plates (Costar).  Plates were 

coated with 10µg/ml of the appropriate antigen diluted in PBS overnight at 4°C.  

The following day plates were washed with ELISA wash buffer, blocked with 1% 

BSA in PBS for 1 hour at 37°C and after further extensive washing incubated with 

primary antibody or serum for 1 hour at 37°C.  Plates were washed again and 

secondary antibody conjugated to horse-radish peroxidase (HRP) was applied for 

45 min at 37°C.  Unbound conjugate was removed by washing and bound HRP   

was visualised using o-phenyldiamine (OPD) following incubation at RT in the 

dark and quenched with 4M H2SO4.  Absorbance was read at 492nm using a 96-

well plate reader Tecan Sunrise plate reader with Magellan software (Tecan, 

Switzerland).        

Table 2.11 ELISA secondary antibodies used in this study. 

Sigma (UK)HRP1/3000Mouse IgGGoat 

Southern Biotech (USA)HRP1/3000Rabbit IgGGoat 

Dako (Denmark)HRP1/5000Human IgGGoat 

Dako (Denmark)HRP1/5000Human IgMGoat 

Zymed labs (USA)HRP1/5000Human IgG1Goat 

Zymed labs (USA)HRP1/5000Human IgG2Goat 

Zymed labs (USA)HRP1/5000Human IgG3Goat 

Zymed labs (USA)HRP1/5000Human IgG4Goat 

Southern Biotech (USA)HRP1/3000Rat IgGGoat 

SourceConjugateDilution IsotypeHost 
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2.1.2 SDS-PAGE 

SDS-PAGE was performed using the BioRad® Protean II apparatus according to 

manufacturer’s guidelines.  Gels were cast the previous day and kept overnight 

at 4°C.  The resolving and stacker gels were prepared to give the appropriate 

percentage.  The resolving gel was poured between two clean gel plates and 

overlaid with 100% butanol.  This was removed once the resolving gel had 

polymerised and the stacker gel mix was layered onto which a comb was 

inserted to form sample wells.  Samples were prepared by adding of sample 

buffer and boiling for 5 min before loading.   Gels were ran at 200V (constant 

voltage) until the bromophenol blue dye front had reached the end of the 

resolving gel (~55 min).    

2.1.3 Bicinchoninic acid assay 

To accurately determine protein concentrations a bicinchoninic acid assay (BCA) 

was performed using the Pierce ® BCA protein assay kit following manufacturer’s 

standard protocol. 

First a series of diluted BSA samples were prepared at 2mg/ml, 1.5mg/ml, 

1mg/ml, 750µg/ml, 500µg/ml, 250µg/ml, 125µg/ml and 25µg/ml concentrations.  

Standards were applied to a 96 well microplate (Greiner) in triplicate.  Samples 

to be measured were diluted in series and applied also in triplicate.  To generate 

the working reagent 50 parts BCA reagent A (sodium carbonate, sodium 

bicarbonate, bicinchoninic acid and sodium tartrate in 0.1M sodium hydroxide) 

was mixed with 1 part BCA reagent B (4% cupric sulfate) mixed thoroughly.  

After adding the working reagent to each well; the plate was incubated at 37°C 

for 30 min.  Absorbance was measured at 562nm using a 96-well plate reader 

Tecan Sunrise plate reader with Magellan software (Tecan, Switzerland).        
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2.2 Molecular biology techniques 

2.2.1 RNA extraction  

RNA was extracted using the RNeasy® plus micro kit (Qiagen) in accordance with 

the manufacturer’s standard protocol.   

Cells were lysed using the supplied lysis buffer and further disrupted using a 21 

gauge needle and a 1ml syringe.  Genomic DNA was removed from the lysate by 

binding to a gDNA eliminator column and centrifuging at 8000g for 0.5min.  The 

flow through was retained and mixed with 70% ethanol.  RNA was then isolated 

using RNeasy spin columns.  After loading columns were washed repeatedly with 

supplied wash buffers and 80% ethanol at 8000g.  After the final wash step 

columns were transferred to new collection tubes can centrifuged at 10,000g for 

5 min.  The RNA was then eluted with 14µl Nuclease free water and stored at -

80°C until use.   

2.2.2 Primer design 

Primers were designed using primer3 (http://frodo.wi.mit.edu/primer3/) 

software.  Nfasc155 primers were designed for the unique fibronectin domain 

(FN3) (NM_001160313.1).  Primers for Nfasc186 were designed to recognise the 

sequence encoding the mucin-like domain (NM_001160314.1) sequences were 

taken from NCBI National Centre for Biotechnology Information (National 

Institute for Health, USA).  Binding to target sequence was confirmed by BLAST 

(National Institute for Health, USA).   

Primers were ordered from Sigma-Aldrich and were made up 10µM with DEPC-

treated water on arrival.   
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2.2.3 cDNA synthesis 

RT-PCR was performed using the Superscript™ III First-Strand Synthesis System 

(Invitrogen, UK) following the manufacturers protocol.   

5µg total RNA was incubated with 10mM dNTP mix and 50ng/µl random 

hexamers.  Primers were annealed by incubation at 65°C for 5 min.  The 

reaction was cooled by placing on ice for a minimum of 1 min.  Superscript™ III 

reverse transcriptase (200 U/µl) was then added to the reaction in the presence 

of 10x RT buffer, 25mM MgCl2, 0.1M Dithiothreitol (DTT) and  RNAse OUT™ 

(40U/µl).  The reaction was well mixed, collected by brief centrifugation and 

incubated firstly for 10min at 25°C followed by 50min at 50°C.  The reaction was 

terminated by incubation at 85°C for 5min and chilled on ice.  After brief 

centrifugation RNAse H was added to remove any residual RNA and incubated for 

20min at 37°C.  cDNA was stored at -20°C until further use.   

2.2.4 Q-PCR 

Q-PCR reactions were prepared using SYBR® green master mix (2X) (Applied 

Biosystems, USA) containing pre mixed SYBR green dsDNA reporter dye, PCR 

buffer, dNTPs and Taq polymerase.  Therefore each reaction consisted of 1X 

SYBR green reaction mix, 10µM each primer and 100ng cDNA and made up to 

20µl volume with dH2O.  Reactions were set up in MicroAmp® Fast Optical 96-

Well Reaction Plates (Applied Biosystems, USA).   

Q-PCR reactions were run and monitored using an Applied Biosystems 7900HT 

Fast Real-Time PCR system with Sequence Detection Systems software (version 

2.3).   

2.2.4.1 Cycling conditions 

95°C for 10min, (95°C for 15s, 60°C for 1min) x 40 cycles, 72°C for 5 min then 

melt curve analysis in a temp range of 75-99°C in 1°C increments. 
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2.2.4.2 Quantification  

Changes in gene expression were quantified using the comparative Ct method 

(Livak and Schmittgen, 2001; Schmittgen and Livak, 2008). This method 

compares the Ct values of the samples of interest to those of a baseline or 

control sample.  The Ct values of both the sample and the control are first 

normalised to a suitable housekeeping gene using the following equation.   

∆∆Ct= ∆Ct sample- ∆Ct reference 

From the ∆∆Ct value we can calculate the fold change in gene expression: 

Fold change= 1/(2- ∆∆Ct) 

 

2.3 Myelin absorption studies 

2.3.1 Myelin purification 

Crude myelin was purified from whole rat brain using an abbreviated method 

based on that described by Norton and Podulso (1973).  

Wistar rats (female ~3 weeks old) were sacrificed by overdose of CO2, 

decapitated and the entire brain was removed, weighed and stored at -80°C.  

Tissues were homogenised with a Dounce homogeniser in approximately 20 

volumes (w/v) of 0.32M sucrose (10 strokes).  The homogenate was layered over 

25ml of 0.85M sucrose in SW38 centrifuge tubes (Beckmann) and centrifuged at 

75,000 g for 60 min.  The layers of crude myelin formed at the interface of the 

two sucrose solutions were collected with a Pasteur pipette.  Myelin layers were 

pooled and suspended in water by homogenisation and the final volume brought 

up to 180ml.  This suspension is centrifuged 75,000 g for 15 min the resulting 

supernatants were discarded.  Crude myelin pellets were subjected to osmotic 

shock by suspension in 180ml of water.  The solution was centrifuged at 12,000 g 

for 10 min and the supernatant was discarded.  This step was repeated once 

more ensure the removal of most small membrane fragments.   
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In order to obtain purified myelin, pellets were combined and resuspended in 

0.32M sucrose.  The suspension was then layered over 0.85M sucrose and 

centrifuged at 75,000 g for 30 min.  The myelin was washed three times with 

water by centrifugation at 12,000 g for 10 min.  The pellet was resuspended in 

dH2O containing a protease inhibitor cocktail (Sigma, UK).  Purified myelin was 

stored at -80°C and its purity was assessed by SDS-PAGE.  Myelin protein 

concentration was measured using a BCA assay as described above.    

2.3.2 Myelin adsorption  

For myelin adsorption experiments 1µg monoclonal antibody or 100µg human IgG 

was incubated overnight with 2mg total myelin protein in 1ml PBS at 4°C.  

Myelin and bound immunoglobulins were pelleted by centrifugation at 12,000 g 

and the resulting supernatant was tested for residual antibody binding by ELISA 

and pathogenic activity using the myelinating culture model.   
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2.4 Cell Culture Techniques 

2.4.1 Monoclonal antibody production 

2.4.1.1 A12/18.1, Z2 and 8-18C5 hybridoma 

Hybridoma cells were cultured in CELLine® cell culture flasks (BD biosciences) 

following manufacturer’s guidelines.  The media compartment was filled with 

200ml of the appropriate media and the cell compartment was inoculated with 

2x106 cells/ml diluted in media.  Supernatant was harvested from the cell 

compartment after 7 days and twice a week thereafter.  Supernatants were 

centrifuged at 450 g and stored at -20 °C.  Antibody production was monitored 

by ELISA and purified from pooled supernatants by protein G chromatography as 

described below.   

2.4.2 Transfected cell lines 

Hela cells were transfected to express the extracellular domains of Nfasc155 and 

Nfasc186 (Mathey et al., 2007). 

Transfected HeLa cells were grown in the presence of G418 to prevent the 

development on non-expressing cell populations. Cells were cultured in T75cm3 

flasks and passaged 1:2 once the cells reached ~70% confluency.  For antibody 

treatment and immunocytochemistry 100,000 cells were plated onto uncoated 

13mm coverslips and were allowed to attach overnight.   

2.4.3 Neurosphere derived astrocytes 

Neurospheres were generated based on protocols described by Reynolds and 

Weiss (1996) and Zhang et al. (1998b) and differentiated into astrocytes as 

described by Sorenson et al. (2008).   
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2.4.3.1 Isolation of the corpus striatum from postnatal rat brain 

Neurospheres were produced from the corpus striatum of P1 SD rats (less than 36 

hours old).  Postnatal pups were killed by i.p. injection of euthathal in 

accordance to UK Home Office guidelines.     

The brain was removed from the skull and placed in a petri dish in a dorsal 

orientation and separated into the two cerebral hemispheres by cutting at the 

corpus callosum with a scalpel (no. 22 blade).  The two hemispheres were then 

positioned in a sagittal orientation [Figure 2.1].  The region containing the 

striatum was isolated from the entire hemisphere by making an initial cut at the 

frontal tip of corpus callosum followed by a second at the lateral ventricle 

[Figure 2.1A].  The isolated section was then placed rostrally and the caudate 

nucleus of the striatum carefully removed using curved forceps (Dumont no. 5) 

and placed into a bijou containing 1ml L-15 media [Figure 2.1B].    

2.4.3.2 Production of neurospheres from rat striatum 

Isolated stria were dissociated by gentle trituration with a glass Pasteur pipette 

and centrifuged at 140 g for 5 min.  The resulting pellet was resuspended in 2ml 

NSM, added to an uncoated T75cm2 cell culture flask (Corning) and the volume 

made up to 20mls with NSM.  The flasks were supplemented with EGF 

(Peprotech) at a final concentration of 5ng/ml to promote sphere formation.  

Neurospheres were maintained at 37°C/7% CO2 and fed twice per week by 

addition of 5ml NSM supplemented with 5ng/ml EGF.  After approximately 7 days 

the neurospheres were used to generate astrocytes. 

2.4.3.3 Generation of astrocyte monolayers from neurospheres 

Glass coverslips (13mm) (VWR) were coated with 13.3µg/ml poly-l-lysine (Sigma-

Aldrich, Dorset, UK) for a minimum of 1 hour at 37°C.  After coating the 

coverslips were washed extensively with sterile water and placed into a 24 well 

plate (one coverslip/well) and left to air dry before use.    

Neurospheres were transferred into 50ml falcon tubes and centrifuged at 140 g 

for 5 min.  The pellet was resuspended in 2ml DMEM + 10% FBS by gentle 
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trituration with a glass Pasteur pipette.  The total volume was made up to 12ml 

with DMEM +10% FBS and 0.5ml was added to each well (~50,000 cells/ coverslip) 

after which additional media was added to obtain a total volume of 1ml/ well.  

Astrocytes were maintained at 37°C/7% CO2 until confluent (~7 days). 

 

 

Figure 2.1: Isolation of the striatum from postnatal rat brain 

A.  Sagittal section of rat brain from P1 SD rats.  To isolate the region containing the striatum two 
cuts were made. The first at the frontal tip of the corpus callosum and the second at the lateral 
ventricle (red dashed lines).  B.  When the isolated section is placed in a rostral orientation the 
striatum is easily visible (highlighted in blue) and can be carefully removed with curved forceps.  
Figures adapted from Budantsev et al., 2007 and Gammie et al., 2004.  Abbreviations: C, cerebral 
cortex; cc, corpus callosum; CE, cerebellum; CPu, caudate-putamen complex (striatum); H, 
hippocampus; Hy, hypothalamus; LV, lateral ventricle; OB, olfactory bulb; S, septum; Th, thalamus.   

 

2.4.4 Dissociated spinal cord cultures 

Myelinating spinal cord cultures were generated as described previously 

(Sorenson et al., 2008).   

2.4.4.1 Isolation of embryonic rat spinal cord 

SD rats were time mated and the day of plugging denoted as day E0.5.  In vitro 

myelinating cultures were generated from E15.5 embryos.   
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The pregnant female was sacrificed by overdose of CO2 followed by cervical 

dislocation in accordance to UK Home Office guidelines.  The abdominal skin and 

fur were sterilized using 70% ethanol.  The uterus was exposed by making a V-

shaped incision at the lower abdomen cutting through the skin and abdominal 

wall and was carefully removed and placed into ice cold HBSS.  

Embryos were dissected from the gravid uterus and decapitated approximately 

3mm rostral to the cervical flexure.  The cranial 5 to 6mm of skin covering the 

spinal cord was gently removed and the spinal cord extruded carefully into 1ml 

HBSS (without Ca2+ and Mg2+).  Great care was taken to remove all meninges and 

dorsal root ganglion. 

2.4.4.2 Production of myelinating spinal cord cultures 

Isolated spinal cords were mechanically dissociated by light chopping with a 

sterile scalpel (no. 22 blade) and collected in a 1ml of sterile HBSS (without 

Ca2+and Mg2+).  The tissue was further dissociated by addition of 100µl 10x 

trypsin and 100µl 1% collagenase for 15 min at 37°C.  Enzymatic activity was 

stopped by adding 2ml SD solution (soybean trypsin inhibitor with DNAse I) after 

which the tissue was titurated using a glass Pasteur pipette. 

The suspension was then centrifuged at 200 g for 5 min after which the 

supernatant was removed and the cell pellet resuspended in 2ml plating media 

(PM).  A live cell count was performed using a haemocytometer and trypan blue 

and the cells were subsequently diluted in PM to a concentration of 1.5x106 

cells/ml. 

Dissociated spinal cord cells (150,000 cells/ coverslip) were carefully plated onto 

coverslips supporting a monolayer of neurosphere derived astrocytes.  Three 

coverslips were placed into a 35mm petri dish.  Cells were left to attach for 

approximately 2 hrs at 37°C after which 500µl DM+ and 250µl PM was carefully 

added to each petri dish.  Cultures were maintained for 28-30 days at 37°C/7% 

CO2 and fed three times per week with DM by removing half of the media and 

replacing it with fresh media.  After 12 DIV insulin was omitted from the culture 

media to promote myelination.   
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2.5 Immunocytochemistry 

2.5.1 Antibodies 

Primary antibodies used throughout this work are detailed below [Table 2.2].  

Secondary antibodies; Alexa Fluor® 350 (blue),  Alexa Fluor® 488 (green) and 

Alexa Fluor® 565 (red) were purchased from Invitrogen (Paisley, UK) and used at 

a dilution of 1 in 400 throughout. 

2.5.2 Live staining of extracellular antigens  

Primary antibodies were diluted in ice cold DMEM and applied to coverslips for 

30 min at 4°C after which the coverslips were washed in DMEM and the 

appropriate fluorochrome conjugated secondary antibody was added for 30 min 

at 4°C.  The coverslips were then washed in DMEM and fixed with 4% PFA for 15 

min (RT) and either co-labelled for intracellular antigens as described below or 

mounted in Vectashield (Vector labs).  However in some cases as noted in the 

text PFA fixation was performed immediately after incubation with primary 

antibody or serum.   

2.5.3 Staining of intracellular antigens 

(a) Cells were fixed with 4% PFA, washed in PBS and then permeabilised with 

0.5% Triton X-100 for 10min (RT) and blocked in blocking buffer for 60 min (RT).  

Fixed and permeablised cells were incubated overnight at 4°C with primary 

antibody diluted in blocking buffer.  After washing with PBS an appropriate 

fluorochrome conjugated secondary antibody was added for 45 min (RT).  

Coverslips were then washed in PBS followed by dH2O and mounted in 

Vectashield (Vector labs).        

(b) In order to conserve particular epitopes it was necessary to fix and 

permeablise the cells using methanol rather than Triton X-100.  In this case cells 

were fixed in 100% methanol for 10 min at -20°C, washed with PBS, blocked with 

blocking buffer for 60 min (RT).  Primary antibodies were diluted in blocking 

buffer at the appropriate dilution and applied for 60 min at RT or 4°C overnight.  
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The cells were then washed with PBS and the corresponding fluorochrome 

conjugated secondary antibody added for 45 min (RT).  Coverslips were then 

washed in PBS followed by dH2O and mounted with Vectashield (Vector labs).        

Table 2.2: Primary antibodies used in this study  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prof. E Meinl (Germany)Live/ Bouins1/200IgGRabbitNfasc155

Prof. P. Brophy (UK)Live1/300IgGRabbit Nfasc186

Sigma (UK)PFA1/500IgG1MousePan NaV

Dr E. MatheyLive1/250IgGRatPan Nfasc

Derfuss et al., 2009Methanol1/100IgMMouse4D7 (TAG-1)

Derfuss et al., 2009Methanol1/100IgG1Mouse3.1C12 (TAG-1)

Oligodendrocyte /Myelin

Linington et al., 1988Live1/200IgG1Mouse8-18C5 (MOG)

Chemicon (Europe)PFA + Triton1/100IgG2aMouseMBP

Sigma (UK)PFA + Triton1/50IgGRabbit GalC

Millipore (Europe)Live1/200IgMMouseO4

Millipore (Europe)Live1/200IgGRabbit NG2

AntiseraPFA + Triton1/200IgGRabbitPLP

Abcam (UK)Methanol1/500IgGRabbitPDGFRα

Piddlesden et al., 1993Live1/200IgG2aMouseZ2

Chemicon (Europe)PFA + Triton1/100IgG2aMousePLP

Prof. M Rasband (USA)Live1/100IgG2aMouseA12/18.1

Node of Ranvier

Zymed labs (USA)Methanol1/100IgG1MouseAnkyrinG

Abcam (UK)Methanol1/1000IgGRabbitCaspr

Millipore (Europe)Methanol1/100IgG1MouseNeuN

Neurons/Axons

Abcam (UK)PFA + Triton1/1000IgG1MouseSMI-31

Abcam (UK)Methanol1/500IgGRabbitPGP9.5

Abcam (UK)Live1/200IgG2bMouseCD11b/c

Miscellaneous 

Dako (Denmark)PFA + Triton1/500IgGRabbitGFAP

Abcam (UK)Methanol1/200IgG1MouseED1

Abcam (UK)Live1/200IgG1MouseMHC-II

Dako (Denmark)PFA1/100IgG2aMouseMAC (C5b-C9)

PFA + Triton

Fixation

Yamamura et al., 19911/100IgGRatAA3 (PLP)

NotesDilutionIsotypeSpeciesAntibody
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2.5.4 Identification of Nfasc localisation in vitro  

2.5.4.1 Nfasc155  

Nfasc155 readily accessible for antibody binding was detected by live staining as 

described above using a rabbit polyclonal antibody specific for the unique FN-III 

domain of Nfasc155. 

To visualise Nfasc155 staining within paranodal structures it was necessary to 

disrupt the paranode using Bouins fixative.  Cells were fixed with 4% PFA for 10 

min, washed in PBS, fixed with Bouins fixative for 3 min and washed extensively 

with PBS.  Cells were blocked with blocking buffer for 60 min at RT.  Primary 

antibodies were diluted in blocking buffer at the appropriate dilution and 

applied for 60 min at RT or 4°C overnight.  The cells are then washed with PBS 

and the corresponding fluorochrome conjugated secondary antibody was added 

for 45 min at RT.  The coverslips were washed in PBS followed by dH2O and 

mounted with Vectashield (Vector labs).         

2.5.4.2 Nfasc 186/ Nfasc 155 

Nfasc186 and Nfasc155 readily accessible for antibody binding was detected by 

live staining as described above using a monoclonal antibody (A12/18.1) or a rat 

anti-sera, which recognises shared epitope(s) on both Nfasc155 and Nfasc186. 

2.5.5 Immunocytochemistry to detect complement activation 

The reagent routinely used in our department to visualise MAC is a mAb 

generated against human C5b-C9 recognising human poly C9.  It has been 

previously demonstrated that this antibody recognises rat poly C9 (Kallio et al., 

2000) however we needed to confirm this using our rat serum and antibodies.  

To do this I used transfected cell lines expressing high levels of antigen at the 

cell surface and incubation of transfectants with 10µg/ml antibody in the 

presence of 1% FRS mediated complement cell death and MAC deposition on the 

cell surface within 1 hour of addition.   
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2.5.5.1 Antibody treatment of transfectants 

Transfected HeLa cells were treated with antibody at concentration indicated in 

the text for 30 min and kept at 4°C to minimise antibody internalisation.  Fresh 

rat serum was then added to the cells and the cells were brought up to 37°C and 

incubated until fixation.   

Transfectants were fixed with 4% PFA.  Blocked for 1 hr in 1% BSA/ 10% normal 

goat serum/ 0.3M glycine at room temperature.  To detect residual antibody 

bound to the surface secondary antibody was added (Alexa Fluor 488, Invitrogen) 

for 45min at room temperature.  Cells were washed and mounted in Vectashield 

(Vectorlabs) with DAPI to visualize the nuclei. 

2.6 Image Capture and Analysis  

2.6.1  Image Capture 

All images for cell counting, quantification of axonal density and myelination 

were taken using an Olympus BX51 fluorescent microscope (Olympus).  A 

minimum for thirty images were analysed per condition in each experiment.  

Images were taken in a semi-random fashion i.e. ten random images were taken 

per coverslip from myelinated regions.   

2.6.1.1 Quantification of axonal density 

Neurites were visualised by phosphorylated neurofilament staining (SMI-31) and a 

minimum of ten images were taken per coverslip (10X magnification). 

Using Image J (version 1.41o, National Institute of Health, USA) the image was 

split into three separate images corresponding to the red, green and blue 

channels and the channel corresponding to SMI-31 staining was then converted to 

a black and white image. Axonal density was calculated as the number of SMI-

31+ pixels expressed as a percentage of the total number of pixels per field of 

view [Figure 2.2A]. 
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2.6.1.2 Quantification of total myelin/ oligodendrocyte density 

Oligodendrocytes and their associated sheathes were visualised by staining for 

an oligodendrocyte/ myelin marker (e.g. MOG or PLP) and a minimum of ten 

images were taken per coverslip (10x magnification). 

Using Image J (version 1.41o, National Institute of Health, USA) the image was 

split into three separate images corresponding to the red, green and blue 

channels and the channel corresponding to oligodendrocyte/ myelin staining was 

then converted to a black and white image.  Oligodendrocyte/myelin density 

was calculated as the number of positive pixels expressed as a percentage of the 

total number of pixels per field of view [Figure 2.2A]. 

2.6.1.3 Quantification of myelination   

As there is no specific myelin marker that differentiates completely between 

oligodendrocytes and myelin sheathes these were manually highlighted using 

Adobe Photoshop elements® (blue) [Figure 2.2B] and measured using a macro 

within Image J (written by John Annan) (Appendix).  To provide a measure of the 

extent of myelination the number of myelin positive pixels was divided by the 

number of SMI-31 pixels in the same field.   

2.6.1.4 Cell counting 

In order to quantify cell populations within cultures a minimum of 30 images 

were taken from three coverslips (20x magnification) and immunopositive cells 

associated with a DAPI+ nucleus were counted using the ImageJ cell counter 

function (version 1.41o).  Cell counts were expressed as a percentage of the 

total number of DAPI+ nuclei in the image at the same plane of focus.    

 

         



59 

 

Figure 2.2: Quantification of axonal density and myelination using Image J. 
A. To calculate axonal density images were split into their individual colour channels using Image J 
software.  The channel corresponding to SMI-31 (red) was converted into a black and white image 
and the axonal density was calculated as the number of SMI-31+ pixels within a field of view (10X 
magnification) and expressed as a percentage.  The same approach was adopted in order to 
calculate the total density of myelin/oligodendrocytes by focusing on the green channel.  B.  To 
calculate the percentage myelination it was necessary to exclude staining on oligodendrocyte cell 
bodies and to focus solely on the myelin sheathes.  To achieve this, myelin sheathes were 
manually highlighted using Adobe Photoshop ® (Adobe systems) (blue).  The highlighted area was 
quantified using a macro within Image J. For each image percentage myelination was expressed 
as the total number of myelin pixels/ total number of SMI-31 pixels (based on Sorenson et al, 
2008).   

   

PLP+ 

SMI-31+ 

Myelin 
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2.7 Immunoglobulin Purification 

2.7.1 Protein G chromatography 

Antibodies were purified using 1ml HiTrap protein G fast flow columns (GE 

Healthcare) following manufacturers instructions.   

Briefly samples were diluted in binding buffer and particulates were removed by 

filtration using a 0.45µm filter prior to loading.  Samples and buffers were added 

using a 10ml syringe at a flow rate of 1ml/min taking care to prevent introducing 

air into the column.     

After washing with 10ml of binding buffer to remove the ethanol-based storage 

buffer the sample was passed through the column, which was then rinsed with a 

minimum of 5ml until the absorbance of the eluate at 280nm had fallen to that 

of diluted binding buffer.  The flow through was retained in the event that not 

all antibody binds to the column.  Bound antibody was eluted using 8ml elution 

buffer collected sequentially in 2ml fractions that were neutralised immediately 

by addition of 100µl of 1M Tris-HCl, pH 9.0.  Protein Concentrations were 

determined by absorbance at 280nm using a nanodrop 1000 spectrophotometer 

(Thermo scientific).   

2.7.2 Generation of Fab fragments 

Fab fragments were generated using Pierce ® Fab Preparation kit following 

manufacturer’s instructions.   

1mg/ml purified IgG was incubated with immobilised papain for 4 hours at 37°C.  

After digestion, fragments were retrieved by centrifugation at 5000 x g for 1 min 

and the resin was washed with PBS.  Fab fragments were isolated via protein-A 

chromatography and their purity was assessed by SDS-PAGE.    
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2.7.3 Purification of patient-derived Nfasc155 specific 

autoantibodies 

Purification and characterisation of Nfasc specific antibodies was performed in 

collaboration with Dr. A. Arthur (University of Glasgow). 

Recombinant rat NF155 (rrNfasc) (500µg) (R&D Systems) was bound to an 

activated NHS column (GE Healthcare) according to the manufacturer’s 

instructions. Plasmapheresis samples were diluted with PBS, filtered and brought 

to pH 7 before were run over rNfasc immunosorpbent columns at 4°C. After 

extensive washing with PBS, bound antibody was eluted with 0.1M glycine pH 2.7 

and immediately neutralized using 1M Tris pH 9. The presence of anti-rNfasc 

antibodies and their isotype was confirmed by ELISA, whilst antibody 

concentrations were determined using a Nanodrop spectrophotometer (Thermo 

Scientific). 

2.7.3.1 Isotype usage of the Nfasc specific repertoire  

Purified human anti-Nfasc155 antibodies were diluted 1:500 in PBS and specific 

binding rat Nfasc155 detected using anti-human IgG1 (Zymed), IgG2 (Zymed), 

IgG3 (Zymed), IgG4 (Zymed) or IgM (Dako) reagent conjugated to alkaline 

phosphatase. 
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2.8 Using myelinating cultures to detect complement 

dependent antibody mediated injury 

2.8.1 Preparation of fresh rat serum 

To obtain fresh sera, SD rats were exsanguinated by cardiac puncture with a 

10ml syringe and 21G needle.  The blood was allowed to clot on ice and once 

clotted the serum was isolated by centrifugation at 2000 g for 10 min at 4°C.  

Sera was stored at -80°C in small aliquots to avoid freeze thawing.  To heat 

inactivate the complement, sera was incubated at 56°C in a water bath for 30 

min.   

2.8.2   Antibody treatment of myelinating cultures 

2.8.2.1 Complement dependent assay 

To investigate complement dependent antibody mediated injury.  Cultures were 

treated after 28 days in vitro to allow for axonal establishment and robust 

myelination.  Purified antibodies were used at a concentrations indicated in the 

text.  Fresh rat serum was added as a source of complement at a final 

concentration of 1% and cells were incubated at 37°C/ CO2 until fixation.  In 

each case cells were labelled by ICC and axonal density and extent of 

myelination quantified as described previously.        

To elucidate whether antibody mediated effects were dose dependant 

myelinating cultures were treated with varying concentrations of antibody 

(10µg/ml, 1µg/ml, 100ng/ml, 50ng/ml and 10ng/ml), 1% FRS was used as a 

source of complement and cells were incubated overnight (~16hrs) at 37°C/7% 

CO2 until fixation and ICC.   

To determine the time scale in which injury occurs; myelinating cultures were 

treated with 10µg/ml antibody and taken at specific time intervals (as denoted 

in the text), 1% FRS was used as a source of complement and cells kept 

incubated at 37°C/7% CO2 until fixation and ICC.   
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2.8.2.2 Complement independent assay 

To investigate the pathogenic potential of autoantibodies in the absence of 

exogenous complement, myelinating cultures were treated at concentrations 

indicated in the text from 12 DIV, 18 DIV or 24 DIV.  Antibodies were reapplied 

with each media change until 28 DIV.   

2.9 Clinical Studies:  Identification of pathogenic 

autoantibodies in MS patients.   

2.9.1 Patient samples 

Samples were collected from patients at the Southern General Hospital 

(Glasgow, UK), University of Heidelberg (Heidelberg, Germany) and the 

University Clinic Grosshardern (Munich, Germany).  Clinically definite MS was 

defined using the Poser or McDonald criteria (Poser et al., 1983).  Each site 

collected samples using a protocol approved by their Institutional Review Board, 

and informed consent was obtained from all subjects.  Samples were stored at -

80°C in aliquots.  Inclusion criterion for use in the study was positive for an 

antibody response to Nfasc155 as tested by ELISA. 

2.9.2 Treatment of myelinating cultures with patient-derived 

autoantibodies 

After 28 DIV immunopurified Nfasc-specific immunoglobulins were added to the 

cultures at the concentrations indicated in the text in the presence or absence 

of fresh rat sera as a source of complement (final concentration 1%). Additional 

control cultures were treated with antibody alone or in combination with heat 

inactivated serum as additional controls.   
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Table 2.3 Clinical data of patient cohort selected for study 

Plasma samples were obtained from patients undergoing therapeutic plasma exchange (PEx).  The 
patients were broadly divided into two groups, those diagnosed with multiple sclerosis (MS) and 
those diagnosed with other neurological diseases OND.  Plasma samples were screened by ELISA 
for Nfasc autoantibody responses and the patients which tested positive were used in this study.   

Abbreviations: RRMS: relapsing remitting MS, SPMS: secondary progressive MS, PPMS: primary 
progressive MS, SPN: Sensory motor polyneuropathy, CIDP: chronic idiopathic polyneuropathy, 
GBS: Guillian-Barre syndrome, ISAN: Idiopathic sensory ataxic neuropathy, MG: Myasthenia 
Gravis.    

 

Patient ID Gender Age Diagnosis Time from onset at TPX

MS1 F 26 MS (Marburg) 8 years

MS2 F 42 RRMS 25 years

MS3 M 45 RRMS 0 years

MS4 F 49 RRMS 7 years

MS5 M 29 SPMS 5 years

MS6 F 49 RRMS 11 years

MS7 F 31 RRMS 7 months

MS8 F 51 RRMS N/A

MS9 F 43 RRMS N/A

MS10 M 46 RRMS N/A

MS11 F 42 RRMS N/A

MS12 F 42 RRMS N/A

MS13 F 40 RRMS N/A

MS14 M 33 RRMS N/A

MS15 F 53 RRMS N/A

MS16 F 58 RRMS N/A

MS17 F 57 PPMS N/A

MS18 F 56 PPMS N/A

MS19 M 47 PPMS N/A

MS20 F 28 PPMS N/A

OND1 M 38 SPN 9  years

OND2 F 49 GBS <1 month

OND3 F 55 GBS <1 month

OND4 M 24 GBS <1 month

OND5 M 62 CIDP 14  years

OND6 F 55 CIDP 20  years

OND7 M 79 CIDP 4  years

OND8 M 71 ISAN <1 month

OND9 F 62 MG 5  years

OND10 F 63 CIDP 8  years

HC1 F 45 N/A N/A

HC2 F 31 N/A N/A

HC3 M 46 N/A N/A

HC4 F 33 N/A N/A

HC5 F 27 N/A N/A

HC6 F 28 N/A N/A

HC7 F 32 N/A N/A

HC8 F 50 N/A N/A

HC9 F 31 N/A N/A

HC10 M 80 N/A N/A

HC11 F 24 N/A N/A

HC12 M 57 N/A N/A

HC13 F 37 N/A N/A    
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2.10 Statistics 

In order to determine whether immunocytochemical data obtained for axonal 

density and myelination followed a normal distribution, raw data was assessed 

using  the Lilliefors Test for Normality (Lilliefors, 1967) using software provided 

by the European mirror service (Professor Hossein Arsham, University of 

Baltimore, 

http://www.mirrorservice.org/sites/home.ubalt.edu/ntsbarsh/Business-

stat/otherapplets/Normality.htm).  Using this test we determined that our data 

“likely follows a normal distribution”. 

Due to the distribution of the data, values from treatments and controls were 

compared using a parametric method namely the students T-test.  When directly 

comparing raw data values, probability values were calculated using the paired 

students T-test (two tailed) (Microsoft Excel).  In majority of cases, raw data 

was standardised and expressed as a percentage of control values.  In this case 

the paired T-test was not appropriate; therefore p values were calculated using 

the one-sample heteroscedastic T-test (Microsoft Excel).   

In each instance statistical significance was denoted with * when p<0.05 and ** 

when p<0.001.  For antibody mediated effects on axons and myelin/glia, p 

values obtained were comparable between analyses of raw or standardised data 

[Table 2.4]. 

All data was plotted as the mean of three independent experiments performed 

three times in triplicate +/- standard error of the mean, unless stated otherwise.   
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Table 2.4:  Calculation of probality values using the students T-test- comparison of raw and 
standardised data 
Data values were taken from table 4.2.  Myelinating cultures (28 DIV) were treated overnight in the 
presence of complement with 10µg/ml of Z2 (anti-MOG, demyelinating), A12/18.1 (pan-Nfasc, 
axopathic and demyelinating) or an IgG2a control (no effect to axons or glia).   P values from raw 
data values for axonal density and myelination were calculated using a paired two-tailed T-test.  In 
some cases data was standardised and expressed as a percentage of control values.  In these 
examples p values were calculated using a one-sample heteroscedastic T-test.  In each case 
antibody mediated effects on axons and glia were highly significant and p values were comparable 
regardless of the data set analysed or statistical test used.  Values shown are the average of three 
independent experiments performed in triplicate ± S.E.M.   
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3 Characterisation of in vitro myelinating cultures 

3.1 Introduction  

The purpose of this chapter is to describe the in vitro myelinating cultures used 

in this study and demonstrate their validity as a representative model of 

myelination.  This characterisation is a prerequisite if this in vitro system is to 

be used as a tool to detect pathogenic antibody responses.  If myelinating 

cultures are to provide a valid screening strategy it is crucial they replicate the 

structural and molecular organisation of the CNS in vivo.  The advantage of using 

such a co-culture system over homogenous cell populations such as pure 

oligodendrocyte cultures is that although oligodendrocytes are capable of 

extending myelin like membranous sheets in vitro, in the absence of neurons 

they cannot assemble myelin sheathes.  However in the myelinating culture 

model it is possible to obtain myelin sheathes with similar properties to that of 

compact CNS myelin in vivo including formation of higher order structures such 

as paranodal loops and nodes of Ranvier (Thompson et al., 2006, Sorenson et al., 

2008).   

If this myelinating culture model was to provide a routine screen for 

demyelinating autoantibodies it was important to determine the reproducibility 

of the system by investigating the variation between cultures from the same 

preparation and between myelinating cultures from different preparations.  In 

order to generate a reliable model it must be proven to be robust, reproducible 

and statistically sound.   

Characterisation was also necessary to determine appropriate time points to 

assay antibody dependent effects.  To do this was important to initially 

determine at which stages in vitro are the antigens of interest expressed.   
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The aims of this chapter are: 

• To analyse the cytoarchitecture of the myelinating cultures and 

determine similarities between this model and the in vivo CNS.    

• To determine when various antigens are expressed and their localisation 

in vitro.   

• To determine the reproducibility of the system and it suitability as a 

potential screening strategy in which to detect pathogenic autoantibody 

responses.    
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3.2 Results 

To investigate in vitro development of myelinating cultures, they were 

characterised by immunofluorescence microscopy at key stages namely 9, 12, 

18, 24 and 30 DIV. 

3.2.1 Neurite extension and axonal ensheathment 

Neurons derived from the embryonic rat spinal cord consist of a heterogeneous 

population of neuronal cell types and neural progenitors (Nornes et al., 1974).   

We can measure neuronal development and axonal extension that occurs 

throughout the culture period by measuring increases in phosphorylated 

neurofilament expression by immunocytochemistry using the monoclonal SMI-31 

[Figure 3.1A].  After 9 DIV the astrocyte monolayer is covered by clusters of 

neurons that have already begun to extend neurites which by 12 DIV cover 

approximately 50% of the surface of the coverslip.  Axonal density begins to 

plateau at approximately 65-70% between 18 DIV to 24 DIV [Figure 3.1B].   

Oligodendrocyte maturation and the onset of myelination were followed by 

measuring MBP immunoreactivity [Figure 3.1A].  MBP+ cells are not present at 

earlier culture stages but a small number begin to appear 12 DIV. After 12 days 

in culture insulin is omitted from the culture media in order to promote 

oligodendrocyte progenitor differentiation maturation rather than proliferation 

(Thompson et al., 2006).  After insulin withdrawal there is an increase in the 

number of MBP expressing cells but by day 18 little axonal ensheathment. By 24 

DIV we observe substantial axonal ensheathment and myelination by MBP+ 

oligodendrocytes.  Once myelination has begun the process is relatively rapid as 

the number of MBP+ myelin sheathes effectively triples over the final 6 day 

period [Figure 3.1C].  MBP+ sheathes also expressed PLP and quantification of 

PLP staining gave a similar result.  PLP was subsequently used for all future 

quantification.   
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Figure 3.1: Axonal density and myelination increase over time. 
A:  Immunochemistry of myelinating cultures over a 30 day culture period.  Neurites were 
visualised using SMI-31 (phosphorylated neurofilament: red) and myelin/ oligodendrocytes were 
stained for myelin basic protein (MBP: green) (10X magnification).  Cultures were stained at 9 (i), 
12 (ii), 18 (iii), 24 (iv) and 30 DIV (v).   Myelin sheathes also expressed PLP in addition to MBP 
(vi) (PLP: red, MBP: green) (40X magnification) B: Axonal density was calculated by measuring 
the number of SMI-31+ pixels per field of view (10X magnification).  For each time point a minimum 
of 30 images were analysed.  Neurofilament staining was visible at nine DIV where a small number 
of axons are developing.  By 12 DIV a dense network of neurites is formed.  Axonal density 
increases to its maximum by 18 DIV.  Values plotted are quantification of immunocytochemical 
data from three independent experiments performed in triplicate (mean ± S.E.M).  C: Myelination 
was quantified by calculating the percentage of myelinated axons in each image.  For each time 
point a minimum of 30 images were analysed.  Myelination usually occurs between days 20-22 and 
by 24 DIV there is a substantial amount of axonal ensheathment.  Once myelination has begun the 
process is relatively rapid as the number of myelin sheathes effectively triples over the final 6 day 
period.  Values plotted are quantification of immunocytochemical data from three independent 
experiments performed in triplicate (mean ± S.E.M).   
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3.2.2 Differentiation of the oligodendrocyte lineage 

Myelination is a tightly regulated process in which oligodendrocyte precursor 

cells (OPCs) differentiate into oligodendrocytes which extend processes and can 

ensheath appropriate axons.  OPCs differentiate into mature myelinating 

oligodendrocytes through a defined path with various stages.  Each cell subtype 

expresses a set of characteristic surface markers that can be used to determine 

their state of differentiation.  Immature OPCs were detected using NG2 

(chondroitin sulphate proteoglycan) (Dawson et al., 2000; Stallcup., 1981), late 

OPCs/ pre- oligodendrocytes were labelled with O4 monoclonal antibody (Bansal 

et al., 1992, Sommer and Schachner, 1981), which recognises sulphatide.  PLP 

staining was used to visualise oligodendrocytes; however it must be noted that 

the anti-PLP antibody used in this study also binds to DM20, an isoform of PLP, 

expressed by pre-OLG populations prior to PLP expression (Yamamura et al., 

1991).  Mature oligodendrocytes were defined as expressing MOG on the cell 

surface (Scolding et al., 1989) [Figure 3.2A].   In the early stages of development 

large numbers of oligodendrocyte precursor cells (OPCs) can be detected by 

immunocytochemistry [Figure 3.2B].  Between 9 and 12 days in culture, the 

majority of oligodendrocyte lineage cells present are NG2+, but after insulin is 

withdrawn from the culture medium (arrow) the number of NG2+ cells rapidly 

declines.  By the end of the culture period only a small proportion of NG2 

expressing cells remain.  Cells labelled by the O4 antibody include a subset of 

OPCs (which co-express NG2), pre-oligodendrocytes and oligodendrocytes; 

therefore there are a high proportion of O4+ cells at each timepoint culture 

however the cell types recognised will shift from OPCs through pre-

oligodendrocyte towards a mature myelinating oligodendrocyte phenotype as the 

culture progresses.   Mature oligodendrocytes are not present within the first 12 

days in culture [Figure 3.2B]; however after insulin withdrawal (arrow) there is 

an increase in the number of MOG expressing cells correlating with the onset of 

myelination.  The number of PLP/DM20 expressing cells follows a similar trend 

although in greater number due to the number of pre-oligodendrocytes and 

immature oligodendrocytes labelled.  All oligodendrocytes expressing MOG also 

express PLP and MBP.    
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Figure 3.2: Differentiation of the oligodendrocyte lineage within the myelinating cell culture 
system. 
A:  OPCs express NG2 chondroitin sulphate proteoglycan (i) and as they mature into pre-
oligodendrocytes they begin to express sulphatide (04) (ii).  All oligodendrocytes express PLP (iii) 
(although it must be noted that PLP antibodies also bind to DM20 expressed by pre-OLG 
populations).  MOG is a marker of terminal oligodendrocyte differentiation and commitment to a 
myelinating phenotype (iv).  B:  NG2

+
 positive cells (purple line) are most abundant in the earlier 

culture stages reaching a maximum at ~12 DIV and decreasing at later stages.  Cells expressing 
O4 (blue line) arise also in the earlier stages and continue to increase in number as the culture 
progresses.  Arrow denotes day of insulin withdrawal from the media.  C: PLP

+
 cells (red line) 

appear in large numbers the intermediate and late stages of development coinciding with the onset 
of myelination.  MOG expressing (green line) cells are most abundant in the final stages correlating 
with the terminal maturation of oligodendrocytes and enhanced myelination.  All values plotted are 
the mean of three independent experiments performed in triplicate (± S.E.M).   
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3.2.3 Microglial development 

In order to determine whether there were a population of resident microglia 

within the in vitro culture system, cultures were analysed by 

immunocytochemistry at several stages of growth using two microglia markers; 

CD11b/c and MHC-II.   

At the earlier stages of development there are a number of CD11b/c+ cells with a 

round morphology.  However as the cultures mature CD11b/c and MHC-II 

expressing microglia increase in number and they adopt a more classical 

branched morphology and demonstrate a larger amoeboid shape [Figure 3.3].  

The phagocytic potential of these microglia cells will be demonstrated in the 

next chapter.   

 

 

 

 

 

 

 

 

 

Figure 3.3: Microglia are present in every stage of culture development.   
A: In early stages of culture (<12 DIV) the microglia present have a rounded morphology (i) 
(CD11b/c: red) as the cells mature they adopt a more classical branched morphology expressing 
both MHC-II (ii) (green) and CD11b/c (iii) (red) (63X magnification).  B: Quantification of microglia 
numbers shows a steady increase throughout culture development.  Values plotted as the mean of 
from three independent experiments performed in triplicate (± S.E.M).   
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3.2.4 Development of axo-glial junctions 

3.2.4.1 Neurofascin expression in vitro 

The neurofascins play key roles in axo-glial interactions and node of Ranvier 

formation (Zonta et al., 2008). Neurofascin exists as two major isoforms; 

Nfasc155 expressed by glia and Nfasc186 expressed by neurons and axons.  

Live immunocytochemistry using a rabbit polyclonal antibody specific for 

Nfasc155 detects Nfasc155 expression on the surface of oligodendrocytes at the 

cell body on along their processes [Figure 3.4A].  Fixation with Bouin’s fixative 

and permeablisation reveals Nfasc155 staining at paranodal domains and 

cytoplasmic staining within oligodendrocytes.  In contrast a rabbit polyclonal 

specific for Nfasc186 only clearly stained nodes of Ranvier with no binding to 

oligodendrocytes or myelin. Staining live with A12/18.1, a pan specific 

monoclonal, revealed not only oligodendrocyte and nodal staining, but also on 

the surface of a subset of neurons [Figure 3.4B]. 

To investigate changes in Nfasc gene expression RT-PCR was performed on cDNA 

samples generated from RNA extracted from myelinating cultures at 9, 12, 18, 

24 and 30 DIV.  Nfasc155 expression [Figure 3.4C] follows a similar time course 

as oligodendrocyte maturation.  Fold change in gene expression was calculated 

by the comparative Ct method (Livak et al., 2001) with gene expression values 

for 9 DIV used as the base line.   There is no change in Nfasc gene expression 

between days 9 and 12.  However from day 12 there is a rise in Nfasc155 gene 

expression increasing steadily as the culture progresses reaching a 3 fold 

increase after 30 DIV.  In contrast Nfasc186 expression increases by 2 fold from 

day 9 to day 12 there is no change in Nfasc186 expression between day 12 and 

18.  From the cells present at these timepoints (mainly OPCs and no myelin 

formation) this increase in Nfasc186 is due to neuronal Nfasc186 expression.  

Nfasc186 gene expression increases sharply once myelination has begun (post 

day 18) due to increased Nfasc186 protein expression by the axon at the AIS and 

at the node of Ranvier.   
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Figure 3.4 Neurofascin expression in vitro  
A: Live staining for Nfasc155 (green) demonstrates surface expression by oligodendrocytes at the 
cell body and processes (PLP: red) with intense staining at the tip of the cell process (40X 
magnification).  B: Live staining for Nfasc155/186 using a pan-specific monoclonal (A12/18.1) 
revealed Nfasc186 expression on a subset of PGP9.5

+
 neurons at the soma (red), axon initial 

segment and at the node of Ranvier (63X magnification).   C: RNA was purified from myelinating 
cultures at 9, 12, 18, 24 and 30 DIV and cDNA created.  Subsequent RT-PCR analysis of gene 
expression revealed that mRNA levels for both Nfasc155 and Nfasc186 continually increase over 
time in culture from 6 DIV.  Nfasc155 expression increases from 12 DIV and increases gradually as 
myelination proceeds (i).  Nfasc186 expression increases from day 6 as the neuronal population 
expands and after 18 DIV there is a large increase in Nfasc186 expression coinciding with the 
onset of myelination (ii).  Fold change values calculated in comparison to day 9 gene expression 
(±S.D).  ß-actin was used as housekeeping gene.       
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3.2.4.2 Molecular organisation of the node of Ranvier  

In order to assess whether myelin sheathes formed in the cultures reproduced 

the characteristics to in vivo compact myelin and whether myelin internodes 

were bridged by typical nodes of Ranvier an immunocytochemical approach was 

adopted.   Myelinating oligodendrocytes in vitro assemble paranodal loops 

expressing both Caspr and Nfasc155.  These paranodal domain flank nodal 

regions where Nfasc186, ankyrin G and voltage gated sodium channels (NaV) are 

clustered.  Myelinating cultures are capable of forming nodes of Ranvier 

between myelinated segments that are “typical” of those described in vivo with 

respect to their molecular composition [Figure 3.5].  In however in this culture 

system the formation of “heminodes” is much more common.  At the heminode 

there is clustering of Nfasc155 and Caspr at the end of PLP+ myelin sheathes but 

no detectable axonal expression of Nfasc186 or NaV [Figure 3.5B].   

 

 

 

 

 

 

Figure 3.5: Nodes of Ranvier formed in vitro are representative of those formed in vivo.   
A: Node of Ranvier between two myelin internodes (PLP, red) visualised by Nfasc186 (green) 
staining bounded by paranodal Caspr staining (blue) (100x magnification) (i).  Node of Ranvier 
between two myelin internodes (PLP, green) visualised by staining of the voltage gated sodium 
channel (red) bounded by Nfasc155 at the paranode (blue) (100x magnification) (ii).  Node of 
Ranvier between two myelin internodes (PLP, green) visualised by staining for ankyrinG (blue) 
bounded by Caspr at the paranode (red) (100x magnification) (iii).  B:  Staining showing a node of 
ranvier and a “hemi” node.  Heminodes consist of paranodal Caspr (i) and Nfasc155 (ii) but no 
expression of voltage gated sodium channel or Nfasc186.    
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3.3 Discussion  

In vitro myelinating cultures provide a model which reproduces the cellular 

composition and molecular organisation observed in vivo CNS.  However it must 

be noted that this dissociated cell system is a developmental model of 

myelination and does not reproduce the 3D cytoarchitecture as seen in 

myelinated tracts in vivo.  Nevertheless, individual sheathes form paranodal 

loops and heminodes as defined by Nfasc155 and Caspr immunoreactivity and 

between myelin internodes nodes of Ranvier are formed where Nfasc186, NaV 

and AnkG are clustered.  Furthermore this system provides a cell based assay in 

which to determine the effects of a molecule of interest on myelination and 

axonal survival.     

The advantage of using this rat-derived system over the mouse equivalent is the 

number of coverslips (individual cultures) one can generate from a typical 

preparation.  One litter of P1 neonatal rats and one pregnant E15.5 SD rat (~12-

15 embryos) will generate approximately 140 coverslips/ individual cultures.  In 

contrast one pregnant mouse E13.5 (~6-8 embryos) will only generate only a 

third of this number.  Using mouse-derived cultures could be used to confirm the 

specificity of the target such as using MOG knockout mice against anti-MOG 

antibody responses.  However for the myelinating culture system to be used 

routinely as a model to detect pathogenic autoantibody responses it must be 

statistically reproducible both between individual coverslips within a single 

preparation but also between coverslips from different preparations.  Within a 

batch of cultures the amount of myelination and the approximate axonal density 

remain relatively reproducible between coverslips [Table 3.1].   

There is little variation in axonal density between either coverslips of the same 

batch or between preparations (Cv<10%).  Myelination is much more variable 

(CV>10%).  Myelinating cultures were checked by immunocytochemistry and 

microscopy the day before use and cultures with <2% myelinated axons were 

discarded.   
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Table 3.1: Variations between preparations of myelinating cultures at 28 DIV 
Values for axonal density and the percentage of myelinated axons were calculated from six 
independent batches of myelinating cultures generated over a six week period.  Values plotted as 
the mean from three coverslips per preparation ± standard deviation (SD).      

   

 

 

 

 

 

 

The major advantage of this system is that images can be taken from coverslips 

randomly and subsequently analysed in a semi-automated fashion to give 

quantitative data.  However it must be noted that quantifying the number of 

myelinated axons by highlighting individual myelin sheathes and discriminating 

between myelin and oligodendrocyte processes can be subjective depending on 

the individual performing the analysis.  When quantifying cell numbers it is 

difficult to obtain and accurate figure when many cells are grouped closely 

together.  One possible way to overcome this is to take Z stacks and quantify 

only those cells in that plane of focus.   

I considered other culture models in addition to the dissociated cell culture 

models established here in Glasgow.  One such model was the organotypic slice 

culture model.   Organotypic slice cultures (OSCs) typically consist of neonatal 

murine CNS explants (such as the hippocampus or cerebellum), which are 

maintained in culture for several weeks (Stoppini et al., 1991).  Such systems 

have been used for a wide range of applications from measuring the effects of 

long term addition of a particular substance (review: Peña. 2010) such as 

investigating the effects of neuroactive drugs (Drexler et al., 2010), growth 

factors (review: McAllister et al., 1999) and studies regarding antibody 

demyelination and subsequent remyelination (Harrer et al., 2009). 
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The advantage of such a system is that the 3D architecture seen in vivo is 

conserved in culture [Figure 3.6].  OSCs are therefore ideally suited to 

electrophysiological studies and have been used to expand our understanding of 

action potential propagation and synaptic transmission (Maletic-Savatic et al., 

1999,   Shi et al., 1999).  The use of such as system has become an increasingly 

powerful tool with the incorporation of various transgenic mouse strains from 

auto fluorescent cells for enhanced imaging (review: Hechler et al., 2006) or the 

use of knockouts to investigate the mechanistics of a molecule of interest.  I 

considered using OSCs as the model screening strategy for my thesis and spent 

two weeks in the laboratory of Professor N. Goebels (University of Zurich, 

Switzerland) learning the methodology.  I discovered that the system was not 

without its drawbacks.  It would require many animals and be very labour 

intensive to produce enough slices each week for a routine high throughput 

screening protocol and the slices require more maintenance in comparison to 

dissociated cell systems.  The slices are also more sensitive to environmental 

changes and may spontaneously die in culture due to small media pH changes or 

hypoxia.   

 

 

 

  

Figure 3.6: 3D architecture of white matter tracts in cerebellar slice cultures. 
3D architecture of myelinated tracts in OSCs created from GPF-PLP transgenic mice (PLP; green, 
neurofilament; red) (20X magnification).  OSCs were created and images taken whilst visiting the 
lab of Prof. N Goebels in collaboration with Dr. M Harrer (Zurich).   
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Characterising the rat dissociated myelinating cultures allowed me to determine 

the best time point in which to investigate antibody mediated injury in vitro.  I 

decided for future experiments to add antibody at day 28.  This was based on 

the cellular and biological composition of the cultures at this time point.  Axonal 

density is well established with a substantial amount of oligodendrocyte 

maturation and myelin formation with nodes of Ranvier [Figure 3.7].   Usually 

the cells begin to decline after 30-35 days in culture and therefore it is crucial 

to use the cultures whilst they remained “healthy”. 

Through understanding which cell populations are present at this later time 

point and which molecules are expressed by these cells together with what is 

already known about autoantibody mediated pathogenesis in MS.  We can begin 

to compile a list of candidate autoantigens in which to investigate using our 

system.   
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Figure 3.7: Summary of mature myelinating cultures after 28 DIV. 
Myelinating cultures consist of a many different cell types after 28 days in culture.  There is a well 
established populations of neurons (red, PGP9.5) extending many neurites (SMI-31, blue, 10X 
magnification) (i).  These axons eventually become myelinated by endogenous oligodendrocytes 
expressing wide variety of typical markers (PLP, green; SMI-31 red) (63X magnification) (ii).  
These oligodendrocytes arise from a pool of oliogodendrocyte precursor cells, which are still 
present in small numbers even in mature cultures (O4, red, 63X magnification) (iii).  Myelinated 
internodes formed within the system form heminodes and are also bridged by characteristic nodes 
of Ranvier (iv).  Within these myelinated cultures it must be noted that there is a substantial 
populations of astrocytes (GFAP, green, 10X magnification (v) and microglia (CD11b/c, red, 40X 
magnification) (vi).      
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4 Validation of myelinating cultures as a model to 

detect pathogenic autoantibody responses. 

4.1 Introduction 

In the previous chapter myelinating cultures were described as an in vitro model 

with cellular and molecular composition of the CNS in vivo which reproduces the 

structural organisation of myelin internodes and nodes of Ranvier.  The purpose 

of this chapter is to build on this and to describe the experiments undertaken to 

demonstrate that this model can be adapted to reproduce antibody mediated 

CNS injury.  From the previous chapter and what is known about antibody 

mediated effects in animal models of MS we can compile a list of candidate 

autoantigens to investigate in order to validate our model as a tool to screen 

patients for the presence of axopathic and/or demyelinating antibody responses 

[Table 4.1].   

Table 4.1: Summary of candidate MS autoantigens and their localisation in vitro 
Summary of key autoantigens implicated in MS autoantibody responses.  Localisation of these 
antibodies within myelinating cultures was determined using well characterised monoclonal 
antibodies.  Antibody binding to myelinating cultures was determined either live (without fixation or 
permeablisation) (L) or post fixation with 4% PFA and permeablisation with 0.5% Triton X-100 (P) 
[+: strong staining, ++: enhanced staining, --: no staining] 
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From what is already known about antibody mediated pathogenesis in MS and 

EAE we decided to investigate complement dependent antibody mediated injury 

(although complement independent effects will be discussed in a later chapter).  

This was for a number of reasons: 

1. In antibody mediated demyelinating EAE (ADEAE) CNS injury is 

complement dependent.  In animals with ADEAE there is extensive deposition of 

C9 in white matter tracts (Linington et al., 1989).  However it has also been 

reported that antibody mediated injury in vivo is associated with an antibody 

dependent cellular cytotoxicity mechanism, where antibody binding makes the 

target vulnerable to attack from other immune cells such as macropahges 

(Brosnan et al., 1981).  Therefore we will focus on acute antibody mediated 

effects.   

2. There is a correlation of deposition of complement activation products 

and immunoglobulins in MS lesions (Lucchinetti et al., 2000; Prineas et al., 

1981).  

3. In paediatric MS and ADEM there is strong evidence implicating a role of 

pathogenic α-MOG autoantibodies in disease pathogenesis (McLaughlin et al., 

2009, Di Pauli et al., 2010).   

4. From a technical standpoint using a single time point will reduce the 

amount of antibody required for screening and therefore will conserve patient 

samples.    

The aim of this chapter is to determine the validity of our in vitro system as a 

model of antibody mediated CNS injury and therefore must fulfil certain 

criterion: 

• Antibody mediated injury in vitro must correspond to published data with 

respect to antigen specificity, accessibility and activity.   

• Injury must reproducible and readily detectable at low antibody 

concentrations as reported in other autoantibody mediated diseases (Myathenia 

Gravis [α-AChR] is ~10-20nM) (Lindstrom et al., 1976).   
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4.2 Results  

4.2.1 Antibody mediated injury in vitro is complement dependant 

and antigen specific  

To determine the validity of our in vitro myelinating culture model as a 

potential screening strategy to detect pathogenic autoantibody responses we 

performed a series of experiments using well characterised monoclonal and 

polyclonal reagents directed against a multitude of CNS antigens some of which 

have been reported previously and implicated in the pathogenesis of EAE and MS 

[Table 4.2].  Throughout this initial study, myelinating cultures (28 DIV) were 

incubated overnight with 10µg/ml antibody in the presence of 1% fresh rat serum 

(FRS) as a source of complement.  Targets expressed at the outer lamellae of 

the myelin sheath such as myelin oligodendrocyte glycoprotein (Z2, 8-18C5) and 

sulphatide (O4) were readily accessible for antibody binding and complement 

deposition resulting in a complete loss of PLP+ myelin sheathes.  In contrast 

targeting a cytosolic myelin antigen such as myelin proteolipid protein (PLP) or 

myelin basic protein (MBP) resulted in no loss of myelin due to the inability of 

the antibody to bind to its target.   

Using live immunochemistry we can detect Nfasc155 staining on the surface of 

oligodendrocytes and their processes. Nfasc155 expressed at paranodal domains 

is not accessible to antibody binding without permeablisation.  Targeting 

Nfasc155 with a Nfasc155 specific anti-sera mediates complement dependent 

loss of all PLP+ myelin sheathes.  In the previous chapter we demonstrated that 

Nfasc186 is expressed by the axon at the node of Ranvier and axon initial 

segment.  Targeting myelinating cultures with a Nfasc186 specific anti-sera 

mediated a selective loss of myelinated axons (~10% of total axons) and 

subsequent loss of myelin sheathes.  Live immunochemistry using A12/18.1 (pan-

Nfasc specific mAb) revealed in addition to the Nfasc155 and Nfasc186 staining 

observed with the specific anti-seras, staining on the cell body of a subset of 

neurons.  Treatment of myelinating cultures with A12/18.1 resulted in a 

dramatic loss of ~40% of all axons (both myelinated and unmyelinated) and 

complete demyelination.    
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TAG-1/contactin-2 is a recently identified autoantigen highlighted for its 

potential to cause T cell mediated cortical pathology in vivo.  In our system 

TAG-1 is buried deep within the juxtaparanodal region and is completely 

inaccessible to antibody binding without fixation and permeablisation.  

Therefore it was not surprising that incubation of myelinating cultures with two 

TAG-1 specific monoclonal Abs (4D7, 3.1C6) did not mediate complement 

dependent injury to axons nor glia. The pathological effects of these antibodies 

in vitro were complement-dependent and antigen-specific, as demonstrated 

using heat inactivated sera and appropriate isotype or species specific control 

antibodies. 
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Table 4.2: Using myelinating cultures as a model of autoantibody mediated injury 

Using our in vitro myelinating cultures we are able to detect selective antigen specific effects using 
a series of monoclonal reagents.  Myelinating cultures were treated overnight in each case with 
10µg/ml antibody in the presence of 1% fresh rat sera as a source of complement.    Targeting an 
extracellular myelin antigen, such a MOG or sulphatide in the presence of complement results in 
complete and selective demyelination.  In contrast targeting an cytosolic antigen such as PLP or 
MBP unable to mediate complement dependent demyelination in vitro.  Antibody mediated effects 
were complement dependent and antigen specific.  Values shown are an average of three 
independent experiments performed in triplicate ± S.E.M.  P values obtained using the suitable 
statistical test were comparable between raw data or values standardised to the control (* p<0.05, 
**p<0.01 T-test).   
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4.2.2 MOG: the classic target for autoantibody mediated injury  

In EAE it has been demonstrated that MOG specific antibodies drive antibody 

mediated demyelination and exacerbate disease (Linington et al., 1988).  In 

paediatric MS and ADEM there is strong evidence suggesting that α-MOG 

autoantibodies have a key role in disease pathogenesis (McLaughlin et al., 2009, 

Di Pauli et al., 2011).  However in classical adult onset MS the issue remains 

controversial.     

The accessibility of MOG on the outer lamellae of the myelin sheath makes it an 

obvious candidate for antibody mediated injury.  To model anti-MOG mediated 

injury in vitro there are many MOG specific monoclonals available most of which 

recognise the extracellular Ig-like domain (Breithaupt et al., 2008).  For this 

thesis I used the monoclonal antibody Z2; a well defined anti-MOG monoclonal 

antibody generated by Piddlesden et al, (1993).   In this study the authors 

extensively characterised this antibody both in vitro and in vivo.  Z2 is mouse 

IgG2a and therefore is an excellent complement-fixing antibody.  This makes Z2 

an ideally candidate mAb to use in this initial proof of principle study [Figure 

4.1].   

Overnight treatment with 10µg/ml Z2 in the presence 1% FRS as a source of 

complement results in a selective and complete loss of PLP+ myelin sheathes and 

total loss of MOG immunoreactivity.  Injury is restricted to the oligodendrocyte 

and myelin sheathes as there is no detectable effect on axonal survival [Figure 

4.1A].  Antibody treatment in the absence of 1% rat serum as a source of 

complement mediated no detectable injury when compared to untreated 

controls and at higher magnification individual oligodendrocytes can be seen 

extending several processes and maintaining multiple myelin internodes [Figure 

4.1B]. This antibody mediated demyelination was a complement dependent 

phenomenon as no pathogenic activity was detected in cultures treated with 

either antibody alone, 1% FRS alone or after heat inactivation (56°C for 30 min) 

of the complement source.  [Figure 4.1C].   
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Figure 4.1: MOG: The classic target for autoantibody mediated injury 
A: Overnight antibody treatment the presence of fresh rat sera as a source of complement (1%) 
induced complete demyelination and loss of oligodendrocytes but leaving an intact bed of axons (i).  
High magnification images (100x) show the lysis of oligodendrocytes after treatment with an MOG 
specific monoclonal antibody in the presence of complement (PLP: green, DAPI: blue) (ii).  B: In 
contrast, treatment of myelinating cultures with 10µg/ml Z2 (MOG-specific monoclonal antibody) in 
the absence of 1% FRS does not induce axonal injury as visualised by intact SMI-31 
(phosphorylated neurofilament) staining (red) or demyelination visualised with PLP (green) (10x 
magnification) (i).  High magnification (63X) images show oligodendrocytes are unaffected after 
overnight treatment with Z2 in the absence of a source of complement (ii).   C: Pathology observed 
was both antibody mediated and complement dependant further confirmed by various control 
conditions such as heat inactivation of complement and addition of normal rat sera in the absence 
of antibody.  Values shown are an average of three independent experiments performed in 
triplicate ± S.E.M    (* p<0.05, **p<0.01; T-test).   
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4.2.2.1 Time course of complement dependent demyelination mediated by 

MOG specific antibodies 

To visualise MAC pore formation it was not possible to use Z2 (both Z2 and α-

MAC antibody are mIgG2a).  Therefore for this experiment I used 8-18C5, 

another α-MOG monoclonal that is of the IgG1 isotype (Linington et al., 1988).  

Most importantly 8-18C5 is capable of fixing complement and mediating 

demyelination in our myelinating culture system (described above). 

Two hours after addition of 10µg/ml 8-18C5 and 1% FRS, MAC pore formation can 

be seen on the surface of PLP+ oligodendrocytes and myelin sheathes [Figure 

4.2A].  At this time point oligodendrocytes and myelin sheathes remain intact.  

However MAC pore formation on the oligodendrocyte/myelin surface is 

accompanied by a disruption in MOG distribution on the outer surface of the 

myelin sheath which can be detected as early as 2 hours after antibody addition 

[Figure 4.2B]. 

To plot the time course of α-MOG antibody mediated injury myelinating cultures 

were treated with 10µg/ml Z2 with 1% FRS.  Cultures were fixed at key intervals 

and stained for PLP, SMI-31 and MOG.   

Analysis of PLP staining demonstrates that despite injury to the outer surface, 

the myelin sheath remains stable and attached to the axon until 3.5 hours after 

addition.  The first signs of PLP loss are detected after 3 hours and 

demyelination is complete within 4 hours.  Demyelination does not have a 

detrimental effect on axonal survival as detectable by measuring SMI-31 

immunoreactivity [Figure 4.3A].  Complete destruction of compact myelin is 

preceded by injury to the outer surface of the myelin sheath.  To monitor the 

fate of bound antibody at the myelin surface; cultures were washed, fixed (4% 

PFA) and incubated with the appropriate fluorochrome conjugated secondary 

antibody.  Within 30 minutes of addition we can detect Z2 bound to the surface 

of intact myelin sheathes and oligodendrocytes.  Within one hour of addition we 

can detect a loss of Z2 immunochemistry (~10%) and as injury progresses the 

amount of detectable Z2 immunoreactivity sharply declines.  After 3 hours Z2 

binding can be no longer detected on oligodendrocytes, myelin or myelin debris.  

This loss of Z2 bound at the myelin surface precedes a loss of MOG+ myelin 
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sheathes detected using 8-18C5.  Loss of all MOG reactivity (8-18C5 and Z2) was 

observed after 4 hours [Figure 4.3B].  In this series of experiments a rabbit pAb 

against neurofilament was used to label axons as 8-18C5 and SMI-31 are both 

mIgG1.   

 

 

 

 

 

 

 

 

 

 

Figure 4.2: MOG specific antibody mediated complement dependent myelin injury occurs 
within to hours via MAC deposition on the surface of oligodendrocytes and myelin 
A: Myelinating cultures were treated with 10µg/ml 8-18C5 in the presence of complement.  Two 
hours after antibody addition MAC (poly-C9) (green) (i) can be detected on the surface of PLP

+
 

oligodendrocytes and myelin (red) (ii-iii).  B: Treatment of myelinating cultures with 10µg/ml 8-
18C5 in the absence of complement does not induce demyelination.  Three hours after antibody 
addition; high magnification images (63X) of myelin show intact sheathes expressing both cytosolic 
PLP (red) (i) and MOG (Z2) on the outer myelin lamellae (green) (ii) (iii; merged image).    In 
contrast three hours after treatment with 10µg/ml 8-18C5 with 1% FRS as a source of complement 
shows that although the myelin appears intact with respect to PLP staining (red) (iv) there is major 
disruption of MOG localisation at the myelin surface (green) and the oligodendrocyte cell body (v) 
(vi; merged image).      
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Figure 4.3: Time course of anti-MOG antibody mediated complement dependent injury.  
A:  Demyelination occurs rapidly after antibody addition.  Analysis of PLP staining reveals that 
myelin sheathes remain relatively stable and attached to the axon until after ~4 hours in vitro after 
which the myelin is completely degraded (line).  Demyelination does not have a detrimental effect 
on axonal survival as detected by SMI-31 immunoreactivity (bars).   B: Complete destruction of 
PLP

+
 myelin sheathes is preceded by a disruption of MOG staining at the myelin surface.  

Significant loss of MOG
+
 immunoreactivity can be detected as early as 2 hours after antibody 

addition as detected by using 8-18C5 mAb.  Loss of bound Z2 from the myelin surface is 
detectable after one hour after antibody addition.   Values shown are an average of three 
independent experiments performed in triplicate ± S.E.M.   
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4.2.2.2 Fate of myelin debris 

After complement mediated demyelination by the α-MOG response, PLP+ myelin 

debris was found to be internalised by CD11b/c expressing microglia 4.5 hours 

after addition.  This was not seen in untreated cultures or in cultures treated 

with and isotype control antibody [Figure 4.4].   

There reports suggesting that antibody mediated injury may occur by ADCC, 

where antibody binding to the target leads to destruction by immune cells.  

However at no point during antibody treatment and subsequent injury; were 

microglia observed making direct contact with the damaged myelin sheath.  

Suggesting that microglia do not have an active role in driving demyelination in 

vitro but rather serve to clear myelin debris and phagocytose opsonised 

material. 

 

 

 

 

 

Figure 4.4: Uptake of myelin debris by microglia 
After α-MOG mediated demyelination myelin debris is internalised by resident microglial population 
(A).  This was not observed in non-demyelinated cultures (B) (PLP; green, CD11b/c; red, DAPI; 
blue) (63X magnification).   

 

 

 

 

 

PLP, CD11b/c, DAPI (nuclei)PLP, CD11b/c, DAPI (nuclei)
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4.2.2.3 Summary of MOG specific antibody mediated complement 

dependent myelin injury   

In summary α-MOG mediated complement dependent injury occurs rapidly; the 

first signs of complement of activation and myelin disruption are detectable one 

hour after addition.  Substantial MAC deposition on the myelin surface can be 

detected at approximately two hours after antibody addition, leading to a 

reduction in MOG expression at the myelin surface.  Despite damage to outer 

lamellae the myelin sheathes (PLP+) remain stable until 3.5 hours where the 

myelin rapidly degrades and demyelination is complete within 4 hours.  Residual 

PLP reactivity is associated with myelin debris, which is internalised by microglia 

[Figure 4.5].     

 

 

 

 

 

 

  

 

Figure 4.5: Summary of the time course of anti-MOG antibody mediated injury.   
MAC formation can be detected one hour after antibody addition reaching a peak at approximately 
2 hours after addition.  At this point there is a significant loss of MOG immunoreactivity (IR) at the 
surface of the myelin sheath.  Destruction of compact myelin occurs much later (3 hours after 
addition).  From three hours after addition internalised PLP

+ 
myelin debris can be detected in 

microglia.   
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4.2.2.4 Complement mediated demyelination by a MOG specific antibody 

has a limited effect on oligodendrocyte progenitor cells 

To investigate the long term consequences of Z2 mediated demyelination I 

determined changes in OPC populations post treatment.  Immediately after 

demyelination cultures were stained for NG2, a marker for OPCs and O4 for late 

OPC pre-oligodendrocytes.  In cultures treated with an isotype control there is a 

population of NG2 expressing cells and a mixed population of O4+ cells including 

OPCs, pre-oligodendrocytes and mature oligodendrocytes with their associated 

myelin sheathes [Figure 4.6A].  After Z2 mediated demyelination there is a 

complete loss of O4+ myelin sheathes accompanied by a loss of mature 

oligodendrocytes expressing both sulphatide and MOG [Figure 4.6B].  

Quantification of cell numbers revealed the number of NG2+ OPCs is unchanged 

after demyelination; there is a small reduction of O4+ cells which can be 

attributed to the loss of O4+/MOG+ mature oligodendrocytes [Figure 4.6C].   

To determine whether these remaining OPCs still retained their ability to 

differentiate and myelinate; cultures were demyelinated using Z2 in the 

presence of complement and after demyelination cells were washed extensively 

and placed back into culture with fresh media.  After 5 days in culture there was 

a considerable amount of myelin formed in the non-demyelinated cultures 

[Figure 4.6D].  In demyelinated cultures there is a partial reconstitution of the 

mature PLP+ oligodendrocyte pool and some myelination has taken place [Figure 

4.6E].  Analysis of immunocytochemical data reveals that after 5 days in culture 

the level of myelination is almost the level it was before demyelination [Figure 

4.6F].  This demonstrates that OPCs are spared after demyelination retain their 

functionality.  It also supports the previous observation that demyelination has 

no effect on axonal integrity as many axons remain permissible to myelination.    
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Figure 4.6:  Complement mediated demyelination by anti-MOG antibody has a limited effect 
on oligodendrocyte progenitors 
A:  At 28 DIV there is a residual population of NG2

+ 
and O4

+ 
OPCs.  It must be noted that mature 

oligodendrocytes and myelin are also labelled by the O4 antibody (20X magnification).  B:  At 28 
DIV cultures are demyelinated using 10µg/ml Z2 in the presence of complement resulting in a 
complete loss of O4

+ 
myelin sheathes and a loss of mature oligodendrocytes expressing both MOG 

and sulphatide (NG2; green, O4; red) (20X magnification).  C: Comparison of cultures 
demyelinated using Z2 and those treated with an isotype control reveal that the numbers of NG2

+ 

OPCs are unchanged in response to demyelination there is a modest reduction in the number of 
O4

+ 
cells.  Values shown are an average of three independent experiments performed in triplicate ± 

S.E.M.  D:  At 30 DIV there was considerable myelin formed in the non-demyelinated cultures 
(SMI-31; red, MOG green) (10X magnification).  E: Five days after demyelination there was a 
reconstitution the mature oligodendrocyte population with a modest amount of axonal 
ensheathment (SMI-31; red, MOG green) (10X magnification).  F:  Analysis of myelination after 
antibody treatment demonstrates that OPCs remain functional and capable of differentiating into a 
myelinating phenotype.  This also implies that there are no major axonal changes in response to 
demyelination as the remaining axons remain permissible to myelination.  Values shown are an 
average of three independent experiments performed in triplicate ± S.E.M.   
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4.2.2.5 Myelinating cultures provide a highly sensitive screening strategy in 

which to detect pathogenic MOG specific antibody responses   

In order to test the sensitivity of our system to detect pathogenic activity at low 

antibody concentrations a dose response study was performed.  Z2 was diluted 

across a concentration range from 10µg/ml to 10ng/ml.   

To determine the binding affinity of Z2 to myelinating cultures at sub-optimum 

concentrations used for immunochemistry a titration curve was plotted. Cultures 

were stained with 10µg/ml, 1µg/ml, 100ng/ml, 50ng/ml or 10ng/ml.  Cultures 

were imaged using immunofluorescence microscopy (10X magnification); images 

were capture using the same exposure thresholds and imaging parameters 

defined using 10µg/ml cultures.  Analysis was performed using image J software 

using the same settings for each concentration (again thresholds were set using 

highest concentration).  At 10µg/ml approximately 45% of the total pixel number 

is Z2+; as the concentration is lowered the number of Z2+ pixels detected per 

field of view drops rapidly.  At concentration ranges below 100ng/ml it was not 

possible to visualise significant Z2 binding via immunocytochemistry [Figure 4.7].   

 

 

 

 

 

Figure 4.7:  Detection of Z2 binding in vitro by immunofluorescence is concentration 
dependent. 
A:  Staining of myelinating cultures (28 DIV) with 10µg/ml Z2 gives a strong staining of 
oligodendrocytes and myelin sheathes (i).  In contrast immunochemistry using 1µg/ml Z2 gives a 
much weaker staining (ii).  Black and white images were created using imageJ under the same 
exposure parameters and can be used to quantify the number of Z2

+ 
pixels per field of view (10X 

magnification).  B: Titration of Z2 over a concentration range 10µg/ml to 10ng/ml demonstrates that 
at antibody concentrations below 100ng/ml it was not possible to detect Z2 binding by 
immunofluorescence microscopy.  Values shown are an average of three independent experiments 
performed in triplicate ± S.E.M.   
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Fortunately our model is far more sensitive as it was possible to detect 

significant demyelinating activity at antibody concentrations below the 

detection threshold for immunofluorescence.  Significant demyelinating activity 

can be detected at antibody concentrations ≥50ng/ml [Figure 4.8].   

This gives our system a great advantage over other cell based assay system 

which relies solely on immunofluorescence as their mode of detection (either by 

FACS or microscopy).  In this paradigm addition of 50ng/ml Z2 would give a 

“negative” result however using our system we can still detect a pathogenic 

antibody response.   

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Myelinating cultures provide a highly sensitive screening strategy in which to 
detect pathogenic α-MOG antibody responses   
A:  Treatment of myelinating cultures with 100ng/ml Z2 in the presence of complement mediates 
complete demyelination similar as that observed with treatment with antibody concentrations 100 
fold higher (SMI-31: red, PLP: green) (i).  In contrast treatment of myelinating cultures with 50ng/ml 
Z2 in the presence of complement mediates significant demyelination with a loss of ~50% total 
myelin sheathes (SMI-31: red, PLP: green) (ii).  Lowering antibody concentration to 10ng/ml 
abolishes all demyelinating activity when compared to controls (SMI-31: red, PLP: green) (iii).  B: 
Dose response studies show that α-MOG mediated demyelination is detectable to antibody 
concentrations >50ng/ml.  Values shown are an average of three independent experiments 
performed in triplicate ± S.E.M.  C:  Axonal density was unaltered and equivalent across treatments 
when compared to controls.  Values shown are an average of three independent experiments 
performed in triplicate ± S.E.M.   
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In samples of unknown antigen specificity one way to determine antibody 

binding sites at low antibody concentrations would be to visualise MAC 

deposition on the target.  To investigate this we treated myelinating cultures 

with 100ng/ml 8-18C5 and stained for MAC formation 2 hours after antibody 

addition.  At this low concentration we can only detect a small amount of 

antibody binding by immunochemistry but treatment ultimately results in 

complete demyelination [Figure 4.9].  Unfortunately at this low concentration 

we were unable to detect MAC formation as seen with higher antibody 

concentrations.  This suggests that analysis of MAC deposition may not be a 

useful method of determining sites of antibody binding in samples with low 

antibody concentrations.   

 

 

 

Figure 4.9: Detection of MAC formation is dependent on antibody concentration  
In contrast, when myelinating cultures were treated with 100ng/ml 8-18C5 in the presence of 
complement, MAC (green) was not detected at the surface of oligodendrocytes or myelin (PLP; 
red) after 2 hours, although treatment ultimately leads to complete demyelination after 4 hours (63X 
magnification).   
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4.2.3 Nfasc: One molecule; two distinct pathologies? 

4.2.3.1 Nfasc specific antibodies can mediate complement dependent 

demyelination and axonal injury  

Recently a number of axoglial proteins have been implicated as potential MS 

autoantigens, one of which is Nfasc (Mathey et al, 2007).  In this study the 

authors used the monoclonal antibody A12/18.1, which has a high affinity for the 

extracellular domain of Nfasc186 and Nfasc155, the target moiety is shared 

between the isoforms however the exact epitope is unknown.  The authors also 

demonstrated the ability of this mAb to fix complement making it an excellent 

model Nfasc specific antibody to use in this proof of concept experiment.  To 

draw parallels between the MOG specific and Nfasc specific antibody responses 

we characterised the α-Nfasc response using a similar approach as described 

above for α-MOG responses.   

Overnight treatment of myelinating cultures with A12/18.1 in the presence 

complement mediates complete demyelination and loss of mature MOG+ 

oligodendrocytes.  Antibody treatment also mediates a loss of both myelinated 

and demyelinated axons (~40% loss of total axons) accompanied by a loss of 

PGP9.5+ neurons [Figure 4.10A].  Antibody mediated CNS injury was a 

complement dependent phenomenon as no pathogenic activity was detected in 

cultures treated with either antibody alone or after heat inactivation of the 

complement source.  Demyelination was also antigen specific as the use of an 

isotype control antibody or 1% FRS in the absence of antibody was insufficient to 

induce injury [Figure 4.10B].   
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Figure 4.10: Nfasc; an axo-glial antigen providing a potential link between antibody 
mediated demyelination and axonal injury 
A: Myelinating cultures 28 days in vitro consist of a dense network of axons, some of which are 
myelinated by oligodendrocytes (i).   Overnight treatment of myelinating cultures with 10µg/ml 
A12/18.1 a pan-Nfasc specific monoclonal in the presence of 1% FRS as a source of complement 
induces complete demyelination accompanied by a significant loss of both myelinated and 
unmyelinated axons (SMI-31; red, MOG; green) (ii).  Myelinating cultures 28 days in vitro have an 
abundant neuronal populations (PGP9.5; red), which extend axons (SMI-31; blue) (iii).  Axonal loss 
induced by A12/18.1 treatment is accompanied by a loss of neurons (PGP9.5; red, SMI-31; blue) 
(iv).  B: Pathology observed was both antibody mediated and complement dependant further 
confirmed by various control conditions such as heat inactivation of complement and addition of 
normal rat sera in the absence of antibody.  Values shown are an average of three independent 
experiments performed in triplicate ± S.E.M    (* p<0.05, **p<0.01; T-test).   
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4.2.3.2 Time course of A12/18.1 mediated complement dependent injury 

Similar to that described above for the MOG specific response; to determine 

whether demyelination mediated by α-Nfasc antibody was due to acute injury 

caused by the activation of the complement cascade it was important to 

determine the time scale in which antibody mediated complement dependent 

injury occurs.  To this end myelinating cultures were treated with 10µg/ml of 

A12/18.1 in the presence of 1% FRS as a source of complement.  Cultures were 

analysed at 30 minute intervals until 4 hours after antibody addition.   

Using A12/18.1, a pan specific monoclonal antibody recognising both Nfasc155 

and Nfasc186, induces a loss of both myelinated and unmyelinated axons 

accompanied with complete demyelination in a complement dependant manner.  

Demyelination precedes the axonal loss as there is a significant loss of myelin 

(~50%) at 3.5 hours after addition [Figure 4.11A] prior to a detectable significant 

reduction in axonal density [Figure 4.11B].  However after 4 hours both axonal 

injury and demyelination is complete.   

 

 

   

 

 

 

Figure 4.11: Time course of α-Nfasc mediated injury   
A:  Treatment of in vitro myelinating cultures with 10µg/ml A12/18.1 (a pan Nfasc specific 
monoclonal antibody) in the presence of 1% fresh rat sera induced complete loss of PLP

+
 myelin 

sheathes within 4 hours of antibody addition.  Values plotted are an average of three independent 
experiments performed in triplicate ± S.E.M.  B:  Demyelination was accompanied by a significant 
axonal loss as detected by a loss on SMI-31

+ 
immunoreactivity.  This injury occurs in a similar time 

course as demyelination as significant decreases in both axonal density and myelination are 
detectable after 3.5hrs and are complete after 4 hours.  Values shown are an average of three 
independent experiments performed in triplicate ± S.E.M.   
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4.2.3.3  Targeting Nfasc reveals isoform specific effects on axons and glia 

As treatment of myelinating cultures with an antibody recognising both Nfasc 

isoforms is capable of mediating a dual pathology effecting neurons/ axons and 

oligodendrocytes we can postulate that antibodies recognising Nfasc may be 

capable of mediating two distinct pathologies based on which isoform is 

targeted.  In order to dissect the pathology seen using the pan specific 

monoclonal into is axonal/ neuronal and glial components we used two 

polyclonal antibodies one specific for the extracellular domain of Nfasc155 and 

the other specific for Nfasc186.   

 

In our system Nfasc155 is expressed exclusively by the oligodendrocyte processes 

and at the paranodal domain.  Treatment of myelinating cultures overnight with 

a Nfasc155 specific polyclonal antibody in the presence of complement were 

completely demyelinated with a significant reduction in the number of mature 

OLG+ oligodendrocytes.  Demyelination had no detrimental effect on axonal 

integrity.  Nfasc186 immunochemistry is unchanged after demyelination with a 

Nfasc155 specific reagent when compared to controls [Figure 4.12A].  

 

Using a Nfasc186 specific polyclonal antibody expression within our system can 

be detected on the axon at the axon initial segment (AIS) and at the Node of 

Ranvier.  Targeting myelinating cultures with a Nfasc186 specific polyclonal 

antibody in the presence of complement mediates loss of only myelinated axons 

(~15%) with subsequent loss of myelin.  Antibody treatment has a minor effect 

on the number of mature MOG+ oligodendrocytes (~10%) but this was just 

statistically significant (p=0.48, T-Test).  Neuronal Nfasc immunochemistry was 

present on the majority of neurons after axonal loss and subsequent myelin loss 

using a Nfasc186 specific reagent [Figure 4.12B].   

 

In contrast immunocytochemistry using A12/18.1 also reveals that in addition to 

the staining at the node and the AIS, Nfasc 186 staining on the neuronal soma. 

Treatment with A12/18.1 mediates major injury and subsequent loss of neurons, 

axons and oligodendrocytes. This injury is associated with a total loss of Nfasc 

immunoreactivity [Figure 4.12C].   
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Figure 4.12: Targeting Nfasc reveals isoform specific effects on axons and glia.   
A:  Targeting myelinating cultures with a polyclonal antibody specific for Nfasc155; the glial isoform 
expressed at the oligodendrocyte cell surface and at the paranode.  Treatment overnight of 
myelinating cultures (28 DIV) with 10µg/ml Nfasc155 specific antibody induces selective 
demyelination and loss of oligodendrocytes with no loss of axons (SMI-31; red, MOG; green) (10X 
magnification) (i).  Nfasc186 reactivity is retained after α-Nfasc155 meditated demyelination (Nfasc; 
green, PLP; red; SMI-31; blue) (10X magnification) (ii).  B:  In contrast treatment using 10µg/ml 
Nfasc186 specific antibody mediated complement dependant loss of myelinated axons and 
subsequent myelin loss accompanied by a small decrease in the number of mature MOG

+
 

oligodendrocytes  (SMI-31; red, MOG; green) (10X magnification) (i).  Nfasc reactivity on the 
neuron is retained after treatment with Nfasc186 specific antibody (Nfasc; green, PLP; red; SMI-31; 
blue) (10X magnification) (ii).  C: Targeting both Nfasc155 and Nfasc186 simultaneously induces 
complete demyelination accompanied by a significant loss of both myelinated and unmyelinated 
axons (SMI-31; red, MOG; green) (10X magnification) (i).  This major loss of both axons and glia is 
associated with a complete loss of Nfasc (Nfasc155 and Nfasc186) immunoreactivity (Nfasc; 
green, PLP; red; SMI-31; blue) (10X magnification) (ii).  D:  Analysis of immunochemical data 
confirmed initial observations.  Values are plotted as a percentage of equivalent control cultures.  
Antibody mediated effects were complement dependent phenomenon as the use of heat 
inactivated complement completely abolishes activity.     Values shown are an average of three 
independent experiments performed in triplicate ± S.E.M (* p<0.05, **p<0.01; T-test).   
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4.2.3.4 CNS injury by anti-Nfasc155 and anti-Nfasc186 antibodies is initiated 

by MAC deposition at the site of antibody binding 

To determine where MAC is deposited after treatment with either a Nfasc155 or 

a Nfasc186 specific reagent cells were fixed and stained for MAC two hours after 

addition of 10 µg/ml α-Nfasc155 or α-Nfasc186 with 1% FRS as a source of 

complement.   

Two hours after addition of α-Nfasc155 and 1% FRS, MAC formation was visible 

on the surface of PLP+ oligodendrocytes and myelin sheathes [Figure 4.13A].  In 

cultures treated with Nfasc186 after two hours I could detect MAC deposition at 

the node of Ranvier [Figure 4.13B].  Unfortunately the isotype of the antibody 

used to visualise MAC (mouse IgG2a) is the same as A12/18.1 so could not be 

used in these experiments.  As the Nfasc186 polyclonal was a gift (Prof P. 

Brophy, University of Edinburgh) I had only a small quantity and this 

unfortunately limited the number experiments I could perform. 

 

 

 

 

 

 

 

Figure 4.13: α-Nfasc 155/α-Nfasc186 antibody mediated complement dependent CNS injury 
occurs via MAC deposition on the surface of oligodendrocytes/and at the node of Ranvier 
respectively.   
A: Myelinating cultures were treated with 10µg/ml Nfasc155 in the presence of complement.  Two 
hours after antibody addition MAC (poly-C9) (green) (i) can be detected on the surface of PLP

+
 

oligodendrocytes and myelin (red) (ii-iii).  B: Myelinating cultures were treated with 10µg/ml 
Nfasc186 in the presence of complement.  Two hours after antibody addition MAC (poly-C9) 
(green) (i) can be detected between PLP

+
 myelin internodes (red) at the node of Ranvier (ii-iii) (63X 

magnification).   
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4.2.3.5 Time course of anti-Nfasc mediated complement dependent injury 

Similar to that described above for the α-MOG response; to determine whether 

demyelination mediated by α-Nfasc antibody was due to acute injury caused by 

the activation of the complement cascade it was important to determine the 

time scale in which antibody mediated complement dependent injury occurs.  To 

this end myelinating cultures were treated with 10µg/ml of α-Nfasc155 

polyclonal antibody in the presence of 1% FRS as a source of complement.  

Cultures were analysed at 30 minute intervals until 4 hours after antibody 

addition.   

Nfasc155 mediated injury occurs rapidly with loss of PLP+ myelin sheathes 

initially detectable after 3.5 hours [Figure 4.14A].  Demyelination is complete 

within 4 hours after antibody addition.  Nfasc155 mediated demyelination is has 

no pathogenic effect on axonal survival [Figure 4.14B].   

 

 

 

 

 

 

   

Figure 4.14: Time course of α-Nfasc 155 mediated demyelination  
A:  Targeting myelinating cultures with 10µg/ml of an α-Nfasc155 polyclonal antibody induces 
complement mediated demyelination.  Loss of PLP

+ 
myelin sheathes is initially detectable 3.5 hours 

after antibody addition and demyelination is complete within 4 hours.  Values plotted are an 
average of three independent experiments performed in triplicate ± S.E.M.  B:  Nfasc155 mediated 
demyelination has no effect on axon integrity as detectable by changes SMI-31 immunoreactivity.  
Axonal density remains consistent throughout the treatment period.  Values plotted are an average 
of three independent experiments performed in triplicate ± S.E.M.  
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4.2.3.6 Nfasc specific antibody responses are detectable at ng/ml antibody 

concentrations  

To determine whether our myelination culture system would be a feasible 

screening strategy for detecting pathogenic antibody responses we set up a dose 

response to determine the sensitivity of the system.  Nfasc specific antibodies 

were diluted in series from 10µg/ml to 10ng/ml and added to myelinating 

cultures in the presence of complement.   

Using an α-Nfasc155 specific polyclonal antibody we can detect pathogenic 

antibody responses at antibody concentrations ≥100ng/ml.  A small amount of 

demyelination can be detected in cultures treated with 50ng/ml however this 

was just statistically significant (p=0.48, T-test) [Figure 4.15A].  Axonal density 

as measured by SMI-31 immunoreactivity was unaltered and equivalent across 

treatments when compared to controls [Figure 4.15B].  

Using A12/18.1, a pan-specific monoclonal, we can detect demyelinating 

antibody responses down to antibody concentrations ≥50ng/ml [Figure 4.15C].  

However the axo-pathic component could only be detected at antibody 

concentrations ≥100ng/ml [Figure 4.15D].    

These results are similar as that described for the α-MOG response i.e. at 

concentration ranges below 1µg/ml it is not possible to visualise antibody 

binding via immunocytochemistry however pathogenic activity can be detected 

at much lower antibody concentrations.   
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Figure 4.15:  Myelinating cultures provide a highly sensitive screening strategy in which to 
detect pathogenic α-Nfasc antibody responses   
A: Dose response studies show that α-Nfasc155 mediated demyelination is detectable to antibody 
concentrations >50ng/ml.  Complete demyelination was observed at antibody concentrations 
>100ng/ml.  Values shown are an average of three independent experiments performed in triplicate 
± S.E.M.  B:  Axonal density was unaltered and equivalent across treatments when compared to 
controls.  Values shown are an average of three independent experiments performed in triplicate ± 
S.E.M.  C:  Dose response studies show that A12/18.1 mediated demyelination is detectable to 
antibody concentrations >50ng/ml. Values shown are an average of three independent 
experiments performed in triplicate ± S.E.M.  D:  A12/18.1 mediated complement dependent 
axonal injury is detectable at antibody concentrations >100ng/ml.  Axonal loss detected at cultures 
treated with 50ng/ml A12/18.1 and below were not statistically significant (p>0.05, T-test).  Values 
shown are an average of three independent experiments performed in triplicate ± S.E.M.   

 

 

0

20

40

60

80

100

10100100010000

Antibody concentration (ng/ml)

M
y
e
li
n

 l
o

s
s
 (

%
 c

o
n

tr
o

l)

0

20

40

60

80

100

10100100010000

Antibody concentration (ng/ml)

A
x

o
n

a
l 
S

u
rv

iv
a
l 
(%

 c
o

n
tr

o
l)

0

20

40

60

80

100

10100100010000

Antibody concentration (ng/ml)

A
x

o
n

a
l 
S

u
rv

iv
a
l 
(%

 c
o

n
tr

o
l)

0

20

40

60

80

100

10100100010000

Antibody concentration (ng/ml)

M
y
e
li

n
 l
o

s
s
 (

%
 c

o
n

tr
o

l)

AA BB

CC DD

0

20

40

60

80

100

10100100010000

Antibody concentration (ng/ml)

M
y
e
li
n

 l
o

s
s
 (

%
 c

o
n

tr
o

l)

0

20

40

60

80

100

10100100010000

Antibody concentration (ng/ml)

A
x

o
n

a
l 
S

u
rv

iv
a
l 
(%

 c
o

n
tr

o
l)

0

20

40

60

80

100

10100100010000

Antibody concentration (ng/ml)

A
x

o
n

a
l 
S

u
rv

iv
a
l 
(%

 c
o

n
tr

o
l)

0

20

40

60

80

100

10100100010000

Antibody concentration (ng/ml)

M
y
e
li

n
 l
o

s
s
 (

%
 c

o
n

tr
o

l)

AA BB

CC DD



108 

4.2.4 Complement mediated antibody driven CNS injury occurs 

by Fc activation of the classical pathway 

To determine whether antibody mediated complement dependent CNS injury is 

through activation of the classical complement cascade via the Fc region I 

generated Fab fragments.  Fab fragments were produced by papain digestion of 

whole IgG (Z2 and A12/18.1) followed by protein A chromatography to separate 

Fabs from Fc domain.  Complete digestion and Fab purity was confirmed by SDS-

PAGE [Figure 4.16A].  Fabs purified from Z2 still retained there binding capacity 

as detected by immunocytochemical staining on both myelin and 

oligodendrocytes [Figure 4.16B].  Similarly Fab purified from A12/18.1 retained 

binding as seen with the whole antibody with binding at the node of Ranvier, 

neuronal soma and oligodendrocyte [Figure 4.16C].  No binding was detected in 

any of the purified Fc region preparations.   

When myelinating cultures are treated with 3.3µg/ml Z2 Fab fragments in the 

presence of complement no demyelination is detected.  Similarly treatment with 

purified Z2 Fc region had no effect on myelin or mature oligodendrocytes [Figure 

4.16D].            

In the case of A12/18.1, which can mediate complement dependent axonal 

injury and demyelination, treatment of myelinating cultures with 3.3µg/ml 

A12/18.1 Fab does not induce axonal loss or demyelination.  Similarly treatment 

with purified A12/18.1 Fc domain mediated no detectable to axons, neurons or 

glia [Figure 4.16E]. 
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Figure 4.16: Complement mediated antibody driven CNS injury is Fc dependent 
A: SDS-PAGE analysis of IgG after papain digestion and protein A chromatography showing clear 
separation of Fab fragments from the Fc region.  Lanes: 1: Z2 protein A column eluate containing 
Fc regions and undigested IgG, 2: Z2 protein A flow through containing Fab fragments and Ig light 
chain, 3: A12/18.1 protein A column eluate containing Fc regions and undigested IgG, 4: A12/18.1 
protein A flow through containing Fab fragments and light chain.  B: Purified Z2 Fab fragments 
retain their binding activity.  Z2 Fab fragments bind to MOG on the surface of the myelin sheath 
and to oligodendrocytes (inset) (SMI-31; red, Z2 Fab; green) (10X magnification). C:  Purified 
A12/18.1 Fab fragments retain their binding activity.  A12/18.1 Fab fragments bind to myelinating 
cultures on neurons, oligodendrocyte and by the axon at the AIS and the node of Ranvier (SMI-31; 
blue, PLP; red, A12/18.1 Fab; green) (10X magnification).  D:  Overnight treatment of myelinating 
cultures with 10µg/ml Z2 (whole IgG) in the presence of 1% FRS as a source of complement 
mediates complete demyelination (black bar).  However addition of an equivalent concentration of 
either purified Z2 Fab fragments (grey bar) or Fc domain (white bar) in the presence of 1% FRS as 
a source of complement was insufficient to mediate demyelination.  Values shown are an average 
of three independent experiments performed in triplicate ± S.E.M.  E:  Overnight treatment of 
myelinating cultures with 10µg/ml A12/18.1 (whole IgG) in the presence of 1% FRS as a source of 
complement mediates complete demyelination and axonal injury (black bars).  However addition of 
an equivalent concentration of either purified Z2 Fab fragments (grey bars) or Fc domain white 
bars) in the presence of 1% FRS as a source of complement was insufficient to mediate 
demyelination or axonal injury.  Values shown are an average of three independent experiments 
performed in triplicate ± S.E.M.   
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4.2.5 Adsorption of IgG using purified compact myelin diminishes 

its pathogenic potential 

Using the myelinating culture model we have identified a number of pathogenic 

antibody responses that can induce complement mediated demyelination which 

in some cases may be accompanied by significant axonal injury.  To determine 

whether this effect is truly antigen specific I tried to remove the pathogenic 

antibody component using purified rat myelin.  Whilst one alternative to this 

approach would be to use recombinant antigens, in the case of Nfasc155 this 

would be extremely expensive and Nfasc186 is commercially unavailable.  A 

recombinant antigen may lack the correct three dimensional structure or post-

translational modifications.   

Incubation with 1µg/ml IgG (A12/18.1, α-Nfasc155, Z2) with 2mg/ml total myelin 

protein greatly reduced binding to rat myelin as detectable by ELISA when 

compared to antibody binding prior to adsorption [Figure 4.17A].  This 

diminished binding was accompanied in a reduction in demyelinating activity 

when 1µg/ml residual unadsorbed antibody was added to myelinating cultures in 

the presence of complement.  In the case of A12/18.1 where demyelination is 

accompanied by a significant axonal loss, this axopathic activity was also 

significantly reduced [Figure 4.17B].      

This technique is extremely useful when characterising patient samples with 

unknown specificities.  Myelin adsorption may provide confirmation of antibody 

specificity especially in cases where antibody binding may not be visible using 

fluorescence microscopy.  Our model also allows us to determine the effect of 

myelin adsorption on the pathogenic activity and therefore we can determine 

whether antibodies generated against myelin are pathogenic.   

 

 

 

 



111 

 

 

 

 

 

 

Figure 4.17:  Adsorption of IgG using purified compact myelin diminishes its pathogenic 
potential 
A: :  Adsorption of 1µg/ml IgG (Z2, α-Nfasc155, A12/18.1) with 2mg/ml rat myelin resulted in 
reduced binding to rat myelin as detected by ELISA.  Data plotted as mean OD (± S.E.M).  All 
reductions in IgG binding were statically significant (p<0.05, T-test).  B: Myelin adsorption of IgG 
resulted in a marked reduction in the pathogenic activity when compared to samples prior to 
adsorption.  Myelin adsorption lowered the amount of complement dependent demyelination 
detected in myelinating cultures in comparison to unabsorbed IgG.  In the one case of A12/18.1 
where axonal injury was also detected this was also significantly reduced after myelin adsorption.  
Values shown are an average of three independent experiments performed in triplicate ± S.E.M.   
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4.3 Discussion  

In this chapter it has been demonstrated that in vitro myelinating cultures can 

be used as a model of antibody mediated injury, which is: 

• Antigen specific and dependent on antigen accessibility in vitro. 

• Complement dependent through activation by Fc region and subsequent 

MAC deposition at sites of antibody binding. 

This model of antibody mediated injury is extremely effective.  The results seen 

are usually “all or nothing” i.e. antibody treatment mediates either complete 

demyelination or none.  This makes the data easy to interpret but provides no 

information on the variation or reproducibility of detecting antibody mediated 

injury using this model.  However using data obtained from the Z2 dose response 

curve, addition of 100ng/ml mediates an almost complete loss of myelin there is 

very little inter and intra variation (coefficient of variance= 6.6%).  In contrast 

using 50ng/ml Z2, which mediates ~50% demyelination the variability is much 

greater (32.2%).  Antibody mediated axonal injury is much less variable.  Using 

the A12/18.1 dose response data, where antibody treatment mediates 

significant axonal injury the mean coefficient of variance from three 

independent experiments is much lower (5.1% (100ng/ml); 3.1 % (50ng/ml)) 

[Table 4.3].  From this we can conclude that antibody mediated injury in this 

system is fairly reproducible with respect to both inter and intra variability and 

therefore provides a relatively robust assay for antibody screening.   
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Table 4.3:  Variability of antibody mediated injury.   
Values were taken from a series of experiments performed three times.  Values shown are an 
average from three coverslips ± standard deviation.  Coefficient of variance was calculated as 
standard deviation/ mean and expressed as a percentage.   

 

 

 

 

 

 

 

A major advantage of this system over other antibody detection strategies is that 

it is extremely sensitive and can detect pathogenic antibody activity at antibody 

concentration in the ng range.  Pathogenic activity can be detected using this 

system at antibody levels much lower than the detection thresholds of 

immunofluorescence.  For our model to be used as a valid screening strategy to 

detect pathogenic autoantibody responses in clinical samples it must be sensitive 

enough to detect low antibody titres.  In has been reported in the literature that 

patients with myasthenia gravis have α-AChR antibody titres ranging from 10-

20nM (Lindstrom et al., 1976).  In our model we can detect pathogenic antibody 

responses down to picomolar levels; this is extremely promising support for the 

viability of our model. 

Antibody mediated injury is highly specific and injury is confined to only cells 

expressing the antigen.  For example treatment using Z2 or α-Nfasc155 induces 

complement mediated demyelination and a significant loss of mature 

oligodendrocytes with a notable sparing of axons.  However neurofilament 

staining is not the most sensitive technique to monitor subtle changes in axonal 

physiology.  Minor axonal changes in response to antibody treatment may also be 
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transient.  Further investigation is required to determine the effect of antibody 

mediated demyelination on the axon.     

It has been documented that rat serum can activate complement cascade and 

can mediate lysis of oligodendrocytes in culture in the absence of antibody 

(Scolding et al., 1989; Wren and Noble, 1989).  Rat oligodendrocytes lack 

expression of CD59, a complement inhibitor that blocks MAC formation (Wing et 

al., 1992; Piddlesden and Morgan, 1993).  However in our in vitro system 

addition of fresh rat serum in the absence of antibody has no pathogenic effect 

on oligodendrocytes or OPCs.  One explanation is that within the myelinating 

cultures there are sufficient levels of endogenous complement inhibitors 

preventing this autolytic effect.  Astrocytes and neurons are known sources of 

complement inhibitors (Rogers et al., 1996; Gasque et al., 2000) and are present 

in myelinating cultures in abundance.  Co-culturing oligodendrocytes in close 

proximity to large numbers of neurons and astrocytes is sufficient to protect 

them from auto-lysis by complement.    

It has been reported that in the presence of complement activated microglia can 

mediate oligodendrocyte cell death and uptake of debris, which is antibody 

independent (Zajicek et al., 1992).  In cultures treated with either rat serum 

alone or in the presence of an isotype/CNS irrelevant antibody there was no 

detectable injury to oligodendrocytes.  This could be due to the activation state 

of microglia within the cultures.  The majority of microglia in untreated cultures 

are deemed “inactive” as they lack ED1/CD68 staining (Graeber et al., 1990).  

The pathology observed using our model is antibody driven and complement 

mediated phenomenon.  Therefore one can postulate that in the presence of low 

concentrations of fresh rat serum there is a must be a delicate balance between 

complement activation and inhibition and addition of a CNS specific antibody is 

sufficient to overcome this endogenous complement inhibition.  

Nfasc186 localisation within our myelinating cultures is also inconsistent with 

what is reported in vivo.  Using A12/18.1, a pan-Nfasc specific monoclonal 

antibody, which binds to the extracellular domain of Nfasc155 and Nfasc186, 

reactivity is detected on the axon at the node of Ranvier and the AIS.  In 

addition the antibody also labels Nfasc expressed on the surface of a subset of 
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neurons in vitro.  This neuronal staining was not detected using a Nfasc186 

specific polyclonal antibody where Nfasc186 immunoreactivity was seen only at 

the AIS and the node of Ranvier.  Titration of these antibodies suggests that this 

neuronal Nfasc reactivity is not a staining artefact.    As myelinating cultures are 

a developmental system it is possible that this neuronal Nfasc expression is due 

to the recognition of an alternative Nfasc isoform which is not expressed in the 

adult CNS.  There are reports in the literature to support this and suggest that 

during development CNS neurons express an alternative intermediate isoform of 

Nfasc within the cell body prior to myelination (Burkarth et al., 2007).  This was 

identified as Nfasc166, a lower molecular weight isoform that lacks the fifth 

fibronectin-like region and precedes neuronal Nfasc186 expression (Pruss et al., 

2006).  Nfasc186 is not expressed by adult neurons apart from at the AIS and 

node of Ranvier however Nfasc186 is readily available for antibody binding at 

these sites (Mathey et al., 2007).   

There is also a discrepancy between Nfasc155 expression in vitro and reported 

expression in vivo.  Nfasc155 in our system is expressed on the surface of the 

oligodendrocyte at the cell body and along the cell process with staining at the 

paranodal domain.  In vivo neurofascin expression by oligodendrocytes is 

transient and once axonal contact is made gene expression falls rapidly 

(Collinson et al., 1998).  Once myelination is complete expression Nfasc155 is 

sequestered to the paranodal loops (Tait et al., 2000; Charles et al., 2002) and is 

inaccessible to antibody binding.  Lack of binding of our Nfasc155 specific 

antibody to fully myelinated in vivo structures was demonstrated using the OSC 

system described in the previous chapter [Figure 4.18].  However that is not to 

say that Nfasc155 specific antibody responses are clinically irrelevant as 

Nfasc155 may be accessible in damaged myelin and therefore may exacerbate 

demyelination.  Nfasc155 may also become accessible to antibody binding during 

remyelination and therefore could disrupt lesion repair.   

Despite these caveats; in vitro myelinating cultures provide an unbiased, 

extremely sensitive and statically reproducible model of antibody mediated CNS 

injury.  This model can be used as a tool to detect pathogenic autoantibody 

responses in patient samples of undefined specificity.  This will be demonstrated 

in the next chapter.   
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Figure 4.18: Nfasc155 is sequestered to the paranode in intact myelinated tracts in vivo and 
is inaccessible for antibody binding    
Nfasc155 (red) is not accessible to antibody binding in intact myelinated fibres in vivo (PLP; green, 
neurofilament; blue) (20X magnification).  OSCs were created and images taken whilst visiting the 
lab of Prof. N Goebels in collaboration with Dr. M Harrer (Zurich).   
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5 Identification of pathogenic antibody responses 

in Multiple Sclerosis  

5.1 Introduction 

Previously we demonstrated that the myelinating cultures can provide an in 

vitro system which reproduces the molecular and structural organisation of the 

CNS in vivo and have comprehensively demonstrated that this model provides a 

bioassay which can be used to quantify complement dependent antibody 

mediated injury.  The previous chapters were necessary prerequisites building 

up to the main goal of this thesis, to determine whether or not MS is associated 

with a pathogenic autoantibody response.   

We are certainly not the first to attempt to address this question using a tissue 

culture based approach.  Studies describing the in vitro pathogenic properties of 

MS sera date back to the 1960s (Bornstein and Appel, 1965).  These early studies 

indicated that a significant number of MS cases were associated with a 

serological factor capable of mediating demyelination in vitro (reviewed in Seil, 

1977 and Caspary, 1977).  However whether this factor was an anti-myelin 

autoantibody response was controversial.  The use of in vitro myelinating 

cultures to model demyelination was largely abandoned from the late-1980s.  

Our understanding of EAE pathogenesis lead to the long held assumption that MS 

was likely to be purely a T cell mediated disease, however the pathogenesis of 

MS has been revealed to be far more complex.  Circumstantial evidence has 

steadily accumulated implicating a role for autoantibodies.  Within the past 5 

years there have been reports supporting a strong association between α-MOG 

antibodies and paediatric MS/ADEM (McLaughlin et al., 2009, Di Pauli et al., 

2010).  However despite immense effort, current opinion as to whether adult 

onset MS is associated pathogenic autoantibody responses remains divided.  This 

scepticism mainly stems from the lack of formal evidence that autoantibody 

associated with adult-onset MS actually pathogenic.   
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The main aim of this chapter is to address this question and use the myelinating 

cultures as a bioassay to:  

• Determine whether the total IgG fraction purified from adult MS patient 

serum can mediate complement dependent demyelination and/or axonal injury 

in vitro.   

• Investigate the potential specificity of any pathogenic responses with 

particular focus on Nfasc.    
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5.2 Results 

5.2.1 Detection of pathogenic antibody responses from patients 

with MS  

To determine whether the “in vitro demyelinating factor” previously reported in 

MS sera was due to an anti-myelin autoantibody response, total IgG was purified 

from MS patients (n=20), patients with other neurological diseases (OND; n=10) 

and healthy control donors (HC; n=13) by protein G chromatography.   

 

5.2.1.1 MS patient derived IgG mediates complement dependent 

demyelination and axonal injury 

Treating myelinating cultures with total IgG preparations from individual donors 

revealed a striking heterogeneity in their ability to mediate axonal loss and/or 

demyelination [Figure 5.1].   

 

At 100 µg/ml IgG preparations from 50% of MS cases mediated complete 

demyelination reproducing the effects observed by targeting an 

oligodendrocyte/myelin specific antigen such as MOG or Nfasc155 [Figure 5.1A 

(ii)].  It must be noted that in two cases (MS5 and MS14) demyelination was also 

accompanied by varying degrees of axonal loss ranging from 22% to 34% of the 

total number of axons.  This pathology is similar to that observed after 

treatment with a pan-Nfasc specific monoclonal (A12/18.1) [Figure 5.1A (iii)].  

Within the MS group there is a trend suggesting that the pathogenic antibody 

responses observed are associated more with MS patients suffering for non-

steroid responsive relapses requiring plasmapheresis in comparison to patients 

with more the classical form of RRMS or PPMS (P<0.05, Fisher’s exact test) 

[Figure 5.1B].  These pathogenic effects were disease specific as no pathogenic 

effects were detected within the OND group or from samples taken from healthy 

controls [Figure 5.1C].  However the remaining 10 MS samples tested did not 

mediate a pathogenic effect or either axons or glia, however it is possible that 

not all antibodies are pathogenic as pathogenicity in this assay is dictated by 

several factors such as antigen localisation or the relative ability of the antibody 

to fix rat complement.  To address the possibility that the concentration of 
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pathogenic antibodies was below the bioassays detection threshold in some 

donors, the assay was repeated at an IgG concentration of 1 mg/ml. This failed 

to identify any additional donors with a pathogenic (axopathic/demyelinating) 

serum IgG response [Table 5.1]. 

 

In all cases control experiments demonstrated that these effects were an 

antibody-mediated complement-dependent phenomenon. Heat activation of the 

sera used as a source of complement abolished all antibody mediated effects 

and no loss of myelin or axons was observed after heat inactivation of the serum 

used as the source of complement. 
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Figure 5.1:  MS patient derived IgG mediates complement dependent demyelination and 
axonal injury at 100µg/ml.   
A:  A representative image of a myelinating culture after an overnight treatment with 100µg/ml IgG 
purified from patient MS6 (i), MS1 (ii) or MS5 (iii); resulting in a striking heterogeneity between 
patients [SMI-31: red, PLP: green, 10X magnification].   B: Summary of pathogenic potential of the 
IgG fraction from the 20 MS patient samples, 10 OND samples and 13 healthy controls.  Half of the 
MS samples tested mediated complete demyelination.  In two patients this was also accompanied 
by a loss of axons ranging from 22% to a loss of 34% of the total number of axons. No significant 
axopathic or demyelinating activity was detected in OND or healthy controls.  Antibody mediated 
effects were complement dependent phenomenon as heat inactivation of the FRS abolished all 
pathogenic activity.  Values shown are from one representative data set performed three times in 
triplicate ± standard deviation (*p<0.05, **p<0.01; T-test).   

A

B

 

  + active complement - inactivated complement 

Patient ID Diagnosis % Axonal loss % Myelin 
loss 

% Axonal 
loss 

% Myelin loss 

MS1 Marburg MS 2 ± 2.9 95 ± 3.5** 0 ± 2.4  5.2 ± 5.5 
MS2 RRMS 3 ± 2.6 96 ± 4.0** 2 ± 3.4 4.9 ± 5.0 
MS3 RRMS 4 ± 3.0 97 ± 2.2** 2 ± 1.9 3.2 ± 2.7 
MS4 RRMS 2 ± 2.1 98 ± 1.3** 4 ± 2.9 0 ± 3.3 
MS5 SPMS 34 ± 5.7** 92 ± 2.2** 1 ± 3.5 2 ± 2.4 
MS6 RRMS 2 ± 3.0 0 ± 0.5 0 ± 3.7 0 ± 1.0 
MS7 RRMS 3 ± 3.7 94 ± 2.0** 3 ± 3.7 4.9 ± 2.4 
MS8 RRMS 0 ± 2.2 0 ± 4.6 0 ± 2.4 0 ± 2.6 
MS9 RRMS 0 ± 2.0 0 ± 3.7 0 ± 2.8 0 ± 1.9 
MS10 RRMS 0 ± 2.3 0 ± 4.0 0 ± 2.9 0 ± 4.0 
MS11 RRMS 0 ± 2.1 95 ± 2.0** 0 ± 3.4 0 ± 2.0 
MS12 RRMS 0 ± 2.5 93 ± 1.7** 0 ± 4.8 0 ± 1.7 
MS13 RRMS 3 ± 2.4 1.5 ± 4.1 3 ± 2.6 0 ± 1.1 
MS14 RRMS 22 ± 3.5** 96 ± 3.2** 2 ± 3.5 0 ± 3.2 
MS15 RRMS 0 ± 2.1 3 ± 4.2 1 ± 2.3 3.4 ± 2.1 
MS16 RRMS 0 ± 2.2 94 ± 2.9** 1.6 ± 1.2 4.0 ± 1.9 
MS17 PPMS 0 ± 2.9 1.6 ± 4.0 1.4 ± 2.8 3.6 ± 1.4 
MS18 PPMS 0 ± 2.3 0 ± 4.5 2.5 ± 2.7 0 ± 4.5 
MS19 PPMS 0 ± 2.0 1.2 ± 4.3 4 ± 2.0 1.4 ± 4.5 
MS20 PPMS 1 ± 0.6 4.6  ± 4.0 1.9 ± 2.6 3.2  ± 4.6 

OND1 SPN 1.5 ± 2.5 2.4 ± 1.5 0 ± 3.5 0 ± 3.6 
OND2 GBS 0.8 ± 1.4 0 ± 3.4 0 ± 3.3 0 ± 4.2 
OND3 GBS 0 ± 4.1 3.3 ± 1.2 0 ± 3.2 0 ± 2.2 
OND4 GBS 1.5 ± 1.6 0 ± 2.2 0 ± 2.5 0 ± 2.5 
OND5 CIDP 2.5 ± 1.5 0 ± 6.0 0 ± 2.8 0 ± 2.6 
OND6 CIDP 0 ± 2.4 0 ± 1.3 0 ± 3.9 0 ± 2.9 
OND7 CIDP 0 ± 3.0 0 ± 2.4 0 ± 2.0 0 ± 2.8 
OND8 ISAN 1.1 ± 2.3 0 ± 4.0 0 ± 3.3 0 ± 4.4 
OND9 MG 1.6 ± 3.7 2 ± 5.2 0 ± 4.8 0 ± 2.6 
OND10 CIDP 0 ± 5.1 0 ± 3.2 0 ± 2.2 0 ± 3.8 

HC1 -- 0.2 ± 2.5 1.3 ± 6.7 2.2 ± 2.5 2.3 ± 5.4 
HC2 -- 1.2 ± 2.4 1.8 ± 5.2 3.4 ± 2.4 2.3 ± 3.1 
HC3 -- 0.5 ± 2.6 1.1 ± 5.0 1.5 ± 2.6 3.1 ± 2.0 
HC4 -- 0 ± 3.1 1.2 ± 4.3 1.3 ± 2.1 3.2 ± 3.2 
HC5 -- 0.5 ± 4.4 1.8 ± 6.9 2 ± 2.6 2.8 ± 4.4 
HC6 -- 0.5 ± 5.9 1 ± 3.8 2.2 ± 3.9 3 ± 3.3 
HC7 -- 0 ± 2.2 0 ± 4.1 0 ± 3.1 0 ± 2.1 
HC8 -- 0 ± 2.1 0.6 ± 4.4 0 ± 3.0 0 ± 3.4 
HC9 -- 0.3 ± 3.0 0.7 ± 4.3 1.3 ± 1.0 0 ± 5.3 
HC10 -- 0.4 ± 2.9 0.4 ± 3.8 0 ± 2.6 0 ± 4.1 
HC11 -- 0 ± 2.7 0 ± 4.2 0 ± 1.8 0 ± 3.5 
HC12 -- 0 ± 2.6 1.1 ± 4.1 0 ± 3.2 0 ± 4.2 
HC13 -- 0.6 ± 4.0 0 ± 5.1 0 ± 3.0 0 ± 1.5 

SMI-31, PLPSMI-31, PLPSMI-31, PLP
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Table 5.1:  Addition of patient derived IgG at 1mg/ml reveals no further pathogenic samples 
in comparison to addition at 100µg/ml.   
A: Summary of pathogenic potential of the IgG fraction from the 20 MS patient samples tested.  
50% of the samples tested mediated complete demyelination.  In two patients this was also 
accompanied by a loss of axons ranging from 18% to a loss of 30% of the total number of axons.  
B:  Summary of pathogenic potential of the IgG fraction from the 10 OND patient samples tested.  
No significant loss of axons or glia was detected even at 1mg/ml.  There was no difference in the 
activity of samples at 1mg/ml compared to 100µg/ml. Values shown are from one representative 
data set performed three times in triplicate ± standard deviation (*p<0.05, **p<0.01; T-test).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

0 ± 1.20 ± 1.9OND10

0 ± 1.20 ± 2.2OND9

2 ± 1.21 ± 1.4OND8

0 ± 1.04.4 ± 1.2OND7

0 ± 3.21 ± 2.5OND6

0 ± 2.40 ± 2.2OND5

0 ± 1.60 ± 1.0OND4

1 ± 1.81.2 ± 2.6OND3

1 ± 1.22 ± 1.8OND2

1.5 ± 2.30 ± 1.6OND1

% Myelin

loss

% Axonal 

lossPatient ID

5 ± 3.12 ± 1.6MS20

2 ± 3.32 ± 1.8MS19

1 ± 4.01 ± 2.3MS18

2.6 ± 2.20 ± 2.9MS17

100 ± 1.2**0 ± 2.2MS16

3 ± 2.80 ± 2.1MS15

100 ± 1.6**18 ± 1.3*MS14

3 ± 2.13 ± 2.4MS13

100 ± 1.3**0 ± 2.5MS12

100 ± 1.5**0 ± 2.1MS11

2 ± 4.40 ± 2.3MS10

0 ± 2.60 ± 2.0MS9

0 ± 3.90 ± 2.2MS8

100 ± 1.0**3 ± 3.7MS7

0 ± 1.22 ± 3.0MS6

100 ± 1.0**30 ± 6.4**MS5

100 ± 2.2**0 ± 2.8MS4

100 ± 2.4**0 ± 1.0MS3

100 ± 3.0**4 ± 2.9MS2

100 ± 4.5**1 ± 1.9MS1

% Myelin 

loss

% Axonal

lossPatient ID

A B
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% Myelin 
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% Axonal

lossPatient ID

A B
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5.2.1.2 Dose response studies using patient IgG 

To determine the sensitivity of our bioassay dose response studies were 

performed using IgG from four patients; two with a purely demyelinating 

response at 100µg/ml (MS2 and MS4) and two with demyelination accompanied 

by some degree of axonal injury (MS5 and MS14). IgG was added to myelinating 

cultures (28 DIV) at 100µg/ml (667pM), 50µg/ml (333pM), 10µg/ml (67pM) and 

1µg/ml (6.7pM) with 1% FRS as a source of complement [Figure 5.2].   

For MS2 significant demyelination was detected at IgG concentrations ≥50µg/ml.  

In contrast pathogenic responses using IgG purified from patient MS4 were seen 

at concentrations as low as 10µg/ml.  In sample MS5 where demyelination was 

accompanied by axonal loss, reducing the IgG concentration to 50µg/ml resulted 

in a complete loss of all pathogenic activity.  IgG from MS14 had extensive 

axopathic activity at antibody concentrations ≥50µg/ml whereas demyelinating 

activity was still observed at ≥10µg/ml.    

 

Figure 5.2: Dose dependence of patient derived autoantibody mediated CNS injury.   
IgG from four MS patients (MS2, MS4, MS5, and MS14) known to contain demyelinating and 
axopathic activity was added to myelinating cultures at 100, 50, 10 and 1µg/ml in the presence of 
1% FRS as a source of complement (mean ± SEM, n = 3) (*p<0.05, **p<0.001, T-test).    A: 
Demyelinating activity in all cases was significantly reduced at 50µg/ml and was no longer detected 
at 1µg/ml.  B: Axopathic activity present in samples MS5 and MS14 was not detected at IgG 
concentrations below 100µg/ml (mean ± SEM, n = 3) (*p<0.05, **p<0.001, T-test).   

 

 

 

 

 

 

 

1

[Ab] µg/ml

0

5

10

15

20

25

30

35

40

45

50

10 100

A
x

o
n

a
l 

lo
s
s

 (
%

)

MS5

MS14

1
0

10

20

30

40

50

60

70

80

90

100

10 100
[Ab] µg/ml

M
y
e

li
n

 l
o

s
s

 (
%

)

MS2

MS4

MS5

MS14

A B

1

[Ab] µg/ml

0

5

10

15

20

25

30

35

40

45

50

10 100

A
x

o
n

a
l 

lo
s
s

 (
%

)

MS5

MS14

1

[Ab] µg/ml

0

5

10

15

20

25

30

35

40

45

50

10 100

A
x

o
n

a
l 

lo
s
s

 (
%

)

MS5

MS14

1
0

10

20

30

40

50

60

70

80

90

100

10 100
[Ab] µg/ml

M
y
e

li
n

 l
o

s
s

 (
%

)

MS2

MS4

MS5

MS14

1
0

10

20

30

40

50

60

70

80

90

100

10 100
[Ab] µg/ml

M
y
e

li
n

 l
o

s
s

 (
%

)

MS2

MS4

MS5

MS14

A B



124 

5.2.1.3 Pathogenic IgG components purified from MS patients bind 

selectively to myelin 

Using our in vitro system we have identified a demyelinating IgG response, 

therefore it was important to determine whether this activity can be attributed 

to the presence of myelin specific antibodies.   

 

Live immunocytochemistry of myelinating cultures using 100µg/ml human IgG 

revealed a weak staining mainly restricted to the surface of the myelin sheath 

with minor staining on the oligodendrocyte cell body [Figure 5.3A].  There was 

no detectable staining on neuronal/axonal structures.  However high background 

levels seen using IgG on live cells may obscure relatively weak immunoreactivity.    

Antibody binding was only observed in those samples with demyelinating activity 

i.e. (MS1-5 and MS7) and was not detected in non-pathogenic samples (MS6; 

OND1-4; HC1-4) [Figure 5.3B].   
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Figure 5.3: IgG purified from MS patient plasma binds selectivity to myelin 
A: Live immunocytochemistry using 100µg/ml IgG purified from MS patients (green) revealed 
binding to PLP positive oligodendrocytes (red) (i-iii).  Binding is strongest at the myelin sheath/ cell 
process there is a weak staining on the oligodendrocyte cell body.  These structures stained with 
human IgG align with SMI-31

+ 
axons (blue) indicating that demyelinating IgGs are capable of 

binding to a component of the myelin sheath.  Images shown are from IgG purified from patient 
MS1 but identical staining patterns were observed using other MS patient IgG preparations.  B:  
Live immunochemistry using 100µg/ml IgG purified from donor HC7 demonstrated no binding to 
oligodendrocytes (i-iii) or axons (iv-vi). A similar lack of immunoreactivity was observed with all 
other non-pathogenic IgG samples.   
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5.2.1.4 Adsorption of patient derived IgG using purified compact myelin 

diminishes its pathogenic potential  

In order to determine whether these demyelinating responses were truly due to 

autoantibody responses directed against components of the myelin sheath we 

attempted to adsorb the pathogenic IgG component using highly purified rat  

CNS myelin and used our myelinating culture system to detect a potential 

reduction in pathogenic activity.   Incubation of MS patient IgG (100µg/ml) with 

2mg/ml total myelin protein resulted in a decrease in total IgG in the samples as 

seen by SDS-PAGE [Figure 5.4A] and a significant reduction in detectable binding 

by ELISA to rat myelin and human MOG [Figure 5.4B].  This diminished binding 

was accompanied in a reduction in demyelinating activity of the IgG fraction in 

three of the six patients tested demyelinating activity was completely removed 

by myelin adsorption (MS1, MS3, MS5).  In the remaining samples pathogenicity 

was greatly reduced ranging from a 64% decrease (MS7) to 88% decrease in 

demyelinating potential (MS2) when compared to samples pre adsorption [Figure 

5.3C].  The retention of some residual demyelinating activity may be a result of 

incomplete adsorption of pathogenic component or an indication that an 

element of this demyelinating response does not recognise a component of 

compact rat myelin.  Another possibly is that the epitope is unavailable or 

altered between purified myelin and the myelin generated in vitro.   
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Figure 5.4: Adsorption of patient derived IgG using purified compact myelin diminishes its 
pathogenic potential 
A: SDS-PAGE of IgG preparations post adsorption revealed a reduction in the total IgG present in 
the sample when compared to an non-adsorbed IgG control.  SDS-PAGE analysis also revealed 
that the remaining IgG is intact (~150KDa) and has not been subjected to degradation from 
endogenous proteases.   B:  Adsorption of 100µg/ml IgG purified from MS patients with 2mg/ml rat 
myelin resulted in reduced binding to rat myelin as detected by ELISA (Black bars non-adsorbed 
IgG, white bars IgG adsorbed with myelin).  Data plotted as mean OD (± standard deviation).  All 
reductions in IgG binding were statically significant (**p<0.01, T-test).  C:  Myelin adsorption of IgG 
samples purified from MS patients resulted in a marked reduction in the pathogenic activity when 
compared to samples prior to adsorption.  In the majority of cases myelin adsorption was lowered 
the amount of demyelination detected in myelinating cultures treated with 100µg/ml unbound IgG in 
the presence of 1% fresh rat sera as a source of complement.  In the one case where axonal injury 
was detected in the IgG preparation prior to absorption (MS5) this was also significantly reduced 
after myelin adsorption.  Values shown are from one representative data set performed three times 
in triplicate ± standard deviation (*p<0.05, **p<0.01; T-test).   
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5.2.1.5 Demyelination by human IgG has a limited effect on OPC survival  

Using this system we have been able to identify a set of MS patients that possess 

IgG responses capable of mediating demyelination and destruction of mature 

MOG+ and PLP+ oligodendrocytes.   To determine whether these antibodies had a 

pathogenic effect on oligodendrocyte progenitor cells (OPCs) we determined 

changes in the NG2+ and O4+ populations post treatment [Figure 5.5].  From this 

we can determine that antibody treatment with either patient derived IgG or 

with the anti-MOG monoclonal Z2 had no effect on the number of NG2+ cells 

when compared to isotype and untreated controls.  In 6 of 7 MS patients tested 

there was a complete loss of O4+ myelin sheathes accompanied by a significant 

loss of O4+ cells ranging from (24%-40%).  A similar effect was observed after 

demyelination using Z2 which can be attributed to a loss of mature 

oligodendrocytes and myelin sheathes that express both sulphatide and MOG.  

Therefore we can predict that the human IgG preparations are targeting 

epitopes expressed on the mature oligodendrocyte and myelin sheath and not a 

target expressed only by a subset of OPCs.  As when mature oligodendrocytes 

and OPCs are targeted simultaneously using the O4 monoclonal antibody there is 

a complete loss of myelin sheathes and 90% reduction in the total number of O4+ 

cells.   
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Figure 5.5: Treatment of in vitro myelinating cultures with MS patient derived IgG 

preparations has limited effect on oligodendrocyte precursor cells (OPCs).   
A:  Representative image (20X) taken from myelinating cultures treated with IgG from patient MS6 
(i) showing O4

+ 
OPCs, oligodendrocytes and their associated myelin sheathes (red).  Early OPCs 

are labelled using NG2 (chondroitin sulphate proteoglycans) (green).  Representative image (20X) 
taken from cultures treated with IgG purified from patient MS7 (ii) showing a complete loss of O4

+ 

myelin sheathes and a modest reduction in the total number of O4
+ 

cells.  There was not significant 
change in the number of NG2

+ 
OPCs when compared to controls.  This reduction is comparable to 

that seen when cultures are demyelinated with 10µg/ml Z2 (α-MOG mAb) (iii) due to the loss of 
mature oligodendrocytes and myelin sheathes that express both sulphatide and MOG.     In 
contrast when myelinating cultures are demyelinated with 10µg/ml O4 there is an almost complete 
loss of all O4 immunoreactivity (iv).  There is also a reduction in the amount of NG2 positive cells, 
resulting from the loss of O4

+ 
and NG2

+ 
double positive OPCs.  B: Treatment of myelinating 

cultures with 100µg/ml MS patient derived IgG in the presence of complement results in a complete 
loss of O4 (α-sulphatide mAb) positive myelin sheaths and a significant reduction in the O4

+ 
cell 

population (24-40%) in 6 of the 7 MS patient samples tested.  Values shown are from one 
representative data set performed three times in triplicate ± standard deviation.   
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5.2.2 Nfasc: a potential specificity for pathogenic autoantibodies? 

5.2.2.1 Characterisation of the rrNfasc155 reactive repertoire 

Purification and characterisation of patient derived Nfasc155 reactive 

antibodies was performed by Dr A. Arthur (University of Glasgow).   

To define a potential specificity for these observed pathogenic autoantibody 

responses, we screened our patient cohort for Nfasc155 responses.  When 

screened using ELISA 18 of the 20 MS patients possessed significant antibody 

titres to recombinant rat Nfasc155 (rrNfasc155), with 7 patients possessing 

particularly high titres (MS1-7).  However this response to rrNfasc155 was not 

unique to MS as responses were also detected with the OND group.   

 

We isolated the Nfasc155-reactive component of antibody repertoire by 

immunoaffinity chromatography using recombinant rat Nfasc155. The Nfasc155-

reactive immunoglobulin preparations contained varying proportions of IgM and 

IgG antibodies, IgG levels being significantly highly in samples isolated form 

patients with MS than those with other neurological diseases (p<0.05).  This 

resulted in a significant difference the IgG:IgM ratio between the two groups.   

Isotype subclass usage was similar in both groups, predominately IgG1 and IgG2 

accompanied by low levels of Nfasc-specific IgG3 and IgG4 [Figure 5.6A]. The 

latter was significantly higher in MS patients (p<0.05).   All these Nfasc155-

specific immunoglobulin preparations recognised both glycosylated and 

deglycosylated Nfasc155, although recognition of the peptide backbone varied 

significantly between individual patients [Figure 5.6B].  
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Figure 5.6: Characterisation of the Nfasc specific repertoire 
A: Nfasc responses were detected by ELISA in patients with MS (black bars) and patients with 
ONDs (grey bars).  When the isotype usages were quantified they was a significant difference 
between the two groups in the amount of total IgG present, the IgG to IgM ratio and the amount of 
IgG4 present all of which were higher in the MS cohort.  However there were no significant 
differences between the two patient groups for the total amount of IgM, IgG1, IgG2 or IgG3.  
Values shown are an average of three independent experiments performed in triplicate ± standard 
deviation (* P<0.05, T-test).  B:  Western blot was performed to determine binding to Nfasc peptide 
epitopes rather than glycosylated moieties.  Patient derived Nfasc-specific antibodies were blotted 
against 200ng glycosylated and 500ng deglycosylated rNfasc.  With the exception of MS4, 
antibodies isolated from all the MS patients gave a strong ECL signal against both glycosylated 
and deglycosylated antigen after 2 minutes exposure. Antibodies from patients with peripheral 
neuropathies gave a similar signal against glycosylated rNfasc, but the exposure time had to be 
increased to 20 minutes to demonstrate binding of these samples to the deglycosylated protein. 
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5.2.2.2 Patient derived rrNfasc155 antibodies mediate demyelination and 

axonal injury in vitro 

Treating myelinating cultures with Nfasc155-specific immunoglobulin 

preparations from individual donors revealed a striking heterogeneity in their 

ability to mediate axonal loss and/or demyelination. Nfasc155-specific 

immunoglobulins isolated from all cases of MS mediated complement-dependent 

demyelination.  However in four cases this was also accompanied by variable 

degrees of axonal loss which ranged from 11% to 39% [Table 5.2A]. This 

axopathic effect was attributed to cross-reactivity of Nfasc155-specific 

antibodies with epitopes shared with Nfasc186, as demonstrated previously.  

Demyelination induced by the Nfasc specific repertoire may not be strictly MS 

specific as a demyelinating response was also detected in two OND patients 

(OND1: sensory motor polyneuropathy, OND3: GBS) [Table 5.2B].   

 

 

Table 5.2: Nfasc specific antibodies purified from MS patients mediate axonal and glial 
pathology in vitro.   
A:  Patient derived Nfasc155 specific autoantibodies are able to mediate demyelination in vitro.  In 
all seven MS cases tested we detected a strong demyelinating antibody response when added to 
myelinating cultures at 10µg/ml in the presence of 1% rat serum as a source of complement.  In 
four patients (MS1, MS5, MS6, MS7) we could also detect an axonal response resulting in axonal 
loss ranging from 11% to 39% of the total number of axons.  Values shown are an average of three 
independent experiments performed in triplicate ± standard deviation (* P<0.05, T-test).  B:  
Demyelinating responses were more common in the MS cohort but are not disease specific as we 
are able to detect demyelinating activity in two patients from the OND control group (OND1 and 
OND3).  Axonal pathology however was unique to the MS group.  Values shown are from one 
representative data set performed three times in triplicate ± standard deviation (*p<0.05, **p<0.01; 
T-test).   
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1.6 ± 3.7

1.1 ± 2.3

0 ± 3.0

0 ± 2.4

2.5 ± 1.5

1.5 ± 1.6

0 ± 4.1

0.8 ± 1.4

1.5 ± 2.5

Mean 
Axonal 
Loss (±SD)

Patient 
ID

Diagnosis Mean 
Myelin 
Loss (±SD)

OND1 SPN 98 ± 1.5**

OND2 GBS 0 ± 3.4

OND3 GBS 99 ± 1.2**

OND4 GBS 0 ± 2.2

OND5 CIDP 0 ± 6.0

OND6 CIDP 0 ± 1.3

OND7 CIDP 0 ± 2.4

OND8 ISAN 0 ± 4.0

OND9 MG 0 ± 5.2

OND10 CIDP 0 ± 3.20 ± 5.1

1.6 ± 3.7

1.1 ± 2.3

0 ± 3.0

0 ± 2.4

2.5 ± 1.5

1.5 ± 1.6

0 ± 4.1

0.8 ± 1.4

1.5 ± 2.5

Mean 
Axonal 
Loss (±SD)

Patient 
ID

Diagnosis Mean 
Myelin 
Loss (±SD)

OND1 SPN 98 ± 1.5**

OND2 GBS 0 ± 3.4

OND3 GBS 99 ± 1.2**

OND4 GBS 0 ± 2.2

OND5 CIDP 0 ± 6.0

OND6 CIDP 0 ± 1.3

OND7 CIDP 0 ± 2.4

OND8 ISAN 0 ± 4.0

OND9 MG 0 ± 5.2

OND10 CIDP 0 ± 3.2

RRMS

RRMS

SPMS

RRMS

RRMS

RRMS

Marburg 
MS

DiagnosisPatient 
ID

Mean 
Axonal 
Loss (±SD)

Mean 
Myelin 
Loss (±SD)

MS1 22 ± 4.2** 100 ± 0**

MS2 1.4 ± 1.4 100± 0**

MS3 1.8± 1.2 99 ± 1.5**

MS4 1.5 ± 1.0 98 ± 2.0**

MS5 39 ± 4.9** 100 ± 0**

MS6 11 ± 5.0* 100 ± 0**

MS7 37 ± 4.3** 100± 0**RRMS

RRMS

SPMS

RRMS

RRMS

RRMS

Marburg 
MS

DiagnosisPatient 
ID

Mean 
Axonal 
Loss (±SD)

Mean 
Myelin 
Loss (±SD)

MS1 22 ± 4.2** 100 ± 0**

MS2 1.4 ± 1.4 100± 0**

MS3 1.8± 1.2 99 ± 1.5**

MS4 1.5 ± 1.0 98 ± 2.0**

MS5 39 ± 4.9** 100 ± 0**

MS6 11 ± 5.0* 100 ± 0**

MS7 37 ± 4.3** 100± 0**
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5.2.2.3 Nfasc155 can provide a dominant target for demyelinating and 

axopathic autoantibody responses in MS  

The use of immunopurified antibodies formally demonstrates that components of 

the Nfasc155-specific autoantibody repertoire have the potential to mediate 

axonal injury and/or demyelination in vivo. However, this approach provides no 

indication as to whether this pathogenic response is a dominant component of 

the autoantibody repertoire. We therefore compared the pathogenic potential in 

vitro of total IgG fractions prepared from patient plasma post-depletion of 

Nfasc155 reactivity.  Using our immunopurification method we are able to 

virtually remove all Nfasc155 reactivity from the plasma [Figure 5.7A], we 

subsequently collected this flow through and purified the residual IgG remaining 

in the plasma after Nfasc immunoabsorption.  In one particular case (patient 

MS5) removal of the Nfasc155-specific repertoire completely abolished the 

ability of the IgG fraction to mediate any pathogenic effect in vitro [Figure 

5.7B]. This formally identifies Nfasc as a dominant target for pathogenic 

autoantibodies in this particular patient. This was not the case for the remaining 

patients, as depletion of the Nfasc155 reactive component of the antibody 

repertoire had no significant effect its ability to mediate demyelination in vitro.  
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Figure 5.7: Nfasc155 can provide a major autoantigen for autoantibody responses in MS 
A: Using our immunoabsorption protocol using Nfasc155 we are able to remove virtually all 
Nfasc155 reactivity, as detected by ELISA.  We can see that there is a large amount of detectable 
Nfasc155 reactivity in the starting plasma and after immunodepletion binding to Nfasc155 is 
diminished (patient MS5).  B: For patient MS5 we purified the IgG fraction present in the column 
flow through after the removal of the Nfasc155 specific component.  This was then added to 
myelinating cultures at 100µg/ml in the presence of 1% rat serum as a source of complement.  In 
this particular patient we were able to see that IgG purified from plasma prior to Nfasc155 
immunodepletion mediated both a striking demyelinating and axopathic response.  However after 
the removal of the Nfasc155 specific repertoire this activity was abolished, implicating Nfasc155 as 
the main autoantigen in this particular case.  However in the remaining patients the pathogenic 
activity was completely retained suggesting that Nfasc155 is not the key autoantigen driving these 
responses.  Values shown are from one representative data set performed three times in triplicate 
± standard deviation (*p<0.05, **p<0.01; T-test).   
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5.3 Discussion  

The use of in vitro CNS models to detect pathogenic activity in patient serum is 

not a novel concept.  The in vitro demyelinating potential of MS sera was first 

described over 50 years ago (Bornstein and Appel, 1965), an observation which 

was later confirmed by others (Hughes and Field, 1967; Lumsden, 1971; Bradbury 

et al., 1985).  However whether this in vitro demyelinating activity was 

mediated by a myelin-specific autoantibody response remained controversial 

(review:  Seil, 1977; Caspary, 1977).   

Recent studies have identified a plethora of potential autoantigens associated 

with MS; however most failed to determine whether these responses are actually 

involved in disease pathogenesis.  In order to address this question we 

established a novel in vitro screening strategy which not only detects 

demyelinating and axopathic autoantibody responses but provides a quantitative 

readout of their pathogenic potential.  Using this model we can identify a subset 

of MS patients who possess pathogenic autoantibodies capable of mediating 

axonal injury and/or demyelination.  This is the first formal demonstration that 

adult onset MS is associated with pathogenic autoantibody responses.  In 

contrast to earlier studies we demonstrated that these responses are specific for 

MS and not present in the OND or healthy controls (Bronstein and Appel., 1965; 

Hughes and Field 1967). 

Unfortunately due to the nature of this study and characterisation of clinical 

samples, coding of patient and control samples was not possible.  In order to 

prevent introducing any potential bias, future experiments should be performed 

in a blinded fashion.   

A number of studies have attempted to determine if there is any correlation 

between myelin specific antibody responses and the course of disease but this 

issue remains controversial (Berger et al., 2003; Kuhle et al., 2007).  Within our 

MS cohort we observed a trend suggesting that pathogenic antibody responses 

were associated with patients with aggressive onset disease and steroid non-

responsive relapses.  This suggests the exciting possibility that a correlation may 

exist between disease severity and the presence of a pathogenic antibody 
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response.  Unfortunately the clinical data was not available in order for us to 

determine whether plasma exchange was most effective in patients with 

pathogenic autoantibody reponses than seronegative patients.  This pilot study 

also lacks sufficient patient numbers to draw any solid conclusions regarding this 

point.  Studies of AQP-4 specific antibody titres in NMO demonstrated that there 

is a marked correlation between disease progression and pathogenic antibody 

titre (Jarius et al., 2010).   

Similar studies could be adopted to investigate many aspects of MS pathogenesis 

in which our model could be used as a potential readout of pathogenic antibody 

activity.  Further clinical investigations using this model will be discussed in 

greater detail in the final chapter.    

We demonstrated that these pathogenic autoantibodies recognise a component 

of intact myelin.  Antibody binding was only observed in IgG preparations with 

pathogenic activity unlike previous studies which reported that human IgG can 

bind non-specifically to myelin/oligodendrocytes in vitro (Aarli et al., 1975; 

Traugott et al., 1979).  The anti-myelin reactivity of these pathogenic 

autoantibodies was further confirmed when antibody adsorption using purified 

myelin was shown to significantly reduce pathogenic activity.  This is in contrast 

to studies described in the 1970s (Wolfgram and Duquette, 1976).  However the 

precise specificity of this pathogenic response remains unknown.  It is probable, 

given the complexity and immunopathological heterogeneity of MS that multiple 

targets may be involved, the identity of which may vary between patients.  In 

fact we have data to suggest this is the case as one of our patients developed 

pathogenic autoantibody responses against Nfasc155 and depletion of this 

repertoire abolished all pathogenic activity (MS5), however Nfasc155 was not a 

dominant autogen in the rest of the cohort.   

From the data in this chapter we can make a number of assumptions about the 

antigen: 

• It is accessible to bind antibody at the myelin surface. 

• It is not expressed by oligodendrocyte precursor cells as antibody 

treatment spares the majority of NG2+ and O4+ OPCs.       
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• Its expression is restricted to terminally differentiated oligodendrocytes.   

Potential targets that satisfy these criteria are MOG (Brunner et al., 1989; 

Kroepfl et al., 1996), PLP (Hudson et al., 1989) and opalin (Yoshikawa et al., 

2008; Kippert et al., 2008).  Nothing is known about the encephalitogenic 

potential of opalin whilst MOG has been implicated in paediatric MS/ADEM 

(McLaughlin et al., 2009; DiPauli et al., 2010).  Further investigation is required 

in order to identify the antigen recognised by these pathogenic antibodies and 

methods by which the candidate autoantigens may be identified will be 

discussed in a later chapter.   

Although our data are highly suggestive that the responses we detect in vitro 

may contribute to disease pathogenesis.  This has still to be confirmed in vivo.  

Classically this is achieved by passive transfer in an in vivo disease model.  In 

attempting to model antibody mediated effects in CNS disease most studies use 

cotransfer models in which patient-derived antibody is transferred into animals 

with EAE as in the case of NMO (Bradl et al., 2010).  Passive transfer of patient 

derived immunoglobulins from patients with NMO (Bradl et al., 2009); MG (Toyka 

et al., 1975) or neuromyotonia (Shillito et al., 1995) reproduces the clinical 

features of these diseases in experimental animals.  Unfortunately similar 

studies using MS immunoglobulins have been largely unsuccessful.  In a paper by 

Zhou et al. the authors identified a single patient with high anti-MOG antibody 

titres which bound to MOG transfectants with high affinity.  However when 

immunoglobulin from this patient was transferred into rats with EAE the animals 

developed a very minor disease especially when compared to a MOG monoclonal 

antibody (Zhou et al., 2006).   

In this respect the study by Bradl et al. (2010) is particularly informative.  In this 

case animals had to be immunised with 10mg of NMO IgG in order to induce 

disease.  Similarly passive transfer of MG to mice required 10-11mg human IgG 

(Toyka et al., 1975).  These antibody doses required to induce disease are 

astonishingly high.  For example 10mg IgG is approximately 50% greater than the 

total circulating native IgG in the mouse (Santos, 1967).  Therefore there is a 

discrepancy between the amount of patient derived antibody needed to induce 

disease in rodents and the pathogenic antibody titres detected in patients. In MG 

patients, AChR antibody titres associated with disease are much lower (~10-
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20nM) (Lindstrom et al., 1976).  This makes the bioassay an excellent screening 

strategy to detect pathogenic but we have still to address the problem of 

developing relevant in vivo models to investigate the effects of acute and 

chronic exposure to MS autoantibodies.   

MS was long described as a disease of myelin characterised by primary 

oligodendrocyte loss and demyelination but with relative sparing of axons.  

However it is known understood that MS lesions are also associated with 

profound axonal loss (Trapp et al., 1998).  Using our system we detected 

autoantibody responses which can mediate axonal injury, an observation not 

previously reported.  A potential target for this axopathic response is Nfasc, in 

particular Nfasc186.  Nfasc was first reported as a potential autoantigen by 

Mathey et al. who demonstrated that autoantibodies against Nfasc could be 

found in a large proportion of MS patients.  The authors also reported that 

recognition of Nfasc186 exacerabates disease severity in EAE due to axonal 

injury (Mathey et al., 2007).   

Using immunoaffinity chromatography we isolated the Nfasc155 specific antibody 

repertoire from MS and OND patients.  When added to myelinating cultures we 

observed that in all MS cases these autoantibodies mediated complement 

dependent demyelination and in two cases this was accompanied by significant 

axonal injury.  We observed demyelination in only two OND samples.  Given that 

in the previous chapter we demonstrated that a Nfasc155 specific anti-sera 

mediated complete demyelination this was not unexpected, and we attribute 

the limited axopathic effect to cross reactivity with Nfasc186.   

Unfortunately if was not possible to determine the site of antibody binding for 

this rrNfasc155 specific response.  We were unable to see specific binding to any 

particular structure in live cultures due to high levels of background staining and 

uptake of IgG aggregates by microglia.  It was also not possible to detect MAC 

deposition.  However as demonstrated in the previous chapter when myelinating 

cultures are treated with low doses of monoclonal antibody (such as 100ng/ml of 

8-18C5) we were unable to detect MAC deposition although treatment ultimately 

lead to complete demyelination.  This may be the case for our purified patient 

antibodies i.e. the pathogenic component may be present at concentrations too 

low to visualise by immunofluorescence.    
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In one patient (MS5) removal of the rrNfasc155 reactive repertoire was sufficient 

to remove all pathogenic activity of the plasma IgG therefore in this patient 

there is a dominant pathogenic antibody component which recognises 

rrNfasc155.  Myelin absorption of this sample significantly depleted the 

demyelinating activity therefore part of this response must be myelin 

associated.  Axonal injury was also significantly reduced potentially due to 

adsorption of antibodies recognising both Nfasc155 and Nfasc186.  A similar 

observation was reported in the previous chapter when A12/18.1 (pan-specific 

Nfasc mAb) was adsorbed with rat myelin resulting in a reduction in both 

demyelinating and axopathic activity.   

We must be cautious when drawing conclusions regarding Nfasc responses in MS.  

To immunopurify the Nfasc specific repertoire we used recombinant rat Nfasc155 

(rrNfasc155) this peptide was generated by a murine myeloma derived cell line 

(NSO) and therefore may contains post translational modifications not usually 

present when expressed by oligodendrocytes.  Western blot analysis of the 

purified antibody binding to rrNfasc155 or deglycosylated rrNfasc155 revealed 

that the majority of our purified antibody reacted primarily with glycosylated 

motifs (especially in the OND group) although we were able to detect some 

reactivity to the peptide backbone.  Therefore the antibody we purified is not 

homogeneous and must contain alternate specificities, some of which may be 

unrelated to Nfasc.  

Our bioassay focusses on complement dependent effects.  However in vivo there 

may be multiple pathogenic mechanisms.  Clearly it is not possible to reproduce 

all adaptive and innate mechanisms within our in vitro model.  Using this 

bioassay to model complement independent effects will be discussed in the next 

chapter.   
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6 Modelling chronic autoantibody mediated injury 

in the absence of complement. 

6.1 Introduction 

The previous chapters demonstrated that myelinating cultures can provide the 

basis of an in vitro screening strategy to detect antibodies that mediate acute 

complement dependent demyelination and axonal loss in vitro.  The decision to 

initially focus on complement-dependent mechanisms was driven by reports that 

they play an important role in the development of demyelinating lesions in EAE 

(Linington et al., 1989; Storch et al., 1998) and the immunopathology of MS 

lesions (Lucchinetti et al., 2000). 

However autoantibodies may also mediate demyelination and/or axonal injury 

via complement independent mechanisms.  These include:  

• Antibody-dependent cellular cytotoxicity (ADCC).  

Recognition of antigen/antibody complexes by Fc-gamma receptors results in 

the activation of cellular components of the innate immune system 

principally NK cells and polymorphonuclear neutrophils.  This triggers a 

respiratory burst associated with the generation of free oxygen species 

ond/or the release cytolytic proteins from intracellular granules.  Infiltrating 

neutrophils are prominent feature of some EAE models (Maatta et al., 1998; 

Zehntner et al., 2005) and are also observed in fulminate cases of MS 

(Johnson et al., 1990).   

• Opsonisation and phagocytosis.  

Antibodies bind to the target leading to Fc-gamma receptor mediated 

phagocytosis of the antibody-antigen complex and tissue destruction.  

Demyelinating lesions in both MS and EAE contain numerous phagocytes 

(macrophages and microglia) containing Ig and myelin debris (Genain et al., 

1999).  However whether this represents clearance of opsonised debris or a 

primary immune attack on CNS myelin is uncertain. 
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• Direct effect due to antibody binding.  

Antibody binding to the cell surface may mediate direct functional effects as 

demonstrated by the phosphorylation of cellular stress response proteins and 

cytoskeletal changes induced in oligodendrocytes by MOG-specific antibodies 

(Marta et al., 2003; 2005). 

Intriguingly previous studies using rodent organotypic myelinating cultures 

reported that that anti-myelin antisera inhibited myelin formation in vitro.  

There are reports in the literature that MS patient serum also contains 

myelination inhibitory factors although this issue is controversial (Seil, 1977; 

Caspary et al., 1977).  We therefore decided to readdress this question using the 

myelinating cultures to investigate whether either MOG- or Nfasc-specific 

responses would have any pathogenic effect in the absence of exogenous 

complement.  
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6.2 Results 

6.2.1 MOG specific antibodies disrupt myelin formation in vitro  

To determine whether MOG-specific autoantibodies are able to effect myelin 

formation in the absence of an exogenous source of complement, myelinating 

cultures were grown in the presence of mAb Z2 (10µg/ml) from either 12, 18 or 

24 DIV [Figure 6.1].  

As described in chapter 3, at 12 DIV these cultures contain very few MOG+ cells 

and no myelin.  Significant numbers of MOG+ oligodendrocytes and associated 

axonal ensheathment are only observed from 18 DIV onwards. Addition of Z2 

from either 12 or 18 DIV resulted in an almost complete block of myelination as 

assessed at 24 and 30 DIV [Figure 6.1A &B]. In contrast, the ability of Z2 to 

inhibit myelination when present from 24 DIV onwards was partial. This 

observation suggests that in the absence of a source of complement the mAb Z2 

inhibits the development of myelination competent oligodendrocytes, but does 

not mediate destruction of pre existing myelin sheaths [Figure 6.1C]. These 

antibody mediated effects on myelination were not associated with any changes 

in axonal density as assessed by SMI-31 immunoreactivity. Furthermore, no 

disruption of myelination was observed when cultures were grown in the 

presence of a control mouse IgG2a myeloma protein (10µg/ml).   
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Figure 6.1: MOG specific antibodies can block myelination in vitro.   
Myelinating cultures were incubated with 10µg/ml Z2 from 12 DIV (A), 18 DIV (B) or 24 DIV (C) 
until 30 DIV (antibody addition marked with an arrow).  Analysis of immunochemical data reveals 
that in all cases long term incubation with Z2 can block myelin formation in vitro.  In all cases 
axonal density was equivalent and unaltered in response to antibody treatment.  Values plotted are 
the average of three independent experiments performed in triplicate (± S.E.M), *p<0.05 **p<0.001 
(t-test).   
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6.2.1.1 Inhibition of myelination by MOG specific antibodies is concentration 

dependent 

To determine the concentration dependence of the effect of mAb Z2 on 

myelination in the absence of an exogenous source of complement, cultures 

were treated from 18 to 30 DIV with various Z2 concentrations ranging from 

10µg/ml to 1ng/ml [Figure 6.2].  Axonal density and myelination were then 

quantified as described previously. 

This experiment revealed that myelination in this culture system is very sensitive 

to the presence of this MOG-specific mAb.  Significant inhibition was observed at 

10ng/ml (66pM), which is lower than that required to obtain a similar degree of 

acute antibody-mediated, complement-dependent demyelination using this 

antibody in vitro (Chapter 4). Myelination in this culture system is therefore 

highly sensitive to the presence mAb Z2, being detected at antibody 

concentrations significantly lower than those reported for pathogenic 

autoantibody responses in both myasthenia gravis (Lindstrom et al., 1976) 

autoimmune mediated epilepsy/neuromyotonia (Irani et al., 2010) 

 

 

 

 

 

 

Figure 6.2:  Disruption of myelination in vitro by MOG specific antibodies is concentration 
dependent. 
To determine the antibody concentration range required to inhibit myelin formation myelinating 
cultures were treated from 18 DIV with various concentrations of Z2 (10µg/ml-10ng/ml) until 30DIV.  
Analysis of immunochemical data reveals that myelinating cultures are extremely sensitive to 
antibody treatment, as inhibition of myelin formation can be detected down to antibody 
concentrations ≥ 10ng/ml.  In all cases axonal density was equivalent and unaltered in response to 
antibody treatment.  Values plotted are the average of three independent experiments performed in 
triplicate (± S.E.M), *p<0.05 **p<0.001 (t-test).   
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6.2.1.2 Inhibition of myelination by MOG specific antibodies is reversible  

To determine whether exposure to mAb Z2 results in an irreversible block in 

myelination, cultures were treated with 1mg/ml Z2 between 12 and 18DIV, after 

which they were washed extensively and cultured in the absence of antibody for 

a further 12 days. As demonstrated above the presence of Z2 from 12 DIV 

onwards results in dramatic reduction myelination as assessed by 

immunoreactivity for PLP. However, withdrawl of Z2 from 18 DIV was followed 

by a partial recovery indicating this antibody mediated effect is not necessarily 

permanent. Myelination in these cultures was approximately thirty percent of 

that seen in cultures treated with an isotype control mAb [Figure 6.3].  

 

 

 

 

 

   

 

Figure 6.3: Inhibition of myelination caused by MOG specific antibodies is reversible.   
To determine whether the block of myelin formation caused by MOG specific antibodies is 
permanent, cultures were treated with 1µg/ml Z2 from 12 DIV and antibody was withdrawn from the 
media at 18 DIV and cultured normally until 30 DIV.  Analysis of immunochemical data 
demonstrates that at 24 DIV only a very small amount of has been myelin formed however by 30 
DIV significant myelination has taken place.  In all cases axonal density was equivalent and 
unaltered in response to antibody treatment.  Values plotted are the average of three independent 
experiments performed in triplicate (± S.E.M), *p<0.05 **p<0.001 (t-test). 
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6.2.2 Effects mediated by Nfasc specific autoantibodies in the 

absence of complement  

6.2.2.1 Pan-Nfasc antibodies mediated complement independent 

demyelination and axonal loss 

As antibodies to Nfasc155 were reported to block myelination in vitro (Charles et 

al., 2002), it was anticipated that the pan-Nfasc mAb A12/18.1 would have a 

similar effect. This hypothesis was tested by adding A12/18.1 (10µg/ml) to 

myelinating cultures from 12, 18 DIV and 24 DIV onwards.  In each case axonal 

density and myelination was determined as described previously [Figure 6.4].   

Surprisingly the presence of A12/18.1 from 12 or 18 DIV not only resulted in 

inhibition of myelination but also decreased SMI-31 immunoreactivity by 

approximately half compared to control cultures.  This loss of SMI-31 positive 

structures was observed within six days of addition of A12/18.1, but was far less 

pronounced in those cultures treated from 24 DIV onwards.  In this case axonal 

loss was associated with an inhibition of myelination but there was no 

concomitant loss of pre-existing myelin sheathes [Figure 6.4C].  This suggests 

that those axons/neurons that have already been myelinated are resistant to the 

complement-independent effects of A12/18.1.   

As previously demonstrated in chapter 4, antibody treatment in the presence of 

exogenous complement induces pronounced axonal loss and demyelination but 

no acute injury was detected after 16hrs in the absence of complement. 
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Figure 6.4: Nfasc specific antibodies can inhibit myelin formation and mediate axonal injury 
in the absence of complement.   
Myelinating cultures were incubated with 10µg/ml A12/18.1 from 12 DIV (A), 18 DIV (B) or 24 DIV 
(C) until 30 DIV (antibody addition marked with an arrow).  Analysis of immunochemical data 
reveals that in all cases long term incubation with A12/18.1 can block myelin formation in vitro 
(green line).  Strikingly inhibition of myelination is accompanied by a loss of axons, which can be 
detected after 6 days of antibody addition (red line).  Early antibody addition (from 12 DIV or 18 
DIV) mediates a significant loss of axons (~40%) and complete block of myelination.  Antibody 
addition much later (24 DIV) mediates axonal injury and block of myelination however to a much 
lesser extent than in earlier treatments.  Values plotted are the average of three independent 
experiments performed in triplicate (± S.E.M), *p<0.05 **p<0.001 (t-test).   
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6.2.2.2 Concentration dependence of A12/18.1 mediated effects 

The concentration dependence of effects mediated by A12/18.1 in the absence 

of exogenous complement on axons and myelination were investigated by 

treating myelinating cultures with 10µg/ml to 1ng/ml of antibody from 18 DIV 

onwards and then quantifying myelination and axonal density twelve days later 

(30 DIV) [Figure 6.5]. Significant inhibition of myelin formation was observed at 

mAb concentrations > 50ng/ml, whilst significant axonal loss was on at 

concentrations >100 ng/ml indicating the latter is less sensitive to the 

complement independent effects of the pan-Nfasc antibody.   

6.2.2.3 Effects mediated by A12/18.1 are irreversible  

To determine whether the effects of A12/18.1 on axonal survival and 

myelination were reversible myelinating cultures were treated with 1µg/ml of 

the antibody between 12 and 18 DIV. The cultures were then washed extensively 

to remove unbound antibody and cultured for a further 12 days in the absence of 

A12/18.1. Quantification of axonal loss and myelination revealed that unlike the 

effect of the MOG-specific mAb Z2 on myelination, axonal loss and failure of 

myelination induced by A12/18.1 were irreversible [Figure 6.6]. The failure of 

these cultures to exhibit any evidence of myelination suggests early treatment 

with the antibody eliminates all potentially myelination competent axons.   

 

 

 

 

 

 

 



149 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5:  In vitro effects mediated by Nfasc specific antibodies are concentration 
dependent. 
To determine the antibody concentration range required to inhibit myelin formation, myelinating 
cultures were treated from 18 DIV with various concentrations of A12/18.1 (10µg/ml-1ng/ml).  
Analysis of immunochemical data reveals that myelinating cultures are extremely sensitive to 
antibody treatment as inhibition of myelination can be detected down to antibody concentrations ≥ 
10ng/ml.  Axonal loss was less sensitive however axopathic activity remains at antibody 
concentrations ≥ 100ng/ml.  Values plotted are the average of three independent experiments 
performed in triplicate (± S.E.M), *p<0.05 **p<0.001 (t-test).   
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Figure 6.6: Pathogenic effects on axons and glia mediated by Nfasc specific antibodies are 
irreversible.    
To determine whether pathology caused by Nfasc specific antibodies is permanent cultures were 
treated with 1µg/ml A12/18.1 from 12 DIV and antibody was withdrawn from the media at 18 DIV 
and cultured normally until 30 DIV.  Analysis of immunochemical data demonstrates that there is no 
recovery of myelination (A) or any replenishment of axons (B) at 24 DIV or 30 DIV.  Values plotted 
are the average of three independent experiments performed in triplicate (± S.E.M), *p<0.05 
**p<0.001 (t-test).   
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6.2.3 Complement independent activity of patient derived IgG in 

vitro 

The observation that antibodies recognising axons and/or myelin can have 

profound complement independent effects on myelination and axonal survival 

promoted us to reassess the concept that some MS patients develop myelination 

inhibiting autoantibody responses (review: Seil et al., 1977). Purified IgG 

preparations from seven patients (MS1-7) were added to myelinating cultures 

from 18 DIV onwards at a concentration of 50µg/ml.  Analysis of the extent of 

myelination revealed that twelve days later six of the seven IgG preparations 

had inhibited myelination to varying extents [Figure 6.7A], whilst one (MS5) had 

also induced a fifty percent reduction in SMI-31 immunoreactivity [Figure 6.7B]. 

No pathogenic effect was observed when cultures were treated with either a 

patient derived IgG preparation that exhibited no complement-dependent 

effects in vitro (MS6) or a commercially available IgG preparation obtained from 

healthy donors.  
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Figure 6.7: In the absence of complement, long term incubation with IgG purified from MS 
patients can inhibit myelination and mediate axonal injury in vitro. 
At 18 DIV myelinating cultures were incubated with 50µg/ml IgG purified from MS patients until 30 
DIV.  Myelin/ oligodendrocytes were stained for PLP and axons labelled using SMI-31.  Analysis of 
immunochemical data reveals that six of seven samples tested were able to inhibit myelin 
formation in vitro (A).  One patient (MS5) also exhibited axopathic activity leading to a loss of 
approximately 40% of total axons (B).  Pathogenic activity was not seen in cultures treated with 
control IgG preparations (hIgG).  Values plotted are the average of two independent experiments 
performed in triplicate (± S.E.M), *p<0.05 **p<0.001 (t-test). 

 

 

 

0

10

20

30

40

50

60

70

80

MS1 MS2 MS3 MS4 MS5 MS6 MS7 hIgG control

%
 S

M
I-

3
1

+
 p

ix
e

ls
/t

o
ta

l 
fi

e
ld

0

0.5

1

1.5

2

2.5

3

3.5

MS1 MS2 MS3 MS4 MS5 MS6 MS7 hIgG control

M
y
e

li
n

a
ti

o
n

 (
a

rb
it

ra
ry

 u
n

it
s

)

A

B

**

**

**

0

10

20

30

40

50

60

70

80

MS1 MS2 MS3 MS4 MS5 MS6 MS7 hIgG control

%
 S

M
I-

3
1

+
 p

ix
e

ls
/t

o
ta

l 
fi

e
ld

0

0.5

1

1.5

2

2.5

3

3.5

MS1 MS2 MS3 MS4 MS5 MS6 MS7 hIgG control

M
y
e

li
n

a
ti

o
n

 (
a

rb
it

ra
ry

 u
n

it
s

)

A

B

0

10

20

30

40

50

60

70

80

MS1 MS2 MS3 MS4 MS5 MS6 MS7 hIgG control

%
 S

M
I-

3
1

+
 p

ix
e

ls
/t

o
ta

l 
fi

e
ld

0

10

20

30

40

50

60

70

80

MS1 MS2 MS3 MS4 MS5 MS6 MS7 hIgG control

%
 S

M
I-

3
1

+
 p

ix
e

ls
/t

o
ta

l 
fi

e
ld

0

0.5

1

1.5

2

2.5

3

3.5

MS1 MS2 MS3 MS4 MS5 MS6 MS7 hIgG control

M
y
e

li
n

a
ti

o
n

 (
a

rb
it

ra
ry

 u
n

it
s

)

0

0.5

1

1.5

2

2.5

3

3.5

MS1 MS2 MS3 MS4 MS5 MS6 MS7 hIgG control

M
y
e

li
n

a
ti

o
n

 (
a

rb
it

ra
ry

 u
n

it
s

)

A

B

**

**

****



153 

6.3 Discussion 

This chapter demonstrates that autoantibody responses directed against 

myelinated axons can mediate profound complement-independent effects in 

vitro, as demonstrated by the ability of a MOG-specific mAb to inhibit 

myelination and a pan-Nfasc mAb to induce axonal loss.  The antibody-mediated 

effect on myelination exhibited significant intra and inter assay variability 

(Cv=36%) [Table 6.1A], but was significant compared to parallel cultures treated 

with an irrelevant mAb of the same isotype down to a concentration of 10ng/ml 

(Figure 6.2).  Axonal loss induced by mAb A12/18.1 was less variable (Cv= 10.6%) 

[Table 6.1B] but compared to antibody-mediated inhibition of myelination 

required higher concentrations of antibody only being significant at 

concentrations > 50ng/ml.  

Table 6.1: Variability of complement independent MOG specific antibody mediated injury  
Values shown are an average from three coverslips ± standard deviation after standardising to 
control values.  Coefficient of variance was calculated as standard deviation/ mean and expressed 
as a percentage. 
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Unfortunately due to time constraints I was unable to characterise the 

mechanisms responsible for these antigen-specific effects on myelination and 

axonal survival. A number of obvious experiments using Fab and F(ab)2` 

antibody fragments would help elucidate the relative importance of Fc 

dependent effector pathways and the microglial cell response, as well as the 

effects of antigen cross-linking at the cell surface.  It will also be important to 

determine that the observed effects are not dependent on low levels of 

endogenous complement components produced by the cultures themselves 

(Stevens et al., 2007; Thomas et al., 2000). 

It is already known that treatment of cultured oligodendrocytes with a MOG-

specific mAb is sufficient to trigger an influx of calcium and active the MAPK/Akt 

signalling pathways (Marta et al., 2003).  Activation of these pathways is 

associated with cell survival and regulation of apoptosis in other systems (Datta 

et al., 1997; Bonni et al., 1999) and is implicated in regulation of OPC 

differentiation (Chew et al., 2010).  The most obvious effect on cultured 

oligodendrocytes was retraction of processes and loss of myelin like sheets.  

These effects were independent of MOG partitioning into lipid rafts, but if the 

bound antibody was cross-linked at the cell surface not only did MOG partition 

into lipid rafts, but stress response proteins and elements of the cytoskeleton 

were also phosphorylated (Marta et al., 2005).  Our in vitro studies suggest that 

whilst these effects inhibit myelination they do not have a detrimental effect on 

pre-existing myelin sheaths (Figure 6.1, 24 DIV).  Moreover, the effect in the 

cultures was not permanent. We speculate that this is due to the continued 

presence of MOG- OPCs that once the antibody is removed, can still differentiate 

into myelinating oligodendrocytes.  However in the absence of data on the fate 

of MOG+ cells following antibody treatment we can not exclude the involvement 

of a pre-existing pool of mature oligodendrocytes. 

A previous report indicated that Nfasc155-specific antibodies can also inhibit 

myelination and in this case the antibody is believed to act by blocking the 

interaction of Nfasc155 with Caspr/contactin complexes on the axonal surface 

(Charles et al., 2002).  It was assumed the pan-Nfasc mAb A12/18.1 would mimic 

this effect, but in this case failure of myelination was secondary to irreversible 

axonal loss.  Why this occurs remains obscure.  One possibility is that microglial 

activation by bound antibody may trigger an oxidative burst, the release of pro-
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inflammatory cytokines or disrupt local glutamate homeostasis, all of which may 

lead to neuronal cell death (Matute et al., 2011; Gehrmann et al., 1995; Mrak 

and Griffith, 2005).   

The demonstration that patient-derived antibodies mediate similar effects 

suggests that complement-independent effector mechanisms could play a 

significant role in the immunopathogenesis of MS.  However the observation that 

antibody exposure can result in an irreversible loss of some neurons may have 

far wider implications.  Our results clearly indicate the developing CNS contains 

a subset of neurons including those destined to produce myelination-competent 

axons that are susceptible to injury by Nfasc-specific antibodies.  If present in 

pregnant mothers we suggest that these antibodies may cross the placenta to 

eliminate Nfasc+ neurons in the developing foetus. This could have profound 

consequences not only with respect to the immediate post natal period but also 

into adulthood due to perturbed white matter tract development.  This 

hypothesis warrants further investigation as there is increasing evidence that 

white matter tract abnormalities are associated with a number of important 

psychiatric conditions including schizophrenia (Kubicki et al., 2007; Peters et al., 

2010) but the underlying mechanisms are completely unknown.   
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7 General Discussion 

Over the past 50 years circumstantial evidence has accumulated suggesting 

autoantibody-dependent mechanisms are involved in the pathogenesis of MS, 

however their clinical significance remains controversial.  This is largely because 

of the lack of formal evidence that patients develop pathogenic autoantibody 

responses that actively participate in lesion formation.  The demyelinating 

potential of some MS sera was first demonstrated in vitro in the 1960s, but 

doubts were then raised as whether this was actually an antibody-mediated 

phenomenon (review: Caspary, 1977). These pioneering attempts using 

myelinated CNS tissue cultures to identify pathogenic autoantibodies in patient 

sera were ultimately abandoned due to combination of factors including:   

• The presence of antibody-independent myelinotoxic factors in some sera. 

• The lack of objective measures to determine myelin/axonal loss. 

• The identification of demyelinating responses in patients with other 

neurological diseases. 

The broad aim of this thesis was to exploit subsequent advances in tissue 

culture, antibody purification and imaging techniques to develop a reliable 

bioassay that can be used to determine whether MS is associated with a 

pathogenic autoantibody response against myelinated axons.  

This goal was achieved and the bioassay used to demonstrate the presence of 

demyelinating and in a small number of cases axopathic autoantibodies in 

patients with MS. 
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7.1 Myelinating cultures as a tool to screen for the 

presence of pathogenic autoantibodies in clinical 

samples- a critical reappraisal.  

In order for myelinating cultures to be used as a reliable tool to identify 

demyelinating and/or axopathic autoantibodies in clinical samples they must 

satisfy a number of criteria, in particular: 

• They must reproduce the structural organisation of myelinated fibres in 

the CNS. 

• Variability in axonal density and myelination should be minimal. 

• Large numbers of cultures should be available for intermediate to high 

through put screening studies. 

• Analysis must be rapid and based on objective measures.  

As described in chapters 3 and 4 the myelinating cultures clearly satisfy these 

criteria. They are characterised by the presence of numerous compact myelin 

sheaths associated with paranodal axo-glial junctional complexes and nodes of 

Ranvier that reproduce the topological organisation of these structures in vivo.  

Moreover large numbers of cultures can be prepared at any one time (~ 150 – 

200/E15 litter) that exhibit limited variability with respect to axonal density and 

myelination. This makes them suitable for use in high throughput screens to 

identify pathogenic autoantibodies in clinical samples. However data analysis 

while semi automated remains labour intensive; for example to analyse the 43 

sera described in chapter 5 required acquiring and analysing approximately 8000 

images.  The reproducibility of the assay suggests the number of images/cultures 

used in the analysis can be reduced significantly, but nonetheless the current 

method of outlining myelin sheaths by hand is extraordinarily time consuming. 

This problem is being addressed by designing an algorithm that will differentiate 

intact myelin sheaths from immunoreactive myelin debris and cell bodies. 

Ultimately the aim is to develop this into a program that will automatically 

process two colour immunofluorescent images and generate total pixel data and 
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calculated myelin densities automatically.  This will not circumvent the time 

required to acquire the images in the first place and visual inspection of the 

cultures is important to control for pathogenic effects that may not be picked up 

by an automated program.   

The other major limitation of using this culture system to detect pathogenic 

autoantibodies is that it is derived from rodent not human tissue. Ideally it 

would be preferable to use myelinating human cultures, but to attempt this 

using primary human tissue would be both ethically and technically taxing. 

However recent advances in generating human neurons and glia derived from 

adult (Othman et al., 2011) and embryonic CNS tissue (Satoh et al., 1994; Jana 

et al., 2007), as well as various stem cell populations suggests that generating a 

humanised myelinating culture model may be feasible in the near feature. 

One possible alternative to using this dissociated myelinating culture system in 

order to identify pathogenic autoantibodies are organotypic slice cultures 

derived from post-natal cerebellum or spinal cord. These have the advantage 

that they reproduce the three dimensional architecture of white matter tracts in 

the adult CNS, but suffer from several limitations with respect to their 

suitability as a screening tool to identify pathogenic autoantibodies. The major 

drawbacks are that only a limited number of cultures (6 - 8) can be generated 

from each donor, there is significant slice to slice variation in myelination and 

that whilst these cultures reproduce the three dimensional architecture of white 

matter this it self restricts diffusion of antibody to its target (Harrer et al., 

2009).  However these organotypic cultures provide a powerful in vitro model in 

which to study remyelination not possible dissociated cell systems (Zhang et al., 

2011).   
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7.2 The significance of identifying pathogenic 

autoantibody responses in patients with MS  

The possibility that autoantibodies contribute to the immunopathogenesis of MS 

has been discussed for many years, but the specificity of this response remains 

unknown.  The results described in this thesis suggest why this remains a 

complicated issue.  Quite simply it appears that pathologically relevant i.e 

demyelinating or axopathic responses are restricted to a subset of patients and 

may actually be relatively rare in patients with typical relapsing remitting 

disease.  If this is the case, then any strategy that screens patients at random 

using either candidate antigen or proteomics based approaches is unlikely to 

succeed, a problem that will be exacerbated if there are multiple pathogenic 

targets (review: Reindl et al., 2006).  The formal demonstration that pathogenic 

autoantibody responses specific for myelin-associated antigens are present in 

certain patients will stimulate a new generation of far more focused studies to 

define their specificity.  The results presented in this thesis suggest these 

demyelinating and/or axopathic autoantibody responses are a specific feature of 

MS, as these activities were not detected in IgG preparations obtained from 

patients with other neurological diseases (mainly Gullian-Barré Syndrome and 

chronic idiopathic demyelinating polyneuropathy) or healthy controls.  Our study 

focussed purely on the pathogenic properties of patient-derived IgG.  A number 

of studies have reported MS specific IgM responses against a number of antigens 

in particular MOG (review: Reindl et al., 2006). Therefore screening of 

alternative immunoglobulin isotypes using our bioassay may be informative.   

It may be anticipated that these responses may ultimately not prove to be 

strictly MS specific, as pathogenic MOG-specific autoantibodies have been 

implicated in the pathogenesis of demyelination in ADEM, whilst neuron-specific 

autoantibodies are implicated in a number of other neurological diseases. 

However, the real significance of this study lies in the implications it has with 

respect to improving the clinical management of MS.  The demonstration that 

antibody-dependent mechanisms are involved in other diseases such as 

myasthenia gravis and NMO has resulted in rapid improvements in diagnosis and 

treatment.  However it is too early to say whether this will also be the case for 
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MS patients found to be seropositive for axopathic and/or demyelinating 

antibodies, but complement inhibitors, high dose IgG, plasma exchange and 

immunoabsorption are just some of the treatments now used to suppress 

antibody-mediated effects in other diseases.  

Which of these treatments may be most appropriate to use in MS patients will 

depend on precisely how these autoantibodies contribute to disease 

pathogenesis.  The focus of this study was complement-mediated effects, but we 

cannot rule out a role for ADCC mediated by microglia or infiltrating monocytes 

and NK cells.  Moreover, in concordance with previous studies (Bornstein and 

Raine, 1970) antibodies can also inhibit myelination and mediate axonal injury in 

the absence of an exogenous source of complement in vitro, but further studies 

are required to assess the potential relevance of these complement independent 

effects in patients. 
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7.3 Future Directions 

The demonstration that some patients with MS develop axopathic and/or 

demyelinating autoantibody responses raises two immediate questions: 

• What is the clinical significance of this response? 

• Which antigens are targeted by these pathogenic responses?  

 

7.3.1 Clinical studies 

Although this pilot study investigated only a small number of patients, a trend 

was detected indicating that pathogenic autoantibody responses were most 

prevalent in patients with steroid non-responsive relapses.  This observation 

suggests that in certain patients these antibodies may have evolved to become 

the dominant mechanism responsible for acute neurological deficits in these 

patients at this particular stage of disease.  However whilst severe steroid non-

responsive relapses are relatively rare, neuropathological studies can be 

interpreted as indicating antibodies are involved in lesion formation in the 

majority of patients (Lucchinetti et al., 2000).  

To resolve this dichotomy the following clinical studies should be carried out: 

• Determine the frequency of pathogenic responses in patients with respect 

to disease duration and clinical subtype e.g. RRMS compared to SPMS etc. 

• Investigate the prognostic significance of these pathogenic autoantibody 

responses.  Long term studies including regular MRI scans and clinical 

investigations will determine if the presence of a high pathogenic antibody titre 

is predictive of a poor prognosis. 

• In patients with severe steroid non-responsive relapses investigate the 

relationship between the presence/titre of pathogenic autoantibodies and 

clinical response to plasma exchange or other treatments that target antibody-

mediated effects. 
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• Investigate potential correlates between lesion immunopathology and 

axopathic and/or demyelinating serum autoantibody responses in patients where 

lesion biopsies are available.  

7.3.2 Identification of target antigens 

Although a pathogenic autoantibody response can now be identified in some 

patients its specificity is unknown.  One approach to resolve this question is to 

use immobilised recombinant antigens to selectively deplete IgG preparations of 

antibody recognising defined candidates such as MOG or Nfasc.  In one case 

(MS5) the axopathic and demyelinating IgG response was completely absorbed by 

recombinant rat Nfasc155, however in the remaining patients this was not the 

case.  It is therefore unlikely that Nfasc155 is a dominant target for pathogenic 

autoantibodies in MS.  Indeed in the absence of evidence that the antibodies 

isolated from this patient bind Nfasc155 in situ the role of this autoantigen in 

disease pathogenesis must be discussed with care.  An alternative approach is to 

use the bioassay to identify populations of seropositive and negative patients 

and then use a proteomics based approach to identify potential candidates 

(review: Fathman et al., 2005). 

The classical method relies on 2D-polyacrylamide gel electrophoresis and 

resolves proteins based on their molecular weight and isoelectric point.  Spots of 

interest are then digested enzymatically and the resulting peptides analysed by 

mass spectrometry. However some proteins are readily resolved by 2D gel 

electrophoresis or are present in the gels at levels below the techniques 

detection threshold. More recently “shotgun” proteomics approaches have been 

introduced in which the composition of immune complexes formed when IgG 

preparations are incubated with a relevant target is analysed by mass 

spectrometry (review: Kinoshita et al., 2006).  The demonstration that isolated 

myelin will absorb pathogenic antibodies present in some patients indicates this 

approach may be applicable to MS.  However it should be stressed this technique 

will not identify a specific target, but rather produce a hierarchy of “hits” for 

each donor.  These will not only (hopefully) include the relevant target(s) but 

also any other molecules that remain associated with the target in the immune 

precipitate plus other non-specific contaminants. It will therefore be important 
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to screen a significant number of patients and define strategies to select and 

validate potential candidates.  

An alternative is microarray based screening of antigen libraries in which IgG 

from patients and appropriate controls are screened against either a panel of 

suspected antigens or the entire proteome expressed and deposited on 

microarray slides.  Disease specific biomarkers are identified by comparing 

patient data to controls [Figure 7.1]. This approach has been used to some 

notable success in other autoantibody mediated diseases including autoimmune 

pancreatitis (Frulloni et al., 2009), alopecia (Lueking et al., 2003), rheumatoid 

arthritis (Lueking et al., 2003).  A number of disease specific biomarkers in 

ovarian (Hudson et al., 2007) and prostate cancer (Wang et al., 2005) and 

Alzheimer’s disease (Reddy et al., 2011) have also been identified using this 

method.  However, this methodology may fail to detect pathologically relevant 

responses to conformation dependent targets.  Moreover, it is also necessary to 

establish validation techniques for each candidate. The importance of this was 

demonstrated by the study reported by Kanter et al. in 2006 that used a lipid 

microarray to screen for disease associated antibody responses in MS.  This study 

identified a disease associated response to sulphatide and then used the 

sulphatide-specific mAb O4 to validate the pathogenic potential of this response.  

It was notable that the pathogenic antibodies identified in the course of this 

project were clearly not sulphatide specific as they spared large numbers of O4+ 

cells in the myelinating cultures.   
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Figure 7.1: Comparative screens of case and control serum to identify disease biomarkers. 

The Y-shaped figures represent IgG antibodies. The figure depicts hypothetical binding of an 
antibody present at high levels in an autoimmune serum sample, but not in a healthy serum 
sample, binding to three molecules on a microarray. After probing with a fluorescently labelled 
secondary antibody, this would produce a much higher intensity at these three spots on the array 
(indicated in by red boxes) after exposure to the autoimmune serum sample than the healthy 
control serum sample.  Figure adapted from Reddy et al. 2011.   

 

 

 

 

 



165 

7.4 Final Conclusions 

Autoantibodies have been implicated in the pathogenesis of MS for many years. 

The data presented in this thesis provides formal evidence that this response 

actually exists by identifying axopathic and/or demyelinating autoantibodies in a 

subset of MS patients. This is an extremely important observation which 

enhances our conceptual understanding of the pathogenesis of MS and certainly 

warrants further investigation. Identifying autoantibody responses specific to MS 

will have great implications in the clinical management of the disease ranging 

such as their use as diagnostic or prognostic markers. From the results of studies 

on the role and clinical significance of AQP-4 specific antibodies in NMO we 

predict that this will be a complex undertaking. However I am confident that 

advances in laboratory techniques, as well as our conceptual understanding of 

the disease will clarify the role of antibody-dependent mechanisms in MS within 

the next ten years. 
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Appendix 

Materials 

All reagents were purchased from Sigma-Aldrich (Dorset, UK) unless otherwise 
stated. 

General buffers & solutions 

Phosphate buffered saline (10X) 

1.4M NaCl (80g) 

0.015M KH2PO4 (2g) 

0.027 KCl (2g) 

0.19M Na2HPO4.2H2O (29g) 

Made up to 1L with dH2O and diluted 1 in 10 for use. 

 

Sodium Hydroxide (1M) 

Dissolve 40g sodium hydroxide pellets in 1L distilled H2O. 

 

Hydrochloric acid (1M) 

Slowly add 88.8ml concentrated hydrochloric acid to 900ml 
distilled H2O.  After addition of acid make up to 1L with 
distilled H2O.   

 

Immunocytochemistry 

Paraformaldehyde solution (4%) 

Paraformaldehyde (4g) 

Add 1M NaOH until solution becomes clear.   

Make up to 100ml with 1x PBS and store in 5ml aliquots at -
20°C.   

 

Bouins fixative 

Saturated picric acid (30ml)  

Formaldehyde (10ml) 

Glacial acetic acid (2ml)  
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0.5% Triton X-100 

Solubilise 0.5ml triton X-100 in 100ml distilled H2O and store 
at 4°C.  

 

Blocking Buffer 

1% Bovine serum albumin (1g)  

10% Normal Goat Serum (10ml) 

0.3M glycine (2.3g) 

Make up to 100ml with 1x PBS and stored in 5ml aliquots at -
20°C.   

 

ELISA 

Wash buffer 

0.05% Tween-20 (0.5ml)  

Make up to 1L with 1X PBS.   

 

Secondary antibodies 

Horseradish peroxidase conjugated secondary antibodies 
were purchased from Invitrogen (UK).    

 

Citric Acid (0.1M) 

Dissolve 21g sodium citrate in 1L distilled H2O. 

 

Sodium Phosphate (0.2M) 

Dissolve 28.4g in 1L distilled H2O.   

 

Substrate solution 

1 substrate tablet OPD  

28ml 0.1M Citric acid  

32ml 0.2M Na2HPO4  

Once the tablet has fully dissolved, add 20µl H2O2 to activate 
prior to use keep at 4°C and protect from light.   
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Sulphuric acid (4M) 

Slowly add of 222ml concentrated sulphuric acid (95-98%) to 778ml of dH2O.   

 

SDS-PAGE 

Resolving gel buffer (4X) 

250ml 1.5M Tris pH 8.8  

10ml 10% SDS 

400ml dH2O 

10% SDS (w/v) 

Add 100g SDS in 900ml dH2O and heat to 68°C to dissolve the 
crystals.  Adjust to pH 7.2 with 1N HCl and make to 1L. 

 

10% APS (w/v) 

Add 1g ammonium persulphate in 10ml dH2O.  Store at -
20°C. 

 

Stacking gel buffer 

250ml 1.5M Tris pH 6.8  

10ml 10% SDS 

400ml dH2O 

 

Resolving gel (15%) 

5ml 40% acrylamide/bis solution 19:1 (Biorad, USA) 

2.5ml 4X resolving gel buffer 

2.39ml dH2O  

100µl 10% APS 

10µl TEMED 

 

Stacking gel (6%) 

1.3ml 40% acrylamide/bis solution 19:1 (Biorad, USA) 

2.5ml stacking buffer 
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6.1ml dH2O 

 

Sample loading buffer (3X) 

2.4ml 1M tris-HCl pH 6.8 

3ml 20% SDS 

3ml 100% glycerol 

1.6ml β- mercaptoethanol 

0.006g bromophenol blue  

Store at 4°C.   

 

Running buffer (10X) 

30.3g Tris base 

144g glycine 

10g SDS 

Make up to 1L with dH2O 

 

Protein G affinity chromatography 

Binding buffer 

20mM NaH2PO4 (137g) 

Make up to 500ml with dH2O and adjust to pH7 using 1M 
NaOH.  

 

Elution Buffer  

0.1M glycine (75g) 

Make up to 500ml with dH2O and adjust to pH3 using 1N HCl. 

 

Tris-HCl (1M) 

Dissolve 60.5g tris base in 500ml with dH2O and adjust to 
pH9 using 1N HCl.   
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Primers 

Nfasc155 (Forward): 5`-CAGTGGAACCGCGTCTACTC 

Nfasc155 (Reverse): 5`- ACCACAACCATCTCCAGCTT 

Nfasc186 (Forward): 5`- TCTCCCTCAGTGCCAGGAC 

Nfasc186 (Reverse): 5`-TGGGATAGATGGGAACTGTTG 

ß-actin (Forward): 5`-TTGTAACCAACTGGGACGATATGG 

ß-actin (Reverse): GATCTTGATCTTGATGGTGCTGCTAGG 

 

Myelin purification 

Sucrose (0.32M) 

Dissolve 109.5g of sucrose in 1L distilled H2O with 1x 
protease inhibitor cocktail. 

 

Sucrose (0.80M)  

Dissolve 273g of sucrose in 1L distilled H2O 1x protease 
inhibitor cocktail.     

 

Cell culture stock solutions 

Poly-L-lysine 

25mg of poly-L-lysine hydrobromide  

Dissolve in 6.25ml sterile H2O.  Sterilise by filtering through 
a 0.22µ filter and store at -20°C in 66µl aliquots. 

For coating flasks/ coverslips add one aliquot/20ml.  Ensure 
flasks/coverslips are thoroughly rinsed and air dried before 
use.   

 

Collagenase 

Dissolve 20mg collagenase (Invitrogen, UK) to 20ml Leibovitz 
L-15 media (Invitrogen).  Sterilize using a 0.22µ filter and 
store at -20°C.   
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SD (soybean trypsin inhibitor) 

Dissolve 13mg trypsin inhibitor (soybean), 1mg DNAse I 
(bovine pancreas) and 75mg BSA fraction V in 25ml Leibovitz 
L-15 media (Invitrogen). Sterilize using a 0.22µ filter and 
store at -20°C.    

 

 

Glial cell culture media 

Neurosphere media 

Glucose (30%) 

Dissolve 30g of D-glucose to 100ml sterile H2O with constant 
stirring.  Filter sterilise through a 0.22µ filter and store at -
20°C.   

 

Sodium hydrogen carbonate (7.5%) 

Gradually dissolve 7.5g NaHCO3 to 100ml sterile H2O.  Filter 
sterilise through a 0.22µ filter and store at -20°C.     

 

DMEM/F12 (10X) 

Measure 400ml sterile H2O in to a sterile 1 litre beaker. 
Dissolve 1 pot of DMEM powder (high glucose, Invitrogen), 
which usually makes up 5 litres and allow to fully dissolve.  
To this mix add 5 pots of F12 (usually 1L/pot) (Invitrogen).  
Bring final volume up to 500ml and filter through a 0.22µ 
filter and store at -20°C.   

 

Hepes (1M) 

Dissolve 23.8g HEPES and add to 80ml sterile H2O, once fully 
dissolved bring final volume up to 100ml.  Sterilise by 
filtration through a 0.22µ filter and store at -20°C.     

Putrescine 

Weigh 96.6mg putrescine and add to 100ml of sterile H2O 
once dissolved store in 25ml aliquots at -20°C.   
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Selenium 

Dissolve 1mg sodium selenate in 1.93ml sterile H2O (3mM) 
and store at -20°C.   

Progesterone 

Dissolve 1mg progesterone in 1.59ml 95% ethanol and store 
at -20°C. 

 

Hormone mix (10X)  

Firstly prepare 1X DMEM/F12 as follows: 

10X DMEM/F12  25ml 

30% Glucose   5ml 

7.5% NaHCO3   3.75ml 

1M Hepes   1.25ml 

Sterile H2O   187.5ml 

To this solution add: 

250mg apo-human transferrin 

6.25ml human insulin (recombinant) 

25ml 600µM putrescine (final concentration 60µM) 

25µl 3mM sodium selenate 

25µl progesterone 

 

Epidermal growth factor (EGF) 

Dissolve 1mg of recombinant murine EGF (Peprotech) in 1ml 
of sterile H2O store at -20°C.  Use at a final concentration of 
4ng/ml (4µl EGF/ 20ml neurosphere media).     

 

Neurosphere media 

Neurosphere media 

Sterile H2O   185ml 

DMEM/F12 (x10)  25ml 

Hormone Mix (x10)  25ml 

30% Glucose    5ml 

7.5% NaHCO3   3.75ml 

1M HEPES   1.25ml 

L-Glutamine (200mM) 2.5ml 
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Astrocyte growth media 

Astrocyte Media (DMEM + 10% FBS) 

DMEM (1g/L glucose, Invitrogen)  179ml 

Foetal bovine serum    20ml 

L-Glutamine (200mM)   1ml 

 

Plating media  

Plating Media 

DMEM (4.5g/L glucose) 50ml 

Horse Serum   25ml 

HBSS    25ml 

 

Differentiation media (DM)  

Biotin 

To make a 1mg/ml stock: dissolve 100mg biotin in 100ml 1M 
NaOH.  Dilute 1 in 100 with sterile H2O, filter using a 0.22µ 
filter and store at -20°C.  Use at a final concentration of 
10µg/ml.  

 

Hydrocortisone 

Dissolve 100mg of hydrocortisone (H2O soluble form) in 
27.6ml sterile H2O.  Dilute 1 in a 1000 by adding 20µl to 
19.88ml of sterile H2O to create a 10µM stock.  Filter 
through a 0.22µ filter and store in 250µl aliquots at -20°C.   

 

Insulin 

Dissolve 100mg insulin (bovine pancreas) in 200ml 10mM 
HCl/H2O (final concentration 500µg/ml).  Filter through a 
0.22µ filter and store in 2ml aliquots at -20°C.  Use at a final 
concentration of 10µg/ml (1ml/ 50ml media). 

 

N1 supplement (100X) 

N1 supplement containing:  0.5 mg/ml human transferrin 
(partially iron-saturated), 0.5 µg/ml sodium selenite, 
1.6 mg/ml putrescine, and 0.73 µg/ml progesterone.  
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Differentiation media 

Differentiation media + Insulin (50ml) 

DMEM (4.5g/L glucose) 47.25ml 

Biotin (1mg/ml)  50µl 

N1 Supplement (100X) 500µl 

Hydrocortisone (10µM) 250µl 

Insulin (0.5mg/ml)  1ml 

 

Differentiation media – Insulin (50ml) 

DMEM (4.5g/L glucose) 48.2ml 

Biotin (1mg/ml)  50µl 

N1 Supplement (100X) 500µl 

Hydrocortisone (10µM) 250µl 

 

 

Hybridoma cell culture media 

Z2 and 8-18C5 hybridoma 

RPMI complete + 10% FBS 

RPMI (1640)    429.5ml 

Foetal bovine serum  50ml 

L-glutamine (200mM)  5ml 

Non-essential aas (100X)  5ml 

Penicillin/streptomycin  5ml 

Sodium Pyruvate (100mM)  5ml 

β- mercaptoethanol (50mM) 500µl 

 

 

 

A12/18.1 hybridoma 

DMEM complete + 10% FBS 

DMEM (4.5g/L glucose, Invitrogen) 424.5ml 

Foetal bovine serum   50ml 

L-glutamine (200mM)   5ml 

Non-essential aas (100X)   5ml 
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L-Asparagine (2.5M)    5ml 

Sodium Pyruvate (100mM)   5ml 

Penicillin/streptomycin   5ml 

β- mercaptoethanol (50mM)  500µl 

 

Transfected cell media 

Untransfected HeLa cells 

DMEM complete + 10% FBS 

DMEM (4.5g/L glucose)   429.5ml 

Foetal bovine serum   50ml 

L-glutamine (200mM)   5ml 

Non-essential aas (100X)   5ml 

Sodium Pyruvate (100mM)   5ml 

Penicillin/streptomycin   5ml 

β- mercaptoethanol (50mM)  500µl 

 

 

Transfectants 

DMEM complete + 10% FBS with G418 

DMEM (4.5g/L glucose)   429.5ml 

Foetal bovine serum   50ml 

L-glutamine (200mM)   5ml 

Non-essential aas (100X)   5ml 

Sodium Pyruvate (100mM)   5ml 

Penicillin/streptomycin   5ml 

G418       5ml 

β- mercaptoethanol (50mM)  500µl 
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Statistics 

All calculations were performed using Microsoft Excel.  Values were calculated 

using the formulae defined below;  

Mean 

 

Standard deviation 

 

Standard error of the mean (S.E.M) 

 

T-Test 

 

Coefficient of Variance 
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Myelin Quantification Macro (written by John Annan) 

//set the thresholds here 

thresh_red = 33; 

thresh_green = 79; 

thresh_blue = 128; 

 

//get the name of the open image, and the folder it came from 

iTitle=getTitle; 

imageDirectory = getDirectory("image"); 

print (imageDirectory); 

print ("Image name,Red Black,Red White,Green Black,Green 

White,Blue Black,Blue White") 

 

//build a list of all images in the folder 

fList=getFileList(imageDirectory); 

selectWindow(iTitle); 

run("Close"); 

 

//start the loop to open files 

for (i=0; i<fList.length; i++){ 

 //check that file is a valid image 

 if (endsWith(fList[i],"tif")) { 

 //if it is valid, open it 

 open(imageDirectory + fList[i]); 

 

 //build names of colour component images 

 iTitle=getTitle; 

 iTitleRed=iTitle + " (red)"; 

 iTitleGreen=iTitle + " (green)"; 

 iTitleBlue=iTitle + " (blue)"; 

 

 

 //split image into colour components 

 run("RGB Split"); 

 

 //get red and blue areas and threshold 

  

 string="image1=["+iTitleGreen + "] operation=AND 

image2=[" + iTitleBlue+"] create"; 

 run("Image Calculator...", string); 

 iTitleAND = getTitle; 

 setThreshold(thresh_blue, 255); 

 run("Threshold", "thresholded remaining black"); 

 run("Invert"); 

 

 //measure areas 

    getStatistics(area, mean, min, max, std, histogram); 

 n_blue_black=histogram[0]; 

 n_blue_white=histogram[255]; 

 

 //close windows 

 selectWindow(iTitleAND); 
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 run("Close"); 

 selectWindow(iTitleBlue); 

 run("Close"); 

 

 

 //get red threshold 

 selectWindow(iTitleRed); 

 setThreshold(thresh_red, 255); 

 run("Threshold", "thresholded remaining black"); 

 run("Invert"); 

 

 //measure areas 

    getStatistics(area, mean, min, max, std, histogram); 

 n_red_black=histogram[0]; 

 n_red_white=histogram[255]; 

 

 selectWindow(iTitleRed); 

 run("Close"); 

 

 //get green threshold 

 selectWindow(iTitleGreen); 

 setThreshold(thresh_green, 255); 

 run("Threshold", "thresholded remaining black"); 

 run("Invert"); 

 

 //measure areas 

    getStatistics(area, mean, min, max, std, histogram); 

 n_green_black=histogram[0]; 

 n_green_white=histogram[255]; 

 

 selectWindow(iTitleGreen); 

 run("Close"); 

  

 //display results 

 print 

(iTitle+","+n_red_black+","+n_red_white+","+n_green_black+","

+n_green_white+","+n_blue_black+","+n_blue_white); 

 

 } 

} 
 


