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Abstract 

Research in silicon photonics has recently seen a significant push to develop complete silicon-

based optical components for optical communications. Silicon has shown its potential to 

overcome the bandwidth limitations of microprocessor interconnect, whereas, the silicon 

platform has already displayed the benefits of low manufacturing costs and CMOS 

compatibility. The work on “gated lateral silicon p-i-n junction photodiodes” has demonstrated 

the silicon potential, to detect optical radiations, compatibility to standard CMOS process flow 

and tuneable spectral response. The lateral structure of gated p-i-n junction photodiodes 

contributes to high responsivity to short wavelength radiations in these single and dual gate 

devices. 

The final objective of this work was to develop high responsivity, CMOS-compatible silicon 

photodiodes, where the spectral response can be modulated. The lateral p-i-n junction 

architecture led to high responsivity values, whereas, the MOS gate structure became the basis 

for tuneable spectral response. The MOS gate structure, made the devices appear as a 

transistor to the surrounding circuitry and the gate structure in dual gate devices can be used to 

modulate the spectral response of the device. Single gate devices showed higher responsivity 

values and comparatively high blue and ultraviolet (UV) response as compared to 

conventional photodiodes. Surface depletion region in these devices is utilized by placing a 

MOS gate structure and by patterning an integrated metal grating to detect polarized light. 

Single and dual gate devices with two variations were fabricated to characterise the device 

response. Novel lateral architecture of p-i-n junction photodiodes provides a surface depletion 

region. It is generally anticipated that photodetectors with surface depletion region might 

produce higher noise. In these devices the surface depletion region has a lateral continuation 

of gate dielectric which acts as a passivation layer and thus considerably reduced the noise. 

Physical device modelling studies were performed to verify the experimentally obtained 

results, which are provided in the relevant measurement chapters. In these devices the speed of 

operation is a compromise over the high responsivity, CMOS compatibility and tuneable 

spectral response.   



v 

 

List of Publications 

From this research work 

Published Papers 

1. Kamran Abid, and Faiz Rahman, Gated Lateral p-i-n Junction Device for Light 

Sensing. Photonics Technology Letters, IEEE. 23(13): p. 911-913. [Journal Paper] 

2. Kamran Abid, and Faiz Rahman, High spectral responsivity gated silicon photodiodes. 

UK Semiconductors 2011, University of Sheffield, UK. p. 117. [Conference Paper] 

Submitted Papers (Under review) 

3. Kamran Abid and Faiz Rahman, High Responsivity Gated Silicon p-i-n Photodiode 

with Enhanced Blue and Ultraviolet Response. Submitted to Applied Physics-B. 

{Under Review} 

4. Kamran Abid and Faiz Rahman, Gated Silicon p-i-n Photodiode with Enhanced Blue 

and Ultraviolet Response. Submitted to Sensors and Actuators. {Under Review} 

5. Kamran Abid and Faiz Rahman, Optical polarization detection by a lateral p-i-n 

photodiode with integrated metal grating. Submitted to Applied physics B. 

6. Kamran Abid, Faiz Rahman, Chris Park, Xingsheng Wang, Gate bias-induced 

modulation of spectral responsivity in lateral p-i-n photodiodes. Submitted to Applied 

Physics Letters. 

Other Publications 

7. Chee Heng Teo, Nireeksha S. Karode, Kamran Abid, Faiz Rahman, Interfacial 

behaviour of polyaniline as an organic electronic material. Journal of physics and 

chemistry of solids. 72 (2011) page 886–890. [Journal Paper] 

8. Faiz Rahman, Kamran Abid, Schmidt, C., Pfaff, G. and Koenig, , Interference pigment 

coated solar cells for use in high radiant flux environments, in International 

Conference on Green Energy and Sustainability 2009. 2009: Amman, Jordan. 

[Conference Paper] 



vi 

 

Acknowledgement 

First and foremost, I would like to thank my supervisor, Dr. Faiz Rahman, for having made 

this research work into a possibility. His continuous encouragement, technical guidance and 

psychological support for more than three years, is invaluable for me. I am thankful to my 

second supervisor Prof. John M. Weaver, whose guidance helped me to mature from a 

scientific point of view. Thanks a lot to both of you. 

My presence here to undertake this research work was made possible due to generous financial 

assistance from Higher Education Commission (HEC) of Pakistan and University of the 

Punjab, Lahore – Pakistan, to which I belong. I acknowledge with gratitude, the financial 

assistance from these two institutions. 

I am particularly thankful to my office mates Muhammad Azhar Naeem, Jehan Akbar, Shahid 

Mahmood, Maria Carla Camasta, Vincenzo Pusino, Olesya Ignatova, Wout Jansen and 

Samina for constructive discussions and suggestions. Cheers guys. I am particularly thankful 

to Dr. Xingsheng Wang from device modelling group for device simulations, Scott Watson 

and Sulaiman Al-Hasani, for their assistance. 

Thanks Prof. Douglas Paul, Dr. Barry Holmes, Dr. Corrie Farmer, Dr. James P. Grant and Dr. 

Richard Oxland for valuable discussions. Thanks to Dr. Stephen Thoms and Dr. Douglas 

Macintyre for establishing the James Watt Nanofabrication Centre (JWNC) a place where 

good fabrication can be made, and my gratitude to the staff of the JWNC for their 

professionalism, availability and help. It would be unjustified, not to name Donold, Linda, 

Helen, Mary, Eve, Tom and Dougie. Thanks a lot. 

I am particularly thankful to my parents for their continuous support in every moment of my 

life, right from the childhood to date. For everything you did, for all the suggestions, prayers 

and love. You are really special to me! I am thankful to my brothers, Irfan Abid and Adnan 

Abid and my sister Imrana Imran, for their exceptional love, help and support throughout my 

life. Finally I am grateful to my wife, Zanira and my two kids, Abdul Muqeet Abid and 

Muhammad Junaid Abid for their love, understanding and particularly the balance they have 

provided me during the term of my studies. Mrs, special thanks for psychologically supporting 

me in the hard moments when everything seemed so difficult to me. I miss you all.  



vii 

 

Table of Contents 

   Declaration of Authorship                   ii 

    Abstract                    iv 

    List of Publications                    v 

    Acknowledgement                  vi 

    Table of Contents                 vii 

    List of Figures                xiii 

    Symbol Table                 xix 

    Dedication                  xxi 

 

Chapter 1 ............................................................................................................................. 1 

1. Existing Scenario .......................................................................................... 1 

1.1. Device Functionality ..................................................................................... 3 

1.2. Gated Structures Reported in Literature ....................................................... 4 

1.3. Use of Near-intrinsic Material ...................................................................... 4 

1.4. Aims of the Project........................................................................................ 5 

1.5. References ..................................................................................................... 7 

Chapter 2 ............................................................................................................................. 9 

2. Introduction ................................................................................................... 9 

2.1. Types of detectors ....................................................................................... 10 

2.1.1. Photon Detectors ......................................................................................... 10 

2.1.2. Thermal Detectors ....................................................................................... 10 

2.1.3. Coherent Receivers ..................................................................................... 10 

2.2. Semiconductor Materials ............................................................................ 11 

2.3. Semiconductor Photo-detectors .................................................................. 12 

2.3.1. Performance Characteristics........................................................................ 15 

2.3.1.1. Quantum Efficiency .................................................................................... 15 

2.3.1.2. Spectral Response ....................................................................................... 16 

2.3.1.3. Linearity ...................................................................................................... 17 

2.3.1.4. Dynamic Range ........................................................................................... 17 

2.3.1.5. Noise ........................................................................................................... 17 

2.3.1.6. Temporal Response ..................................................................................... 18 

2.3.1.7. Frequency Response.................................................................................... 18 



viii 

 

2.3.1.8. Capacitance ................................................................................................. 18 

2.3.2. Photoconductors .......................................................................................... 19 

2.3.2.1. Intrinsic Photoconductor ............................................................................. 19 

2.3.2.2. Extrinsic Photoconductors .......................................................................... 21 

2.3.3. pn-Junctions ................................................................................................ 23 

2.3.3.1. pn-Junction Capacitance ............................................................................. 27 

2.3.4. Photodiodes ................................................................................................. 28 

2.3.4.1. Photoconductive Mode................................................................................ 30 

2.3.4.2. Photovoltaic Mode ...................................................................................... 31 

2.3.5. p-i-n Photodiode .......................................................................................... 31 

2.3.6. Avalanche Photodiode ................................................................................ 33 

2.3.6.1. Multiplication Process ................................................................................. 34 

2.3.6.2. Multiplication Noise ................................................................................... 35 

2.3.7. Schottky Photodiodes .................................................................................. 36 

2.4. Charge Coupled Device .............................................................................. 37 

2.5. References ................................................................................................... 38 

Chapter 3 ........................................................................................................................... 39 

3. Introduction ................................................................................................. 39 

3.1 Silicon-based Photodetectors ...................................................................... 41 

3.1.1 Silicon Carbide UV Photodetectors ............................................................ 45 

3.1.2 Metal-semiconductor-metal Photodiodes.................................................... 48 

3.1.3 Avalanche photodiodes ............................................................................... 49 

3.2 Lateral pn-Junction Photodiodes ................................................................. 50 

3.3 Gated pn-junction Photodiodes ................................................................... 50 

3.4 Black Silicon ............................................................................................... 52 

3.5 References ................................................................................................... 56 

Chapter 4 ........................................................................................................................... 61 

4 Introduction ................................................................................................. 61 

4.1 Material for Device Fabrication .................................................................. 62 

4.2 General Considerations ............................................................................... 63 

4.3 Fabrication of Lateral p-i-n Photodiode ...................................................... 64 

4.3.1 Process Flow ............................................................................................... 64 

4.3.1.1 Oxidation and Diffusion .............................................................................. 65 

4.3.1.2 Growth of Gate Dielectric and Contact Metallization ................................ 67 

4.3.1.3 Offset and Centre Single Gate Devices Processing .................................... 68 

4.3.1.4 Normal and Overlapping Dual Gate Devices.............................................. 68 



ix 

 

4.3.1.5 Grating Structure Patterning ....................................................................... 69 

4.4 Fabrication Procedures ................................................................................ 70 

4.4.1 Substrate Cleaning ...................................................................................... 70 

4.4.2 Forming the Oxide Layer ............................................................................ 71 

4.4.2.1 Factors Affecting Oxidation Rate ............................................................... 72 

4.4.3 Lithography ................................................................................................. 75 

4.4.3.1 Photolithography ......................................................................................... 76 

4.4.3.1.1 Positive Resist ............................................................................................. 76 

4.4.3.1.2 Negative Resist............................................................................................ 76 

4.4.3.2 Resist coating .............................................................................................. 77 

4.4.3.3 Mask Alignment and Exposure ................................................................... 78 

4.4.3.4 Development ............................................................................................... 78 

4.4.3.5 Electron Beam Lithography ........................................................................ 79 

4.4.3.5.1 Resist Coating ............................................................................................. 79 

4.4.3.5.2 Exposure ...................................................................................................... 79 

4.4.3.5.3 Development ............................................................................................... 80 

4.4.4 Diffusion ..................................................................................................... 81 

4.4.4.1 Thermal Diffusion ....................................................................................... 81 

4.4.5 Etching ........................................................................................................ 83 

4.4.5.1 Dry Etching ................................................................................................. 83 

4.4.5.2 Wet Etching ................................................................................................. 85 

4.4.6 Metallization ............................................................................................... 86 

4.4.7 Lift-off ......................................................................................................... 87 

4.4.8 Device Isolation .......................................................................................... 88 

4.4.8.1 Techniques .................................................................................................. 88 

4.4.8.1.1 pn – Junction Isolation ................................................................................ 89 

4.4.8.1.2 Mesa Isolation ............................................................................................. 89 

4.4.8.1.3 Oxide (dielectric) Isolation ......................................................................... 89 

4.5 Device Isolation for Surface Gated Photo-Detector.................................... 90 

4.6 References ................................................................................................... 91 

Chapter 5 ........................................................................................................................... 92 

5. Introduction ................................................................................................. 92 

5.1. p-i-n Junction Diode .................................................................................... 95 

5.2. Offset Single Gate Lateral p-i-n Photodiode ............................................... 95 

5.2.1. Device Design ............................................................................................. 96 

5.2.2. Operating Mechanism and Characteristics.................................................. 97 



x 

 

5.2.3. Experimental Setup ..................................................................................... 99 

5.2.4. Electrical Response ..................................................................................... 99 

5.2.4.1. Forward and Reverse Bias Characteristics .................................................. 99 

5.2.4.2. Current – voltage (I-V) Characteristics ..................................................... 101 

5.2.4.3. Transconductance ...................................................................................... 102 

5.2.5. Optical Response ....................................................................................... 103 

5.2.5.1. Optical and Electrical Transfer Characteristics......................................... 106 

5.2.5.2. Spectral Responsivity ................................................................................ 108 

5.2.6. Noise Measurements ................................................................................. 110 

5.3. Centre Single Gate Lateral p-i-n Photodiode ............................................ 111 

5.3.1. Device Design ........................................................................................... 112 

5.3.2. Operating Mechanism and Characteristics................................................ 113 

5.3.3. Electrical Response ................................................................................... 114 

5.3.3.1. Current – Voltage (I-V) Characteristics .................................................... 114 

5.3.3.2. Transconductance ...................................................................................... 115 

5.3.4. Optical Response ....................................................................................... 116 

5.3.4.1. Optical and Electrical Transfer Characteristics......................................... 119 

5.3.4.2. Spectral Responsivity ................................................................................ 121 

5.3.5. Noise Measurements ................................................................................. 121 

5.4. Conclusion ................................................................................................ 122 

5.5. References ................................................................................................. 123 

Chapter 6 ......................................................................................................................... 126 

6 Introduction ............................................................................................... 126 

6.1 Device Design ........................................................................................... 128 

6.1.1 Normal Dual Gate Lateral p-i-n photodiode ............................................. 128 

6.1.2 Overlapping Dual Gate Lateral p-i-n Photodiode ..................................... 130 

6.2 Device Operation ...................................................................................... 131 

6.2.1 Device Simulation ..................................................................................... 131 

6.2.1.1 Wavelength and Penetration Depth ........................................................... 133 

6.2.1.2 Gate Bias-induced Change in Carrier Density of Accumulation Layer .... 133 

6.3 Normal Dual Gate Device Operation ........................................................ 134 

6.4 Normal Dual Gate Device Characteristics ................................................ 135 

6.4.1 Electrical Response ................................................................................... 135 

6.4.1.1 Current-Voltage Characteristics (dark) ..................................................... 135 

6.4.1.2 Transconductance ...................................................................................... 136 

6.4.2 Optical Response ....................................................................................... 137 



xi 

 

6.4.2.1 Optical and Electrical Transfer Characteristics......................................... 141 

6.4.2.2 Responsivity as a Function of Gate Bias .................................................. 143 

6.4.2.3 Spectral Responsivity ................................................................................ 143 

6.4.3 Noise Measurements ................................................................................. 144 

6.5 Overlapping Dual Gate Device Operation ................................................ 145 

6.6 Overlapping Dual Gate Device Characteristics ........................................ 145 

6.6.1 Electrical Response ................................................................................... 146 

6.6.1.1 Current-Voltage Characteristics ................................................................ 146 

6.6.1.2 Transconductance ...................................................................................... 147 

6.6.2 Optical Response ....................................................................................... 147 

6.6.2.1 Light Intensity to Gate Bias Correlation ................................................... 151 

6.6.2.2 Optical and Electrical Transfer Characteristics......................................... 152 

6.6.2.3 Responsivity as a Function of Gate Bias .................................................. 153 

6.6.2.4 Spectral Responsivity ................................................................................ 154 

6.6.3 Noise Measurements ................................................................................. 155 

6.6.4 Device Applications .................................................................................. 155 

6.7 Conclusion ................................................................................................ 156 

6.8 References ................................................................................................. 157 

Chapter 7 ......................................................................................................................... 158 

7. Introduction ............................................................................................... 158 

7.1. Polarization of Light ................................................................................. 159 

7.2. Device Design and Fabrication ................................................................. 160 

7.3. Measurement Setup ................................................................................... 163 

7.4. Device Characterization ............................................................................ 164 

7.4.1. Forward Bias IV Characteristics ............................................................... 164 

7.4.2. Reverse Bias IV Characteristics ................................................................ 165 

7.4.3. Polarization Sensitivity Characteristics..................................................... 166 

7.5. Conclusion ................................................................................................ 170 

7.6. References ................................................................................................. 171 

Chapter 8 ......................................................................................................................... 172 

8. Introduction ............................................................................................... 172 

8.1. Summary ................................................................................................... 173 

8.2. Future Directions ....................................................................................... 175 

8.2.1. Structural Change in Single Gate Devices ................................................ 175 

8.2.2. Expanding Lateral p-i-n Structure to an Array ......................................... 176 

8.2.2.1. p-i-n Junction Photodiode Array to Detect the Plane of Polarization ....... 177 



xii 

 

8.2.2.2. 2D Array of Gated Lateral p-i-n Photodiodes ........................................... 177 

8.2.2.3. Thermal Imaging Array............................................................................. 179 

8.2.3. Mesa p-i-n Photodiode Structure .............................................................. 181 

8.2.4. Interdigitated Structure for Illumination Positioning ................................ 183 

8.3. References ................................................................................................. 184 

Appendix – 1   Fabrication Process Sheet ................................................................ 185 

 

  



xiii 

 

List of Figures 

Figure 1.1: Electromagnetic radiation spectrum ......................................................................... 3 

Figure 2.1: Optical absorption curves for common elemental and compound semiconductor 

materials. [3] ........................................................................................................ 14 

Figure 2.2: Spectral response of silicon. ................................................................................... 16 

Figure 2.3:  Intrinsic Photoconductor [8] .................................................................................. 19 

Figure 2.4:  Variation of electron mobility in silicon with temperature and impurity 

concentration ........................................................................................................ 20 

Figure 2.5:  Photoconductors and transverse contacts [2]......................................................... 21 

Figure 2.6:  Extrinsic Photoconductor [2] ................................................................................. 22 

Figure 2.7:  (a) p and n regions before contact, (b) p and n regions after contact, (c) 

Visualization of potential before contact and (d) Development of a contact 

potential and band diagram .................................................................................. 24 

Figure 2.8:  Current-Voltage (I-V) Characteristics of a silicon pn-junction ............................. 25 

Figure 2.9: pn-junction under unbiased, forward and reverse biased configuration ................. 27 

Figure 2.10: Drift and diffusion of photo-generated electron-hole pairs in reverse bias pn-

junction ................................................................................................................ 29 

Figure 2.11: Ideal current-voltage characteristics with three different incident optical powers.

 ............................................................................................................................. 30 

Figure 2.12: Photoconductive mode operation ......................................................................... 31 

Figure 2.13:  Photovoltaic Mode ............................................................................................... 31 

Figure 2.14:  p-i-n junction diode and its energy band diagram ............................................... 32 

Figure 2.15:  Standard APD ...................................................................................................... 33 

Figure 2.16:  Avalanche Multiplication process in APDs [8] ................................................... 35 

Figure 2.17: Schottky photodiode ............................................................................................. 36 

Figure 3.1: The responsivity of a black-silicon detector [50]. .................................................. 53 

Figure 3.2: .The absorption depth in standard silicon detectors [50]. ....................................... 54 

Figure 4.1: Sequence of process explaining Silicon Dry etch. ................................................. 65 

Figure 4.2: Oxidation & selective diffusion process (Phosphorous) ........................................ 66 

Figure 4.3: Oxidation & selective diffusion (Boron) ................................................................ 66 

Figure 4.4: p,n and back contacts metallization. ....................................................................... 67 



xiv 

 

Figure 4.5: Offset and Centre Single Gate Fabrication steps .................................................... 68 

Figure 4.6: Dual Gate and Overlapping Dual gate Processing steps. ....................................... 69 

Figure 4.7: Patterning the grating structure............................................................................... 70 

Figure 4.8: Schematic diagram of oxidation Furnace [5]. ........................................................ 72 

Figure 4.9: Dry oxide growth at n
+
, π and p

+
 regions. .............................................................. 73 

Figure 4.10: For <100> crystal orientation [6] ......................................................................... 74 

Figure 4.11: For <111> crystal orientation [6]. ........................................................................ 74 

Figure 4.12: Development of positive and negative photo-resist [8] ........................................ 77 

Figure 4.13: Schematic illustration of diffusion process. ......................................................... 82 

Figure 4.14: Isotropic and An-isotropic etch profile ................................................................. 84 

Figure 4.15: SEM micrograph of silicon dry etch with (a) HPTEST 4 and (b) RYT-1recipe. . 85 

Figure 4.16: Basic mechanism in wet chemical etching [3]. .................................................... 85 

Figure 4.17: Contact metal and gate dielectric.......................................................................... 88 

Figure 4.18: Oxide isolation scheme. ........................................................................................ 90 

Figure 5.1: Conventional vertical p-i-n diode ........................................................................... 95 

Figure 5.2: Three dimensional schematic view of device geometry showing the gate and 

contact regions. .................................................................................................... 96 

Figure 5.3: Schematic diagram of the offset single gate photo-detector showing both the lateral 

doping profile and the placement of the MOS gate ............................................. 98 

Figure 5.4: (a) SEM micrograph of the offset single gate photo detector (b) SEM micrograph 

on the highlighted gate region. ............................................................................ 98 

Figure 5.5: Forward bias characteristics of offset p-i-n photo detector. ................................. 100 

Figure 5.6: Reverse bias characteristics (dark current) of an offset p-i-n diode. .................... 100 

Figure 5.7: Current-voltage (I-V) characteristics of the offset gate device at different gate 

voltages. ............................................................................................................. 101 

Figure 5.8: IDS –VDS plot of the device for VDS = 10 V. This was taken in the dark. ............. 102 

Figure 5.9: Spectrum of red LED centred at 630 nm wavelength (b) Spectrum of blue LED 

centred at 480 nm wavelength. .......................................................................... 103 

Figure 5.10: Optical response of the device with (a) red and (b) blue light at 0 V VGS. ........ 104 

Figure 5.11: Transistorized optical measurements with (a) fixed red light intensity and (b) 

fixed blue light intensity. ................................................................................... 105 

Figure 5.12: Light intensity to gate-source bias correlation in offset single gate p-i-n photo-

detector. (a) with red light (b) with blue light. ................................................... 105 



xv 

 

Figure 5.13: Optical output characteristics of the device, taken at VGS = -2 V and at various red 

and blue light powers. ........................................................................................ 106 

Figure 5.14: (a) Optical transfer characteristics and (b) Electrical transfer characteristics of the 

device. ................................................................................................................ 107 

Figure 5.15: (a) Optical transfer characteristics and (b) Electrical transfer characteristics of the 

device at different blue light intensities. ............................................................ 107 

Figure 5.16: Optical to electrical conversion exhibited by the device with pulsed red light. . 108 

Figure 5.17: Spectral responsivity of the single gate devices for the 400 to 1100 nm range. 108 

Figure 5.18: Optical output characteristics of the device for UV radiation. Data taken at VGS = 

-1 V. ................................................................................................................... 109 

Figure 5.19: Spectra of illuminating radiation without and with short wavelength pass filter are 

shown in (a) and (b), respectively. ..................................................................... 110 

Figure 5.20: Noise measurements of offset gate device with insets showing 1/f dependence of 

the pink highlighted section (a) at -6 V VGS. (b) at 0 V VGS. ............................ 111 

Figure 5.21: Schematic diagram of the centre single gate p-i-n photo-detector showing both 

the lateral doping profile and the placement of the MOS gate .......................... 112 

Figure 5.22: 3D labelled Cross-section of the centre single gate device. ............................... 112 

Figure 5.23: SEM micrograph of device with close-up view of the gate region in bottom. ... 113 

Figure 5.24: Reverse leakage current of centre single p-i-n photo-detector. .......................... 114 

Figure 5.25: IDS-VDS (output) characteristics of the device with gate voltage as the parameter. 

Taken without an input light signal ................................................................... 115 

Figure 5.26: IDS-VDS characteristics of the centre single gate device at VDS = 10V in the dark.

 ........................................................................................................................... 115 

Figure 5.27: The simulation structure and doping profiles for the centre single gate device . 116 

Figure 5.28: Simulated result of single centre gate device (a) with different red light intensities 

(b) at fixed light intensity with different gate bias. ............................................ 116 

Figure 5.29: IDS-VDS (output) characteristics of the device with (a) red illumination. (b) blue 

illumination. ....................................................................................................... 117 

Figure 5.30: IDS-VDS (output) characteristics of the device with gate voltage as the parameter 

taken with. (a) red light illumination. (b) blue light illumination. ..................... 117 

Figure 5.31: IDS-VDS (output) characteristics of the device with red and blue optical power as 

the parameter. ..................................................................................................... 118 



xvi 

 

Figure 5.32: Light intensity to gate-source bias correlation in centre single gate p-i-n photo-

detector with. (a) red light (b) blue light. ........................................................... 119 

Figure 5.33: (a) Optical transfer characteristics and (b) Electrical transfer characteristics of the 

device at different red light intensities. .............................................................. 120 

Figure 5.34: (a) Optical transfer characteristics and (b) Electrical transfer characteristics of the 

device at different blue light intensities. ............................................................ 120 

Figure 5.35: Optical to electrical conversion of the device with pulsed red light. ................. 121 

Figure 5.36: Noise measurements of centre single gate device with insets showing 1/f 

dependence of the pink highlighted section (a) at 20 V VGS (b) at 0 V VGS . ... 122 

Figure 6.1: (a) An SEM micrograph of normal dual gate device and (b) highlighted SEM 

micrograph showing the boxed gate region. ...................................................... 129 

Figure 6.2: Cross-section of the normal dual gate lateral p-i-n photodiode. ........................... 129 

Figure 6.3: (a) An SEM micrograph of overlapping dual gate device (b) Highlighted SEM 

micrograph of boxed gate region. ...................................................................... 130 

Figure 6.4: Cross-section of overlapping dual gate lateral p-i-n photodiode. ......................... 131 

Figure 6.5: Hole density simulated result with biased overlapping dual gate ........................ 132 

Figure 6.6: Simulated (I-V) characteristics of the overlapping dual gate device at different gate 

bias values in dark. ............................................................................................. 132 

Figure 6.7: Penetration depth (μm) as a function of wavelength (nm). .................................. 133 

Figure 6.8: Gate bias-induced change in carrier concentration of the accumulation layer. .... 134 

Figure 6.9: Current-Voltage characteristics of normal dual gate device at different gate bias in 

dark. ................................................................................................................... 136 

Figure 6.10: Transconductance plot of normal dual gate device in dark. ............................... 137 

Figure 6.11: Optical response of the device at 0 V VGS at different light intensities with (a) red 

light (b) blue light .............................................................................................. 138 

Figure 6.12: Transistorized optical measurements with fixed (a) red light intensity (b) blue 

light intensity. .................................................................................................... 138 

Figure 6.13: Light intensity to gate-source bias correlation in normal dual gate p-i-n photo-

detector with (a) red light (b) blue light. ............................................................ 139 

Figure 6.14: Current-voltage characteristics (a) with red and blue light at different VGS (b) 

with red and blue light of different intensities at fixed VGS. ............................. 140 

Figure 6.15: IDS(red,blue) / IDS(blue,red) as function of VGS with fixed light intensity. .................... 141 



xvii 

 

Figure 6.16: Optical transfer characteristics at different gate bias (a) with red light (b) with 

blue light. ........................................................................................................... 142 

Figure 6.17: Electrical transfer characteristics in dark and at different light intensities (a) with 

red light (b) with blue light. ............................................................................... 142 

Figure 6.18: Responsivity as a function of VGS at different VDS values with (a) red light (b) 

blue light. ........................................................................................................... 143 

Figure 6.19: Spectral responsivity of the normal dual gate device ......................................... 144 

Figure 6.20: Noise measurements of normal dual gate device with insets showing 1/f 

dependence of the pink highlighted section  (a) at VDS = 10 V, VGS = 0 V,  VDG 

& BC = 0 V.  (b) at VDS = 10 V, VGS  = -20 V,  VDG & BC = 0 V. ................... 145 

Figure 6.21: Current-voltage characteristics of the overlapping dual gate device in dark. .... 146 

Figure 6.22: Electrical transfer characteristics of the over lapping dual gate device in the dark.

 ........................................................................................................................... 147 

Figure 6.23: Optical response of the overlapping dual gate device with optical power as 

parameter in (a) red illumination (b) blue illumination. .................................... 148 

Figure 6.24: Transistorized optical transfer characteristics of overlapping dual gate device with 

fixed intensity of (a) red illumination (b) blue illumination. ............................. 148 

Figure 6.25: Current-voltage characteristics with red and blue light at different gate bias. ... 149 

Figure 6.26: IDS(red,blue) / IDS(blue,red) as function of VGS with fixed light intensity. ................... 150 

Figure 6.27: Current-voltage characteristics with red and blue light intensities at (a) -20 V VGS 

(b) 0 V VGS. ........................................................................................................ 151 

Figure 6.28: Light intensity to gate-source bias correlation with (a) red light (b) blue light. . 151 

Figure 6.29: Optical transfer characteristics of overlapping dual gate device at different VGS 

values with (a) red light (b) blue light. .............................................................. 152 

Figure 6.30: Electrical Transfer characteristics of overlapping dual gate device at different 

light intensities with  (a) red light (b) blue light. ............................................... 153 

Figure 6.31: Responsivity as a function of gate-source bias at different reverse-bias values 

with (a) red light (b) blue light. .......................................................................... 154 

Figure 6.32: (a) Spectral responsivity of the device (b) Ratio of red, blue and blue, red 

responsivity as a function of VGS. ...................................................................... 154 

Figure 6.33: Noise measurements of overlapping dual gate device with insets showing 1/f 

dependence of the pink highlighted section (a) at VDS = 10 V, VGS = 0 V, VDG & 

BC = 0 V. (b) at VDS = 10 V, VGS  = -20 V, VDG & BC = 0 V. ......................... 155 



xviii 

 

Figure 6.34: Peak wavelength shift as a function of VGS. ....................................................... 156 

Figure 7.1: Integrated metal grating lateral p-i-n photodiode ................................................. 161 

Figure 7.2: (a) Percentage transmission of incident light source (400 nm to 700 nm) at 50 nm 

Al thickness (b) Amount of light transmitted for various thicknesses of Al films. 

(c) spectra of light source used for polarization measurements.. ....................... 162 

Figure 7.3: Optical micrograph of an aluminium grating. ...................................................... 162 

Figure 7.4: Experimental setup for Polarization sensitivity measurements (a) with light and (b) 

without light ....................................................................................................... 163 

Figure 7.5: Current-voltage (IV) characteristics measurement setup ..................................... 164 

Figure 7.6: Forward bias (IV) current-voltage characteristic of lateral p-i-n diodes in dark. . 165 

Figure 7.7: Reverse bias characteristics of lateral p-i-n photodiode ....................................... 165 

Figure 7.8: Polarization response of the grating-integrated sensor with 50 nm thick Aluminum 

Gratings. ............................................................................................................. 167 

Figure 7.9: Polarization response of the grating-integrated sensor with 150 nm thick 

Aluminum Gratings. .......................................................................................... 168 

Figure 7.10: Polarization response of the grating-integrated sensor with red, green and blue 

linearly polarized light. ...................................................................................... 169 

Figure 7.11: Reverse bias current-voltage (IV) characteristics in dark and with un-polarized 

light. ................................................................................................................... 169 

Figure 8.1: Single gate covering the near-intrinsic region in between the two electrodes ..... 176 

Figure 8.2: Array of lateral p-i-n photodiode for angle of polarization detection .................. 177 

Figure 8.3: 2D array of lateral p-i-n junction photodiode with overlapping double gate 

structure ............................................................................................................. 178 

Figure 8.4: 2D array of p-i-n photodiode for night vision applications. ................................. 180 

Figure 8.5:  MESA lateral p-i-n photodiode for wide range wavelength detection (400 – 950 

nm) ..................................................................................................................... 181 

Figure 8.6: MESA structure with front and back dual gates ................................................... 182 

Figure 8.7: MESA structure with front and back dual gates with merged source contacts and 

drain contacts ..................................................................................................... 183 

Figure 8.8: Interdigitated lateral p-i-n photodiode .................................................................. 183 



xix 

 

Symbol Table 

Symbol Description Symbol Description 

    Photo current    or   Incident Optical Power 

  or   Electron Charge   Wavelength 

  Plank’s Constant   Reflectivity 

  Speed of Light  ,         Height or distance or Length 

   Absorption Coefficient Eg Band-gap 

T Temperature λc Cut-off Wavelength 

  Quantum Efficiency   Frequency of the light wave 

    Percentage Optical Power      
Optically Generated -

Electron –hole pairs 

   Spectral Responsivity n n-type Silicon Material 

p p-type Silicon Material   
No. of Photons arriving per 

second 

       Width   Mean Life Time 

   
Intrinsic Carrier 

Concentration 
   Fermi Energy 

   Intrinsic Fermi Energy    Donor Concentration 

   Acceptor Concentration    Built in Potential 

    Dielectric constant of silicon    Forward Voltage Applied 

   Reverse Voltage Applied    
Width of the depletion 

region in p type Silicon 

   
Width of the depletion region 

in n type Silicon 
    Permittivity of the free space 

     Temporal response pin diode      Recombination time 

    Current density of electrons     Current density of holes 

  Built-in Potential p  Heavily p-doped substrate 

n  Heavily n-doped substrate   
Lightly p-doped silicon (near 

intrinsic) 



xx 

 

Symbol Description Symbol Description 

    Drain to source current     Oxide Capacitance 

   Gate bias    Mobility of holes 

    Drain to source Voltage    Mobility of electrons 

    
Voltage applied on Drain side 

gate 
    

Voltage applied on source 

side gate 

          

Drain to source current with 

blue light incident on the 

device 

         

Drain to source current with 

red light incident on the 

device 

    
Magnitude of the electric field 

vector in y direction 
    

Magnitude of the electric 

field vector in x direction 

α  
Ionization coefficient of 

electrons 
β 

Ionization coefficient of 

Holes 

M Multiplication Factor for APD   Total output current 

 

 

  



xxi 

 

 

Dedication 

 
 

 

 

 

 

 

 

 

 

 

 

 

TO THE LAST MESSANGER OF GOD 

 

HAZRAT MUHAMMAD (P.B.U.H) 
 

 

 



Chapter 1  Introduction 

- 1 - 

 

 

Chapter 1  
 

 

Introduction 

 

1. Existing Scenario  

In 1963 Frank Wanlass at „Fairchild Semiconductor‟ invented CMOS circuits, although 

commercial CMOS integrated circuits were first fabricated only in 1969. In the early days, the 

CMOS devices were slow, and were mainly used in applications that required low power 

consumption. Over the following decades, with further improvements, CMOS technology 

became the almost universal choice for integrated circuits. Besides low power consumption, 

CMOS processing allows the integration of dense circuits. In late 1990‟s, CMOS-compatible 

processes to fabricate photodetectors opened up their use in a variety of further applications 

like, motion detection, [1, 2] solid state imaging cameras [3] and whole-cell biosensors [4]. 

CMOS-compatible, photodetectors have monolithically integrated digital and analog signal 

processing circuits on the same substrate. Until early this century, CMOS-compatible 

photodetectors were mainly investigated for imaging applications. Although a MOS 

technology based NTSC colour camera was reported by „vision‟ in 1997, the spectral filtering 

capabilities of standard CMOS processes were rarely exploited.  
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M. L. Simpson and his colleagues reported CMOS-compatible methods for realizing 

photodiodes with independent spectral response. These methods included (1) the use of      

and polycrystalline silicon as thin-film optical filters, (2) formation of photodiodes of different 

junction depths and (3) controlling the density of interfacial trapping centres at          

interface. They further demonstrated a low-cost monolithically integrated photo-spectrometer 

using standard CMOS-compatible photodiodes. Realization of a complete portable photo-

spectrometer, combined with on-chip digital, analog and wireless circuits, is useful for 

environmental monitoring, chemicals & drugs detection, for biological and scientific micro-

instrumentation and in certain applications which are constrained to low power consumption, 

low-cost and portability [5]. Until then the reported photodetectors were based on 

conventional vertical doping profile with buried depletion region, thus limiting the ability of 

silicon to detect short wavelengths especially in the UV region. Furthermore, conventional 

photodetectors were not compatible with CMOS process flows and, therefore, could not be 

monolithically integrated on a single-chip. 

Silicon is sensitive to UV, visible and near-infrared regions i.e. from around 200 nm to 1100 

nm of wavelength, with its peak response in the near-infrared region. This peak response can 

be modified to suit specific applications using special antireflection coatings and filters. The 

electromagnetic spectrum is shown in figure 1.1 where the visible spectrum and the intrinsic 

silicon detectable spectrum have been highlighted. 
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Figure 1.1: Electromagnetic radiation spectrum 

1.1. Device Functionality 

In this work, two different approaches were employed to fabricate a silicon-based gated lateral 

p-i-n junction photodetector. The resulting devices are CMOS-compatible and can be easily 

integrated with surrounding CMOS circuitry. In principle, the device appears as a diode-

transistor-like hybrid and detects light with its built-in lateral p-i-n-junction architecture; 

whereas its vertical MOS gate(s) structure controls the lateral conduction making it appear as a 

MOSFET for the surrounding circuitry. The devices demonstrated in this work have distinct 

transistor-like vertical structure with single and double MOS gate(s) to control the quiescent 

operating characteristics. All the hybrid-photodetectors described in this work use similar 

lateral p-i-n junction-based architecture. 

These gated lateral devices showed gate-bias-induced control over device response. 

Furthermore, while comparing the lateral device to a conventional vertical photodiode, 

increased sensitivity to blue wavelengths around 480 nm was observed. The single gate 

devices showed better response to blue wavelength as compared to conventional photodiodes. 

In dual gate devices, with the application of proper gate bias, modulation of the spectral 
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responsivity of the device was observed. This became quite prominent in overlapping dual 

gate devices, where properly biased double gate structure showed modulation of spectral 

sensitivity to such an extent that the red (630 nm) and blue (480 nm) wavelength‟s spectral 

responses were seen to be inverted. At starting gate bias conditions          an        the 

device‟s response was that of a typical conventional photodiode, however, with further 

increase in gate bias         , the device showed similar sensitivities to red and blue 

wavelengths and with even higher gate bias, it gradually became more sensitive to blue (480 

nm) wavelength. 

1.2. Gated Structures Reported in Literature 

Several types of gated-photodetectors have been reported to date. Their details are discussed in 

Chapters 3, 5 and 6 [6-11]. Some photodetectors use a transparent gate, light passes through 

the transparent gate and enters the light detection region, while others use a partial metal gate 

and here the light passes through the sides of the metal gate structure. Transparent gates can be 

further classified into two categories. The first category is of devices that use transparent 

conducting oxides (TCOs), indium tin oxide (ITO) and zinc oxide (ZnO) are examples of it 

[12], while the second category is of devices that use thin metal gate structure with around 10 

nm or less, metal thickness. Due to the thinness of the metal film, excessive absorption of light 

in the metal is suppressed [12, 13]. The lateral p-i-n photodetectors described in this research 

work, had metal gate(s) on top whereas the silicon dioxide (    ) acted as an insulator and a 

passivation layer. The reverse-biased lateral p-i-n diode element detects light which enters into 

the device through the sides of the gated structure. The idea of a field-effect transistor 

photodetector, a gated-photodetector, was first introduced by Taylor and Simmons in 1987 

whereas Sun et al. in 1989 proposed a gate-controlled photodiode whose external quantum 

efficiency could be modulated by an applied gate bias. However, significant research interest 

in such devices has only emerged over the past few years. 

1.3. Use of Near-intrinsic Material 

Near-intrinsic float zone silicon material was chosen for this project because of a number of 

reasons. 
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 Float-zone silicon has smaller amount of background impurities and thus provides 

longer life time for minority carrier than Czochralski silicon. 

 A wide depletion region can be formed that enhances device sensitivity. 

 The near-intrinsic region can be fully depleted when the diode is reverse-biased. This 

results in further widening of the depletion region. 

 It has been reported that float-zone silicon has potential advantages for fabricating 

photodetectors for ultra-low signal levels [14, 15]. 

1.4. Aims of the Project 

The interest in silicon photonics has grown manifolds in the last few years with a view to 

exploit the established capabilities of silicon electronics for making optoelectronic integrated 

circuits (IC‟s). A special focus issue of nature photonics on „silicon photonics‟ in August 2010 

provided a comprehensive research review of the latest progress and also introduced new ideas 

for future research trends and challenges. The research described here to make a gated lateral 

junction photodetector is inline with the general growing interest in silicon photonics. 

The chapters in the rest of this thesis describe the work in complete detail. Here is a brief 

synopsis of their contents. 

Chapter 2 comprises of an introduction to semiconductor detectors, their types, theory of 

operation, operating principles and other characteristics. Finally, different types of pn-junction 

devices are discussed followed by a brief overview of Charge Coupled Devices. 

In Chapter 3 there is a review of existing work on photodetectors, which covers conventional 

silicon, silicon carbide and compound semiconductor photodetectors. After that, new ideas, 

introduced by different researchers and devices based on simple lateral p-i-n junction 

architecture, and gated lateral p-i-n junction architecture are discussed, with reference to the 

existing literature. 

Chapter 4 describes the fabrication tools and techniques employed in the fabrication of gated 

(single and double) lateral p-i-n photodiodes and integrated metal grating photodetectors. The 

chapter starts with an introduction and then describes the properties of silicon used for device 

fabrication, followed by the process steps; illustrated in sequence. Complete details of the 
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fabrication processes for single gate, double gate and metal integrated devices have been 

provided in appendix “I” as well. 

Chapter 5 treats the two different types of single gate lateral p-i-n photodiodes with regards to 

their design and operations. Two different types of single gate photodetectors are offset gate 

photodetector and centre gate photodetector. Their device behaviour is explained with optical 

and electrical characteristics followed by noise and spectral responsivity measurements.  

Chapter 6 is dedicated to dual gate devices, where simple dual gate and overlapping dual gate 

structures are described in a similar way as in Chapter 5. The overlapping gates actually 

overlap the adjacent doped n and p regions. The overlapping dual gate device showed gate 

bias-induced modulation of spectral responsivity.  

Chapter 7 outlines the device‟s sensitivity to linearly polarized white light. The device 

polarization sensitivity measurements were performed at different angles of a polarizer sheet 

with respect to the integrated metal grating pattern over the device. As white light is a mixture 

of red, green and blue lights, so the device‟s response to linearly polarized red, green and blue 

light sources is also described there. 

Finally, Chapter 8 concludes the research work presented in this thesis. The first part 

summarizes the whole research work, whereas, in the next half, the future work possibilities 

are discussed that could follow on form the present research. 
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Chapter 2  
 

Semiconductor Light Detectors: 

Principles 

 

2. Introduction 

Light detectors are devices that absorb incident light and generate an output response which 

may be a chemical, mechanical or electrical change. Semiconductor light detectors – the most 

commonly used type of light detectors – generate a change in electrical current or voltage to 

indicate the detection of light. These are also called optical sensors. Such devices are of vital 

importance in many applications. Optical detectors are used for photography, security 

screening, medical science, machine vision, scientific research and many other endeavours [1]. 

Photographic film and moving arm bolometers are examples of very early light detectors. 

William Herschel used an ordinary thermometer with a blackened bulb to detect infrared 

radiation. In the twentieth century, optical detectors developed rapidly. Photomultiplier tubes 

were invented during the early part of that century and are still used for low level light 

detection. With the birth of solid state electronics in the nineteen-forties, semiconductor-based 

photodetectors started appearing on the scene and ever since many different kinds of such 

detectors have been developed. Commercially available detectors include photodiodes, charge 

coupled devices and avalanche photodiodes. 
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This chapter provides a brief overview of light detectors with the aim of putting the rest of the 

thesis in context of existing types of semiconductor light detectors. 

2.1.        Types of detectors 

Detectors act as signal transducers. A light detector when illuminated absorbs photons whose 

energy is equal to or higher than the band-gap energy of the material, and as a result an 

electrical signal is produced. This signal, using suitable techniques, may be amplified and then 

may be converted into a desired output form. Optical detectors, however, function in three 

different ways. 

2.1.1. Photon Detectors 

A photon detector detects photons. The photon upon absorption, releases charge carries in the 

detector that may either modulate the electric current in the device or may result in a chemical 

change. Photon detectors may be used for the detection of radiation in all spectral regions, 

extending from infrared     , to    ay. 

2.1.2. Thermal Detectors 

Thermal detectors soak up photons and convert their energy into heat [2]. Generally, this 

energy changes the electrical properties of the detector material. As a result electrical current 

flowing through the detector is modulated. Such detectors feature a broad spectral response. 

Thermal detectors are important at infrared and sub-millimeter wavelengths and may also be 

used as X-ray detectors. Bolometers are an example of thermal radiation detectors. 

2.1.3. Coherent Receivers 

Electric field strength of an electromagnetic wave can be detected by coherent receivers; such 

detectors store phase information about incoming photons. Their operating principle is based 

on the interference of the incident photon‟s electric field with the electric field of a coherent 

local oscillator. These detectors are suitable for use in radio and sub-millimetre regions but 

may also cover the    region. 
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2.2. Semiconductor Materials 

Semiconductors can be either elemental semiconductors or compound semiconductors. In 

elemental semiconductors each atom such as    or    is bonded with neighbouring atoms of 

the same type, forming a covalent bond. Compound semiconductors are alloys of two or more 

elements in a certain ratio. Common examples of compound semiconductors are  a s and 

 nP. Semiconductor materials due to their particular properties can be used as conductors or 

insulators, or even as materials with intermediate properties. In semiconductors there is a 

small energy gap between the valence and conduction bands.  

Silicon is the most widely used semiconductor material. It has four electrons in the outer shell. 

Atoms in silicon are linked together to form an ordered crystal structure called the “diamond 

structure”. In silicon, atoms are tightly bonded and thus very few free electrons are available; 

therefore pure silicon behaves almost as an insulator and is also referred to as “intrinsic” 

silicon. The behaviour of silicon can be changed from an insulator to a conductor; this can be 

done by adding impurity atoms to silicon. Impurities also called dopants, are other elements 

and are added through a doping process. Silicon is a group    element, thus impurities from 

group     or group   elements can be added to it. An impurity atom like boron (group    ) or 

phosphorous (group  ) will add free holes or electrons, respectively, to silicon. 

For making silicon electron-rich, phosphorous atoms are diffused so that they replace some of 

the silicon atoms. As the silicon is tetravalent, it makes four covalent bonds with the 

phosphorous atoms. The fifth electron, which is an extra electron, is released in the crystal 

structure making the semiconductor n  typ  doped. Similarly a hole is released upon 

diffusion of a group III element atom. Group III elements like boron form three covalent 

bonds, whereas the fourth bond remains missing and acts as a hole. This makes the 

semiconductor p  typ  doped. In the diffusion process, when an electron is released, the 

impurity is called a donor, whereas if a hole is produced then, the impurity element is called 

an acceptor. Heavily doped semiconductors are more conductive and thus have less resistance. 
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2.3. Semiconductor Photo-detectors 

Many types of junction-based detectors exist, Schottky diodes, Quantum well infrared 

photodiodes, Superconducting tunnel junction (STJ) and semiconductor photodiodes are some 

examples of such detectors. The interface between a semiconductor and a metal forms a 

schottky diode, whereas the growth of thin layers of different semiconductors through epitaxy 

forms quantum wells. A semiconductor-based photodiode is formed by making two 

oppositely-doped zones adjacent to each other on a single semiconductor substrate. The region 

at the junction of these two oppositely-doped regions is free from charge carriers and thus has 

high impedance. The formation of two oppositely doped adjacent regions in silicon or 

germanium makes a detector highly sensitive.  

The function of a semiconductor optical detector is to transform an input optical signal into a 

useable electrical output. When light falls on the surface of a semiconductor material, photons 

whose energy is in excess of the band-gap energy of the semiconductor material, are absorbed. 

This absorption excites an electron to jump into the conduction band and as a result a hole is 

left in the valence band. These promoted electrons and valence band holes behave as free 

particles and travel under intrinsic or externally-applied electric field. This continuous 

separation of electron-hole pairs due to the absorption of photons and their subsequent 

transport to the respective electrodes in the detector setup, gives rise to a photocurrent      . 

This photocurrent is directly proportional to the intensity of the incident light. 

The process of collecting these optically-generated charge carriers by the electrodes enables us 

to differentiate between two types of light detectors: photoconductors and photodiodes. 

Photoconductors are made up of just a slab of semiconductor material, where the applied 

electric field between the electrodes causes the mobile charge carriers to reach their respective 

electrodes. In photodiodes the internal electric field of a pn or p-i-n junction performs the 

charge separation and the charge carriers are later collected by the electrodes. In p-i-n junction 

photodiodes, unlike in pn   un t on photodiodes an intrinsic region between the p and n 

regions is left in its pure un-doped state to form an extra-wide depletion region between the n 

and p doped regions.  

When a photon is absorbed by a semiconductor, an electron-hole pair is produced. As silicon 

is an indirect band-gap semiconductor so there is a strong wavelength dependency which is 
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described in terms of an absorption coefficient α. The Photocurrent produced as a result of 

photon absorption can be written as  

        
   

   
                            2.1 

Where P  is intensity of the light source, λ is the wavelength of light,   is the electron charge, 

  is reflectivity,   is distance and   is the Planck‟s constant. In Figure 2.1 optical absorption 

coefficients of some common semiconductor materials are given as a function of wavelength 

and light penetration depth. These include silicon, germanium, gallium arsenide, indium 

gallium arsenide and indium gallium arsenide phosphide. In order to select a semiconductor 

material, for detection in a specific wavelength region, the absorption coefficient of the 

material plays a key role. In the case of silicon, its         band-gap corresponds to      nm 

of wavelength. Table 2.1shows the band-gap and other semiconductor material properties for 

some commonly used semiconductor materials. 

Semiconductor T (K) Eg (eV) λc (μm) Τ (life time) 

Intrinsic     

Si 295 1.12 1.1 50 ps 

Ge 295 0.68 1.8 10 ns 

PbS 295 0.46 2.7 0.1 – 1 ms 

PbS 195 0.4 3.1 1 – 10 ms 

PbS 77 0.32 3.8 1 – 10 ms 

PbSe 295 0.31 4 1 – 10 μs 

PbSe 195 0.29 4.3 10 – 100 μs 

PbSe 77 0.24 5.2 10 – 100 μs 

PbTe 295 0.41 3 1 – 10 μs 

PbTe 77 0.27 4.5 10 – 100 μs 

CdTe 295 1.55 0.8  

CdSe 295 1.8 0.67 10 ms 

CdS 295 2.4 0.53 50 ms 

InSb 77 0.22 5.5 1 – 10 μs 
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Semiconductor T (K) Eg (eV) λc (μm) Τ (life time) 

Hg0.8Cd0.2Te 77 0.1 10 – 25 <1μs 

Extrinsic     

Ge:Au 77 0.15 8.3 30 ns 

Ge:Cu 15 0.041 30 0.5 ns 

Ge:Cd 20 0.06 21 10 ns 

Ge:Zn 4 0.032 40 10 ns 

Si:Ga 4 0.073 17 1 μs 

Si:As 20 0.056 22 0.1 μs 

Table 2.1:  Properties of various Intrinsic and Extrinsic Semiconductors 

Semiconductor-based devices generally have many advantages over others like vacuum tube 

photo-detectors. Unlike vacuum tube photo-detectors, semiconductor-based photo-detectors 

require low voltages to function and the fabrication process is much simpler and economical. 

The spectral sensitivity of semiconductor-based photodetectors spans the electromagnetic 

spectrum from the far-infrared to UV radiation. Semiconductor-based devices can be 

categorized into photoconductors and photodiodes. These are discussed in their respective 

sections after a discussion of performance characteristics. 

 

Figure 2.1: Optical absorption curves for common elemental and compound semiconductor materials. [3] 



Chapter 2  Semiconductor Light Detectors: Principles 

- 15 - 

 

2.3.1. Performance Characteristics 

Detectors are generally classified on the basis of some of the following parameters; these are 

sometimes called figures of merit [4]. 

2.3.1.1. Quantum Efficiency  

Quantum efficiency is the probability, that a single incident photon will generate an electron-

hole pair that will contribute to the photo-detector output current. The quantum efficiency   

can be represented by the following two equations. 

   
     

    
                      2.2 

Here, P is the power of the incident light source (in watts). Quantum efficiency can also be 

expressed as   

                            2.3 

Here     is the percentage optical power transmitted inside the photo-detector, at the photo-

detector-interface,   is the fraction of optically-generated electron-hole pairs which have 

contributed to the photo-current. α is the absorption coefficient and   is the length of the 

photo-detector. Coupling and reflection losses are represented by    . All the electron-hole 

pairs produced, do not contribute to photo-current, some of them recombine in the traps. These 

recombination centres are usually abundant and are mostly found at the material surface. 

Absorption increases with increase in length of the photo-detector. As the absorption 

coefficient is wavelength dependant so the quantum efficiency is also a function of 

wavelength.  

Quantum efficiency is influenced by the absorption coefficient. The quantum efficiency of 

good detectors is close to unity. It is to be noted that the quantum efficiency is independent of 

the energy of photons striking the surface of the semiconductor. 

 

 



Chapter 2  Semiconductor Light Detectors: Principles 

- 16 - 

 

2.3.1.2. Spectral Response 

Spectral response of a photodetector is the efficiency with which different wavelengths are 

detected. Spectral responsivity can be written as. 

    
   

  
             2.4 

Here,     is the photo-induced current and P  is the power absorbed from the optical source. 

Its unit is  mps  att. As the spectral response reveals how the responsivity of a photo-

detector varies with change in wavelength, so it is often the basis for selecting a detector for a 

particular application in a specific wavelength range. The expression for quantum efficiency 

can also be used to determine the spectral sensitivity as: 

     
   

   
             2.5 

The responsivity of an ideal photodiode when compared to a typical silicon photodiode shows 

that the difference in responsivity for short wavelength photons is due to thermal losses, 

whereas for longer wavelengths it is due to the reduction in absorption coefficient. 

Responsivity increases in silicon with increase in wavelength as shown in Figure 2.2 however, 

it falls sharply just close to the cut-off wavelength λ . 

 

Figure 2.2: Spectral response of silicon. 
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2.3.1.3. Linearity 

Detectors are classified by the linearity of their response in which the output is linear with 

incident intensity for a broad range of inputs. If the output of the detector is plotted against the 

input power, then ideally, there should be no change in the slope of the curve. Therefore, a 

photodetector is said to be linear if the responsivity is constant i.e. independent of incident 

optical power [5]. 

2.3.1.4. Dynamic Range 

Dynamic range is the maximum range of input optical power over which a detector can 

operate properly. 

2.3.1.5. Noise  

Detector response inevitably contains electrical noise in it. This noise is caused by several 

mechanisms operating during the light detection process. Noise can be defined as any 

undesired signal contained within a desired signal. Unwanted noise signals mask the actual 

signal and affect the detection process. In optical detectors often four noise sources are seen, 

namely Johnson noise, Shot noise, 1/f noise, and Photon noise. 

Johnson noise or nyquist noise, arises due to thermal fluctuations in the conducting material, 

whereas shot noise is produced by fluctuations in the stream of electrons in the device, it is 

also referred to as generation-recombination (G-R) noise.      noise generally exists when the 

modulation frequency   is low. It is also commonly referred to as excess noise, whereas photon 

noise is due to random arrival rate of photons [4]. Some sources of noise can be eliminated 

whereas others can only be reduced. External noise sources, like photon noise, cannot be 

reduced. The impact of a single noise factor or combination of various types of noise will set 

the maximum detectivity of an optical detector. 
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2.3.1.6. Temporal Response 

For many applications it is important to ascertain how fast the detector responds to the 

changes in the intensity of light, i.e. to the arrival rate of photons. Terms associated with 

temporal response of a detector are: rise time and fall time. Rise time is defined as the time 

difference required to reach from      to      of the peak response. Whereas, the fall time is 

opposite to it, i.e. the time difference required to reach from      to      of the peak 

response on the trailing edge, sometimes it is also called decay time [4]. 

2.3.1.7. Frequency Response 

The response time of a photodiode is dependent on three fundamental factors: (1) drift time of 

the carriers to cross the depletion region, (2) diffusion time of carriers generated outside the 

depletion region and (3) junction capacitance [6]. The drift of carriers through the depletion 

region is usually quite rapid due to the built in electric field of the junction. Drift velocity can 

be further increased with an applied reverse bias until it reaches its saturation value. Saturation 

drift velocity for silicon is        m s [7]. The diffusion process, on the other hand, is 

influenced by the recombination time      and is thus relatively slow. The diffusion time can 

be improved by ensuring that all the electron-hole pairs are produced within the depletion 

region or within one diffusion length from the depletion region. The capacitance effect on 

frequency response is discussed in the capacitance section below and later in the pn  

 un t on photodiode section as well. 

2.3.1.8. Capacitance  

p and n regions separated by an insulating depletion region form a capacitor in junction 

diodes. The capacitance of a photodiode is relatively high as the charge distribution across the 

junction forms a parallel plate capacitor with a very small gap between the plates. Capacitance 

can influence the frequency response of a photodiode and it often determines the limiting 

noise of the amplifier used to read out its signal. Low junction capacitance increases the 

frequency response of photodiode and improves the device speed. However, if the capacitance 

of the junction is too low i.e. the depletion region is wide enough, it would cause increased 

transit time which will slow down the overall device response. 
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2.3.2. Photoconductors 

A photoconductor is formed from a uniform slab of semiconductor material. When the 

incident light falls upon it, a portion of the light is reflected and the rest of the light is absorbed 

into the semiconductor, thus increasing the conductivity of the semiconductor material through 

the generation of free charge carriers. Photoconductors can be made using intrinsic or extrinsic 

semiconductor materials. Operating mechanism, advantages and disadvantages of both types 

of photoconductors are discussed next.  

2.3.2.1. Intrinsic Photoconductor 

Intrinsic photoconductors are made from high resistance pure semiconductor materials. When 

light shines on the surface of an intrinsic photoconductor, photons with higher energy than the 

band-gap energy of the semiconductor material are absorbed. Photons break bonds, so an 

electron gets excited from the valence band and jumps into the conduction band, leaving a 

hole in the valence band. This phenomenon is depicted in Figure 2.3.  

 

Figure 2.3:  Intrinsic Photoconductor [8] 

These free charge carriers i.e. electrons and holes, under the influence of applied electric field, 

drift through the semiconductor. As the electrons move quickly because of their lower 

effective mass so the increased photo conductivity mainly comes from increased photo-

induced electron density. Electron mobility in silicon varies with change in temperature. The 

mobility of an electron at different temperatures is shown in Figure 2.4. 
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Figure 2.4:  Variation of electron mobility in silicon with temperature and impurity concentration 

(After Norton, Braggins and Levinstein       , and Canali et al.,       , The solid lines are for phosphorus 

doped material at concentrations of     x        x          x       and   x       m  , respectively, for curves 

          and    , The dashed lines are for arsenic doped material at concentrations of 8 x 10
15

, and 

  x       m  , respectively, for curves     and    .[2]) 

Intrinsic photoconductors have high resistance regions due to the availability of very few free 

charge carriers. An electric field is maintained in this high resistance region to control the 

movement of photo-induced free charge carriers. This eventually produces a current in the 

external circuit when charge carriers drift to collecting electrodes.  

In intrinsic photoconductors, the spectral response is generally limited to photons which have 

higher energy than the band-gap energy of the semiconductor material. In semiconductor 

materials like germanium and silicon, these band-gap energies correspond to wavelengths of 

     m and      m, respectively. The performance of an intrinsic photoconductor degrades 

with increase in wavelength beyond 15 micron. Intrinsic photoconductors are used for their 

rapid response time; however, these photoconductors suffer from high Johnson noise [2]. A 

reference intrinsic photoconductor with transparent contacts is shown in Figure 2.5. 
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Figure 2.5:  Photoconductors and transverse contacts [2] 

The carrier concentration of p and n-type carriers in an intrinsic photoconductor is the same. 

Here n  p  
   

  l   where n and p are carrier concentration of n and p type carriers.   is 

the number of photons arriving per second,   is the quantum efficiency and   is the mean life 

time of the charge carriers. The product of         represents the volume of the 

photoconductor i.e. width, depth and length. 

2.3.2.2. Extrinsic Photoconductors 

Intrinsic photoconductor material can be made extrinsic by modifying the impurity 

concentration through doping. Silicon-based extrinsic photoconductors typically contain 

      m   to       m   
impurity atoms. Diffusion of impurity atoms from elements of 

column III and V of the periodic table, form p and n  typ  extrinsic semiconductor material, 

respectively. This addition of dopant atoms to adjust the dopant concentration increases the 

dark current in extrinsic photoconductors. The dark current is extremely temperature 

dependent and it increases with increase in temperature and doping. Extrinsic photoconductors 

are based on smaller band-gap      semiconductors to detect low energy photons i.e. those 

from mid and far    regions. Stressed detectors and Blocked impurity band (BIB) detectors are 

two examples of extrinsic photoconductors. 

Using stressing technique with p-type photoconductors, the acceptor binding energy can be 

reduced. In Ge:Ga photoconductors for instance the stressing process extends the wavelength 
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range from 115  m to beyond 200  m.  BIB detectors work with low conductivity and high 

absorbance. To achieve this, different layers of varying impurity concentration are needed. In 

BIB detectors, a separate n-type layer is used for photon absorption with a small quantity of p-

type impurity in it. 

Extrinsic photoconductors with dopant states located in the band-gap are suitable for longer 

wavelengths in the range of         m  Figure 2.6 explains the physics behind the 

absorption of photons in extrinsic semiconductors. In the case of a semiconductor with 

P  typ  conductivity an electron can be energized from the valence band to the acceptor 

level. Whereas, for a semiconductor with n  typ  conductivity, photon absorption can cause 

an electron to get excited and jump from the donor level to the conduction band. 

 

Figure 2.6:  Extrinsic Photoconductor [2] 

In Figure 2.6 a photon whose energy      is greater than the acceptor level energy    excites 

an electron to the acceptor level, leaving a hole in the valence band. This causes change in 

conductivity of the material. Similarly, for n  typ  photo conductivity, a photon whose 

energy      is greater than the energy of the donor level    promotes an electron from the 

donor level to the conduction band. As a result, the long wavelength limit for photon detection 

is increased significantly as donor and acceptor levels are close to conduction and valence 

band edges, respectively, as shown in Figure 2.6. Band gap energy, long-wavelength-limit, 

and the life time of excited states for various intrinsic and extrinsic semiconductors are shown 

in Table 2.1 [8]. 

As stated earlier for extrinsic photoconductors, the experimentally determined long-

wavelength-limit is about      m. This can be achieved by the use of pure semiconductors 

like Ge or InSb, at very low temperatures. Intrinsic photoconductivity processes require higher 
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energies to operate whereas extrinsic photoconductivity can be triggered by lower energy 

photons. Lower excitation energies cause increase in thermally produced dark current. This 

dark current can be minimized by operating these detectors at low temperatures.  

2.3.3. pn-Junctions 

Silicon‟s properties can be changed by changing its carrier concentration through either 

diffusion or ion implantation. Impurity atoms such as phosphorous or boron, introduced inside 

the material, using suitable doping technique, can make silicon n or p  typ . 

Adjacent p and n type regions in a semiconductor form a  pn   un t on  Such structures 

allow current to flow in only one direction. In intrinsic silicon the Fermi energy lies in the 

centre of the band-gap. In n  typ  semiconductor, where donor impurities like phosphorous 

or arsenic contribute mobile electrons, the Fermi level lies close to the conduction band. 

However, in p  typ  material the Fermi-level lies close to the valence-band. Here acceptor 

impurities contribute mobile holes. The Fermi energy depends upon carrier concentration and 

the two are related as: [8] 

      
 
     

  
 
         2.6 

      
 
     

  
 
         2.7 

Here, n and p refer to the number density of electrons and holes in conduction and valence 

band, respectively. Whereas, n  refers to the number density of intrinsic electrons and holes in 

the conduction and valence bands. In silicon at 300 K, n  is      x       m  . The mass-

action relationship specifies the dependence of intrinsic carrier concentration on the 

concentration of mobile electrons and holes. The Law of mass action states that np   n 
 . The 

number of donor atoms    in n  typ  silicon corresponds very closely to the number of 

mobile electrons, whereas the number of acceptor atoms,     in p  typ  silicon is 

approximately equal to the number of mobile holes.  

The formation of a carrier depleted region in a pn-junction is described next. Majority carriers 

from both p and n regions, i.e. electrons from the n  typ  region and holes from the p  

typ  region diffuse into the opposite region. Electrons diffusing into the p  typ  region 
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combine with the majority holes present there, and holes diffusing into the n  typ  region 

combine with the majority electrons found there. This process then produces positively 

charged donor ions and negatively charged acceptor ions. Thus at the junction of the p and n 

regions an area depleted of majority charge carriers is formed where an electric field is present 

due to positive donor ions and negative acceptor ions. This field starts opposing the further 

diffusion of majority carriers into the opposite regions. This region depleted of mobile 

majority charge carriers lies at the junction and is referred to as the depletion region. This is 

illustrated in Figure 2.7(b). At equilibrium the depletion layer has a net built-in potential   , 

which causes band bending as illustrated in Figure 2.7(d).  

 

 

Figure 2.7:  (a) p and n regions before contact, (b) p and n regions after contact, (c) Visualization of potential 

before contact and (d) Development of a contact potential and band diagram 

Figure 2.7 (a)-(d) show separate p and n type materials and the formation of depletion region 

when these two oppositely doped regions come into contact. This built-in potential in the 

depletion region can be calculated using equation 2.8, if carrier concentration values in both 

the n and p regions are known.  

    
  

 
  

    

  
                       2.8 

Here,    and    stands for the concentration of acceptors and donors impurity atoms on the p 

and n side of the material. Once the built-in potential is known, the width of depletion region 

can also be calculated using the following equation. 
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                    2.9 

Here,   is the permittivity of the medium. In this equation thickness of the depletion layer 

depends mostly upon the carrier concentration in the lightly doped region, and that most of the 

depletion region exists in the lightly doped region. 

In a pn   un t on the current can be divided into diffusion and drift currents. Diffusion 

current is produced due to different carrier concentrations in the two adjacent p and n regions, 

whereas an electric field e.g. built-in electric field across the depletion region, causes drift 

current to flow. When a bias is applied to the pn   un t on diode, the equilibrium level is 

disturbed. The forward and reverse bias cases are discussed next.  

In forward bias when a positive voltage is applied to the p side of the junction and a negative 

voltage to the n side, the resulting electric field starts opposing the built-in potential of the 

pn   un t on. This changes the Fermi level as well. Opposition to the built-in potential of the 

pn   un t on due to biasing reduces the built-in potential of the junction. This results into 

more electrons having sufficient energy to overcome the potential barrier, causing an increase 

in diffusion current. The diffusion current starts dominating, because the small drift current is 

relatively independent of applied bias. Finally, the width of the deletion region is reduced due 

to forward biasing, by the factor of applied bias i.e.      .  

In forward bias, the junction becomes conducting when biased with a voltage greater than   . 

The forward and reverse bias characteristics of a pn-junction diode are shown in Figure 2.8. 

 

Figure 2.8:  Current-Voltage (I-V) Characteristics of a silicon pn-junction 
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In reverse bias when a negative potential is applied to the p side of the junction and a positive 

potential to the n side, the resulting electric field supports the built-in electric field of the 

junction. This causes an increase in the height of the potential barrier and in turn reduces the 

diffusion of charge carriers. Now fewer electrons are available to diffuse through this high 

energy barrier. In reverse bias, drift current dominates and there is a nearly constant reverse 

saturation current. It is nearly constant because the controlling factor for drift current is the 

generation time of minority carriers within a diffusion length of the depletion region, not the 

strength of the applied field. Reverse bias aids the built-in potential of a pn   un t on, as a 

result the width of the depletion region increases by a factor        . As explained above, the 

reverse saturation current is relatively small and of constant value. Thus no current flows 

initially. Even in the presence of an increased reverse bias a very small current flows. 

Increasing the reverse bias, eventually causes junction break down. Once the break down 

occurs the junction becomes highly conducting. At high reverse bias, avalanching effect also 

causes the junction to breakdown. 

Carrier tunnelling can also cause the break down to occur at modest biasing conditions. In this 

case the reverse bias brings the conduction band in the n-type material below the valence band 

in the p-type material. Here energetically it is favourable for the electron to get into the 

depletion region without first moving into the conduction band of the p-type material. If the 

depletion region is thin enough, there is a finite probability that electron with its wave nature, 

will tunnel through the junction.  

In Figure 2.9 the electric field, width of the depletion region and energy band diagrams of a 

pn   un t on are shown when no bias is applied and with forward and reverse bias 

configurations. 
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Figure 2.9: pn-junction under unbiased, forward and reverse biased configuration 

2.3.3.1. pn-Junction Capacitance 

A pn-junction consisting of two conducting regions separated by a depletion region is 

characterized by a capacitance. The distribution of positive and negative charges across the 

junction (depletion region) of a diode determines this capacitance. The capacitance of a diode 

influences its frequency response. It also determines the limiting noise of the amplifier, used to 

read out its output signal. The length of the n and p part of the depletion region varies with the 

impurity concentration, as: 

                              2.10 

Using the bias voltage       , the widths “  ”and “  ” of p and n parts of the depletion 

region can be calculated using the following equations. 

     
            

           
 
 

  

                  2.11 

     
            

           
 
 

  

                  2.12 

The collective width of the depletion region can be calculated by summing up the width of the 

n and p parts of the depletion region. Thus, 
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              2.13 

Finally, the junction capacitance can be calculated by the parallel plate capacitor formula, 

     
 

 
       

 

 
                 2.14 

Here,          are the dielectric constant of the semiconductor material and the permittivity of 

free space, respectively, while A is the junction area. The capacitance of a pn   un t on 

decreases with increase in width of the depletion region. Operating the diode in reverse bias 

further increases the depletion layer width i.e. it decreases the capacitance and improves the 

speed of the device. However, if the depletion region is too wide, the transit time across the 

junction starts limiting the overall temporal response of the photodiode. 

2.3.4. Photodiodes 

Photodiodes are pn-junction diodes fabricated for the purpose of light detection. Photodiodes 

are fabricated with oppositely doped regions on a semiconductor substrate. These adjacent 

regions of opposite impurity doping result in the formation of a space charge region, which is 

free from charge carriers and has high impedance. Most pn   un t on photodiodes are 

fabricated using silicon or germanium. They exhibit high sensitivity for detecting visible and 

near    wavelengths at room temperature [9]. When light falls on a pn-junction photodiode, 

the photons which have energy higher than the band-gap energy of the material, generate 

electron-hole pairs. Photodiodes may either operate in photoconductive or photovoltaic mode. 

Minimum dark current is seen in photovoltaic mode, whereas fast switching speed is seen in 

photodiodes when working in the photoconductive mode [10]. In reverse bias 

“photoconductive mode” under the influence of an applied electric field the hole is attracted 

towards the anode, and the electron is attracted towards the cathode which produces a photo-

current, provided the circuit is externally closed.  

pn   un t on diodes have specific current-voltage characteristics as shown in Figure 2.8. 

Under illumination these characteristics change as seen in Figure 2.11, when photons are 

absorbed and additional electron-hole pairs are produced. The generation mechanism of 

electron-hole pairs and their movement are illustrated in Figure 2.10. Here thick solid arrows 

indicate the fast drift process within the depletion region, and thin dashed lines represent the 
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diffusion of charge carriers into the depletion region, from within one diffusion length of the 

depletion region. 

 

Figure 2.10: Drift and diffusion of photo-generated electron-hole pairs in reverse bias pn-junction 

In reverse bias configuration, electron-hole pairs produced in the depletion region are swept 

across by the junction electric field. Electrons combine with holes in the n region, whereas 

holes combine with electrons in the p region of the photodiode. Additional electrons necessary 

for recombination with photo-generated holes in the p region are pulled across the terminal 

from the n region. A similar mechanism fills in additional holes in the n region of the 

photodiode. Electron-hole pairs produced farther away from the depletion region, i.e. more 

than a diffusion length away do not contribute to photo-current     and recombine randomly.  

The current-voltage characteristics of a diode can now be modified by adding the photo-

current parameter to the diode equation: 

       
  

                             2.15 

The photocurrent produced in a pn   un t on photo-detector is proportional to the incident 

optical power, before the photo-detector reaches its saturation level. Ideal current-voltage 

characteristics of a pn   un t on photodiode at different optical powers are shown in Figure 

2.11. 
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Figure 2.11: Ideal current-voltage characteristics with three different incident optical powers. 

When photons are absorbed, electron-hole pairs are produced; a fraction of electron-hole pairs 

which are produced outside the depletion region move towards the junction by means of 

diffusion. The diffusion mechanism is important to understand the electrical behaviour of a 

diode. Diffusion of charge carriers and the rate at which photons are absorbed are main factors 

affecting the quantum efficiency of a photodiode, whereas the junction capacitance of a 

pn   un t on photodiode determines its temporal response and the upper frequency limit of 

its operation. 

2.3.4.1. Photoconductive Mode 

A photodiode when reverse biased operates in photoconductive mode. The response time is 

reduced i.e., the photodiode becomes faster, however, the noise is also considerably increased. 

Reduced response time results from increased depletion layer width, and thus decreased 

junction capacitance. These two factors contribute to a faster response time. When the diode is 

reverse-biased a small amount of reverse or saturation current flows. The photocurrent, 

however, remains the same, as it is linearly proportional to the intensity of light. 
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Figure 2.12: Photoconductive mode operation  

2.3.4.2. Photovoltaic Mode 

A photodiode when operating in a photovoltaic mode has no bias applied across it. Initially, no 

photo current flow through the device and a voltage builds up. As a result the diode becomes 

forward-biased and a current begins to flow. A dark current, however, flows in the direction 

opposite to the photocurrent. This is the fundamental principle behind a solar cell. A solar cell 

is also referred to as a large area photodiode. 

 

Figure 2.13:  Photovoltaic Mode 

2.3.5. p-i-n Photodiode 

A p-i-n junction diode is a commonly used variation of the pn   un t on architecture. Figure 

2.14 illustrates a p-i-n junction diode and its energy band diagram. A p-i-n junction diode is 
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formed with an intrinsic or near-intrinsic semiconductor material with p and n regions on the 

two sides. A p-i-n junction diode fabricated with pure intrinsic silicon material is classified as 

a p-i-n junction diode, whereas if a lightly n or p doped near-intrinsic silicon material is used 

then the p-i-n junction diode structure is referred to as p       n or p      n architecture, 

respectively. In case, intrinsic silicon is used to fabricate the p-i-n junction diode, two 

depletion regions would be formed and these can be forced to overlap in the intrinsic region, 

this overlap eventually appears as a single large depletion region covering the whole intrinsic 

part of a p-i-n junction diode. 

 

Figure 2.14:  p-i-n junction diode and its energy band diagram 

Capacitance equation 2.14 shows that the junction capacitance is reduced as the depletion 

region gets wider. Generally a photodiode is fabricated in such a way that most of the photons 

are absorbed in the depletion region, and the optically-induced free charge carriers drift under 

the influence of the built-in electric field of the depletion region. This improves the frequency 

response of the diode. The width of the depletion region can be increased by decreasing the 

impurity concentration in the region of the diode that forms the junction. Alternatively a high 

resistivity intrinsic or near-intrinsic layer can be added in between the highly n and p doped 

regions of the diode creating a p-i-n junction diode. In this vertical p-i-n architecture, light is 

absorbed into the diode and passes through a very thin p doped top layer. This p doped top 

layer, over a near-intrinsic region is deliberately made thin enough so that negligible 

absorption occurs in this thin layer, and most photons are able to reach the intrinsic layer 

where the depletion region and its electric field exist. 
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One important structural parameter for the p-i-n junction diode is the thickness of the intrinsic 

region which must be made thin enough so that the carriers while drifting across the depletion 

region are able to reach the electrodes before they recombine. 

Numerically,       should ideally be less than the recombination time (    ).  

The temporal response of a p-i-n junction diode is given by, 

      
  

         
                  2.16 

This shows that at a high biasing voltage, the detector will have a very fast response. The 

device structure discussed in the context of gated photodiodes in Chapters 5 and 6, and the 

grating-based architecture discussed in Chapter 7, is a lateral structure that is not like the 

conventional vertical structures. However, the current-voltage characteristic of a lateral p-i-n 

junction photodiode is very similar to that of a vertical p-i-n junction photodiode. p-i-n 

junction photodiodes have very high breakdown voltage; typical biasing voltage can reach ~ 

100V. 

2.3.6. Avalanche Photodiode 

Another type of a pn-junction photodiode is an avalanche photodiode (APD). Its structure is 

more sophisticated than that of a p-i-n junction diode. It features a region with an 

exceptionally high electric field. A standard APD is illustrated in Figure 2.15. 

 

Figure 2.15:  Standard APD 
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In the depletion region of an APD, most of the photons are absorbed and primary carriers are 

produced. These primary carriers can acquire sufficient kinetic energy in the avalanche region 

to excite additional electron-hole pairs. The newly created electron-hole pairs on the way 

again acquire sufficient kinetic energy in the gain region to produce further electron-hole 

pairs. This phenomenon is called avalanche multiplication. The process of avalanche 

breakdown in a normal reverse bias diode is based on impact ionization, and requires very 

high (100 – 400 V) reverse bias voltages [11]. 

Internal gain in an  P , combines the benefits of both p    n diode and a photomultiplier. 

These high-gain APDs are superior to normal photodiodes in many applications like light-

wave communication systems, where fast junction-based detectors with small time constant 

are needed. The avalanche process predominantly reduces the relative contribution of Johnson 

noise, in a similar way as is the case with photo-multiplication process. Silicon  P s are most 

suitable for the wavelength range from 0.8 to 0.9  m, where they show relatively low noise 

and fast response [8]. 

The fabrication of  P s is similar to that of normal photodiodes; however, an important 

consideration is to obtain uniform amplification over the entire photosensitive area. This 

requires greater care for ensuring the uniformity of the junction. In an  P , the top p  lay   

is kept very thin usually less than 1  m to let the incident power reach the intrinsic region. If 

the incident power is absorbed in the intrinsic region, the avalanche gain builds up quickly. 

This is because silicon has larger ionization coefficient for an electron than that of a hole, thus 

free charge carriers are mainly produced by the electrons. This is further supported by the high 

reverse bias voltage that creates a strong field in the intrinsic region. This makes silicon a 

preferred material to fabricate APDs [8]. 

2.3.6.1. Multiplication Process  

Here, we take a closer look at the carrier multiplication process in APDs. As shown in Figure 

2.16, the electrons drift in the positive direction with velocity v  and the holes drift in the 

negative direction with velocity v . The width of the space charge region is w. 
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Figure 2.16:  Avalanche Multiplication process in APDs [8] 

The current density for electrons and holes are     and     respectively. These in turn relate to 

carrier densities n and p by the relations       nv  and      pv . Here,   is the value of 

the electron charge. The total current then becomes           which is positive in the 

direction of the field. In multiplication process,      increases, while      decreases. 

In an APD, the electric field due to the applied bias is located in the depletion region, because 

of its high resistance. When the electric field strength reaches values of the order of 

      m  , electron-hole pairs are created. This phenomena is described by α and β, the 

ionization coefficients of electrons and holes, respectively [8]. 

It is quite important to ensure carrier multiplication without producing excess noise. In APDs 

it is crucial to keep the ratio of the ionization coefficient of electron and hole to a minimum. In 

silicon this ratio is a strong function of the electric field. Thus, to keep the noise at the 

minimum level, the electric field required for an avalanche to build-up must be kept at the 

lowest possible level. The multiplication factor M corresponds to the internal gain provided by 

the APD. [12] 

  
 

   
                     2.17 

Here,   denotes total output current, once carrier multiplication takes place, whereas,     is the 

initial or primary photocurrent, before the carrier multiplication starts. 

2.3.6.2. Multiplication Noise 

The noise at the output of an APD is a combination of noise produced due to signal 

amplification, and due to the multiplication process. The noise produced because of the 
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multiplication process, depends upon the relative magnitude of α and β, i.e. ionization 

coefficients of electrons and holes [13]. Generally, the best case is encountered when either 

the ionization coefficients for electron or hole is zero while the worst case is met with when 

both the ionization coefficients are equal [8]. 

2.3.7. Schottky Photodiodes 

In another type of diode a junction is formed between the semiconductor and a metal. This 

type of junction between a metal and a semiconductor creates an asymmetric potential barrier 

which acts as a diode. These diodes are called Schottky diodes and can be formed by 

depositing one of several different metals on silicon. Each metal produces a typical barrier 

height    , and a corresponding cut-off wavelength for optical response. Some common 

schottky diodes include P                  λ       m  and Pt                λ  

     m . 

The p-i-n and APDs discussed already are both pn-junction based photodetectors. In contrast 

the Schottky photodiode is based on metal-semiconductor junction to separate and collect the 

optically generated electron-hole pairs. Structure of a Schottky photodiode is illustrated in 

Figure 2.17. It illustrates the operation of a most commonly used metal-n-n  schottky 

photodiode. Incident photons pass through the semi-transparent metal (Au) film and are 

absorbed in the near-surface depleted n-type substrate. If the electron-hole pairs produced in 

the depletion region, are swept out by the built-in field of the depletion region, this gives rise 

to a photocurrent. Although the Schottky photodiode has no p layer, yet the remaining 

structure and its operation resembles to that of a p-i-n photodiode. 

 

Figure 2.17: Schottky photodiode 
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2.4. Charge Coupled Device  

When a photon is absorbed by a semiconductor detector, the released electrons and holes are 

free to move around in the crystal structure. CCD‟s are designed to store these photo-

generated electrons and prevent them from wandering around the lattice. This way a pattern of 

electron concentration is captured at the CCD‟s pixels which corresponds directly to the 

pattern of the incident illumination or image. The corresponding electron charge pattern is 

then transported for read out using electronic circuits, and is finally digitized by the camera 

circuitry to map out an actual digital representation of the object, imaged by the CCD‟s sensor. 

Normally, CCD sensors are fabricated on Silicon wafers and are designed for charge 

generation, charge collection, transfer of charge, and read out. For making CCDs, 

approximately    –      m thick epitaxial layer of silicon is grown over a highly doped thick 

silicon substrate. Typical resistivity of the silicon wafer is less than         m [14].  

The thick silicon substrate used for this purpose is to support processing in the upper epitaxial 

layer, as it provides a good electrical ground for the device. The substrate is highly doped and, 

therefore, is not sensitive to light. This is because optically-generated electrons in the substrate 

region recombine quickly with the holes that are provided by the dopants. This behaviour 

plays an important role in achieving high charge transfer efficiency (CTE) and good spatial 

resolution among the pixels in a CCD sensor[2]. 

The performance of CCDs is dependent on a number of factors, which include the quality of 

silicon, impurities in semiconductor material, and lattice imperfections. The CTE mainly 

depends on the quality of the epitaxial layer. It is very important because CCDs are generally 

required to transfer very small charge packets through several inches of silicon without any 

loss. Thus, high quality silicon epitaxy with minimal density of defects or traps is critically 

important for high performance CCDs [14]. 
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Chapter 3  

 

Semiconductor Light Detectors: 

Review 

 

3. Introduction 

pn   un t on semiconductor photo-detectors were first conceived in the early 1940‟s. At Bell 

laboratories, Russel Ohl observed photo-voltaic effect when light was shining on a silicon rod. 

Further investigations on these observations became the basis for a silicon-based pn  

 un t on photo-detector [1]. From this accidental invention of a pn   un t on diode it took a 

long time to realise a practical device with similar characteristics. Gradually, it was 

understood that light incident on a  pn   un t on  results in exciting an electron to flow from 

the n      on to the p      on, causing a photo-voltaic effect in the diode. These pn  

 un t on diodes were used for military applications before they were made commercially 

available. In 1947, J. Bardeen and Walter Brattain invented the transistor by adding another 

doped region to a pn   un t on diode. This device was capable of controlling the flow of 

charge carriers. These observations i.e. the formation of an accidental pn   un t on and the 

creation of a transistor were theoretically explained by Shockley (Shockley, pn   un t on 

theory 1948) and these became the basis for the first semiconductor device. 
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Shockley published his results in the Bell system technical journal in 1949 where he also 

proposed the design of a possible junction transistor. Later on he materialized his research by 

making the device while working in collaboration with Morgan Sparks and Gordon Teal. 

These transistors opened up lots of new application areas in solid state electronics. In 1952 a 

pn   un t on was set up in a single silicon crystal by dividing a single crystal into two zones 

of opposite impurity types. At the junction of these two zones, a small voltage exists i.e. the 

built-in voltage of the region depleted of charge carriers. Here, light falling on the junction 

may knock loose electron from one of the crystal‟s atoms, creating an electron-hole pair. 

Because of the existing voltage difference, i.e. the junction electric field, the electron is pushed 

one way and the hole in the other. If the zones are connected by an external circuit, a current 

will flow [2]. Following the successful demonstration of a pn   un t on diode and a pn  

 un t on transistor, in 1957 Robert Noyce and Kurt Lehovec used the pn   un t on concept 

for device isolation as well. 

Untill the end of 1950‟s, the work on photo-detectors was only carried out with elemental 

semiconductor materials. From early 1960‟s compound semiconductor materials also started 

to be used for the fabrication of photo-detectors. In 1976 Hunsperger et al. demonstrated a 

dual mode diode. In forward bias it worked as a light emitter while in reverse bias it worked as 

a photo-detector.  

Silicon-based pn-junction photodiodes are now widely used in radiation sensing applications. 

The detectors are further classified according to their performance in specific spectral regions, 

and based on the semiconductor material used for their fabrication, and lastly on the basis of 

the operating mechanism of the detector. Silicon covers the visible and near-IR region of the 

EM spectrum. Silicon detectors are good for radiation detection in the near-IR region, whereas 

in the short wavelength, blue and UV region, their performance degrades. UV detectors have 

gained interest due to their widespread usage in defence, environment and medical 

applications [3]. These are usually made from wide band-gap semiconductors such as gallium 

nitride or silicon carbide. 

The spectral range for UV light covers 400 nm - 100 nm and reaches into the soft X-ray 

spectral region. This UV spectral range is further divided into four regions, namely UV – A 

(400 – 320 nm), UV – B (320 – 280 nm), UV – C (280 – 200 nm) and Far – UV (200 – 100 
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nm). UV detectors are used in several applications like emitter calibrations, flame sensors, 

spatial optical communications and as biological and chemical sensors. These applications 

include solar UV measurements, astronomical studies, missile plume detection, combustion 

engine control, spatial optical secure satellite communications, ozone detection, pollution and 

biological agent detection.  

Initially, photomultiplier tubes were used to detect UV light [4]. Advancements in 

semiconductor technology, established that semiconductor-based UV photodetectors are more 

reliable and can be fabricated to be much smaller in size than photomultiplier tubes. These 

detectors include photoconductors, Schottky photodiodes and p-i-n photodiodes.  

Semiconductor photodiodes primarily designed for visible spectral range have also been tested 

in the vacuum-ultra-violet (VUV) spectral region. Silicon-based photodiodes show drastic 

decrease in spectral responsivity in this region. Gallium phosphide and Gallium Arsenide 

phosphide Schottky diodes have shown excellent stability and high quantum efficiency. These 

Schottky diodes are therefore suitable alternatives in the VUV spectral region [5]. 

3.1 Silicon-based Photodetectors 

Semiconductor detectors can be classified into three categories based on their operating 

mechanism. These are photoconductive detectors, pn-junction photodetectors and Schottky 

barrier detectors. Their operating mechanism has already been explained in Chapter 2. Silicon-

based photodetectors are generally used for detecting in the visible spectral range, and are a 

cheap solution for detecting radiation from 400 nm to 1100 nm range. Silicon can also be used 

for detecting UV radiation. For UV radiation detection a distinct structural arrangement and a 

specific fabrication process is needed to fabricate such short wavelength-sensitive detectors. 

Conventional pn-junction silicon photodiodes are less sensitive to UV radiations. This is 

because high energy photons are absorbed mostly in a very thin top surface layer. 350 nm to 

200 nm UV photons are practically absorbed within less than 10 nm length, this results in the 

loss of photo-generated charge carriers due to surface recombination in conventional 

photodiodes. In diffused photodiodes, photo-generated charge carriers are also lost by 

recombination in the defect and trap centres introduced during the diffusion process. 
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Spectral sensitivity of the most widely used silicon detectors varies rapidly with UV radiation. 

Factors like multiple ionization and recombination effects degrade the performance of the 

detector [6]. Therefore, it becomes difficult to maintain the quantum efficiency with UV 

radiation. To address these performance issues with UV detection, a high pass optical 

absorbent filter is commonly used to adjust the spectral range as per the targeted application, 

and a phosphor coating is used for wavelength conversion to increase the life time of the 

device. Resultantly, the manufacturing cost of the device increases. L. R. Canfield et al. [7] 

indicated that UV sensitivity of silicon photodiode can be controlled by the quality and careful 

handling of         interface. 

A UV-sensitive silicon photo-detector and a photo field effect transistor (photo-FET) were 

reported by Von Muench et al. in 1976 [8]. They demonstrated high UV sensitivity using a 

special boron diffusion process to make a very thin top p layer in order to make the silicon 

sensitive to such short wavelength photons. A thin and patterned, dry      layer was used to 

control the surface acceptor concentration of boron atoms and the diffusion depth. The surface 

area covered with dry      resulted in shallow diffusion whereas the un-covered areas i.e. 

without      ended up with deep impurity diffusion. This resulted in shallow and deep 

diffusion profiles at selective surface locations. The junction was formed at a depth of 200 nm 

and exhibited responsivity of 0.1 A/W at 253 nm wavelength. Furthermore, this boron-doped 

UV photodiode gave superior response especially in the 190 nm to 250 nm spectral range. 

In 1979, Ouchi and colleagues carried out experimental studies with a silicon pn   un t on 

diode [9]. Their aims were to make a photodiode sensitive to UV spectral region with low dark 

current, high reliability and reduced responsivity to visible radiation. Unlike the thin dry oxide 

layer approach described by Von Muench et al. for shallow diffusion, Ouchi used the approach 

of controlled sheet resistance to control the junction depth. The sheet resistance decreases 

linearly with increase in diffusion temperature. The experimental results showed that 0.15 

 m junction depth was achieved at 800   diffusion temperature.  

An n-type silicon wafer was used to fabricate the photodiode. A guard ring fabricated in the 

device structure was kept at large junction depth to reduce the possibility of junction 

breakdown. The heavily doped channel stop region helps in controlling leakage current at the 
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         interface. For reduced responsivity in the long wavelength region two different 

architectures of photodiode were fabricated which are discussed below. 

The top diffusion layer, in which a built-in field was induced by the impurity gradient, was 

optimized for values of sheet resistance in the range of 800-2000 Ω/□. The device responded 

to wavelengths in the range of 200 nm to 1000 nm and showed responsivity of 0.065 A/W at 

200 nm wavelength. The p   n   p  device exhibited high reliability with exposure to high 

energy photons, and reduced responsivity in the long wavelength part of the spectrum than the 

p   n   n  device architecture. The device was designed with an extended electrode, which 

helped in preventing silicon surface degradation as a result of UV exposure. The device 

showed little degradation after 1000 hours of exposure to short wavelength photons. The 

p   n   p  device architecture also helped in reducing stray light effects in spectroscopic 

measurements. 

Korde et al. fabricated three different UV-sensitive photodiode structures, (1) n on p type 

photodiode i.e. phosphorous doped, (2) p on n-type photodiode i.e. boron-doped and (3) 

natural inversion layer type photodiode [7, 10-12]. A 60 nm thick dry      layer was 

thermally grown at the top surface. The same process was repeated with boron diffusion on n-

type substrate. It appears that donor impurities like phosphorous or arsenic tend to pile up near 

the silicon surface during thermal oxidation, forming a built in electric field near the         

interface. This oxide thickness absorbed all the radiation up to 120 nm, making this detector 

unsuitable for high energy UV photons such as those from the vacuum UV spectral region. 

Here the authors have described 100% internal quantum efficiency for the wavelength range 

from 350 to 600 nm, whereas the internal quantum efficiency was larger than unity for 

wavelengths shorter than 350 nm. This mainly arises due to secondary impact ionization 

phenomenon.  

To characterise the inversion layer photodiode [11, 12] natural n-type inversion layer 

produced near the thermally-oxidized p-type silicon surface, due to fixed surface state charge 

is made use of. These fixed positive charges are due to excess silicon ions in a narrow region 

next to the silicon surface i.e.     . The charge inversion photodiodes appeared to be similar 

to MOS structures designed for FET applications. The photo-detection process was mainly 

influenced by the inversion field induced at the surface near the         interface [13]. The 
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strong electric field due to the inversion layer was established near the surface of the 

photodetector where incident high energy UV photons were likely to be absorbed. As the 

depletion region was formed close to the surface i.e. at the Oxide-silicon interface, it helped in 

collecting the charge carriers produced due to the absorption of short wavelength UV photons, 

thereby enhancing the internal quantum efficiency in the 250 to 500 nm spectral range with a 

cut-off wavelength of 120 nm. The reason for this, as already discussed, was the absorption of 

high energy photons by the layer. Disadvantage associated with this photodetector was its high 

sheet resistance in the inversion layer which caused slow response times.  

Both the diffused photodiodes p-on-n and n-on-p, were fabricated with similar processes. 

However, based on the device response, Korde et al. concluded that n-on-p photodiodes were 

more stable in the UV spectral region than the p-on-n photodiodes. However, stable p-on-n 

devices can also be produced with adequate care. Fragile         interface made it difficult 

to eliminate the recombination states at the interface and to prevent these states from 

reforming due to environmental stresses. The presence of the diffused inversion layer on p-

type photodiodes i.e. n-on-p and inversion layer devices, minimizes the time that photo-

generated minority carriers spend near the interface. This considerably reduced the sensitivity 

of these devices. Boron-doped devices i.e. p-on-n photodiodes were sensitive to moisture 

unlike the other two devices. Therefore, growth of dry oxide in ultra clean and dry 

environment made the n-on-p device relatively stable for UV exposure. Whereas, in the case 

of the inversion layer device, the stability of the trap centres in the oxide layer prevented the 

loss of linearity over the UV range. 

In 1989 R.F. Wolffenbuttel [14] demonstrated an electrically programmable spectral filter 

using a silicon photodiode which could be tuned to attain high UV sensitivity. High surface 

absorption of UV / blue short wavelength photons was seen in silicon photodiodes. A special 

programmable biasing technique was used for selective detection in the spectral region of 

choice. Wolffenbuttel used a special biasing arrangement for the detection of selective 

optically-generated free charge carriers in the space charge region. The width of the space 

charge region was controlled by reverse bias arrangement, as is usual with photodiodes. 

Measurement results confirmed the effectiveness of this reverse biasing arrangement i.e. 

electronic control for detection in the UV-B region. This enhanced operation of a photodiode 
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in the short wavelength region with electronic control may become the basis of programmable 

silicon colour filters. 

Schottky barrier UV photodiodes have been fabricated using a variety of semiconductor 

materials. K. Solt et al. reported surface-illuminated             silicon Schottky barrier 

photodiodes for vacuum UV spectral region [15]. These Schottky diodes were fabricated using 

n-type 25      silicon wafers. Contacts and guard ring diffusion were done using ion-

implantation. The platinum was deposited using magnetron sputtering in a high vacuum 

system. The silicide was formed         after deposition by annealing at 500  . The resulting 

less than 10 nm thick films were partially epitaxied to the silicon forming an abrupt, 

contamination free, laterally uniform interface between PtSi film and the silicon substrate. The 

photodiode showed 0.03 A/W responsivity for the spectral region below 250 nm. This value 

was comparable to the reported responsivity values for GaAsP Schottky photodiodes. The 

PtSi-n-Si diode showed spatially uniform and virtually stable response after long exposure to 

VUV radiation at 120 nm wavelength. The diode response made it a promising choice for use 

as photon detectors for satellite-based UV and VUV astronomy. These diodes can also be used 

in front-illuminated short wavelength sensitive CCD arrays.  

3.1.1       Silicon Carbide UV Photodetectors 

Silicon carbide has special properties that make it suitable for making UV detectors. It has a 

high breakdown field that results in much smaller drift regions i.e. lower drift region 

resistance. Higher thermal conductivity in SiC allows heat to dissipate quickly and a wide 

band-gap (2.9 eV) endows it with extreme radiation hardness in the UV spectral region. 

Furthermore, UV photodiodes made with SiC are visible blind. These properties make SiC a 

suitable material for making detectors for the UV or VUV regions [12].  

The best SiC UV photodiodes were made by the diffusion of Al into n-type substrates. The 

diffusion at 2000   results in structural decomposition of the surface layer and, therefore, the 

devices showed high leakage current and low quantum efficiency [16]. An improved design 

proposed by Glassow et al. made use of a      p-type epitaxial layer grown on a p-type 

substrate. The authors utilized n-implantation to form a very shallow        junction in the 

epitaxial layer. To activate the implanted nitrogen, furnace annealing and rapid thermal 
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annealing techniques were used. The fabricated devices exhibited 75% quantum efficiency at a 

peak wavelength of 280 nm at room temperature. The diode showed high leakage current of 

the order of         m  at -10 V. This is because sintering the contact at high temperature 

diffused the contact metal to    layer through the crystal defects causing increased diode 

leakage current. 

Anikin et al. reported a realization of high quality Schottky junctions on SiC(n). The authors 

fabricated two sets of 6H – SiC UV photodiodes, one using Schottky junctions while the other 

was based on shallow pn-junctions [17].  The author‟s work relied on Au-SiC barrier 

technology, which the authors had developed earlier. The Schottky junction had an area 

of                 The Au-SiC barrier showed low leakage current of the order of         , 

up to the breakdown voltage of 100 – 170 V at room temperature, whereas at 573 K the 

leakage current reached        . The pn-junction structure had an area of                 

and produced a leakage current of         at 1 V reverse bias. The spectral sensitivity of 

Schottky barriers and shallow pn-junctions were 0.15 A/W at λ      nm and 0.13 A/W for 

λ      nm  respectively. Both SiC-based diodes showed high sensitivity to UV radiation 

with low leakage current and, therefore, could be used for UV detection even at higher 

temperatures. 

4H-SiC vertical Schottky photodiodes have been reported by Feng et al. They used 2 inch 

wafers based on n-SiC epilayers grown over    SiC substrate [18]. A semitransparent 7.5 nm 

thick Schottky contact was deposited over an            dielectric layer. The photodiodes 

showed extremely low leakage current at -1 V bias. Furthermore, the diodes showed 37% 

quantum efficiency in the 240 to 300 nm wavelength range. They also showed high detectivity 

over       m  z        in the 210 to 350 nm spectral range with a peak detectivity of  

            m  z        at 300 nm wavelength. 

So far, state of the art silicon and SiC-based photodetectors reported in the literature have been 

discussed, whereas industries like automotive, aerospace, oil exploration and others demand 

highly reliable and technologically advanced UV detectors, which are resistant to high 

temperatures and are suitable for adverse conditions. New generation of UV detectors are 

mainly fabricated using wide band-gap semiconductors – the most promising are diamond and 

AlGaN [12]. Recent developments in the diamond-based UV photodetector were the basis for 
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the realization of short cutoff wavelength photoconductors              . They also show 

high contrast to UV and visible part of the spectrum [19, 20] and thus were useful for 

applications requiring visible UV and highly energetic particles detection. Diamond due to its 

radiation-hardness property, remains resistant to high energy particles.  

Until the early 80‟s, thermal diffusion was used to add dopants to semiconductor materials. 

Thermally diffused impurities caused higher leakage current and, therefore, higher noise. 

Replacement of diffusion technique by ion implantation reduced the leakage current by three 

orders of magnitude i.e. from     m  leakage to n   m   [21]. Ion implantation technique 

produces a very shallow heavily p   op   top layer resulting in enhancement in sensitivity 

of pn and p    n diodes to the blue spectral region. This is due to dosage precision and 

better command over the impurity diffusion profile by ion implantation technique. Further 

research in fabrication techniques has improved the diffusion process as well. C. Z. Shou and 

W. K. Warburton, while comparing thermal diffusion and ion implantation processes, devised 

a technique that yields less leakage current with thermal diffusion than with ion implantation. 

They used high resistivity n-type silicon wafers, the large leakage current as a result of boron 

diffusion, was considerably reduced (by about a factor of 2) by adding a boron skin removal 

step, following the thermal diffusion process. The boron-doped layer, formed a brown 

coloured skin, which was hard to remove using acid etching. However, by using wet 

oxidation, the boron skin was converted into borosilicate glass, which could then be removed 

using plasma dry etching. It is believed that thermal diffusion causes less lattice damage than 

ion implantation process. The only drawback with the new technique was the additional 

fabrication processing required [22].   

Ciftcioglu and colleagues [23] demonstrated an integrated silicon p    n photodiode using 

a deep n    ll in a standard       m C    technology. This p-i-n photodiode showed a 

      z bandwidth response at 850 nm wavelength, as against the        z and        z 

response of vertical and lateral p-i-n photodiodes, respectively. The responsivity of the 

photodiode was approximately          up to      of bias. Furthermore, at        bias, the 

bandwidth response of new photodiode reached up to        z. Responsivity of this 

photodiode could be increased up to         when operating in the avalanche region at 

       bias.  
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3.1.2 Metal-semiconductor-metal Photodiodes  

Metal-semiconductor-metal (MSM) silicon photodetectors suitable for near-IR (800–900 nm) 

spectral range exhibit low responsivity. This is caused by the small absorption coefficient of 

near-IR spectrum in silicon. M. Y. Liu. et al. [24] demonstrated the first reported 510 GHz 

MSM photodiode using GaAs and 110 GHz photodiode on bulk silicon. The response time 

was dependent on the wavelength of incident light, i.e. a shorter response time for short 

wavelength radiations and a relatively slow response for long wavelength radiations. GaAs 

based MSM photodiodes also showed reduced bandwidth of 40 GHz at long wavelengths. To 

address this issue, the authors demonstrated a silicon-on-insulator SOI photodiode which 

showed 140 GHz bandwidth. The unique device structure stopped carriers generation deep 

inside the semiconductor substrate, causing the detector response to be independent of the 

incident radiation‟s wavelength. Here the substrate structure separates the top scaled silicon 

layer from the bulk silicon using a buried oxide layer. This structure had many advantages 

over the previous reported devices. The detector response became independent of the incident 

wavelength, the device had smaller capacitance and the results showed its possible use in high 

speed nano-scale FET applications. The device showed     p   m  dark current. The top 

epitaxial silicon layer was p-type with a doping concentration of       m   and was thinned 

down to 100 nm using oxidation and wet etching techniques. 100 nm interdigitated electrodes 

were fabricated using electron-beam lithography and lift-off techniques. The device with 100 

nm top scaled silicon layer, showed responsivity of 5.7 mA/W at 780 nm and 12 mA/W at 633 

nm. This low responsivity was caused mainly by the thin active top silicon layer.  

The authors predicted that if the finger spacing was reduced from 100 nm to 25 nm the silicon-

on-insulator metal-semiconductor-metal photodiode could have response time as small as 1 ps 

and a bandwidth as high as 400 GHz. This would certainly need to reduce the thickness of the 

active silicon layer over the buried oxide, and would show a high speed at the expense of low 

responsivity. This tradeoff between responsivity and speed can be avoided using a number of 

different methods. One such technique was proposed by Lee and Zeghbroeck where they 

proposed a novel silicon MSM photodetector fabricated on a textured silicon membrane [25]. 

This membrane ensured that the carriers were generated within the active region only. 

Scattering at the textured membrane surface increased the average path length between the top 

and bottom surface of the membrane, whereas trapping of light in the thin membrane caused 
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minimal reduction in responsivity, while reducing the transit time of the carriers. Another 

method was proposed by Ho and Wong [26] utilizing a trench structure using SOI wafer. They 

obtained 19% efficiency at 790 nm at a bandwidth of 2.3 GHz. 

J. D. Schaub et al. in 1999, fabricated and tested a resonant-cavity-enhanced high-speed 

silicon p-i-n photodiode grown by epitaxial lateral overgrowth. This device exceeded 34 GHz 

bandwidth with 2.7 pA dark current at 5 V reverse bias. Higher values of quantum efficiency 

were reported ranging from 42% to 31% at 704 nm and 836 nm wavelengths, respectively. 

The product of bandwidth and efficiency was among the state of the art silicon p-i-n 

photodiode [27].  

Vertical p-i-n photodiodes have limitations in optical communication at 850 nm wavelength. 

This is due to deep optical absorption at 850 nm wavelength and the carrier transit distance in 

silicon [28]. Lateral p-i-n photodiodes where the pn-junction is formed through either ion-

implantation [29] or diffusion [30] and interdigitated metal-semiconductor-metal 

photodetectors [31] face absorption layer thickness limitations. The devices based on thin SOI 

material had also shown decrease in responsivity [24] although a very high bandwidth was 

reported. Silicon detectors based on resonant-cavity enhancement [27] have shown both high 

speed and responsivity. The resonant-cavity, however, induces undesired wavelength 

selectivity. 

Yet another high-speed, high-sensitivity silicon lateral trench photodetector, capable of 

decoupling the carrier transit distance from the light absorption depth was reported by Min 

Yang et al. [32]. This structure was capable of both high speed and high responsivity. External 

quantum efficiency was reported to be 68% at 845 nm wavelength. The wire-bonded lateral 

trench detector and a BiCMOS transimpedance amplifier together demonstrated 2.5 Gb/s data 

transfer rate at 845 nm wavelength, with 3.3 V applied bias. 

3.1.3 Avalanche photodiodes  

Silicon avalanche photodiodes   P   provide internal gain, amplifying weak optical inputs. 

APDs have inherent charge multiplication which causes signal enhancement. The ionization 

rate for electrons is higher than that for holes, causing higher gain and lower noise when 

compared with other types of silicon detectors with no internal gain mechanism [33, 34]. 
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In 2002, Rochas and colleagues fabricated a CMOS-compatible APD which showed high 

sensitivity to UV / blue radiation [35]. The photodiode was fabricated in a twin tub with a 

guard-ring structure formed through laterally diffused n-well regions. The lateral diffusion of 

two n-wells designed at a small distance “d” apart is advantageous in making two guard-rings 

without any additional processing. The photodiode showed a very small dark current which 

was nearly 400 p  mm   The approach used by the authors was discussed in [36].  

Though p    n diodes are suitable for high speed operations and their sensitivity is better 

than pn   un t on diodes, further advancements in the  P s have resulted in devices that 

can detect a single photon. E. Sciacca. demonstrated a single photon  P    P    in planar 

technology, suitable for monolithic integration of  P   [37].  

3.2 Lateral pn-Junction Photodiodes 

Tsutsui and colleagues developed an analytical model in 2001 for “   lateral pn   un t on 

photodiode”, [38]. This lateral pn   un t on photodiode model ensured low capacitance and 

short transit time and thus could operate at higher signal frequencies. This model was based on 

the assumption that the electron-hole movement is due to drift-diffusion process. The authors 

showed that the combination of short carrier transit time and very low capacitance in lateral 

pn   un t on photodiodes provide significant advantages over other photodiodes like metal-

semiconductor-metal (MSM) photodetectors [39-41] and lateral p    n junction 

photodetectors [42, 43]. 

3.3 Gated pn-junction Photodiodes 

A new silicon-based gate-controlled vertical pn   un t on photodetector was described by 

Sun et al. [44]. The gated part of pn   un t on diode modulated its external quantum 

efficiency and photocurrent and controlled the depletion layer depth.  

The gate-controlled vertical pn-junction photodiode was fabricated using n-type phosphorous-

doped silicon substrate with doping concentration,        x       m   and a resistivity of  

         m. It was based on a pn-junction diode whose surface was covered with a metal 

electrode. The transparent polysilicon MOS gate was vertically aligned to the p-doped region 

such that with negative biasing on the gate an inverted channel would form under the MOS 
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gate. This inversion layer and n type silicon formed a depletion region under the MOS gate. 

Here the width of the depletion region was controlled through the applied gate-bias. The 

advantage of this structure was that the gate-bias-induced depletion region got interconnected 

with the pn-junction depletion region. The function of the pn-junction depletion region was to 

collect the charge carriers which form the photocurrent. Upon illumination, short wavelength 

photons were absorbed within the depletion width i.e. the depletion region under the 

transparent gate. Long wavelength photons were absorbed outside the depletion region deep 

into the substrate and thus did not contribute to photocurrent. The photocurrent was 

proportional to the product of gate voltage and light intensity in linear region only. The photo-

generated electrons drift towards the grounded substrate whereas the holes transfer in the 

transverse direction parallel to the semiconductor-oxide interface towards the pn-junction. 

Holes which successfully reached the pn-junction contributed to photo current. Unlike 

conventional photodiodes, here diffusion was the dominant mechanism and possibly slowed 

down the device response. To address this issue a special device structure was investigated 

using a stepped-oxide-thickness gate to increase the transverse electric field whereas an 

epitaxial structure and n  ring were used to reduce the series resistance. 

Another transistor, based on gated vertical p    n structures for purely electronic 

applications, has been described by Bhuwalka et al. [45]. They demonstrated a three terminal 

p-i-n diode which could be operated with a reverse bias for optical detection. When the gate 

was biased with a positive voltage with respect to the source,    and    tunnel junctions were 

formed between the heavily p-doped source and the inverted channel. The gate bias, therefore, 

controlled the tunnelling width and the tunnelling current. The device performance was further 

improved using gate work function engineering and band-gap modulation at the tunnel 

junction. 

It is clear from the past research that the location of the depletion region is vitally important 

for short wavelength radiation detection applications. The vertical, gated junction diodes have 

depletion regions buried inside the semiconductor surface, whereas in the gated lateral 

junction diodes, the depletion region starts right from the top surface, which can be utilized in 

many novel applications.  



Chapter 3  Semiconductor Light Detectors: Review 

- 52 - 

 

Furthermore, the fixed architecture of diode-based detectors, is a source of inflexibility in that 

their operating characteristics cannot be changed once these devices have been incorporated in 

a circuit. The bipolar junction photo-transistor can be used in such situations as its base 

terminal, when properly utilized, can be used to adjust its operating parameters. However, as 

most integrated circuits are based on MOSFETs so a bipolar transistor device does not fit very 

well into the overall circuit design philosophy. A hybrid device can be a suitable solution to 

this problem - a device that has features of both pn-junction diodes and MOSFETs. 

The concept of a silicon-on-insulator-based lateral p-i-n photodiode with transparent gate has 

been discussed by Zeng Yun et al. in a recent publication [46]. The authors have presented a 

physical model which was based on standard semiconductor equations. Their analytical model 

described a lateral device with high sensitivity and signal to noise ratio, together with low dark 

current. Using this model, the photoelectric characteristics of lateral p-i-n gated photodiode 

could be optimized. The proposed device would operate as a p-i-n junction photodiode but it 

also incorporates a transparent insulated gate to control the electrical aspects of its operation. 

The resulting device detects light through pn-junction mediated charge carrier separation and 

appears as a MOSFET for the purpose of circuit design.  

It should be pointed out here that a gated phototransistor was reported by Kang et al. in the 

context of metamorphic high-electron-mobility transistors a few years ago [47]. However, 

their device was a back-illuminated compound semiconductor device with characteristics too 

different from that of transistors and thus was not compatible with silicon-based integration. A 

gated light-sensing heterostructure FET was also described by Taylor and Simmons many 

years ago [48]. Yet another phototransistor based on indium phosphide structures was 

described recently by Zhenghua An and colleagues which operated with a photo-emissive gate 

[49]. 

3.4 Black Silicon 

Silicon-based devices are commonly used in optoelectronic and microelectronic industries. It 

has a crucial disadvantage that limits its use in optical communications. The two primary 

wavelengths used for optical communications are      nm and      nm . These fall beyond 

the spectral detection capability of silicon i.e. beyond      nm . Therefore, normal silicon 

cannot be used in optical communications. However, silicon could be made sensitive to 
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wavelengths suitable for optical communications. This is done in a process where gases pass 

over the silicon surface, react with the top layer and finally form a so-called black silicon layer 

on top of normal silicon. Black silicon formation reduces surface reflection and traps light 

thereby increasing the sensitivity of silicon to longer wavelengths [50].  

Black silicon is a promising new material for enhancing the sensitivity of silicon for infrared 

detection. Photo-detectors fabricated with black silicon are very sensitive to near infrared 

(NIR) and short wavelength infra-red (SWIR) regions. It is generally found that black silicon 

improves the wavelength response considerably to which silicon is normally sensitive i.e. 

black silicon has enhanced IR sensing capability, as shown in Figure 3.1. For making black 

silicon, the photoconductive and absorptive properties of normal silicon are changed using a 

short pulse femtosecond laser. This material is formed through, the irradiation of silicon with 

an ultra fast laser in a sulfer hexafluoride environment. As a result, black silicon is formed 

with a highly doped, nano-structured surface layer. This layer exhibits photoconductive gain 

and enhanced infrared absorption at room temperature. Its response exceeds as compared to 

that of a standard silicon photodiode in visible and near infrared regions and is competitive 

with InGaAa and germanium response in SWIR region [50]. 

 

Figure 3.1: The responsivity of a black-silicon detector [50]. 

Compared to that of ordinary Silicon and InGaAs detectors. 

First photodetectors fabricated using black silicon showed high photoconductive gain at room 

temperature, where the responsivity reached 100 A/W in the near infrared region. The 
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magnitude of signal produced with each photon is nearly equal to that with a silicon avalanche 

photodiode (APD). However, this is achieved without the added complexity of high voltage 

and protection circuitry as required with traditional avalanche photodiodes. 

Improved signal strength from high photoconductive gain reduces the burden of signal 

processing by downstream electronics. The absorption properties of silicon are also tailored as 

a result of femtosecond-laser processing. The combination of increased optical path length and 

defect engineering enable black silicon to radically reduce the amount of silicon needed to 

absorb NIR and SWIR light. This allows silicon to detect optical communication wavelengths. 

Aoife and colleagues  [51] have presented novel black silicon p    n photodiodes of 

various sizes. These photodiodes were characterized for all parameters and were compared 

with similar-sized photodiodes made on the same silicon wafer, which was used to make black 

silicon. A p-i-n photodiode fabricated with black silicon has shown, more than     increase 

in responsivity as compared to normal p-i-n silicon photodiode. 

 

Figure 3.2: .The absorption depth in standard silicon detectors [50]. 

In normal silicon-based CMOS imagers the absorption depth of photons is quite large in the 

near-IR region. As a result most of the light just travels through the detector as if it was a 

transparent material. For this reasons, the CMOS imager uses no less than     m of silicon in 
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the “receptive region”. High performance charge-coupled devices (CCDs) have a very thick 

sensing zone, however, it still appears transparent to wavelengths in the SWIR region. (λ 

>1100 nm) as illustrated in Figure 3.2. Therefore, use of black silicon to fabricate a detector 

would result in reduced absorption depth for NIR and SWIR light. In black silicon, electron-

hole pairs are produced within a thickness that is similar to that of the silicon used in CMOS 

devices. High efficiency, photoconductive gain and increased absorption are the benefits of 

black silicon as a detector material [50]. 

Black silicon is being used in digital night vision applications and in the medical and defence 

fields where detectors made from black silicon have shown improved results as compared to 

normal silicon detectors.  
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4 Introduction 

This chapter contains a description of the silicon material used for device fabrication, 

techniques in processing of CMOS-based Surface Gated Photo-detectors (SGPD) and the 

basic design of these gated photo-detectors. Silicon is the most widely studied material in the 

world. It is either available in its pure un-doped high resistivity form or, more commonly, 

doped with impurity atoms which make it n or p type. This adjustment of dopants is critical to 

device operation. The device fabrication part of this chapter deals with the fabrication 

techniques used in processing the SGPDs. These are cleaning, oxidation, patterning, etching, 

diffusion and metallization. The fabrication process is summarized with illustrations to explain 

the sequence of fabrication. Later part of this chapter deals with the variations in the structure 

of SGPDs. One set of devices deals with single gate photo-detectors with variations in 

dimension and placement of gate, whereas the second deals with dual gate architectures. A 

very brief overview of the fabrication is given to highlight the variation in SGPDs. Further 

details of these variations are given in single and dual gate device chapters, respectively. 
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4.1 Material for Device Fabrication  

Optoelectronic devices transform electrical signals into optical radiation or vice versa and thus 

can be categorized as light sensing or light emitting devices. Phototransistors, charge-coupled 

devices (CCDs) and photodiodes are examples of light sensing devices, whereas lasers and 

light emitting diodes (LEDs) fall into the light emitter category. The gated lateral p-i-n 

photodiode described here detects light through pn   un t on mediated charge carrier 

separation. In pn or p    n  un t on photo-detectors the electric field in the depletion layer, 

separates the electron-hole pairs generated through photon absorption. Use of the 

semiconductor material critically determines the spectral range over which the photo-detector 

operates. Silicon based lateral p-i-n photodiodes are suitable for     nm to      nm range of 

electromagnetic (EM) spectrum. Conventional photodiodes with vertical doping profile appear 

transparent to long wavelength radiations, whereas short wavelength radiations are essentially 

absorbed at the surface even before the depletion region is encountered. In this region minority 

carriers have a very short diffusion length thus they recombine with majority carriers and do 

not contribute to output current. In order to address this issue, we fabricated the lateral surface 

gated photo-detectors where the depletion region starts right from the top. The lateral surface 

gated photo-detector was fabricated using p  typ  Float Zone      silicon wafers. The float 

zone      wafer was lightly boron doped with       crystal orientation. It had a high 

resistivity of    Ω   m. Properties of silicon are shown below in Table 4.1. 

Crystal structure Diamond 

Number of atoms in 1 cm
3
   x      

Energy gap 1.12 eV 

Energy separation (EΓL) 4.2 eV 

Intrinsic carrier concentration   x       m   

Intrinsic resistivity     x     Ω   m 

Effective conduction band density of states     x       m   

Effective valence band density of states     x       m   

Breakdown field    x        m 

Mobility electrons        m     s   

Mobility holes       m     s   
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Dielectric constant (static) 11.7 at 300 K 

Infrared refractive index n(λ) n = 3.42 at 300 K 

Table 4.1: Properties of Silicon. 

4.2 General Considerations  

Semiconductor devices are fabricated in thin material slices called wafers. Wafers, in 

semiconductor terminology, are also referred to as substrates. The fabrication process ends 

with hundreds of tiny devices on a single substrate. With the advent of micro and nano 

technology, the device size keeps on shrinking. This helps in making fast nano scale devices. 

This way better performance is achieved whereas the device requires low power to operate. 

Micro and nano scale device processing requires clean fabrication environment and apart from 

this cleaning of the substrate is also of immense importance.  

Adherence to a good cleaning process ensures removal of impurities and residues from the 

substrate. The substrate, in cleaning solvents, is placed in an ultrasonic bath in a series of 

steps, where impurities and residual matter are removed from the substrate surface. Opticlear, 

Acetone, Methanol, and RO water are generally used as cleaning solvents. In MOS structure 

fabrication, the cleaning process is followed by thermal oxide growth. 

In MOS structures, an oxide layer is sandwiched between the metal and the semiconductor. 

This thin layer can be added over the substrate either by an oxide growth technique or by a 

deposition process. Use of the appropriate technique depends upon the specific needs and 

requirements of the device structure, temperature limitations and the precision required in the 

thickness of the oxide layer. Once formed, the oxide layer can be patterned using lithography 

techniques. 

At the patterning stage, device patterns are created over a thin layer of resist using lithography 

techniques. General lithography techniques used for patterning are photolithography or 

electron beam lithography. Following the    or electron beam exposure the sample is 

developed in a developer solution. The pattern can now be seen in the thin resist layer. The 

oxide layer can next be etched using a suitable etching technique. The patterned resist layer is 

used to transfer the resist pattern into the oxide layer. Patterned oxide layer can be used for 

selective diffusion process or to form the contacts. 
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A thin layer of dopants, using spin-on-glass (SOG) technique, is produced over the patterned 

oxide layer. This patterned oxide layer acts as a barrier layer for selective diffusion. The 

substrate is then soft baked over a hotplate to dehydrate the     layer before it undergoes heat 

treatment in a furnace at       . This step diffuses the impurity layer into the bare silicon 

surface. The diffusion occurs in an environment where a gas or a mixture of gases passes 

through the furnace at a specific temperature and pressure. Heat treatment is also needed after 

metallization to anneal the contacts.  This thermal annealing process requires far less 

temperature than oxidation or diffusion processes [1]. In this chapter fabrication processes are 

discussed with particular focus on lateral gated diode fabrication.  

4.3 Fabrication of Lateral p-i-n Photodiode 

Here the fabrication process is illustrated in a self explanatory way. This starts with the silicon 

dry etch process to form the photolithography markers and device isolation patterns, followed 

by dry oxidation, selective wet etching and thermal diffusion processes. It further moves on to 

explain the growth of gate dielectric, formation of metal contacts and the subsequent lift off 

processes. Here similarities in fabrication process of all variations of the device are 

highlighted. Finally, emphasise is given to explain the variation in dimension and placement 

of MOS gate structure in single and dual gate devices. 

4.3.1 Process Flow 

The process flow explains the sequence of device fabrication. Dry etching of silicon is carried 

out as the very first step after cleaning the substrate and subsequent patterning of resist layer to 

form the pattern for dry etch. In Figure 4.1 (a) to (d) the process is illustrated. Here cleaning of 

the sample and resist spinning is shown in (a), patterning of resist layer using mask aligner is 

presented in (b), dry etch of silicon using STS-ICP with          gases shown in (c). Here 

red colour has been used for       photo-resist and the white pattern represents developed 

resist layer as shown in (b). Finally in (d) the resist layer is removed and the etched pattern in 

silicon persists. 
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Figure 4.1: Sequence of process explaining Silicon Dry etch. 

4.3.1.1 Oxidation and Diffusion 

Oxidation and diffusion processes are shown in Figure 4.2 and Figure 4.3. Here in (c) light 

blue layer is the thermally grown oxide layer and the red layer is for       photo resist. A 

       thick layer of thermally grown dry oxide as shown in (b) was formed at        . 

This oxide layer was patterned for selective p and n diffusions in two separate steps. Each 

diffusion process (a to h refer to n type diffusion and i to p refer to p type diffusion) was 

followed by wet etch with     HF to clear off the silica layer primarily patterned for 

diffusion. Figure 4.2 (g) and Figure 4.3(o) show layers of n and p type dopants using spin-on-

glass       material. Here in Figure 4.3 (p) the cross-section of device isolation pattern and 

selectively diffused p and n regions are shown. The solid fill blue and orange colour near the 

top surface of silicon correspond to p and n doped regions, whereas the solid fill blue colour at 

the bottom of the silicon substrate represents bulk p doped region. These regions of higher 

impurity concentration serve as p and n contacts of the diode. 
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 Figure 4.2: Oxidation & selective diffusion process (Phosphorous) 

  

Figure 4.3: Oxidation & selective diffusion (Boron) 
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4.3.1.2 Growth of Gate Dielectric and Contact Metallization 

Following the diffusion process,       thick gate dielectric was grown thermally as shown in 

Figure 4.4 (q). A photo resist layer was patterned as shown in (s) to etch the silica above n and 

p doped silicon regions. The silica etched layer is shown in (t). For alignment, 

photolithography markers on the mask were mapped onto the etched photolithography 

markers into silicon substrate. These markers were made using a silicon dry etch technique 

with STS-ICP, as already explained in Figure 4.1. The substrate was then metallized to form 

the top and bottom contacts. The metallized substrate was processed for lift-off in acetone by 

placing it in a hot water bath. Annealed contacts to p and n regions at the top surface and back 

contact are shown in Figure 4.4 (w). The fabrication process explained so far i.e. from Figure 

4.1 to Figure 4.3 was the same for all sets of devices. It is imperative to note that in Figure 4.1 

(b) different device isolation pattern masks were used for single and dual gate devices.  

   

Figure 4.4: p,n and back contacts metallization. 
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4.3.1.3 Offset and Centre Single Gate Devices Processing 

As already explained, variations in gated diodes differ from each other in terms of number of 

gates i.e. single / dual and placement / size of gate. Here two variations are discussed in single 

gate configuration. One set deals with the offset gate lateral p-i-n photodiode, whereas, the 

other deals with centre gate p-i-n photodiode. The fabrication process for both sets of devices 

is illustrated in Figure 4.5 (a) to (c) and (d) to (f), respectively. Offset gate structure towards p 

region is       x       , whereas the centre gate structure is       x       ,  which is 

placed half way between the two electrodes. 

  

Figure 4.5: Offset and Centre Single Gate Fabrication steps 

4.3.1.4 Normal and Overlapping Dual Gate Devices. 

The initial fabrication process for the normal and overlapping dual gate devices follows the 

same steps as explained for single gate devices up to Figure 4.4. A normal dual gate device 

with two      x        gate structures are shown in Figure 4.6 (a) to (c) whereas from (d) to 

(f) the fabrication process for       x        overlapping dual gate device is illustrated. It is 

to be noted that the fabrication process for overlapping dual gate devices differed slightly, as 

explained in Figure 4.4 (s), where instead of patterning        x        square windows for 
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top anode and cathode contacts,        x        square windows were patterned, etched 

and metallized. This way both       gates overlapped the diffused regions under the gate 

dielectric. In both types of dual gate devices, the gates were      apart from each other. 

  

Figure 4.6: Dual Gate and Overlapping Dual gate Processing steps. 

4.3.1.5 Grating Structure Patterning 

Integrated metal grating structure was patterned using electron-beam lithography.  The process 

for base device i.e. lateral p-i-n photodiode structure is the same as explained up to Figure 4.4 

(w). In the next step a bi-layer electron-beam resist Poly methyl methacrylate (PMMA) 2010 

15 % and PMMA 2041 4 % was spin coated as shown in Figure 4.7 (a). After baking the 

substrate in 180    oven the sample was exposed to electron-beam for grating pattern, 

followed by development process. The development process is described in the electron-beam 

lithography section, whereas the developed sample is shown in Figure 4.7 (b). After 

development process, the sample was metallized (with 50 nm and 150 nm aluminium) using 

an electron-beam evaporator, Plassys-II. Then it was processed for lift-off in Acetone, while 

placing the beaker containing acetone and sample was in hot water at     . Finally,   μm 

wide and     μm long 14 integrated (aluminium) metal grating lines were patterned in the 
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   μm intrinsic region between the two electrodes as shown in Figure 4.7 (d). It should be 

noted that Figure 4.7 (b),(c) and (d) show the image of grating area encircled in Figure 4.7 (a).  

 

Figure 4.7: Patterning the grating structure 

4.4 Fabrication Procedures 

In the earlier sections, fabrication steps are described, whereas in this section details of the 

processes and critical factors affecting the fabrication process are given. 

4.4.1 Substrate Cleaning 

Device substrates require proper cleaning to remove contaminants and residues from prior 

process steps. Dust particles may also get on to substrates because of the sample cleaving 

process. Particulates can also arise as a result of certain fabrication processes, e.g. wet etching, 

dry etching, plasma etching, Chemical Mechanical Polishing (CMP) or metallization. 

Improper cleaning during fabrication processes may result in unwanted residue for the 

following fabrication step. These unwanted residues are mainly, films of native oxides, 
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common salts, bacteria or plastic residue [2]. Contaminants in the form of a very tiny dust 

particle can affect the pattern over the substrate, or impair the functioning of the device. In 

some cases, it may even result in a completely non-functional device. 

Substrate cleaning is performed using cleaning solutions i.e. opticlear, acetone and methanol 

in a proper order. Opticlear is used to remove thicker oil/grease or wax layers which are 

normally produced after packaging, mechanical polishing or dry etching. Initially, the sample 

is placed into opticlear to remove any oil, grease or wax from the surface. Acetone is then 

used to clear the remaining oil and grease particles from the substrate which persist even after 

the use of opticlear. It removes organic impurities from the substrate as well. These impurities, 

in turn, contaminate the acetone solution. As acetone has a very high evaporation rate, so the 

substrate might be left with a layer of contaminated acetone and therefore it requires a rinse in 

methanol, which is a powerful solvent for contaminated acetone. During each cleaning step, 

the sample is placed in a cleaning solvent such as opticlear, acetone or methanol; in an 

ultrasonic bath for five minutes. Finally the substrate is rinsed in RO water and is dried with a 

stream of nitrogen gas.  

4.4.2 Forming the Oxide Layer 

Forming an oxide layer is a layering process in device fabrication. In this process, a layer of 

oxide is either deposited or grown over the substrate. Oxide can be deposited in different 

ways, which include Chemical Vapour Deposition (CVD), Plasma Enhanced Chemical 

Vapour Deposition (PECVD) and Molecular Beam Epitaxy (MBE). CVD is also known as 

Vapour-Phase Epitaxy (VPE). CVD if done, at atmospheric pressure is called Atmospheric 

Pressure Chemical Vapour Deposition (APCVD); at low pressure it is called Low Pressure 

Chemical Vapour Deposition (LPCVD). When plasma energy is added to the thermal energy 

of a conventional CVD system, the energy-enhanced CVD method is known as PECVD [3]. 

MBE on the other hand, is an epitaxial process carried out at ultra-high vacuum conditions 

(nearly      Pa). It involves the reaction of one or more thermal beams of atoms or 

molecules on a substrate surface [4].  

Oxide, if not deposited, may be grown over the substrate thermally. This thermal growth of 

oxide can be done with either wet or dry oxidation processes. Furnace temperature for oxide 

growth is dependent on fabrication requirements; normal temperature range for thermal 
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oxidation is from        to          Wet oxidation is relatively faster than dry oxidation, 

and it is used for thicker oxide layers, whereas dry oxidation is used for the precise growth of 

high quality thin oxide layers. In the fabrication of these devices, wet oxide was grown at the 

rate of      nm m n, and dry oxide was grown at the rate of      nm m n, while the furnace 

temperature was set at         and    gas flow was fixed at    m  m n    P  . A schematic 

diagram of the furnace used for oxidation is shown in Figure 4.8. During the fabrication of the 

surface gated photo-detector     nm and    nm of oxide were grown by dry oxidation at a 

furnace temperature of        . The quality of dry      layer produced is better and it is less 

porous as compared to wet oxidation or deposited silica films.  

 

Figure 4.8: Schematic diagram of oxidation Furnace [5]. 

4.4.2.1 Factors Affecting Oxidation Rate 

Oxide growth is affected by many factors like atmospheric pressure, crystal orientation, wafer 

type i.e. n  typ  or p  typ  and temperature. The impact of temperature is relatively more 

pronounced than other factors and it affects both dry and wet oxidation processes. Repeated 

oxidation processes during the fabrication of these devices have shown the same oxidation rate 

at a given temperature. The impact of other factors is either nominal or may be seen only when 

two or more factors combine. The oxide growth rate for silicon oxidation, under the same 

conditions, varies for wet or dry oxidation processes. The gated photodiode devices have a 

lateral p    n doping profile; the oxidation rate varies for p and n doped regions. A    nm 

silica layer is formed after diffusion of p and n type impurities. Finally, the      growth 

profile is uniform over the surface of silicon substrate, however, it varies in thickness at 
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impurity doped areas, i.e. boron doped, phosphorous doped and normal silicon area, as shown 

in Figure 4.9. 

 

Figure 4.9: Dry oxide growth at n
+
, π and p

+
 regions. 

The presence of water vapours in the oxidation environment affects the oxidation rate. As 

water molecules are highly soluble in silicon dioxide, they reach the silicon – silicon dioxide 

interface quicker than the oxygen molecules. This high diffusivity of water molecules 

accounts for the higher wet oxidation rate. Higher pressure of the gaseous oxidizing agent can 

also result in higher oxidation rates. This can be seen particularly at lower temperatures. Low 

pressure of oxidizing agent at low temperature can be used to grow more precise thin oxide 

layers using dry oxidation processes. 

The growth rate and quality of the oxide also depends upon the crystal orientation of the 

silicon wafer i.e.       or      . These two crystal orientations are commonly used for 

MOS and bipolar devices, respectively. The surface gated photo detector is a MOS structure, 

so a       crystal orientation p  typ , float zone wafer was used for its fabrication. 

Growth rates for silicon with crystal orientation       and       are shown in Figure 

4.10 and Figure 4.11. It can be clearly observed that the oxidation rate difference for silicon 

crystal orientations       and       is negligible when oxidized for larger duration, i.e. 

over thirty      minutes [6].  
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Figure 4.10: For <100> crystal orientation [6] 

 

Figure 4.11: For <111> crystal orientation [6]. 
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In order to analyze the variations in dimension and placement of single and dual gate devices 

the thicknesses of the oxide layer and the scheme of the metal contacts should be identical. In 

the surface gated devices, hydrofluoric acid        was used, to clear the silica layer after the 

diffusion processes. Furthermore, diffusion technique was used instead of ion implantation. 

This required thicker barrier layer        instead of normal thin dielectric layer. To overcome 

the issue of metal marker‟s stability at higher temperature, etched markers were made instead 

of metallized markers. For this, dry etch technique was used with STS-ICP using     C   . 

The oxide layer was patterned, either for diffusion or for contacts, by aligning the etched 

photolithography  P   markers on the substrate to the P  markers on the mask. Once all the 

diffusion processes were over, the final thin gate dielectric     nm  layer was grown over the 

substrate using dry oxidation. A repeated oxidation process, for selective diffusions and gate 

dielectric, is likely to redistribute the impurity atoms over the surface of p and n doped 

regions. Carrier concentration results showed that the doping level in the p doped region is a 

little less than that in n doped region. This is because p type impurity was diffused first and the 

substrate was then oxidized to process for n typ  impurity diffusion, this oxidation process 

caused p typ  impurity atoms to migrate. 

Hydrogen atoms during oxidation (i.e. wet oxidation) or diffusion act as catalysts for boron 

diffusion into      layer. In fabricating surface gated devices dry oxidation process was used 

for both barrier layer        growth and for the gate dielectric. This ensured a fairly low 

probability of hydrogen atoms being present in the oxidation process. Thus, the dry oxidation 

process was likely to have a negligible impact on the substrate with regard to impurity 

redistribution. This negligible impact can be seen on comparing the carrier concentration 

values of p and n doped regions, which are      x       m   and      x       m    

respectively. 

4.4.3 Lithography 

In device fabrication, lithography is the transfer of a pattern onto the substrate surface. 

Photolithography and Electron beam lithography are two widely used methods in 

semiconductor device fabrication. These two methods were used at different stages while 

fabricating the devices described in this thesis. Other variants of lithography are x-ray 
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lithography, interference lithography, shadow masking, nanoimprint and scanning probe 

lithography [7].  

4.4.3.1 Photolithography 

Photolithography is a process of transferring patterns using a mask onto a thin photosensitive 

layer, called photo-resist. The tone of the photo-resist may be either positive or negative. Use 

of the photo-resist mainly depends upon the mask used to transfer the pattern and the 

limitation of the fabrication process. Furthermore, positive and negative photo-resists are used 

for dark field and light field masks, respectively. During the fabrication of these devices, a 

dark field mask was used with       positive photo-resist.  

Large patterns can be easily transferred using photolithography. Soaking of the sample in 

chlorobenzene after dehydrating the resist layer, makes it a bi-layer resist which helps in 

making an undercut profile after development. This helps in making small features and precise 

edges in metallization and subsequent liftoff processes. 

4.4.3.1.1 Positive Resist 

The exposure of positive photo-resist to    light changes the chemical composition of its 

exposed portion and it becomes more soluble in the developer solution. This way the resist 

exposed to    light is washed away and the rest remains on the wafer. For positive resist it is 

said that “whatever shows goes” [8]. 

4.4.3.1.2 Negative Resist 

In contrast, the exposure of negative photo-resist to    light changes the chemical 

composition of the exposed portion of the photo-resist. It is transformed into a cross-linked 

polymer, which becomes harder and thus, cannot be dissolved in the developer solution. After 

development the polymerized portion of the resist stays and the rest of the resist gets dissolved 

in the developer solution. 
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Figure 4.12: Development of positive and negative photo-resist [8] 

4.4.3.2 Resist coating 

A smooth profile of the photo-resist coated over the substrate is vitally important for 

homogeneous exposure and uniform development processes. In order to coat the photo-resist 

layer over the substrate, a spinner with a vacuum chuk is needed. The substrate is placed on 

the vacuum chuk for spinning the photo- resist. Use of a spinning chuk or a spinning cabinet 

for different types of photo-resists, may possibly add the danger of cross contamination. Thus 

in standard clean-room environment, spinners are normally categorized for different types of 

resists and chuks are placed in respective spinning cabinets. There is always the risk that cross 

contamination may influence the exposure routines or the development process. The substrate, 

placed over the chuk, is carefully covered with drops of photo-resist, such that no air bubbles 

are introduced in the photo-resist material. The substrate is then spun for a set duration and at 

a specific spin speed in order to achieve the desired thickness of resist. Thickness of the thin 

resist layer is a function of spin speed. [    kn ss    
 sp n sp     . However, it depends 

upon the viscosity (solid content) of the resist as well.  

Adhesion of the resist layer to the surface of the substrate is another issue, which come across 

while spinning the resist over the substrate. If this is a problem then a very fine and thin layer 

of adhesive liquid, hexamethyldisilazane        is spun before spinning the photo-resist [6]. 
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The substrate after the adhesive liquid and the photo-resist layer is then soft baked at 100   

for 10 minutes on a hotplate in order to make the adhesion stronger and to remove any residual 

solvent from the thin photo-resist layer. For these devices, layers of adhesion promoter      

and       photo-resist were produced by spinning the substrate at       P  for 5 seconds 

and 30 seconds, respectively. Final thickness of the photo-resist layer produced over the 

device substrate was     μm. 

4.4.3.3 Mask Alignment and Exposure 

Device fabrication involves multiple lithography exposures. The size of the pattern and the 

alignment accuracy are the main parameters important for either photolithography or electron 

beam lithography. In some cases a combination of both techniques can be used to form a 

desired pattern. In either lithography technique, alignment markers are needed to expose the 

mask pattern exactly over the substrate pattern, except for the first exposure. The process of 

aligning markers on the mask, to the markers on the substrate is called mask alignment. 

The shape and size of alignment markers vary in different lithography techniques. Once the 

mask pattern is aligned to the substrate design, the photo-resist is exposed to high intensity UV 

light for a specific time [6]. For single gated devices, all device patterning was done with 

optical lithography using       photo-resist and a Karl-Suss i-line mask aligner at     m  

 m     exposure dose. Exposed substrates were then developed to form the pattern in the 

resist layer. 

4.4.3.4 Development 

Following the exposure, the sample was processed for development. The strength of the 

developer solution and the length of the development time vary for different exposure 

routines. These details are provided by the photo-resist manufacturer. In the device 

fabrication, the substrate was exposed to    light for 4 seconds and was then placed in the 

developer solution for 80 seconds and finally it was rinsed in    water for 80 seconds. The 

developer solution was composed of a fresh mixture of micro-posit developer and    water in 

    ratio. 
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4.4.3.5 Electron Beam Lithography 

Karl-Suss i-line mask aligner can be used to pattern features down to   m   on dimensions. 

Smaller and more closely spaced structures can be made using electron beam lithography, 

which is a development from Scanning Electron Microscopy      . It allows for patterning 

extremely thin and fine features in the nanometre range.  

4.4.3.5.1 Resist Coating 

Resist coating for electron beam lithography is similar to that for photolithography, except for 

the use of a special electron beam resist. Like photolithography, the substrate may be coated 

with either positive or negative electron beam resist. Among electron beam resists, Poly-

Methyl Methacrylate  P     is used as a positive electron beam resist whereas Hydrogen 

Silsesquioxane       is used as a negative electron beam resist. In electron beam lithography, 

selected resist recipes, namely mono-layer, bi-layer or tri-layer schemes, are used for specific 

purposes. In the case of mono-layer, bi-layer or tri-layer recipes, the final thickness of the 

resist layer is the sum of the thicknesses as a result of spin cycles for each layer. In the devices 

with dual gates, pattern of the gate structure was transferred with electron beam lithography 

using a bi-layer recipe. Resist coating was done by spinning P             at 

      P  for 60 seconds to make the first layer. It was then hard baked for 30 minutes at 180 

  in an oven to remove any residual solvent from the resist layer and to make the adhesion 

stronger. Another layer of PMMA 2041 4  was spun at 5000 RPM for 60 seconds and was 

then placed in an oven at       for 90 minutes. The thickness for the bi-layer resist was 

     nm for PMMA  2010 15  and 126 nm for PMMA  2041 4  which sum up 

to      nm of total thickness. Tri-layer resist, however, may be used to make larger patterns 

and to obtain more stable undercut.  

4.4.3.5.2 Exposure 

The column containing the electron source is the primary component of any electron beam 

lithography system. A heated tungsten filament in the electron source generates a beam of 

electrons using thermionic emission. The beam is formed and accelerated by electro-optic 

lenses. Features of the electron beam influence the exposure in a variety of ways, including, 
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the size of the virtual source, its brightness and energy spread. The size of the virtual source 

determines the level of demagnification that the beam must undergo to affect the target 

whereas the brightness of the beam is determined by the size of virtual source and this must be 

sufficient enough to affect the resist layer. The energy spread determines the pattern of 

electrons moving outwards from the source in the direction of the main electron beam. In the 

chamber, underneath the column, there is a stage to load and unload samples. A specific 

vacuum is maintained during loading and unloading of the sample through the load lock 

mechanism [9]. 

A specialized computer controls the electron beam lithography exposure processes, like 

loading the job, aligning and focusing the electron beam and transferring pattern data to the 

pattern generator. Due to mask-less exposure process and flexible use over a variety of 

semiconductor materials, electron beam lithography has become very important. The electron 

beam exposure breaks the positive resist polymer into fragments. Once the exposure is over, 

the sample can be developed in a developer solution and as a result, the resist layer is 

patterned. Electron beam lithography is specialized and more precise, however, it is much 

slower than conventional photolithography. It is also expensive as it uses a specialized piece 

of equipment and thus requires frequent maintenance and calibrations. For the dual gate 

devices, electron-beam jobs were run using electron beam markers. These electron beam 

markers were made using a photolithography mask by aligning the photolithography markers 

on the mask to the etched photolithography markers on the silicon substrate. 

4.4.3.5.3 Development 

The developer solution for PMMA is a mixture of Isopropyl Alcohol  IPA  and Methyl 

Isobutyl Ketone  MIB   with the ratio 1 1. Normally, the development is done in a series of 

steps. These steps may vary slightly depending upon the exposure routine and the thickness of 

the resist layer. Exposed device substrate was developed in the developer solution (IPA and 

MIB  in the ratio of 1 1) for 60 seconds, while the temperature of the solution was kept 

at     . The sample was then rinsed twice in fresh RO water for 60 seconds each, and finally 

it was dipped in IPA for 60 seconds. 
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4.4.4  Diffusion 

The amount of impurity atoms can be adjusted using different techniques which depend upon 

how precise and deep the impurity profile is required to be. A layer of dopant impurity is pre-

deposited through spin-on-glass technique which is subsequently diffused through a thermal 

treatment. This results in a less precise doping profile and the process is called thermal 

diffusion. However, for well controlled and precise doping profile, ion implantation is 

generally used. Doping profile (impurity concentration and thickness) can be controlled by 

controlling the parameters of ion implantation. While fabricating the devices mentioned here 

the thermal diffusion technique was used exclusively. 

4.4.4.1 Thermal Diffusion 

The surface gate diodes differ from ordinary p  i  n photodiodes in having a lateral doping 

profile. The p i and n regions are arranged horizontally. These regions were created by doping 

parts of the structure strongly n and p type while leaving a gap in between. Float zone silicon 

was used to fabricate the devices. The starting wafer material had a resistivity of  4 k  cm. 

Selective and bulk diffusion processes were used for dopant diffusion. In a bulk diffusion 

process, no mask is needed, as is the case with backside diffusion to make the back contact 

strongly p  type, whereas in selective diffusion a patterned barrier layer e.g. SiO2 is needed, 

as is the case with surface gated photo detectors, where 250 nm thick thermal oxide was grown 

all over the substrate through dry oxidation at       . This was to serve as a doping mask for 

selective diffusion. Windows were opened in the oxide to dope anode and cathode regions, 

with p and n type impurity, respectively. Dopant source coating was done using spin-on-glass 

technique. These anode and cathode regions were squares of area 500 μm x 500 μm. Doping 

was performed through elevated temperature diffusion from phosphorus and boron containing 

spin-on-glass  SOG . The p-region was doped to 6 38 x 1017 cm 3 whereas the n-region was 

doped to 1 48 x 1018 cm 3. Thickness of the diffusion barrier i.e. SiO2 depends upon the 

impurity type, diffusion time and the temperature at which the diffusion takes place.  

The dopant source coating has a specific thickness based on the viscosity and the spin speed, 

as is shown in Figure 4.13 (a) and (b). The diffusion strength is determined by the temperature 

and duration for which the sample is placed in the furnace. The oxide layer acts as a barrier 
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layer for selective diffusion as shown for selectively diffused samples in Figure 4.13 (d) and 

(e). Here the substrates shown were etched with HF after thermal diffusion to remove the 

oxide layer. To avoid further oxidation during diffusion process nitrogen gas is used which 

purges the furnace to minimize the oxidation process on silicon substrate. 

  

(a)       (b) 

Boron and Phosphorous doped impurity layer using SOG technique for selective diffusion. 

 

(c) 

  

(d)       (e) 

Doped Boron and Phosphorous impurity at selective regions, after thermal diffusion in furnace. 

Figure 4.13: Schematic illustration of diffusion process. 

During the fabrication of these devices, the substrates with n and p type dopant source coating 

layer using SOG were diffused for 20 min at        in the furnace. The nitrogen gas flow 

was maintained at 6 cm3 min ATP . 
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4.4.5 Etching 

In semiconductor fabrication, etching is the process of removing a layer or material from a 

semiconductor wafer by means of liquid or gaseous agents. This process may etch the 

semiconductor material itself or any deposited layer over the semiconductor material. The 

deposited layer may be insulating or metallic. Etching can be done using dry or wet etching 

mechanisms, both of these means provide selective and bulk etching. A sample can be 

patterned for selective etching using lithography techniques. Dry etching is also called plasma-

assisted etching. Both advantages and disadvantage are associated with wet and dry etching. In 

the process selective silicon etching was done using dry etching technique, whereas selective 

wet etching was used to etch the silica layer. 

4.4.5.1 Dry Etching 

Dry etching processes combine both chemical reactions and physical bombardment to remove 

material. The chemical reaction uses reactive gas plasma, whereas the physical removal 

component uses momentum transfer to expose new material. Plasma etching refers to a pure 

chemical dry etching technique, whereas ion beam milling or physical sputtering are physical 

material removal techniques. In plasma etching, reactive species are produced in the plasma 

which are diffused and subsequently adsorbed on the surface of the wafer. The reaction takes 

place at the surface of the wafer and produces volatile products, which in turn are absorbed 

into the bulk of the gas and can simply be pumped out of the system. In this process, it is 

important to formulate the etch recipe for selective etch, so that the patterned mask used as the 

barrier layer is not etched away. For good dry etching, high selectivity i.e. the ratio of etch rate 

of target material to the etch rate of mask material, is usually needed. High etch rate and etch 

uniformity play an important role in selecting a dry etch recipe. Another important factor that 

must be considered for selective etching, is „anisotropy‟ of etching. This essentially means that 

the etch recipe with a pronounced anisotropy behaviour will avoid etching horizontally i.e. 

undercutting can be avoided. This can be seen in Figure 4.14, where isotropic and anisotropic 

etching behaviours are shown. 
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(A)    (B)    (C) 

Figure 4.14: Isotropic and An-isotropic etch profile 

However, if a high degree of accuracy is needed in an-isotropic behaviour, then dry etch 

techniques that emphasize physical removal of material should be used. This technique makes 

use of a stream of highly energetic and inert species or ions to bombard the surface. This 

process also affects the mask and thus, cannot be used for deep etching. A process which 

involves a mix of both physical sputtering and chemical process may result in an acceptable 

combination of isotropy and selectivity; Reactive Ion Etching (RIE) is one such process. It is 

also referred to as Reactive Sputter Etching (RSE) 

Dry etching processes have both advantages and disadvantages. On the positive side, dry 

etching uses small quantity of chemicals to achieve either isotropic or anisotropic profiles. 

Besides better process control, it also provides less undercutting, high resolution and 

directional etching independent of crystal orientation. On the other hand, the use of toxic and 

corrosive gases and the possibility of re-deposition of non-volatile compounds produced as by 

products are main disadvantages of the dry etching technique. Re-deposition also 

compromises selectivity.  

In the device fabrication process a 10 μm wide trench was created all around the device for 

isolation purposes. All silicon etches were carried out in a Inductively Coupled Plasma (ICP) 

tool using C4F8 SF6 gas mixture in the ratio of 50 40 standard cm3 per minute  sccm . The 

power used for the etch process was kept at 600 10 W for the coil/platen process. Coil and 

platen process actually represent chemical and physical etching processes, respectively. The 

entire process was carried out at 10 mTor background chamber pressure. Standard etch rate for 

this recipe is 0 84  m /minute. C4F8 gas was used for passivation and SF6 was used for 

etching. In Figure 4.15 (a) and (b) SEM micrographs show the profile of silicon dry etches 

with two different etch recopies i.e. HPTEST  4 and RYT  1. Isotropic and anisotropic 

behaviour can be seen clearly with these two recipes. The anisotropic profile of etched 

markers however, helps in fine alignment better than an isotropic profile. 



Chapter 4  Device Fabrication Techniques 

- 85 - 

 

  

(a)      (b) 

Figure 4.15: SEM micrograph of silicon dry etch with (a) HPTEST 4 and (b) RYT-1recipe. 

4.4.5.2 Wet Etching 

A wet etching process is suitable for silicon bulk etch or to etch large patterns. Silicon wet 

etching is relatively slower than dry etching. In wet etching, reactants reach the surface of the 

sample through diffusion, where reaction occurs and bulk or selective area is etched away. 

Etch rate is influenced by two major factors: temperature and concentration of the etch 

solution. Just like the oxidation of silicon, wet etching also shows a dependence on the 

orientation of the silicon crystal lattice. 

 

Figure 4.16: Basic mechanism in wet chemical etching [3]. 

Since silicon with lattice plane       has more bonds available per unit area than       

or      , the wet etch rate of       lattice plane, is relatively slower than others. Ratio 

of the etch rates for the             and       planes is 100 16 1 at      [3]. A 
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commonly used wet etch for silicon is, a solution of KOH and water. It is important that etch 

rate remains constant for the whole of the reacting surface, otherwise, the etched surface will 

not be uniform. Uniformity of the etch rate can be calculated by the following formula [10]. 

Etch rate univormity      
 Maximum etch rate  Minimum etch rate 

 Maximum etch rate   Minimum etch rate 
 X 100  

To etch Silicon dioxide  SiO
2
 , a diluted solution of HF is preferred. The presence of 

ammonium fluoride  NH4F  in HF makes it a buffered HF solution. Its presence on the one 

hand replenishes the depleted fluoride ions and on the other hand controls the pH value. As a 

result, stable etching performance and uniform etch rates are achieved. The absence of NH4F 

may result in a less uniform etched surface [3, 10]. 

The etch rate of silicon dioxide SiO2 is influenced by the quality of oxide layer, concentration 

of etching solution and its temperature. Parameters like, porosity, density and the presence of 

impurity in the oxide layer, define the quality of oxide. Thus the oxides deposited through 

CVD or grown through thermal oxidation have different etch rates. Since the oxide deposited 

through CVD is more porous and is likely to have more impurities than thermally grown 

oxide, it therefore, shows faster etch rates. For these devices, 250 nm thick thermal oxide was 

grown all over the substrate through dry oxidation at       . This was to serve as a doping 

mask. Using HF solution  1 5  selective areas were etched to metalize the anode and cathode 

regions. These selections were squares of area 500 μm x 500 μm. Figure 4.17 shows the etch 

profile of SiO2. Here it is clearly seen that the wet etching profile is isotropic i.e. etching 

solution attacks all directions, uniformly. 

4.4.6 Metallization 

During the fabrication process devices are metallized to obtain electrical contacts. 

Metallization techniques generally used in semiconductor fabrication include: thermal 

evaporation, electron-beam evaporation, flash evaporation, induction evaporation and 

sputtering. The most common technique in semiconductor device fabrication is electron beam 

evaporation. In electron beam evaporation, metal vaporization and coating over the substrate is 

achieved by a high current focused electron beam. This beam increases the temperature of the 
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crucible to vaporize the material and in order to maintain the temperature below the melting 

point of the crucible; the crucible is placed in a water-cooled arrangement. 

Contacts are of two types, rectifying and ohmic. In rectifying contacts the metal-

semiconductor junction, conducts with only one bias polarity and not with the other. A weak 

rectifying behaviour is seen in almost all metal-semiconductor junctions. Ohmic contacts in 

contrast, conduct for both polarities. Thus, in order to provide input or obtain output signal 

from a contact, ohmic contacts are needed. Contacts can be made ohmic either by a proper 

selection of contact metal and further annealing the contact to lower the barrier height or by 

making the barrier very narrow by means of heavy doping   10 17dopant atoms cm3 or more. 

A tri layer Ti Pt Au metallization was used to make the ohmic contacts on both the anode and 

cathode region in these devices. This tri layer metal stack was only used for convenient wire 

bonding and can be avoided in a CMOS process flow. 

4.4.7 Lift-off 

Contacts can be made either by a lift-off process or by etching the metal. In case the contacts 

are made using a lift-off process, the resist layer is patterned first, followed by metallization 

and subsequent lift-off. Lift-off is normally done by placing the sample in hot acetone for 20 

to 25 minutes in a temperature-controlled environment at     . Whereas, when the contacts 

are formed through etching, bulk metal is deposited over the substrate surface, followed by 

spinning the resist layer over the metal surface. This resist layer is then patterned to etch the 

exposed metal to form the final contacts.  

In fabricating the devices, metal was deposited using Plassys I and Plassys II machines in the 

JWNC facility. These machines works with electron beam sources, to vaporize the metal. The 

metallization recipe used for contacts was Titanium (33 nm) / Pd (33 nm) / Au (240) and 

Titanium (33 nm) / Pt (33 nm) / Au (240) for plassys-1 and plassys-II, respectively. An SEM 

micrograph is shown in Figure 4.17, which shows the metal and a slight gap   160 nm  

between the gate dielectric. This is due to isotropic behaviour of HF i.e. wet SiO2 etching. 
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Figure 4.17: Contact metal and gate dielectric 

4.4.8 Device Isolation 

The fabrication of semiconductor devices, involves a large number of devices on a single chip. 

Micro and nano fabrication techniques have put these devices very close to each other 

separated by microns or sometimes even less. One device may interfere in the operation of the 

adjacent devices. Normally, these devices should ideally perform their operations, 

independently, without any external effect. Isolation is needed to block any unnecessary 

transmission path between or around the device(s), which also reduces the leakage current. In 

order to functionally isolate these devices from others or limit the operational semiconductor 

area, device isolation techniques are imperative in fabrication processes. 

4.4.8.1 Techniques 

The isolation of the components from one another is critically important while fabricating 

devices, thus making the design of a device flexible and independent of interference from the 

nearby devices.  

One simple way of implementing the isolation is by making two components of a 

semiconductor device effectively isolated by using a pn- junction. This is called pn junction 

isolation. Other techniques include forming independent pockets of active semiconductor 

material called mesa isolation, or alternatively the oxide isolation technique can be used to 

form insulating trenches to separate the different pockets of semiconductor. Individual or 

combination of isolation techniques may be used to fabricate devices [2].  
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4.4.8.1.1 pn – Junction Isolation 

The isolation technique most suitable with semiconductor device fabrication is pn   junction 

isolation. It is basically an electrical isolation of a device, which is surrounded by a junction 

depleted of charge carriers. When it is reversed biased, the junction width increases and 

exhibits a high resistance, thus isolating the device from the surrounding components. This is 

known as pn   junction isolation. Its main advantage is its suitability with semiconductor 

device fabrication. The disadvantages include longer diffusion time than normal diffusions, as 

it is a lateral diffusion and the junction area is actually a wastage of substrate space and 

parasitic capacitance as a result of junction formation. These issues can easily be overcome in 

dielectric / oxide isolation technique. 

4.4.8.1.2 Mesa Isolation 

Devices or circuits which are fabricated on insulating or semi-insulating substrates may be 

processed with mesa isolation. In the context of silicon devices, epitaxial silicon grown over 

sapphire (SOS) is masked with patterned photo-resist. The exposed semiconductor is etched 

with wet chemical etch and as a result mesas (individually separated islands) are formed. The 

device is fabricated on the resulting isolated islands of silicon. These islands are called mesas; 

hence the technique is termed mesa isolation. The substrate is etched deep enough, so that 

electrical isolation is achieved. 

4.4.8.1.3 Oxide (dielectric) Isolation 

In silicon devices, isolation can be achieved by making individual bulk regions of active 

material separated by an oxide layer [11]. Techniques to make the individual regions of active 

layer may vary slightly. Steps involved in forming individual bulk regions of active layer start 

by oxidizing the n  type silicon. This oxide layer is patterned by selective dry etch to have a 

“V” shape silicon anisotropic profile as shown in Figure 4.12 (b). Following the silicon dry 

etch, the mask i.e. SiO2 is removed using HF. The bare patterned silicon wafer is then doped 

with n  type impurity. This will result in the formation of a strongly n  type layer across the 

wafer. This layer may be used for low resistance Ohmic contacts. Oxide is grown over the 

silicon wafer and then a polycrystalline silicon layer 250  500 μm is deposited over the oxide 
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layer. The oxide layer now acts as an insulator. The other side of the wafer is thinned, so as to 

achieve the structure as shown in the Figure 4.12 (e). A critical step involved in oxide isolation 

is considerable thinning of the wafer to achieve the isolated active regions [2].  

  

Figure 4.18: Oxide isolation scheme. 

4.5 Device Isolation for Surface Gated Photo-Detector 

The isolation structure in surface gated photo detectors is a     m deep isolation trench all 

around the device. This may also considerably reduce unwanted flow of the signal that 

contributes to background noise. 
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Chapter 5  

 

 

Single Gate Silicon p-i-n Photodiodes 

 

5. Introduction 

In this chapter silicon-based lateral p-i-n junction devices for light sensing applications are 

described. These devices were based on MOS-architecture and, therefore, had a gate for 

controlling their electrical operating point. Device fabrication is described in brief, followed 

by a description of the device‟s electrical and optoelectronic properties including current-

voltage (I-V) characteristics, optical characteristics and noise measurements. These devices 

showed good linearity and high optical responsivity for visible red and blue wavelengths. 

These devices, in single gate configurations, exhibited high sensitivity to UV light as well. 

The associated gate can be used to control the quiescent operating point thus making it easy to 

interface the detector with ordinary MOSFETs. 

Junction diodes are widely used for sensing light and ionizing radiation in many different 

applications. Many different types of semiconductor light detectors are available in both 

discrete and integrated forms. As no one device can satisfy the many requirements that exist so 

several different types of optical detectors have been developed to date [1]. A variety of 

devices, suitable for particular uses are commercially available. Some provide high sensitivity 

whereas others are suitable for high speed operation. Avalanche photodiodes (APDs) [2] and 

p-i-n diodes [3, 4] are respective examples of these types.  
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Often such diodes are interfaced with transistors for various circuit requirements. When this 

combination is needed for integrated circuits then a problem arises because most 

contemporary ICs are based on Complimentary Metal Oxide Semiconductor (CMOS) 

technology which does not accommodate light sensing diodes very readily. This restriction is 

relaxed when one deals with compound semiconductor devices where good performance can 

be obtained from phototransistors based on direct band gap materials such as InGaAs [5] or 

AlGaAs [6, 7]. Present generation of so-called CMOS imagers contain embedded junction 

diodes [8] but their fabrication entails significant changes in procedure compared to those 

utilised for making CMOS logic chips. This makes CMOS imaging integrated circuits into a 

specialized product that not all fabs are able to handle.  

This transistor-like light sensing device is fully compatible with conventional CMOS 

processing techniques, enabling light sensors to be easily integrated with biasing and signal 

processing transistors on monolithic ICs. In addition, due to its lateral doping profile, it 

features a depletion region that is located at the top of the device, endowing it with very high 

responsivity and much superior response to short wavelength visible radiation than is the case 

with ordinary silicon photodiodes with vertical doping profiles [9]. Such a device can replace 

photodetectors made from silicon carbide and gallium nitride for sensing radiation below 450 

nm wavelength, in applications where speed of response is not important. Furthermore, the 

lateral architecture exposing the depletion layer at the surface also allows for the possibility of 

integrating other materials and structures with such a device; enabling the fabrication of novel 

types of sensors such as polarization sensitive detectors and monolithically integrated visible / 

UV radiation detector for battlefield applications. The later can be accomplished using a short 

wavelength pass filter material coating on alternate p-i-n photo-detectors in an array of such 

detectors as referred in Figure 8.3. 

Single gate photodiodes with two variations were fabricated in this work. Comprehensive 

fabrication details are given in the device fabrication chapter. The lateral p-i-n junction 

architecture detects the light in these devices whereas the insulated gate, when properly 

biased, manages the current flow through the device. The response of the device changes with 

the change in dimension and placement of insulated gate. To understand such devices two 

different type of devices were fabricated with varying gate architectures. Other fabrication 

details and device processing conditions were the same for both devices. In each case, the gate 
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was placed within the 32 μm region between the two electrodes. Variation one involved the 

placement of the 20 μm long MOS gate offset to anode in the 32 μm lightly p-doped (π) 

region. In this design a gap of 2 μm and 10 μm existed in between the anode and the gate and 

the cathode and the gate, respectively. This variation will be referred to as “offset single gate 

device”. The second variation had a 12 μm long partial gate in between the 32 μm „π‟ region. 

The gate was placed at equal distance (10 μm) from the anode and the cathode within the 32 

μm gap between these electrodes. In the rest of the discussion, this device will be named 

“Centre single gate device”. Later sections of this chapter will separately deal with the 

electrical and optical behaviour of these two set of devices.  

One can understand the transition of pn-junction diode to conventional vertical p-i-n junction 

diode to achieve higher sensitivity and lower junction capacitance on account of large 

depletion region. The vertical architecture with buried depletion region enhances the 

sensitivity of p-i-n junction diodes, but still the short wavelength photons are absorbed in the 

inactive silicon region, minimizing its sensitivity to short wavelengths. Lateral p-i-n junction 

photo-detector can be considered as a step forward in this evolution. This design enhances the 

responsivity of silicon to shorter wavelengths. In order to make a gated lateral p-i-n photo-

detector, an insulated gate is added at the top of the near-intrinsic π region. Due to the 

presence of this MOS gate, single offset gate lateral p-i-n photo-detector appears as a 

transistor to the surrounding circuitry.  

In offset single gate lateral p-i-n photo-detector, light mainly penetrates the device through the 

gap between the gate and the cathode. Here the gate is negatively biased with respect to the 

source, to accumulate holes underneath the gate. This accumulation layer electrically shrinks 

the device length by extending the p  region under the gate and thus controls the current 

flowing through the device. The offset device still appears as a transistor to the surrounding 

circuitry. A further step in the transition of lateral p-i-n photo-detector is the placement of a 

MOS gate in the centre of the π region. This then becomes a centre single gate lateral p-i-n 

photo-detector. In this architecture, light is incident on both sides of the gate. Unlike the offset 

gate architecture, the gate is biased positively with reference to the source in order to have an 

inversion layer underneath the gate. As the π region is a lightly p doped region, so a very thin 

inversion layer will appear under the gate. The formation of the inversion layer controls the 

flow of current through the device by suppressing the possibility of holes recombining with 
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electrons in the π region, giving rise to more current flowing through the device. Both devices 

have varying optical and electrical characteristics. These features are presented in this chapter 

and discussed in detail.  

5.1. p-i-n Junction Diode 

Pn-junction diodes are sensitive light detectors but their sensitivity can be further enhanced by 

increasing the extent of their depletion layer. This is usually done by inserting a near-intrinsic 

layer between the n and p regions. Such p-i-n junction diodes enable higher sensitivity on 

account of having a much larger depletion volume where the built-in field can separate 

electron-hole pairs (EHPs) formed by photon absorption. Conventional p-i-n diodes are 

vertical devices as shown in Figure 5.1, where the different regions are produced in a vertical 

stack either through doping or epitaxy. 

 

Figure 5.1: Conventional vertical p-i-n diode 

5.2. Offset Single Gate Lateral p-i-n Photodiode 

The device described here, in contrast, had a horizontal distribution of p, i and n regions. The 

„i‟ or intrinsic region was in fact a low doping concentration p-type region and thus can also 

be referred to as a „π‟ region. In this section, the structure of the offset-gate device, its 

operating mechanism, experimental setup and its electrical and optical characteristics are 

described. 
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5.2.1. Device Design 

The device described here, was fabricated with a lightly p doped near-intrinsic „π‟ type 

substrate.  The n  and p  regions were thermally diffused such that the 32 μm wide near 

intrinsic „π‟ region was left in between in its original doping concentration. This „π‟ region had 

thermally grown      and a partial gate over it, which makes the p-i-n photodiode a gated 

lateral p-i-n photo-detector. The doping levels of the n  and p  contact regions were 

     x       m   and      x       m  , respectively. The doping level of the intrinsic „π‟ 

region was      x       m  . It should also be noted here that the doped regions were formed 

by localized diffusion doping into float zone silicon material with a resistivity of 4 kΩ   m. 

It is pertinent to mention here that the use of float zone silicon is not essential for making this 

type of device as the dopant concentration in the carrier drift region can be adjusted by an 

appropriate ion implantation step. This can further optimize the wavelength response of the 

device [10]. Dopant compensation through implantation does increase recombination trap 

centre density somewhat and leads to a reduction in carrier lifetime [11] and thus a 

concomitant reduction in photocurrent. 

 From standard pn-junction theory, the device had a depletion layer thickness of 6.81 μm, 

almost all of it lying in the „π‟ region. Figure 5.2 shows three dimensional schematic view of 

device geometry showing the gate and contact regions. 

 

Figure 5.2: Three dimensional schematic view of device geometry showing the gate and contact regions. 

The vertical cross-section of the device resembles that of a MOSFET. In contrast to earlier 

attempts at making photo-MOSFETs this device did not utilise transparent gates [12, 13] or 

annular electrodes [14-17]. The gate stack was formed by dry oxidation of the silicon surface 

at 1135   followed by Ti/Pt/Au deposition as the tri-layer gate metal. The top gold layer only 
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served as a device contact pad and can be omitted in a CMOS process flow as the presence of 

gold is not essential to the functioning of this device and can indeed be detrimental in the 

fabrication of integrated circuits. 

The      gate dielectric thickness was 50 nm. The gate was 20 μm long within the 32 μm gap 

between the two electrodes; resulting in a 37.5% fill factor. The gate was offset such that it 

was closer to the p-doped contact region than it was to the n-doped region. These devices were 

fabricated in an array of 4 x 5 devices. The devices also had a 10 μm wide and 10 μm deep 

etched isolation trenches all around them.  

5.2.2. Operating Mechanism and Characteristics 

The central idea behind the device is that light is detected by the p-i-n structure where the 

depletion region electric field between the n and i regions separates the electron hole pairs 

formed. Accordingly, the p-i-n structure was kept under reverse bias. Due to the use of very 

lightly doped float zone silicon employed in device fabrication, the depletion region had a 

large lateral extent which helped in increasing its sensitivity to light. Almost the entire 

depletion region existed in the „π‟ region of the device adjacent to the cathode, as seen in 

Figure 5.3. Its width was affected by the lateral drain to source bias      , across the structure, 

in accordance with the relation: 

     
      

 
 
        

      
                     5.1 

Where         is the permittivity of free space,   is 

charge of electron,    is acceptor concentration,    is donor concentration,     is built in 

voltage in the depletion region and     is the applied drain to source voltage. The heavily n-

doped and p-doped regions that form the two lateral electrodes of the device are similar to the 

cathode and anode contacts of a junction diode but will be referred to as drain and source, 

respectively, in this description. This is because the overall structure and apparent functioning 

of the device resembles to that of a MOSFET very closely. 

The carriers coming out of the depletion region, drift under the source-drain field and are 

collected by the cathode and the anode. The MOS gate adjacent to the p-type electrode 

controlled the amount of current flowing through the device and thus makes the device appear 
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as a transistor to the surrounding circuitry. Figure 5.3 shows a schematic diagram of the device 

showing both the lateral doping profile and the placement of the MOS gate. 

 

Figure 5.3: Schematic diagram of the offset single gate photo-detector showing both the lateral doping profile 

and the placement of the MOS gate 

Figure 5.4 (a) shows an SEM micrograph of the actual offset single gate photodiode where the 

anode (source) and cathode (drain) pads can be seen as well as the gate contact pad at the top 

and bottom. In Figure 5.4 (b) an SEM micrograph of the highlighted gate region at the gate 

contact end is shown. In this figure it can be seen that the gate is offset towards the source 

rather than the drain. 

  

(a)      (b) 

Figure 5.4: (a) SEM micrograph of the offset single gate photo detector (b) SEM micrograph on the highlighted 

gate region. 

This configuration makes this device very different from ordinary p-i-n diodes so that it is 

much more suited for detecting low light intensities over a large wavelength range while its 
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speed of operation is significantly reduced. This geometry also allows one to investigate the 

effect of placing secondary structures, such as gates or gratings, on the intrinsic region. In fact, 

the device described here had an integrated MOS gate structure to enable the control of current 

flowing through the device, independent of any photocurrent. This can be seen in Figure 5.7, 

where in absence of any light source, the gating action controls the flow of current through the 

device. 

5.2.3. Experimental Setup 

Devices were characterized using wafer probers and a number of different instrument setups. 

The current-voltage (IV) characteristics were measured with a Hewlett-Packard 4155B 

semiconductor parameter analyzer (SPA). Some of the optical measurements such as     as a 

function of red and blue light intensity were also performed using SPA. Spectral responsivity 

measurements were performed with THR 1000 Monochromator using 51006180 grating from 

JOBIN YVON, whereas an SR530 lock in amplifier from Stanford research systems was used 

in this setup. It is imperative to mention here that, the responsivity values reported for single 

and dual gate devices have been calculated by taking into account, the entire near-intrinsic,    

region in between the two electrodes, as the device sensing area. In order to measure the 

device response from optical to electrical domain with pulsed light, a function generator GFG-

8216A from GW INSTEK and InfiniiVision DS05014A digital storage oscilloscope from 

Agilent Technologies were used to record the dataset. Noise measurements were taken with an 

Agilent 4395A network / spectrum / impedance analyzer. 

5.2.4. Electrical Response 

In this section the electrical response of the offset gate device is described.  The forward and 

reverse characteristics of a lateral p-i-n photodiode and with gate bias are illustrated. A 

transconductance plot is shown which is derived from the     –      graph. 

5.2.4.1. Forward and Reverse Bias Characteristics 

To examine the forward bias characteristics of gated lateral p-i-n diode, a few volts were 

applied across the lateral p-i-n structure, without taking into account its gated structure. A 

characteristic curve shown in Figure 5.5 is similar to the forward bias characteristics of an 
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ordinary diode. Here 0.8 V forward diode drop is observed in lateral p-i-n diode as against 0.7 

V in normal pn-junction diode. 

 

Figure 5.5: Forward bias characteristics of offset p-i-n photo detector. 

A reverse bias of a few volts was applied across the lateral p-i-n structure, as is usual with 

photodiodes. Reverse bias characteristics of a lateral p-i-n diode are shown in Figure 5.6, 

where a dark current of 4.6 μ  is seen at     = 15 V. The high value of dark current is due to 

the leakage of current below the doped regions. This can be minimized by fabricating the 

device using silicon-on-insulator (SOI) material. 

 

Figure 5.6: Reverse bias characteristics (dark current) of an offset p-i-n diode. 
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5.2.4.2. Current – voltage (I-V) Characteristics 

So far the biasing conditions in isolated diode configuration has been described. In order To 

understand the hybrid characteristics, its lateral diode structure and the vertical MOS transistor 

structure have to be biased simultaneously. In order to do this, the gate was biased with a 

negative voltage referenced to the source (which was at the ground potential). This caused the 

region underneath the gate to accumulate holes. The accumulated holes had the effect of 

extending the anode region laterally so that the electrical width of the device was reduced and 

its effective conductivity was greatly enhanced. This is seen in Figure 5.7 which depicts the 

current-voltage characteristics of the device. It is interesting to note that what appear as 

conventional transistor characteristics are simply the reverse-biased characteristics of a diode. 

The different curves here are for the device operating with different gate biases. With 

increasing negative gate bias, more current flows through the device and the characteristics 

shift upwards.  

Here it is to be noted that at 0 V VDS and 0 V VGS, the output current is 0 A. This is because 

the drift current is controlled by the electric field due to applied VDS. Therefore ideally, at 0 V 

VDS and higher (negative) gate bias values the output current should be zero. Whereas in 

Figure 5.7 25 μA output current is flowing at -5 V VGS and 0 V VDS, this offset in output 

current at higher gate bias values is likely to be the contribution from the gate leakage current. 

This contribution of gate leakage current can be minimized by careful handling at the oxide 

formation step while fabricating the MOSFETs. It however cannot be reduced to zero even, in 

commercial fabrication facilities where state of the art equipment is available. 

 

Figure 5.7: Current-voltage (I-V) characteristics of the offset gate device at different gate voltages. 
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5.2.4.3. Transconductance 

A transconductance curve can be derived from         measurements and is shown in 

Figure 5.8. This particular curve corresponds to a drain-source bias of 10 volts. The 

transconductance at     = -15 V was 0.08 mA/V. These plots show that the device appears as 

a transistor as far as its terminal behaviour is concerned, although with unusual biasing 

polarities. For this reason we also refer to the anode and cathode terminals as source and drain, 

respectively.  

 

Figure 5.8: IDS –VDS plot of the device for VDS = 10 V. This was taken in the dark. 

The transistor-like behaviour makes it easy to accommodate this device in transistorized 

circuits. Conventional circuit design techniques can be employed for this purpose. Moreover, 

gated p-i-n devices are much simpler to fabricate and use as compared to recently 

demonstrated infrared-detecting silicon nano-MOSFETs [18]. The drain to source current of 

this device in the linear region can be related to drain and gate voltages by the equation: 

     
              

 
          5.2 

Where,     is the drain to source current,     is the gate (oxide) capacitance,    is the applied 

gate voltage,     is drain to source voltage and d is the distance between source and drain. 

This relation holds once accumulation charge density underneath the gate has reached the 
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same magnitude as the dopant density in the    region so that the    region becomes 

effectively extended under the gate. 

5.2.5. Optical Response 

Optical measurements were taken with red and blue Light Emitting Diodes (LEDs) centred at 

630nm and 480 nm wavelengths, respectively, as sources of illumination. The spectra of red 

and blue Light Emitting Diodes are shown in Figure 5.9 (a) and (b), respectively.  

 
(a)      (b) 

Figure 5.9: Spectrum of red LED centred at 630 nm wavelength (b) Spectrum of blue LED centred at 480 nm 

wavelength. 

The first set of measurements deals with the device response with red and blue light 

illuminations at 0 V gate-source bias i.e. using only its lateral p-i-n diode structure. Whereas, 

the second set of measurements was based on its hybrid diode-transistor structure. These 

measurements show the device response with similar red and blue light intensity at different 

gate-source bias values. The response of the device with red and blue lights shows similar 

behaviour, however, a slightly reduced output current was seen with blue light as compared to 

red light, which is usual with silicon detectors. These gated p-i-n diodes have shown better 

sensitivity to blue light than ordinary p-i-n diodes with vertical doping profile. The optical 

response of the device at normal incidence with red and blue wavelength at different light 

intensities is shown in Figure 5.10 (a) and (b). The response of the device, with different red 

and blue light intensities is very well behaved. This indicates that the device can be utilized in 

principle as an optically switched transistor.  
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(a)      (b) 

Figure 5.10: Optical response of the device with (a) red and (b) blue light at 0 V VGS. 

An increase in device response is seen with increasing light intensity as shown in Figure 5.10. 

It clearly shows that the current flowing through the device is controlled by the incident light. 

This light-induced response of the device is better behaved than the response of the device 

when the gate-source bias is used as a parameter to control the current flow through the 

device.  

The device behaviour in its transistorized configuration where the gate-source bias is applied 

to control the current through the device is shown in Figure 5.11 (a) and (b) for red and blue 

lights of similar fixed intensity, respectively. Here the current through the device was 

controlled by applying different gate-source biases. The spectrum of the light source used for 

illumination is the same as shown in Figure 5.9. Here two parameters i.e. the gate-source bias 

and fixed light intensity, were used to control the current through the device. In fact, the 

incident light contributes to the output current of the device as if some gate bias was applied to 

the device. This correlation of light intensity to gate-source bias is shown in Figure 5.12 (a) 

and (b) for red and blue light, respectively. 
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(a)     (b) 

Figure 5.11: Transistorized optical measurements with (a) fixed red light intensity and (b) fixed blue light intensity. 

  

(a)     (b) 

Figure 5.12: Light intensity to gate-source bias correlation in offset single gate p-i-n photo-detector. (a) with red 

light (b) with blue light. 

In order to meaningfully compare the device response with red and blue illumination, the 

optical response of the hybrid device in red and blue light is plotted in Figure 5.13. The optical 

output characteristics of the device have been plotted at different incident light intensities here. 

The lowest curve (continuous line) is the response of the device in dark, for reference. Dotted 

lines and dashed lines represent the response of the device in red and blue light. Ellipses 

indicate pairs of measurements at similar red and blue light intensities.  

Very good sensitivity to blue light is evident from these plots. The responsivity of the offset 

gate device to red and blue light centred at 630 nm and 480 nm was 12.9 A/W and 10.15 A/W, 

respectively (at     = 20 V and     = 0 V). These values are higher than those for commercial 

silicon photodiodes, such as the BPX65 from Centronics. Such high values of responsivity 

have been predicted in lateral p-i-n junction photodiodes recently by Yun Zeng and colleagues 



Chapter 5  Single Gate Silicon p-i-n Photodiodes 

- 106 - 

 

[19]. These large values arise because the depletion region is right at the top of the device so 

that incident photons do not have to traverse a region of „inactive‟ silicon before reaching the 

space charge region where electrons and holes they form can be separated effectively. 

 

Figure 5.13: Optical output characteristics of the device, taken at VGS = -2 V and at various red and blue light 

powers. 

The fact that there is only 21.3% fall in responsivity in going from the red region to the blue 

region attests to the remarkable blue sensitivity of this device as commercial devices often 

show a decrease of 40% or more in going from the red region to the blue region. The change 

in output current in going from red to blue illumination, at the stated biasing conditions and 

for 0.08 μ  incident optical power, was even smaller at 8.6%. This shows that because of the 

presence of depletion region at the surface of the device and due to the lateral doping profile, 

the sensitivity to blue light is greatly enhanced over devices with buried depletion regions. 

Other types of silicon-based detectors have to rely on back-thinning techniques and back 

illumination to achieve similar results [20].  

5.2.5.1. Optical and Electrical Transfer Characteristics 

The almost linear optical transfer characteristics imply that the device introduces very little 

non-linear distortion when transducing signals from the optical to the electrical domain. 

Optical and electrical transfer characteristics are shown in Figure 5.14 (a) and (b) and Figure 
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5.15 (a) and (b) for red and blue light, respectively. We have verified this by building circuit 

based on the offset gate device. 

 

(a)      (b) 

Figure 5.14: (a) Optical transfer characteristics and (b) Electrical transfer characteristics of the device. 

 

(a)      (b) 

Figure 5.15: (a) Optical transfer characteristics and (b) Electrical transfer characteristics of the device at different 

blue light intensities. 

Tests of the switching response of the device with pulsed red light have shown very good 

linearity in optical-to-electrical conversion as shown in Figure 5.16. Here the lower trace is the 

optical driving signal from a red LED and the upper trace is the output voltage from the 

device. The signal inversion seen is the result of the common-source (CS) biasing circuit used 

with the transistor-like detector. 
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Figure 5.16: Optical to electrical conversion exhibited by the device with pulsed red light. 

5.2.5.2. Spectral Responsivity 

The complete responsivity curve of the device for the 400 to 1100 nm range appears in Figure 

5.17. This also shows the responsivity of a typical commercial silicon photodiode (scaled up 

72 times), for comparison.  

 

Figure 5.17: Spectral responsivity of the single gate devices for the 400 to 1100 nm range. 

The dotted line is the responsivity of a typical commercial silicon photodiode. Part No. DSS-SG020A, 

Manufacturer: Electro-Optical Systems Inc. 

Furthermore, the device was tested with ultraviolet (UV) radiation from mercury discharge 

lamps and found much enhanced sensitivity to radiation of wavelengths less than 400 nm. 

Figure 5.18 shows plots of these measurements taken at     = -1 V. The top curve is the 
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response with both visible and UV radiation incident on the device. The middle curve shows 

response with only UV radiation (visible wavelengths were cut off by a short wavelength pass 

filter). The spectra of UV radiation with and without filter are shown in Figure 5.19. The 

bottom curve shows the response in dark for reference. These measurements yield a UV 

responsivity of 0.15 A/W at a wavelength of 313 nm (at     = 15 V). These UV responsivity 

values compares very favourably with performance parameters measured with GaN- and SiC-

based p-i-n photodetectors [21] where very similar figures for UV responsivity have been 

quoted. Thus, whereas, these silicon-based devices are not solar blind they do approach the 

responsivity of devices made from wide direct band-gap semiconductors very closely and can 

detect radiation in UV-A, UV-B and UV-C bands. It thus appears that the surface depletion 

layer configuration of these detectors is able to utilise the above-unity quantum yield of UV 

photons very effectively [22]. Using the relationship between responsivity and internal 

quantum efficiency at different wavelengths [21], a value of 69% for quantum efficiency in 

the red region can also be obtained.  

 

Figure 5.18: Optical output characteristics of the device for UV radiation. Data taken at VGS = -1 V. 
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(a)      (b) 

Figure 5.19: Spectra of illuminating radiation without and with short wavelength pass filter are shown in (a) and 

(b), respectively. 

 It is to be noted that the lateral structure reduces the junction capacitance but increases 

the carrier transit time. This can be improved by shrinking the device. In its current form the 

device showed a 3 dB response at around 230 kHz. This is enough for many applications 

where steady or low frequency pulsed light detection is required.  

5.2.6. Noise Measurements 

The top surface location of the depletion layer in this device resulted in a higher level of dark 

current (Figure 5.6) but no excessive noise compared to what a buried depletion layer device 

would produce. The amount of dark current at a typical biasing voltage of     = 15 V (in the 

absence of any gate voltage) was 4.6 μ . We performed power spectral density measurement 

of the device at     = 10 V and different gate bias points and found average noise voltages of 

only a few n      z . Figure 5.20 shows noise measurements for an offset gated p-i-n 

photo-detector. It is to note that the inset shows the highlighted region of the main graph. 
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(a)      (b) 

Figure 5.20: Noise measurements of offset gate device with insets showing 1/f dependence of the pink 

highlighted section (a) at -6 V VGS. (b) at 0 V VGS. 

It appears that the silicon-dioxide layer (lateral continuation of the gate dielectric) serves as a 

good passivation layer and is effective in reducing         interface noise [23, 24]. This 

device can be further improved if it is fabricated on silicon-on-insulator (SOI) material as that 

would eliminate the current that leaks from the region underneath the doped regions; thus 

reducing its dark current [19]. This is very much possible as other types of photodetectors 

have already been demonstrated in SOI material [25, 26].  

5.3. Centre Single Gate Lateral p-i-n Photodiode 

So far we have explored a diode-transistor hybrid device and used its gating action to 

electrically shrink the device and thus control its electrical operating point. The next variation 

was to fabricate a device with a partial MOS gate placed right in the centre of the lightly 

doped p region. The dimension of the gate was again 12  m x 500 μm and it was placed in the 

centre, at equal distance from both electrodes. Again, this device had the features of both pn-

junction diodes and MOSFETs as was the case with the variation described earlier. Here 

again, light acts as an additional control variable. This device can simplify both analogue and 

digital designs that have to employ light detectors. This device had shown wide spectral 

response and it was found to be suitable for light sensing from about 900 nm to less than 400 

nm. It is particularly useful for applications such as light sensing in machine vision 

applications. Next sections will deal with the structure and optoelectronic characteristics of the 

centre single gate device. 
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5.3.1. Device Design 

Similar to the previous case, the device described here consisted of a hybrid diode-MOS 

transistor structure. The lateral structure was that of a p-i-n diode whereas the vertical 

structure was that of a transistor with a partial gate i.e. a gate that covered only a part of the 

region between the source and drain. The different parts of the device have been identified on 

the schematic diagram in Figure 5.21.  

 

Figure 5.21: Schematic diagram of the centre single gate p-i-n photo-detector showing both the lateral doping 

profile and the placement of the MOS gate 

The fabrication, processing and substrate details are exactly same as that of the offset single 

gate device described earlier, except for the dimensions and the placement of gate. The gate, in 

this case, was 12 μm  long within the 32 μm gap between the source and drain; resulting in a 

62.5% fill factor. A 3D cross-section is shown in Figure 5.22, highlighting the placement and 

dimension of the gate and other contacts. It should be noted here that Bhuwalka et al, have 

described gated vertical p-i-n structures, for purely electronic applications [1]. 

 

Figure 5.22: 3D labelled Cross-section of the centre single gate device. 
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The region between the source and drain was left in its low p-doped state. Geometrically, this 

„ ‟ region had a width of 32 μm.  The structure, therefore, resembled a lateral p-i-n junction 

diode with an extra-long „i‟ region. The doping levels of the n ,  p  contacts and the lightly p 

doped near intrinsic „ ‟ region, were       x       m  ,       x       m   and 

     x       m     respectively. As a result of this doping profile, a depletion layer thickness 

of 6.81 μm is produced; almost all of it lying in the „π‟ region. An SEM micrograph of the 

fabricated device is shown in Figure 5.23. 

 

Figure 5.23: SEM micrograph of device with close-up view of the gate region in bottom. 

In this case too, a layer of silicon-dioxide, 50 nm thick, was formed on the float zone silicon 

substrate by thermal growth in an oxygen atmosphere. A Ti/Pt/Au metal gate was deposited 

half-way through the „i‟ region, on top of the      layer. This design allowed incident light 

impinging on the device to enter the „i‟ region on both sides of the gate through the transparent 

oxide layer. An etched isolation trench 10 μm deep surrounded each device to provide 

electrical isolation from any neighbouring devices.  

5.3.2. Operating Mechanism and Characteristics 

Several devices were fabricated on various pieces of float zone silicon wafer material in arrays 

of 4 x 5 devices each. Devices were characterized using wafer probers and a number of 

different instrument setups. The current-voltage (IV) characteristics were measured with a 

Hewlett-Packard 4155B semiconductor parameter analyzer (SPA). Measurements were taken 

in the source-to-drain voltage range of 0 to 20 volts while gate voltages of 0, 10, 15 and 20 

volts were successively applied. The voltage applied between the source and drain was such as 

to reverse bias the lateral p-i-n diode. In the absence of a gate bias a reverse leakage current of 
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4 μ  at 15 V     was observed. Plot showing reverse leakage current of centre single gate p-i-

n photo-detector is shown in Figure 5.24.  

 

Figure 5.24: Reverse leakage current of centre single p-i-n photo-detector. 

5.3.3. Electrical Response 

In this section electrical response of the centre single gate device is described. 

5.3.3.1. Current – Voltage (I-V) Characteristics 

With increase in applied gate-source bias (positive with respect to the source), the electrical 

conductivity through the device was seen to increase. The mechanism for this appears to be 

the removal of minority electrons, due to gate action, from the region between the end of 

depletion layer and the source (on the right in Figure 5.22). Carrier recombination of holes, 

ejected out from the depletion region with the minority electrons in the   region was thus 

suppressed, giving rise to the drain current. Due to low background p-type doping of the float 

zone silicon used for these devices, minority electrons were significantly reduced from the π 

region underneath the positively biased gate. This accounts for the rapid rise in drain current 

with increase in gate-source bias. This is shown in Figure 5.25.  
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Figure 5.25: IDS-VDS (output) characteristics of the device with gate voltage as the parameter. Taken without an 

input light signal 

5.3.3.2. Transconductance 

A transconductance of 2.61 μ    was seen at a     value of 15 V. The          

characteristic in Figure 5.26 show that the terminal behaviour of the device is like that of a 

transistor. 

 

Figure 5.26: IDS-VDS characteristics of the centre single gate device at VDS = 10V in the dark. 

Device simulation gives an insight into the device operation, physical device modelling 

studies were also performed to verify the experimentally obtained characteristics. The 

simulator used for these simulations is Sentaurus, version E-2010.12, Synopsys. In the 

simulation process, the dimensions of the device and its analytical doping profile were 
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employed that match the measured data as shown in Figure 5.27. Simulation structure and 

doping profiles are illustrated in Figure 5.27. The simulation process utilizes the drift-diffusion 

model, which includes Poisson‟s equation and carrier continuity equations. It also employs 

doping-dependent interface and high field degradation mobility models. A raytracing model 

was used to determine the optical generation rate for the simulation process. Figure 5.28 (a) 

and (b) show simulated results of single centre gate device at different light intensities [diode 

measurements] (a) and at fixed light intensity with different gate bias values [transistor 

measurements]. The simulations were performed by Xingsheng Wang from device modelling 

group. 

 

Figure 5.27: The simulation structure and doping profiles for the centre single gate device 

 

(a)      (b) 

Figure 5.28: Simulated result of single centre gate device (a) with different red light intensities (b) at fixed light 

intensity with different gate bias. 

5.3.4. Optical Response 

Similar to the offset single gate device, the centre single gate device can also be driven into 

saturation with an input light signal which has a similar but more well-behaved action than an 
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applied gate-source bias. Similar light sources and measurement setup, as were used for offset 

gate device, were used to measure the optical response of the centre single gate device. Optical 

response of the device with red and blue light was measured in two different sets of 

measurements. One accounts for diode measurements taking into account the lateral part of the 

device. Device response with red and blue light is shown in Figure 5.29 (a) and (b). The 

second set of optical measurements deals with the vertical MOSFET part i.e.          

characteristics with an input red and blue fixed light intensity. This is seen in Figure 5.30 (a) 

and (b). This shows the output characteristics with different gate bias values as the plot 

parameter.  

 

(a)      (b) 

Figure 5.29: IDS-VDS (output) characteristics of the device with (a) red illumination. (b) blue illumination. 

 In both cases optical power is the parameter here. 

 

(a)      (b) 

Figure 5.30: IDS-VDS (output) characteristics of the device with gate voltage as the parameter taken with. (a) red 

light illumination. (b) blue light illumination. 

Similar to the offset single gate device, an outstanding feature of this device is its enhanced 

blue sensitivity. This is seen in Figure 5.31 where pairs of output characteristic curves taken at 
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similar powers of red and blue light have been grouped together. The lowest curve is the 

characteristics in the absence of light. Red light, as expected, produced a larger increase in 

drain current for given values of     and     but the response from blue light was also very 

prominent. The responsivity of the device to 2.15 μ  blue light intensity at     = 10 V and 

    = 20 V was 10 A/W. Similar to the offset single gate device, this enhanced blue sensitivity 

originates from the surface location of the depletion layer where charge separation takes place. 

In vertical p-i-n devices the depletion layer is buried within silicon whereas in these devices it 

extends to the top surface of the device. The lateral structure reduces the junction capacitance 

but increases the carrier transit time. This can be improved by shrinking the device. In its 

current form the device showed a 3 dB response at around 230 kHz. This is enough for many 

applications where steady or low frequency pulsed light detection is required.  

 

Figure 5.31: IDS-VDS (output) characteristics of the device with red and blue optical power as the parameter.  

Solid line, dashed line and dotted line represent responses with red light, blue light and in the dark, respectively at 

10 V gate bias. 

Similar to the behaviour of offset gated p-i-n photodiode, this device can be biased with either 

a light source or with a gate bias. Figure 5.29 (a) and (b) shows the device response when 

biased using red and blue light source, respectively. Device response with incident light as the 

driving parameter is seen to increase smoothly and that change is even better behaved than if it 

was brought about by the application of a gate-source bias. A correlation of light intensity to 

gate-source bias is shown in Figure 5.32 (a) and (b) for red and blue light, respectively. It is 

clearly seen that low red light intensity correlates to a higher gate-source bias than is the case 
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with blue light. Numerically, 1.16 μ  red light produced drain to source current equivalent to 

19.7 V of applied gate-source bias, whereas in the case of blue light 1.62 μ  produced drain 

to source current equivalent to 18.7 V of applied gate-source bias. This behaviour is expected 

due to the known spectral responsivity of silicon. 

 

(a)      (b) 

Figure 5.32: Light intensity to gate-source bias correlation in centre single gate p-i-n photo-detector with. (a) red 

light (b) blue light. 

5.3.4.1. Optical and Electrical Transfer Characteristics 

Light intensities were measured with a calibrated Si-photodiode-based optical power meter. 

The results in Figure 5.30 and Figure 5.31 clearly show that this device acts as a transistor-like 

component whose lateral conduction can be controlled using both a gate voltage and an optical 

signal. At a given gate-source voltage, the drain-source current showed an almost linear 

variation with changes in red light intensity. A family of plots showing these variations 

appears in Figure 5.33(a). The almost constant spacing between the curves shows that light-

induced increase in drain current is fairly linear as is seen in the Figure 5.33(b). This is the 

counterpart of traditional transconductance curves relating drain-source current to gate-source 

voltages. The electrical transconductance curves show that the device obeys square-law 

behaviour as an ordinary MOSFET but has a non-zero current at zero gate voltage due to its 

always-on characteristic. The electrical transconductance value at     = 10 V,     = 10 V and 

incident red light power of 0.44 μ  was 0.703 μ   . The optical responsivity of the centre 

gate device at     = 20 V and     = 10 V, is 14.96 A/W for 2.14 μ  red light. This is much 

higher than the optical responsivity of typical commercial silicon photodiodes such as BPX65 

from Centronics (around 0.6 A/W in the red region) and is comparable to responsivities 
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exhibited by good photodetectors made from direct band-gap semiconductors such as InGaAs 

[27]. 

  

 

(a)      (b) 

Figure 5.33: (a) Optical transfer characteristics and (b) Electrical transfer characteristics of the device at different 

red light intensities. 

A similar set of optical and electrical transfer characteristics as appeared in Figure 5.33 (a) and 

(b) are shown with blue light of similar intensity incident on the device in Figure 5.34 (a) and 

(b) 

 

(a)      (b) 

Figure 5.34: (a) Optical transfer characteristics and (b) Electrical transfer characteristics of the device at different 

blue light intensities. 

The switching response of centre gate device with pulsed red light has also shown good 

linearity in optical-to-electrical conversion as shown in Figure 5.35. 
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Figure 5.35: Optical to electrical conversion of the device with pulsed red light. 

 The almost linear optical transfer characteristics imply that the device introduces very 

little non-linear distortion when transducing signals from the optical to the electrical domain. 

The measured non-linearity using the second order derivative of output current versus input 

optical power was      x      A/W per microwatt. The functional behaviour of this device 

can be utilized in silicon integrated circuits for sensing light in either analogue or digital 

applications. The diode structure with extended n -to-„π‟ depletion region makes it a good 

light detector whereas the gate makes it appear as a MOSFET and can be used to adjust output 

electrical signal levels in order to interface easily with other transistors.  

5.3.4.2. Spectral Responsivity 

Both single gate devices have shown similar spectral responsivity curve. This has already been 

shown in Figure 5.17. It should be noted that the centre single gate device had shown 

relatively low responsivity values to that of the offset single gate device.  

5.3.5. Noise Measurements 

It is clear from the power spectral density measurements of the centre gate device shown in 

Figure 5.36, that noise voltages of only a few n      z  are produced. Similar to the 

previously discussed device, the continuation of the      layer on the near-intrinsic π region 

serves as an effective passivation layer. The noise behaviour is thus similar to good 

conventional vertical p-i-n photodiodes. . It is to note that the inset shows the highlighted 

region of the main graph. 
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(a)      (b) 

Figure 5.36: Noise measurements of centre single gate device with insets showing 1/f dependence of the pink 

highlighted section (a) at 20 V VGS (b) at 0 V VGS . 

5.4. Conclusion 

In this chapter, two variations of single gated-diode that features a p-i-n junction diode-like 

doping profile horizontally and a partial MOS gate profile vertically are described. These 

devices acts as a hybrid diode-transistor where the diode elements detect incident light and the 

transistor structure can be used to adjust the current flow through the device. These devices 

have advantages which include easy integration into CMOS process flows, ease of circuit 

design with conventional MOSFETs and high sensitivity to the short wavelength blue and UV 

region compared to vertical p-i-n diodes. These devices are characterised electrically and 

optically to highlight both the optical detector and transistor-like functionality of these 

devices. 
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6 Introduction 

Detectors based on both silicon and compound semiconductors are widely used to detect light 

for a variety of applications. These devices work on different principles but the central 

mechanism is always the excitation of a charge carrier across an energy gap through the 

absorption of one or more incident photons. The capability and efficiency of the detection 

process is determined by a host of factors that depend both on the properties of the detector 

material and the details of device design. Prominent parameters that are often the basis for 

selecting detectors for particular applications include the wavelength coverage (detection 

band), quantum efficiency of the detection process, responsivity (output generated with unit 

power input), signal-to-noise ratio and dark current (detector output in the absence of any 

input signal) [1]. No one detector excels in all desirable attributes and thus a number of 

different types of detectors exist – each suitable for a specific type of application [2]. pn-

junction-based semiconductor detectors are the most widely used optical detectors and come 

in a variety of forms to satisfy different operational requirements. Their technology has 

diversified from simple vertical pn-junctions to more involved architectures, capable of single 

photon detection and even high resolution imaging, when incorporated as a focal plane array. 
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Most parameters of a given detector are fixed through the choice of material, processing 

techniques and device structure. However, some important parameters such as sensitivity and 

response time can be varied to some extent by appropriately biasing the detector. For most 

light sensors, spectral responsivity, i.e. the relative responsivity of a detector at different 

wavelengths is principally determined by the energy level structure of the material and device 

cannot be altered significantly through external biasing. This limitation necessitates the use of 

various kinds of filters to obtain wavelength-specific responses from semiconductor pn-

junction light detectors. In fact, most optical filters are used for delineating desired regions of 

a sensor‟s spectral responsivity curve to match a particular operational requirement. Electronic 

control of spectral responsivity is extremely desirable as it will allow a detector‟s spectral 

response to be customised to an application requirement merely through appropriate biasing of 

the device. The device described in this chapter allows one to realise this extra functionality by 

using a pair of metal-oxide-semiconductor (MOS) gates on a lateral pn-junction. It is 

demonstrated that when appropriately biased such a device allows the peak of spectral 

responsivity to be shifted over quite a broad range of wavelengths.  

Silicon‟s absorption coefficient for different wavelengths is dependent on the distance 

traversed by photons inside the material. For photon energies above the band gap of silicon, 

shorter wavelength photons are predominantly absorbed close to the surface of a device 

whereas the longer wavelength photons penetrate deeper into the material and are absorbed 

more weakly. This dependence of photon absorption coefficient on path length inside the 

semiconductor can be made the basis of a scheme for wavelength discrimination. Previously, 

this has been attempted by making tiered device structures where separate detection layers at 

different depths have been incorporated in a vertical geometry. While such an architecture is 

effective, its characteristics are fixed through fabricated design and cannot be changed „on the 

fly‟ [3]. The device discussed here, in comparison, had a simple planar structure which is fully 

CMOS-compatible and allows continuous tuning of wavelength response simply by altering 

the voltages applied to two surface gates. 

This chapter, continuing the theme of Chapter 5, describes transistor-like dual gate light 

sensing devices. These dual gate devices use the same base architecture i.e. lateral p-i-n diode 

as the single gate devices described in Chapter 5. These devices are also CMOS compatible 

and, therefore, have gates to control their quiescent operating point. This light sensing device 
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can be monolithically integrated with other transistors on the chip. Device fabrication details 

are the same as described in “device fabrication techniques” within Chapter 4. Here the device 

response is explained with regards to its electrical, optical and noise characteristics. These 

devices exhibit short-wavelength sensitivity and the ability to modulate the spectral 

responsivity with proper biasing on the dual gate structure. The gates are used in a similar way 

to control the lateral conduction of the device as in the case of single gate devices. The 

overlapping dual gate device has, specifically, shown gate bias-induced modulation of spectral 

responsivity, where the sensitivities at red and blue wavelengths (630 nm and 480 nm, 

respectively) cross-over and the device at higher gate bias values becomes more sensitive to 

blue wavelengths than to red wavelengths. 

6.1 Device Design 

Similar to the single gate devices, the dual gate devices detect light through a lateral p-i-n 

junction structure, where the dual gate structure, when properly biased, controls the current 

through the device. Two different types of dual gate photodiodes were fabricated. The first 

type of dual gate device was a normal dual gate device with two gates, each, 9 microns in 

length. The second set of devices was with two 15 microns long overlapping gates. Fabrication 

details have been described in the fabrication techniques chapter, whereas the design details 

are explained and illustrated in the next section. These dual gate devices have exhibited the 

ability to modulate the spectral responsivity of the device when both gates [i.e. drain side gate 

      and source side gate      ] are appropriately biased. 

6.1.1   Normal Dual Gate Lateral p-i-n photodiode 

As explained earlier, all the devices (single gate, dual gate and integrated metal grating 

devices) reported in this work used the same lateral p-i-n junction architecture and these 

devices were fabricated with similar processing techniques. However, certain changes in the 

placement and dimension of gate structure and contact electrodes were made to better explore 

the behaviour of these devices. Coming back to the dual gate device, the normal dual gate 

device has exactly the same lateral structure as that of single gate devices, except for the gate 

structure. In the normal dual gate device, 9 microns long and 500 microns wide dual MOS 

gate structures were metallized over the 32 microns, insulated, near-intrinsic region. This was 

done in such a way that both the gates were placed 5 microns away from respective electrodes 
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i.e. source and drain and both the gates were 4 microns apart from each other. In Figure 6.1 (a) 

an SEM micrograph of an actual normal dual gate device is shown.  

 

(a)     (b) 

Figure 6.1: (a) An SEM micrograph of normal dual gate device and (b) highlighted SEM micrograph 

showing the boxed gate region. 

It illustrates the actual device design with 500 x 500 microns (anode) source and (cathode) 

drain contacts and two “U” shaped gate structures surrounding the respective electrodes. Each 

gate had 200 x 200 microns contacts as shown in the Figure 6.1 (a). The red boxed region in 

Figure 6.1 (a), is shown in Figure 6.1 (b). Here the gate structure, along with the gap in 

between the gates and electrodes, is illustrated. In Figure 6.2 a labelled cross-section image of 

the normal dual gate device is shown. The cross-section represents the same red boxed region 

as shown in Figure 6.1 (a). Except for the structural variation, all other fabrication processes 

were the same as that of single gate devices. In the rest of the discussion, this device will be 

referred to as the normal dual gate device. 

 

Figure 6.2: Cross-section of the normal dual gate lateral p-i-n photodiode. 
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6.1.2 Overlapping Dual Gate Lateral p-i-n Photodiode 

The fabrication of overlapping dual gate device followed the same steps as the devices 

described earlier until the diffusion process to make heavily-doped source and drain contacts 

i.e. p and n type contacts. Unlike the normal dual gate device, the overlapping dual gate lateral 

p-i-n photodiode had 490 x 490 microns metal contacts such that the metal contacts were in 

the centre of 500 x 500 microns heavily-doped p and n regions. This configuration left a 42 

microns distance between the two electrodes i.e. source and drain, instead of 32 microns as in 

the normal dual gate device. This 42 microns gap covered the 5 microns diffused region from 

both ends of the 32 microns near-intrinsic   region. The 15 microns overlapping dual gate 

structure was patterned over the 42 microns long insulated region such that both the gates 

were 4 microns away from adjacent electrodes. The gap between the two electrodes was 4 

microns in both types of dual gate devices. In this configuration, the 15 microns gate structure 

over the oxide layer was patterned such that from the inner side of „U‟ shaped surrounding 

gate, 1 micron gate region overlapped the adjacent doped region.  

 

(a)      (b) 

Figure 6.3: (a) An SEM micrograph of overlapping dual gate device (b) Highlighted SEM micrograph of 

boxed gate region. 

In terms of distances, 4 + 15 + 4 + 15 + 4 = 42, here the middle 4 microns represents the gap 

between the 15 microns overlapping dual gates, whereas the 4 microns on the edges was the 

distance from the respective electrodes. An SEM micrograph is shown in Figure 6.3 (a) which 

highlights the source and drain contacts and the overlapping dual gate structure. It should be 

noted that both the structures i.e. normal dual gate and overlapping dual gate, look similar in 

the SEM micrographs. However, the cross-sectional diagram of both devices clearly explains 



Chapter 6  Dual Gate Silicon p-i-n Photodiodes 

- 131 - 

 

the differences. The boxed region in Figure 6.3 (a) is actually the gate region and is 

highlighted in Figure 6.3 (b). In Figure 6.4, labeled cross-section of the boxed region is shown 

to highlight the heavily-doped p and n regions, depletion region, back contact, oxide region 

and contact metallization. In the rest of the discussion this device will be referred to as the 

overlapping dual gate device. 

 

Figure 6.4: Cross-section of overlapping dual gate lateral p-i-n photodiode. 

6.2 Device Operation 

Both sets of dual gate devices (normal dual gate and overlapping dual gate) were operated 

with a reverse bias lateral p-i-n junction biasing, as is usual for light detection applications. 

The dual gates in the vertical MOS structure were biased with 8 different biasing 

configurations, however, results from one such biasing arrangement are presented here. In the 

measurement setup the source side gate       was biased at a negative potential with reference 

to the drain side gate       which was biased at zero reference potential. The measurements 

were performed at 0, -5, -10, -15 and -20 V, successive gate-source biases and are described in 

various sections. Furthermore, the next section deals with the simulation of overlapping dual 

gate device. 

6.2.1   Device Simulation 

The operation of the overlapping dual gate device was investigated using physical device 

modelling techniques. The results obtained from the physical device modelling studies match 

the actual measurements performed on fabricated devices. The details of the simulation model 

are similar to the explanations already given in the previous chapter. Simulation structure of 
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the overlapping dual gate device is shown in Figure 6.5, where two gates are shown 

overlapping the adjacent doped regions. In Figure 6.8 the gate bias-induced increase in carrier 

density of the accumulation layer is shown. 

 

Figure 6.5: Hole density simulated result with biased overlapping dual gate 

The simulation results for IV characteristics of the overlapping dual gate device in dark are 

shown in Figure 6.6. The simulations were performed to anticipate the device response in dark 

at different gate bias values. The increasing „trend‟ in output current as a result of increase in 

gate bias agrees with the actual IV characteristics of the an overlapping dual gate device, 

obtained from the physical measurements as shown in Figure 6.21. It is to be noted that in 

simulation due to ideal conditions the gate leakage current is zero at 0 V VDS and at different 

VGS values. 

 

Figure 6.6: Simulated (I-V) characteristics of the overlapping dual gate device at different gate bias values in 

dark. 
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6.2.1.1 Wavelength and Penetration Depth 

Incident photons, depending on their energy, are absorbed in silicon at different depths. The 

photons from short wavelength radiations like UV and blue wavelengths are absorbed close to 

the surface, whereas the longer wavelength photons like that from the red and near-IR regions 

penetrate deeper inside silicon. A penetration depth graph of varying wavelength incident 

photons in silicon is shown in Figure 6.7 [4]. This penetration depth can be correlated to the 

gate bias-induced change in carrier density and the thickness of accumulation layer. This leads 

to the concept of gate bias-induced change in spectral responsivity of the dual gate lateral p-i-n 

photodiode. 

 

(a) 

Figure 6.7: Penetration depth (μm) as a function of wavelength (nm). 

6.2.1.2 Gate Bias-induced Change in Carrier Density of 

Accumulation Layer 

Gate bias-induced change in accumulation-layer-carrier-density was obtained using physical 

device modelling techniques and is shown in Figure 6.8. It can be clearly seen that the carrier 

density is higher close to surface and decreases with depth farther away from the surface. The 

carrier density in the accumulation layer is higher at higher gate bias values i.e. higher 

negative gate bias voltage on source side gate with reference to drain side gate. 



Chapter 6  Dual Gate Silicon p-i-n Photodiodes 

- 134 - 

 

 

Figure 6.8: Gate bias-induced change in carrier concentration of the accumulation layer. 

6.3 Normal Dual Gate Device Operation 

The heavily-doped n and p regions form the two lateral cathode and anode contacts of the p-i-

n junction photodiode. As the vertical MOS structure of the device is similar to that of a 

transistor, therefore these two contacts are referred to as the drain and source contacts of the 

normal dual gate device. Light detection process in the normal dual gate device works with 

reverse-biased lateral p-i-n junction, its mechanism is similar to that described for the single 

offset gate device in Chapter 5. The depletion layer between the heavily-doped n region and 

the lightly doped (near-intrinsic)   region is theoretically 6.81 microns wide, and the major 

part of the depletion layer lies in the near-intrinsic    region. With the increase in reverse bias 

the width of the depletion region increases [5]. This is in accordance with equation 5.1 in 

Chapter 5. The electron-hole pairs produced in the depletion region are separated by the 

depletion region electric field and are swept across the junction. Electrons simply move into 

the heavily n-doped adjacent region whereas the holes are ejected out of the depletion region, 

diffuse through the intrinsic region and reach the heavily p-doped anode region. In Figure 6.2 

the cross-section of the normal dual gate device is shown with the two MOS gates over the 50 

nm thick      layer. The electrical response of the device increased under influence of both 

the reverse bias diode and biasing the gate. This increase in the dark current with an increase 

in reverse bias is normal and is already explained in the literature. However, the increase in 

device current with increase in gate-source bias is due to the partial transistor element which 

works in enhancement mode to increase the conductivity of the device. The difference in 
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operation of single and normal dual gate device and in normal dual gate and overlapping dual 

gate device is mainly due to difference in the gate bias and reference potential. 

6.4 Normal Dual Gate Device Characteristics 

The normal dual gate device electrical and optical characteristics are described here followed 

by spectral responsivity and noise measurements. Some measurements were performed with 

reverse-biased p-i-n diode part of the device, whereas other measurements take into account 

the gating action as well. 

6.4.1 Electrical Response 

In the absence of any gate bias, the forward and reverse bias characteristics of the device have 

been shown in Chapter 5. These characteristics are the same for the normal and overlapping 

dual gate devices as well. Here the electrical response of the normal dual gate device in dark is 

explained. In the next section the device current-voltage characteristics and transconductance 

response are described. 

6.4.1.1 Current-Voltage Characteristics (dark) 

To understand the overall device characteristics, the diode-transistor-like device was biased by 

applying both a cathode-anode bias and a gate bias. The source side gate was biased at a 

negative potential with reference to the drain side gate which was kept at zero reference 

potential. This resulted in a hole-rich region underneath the source side gate i.e. an 

accumulated layer of holes. Both the gates were close enough to the adjacent heavily n and p-

doped regions and thus the accumulated holes had the effect of laterally extending the source 

region. This lateral extension shrunk the electrical width of the device and caused the 

resistance to decrease. This is seen in Figure 6.9, where the current-voltage characteristics at 

different gate biases (in dark) are shown. Similar to the single gate devices, these 

characteristics appear like conventional transistor characteristics. The different curves 

represent the device response at different gate bias voltages. With increase in the gate bias 

(negative with respect to the source side gate) the depth of the accumulation layer increases, 

which gives rise to the device response and the device characteristics shift upward. Here at 

higher gate bias values and 0 V VDS, a gate leakage current is seen, to which an explanation 
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has already been given in section 5.2.4.2 where similar response of an offset gate device is 

discussed. 

 

Figure 6.9: Current-Voltage characteristics of normal dual gate device at different gate bias in dark. 

6.4.1.2 Transconductance 

A transcoductance curve can be derived from data on drain-source current as a function of 

gate-source bias. In Figure 6.10 the         curve corresponds to 10 V    . The 

transconductance at -15 V     and 0 V     was 7     . Although the device is biased with 

unusual polarities, still the         graph shows that the device obeys square law and 

appears as a transistor as far as its terminal behaviour is concerned. More accurately, the 

device operates partially as an enhancement mode transistor. 
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Figure 6.10: Transconductance plot of normal dual gate device in dark. 

6.4.2   Optical Response 

Optical measurements were taken with red and blue light emitting diodes with emission 

wavelengths centred at 630 nm and 480 nm, respectively as sources of illumination. The light 

spectra have already been shown in Figure 5.9 of Chapter 5. In optical measurements, the first 

set of measurements deals with the pure diode characteristics i.e. with 0 V gate bias and with 

different red and blue light intensities. Whereas, the second set of measurements deals with the 

transistorized configuration, where both the lateral and vertical elements of the normal dual 

gate device were biased and tested for different red and blue light intensities. The device 

showed similar characteristic response with different intensities of red and blue light. The 

normal dual gate device response to red and blue light intensities was similar to the offset 

single gate device, and appeared very much similar to that of a conventional Si photodiode 

response. The normal dual gate device showed better blue wavelength (480 nm) response 

although the blue wavelength response was still less than that of the red wavelength (630 nm). 

This was mainly due to the presence of surface depletion region in the lateral p-i-n junction 

photodiode. This surface depletion region did contribute to excess dark current, that, however, 

is a compromise over the high responsivity values. The optical response of the device at 

normal incidence of different red and blue light intensities is shown in Figure 6.11 (a) and (b), 

respectively.  
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(a)     (b) 

Figure 6.11: Optical response of the device at 0 V VGS at different light intensities with (a) red light (b) blue light 

An upward shift in the reverse bias diode characteristics when illuminated with higher 

intensities of light is an expected behaviour. This clearly shows that the lateral conduction in 

the device can also be controlled with the intensity and wavelength of the incident light 

source. Here three parameters i.e. the reverse bias voltage, intensity and wavelength of the 

light source are used to control the output current through the device. In Figure 6.11 it is clear 

that the optical response of the device at different light intensities is better behaved than the 

response of the device where gate bias is used as a parameter to control the current flow 

through the device. 

 

(a)      (b) 

Figure 6.12: Transistorized optical measurements with fixed (a) red light intensity (b) blue light intensity. 

The optical response of the device in transistorized configuration is shown in Figure 6.12 (a) 

and (b) for red and blue light intensities, respectively. The device was reverse-biased while the 

source side gate was biased at 0, -15 and -20 V, with reference to the drain side gate which 
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was kept fixed at 0 V reference potential. The device was exposed to         fixed red and 

blue light intensities.  

Considering the device response in Figure 6.9 and in Figure 6.11 (a) and (b), where current-

voltage characteristics in dark and the optical response of the device with reverse-biased diode 

element of the device are shown with red and blue light sources. A correlation can be derived 

where optically generated output current equals the gate bias induced output current. This 

correlation for red and blue light intensities is shown in Figure 6.13 (a) and (b), respectively. It 

appears similar for red and blue lights, where lower red light intensity can produce current 

equivalent to higher gate bias values than that would be produced with equivalent blue light 

intensity. In Figure 6.13 the correlation of the gate bias as a function of light intensity is 

shown. Here        incident blue light power produced current equivalent to -21 V gate bias, 

whereas         incident red light power produced current equivalent to -22.5 V gate bias. 

 

(a)      (b) 

Figure 6.13: Light intensity to gate-source bias correlation in normal dual gate p-i-n photo-detector with (a) red 

light (b) blue light. 

In addition, the device response with red and blue light is compared in Figure 6.14 (a) and (b). 

In Figure 6.14 (a) the device response is compared for red and blue light at fixed intensity for 

different gate bias values. It should be noted that the biasing arrangement for both the gates 

remained similar for all sets of measurements, where the source side gate was biased at 0, -15 

and -20 V gate bias values with respect to the drain side gate which was biased at 0 V 

reference potential. In order to differentiate the device response, in red and blue light at the 

same gate bias values, responses are plotted with the same line style. 
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In order to meaningfully compare the device response in red and blue light, the transistorized 

response of the device at -20 V gate bias was plotted in Figure 6.14 (b) at different light 

intensities. The lowest solid black line represents the device response in dark. The optical 

response of the device for similar red and blue light intensities was plotted with similar line 

style, in order to be identified quickly. Here it is further clarified that the device showed very 

good sensitivity to short-wavelength radiations. The responsivity of the normal dual gate 

device to red and blue light was 41.51 A/W and 38.29 A/W, respectively at (    = 5 V and 

    = -10 V) showing a percentage decrease of 8 % from red to blue wavelengths. These 

responsivity values are higher than those exhibited by single gate devices. It should be noted 

that higher responsivity values have already been predicted by Yun Zeng et al. [6]. 

Responsivity values for single gate devices have already been compared to commercial silicon 

photodiode BPX65 and were found to be two orders higher. These high responsivity values 

are due to the presence of space charge region at the top surface where the separation of 

optically-induced electron-hole pairs takes place. Other types of silicon-based photodetectors 

with high responsivity values relied on back illumination and back-thinning techniques [7]. 

 

(a)      (b) 

Figure 6.14: Current-voltage characteristics (a) with red and blue light at different VGS (b) with red and blue light 

of different intensities at fixed VGS. 

Another graph can be derived from Figure 6.14 (a) where the ratio of          to           and 

the ratio of           to          can be calculated to ascertain the change in device response at 

a particular gate bias voltage. Here in Figure 6.15 it is clearly seen that the device response to 

a particular wavelength changes with gate bias voltage i.e. beyond -10 V gate bias. This shows 

that the normal dual gate device with appropriately biased gates can modulate the device 
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response. This change in responsivity with change in gate bias is due to the presence of two 

gates, which are biased with reference to each other. 

 

Figure 6.15: IDS(red,blue) / IDS(blue,red) as function of VGS with fixed light intensity. 

Based on Figure 6.14 (a) the percentage change in device output current in going from 630 nm 

wavelength to 480 nm wavelength at       gate bias is 11 % and at     gate bias it is 15 %. 

This percentage difference is less than that of the value exhibited by single gate devices which 

is 21%. This percentage change in output current when calculated using Figure 6.14 (b) comes 

to 11% for 0.94    incident light power and 9% for 0.44    incident light power. 

6.4.2.1 Optical and Electrical Transfer Characteristics 

The optical transfer characteristics of the normal dual gate device for red and blue light 

illumination are shown in Figure 6.16 (a) and (b). The normal dual gate device with red and 

blue light centred at 630 nm and 480 nm have shown fairly linear optical transfer 

characteristics. This implies that the device would bring in very little non-linear distortion 

when converting optical signals to signals in the electrical domain. 
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(a)      (b) 

Figure 6.16: Optical transfer characteristics at different gate bias (a) with red light (b) with blue light. 

The transconductance curve shown in Figure 6.10 was taken in dark and implies that the 

device obeys square law behaviour and thus appears as a transistor to the surrounding 

circuitry. Here the transconductance curves are plotted at different intensities of red and blue 

light as shown in Figure 6.17 (a) and (b), respectively. The solid black line in both graphs is 

the device response in dark, as already shown in Figure 6.10. Here each curve represents the 

device response at different intensities of red and blue light. 

 

(a)      (b) 

Figure 6.17: Electrical transfer characteristics in dark and at different light intensities (a) with red light (b) with 

blue light. 
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6.4.2.2 Responsivity as a Function of Gate Bias 

The normal dual gate devices were measured in both dark and light. Under illumination the 

devices were measured with normal incidence of red and blue light flux centred at 630 nm and 

480 nm, respectively. In Figure 6.18 (a) and (b) absolute responsivity as a function of gate bias 

is shown. The response of the device is influenced with gate bias and follows similar 

behaviour for both red and blue illumination. This becomes the basis for gate-bias-induced 

change in spectral responsivity of the normal dual gate device. The graph showing spectral 

responsivity as a function of gate bias is shown in the next section. The graphs shown in 

Figure 6.18 (a) and (b) where responsivity changes as a function of gate-source-bias, justify 

the device response in Figure 6.15 where the ratio of          to           and ratio of           

to          are shown.  

 

(a)      (b) 

Figure 6.18: Responsivity as a function of VGS at different VDS values with (a) red light (b) blue light. 

6.4.2.3 Spectral Responsivity 

The complete spectral responsivity of the normal dual gate device for the 400 nm to 900 nm 

range was measured using the same monochromator setup as was used for measuring the 

single gate devices. Spectral responsivity measurements were taken while the lateral p-i-n 

diode was reverse-biased at 10 V     whereas the normal dual gates in the vertical MOS 

structure were biased at different gate bias voltages. The drain side gate was kept fixed at 0 V 

reference potential whereas the source side gate was biased with 0, -5, -10, -15 and -20 V with 

reference to the drain side gate. All the five responsivity curves at different gate-source-bias 
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voltages are shown in Figure 6.19. Here it should be noted that all the plots have been scaled 

vertically in order to make useful comparisons. 

 

Figure 6.19: Spectral responsivity of the normal dual gate device  

6.4.3   Noise Measurements 

The normal dual gate device structure and its fabrication process as already mentioned is 

exactly the same as that of single gate devices, except for the change in the gate pattern over 

the gate-dielectric       . In Figure 6.9, at 15 V     (reverse bias) and in the absence of any 

gate bias, the amount of the dark current is 7   . This is a higher value for dark current as 

compared to that for typical conventional vertical p-i-n photodiodes and is mainly due to the 

surface location of the depletion region. This is due to a phenomenon called “skin effect” 

where the broken bonds at the surface of a diode form a surface leakage path. Here the surface 

acts as a conducting channel and broken bonds form trapping centres to enhance the 

generation-recombination effects. Therefore, these surface imperfections give rise to leakage 

current. This phenomenon causes higher noise levels in devices with surface depletion region. 

The power spectral density measurements for a normal dual gate device at     = 10 V and at 

different gate bias voltages, have shown average noise voltages of a few n      z  as shown 

in Figure 6.20. The inset shows the highlighted region of the main graph. This value is 

comparable to that of conventional silicon photodiodes. Similar to the single gate devices, the 
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lateral continuation of the gate dielectric served as a good passivation layer and has effectively 

reduced the         interface noise [8, 9]. The amount of the dark current in the device can 

be further reduced if it is fabricated with SOI material [1, 10]. 

  
(a)      (b) 

Figure 6.20: Noise measurements of normal dual gate device with insets showing 1/f dependence of the pink 

highlighted section  (a) at VDS = 10 V, VGS = 0 V,  VDG & BC = 0 V.  (b) at VDS = 10 V, VGS  = -20 V,  VDG & 

BC = 0 V. 

6.5 Overlapping Dual Gate Device Operation 

The overlapping dual gate device operates in a similar way as a normal dual gate device. The 

fabrication details are nearly same as that for a normal dual gate device, so the width of the 

depletion region, the junction electric field and most other parameters would remain the same. 

However, there are other conditions to consider while anticipating the device response. This 

includes the fact that overlapping dual gate devices have two gates which overlap the adjacent 

heavily doped n and p regions by 1 micron. Therefore, the overlapping dual gate device would 

show some variation in its gate bias-induced response. The overlapping dual gate device 

characteristics are further explained in the coming section. The difference in response of the 

normal dual gate and overlapping dual gate device is mainly due to the difference in the gate 

bias, reference potential and placement of the gate structure.  

6.6 Overlapping Dual Gate Device Characteristics 

In this section the overlapping dual gate device electrical and optical characteristics are 

explained, followed by its spectral responsivity and noise characteristics. The overlapping dual 

gate device characteristics are similar to that of normal dual gate device. These characteristics 
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appear to be more elaborate than that of the normal dual gate device and are described in the 

following section. 

6.6.1 Electrical Response 

Overlapping dual gate device‟s electrical response is illustrated here with the help of current-

voltage characteristics and its transconductance graph. 

6.6.1.1 Current-Voltage Characteristics 

The current-voltage characteristics of an overlapping dual gate device were measured in 

transistorized configuration. The biasing arrangements were same as was the case with normal 

dual gate device. In a similar way, the lateral conduction of the overlapping dual gate device is 

controlled through applied reverse bias to the lateral p-i-n junction and with properly biased 

vertical MOS gates. The increase in current is seen, with an increase in reverse bias and an 

upward shift is seen with an increase in gate bias. This upward shift in the gate bias response 

of the device as shown in Figure 6.21 depends upon the increasing thickness of the gate bias-

induced accumulation layer. Here the results are shown while the device is in dark. The 

overlapping dual gate device was simulated and the current voltage characteristics showed an 

increase in current with increasing gate bias, when operated in dark. This is shown in Figure 

6.6. Similar to the other IV characteristics in dark, at 0 V VDS and at higher gate bias values, a 

gate leakage current is seen, to which an explanation has already been given in section 5.2.4.2 

where similar response of an offset gate device is discussed. 

 

Figure 6.21: Current-voltage characteristics of the overlapping dual gate device in dark. 
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6.6.1.2 Transconductance 

A transconductance plot derived from the current-voltage characteristics of the overlapping 

dual gate device measured in dark (Figure 6.21) is shown in Figure 6.22. This shows that the 

device nearly obeys square law and the terminal behaviour of the device appears as a transistor 

to the neighboring circuits. A transconductance value of 10      is seen at -15 V    . 

 

Figure 6.22: Electrical transfer characteristics of the over lapping dual gate device in the dark. 

6.6.2   Optical Response 

As discussed earlier, the device output current can be controlled through either controlling the 

intensity of incident light or by changing the gate bias voltage. The optical response of the 

device was measured in two configurations. In the first arrangement the reverse-biased diode 

element was characterized whereas the second set of measurements of the device deals with its 

transistorized configuration. The optical sources used for these measurements were exactly the 

same as those used for normal dual gate device measurements. In Figure 6.23 (a) and (b) the 

overlapping dual gate device was measured in its diode configuration with different intensities 

of red and blue light centred at 630 nm and 480 nm wavelengths, respectively. 
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(a)      (b) 

Figure 6.23: Optical response of the overlapping dual gate device with optical power as parameter in (a) red 

illumination (b) blue illumination. 

The current-voltage characteristics of the overlapping dual gate device in its transistorized 

configuration are shown in Figure 6.24 (a) and (b). In both set of measurements as shown in 

Figure 6.23 (a) and (b) and in Figure 6.24 (a) and (b) enhanced blue sensitivity is seen. Here it 

should be noted that in Figure 6.24 (b) the overlapping dual gate device has shown higher 

response to blue than to red light, as shown in Figure 6.24 (a). Another graph is plotted where 

transistorized response of the overlapping dual gate device with red and blue light is 

meaningfully illustrated. In Figure 6.25 it is clear that at initial gate bias voltages, the 

overlapping dual gate device shows conventional response to red and blue wavelength 

radiations, i.e. higher response to red wavelengths than to blue wavelengths.  

 

(a)      (b) 

Figure 6.24: Transistorized optical transfer characteristics of overlapping dual gate device with fixed intensity of 

(a) red illumination (b) blue illumination. 
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Figure 6.25: Current-voltage characteristics with red and blue light at different gate bias. 

With further increase in gate bias voltage the response of the overlapping dual gate device to 

red and blue wavelengths became the same at around -13 V and from this point onwards, 

further increase in the gate bias showed a crossover behaviour in the overlapping dual gate 

device response to red and blue wavelength radiations. This feature is highlighted in Figure 

6.26 where ratios          to           and           to          are plotted to show the crossover 

in the output current of the device to red and blue light at different gate bias voltages. This 

gate bias-induced modulation of spectral responsivity is as a result of the novel overlapping 

dual gate structure of the device. Here it should be noted that the normal dual gate device had 

also shown a trend of modulation in the spectral responsivity with gate bias. However, it had 

not shown the inversion of spectral responsivity, which is very much the case with the 

overlapping dual gate device.  
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Figure 6.26: IDS(red,blue) / IDS(blue,red) as function of VGS with fixed light intensity. 

Furthermore, the overlapping dual gate device response in Figure 6.23 (a) and (b) is plotted 

together in Figure 6.27 (b). As this response is at 0 V gate bias, so it looks similar to the usual 

response of silicon photodiodes, although higher blue sensitivity is evident from the results. 

Yet another similar graph at -20 V gate bias is plotted in Figure 6.27 (a), where the inverted 

responsivity to red and blue wavelengths is shown. At 0 V to 10 V gate bias the overlapping 

dual gate device is more sensitive to red wavelength and at -15 V and higher gate bias the 

device responsivity changes and it becomes more sensitive to blue wavelengths. Here it should 

be noted that the curve for similar intensities of blue and red lights are plotted in similar style. 

At 15 V     and -15 V gate bias overlapping dual gate device has shown 49.92 A/W and 

55.89 A/W red and blue responsivity values, respectively. Whereas, at 15 V     and -5 V gate 

bias the device has shown 50.43 A/W and 47.32 A/W responsivity values for red and blue 

lights, respectively. These high responsivity values and change in responsivity as a function of 

gate bias were due to novelty in the device architecture i.e. overlapping dual gates and surface 

depletion region of the device. It should be noted that, at -15 V gate bias, (at source side gate, 

while the drain side gate is at 0 V fixed reference potential) the device has shown 10.6 % 

increase in blue responsivity, whereas, at -5 V gate bias, the device has shown 6.16 % 

decrease in blue responsivity. 
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(a)      (b) 

Figure 6.27: Current-voltage characteristics with red and blue light intensities at (a) -20 V VGS (b) 0 V VGS. 

6.6.2.1 Light Intensity to Gate Bias Correlation 

It is clear that the overlapping dual gate device can be driven into saturation with either optical 

power or using high enough gate bias. Therefore, these two driving parameters can be used to 

derive a correlation. The light intensity to gate-source bias correlation graph is shown in 

Figure 6.28 (a) and (b) for red and blue light, respectively. It should be mentioned here that 

unlike the correlation graph for normal dual gate device for red and blue lights, the 

overlapping dual gate device, has produced slightly more output current with blue optical 

power than equivalent amount of red optical power. Numerically 0.15    red light intensity 

produced drain to source current equivalent to -20 V gate-source bias whereas 0.14    blue 

light intensity produced drain to source current equivalent to -20 V gate bias. 

 

(a)      (b) 

Figure 6.28: Light intensity to gate-source bias correlation with (a) red light (b) blue light. 
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6.6.2.2 Optical and Electrical Transfer Characteristics 

The optical transfer characteristics of overlapping dual gate device are shown in Figure 6.29 

(a) and (b). The drain to source current showed linear variation as a function of red and blue 

light intensity. 

 

(a)      (b) 

Figure 6.29: Optical transfer characteristics of overlapping dual gate device at different VGS values with (a) red 

light (b) blue light. 

The constant spacing between the electrical transfer characteristics of the overlapping dual 

gate device at different light intensities show that the increase in optically-generated drain to 

source current is fairly linear. This is seen in Figure 6.30 (a) and (b) for different red and blue 

light intensities. Here the solid black line is the device response in dark, whereas the other 

responses correspond to different red and blue light intensities. The electrical and optical 

transconductance curves show that the device follows square-law and would behave like an 

ordinary MOS transistor. The electrical transconductance value at     = 10 V,     = -10 V 

and incident optical power of 0.37    is 9.941      
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(a)      (b) 

Figure 6.30: Electrical Transfer characteristics of overlapping dual gate device at different light intensities with  

(a) red light (b) blue light. 

6.6.2.3 Responsivity as a Function of Gate Bias 

The absolute responsivity as a function of gate bias is shown here in Figure 6.31 (a) and (b). 

The absolute responsivity graphs for red and blue wavelengths clearly show that the red 

responsivity remains almost constant at all gate bias voltages, whereas the blue responsivity 

starts increasing beyond -10 V gate bias, as is shown earlier in Figure 6.26. The individual 

curves in absolute responsivity graph correspond to a typical     voltage. The graphs are 

shown in Figure 6.31 (a) and (b) for absolute responsivity at red and blue wavelengths, 

respectively. Here responsivity changes as a function of gate bias, justify the device response 

in Figure 6.26 where the ratio of          to           and the ratio of           to          have 

been shown. 
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(a)      (b) 

Figure 6.31: Responsivity as a function of gate-source bias at different reverse-bias values with (a) red light (b) 

blue light. 

6.6.2.4 Spectral Responsivity 

Complete spectral responsivity results of overlapping dual gate device for 400 nm to 800 nm 

at different gate bias voltages are shown in Figure 6.32 (a). In Figure 6.32 (b) the ratio of 

responsivity at red and blue wavelengths and the ratio of responsivity at blue and red 

wavelengths is plotted to confirm the cross-over behaviour in spectral responsivity of the 

overlapping dual gate device. It should be noted that the spectral responsivity curves are 

vertically scaled to meaningfully compare the results at different gate bias values. 

 

(a)      (b) 

Figure 6.32: (a) Spectral responsivity of the device (b) Ratio of red, blue and blue, red responsivity as a function 

of VGS. 
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6.6.3 Noise Measurements 

In Figure 6.21 at 15 V     (reverse bias) in the absence of any gate bias, the dark current for 

overlapping dual gate device is 33   . This value is high as compared to that of typical 

conventional photodiodes and is even higher when compared to normal dual gate device. 

Noise measurements showed similar results as that for normal dual gate devices. In power 

spectral density measurements for overlapping dual gate device at     = 10 V and at different 

gate bias voltages the device showed average noise voltage of a few n      z  as shown in 

Figure 6.33 (a) and (b). The inset shows the highlighted region of the main graph. This low 

noise is simply because of the lateral continuation of gate dielectric, which serves as a 

passivation layer as well. 

  

(a)      (b) 

Figure 6.33: Noise measurements of overlapping dual gate device with insets showing 1/f dependence of the 

pink highlighted section (a) at VDS = 10 V, VGS = 0 V, VDG & BC = 0 V. (b) at VDS = 10 V, VGS  = -20 V, VDG & 

BC = 0 V. 

6.6.4 Device Applications 

The lateral p-i-n junction gated photodiodes have shown considerably higher spectral 

responsivity than typical, commercial vertical p-i-n junction photodiodes. Both the dual gate 

devices have also shown gate bias-induced modulation of spectral responsivity. The 

overlapping dual gate device has shown it to such an extent that there is crossover in gate bias-

induced modulation of spectral responsivity. From the spectral responsivity data of 

overlapping dual gate device, a peak wavelength graph can be extracted, showing the 

wavelength of maximum responsivity at particular gate bias values. The peak wavelength shift 
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graph as shown in Figure 6.34 illustrates the overlapping dual gate device‟s coverage of the 

visible spectrum (400 – 700 nm) from -5 V to -10 V gate bias. Knowing all peak wavelength-

shift values and by scanning the incident wavelength or monochromatic light source at all gate 

bias values for visible spectrum, the device in its current form can be used to specify the 

wavelength or colour of incident radiation. Therefore, the device can be used to make a colour 

sensor or a wavelength meter. This might become the basis of a silicon-based micro-

spectrometer. 

 

Figure 6.34: Peak wavelength shift as a function of VGS. 

6.7 Conclusion 

In this chapter, electrically tuneable spectral responsivity in silicon-based photodetectors is 

described. The current flowing through these lateral p-i-n junction photodiodes can be 

changed by changing either the bias voltage applied to a system of metal-oxide-semiconductor 

(MOS) gates or the intensity of incident light. The normal dual gate and overlapping dual gate 

devices have exhibited optical responsivities of over 40 A/W and 50 A/W respectively. These 

devices when properly biased show enhanced blue response with overlapping dual gate 

device, the peak sensitivity of the device can be changed over the entire visible region by 

changing the gate voltage in a 5 V range. This happens because with increasing gate bias an 

accumulation layer of holes is pulled closer to the Si-SiO2 interface. Furthermore, the device 

has a planar architecture and can be used on a CMOS platform. 
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Lateral p-i-n Photodiode & Optical 

Polarization Detection 

 

7. Introduction 

Detection of the polarization state of visible and near-infrared radiation is often required, for 

instance, in optical communications, magneto-optic data storage, astrophysics, stereo-sensitive 

bio-fluorescence studies and laser beam diagnostics [1, 2]. Solid-state light sensors with built-

in polarization sensing capabilities can be of immense utility in such applications. Various 

attempts have been made in the past to develop such devices. Grating couplers were once 

shown to be capable of detecting the polarization state of incident free-space light beams. 

Polarization state of the incident free space light beam was detected, with the mode dispersion 

of waveguide and high selectivity of the coupling condition of the grating [3]. The devices 

were hard to fabricate and, therefore, did not see widespread commercial success. Nowadays 

the most widely used technique to accomplish this is the use of a linear polarizer coupled with 

a suitable light detector [4, 5]. This approach usually works satisfactorily but leads to system 

complexity and reduced sensitivity because of the extra absorption of light through the 

polarizing material. Polarization anisotropy of the absorption coefficient of ordered GaInP has 

also been utilized to fabricate polarization detectors and polarization threshold switches whose 

electrical output can be switched “on” and “off” by rotating the linear polarization of the input 

light [6]. Topographic detectors have also been proposed for detecting the polarization of 
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light. One such suggestion was made by Onat and Unlu. They demonstrated polarization 

detection with resonant cavity enhanced photodetectors suitable for use in the visible and 

infrared regions of the electromagnetic spectrum [7, 8]. An alternative approach was recently 

demonstrated by Chen and colleagues where they used a corrugated quantum-well infrared 

photodetector (C-QWIP) to analyse light into its orthogonal components [9]. Polarization-

sensitive detectors have also been described in the nitride material family where Rivera and 

colleagues showed the possibility of building polarization-sensitive detectors from M-plane 

GaN photodiodes grown on LiAlO2 substrates [10]. All of these approaches suffer from either 

fabrication complexity or reduced sensitivity. The integrated grating structure over the lateral 

p-i-n photodiode has high sensitivity to polarization detection and overcomes both of these 

objections. The device described in this chapter is a silicon photodiode with an integrated 

metal grating polarizer. This device is different from any such previous device in making use 

of the novel photodiode architecture described in earlier chapters. This is particularly effective 

at avoiding the loss of sensitivity common to other grating-based approaches. It is to be noted 

that optical polarization detection has assumed increased importance since the demonstration 

of polarized light emission from LEDs injected with spin-polarized currents [11]. Optical 

devices based on spintronics promise to enable new paradigms in information processing and 

the integration of complete functionality on monolithic chips will require polarization 

detection devices.  

7.1. Polarization of Light 

Light is a transverse electromagnetic wave where the electric and magnetic field vectors 

oscillate at right angles to each other. By virtue of its transverse character, light can be 

polarized such that the field vectors assume an ordered arrangement in space and time. For 

linear polarization the electric field vectors all lie in a well-defined plane called the plane of 

polarization. The magnetic field vectors then lie in an orthogonal plane. The process of 

transforming un-polarized light into polarized light is known as polarization. There are a 

variety of methods to make un-polarized light into polarized light. These include polarization 

by transmission, by reflection, by refraction and by scattering. If the magnitude of the electric 

field vector is constant in x and y direction and there is no change in the phases i.e.     

    then the polarization is called linear polarization. But if there is a change in the phases 

such as             and no change in the magnitude of the electric field vectors, then the 
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polarization is called circular polarization. When both the phase and the magnitude of the 

electric field vectors are not equal then the polarization is called elliptical polarization. 

Polarization effects can be seen in LCD screens and have many other applications in various 

fields. 

7.2. Device Design and Fabrication  

The base device used for single and dual gate architectures and integrated grating pattern was 

the same and had a lateral p-i-n architecture as explained in the device fabrication chapter. The 

base device geometry produced a low-capacitance, large-area light sensing device. The large 

available sensing area can be used to accommodate other functional structures. A polarizing 

grating is a good example of the type of structure that can be usefully integrated with a lateral 

p-i-n photodiode. After demonstrating the gated structures and their variations as described in 

Chapters 5 and 6, an integrated grating pattern was fabricated over the high sensitivity region 

using electron-beam lithography.  

The gated structure as explained in earlier chapters, when properly biased is a CMOS 

compatible photodetector. The device thus appears as a transistor to the surrounding circuitry. 

However, the integrated grating pattern did not affect the diode-like behavior of the base 

device. Single gate photo-detectors exhibit enhanced sensitivity to short wavelength visible 

radiations [12]. This is due to the surface location of the depletion region. The integrated 

grating pattern, taking into account the increased responsivity of the base device, made the 

device sensitive to polarized light. 

The structure of a lateral p-i-n diode is illustrated in Figure 7.1 (a) which shows the placement 

of the various regions, whereas in Figure 7.1(b) an SEM micrograph of the grating pattern is 

highlighted. An SEM micrograph of the device isolation trench is shown on the right Figure 

7.1(c). 
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Figure 7.1: Integrated metal grating lateral p-i-n photodiode 

(a) Schematic diagram showing the planar structure of a lateral p-i-n photodiode. (b) SEM micrograph of a 

grating-integrated lateral p-i-n photodiode. (c) Device Isolation trench surrounding the device structure. 

A metal grating was fabricated in the middle intrinsic part of the diode by evaporating 

aluminium through a grating structure defined in resist using electron-beam lithography. 

Subsequent lift-off left the grating structure on the diode as an integrated element as shown in 

Figure 7.1 (b). Several thicknesses of aluminium films were investigated for this purpose. 

Some light managed to get through the thin films and because of the sensitivity of the lateral 

p-i-n architecture caused a reduction in polarization sensitivity. This issue was especially 

relevant in the context of sensing polarization sensitivity because the base device, i.e. lateral p-

i-n photodiode has high sensitivity to blue light and the fact that the thin aluminium films 

become slightly more transmissive towards the shorter wavelengths of visible radiation. This 

can be seen in the percentage spectral transmission plot shown in Figure 7.2 (a). Here the light 

passed through a thin glass sheet which had a 50 nm thick aluminium film deposited on it. The 

transmission of light through thicker aluminium films was rapidly quenched, as seen in Figure 

7.2 (b). Hence no light could pass through the metalized region of the integrated grating 

structure if its thickness was 150 nm or above. The noise seen in the plot of Figure 7.2(a) 

originates because a small amount of light makes it through the metal film. In order to block 

even the small amount of shorter wavelength light that might get into the device from the 

metalized part of the grating region, finally 150 nanometers of aluminium film forming the 

grating lines was used. A spectrum of the light source used for the measurements is shown in 

Figure 7.2(c). Figure 7.3 shows the optical micrograph of a typical grating pattern consisting 

of 14 lines, each 1 micron wide and 510 micron long with 1 micron gaps in between. This 
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covered almost all the 32 micron space in between the two lateral electrodes of the p-i-n 

device. 

 

(a)     (b) 

 

(c)  

Figure 7.2: (a) Percentage transmission of incident light source (400 nm to 700 nm) at 50 nm Al thickness (b) 

Amount of light transmitted for various thicknesses of Al films. (c) spectra of light source used for polarization 

measurements.. 

 

Figure 7.3: Optical micrograph of an aluminium grating. 

The lines and spaces in between are all 1 micron wide. 
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7.3. Measurement Setup 

Polarization measurements were performed by using a goniometer holding a Kodak polarizing 

sheet at a fixed orientation. The neutral density polarizing sheet could generate light that was 

approximately 90% linearly polarized. The grating-integrated lateral p-i-n photodiode device 

was held at a fixed orientation while the polarizing sheet could be rotated with respect to it at 

different angles. The output voltage of the device was measured for different relative angles 

between the integrated grating lines on p-i-n photodiode and the direction of polarization i.e. 

the polarizing sheet. The polarization sensitivity measurement set up is shown in Figure 7.4. 

The bonded device on the ceramic chip carrier was placed inside the black box and its contacts 

were brought out to BNC connectors. The lateral p-i-n photodiode was reverse biased using an 

external power supply. This is usual with photodiodes. Upon illumination the device showed a 

voltage drop in the digital multimeter connected to the output of the device in the 

measurement setup. The difference of the output voltage before and after illumination gave the 

actual voltage drop for a specific angular position of the polarizer sheet with reference to the 

integrated metal grating pattern over the device. The same process was repeated for each 

referenced angular position of the polarizer sheet. The Polarizer sheet was rotated to complete 

180 degrees of rotation for a complete set of measurements. 

 

(a)     (b) 

Figure 7.4: Experimental setup for Polarization sensitivity measurements (a) with light and (b) without light 

These forward and reverse bias current-voltage (IV) measurements were taken with an HP 

4155 semiconductor parameter analyzer (SPA). An image of the measurement setup for IV 

measurements is shown in Figure 7.5. Figure 7.5(a) shows how, the bonded device was placed 

inside the black box and connected to the SPA setup through coaxial cables, whereas in Figure 
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7.5 (b) programmable interface and output screen of the semiconductor parameter analyzer are 

shown. 

 

(a)     (b) 

Figure 7.5: Current-voltage (IV) characteristics measurement setup 

7.4. Device Characterization 

In this section forward and reverse bias characteristics of the device are described. 

7.4.1. Forward Bias IV Characteristics 

Forward bias, current-voltage (IV) characteristic measurements were carried out on the base 

device using a semiconductor parameter analyzer. The forward bias characteristics appear here 

in Figure 7.6 (a) and (b) for 50 nm and 150 nm thick integrated metal grating devices, 

respectively. As the forward bias current-voltage measurements were taken in dark, so the 

response of the two devices does not take into account the thickness of metal integrated 

grating pattern. Here the description of the grating pattern is just to differentiate between the 

two different devices of similar base structure fabricated under similar conditions. Both the 

devices have similar forward characteristics curve and is comparable to that of a conventional 

p-i-n photodiode with vertical doping profile.  
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(a)      (b) 

Figure 7.6: Forward bias (IV) current-voltage characteristic of lateral p-i-n diodes in dark. 

(a) 50 nm thick integrated grating (b) 150 nm thick integrated grating 

7.4.2. Reverse Bias IV Characteristics 

In the present series of measurements dark current was measured for both the silicon based 

lateral       junction diodes using the semiconductor parameter analyzer arrangement. 

Both devices showed similar reverse bias current-voltage (IV) characteristics as shown in 

Figure 7.7 (a) and (b), respectively. Similar forward and reverse bias response of both the 

devices established that any variation in optical response of the devices would be influenced 

by the variation in the integrated metal grating structure. This is further clarified in the 

polarization sensitivity measurements section. 

    
Figure 7.7: Reverse bias characteristics of lateral p-i-n photodiode 

(a) 50 nm and & (b) 150 nm thick aluminium integrated grating devices  
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7.4.3. Polarization Sensitivity Characteristics 

Similar to other photoconductive measurements, the polarization sensitivity measurements 

were performed when the p-i-n diode was reverse biased. These measurements were taken at 

different relative angles by rotating the polarization states of the incident light over the 

integrated metal grating based p-i-n diode. The voltage that was measured was developed 

across a biasing resistor such that larger photocurrents resulted in lower voltages being 

measured and vice versa. This arrangement is usual when photodiodes are used in reverse bias. 

A larger fraction of the incident light getting through would be expected to produce more 

photocurrent and thus a lower output voltage.  

The device with 50 nm thick integrated metal grating structure was measured. The voltage 

drop was measured as a function of the angular position of the polarizing sheet with respect to 

the integrated metal grating pattern over the device and is shown in Figure 7.8. The 

measurement started with the direction of the polarizing sheet orientated parallel to the 

integrated metal grating pattern. As can be seen from the plot the device then produced a low 

output voltage consistent with a large photocurrent flowing through it. As the relative angle 

was increased the photocurrent decreased, this resulted in increased output voltage. The 50 nm 

thick aluminium metal layer becomes slightly transmissive for short wavelength of light as 

shown in Figure 7.2(a). Some short wavelength light therefore managed to get into the device 

even through the metalized part of the grating pattern. This produced a little photo-current 

independent of the degree of polarization. This fraction of photo-current in conjunction with 

photo-current produced through polarized light caused less output voltage. This voltage 

difference was always higher than in the device with 150 nm thick integrated metal grating as 

shown in Figure 7.8 & Figure 7.9. 
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Figure 7.8: Polarization response of the grating-integrated sensor with 50 nm thick Aluminum Gratings. 

Thicker (150 nm) aluminium metal layer is quite opaque, thus the polarized light can get into 

the device through the non-metalized clear regions only. In photoconductive mode, the photo-

current is proportional to the incident optical power. In this device, light only managed to get 

in through the clear regions and produced less photocurrent and a higher voltage output as is 

seen in Figure 7.9. The photo-current produced here is therefore only based on the angle of 

polarization and is better behaved than for the 50 nm thick aluminium metal gratings. Figure 

7.8 & Figure 7.9 differentiate both the devices with respect to their voltage-drops. Higher 

voltage drop was seen in Figure 7.9, due to the fact that the response was absolutely based on 

the polarized light at different angular positions that managed to get into the device and the 

opacity of the 150 nm thick metal grating that immediately quenched the transmission of light 

through metalized region. Furthermore, the total response in Figure 7.9 is a result of sensing 

the polarized light through the grating pattern only. In contrast the 50 nm thick aluminium 

gratings allow small amount of light to penetrate into the device through the metalized part of 

the gratings as well. More light means higher photocurrent and thus low output voltage as 

shown in Figure 7.8. 
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Figure 7.9: Polarization response of the grating-integrated sensor with 150 nm thick Aluminum Gratings. 

The effect of light leaking through the thin aluminium lines of the 50 nm thick aluminium film 

sample is seen in the reduced dynamic range for that device (44 mV) versus that for the device 

with 150 nm thick aluminium film (100 mV). The 56% reduction in dynamic range for 

polarization sensitivity shows the effect of the presence of extraneous light injection in these 

devices. The polarization sensitivities for the 50 nm thick and the 150 nm thick aluminium 

samples were 0.48 mV/degree and 1.1 mV/degree, respectively. 

Another nice feature of this device is that its polarization response is wavelength neutral 

throughout the visible part of the spectrum. Although the device‟s sensitivity depends on the 

range of wavelengths used to illuminate it, the output signal due to polarization changes is 

independent of the exact colour of light incident on the device. This is shown in Figure 7.10.  
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Figure 7.10: Polarization response of the grating-integrated sensor with red, green and blue linearly polarized 

light. 

Reverse bias characteristics were taken for both the devices in dark and in un-polarized light 

i.e. without a polarizer sheet. Looking at Figure 7.11 (a) and (b) where, reverse bias 

characteristics in dark (dotted line) and in un-polarized light (dashed line) are shown for both 

the devices. Here light of the same intensity was incident on the device as was used for 

polarization sensitivity measurements. Reverse bias characteristics in dark for both the devices 

were approximately the same, whereas the photocurrent produced for 50 nm thick aluminium 

metal grating structure was higher than for the 150 nm thick aluminium metal grating 

structure. This compliments the lower output voltage phenomenon for 50 nm thick metal 

grating device and the higher output voltage for the device based on 150 nm thick metal 

grating structure.  

 

(a)       (b) 

Figure 7.11: Reverse bias current-voltage (IV) characteristics in dark and with un-polarized light. 

(a) with 50 nm thick aluminium grating (b) with 150 nm thick aluminium grating 
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We see that the lateral p-i-n junction architecture endows the device with enhanced sensitivity 

so that it can detect changes in linear polarization even when the incident light is quite weak.  

7.5. Conclusion 

In this chapter a grating-integrated semiconductor polarization detector is characterized that 

makes use of a novel base device as the underlying light sensor. The lateral p-i-n junction 

architecture endows the device with enhanced sensitivity so that it can detect changes in linear 

polarization even when the incident light is quite week. This is a result of the surface location 

of the light-detecting depletion region in the device. The polarization response was found to be 

wavelength independent in the visible region where such measurements were taken with 

broadband red, green and blue illumination. The device can be potentially used for detecting 

and monitoring the plane of polarization of light in electro-optical instrumentation, bio-

medical equipment and visible light optical communication systems. 
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Chapter 8  

Summary and Suggested 

Future Work  

 

8. Introduction 

Monolithic optoelectronic integrated circuits have, to a great extent, overcome the limitations 

in electrical interconnects. Integrated photodetector and its circuitry on the same substrate has 

reduced electrical parasitic, increased the speed of operation and has become, generally, a 

more reliable and cost-effective solution for emerging optoelectronic applications. Increasing 

the flexibility of optoelectronic components, such as detectors, through electronic control has 

been the subject of this work. The fabrication process of a CMOS-compatible, light sensing 

device is described in Chapter 4 and its characteristic response is further described in Chapters 

5 and 6. It has the lateral structure of a p-i-n junction photodiode, whereas its vertical structure 

appears like a transistor to the surrounding circuitry. In fact the partial gate(s) over the 

intrinsic region controls the lateral conduction of the device, making the device appear as a 

transistor to the surrounding circuitry. In Chapter 7, a possible use of the wide surface 

depletion region is described by characterizing the sensitivity of grating-integrated p-i-n 

junction devices to linearly-polarized visible light. This chapter contains a summary of the 

work and proposed future enhancements. 
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8.1. Summary 

Silicon‟s intrinsic properties make silicon detectors a suitable choice for radiation detection in 

the near-infrared and visible region. It also provides radiation-hardness and thus can also be 

used in high energy physics experiments as a particle detector. Silicon naturally provides a 

better quality dielectric –       through thermal oxidation which is another advantage in 

making detectors out of silicon. Silicon detectors are used in a variety of applications, in 

digital cameras to form images with visible light, in particle physics experiments to detect 

charged particles, in astrophysics satellites to detect X-rays and gamma rays and in many other 

consumer and industrial applications.  

The work described here on lateral p-i-n junction photodiodes was motivated by the 

limitations of ordinary diode-based photodetectors. The diode structure limits the tuneability 

of the device, as the operating characteristics of such a device cannot be changed, once 

fabricated. In bipolar junction photo-transistor the base terminal when properly utilized, can be 

used to adjust the operating characteristics. It however, does not conform to the CMOS 

fabrication process and therefore cannot be integrated with other circuit elements. 

The hybrid device developed in this work, operates as a reverse-biased p-i-n junction 

photodiode and therefore detects light through pn-junction mediated charge carrier separation, 

whereas a partial insulated gate on the top is used to control the quiescent operating point thus 

making it easy to interface the detector with ordinary MOSFETs. Single and dual gate 

photodiodes are described in Chapters 5 and 6. The characteristics of single gate devices are 

more like a typical silicon photodetector which has a buried depletion layer. Although these 

devices showed higher responsivity to red light (λ      nm), yet their response to short 

wavelength radiations (blue light λ      nm) was considerably enhanced due to the lateral 

p-i-n structure. The performance of these devices can be further enhanced to show better 

response at even shorter wavelengths i.e. below 350 nm. This would require an even thinner 

dielectric layer so that the high energy photons may pass through the thin dielectric layer and 

get absorbed in the top of the silicon surface. The speed of operation can be increased by 

careful scaling of, the near-intrinsic region and the placement of insulated gate structure in 

relation to the width of the depletion region. 
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The intensity of incident radiations influences the reverse bias response of a typical 

photodiode. The partial gate in the gated lateral p-i-n photodiode controls the lateral 

conduction in a somewhat similar way. These devices therefore have two control parameters 

i.e. intensity of light and the gate bias that control the lateral conduction of the device. 

Unlike the conventional p-i-n photodiode this lateral p-i-n photodiode has shown higher level 

of dark current and higher output noise values. These values are higher than the reported 

values for typical silicon photodiodes with vertical doping structure. The lateral continuation 

of      has contributed in reducing the          interface noise, whereas the dark current 

can be reduced by fabricating this device on SOI material. 

Both, normal dual gate and overlapping dual gate photodiodes showed similar characteristics 

as described in Chapter 6. In dual gate devices, the two gates can be used to control the lateral 

conduction of the device. Biasing the two gates produces an inversion or accumulation layer 

underneath the respective gates. The bias on the gates and distance of the induced layer from 

the respective electrodes i.e. source or drain, influence the spectral response of the device. 

This change in spectral responsivity is much pronounced in the case of overlapping dual gate 

structure. An analytical model of the device operations is also discussed in Chapter 6. 

With the increase in bias on the source side gate with respect to the drain side gate (negative 

bias on the source side gate, while the drain side gate experiences zero reference potential) and 

reverse bias on lateral p-i-n junction photodiode, the lateral conduction of the device increases 

and a change in spectral sensitivity is seen. However, at a certain gate bias the device exhibits 

the same responsivity to blue light at 480 nm wavelength as the responsivity to red light at 630 

nm wavelength. With further increase in gate bias the responsivity of the device increases for 

blue light (480 nm wavelength) in comparison with that for red light (630 nm wavelength), 

which is unlike the response of typical silicon-based photodetectors.  

The test results show that 50 nm of      layer requires 23 V to breakdown, therefore the 

results described in Chapter 6 are from 0 to -     gate-source-bias. In normal dual gate 

devices the spectral responsivity changes with change in gate bias, but at no gate bias value 

the red and blue spectral sensitivities are inverted. In normal dual gate devices, the use of 

thicker dielectric layer would increase the dielectric breakdown voltage. It however, may or 

may not invert the spectral response of the device at the two wavelengths i.e. for red and blue 
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light. The device with overlapping dual gate structure showed gate bias-induced modulation of 

spectral sensitivity, simply by overlapping the gates over the p and n doped regions, when 

biased at 0 V to -    . Overlapping dual gate device characteristics demonstrate that the peak 

spectral responsivity at different gate bias values (-5 V to -10 V) covers the complete visible 

spectrum i.e. from 400 to 700 nm wavelengths. Therefore, if a monochromatic light of a 

specific wavelength falls on the device and the device scans it for all gate bias values to sense 

visible light, it is possible to find the value of the wavelength of the incident radiation. 

Therefore, the overlapping dual gate device at this stage can be used as a colour sensor or in a 

wavelength meter. This might become the basis of a silicon detector as a micro spectrometer 

or as a lateral p-i-n CMOS imager. 

It is essential to study the tradeoffs between the interdependent design variables in the 

fabrication of a new detector in order to operate the detector in a specific or varying 

wavelength region. Some ideas are given here for future work to look into further possibilities 

available with the silicon lateral p-i-n photodetector architecture.  

8.2. Future Directions 

The hybrid transistor-like-photodiodes described in Chapters 5 and 6 and possible applications 

to utilize the surface depletion region in the lateral p-i-n photodiode presented in Chapter 7 are 

preliminary possibilities. These investigations have identified some interesting directions for 

future work in gated lateral p-i-n junction photodiodes. There is a possibility to either modify 

the design of the single and dual gate structure over the lateral p-i-n photodiodes or to make 

two dimensional (2D) arrays to uncover the hidden potential of these devices in different 

applications. These may include imaging, security and medical applications, among others. 

The fabrication process and structure of the standalone devices as described in Chapters 5 and 

6 can be further improved and new structures as described in the following sections, which use 

the lateral p-i-n base architecture, can be fabricated. The following sections will highlight the 

possibilities for future work. 

8.2.1. Structural Change in Single Gate Devices 

A similar set of devices can be fabricated and characterized using lightly n doped     type float 

zone silicon or with silicon-on-insulator (SOI) material. Once the devices are fabricated with 
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the new material, their controlling parameters can be modified to suit different applications. 

These parameters are thickness of the oxide layer, placement, dimension and structure of the 

gate. A new single gate structure with suitable dimensions can be made over the intrinsic part 

of the device between the two surface electrodes, leaving the window above the depletion 

region uncovered as an inlet for incident radiations. Biasing the gate would result in electrical 

shrinking of the device and this can increase the bandwidth response of the device as well. A 

possible device structure is shown in Figure 8.1. 

 

Figure 8.1: Single gate covering the near-intrinsic region in between the two electrodes 

8.2.2. Expanding Lateral p-i-n Structure to an Array 

Standalone grating-based lateral p-i-n junction photodiode as described in Chapter 7, where, 

its sensitivity to linearly polarized light is discussed. A similar 2D array of lateral p-i-n 

junction photodiodes can be used to make an integrated metal grating-based device useful for 

determining the plane of polarization of incident light. The concept of such a device is 

discussed in section 8.3.2.1. Devices which employ gates and are integrated in a 2D array can 

either operate by applying gate bias on each individual gate or all gates of the same type can 

be merged together to bias them collectively. The distance between the two gates when 

properly biased in a dual gate device controls the device functionality, in addition to the 

conditions described in section 8.2.1. 
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8.2.2.1. p-i-n Junction Photodiode Array to Detect the Plane of 

Polarization 

Here the concept of a lateral diode array is discussed where four lateral p-i-n junction 

photodiodes “A-E”, “B-E”, “C-E” and “D-E” are used together. Here contact “E” is a 

phosphorous-doped drain contact and is shared among all surrounding source contacts. This 

square-shaped n contact is surrounded by four boron-doped square-shaped p contacts namely 

“A”, “B”, “C” and “D” as shown in Figure 8.2. The near-intrinsic part of the three lateral p-i-n 

photodiodes namely “A”, “B” and “C” is covered with integrated metal gratings at 0 degree, 

90 degree and 45 degree orientations, respectively, whereas the depletion region of the fourth 

p-i-n junction photodiode “D” is left uncovered. When light falls on the “quad” lateral p-i-n 

photodiode, the response from any of the three p-i-n photodiodes with integrated metal 

gratings is compared with that of the fourth uncovered p-i-n photodiode to determine the plane 

of polarization. There is a possibility that four of these devices may have slightly different 

responses and therefore this correction factor must be taken into account while calculating the 

plane of polarization. Surrounding the device with an isolation trench would isolate the four 

devices to limit their influence on the surrounding devices. 

 

Figure 8.2: Array of lateral p-i-n photodiode for angle of polarization detection 

8.2.2.2. 2D Array of Gated Lateral p-i-n Photodiodes 

The characteristics of overlapping dual gate device described in Chapter 6 showed its possible 

use as a colour sensor. In the proposed 2D array of overlapping dual gate lateral p-i-n 
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photodiodes, each pixel i.e. pn-junction, would scan the incident light at gate bias values with 

peak sensitivities in red, green and blue regions. This way a single pixel in an array will sense 

the colour and intensity of the incident light. Whereas, CCD-based digital imagers use a 

complex algorithm based “demosaicing” method to reconstruct the image from colour CCD 

samples [2]. The CCD treats a set of 2x2 (red, green, blue green) pixels as a single unit to 

estimate the actual colour intensity. In the proposed CMOS imaging arrays each pixel will 

store intensity and colour information to reconstruct the image.  

Due to large scale interconnects the proposed device features large pixel sizes and, therefore, 

cannot capture images with high resolution. It, however, has effectively a large number of 

pixels compared to a normal array, i.e. in a 3 x 3 array the proposed device has 12 pixels as 

against 9 pixels in the normal CCD. Due to its novel architecture, it does not require any 

colour filters, yet it has processing overhead limitations to store three times more data 

compared with a normal CCD imager. Furthermore, CMOS imagers are superior to CCDs as 

they utilize less power and can result in miniaturized imaging system (the later is not true at 

the current stage of this proposed CMOS imager). CMOS imagers are now designed for IP 

security cameras and are used in intelligent vehicles, mobile cameras and high-speed machine-

vision cameras. A 3x3 array of lateral p-i-n photodiode is shown in Figure 8.3. Here it should 

be noted that one set of a p-i-n diode forms one pixel. 

 

Figure 8.3: 2D array of lateral p-i-n junction photodiode with overlapping double gate structure 
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8.2.2.3. Thermal Imaging Array 

Silicon has its peak responsivity in the infrared region at around 900 nm to 1000 nm range. 

Beyond 1000 nm, the responsivity of silicon falls sharply and silicon becomes transparent 

beyond the cutoff wavelength i.e. 1100 nm. Radiation beyond 1050 nm penetrates more than 

500 μm inside silicon and therefore is less likely to be absorbed. Penetration depth of radiation 

in the 400 to 1100 nm range in silicon is shown in Table 8.1 

A 2D array of lateral p-i-n photodetectors as shown in Figure 8.3 can be patterned with a 

coating of material that blocks visible radiations on alternate pixels as shown in Figure 8.4. 

These visible-blind pixels i.e. the coated ones, will allow only the infrared radiation to pass 

through, whereas the uncoated pixels will let both the visible and infrared radiations to pass. 

This way the proposed detector array can keep track of both visible and near-infrared 

radiations through alternate normal and visible-blind detector elements. 

The proposed array can be used for applications like near-infrared night vision system in 

conjunction with a near-infrared illuminator. A near-infrared lamp illuminates the scene that is 

eventually captured by the proposed 2D imaging device. Typical near-infrared wavelength 

used to illuminate the scene is in the range of 800 nm to 900 nm, which a human eye cannot 

detect. However, the captured image through the near-infrared CCD or CMOS imager 

resembles closely the human visual perception. It should be noted that night vision systems are 

offered by premium automotive brands to enhance the driver‟s ability to see at night [3]. Using 

the proposed device a low light video security surveillance system can also be developed. 
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.  

Figure 8.4: 2D array of p-i-n photodiode for night vision applications. 

 

Wavelength (nm) Penetration Depth (μm) 

400 0.19 

450 1.0 

500 2.3 

550 3.3 

600 5.0 

650 7.6 

700 8.5 

750 16 

800 23 

850 46 

900 62 

950 150 

1000 470 

1050 1500 

1100 7600 

 

Table 8.1: Photon absorption depth at different wavelengths 
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8.2.3. Mesa p-i-n Photodiode Structure 

The quantum efficiency of semiconductor detectors varies with change in wavelength of the 

incident radiation. Therefore, normal silicon detectors do not show similar quantum efficiency 

for short and long wavelength radiations i.e. for blue and red regions. The proposed mesa p-i-n 

photodiode has a lateral doping structure. Here the proposed device is doped through the side 

walls of the mesa structure and the patterned top surface as well. Therefore, the diffused 

region starts right from the silicon top surface and extends deep inside the silicon through the 

walls of the mesa structure, making the depth of the doped region equal to the height of the 

mesa structure i.e. 150 μm. The penetration depth of near-infrared photons i.e. up to 950 nm 

wavelength is 150 μm. Therefore, the device would show similar quantum efficiency values 

for 400 nm to 950 nm radiation. 

The proposed mesa device can have the gate structure as shown in Figure 8.5. The proposed 

mesa lateral p-i-n photodetector is expected to reduce the dependence of the carrier transit 

distance on the light absorption depth and might give high-speed and better responsivity [4]. A 

simple device with lateral mesa p-i-n junction structure can be characterized first and then the 

gate structure can be incorporated accordingly. 

 

Figure 8.5:  MESA lateral p-i-n photodiode for wide range wavelength detection (400 – 950 nm) 
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This structure, as a standalone single device, can work for detecting visible to near-infrared 

radiations with similar quantum efficiency values. However, if a two dimensional (2D) array 

of this mesa structure is made as shown in Figure 8.3 this might show some interesting 

features for night vision and machine vision applications as discussed earlier [3]. 

Another device with similar top structure of mesa silicon p-i-n photodetector is proposed with 

an addition of dual back gates as shown in Figure 8.6. It can be particularly useful for 

detecting long wavelength radiations i.e. red to near-infrared regions. Due to the presence of 

surface depletion region and lateral doping structure, this device can still be used for short 

wavelength near-UV and blue radiations. As both ends of the proposed device have similar 

structure, therefore front and back illumination methods can be used for detecting infrared 

radiations. However, it should be noted that if the device is illuminated through the top, the 

back gates when biased might influence the device response in the near-infrared region. The 

device will show a different response in the proposed configuration as shown in Figure 8.6 to 

the device shown in Figure 8.7 where the top and bottom contacts are diffused from the sides 

so that the top and bottom contacts appear as a single contact. The latter device can only be 

used as a standalone device.  

 

Figure 8.6: MESA structure with front and back dual gates 
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Figure 8.7: MESA structure with front and back dual gates with merged source contacts and drain contacts 

8.2.4. Interdigitated Structure for Illumination Positioning 

Finally an interdigitated lateral p-i-n structure as shown in Figure 8.8 is proposed. This device 

employs two gates overlapping the n and p doped drain and source finger regions. The device, 

if fabricated on SOI material, might demonstrate a lower dark current, higher responsivity and 

a better bandwidth response. The dimensions of the fingers and the spacing in between can be 

varied to control the device response. 

 

Figure 8.8: Interdigitated lateral p-i-n photodiode  
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Appendix – 1   Fabrication Process Sheet 

Sr. No Process Details Conditions 

1 Clean the substrate 
Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

2 Spin primer 
Hexamethyldisilazane 

(HMDS) 
4000 RPM for 5 seconds 

3 Spin resist  S1818 4000 RPM for 30 seconds 

4 Bake Hotplate 15 min at 90 degree 

5 
Photolithography 

exposure 

Photolithography markers & 

Device Isolation Pattern 

(Pattern 1) 

4.5 Seconds - Hard 

Contact 

6 Development 

In 1:1 ratio of Microposit 

Developer and RO Water 

freshly made solution 

75 Seconds in 1:1 solution 

& 75 seconds in RO Water 

7 Blow dry with nitrogen blow   

MOUNTING OF SAMPLES ON SILICON WAFER FOR DRY ETCH 

8 Dry etch 
RYT1 (Recepie) 10 micron 

deep 
12.5 minutes 

9 

Clean the substrate 

(post dry etch) & 

blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

10 
SiO2 Growth using 

(Oxidation furnace) 

Growth rate is 100 nm per 

hour for thicker oxidations. 

Oxygen gas flow at 6 

cm
3
/min (ATP). 

250 nm in 180 minutes 

[Put test sample for oxide 

exact etch time 

calculation] 

11 

Clean the substrate 

(post oxidation) & 

blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

12 Spin primer 
Hexamethyldisilazane 

(HMDS) 
4000 RPM for 5 seconds 

13 Spin resist  S1818 4000 RPM for 30 seconds 
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14 Bake Hotplate 15 min at 90 degree 

15 
Photolithography 

exposure 

Expose Source window (500 

x 500) micron. Allignment to 

be made with markers on the 

mask to the etched 

photolithography markers on 

the substrate (Pattern 2) 

4.5 Seconds - Hard 

Contact 

16 Development 

In 1:1 ratio of Microposit 

Developer and RO Water 

freshly made solution 

75 Seconds in 1:1 solution 

& 75 seconds in RO Water 

17 Blow dry with nitrogen blow   

18 
Bake (Post 

Development) 
Hotplate 5 minutes at 90 degree 

19 HF etching 
1:5 ratio solution of HF. 100 

nm per minute etch rate 

2.5 minutes (First check 

the exact oxide growth 

with test sample oxidized 

in the same environment) 

20 

Clean the substrate 

(post etching) & 

blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

21 
Check the Oxide 

growth 
Using Dektek using test sample 

22 
Spin-on-glass for 

boron diffusion 
Borosilica glass 2000 RPM for 20 seconds 

23 Bake Hotplate 15 minutes at 90 degree 

24 

Thermal Diffusion 

(Boron Diffusion 

Furnace) 

Nitrogen + 5 % oxygen gas to 

flow at 6 cm3/min (ATP). 

at 1135 degree for 20 

minutes 

25 HF Cleaning 
40 % HF concentrated 

solution 

Approximately 3 minutes 

to clear off all the silica 

layer 
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26 

Clean the substrate 

(post HF 40 % 

etching) & blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

27 
SiO2 Growth using 

(Oxidation furnace) 

Growth rate is 100 nm per 

hour for thicker oxidations. 

Oxygen gas flow at 6 

cm
3
/min (ATP). 

250 nm in 180 minutes 

[Put test sample for oxide 

exact etch time 

calculation] 

28 

Clean the substrate 

(post oxidation) & 

blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

29 Spin primer 
Hexamethyldisilazane 

(HMDS) 
4000 RPM for 5 seconds 

30 Spin resist  S1818 4000 RPM for 30 seconds 

31 Bake Hotplate 15 min at 90 degree 

32 
Photolithography 

exposure 

Expose Drain window (500 x 

500) micron. Allignment to 

be made with markers on the 

mask to the etched 

photolithography markers on 

the substrate (Pattern 3) 

4.5 Seconds - Hard 

Contact 

33 Development 

In 1:1 ratio of Microposit 

Developer and RO Water 

freshly made solution 

75 Seconds in 1:1 solution 

& 75 seconds in RO Water 

34 Blow dry with nitrogen blow   

35 
Bake (Post 

Development) 
Hotplate 5 minutes at 90 degree 

36 HF etching 
1:5 ratio solution of HF. 100 

nm per minute etch rate 

2.5 minutes (exact etch 

time as calculated at step 

19) 

37 
Clean the substrate 

(post etching) & 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 
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blow dry 

38 
Check the Oxide 

growth 
Using Dektek using test sample 

39 

Spin-on-glass for 

phosphorous 

diffusion 

Phosphorosilica glass 2000 RPM for 20 seconds 

40 Bake Hotplate 15 minutes at 90 degree 

41 

Thermal Diffusion 

(Phosphorous 

Diffusion Furnace) 

Nitrogen + 5 % oxygen gas to 

flow at 6 cm3/min (ATP). 

at 1135 degree for 20 

minutes 

42 HF Cleaning 
40 % HF concentrated 

solution 

Approximately 3 minutes 

to clear off all the silica 

layer 

43 

Clean the substrate 

(post HF 40 % 

etching) & blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

44 
SiO2 Growth using 

(Oxidation furnace) 

Growth rate is 100 nm per 

hour for thicker oxidations. 

Oxygen gas flow at 6 

cm
3
/min (ATP). 

50 nm in 18 minutes (for 

thin oxidation the growth 

time is relatively less) [Put 

test sample for oxide exact 

etch time calculation] 

45 

Clean the substrate 

(post oxidation) & 

blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

46 Spin primer 
Hexamethyldisilazane 

(HMDS) 
4000 RPM for 5 seconds 

47 Spin resist  S1818 4000 RPM for 30 seconds 

48 Bake Hotplate 15 min at 90 degree 
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49 (a) 

Photolithography 

exposure [for both 

single gate, normal 

dual gate and for 

grating-based 

devices] 

Expose Source & Drain 

window (500 x 500) micron. 

Allignment to be made with 

markers on the mask to the 

etched photolithography 

markers on the substrate 

(Pattern 4) 

4.5 Seconds - Hard 

Contact 

49 (b) 

Photolithography 

exposure [for 

overlapping dual 

gate devices] 

Expose Source & Drain 

window (490 x 490) micron. 

Allignment to be made with 

markers on the mask to the 

etched photolithography 

markers on the substrate 

(Pattern 5) 

4.5 Seconds - Hard 

Contact 

50 Development 

In 1:1 ratio of Microposit 

Developer and RO Water 

freshly made solution 

75 Seconds in 1:1 solution 

& 75 seconds in RO Water 

51 Blow dry with nitrogen blow   

52 
Bake (Post 

Development) 
Hotplate 5 minutes at 90 degree 

53 HF etching 
1:5 ratio solution of HF. 100 

nm per minute etch rate 

30 seconds (First check the 

exact oxide growth with 

test sample oxidized in the 

same environment i.e. step 

44) then etch the actual 

samples. 

54 Cleaning 
In normal RO water & blow 

dry. 

Note: do not clear the 

resist. 

55 

Metallization (front 

patterned Source & 

Drain windows) 

Ti (33 nm), Pt (33 nm) & Au 

(240 nm) 

Plassys II. (An electron-

beam evaporator for 

metallization). Put acetone 
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in a beaker in parallel and 

place in hot tub for hot 

acetone available to lift-off 

after metallization) 

56 Lift-off 
Put the sample in 50 degree 

tub in acetone beaker 

Approximately for 15 to 

20 minutes for good lift-

off. 

57 

Clean the substrate 

(post lift-ff) & blow 

dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

58 
Metallization 

(backside) 

Ti (33 nm), Pt (33 nm) & Au 

(240 nm) 
Plassys II 

59 
Annealing (front 

side) 
RTA Use recipe CDF-360 

60 
Annealing (back 

side) 
RTA Use recipe CDF-360 

61 

Clean the substrate 

(post annealing) & 

blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

62 Spin primer 
Hexamethyldisilazane 

(HMDS) 
4000 RPM for 5 seconds 

63 spin resist  S1818 4000 RPM for 30 seconds 

64 Bake Hotplate 15 min at 90 degree 

65 Soaking Clorobenzene 
10 minutes & simply blow 

dry 

66 Bake Oven 15 min at 90 degree 

67 (a) 

Photolithography 

exposure for Single 

Centre Gate 

structure 

Expose (Pattern 6) 
5.5 Seconds - Hard 

Contact 
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67 (b) 

Photolithography 

exposure for Single 

Offset Gate structure 

Expose (Pattern 7) 
5.5 Seconds - Hard 

Contact 

67 (c) 

Photolithography 

exposure for Normal 

Dual Gate structure 

Expose (Pattern 8) 
5.5 Seconds - Hard 

Contact 

67 (d) 

Photolithography 

exposure for 

Overlapping Double 

Gate structure [only 

for samples 

processed using 

pattern 5 at step 49 

(b)] 

Expose (Pattern 9) 
5.5 Seconds - Hard 

Contact 

68 Development 

In 1:1 ratio of Microposit 

Developer and RO Water 

freshly made solution 

75 Seconds in 1:1 solution 

& 75 seconds in RO Water 

69 Blow dry with nitrogen blow   

70 Metallization 
Ti (33 nm), Pt (33 nm) & Au 

(240 nm) 

Plassys II Put acetone in a 

beaker in parallel and 

place in hot tub for hot 

acetone available to lift-off 

after metallization) 

71 Lift-off 
Put the sample in 50 degree 

tub in acetone beaker 

Approximately for 15 to 

20 minutes for good lift-

off. 

72 Blow dry with nitrogen blow   

73 Testing 
Using SPA current-voltage 

characteristics 
  

74 Cleaving Using cleaver   
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75 

Mounting of cleaved 

devices on ceramic 

chip carrier 

Mounting with silver paint or 

silver epoxy 
  

76 Wire Bonding 
Using wire bonder (gold or 

aluminium wires) 
  

77 Testing 

Using specialized setup with 

bonding device fitted in and 

connected to SPA 

  

ELECTRON BEAM LITHOGRAPHY JOBS FOR GRATING PATTERN OR IN SOME 

CASES FOR GATE STRUCTURE 

78 
Clean the substrate  

& blow dry 

Acetone, Methanol & RO 

water 

5 minutes each in 

ultrasonic tub 

79 Spin primer 
Hexamethyldisilazane 

(HMDS) 
4000 RPM for 5 seconds 

80 Spin resist  S1818 4000 RPM for 30 seconds 

81 Bake Hotplate 15 min at 90 degree 

82 Soaking Clorobenzene 
10 minutes & simply blow 

dry 

83 Bake Oven 15 min at 90 degree 

84 
Photolithography 

exposure 

Expose Photolithography & 

electron beam lithography 

markers (Pattern 10) 

5.5 Seconds - Hard 

Contact 

85 Development 

In 1:1 ratio of Microposit 

Developer and RO Water 

freshly made solution 

75 Seconds in 1:1 solution 

& 75 seconds in RO Water 

86 Blow dry with nitrogen blow   

87 Metallization Ti (33 nm) & Au (100 nm) 

Plassys II Put acetone in a 

beaker in parallel and 

place in hot tub for hot 

acetone available to lift-off 

after metallization) 
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88 Lift-off 
Put the sample in 50 degree 

tub in acetone beaker 

Approximately for 15 to 

20 minutes for good lift-

off. 

89 Blow dry with nitrogen blow   

90 
Electron beam resist 

spin 
PMMA 2010 15 % 5000 RPM for 60 seconds 

91 Bake Oven 30 min 180 degree 

92 
Electron beam resist 

spin 
PMMA 2041 4 % 5000 RPM for 60 seconds 

93 Bake Oven 90 min 180 degree 

94 Submit e-beam Job 
1 micron gratings structure 

OR gate structure if needed 
  

95 Development     

  95 (a) MIBK:IPA 1:1 solution 
60 seconds 23 degree 

temperature 

  95 (b) RO Water 60 seconds 

  95 (c) IPA 60 seconds 

  95 (d) RO Water 60 seconds 

96 Blow dry with nitrogen blow   

97 Metallization 

Al (50 & 150 nm) for grating 

structure             OR 

Ti (33 nm), Pt (33 nm) & Au 

(240 nm) for gate structures 

Plassys II Put acetone in a 

beaker in parallel and 

place in hot tub for hot 

acetone available to lift-off 

after metallization) 

98 Lift-off 
Put the sample in 50 degree 

tub in acetone beaker 

Approximately for 15 to 

20 minutes for good lift-

off. 

99 Blow dry with nitrogen blow   

100 Follow steps 73-77     

 

 


