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Abstract 

 

A series of materials have been compared for their activity in the base catalysed 

condensation of acetone. Activities have been compared after extended times on stream 

(18 h) and under a H2 containing atmosphere at elevated pressure which is designed to 

mimic conditions applicable for the single stage transformation of acetone to MIBK. In 

general, catalysts without a strong hydrogenation function have been screened and so 

mesityl oxide is the dominant reaction product. However, 1%Pd5%MgO/SiO2 does exhibit 

high selectivity towards MIBK, demonstrating that single-stage conversion is possible 

under the conditions investigated.  

Catalytic activity is found to be a strong function of the material tested. However, when the 

influence of surface area is taken into account, a spectrum of area normalised conversion 

rates is evident. These rates were found to vary in the order 36.5% KNO3/Al2O3 > Li/MgO 

> 36.5% KNO3/ZrO2 > 36.5% KNO3/Zr(OH)4 > MgO derived from Mg(OH)2.MgCO3 > 

14% KNO3/Al2O3 > MgO derived from Mg(OH)2 > 14% KNO3/Zr(OH)4 > ZrO2 > 14% 

KNO3/ZrO2 > Y-Zr(OH)4. 

When comparing materials produced from different precursors, differences in catalytic 

behaviour are apparent implying structure-sensitivity and/or the influence of different 

impurity contents. The role of dopant, additional phase level and precursor phase has also 

been examined demonstrating that all these parameters are important. 
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1. Introduction. 

2. 1.1 Catalysis. 

A catalyst is defined as a substance which alters the rate of chemical reactions without 

being changed or substantially consumed in the process [1]. In some cases, a catalyst may 

increase the rate of only one reaction out of many competing reactions [2]. A chemical 

combination between the catalyst and reactants may take place but the catalyst will be 

ultimately regenerated by the end of reaction.  

A catalyst hastens reaction by providing an alternate path with lower activation energy. In 

the reaction cycle, the active centre of the catalyst initially combines with at least one 

reactant and is then regenerated with the appearance of the product. The resultant vacant 

centre then further combines with the reactant to produce another cycle in a continuous 

process. Small quantities of catalytic centres can be sufficient to produce a large amount of 

products. Catalysts have no impact on equilibrium conversion as catalyst similarly affects 

forward as well as reverse reactions in an equilibrium system. 

Catalysis is generally sub-divided into homogeneous catalysis and heterogeneous catalysis. 

Homogeneous catalysis is the process where the catalyst and the reactants/products are in 

the same physical phase (most generally the liquid phase) and heterogeneous catalysis is 

the process where the catalyst and reactants/products are in different physical phases (e.g. a 

solid catalysing the conversion of gas-phase reactants). Whilst homogeneous catalysts are 

generally more selective than their heterogeneous counterparts, problems of separation 

limit the application on the large-scale, making heterogeneous catalysed processes the 

preferred option. When consideration is made of the fact that more than 80% of industrial 

processes involve catalysis, the scale and economic importance of this area becomes 

evident. This thesis concentrates on heterogeneous catalysis and, in particular, 

heterogeneous base catalysis. 

The catalyst can radically influence selectivity since, as mentioned above, the rate of only 

one reaction out of a number of completing reactions may be increased in some instances. 

Solid catalysts are normally porous and most solid catalysts have surface areas in the 5 - 

1000 m
2
/g range. The geometrical properties of the pores of these materials can affect the 

global reaction rate. The surface area of a solid has a significant effect on the amount of 

gas adsorbed and on catalytic activity.   

Heterogeneous catalytic processes can be generally classified as redox reactions or acid-

base reactions. Solid catalysts are in high demand for acid-base catalysis due to their 
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advantageous non-corrosive, environmentally benign nature, and low disposal problems. 

Their re-use is possible and they can be easily separated from products. Acid-base 

reactions contain all the reactions where the reactants form heterolytic bonds with the 

catalyst by using the free electron pair of the catalyst or reactants, or the free electron pair 

formed in the course of reaction by heterolytic rupture of bonds in the reactant molecules 

[3]. 

Solid base catalysts were originally defined as catalysts for which the colour of an acidic 

indicator changes when it is chemically adsorbed. Solid acid catalysts were defined as 

those catalysts giving rise to a colour change upon adsorption of a basic indicator. 

According to Brønsted and Lewis definitions [4], a Brønsted acid is a proton donor and 

Brønsted base is a proton acceptor; a Lewis acid is an electron-pair acceptor and Lewis 

base is an electron-pair donor.  

Solid acid catalysts have traditionally been widely applied in reactions related to the 

petrochemical industry over the past 40 or more years. However, little attention has been 

directed towards the study application of base catalysts which can behave in a 

complementary, but different, manner to their acid counterparts. An illustrative example of 

the difference in behaviour is the alkyl aromatic side chain alkylation reaction where it is 

observed that the side chain of the alkyl groups is alkylated with bases rather than the 

aromatic ring which is the region alkylated by acid catalysts. Tanabe and Hölderich [5] 

have reported an estimation of the application of acid and base catalysts in industrial 

processes up to 1999. The use of these types of catalysts are in the order solid acid > solid 

base > solid acid-base bi-functional catalysts. These were applied to catalyse 103, 10, and 

14 processes respectively.  

Pines et al [6] first studied a heterogeneous base catalyst of sodium metal dispersed on 

alumina for double bond migration of alkenes in the 1950s. Studies of solid base catalysts 

encompass a wide variety of solid bases, solid base catalysts can be categorised as into 

several different types as shown in Table.1.1.1 below: 
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Table. 1.1.1 Type of solid base catalysts [8]. 

 

Solid bases can catalyse reactions by abstraction of protons, by activation of reactants 

without proton abstraction, or by Cooperative action of Acidic and Basic Sites [7]. Base 

catalysts are mostly used in the form of oxides where the basic sites are generally O
2–

 ions 

with different environments. The formation of the basic site by species other than O
2–

 

alters catalytic properties [8]. A suitable solid base catalyst must have appropriate strength 

for the reaction that needs to be catalysed. For example, for condensation reactions of 

aldehydes and ketones the base is required to remove protons of pKa 19.7 – 20.0.  There 

are few solid base materials available with this strength (see Fig.1.1.1). The base strength 

can be determined by measuring the ability of basic solution to abstract a proton from an 

acidic neutral solution which is represented by H- acidity function [9]: 

 

                                                                                                                                                                                                               

H- value of a solution can be determined by accurate measurement of AH and A 

concentrations. If half of a solute, AH, is deprotonated in solution, i.e., [A
-
] = [AH], the H- 

value of the solution is equal to the pKa value of AH. When a neutral molecule of larger 

pKa value is deprotonated this indicates stronger basicity. The base strength of solid bases 

H- = pKa – log ([AH]/[A
-
])                                                                                                                     (1.1) 
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is expressed by means of the H- value, associated with the highest pKa value of the 

adsorbates from which the basic site is capable to abstract a proton. 

The H- value of solid bases is used as a parameter to identify the nature of individual basic 

sites assuming that there are a certain number of basic sites on solid surfaces and that each 

of the sites have its specific basic strength.  

The measurement of base strength by the indicator method is based on the change of 

colour of indicator molecules upon adsorption, as described previously. Changing of the 

indicator colour reveals that the H- value of the basic sites is higher than the pKa value of 

the indicator. However, if the indicator colour is not changed during adsorption, the H- 

value of the sites is less than the pKa value of the indicator. Thus the H- value of the basic 

sites can be determined by using indicators of different pKa values. The colour change of 

the indicator is due to proton abstraction by basic sites and should not relate to other types 

of interactions such as charge-transfer between the adsorbate and the surface. Catalytic 

reactions can provide an accurate measurement of basic strength especially reactions that 

initiate by formation of carbanions by abstraction of a proton from the reactant. The 

formation of carbanion depends on the pKa value of reactant. 

Base catalysts have been historically been classified according to the value of the acidity 

function (H-) as shown in Fig. 1.1.1: 

 

 

 

          Fig. 1.1.1 Base catalysts types according to the acidity function H- value [9]. 
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Despite the fact that the application of indicator methods is still common, it is usually 

backed up by the use of additional methods, due to their severe limitations [10]. For 

example, colour changes could only be visible to the naked eye when about 10% of the 

desorbed layer of indicator is adsorbed thus UV-visible spectroscopic methods should be 

adapted. Further limitations related to solvent effects, equilibrium time effects, and colour 

changes induced simply by adsorption can be raised. For such reasons, additional methods 

which give site strength distribution are therefore recommended even though these 

methods do not directly generate the value of H-. Base site strength distribution is 

traditionally measured by titration methods. However, alternative methods such as probe 

molecules [11], CO2 chemisorption [11], microcalorimetry [12], spectroscopy [13] and 

thermal analysis have been used in recent years. A good method for the characterisation of 

surface acid-base is the combination of thermal methods and spectroscopy, especially 

FTIR spectroscopy.  

Some catalysts have both acidic and basic properties and contain suitable acid-base pair 

sites. The acid-base catalysts can possess remarkable activity even though the strength of 

their acidic and basic sites is much weaker than that of acid or base catalysts. Zirconia was 

found to have both acid-base sites and can act as an acid as well as a base catalyst. Table 

1.1.2 shows examples of materials that comprise both acid-base bi-functional sites. 

 

 

                     Table. 1.1.2 Catalysts that expected both acid-base bi-function properties  

 

Superbase catalysts are catalysts which possess base sites stronger than H– > 26 [14]. Base 

strength is directly related to the ability of bases to abstract a proton from a C-H bond and 

form carbanion ions. Ushikubo et al [15] developed a superbase catalyst by the addition of 

metallic sodium to MgO by decomposing NaN3 precursor to evolve metallic sodium 

vapour. The catalyst was investigated over the decomposition of methyl formate to CO and 

methanol. Pines and co-workers [16, 17] have also prepared superbase catalysts from alkali 

metals on supports by deposition of the metal vapour and have applied them for the 

isomerisation of alkenes and related compounds. Another superbase catalyst derived from 
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sodium metal deposited on MgO (Na/MgO) with base strength H– = 35 for the 

isomerisation of alkenes has been reported [18, 19]. Sun and Klabunde [20] observed that 

nanocrystalline MgO doped with potassium metal was highly active for alkene 

isomerisation and alkene alkylation, including the conversion of propylene–ethylene 

mixtures to pentene and heptene. Suzukamo et al [21, 22] used Na/NaOH/Al2O3 superbase 

catalyst which has basic sites stronger than H– = 37 to catalyse various reactions such as 

side chain alkylations of alkylbenzenes at reaction temperatures of 20–160 
o
C, double bond 

migrations of 5 vinylbicyclo[2.2.1]hept-2-ene to 5-ethylidenebicyclo[2.2.l]hept-2-ene at (-

30–100 
o
C), and 2, 3-dimethylbut-l-ene to 2, 3-dimethylbut-2-ene at 20 

o
C, and safrole to 

isosafrole at 20 
o
C. Previous work described a superbase catalyst generated from K(NH3) 

and Al2O3 by loading potassium onto alumina in liquid ammonia and heating the resulting 

material under vacuum at 250–300 
o
C [23, 24]. When applied to the isomerisation of 

alkenes, the catalyst exhibited much higher activity than that of Al2O3 loaded with alkali 

metals by vapour deposition. Al2O3 loaded with KNH2 was more active than 

K(NH3)/Al2O3 for the isomerisation of 2, 3-dimethylbut-1-ene. The KNH2/Al2O3 suberbase 

catalyst has been used to catalyse the reaction of toluene with silanes at 56 
o
C [25]. The 

basic strength of both catalysts was found to be at least H– = 37. Yamaguchi et al [26] 

prepared superbases by dispersing potassium salts such as KNO3, K2CO3, KHCO3 

supported on alumina [27] or zirconia [28] and the catalysts possessed a base strength of at 

least H– = 26.5. Some superbase catalysts with their preparation methods and basicities are 

listed in Table. 1.1.3. 

 

 

Table. 1.1.3 Illustrates some superbase catalysts and their precursors, pre-treatment 

temperatures, and base strengths [26]. 

 

The primary focus of this thesis is the application of solid base catalysts to the conversion 

of acetone. Comparisons are made between the activities/selectivities of a wide range of 
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different materials. Accordingly, it is of relevance to summarise the base catalysed 

conversion of acetone. 

 

1.2 Aldol condensation reaction of acetone and synthesis of methylisobutylketone 

(MIBK) – industrial consecrations. 

Reactions of carbonyl condensation are very important in industrial processes for the 

production of a number of materials. Aldol condensations in combination with subsequent 

hydrogenations can yield a variety of key compounds including branched, higher alcohols, 

polyalcohols as well as branched ketones. Methyl isobutyl ketone (MIBK) and 2-

ethylhexanol are the most important compounds synthesised from aldol condensations.    

Aldol self-condensation of acetone to diacetone alcohol can be effectively catalysed by a 

variety of solid bases such as La2O3, ZrO2, Ba(OH)2, and alkaline earth oxides [8]. This 

reaction can also be catalysed by meixnerite-like hydrotalcite-based catalysts with high 

selectivity towards the desired product [29]. 

Production of MIBK from the aldol condensation of acetone is commonly undertaken via 

three essential steps. Initial acetone self-addition is homogeneously catalysed by acids or 

bases in the liquid phase to give di-acetone alcohol (DAA) which will be then dehydrated 

in the second step to form the -unsaturated mesityl oxide (MO).  The final stage is the 

hydrogenation of mesityl oxide in the gas phase over nickel or cupper chromite or noble 

metal catalysts to produce MIBK. However, this process has numerous disadvantages 

including corrosion, disposal of inorganic salts, and equilibrium limitation. Therefore, a 

single-stage process of MIBK synthesis is currently used in industry as an alternative way 

to deal with some of these disadvantages. The process is conducted in the liquid phase 

using a trickle bed reactor with typical operation conditions of 10 - 100 bar and 

temperatures ranging from 120 to 160 
o
C [30, 31]. 

Carrying out the reaction at relatively high pressure around 100 bar is favoured in order to 

enhance the mass transfer of hydrogen from the gas to the liquid phase. Hydrogenation of 

mesityl oxide can be considered to be irreversible under these conditions and thus inhibits 

equilibrium limitation of the formation of DAA and MO.  

Some heterogeneous catalysts have been reported for application in the three-phase 

process.  These include CaO-MgO-SrO-Al2O3 [32], Nb2O5 [33-35], Pd-Nb2O5/SiO2 [36], 

Ti, Zr, and Cr doped oxide or hydroxide with carbon [37], Ce, Hf, and Ta oxide or 

hydroxide with Al2O3 [38]. Several of these catalysts enable high MIBK selectivities, e.g. 
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more than 90%, at acetone conversions ranging from 25 to 35%. In addition, remarkably 

long lifetimes are reported [36]. Nowadays, gas phase processes proceeding in simple 

fixed-bed reactors have attracted attention and are of more interest than the three phase 

operation. Single stage conversion of gaseous acetone to MIBK has been recently 

performed using bi- or multifunctional materials [39, 40]. This recent process is usually 

performed in fixed bed tubular reactors at atmospheric pressure and reaction temperatures 

exceeding 200 
o
C. The molar ratio of hydrogen/acetone is variable and normally in the 

range from 0.2 to 10. The stoichiometric value of the ratio required for the direct formation 

of MIBK from acetone is 0.5.  

 Methyl isobutyl ketone (MIBK) (4-methyl-2-pentanone) is an industrially important 

solvent, chemical intermediate, and the third largest tonnage product obtained from 

acetone after methyl methacrylate and bisphenol. It has been commercially produced for 

more than 60 years. MIBK is medium boiling, clear colourless liquid, which is slightly 

soluble in water and freely miscible with common organic solvents [41]. It is used in the 

purification and extraction of antibiotics and for further pharmaceutical applications, and in 

the manufacture of agricultural chemicals. It is extensively used in nitrocellulose lacquers, 

epoxy, acrylic, polyurethane paints, and in vinyl resin based coating systems. MIBK is 

used in solid coatings since it has superior solvent properties. MIBK is a well-known 

solvent in adhesive, ink and dye formulations as well as in textile and leather finishing. 

MIBK is widely used as extraction/separation agent for metals such as in separation of 

niobium from tantalum [42], plutonium from uranium, and zirconium from hafnium [43]. 

MIBK is used as a raw material in the manufacture of rubber antiozonants, such as N-(1,3-

dimethylbutyl)-N-phenyl-p-phenylenediamine. 

It can be used as a versatile extraction agent [44] to dewax mineral oils, purify stearic acid, 

and refine tall oil. Reaction of MIBK with acetylene yields acetylenic surfactant glycols 

used in ink, paint, and pesticide formulations. MIBK is also used in the manufacture of 

MIBC. Additional applications of MIBK include an ethanol denaturant, as a synthetic 

flavouring adjuvant, in food contact packaging materials, and in dry cleaning preparations. 

MIBK is a very stable compound under ordinary storage and use conditions but it can 

undergo a variety of reactions when mixed with other reagents and subjected to suitable 

reaction conditions. The reactivity of MIBK derived mostly from the acidity of the -

hydrogen and electrophilicity of the carbonyl group. Despite MIBK being involved in a 

number of chemical reactions that are typical of carbonyl-containing compounds, its 
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chemical properties more closely resemble that of other aliphatic ketones. The reactivity of 

MIBK is altered by the presence of an additional isopropyl substituent. The alkyl 

substituent has both electronic and steric effects on the reaction rate of MIBK and also 

creates another reactive site, the tertiary C–H bond, which is more easily activated than a 

primary or secondary C – H bond in reactions that involve radical intermediates. 

Synthesis of MIBK in industry can be undertaken by four different routes. Firstly, a three-

step process involves acetone and hydrogen as feeds and proceeding via di-acetone alcohol 

and mesityl oxide intermediates. Secondly, a one-step synthesis from acetone and 

hydrogen. The third method is a one-step mixed-ketone process from isopropyl alcohol, 

and finally a single or multistep mixed-feed process in which other products are co-

produced. The three-step process was the conventional technology until the late 1960s then 

the simpler one-step synthesis from acetone was developed by Veba-Chemie and Deutsche 

Texaco in Germany and Tokuyama Soda in Japan. Despite the improvements offered by 

the direct route, many of the older three-step methods such as the Shell plant in Deer Park, 

Texas, are still used [45]. The three-step process has an ability to produce other acetone 

derivatives such as diacetone alcohol and hexylene glycol (2-methyl-2, 4-pentanediol). The 

one-step process from 2-propanol co-produces di-isobutyl ketone and acetone are widely 

practiced in the United States by Union Carbide [46] and in The Netherlands by the Shell 

Chemical Company. The mixed-feed process co-produces products such as methyl n-amyl 

ketone [47]. Eastman operates a proprietary unpatented mixed-feed process that produces 

these co-products [45].  

The three-step MIBK process has been descried previously by Hibernia Scholven [48]. 

This process operates in the way that allows the intermediate recovery of refined di-

acetone alcohol and mesityl oxide. Figure. 1.1.2 illustrates a three step MIBK process 

system designed by Chemische Industrie [48]. 

 In the first step, acetone and dilute sodium hydroxide were continuously fed to a reactor 

under low temperature and for 1 h. The product was then stabilised using phosphoric acid 

and stripped of unreacted acetone to yield a crude di-acetone alcohol stream. The di-

acetone alcohol dehydrated to mesityl oxide in a distillation column when more amount of 

phosphoric acid was added. Mesityl oxide was recovered overhead in this column and was 

fed to a further distillation column where residual acetone was removed and recycled to 

yield a product containing 98–99% of mesityl oxide. The mesityl oxide was then 

hydrogenated to MIBK in a reactive distillation proceeded at 110 
o
C under atmospheric 
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pressure. Simultaneous hydrogenation and rectification were occurred in a column fitted 

with a palladium catalyst bed and exhibited yields of mesityl oxide to MIBK exceeded 

96%. Other three step processes have also been described in literature [49]. 

 

 

 Figure. 1.1.2 A schematic of a three step MIBK process built by Chemische Industrie [48].     

 

The single-step manufacture of MIBK was developed to limit or even prevent some 

disadvantages that are experienced in the three stage process. It provides lower operating 

costs, higher acetone conversions, and it prevents the reversion of mesityl oxide to acetone. 

Direct synthesis is essentially achieved using a multifunctional catalyst to carry out acid 

aldolisation, dehydration, and hydrogenation reactions [50]. The process has been studied 

over cation-exchange resin loaded with 0.05% palladium and 2:1 mol feed ratio of 

H2/acetone at 135 
o
C  reaction temperature and 6.1 MPa pressure [51, 52]. Acetone 

conversion of 35% and 96% selectivity of MIBK were obtained. The light hydrocarbons 

and second recycled unconverted acetone were removed via the first column and the 

refined MIBK was then recovered from a four column refining train. 

A decanter is located in the final two columns and is used to separate an aqueous phase. 

Removing the 2-propanol–water mixture was carried out by the third column and the final 

column produces refined MIBK overhead and heavies (diisobutylketone). A similar 

process is operated by Deutsche Texaco at reaction temperatures in the range between 130 

– 140 
o
C and 3 MPa. This process is schematically described in Fig.1.1.3. Acetone 
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conversion of 40% has been observed and a consumption of acetone was 1.4 kg per 

kilogram of MIBK.  

 

 

Fig.1.1.3 The Deutsche Texaco one step MIBK process [53]. 

 

Previous work reported MIBK selectivity of 95% at acetone conversion of 95% under 

reaction conditions of 140 
o
C, 3 MPa, and a 0.2 mole ratio of H2/acetone [54]. Light 

methyl pentanes compounds were not formed under these conditions but MIBK recovery 

has been allowed in a three-column train with a phase separator between the first and 

second columns. Application of a different catalyst named Tokuyama Soda single-step 

which consists of a zirconium phosphate catalyst loaded with 0.1–0.5 wt% palladium has 

also been documented [55]. A palladium doped ion-exchange resin catalyst (Pd/KU-2) was 

investigated at 120 
o
C reaction temperature [56] and the result revealed a selectivity of 

94.5% at an acetone conversion of 50%. Mitsubishi Kasei Co. [57] and Sumitomo 

Chemical Co. [58] have patented single-step catalysts containing palladium and niobium. 

A Sumitomo catalyst was tested at 160 
o
C reaction temperature under 2 MPa of pressure 

and exhibited 93.5% MIBK selectivity at 41.8% acetone conversion while the Mitsubishi 

catalyst investigated at 140 
o
C and 2 MPa accomplished 92.5% selectivity at 39.5% 

conversion. Other processes were conducted by different companies such as Allied 

Corporation [59], BASF [60], BP  Chemicals [61], Catalytic Distillation Technology [62], 

Commercial Solvents Corporation [63], Distillers Co. [64], Industrial Technology 

Research Institute, Taiwan [65], Japan Bureau of Industrial Technology [66], Sumitomo 



                                                                                 33 

                

 

Chemical Co. [67], Mitsubishi[68], Showa Denko [69], Scholven-Chemie [70], Mobil [71], 

and Union Carbide [72].  

In the one-step process of MIBK synthesis, numerous products are formed as a result of 

combining all three steps. The crude product from pilot plant production of MIBK contains 

at least 17 main [73] A previous study reported that water released during reaction reduces 

the reaction rate of sulfonic acid resin–Pd catalyst [74]. Numerous reports indicate that 

catalyst preparation [75], catalyst testing [76], and other investigation [77] have been 

extensively explored. 

The production of MIBK also known as dimethyl ketone (DMK) from acetone and 

hydrogen as feed materials is initiated by aldol reaction of acetone to diacetone alcohol 

followed by dehydration of DAA to mesityl oxide (MO), and hydrogenation of MO to 

MIBK/MIBC. Isolation of DAA and MO intermediates depends on the type of process. In 

the three-step process these three reactions are performed separately and the crude DAA 

and crude MO intermediates are isolated. A number of side reactions occur in each of the 

reaction steps. In the aldol condensation being catalysed by a base catalyst, DAA can 

undergo further reaction with DMK to produce tri-acetone alcohol (TAA) as a by-product. 

Partial dehydration of DAA can take place to produce MO, which can then condense with 

DMK to produce a trimer. The trimer can also be formed by partial dehydration of the 

unsymmetrical TAA isomer. The trimer could be dehydrated to the pyran compound. The 

dehydration of DAA over acid catalyst yields MO and isomesityl oxide (Iso-MO) as a 

major side reaction. The trimers produced in the aldol condensation step also can undergo 

dehydration and cyclisation reactions.  

The hydrogenation process could be conducted to produce MIBC in addition to MIBK 

depending on the catalyst used. The dehydrated trimers (eg, phorone and isophorone) 

likewise undergo hydrogenation to saturated C9 ketones and alcohols. Reversible reactions 

can possibly occur.  

Hydrogenation of the olefinic bond in mesityl oxide can be performed over a fixed-bed 

catalyst in both the vapour and liquid phase. In a liquid-phase hydrogenation reactor the 

catalyst can be applied as slurry and the reaction can be conducted at a temperature of 150 

o
C at 0.69 MPa pressure. The vapour phase reaction occurs at a temperature between 150 – 

170 
o
C. The reaction is highly exothermic (-30 kcal/mol) and a large yield can be achieved. 

By limiting the conversion per pass in the liquid phase reaction, high selectivity can be 

obtained. Inert gases usually use in the gas phase process to dilute the reactants [78]. 
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Various catalysts can be used in on both phase reaction including nickel [79], Raney nickel 

[80, 81], Ni–Cr [82], palladium [83], copper–alumina [84], copper–chromium oxide [78], 

copper–zinc oxide [85], cobalt complexes [86], rhodium [87], and rhodium hydride 

complexes [88]. Complete conversion of mesityl oxide can be obtained at selectivities of 

95 – 98% [86]. The kinetics of the hydrogenation process of MO has been investigated 

over a Pd–Al2O3 catalyst [89].  

Alkali metal salts have been reported as promoters for the activity and selectivity 

enhancement of palladium catalyst in MO hydrogenation and a maximum MIK selectivity 

of 99.9% could be attained [90]. In addition, water can effectively improve the selectivity 

of Pd catalyst used for the hydrogenation of MO. High selectivities of 89.3 and 99.5% have 

been reported in the absence and presence of water [91]. 

Previous work has observed that treating crude MO, by the dehydration of di-acetone 

alcohol by sulfuric acid catalyst, with hydrogen peroxide can extend catalyst lifetime [92]. 

Hydrogen peroxide was used as a promoter for a rhodium complex catalyst in the same 

reaction [93]. Sec-butyl alcohol [94], formic acid [95], and MIBC [96] have been described 

as hydrogen donors for the hydrogenation of MO. Use of sec-butyl alcohol as the hydrogen 

donor results in the simultaneous production of methyl ethyl ketone and MIBK. Other 

studies on polymer-supported Pd [97], palladium complex polymer [98], Ni–Cu–Cr [99], 

copper complex [100], and Ni–M [101] catalysts have been reported.  

Di-acetone alcohol DAA is a colourless and mild-smelling liquid that is entirely miscible 

with water and most organic solvents even although DAA is classified as a solvent and is 

used in many applications. It has ketone and alcohol functionalities hence it has special 

utility in the coatings industry to dissolve cellulose acetate to give solutions with high 

tolerance for water [102]. DAA is also used as feed material for the production of hexylene 

glycol.  

DAA is an essential product in the three step process by the low temperature liquid-phase 

condensation of acetone in the presence of a base catalyst [103]. Solutions of base catalysts 

and water or water–alcohol solvent mixtures can be used but the catalyst has to be 

completely neutralised with a suitable acid before the crude product is worked up [104]. 

However, solid base catalysts placed in a fixed bed are desirable due to ready separation of 

the product from the catalyst. The reaction is exothermic (H = -5.5 kcal/mol) and is 

equilibrium controlled [105]. The equilibrium constant influences by increasing 
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temperature [106]. The equilibrium concentration of di-acetone alcohol is 23.1 wt% at 0 

o
C, and reduced to 9.1 wt% at 30 

o
C [107]. 

Despite the formation of di-acetone alcohol being preferred at low temperature, kinetic 

considerations require commercial operation to be conducted at 10 – 20 
o
C. Either single or 

multistage catalyst beds can be used: single-stage conversion requires lower inlet 

temperatures, multistage conversion can cascade to gradually lower inlet temperatures 

[108]. Reaction times of 20–60 mins are typically required. Conversion across the reactors 

typically ranges from 8 to 15%. At low conversions, separation of acetone from DAA 

required distillation to allow recycle of unreacted acetone to the reactors. The crude DAA 

product may contain 85–95% DAA and 5–15% acetone as well as other impurities. The 

distillation process can be carried out in a single unit [109]. 

Different catalysts for the aldol condensation reaction include the hydroxides of alkali 

metals [110, 111] and oxides or hydroxides of alkaline earth metals [112-114] have been 

reported.  

Most solid base catalysts are vulnerable to dissolution by the reaction medium and thus 

yield a crude product that contains traces of catalyst. Stabilisation of DAA against 

reversion to acetone during the acetone recycle distillation can be attained by neutralising 

the solution with acids such as CO2 [115], phosphoric acid [116], carboxylic acid type ion-

exchange resin [117], and phenolic resin [118]. Acetone can then be stripped overhead in a 

distillation column most, likely under vacuum conditions, and recycled.  

Commercial catalysts can remain active for 1 yr and can be reactivated by washing with 

hot water and acetone [119]. A long catalyst lifetime can be obtained by limiting the 

concentration of aldehydes in the acetone feed [120].  

Previous work showed that [121] aging of a calcium oxide catalyst can be prevented by the 

addition of 0.2 – 2 wt% 2-propanol, methanol though aldehydes are considered to be a 

poison [121].  

High mechanically stable anion-exchange resin catalysts have been also reported [122, 

123]. These catalysts were found to be beneficial for reactions with the addition of 3–10% 

weight of C1–C3 alcohols to the acetone feed [124]. Early patents indicated that because 

water inhibits the aldol condensation mechanism, it was necessary to dry recycle acetone to 

< 1% water [125]. More recent reports demonstrate DAA production from waste acetone 

contained 10–50% water [126], and enhanced DAA production over anion-exchange resins 

using acetone feeds that contain 3–10% water [127]. Alkylene oxide– salt complexes [128] 
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can be used as catalysts for aldol reactions and as co-catalysts [129] for enhancing the rate 

of base-catalysed aldol reactions. Hydrotalcite-type catalysts were reported to be highly 

active for the formation of DAA from acetone [130]. DAA selectivity between 90 and 95% 

can be achieved in industry [45]. Mesityl oxide and acetone trimmers are mainly the major 

by-products. Further condensation of acetone with di-acetone alcohol can be conducted to 

yield sym-tri-acetone di-alcohol which may dehydrate to (6-hydroxy-2,6-dimethyl-2-

hepten-4-one) that may cyclise to 2, 2, 6, 6-tetramethylpyrone, or dehydrate to phorone (2, 

6-dimethyl-2,5-heptadien-4-one) [131]. An unsymmetrical acetone trimer can also be 

produced which can be dehydrated to 2,4-dimethyl-2,4-heptadiene-6-one and then cyclised 

to form 2,2,4,6-tetramethylpyran [132].  Subsequently, impurity and yellow discoloration 

of DAA can result from these by-products. Purification of the crude DAA can be 

accomplished by vacuum topping and tailing in a set of distillation columns [133]. 

Nitrogen containing carboxylic, or phosphoric acids are used as stabilising agents [134].  

Mesityl oxide is an oily colorless liquid, toxic, and has unpleasant odour. It is a versatile 

and highly reactive due to the conjugated -unsaturated carbonyl compounds [135]. 

Mesityl oxide can slowly react with air and convert to bis(3,5,5-trimethyl-1,2-dioxolanyl)-

3-peroxide [136]. Mesityl oxide can contain 5 – 20% of isomesityl oxide (4-methyl-4-

penten-2-one) [137], the -unconjugated isomer. However, at equilibrium the mixture 

consists of 91% of the -mesityl oxide and 9% of the -isomer [138]. Acid or alkali 

can catalyse the equilibration of the isomers [139] and techniques that used to isolate the 

isomers have been reported [138]. Mesityl oxide is used as an intermediate in MIBK and 

isophorone [140] production.  

Mesityl oxide can be prepared by using a distillation column in which acetone is removed 

overhead and water saturated mesityl oxide is produced from a side-draw over sulfuric acid 

[125] and phosphoric acid [141]. Reaction kinetics has been extensively studied [142]. The 

reverse of DAA to acetone is a major side reaction and acetone remained from dehydration 

step involves re-cyclisation to the aldol condensation step. The dehydration process is 

highly selective and strongly depends on the quality of crude DAA, and on the conditions 

of reaction. A majority of the by-products derived from acetone trimers can be formed. 

Crude mesityl oxide obtained from the dehydration step could be a suitable feed material 

for the hydrogenation step.  

Mesityl oxide can be formed by the liquid-phase dehydration of di-acetone alcohol over 

acidic catalysts at 100 – 140 
o
C under atmospheric pressure in an endothermic process (5 
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kcal/mol). Moreover, mesityl oxide can also be produced from the vapour phase direct 

condensation of acetone at higher temperatures over copper chromite [143], zinc oxide 

[144-146], zinc oxide–zirconium oxide [147], and borate–phosphate [148] or in the liquid 

phase over cation-exchange resin [149] or zirconium phosphate [150] magnesium–

aluminium complex compound [151] and heat-treated anionic clays [152] are also known 

to condense acetone to mesityl oxide. 

  

1.3 Mechanism of aldol condensation reaction of acetone over base catalyst. 

Aldol condensation of over base catalyst is initiated by abstraction of acidic -hydrogen by 

the base catalyst to form reactive enolate. The nucleophilic enolate then attacks another 

acetone at the electrophilic carbonyl in a nucleophilic addition type process giving an 

intermediate alkoxide. Finally, the alkoxide deprotonates a water molecule creating 

hydroxide and -hydroxyketone which is the di-acetone alcohol (DAA). 

Subsequently,  the base catalyst removes an acidic -hydrogen from di-acetone alcohol 

(DAA) giving reactive enolate The electrons associated with the negative charge of the 

enolate are eventually used to form the C=C and displace the leaving group to regenerate 

hydroxide and a conjugated ketone called mesityl oxide (MO) (Fig. 1.1.4). 

 

 

 

http://www.mhhe.com/physsci/chemistry/carey5e/Ch17/ch17-3.html
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Fig. 1.1.4 Main mechanism of the aldol condensation reaction of acetone over base 

catalyst. 

 

Various mechanisms have been suggested for the aldol condensation reaction of acetone 

over base catalysts.  Flego and Perego [153] have proposed a mechanism for the acid 

catalysed condensation of acetone by molecular sieves Fig. 1.1.5. The mechanism involves 
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a combination between acetone (in enolic form) and another acetone molecule (in 

protonated ketonic form after bonding with hydroxyl groups), forming di-acetone alcohol 

(DAA) as a primary product. The di-acetone alcohol is consequently dehydrated to mesityl 

oxide (MO) and the later undergoes interaction with another acetone molecule to form 

phorone which is finally cyclised to isophorone. However, the mechanism over the base 

catalyst is slightly different since the production of isophorone is only occurred via the 1, 

6-aldol of 4, 4`-dimethylhepta-2, 6-dione.  

 

 

Fig. 1.1.5 Flego and Perego mechanism of the aldol condensation reaction of acetone over 

acid catalyst [153]. 
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Reichle et al [154] revealed that isophorone is formed via three intermediate species either 

via a 1, 6-Michael addition of 2, 4- dimethylhepta-2, 4-diene-6-one or phorone, or by a 1, 

6-aldol condensation reaction of 4, 4-dimethylhepta-2, 6- dione Fig. 1.1.6. 

 

 
Fig. 1.1.6  Production of isophorone via intermediate steps [154]. 

Other route of isophorone formation using isoptopes has been also documented [155]. 
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1.4 Aims 

In this thesis a series of solid base catalysts have been applied to acetone conversion with 

the aim of determining catalytic activity and selectivity and determining structure-function 

relationships. Reactions have been run over extended periods with respect to many other 

academic studies and comparison is generally made on the basis of product sampling 

following 18 h on stream. Elevated pressure has been applied to more closely mimic 

possible industrial practice and hydrogen is included in the reactant stream to be of 

relevance for one stage MIBK production. 
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Chapter 2 

Experimental methods. 
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2.1 Catalyst preparation and characterization. 

2.1.1 X-ray diffraction (XRD). 

Since many substances have known crystal structure, powder XRD can be used as a 

fingerprint technique [1]. This technique uses powder or polycrystalline materials to create 

patterns arising from all possible crystalline orientations for each material. A powder 

diffractometer essentially consists of an x-ray source, a sample holder, a detector and a 

data storage device. XRD data can be analysed to give information such as the 

identification and proportion of the constituent phases, the degree of their stoichiometry 

and the formation of solid solutions. X-ray diffraction measurements are based on the 

generation of an x- ray beam when high speed electrons collide with a metal target. The 

electrons are usually generated from a hot tungsten filament cathode which is at high 

accelerating voltage with respect to the anode which is a water–cooled target metal. They 

are directed from the cathode toward the anode to produce the x-ray source. The x-ray 

beam generated is energy filtered and is then directed onto the sample of interest, creating 

diffraction for crystalline substances as shown in Fig. 2.1.1. The intensities of the 

diffracted beams are recorded by the detector and reported in terms of 2θangle [2]. When 

used as a fingerprint technique, patterns are matched by comparison to the JCPDS or 

ICDD databases, although it is possible to perform more detailed structural analysis using 

techniques such as Rietveld refinement [3]. 

The resultant peaks are related to planes of lattice points within the analysed materials. 

Each diffraction plane of the material of interest is designated by Miller indices (h, k, l). 

Phase analysis and more detailed characterization can be then performed [4]. 
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 Fig. 2.1.1 X-ray diffraction. The two parallel incident rays, A and B are at an angle (θ) 

with respect to the diffracting planes. A reflected beam of maximum intensity will result if 

the waves are in phase, represented by A’ and B’. The difference in  pathlength between A 

to A’ and B to B’ must be an integral number of wavelengths (λ). 

 

Diffraction of the x-ray beam  only occurs when Bragg’s law  is satisfied for constructive 

interference from two lattice planes with spacing d, according to [Eq. 2.1.1] [5]: 

 

 

where d is  the interplanar spacing, n  is an integer,  λ is the x-ray wavelength  and θ is the 

diffraction angle. 

The preparation and handling of XRD samples is an important consideration and care must 

be taken not to introduce any artefacts such as inducing structural changes upon sample 

grinding and/or neglecting the influence of preferred orientation.   

All the x-ray diffraction measurements reported in this thesis were conducted using a 

Siemens D5000 diffractometer supplied with a graphite monochromator using Cu 

Kradiation (0.15406nmat a generator setting of 40kV and 40 mA with a 2 

θrange between 5 
o 

and 85 
o 

using a 0.02 
o
 step size and a scanning speed of 1s per step. 

n = d sin  Bragg’s law)                                                                  (2.1.1)       



                                                                                 51 

                

 

The powders were ground to ensure random orientation of the crystallites and were packed 

into a sample holder with a glass slide. 

 

2.1.2 Thermal Analysis (TGA, DSC, DTA). 

Thermal analysis is a general term for a group of analytical techniques which are used to 

monitor the behaviour of materials as a function of temperature, or time at a specific 

temperature [6]. A general definition describes the thermal analysis as the change in a 

property of a sample which is related to an imposed temperature alteration [7]. Thermal 

analysis techniques are used for many purposes such as to identify particular materials or 

to measure a property of interest, such as the heat of reaction, specific heat capacity, latent 

heat, flow stress, viscosity, elastic modulus and damping, thermal expansion and weight at 

a specified temperature pre-treatment region. It is applied to detect phase transformations, 

to assess the high-temperature stability of materials or to perform fundamental studies of 

reaction kinetics [8, 9]. Evolved gas analysis can be undertaken to determine the identity of 

gases lost from the sample under investigation as a function of temperature. No single 

thermal analysis technique works best in all situations. The key features for any thermal 

analysis technique comprise a furnace, a sample holder containing thermocouples, a 

recording system and a temperature programmer [10]. The atmosphere in the system can 

be varied for the parameter of interest. For most applications, thermal analysis is 

experimentally carried out by scanning a temperature range and measuring changes in 

mass (TGA) or heat flow (DSC or DTA). 

TGA (thermogravimetric analysis) is one of the most commonly applied techniques. The 

change of mass of the sample of interest is measured as a function of temperature and time, 

in a controlled system [11, 12]. It is also possible to vary the reaction atmosphere to 

determine the “reactivity” of the material. The change in weight can be correlated to the 

thermal stability of a material, which is directly related to the material’s volatility or 

thermal degradation. Commercial TGA instruments contain a furnace where the 

temperature is increased with time, often to temperatures exceeding 1000 
o
C. Temperature 

calibration can be performed using Curie point analysis of reference standards [13, 14]. 

Calorimetry such as differential scanning calorimetry (DSC), measures the change of the 

difference in the heat flow rate to the sample and to a reference sample while they are 

subjected to a controlled temperature programme [15]. In adiabatic systems, the change in 

temperature can be translated into the enthalpy or energy content of a material by using the 
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heat capacity of the system. The experimental measurement is usually carried out on a 

closed system where determination of the heat, Q, associated with a change in temperature, 

T, yields the heat capacity of the material Cp [Eq. 2.1.2.1]: 

 

  

There are two types of DSC thermal technique, heat-flux DSC and power-compensated 

DSC [16]. Heat flux DSC is the most practical and comprises an instrument where both 

sample and reference are in one furnace and connected by a low-resistance heat-flow path. 

Resultant heat flow is proportional to temperature difference. In power-compensated DSC 

the sample and reference are in different furnaces with separate heater coils and 

thermocouples. The difference in temperature between sample and reference is converted 

to a differential thermal power, or Δq, that is supplied to the heaters to maintain the 

temperature of both the sample and reference at the programmed value. Temperature is the 

independent parameter which is varied at a controlled rate. The feed heat to the sample and 

reference is controlled. The obtained data is heat flux per time or power as a function of 

temperature at a fixed rate of change of temperature. The heat flux can be converted to CP 

[Eq. 2.1.2.1] by dividing by the constant rate of temperature change. The heat flux 

increases with temperature ramp rate, therefore, higher heat presents more sensitive spectra 

but the high heat lowers the resolution of the temperature of transition and can have 

consequences for transitions which display kinetic features. Differential thermal analysis 

(DTA) [17] is a technique which is related to DSC. The basic instrument for DTA is 

composed of two identical cells in which the sample and the reference (often an empty 

pan) are placed. The thermocouples are directly placed  into the samples.  Both cells are 

heated with a constant heat flux, using a single heater, and the temperatures of the two cells 

are measured as a function of time. A difference in temperature between the sample and 

reference is observed when a thermal transition occurs and can be calculated by 

[Eq.2.1.2.2]: 

 

Cp = Q/T                                                                                             (2.1.2.1) 

 

 

T = Tsample - Treference.                                                                          (2.1.3) (2.1.2.2) (2.1.2.2) 
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The output from a DTA is temperature difference (T) between the reference and sample 

cells. A negative value of T indicates an endothermic process whereas a positive value is 

indicative of an exothermic process. 

In DTA, heat is provided at a constant rate and temperature is a dependent parameter. 

Although the determination of transition temperatures is accurate in this technique, 

estimates of enthalpies of transition are generally not accurate. Quantitative analysis of 

DTA data is complicated which is why DSC is usually preferred, although improvements 

have been made to DTA instruments in this respect. These improvements include a good 

heat flow path between the sample and the reference minimising the resulting heat flow.   

All thermal analysis measurements reported in this thesis were performed using a SDT-

Q600 V 8.3 build 101, Standard DSC-TGA model equipped with an ESS quadrupole mass 

spectrometer. The DSC reference was an empty sample pan. Generally, analysis was 

performed on ca. 20 mg of sample, employing a 10 °C/min temperature ramp rate up to 

900 °C.   

 

2.1.3 TPD. 

Temperature programmed desorption (TPD) is sometimes called thermal desorption 

spectroscopy (TDS) [18, 19]. It is used to measure the desorption rate of adsorbed 

molecules as a function of temperature. It also can be used in the study of strength of 

adsorption, adsorption states, surface concentration and desorption kinetics [20]. Atoms or 

molecules in the gas phase are adsorbed onto a surface at a low temperature (sometimes 

sample cooling is employed) and then desorbed by heating. Heating is generally performed 

in vacuum and a mass spectrometer and/or thermal conductivity detector is employed to 

detect desorbed species. Upon increasing the temperature, species can desorb as a function 

of their binding strength, and rate of desorption reflects the dependence of desorption 

activation energy on surface coverage. The measurement is mainly performed by cleaning 

the sample surface followed by adsorbing gas-phase species of interest and finally 

monitoring the desorption of adsorbate as temperature is increased in a controlled process.  

For acid-base catalysts, the basic and acidic properties of solid catalysts are usually 

measured by the method of desorbing ammonia (NH3 –TPD) [20, 21] and carbon dioxide 

(CO2 –TPD) probe molecules for acidic and basic sites respectively [22, 23]. A more 

recent method is termed the acid-base simultaneous TPD method [24] which involves three 

sequences of adsorption of CO2 and NH3 followed by a linear increase of the system 
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temperature. The TPD technique can be used for the determination of the quantity and 

strength of the active catalytic sites located on catalysts. This idea is based on the principle 

that the strength of gas adsorption is strongly dependent upon the strength of the active 

sites on the surfaces. It is important to recognise that a potential limitation to the technique 

is that the probe molecules may interact with the surface in a different manner than that 

envisaged. For example, it has been documented that NH3 dissociation can occur on CaO 

leading to high desorption temperatures and associated erroneous conclusions that CaO is a 

strong acid [25]. In this respect, where possible, independent spectroscopic investigation of 

the probe molecule –surface interaction should be undertaken. 

The CO2 –TPD reported in this thesis was performed using a pulse-flow microreactor 

system supplied with an on-line GC-14A Shimadzu gas chromatograph with a thermal 

conductivity detector and an ESS mass spectrometer (Fig. 2.1.3).  

 

 

 Fig. 2.1.3 Glass rig CO2-TPD system used in this work. 

 

The required amount of catalyst (generally in the range 0.2 - 0.5 g)  was placed in the 

Pyrex reactor tube and housed on a CPC elements heater and heated in a  30-40 mlmin
-1

 

flow of helium to 450 
o
C (10 K min

-1
) for 2 h. The sample was then cooled to room 

temperature and the helium flow maintained. A gas pulse (15 mol) of high purity >99.9% 
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CO2 was then introduced from the sample loop into the carrier gas. Once the catalyst was 

saturated with carbon dioxide as determined by no further uptake of  CO2, TPD was 

applied by heating the sample to 600 
o
C in helium using a ramp rate of 10 K min

-1
. The 

mass spectrometer was used to simultaneously detect and monitor the desorbed CO2 (m/z = 

44).  

2.1.4 BET. 

The determination and control of the surface areas and porosities of materials are very 

important in heterogeneous catalysis since they have a strong influence upon catalytic 

activity. The most widely technique for surface area measurement is the BET (Brunauer, 

Emmett and Teller) technique [26, 27]. The BET method is based upon the Langmuirian  

physisorption of molecules of precisely known size on the surface of interest. The 

monolayer capacity can then be determined and the surface area extracted by application of 

the following relationship:  

 

where Vs is the volume of the vapour adsorbed at equilibrium pressure P, Vm  is the 

monolayer volume, Po is the  saturated vapour pressure for the adsorbate at the temperature 

of the experiment, and  C is equal to exp[(L-Lo)/RT] where L refers to the latent heat of 

adsorption of the first layer of molecules and  Lo  represents the heat of evaporation of the 

adsorbate. Plotting P/Vs(Po–P) against P/Po  yields a straight line with slope [(C-1)/(CVm)] 

and intercept  [1/(CVm)] and Vm can be determined by taking the reciprocal of the addition 

of their values. It is important to note that BET analysis should only be applied to type II 

and type IV isotherms in the BDDT classification [28] as well as in the P/Po range of 0.05 – 

0.3
o
. Nitrogen is usually used as the adsobate due to its inert nature, well defined molecular 

cross-sectional area (16.2 A
o 2

) and because liquid nitrogen is a convenient coolant which 

is widely available. 

In this thesis BET surface area measurements were performed using a Micromeritics 

Gemini 2360 Surface Area Analyser. The required amount of the sample (usually around 

 

 

 

                     P                         1                     (  C – 1 )           P 

                                     =                                      +                                                  (2.1.4) 

            Vs (Po – P)                  VmC                      Vm C            Po             

                     ( 2.1.4) 
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0.3 g) was placed in a sample holder and degassed at 110 
o
C overnight to remove any 

adsorbed moisture prior to analysis. The sample was then re-weighed to obtain the exact 

mass for analysis. The BET surface area measurement was then carried out by nitrogen 

adsorption at liquid nitrogen temperature using an automated programme. 

 

2.1.5 SEM. 

The scanning electron microscope (SEM) is a development of the light microscope which 

uses electrons instead of light to produce an image of materials by focusing a high energy 

beam of electrons onto the surface of a solid sample [29, 30]. The main features of the 

SEM instrument are a filament for the generation of electrons, lenses to direct the electrons 

toward samples, a beam deflector and a detector [31]. The operational process is performed 

by applying a voltage between the filament and the conductive sample in a vacuum 

environment (10
-4

 to 10
-10

 torr). A voltage is applied to heat up the filament causing the 

generation of electrons which are accelerated toward the anode. The beam is subsequently 

condensed by a condenser lens and the electrons then focused as a spot on the sample by 

the objective lens. The SEM contains various types of electromagnetic lens which have 

different functions. The lenses are also used to adjust the beam and the final spot size. 

They also shape the beam to prevent or limit the effect of the astigmatism, chromatic 

aberration, spherical aberration and diffraction. After electrons strike the sample they are 

emitted either as backscattered or secondary electrons. Secondary electrons are most 

widely applied for studying surfaces and are used to form a three dimensional image. The 

back scattered electrons are formed by the interaction of the beam electrons with the 

nucleus of the sample and are scattered back by the sample. The secondary electrons can 

be used to form the image. X-rays are also produced by interaction with the sample. The 

energies of such x-rays are sensitive to the elemental composition of the samples and this 

forms the basis of Energy Dispersive X-ray Spectroscopy (EDS or EDAX).  SEM 

measurements in this thesis were performed using Philips XL30E-SEM. Samples were 

placed in a sample holder and inserted into the instrument. Some samples were coated with 

gold to prevent distortion of images by the build-up of charge on insulating materials. All 

images were magnified 1000 times under a 20 kV accelerating voltage. 

2.1.6 GC. 

Chromatography is a very important analytical technique that is used to separate mixtures 

of chemicals into individual components which then can be individually identified and 
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quantified [32-34]. The separation between components is based upon the difference in 

their partitioning behaviour between stationary and mobile phases. The partitioning 

behaviour has a temperature and column interaction dependence and mixtures of 

components can be resolved by passage through a column containing the stationary phase 

which may be held isothermally or subjected to a temperature programme. The time 

required for a compound to elute through the column depends upon the strength of its 

interaction with the stationary phase. 

Gas chromatography (GC) consists of a carrier gas (the mobile phase) which is usually an 

inert gas such as helium, argon or nitrogen, a pressure regulator to control the flow rate of 

the gas through the chromatograph, a flow meter to measure and the flowrate of carrier 

gas, an injection port with a syringe needle to inject the sample, a column with a stationary 

phase, a heating system, a detector and a recorder. The injection port is maintained at a 

higher temperature than the boiling point of the sample components. The temperatures of 

the column, the injector and the detector are usually controlled independently. The 

injection of the sample is performed either by an automated device, or manually. If 

necessary, the sample is vapourised and mixed into the carrier gas where the sample 

vapour is then partitioned between the mobile and stationary phases. The choice of the 

carrier gas depends on the operation of the detector, as well as the efficiency and speed of 

separation required. There are two different general types of column, capillary and packed. 

Capillary columns comprise a thin fused silica coil of around 10-100 m length with the 

stationary phase coated at the inner surface. A packed column is a glass or stainless steel 

coil typically 1-5 m length filled with the stationary phase. The capillary column, as used 

in this study, provides perfect separation efficiency but it is easily overloaded. The 

separation occurs according to two factors, the solubility of the compounds in the 

stationary phase and the vapour pressure of the compounds. The more volatile compounds 

that have higher vapour pressure and lower boiling point require less energy to reach the 

equilibrium therefore they pass through  the stationary phase faster  than the less volatile 

compounds. Other factors such as the flow rate of the carrier gas, the type of stationary 

phase and the length of the column can also affect the separation process. The separated 

compounds are then detected by the detector to creating an output in proportional to their 

quantity. Various detectors can be used such as flame photometric (FPD), electrolytic 

conductivity (Hall/ELCD), mass spectral (CI/EI), flame ionization (FID), nitrogen-
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phosphorus (NPD), electron capture (ECD), photo ionization (PID) and thermal 

conductivity (TCD) detectors. 

Gas chromatography has been applied in this thesis as a means of product / reactant 

analysis. GC analysis was conducted on liquid samples (diluted in 1:10 ratio with HPLC 

grade Fisher Scientific acetone) using a Thermo Quest Trace GC, trace MS fitted with a 

AS2000 auto sampler. The column used in this instrument was a SGE sol gel wax 30 

metre, 0.25 mm ID, 0.25 mm film run at a pressure of 14.5 p.s.i. The injector was heated to 

200 
o
C and split ratio was 50:1. The initial oven temperature was 40 

o
C. After 5 minutes it 

was increased at 10 
o
C /min to 170 

o
C where it was held for 41.5 minutes. GC calibration 

and method setting were performed by preparing various standard solutions of the expected 

reaction products. Four different concentrations 0.1, 0.5, 0.75 and 1 M of 

methylisobutylketone (MIBK, Fluka, 99%), mesityl oxide (MO, Fluka, 99%), 

diacetonealcohol (DAA, Aldrich), 2,6-dimethylheptan-4-one (DH, Aldrich), Isophorone  

(Isoph, Aldrich, 97%), phorone (Phor, Aldrich, 97%) and 4-methyl-2-pentanol (4M2P, 

Aldrich) were prepared. Each component was run individually using acetone as a solvent, 

and area for each concentration was recorded and saved. Calibration curves were obtained 

by plotting area against concentration for each component and the gradient and intercept 

were determined to use in further calculations such as conversion and selectivity (Fig. 

2.1.6). Traces of the GC analysis were included in the appendix. 
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Fig. 2.1.6 Standard component GC calibration curves. 
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2.1.7 Reactor.  

Catalytic reactors are designed according to the nature of the reactions of interest. They 

may be operated in batch, semi-batch, or continuous modes [35-37].  Therefore the 

difference in their shapes, sizes and operating conditions are strongly based on the nature 

of the reaction system and how it is influenced by pressure, temperature, catalyst 

properties, and other factors. Laboratory reactors which are usually used to gather 

information and perform activity screening require careful design to obtain well defined 

reaction temperatures and pressures and hence reliable reaction kinetics. They differ from 

large scale industrial reactors which are typically designed to achieve efficient  production. 

In addition, the phase in which the reaction takes place also strongly influences the design 

of reactor applied. For homogeneous reactions, particular reactors such as plug flow, 

continuously stirred tank reactors (CSTR) and batch reactors are used. Heterogeneous 

reactions are carried out in either packed or fluidised bed reactors and bubbled fixed bed, 

tickle bed, CSTR slurry, bubble slurry and 3-phase fluidized reactors.  

The reactor that was used in the current work was a continuous flow microreactor 

consisting of an HPLC pump connected to a vapouriser which was connected to a 15 inch 

reactor tube housed in a tube furnace. The exit of the tube was connected to a knock-out 

pot. Gas flow rates were maintained by Brooks 5850 TR mass flow controllers (MFCs), the 

reaction pressure was maintained by a Tescom back pressure regulator and thermocouples 

were used to monitor temperature. A schematic of the reactor is presented in Figure 2.1.7. 

Reaction conditions were chosen to mimic those of interest for application to the 

development of single stage processes for the production of MIBK.  This involves running 

the reaction at elevated pressure in a H2-containing atmosphere.  Extended times on stream 

were investigated in order to determine the rates of reaction following initial deactivation 

processes. 
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Fig. 2.1.7 A schematic of the microreactor used for the studies presented in this thesis. 
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maintained at 0.0415 ml min
-1

 (liquid) using a Gilson HPLC 307 pump.  H2 (BOC high 

purity) was used to volatilise the acetone with a flow rate of 50 ml min
-1

. Acetone and 

hydrogen were continuously fed to the reactor where the reaction was conducted using 0.5 

g of catalyst at 400 
o
C and a total pressure of 5 bar. Products were collected in the cooled 

knock-out pot and analysed using GC. 

2.1.8 CHN Analysis.       

Elemental analysis techniques are used to identify elements in compounds quantitatively 

by determining the weight percentages of the elements of interest. They provide important 

information which can help in determining unknown structures and the purities of  

materials. Quantitative analysis can be performed by gravimetry or by optical atomic 

spectroscopy including graphite furnace atomic absorption, flame atomic absorption and 

inductively coupled plasma atomic emission. Qualitative analysis can also be performed 

using atomic spectroscopy, x-ray photoelectron spectroscopy, Auger electron 

spectroscopy, particle induced x-ray emission and x-ray fluorescence .  

The most commonly applied technique is CHNS analysis. The technique is used to 

determine the percentages of carbon, hydrogen, nitrogen, and sulfur. The method is 

destructive and involves burning a sample in an excess of oxygen to yield various 

combustion products in the form of CO2, H2O, NOx and SO2 that are detected and 

identified. This information can be then used to calculate the composition of an unknown 

sample.  The theory of the CHNS analyzer is based on Duma’s method which involves 

total oxidation of the sample by flash combustion. Appropriate reagents are used to assist 

oxidation and to remove unwanted by-products such as halogens. The combustion products 

are then passed into a chromatographic column by a carrier gas where they are separated 

and NOx is reduced to N2 prior to analysis. The products are then detected by a thermal 

conductivity detector (TCD) to produce output signals. These signals indicate the quantity 

of each component in the sample by reference to calibration standards [31, 32]. CHN 

analyses reported in this thesis was performed with the kind assistance of Mrs Kim Wilson 

using an Exeter Analytical CE- 440 elemental analyser instrument. 

 

 

http://en.wikipedia.org/wiki/Gravimetry
http://en.wikipedia.org/wiki/Atomic_spectroscopy
http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
http://en.wikipedia.org/wiki/Auger_electron_spectroscopy
http://en.wikipedia.org/wiki/Auger_electron_spectroscopy
http://en.wikipedia.org/wiki/Particle-Induced_X-ray_Emission
http://en.wikipedia.org/wiki/X-ray_fluorescence
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2.2 Catalyst preparation. 

The main purpose for catalyst preparation is to form a material which has high productivity 

and efficiency [38-40]. This can be achieved by generating catalysts comprising small 

particles (high dispersion) and high surface areas. Various important factors such as 

regenerability, stability, activity and selectivity should be taken into account in catalyst 

preparation. These features are controlled by physical and chemical properties of the 

catalyst. Catalyst properties are essentially dependent upon different parameters. Supported 

catalysts are usually prepared in two stages [41]. Firstly, a dispersion process which 

consists of the interaction of metal-salt components in a highly dispersed form is achieved 

via co-precipitation, impregnation, deposition or adsorption from solution. In the second 

stage a calcination or reduction process which involves the generation of a metallic or 

oxidic form of the supported metal salt which  can be achieved by a thermal treatment in 

an inert atmosphere or an active atmosphere of hydrogen or oxygen [42]. In the preparation 

of supported base catalysts, impregnation and precipitation procedures can be applied. To 

generate strongly basic sites, high temperature calcination or activation procedures are 

necessary but care must be taken to ensure the maintenance of surface area, prevention of 

inactive phase formation and maintenance of the most active morphology. With respect to 

the latter point, surface ions of different co-ordination number environment will have 

different acid-base site strengths. 

Impregnation occurs when the metal is loaded onto the support via filling the pores of the 

support with a metal salt solution in which the solvent is subsequently evaporated [43]. 

This can be achieved either by adding the support material to a solution of a metal salt or 

by spraying the support by the metal salt solution. The mixture is then dried and 

decomposed at elevated temperature by reduction or thermal decomposition to generate the 

active phase. In the initial stage of impregnation, the interaction between metal salt and the 

support in solution can be controlled by pH. This requires a determination of the point of 

zero charge (PZC) of the oxide which defined as the pH where the net surface charge of 

the oxide is equal to zero. When the pH is less than the PZC, the oxide surface is positively 

charged (protonated) and will adsorb anions. When the pH is higher than the PZC, the 

oxide surface is negatively charged (deprotonated) and will adsorb cations (Fig. 2.2.1) 

[44]. The strength of electrostatic interaction between the metal precursor species and the 

support is therefore crucially dependent upon the impregnation pH, and generally not 

enough attention is paid to this aspect. 
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 Fig. 2.2.1 The point of zero charge (PZC) on an oxide surface. 

The pH of the impregnating solution may also have an influence upon the chemical species 

adsorbed, e.g.  

 

is a pH dependent equilibrium , with low pHs favouring Mo7O24 
6-

 over MoO4 
2-

. 

 

Properties and designed parameters of the resultant catalyst are based on the chemistry of 

the impregnated solution and the chemical and physical properties of the support.  Thermal 

treatments are applied via two regimes:  (i) at low-temperatures (< 150 
o
C) to remove 

water and some decomposition species, and (ii) high temperatures (often between 150 and 

500 °C) to produce the metal or metal oxide. Different factors can influence the 

impregnation process such as the type of ion exchange and the ionic character and the 

capacity of the support surface. These factors are directly related to the chemical structure 

of the supports. Modern methods, mostly adapted from electronics industry, have recently 

been used for catalyst preparation. These include atomic layer deposition, chemical and 

physical vapour deposition.  

The co-precipitation process [45] is a simultaneous precipitation of more than one 

component to achieve an intimate mixing of the catalyst and support and produce a 

stoichiometrically defined precursor with homogeneous distribution of catalyst 

components that are difficult to obtain by other preparation methods. The process is 

 

 

 

 

7 MoO4 
2-

     +    8H
+      

                           Mo7O24 
6-

    +        4H2O  (2.2.1) 
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performed via two alternative routes, either by dropping the salt solutions into an alkaline 

solution or the opposite way round. However, in multicomponent catalyst preparation, 

heterogeneous product can be obtained under inappropriate conditions due to the 

differences of the solubility of the product components. An example of this technique is 

the co-precipitation of metal ions with aluminium ions to produce a precipitated alumina 

gel containing the metal hydroxide. This is can be achieved via calcination which produces 

a support with active component dispersed throughout the bulk as well as at the surface. 

Co-precipitation is generally a simple method which does not require sophisticated 

instrumentation and low cost raw materials can be used. Very fine particles with high 

chemical homogeneity and high reactivity can be obtained. Calcination and sintering 

temperatures can be relatively low. 

The deposition precipitation (DP) [46, 47] method is an alternative procedure which 

involves placing the support in contact with an aqueous solution of metal compound, the 

pH of which can be raised by the addition of a base, so that upon heating, oxidic precursor 

particles are formed on the support. Alternatively, it can also be performed by laying down 

the active components on the exterior surface of a support. One means by which this 

process may be performed is the preparation of catalysts by sputtering, which involves 

condensing the metal vapour onto an finely dispersed support. However, as this process 

requires a high vacuum, the technique is probably only useful for the preparation of 

‘model’ catalysts. In liquid phase, the process can be achieved by the deposition of a metal 

sol onto a suspended support. Particle size and density on the substrate can be controlled 

by various factors including the concentration of metal compound, the type of support, the 

base, the reaction pH, the temperature and the time of reaction.   

 Most of the catalysts used in this thesis were prepared by the impregnation.  All catalysts 

were calcined in a flow of N2 (BOC, O2 free N2) at 50 ml min
-1

 for 2 h at 450 
o
C prior to 

reaction. 

CaO/SiO2, Pd/MgO/SiO2 catalysts (kindly supplied by Dr. Joe Gamman) were prepared by 

dissolving the exact amount in the minimum amount of distilled water before addition to 

the silica support. The amount of the nitrate precursors added was calculated in order to 

give a 5 wt% metal loaded catalyst. The catalyst was then dried in an oven overnight at 373 

K. 

MgO catalysts were prepared from two different precursors since the morphology, and 

hence resultant catalytic activity is known to be strongly dependent upon preparation route 
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[48, 49].  Magnesium hydroxide and magnesium hydroxycarbonate precursors were used 

as described elsewhere in the literature [48, 49].The magnesium hydroxide (Merck) 

derived catalyst was prepared by calcination in static air at 450 °C for 24 h and at 800 °C 

for a further 24 h. The magnesium hydroxycarbonate (Merck) derived catalyst was 

prepared by  suspending  in 750 ml distilled water, stirred at 70 - 90 °C for 30 min, and 

then filtered and dried at 150 °C for 16 h  and calcined at 450 °C for 24 h in static air,  and  

at  800 °C for a further 24 h. 

5% Li-MgO catalyst was prepared by dissolving 4.5 g LiCl (Aldrich, 99%) in water (720 

ml). The solution was then impregnated onto MgO, dried at 150 °C for 16 h and finally 

calcined at 800 °C for 3 h. 

KNO3/Al2O3 and KNO3/ZrO2 were prepared by grinding the support -Al2O3 (Synetix) 

with KNO3 (Hopkin & Williams, 99%) at a given weight ratio in a mortar to mix them.  0.5 

ml g
-1

 distilled water was then added to the mixture. The resulting paste was then kneaded 

for 10 min, dried at 383 K for 12 h and finally crushed to particles. Commercial catalysts 

including ZrO2 (Alfa Aesar, 99.7%), Zr(OH)4 (kindly supplied by MEL Chemicals) and Y-

Zr(OH)4  were also used.  

 

2.3 Catalytic studies. 

The initial stage of the target process is the base-catalysed aldol condensation of acetone to 

DAA (diacetone alcohol). In the second stage, the acid-catalysed dehydration of DAA to 

MO (mesityl oxide) and finally a metal-catalysed hydrogenation of MO to MIBK (methyl 

isobutyl ketone) occurs in the ideal case [50, 51]. The target product MIBK is the 

intermediate of a consecutive reaction in which it is both formed and consumed by 

hydrogenation. Apart from that, a parallel reaction path is possible representing the direct 

hydrogenation of acetone to 2-propanol. Two different functional groups are subjected to 

hydrogenation. The hydrogenation of the highly reactive carbon double bond of mesityl 

oxide (MO) is necessary for MIBK production which is favourable. On the other hand, 

hydrogenation of any carbonyl group negatively affects MIBK selectivity. However, a 

metal site is essential for MIBK production. [52, 53]. The reaction is described in Figure. 

2.3.1:  
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Fig. 2.3.1 Aldol condensation reaction of acetone over base catalyst indicating reaction 

products. 
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Various base catalysts  have been used to catalyse the reaction including 5% CaO/SiO2, 

1% Pd 5% MgO/SiO2, 14% KNO3/ZrO2, 36.5% KNO3/ZrO2, 5% KNO3/Zr(OH)4, 14% 

KNO3/Zr(OH)4, 36.5% KNO3/Zr(OH)4, ZrO2, Y-Zr(OH)4, 5% KNO3/Al2O3, 14% 

KNO3/Al2O3, 36.5% KNO3/Al2O3, Li/MgO, MgO derived from Mg(OH)2 and MgO 

derived from Mg(OH)2.MgCO3. Catalysts initially underwent a pre-treatment process at 

450 
o
C under a 50 mlmin

-1
 flow of N2 as an inert gas for 2 h to remove molecules such as 

water and generate the active sites. Reaction and pre-treatment procedures were normally 

conducted at 5 bar, unless stated otherwise.     

Reactions were generally performed using a feed mixture of acetone and hydrogen and 

were carried out in the continuous flow micro-reactor previously described at  a range of 

temperatures (100 
o
C, 200 

o
C, 300 

o
C, and 400 

o
C) under a 50 ml min

-1
 flow rate of H2 gas  

and 5 bar pressure for 24 h. The pump rate of acetone was 0.0415 ml min
-1

. The first 

sample of the product was collected after 18 h of the reaction. Subsequent samples were 

taken every hour, and the composition and time on stream for the collected samples were 

recorded. The collected samples contained a range of products namely: DAA (diacetone 

alcohol) as an initial product formed by the base-catalysed aldol condensation of two 

molecules of acetone, mesityl oxide (MO) produced from an acid-catalysed dehydration of 

DAA and MIBK (methylisobutylketone) formed by a metal-catalysed hydrogenation of 

MO. Further by-products could be formed depending upon reaction conditions. These 

include 4-methyl-2-pentanol, 2,6-dimethylheptan-4-one and the trimeric species phorone 

and isophorone. Samples were then analysed using GC and GCMS. Conversions and 

selectivities were calculated using the calibration curves for standard compounds (see GC 

section) obtained from GC analysis. From the calibration curves, the concentration of each 

component can be calculated from the GC peak area as follows: 

Concentration (mol/L) = Area * (Calibration Chart x co-efficient) + (Calibration Chart y-

int). Concentration was then used to calculate moles of product: 

Moles of product = (Sample volume (mL) /1000) * Concentration (mol/L). 

Moles of C atoms in product = Moles of product * Number of carbon atoms in product 

molecule. 

Conversion (%) =   Sum (Moles of C atoms in product) / carbon feed. 

Selectivity (%) = Moles of product of interest/ Sum (Moles of all products). 

Reaction rate = ((Acetone feedrate * Conversion) / Catalyst weight)/100. Similar equation 

was used to calculate the surface area normalised conversion using the total surface areas. 
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The reaction was significantly influenced by a number of variables. The catalyst pre-

treatment process is important in order to activate the catalyst and consequently attain 

reliable results. The influence of pre-treatment variables has been investigated and 

examples of their influence is given below. Examination of the effect of the pre-treatment 

procedure upon the reaction has been determined by running an experiment without a pre-

treatment process over the 5% CaO/SiO2 catalyst. The result has been compared to that 

with the pre-treatment process. The comparison demonstrated that the conversion of 

acetone  following pre-treatment was initially higher than that without pre-treatment, 

although at longer times on stream there was little/no difference between the two values 

(Fig. 2.3.2). 

 

 

Fig. 2.3.2 The effect of the pre-treatment process upon acetone conversion (300 
o
C, 5 bar 

pressure). 

 

Furthermore, the influence of the temperature of the pre-treatment process has been 

examined at two different temperatures (350 
o
C and 450 

o
C) on the 36.5% KNO3/Zr(OH)4 

catalyst. The experiments possibly indicate a very minor enhancement in conversion and 

higher MO selectivity at 350 
o
C than the catalyst pre-treated at 450 

o
C (Fig. 2.3.3), 

possibly due to loss of surface area. However, caution must be applied in making this 

comparison since the small difference at very low conversions observed may be prone to 

very large comparative errors. 
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Fig. 2.3.3 The effect of the pre-treatment temperature on acetone conversion at 350 
o
C and 

450 
o
C after 18 h of time on stream. 

 

 

Fig. 2.3.4 The effect of the pre-treatment temperature on product selectivity at 350 
o
C and 

450 
o
C after 18 h of time on stream. 
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The reproducibilitly has also been demonstrated over a 5% CaO/SiO2 catalyst, at 200 
o
C 

reaction temperature and 5 bar pressure. Predictably, similar conversions values were 

achieved (Fig. 2.3.5): 

 

 

Fig. 2.3.5 Reproducibility test over 5% CaO/SiO2 catalyst, at 200 
o
C reaction temperature, 

5 bar H2 pressure, TOS > 18). 

Upon duplication, conversions were found to be generally reproducible within 12% of the 

mean and selectivities within 30% of the mean. 
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Chapter 3 

 

Catalyst precursor and doping effects upon MgO catalysed acetone conversion. 
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3.1 Introduction. 

3.1.1 MgO. 

Magnesium oxide is the most widely used alkaline earth oxide as a catalyst [1, 2], catalyst 

support [3-5], and modifier or promoter [6-8] in heterogeneous catalysis. MgO has strong 

basic properties that are responsible for base-catalysis in a large number of organic 

reactions. Nano-crystal MgO powders have potential applications for catalysis owing to 

strong surface basicity and high surface area [9]. Magnesia is one of the strongest basic 

oxides due to the presence of low co-ordinate O
2-

 anions [10]. However, it has also been 

proposed that surface basic hydroxyl groups are the active sites in the liquid phase aldol 

condensation of acetone over magnesium oxide [11]. 

MgO has been effectively used as a catalyst in numerous organic reactions, such as self-

Michael addition to form methyl diesters [12], the Tishchenko reaction [1], the Meerwein-

Ponndorf-Verley reaction [2], dimerisation of ethanol to butanol [13], self-condensation of 

propanol [14], benzylation of aromatic compounds [15], transesterification [16], aldol 

reaction [17], and Michael addition of  malonates to enones [18].  

The surface structure of MgO has been extensively investigated by Coluccia and Tench 

[19]. Several types of Mg–O ion pairs with different coordination numbers are evident 

(Fig. 3.1). Ion pairs of low co-ordination number exist at corners and edges of the MgO 

(100) plane or on high Miller index surfaces [20]. These different ion pairs appeared to be 

the responsible for the various basic sites that are generated upon heating. The doping of 

alkali metal with metals of larger cationic radius and lower cationic charge than Mg
2+ 

such 

as Li
+
, Na

+
, K

+
, and Cs

+
 imparted high catalytic activity to MgO in acrylonitrile synthesis 

from methanol [21]. 

 

 

Fig. 3.1 Low coordination ions exhibited on the MgO surface [19]. 
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MgO is often used as a model system as it can be easily prepared in the form of high 

surface area powders with microcube particles terminated by (100) faces which contain a 

series of morphological defects including terraces, kinks, and steps [22]. The surface can 

be described by families of well-defined low coordination sites of Mg
2+

 and O
2−

 ions [23]. 

Five co-ordinate ions are exhibited on crystallite surface planes, four co-ordinate ions upon 

crystallite edges and three co-ordinate ions on cube corners. The lowest coordination 

number ion pairs are reported to be able to promote the heterolytic dissociation of X–H 

bonds (where X = H, O, N, S, C) [24–26] and they also can be reacted with NO [27], CO 

[28, 29] and carbonylic compounds [30], whereas 5 co-ordinate ion pairs on the (100) 

surface are essentially inert. The lowest coordination sites are responsible of the reactivity 

of MgO towards adsorbed molecules  promoting the formation of usual species such as 

polymeric oxoanions produced from the reaction with CO [31] or the reversibility and 

irreversibility of some reactions such as the heterolytic dissociation of H2 (or D2) [32]. 

Therefore the presence of multiple cation sites, which result from ensembles of Mg
2+

 ions 

possibly located on adjacent corners and/or edges, is an essential feature for the formation 

of adsorbed species [33] 

It has been observed that the properties of various coordination sites of MgO strongly 

depend on the morphology of the microcrystals [34]. MgO can be prepared by simple 

thermal decomposition of precursors such as Mg(OH)2, MgCO3, Mg(NO3)2. Morphologies 

and properties of the synthesised MgO differ and strongly depend on the synthesis route 

and processing conditions. Therefore preparation conditions including time of pre-

treatment, calcination temperature, and gas environment can substantially affect the 

catalytic behaviour and properties of the resultant MgO. Magnesium acetate and 

magnesium carbonate precursor are reported to be the most effective sources of MgO [35]. 

Aramendia et al found that magnesium oxide prepared from a commercial magnesium 

hydroxide is the most active catalyst for Meerwein-Ponndorf-Verley reaction of 

cyclohexanone with isopropyl alcohol [2]. Another study documented the application of a 

nanoscale high surface area MgO prepared from Mg(OCH3)2 by use of autoclave 

hypercritical drying (aerogel) procedure [36]. Aerogel prepared MgO exhibited higher 

reactivity than commercial and conventionally prepared MgO in Wadsworth–Emmons 

reactions [15]. MgO showed high activity of self-Michael addition of methyl crotonate 

[12]. In the same study, the authors found that MgO prepared from the decomposition of 

carbonate had a higher surface area and gave typically 70% greater selectivity than lower 
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surface area MgO prepared from the oxidation of metal ribbon in air. Lapszewicz and 

Jiang measured the basicity of some metal oxide catalysts including MgO and -Al2O3 

using the CO2-TPDE technique and they found that MgO was more basic than -Al2O3 and 

several types of basic sites with different strength existed [37]. Negatively charged oxygen 

anions (such as O
-
 or O

2-
) are responsible for enhanced basicity.  

MgO is not generally a support of choice in catalysis because of its low surface area as 

well as its tendency to reduce metal reactivity [38, 39]. Conversely, MgO has shown some 

interesting support performances in terms of its ability to stabilise some metals, preventing 

sintering and volatilization, and to improve the reactivity of Au metal in isotopic oxygen 

exchange and other reactions [40-43]. The favourable support effect of MgO is likely to be 

related to the formation of a metastable phase formed as a result of phase transformations 

[44] during catalyst preparation and pre-treatment. MgO is exclusive among common 

catalyst supports since it can react extensively with water. MgO has been reported as an 

active catalyst for certain reactions (e. g. H2 -D2 exchange) [45] after suitable pre-

treatment. 

The transformation of MgO (periclase) to Mg(OH)2 (brucite) and its reverse, which are the  

basis of the synthesis of high surface area MgO powders, have been  extensively studied 

[46]. Thermal expansion data for the layered Mg(OH)2 lattice up to 100 °C has been 

previously documented [47].The thermal expansion measurements were performed up to 

and beyond the on-set of the dehydration. The  dehydration  reaction  of  brucite,  

Mg(OH)2, to  periclase,  MgO, was investigated on both  single  crystal and poly-

crystalline material. The cubic MgO formed as final product is always  microcrystalline  

with  grain  sizes  ranging  from  75 Å or  less when  single  crystals  are  decomposed,  to  

100 - 600 Å for  poly-crystalline  material  [48].  

Bussem  and  Koberich [49] have reported that  the  MgO  crystallites have some degree of 

preferred  orientation  with  respect  to  the  original  Mg(OH)2 since the (001)  plane of 

Mg(OH)2 was converted to the (111) plane in MgO. The hexagonal 

[..OH/Mg/OH/OH/Mg/OH...] layer sequence in brucite occupied (001) plane transforms 

into the cubic [...O/Mg/O/Mg/O...] sequence on periclase along the [111] direction.  The 

(100) direction of Mg(OH)2 becomes  the  (110) direction  in MgO. Both MgO and 

Mg(OH)2 have close packed structures which can be described as a topotactic relationship 

that involves an overall arrangement in the stacking sequence of the anion layers and a 

redistribution of the cations.  In industry, transformation from low surface area MgO (15-
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30 m
2
 g 

-1
) to high surface area MgO (100-300 m

2
 g

-1
)  can be substantially undertaken by 

hydrating MgO and then calcining at temperatures  above 400 
o
C, whereas catalysts 

prepared from MgO mostly have lower surface areas comparable to that of the starting 

material [50].  

Brucite has the trigonal CdI2 structure [51] in which each Mg
2+

 ion lies in a plane and ia 

surrounded by distorted octahedral OH ions in a sandwich arrangement (Fig. 3.2): 

  

 

Fig. 3.2 Crystal structure of brucite (small spheres = H, intermediate spheres = Mg, and 

large spheres = O). The O-H bonds are stacked along the c direction [51]. 

 

The O-H bonds are perpendicular to these planes. The layers of brucite are held together by 

weak interlayer forces and are stacked along the c direction.  

Some studies have investigated the morphology of magnesium oxide [52-54]. MgO has the 

sodium chloride structure and electrostatic considerations dictate that the (100) face, which 

contains equal numbers of magnesium and oxygen ions, is the only stable exposed face. In 

some instances higher index mean planes can be exhibited in MgO surfaces. These mean 

planes comprise aggregates of MgO microcublets which are assembled to form rough 

surface structures as shown in the figure taken from work by Moodie and Warble [52] and 

which is shown below (Fig. 3.3): 
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Fig. 3.3 High index plane aggregates of MgO microcublets [52].  

In addition to higher index mean planes, it is possible to form metastable higher index 

planes as intermediates in the decomposition of some precursors. This has most commonly 

been observed/described when using brucite as the MgO precursor. In such studies, it is 

found that the morphology of magnesium oxide produced is dependent on the rate and the 

temperature at which the hydroxide is calcined. Heating of Mg(OH)2 at about 300 
o
C 

results MgO crystallites with small crystal size which exhibit metastable surface planes 

where the orientation of (111) and (110) planes relate to the basal and prismatic faces of 

the parent hydroxide lattice respectively [55, 56]. At low heating rates up to low 

temperatures (300 °C) Mg(OH)2 transforms into an assemblage of undulating sheets 

consisting of cubes of MgO joined near the edges, and with (111) axes normal to the plane 

of the sheet. The edges of the cubes are two to three unit cells in length and the overall 

variation in orientation is about 1°. This type of morphology was mainly generated under 

the mildest calcination conditions applied. On the other hand, calcination at higher rates of 

heating up to 600 
o
C gave a similar morphology, but with fracture along cube edges which 

breaks the primary structure into attached rafts made up of many cubes with (111) 

orientation [57]. The (111) surface termination plane resulting from the thermal 

decomposition of Mg(OH)2 has been proposed to be stabilised by the presence of residual 

surface OH groups. A theoretical study has shown the following relationship (Fig. 3.4) 

[58]: 
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        Fig. 3.4 MgO surface energy vs OH surface coverage of MgO(100) and MgO(111) [58]. 

Electron micrographs of various samples of MgO prepared by different methods from 

different precursors have been described in the literature [59]. MgO ribbon residue sample 

after use as a catalyst exhibited cubic morphology and exposed large (100) faces (Fig. 3.5).  

The side length of the cubes was in the range of 1000-2000 Å and there was a wide size 

distribution. The corners of crystallite appeared to be rounded, probably as a result of 

etching with water. 

 

Fig. 3.5 Transmission electron micrograph (TEM) image of non-calcined MgO ribbon 

residue after use as a catalyst illustrating the predominant cube morphology of the 

crystallites and the rounded cube corners. (b) Phase contrast electron micrograph of MgO 

ribbon residue the  post-reaction sample. The arrowed area indicates the high index surface 

structure composed of [100] type microsteps [59]. 
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For MgO prepared from thermal decomposition of hydroxide precursor 800 
o
C in air, the 

size of the crystallites was between 200-400 Å and some crystallite alignment was also 

observed with the (100) face similar to the ribbon residue sample being exhibited (Fig. 

3.6). 

 

Fig. 3.6 Transmission electron micrograph of MgO prepared from Mg(OH)2 prior to use as 

a catalyst and the distinctive "blocky" morphology of the individual crystallites is observed 

[59]. 

 

The crystallites of MgO that were prepared by calcining of a magnesium hydroxycarbonate 

(basic carbonate) precursor at 800 
o
C have an average size between 200-400 Å, which is 

similar to the crystallites of MgO derived from Mg(OH)2 under similar conditions (Fig. 

3.7). Nevertheless they were smaller and also they exhibited a less regular shape than those 

for the MgO ribbon residue (Fig. 3.5). They had a greater preponderance of microfacetted, 

higher index mean planes such as (111) and (110) than other two samples. These surface 

structures are similar to those described by Moodie and Warble [52] which were discussed 

earlier. When the calcination temperature was increased to 1100 
o
C, the resultant 

crystallites presented similar morphology to the ribbon residue sample (Fig. 3.5) and the 

average crystallite size was substantially enlarged to 2000 – 4000 Å. 
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Fig. 3.7 a) High magnification transmission electron micrograph (TEM) image of MgO 

derived from Mg(OH)2.3MgCO3 and calcined at 800 
o
C in reaction atmosphere. The 

irregular shapes of the individual crystallites are increased. b) Transmission electron 

micrograph (TEM) image of MgO prepared from Mg(OH)2.3MgCO3 and calcined at 1100 

o
C prior to use as a catalyst [59]. 

 

The addition of water to hydroxide and basic carbonate derived materials can be used to 

modify MgO catalysts. Impregnation alters morphology and increases surface area. The 

post-treated material exhibited a higher preponderance of (100) planes (Fig. 3.8). 

 

 

Fig. 3.8 a) Transmission electron micrograph (TEM) image of wet impregnated MgO 

prepared from Mg(OH)2.3MgCO3 precursor and calcined at 800 
o
C prior to use as a 

catalyst. b) Transmission electron micrograph (TEM) image of a wet impregnated MgO 

prepared from Mg(OH)2 prior to use as a catalyst. The crystallites are arranged in 

hexagonal platelets [59]. 
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Accordingly, although a fairly simple oxide, it is possible to produce MgO with different 

morphologies with a range of surface area using fairly simple preparation methods. 

Significant differences in the catalytic behaviour of such materials can be anticipated and 

have indeed been reported in a number of cases, e.g. [59, 78, 88]. Metastable MgO (111) 

planes, produced by decomposition of Mg(OH)2 at lower temperatures, may be expected to 

exhibit especially enhanced reactivity since they are polar and comprise only 3 co-ordinate 

ions (as opposed to the 5 co-ordinate ions which comprise MgO (100) terrace faces, with 

the edges being 4 co-ordinate and only corner sites being 3 co-ordinate) as shown in the 

scheme below (Fig. 3.9): 

 

Fig. 3.9 Ideal MgO surface structures (A) (111) surface plane (B) microfacetted (100) 

planes. 

On this basis, it can be anticipated that the preparation variables (and in particular the 

precursor) used for MgO synthesis may have a significant impact upon its performance as 

a base catalyst in acetone condensation. 

 

3.1.2 Li/MgO. 

 In order to improve the catalytic performance of MgO, several workers have promoted the 

single component metal oxides by adding metal cations. Ueda et al [60] reported that 

promotion of magnesium oxide with Cu
2+

, Ni
2+

, Cr
3+

, and Fe
3+

 enhances activity for the 

dehydrogenation of isopropyl alcohol. Other work showed that the addition of Li
+
 to MgO 

creates high-strength basic centres and suggested that and this probably can be attributed to 

the effect of ion size which causes the structural promotion of the MgO lattice. Kurokawa 

et al [61] have extensively studied the dehydrogenation of isopropyl alcohol over 

magnesium oxide promoted by Fe
3+

, Mn
2+

, Cd
2+

 or Cr
3+

, A1
3+

, Ni
2+

, and Cu
2+

. The authors 
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found that the basicity of magnesium oxide was considerably increased by promoting with 

metal ions with ionic radius slightly larger than that of Mg
2+

, such as Ni
2+

 and Cu
2+

. They 

explained that such incorporation results in an expansion of the Mg-O bond length and in 

the localisation of an electron on the oxygen atom which subsequently enhances the solid 

base property. However, the addition of metal ions with far larger ionic radii, such as Cd
2+

, 

did not enhance surface basicity.  

Li-promoted MgO was also studied extensively for methane oxidative coupling [62] and 

[Li
+
O

-
] centres, which consist of O

-
 ions adjacent to substitutional lithium ions, were 

proposed to be the active sites for abstracting a hydrogen atom from methane to form the 

methyl radical which is the reaction intermediate. The concept behind the Li-MgO system 

is again based on the effect of the ion size. The ionic radius of Li
+
 is similar to that of Mg

2+
 

ion and thus easy replacement of Mg
2+ 

by Li
+
 in the MgO lattice may occur. Substitution of 

a divalent ion by a monovalent one in the MgO matrix requires the formation of O
-
 anions 

in order to maintain electroneutrality, resulting in the formation of [Li
+
O

-
] species, which 

are the responsible for the generation of basic sites. The oxygen anion O
-
 active species 

may be formed via two ways. In undoped MgO, oxygen active species can be generated 

from reaction of oxygen molecules with intrinsic vacancies. However, formation of active 

species in Li-MgO are produced by reaction of Li
+ 

ions with molecular oxygen [63]. 

Aparicio et al [64] found that in alkali promoted alkaline earth oxide materials, alkali 

metals can form stable bulk peroxides, and surface peroxide species produced by 

adsorption of gaseous diatomic oxygen may dissociate to form the active sites. The 

cleavage of the O-O bond can determine the overall activity by forming the active O
-
 ions. 

Other studies showed that formation of active species on the ionic surface of Li-MgO 

catalyst occurred by reversible dissociative chemisorption of gaseous O2(g). Oxide O
-
, 

superoxide O2
-
, and [Li

+
O

-
] were proposed to be the kinetically relevant species on the 

catalyst [65]. The addition of Li
+
 to MgO increases mobility of lattice oxygen and thus 

decreases the activation energy of bulk oxygen diffusion from 63.50 kcal/mole for pure 

MgO to 14.60 kcal/mole for Li-MgO in the oxidative coupling reaction of methane [66]. 

Doping of lower valence cations into bulk oxides may generate lattice defects and increase 

oxygen mobility. The resultant oxygen vacancies react with gaseous oxygen to form O
-
 

ions. Tanabe et al [67] have studied the influence of the addition of twelve different metal 

cations to magnesium oxide on the activity in the liquid-phase condensation of acetone at 0 

°C and they concluded that Na
+
, Zn

2+
, and Zr

4+
 increased the catalytic activity. Di Cosimo 
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et al [68] investigated the vapour phase condensation of acetone at 300 °C over magnesium 

oxide promoted with 0.7 - 1.0 wt% of alkaline (Li
+
, Na

+
, K

+
, and Cs

+
) or alkaline earth 

(Ba
2+

, Ca
2+

, and Sr
2+

) metal cations and they found significant impact of doping on the 

aldol condensation reaction of acetone and that the reaction was controlled by surface base 

property. They also observed that , -unsaturated carbonyl compounds were formed by 

consecutive condensation of acetone via aldol and/or Michael addition condensation 

reactions. In addition to modifying the surface catalytic properties, the inclusion of dopants 

can also exert physical influences, e.g. modification of surface area, etc. Dopants may also 

lead to surface modifications in which co-ordination numbers are changed. Martin and 

Mirodatos revealed that doping 20% mole of Na
+
 into MgO caused a remarkable reduction 

of surface area from 70 m
2
/g to 1 m

2
/g [69]. Another study conducted by Iwamatsu et al 

showed also that the addition of alkali to MgO results in sintering and loss of surface area 

[70]. Parida and Rao have shown that preparation methods had significant impact on the 

surface area of Li
+
-MgO prepared by different methods. They also reported that yield and 

selectivity for C2-hydrocarbons, in the oxidative coupling of methane over Li-MgO 

prepared by precipitation methods, were decreased by increasing surface area, and by 

decreasing basicity. They proposed that the alkali dopants may lead to an increase of 

basicity due to the dispersion of univalent alkali ions on the divalent surface which results 

in formation and stabilisation of O
- 
ions [71].  

Several theoretical studies have considered clusters of Li-MgO [72, 73].  Anchell et al [74] 

described the clusters of (MgO)n and LiMgn–1On (n= 4 and 6) as models for MgO and Li-

MgO surfaces. They found that the lower co-ordinated lattice O species were more reactive 

and that homolytic fission of the C–H bond occurred on Li-MgO whereas heterolytic 

fission was achieved on MgO during methane activation. Similar results were reported by 

Orlando et al [75] that homolytic fission of the C–H bond was particularly favourable on 

the non-defect Li-doped MgO (001) surface when calculated using a periodic model 

surface. Relaxation and reconstruction of the lattice on MgO or Li-MgO during adsorption 

and a surface reaction were not considered, although relaxation of the lattice influences the 

stabilization of surface-adsorbed species. A significant relation between the co-ordination 

number of the reaction site and the reactivity has been reported by others [76]. A lower co-

ordinated atom is usually more reactive and an extremely high reactivity is often 

accompined by a lower selectivity in reaction in which intermediate products are targeted. 

The co-ordination numbers of reaction sites that can be presented on the surface are three, 
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four, and five as discussed above for pure MgO. Lintuluoto et al [77] have reported a 

model for the Li/MgO surface which includes all possible coordination numbers. They 

took into account the effects of relaxation and reconstruction of the lattice. The cluster has 

considered the relation between the reactivity and co-ordination numbers of the reaction 

site and the dopant Li atom. They chose the Mg9O9, Mg8O9Li clusters as MgO and 

Li/MgO surface models and the resultant modifications induced by doping are summarised 

in Figure 3.10 below:  

 

Fig. 3.10 a) Model of MgO and Li-MgO clusters illustrating optimized bond distances (Å) 

and net atomic charges for a) Mg9O9, b) Mg8O9Li. Values in parentheses denote net atomic 

charges [77].  

The morphological effect of lithium addition to MgO has been previously discussed in 

experimental studies. Hargreaves et al [78] have investigated the morphological role of Li
+ 

doping MgO by transmission electron microscopy. They observed that the addition of 

lithium dopant to MgO increases the catalyst particle size and thus decreases surface area. 

Lithium also has a significant effect on the morphology of MgO. The characteristic 

morphologies resulting from the use of different precursors were lost on lithium doping 

and extensive dislocation networks were formed as discussed/shown below (Fig. 3.11). 

The grain growth possibly resulted from the oxygen vacancies that are introduced to 

maintain charge balance of Mg
2+

 substitution by Li
+
. These vacancies assist diffusion 

within the lattice and thus increase sintering. The original precursor shapes of grains were 

changed and became almost spherical exposing mean higher index planes. They also found 

that adding lithium ions to MgO inhibits phase transformation and the main phase is cubic. 

Irregular grain boundary dislocation arrays also occur. Other dislocations are formed in the 

bulk as observed by systematic dislocation contrast imaging and these were identified as 
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the ½(110) type. It was suggested that they are probably caused by the segregation of 

lithium to the dislocation core since the defects are not annealed out by irradiation with the 

electron beam in microscope and by calcination at high temperature. They also concluded 

that lithium oxide did not form since lithium can be distributed throughout the MgO 

crystallites either by segregating at dislocation cores or by substituting on the surface of 

MgO. It was stated that is probable that the dislocations formed are related to the active 

sites for reaction. The termination of the dislocations at the MgO surface is expected to 

result in a net charged region of higher reactivity. 

  

  

Fig. 3.11 Transmission electron micrograph (TEM) of about 5 wt% Li2CO3 doped MgO 

that prepared from Mg(OH)2  prior to use as a catalyst. Individual dislocations within 

crystal bulk (area D) and a grain boundary dislocation array (area G) are obviously formed 

[59]. 

 

Since they are found to be immobile, this suggests that the dislocation is pinned by lithium 

on segregation to the dislocation core. This lithium pinning plays significant part of the 

formation of [Li
+
O] centres which are possibly the active sites of the oxidative coupling of 

methane since direct relationships can be evidenced between [Li
+
O

-
] and the rate of 

methane activation [79]. 

Other workers [80] demonstrated in their SEM study of Li-MgO catalysts that the 

morphological properties of MgO were alerted by adding an excess amount of lithium 

dopant. Undoped MgO particles essentially exhibited a flake structure and after lithium 

addition (up to 6.1 wt%), the flake structure is preserved with agglomerates being 

surrounded by a diffuse structure. When the lithium dopant amount exceeded 6.1 wt%, the 
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surface was highly saturated by alkali metal and became almost heterogeneous with a 

molten phase being observed although traces of flake structures remained. They concluded 

that surface di-oxygen species, such as peroxide, would be present in the lithium-doped 

MgO catalysts. The active species were proposed to be [M
+
O

-
] centres produced by Li

+
 

substitution into the lattice and this process was associated with an increase of point defect 

concentration. At a higher Li
+
 amount the outer surface layers are mainly composed of 

Li2CO3. Korf et al observed high active sites of Li-MgO system for the oxidative coupling 

of methane were formed by the decomposition of the Li2CO3 dopant [80]. In a study of 

different MgO/CaO catalysts, 85% loading of MgO/CaO presented the strongest basicity 

[81], demonstrating the influence of alkaline earth metal ion addition also. 

It is clear that the addition of lithium ion dopant can have a profound effect upon the 

morphological and defect properties of MgO. As anticipated this results in modified 

catalytic activity. Whilst, arguably, most attention has been directed towards the oxidative 

coupling of methane in this regard, effects have been observed for other reactions. Hence, 

it can be anticipated that the lithium doping would be an area of interest for acetone 

conversion and also that morpgological features of MgO may play a role. 

 

3.2 Results and discussion. 

3.2.1 MgO. 

In a view of the pronounced effects of MgO morphology upon its catalytic activity, as 

detailed in the introduction, catalysts have been prepared by different routes. 

The precursors used are Mg(OH)2 and Mg(OH)2.3MgCO3 which have been shown to yield 

MgO samples of very different morphology in previous studies [59].  

The powder x-ray diffraction patterns of pre-reaction sample derived from the different 

precursors is presented in Figure 3.12. Prior to reaction, it can be seen that, as expected, 

MgO is the only phase evident in both samples. Upon comparison of the MgO reflection 

widths in both pre-reaction samples, it can be observed that those for the Mg(OH)2 derived 

MgO are significantly broader. The width of reflections in powder x-ray diffraction 

patterns is governed by a number of potential factors: (i) instrumental broadening, (ii) 

lattice strain and (iii) coherent diffraction domain size. Given that the samples were run on 

the same instrument, the potential influence of differing instrumental effects can be ruled 

out.  
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The most probable explanation for the apparent difference relates to coherent diffraction 

domain size. This effect is governed by the Scherrer relationship: 

   

 d = kb cos  

where d = diffraction domain size. 

            k = the shape constant. 

           = the x-ray wavelength. 

            b = the reflection width. 

            the diffraction angle. 

 

If crystallites are relatively perfect, as may be expected to result from the high calcination 

temperature applied in this study, the diffraction domain size will be the crystallite size of 

the material. Hence, narrower reflections relate to larger crystallites. On this basis, it can be 

suggested that the MgO derived from Mg(OH)2 has a smaller crystallite size, and hence 

larger surface area, than the sample derived from Mg(OH)2.3MgCO3. This is indeed found 

to be the case as shown in Table. 3.1. A similar XRD result has been documented by 

Gulkova´ and Sˇolcova [82] in their study of MgO prepared by various methods under 

different conditions.  

 

 

Fig. 3.12 X-ray diffraction patterns of the pre-reaction samples of MgO derived from 

Mg(OH)2 and Mg(OH)2.3MgCO3 precursors.  
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              Table. 3.1 BET surface area of Mg(OH)2 and Mg(OH)2.3MgCO3 catalysts. 

The CO2-TPD pattern of MgO prepared from Mg(OH)2.3MgCO3 showed three peaks 

which were observed at 90 
o
C, 240 

o
C, and 370 

o
C and which represent the basicity 

characteristics of the sample (Fig. 3.14). The CO2 adsorption isotherms are very sensitive 

to the presence of polar groups or ions on the surface of the solid, such as hydroxyl groups 

[83]. The nature of the basic site in MgO at high temperatures could be attributed to low 

co-ordinate oxygen anions O
2-

 [84]. Different types of OH groups normally exist on 

magnesium oxide surfaces and they can be retained even after calcination at high 

temperatures (around 900 
o
C) [85] (Fig. 3.13): 

 

Fig. 3.13 Various structures of MgO contributing to the observed basicity [85].  

The occurrence of the three regions of CO2-TPDE pattern reveals a distribution of types of 

basic site. These regions are classified based on strength of the basicity [85]. The first 

region is between 100–300 °C relating to weak basic sites, the 300–550 °C region relates 

to medium basic sites, and 550–750 °C represents the strong basic sites [86]. On this basis, 

it can be concluded that only weak and medium basicity could be evidenced on the sample, 

although caution is necessary in this interpretation since the temperature limitation inherent 

to the experienced system used, means that it is not be possible to observe CO2 desorption 

from any very strong sites present. Accordingly, due to this limitation, and also 

instrumental problems, no other MgO samples were investigated. 
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Fig. 3.14 CO2 temperature programmed desorption (TPD) pattern of MgO prepared from 

Mg(OH)2.3MgCO3 catalysts. 

  

 

Fig.3.15 Scanning electron microscope (SEM) images of a) MgO produced from 

Mg(OH)2, b) MgO produced from Mg(OH)2.3MgCO3 precursors. 

SEM images of MgO catalysts prepared from Mg(OH)2 and Mg(OH)2.3MgCO3 precursors 

showed unsymmetrical particles randomly distributed within structures having different 

shapes and sizes (Fig. 3.15). MgO derived from hydroxycarbonate (b) has a more regular 

morphology with larger particle size than MgO prepared from Mg(OH)2.  

The different MgO materials have been evaluated as catalysts for acetone conversion. In 

Table 3.2, it can be seen that there are differences in conversion evident between the MgO 

catalysts. However, the differences in surface area need to be borne in mind. Accordingly, 

surface area normalised conversion data has been calculated for the 18 to 23h time course 
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of the reaction and the results are presented in Figure 3.16. With the exception of the first 

point, it can be seen that surface area normalised rates of conversion are very similar over 

both materials and that the deactivation process also occurs in a similar manner. On this 

bases, it is tempting to conclude that there is no structure –sensitively in this reaction. 

However, consideration should also be given to the reaction selectivity, although this 

parameter is a function of concentration. 

 

 

Table. 3.2 Conversions and selectivities for the aldol condensation reaction over MgO 

prepared from Mg(OH)2, and Mg(OH)2.3MgCO3 precursors at 400 
o
C, 5 bar H2 pressure, 

TOS > 18 h. 

 
 

Fig. 3.16 Surface area normalised rates of acetone conversion at 400 
o
C and 5 bar as a 

function of time on stream of MgO catalysts derived from Mg(OH)2 and 

Mg(OH)2.3MgCO3 precursors. 
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Fig. 3.17 Percentage yields of aldol condensation of reaction of acetone over MgO derived 

from Mg(OH)2, Mg(OH)2.3MgCO3  precorsors at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

 

The main product was MO with maximum selectivity of ca. 88% over MgO derived from 

Mg(OH)2.3MgCO3 and ca. 82% over MgO that derived from Mg(OH)2 (Fig. 3.18). Isoph 

was a significant product over Mg(OH)2 catalyst but with very low selectivity whereas 

both catalysts were slightly selective towards MP. Traces of MIBK were detected over 

both catalysts revealing that the hydrogenation process was limited due to the absence of a 

hydrogenation function. The reaction was also investigated by Di Cosimo et al [88] over an 

MgO catalyst at lower temperature and pressure (T = 300 
o
C, P = 1 atm) and they reported 

that MO was the main product with 67% selectivity. The observation that MgO was 

produced in highest selectivity was also made by Zamora et al [89]. Based on this 

selectivity result, it can be concluded that the MgO precursor has affected selectivities in 

the aldol condensation reaction of acetone and that, therefroe, the reaction is possibly 

structure-sensitive to a small degree. However, it is important to note that there may be 

different impurty contenets between MgO samples prepared from different precorsuors 

[59]. It is important to determine whether phase changes have occurred for the MgO 

catalysts upon reaction. Accordingaly, post-reaction XRD analysis has been undertaken 

and the results are preseneted in Figure. 3.19. 
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Fig. 3.18 Percentage selectivities of the condensation and hydrogenation products of 

acetone on MgO derived from Mg(OH)2 and Mg(OH)2.3MgCO3 precursors at 400 
o
C, 5 bar 

H2 pressure, TOS > 18h. 

 

 

Fig. 3.19 X-ray diffraction pattern of post-reaction samples of MgO catalyst derived from 

Mg(OH)2 and Mg(OH)2.3MgCO3 precursors. 

 

Since the MgO phase is still observed on the both XRD patterns of MgO catalysts that 

prepared from both the Mg(OH)2 and Mg(OH)2.3MgCO3, it is evident that the MgO phase 

is generally stable under reaction conditions. However, small additional reflections in the 

XRD patterns are evident which evidence limited transformation of MgO to brucite 

Mg(OH)2 upon reaction. Since phase transformation may occur to differing extents in the 
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two MgO samples, caution must be exercised in ascribing any catalytic differences solely 

to the role of MgO morphology. 

3.2.2 Li-MgO. 

Since, as stated in the introduction, doping can increase the catalytic activity of MgO it 

was undertaken to determine whether there were any effects upon acetone conversion. 

Accordingly MgO prepared from Mg(OH)2 was doped with 5wt% LiCl. The XRD pattern 

of the resultant material is shown in Figure 3.20. 

 

Fig. 3.20 XRD pattern of the pre-reaction sample of Li-MgO catalyst. 

XRD pattern of Li-MgO confirmed the presence of the MgO phase with no additional 

phases being observed. Pre- and post-reaction BET areas were determined for the sample 

and the results are shown in the table below: 

 

Table. 3.3 BET surface areas of the Li-MgO catalyst. 

The surface area of pre-reacted Li-MgO catalyst was much lower (2 m
2
/g) than the MgO 

precursor and it was observed to increase to 3 m
2
/g upon reaction. The loss of surface area 

upon Li
+
 doping is consistent with the literature and may possibly be ascribed to the role of 

increased oxygen vacancy concentration in enhancing the sintering rate. 
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Fig. 3.21 Scanning electron microscopy (SEM) image of Li-MgO. 

Scanning electron microscopy revealed that there was a random distribution of particles 

and they were in variable shapes and sizes (Fig. 3.21).   

Table. 3.4 Conversions and selectivities, after 18 h of the reaction for the aldol 

condensation reaction over the Li-MgO catalyst at 400 
o
C, 5 bar H2 pressure, TOS > 18h. 

Despite having a much lower surface area, it is apparent that the acetone conversion is 

comparable to that reported for the undoped MgO samples (Table. 3.2) Surface area 

normalised conversion rates have been calculated and are plotted as a function of time on 

stream as shown in Figure 3.22. Upon inspection of the figure, it is apparent that, as 

expected, the normalised activity of Li-MgO is much higher than that for the MgO sample. 

Again, deactivation is apparent. 
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Fig. 3.22 Rate of acetone conversion as a function of time on stream on Li-MgO catalyst at 

400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

Deactivation was probably caused by coke formation. Previous work reported by Di 

Cosimo et al [88] on same the reaction conducted over Li-MgO reported a low conversion 

of 14.2% at 300 
o
C and 1 bar pressure and also that lithium negatively affected the 

catalytic activity of MgO reducing conversion. Product selectivities and yields were 

determined and the results are shown in Figure 3.23 and 3.24. 

 

Fig. 3.23 Percentage yields of the condensation and hydrogenation products of acetone 

over Li-MgO catalyst at 400 
o
C, and 5 bar H2 pressure, TOS > 18h. 
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The maximum yield was achieved for MO as a major product whereas small quantities of 

Isoph and MP have been produced (Fig. 3.23). On the basis of these results, as expected, 

lithium doping does not generate an appropriate hydrogenation site to carry out the 

conversion of MO to MIBK. Since production of Isoph required strong basic sites its 

selective be evidence for the strong basicity of the Li-MgO catalyst. The yield of this 

product is greater than was observed for the non-doped MgO catalysts described earlier, 

which is a possible indication of the increase in basicity generated by Li
+
 doping. The 

differences in conversion between the doped and non-doped catalysts although small, 

needs to be borne in mind, however. It should be pointed out that although the conversion 

of the Mg(OH)2 sample is comparable to the Li-MgO sample, the Isoph selectivity is 

higher in the latter case. 

 

 

Fig. 3.24 Percentage selectivities of the condensation and hydrogenation products of 

acetone as a function of time on stream on Li-MgO catalyst at 400 
o
C, 5 bar H2 pressure, 

TOS > 18 h.  

Although the addition of lithium dopant to MgO catalyst modified selectivity, MO was still 

the main product. The selectivities over Li-MgO catalyst were 74%, 11% and 10% for 

MO, MP and Isoph respectively (Fig. 3.24). However, a very low selectivity of ca. 0.5% 

was observed for DH. This current result is slightly different compared to other workers 

for the same reaction under similar conditions. For example, Martens et al [90] found 

selectivities of MO+Isoph products between 69% and 83% over NaX and NaY zeolites at 

380 °C, whereas the selectivity toward further heavy products was in the range of 8%-27%. 
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Veloso et al [91] investigated the condensation of acetone over Faujasite zeolites with 

different silica/alumina ratios, both in sodium form and exchanged with cesium, at 290 °C 

and they exhibited 20% to 78% selectivity of MO while the formation of Isoph was 

negligible in all cases. Large amounts of MIBK and isobutene were observed in the 

products. Reichle et al [92] have applied thermally activated Mg-Al hydrotalcites to 

catalyse the vapor-phase oligomerisation of acetone in a continuous reactor and they 

showed selectivities toward MO+Isoph of 74% and 91% over the temperature range 308-

330 
o
C depending on the preparation method of the catalyst. Finally, Lippert et al [93] 

studied the self-condensation of acetone over La(OH)3, Ca(OH)2, ZrO2, and CeO2 by 

means of a micro-pulse reactor at reaction temperatures between 200-400 °C. Maximum 

selectivity of 82% was observed for (MO+IP) products with the Ca(OH)2 catalyst at 200 

o
C. The other samples exhibited a lower selectivity of 15% over all temperature ranges and 

further products such as mesytilene and isobutene were observed. Hoodless et al [94] 

found, in their study of 2-propanol decomposition on MgO, that the selectivity of 

dehydrogenation was decreased by the addition of lithium dopant. 

As for the undoped samples, post-reaction XRD analysis was undertaken in order to 

confirm the stability of the MgO phase. 

 

Fig. 3.25 X-ray diffraction pattern for the post-reaction Li-MgO catalyst. 

The post-reaction Li-MgO sample displayed characteristic reflections of MgO, although 

additional low intensity reflections Mg(OH)2 were apparent. This demonstrates that whilst 

the MgO phase is generally stable, a small degree of hydration does occur. This is possibly 

consistent with the enhanced surface area evident for the post-reaction sample. 
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3.3 Conclusion. 

The aldol condensation reaction of acetone has been investigated in this thesis over MgO 

catalysts prepared from Mg(OH)2 and Mg(OH)2.3MgCO3 precursors. This comparison has 

been undertaken to elucidate whether structure sensitivity is operative and the precursors 

used have been chosen because the morphology of the resultant MgO has been extensively 

characterised [95]. 

 

Fig. 3.26 The performance of MgO based catalysts for the conversion of acetone,  at 400 

o
C and 5 bar H2 pressure, TOS > 18 h. 
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Fig. 3.27 The influence of MgO precursor and Li doping yields of the aldol condensation 

reaction of acetone at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

 

 

Fig. 3.28 The influence of lithium doped MgO precursor and Li doping on selectivities of 

the aldol condensation reaction of acetone at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 
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It is undoubtedly the case that lithium dopant has reduced the catalytic activity of MgO 

catalyst and therefore diminished conversion by about 20% compared to MgO prepared 

from Mg(OH)2.3MgCO3 (Fig. 3.26). Similarly, yield of MO has also been reduced by at 

least 20% (Fig. 3.27). A possible explanation for the negative role of Li
+
 doping may be 

related to reduction in surface area as discussed previously. Furthermore, selectivity 

toward the formation of MO was reduced but production of Isoph became more favourable 

(Fig. 3.28). It can be concluded that lithium dopant inhibited MgO activity.   

Comparison of the surface area normalised conversion data takes the differences in surface 

area into account and allows the intrinsic effect of Li
+
 doping to be determined, on 

comparing the data for the MgO and Li-MgO samples. On this bases it can be concluded 

that Li
+
 doping significantly enhances the specific activity of MgO. The generation of 

high-strength basic sites was described by assuming that lithium dopant causes a structural 

promotion of the MgO sample by replacing the Mg
2+

 ions by Li
+
 in the MgO lattice, 

straining Mg-O bonds, and forming [Li
+
O

-
] active species which are the main sites 

responsible of strong basicity. The following reaction is reported to occur on the MgO 

surface: 

 

 

 

 Doping of lithium is reported to increase anion vacancy concentration, and the effects 

upon yield therefore may be directly associated and proportional to the vacancy 

concentration [96].  

 

Surface area normalised conversions of the three catalysts have been considered (Fig. 

3.29). As dscussed, lithium dopant significantly increases the rate of acetone conversion on 

MgO catalysts. 

This high modification after MgO being doped with lithium attributes to the surface area 

effects.  
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Fig. 3.29 Surface area normalised conversions on different MgO catalysts at 400 
o
C, 5 bar 

H2 pressure, TOS > 18 h. 
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Fig. 3.30 Powder x-ray diffraction patterns of all the MgO materials. 

In all cases, MgO is the predominant phase apparent in the XRD patterns (Fig. 3.30). In the 

case of the materials (both pre- and post-reaction) generated from Mg(OH)2 broader 

reflection widths are evident which are consistent with the higher surface area, and 

possibly smaller crystallite size, of this material. Upon reaction, traces of an additional 

phases are present which indicates that whilst the samples are generally stable, they are not 

absolutely so. 
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Table. 3.5 BET surface area of MgO catalyst before and after doping with lithium. 

The surface areas of the MgO catalysts are significantly reduced by lithium doping (Table. 

3.5). The reduction in surface area is most likely a consequence of facilitated sintering due 

to the enhanced concentration of oxygen defect sites. Oxide ion mobility is often rate 

determining in the sintering of oxides and can be facilitated by the presence of oxygen 

containing atmospheres such as CO2 and /or H2O as well as dopants which increase 

vacancy concentration.  

 

Fig. 3.31 The effect of lithium dopant on MgO morphology: a) MgO derived from 

Mg(OH)2, b) MgO derived from Mg(OH)2.3MgCO3 and c) Li-MgO. 

Addition of lithium dopant has been documented to produce morphological effects, 

although these are not readily apparent in the present study in Figure 3.31. In investigating 

structure-sensitivity and the role of Li
+
 doping upon the activity of MgO for acetone 

conversion, the main focus of this chapter, it is evident that the role of morphology and 

doping are limited particularly in the case of the undoped MgO sample. Whilst small 

effects have been observed, these are in contrast to significant effects reported in other 

reactions such as the oxidative coupling of methane.   
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In summary, several significant points can be concluded from studying MgO catalysts for 

the aldol condensation reaction of acetone: 

- the surface area normalised conversion rates were comparable for the MgO samples 

prepared. 

- Despite this, significant differences in product distribution were evident, implying 

that structure-sensitivity is operative.  

- Post-reaction XRD analysis of MgO samples evidenced the formation of traces of 

Mg(OH)2 for both samples. 

- Li
+
 doping dramatically enhances the surface area normalised conversion rates for 

MgO in acetone conversion. 

- Li
+
 doping leads modified product distribution in relation to MgO for acetone 

conversion, reflecting enhanced basicity. 
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4. Introduction. 

4.1. Zirconia. 

Zirconia (ZrO2) is the polymorphic ceramic white crystalline oxide of zirconium. It is a 

promising catalyst and catalyst support due to its high thermal stability, redox properties 

and amphoteric nature [1]. Thus, ZrO2 has been reported as an excellent support for metal 

and transition metal oxide catalysts [2]. It has been used extensively as structural 

component material because of its phase transformation toughening mechanism [3].  

Many of the catalytic applications of zirconia are related to its surface acid-base 

functionality. 

 Zirconia commonly exists in three well-known structural forms (Fig. 4.1) namely: 

monoclinic (-ZrO2), tetragonal (-ZrO2), and cubic (-ZrO2) [4-10].  

 

 

Fig. 4.1 Atomic structure (top) and Zr to O coordination units (bottom) for the three low 

pressure polymorphs of ZrO2: cubic (left), tetragonal (middle), and monoclinic (right). 

Large dark circles denote O atoms, small light circles, Zr [10]. 

 

A high-pressure polymorph form of zirconia (orthorhombic) has been reported. This phase 

is metastable at atmospheric pressure and hence it reverts to the monoclinic form by such a 

mild treatment as grinding in a mortar [11].  

Monoclinic zirconia (m-ZrO2) is the most stable phase under normal atmospheric pressure 

at room temperature. Accurate descriptions of the structures are still not clear although a 

tremendous amount of research has been carried out to elucidate the crystal structures of 

industrially important zirconia. Mazdiyasni et al [12] reported that a cubic phase could be 

http://en.wikipedia.org/wiki/Oxide
http://en.wikipedia.org/wiki/Zirconium
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obtained by the addition of 6.5 mol% yttria, following an alkoxide preparation route. Davis 

et al [14] found that the pH at which the precursor gels are precipitated causes the 

monoclinic or the tetragonal phase to be formed after calcining the material at 400-600 ° C. 

Accordingly, the tetragonal phase could be obtained either at a low pH (between 3-5) or at 

a high pH (13-14), and that the monoclinic phase could be obtained in the middle pH range 

(8-11). Srinivasan et al [15] suggested that the tetragonal phase obtained at pH 13.5 was 

stable even after calcination at 500 °C for 300 h and later found that both the monoclinic 

and tetragonal phases can be attained at a pH of 10.5, depending upon the time taken to 

effect the precipitation [16]. Most recently, Jada and Peletis [17] suggested that the 

solution chemistry of zirconia precursor materials plays a key role in controlling crystal 

structure formation, polymorphic transformation, and crystalline growth. Mamott et al 

[18], using a time resolved dynamic high-temperature XRD technique, have reported on 

the onset of an ordering within the amorphous starting material, and on the progress of its 

conversion into crystalline zirconia. 

 Assignment of the tetragonal and cubic structures can be misleading due to the similarity 

of their lattice parameters (a0 = 0.5124 nm for the cubic, and a0 = 0.5094 nm and c0 = 

0.5177 nm for the tetragonal structures) [19]. Srivastava et al [20] revealed that the 

tetragonal and cubic  phases can be identified by the presence of the characteristic splitting 

of the tetragonal phase refelctions, such as (002), (200), (113), (311), (004), (400), (006) as 

the cubic phase exhibits only single refections at all of these positions. Garvie et al [13] 

used high-angle reflections to distinguish the tetragonal and cubic structures and to 

determine their relative proportions. Miller et al [21] used the (400) region of the x-ray 

diffraction patterns in order to calculate the relative proportions of cubic and tetragonal 

phase in their study of  plasma-sprayed yttria stabilised zirconia coatings. They found that 

the main peaks in this region change from monoclinic to tetragonal and gradually to the 

cubic reflections by increasing the loaded amount of yttria. Separation of the tetragonal and 

cubic peak components in the (400) region was undertaken using "curve resolver" [22] and 

the d values for the (400) and (004) tetragonal peaks were calculated from the curve-

resolved peak positions. The cubic phase forms at a very high temperature (over 2370 °C). 

It transforms into the tetragonal phase at intermediate temperatures (1170 to 2370 °C). At 

temperatures below 1170 ° C, the material transforms to the monoclinic structure.  

Despite of the difficulty in the identification of the zirconia phase structures, the most 

stable form under normal conditions (Baddeleyite) can be described as a complex 
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monoclinic structure (m-ZrO2) with nine internal degrees of freedom and four formula 

units per primitive cell. Each Zr cation is 7-fold coordinated by oxygen. The structure can 

be explained as rotating layers of Zr and O with the coordination of the oxygen atoms 

exchanging between 3 and 4 from one oxygen layer to the next. By increasing temperature, 

a first-order martensitic phase transition occurs, initiating the transformation into the 

tetragonal phase (t-ZrO2). 

 The tetragonal form of zirconia (t-ZrO2) can be viewed as a simple distortion of the cubic 

fluorite structure, with alternating columns of oxygen atoms along one crystallographic 

axis shifting upward or downward by an amount. The structure is defined by two lattice 

parameters, a and c, and it has two formula units per unit cell. Cubic zirconia (c-ZrO2) 

occurs at a very high temperature and possesses the fluorite structure. This structure 

contains only two degrees of freedom, the lattice constant, a, and an internal coordinate, u, 

reflecting the positions of the oxygen atoms along the body diagonal of the cubic cell. An 

irreversible transformation from the tetragonal to the monoclinic phase can be induced by 

mechanical impact such as indentation, fracture, heating and thermal cycles [23]. Zirconia 

stabilisation is essentially controlled by several factors such as the lattice effect, the 

particle size, the presence of water vapour, sintering, and the electronic structure.  

Doping with suitable aliovalent cations stabilises the cubic and tetragonal forms at room 

temperature and gives rise to their functional properties. Oxide dopants such as CaO, MgO, 

CeO, and Y2O3 can be used to partially or completely stabilise the tetragonal and cubic 

structures of zirconia. Partial stabilisation of zirconia (PSZ) occurs by adding insufficient 

cubic phase-forming oxide to the ZrO2. Adding a small amount of stabiliser to pure 

zirconia will transform its structure to tetragonal at a temperature higher than 1,000 ° C and 

a mixture of cubic and monoclinic or tetragonal at a lower temperature [24]. PSZ is usually 

formed by addition of 8 mol% (2.77 wt%) MgO, 8 mol% (3.81 wt%) CaO, or 3 - 4 mol% 

(5.40-7.10 wt%) of Y2O3 [25]. The microstructure of PSZ at room temperature generally 

consists of cubic zirconia as the major phase, with minor precipitation of monoclinic and 

tetragonal phases [26]. 

The improvement in the mechanical strength and toughness due to phase transformation in 

partially stabilised zirconia was first reported by Garvie et al [13]. PSZ is a transformation-

toughened material which may be explained by the micro-crack and induced stress. The 

micro-crack stress depends on difference in the thermal expansion between the monoclinic 

and cubic particles [27]. The difference in coefficient of thermal expansion between 
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monoclinic and cubic phase creates micro-cracks that dissipate the energy of propagating 

cracks. The cubic matrix initiates a compressive force that maintains the tetragonal phase. 

Stress energies from propagating cracks promote the transition from the metastable 

tetragonal to the stable m-ZrO2. The energy used by this transformation is sufficient to 

slow or even stop crack propagation. However, the addition in an of dopant amount higher 

than 16 mol% for CaO (7.9 wt%) [28], 16 mol% for MgO (5.86 wt%) [29], or 8 mol% for 

Y2O3 (13.75 wt%) [30], into the zirconia structure forms fully stabilised zirconia which 

comprises 100% cubic zirconia which is stable from room temperature to 2500 °C.  

There are two essential transformations of zirconia phases either from cubic to tetragonal 

(c-t) [31] or from tetragonal to monoclinic (t-m) [32] which occur upon cooling from the 

melting point. Phase transformation of cubic to tetragonal in ZrO2 ceramics is similar to 

transformations in steel. The transformation involves lattice rearrangement and adjustment 

of chemical composition toward the equilibrium state [33]. The lattice rearrangement from 

the cubic to tetragonal structure requires dislocation of oxygen ions in order to increase the 

parameter of the c-axis and decrease the parameters of a and b axes.  

The transformation to monoclinic during the cooling process starts in the temperature 

range between 1000–650 °C, below this temperature full transformation occurs. On the 

other hand, during the heating process the transformation initiates at 820 °C whereas the 

full 100% tetragonal phase will be formed above 1170 °C [8]. Transformation from 

tetragonal to monoclinic occurs with volume expansion and shear distortion parallel to the 

tetragonal phase plane. These volume and shear strain developments are substantially 

exhibited in ZrO2-based ceramic materials. They cause an increase in strength and 

toughness of the materials and they also improve their resistance against crack 

propagation. The impact of volume change and shear distortion resulting from the 

tetragonal to monoclinic transformation enhances the reliability and lifetime of ZrO2 

derived materials and leads to the high fracture toughness of tetragonal zirconia [13]. Phase 

transformation from tetragonal to monoclinic is not isotropic. The a and c lattice 

parameters significantly change, while the b value has a negligible change [34]. 

Rashad et al [35] have investigated the effects of thermal treatment on the crystal structure 

and morphology of zirconia prepared by precipitation (CP), citrate gel combustion (CGC) 

and microemulsion refined precipitation (MRP) using XRD (Fig. 4.2 a, b and c ). They 

revealed that amorphous zirconia was observed for calcination at temperatures up to 120 

o
C. By increasing temperature to the range between 500 

o
C and 700 

o
C, the transformation 
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of ZrO2 precursors to the crystalline tetragonal phase occurred. The presence of tetragonal 

phase in the XRD pattern at relatively low temperature was attributed to the fact that the 

specific surface free enthalpy of the monoclinic form was higher than that of the tetragonal 

form. The large surface area of the nano-powder became a thermodynamic barrier for the 

transformation of t-ZrO2 to m-ZrO2.  

 

Fig. 4.2 a) XRD patterns of the produced ZrO2 powders by the CGC method at 120, 500, 

700, 1000 and at 1200 
o
C for 1 and 3h [35]. 
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Fig. 4.2 b) XRD patterns of the produced ZrO2 powders by the CP method at 120, 500, 

700, 1000 and at 1200 
o
C for 1 and 3h [35]. 
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Fig. 4.2 c) XRD patterns of the produced ZrO2 powders by the MRP method at 120, 500, 

700, 1000 and at 1200 
o
C for 1 and 3h [35]. 
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The formation of tetragonal phase at low temperature which occurs in some cases was 

attributed to the presence of hydrous zirconia (ZrO2·nH2O) [36], in which each structure 

unit contains 16 zirconium atoms, 20 non-bridging hydroxo groups, 22 bridging oxide 

bonds and 20 coordinated water molecules. The conversion process at 700 
o
C is described 

by the following equation: 

Heating ZrO2·nH2O up to about 300 
o
C led to the observation of metastable tetragonal 

zirconia. The amorphous hydrous zirconia lost water by releasing water of hydration and 

producing water. Both processes caused a reduction in the BET surface area of the calcined 

solid and a consequent increase in the average particle size. The crystallite sizes of the 

produced powders by the CP method increased from 7.00 nm to 32.90 nm upon increasing 

temperature from 500 
o
C to 700 

o
C. The surface area of amorphous zirconia at 120 

o
C was 

250 m
2
/g and decreased to 230 m

2
/g upon calcining the precursor to 500 

o
C. Further 

calcination to about 700 
o
C caused an additional reduction of the surface area to 180 m

2
/g 

which then diminished to 20 m
2
/g when the temperature reached 1000 

o
C. For the zirconia 

sample prepared by the CGC method, the BET specific surface area of amorphous zirconia 

was 280 m
2
/g and decreased to 210 m

2
/g for the precursor that was heated up to 700 

o
C and 

60 m
2
/g for the sample treated at 1000 

o
C. The BET specific surface area of the sample that 

was prepared from MRP was also 280 m
2
/g then declined to 200 m

2
/g and 45 m

2
/g for the 

precursors annealed at 700 
o
C and 1000 

o
C. The tetragonal phase was then converted to 

pure monoclinic phase by increasing the temperature up to 1000–1200 
o
C for 1h in the case 

of CP and CGC preparation methods. Hydrous zirconia didn’t fully convert to t-ZrO2 since 

about one percent water remained. Further heating caused transformation to m-ZrO2 and 

all traces of hydrous ZrO2·nH2O entirely disappeared, but traces of water persisted to about 

1000 
o
C. The phase transformation was accompanied by a 9% volume expansion. The 

crystallite sizes of the produced m-ZrO2 nanopowders generated from the most intense 

peaks (111) plane were temperature dependent. The crystallite sizes increased from 64.5 

nm to 98.1 nm upon increasing calcination temperature from 1000 
o
C to 1200 

o
C for 

 

 

[Zr16O22(OH)20(H2O)20].xH2O                                [Zr16O22(OH)20(H2O)20] +  xH2O 

[Zr16O22(OH)20(H2O)20]             16ZrO2 + 30H2O 

Naturally dried 

heat 
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zirconia that prepared by the CP method whereas they were increased from 41.2 nm to 

75.9 nm for the ZrO2 powders that produced by the CGC route under the same conditions. 

The tetragonal ZrO2 was converted to the cubic phase by increasing temperature from 700 

– 1000 
o
C for the zirconia powders that prepared by the MRP technique. 

Phase transformation from tetragonal to cubic forms might be attributed to high 

temperature treatment during preparation which caused an exothermic decomposition of 

any carbonaceous residue. The formation of cubic phase zirconia prepared in a 

polyacrylamide matrix was due to the fact that the crystallite size resulting from the 

polymer co-precipitation method was smaller than that of the aqueous co-precipitation 

method which created a considerable number of oxygen vacancies in the bulk and on the 

surface [37]. These oxygen vacancies play a significant role in the stabilisation of 

metastable tetragonal/cubic phase of ZrO2. Crystallisation of the produced m-ZrO2 can be 

increased by annealing the precursor to 1200 
o
C as well as by increasing time of 

calcination. The c-ZrO2 phase is stable at all temperatures up to its melting point at 2680 

o
C. Scanning electron microscopy (SEM) of the ZrO2 nanopowders produced by the three 

different preparation methods (Fig. 4.3) revealed that the precipitated ZrO2 powders which 

were heated at 700 
o
C exhibited tetragonal structure represented as aggregations of fine to 

very fine grains. The grains were varied from spherical to elongated and from angular to 

rounded (Fig. 4.3a). The elongated, angular and spherical shapes were characterized by 

rounded aggregates of larger size in some instances (Fig. 4.3b). The monoclinic phase 

demonstrated two grain types obtained by calcining at 1000 
o
C. The SEM image of ZrO2 

powder which was prepared by the CGC technique and heated to 700 
o
C demonstrated that 

the tetragonal form appeared as dense, uniform, fine to medium grains which were rounded 

in general (Fig. 4.3c) while the monoclinic ZrO2 phase formed at 1000 
o
C was observed to 

be an aggregation of very fine rounded grains (Fig. 4.3d). The SEM micrographs of ZrO2 

powders produced from the MRP method and calcined at 700 
o
C showed that the 

tetragonal phase exhibited elongated and tetragons crystallites. Aggregation of small grain 

generated larger grains in some instances (Fig. 4.3e). c-ZrO2 powders calcined at 1000 
o
C 

showed a flower-like texture of flaky grains which were generally larger than that of 

tetragonal phase (Fig. 4.3.f). 
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Fig. 4.3 SEM micrographs of ZrO2 powders produced by CP (a, b), CGC (c, d) and MRP 

(e, f) methods calcined at 700 and 1000 
o
C [37]. 

Banu´s et al [38] have studied the morphology of zirconia using SEM for samples prepared  

at different temperatures 500 
o
C, 700 

o
C (Fig. 4.4 b, c) and at room temperature overnight 

(Fig. 4.4 a). In general, all SEM images had an arrangement of interconnected surface 

cracks. The sample that was kept at room temperature and left overnight exhibited a 

mosaic-type structure (Fig. 4.4 a). Samples that were calcined at higher temperature 

exhibited flakes and wider cracks due to the shrinkage mechanism which occurred during 

the drying process (Fig. 4.4 b and c). After calcination at 500 
o
C, the samples had black 

colours which turned eventually to white when the treatment temperature reached 700 
o
C 

indicating the removal of the residual carbon compounds.  
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Fig 4.4 SEM micrographs of the ZrO2 after: (a) drying at 25 
o
C, (b) calcination at 500 

o
C 

and (c) calcination at 700 
o
C [38]. 

 

The SEM images of zirconia after incorporation with Co, Ba and K active elements (Fig. 

4.5) showed that the interconnected cracks with flake structure were present in the samples 

(Fig. 4.5 a, d). High magnification of the flake surfaces (Fig. 4.5 c, f) demonstrated some 

differences among the morphologies which might be caused by different solvent 

evaporation rates. A larger size of the flakes was observed after the Co, Ba and K addition 

compared to the undoped ZrO2 (Figs. 4.5 c, b and e).  

 
Fig. 4.5 SEM micrographs of Co, Ba, K/ZrO2 with three different magnifications: (a and d) 

x 1000, (b and e) x3000 and (c and f) x10,000 [38]. 
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Transformation from the tetragonal to monoclinic phase is usually favoured due to the 

relative stability of these two phases which depends on the sum of the free energies from 

the particle surface, bulk and strain contribution [39, 40]. The lower bulk free energy of m-

ZrO2 and the lower surface free energy of t-ZrO2 promote the stability of tetragonal phase 

below a critical particle size, which is estimated to be 10 nm at 298 K. In the absence of 

particle strain, this thermodynamic description can provide the appropriate temperature 

required for the tetragonal to monoclinic phase transformation for the particles ranging 

from 9 nm to 10 m. The phase transformation takes place only if the size of zirconia 

particles is equal to or greater than the critical size determined from an analysis of the 

thermodynamic stability of small particles of tetragonal and monoclinic ZrO2. However, t-

ZrO2 that is larger than the critical particle size can be obtained by taking into account 

factors such as nucleation embryos, domain boundary stresses, anionic vacancies and 

adsorbed cations and anions. The effects of external strain and the adsorbed ionic species 

on the surface free energy of zirconia can be included within the thermodynamic theory for 

the tetragonal to monoclinic phase transformation. The phase transformation of zirconia is 

basically initiated from its surface region and then continues progressively into the bulk 

although the stabilisation of tetragonal phase in the surface region is difficult.  

Xin-Me and Zi-Feng [41] have considered the effects of crystallisation temperatures on 

phase transformation of zirconia. The XRD results showed that amorphous material was 

obtained when the temperature was lower than 150 
o
C, but pure monoclinic phase nano-

sized particles were only produced when the temperature was increased to 180 
o
C (Fig. 

4.6). 
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Fig. 4.6 Effect of crystallising temperature on the crystal phase of zirconia: (a) OH
–

/Zr = 

2.0, (b) OH
–

/Zr = 4.0 [41]. 
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The tetragonal phase gradually initiated upon increasing temperature even though these 

tetragonal phase particles have obvious structural defects and their crystallinity was 

relatively low. The diffraction peaks of the tetragonal phase strengthened clearly and 

crystal particles began to grow when the temperature increased to 150 
o
C. But when the 

temperature was as high as 180 
o
C, the monoclinic phase appeared. Beyond 250 

o
C, the 

phase was a perfect monoclinic phase. The crystal size was developed upon calcination 

from 1.5 nm for the tetragonal phase to 54.2 nm for the monoclinic phase. The influence of 

crystallizing temperature on the morphology of zirconia was strongly related with its 

formation mechanism (Table 4.1). Further frequent collision among ZrOx(OH)y species 

occurred due to the increase of crystallising temperature, resulting in the acceleration of 

surface hydroxyls  condensation and increasing corresponded crystallisation rates. 

Accordingly, mesoporous nano-sized zirconia was changed from an amorphous state to a 

crystalline state. This transformation was accompanied by conversion of the atomic 

arrangement from short range order to long range order. Upon the increase in temperature, 

the crystallite size of the sample was increased and the structure was compacted.  

 

 

     Table 4.1 Effect of crystallisation temperature on crystal phase and size of zirconia [41]. 

 

The XRD result also demonstrated that higher temperature was beneficial for the formation 

of monoclinic phase nano-sized zirconia, and zirconia with a smaller crystallite size of 3.8 

nm could be attained at lower OH/Zr ratio and at 180 
o
C. At higher OH/Zr ratio, 

calcination encouraged formation of metastable tetragonal phase, as did the presence of the 

alkali metal ions while surface defects of the sample were decreased and the crystallinity 

was subsequently increased. Higher crystallisation temperature and lower alkalinity were 

suitable conditions for the formation of the monoclinic phase whilst tetragonal phase 

required higher alkalinity. This observation has also been documented by several authors 

such as Adair et al [42]. Nano-sized zirconia with different phase states and crystal sizes 

could be synthesized by tuning the crystallising temperature and OH/Zr ratio. SEM 
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pictures showing the influence of crystallising temperature upon morphology are shown in 

Figure 4.7.  

 

 

Fig. 4.7 Effect of crystallising temperature on the morphology of zirconia (a, d) 90 
o
C, (b, 

e) 150 
o
C, (c, f) 180 

o
C [42]. 

 

Phase transformations in zirconia have been followed by DTA (differential thermal 

analysis). A “glow exotherm” can be observed for amorphous samples at about 450 
o
C 

(Fig. 4.8) in comparison with crystalline zirconia [41].  

 

 

 

a 

c 

b 

f 

e 

d 
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Fig. 4.8 DTA diagram of zirconia prepared with different OH
–

/Zr ratios [41]. 

 

 

The “glow exotherm” was generated due to the transformation from the high energetic 

amorphous phase to low-energetic crystalline phase which produces energy. The activation 

energy of this transformation was 183.8 KJ/mol which has been calculated using Redhead 

equation: 

where: 

o rd is the rate of desorption of species. 

o NS is the concentration of surface adsorption sites. 

o A is the coverage of species. 

o t is the time. 

o k0 is a pre-exponential factor for the rate constant. 

o T is the temperature (K). 

o n is the order of the desorption reaction. 

o EA is the activation energy (per mole) for the desorption of molecule, 

alternatively, A (per molecule). 

o k or kB is the Boltzmann constant (per molecule). 

o Alternatively, R (=NA kB) per mole. 

o NA is Avogadro's number. 

rd/Ns = -dA/dt = k0 exp(-A/kT) A
n 
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However, the shrinkage of the structure for mesoporous nano-sized zirconia caused by the 

increase of temperature might be attributed to the acceleration of the hydroxyl 

condensation reaction at higher temperature. For the crystalline phases, the deposit rate of 

ZrOx(OH)y solid particles was also accelerated by hydroxyl condensation. The nano-sized 

zirconia tended to deposit at joints of polymeric particles that generated the pore wall 

thicknesses. However, enhancement of crystal size of the product occurred by increasing 

crystallisation rate. The crystal sizes of zirconia prepared at different crystallizing 

temperatures are shown in Table 4.1. From XRD analysis, the diffraction peaks of the 

nano-crystalline sample were relatively wide as would be expected. The initial phase was 

tetragonal with a large amount of defects. When the time of characterisation was increased 

up to 12 h, diffraction peaks of tetragonal phase because apparent. The strength intensity of 

diffraction peaks was slightly improved by expectation of the crystallisation time (Table 

4.2): 

 

Table 4.2 Effect of crystallisation time on the nano-size of zirconia [41]. 

Although zirconia has been widely used as a strong solid acid catalyst by modification with 

WO3 [42], sulfate [43, 44], B2O3 [45] and MoO3 [46], few studies have applied zirconia as 

a solid base catalyst. Several studies have reported the high activity of alkali-modified 

zirconia catalysts for the oxidative coupling of methane [47]. Studies of the Knoevenagel 

condensation of various aliphatic, aromatic and heterocyclic aldehydes with malononitrile 

over sulfate-ion promoted zirconia solid acid catalysts have also been conducted [48]. 

Synthesis of methanol from carbon dioxide was carried out over copper-zirconia catalysts 

[49]. Ga-promoted tungstated zirconia has been used for the isomerisation of n-butane 

[50]. Removal of vehicular exhaust gas pollutants was investigated on zirconia supported 

copper oxide catalyst [51]. The partial oxidation of methane was performed over yttria-

stabilised zirconia catalyst in a dielectric barrier discharge has been investigated [52]. The 

structure and properties of vanadium oxide–zirconia catalysts were determined for the 

propane oxidative dehydrogenation reaction [53]. Additionally, it has been reported that 
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ZrO2 can be used as acid-base bi-functional catalyst in industrial applications [54]. 

Zirconia plays an unusual role in the direct synthesis of dimethyl carbonate from CO2 and 

methanol. It was documented that zirconia has a surface acidity equivalent to about 100%  

H2SO4 after modifying by SO4
2-

  and it can be transformed to a strong base by addition of 

KF [55]. 

Rinn and Schmidt [56] have detailed the thermal analysis of zirconia. Formation of 

zirconia was almost free of organics, nitrates and hydroxides at about 450 
o
C and no 

further noticeable weight loss was documented up to 1200 
o
C (Fig. 4.9). 

 

Fig. 4.9 Thermal analysis of the zirconia powder [56]. 

The x-ray diffraction pattern showed an amorphous material after drying at 100 
o
C and 

tetragonal zirconia  at 500 
o
C (Fig. 4.10). The broad peaks indicated very small and/or 

disordered crystals. Further heating resulted in a sharpening and growth of peak intensities, 

but no monoclinic zirconia formed. The initial phase of the pure amorphous zirconia 

produced from gels or hydroxides crystallises a metastable tetragonal phase which then 

transformed into the stable monoclinic form below 1000 
o
C. 
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Fig. 4.10 X-ray diffraction pattern of dried and calcined zirconia powders [56]. 

 

Scanning electron micrographs of the dried powder showed almost perfect spheres with a 

size distribution of about 0.3-3 m (Fig. 4.11 a, b). Calcination up to 850 
o
C produced a 

linear shrinkage of about 50%, but no hard agglomerates were detected (Fig. 4.11 c, d). At 

temperatures below 400 
o
C where OH

-
 groups on the surfaces are lost, sol-gel powders 

tend to form strong agglomerates by condensation processes. The absence of 

agglomeration was due to the adsorption of organic molecules. At higher temperatures 

enhanced crystal growth occurred and caused a sub-structure of the particle surfaces and 

the formation of some agglomerates. 
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Fig. 4.11 (a, b) SEM-micrographs of the dried zirconia powder. (c, d) SEM-micrographs 

after calcination at 850 
o
C [56]. 

Modification of zirconia by doping with lower valence cations such as Y
3+

, La
3+

, Mg
2+ 

and 

Ca
2+

 can stabilise the cubic or tetragonal phase at room temperature.  A solid solution can 

be obtained in which the replacement of the Zr
iv

 by cations of lower valence produces 

oxygen vacancies in the ZrO2 lattice to maintain electroneutrality. The presence of these 

oxygen defects promotes ionic conductivity.  

Bellido and Assaf have investigated the addition of 4%, 8% and 12% mole fractions of 

Y2O3 to ZrO2 [57]. XRD diffraction studies revealed that ZrO2 exhibited a mixture of 

monoclinic phases whereas the addition of Y2O3 to ZrO2 produced only the tetragonal 

phase due to formation of a solid solution of Y2O3 in ZrO2. This idea was corroborated by 

a continuous shift of the (111) reflection plane to smaller Bragg angles as a function of the 

Y2O3 loading since the substitution of Zr
4+

 ions (radius 0.80 Å) by Y
3+

 ions (radius 0.93 Å) 

increased the inter planar distance. A fine dispersion of Y2O3 microcrystallites could have 

occurred but evidence of a segregated Y2O3 phase or monoclinic ZrO2 was not detected. 

The peaks that resulted from the addition of Y2O3-ZrO2 solid solution became larger and 

less intense as the Y
3+

 content resulting from reduction of the crystalline particle size. The 

range of the crystal sizes of the supports calculated from all the reflections is shown in 

Table 4.3. The particle diameters were all much smaller than 30 nm.  

 



                                                                                 134 

                

 

 

Table 4.3 Crystallite sizes (nm) of the supports calculated by Scherrer equation [57]. 

 

The BET surface areas (Table 4.4) of the Y2O3-ZrO2 revealed that the surface area of ZrO2 

increased after doping with Y2O3 and this was associated with the decrease of the crystal 

size. However, the BET surface area declined with increasing Y2O3 content. Marcos and 

Gouvea [58] showed a similar behaviour for the MgO-ZrO2 system, where the addition of 

MgO up to its level of saturation (8.6% MgO) reduced the surface area. This was due to 

solubility of Mg
2+

 cations in the ZrO2 lattice and subsequent generation of oxygen 

vacancies to balance the charge difference that resulted. Thus, a higher coefficient of 

diffusion combined with consequent adhesion of the particles was promoted which 

produced agglomerates that eventually decreased the surface area. Labaki et al [59] 

reported a remarkable increase in the original ZrO2 surface area by more than 50% when 

Y2O3 was added to the ZrO2 lattice, due to structural changes leading to stabilisation of the 

tetragonal phase. 

 

 

Table 4.4 Composition and BET surface area of supports. a = Sample weight: 50 mg [59]. 

Yang et al [60] have reported the TG-DTA results for two dried powders of zirconia 

prepared at different pH values. They were analysed by heating in air at the rate of l0 

°C/min. The TG-DTA curves observed that the total weight loss was 34.6% (TG-1) and 

35.9% (TG-2) respectively (Fig. 4.12a). The endothermic peak up to 245 °C was due to the 

dehydration of water and corresponded to a weight loss of 22.0% (TG-I) and 27.8% (TG-

2). The exothermic peaks starting at 245 °C and finishing at about 320 °C were attributed 

to the thermal decomposition and combustion of adsorbed organic materials with a weight 

loss of 8.5% (TG-I) and 2.9% (TG-2). The weight loss was continued until an exothermic 

peak resulting from the crystallisation of powder appeared at about 450 °C. However, the 
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addition of 1.7 and 59 mol% Y2O3 to ZrO2 caused the loss of all the powder crystallisation 

peaks up to 1000 °C in air (Fig. 4.12b). 

 

Fig. 4.12 a) TG-DTA curves for prepared ZrO2 powders. Initial sample weight for analysis: 

curves 1, 890 mg, curves 2,830 mg. b).DTA curves of Y-doped ZrO2 powders: (a) 1,7 

mol% Y2O3; (b) 59 mol% Y2O3 [60]. 

TEM images and a corresponding selected area electron diffraction (SAED) patterns of the 

prepared ZrO2 powder (Fig. 4.13b) showed a histogram of the particle size distribution 

obtained by sampling stochastically 100 particles from the TEM images. The particles 

were actually well shaped with a narrow size distribution, and the average diameter 

obtained from (Fig. 4.13a) was about 10 nm. SAED revealed that the powder was 

polycrystalline. However, the TEM micrograph of the Y-ZrO2 and the corresponding 

SAED observed a flocculent morphology with amorphous diffraction pattern of the powder 

(Fig. 4.13c). 
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Fig. 4.13 a) Histogram of the particle size distribution of particulate ZrO2 powder [60]. 

 

 

Fig. 4.13 b) Typical TEM image and SAED pattern of particulate ZrO2 powder [60]. 
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Fig. 4.13 c) Typical TEM image and SAED pattern of the prepared Y-doped ZrO2 powder 

[60]. 

The effects of combining zirconia with other catalysts, either being supported or as a 

support itself, on its catalytic activity, characterisation and morphology have been widely 

studied [61-64]. Carrascull et al [65] have studied the effects of supporting potassium 

nitrate on zirconia on the catalytic activity and surface area. They concluded that the 

zirconium oxide (ZrO2) and catalysts containing potassium nitrate at lower concentration 

(K0:25ZrO2 and K1:25ZrO2) present the largest surface area (Table 4.5). The addition of 

KNO3 to ZrO2 enhances its activity due to enhanced bonding of reactants and catalyst and 

also because the KNO3 itself acts as catalyst. Incorporation of potassium ions into ZrO2 

induces a guest-host  interaction and is proposed to result in the formation of “superbasic” 

sites. 

 
Table 4.5 Specific surface area of the ZrO2 and different loaded KNO3/ZrO2 catalysts. The 

effect of KNO3 loaded on zirconia surface area was illustrated. (The precursors were 

calcined at 600 
o
C) [65]. 

 

Wang et al [66] have presented a characterisation study of KNO3/ZrO2 catalysts.  They 

observed that the XRD pattern of 14% KNO3/ZrO2 was identical to that of ZrO2.  Above a 

14% loading, the characteristic XRD peaks of KNO3 appeared in the patterns (Fig. 4.14e, 

g) and their intensities increased demonstrating the presence of residual KNO3. They 

suggested that the spontaneous dispersion capacity of KNO3 on ZrO2 was 14% wt since 

that quantity could be well dispersed and caused no significant distortion in the structure of 

ZrO2. 

The equivalent surface concentration of K
+ for the capacity was 8.1 nm

-2
 which was 

reportedly quite similar to that of surface vacant sites on ZrO2 which was 8.6 nm
-2

. The K
+ 

ion of KNO3 can insert into the surface sites of alumina and consequently accelerate 
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dispersion and decomposition of KNO3 to form strong basic sites in the activation process. 

Two essential crystalline phases of zirconia were observed namely: monoclinic and 

tetragonal. The peak intensity of the monoclinic phase is weaker than that of the tetragonal 

phase when the sample was dried at 110 oC (Fig. 4.14a). It developed quickly while that of 

the tetragonal phase declined upon calcination. The tetragonal phase disappeared after 

calcination at 700 o
C which indicated that it was a metastable phase. In contrast, the 

metastable tetragonal phase of zirconia was strongly evident in the XRD pattern of 20% 

KNO3/ZrO2 despite the fact that it was heated to 700 
o
C. K

+ ions possibly occupy the 

position of octa-coordinated Zr
iv in the tetragonal phase rather than the hepta-coordinated 

Zr
iv in monoclinic phase and thus delay phase transformation of ZrO2 at high temperature. 

 

 

Fig. 4.14 XRD patterns of ZrO2 (a) before and (b) after calcination at 700 
o
C, (c) 14% 

KNO3/ZrO2, (d) 20% KNO3/ZrO2, (e) 27% KNO3/ZrO2, (f) 20% KNO3/ZrO2 calcined at 

700 
o
C, and (g) 34% KNO3/ZrO2 [65]. 

 

The authors also discussed the thermal decomposition of KNO3/ZrO2 catalyst which was 

studied using the TPDE-CM technique. KNO3 generally starts to decompose at 480 
o
C 

which is reduced to 340 
o
C after being supported on ZrO2 [65]. Hence supporting KNO3 on 

zirconia hastens the decomposition of KNO3 (Table 4.6).  However, the decomposition 

temperature is a function of loading, e.g. high loadings of KNO3 such as 34% KNO3/ZrO2 
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gives rise to decomposition at 410 
o
C. Good dispersion of KNO3 on ZrO2 weakens the 

binding of K
+
 and NO3

- 
ions owing to the interaction between KNO3 and the surface of 

zirconia support which is beneficial for decomposition of  KNO3.  

 
            Table 4.6 Decomposition of various loaded amounts of  KNO3 on ZrO2 [65]. 

 

The basicity of KNO3/ZrO2 has been measured using the CO2-TPD technique by the same 

authors [65]. Desorption features for base ZrO2 were evident at around 76 
o
C, 115 

o
C and 

148 
o
C indicating the weak basicity of ZrO2 (Fig. 4.15).  

 

Fig. 4.15  (1) CO2-TPD profiles of ZrO2 loaded KNO3 of  a) 0, b) 7.5, c) 14, d) 20, e) 27 

and f) 34 wt.%. (2) a) The calculated and b) the measured basicity of KNO3/ZrO2 [65]. 
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Loading 7.5 wt.% KNO3 resulted in a new peak at 520 
o
C while three new peaks were 

generated at 202 
o
C, 517 

o
C and 600 

o
C when the amount of  KNO3 was approximately 

doubled to 14 wt.%. Further addition of KNO3 up to 20 wt.% caused a remarkable 

enhancement to the rate of CO2 desorption in the range between 320 
o
C and 600 

o
C which 

peaked at 600 
o
C. Further addition of KNO3 on ZrO2, e.g. 27 wt.%, decreased the 

maximum temperature of CO2 desorption from 600 
o
C to 553 

o
C and reduced peak 

intensity. For the 34% KNO3/ZrO2 sample, a new peak of CO2-TPD was observed at 

around 370 
o
C. The reduction of basicity in such instances is related to the coverage of the 

strongly basic sites by excess KNO3. 

If the amount of KNO3 exceeded the spontaneous dispersion capacity which was 14 wt.%, 

a value of 1.35 mmolg
-1

 of the measured basicity was obtained which is very close to the 

calculated value that has been estimated to be 1.39 mmolg
-1

. The catalytic activity of the 

KNO3/ZrO2 catalyst has also been investigated for the decomposition of iso-propanol (Fig. 

4.16). A small amount of acetone was detected in the products on the ZrO2 catalyst 

accompanied by a high reactant conversion of 99%. Since the reactant was well known to 

be dehydrated by acidic sites [66], this demonstrated the acidic characteristics of zirconia. 

The addition of 7.5 wt% of KNO3 to ZrO2 increased the selectivity of acetone to 51% and 

lowered the iso-propanol conversion to 31% due to the suppression of acid sites and hence 

dehydration of iso-propanol. When the loading amount of KNO3 reached the spontaneous 

dispersion capacity of 14 wt% (with a K
+
 ion density of 8.1 nm

-2
 on ZrO2), the acetone 

selectivity dramatically increased to 99% which evidenced the increase of basic sites 

formed on the sample while the isopropanol conversion continued to decrease to 28%. 

Further addition of KNO3 on ZrO2 had no further impact on the basic activity. On the 34% 

KNO3/ZrO2 catalyst (with a K
+ ion density of 25.6 nm

-2
), the conversion of iso-propanol 

remained constant at 29% although acetone selectivity declined to 80%. The excess 

amount of KNO3 was proposed to cover the basic sites on the surface of composite and 

thus inhibit acetone formation. 
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Fig. 4.16 (1)  DTA and (2) TG spectra of (a) ZrO2 , (b) 20% KNO3/ZrO2 and (c) KNO3 

[66]. 

 

 

Zhu et al [67] have shown that zirconia catalyst was weakly active for the isomerisation of 

cis-but-2-ene reaction at 0 
o
C with an initial reaction rate smaller than 0.001 mmolg

-1
min

-1
 

and that KNO3 was inactive. On the other hand, supporting KNO3 on ZrO2 increased 

catalytic activity by a hundred times. The activity was proportional to the amount of KNO3 

decomposed at 500 
o
C (Fig. 4.17). 

 

 

Fig. 4.17 Relationship between the initial reaction rate of KNO3/ZrO2 and the amount of 

KNO3 decomposed at 500 
o
C in the isomerisation of cis-but-2-ene at 0 

o
C [67]. 

 

Thermal decomposition of KNO3 yielded either K2O ultra-fine particles [68] or K–O–Zr 

structures that are believed to be the main active sites.  
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There is a pronounced dependence of the catalytic activity of KNO3 catalysts upon the 

nature of the support, with KNO3/ZrO2 materials generally being the most active. In 

contrast, KNO3/TiO2 and KNO3/SiO2 catalysts showed little activity while KNO3/NaY and 

KNO3/NaX zeolite were inactive [69, 70]. 

In this chapter, a study of the application of ZrO2 derived catalyst for the acetone 

conversion reaction. Particular emphasis is placed upon modification, such as the inclusion 

of KNO3 and Y2O3, which are anticipated to enhance basicity.   

 

4.2 Results and discussion. 

The aldol condensation reaction of acetone has been investigated in this thesis over a 

variety of zirconia related catalysts including ZrO2, 14% KNO3/ZrO2, 36.5% KNO3/ZrO2, 

14% KNO3/Zr(OH)4, 36.5% KNO3/Zr(OH)4, ZrO2, and Y-Zr(OH)4. The application and 

characterisation of each material is explained individually.  

 

4.2.1 ZrO2. 

 

The XRD pattern of zirconia exhibited two crystal phases (Fig. 4.18). One is monoclinic 

baddeleyite with characteristic reflections at .2
o
, 28.2

o
 and 31.5

o
 and other is the 

metastable tetragonal form which contains characteristic reflections at 230.2
o
, 50.4

o
 

and 60.2
o 

[66]. Calcination of the zirconia did not result in significant changes in its phase 

composition. 

The volume fraction, Vm for the uncalcined zirconia sample was 98.0% monoclinic phase 

whereas the calcined zirconia sample comprises 97.5% (Table 3.3.2) and therefore 

essentially unchanged. As discussed in the introduction, the tetragonal form of zirconia 

may exist even at low temperatures depending on impurity and crystallite size effects [71, 

72]. It is well known that the crystal phase of zirconia depends on the preparation and 

heating treatment of the precursor [73]. Previous studies have shown that the monoclinic 

(m-ZrO2) and tetragonal (t-ZrO2) modifications of ZrO2 possess different acid/base 

properties [74, 75] and surface hydroxyl group concentrations [76].  

The volume fraction of the monoclinic phase, Vm, of each sample was calculated using the 

following well-known relationship [77]:  

 

Vm=1.311Xm/(1 + 0.311Xm)                                                                                 (4.1) 
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Xm=(Im(111)+Im(111`)/(Im(111)+Im(111`)+It(111))                                              (4.2) 

 

where Im(111) and Im(111`) are the line intensities of the (111) and (111`) peaks for m-

ZrO2 and It (111) is the intensity of the (111) peak for t-ZrO2. 

Fig. 4.18 X-ray diffraction patterns of ZrO2.          

 

 

                                                  

Table 4.7 Volume fraction (Vm) of monoclinic phases of the various ZrO2 samples used in 

this study. 
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Fig. 4.19 Temperature programmed desorption of CO2 on calcined ZrO2 prior to reaction. 

 

The base site strength of the calcined ZrO2 sample prior to its application as a catalyst was 

evaluated by CO2-TPDE and the results are presented in Figure 4.19. This result is 

consistent with previous work published by Li et al [78]. Both acidic and basic properties 

are present on the surface and their strengths are rather weak [79]. The curve levels off at 

about 600 
o
C. 

 

 

 

Fig. 4.20 Scanning electron microscope (SEM) image of calcined ZrO2 prior to reaction. 

 

SEM investigation of calcined ZrO2 prior to reaction showed uniform dispersion of 

zirconia agglomerates with irregular shape and variable packing density of their primary 

particles (Fig. 4.20). According to the literature [80] these agglomerates can be classified 
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as ‘soft’ or ‘hard’, the hard agglomerates consisting of close-packed particles with high 

densities. 

 

The BET surface area of ZrO2 is 5% m
2
/g which is rather low and consistent with the high 

phase fraction of the monoclinic polymorph. 

                                                                               

 

Table 4.8 Conversions and selectivities of aldol condensation of acetone over ZrO2 catalyst 

as a function of temperature (300 
o
C and 400 

o
C, 5 bar H2 pressure, TOS > 18 h). 

 

The sample was investigated in the conversion of acetone as detailed in the experimental 

chapter. A conversion of 3% was obtained at 300 
o
C which was consequently increased to 

6% by increasing reaction temperature to 400 
o
C, Table 4.8, in agreement with previous 

studies [81, 82] and normal expectation. 

The rate of acetone conversion over zirconia catalyst significantly increases from 1.08x10
-3

 

mol m
-2

 h
-1

 to 2.37 x10
-3 

mol m
-2

 h
-1

 by increasing temperature from 300 
o
C to 400 

o
C (Fig. 

4.21). It was also apparent that the conversion itself was a function of time on stream, 

sharply declining as a function of the time on stream during the early period of reaction, 

becoming stable beyond 21 h where the catalyst reached a steady state. The decrease of 

conversion was probably caused by a slow, progressive, deactivation by coke when highly 

unsaturated compounds, such as phorone, were formed and remained strongly adsorbed on 

the catalyst surface, yielding heavier oligomeric compounds which can block the active 

sites [83].  
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Fig. 4.21 Surface area normalised acetone conversions over ZrO2 catalyst as a function of 

time on stream at 300 
o
C, 400 

o
C and 5 bar H2 pressure, TOS > 18 h.  

 

Product selectivities have also been determined for the reaction. The highest yield was 

observed for MO at 400 
o
C (Fig. 4.22). When the hydrogenation activity is low, mesityl 

oxide (MO) produced by aldol condensation does not undergo further hydrogenation to 

MIBK. As a consequence, MO appeared as a main product. High MO concentrations, in 

turn, are accompanied by high selectivities to Isoph which was formed from MO and 

acetone in a secondary aldol condensation process. 
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Fig. 4.22 Percentage yields of aldol condensation of acetone over ZrO2 catalyst as a 

function of temperatures at 300 
o
C, 400 

o
C, 5 bar H2 pressure, TOS > 18h. 

 

The selectivity to all products except MO and DH was increased by increasing reaction 

temperature. A maximum selectivity of 59% for MO was obtained at 300 
o
C which 

diminished to 41% by increasing reaction temperature to 400 
o
C (Fig. 4.23). The 

production of MO was favoured via the dehydration of DAA. At higher conversion, the 

formation of high molecular weight compounds is significant. The catalyst also showed 

high selectivity toward 4-methyl-2-pentanol (MP) which is produced from hydrogenation 

of the MIBK. 
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Fig. 4.23 Percentage selectivities of aldol condensation, after 18 h of the reaction time, 

over ZrO2 catalyst at different temperatures (T = 300 
o
C, 400 

o
C, 5 bar H2 pressure, TOS > 

18 h). 

 

4.2.2 KNO3/ZrO2. 

The aldol condensation reaction of acetone has been studied over KNO3/ZrO2 materials 

with different loadings. XRD analysis has been undertaken. 
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Fig. 4.24 X-ray diffractions pattern of KNO3/ZrO2 catalysts.   
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The XRD analysis (Fig. 4.24) reveals that the 5% KNO3/ZrO2 and 14% KNO3/ZrO2 

patterns are similar to zirconia with peaks at 2 24.2
o
, 28.2

o
, and 31.5

o
 characteristic of 

the monoclinic phase.  The intensities of these peaks are relatively high and decline upon 

increasing the loaded amount of KNO3, and by calcination. It is also found that the XRD 

peaks become gradually sharper with increasing temperature indicating a possible increase 

in crystal size.  

The metastable tetragonal phase is also evident in these catalysts with characteristic 

reflections at 230.2
o
, 50.4

o
, and 60.2

o
 although their intensity is weak compared to the 

monoclinic phase reflections.  

When the loaded amount of KNO3 on ZrO2 is increased to 36.5% the overall intensities are 

reduced. The monoclinic phase is transformed to tetragonal. It is proposed that in this case 

the K
+
 ions are incorporated in the vacant sites on the surface of zirconia and stabilise the 

tetragonal phase [84]. These XRD results are confirmed by calculation of the volume 

fraction of monoclinic phase from the XRD patterns as previously described. The 14% 

KNO3/ZrO2 catalyst contains 97.9% of monoclinic phase while for the 36.5% KNO3/ZrO2 

catalyst it is only 69.4% which goes increases to 95.3% after calcination (Table 4.9). 

Loading KNO3 on ZrO2 below the spontaneous dispersion capacity such as in 5% 

KNO3/ZrO2 catalyst increases zirconia crystalline phases intensities. However, loading 

KNO3 on ZrO2 above the spontaneous capacity results in phase transformation and overall 

intensity reduction.   

No additional phases such as K2ZrO3 were evident even for high loadings of KNO3 

Additional diffraction peaks were evident at 2values of 37
o
, 53

o
, 57

o
, and 62

o
 related to 

K2O. These peaks were clearly observed in the 14% KNO3/ZrO2 pattern which can be one 

of reasons for the high basicity and activity of this catalyst. The intensities of these peaks 

appeared to be reduced upon further calcination. On the other hand, the K2O peaks were 

reduced and even disappeared in the 36.5% KNO3/ZrO2 patterns. These conclusions are in 

accordance with the literature [85]. 
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     Table 4.9 Volume fractions (Vm) of monoclinic phase of KNO3/ZrO2 catalysts. 

 

 

 Table 4.10 BET surface areas of uncalcined 14% KNO3/ZrO2 and 36.5% KNO3/ZrO2  

catalysts. 

 

The 14% KNO3/ZrO2 catalyst has a larger surface area than the 36.5% KNO3/ZrO2 

material as shown in Table 4.10. The exact reason for the decline in surface area with 

increased KNO3 content is currently not clear, although it may relate to facilitated sintering 

and/or the presence of K2O which covers the surface. 

 

 

Fig. 4.25 Thermogravimetric analysis (TGA) of  KNO3/ZrO2  catalysts. 
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TGA investigation (Fig. 4.25) of 14% KNO3/ZrO2, catalyst shows three weight losses. The 

earliest loss appears at 200 
o
C and may be attributed to the desorption of adsorbed water. 

The second loss at 420 
o
C could be associated with the formation of highly dispersed K

+
 

species which are believed to be responsible for the “superbasicity” [86] by decomposition. 

The last peak at 780 
o
C relates to the decomposition of bulk KNO3 which does not 

participate in the generation of “superbasicity”.  However, the 36.5% KNO3 on ZrO2 

sample requires a higher temperature for decomposition to occur. The conclusion therefore 

is that the decomposition of the 14% loaded of KNO3 on ZrO2 is more favourable than the 

36.5% sample. Considering this result, it can be reported that the decomposition of KNO3 

on ZrO2 is inhibited by increasing the loaded amount of KNO3. These TGA results suggest 

that the spontaneous dispersion capacity of KNO3 over the zirconia support is close to 14% 

wt as discussed previously in this chapter. The TGA pattern of the uncalcined 36.5% 

KNO3/ZrO2 catalyst shows a curve at 530 
o
C which may relate to the decomposition of 

KNO3. For the calcined 36.5% KNO3/ZrO2 catalyst, the curve is observed at relatively 

higher temperatures in the range between 600 - 700 
o
C. 

  

 

Fig. 4.26 CO2 temperature programmed desorption (TPD) of uncalcined 36.5% 

KNO3/ZrO2 catalyst. 

 

CO2-TPD has been measured for the 36.5% KNO3/ZrO2 sample to determine its base site 

characteristics. There are three peaks observed at 200
 o

C, 410 
o
C, and 600 

o
C representing 
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the basicity of the KNO3/ZrO2 catalyst (Fig. 4.26). The increase of basicity upon increasing 

temperature may due to the formation of the highly active compounds such as K2O extra-

fine particles on the surfaces of ZrO2 at high temperature. Since the obvious increase of 

basicity, due to mentioned active species, has noticeably occurred at ca. 410 
o
C, this 

strongly suggests the decomposition of KNO3. Such a CO2-TPD result is consistent with 

what TGA revealed and both conclusions are in agreement with Wang et al’s [66] 

observation as they documented that KNO3 starts to thermally decompose in the range of 

340 – 416 
o
C after being supported on ZrO2. Loading KNO3 on ZrO2 may produce strong 

basicity after activation at 410 
o
C. 

 

Fig. 4.27 Scanning electron microscopy (SEM) images of (a) 14% KNO3/ZrO2, and (b) 

36.5% KNO3/ZrO2 catalysts.  

 

The SEM images showed that the 14% loaded sample had a smaller particle size compared 

to the 36.5% loaded sample (Fig. 4.27) which resulted a much higher surface area (Table 

4.10).  

 The catalytic behaviour of the KNO3 loaded samples has been investigated and the 

influence of KNO3 loadings determined. The 14% KNO3/ZrO2 catalyst gave yields and 

conversions higher than the 36.5% KNO3/ZrO2 catalyst. This result is consistent with 

Wang et al’s results for the decomposition of 2-propanol at 400 
o
C, where they reported the 

highest yield was obtained with a 14% KNO3/ZrO2 catalyst [66]. This was interpreted in 

terms of the spontaneous dispersion capacity as discussed previously.  It is also important 

 

      a)                                                                    b)   
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to take account of the higher surface area of the 14% sample which was 8 m
2
/g whereas the 

36.5% KNO3/ZrO2 catalyst exhibited only 1 m
2
/g (Table 4.10). 

The higher KNO3 loading of 36.5 wt% (Fig. 4.28) presented a rate of acetone conversion 

of 11.81 x 10
-3

 mol m
-2

 h
-1

 after 18 h of reaction although just an hour later it appeared to 

be 0.56 x 10
-3

 mol m
-2

 h
-1

. However, after the loaded of KNO3 was reduced to 14 wt%, the 

rate was only 0.13 x 10 
-3 

mol m
-2

 h
-1

 which was gradually and slightly increased during the 

following hours.  

A conversion of 1% was achieved which then increased to a maximum of 7% over the 14% 

KNO3/ZrO2 (Table 4.11) and the highest selectivity was for MO which was 62.13%. 

However, the 36.5% KNO3/ZrO2 catalyst achieved 6% maximum conversion, which then 

gradually diminished, with MO selectivity of 38.03%. Furthermore, the 36.5% KNO3/ZrO2 

catalyst deactivated more rapidly than its 14% KNO3/ZrO2 counterpart. The high loading 

of 36.5% KNO3 on ZrO2 catalyst covers the basic sites on the surface of the composite and 

decreases conversion. Conversion of the 14% loaded catalyst as a function of time on 

stream and starts from a very low value and suddenly goes up to reach its maximum value 

which is followed by a sharp decrease after 19 h due to catalyst deactivation (Fig. 4.28). 

This catalyst’s tendency towards deactivation is probably caused by coke formation which 

reduces the reaction rate [87]. Both catalysts become stable after about 20 h on stream and 

remain relatively inactive until the end of the reaction.  

 

 

Table 4.11 Percentage conversion of aldol condensation of acetone over 14% KNO3/ZrO2 

and 36.5% KNO3/ZrO2 materials at 400 
o
C and 5 bar H2 pressure, TOS > 18 h. 
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Fig. 4.28 Surface area normalised acetone conversions, after 18 h of the reaction time, over 

14% KNO3/ZrO2 and 36.5% KNO3/ZrO2 catalysts at 400 
o
C and 5 bar H2 pressure, TOS > 

18 h. 

 

The highest product yield is for the MO over both catalysts (Fig. 4.29). The MO yield over 

the 14% KNO3/ZrO2 catalyst is nearly twice as great as over 36.5% KNO3/ZrO2. Despite 

14% KNO3/ZrO2 being the more active catalyst for the reaction, the 36.5% KNO3/ZrO2 

shows higher yields of DAA and MP. Both catalysts exhibit small yields of Isoph.  
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Fig. 4.29 Percentage yields of aldol condensation of acetone, after 18 h of the reaction 

time, over 14% KNO3/ZrO2 and 36.5% KNO3/ZrO2 catalysts at 400 
o
C and 5 bar H2 

pressure, TOS > 18 h. 

 

Both catalysts appeared to be selective toward the dehydration of DAA and thus the 

formation of MO. The MO selectivity over the 14 wt% KNO3 catalyst was much larger 

than that over the 36.5 wt% sample.  

Production of MP via the hydrogenation of the MIBK was slightly more favourable over 

36.5% KNO3/ZrO2 catalyst compared with 14% KNO3/ZrO2. The production of Phor from 

the aldol condensation of MO occurred to a reasonable degree of selectivity (Fig. 4.30).  
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Fig. 4.30 Percentage selectivities of aldol condensation of acetone, after 18 h of the 

reaction time, over 14% KNO3/ZrO2 and 36.5% KNO3/ZrO2 catalysts at 400 
o
C and 5 bar 

H2 pressure, TOS > 18 h.  

 

4.2.3 KNO3/Zr(OH)4. 

Since there may be residual OH group activity within materials, it was of interest to 

determine the behaviour of the non-calcined KNO3/Zr(OH)4 precursor materials, in 

addition to those produced following calcination. 

 

 

Table 4.12 BET surface areas of uncalcined 14% KNO3/Zr(OH)4, and 36.5% 

KNO3/Zr(OH)4 catalysts. 

 

The 14% KNO3/Zr(OH)4 catalyst exhibited surface area of 7 m
2
/g which diminished to 2 

m
2
/g as the loaded amount of KNO3 increased to 36.5% (Table 4.12). Based on this result, 

it can be observed that the increased amount of KNO3 on Zr(OH)4 reduces surface area of 

the material.  
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Fig. 4.31 CO2 temperature programmed desorption (TPD) of 14% KNO3/Zr(OH)4 and 

36.5% KNO3/Zr(OH)4 catalysts. 

 

CO2 TPD experiments were performed to determine the base site characteristics of the 

samples. The CO2-TPD curve of the 14% KNO3/Zr(OH)4 catalyst was characterised by a 

large peak observed at 200 
o
C indicating the basicity of the catalyst, a second peak is 

detected at 315 
o
C followed by a further final peak at 600 

o
C whereas the 36.5% 

KNO3/Zr(OH)4 catalyst has four desorption peaks at 95
 o

C, 230
 o

C, 420
 o

C and 630 
o
C 

representing the basicity of this catalyst (Fig. 4.31). The result suggests that the 14% 

KNO3/Zr(OH)4 catalyst has a higher number of weak base sites than the 36.5% sample. 

The difference in the desorption patterns with respect to the calcined KNO3/ZrO2 samples 

(as shown in Fig. 4.26) is striking. CO2 desorption at higher temperatures could be 

attributed to strong basic sites formed by K2O extra-fine particles on the surface of ZrO2 

during decomposition. This has been reported by Zhu et al [68]. In the following work, 

KNO3/Zr(OH)4 catalysts were calcined prior to application, unlike in the previous section 

where materials were prepared by dispersion of KNO3 upon pre-produced ZrO2 following 

by calcination. 
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Fig. 4.32 X-ray diffraction patterns of KNO3/Zr(OH)4 catalysts. 



                                                                                 160 

                

 

The XRD patterns for various KNO3/Zr(OH)4 catalysts demonstrated that the main 

ZrO2 phase is tetragonal for the all calcined samples as indicated by peaks at 2= 

30.2 
o
, 50.4 

o
, and 60.2 

o
. However, the 14 wt% loaded amount of KNO3 showed the 

monoclinic phase with weak intensity with characteristic reflections at 2 24.2 
o
, 

28.2 
o
, and 31.5 

o
 (Fig. 4.32). The reflection intensities of the calcined 14% 

KNO3/Zr(OH)4 catalyst were stronger than those of the calcined 36.5% 

KNO3/Zr(OH)4. Further diffraction peaks appeared at 2values of 37
 o

, 53
 o

, 57
 o

, and 

62
 o

 in the same patterns which can be attributed to the active K2O compounds which 

believed to be the responsible for the “superbase” catalytic activity enhancement. 

These active species were clearly present on the pattern of the post-reaction sample of 

36.5% KNO3/Zr(OH)4 catalyst. New peaks emerged at 2= 44
o
, 65

o
, 71

o
, and 84

 o
 of 

the post-reaction catalyst demonstrated that additional phase transformation occurred 

upon reaction. 

The monoclinic phase volume fraction has been determined for the materials using the 

procedure detailed earlier. 

 

 

Table 4.13 Volume fraction (Vm) of monoclinic phase of the various KNO3/Zr(OH)4            

materials. 

 

The calcined 14% KNO3/Zr(OH)4 material contains 30.4% monoclinic phase which 

reduces to 16.3% for the post-reaction sample confirming it to be a metastable phase.  
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Fig. 4.33 Scanning electron microscope image of 14% KNO3/Zr(OH)4  and 36.5% 

KNO3/Zr(OH)4   

 

Figure. 4.33 shows the SEM images for the 14 wt% and 36.5 wt% catalysts. A larger 

particle size of the 36.5 wt% was clearly observed which is results in a smaller surface area 

compared to the lower loaded amount (Table 4.12).  

 

The aldol condensation reaction of acetone was investigated over calcined 14% 

KNO3/Zr(OH)4 and 36.5% KNO3/Zr(OH)4 catalysts at 400 
o
C reaction temperature and 5 

bar pressure. Conversions (Fig. 4.34), yields (Fig. 4.35), and selectivities (Fig. 4.36) have 

been calculated and are discussed individually. 
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Fig. 4.34 Surface area normalised acetone conversions over 14% KNO3/Zr(OH)4 and 

36.5% KNO3/Zr(OH)4 catalysts at 400 
o
C, 5 bar H2 pressure, TOS > 18 h.  

 

At first, both catalysts show relatively high catalytic activities followed by a decrease with 

time on stream. 

A substantial difference was observed between the rates of acetone conversions over the 

two catalysts (Fig. 4.34). Acetone was converted at a rate almost four times higher over the 

14 wt% catalyst with a rate of 6.39 x 10
-3 

mol m
-2

 h
-1

 compared to 1.60 x 10
-3

 mol m
-2

 h
-1

 

achieved by the 36.5 wt% catalyst. 

The 14% KNO3/Zr(OH)4 catalyst achieved almost 7% conversion, which is slightly greater 

than the 6% for the 36.5% KNO3/Zr(OH)4 catalyst (Fig. 4.34). This conversion result is in 

agreement with Wang et al’s result for the decomposition of 2-propanol over KNO3/ZrO2 

catalyst under similar conditions as they reported that the catalyst with 14 wt% loaded 

amount of KNO3 on ZrO2 was the optimal catalyst for that reaction [66] A similar trend 

was evident for the KNO3/ZrO2 catalyst, discussed previously in this chapter, which may 

be due to the decomposition of Zr(OH)4 to ZrO2 during heating. As tetragonal zirconia was 

the main phase observed in the diffraction pattern of the 14 wt% catalyst (Fig. 4.32), it is 

believed to be the active phase for the reaction.  
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Table 4.14 Percentage conversion and selectivities of aldol condensation of acetone, after 

18 h of the reaction, over 14% KNO3/Zr(OH)4 and 36.5% KNO3/Zr(OH)4 materials at 400 

o
C and 5 bar H2 pressure, TOS > 18 h. 

 

 

Fig. 4.35 Percentage yields of aldol condensation of acetone, after 18 h of the reaction 

time, over 14% KNO3/Zr(OH)4 and 36.5% KNO3/Zr(OH)4 catalysts at 400 
o
C, 5 bar H2 

pressure, TOS > 18 h. 

 

Yields of 2.63% and 2.40% have been produced for MO over the 14% and 36.5% 

KNO3/Zr(OH)4 materials respectively (Fig. 4.35) revealing little difference between the 

catalysts. Production of MP was apparent over both catalysts. 
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Fig. 4.36  Percentage selectivities of aldol condensation of acetone, after 18 h of the 

reaction time, over 14% KNO3/Zr(OH)4 and 36.5% KNO3/Zr(OH)4 catalysts at 400 
o
C, 

5 bar H2 pressure, TOS > 18 h. 

 

In spite of maximal selectivities being attained for the MO by both catalysts, the 36.5% 

KNO3/Zr(OH)4 was slightly more selective toward MO with 43.71% selectivity compared 

to the 14% KNO3/Zr(OH)4 catalyst which showed only 39.21% selectivity (Fig. 4.36). 

Isoph was also a major product over both of catalysts with selectivity of 35.48% over the 

14% KNO3/Zr(OH)4 sample and 27.82% of selectivity for the 36.5% KNO3/Zr(OH)4. 

Production of MIBK did not occur due to the absence of a hydrogenation function.  

 

4.2.4 Y-Zr(OH)4.  

Basicity can also be imparted by the presence of Y2O3 in ZrO2. Accordingly, in this thesis 

the aldol condensation reaction of acetone was investigated over a calcined Y-Zr(OH)4 

catalyst at 400 
o
C and 5 bar pressure.  
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Fig. 4.37 X-ray diffraction patterns of Y-Zr(OH)4 materials. 
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 As for other materials investigated, XRD analysis has been undertaken. The XRD pattern 

of the calcined Y-Zr(OH)4 showed high intensity peaks at 2= 30.2 
o
, 50.4 

o
, and 60.2 

o
 

attributed to the tetragonal phase of zirconia (Fig. 4.37). The monoclinic phase was also 

observed in the all samples in variable amounts (Table 4.15) at 2 24.2 
o
, 28.2 

o
 and 31.5 

o
. In the post-reaction Y-Zr(OH)4 sample, intensities of these peaks were clearly enhanced. 

This result indicated that tetragonal zirconia was the main phase in the Y-Zr(OH)4 catalyst 

and its intensity was increased by calcination. Since peaks of tetragonal phase remained in 

highest intensity after reaction, this demonstrates that the tetragonal phase was 

substantially stabilised by the yttrium dopant for the calcined samples. The monoclinic 

volume fraction was calculated as described previously and the results are presented in 

Table 4.15. 

 

Table 4.15 Volume fractions (Vm) of monoclinic phases of Y-Zr(OH)4. 

The BET surface area of the doped material was determined and the result is shown in 

Table 4.16. This area is very high which is consistent with the high fraction of tetragonal 

phase (associated with small crystallite size) and the broad reflections evident in the 

powder diffraction patterns. 

 

Table 4.16 BET surface area of Y-Zr(OH)4 catalyst. 
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Fig. 4.38 CO2 temperature programmed desorption (TPD) pattern of calcined Y-Zr(OH)4 

catalyst. 

The CO2-TPD was performed to determine the base site characteristic of the calcined Y-

Zr(OH)4 material.  

The CO2-TPD pattern at shows desorption peaks at 190 
o
C, 300 

o
C and 500 

o
C confirming 

the basicity of the catalyst (Fig. 4.38). Same peaks were detected in the CO2-TPD curve of 

calcined ZrO2 but in lower qualities. This result may indicate that yttria dopant promotes 

zirconia basicity.  

 

                           Table 4.17 CHN analysis of post-reaction Y-Zr(OH)4 catalyst. 

The CHN analysis for the post-reaction sample showed carbon and hydrogen were 

introduced to the sample with amounts of 2.16/2.46% and 0.2% respectively. These 

amounts of carbon and hydrogen were likely produced during the reaction via the 

adsorption of the hydrocarbon compounds onto the surface of the catalyst (Table 4.17). 



                                                                                 168 

                

 

Based on this result, it can be said that aldol condensation reaction of acetone was 

significant over Y-Zr(OH)4 catalyst.  

Catalytic activity data for the yttria stabilised catalyst is shown in Figure 4.41.  

 

Table 4.18 Conversions and selectivites of aldol condensation of acetone over Y-Zr(OH)4 

catalyst at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

Acetone conversion occurred over Y-Zr(OH)4 catalyst with a rate of 0.13 x 10
-3

 mol m
-2

 h
-1

 

(Fig. 4.39), corresponding to a conversion of 8%. Initially, the catalyst had higher activity 

than the other ZrO2 based materials due to the effect of dopant, and to the stabilisation of 

the active tetragonal phase and resulting high surface area. Deactivation took place beyond 

19 h of time on stream. Catalyst deactivation was caused by coke probably formed from 

the non-volatile organic compounds Phoro and Isoph. The deposition of coke was 

determined by the CHN analysis data shown in Table 4.17. As the Isoph was produced in a 

large amount, the deactivation therefore expected to be significant.  

 

Fig. 4.39 Surface area normalised acetone conversions over Y-Zr(OH)4 catalyst at 400 
o
C, 

5 bar H2 pressure, TOS > 18 h. 

The main product was Isoph followed by MO, which is similar to Di Cosimo et al’s work 

for the same reaction over Li-MgO catalyst (Fig 4.40) [88]. According to those workers, 
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the formation of Isoph was produced directly from Phor by an internal 1, 6-Michael 

addition. Stevens et al also observed that Isoph and MO were the major products in their 

study of the same reaction over Cs/NPC [19]. Since the production of Isoph requires very 

strong base sites, this indicates the high basicity of the Y-Zr(OH)4 catalyst. 

 

Fig. 4.40 Percentage yields of aldol condensation of acetone over Y- Zr(OH)4 catalyst at 

400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

 

Fig. 4.41 Percentage selectivities of aldol condensation of acetone over Y-Zr(OH)4 catalyst 

at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

The catalyst was highly selective toward Isoph with 33.79%, MO with 26.29%, and for DH 

with 18.47%. In contrast, the lowest selectivity was observed for Phor and MIBK 
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respectively (Fig. 4.41). Based on this result, it can be reported that Y-Zr(OH)4 catalyst 

promotes formation of heavier product in the aldol condensation reaction of acetone. The 

activity of this material is greater than that for all the other catalysts described in this 

chapter. In part this relates to the much higher surface area but the product distribution also 

suggests modified basicity. 

4.3 Conclusion. 

Comparative data for the various materials investgated in this chapter are shown below. 

 

Fig. 4.42 Comparisons of catalytic activities of various zirconia catalysts, that were used in 

this thesis, on the aldol condensation reaction of acetone at 400 
o
C, 5 bar H2, TOS > 18 h. 

 

Table 4.19 Illustration of catalytic activity, surface area and volume fraction of monoclinic 

zirconia of different zirconia catalysts used in this thesis to catalyse the aldol condensation 

reaction of acetone at 400 
o
C, 5bar H2 pressure, TOS > 18 h.  

 

From Figure. 4.42 and Table 4.19 several significant points could be concluded: 
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- Utilisation of zirconia either as catalyst or as a catalytic support can catalyse the aldol 

condensation reaction of acetone. 

 

- 14 wt% loaded KNO3 on ZrO2 was more active than the 36.5 wt% loading. 

 

- Calcined KNO3 supported on zirconia exhibited similar results to calcined KNO3 

supported on hydrous zirconia. 

 

- The addition of 5 wt% and 14 wt% of KNO3 to the support didn’t apparently alter the 

structure of the support and high dispersions were achieved. 

 

- KNO3 decomposed at high temperatures to the highly active K2O species which were 

responsible for the catalytic activity. 

 

- The addition of yttria dopant improved the catalytic activity of zirconia. This is, in part, 

associated with the stabilisation of a much higher surface area for this sample and hence 

the proportion of tetragonal phase. However, the product distribution also indicates 

modified basicity. 
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Chapter 5 

 

Alumina supported potassium nitrate derived catalysts for acetone conversion. 
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5. Alumina.   

5.1 Introduction. 

In order to make comparison with the KNO3 doped ZrO2 catalysts described in the 

previous chapter, KNO3 doped -Al2O3 is considered in this short chapter. KNO3 doped 

alumina has previously been investigated in the literature as outlined below: 

Linbing et al [1] have studied the catalytic activity of KNO3/Al2O3 for the methylation of 

cyclopentadiene. It was found that a base strength of (H−) of 27.0 has been achieved for 

KNO3/ZrO2, KNO3/γ-Al2O3, KNO3/HT, and KNO3/MgO catalysts which exhibited the 

characteristics of solid superbases, while SiO2 and TiO2 supported KNO3 resulted in a 

lower strength (Table.  5.1). 

 

 

Table. 5.1 Base strength of the solid bases and the surface area of the supports [1]. 

 

After being supported on γ-Al2O3, KNO3 was completely decomposed after activation at 

600 
o
C, and strongly basic sites emerged. It was believed that the potassium ions of KNO3 

inserted into octahedral vacant sites existing on the surface of γ-Al2O3 and lowered the 

decomposition temperature of KNO3.  

Activating KNO3/TiO2 at 600 
o
C resulted very weak residual peaks of KNO3 being evident 

in the powder x-ray diffraction pattern. However, the appearance of new peaks 11.4
o
 and 

29.1
o
 2θ indicated the formation of K2Ti8O17 that could be the responsible for the reduction 

of base strength to H− = 9.3 on KNO3/TiO2 since KNO3 was converted to K2Ti8O17 with a 

lower basicity than K2O. No vacant sites were available on SiO2 and MgO for the insertion 

of potassium ions. As a result of the weak interaction between KNO3 and the supports, two 

crystalline phases of KNO3, denoted as A and B, were apparent in the XRD pattern of the 

KNO3/SiO2 sample. Conversion of the A phase into B took place upon increasing 
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temperature but with negligible decomposition of KNO3. The XRD patterns of KNO3/MgO 

before and after the activation at 600 
o
C suggested that some Mg(OH)2 was present at 

room temperature which was subsequently converted to MgO upon thermal treatment (Fig. 

5.1). The intensity of the KNO3 peaks were weakened to a small extent by activation, 

suggesting that only a minor amount of KNO3 supported on MgO has been decomposed. 

The decomposition of KNO3 over both SiO2 and MgO was limited. SiO2 favourably 

reacted with K2O derived from KNO3 decomposition and produced K2SiO3 species with 

low base strength. However, only a small quantity of K2O that formed from the KNO3 

decomposition was able to generate basic sites with high strength (H– = 27.0) on 

KNO3/MgO. The characteristic peaks of hydrotalcite (HT) disappeared and the MgO 

crystal phase was observed at 2θ of 43.2
o
 and 62.7

o
 on KNO3/HT after thermal treatment at 

600 
o
C. This indicated the conversion of HT to a mixture of MgO and Al2O3. The 

diffraction peaks at 23.5
o
 and 29.5

o
 corresponding to crystal phase A of KNO3 almost 

disappeared, which was accompanied by the development of new diffraction peaks at 

27.3
o
, 29.8

o
, 32.7

o
, and 39.3

o
 resulting from crystal phase B of KNO3. Therefore, it was 

proposed that part of the KNO3 supported on HT was decomposed to K2O and the rest was 

transformed to phase B. The HT support possessed a base strength (H−) of over 18.4, and 

the decomposition of KNO3 could create basic sites with high strength (H− = 27.0) on 

KNO3/HT. The conversion of the two crystal phases of KNO3 showed various trends after 

thermal treatment on different oxide supports. 

Crystal phase A was predominant on KNO3/TiO2, KNO3/HT, and KNO3/MgO. After 

activation, all or only some KNO3 was converted to crystal phase B. However, for KNO3 

loaded on SiO2, both crystal phases existed. 
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Fig. 5.1 XRD patterns of catalysts 20% KNO3/SiO2 (a), 20% KNO3/TiO2 (b), 26% 

KNO3/MgO (c), and 20% KNO3/HT (d), (1) The support, (2) As prepared, (3) Pre-treated 

at 600 
o
C for 1 h [1]. 

 

Among the supports, SiO2 has the largest surface area of 410.6 m
2
/g but TiO2 possessed 

the smallest area of only 51.8 m
2
/g (Table. 5.1). The difference in the surface areas was 

also responsible for the difference in the basic properties of the KNO3 modified solid 

bases. It was known that iso-propanol is dehydrogenated to acetone over basic sites and 

dehydrated over acidic sites to propene. In contrast to KNO3/ZrO2 and KNO3/MgO, the 

samples of KNO3/γ-Al2O3 and KNO3/HT promote more conversion to acetone. A larger 

yield of propene has been attained over KNO3/HT than that over the other composites 

owing to the additional acidic sites on KNO3/HT. Generally, these solids exhibited major 

basic properties along with minor acidic properties as observed from the results of the 

reaction. Extensive enhancement of the catalytic activity of the oxide supports for 

cyclopentadiene (CPD) methylation has been noted after loading KNO3. The composites of 

KNO3/γ-Al2O3 and KNO3/HT exhibited the highest activity and about 32% of CPD was 

converted with a methylcyclopentadiene selectivity of about 86% at 450 
o
C.  
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Despite the strong basicity of KNO3/ZrO2 and KNO3/MgO (H− = 27.0) their catalytic 

activity of CPD methylation was very low, and only 9.4% and 13.5% CPD was converted, 

respectively. Their catalytic activity was much worse than that of KNO3/γ-Al2O3 and 

KNO3/HT. The conversion of CPD was reduced but the selectivity for 

methylcyclopentadienes was dramatically increased over γ-Al2O3 by loading 23% MgO. A 

mechanical mixture of 10% γ-Al2O3 and 90% MgO achieved a higher conversion and 

selectivity than MgO. All samples showed optimum catalytic activity at 450 
o
C excluding 

the KNO3/SiO2 and MgO-related composites as their maximum activities raised at 500
 o

C. 

TiO2 and γ-Al2O3 were acidic, whereas SiO2 and ZrO2 exhibited weak acidity as well as 

basicity thus these oxides were ineffective for the methylation of CPD. The catalytic 

activity of CaO was worse than MgO especially at 500 
o
C, although the CaO was more 

basic. The significant difference in the surface area of CaO (8.4 m
2
/g) and that of MgO 

(151.1 m
2
/g) could account for this. 

The higher activity of KNO3/γ-Al2O3, KNO3/HT, and KNO3/ZrO2 were attributed to them 

being solid superbases. Since a weak base strength (H−) of only 9.3 has been measured on 

KNO3/SiO2 and KNO3/TiO2, such basic sites were not strong enough to catalyse the 

methylation of CPD.  

The base strength of MgO was relatively strong (H− = 22.5), and the increase in the base 

strength was modest after modifying with KNO3 that was associated with the reasonable 

improvement of the catalytic activity for CPD methylation. For this reason, solids with 

strong basicity were of assistance for the methylation of CPD. The activities of KNO3/ZrO2 

and KNO3/MgO was lower than that of KNO3/γ-Al2O3 and KNO3/HT in spite of base 

strength of H− = 27.0. One of the possible reasons was that γ-Al2O3 and HT have greater 

surface areas than ZrO2 and MgO. However, the limited variation in the surface area of the 

oxides may not give a definitive explanation for the considerable difference in their 

catalytic performance. The results of isopropanol decomposition showed that the yield of 

acetone over KNO3/γ-Al2O3 and KNO3/HT was much higher than that over KNO3/ZrO2 

and KNO3/MgO even with the similarity of base strength which had been verified by their 

activity for CPD methylation. Therefore, the basicity of the catalysts could be ascribed as a 

dominant factor for CPD methylation. Analogous amounts of CPD were converted over 

KNO3/γ-Al2O3 and KNO3/HT while more acetone was yielded over KNO3/γ-Al2O3. A 
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higher yield of propene over KNO3/HT might be used to illustrate this phenomenon since a 

synergistic effect of the basic and acidic sites was beneficial for the CPD methylation. 

Another study of KNO3 supported on alumina was reported by Xie et al [2]. The base 

strength measurement of a series of KNO3/Al2O3 catalysts calcined at high temperature 

(Table. 5.2) showed that the parent alumina was acidic and converted the colour of 

dimethylaminoazobenzene (H_ = 3.3) from yellow to red.  

 

Table. 5.2 Basic strengths of different KNO3/Al2O3 catalysts calcined at high temperature 

[2]. 

After loading potassium nitrate and calcination at temperatures higher than 500 
o
C, the 

modified alumina samples demonstrated a high base strength unlike 35% KNO3/Al2O3 

samples calcined at temperatures lower than 450 
o
C. They could change the colour of 2, 4-

dinitroaniline (H_ = 15) from yellow to mauve very quickly, but failed to convert 4-

nitroaniline (H_ = 18.4) to its conjugate base form, and therefore, their base strength could 

be tentatively ranged between (H_ = 15 -18.4) and they could be regarded as strong bases. 

The basicity of the catalysts with different amounts of loaded KNO3 was measured by 

Hammett titration (Fig. 5.2). 
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Fig. 5.2 Basicity of 35% KNO3/Al2O3 sample calcined at different temperatures [2]. 

 

When the amount of loaded KNO3 increased to 35 wt% the catalyst basicity was markedly 

improved and the basicity became the highest. Although the basic strengths of various 

KNO3/Al2O3 samples calcined at 500
 o

C were the same (Table. 5.2) the basicities of the 

samples of 40% KNO3/Al2O3 and 45% KNO3/Al2O3 were lower than that of 35% 

KNO3/Al2O3 which resulted in a drop of the catalytic activity towards the methanolysis 

reaction (Fig. 5.3).  

 
 

Fig. 5.3 Influence of loading amount of KNO3 on the conversion. Reaction conditions: 

methanol/oil molar ratio 15:1, catalyst amount 6.5% after 7h on stream, methanol reflux 

temperature [2]. 
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This was probably due to the coverage of surface basic sites by the excess KNO3. The sites 

are, thus, not accessible to incoming reactants when the amount of loaded KNO3 exceeded 

35 wt%. Moreover, the basicity of 35% KNO3/Al2O3 sample calcined at different 

temperatures was measured by the same method (Fig. 5.4).  

 

 

 

Fig. 5.4 Basicity of 35% KNO3/Al2O3 sample calcined at different temperatures [2].  



                                                                                 184 

                

 

The result established that the 35% KNO3/Al2O3 sample calcined at 500 
o
C had the highest 

basicity, reaching 6.67 mmol/g. When the calcination temperature was greater than 500 
o
C, 

the basicity decreased. The basicity change with calcination temperature paralleled the 

change in the catalytic activity for the methanolysis of soybean oil (Fig. 5.5).  

 

 
 

Fig. 5.5 Influence of calcination temperature on the conversion. Reaction conditions: 

methanol/oil molar ratio 15:1 on 6.5% amount of catalyst after 7 h reaction time, methanol 

reflux temperature [2]. 

 

5.2 Results and discussion. 

Since it has been documented that the basicity, and hence catalytic activity, of 

KNO3/Al2O3 catalysts is strongly dependent upon loading, a range of KNO3 loadings has 

been studied in this chapter. XRD patterns of the various resultant samples are shown in 

Figure 5.6. 
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Fig. 5.6 XRD patterns of KNO3/Al2O3 catalyst with various loading of KNO3. 

 

The XRD patterns of  the KNO3/Al2O3 samples revealed that for samples with loaded 

KNO3 less than the dispersion threshold (12–25%), the XRD pattern is almost identical to 

Al2O3 with  the (440), (400), (222), (311) and (111)  refelctions being observed at 2=  67
 

o
,  46

 o
, 39

 o
, 37

 o
, and 19.2

 o
 respectively [3]. It was reported that these peaks are 

particularly related to cubic -Al2O3 [(JCPD No. 04-0858)]. The XRD pattern also revealed 

that no other compounds such as KAlO2 were detected which is similar to Stork and Pott’s 

XRD result for the K2CO3 on alumina [4]. The XRD result in Fig. 5.6 also agrees with 

those of Zhu and Wang [5] who reported that by increasing the amount of KNO3 to 13 

wt%, KNO3 reflections became apparent at 219.0 
o
, 23.6 

o
, 29.4 

o
, and 33.8 

o
 indicating 

that KNO3 may not be well dispersed and its residual phase remained. Compounds which 

were formed by interaction between KNO3 and the surface of alumina [6] appeared at 
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227.2 
o
 and 32.7 

o
 [7] although the nature of the interaction is not clearly understood.  

Accordingly, it is reasonable to surmise that only part of the loaded KNO3 could be 

decomposed under the activation conditions, depending on the interaction of KNO3 with 

the surface of support. This XRD result is consistent with what Xie et al [2] reported in 

their work over KNO3 on alumina. It is proposed that high basicity is generated by 

inserting K
+
 ions in the vacant sites of alumina, accelerating dispersion and decomposition 

of KNO3 to form strong basic sites associated with K2O during the activation process. 

Further peaks attributed to a compound containing K and Al appeared at 2 10 
o
 and 36 

o
 

which may possibly be one of the reasons for the reduction and even loss of  KNO3 and  

K2O peaks, hence possibly lowering the basicity and hence catalytic activity. Furthermore, 

since some diffraction peaks related to the nitrate salt still remained on the catalysts even 

after calcination, it appears that calcination of KNO3/Al2O3 at 400 
o
C did not sufficiently 

convert the corresponding nitrate precursors into the active oxide forms which is consistent 

with the study reported by Benjapornkulaphong and Ngamcharussrivichai for 

NaNO3/Al2O3 and KNO3/Al2O3 calcined at 450 
o
C [8]. This XRD result is also in 

agreement with Zhu and Wang’s study for KNO3/Al2O3 as they found that the KNO3 peaks 

intensities were not obviously affected by calcination at 773 K in air for 4 h [5].  

Some samples displayed a nearly identical diffraction pattern to that of the catalyst 

calcined at 400 
o
C suggesting that KNO3 can be preserved in the composite structure at 

such high temperature. Thermal stability of KNO3 up to 600 
o
C has been previously 

reported on La2O3 [9 ], V2O5 and CeO2 [10].                 

 

Table. 5.3 Surface area for KNO3/Al2O3 catalysts. 

The BET surface area results (Table. 5.3) show that the surface area of KNO3/Al2O3 

catalysts decreased when the loading amount of KNO3 increased, in agreement with results 

for KOH/Al2O3 and KOH/NaY catalysts [11]. As described later, the 14% KNO3/Al2O3 

catalyst exhibited higher conversion and selectivity than 36.5% KNO3/Al2O3, although not 
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when surface area was account. A larger surface area of support may be beneficial for a 

faster decomposition of KNO3 [12]. 

 

 

Fig. 5.7 SEM images for a) 5% KNO3/Al2O3, b) 14% KNO3/Al2O3 and c) 36.5% 

KNO3/Al2O3. 

                                                                                                                                                                                                       

The SEM images show that a range of morphologies is present which may influence the 

catalyst performance. It can be observed that the 14 wt% KNO3 is well dispersed over 

alumina compared to the 5 wt% and 36.5 wt% samples. Particles were irregularly 

dispersed within the structure.  

 

The catalytic activity of 14% KNO3/Al2O3 and 36.5% KNO3/Al2O3 samples has been 

investigated. A high acetone conversion rate of 147x10
-3

 mol m
-2

 h
-1

 after 18 h on stream 

was apparent over the 36.5 wt% catalyst compared to only 2.11x10
-3 

mol m
-2

 h
-1

 for its 14 

wt% counterpart, demonstrating that catalytic behaviour is a strong function of loading. 

   

 

 

a b 

c 
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Fig. 5.8 Surface area normalised acetone conversion as a function of time over 14% 

KNO3/Al2O3 and 36.5% KNO3/Al2O3 catalysts at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

 

Yields were reasonably high for both 14% and 36.5% loaded samples. The 14% sample 

achieved a much greater yield than the 36.5% catalyst since it showed a maximum yield of 

about 60 % for MO while the 36.5% achieved only around 30% (Fig. 5.9). These results 

are in agreement with the work of Noiroj and Intarapong who reported that the yield for 

biodiesel over KOH/Al2O3 was increased by increasing the loading of KOH on Al2O3 from 

1% - 25%, beyond which, the yield began to decrease [11]. It is very likely that dispersion 

of KNO3 on Al2O3 support weakens the interaction between K
+
 and NO3

-
 ions due to the 

interaction between KNO3 and the surface of support, assisting the decomposition of 

KNO3. At low loadings of KNO3, the active base sites are more dispersed on the alumina 

surface leading to a strong adsorption of reactant at unreactive surface sites. But, with the 

higher loading of KNO3, the KNO3 cannot be well dispersed and only part of the loaded 

KNO3 could be decomposed. Therefore, KNO3 may cover the basic sites on the surface of 

the composite material and reduce catalytic activity. Based on this result, the catalytic 

activity seems to relate to the amount of decomposed KNO3 instead of the total amount of 

KNO3 loaded. 
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Fig. 5.9 Percentage yields of the condensation and hydrogenation products of acetone as a 

function of temperature over 14% KNO3/Al2O3, and 36.5% KNO3/Al2O3 catalysts at 400 

o
C and 5 bar H2 pressure, TOS > 18 h. 

  

 

Table. 5.4 Conversions and selectivities for the aldol condensation reaction over 14% 

KNO3/Al2O3 and 36.5%  KNO3/Al2O3 catalysts at 400 
o
C and 5 bar H2 pressure ,TOS > 18 

h. 

Both catalysts exhibited high selectivity for MO of 80.80% and 43.70% for the 14% 

KNO3/Al2O3 and 36.5% KNO3/Al2O3 catalysts respectively. However, the 36.5% 

KNO3/Al2O3 catalyst showed a considerable selectivity for isophorone (Table 5.4). A 

significant selectivity of isophorone has been previously reported over Mg-Al mixed 

oxides [13]. 
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Fig. 5.10 Percentage selectivities of the condensation and hydrogenation products of 

acetone as a function of temperature over 14% KNO3/Al2O3 and 36.5% KNO3/Al2O3 

catalysts at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

 

It is therefore clear that it is possible to study the selectivity of the acetone condensation 

reaction by varying the KNO3 loading. Since the overall conversions are not significantly 

different between the two loadings studied, the selectivity differences are intrinsic. At this 

point, it is useful to draw comparison with the results of the KNO3/ZrO2 and 

KNO3/Zr(OH)4 catalysts since they were less active and presented much lower conversion 

and selectivity. 

 

5.3 Conclusion. 

 

In this very brief study, a few conclusions can be drawn: 

 

- the surface area of KNO3/Al2O3 catalyst is reduced by increasing the loading of 

KNO3. 

 

- KNO3/Al2O3 is an effective catalyst for the aldol condensation reaction of acetone. 

 

- The aldol condensation reaction of acetone over KNO3/Al2O3 catalyst is a 

dependent upon KNO3 loading. 
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- There is a strong relation between product selectivities and the loading of KNO3 on 

alumina. 
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Chapter 6 

 

Silica supported metal oxide catalysts for acetone conversion. 
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6. Introduction. 

6.1 Silica. 

Silica is a common chemical compound with a general formula SiO2 or SiO2.xH2O. It can 

be found in an amorphous state and also in a crystalline state. It exists in crystalline phase 

and various phases can be formed depending on temperature, pressure and degree of 

hydration. These forms include quartz, cristobalite and trydimite. It is relatively inert, 

slightly soluble in alkali, and soluble in dilute hydrofluoric acid, it often has a large surface 

area, and has a high melting point due to the strength of the bonds between the atoms. 

Amorphous silica occurs in various forms, which can be prepared depending upon its the 

application, such as sheets, sols, and gels.  

Silicas are covalent network structures in which each Si atom is covalently bound to four 

oxygen atoms. Each oxygen atom is shared between two Si atoms, yielding the formula 

SiO2 (ie Si + (½ O)). Surface silanol groups (ـــــSiــــOH) occur on silicas and can impart 

reactivity.  The silanol groups act as centres for molecular adsorption by interacting with 

adsorbates capable of forming hydrogen bonds or by donating or accepting electrons. 

There are various types of silanol groups [1]. 
 

These active silanol groups can be formed by two main processes. Firstly, via 

polymerisation condensation of silicic acid during the preparation of silica gel. Upon 

drying, the hydrogel becomes xerogel leaving some residual hydroxyls on the surface [2]. 

The second process is the reaction of the siloxane (Si-O-Si) surface with water under 

ambient conditions. The concentration of the silanol groups on the surfaces is dependent on 

the thermal history of the substrate, method of synthesis and on the immediate environment 

such as temperature and pH [3]. 

These silanol active sites are dependent upon the pH of the solution from which the silica 

is synthesised, their concentration increasing as the pH decreases. When dissolved in 

water, SiO2 depolymerises and then hydrolyses to form around 40% partially hydrated 

(meta) silicic acid at pH = 6 with a medium surface area and high pore volume. At pH = 2 

a fully hydrated (ortho) model silicic acid is formed which generally has a high surface 

area and low pore volume. At neutral pH, the ionization of silicic acid depends on the 

concentration of hydrogen ions. Silicate ion is present at a pH greater than 10 [4-6]. A 

schematic of these various inter-conversions is presented in Fig. 6.1: 
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Fig. 6.1 Silica solubility in H2O [5, 6]. 

 

As pH is lowered, a polymerization and a condensation process occurs which can be 

visualized starting with silicic acid [Si(OH)4]. This polymerises with condensation of 

silane groups (SiOH) to generate an ill-defined polymer having siloxane type (Si-O-Si) 

bonds. This precipitates as a gel or as a colloid and its properties depend on mixing 

procedures, presence of electrolytes, temperature and aging, etc. Hydrogels consisting of 

small micelles that are roughly spherical can be obtained under certain conditions. Upon 

drying, the combination of micelles is appreciably weak especially if the liquid is removed 

at critical temperature and pressure. Under these conditions, no interface forms that may 

collapse the structure by the forces of surface tension. The tiny size of the micelles and use 

of procedures to inhibit coalescence lead to production of a high surface area material. 

Commercial silica gel usually has a large surface area of about 700 m
2
/g. The average pore 

diameter is correspondingly very low, typically in the range of 2.5 to 5 nm, but is larger 

than those in zeolites and is substantially greater than the most reactant molecules of 

interest. By changing manufacturing and aging procedures, silica gels can be made with 

considerably larger pore diameters and correspondingly lower surface areas, perhaps as 

low as ca. 100 m
2
/g. A fully hydroxylated silica is preferable for many applications since it 

improves hydrolytic stability and enhances mechanical strength.  

The term silica gel is commonly used although the final dry product has to be strictly 

referred to xerogel or porous silica. At ambient temperature the surface comprises of a 
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layer of silanol groups (SiOH) in addition to the physically adsorbed water. Most of the 

water is removed upon drying in air at 150 to 200 C leaving silanol groups on the surface 

which can be lost with increased temperature. Some siloxane groups may also be present 

on the surface [7]. A basic knowledge of the surface structure is of great assistance in 

understanding the adsorption behaviour and the chemical reactivity of silica in a variety of 

processes. Hydroxyl groups that exist on the surface of crystalline silicas are either free or 

isolated hydroxyl groups (Scheme 6.2). In contrast, the surface structure of amorphous 

silica is highly disordered and such regularity of the hydroxyl groups arrangement is not 

highly predictable [8].  

 

Fig. 6.2 Arrangement of hydroxyl groups on a silica surface [8]. 

 

The preparation of silica can be tailored with respect to the chemical and physical 

behaviour such as surface area, pore size, pore volume and particle size. The most common 

method for the preparation of silica is the sol-gel route [9]. The method involves 

condensation of Si(OH)4 molecules to form a siloxane network. Soluble silicate (usually 

sodium silicate) is used as a starting compound although alkoxysilanes Si(OR)4 can be 

alternatively used. Hydrolysis of the alkoxy-group and condensation with neighbouring 

silonal simultaneously occur in the aqueous alkoxide solution. The formation of silica sols 

then occurs by mixing the silicate salt of the liquid alkoxide with water or an acid. Stable 

particles can be obtained via condensation. Continuous condensation leads to the formation 

of a small three-dimensional siloxane network. The condensation process is controlled by 

the addition of electrolyte or by the pH. As the viscosity increases the sol can then undergo 

condensation process to yield a gel. Further forms of silica can be then produced by 

changing temperature and pH.  

Silica gel is a partially hydrated form of silica. It is an amorphous and highly porous 

material. Silica gel powder is commonly used as a catalyst support, as an adsorbent, as a 
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dehydrating agent, and as a buffering medium.   

Silica gel is an inorganic polymer composed of siloxane groups (Si-O-Si) with silanol 

groups (Si-OH) distributed on the surface. The modification of silica gel using inorganic or 

organic functional groups has been a subject of high interest. Surface modifications are 

commonly accomplished through silanisation by using an appropriate organosilane agent.  

The chemical and adsorption properties of silica gel are dependent upon the number and 

reactivity of the surface silanol groups. Two forms of adsorption centre possibly exist on 

the surface of silica gel: (i) hydroxyl groups; (ii) co-ordinatively unsaturated atoms of 

silicon.  

A wide range of catalytic processes were performed over silica on its own or as a support 

for another active phase. It can be used as a catalyst itself but most of the studies use silica 

as a support due to several inherent advantages. It is chemically inert towards many 

reactants since it has no pronounced surface acidity which would induce secondary 

reactions. Silica also has surface hydroxyl groups which allow for ligand bonding to 

present high specific surface areas as well as having good thermal and mechanical 

stabilities.  

The first use of the preparation of coherent expanded aerogels was reported by Kistler et al 

in 1931[10]. The study clearly observed that the inorganic gel, after dehydration under 

normal conditions, collapses into a powder as a result of the disruption in the pore structure 

of the gel. However, when the gel was dehydrated under super-critical conditions of 

temperature and pressure, the gel did not collapse on drying and the liquid-vapour 

boundary within the pores of the gel no longer existed. The description of silica gel 

formation has been documented. Silica gel chemistry is performed either with an inorganic 

precursor such as ‘‘water-glass’’ or with organic precursors like silicon alkoxides, 

tetramethoxysilane (TMOS) of formula Si(OCH3)4, or tetraethoxysilane (TEOS) of 

formula Si(OC2H5)4, which are usually applied in monomer forms. Partially condensed 

silica or pre-polymers (oligomers) are occasionally used. Preparation of silica gel is 

commonly achieved by hydrolysis using acid, generally hydrochloric acid, with a solution 

of “water glass” that consists of orthosilicates (Na4SiO4), metasilicates (Na2SiO3), and 

related compounds. The resultant material undergoes washing to remove chloride. 
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In the following, a number of illustrative examples to demonstrate the effects of applying 

SiO2 as a support are described. Examples are taken from a range of different reactions and 

are not intended to be a comprehensive reference list.    

Catalytic activity and characterisation of CaO/SiO2 catalyst has been previously 

investigated for the oxidative dehydrogenation (OD) of ethylbenzene (EB) [11]. The 

samples denoted as xCaO/SiO2 and yP/xCaO/SiO2 (where x = 0.5 - 4.5 and y = 1.0 - 8.0 

wt.%) were dried at 373-383 K and calcined at 773 - 823 K for 5 - 6 h. The results showed 

that the activity of silica gels slightly increased after their modification with CaO. The 

values of EB conversion, selectivity on styrene and CD quantity in steady state over 

catalysts xCaO/SiO2 prepared using a macroporous silica denoted as SiO2-V are presented 

in Table 6.1. 

 

 

Table 6.1 The influence of CaO quantity (wt.%) in xCaO/SiO2 composition on OD of 

ethylbenzene. 760 K, PEB = 0.14 atm, PO2 = 0.l7 atm, space velocity = 0.5 h
_1

.b CD in 

steady state (wt.%) [11]. 

 

As can be seen from the table, with increasing of CaO quantity up to 1%, EB conversion 

rose from 47.4 to 59.6% beyond this loading, EB conversion and CD quantity strongly 

reduced. It was proposed that the amount of CaO induces a more significant influence on 

the activation of oxygen than on the activation of ethylbenzene. It has been shown by EPR 

that modification of silica gels by small quantities of CaO results formation of anion 

vacancies. Upon increasing CaO from 0.5 up to 4.5% the activity of catalysts in 

dehydration of iso-propanol declined (used as an acidity measurement) but is increased for 

the dehydrogenation of iso-propanol into acetone (used as a measure of basicity test 

reaction) (Fig. 6.3).  
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Fig. 6.3 The dependence of styrene (1), acetone (2) and propylene (3) yields upon the CaO 

content of CaO/SiO2 catalyst [11]. 

 

It was notable that only iso-propanol dehydration occurred over SiO2 treated by 

hydrochloric acid and 7% P/SiO2. The strong dependence of styrene yield and selectivity 

upon calcium oxide concentration could be associated with presence of optimal ratio of 

base and acid centres taking part in activation of EB and oxygen which resulted in 

formation of catalytically active CD. With increasing average pore radius of silica gel from 

1.1 up to 7.0 nm styrene conversion rose (Table 6.2).  

 

 

Table. 6.2 The texture characteristics and catalytic properties of silica gels at OD of 

ethylbenzene [11]. 

 

Likewise, an analogous dependence was observed also for CaO/SiO2, prepared using 

different silica gels. It can be seen in Fig. 6.4 that the larger the average pore radius, the 

higher the impact of calcium oxide exerted on EB conversion. 

In addition, the general increase in conversion with time on stream can be seen to occur for 

the 1% CaO-SiO2-V catalyst but not the 1% CaO-SiO2-I material. 
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Fig. 6.4 a) The dependence of EB conversion from average radius of silica gels (1) and 1% 

CaO/SiO2 pores (2) (temperature = 487 
o
C, space velocity = 0.5 h

_1
).  b) The dependence 

of EB conversion from time on stream (temperature = 487 
o
C, space velocity = 0.5 h

_1
) 

[11]. 

 

In the thermal analysis of the l% CaO/SiO2 catalyst only an exothermic peak with a 

maximum at 773 K was detected. The treatment of SiO2 and xCaO/SiO2 with phosphoric 

acid caused an increase of conversion of EB and selectivity of styrene (Table 6.3). 

  

 

Table. 6.3 OD of ethylbenzene over silica gel (sample V) modified by calcium and/or 

phosphorus [11].  

 

The dependence of styrene yield upon content of phosphorus in yP/SiO2 samples passed 

through a weak maximum corresponding to 6-7% of phosphorus. Thermal analysis showed 

that the quantity of CD in the case of 7% P/SiO2 was greater than for SiO2. High 

conversion of EB was observed in the case of yP/xCaO/SiO2 catalysts. The introduction of 

phosphorus into xCaO/SiO2 diminished the yield of CO2, the time required to achieve 

steady state and increased selectivity to styrene. The optimal quantity of phosphorus for 

 

  

a)                                                                         b) 
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this series of catalysts depended upon the content of CaO (Fig. 6.5). Maximum conversion 

of EB was observed for 1% CaO/SiO2 and 4.5% CaO/SiO2 at 3 and 6% content of 

phosphorus respectively. 

 

 

Fig. 6.5 The dependence of styrene yield from quantity of phosphorus in catalysts yP/l% 

CaO/SiO2 (1) and yP/4.5% CaO/SiO2 (2) (temperature = 487 
o
C, space velocity = 0.5 h

-1
) 

[11]. 

 

The comparative thermogravimetric analysis of SiO2 and xCaO/SiO2 did not reveal a 

significant variation in the thermal behaviour of these samples apart from the change of 

concentration of surface hydroxyl groups. The decomposition process of silica gel 

impregnated by calcium nitrate was completed at 300–500 
o
C and the adsorption of cations 

was initiated. The nature of the calcium cation interaction with the surface was 

complicated and led to an alteration of the pore structure and the concentration of hydroxyl 

groups over the modified sample. The surface of silica gel has a weak acidity and many 

ions were rather strongly and even irreversibly held. The surface of silica gel became more 

effective for activation of reacting molecules. The characteristic feature of the given series 

of catalysts was a presence of a non-steady-state period at the beginning of reaction related 

to the formation and accumulation of CD which was accompanied by increase of EB 

conversion up to a maximum and a relatively constant value. Catalysts entirely regenerated 

by air at 773 K as well as fresh samples possessed low starting activity, however, after 

some time on stream conversion of EB reached the maximal value. For various types of 

SiO2 (quartz glasses, Aerosils) only the macroporous silica gels showed good activity in 

the EB OD reaction. After treatment by acid, the activity of silica gel was increased, 
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however it was accompanied by excessive accumulation of CD leading to further reduction 

of styrene yield. EPR spectra showed that concentration of the paramagnetic centres in CD 

was increased with the rise of CD quantity and continued to grow after establishing steady 

state reaction. The concentration of the paramagnetic centres after 2 h was 1.7 - 10
17

 spin g
-

1
, but after 20 h it increased to 3.4-10

19
 spin g

-1
. The accumulation process of excessive CD 

may be slowed down by modification of SiO2 with different oxides. In fact, the 

introduction of 0.5–1% CaO into the silica gel composition changes the acid–base 

properties and texture characteristics. Conversion of EB over 1% CaO/SiO2 was higher 

than over SiO2 with a lower rate of CD accumulation in the steady state reaction period. 

Calcium atoms appear to impact favourably on the formation of anionic vacancies, which 

make the surface of SiO2 more open for activation of EB molecules with participation of 

co-ordinately unsaturated Si
IV

, which are electron-acceptor centres [12]. In the activation 

of EB the surface hydroxyl groups can participate also. The activation of oxygen occur out 

on the electron-donor centres representing  the lattice oxygen and anionic vacancies, the 

concentrations of which, according to EPR spectra, increased when CaO was introduced 

into silica gel composition. The continuous increase of EB conversion and selectivity to 

styrene in the case of yP/xCaO/SiO2 appeared to be related to several factors. So, upon the 

impregnation of phosphoric acid on silica gel new hydroxyl groups were likely to be 

characterised by a higher electron-acceptor ability [13]. The thermal treatment caused 

formation of surface groups which were reversibly re-hydroxylated into acid groups partly 

covering the surface [14]. Investigation of texture characteristics of phosphorus-containing 

silica gels showed that at the introduction of phosphoric acid, the specific surface area was 

decreased but the total pore volume remained constant with increasing average pore radius. 

In contrast, phosphoric acid neutralised a fraction of the strongly basic centres, and 

decreased the yield of CO2 and thereby improved selectivity of styrene. The presence of 

maxima in the dependence of styrene yield on phosphorus content in yP/xCaO/SiO2 

samples was proposed to be connected with the optimal ratio of the concentrations of the 

centres activating EB and oxygen. The duration of steady-state activity was determined by 

the ratio of consumption and resumption rates of oxygen-containing groups in the CD 

composition. On the 3%P/l%CaO/SiO2 catalyst a slow decrease of styrene yield was 

observed only after 8–10 hours on stream. However, aerating the catalyst for 30–40 min 

practically restored maximal conversion of EB. Furthermore, calcium- and phosphorus-

containing catalysts were characterised by high accumulation rate of CD in the initial 
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reaction period (63– 68 mg g
-1

 h
-1

) and a drastic decrease of this value during steady-state 

operation. Thus, the promoting influence of optimal quantities of CaO and phosphorus on 

the activity of silica gels appeared to be linked to creating and balancing of acid and base 

centres of definite force activating EB and oxygen molecules that further resulted in 

formation of catalytically active CD in optimal quantity. Excessive CD accumulation on 

the catalyst surface and its highly condensed character promoted deactivation of catalytic 

system in EB OD. 

The above summary illustrates some of the effects of the application of a SiO2 support 

reported in the literature. Particular focus was placed upon the study involving CaO/SiO2, 

as this material is closest to those applied for the work described in the following section. 

 

 

6.2 Results and discussion. 

 

6.2.1 5% CaO/SiO2. 

 

5% CaO/SiO2 and Pd/MgO/SiO2 catalysts were used to catalyse the vapour phase aldol 

condensation reaction of acetone at different temperatures (200 
o
C, 300 

o
C, and 400 

o
C). 

Using the SiO2 support has two potential major advantages: (i) enhanced the mechanical 

stability of the active CaO phase, and (ii) increased dispersion of CaO which can be 

anticipated to increase the relative proportion of the lowest co-ordinated O
2-

 sites (3 co-

ordinate sites) which are anticipated to exhibit the highest base strength. Conversions, 

selectivities and yields were calculated, analysed and compared with other studies.  
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Fig. 6.6 The XRD pattern for 5% CaO/SiO2 catalyst before at 400 
o
C for 24 h.  

The X-ray diffraction pattern of the 5% CaO/SiO2 material is shown in Figure 6.6. The 

pattern is highly amorphous, and so little information can be obtained. The relative 

quantity of CaO in the material is low, and possibly below detection limits, and the XRD 

pattern is consistent with amorphous SiO2. 

 

Scanning electron micrographic investigation of the 5% CaO/SiO2 sample revealed that 

features, possibly CaO, randomly distributed on the silica surface with irregular particle 

size (Fig. 6.7). 

 

 

Fig. 6.7 Scanning electron microscopy (SEM) images for 5% CaO/SiO2 catalyst. 

 

CHN analysis has been applied to the 5% CaO/SiO2 catalyst before and after reaction at 

400 
o
C for 24 h (Table. 6.4). The sample prior to reaction contained 0.74/0.59 wt% of 

hydrogen and 2.13/2.10 wt% nitrogen but no carbon was detected. The small amount of 

hydrogen was believed to originate from water during the preparation process and surface 

hydroxyl groups. Nitrogen was introduced from the Ca(NO3)2 precursor that was used as a 

source of CaO in the preparation.  In comparison, the post-reaction sample comprised of 

7.51/7.99 wt% carbon and 1.03/1.13 wt% hydrogen. The absence of nitrogen in the post-

reaction sample is noteworthy and indicates that decomposition of the nitrate has occurred. 

 

 

Table. 6.4 CHN analysis (wt%) for 5% CaO/SiO2 before reaction and after reaction at 400 

o
C for 24 h. 
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Fig. 6.8 Percentage conversions of acetone over 5% CaO/SiO2 catalyst, after 18 h of 

reaction, as a function of time on stream at 200 
o
C, 300 

o
C, and 400 

o
C, 5 bar H2 pressure, 

TOS > 18h. 

 

The conversion of acetone is observed to increase with increase in reaction temperature 

(Table. 6.5) and decrease as reaction time increases (Fig. 6.8).  No product was formed 

within the initial period of reaction; this is probably due to the period of time for carbon to 

lay down onto the catalyst and possible modification of the catalyst surface. The modified 

catalyst was then subjected to a period of reaction from 18-20 h which leads to more stable 

behaviour of the catalyst. It can be observed from Table 6.5 that by increasing reaction 

temperature within the range (200-400 
o
C) the DAA selectivity is slightly decreased from 

7.30% to 3.04%, which can be attributed to the increase of dehydration capacity of DAA to 

MO with increasing temperature indicating that the catalyst has a hydrogenation capacity 

to form MIBK and this capacity increases with increasing temperature under a hydrogen 

atmosphere. This result is agreement with Kelly and Jackson’s [15] work since they did not 

report the formation of DAA in their product stream. 

The catalytic activity is generally fairly stable beyond 20 h of reaction (Fig. 6.8). The result 

is in agreement with work by Canning and Jackson [16] who studied the same reaction on 

a CsOH/SiO2 catalyst at reaction temperatures between 100 and 400 
o
C and who reported 

the highest yield for MO at 300
 o

C and the highest selectivity of MO at 200 
o
C. Another 

study reported a yield of 25% for isophorone in the temperature range (350-400 °C) using 

CaO or Ca(OH)2 catalyst prepared by the deposition of a calcium salt on certian alumina 

supports followed by calcination [17]. Moreover, acetone conversions in the present study 
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are between 4-6% and are strongly dependent on the reaction temperature (Fig. 6.8) and 

the maximum value observed at 300 
o
C was 6%. The conversions observed are generally 

greater than those reported by Kelly and Jackson [15] (1.2-3.0%) under similar conditions. 

The highest selectivity of 60.72% observed at 200 
o
C for the MO is considerably different 

than that obtained by Canning and Jackson [16] which was 85% (observed at 200 
o
C). This 

may indicate that alkaline earth oxide catalysts are more active for the aldol condensation 

reaction of acetone than the alkali metal oxides whereas the latter are more selective for 

MO. 

 

 

Fig. 6.9 Percentage yields of the condensation and hydrogenation products of acetone as a 

function of temperature over 5% CaO/SiO2 catalyst (At 200
  o

C, 300 
o
C and 400 

o
C, 5 bar 

H2 pressure, TOS > 18 h). 

 

Yields are relatively low and are increased by raising reaction temperature to reach a 

maximum value at 300 
o
C for MO of 3.63%. Subsequently, the yield is strongly decreased 

(Fig. 6.9). It also can be observed from that above 300 
o
C the yield of MO is decreased due 

to the sequential formation of higher molecular weight molecules from the aldol 

condensation of MO with an additional acetone molecule. The formation of these heavy 

products is consistent with number of previous studies such as that by Di Cosimo et al 

[18]. In that study, phorone and isophorone formation as precursors to non-volatile organic 

compounds that caused coke formation and deactivation of an MgO catalyst for the aldol 
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condensation of acetone was studied. It was concluded that the isophorone was formed 

from a direct internal 1,6-Michael addition of phorone. Further heavier molecules are 

formed such as 4-methyl-2-pentanol from the hydrogenation of the MIBK. Aldol 

condensation of MIBK and acetone yields 2,6-dimethylheptan-4-one. 

  

 

Table. 6.5 Conversions and selectivities as a function of temperature for the aldol 

condensation reaction over 5% CaO/SiO2 catalyst (200 
o
C, 300 

o
C and 400 

o
C, 5 bar H2 

pressure, TOS > 8 h). 

 

The catalyst shows a high selectivity for MO (mesityl oxide) of ca. 61% at 200 
o
C 

illustrating that MO is clearly the main product (Fig. 6.10) in agreement with a number of 

studies [19]. This indicates that the hydrogenation process of MO to MIBK is not favoured 

which can be expected due to absence of a metal hydrogenation function. However, the 

inclusion of a Pd metal dopant, as discussed later, would be expected to assist the 

hydrogenation of MO to MIBK. The selectivity for isophorone is significant particularly at 

400 
o
C where it is 25% which is in agreement with Lippert et al [20]. In that study, the 

same reaction over a non-supported Ca(OH)2 catalyst between 200-400 
o
C showed a high 

selectivity for isophorone.  However, the acetone conversion (4-6%) is much lower than 

that achieved by Lippert et al [20] which was 43%. This difference may relate to the 

presence of silica support, indicating that silica support may negatively influence the 

performance of calcium oxide catalyst. However, this suggestion is not proved. 
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Fig. 6.10 Percentage selectivities, after 18 h of reaction, as a function of temperature for the 

aldol condensation reaction over 5% CaO/SiO2 catalyst at 200 
o
C, 300 

o
C and 400 

o
C, 5 bar 

H2 pressure, TOS > 18 h. 

Fig. 6.11 Reaction rate and conversion for the aldol condensation reaction of acetone over 

5% CaO/SiO2 catalyst as a function of temperature (T = 400 
o
C, P = 5 bar H2 pressure).   

 

 

 

Figure 6.11 demonstrates that the rate of mesityl oxide formation is very low even at low 

conversion levels. The production of MO from DAA is an eqiluibrium limition as 

discussed early in this thesis. Bases on this, the simultaneous hydrogenation of mesityl 

oxide may help in shifting the reaction in the forward direction by keeping the mesityl 

oxide concentration at low level at any given time within the reaction period. However, 
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Winter et al [21] showed that 100% conversion mesityl oxide in liquid phase could be 

achieved on a Pd/CNF catalyst.  

 

6.2.2 1%Pd5%MgO/SiO2. 

 

In order to assess whether the “one pot” conversion of acetone to MIBK was possible a 

Pd/MgO/SiO2 catalyst has been screened. This is a bifunctional system in that a base 

component (MgO) and a hydrogenation component (Pd) are present. 

 

 

Fig. 6.12 X-ray diffraction (XRD) pattern for 1%Pd5%MgO/SiO2 catalyst after reaction at 

400 
o
C for 24 h. 

The post-reaction XRD pattern shown in Fig. 6.12 is amorphous and it is not possible to 

discern features associated with the MgO and Pd components. 

The SEM images of 1%Pd5%MgO/SiO2 catalyst showed that there is a high dispertion of 

the catalyst over the silica support Fig. 6.13.  
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Fig. 6.13 SEM image of the 1%Pd5%MgO/SiO2 catalyst. 

The CHN analysis for the post-reaction 1%Pd5%MgO/SiO2 catalyst showed that carbon 

was present on the post-reaction catalyst with a high amount of 5.31/5.11% with small 

amount of 0.91/0.82% of hydrogen were produced during the reaction Table. 6.6. 

However, nitrogen was not detected within the catalyst. 

 

Table. 6.6 CHN analysis for 1%Pd5%MgO/SiO2 catalys post-reaction reaction at 400 
o
C 

for 24 h. 

The aldol condensation reaction of acetone was performed over a 1%Pd5%MgO/SiO2 

catalyst in the temperature range of 100–400 
o
C. The catalyst was pre-treated at 450 

o
C 

under N2 for 2 h to convert the Mg(NO3)2 and Pd(NO3)2 to NO2 and subsequently oxidise 

to MgO, PdO and Pd.. However, under H2 gas the following reaction occurs on SiO2 

surface: 

 

MgO     +    H2O   Mg(OH)2 

PdO      +       H2  Pd      +   H2O 
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Average conversions of 7–23% were obtained after 18 h of the reaction and the catalyst 

was highly selective to MIBK with 73.92% at 200 
o
C due to the presence of the 

hydrogenation site (Table. 6.7). This result is consistent with previous studies including 

that of Rodrigues and Monteiro [22] who studied the same reaction on Pd/NaX catalyst at 

250 
o
C and revealed that MIBK was the most selective product being 80%, Nikolopoulos 

and Jang [23] have also achieved similar results for MIBK synthesis over Pd supported on 

hydrotalcite (HT)-derived Mg–Al mixed-oxide catalyst at 99–153 
o
C. 

 

 

Table. 6.7 Conversions and selectivities as a function of temperature for the aldol 

condensation reaction over 1%Pd5%MgO/SiO2 at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

 

Fig. 6.14 Percentage conversions of aldol condensation, after 18 h of reaction, over 

1%Pd5%MgO/SiO2  as a function of time on stream at (100 
o
C, 200 

o
C, 300 

o
C, and 400 

o
C, 5 bar H2 pressure, TOS > 18). 

The conversion is less than 10% at 100 
o
C which is similar to previous work reported by 

Mattos et al on Pd/X zeolite [24] and Chen et al on Pd/SiO2 and Pd/CaO–Al2O3 [23]. By in 

creasing reaction temperature (100–300 
o
C) there is a large increase of conversion. The 

catalyst shows high performance during the first period of reaction before it reaches a more 
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stable state after 20 h reaction time (Fig. 6.14). At 400 
o
C, the conversion is lower which 

may be due to accelerated deactivation either by coking or by sintering. MO was formed in 

all experiments which indicates that the quantity/activity of the metal phase is insufficient 

to carry out total hydrogenation.  

 

 

Fig. 6.15 Percentage yields of the condensation and hydrogenation products of acetone as a 

function of temperature on 1%Pd5%MgO/SiO2 catalyst at 100 
o
C, 200 

o
C, 300 

o
C and 400 

o
C, 5 bar H2 pressure, TOS > 18 h. 

It can be observed from Fig. 6.15 that the MIBK yield over 1%Pd5%MgO/SiO2 is 

relatively high. It increases with increasing temperature to reach a maximum of ca. 17% at 

300 
o
C followed by a sharp decrease due to the formation of heavier by-products. The 

hydrogenation of MO to MIBK over palladium metal is obviously fast.  
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 Fig. 6.16 Percentage selectivities as a function of temperature for the aldol condensation 

reaction over 1%Pd5%MgO/SiO2 catalyst at 100 
o
C, 200 

o
C, 300 

o
C and 400 

o
C, 5 bar H2 

pressure, TOS > 18 h. 

MIBK selectivity increases from ca. 54% to ca. 74% by increasing temperature from 100-

200 
o
C and then it decreases dramatically to 48% at 400 

o
C due to the formation of heavier 

molecules (Fig. 6.16). The optimal performance was obtained at 300 
o
C. This is consistent 

with the work of Chen et al who found similar MIBK selectivity over Pd/KHZSM-5 

catalyst at 250 
o
C [25]. Olson et al also reported similar MIBK selectivity 70–80% at 20 

o
C 

on a Ni/MgO catalyst [26]. 

 

6.3 Conclusion. 

The aldol condensation reaction of acetone has been investigated in this chapter over 

5%CaO/SiO2 and 1%Pd5%MgO/SiO2. The two catalysts showed significant activity for 

the reaction but they behaved differently (Fig. 6.17). The 5% CaO/SiO2 catalyst exhibited 

high selectivity (ca. 52%) toward the MO but on the catalyst that contained palladium, 

some of MO was hydrogenated to MIBK (Fig. 6.18). It is believed that the presence of 

palladium metal is responsible for the hydrogenation process. Thus the MIBK has achieved 

a high selectivity of ca. 48% on this catalyst. The palladium catalyst is highly active for 

MIBK synthesis while the CaO/SiO2 is better for the production of MO. 
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Fig. 6.17 Comparison of conversions between 5% CaO/SiO2 and 1%Pd5%MgO/SiO2 

catalysts at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 

 

 

Fig. 6.18 Illustration of products selectivities over 5% CaO/SiO2 and 1%Pd5%MgO/SiO2 

catalysts at 400 
o
C, 5 bar H2 pressure, TOS > 18 h. 
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Chapter 7 

Conclusions and future work. 
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Conclusions and future work. 

 

 

Table 7.1 A comparison of conversions and selectivities of aldol condensation reaction of 

acetone over the all base catalysts used in this thesis at 400 
o
C, 5 bar H2 pressure, TOS > 18 

h. 

 

A wide range of diverse materials has been screened for activity for acetone conversion. 

Taking 18 h on stream as a standard reaction time, comparisons can be made in terms of 

catalytic activity. The catalytic data is summarised in Table 7.1, where surface area 

normalised conversion data is also presented in order to give an indication of the intrinsic 

activity of the diverse set of materials screened. Total surface areas are used instead of 

specific surface area of active compononets. However, caution must be applied to this 

means of comparison in the cases of CaO/SiO2 and Pd/MgO/SiO2 where the BET surface 

area is dominated by the inactive SiO2 support.  

When the influence of surface area is taken into account, it can be seen that many of the 

materials have similar intrinsic activity, which is perhaps surprising although it must be 

recognised that the range of materials surveyed are basic metal oxides which are expected 

to exhibit activity for the reaction. Against this backdrop, the relatively high activities of 

Li/MgO and, in particular, KNO3/Al2O3 should be noted. Whilst it may be tempting to 

ascribe this to a possible role of alkali metal ions, the comparatively low specific activities 

of the other K
+
 doped materials suggests otherwise, and currently, there is no simple 

explanation for the  enhanced intrinsic behaviour of Li/MgO and KNO3/Al2O3. 

MO was the major product observed over the all catalysts except 1%Pd5%MgO/SiO2 since 

it was highly selective toward MIBK due to inclusion of the strongly hydrogenation 

component. General comparison between the all catalysts used in this study showed 
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maximum conversion of 85% achieved over MgO derived from Mg(OH)2.3MgCO3 while 

the minimum conversion of 1% was over the 36.5% KNO3/Zr(OH)4 catalyst. Therefore, it 

can be concluded that the most active catalyst for the aldol condensation reaction of 

acetone was MgO whereas the 36.5% KNO3/Zr(OH)4 revealed the weakest catalytic 

activity. Upon the catalysts that yielded MO as the main product, Y-Zr(OH)4 catalyst 

accomplished the lowest selectivity of MO. 

The influence of the nature of dopants/additional catalyst components is illustrated in the 

following comparison, Y-Zr(OH)4 achieved 8% conversion and the catalyst was 

significantly selective to Isoph with 34%. In contrast, 1%Pd5%MgO/SiO2 catalyst 

exhibited a slightly higher conversion of 10% and the main product was MIBK with 48% 

selectivity. However, Li/MgO catalyst obtained, comparatively, the highest conversion of 

65% and a maximum selectivity of 74% for MO. Li/MgO is highly active catalyst for aldol 

condensation reaction of acetone compared to Y-Zr(OH)4, and 1%Pd5%MgO/SiO2. Since 

production of Isoph requires strong basic sites, this suggests that Y-Zr(OH)4 possesses 

strong basicity. Production of MIBK is considerably favoured over 1%Pd5%MgO/SiO2 

catalyst which is due to the well documented ability of palladium for hydrogenation. 

Non-doped catalysts including 5% CaO/SiO2, ZrO2 and MgO derived from Mg(OH)2 and 

Mg(OH)2.3MgCO3 have shown different behaviour for the aldol condensation reaction of 

acetone. Differences are also apparent for the same phase prepared by different routes. 

MgO derived from Mg(OH)2, and Mg(OH)2.3MgCO3 precursors were active catalysts. 

They exhibited conversion of 60%, and 85% respectively. Maximum selectivities of 88% 

over MgO derived from Mg(OH)2.3MgCO3 and 82% by MgO derived from Mg(OH)2 

were also achieved for MO. When surface area is taken into consideration, it can be seen 

that the basic carbonate precursor leads to the most active catalyst. This can be ascribed to 

the role of morphology and/or different impurity catalysts. However, the 5% CaO/SiO2 

catalyst exhibited a low conversion of 4% and selectivity of 52%, lower than magnesia but 

greater than that obtained by zirconia. Although zirconia showed higher activity than 5% 

CaO/SiO2 catalyst since it achieved slightly greater conversion of 6%, it was moderately 

less selective to MO product with only 41%. The remarkable difference between the results 

obtained by these three base catalysts may be attributed to various factors including 

crystalline phases, basicity, and surface area. The results also reveal variable basicity of the 

three catalysts as shown the figure below. 
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Figure 7.1 CO2-TPD data for various catalysts tested.  

 

The basis of this thesis has been a comparison of solid bases for acetone conversion, a base 

catalysed reaction. Accordingly, it would be of importance to determine the base site 

strengths and base site numbers for each of the materials screened. However, as outlined in 

Chapter 1, this is not trivial.  CO2-TPD has been applied for this purpose. Unfortunately, 

due to experimental problems, it did not prove possible to apply this method to all the 

materials screened. CO2-TPD data for the materials which were successfully investigated 

are presented in Figure 7.1. It should be noted that since 700 
o
C was the upper desorption 

temperature which could be applied, due to experimental limitations, the spectra possoibly 

do not probe very strong base sites. 

From the CO2-TPD study it can be concluded that Y-Zr(OH)4 catalyst comprised 

maximum numbers of weak to intermediate strength basic sites whereas the 36.5% 

KNO3/ZrO2 had the fewest. Yttria dopant increased the number of basic sites on hydrous 

zirconia while loading of KNO3 on zirconia inhibited its basicity. When comparing activity 

and surface area and based on these CO2-TPD results, it can be concluded that there is a 

proportional relation between the number of basic sites and surface area in which both can 

be accounted as important driving forces of catalytic activity of those catalysts for acetone 

conversions. The number of basic sites on ZrO2 was also considerable. The 14wt% KNO3 
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loaded Zr(OH)4 appeared to possess a greater number of base sites of relatively well 

defined strength than its 36.5 wt% loaded counterpart. 

Overall, it is clear that the materials tested in this thesis exhibited appreciable activity 

towards acetone conversion after 18 hours on stream under a H2 containing atmosphere. 

This suggests that it may be possible, by suitable addition of a hydrogenation function, to 

develop single phase one-stage catalytic systems for the conversion of acetone to MIBK. 

The possibility of this approach has been exemplified by the Pd/MgO/SiO2 system 

investigated in the present study, as well as others reported in the literature outlined in the 

introduction to this thesis. Based solely upon per pass conversion 14% KNO3/Al2O3 and 

MgO derived from Mg(OH)2.3MgCO3 appear to be the best candidate systems, although 

attention should be directed towards the overall stability of the system in operation, as well 

as any effect (whether good or bad) induced by the introduction of the hydrogenation 

component. The optimum hydrogenation component, its loading and method of 

introduction, will also be crucial consedrations.  
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