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The layout of this thesis is as follows. In Chapter 1, we introduce the background theory of the 

geodynamo and the relevant established results. In Chapter 2, we introduce our physical model. 

In Chapter 3 we consider the aw-type dynamo model, which then provides us with a reference case 

for Chapter 4, where we consider the effect of inertia on this model. In Chapter 5 we consider the 

a2w-type dynamo model and then extend this in Chapter 6 to include the effect of inertia. Chapter 

7 summarises the main results of each of these chapters and ties all the material together. For 

completeness, in Appendix A we include proofs of well established results, and finally in Appendix 

B we include a description of the codes used. 
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Chapter 1 

Introduction 

1.1 Background. 

1.1.1 The history of the Earth's magnetic field. 

The Earth's magnetic field has been a source of considerable interest over the past two millennia. 

One of the first major achievements in understanding the source of the magnetic field, came from 

the ancient Chinese, who were responsible for inventing the magnetic compass and discovered decli- 

nation - the angle between magnetic and geographic North. The angle of inclination -a measure of 

the dip of the magnetic field - was discovered in the 16th century. The inclination and declination 

as well as the strength of the field characterise the measurable aspects of the magnetic field. These 

features are known to vary slowly with time -a fact first discovered by Henry Gellibrand in 1634, 

in his observations of the magnetic declination. This was the first observed feature of the so-called 
Geomagnetic Secular Variation (GSV), which is the slow change in the observed magnetic field 

with time. Since the first detailed observations, measurements of the declination and inclination of 
the Earth's field have been recorded, providing us with a detailed record of the Earth's field over 

the past few hundred years. 

In addition to the direct measurements of the Earth's magnetic field which have been kept since 

the 16th century, the behaviour of the Earth's field has been found indirectly through paleomag- 

netic measurements which give a record of the Eaxth's field going back some 3 billion years, (see 

for example, Merrill et al 1996). Short timescale behaviour (t - 0.1year - lkyear), is obtained 

1 



CHAPTER 1. INTRODUCTION 2 

from the study of volcanic rocks, which contain small amounts of magnetic particles (typically 

iron oxide), released during eruptions. These magnetic particles naturally align themselves with 

the local magnetic field, so that when the lava from the volcano solidified, these small magnetic 

particles were trapped in the rock, thus preserving the strength and direction of the magnetic field 

at that moment in time. Longer timescale behaviour is found from studies of sedimentary rocks, 

which contain traces of iron oxides, which became embedded during their formation. 

From these records of the field, it is well established that the Earth's magnetic field has remained 

at approximately its present strength for the past 3x 109 years. However we note that recent work 

by Macouin et al (2004) does show evidence that there has been a small increase in the observed 

magnetic field strength over the past 1 billion years, possibly associated with the formation of the 

inner core. The ohmic decay time of the core is estimated to be 

2 
ýL-' , zý 3x 105 years. 77 

where L is a typical lengthscale (e. g. the radius of the core, L=3.485 x 106m) and 77 is the magnetic 

diffusivity. A derivation of the magnetic diffusion time T7, is given in Chapter 2. Clearly, since the 

field strength has been approximately constant for a time many orders of magnitude longer than the 

time over which the field would be expected to decay, there must be some mechanism maintaining 

the Earth's magnetic field. Another aspect of the Earth's magnetic field which is apparent from the 

GSV record, is the ability of the dominantly dipolar field to change direction in an unpredictable 

fashion. This is further evidence that the Earth's magnetic field can not be a fossil field present 

from its birth. The Earth's field also can not be a permanent magnet as below a depth of the 

order of a hundred kilometers the temperature inside the Earth exceeds the Curie temperature; the 

temperature at which permanent magnetism disappears. Therefore the only feasible mechanism 

by which the Earth's field may be maintained is the dynamo. The dynamo as a mechanism for 

generating and maintaining the Earth's magnetic field was first suggested in 1919 by Sir Joseph 

Larmor. The dynamo mechanism works on the principle that the motion of the conducting fluid 

induces from the prevailing magnetic field an electromotive force, creating currents which generate 

the inducing magnetic field. At first sight this concept, seems very much like a perpetual motion 

machine, but in fact there is really no conflict as energy is conserved. The energy lost through 

ohmic diffusion, is compensated for by the rate at which fluid motions generate electromagnetic 
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energy. 

1.1.2 The Interior of the Earth. 

To understand how such a dynamo might operate within the Earth to enable the maintenance 

and reversal of the field, we need to examine the interior structure of the Earth. The interior of the 

Earth is composed of 3 main layers; in the centre there is the spherical core of radius 3485km, this 

is surrounded by a thick layer of rock called the mantle of radius 6370km, and then this is finally 

encased in a thin layer of rock called the crust. The mantle is a good electrical insulator, (except 

perhaps close to the core-mantle boundary), and so the only possible source of electromagnetic 

induction lies in the core. In the core, we have two distinct regions; the inner core and the outer 

core. The inner core is a sphere of radius 1215km and is composed almost entirely of solid iron at 

temperatures of ýý 5000K. The outer core forms a fluid shell between the inner core and the mantle 

and is composed primarily of iron. In addition to the iron in the fluid outer core there is evidence of 

compounds of iron with some lighter elements, possibly oxygen, silicon or sulphur. See for example, 

Jacobs (1993) or Poirer (1994), for further details. The core is the focus of the dynamo mechanism 
in the Earth as the fluid motions in the outer core interact with the magnetic field to regenerate 

and maintain the Earth's field. 

1.2 The Induction equation. 

The magnetic induction equation, which is derived from Maxwell's equations governing electro- 

magnetic theory, and can be found in any introductory text on dynamo theory (see for example, 
Roberts 1994), is 

aB 
= 

iý X (fj- X fi) + 77jý2fi' 
at 

where i3i is the magnetic field, fJ is the fluid velocity and 77 is the magnetic diffusivity. Rom 

Maxwell's equations we have 

V. B=O (1.2) 

which, whilst not independent of (1.1), (as this is used in the derivation of the induction equation) 

can prove a useful condition on the field. 
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The induction equation may be non-dimensionalised using the ohmic diffusion timescaleT, 7 = 
L2177 as the timescale, f- as the typical lengthscale, and U as the typical velocity. Full details of the 

non-dimensionalisation is given in Chapter 2. The non-dimensionalised induction equation may be 

written as, 

aB 
-it- = RV x (U x B) + V2 B (1.3) 

where the dimensionless parameter R is called the magnetic Reynolds number and is defined as the 

ratio of the advection term to the magnetic diffusion term. Thus 

UL 
77 

where B, U are now dimensionless quantities. 

1.2.1 Alfven's frozen flux theorem. 

If we consider the idealised case in which we have a perfect conductor, then 77 = 0, and the 

induction equation in (1-1) reduces to 

aB 
- =V x (U XB) 

at 
(1.5) 

from which it can be shown that the magnetic field lines are material curves. A proof may be found 

in almost any MHD textbook; see for example Roberts (1967). This means that the magnetic field 

lines move and evolve with the fluid and so a helpful visualisation is to consider the magnetic field 

lines as being frozen into the fluid. 

The magnetic Reynolds number, R, defined in (1.4), gives a measure of the extent to which this 

idealisation holds, so that the perfectly conducting limit, 77 --ý 0, is chaxacterised by R -* oo. 

1.2.2 Dynamo conditions. 

In addition to satisfying equations (1.1) and (1.2), there are an additional two conditions that 

a dynamo must satisfy which solutions to (1.1) and (1.2) need not obey. 



CHAPTER 1. INTRODUCTION 

First Dynamo Condition. 

5 

All fields and currents must be created by fluid motion; none must be supplied by other sources 

external or internal (for example, thermoelectric and thermochemical sources, i. e., batteries, must 
be excluded). 

Second Dynamo Condition. 

The field and currents must persist indefinitely (or for a time long compared with r,, where it 

is assumed that the energy sources powering the motions are maintained during that time). 

1.2.3 Cowling's theorem. 

An alternative approach to finding solutions which satisfy the dynamo conditions (Section 1.2.2), 

is the approach taken to find anti-dynamo theorems, which allow us to rule out whole classes of so- 
lutions. Cowling's theorem (given below) was one of the earliest and most significant anti-dynamo 
theorems. 

Cowling's theorem (1934) states that; "An axisymmetric magnetic field can not be maintained 

by fluid motions" - This means that the dynamo process is inevitably three dimensional. As a 

result, the dynamo process is a complex and numerically intensive problem. We present a sketch 

proof of this theorem in Appendix A. 

1.3 The Momentum equation. 

In the outer core, our induction equation (1.1) is coupled to the momentum equation, 

p 
(-91ý-j 

+ (U- - V-)U- + 2pfl x iJ + pfl X (fl X jý) + pViý2fj +1 (jý X f3) X f3 + pi (1.6) 
at Ao 

in a reference frame rotating with angular velocity fl, where p aii- is the fluid inertia, ( 
5-t + (ij- - 

iý)ij- ) 

2pfl x 1CJ is t! he Coriolis force, pfl x (f] x _r) is the centrifugal force, ýý is the pressure gradient, 
-i--- pV; q- 2U is the viscous force, -L (V x B) xB is the Lorentz force and finally pj is the buoyancy force. AO 
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Through standard vector relations we may rewrite the centrifugal force pfl x (fl x fl as 

-V (2 (0 x -r) 2), 
which may be absorbed into the pressure gradient term, provided p is constant, to 2 

give a modified pressure ji =P+2 (f] x -r)'. Alternatively, the centrifugal force may be included 2 

in the buoyancy force to give a modified gravity term. We then have 

i---1 
(tj X j-B) X j3- + pi p 

(81F 
+ (U - V)U) + 2pf] x iJ 

= -Viý+ PVjý2fj + (1.7) 
at- Ao 

The buoyancy force pý appearing in the momentum equation, (1.7) drives thermal convection 

(which we will discuss further in Section 1.4.1) in the fluid outer core and is typically modelled by 

+ 
at 

where T is the temperature, r. is the thermal diffusivity and h' represents local sources of heating. 

Assuming a linear temperature gradient of typical magnitude 0, we may write the temperature i; 

as 

T =, 6, C(T, (1.9) 

where T,, is a reference temperature and T is a measure of the deviation from the adiabatic tempera- 

ture. In the Earth's core, the effects of compressibility are not believed to be of primary importance 

in the dynamics of the core, and therefore we adopt the Boussinesq approximation. The Boussinesq 

approximation assumes that the density in the fluid core, can be treated as constant (p = p. ) in all 

terms of the momentum equation except in the buoyancy force, where the linear relation between 

density and temperature is used: 

P= Po[l -- (1.10) 

where ct is the coefficient of thermal expansion. Assuming the electrically conducting fluid in the 

outer core to be incompressible, we have the condition 

V-U=O 

and therefore the momentum equation is 

(1.11) 

at --- iý2jj' 1 
Po +(U-V)U +2p,, QkxU=-Vj5+pv +- ('ý x f3) x i-B - pg,, i (1.12) 

( 

at Ao 



CHAPTER 1. INTRODUCTION 7 

where we have written j= -g,, i; and fl = f2k, where k is the unit vector in the direction of the 

rotation axis. Now for some of the subsequent analysis we present in this chapter, it is helpful 

to have the momentum equation in a non-dimensionalised form. As we present full details of the 

non-dimensionalisation we have used which is specific to our model in Chapter 2, we simply state 

the non-dimensionalised equations here and give the appropriate scalings. 

We have non-dimensionalised on the ohmic diffusion timescale, -r. C2 lq and a lengthscale, 

L. We scale the magnetic field with (Qtl,, p,,, 7)1/2 and velocity with U -L. Therefore the non- T77 

dimensionalised equation (1.12) is 

au 
Ro 

( 
ýt- + (U - V)u) +AxU= -Vp + EV2U + (, 7 x B) xB+ qRaTr 

where r is the non-dimensional radial vector. The non-dimensionalised equation (1.8) is 

aT 
+ (U - V)T =q V2 T+h at 

where h is now the non-dimensionalised heat source. The dimensionless parameters are the Rossby 

number (sometimes called the magnetic Ekman number) Ro, the Ekman number E, the (modified) 

Rayleigh number Ra and the Roberts number 

Ro = -2-, E Ra =: 
goCeor2 K 

Qf2 acý 77 

1.4 Energy sources driving fluid flow. 

(1.15) 

As we discussed in Section 1.1.1, the Earth's magnetic field would be expected to decay on the 

ohmic diffusion timescale of -3x 105 years. However, the Earth's magnetic field has been observed 

at approximately its present strength for the past 3x 109years and so the loss in energy through 

magnetic diffusion is being compensated for by the advection term liý x (U x B) in (1.1). However, 

there must be some energy source which is providing the kinetic energy to drive the fluid motions & 

We can obtain an estimate of the typical power requirement of such an energy source by con- 

sidering the induction equation (1.1) and setting t=0. Taking the scalar product with j_B/M. and 
integrating over all space V we find 

p= 
df B2 

dV =12 dV (1.16) 
dt v v- 

fv 
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where we have used the divergence theorem and the standard vector identities; 

Vx (e xf) = f- (V x e) -e- (V x f) 

Vx(Vxe) = V(V-e) _ V2 e 

V(e - f) = (e - V)f + (f - V)e +ex (V x f) +fx (V x e) 

to obtain this expression. For an insulating mantle, the current J vanishes outside the core. The 

left hand side of (1.16) is the rate of change of magnetic energy. Since 1L,, j = ýý x i-B, the ohmic 

power dissipation can be estimated from the right hand side of (1.16) as 

43 B2 
-7rr - 30 or, 12L2 0 

(1.17) 

where B is a typical field strength and L is an appropriate lengthscale. Choosing a lengthscale of 

the order of the radius of the Earth's core, say C= 106M, then we may estimate that the power 
dissipation would be - 1.8 x 1014132W. So, for a typical magnetic field strength of say 10mT, the 

power dissipation would be of the order 2x 1010W. Obviously this estimate depends on our rather 

arbitrary choice of lengthscale C; a shorter lengthscale producing more power dissipation and a 

longer lengthscale less dissipation. Loper and Roberts (1983) reviewed the various estimates and 

found values of p1B2 ranging from 0.7 x 1014 to 200 x 1014 WT -2, favouring a value somewhere 

in-between. Therefore for a field strength of lOmT, a ballpark figure for the power requirement of 

the dynamo simply to overcome the effects of dissipation is approximately 1011W. 

Another important consideration in determining a suitable energy source for the dynamo, is 

the efficiency with which this energy may be converted into useful fluid motions. The energy lost 

through ohmic dissipation is compensated for by the kinetic energy of flow ij, through the term 

Vx (U x B) in equation (1.1). The possible sources responsible for driving the flow are mainly: 
thermal convection, compositional convection and precessional driving, with effects such as ra- 

diogenic heating and the release of latent heat and light constituents contributing to convection. 

Precessional driving of core flows is generated by the gravitational torques exerted on the Earth 

by the Sun and the Moon. Thermal convection and composition convection are described in more 

detail in Sections 1.4.1 and 1.4.2. 
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In Section 1.3, we introduced a buoyancy force to the momentum equation of the form - P9, 

where j is the gravitational acceleration. This buoyancy force is responsible for driving the fluid 

motions in the outer core. The exact nature of the convection in the Earth's core is not precisely 

known, but is believed to be a combination of thermal convection and compositional convection. 

Typically in dynamo models, the buoyancy force drives thermal convection, since this process is bet- 

ter understood and easier to model mathematically. However on efficiency grounds compositional 

convection is favoured as a driving force for the fluid flow. Modelling compositional convection is 

difficult, despite the considerable amount of progress that has been made in understanding this 

complex process. 

Thermal convection. 

Thermal convection, arises through the temperature gradient in the core, and is typically mod- 

elled through an equation like (1-14). In Section 1.3 we stated that h appearing in (1.14) represented 
local sources of heating. We will now describe the possible heat sources that exist within the Earth 

which could contribute to this term. The source of the heating within the core may be distributed 

evenly throughout the core, or else concentrated at the inner core boundary (ICB). From a mod- 

elling perspective, the idea of a heat source which is distributed evenly throughout the core proved 

popular especially in purely spherical models which do not include an inner core (see for example, 

Roberts 1968). In such models, the source may be generated by radiogenic heating and through 

the release of specific heat as the core cools. For heating which is focussed at the ICB, the main 

contribution to the generation of thermal convection comes from the latent heat released on the 

crystallisation of the inner core as the core cools. 

1.4.2 Compositional convection. 

The fluid which makes up the Earth's outer core, is composed of iron plus iron compounds of 
lighter elements such as silicon, sulphur and oxygen (see for example, Poirier 1994). As the Eaxth 

cools with age, the inner core is gradually growing outwards into the fluid outer core through the 

preferential freezing out of the iron from these iron compounds. The boundary between the solid 
inner core and fluid outer core is not a solid boundary as used in the dynamo models, but is in fact 

a freezing interface called a mushy zone. Compositional convection arises as a result of the freezing 



CHAPTER 1. INTRODUCTION 10 

out of the iron in the iron compounds in the fluid outer core at the inner core boundary (see for 

example, Loper and Roberts 1981). 

The understanding of the physical processes underlying compositional convection is gleaned 
from experiments using metallic alloys. Through these experiments it is believed that the iron 

component becomes frozen into the mushy zone in the form of dendrites, whilst the remaining 

component is left behind in the surrounding melt. This remaining component is significantly less 

dense than the surrounding fluid, as it is undersaturated in iron, and so is naturally more buoyant 

and rises through the dendritic layer in narrow chimneys. As the fluid parcel of compositionally 

buoyant material rises, it may remelt any encompassed dendrites, thus producing a solid free chim- 

ney. Over most of the rest of the surface of the mushy zone there is a slow downwelling of fluid 

from the fluid layer above. 

Whilst this is believed to be the process which is present in the Earth, the non-linear processes 
in the mushy zone that cause this structure are extremely complicated and questions exist over 

whether convection takes this form at the ICB if the effects of rotation and a magnetic field are 

included. Work by Bergman and Fearn (1994) suggest that these effects may in fact cause chimney 

formation to be inhibited. 

1.5 Taylor's constraint and the Geostrophic flow. 

As given in Section 1.3, we defined the dimensionless parameters Ro and E, the Rossby number 

and the Ekman number, which determine the relative size of the inertial and viscous terms to 

the dominant Coriolis force, respectively. Now, within the Earth, the angular velocity of the 

mantle, Q=7.29 x 10-Is-1 and the lengthscale, L chosen for the non-dimensionalisation, axe both 

well determined. Typically, the non-dimensionalised lengthscale, L is chosen as the gap width 

r, - ri = 2.314 x 106M (Merrill et al 1996), which we adopt in our model presented in Chapter 

2. Alternatively, the outer core radius, r,, = 3.485 x 106M is chosen as the lengthscale L; we will 

adopt this scaling in the analysis that follows. However, 77 and v, the magnetic diffusivity and fluid 

viscosity are not so well determined. Recent estimates, give 77 ; ý:; 1-3M28-1 (Merrill et al 1996) and 

V- 10-6M2S-1 (de Wijs et al 1998). These values mean that Ro =: 0(10-9) and E= 0(10-15). 
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These estimates for Ro and E, suggest that both inertial and viscous effects are small and so may 

be negligible. Setting Ro =E=0 in (1-13) we obtain, 

2kxU= -Vp+(V xB) XB+qRaTr. (1.18) 

This is called the magnetostrophic approximation. If we take the O-component of (1-18), we have 

2U, 
1 ap 

+ ((V x B) x B)O, 
8 ao 

and integrating it over the whole surface of the cylinder C(s) (pictured in Figure 1.1) of radius s, 

coaxial with the rotation axis, we obtain 

cc 
UdS =f ((V x B) x B)OdS. (1.20) 

The cylinder C(s) intersects the outer sphere (r = r. = 1) at z= ZT, ZB where zT = -ZB = 

V-1 --S2 (= cos 0). The LHS of (1.20) is the net flow out of the cylindrical surface. If the viscosity 

is zero throughout the core, as we assumed, then the cylinder extends to the boundaries of the 

outer core, and so there can be no flow into or out of the ends of the cylinder. Therefore, for an 

incompressible fluid, the LHS of equation (1.20) must be zero, and hence 

fc(s) 
((V x B) x B), pdS =0 

This is Taylor's constraint, (Taylor 1963). 

(1.21) 

Figure 1.1: The Taylor cylinder C(s), illustrated for the cases (a) where the cylinder intersects the inner 

core, and (b) where s> rib. The cylinder extends frOM Z -: - ZT -': -- V/1 - 32 to ZB, where (a) ZB " V/rirb - S2 

and (b) ZB ý -ZT. ftom Fearn (1994). 
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The system has the freedom to satisfy Taylor's constraint through a component of the azimuthal 

flow that is otherwise undetermined. Now if we begin by taking the curl of (1.18) to eliminate the 

pressure gradient, and applying the incompressibility condition V-U=0, we have 

au -2-ä Z=Vx 
«V x B) x B) + qRa(VT x g) 

Taking the axisymmetric part of this equation integrating with respect to z 
ZT ZT 

-2U = 
Z, (V x ((V x B) x B)) dz'+ qRa 

fz ((VT x g)) dz'+ F(s) 

where F(s) is an arbitrary function of integration, and for any function f=f (r, 0,0), 

21r 
f (r, 0) =< f >=- -f d0 

21r 
10 

is the azimuthal averaged (or mean or axisymmetric) part of f. For a spherical geometry, the 

no-normal flow conditions at z= zT, zB determine F, and F,. In non-axisymmetric systems, the 

remaining component is determined from the incompressibility condition, however in an axisym- 

metric system FO remains undetermined. It is this factor we term the geostrophic flow. Thus 

UO = UM + UT + UG (1.22) 

where 

UM = 

f2T 

<Vx ((V x 13) x 13) > dz' (1.23) 
z 

is the magnetic wind, and 
ZT 

UT = qRa 
I< (VT x g) > dz' (1.24) 

is the thermal wind. Note that with our choice of integration limits, Um = UT =0 at z= zT, and 

so the geostrophic flow is therefore, UG = UOIIT- 

The geostrophic flow, UG is therefore determined by the system, and it is through this term 

that the system may satisfy Taylor's constraint. The mechanism to adjust the magnetic field and 

so satisfy Taylor's constraint, is to adjust the differential rotation (w-effect) of the system by vary- 
ing the geostrophic flow, UG. The differential rotation generates toroidal field from poloidal field 

through the stretching out of field lines. By varying UG, BO can be adjusted, possibly enabling 
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(1.21) to be satisfied. This mechanism determines Uc in a very complicated implicit manner. The 

extent to which Taylor's constraint is satisfied depends on the importance of Ekman suction in the 

system. States in which Taylor's constraint is satisfied are termed Taylor states. When Taylor's 

constraint is not satisfied, the system is still in the viscously limited regime in which Ekman suction 

remains important, and these states axe termed Ekman states. 

Fearn and Proctor (1987) explored the problem of the determination of the geostrophic flow, 

by choosing UG to minimise the absolute value of the RHS of (1.21) for a given poloidal magnetic 

field and a flow which is prescribed (apart from the geostrophic flow). This method, proved very 

successful for certain choices of fields and flows, but produced poor results for others. 

1.6 Classification of dynamos. 

Dynamo models generally fall into two broad categories; Kinematic models or Hydrodynamic 

models, with many intermediate models in a variety of geometries falling somewhere in-between. 

In the following sections we attempt to summarise the main characteristics of each of these types 

of models, and then finally describe the approach we adopt. 

1.6.1 Kinematic Models. 

The kinematic dynamo, involves solving the magnetic induction equation for B for a given flow 

U. If we initially suppose that the flow is steady, then equation (1.3) admits solutions of the form 

B oc eAt, (1.25) 

where the growth rate A is an eigenvalue. Equation (1.3) therefore becomes, 

AB = RV x (U X B) + V2 B 

The spectrum of A is discrete, with limit point at -oo (Roberts 1994). Greatest interest lies with 
the value of A which has greatest real part, Ama,, say. Adopting this eigenvalue decomposition, 

means that we also have eigenfunctions By for each ky. This decomposition allows us to write, any 

arbitrary field B in terms of the eigenfunctions B-,, 

By (x) exp (A., t) 
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If the flow is unsteady, the problem becomes significantly more difficult to solve, as equation (1-25) 

no longer holds. A common approach is to assume a periodic flow variation of period P, 

U(X, t+ P) =- U(X, 0, Vx and t. 

In this case, B behaves in the same way as t -ý oo, and the dynamo conditions simply requires 

that A>0, where 

1 In lim 
B(t + P) 

P 
[t--+oo 

B(t) 
] 

where B is any component of B at any x. In general U may be a chaotic solution of the non-linear 

MHD equations, which requires a generalised form of the above equation for A. 

The main advantage of the kinematic approach is that it avoids the obvious complication caused 

by the inclusion of the momentum equation in the system of equations, and the difficulties posed by 

the relative smallness of the Ekman and Rossby numbers. Another linear approach to the dynamo 

problem is through mean-field models, which we discuss in Section 1.6.4. 

1.6.2 3D/Hydrodynamic Models. 

The hydrodynamic dynamo model involves solving the full 3D coupled system of equations, i. e. 

equations (1.3), (1-13), (1.14) for B, U, T. However, as discussed earlier, the difficulty with this 

problem is caused by the comparative smallness of the fluid inertia and viscosity terms, which even 

at physically unrealistic parameter values for both Ro and E, is an extremely numerically expensive 

and intensive problem. 

The first 3D calculations were performed by Mang and Busse (1989,1990). Due to computa- 

tional limitations they considered a single mode analysis, assuming solutions of the form exp(O-ct), 

and assuming stress free boundaxy conditions. The first 3D timestepped model was produced by 

Glatzmaier and Roberts (1995a, b), who found the trend that for fixed values of q, the Rayleigh 

number required to maintain dynamo action, Ra, increased as q is decreased. This trend was rein- 
forced by Jones' work in 2.5D models described in the next section. An important feature of this 

work was that it included a field reversal. Since then, and as computing power has increased, many 

groups now have fully 3D timestepping dynamo models, which use a similar (spectral) numerical 
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approach, see for example Hollerbach (2000). This has allowed different groups to focus on different 

aspects important to the dynamo mechanism, such as the presence of a finitely conducting inner 

core, the effect of inertia, the buoyancy distribution and the boundary conditions, see Fearn (1998) 

or Jones (2000) for a review. 

As result of the stiffness of this problem, simpler problems have also been investigated which 

focus on different aspects of the dynamo and help to further our physical understanding of the 

dynamo mechanism. 

1.6.3 2.5D Models. 

The 2.5D models are models which solve the convectively driven system of equations: (1.3), 

(1.13), (1.14) for B, U, T as in the 3D or hydrodynamic model described above, resolving fully in 

radius r and colatitude 0, but which had very limited resolution in azimuth 0. Due to the intense 

numerical computations required in the 3D dynamo described above, the 2.5D model is a much 

more manageable problem with a moderate use of computing resources. Recall from Cowling's the- 

orem that an axisymmetric field can not be maintained by fluid motions. Therefore including just 

one non-axisymmetric mode will provide the required interaction between the axisymmetric and 

non-axisymmetric components of the system, therefore enabling dynamo action to be maintained. 

The 2.5D models (see for example, Jones et al 1995) have so far produced field and flows of 

approximately the correct magnitude for the Earth in line with estimates of the Earth's field and 

flow determined from the GSV. The results obtained using the 2.5D models have been extremely 

useful in elucidating results obtained in the 3D models, and reinforcing trends observed in the 3D 

models. 

1.6.4 Mean-field Theory. 

The approach adopted in linear mean-field theory, is to simply consider only the induction 

equation as in kinematic models, but here, include only the mean or axisymmetric part of the field, 

neglecting the asymmetric contribution to the field. 
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Linear a2w Models. 

Decomposing the field and flow into axisymmetric and non-axisymmetric parts as follows, 

F+B' 

U+ul 

where an overbar indicates axisymmetric quantities and a dash indicates non-axisymmetric quan- 

tities. Applying this decomposition to (1.3) (where R= 11), yields 

a 5t (-B + B') x [(U + U') x+ B')] + V2 (-B + B') 

which upon expanding out, decouples into two equations; an axisymmetric equation and a non- 

axisymmetric equation. Thus 

aR=Vx 
[(U x R) + (U'x B')] + V2A 

at a 
13' = Vx[-UxB'+U'xli+(U'xB')] + V2 B' ýýt- 

Now in our model, for simplicity, we consider only the axisymmetric equation, however as given in 

Section 1.2.3, Cowling's theorem states that, "no fluid flow exists which can maintain an axisym- 

metric magnetic field" 
- Therefore in order to circumvent this difficulty, we replace the azimuthal 

average of the interaction of the non-axisymmetric field and flow with a parametrisation of the 

effects of small scale non-axisymmetric flows. So 

(Ul x B) =1ý: -- ce-B. 

This, now standard, approach of prescribing the effects of small scale non-axisymmetric flows, was 
first justified by Steenbeck and Krause (1966), see Section 2.6 for more details. So we are simply 

required to solve the axisymmetric equation, 

OB 
= Vx (U x B+aB) + V2 B 

at 
where we have now dropped the overbars. 

'The case R=1, occurs when we assume (as we do in Chapter 2) that in the non-dimensionalisation, the fluid 

velocity, scales as U 
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If we now further decompose our field and flow into Poloidal and toroidal components, 

B= Bp+BO=Vx[A(r, O, t)eo]+B(r, O, t)eo 

U= Up+UO=Vx[, O(r, O, t)eo]+v(r, O, t)eo 

we obtain the following, 

aA 
+ 

1U 
p, V(sA) 

at s OB 
+ sup, 

v2 - T- 
I 

r Sn 0)2 A+ Eo 

v2 -1 B+sB Tr-S i -no) 2 

17 

(1.26) 

(-V) + (1.27) 
s 

This system of equations, (1.26) and (1-27), describes what is known as an a2w dynamo by 

virtue of the product of the 3 driving terms; E0, (V x iý)O and sBp -V (R). The first two terms are S 
the a-effect terms, introduced to parametrise the effects of a small-scale non-axisymmetric flow. 

The final term is the w-effect term. This term arises from the effect of differential rotation in the 

system. In Appendix A, we show the details of the analysis of the mean-field equations, which 

indicate that the only terms which are capable of generating magnetic energy are the thermal 

wind and the prescribed a-effect term. The a-effect is discussed further in Section 2.6. The a2, 

model has two natural limiting cases; the a2 case, arising when (V x E), p > sBp -V and the 

aw-case, arising when (V x E), p < sBp -V Q). These limiting cases have quite different character- s 
istics and are described in more detail in Section 2.8, when we discuss the specifics of our own model. 

Linear models are useful for determining characteristics of the system at the onset of dynamo 

action, see for example Roberts (1972). The onset is determined as the value of a, in the a2 case, 

or a,, w,, in the aw case (where a,, and w,, are the magnitudes of the prescribed a and W-effects 

respectively), which yields a zero growth rate for the fastest growing mode. Beyond the onset of 

dynamo action, in the supercritical. regime, a seed field will grow without bound. Therefore in order 

to gain some ideas about the system beyond onset, it is necessary to include some non-linearity 

into the system, which will act to equilibrate the system at some finite amplitude and prevent the 

solution blowing up. 

Non-linear a2 w dynamo models. 

For forcing just above critical through the a and/or w parameters, the first non-linear effect 

important for equilibrating the geodynamo is the geostrophic flow. In this case, the magnetic 
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field strength is dependent on the Ekman number, E (IBI - O(E1/4) and so the system lies in a 

viscously limited Ekman state. As the forcing is further increased, the system evolves to a state 

where Taylor's constraint is satisfied and the system is equilibrated at a higher amplitude (typically 

of 0(l)) by other non-linear effects; viscosity no longer plays an important role in the balance of 

the system. The evolution of the system from an Ekman state at just beyond critical, to a state 

in which Taylor's constraint is satisfied, is the scenario envisaged by Malkus and Proctor (1975), 

however the way in which this evolution occurs is model dependent. If the only non-linear effect 

included in a model is the geostrophic flow then, once Taylor's constraint (1.21) is satisfied, the 

solution is no longer viscously controlled, and since there are no other non-linear effects in the 

model to act to equilibrate the system, the solutions will grow without bound. 

The modelling equations have been solved in a variety of geometries. Simpler geometries such as 

the plane layer, allow significant simplifications to the modelling equations. The infinite plane layer 

has been considered for the a2 case by Soward and Jones (1983), and the aw case was investigated 

by Abdel-Aziz and Jones (1988). Bounding the plane layer model to form a duct, was a more real- 

istic extension of Jones' (1991) plane-layer aw model. This extension by Jones and Wallace (1992) 

removes the unsatisfactory feature that plane layer dynamo waves propagate forever. The consid- 

eration of planar models provides a means of testing various physical parametrisations, without 

the additional complication of a spherical geometry. However they have the obvious drawback that 

they are unable to represent global modes. Therefore, many models have been used which adopt 

a spherical geometry, for example Proctor (1977), Hollerbach and lerley (1991), Barenghi (1992, 

1993) and Hollerbach and Jones (1993,1995). The models we use in our investigations presented 

in this thesis, extend the aw-type dynamo model first presented by Hollerbach and Jones. In the 

next section we outline the main characteristics of our models and the structure of the remainder 

of the thesis. 

Our Model. 

The dynamo models we present here, are in a sense intermediate models, as they combine as- 

pects of both the kinematic and hydrodynamic models. These models fall into the category of 

non-linear mean-field a2w dynamos, where we focus on the behaviour of the axisymmetric field and 
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flow, and prescribe the effects of non-axisymmetric flows via a so-called a-effect. We simplify the 

hydrodynamic system of equations by replacing the dynamically determined buoyancy force with a 

prescribed buoyancy term Or, as first considered by Hollerbach and Jones (1993b). This simplifica- 

tion then enables us to neglect the feedback from the heat equation in the system. We include the 

more realistic effects of a paxametrised buoyancy force, which will drive a meridional circulation as 

well as a differential rotation (w-effect) in the system, rather than simply prescribing an w-effect. 

This approach therefore allows a natural feedback between the induction and momentum equations, 

including the key non-linear interactions deemed important to the dynamo mechanism. For clarity 

we will refer to these kinds of models as being , a2-type", "aw-type" or "a2w-type" dynamo models, 

to make the distinction with traditional a2' aw and a2w models which are kinematic models with 

prescribed flows. We describe the a2w-type model in more detail in Chapter 2, but will sketch out 

the main ideas below. 

The dynamo is modelled by the following equations 

aB 

au 
57t- =Vx (U xB+ aB) + V2 IB 

Ro 
( 

at + (U - V)U) + 2k xU= -Vp + EV2U + (V x B) xB+ Or 

where we additionally assume that our fluid is incompressible. We consider both aw and a2w-type 

models, with and without the effects of inertia. Fearn and Rahman (2004a, b, c) investigated the 

a 2_ type model first in the absence of inertia, then later extending these results to include inertial 

effects. In this way we are able to cover a substantial region of parameter space and from these 

four models, draw conclusions about the similaxities and differences between the solutions found 

using each of these models. The following section describes the presentation of the remainder of 

this thesis. 

1.7 Area of Investigation. 

Our motivation for the study of the 2D non-linear mean-field models we present here - when 
the ability to now produce well resolved, fully 3D dynamo models, such as those by Glatzmaier and 
Roberts, has been possible for around 10years now - lies in the fact that the 3D calculations are 
incredibly numerically intensive and expensive to run. The consideration of non-linear mean-field 
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dynamos, which allows us to focus in on specific aspects of the dynamo mechanism, enables us to 

obtain a better understanding of the underlying physical processes. 

Malkus and Proctor (1975) were the first to explore analytically the non-linear aspects of their 

a' dynamo model in a rotating sphere. Their investigations revealed two regimes in which the 

dynamo operated. The solutions could remain in the low amplitude, viscously limited regime (Ek- 

man states) or in a higher amplitude, invisid regime where equilibration is achieved through ohmic 

dissipation (Taylor states). These results fuelled interest in these types of models, and numer- 

ous problems were investigated numerically, by for example Proctor (1977), Hollerbach and lerley 

(1991), Barenghi (1992,1993), Hollerbach and Jones (1993a, b, 1995). 

The analysis of the problem investigated analytically by MaIkus and Proctor (1975) was ex- 

tended by Proctor (1977), who studied the problem numerically. Proctor included the effects of 

viscosity and inertia and applied stress-free boundary conditions at the core mantle boundary. He 

concluded from his studies that the form of a could not be constant, as adopted in the earlier 
Malkus and Proctor (1975) paper, as it is physically unrealistic for the ce-effect to be independent 

of z. He considered an a of the form a,, cos 0, and examined the global effects of induced velocity 
fields. He concluded from the limited range in Ekman number he considered (5 X 10-3 <E< 1), 

that the viscous and inertial forces are unimportant in the final equilibrated state. This result is 

challenged by recent work by Fearn and Rahman (2004a, b), who given significant improvements in 

numerical capabilities in recent years have been able to investigate thoroughly the dependence of 

inertia and viscosity on their a2-type model and find that mean-field models are strongly affected 

by both. 

Hagee and Olson (1991) investigated the time dependence of spherical a'w dynamo models. 

Their model includes a toroidal shear (w-effect) into the flow and incorporates a non-linear 01- 

quenching which acts to equilibrate their kinematic dynamo model. They consider the cases of 

isotropic and anisotropic forms for their a-effect, the anisotropy incorporated was in the radial 

direction to simulate the effects of density statification. They found solutions with a steady dipole 

component coexisting with an oscillating quadrupole component, which well represented the ob- 
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served geosecular variation. 
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Jones and Wallace (1992) consider an aw dynamo in a duct. They make the rapid rotation 

approximation neglecting inertia and including viscous effects only in narrow boundary layers. The 

non-linearity in the model axises from the inclusion of a magnetically driven geostrophic flow and 

meridional circulation. For the two forms of a-effect they consider, they investigate the circum- 

stances under which a Taylor state can arise. In their first model, a=z, they find oscillatory 

solutions, which reverse far too frequently to be characteristic of the geodynamo, but are unable 

to obtain any clear-cut Taylor states. In the second model, they adopt a= sin(irz) sin(7r(l - 2x)), 

so that the sign of the a-eflect changes upon crossing the equator. These solutions are initially 

steady at onset, but quickly become oscillatory. Taylor states are obtained, and the model, has 

regions of reversing and non-reversing regimes, exhibiting behaviour which is more characteristic 

of the geodynamo. 

Barenghi (1993) investigated the behaviour of an a'w model, as it was hoped that including a 

second a-effect would help to stabilise the rapid timescale behaviour of aw dynamos. Solving his 

non-linear kinematic model in a spherical shell, neglecting inertial effects and including viscosity 

only in narrow boundary layers, he varied the form used for his ce-effect, in order to obtain an idea 

of general characteristics of such models. He found that the onset of dynamo action is steady if 

the strength of the w-effect is sufficiently weak, becoming time dependent at a value of the w-effect 
Reynolds number & ; zý 100, in all the models he considered. Beyond onset, he examined the tran- 

sition from a weak field Ekman state to a strong field Taylor state, as the strength of the a-effect 

is increased. He found the oscillatory solutions in the strong field regime, to be slow and consistent 

with the observed intervals between reversals of the geodynarno. 

Hollerbach and Jones (1993a) investigated the solutions obtained using a spherical shell a2 -type 
dynamo model, in which they incorporated a finitely conducting inner core. Their results found 

at a,, = 5.5 and a. = 8.0, represent solutions in the slightly supercritical and supercritical regimes 

respectively. The slightly supercritical solutions are representative of solutions in a transition from 

an Ekman state to a Taylor state. The supercritical solutions lie in a Taylor state, where (by defini- 



CHAPTER 1. INTRODUCTION 22 

tion) Taylor's constraint is satisfied. Later papers by Hollerbach and Jones (1993b, 1995) focussed 

instead on an aw-type dynamo model, where an w-effect was generated through the prescribed 

buoyancy force. These papers also focussed on the influence a finitely conducting inner core had on 

the dynamics of the dynamo mechanism. They concluded that the diffusive timescale of the inner 

core - which is long compared with the most rapid advective timescales of the outer core - the field 

in the inner core effectively averages over these very rapid timescales, thus acting to stabilise the 

dynamo process. 

More recently, Fearn and Rahman (2004a) investigated the a2_type model of Hollerbach and 

Jones (1993a). Through their investigations using this model they find that the evolution of the 

mean-field is strongly dependent on the form of a or the value of Ekman number used, and the role 

of Taylor's constraint on the solutions. They also investigate the influence of inertia on solutions, 
(see Fearn and Rahman 2004b) and find for their model that inertia actually acts to facilitate dy- 

namo action, contrary to the results found in 2.51) and 3D models. They compare their results with 

the 2-51) model investigated by Fearn and Morrison (2001). In their discussion they compare these 

two studies and attempt to gain some insight into aspects of the dynamo mechanism. Through 

this comparison, they suggest that the reason Fearn and Rahman's a2_type model does not fail 

as the Rossby number is increased, lies in the fact that the non-axisymmetric a-effect which is 

responsible for the field generation process is unaffected by inertia. They suggest that the shutting 

off mechanism exhibited in the Fearn and Morrison model and other 2.51) models, may be related 

to the effect of differential rotation. However, given the complexity, of 2.5D and 3D models and 

the interdependence of parameters on particular quantities, makes it difficult to pinpoint the exact 

reasons for the failure of dynamos with increasing Rossby number, or decreasing Roberts number. 

This therefore suggested that an interesting study would be to explore the effect of inertia on a 

non-linear aw-type model. 

In Chapter 2 we introduce the general model used in all four subsequent chapters, and outline 

the differences between each of the models used. As we are interested in the effect of inertia in aw- 

type models, it is important to consider first the model in the absence of inertia. Chapter 3 focusses 

on the non-linear aw-type model, allowing us a comparison with earlier models and providing us 
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with a reference case for our later inertia studies, presented in Chapter 4. As a link between the 

a2-type model considered by Fearn and Rahman (2004a, b), and the cew-type model considered 

in Chapters 3 and 4, we consider the more general and intermediate case of an a2w-type model. 

Chapter 5 investigates the effect of increasing the strength of the imposed differential rotation (or 

w-effect) on the a'-type model, in the absence of inertia. We then include the effect of inertia, 

and through varying the strength of this term in the momentum equation, we alter the balance of 

terms in the system and see how the equilibration of the system changes. Finally, in Chapter 7 we 

compare and contrast each of these models and also consider earlier work by Fearn and Rahman 

on an a2-type model with and without the inclusion of inertial effects, enabling us to draw some 
key conclusions about the parameter space we have explored. 



Chapter 2 

The Physical Model & Governing 

Equations. 

2.1 Introduction. 

In this chapter we present the model and governing equations relevant in the following four 

chapters. The model is fairly similar in each case we consider, so it makes sense to present the 

general model once and then indicate the differences between each of the cases presented. An 

advantage of the similarity between all of these models is that it allows us to draw conclusions 

regarding the global effect of certain parameters on the system. We will comment on these simi- 

larities and differences in our conclusions in Chapter 7. The numerical method used to solve our 

models is discussed in Appendix B. 

2.2 The Non-dimensionalisat ion. 

It is standard practice within applied mathematics to non-dimensionalise a differential equation. 

This practice is useful as it introduces dimensionless parameters, whose size give a measure of the 

relative importance of the terms they multiply in the equation. We apply this procedure to the 

induction equation (1.1) and the momentum equation (1.7) introduced in Chapter 1. 

24 
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We have 
013 e (Ü ]ä) 7e2Ü (2.1) 

and 

PO afi + (U - V)U + 2pofl x iJ = _iýj5+ poViý2fj + 
( 

at AO 
(, ý X j3) X fB + &j (2.2) 

where-is present on all variables to indicate that they are dimensional quantities. Now the buoy- 

ancy term in (2.2) differs from that given in (1.7). Here we choose to include a generic term to 

represent the buoyancy force, since in our model, which we present in Section 2.3, we prescribe this 

force and so it is convenient to introduce this simplification here. 

Now, to non-dimensionalise these equations, we let 

I V, 49 la 
at Tat 

where C=(, r, - ri) is a typical lengthscale and where T is a typical timescale. Here we scale length 

with the gap width r. - ri, where r, is the outer core radius and ri is the inner core radius. 

Let U= UU where U is a typical fluid velocity, f3 = BB where B is a typical magnetic field 

strength, ýý = Pp where P is a typical magnitude of pressure and 6= f2k where k is the unit vector 

in the direction of the axis of rotation and 9 is the angular velocity of the mantle. 
6i = ? 9E)r, 

where V is a typical magnitude of the now dimensionless buoyancy force Or. 

Beginning by considering the induction equation in the absence of a fluid flow and applying 

these scalings we have 

aB 
= : 

e2]ä 
- Ot g 

B i9B V2 B 
t t 

Z2 

1 aB 
=> - -F = 

1 
q V2 jý2 B 

t 

f2 

r,, ) is the length of time it would take for the magnetic field to decay by a factor e in the 

absence of a flow acting to prevent it. We call 7-,, the magnetic diffusion time. 



CHAPTER 2. THE PHYSICAL MODEL & GOVERNING EQUATIONS. 

Now non-dimensionalising equations (2.1) and (2.2) we find 

aB 
= iý X (lCj X fB) + 77, jý2fi 

at 

B aB UBVx 
(U x B) +77 

13 
V2 B -Z2 

B aB B 
V2 

T 
5t =TVx (U x B) + 77 Z25- B 

aB 
-=Vx (U x B) + V2 B 
at 

-dimensionalise the system on the ohmic diffusion timescale; r, 7 since we choose to non 77 

Similarly, 

alci --- _jýii+p"Vý72t+ 

1 

Po + (U - V)U + 2p, fl x iJ x j3) x i3 
( 

at Po 

26 

u au u2 U 
V2U +1 

L32 
POT +p,, -(U-V)U+2p,, M(kxU) VP + POVf --(V x B) xB+ N)r 

7 at 
Ic L 

_2 po C 

now dividing through by p,, M and simplifying, we obtain 

=5ý, 
77 au 

-p_ 
Vp + 

"/ V2U + 
B2 79 

- QL2 

( 

at + (U - V)U) +2(kxU) = 
P,, QUL QL2 POPOO77 

(V xB) x B+ 
POW 

Or 

where we may choose P to be p, QUL and V to be p,, QU, In addition, for the Earth, we expect 

the Coriolis and Lorentz forces to be comparable in magnitude, so we choose B= (pOM077Q)112 in 

keeping with this assumption. This leads us to the following 

Ro 
au 

+(U. V)U +2(kxU) = -Vp+E V2U + (V x B) x B+E)r 

Now we have defined two parameters from this non-dimensionalisation. The first one, appearing in 

front of the inertia term, is called the Rossby number or magnetic Ekman number, Ro = 77/fIC'. 
As we saw from the non-dimensionalisation this term is simply the ratio of the inertia term to 

the Coriolis force and within the Earth, recent estimates of this parameter give a value of around 
0(10-9). The second parameter arising from the non-dimensionalisation appears in front of the 

viscous term and is called the Ekman number, E= vlfIC' and is the ratio of the viscous term to 

the Coriolis force. In the Earth, this term is estimated to be 0(10-15). The smallness of these two 
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parameters compared with the other terms in the equation are among the main sources of difficulty 

associated with this problem. For further details on the estimation of these parameters, see Section 

1.5. 

2.3 The Modelling Equations. 

In the following four chapters, we consider a spherical shell model, with inner core of radius, ri 

and outer core of radius, r, which is rotating about its *axis with angular velocity, Q. The inner 

core is free to rotate about this same axis with angular velocity Qj. We consider the inner core 

to be finitely conducting and of equal conductivity to the fluid outer core. The outer core is then 

bounded by the insulating mantle. 

We introduced in Section 1.6.4 the main ideas of mean-field dynamo models and outlined briefly 

the approach we would adopt in our own models. In our discussion of mean-field models, we in- 

troduced the concepts of the a and w-effects and how they are they are capable of generating and 

maintaining dynamo action in axisymmetric models. We show in Appendix A. 2, that these two 

effects are the only terms present in the governing equations which are capable of producing an 
increase in magnetic energy. However, in the Earth, it is believed that field generation only occurs 
in the fluid outer core, with the inner core (perhaps) playing a stabilising role (Hollerbach and 
Jones (1993b, 1995)). It is believed that the field diffuses on the magnetic diffusion timescale, into 

the solid inner core. 

The scaled mean-field induction equations are 

5t = V2]§ +VX (U, X 

in the inner core, and 

(2.3) 

o9B 
t y =V2 B+V x (aB)+V x (U xB) (2.4) 

in the outer core, where B is the large-scale axisymmetric magnetic field, U is the large-scale 

axisymmetric fluid flow and ui = QirsinOeo where Pi denotes the inner core angular velocity. In 

our model we choose the axis of rotation of the inner and outer cores to be the same. Here the 

superscript ^ is used to denote inner core quantities. In the outer core, our induction equation (2.4) 
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is coupled to the momentum equation, 

au V2U + (V Ro 
( 

ät + (U - V)U) +AxU == -Vp +E xB) xB+E)r (2-5) 

we also assume that our fluid is incompressible, so the equation of mass continuity gives us V-U=0. 

2.4 Poloidal and Toroidal decomposition. 

Since the dynamo problem we are considering here is inherently spherical and we have the 

conditions that both 

V. B=O and V-U=O 

we are able to separate our field and flow into poloidal and toroidal parts. The poloidal and toroidal 

components are mutually orthogonal vectors, which means that the curl of a toroidal vector is a 

poloidal vector and vice-versa. This poloidal-toroidal decomposition also lends itself to spectral 

methods a means of solving the system of equations. The programs used for both the inertia and 

inertialess models are included in Appendix B and further details on the method are given there. 

Beginning with the poloidal-toroidal decomposition; (2.6) and (2.7) 

B= VxAeo+Beo (2.6) 

U= VxOeo+veo (2.7) 

applied to equation (2.4) we obtain the following 

V2(V (V x Aeo + Beo) x Aeo + Beo) +Vx (a(V x Aeo + Beo)) 

Vx ((V x oeo + veo) x (V x Aeo + Beo)) 

CIB VX V2 + V2 => Vx 
(2A-eo) 

+ -äTe, 0 = (Aeo) Bgo +Vx (a(V x Aeo» 
, 9t 

+Vx (aBeo) +Vx ((V x Oeo) x (V x Aeo)) 

+Vx ((V x Oeo) x (Beo)) +Vx ((ve, 6) x (V x Aeo)) 

+Vx ((veo) x (Beo)) (2.8) 

we see that the final term on the RHS of equation (2.8) will drop out by standard vector calculus, 

and the rest of the terms in the equation will decouple into either poloidal terms (i. e. terms which 
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are ,Vx eo) or toroidal terms (i. e. terms which are - eo). Therefore, the equation decouples 

into a poloidal equation and a toroidal equation, thus 

MeVX 
V2 (Aeo) +Vx (aBeo) +Vx ((V x Oeo) x (V x Aeo)) (2.9) 

o9B V2 5t eo Beo +Vx (a(V x Aeb)) +Vx ((V x V)ek) x (Beo)) 

+Vx ((veo) x (V x Aeo)) (2.10) 

Now, luncurling' equation (2.9) and then taking the dot product with eo and taking the dot product 

of (2.10) with eo, we obtain 

aA 
=D2A+ cB + N(ip, A) 

at 
aB 

=D2B+ eo - V[aV x (Aeo)] + M(v, A) - M(B, (2.12) 
at 

where 

(9 
ä-z 
D2 

N(X, Y) 

M(X, Y) 

Cos 0 09 - 
sin 0a 

ar r ý0- 
V2 

- (r sin 0)-2 

e, p [V x (Xeo) xVx (Yep)] 

eo Vx [Xeo xVx (Yeb)] 

This decomposition was first introduced by Proctor(1977). 

Before we may apply the poloidal-toroidal decomposition, it is helpful to rewrite the inertia 

term (U - V)U using a standard vector identity as, 

(U. V)U=Ux (V XU) -1 vul 
2 

Applying the poloidal-toroidal decomposition to the momentum equation then gives, 

Ro VxL? 
p 

e 0) + [V2 ? Peo x (V x ipep)] + [veo x (V x veo)] -1 V((V X 0)2 + V2) 2ve, at 21 

= -Vp + EV X V2 Oeo - [V2 Aeo x (V x Aeo)] - [Beo x (V x Beo)] + Ore, (2-13) 

Ro 
av 

ep + (V x Oeo) x (V x veo)jl - 2LOeo = EV2 veo + [(V x Beo) x (V x Aeo)] (2.14) 
1& 

az 
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The toroidal equation (2-14) can then be easily dealt with by taking the dot product with eo. 

Thus, 

Ro 
av 

+ eo - [(V xOeo) x (V x veo)] - 2LV) = EV2V + eo - [(V x Beo) x (V x Aeo)] 
at 

I 
Oz 

19V V) 
V2V i. e. Ro N (v, V)) 2L =E+ N(B, A) (2.15) 

1 

Tt 
I- 

az 
Now to deal with the poloidal equation, we begin by taking the curl of (2.13), in order to 

eliminate the pressure gradient term and the gradient term that appears as part of the inertia. 

This gives, 

+V X [V2 av Ro VxVx 
(a? keo)) 

V)eO x (V x V)eo)] +Vx [vep x (V x veo)] 2TeO 
at z 

Iz 

-Vp+EV x (V X V2 V)ep) -Vx [V2 Aeo x (V x Aeo)] -Vx [Beo x (V x Beo)] - 
a19 

e 
490 

av 
i. e. Ro 

[9V2"e 
0_VX 

[V2 Oeo x (V x V)eo)] -Vx [veo x (V x veo)] +2 eo at 
1 

49Z 
EV2(V2 Oeo) +Vx [V2 Aeo x (V x Aeo)] +Vx [Beo x (V x Bej)] + 196 eo (2.16) 

(90 

Finally taking the dot product of (2.16) with eo gives, 

Ro 
(D2" 

- M(D 2V), V)) _M (V, v) +2 
av 

= E(D 2)20+ M(D 2 A, A) + M(B, B) + 
OE) 

(2.17) 
at 49Z ao 

2.5 Boundary Conditions. 

2.5.1 The magnetic field boundary conditions. 

Since we have a finitely conducting inner core, we require that we have continuity of the magnetic 

field components and continuity of the tangential components of the associated electric field across 

the inner core boundary, r= ri. This yields the following, 

f3=B and tl=E_L on r= ri 

We also assume the mantle is a perfect insulator, and so no current flows in the mantle. This allows 

us to apply at the core mantle boundary, r=r, the insulating boundary condition, 

on r=r,, (2.19) 

where B(') is the external potential field. 



CHAPTER 2. THE PHYSICAL MODEL & GOVERNING EQUATIONS. 31 

2.5.2 The velocity boundary conditions. 

For the fluid confined to the outer core, we assume that on the inner core boundary at r= ri 
and at the core mantle boundary at r=r,,, that we have no slip. Additionally, we allow our inner 

core to freely rotate relative to the mantle and thus we have the conditions that 

U,, Uo=O 
, UP=f2irsinO at r= ri (2.20) 

Url UO, UO =0 at r=r,, (2.21) 

where Qi is the solid body rotation of the inner core and is to be determined as part of the solution. 

Now in order to determine Qj, we require that the total torque in the inner core vanishes. This 
balance is discussed further below. The implementation of these boundary conditions is described 

in detail in Appendix B. 

Torque Balance on the inner core boundary. 

Now in order to determine Qj, we require that the total axial torque, r is given by, 

CRoaf2' =r (2.22) 
at 

where C= 1-7rr§ (for inner and outer cores of equal density) and Ro is the Rossby number. 15 2 

CRo = 5.86 x 1034 kgm 2 is the polar moment of inertia of the inner core. The total torque on the 

inner core is balanced by the sum of electromagnetic and viscous torques, thus 

where 

lý --": IýB + r. (2.23) 

FB = 27rrj3 
I" 

BOBr 
[=rj 

sin 2 OdO 
, is the electromagnetic torque and 

E27r rj- ri3 
f 7r UO 

sin 2 OdO is the viscous torque. 
0r r 

Including Inertia. 

Thus, on the inner core boundary we have the following torque balance 
7r 7r 

2 Odo r3 2 E27rrý r- sin + 27r f 
BOBr sin OdO = CR4'-ý (2.24) rn at ar 

lr=ri 

r=ri 
which now needs to timestepped along with the momentum equation to determine Qi. 
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Neglecting Inertia. 

In the absence of inertia, the integrated viscous torque, must be balanced by the electromagnetic 

torque, 

E27rrý 
7r 

r 09 0') lr=ri 
sin 2 OdO + 27rr3 

7r 

BoBr 
lr=ri 

sin 20do 
=0 (2.25) 

i. e. 
7r 7r 

Ef ra( 
UO) 

sin 
2 OdO BOBr sin 

2 OdO (2.26) 
n ar r r=ri 

fo lr=ri 

It is through this electromagnetic coupling between the inner and outer cores that the inner core 

actively becomes involved in the outer core fluid flow. 

2.6 The a-effect. 

The a that appears in equation (2.4), is a parametrisation of the small-scale non-axisymmetric 
flow, introduced in the mean-field theory of Steenbeck and Krause (1966). In our axisymmetric 

model, the presence of this term is crucial in generating a dynamo, as Cowling's Theorem (1934) 

states that an axisymmetric magnetic field can not be maintained by dynamo action (see also Sec- 

tion 1.2.3. Appendix A includes a sketch proof of this theorem. ). Introducing this parametrisation 

of a non-axisymmetric flow into the equation successfully circumvents Cowling's Theorem. 

Therefore as described in the mean-field theory introduced in Section 1.6.4, we may write the 

axisymmetric part of the product of the non-axisymmetric field and flow as; 

(U' x B') =F c-- aA 

Through the studies of Steenbeck and Krause (1966), we know that the effects of rotation and 

stratification acting alone can not produce an a-effect. Considering an expansion of E, which 

includes the effects of rotation and stratification, we can write (see Roberts 1994) 

-, 6, V xB+ al(n - x)B + CQX(0'1ý) + Ce3n(X'ff) (2.27) 

where we assume the effects of rotation and stratification are small and so retain only terms which 

are linear in x and linear in 11. The final 2 terms on the RHS of (2.27) are non-isotropic and are 
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generally neglected in mean-field models. From (2.27) we see that we will obtain an a-effect of the 

form 

ce, (r) cos 

as the first term on the RHS of (2.27) generates a turbulent diffusion term, which may be combined 

with the magnetic diffusion term in the induction equation. 

The precise form of a is therefore variable and man'y studies have considered different forms 

for the radial variation. However, Steenbeck and Krause (1966) adopted the simplest case and 

took a independent of r. In order to facilitate comparisons between different models, many studies 

followed this choice, in particular Hollerbach and Jones' (1993b, 1995) aw-type model. The form of 

this a-effect however, does not naturally satisfy the boundary conditions at the inner core bound- 

ary, and so they neglect the effect of the a-effect here. 

In the models we investigate, we follow Fearn and Rahman (2004a, b, c) and include a radial 

structure to this variation, taking the more realistic form a=a,, cos 0 sin(7r (r - ri)), so that this 

automatically satisfies the boundary conditions at the inner core. 

In all the models we present here, as in Hollerbach and Jones (1993a, b, 1995), the a-term 
is taken to be a tensor. In Chapters 3 and 4, we include only the component which acts to 

regenerate poloidal from toroidal field. However, in Chapters 5 and 6 we allow the a-term to act 

on all components of the magnetic field, thus not only generating poloidal from toroidal field, but 

additionally regenerating toroidal from poloidal field. 

2.7 The Buoyancy Force, 8. 

In determining the specific form our parametrised buoyancy force, E), should take, we begin by 

considering the linear momentum equation in the inertialess and inviscid limit. This is, 

xU= -'Vp igr (2.28) 

If we then take the curl of this equation in order that we may eliminate the pressure term, we find 

2V x (k x U) =Vx (Or) (2.29) 
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which gives 
2ýu 0 ; Z11 

06 
(2-30) 

az 00 

sino a T where -12- = cos 0 gr r0 
This shows that the buoyancy term essentially drives a thermal az To - 

wind. Therefore, this thermal wind then acts to regenerate toroidal field from poloidal field via 

the w-effect. The specific form of the parametrised buoyancy force, 6, is chosen so that we have a 
differential rotation of the form wo = w,, r, which is independent of the colatitude 0. This therefore 

generates a thermal wind Uo = w, r 2 sin 0, so that 
ýU--k 

= w,, r sin 0 cos 0 and so we see that choosing az 
E) = -E),, r cos 2 0, will give this. Figure 2.1 shows the form of the prescribed flow at the onset of 

dynamo action for 00 = ±200. 

Figurc 2.1: The above snapshots show the components of the velocity at onset. These contours do not 

change with time. From the left we have the following; the angular velocity, and ineridional circulation 

contours for (). = 200, followed by the angular velocity and meridional circulation for E),, = -200. The 

Ekman number, E=IX 10-4 in both cases. The angular velocity contour interval is 20, whilst the meridional 

circulation contour interval is 0.01. Here solid lines indicate positive contours and dashed lines represent 

negative contours. 

This particular form of the buoyancy term has been used extensively in dynamo models (e. g. 

Hollerbach and Jones (1993b, 1995) and Hollerbach and Glatzmaier (1998)), but the influence of 

the specific form of this term has not been fully investigated. In later Chapters, we investigate the 

effects of changing the magnitude and direction of this term. 
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2.8 Our a2 w-dynamo model. 

Gathering together the decoupled governing equations from Section 2.4 we have 

The Induction equation. 
OA 

=D2A+ aB + N(V), A) (2-31) 
at 
aB 2 
5t = DB+eo. V[aVx(Aeo)]+M(v, A)-M(B, V)) (2.32) 

The Momentum equation. 

Ro 
Ov 

-N (v, 2LVO) = ED 2V + N(B, A) (2.33) ( 
az 

2V), lp) + M(V, V)) 2)2,0 2 Ro + M(D + 2-9V = E(D + M(D A, A) + M(B, B) +-90. (2.34) 
at az 00 

From examining equations (2.31) and (2.32), we see that we have an a2w-type dynamo like those 

discussed in Section 1.6-4, where here we have; the a-effect term in equation (2.31), aB, the a-effect 

term in equation (2.32), eo - V[aV x (Aeo)] and the w-effect term in equation (2.32), M(v, A). In 

simple mean field dynamos, which are purely kinematic (i. e. consist only of the induction equation 

with a prescribed flow), this term generates toroidal field through the action of the zonal flow on 

the poloidal field component. In our model, the induction equation is coupled to the momentum 

equation, and so the zonal flow, v is driven by the prescribed buoyancy force, E), as we see from 

equation (2.34). This method of generating a flow is more realistic. There are two natural limiting 

cases of this general a2 w-type dynamo; the a2 -type dynamo and the aw-type dynamo. The aw-type 

dynamo arises when 

M(v, A) > eo - V[aV x (Aeo)] 

allowing the efi - V[aV X (Aeo)] term in (2.32) to be neglected. This is the limit which we adopt 
in Chapters 3 and 4. The other extreme case is the a2 -type dynamo, and this arises when 

M(v, A) < eo - V[aV x (Aeo)] 

allowing us to neglect the M(v, A) term. This model is investigated by Fearn and Rahman 

(2004a, b, c). 
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The term "strong field" dynamos is sometimes used to describe aw dynamos, since the toroidal 

component of the field is greater than the poloidal component. In a2 dynamos this is not the case, 

with the poloidal field comparable with the toroidal component of the field and so these are named 

"weak field" dynamos. In the Earth, only the poloidal component of the field may be inferred from 

outside observations, but it is believed that the total field strength greatly exceeds the magnitude 

of the poloidal component and so it it believed that the Earth's dynamo is of the cew type. 

2.8.1 Equilibration of a2 versus aw dynamos. 

The problems of the a2-type dynamo and aw-type dynamo models are quite different. Let us 

consider the governing equations as presented in (2.4) and (2.5). We have 

aB 
jt V2 B+V x (aB)+Vx (Ux B) (2.35) 

au Ro 
( 

at + (U - V)U) + 2kxU=-Vp+EV2U+(V xB)xB+er (2.36) 

There are therefore 4 dimensionless parameters in our model; Ro and E which arose from the 

non-dimensionalisation of the equations in Section 2.2, and a,, and 19, which have arisen from our 

parametrisation of our a and w-effects introduced in Sections 2.6 and 2.7, respectively. 

The a2-type model. 

At the onset of dynamo action, the problem reduces to simply solving the induction equation, 
(2.35), in the absence of a flow, U. The remaining equation is then a linear eigenvalue problem 

which may then be solved for the eigenvalue, a, Beyond onset as a,, is increased, the a-effect is 

then able to act on all components of the magnetic field through the induction equation, resulting 

in an increase in B. In the absence of inertia (and of course buoyancy), the increase in magnetic 
field, B feeds into the momentum equation via the Lorentz force. The now stronger Lorentz force 

then acts to drive a flow in the momentum equation, which is damped by effect of viscosity. The 

flow generated through the balance in the momentum equation then feeds back into the induction 

equation via the advection term, which acts to equilibrate the dynamo. 
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The aw-type model. 

At onset, the aw-type model is a quite different problem to the a2-type model, as, from the 

outset, we have a flow appearing in the induction equation, generated by the prescribed buoyancy 

force Or in (2.36). It is also different with the a-effect restricted to act only on the toroidal 

component of the field. The onset of dynamo action then occurs when the strength of the a-effect 

is large enough, with the flow driven by the buoyancy force feeding into the advection term in the 

induction equation. Beyond onset, as a,, is increased (at fixed 19,, ), the strength of the magnetic field 

is increased, which then feeds into the Lorentz force term appearing in the momentum equation. As 

in the a 2-type model, the Lorentz force drives a flow in the momentum equation, but now that we 

have a prescribed buoyancy force in the equation, this also acts to drive a flow in the momentum 

equation. As we discussed in Section 2.7, the form of the buoyancy force is chosen so that it 

primarily drives a zonal flow, UO = 19, r2 sinO. Therefore, the zonal flow generated through the 

buoyancy force competes with zonal flow driven by the Lorentz force. In the absence of inertia, the 

damping in the system arises through the viscous term in the momentum equation. The generated 
flow then feeds back into the induction equation via the advection term, acting to equilibrated the 

dynamo. 

Including Inertial effects. 

Including the full inertia term in the momentum equation modifies the balance of the momentum 

equation in both models. Inertia when strong enough, replaces the role of viscosity at leading order 

in the momentum equation balance, which as we will see in later chapters modifies the behaviour 

of the solutions as the strength of inertia is increased. 

2.9 The Linear Dynamo number, D. 

In Section 1.6.4 we described the linear kinematic Ce2 w dynamo models. In this Section we are 

specifically interested in the aw limit of this general case. From the analysis of such models, a key 

parameter was identified as the product of the magnitudes of the ce and w-effects; D=a,, w,. For 

our model, where an w-effect is generated through the prescribed buoyancy force, we see that from 

Section 2.7, w,, =- 0,,. This parameter, D, is called the dynamo number, see for example Roberts 
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(1972). 

In this section, we examine the governing equations for the ciw-type dynamo and explore the 

balance of these equations at the onset of dynamo action, when the magnetic field is small, and 

investigate whether the equations scale with the dynamo number. 

2.9.1 A linear kinematic aw dynamo model. 

As discussed in Section 1.6.4, a typical kinematic model consisted of prescribing the flow U and 

then solving the (now linear) induction equation for B. Therefore, such a model would be of the 

form, 

OA 
=D2 A+aB (2-37) 

at 
aB 

=D2B+ M(v, A) (2.38) 
at 

where we prescribe the a and w-effects generally as 

a= aj (r, 0) and w= 9�g (r, 0) 

where f and g are prescribable functions of r and 0 and v= rw. 

Now, from equations (2.37) and (2.38) above, it can be shown that the equations scale with 
E) = ce,, E),. Linear systems may be characterised simply by the dynamo number D, with the 

individual values of a,, and 6,, being unimportant, (see for example, Roberts 1972). However once 

non-linearities are included in the system, it turns out that this is no longer the case, and that both 

ao and E)o, must be specified independently. 

2.9.2 Our non-linear aw models. 

Now let us consider our non-linear system of equations. From Section 2.8, our modelling equa- 

tions in the aw limit are 

o9A 2 
-5T =DA+ aB + N(iP, A) (2.39) 

aB 2 DB+ M(v, A) - M(B, V)) (2.40) 



CHAPTER 2. THE PHYSICAL MODEL & GOVERNING EQUATIONS. 39 

ov 
- 

'o 2V Ro N(v, 7p) 2L = ED +N (B, A) (2.41) ( 
Tt 

)- 
az 

Ro 
(aD 2 V) 

+ M(D 2.0,, 0) + M(V, V) +2 
av 

= E(D 2)2V) + M(D 2 A, A)+ M(B, B) + 
06 (2.42) 

at -ýZ- -W 

Through examining the above system of equations, we can see that the non-linear modelling equa- 

tions do not scale with D. However, D could still prove to be a useful parameter. 

The inertialess case. 

Considering the case in the absence of inertia first. At the onset of dynamo action the magnetic 
field will be small, and so we may neglect the Lorentz force components in (2.42) and (2.41). 

Examining the reduced equations, 

aA 2 
TDA+ aB + N(? P, A) (2.43) 

t 

o9B 2 
19t 

=DB+ M(v, A) - M(B, ip) (2.44) 

2 
LV) 

= -ED 2V (2.45) 
i9z 

2 19V 
== E(D 2)2,0 + 

aE) 
(2.46) 

(9z TO 

we see that the system of equations does still not scale with D, with the difficulty lying between 

the scaling of the flow coefficients v and V). Now, in the Earth, the Ekman number is estimated to 

be 0(10-1,5). Therefore in the limit of E -ý 0, a 0 and this difficulty is removed. Equation 

(2.46) then reduces to 

av ae 

az 00 
which allows the equations to then scale with D. 

Now in order that our system of equations scales with the dynamo number, we have effectively 

eliminated the terms associated with the meridional circulation in the flow through adopting the 

inviscid limit. Therefore, the smaller the value of E we are able to use, the more able the equations 

are to scale with D. The magnitude of E therefore determines the extent to which the meridional 
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circulation is present in the system. 

For solutions beyond onset, the Lorentz force is no longer negligible; in these cases the non- 

linearity causes the system not to scale exactly with D. 

Including inertial effects. 

Through examining equations (2.39)-(2.42) we see that the non-linearity in the inertial terms 

further complicates the equations and makes an exact scaling with D impossible, even if we neglect 

terms in V), which will be small at onset. 

Since we have shown that even at onset, our aw-type dynamo model (with and without the 

effects of inertia) does not scale exactly with D, due to the effects of meridional circulation in the 

system, it will be necessary to state both a,, and E),, separately, as this analysis shows that a single 

parameter (D) is not sufficient. However, the dynamo number still remains a useful parameter in 

the analysis of aw-type dynamos, as is shown in Chapters 3 and 4. 

2.10 Energy Calculations. 

The magnetic energy that we calculate is 

1 j-B 12 dV (2.47) 
2p,, v 
[p. Q77, c, l IB 12 dV (2.48) 

2 
fv 

[p,, il77L3]E,, (2.49) 

where V is the volume of the inner and outer cores, and fi is the dimensional magnetic field. 

The kinetic energy that we calculate in the models which include inertia is 

Ek Po fI jj- 12 dV (2.50) 
2 vvo 

1 
Ro IU12 dV (2-51) [Poo? "C" 2 

fv. 

[POQRC3]Ek (2.52) 
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where V, is the volume of the outer core and t is the dimensional fluid velocity. 

The non-dimensionalisation reveals that the scaling of the magnetic and kinetic energies is the 

same, with the constant factor [p. p77L3 ] appearing in both cases, thus these energies are comparable. 

As the system is timestepped forward using the numerical scheme described in Appendix B, the 

magnetic and kinetic energies are calculated from the spectral coefficients as required. This therefore 

allows us to follow the behaviour of the magnetic and kinetic energies as they evolve with time and 

provides us with a means of determining the equilibration of the system. We use the variation of 

the magnetic and kinetic energies with time, instead of the variation of a single spectral coefficient, 

as energy of the system is a global quantity and a more reliable means of determining the stability 

of the system. 

2.11 Summary of Model Differences. 

In this Chapter, I have tried to indicate where differences arise in the models due to the effect of 

inertia; which is present in Chapters 4 and 6 or through the dynamo mechanism, be it an aw-type 

model or an a 2w-type model. 

The dynamo mechanism is generated via an aw-type dynamo in Chapters 3 and 4 and an a2w_ 

type dynamo in Chapters 5 and 6. In the a2 w-type dynamos the a-effect is allowed to act on all 

components of the field, as opposed to just the 0 component in the aw-type model. 

The differences in the models due to the effect of inertia, apply throughout the model and is 

not such a minor alteration to the numerical code, as switching from aw to a2 w-type dynamos. A 

separate 'inertia' code is used, based on the original 'inertialess' code, but which now additionally 

requires the flow coefficients to be timestepped forward in time as well as the field coefficients. For 

further details on both of these codes, see Appendix B. The other difference due to the consideration 

of inertia in the problem, is the torque balance on the inner core boundary and the way in which 

the inner core rotation rate is determined. Details of this balance were given in Section 2.5.2. 



Chapter 3 

aw-dynamos without inertia. 

3.1 Introduction. 

In this chapter, we consider the aw-type dynamo model described in Chapter 2. The results 

found using this model provide us with a reference case, which will prove useful in the subsequent 

chapters. In addition, this model also allows us to compare our findings with earlier au) models, 

and in particular the results of Hollerbach and Glatzmaier (1998). The Hollerbach and Glatzmaier 

paper, whose results are surnmarised in the Section 3.2, use an a-effect of the form a=a. cos 0. 

This form for the a-effect was chosen in order to facilitate comparisons with other models. However 

using this form for a leads to difficulties with the boundary conditions at the inner core boundary, 

as discussed in Section 2.6. Therefore in our models, we consider a more realistic form for the pre- 

scribed a-effect, and include a radial dependence that naturally satisfies the boundary conditions; 

a=a, cos 0 sin(7r (r - ri)). 

In parallel studies to these aw-type models, Hollerbach and Jones (1993a) considered an a2-type 

model (see Section 1.6.4 for a discussion on mean-field dynamo models, the differences between aw 

and a2 models and their respective merits). In Hollerbach and Jones' model, they adopted the 

simpler form of a=a. cos 0 which yielded only steady solutions. Hollerbach and Ierley (199 1) con- 

sidered a modal a2 model in a spherical shell and adopted an a-effect of the form a=a. cos Of (r). 

Through varying f (r) they found that some choices of a yielded steady solutions whilst others 

produced time dependent solutions. Fearn and Rahman (2004a) extended Hollerbach and Jones 

42 
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(1993a) model and considered the more realistic form a=a,, cos 0 sin(7r (r - ri)). They found an 

unusual spiky periodic behaviour, similar to that found by Hollerbach and Ierley, developed just 

beyond the onset of dynamo action arising from the radial dependence in a. The differences in the 

behavior caused by the introduction of a realistic radial dependent a-effect suggested that applying 

this form for a in our aw-type model could provide us with some interesting results. In adopting 

this form for the a-effect, we enable direct comparisons with their model, which will prove especially 

constructive in later chapters. 

In Section 3.3, we investigate the variation of the onset of dynamo action with the Ekman 

number. In Section 3.4, we examine the onset of dynamo action and its dependence on the individual 

parameters a,, and E), In Sections 3.5 and 3.6, we investigate the evolution of the solutions with 

an increase in the forcing. Finally in Section 3.9 we compare our findings with other aw models 

and comment on the similarities and differences. We conclude this chapter in Section 3.10, by 

surnmarising the main findings of our study of this cew-type model. 

3.2 Background. 

In this section we review the main results of cew dynamos, with which we will compare our 

results in later sections. 

Roberts (1972) investigated the steadying effect of a meridional circulation applied to a linear 

kinematic dynamo model solved in a conducting sphere. Before tackling the effects of meridional 

circulation, he considered lineax aw dynamos, establishing some general characteristics about these 

models. These studies then also provide a basis for the later investigations involving the meridional 

circulation. 

In his studies of aw dynamos, he begins by examining Steenbeck and Krause's (1966) model 

which solves the induction equation 

QB=RVx (UxB+aB) + V2 B 

in a sphere of radius 1. R is the magnetic Reynolds number, which we introduced in Section 1.2 
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and since he seeks normal mode solutions, the time derivative in (1.3) is replaced by Q which is the 

(complex) growth rate of the solutions. The a and w-effects are prescribed as 

ci = ao cos 0 and w= wOr. 

Despite the non-analytic nature of the a-effect at the centre of the sphere, this choice enabled a 

comparison with Steenbeck and Krause (1966). Roberts also considers an additional two aw models 

which adopt different forms for the prescribed a and w-effects. These are, 

model 2: a= 
729 

a, r8(1 -r 
2)2 COS 0 

19683 
w'(1 -r 

2)5 
16 40960 ' 

model 3: a= 24v"3-a,, r2 (1 -r )2 COS 0 sin 20w3,, 
r3- 

wo(l. -r 
2)2 

8 

Roberts chose a and w such that a and w' (where w' = dw1dr) had maximum values a,, and 

w. respectively, within the sphere of radius 1. The second model here was chosen to address the 

question raised by Steenbeck and Krause (1966,1969) that suggested that aw dynamos function 

most efficiently when the regions of greatest shear were separated from the those of the maximum 

ce-effect. Using this model, Roberts found that there was no evidence of the dynamo being easier 

to excite, however investigating this dynamo model in a spherical shell, his findings lend support 

to this issue of region sepaxation. 

The common characteristics of these models were that aw models are generally periodic dy- 

namos. At the onset of dynamo action when aw' > 0, the solution has quadrupole parity and the 

dynamo wave solutions generated drift from the equator towards the poles. For aw, < 0, solutions 

are dipolar in nature, with the dynamo wave solutions propagating from the poles towards the 

equator. 

Roberts then considers the effect of prescribed meridional circulation on the aw dynamos, con- 

trolling the strength of this effect through a paxameter m which is varied between ±1. Roberts 

considered 4 different models, as well as a model considered by Braginsky (1964b) as a check on his 

results. Typically solutions were found to be steady provided Iml is sufficiently large and he noted 

that the most easily excited solutions for cew' >0 had dipole parity. For au/ <0 the most easily 

excited solutions had quadrupole parity - this is opposite parity to the aw dynamos which were 

found for the case without the inclusion of meridional circulation. The variation in the behaviour 
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of the models with m, depended on the model. In the Braginsky model and model 1, which we 
consider in more detail in Section 3.9.1, dynamo action is greatly facilitated for m negative in the 

aw' >0 case but inhibited for m positive. For the aw' <0 case, the areas in which dynamo action 
is assisted or impeded are switched around, with m positive facilitating dynamo action, and m 

negative impeding it. In model 1 at small values of rn, in the aw' >0 case, oscillatory quadrupole 

solutions are more easily excited than the unsteady dipole solutions as shown in Figure 3.26. This 

situation is reversed in the aw' <0 case which is shown in Figure 3.27. In model 2 the values 
of m for which these most favourable solutions are obtained is opposite that of the models dis- 

cussed above. In models 3 and 4, the solutions obtained are quite different from the other models 
considered. In these cases, w is now a function of r and 0 (instead of simply r as in the early 
models). This leads to slightly different behaviour. In model 3, he finds that in the case of aw' > 0, 
dipole solutions are most easily excited as before and dynamo action is assisted for m>0, with no 
solutions obtained for m<0. In the case of aw' < 0, he finds quadrupole solutions excited first, 

with dynamo action assisted for m<0. For model 4, he finds that in both cases dipole solutions 
are obtained and m>0 assists the solutions in both cases, no solutions being found for m<0 in 
the aw' > 0, similar to model 3. 

In the aw-type dynamo papers of Hollerbach and Jones (1993b, 1995), they focussed on the role 
the finitely conducting inner core has on the dynamics of the system. They follow the bifurcation 

pattern of the system as a,, is increased having imposed a strong differential rotation (E), = 200) 

on the system. For their dipole-imposed-symmetry solutions, onset occurs for a,, = a, - 8, as dy- 

namo waves which propagate with a zero time-average from the equator to the poles. The system 
undergoes a bifurcation at a,, - 12 to dynamo waves with a non-zero time-average. Solutions at 
low values of a,, (> a, ) produce the same bifurcation results as previous results found for a model 
which had no inner core. When the system is highly supercritical, they find that the core forms two 
dynamically distinct regions: inside and outside the tangent cylinder -a pattern which is supported 
by observational evidence. They find that inside the tangent cylinder, the long diffusion time of 
the inner core causes the poloidal field to remain fairly constant, as there is no mechanism here 
for generating toroidal field. The dynamically active region appears outside the tangent cylinder 
where dynamo action is achieved through the interaction of the large zonal flow with the poloidal 
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field to generate toroidal field, which in turn generates poloidal field through the imposed ce-effect. 
This process is shown to be particularly inefficient however, as the contours are so closely aligned. 
Between these two papers, they reduce the Ekman number down from a value of 1X 10-3 to 5x 10-4 

and find very little difference in the solutions between the two values for E. 

In the Hollerbach and Glatzmaier (1998) paper, they solve this same system of equations al- 

lowing for both dipole and quadrupole parity solutions. They find at onset (a, - 6) that dynamo 

wave solutions are produced and have quadrupole parity, with a zero time-average. The solutions 
bifurcate at a, - 11 to mixed parity solutions with a non-zero time-average. These solutions also 

exhibit a form of symmetry; they find that the solutions have a half period dipole symmetry; mean- 
ing that solutions which are half a period apart, have the same equatorial symmetry that a purely 
dipolar solution would have without the half-period shift in time. Around a, - 30 the solutions 

undergo a bifurcation to mixed parity steady solutions. From their subsequent analysis, it is clear 
that very different behaviour is obtained when the system is not restricted to a particular parity 
and they note that despite the considerable extra computational expense incurred, it is safest not 
to restrict attention to pure-parity models. 

3.3 The onset of Dynamo action and the Ekman number. 

We began by finding the value of a,, for the onset of dynamo action at varying values of the 
Ekman number, and for fixed 0,, (= 200). The graph in Figure 3.1 shows a plot of the critical a, 
a, against the log of the Ekman number. 

At the onset of dynamo action, the main balance of the momentum equation lies between the 
Coriolis force and the buoyancy force, with viscous effects only significant in boundary layers close 
to the inner core and core-mantle boundaries. We anticipate that as the Ekman number is de- 

creased towards zero, (and as we see in the simulations), the thickness of these boundary layers 
decreases and resolution of these narrow boundary layers becomes more difficult. Figure 3.1 shows, 
as the Ekman number is decreased, the value of a, also decreases until E, 2x 10-5 where the 

graph appears to begin levelling off. This behaviour is in fact what we might expect, since as E 
is decreased, the thickness of the viscous boundary layers decreases (as we see in Section 2.7, so 
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Figure 3.1: The variation of a,, with Ekman number for a= ao cosO sin (-7r(r - ri)) and E),, = 200. 
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that successive plots of the angular velocity appear more and more like the inviscid limit solution; 

UO , E), r 2 sinO). We see that as E decreases towards zero, the results are consistent with a, 

approaching a constant (non-zero) value. 

For all further simulations in this chapter we choose E= 10-4, as this is the limit of computa- 

tional capabilities for moderate truncation of the solutions. 

3.4 Dependence on a,, and E)o. 

As we showed in our discussion in Section 2.9, our system of equations do not scale exactly with 

the dynamo number, D. In this section we aim to investigate the extent to which this remains a 

reasonable measure of the system, and the validity of simply considering the product of our two 

forcing terms, ceý and E),,. 

I 

We begin by considering the onset of dynamo action, as this is when the system will be linear. 

We showed that due to the presence of meridional circulation in the system at onset, the equations 
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do not scale with the dynamo number D. However as a test of the extent to which the equations 
scale with D, or perhaps more accurately the extent to which the meridional circulation is playing 

a role in the equilibration of the dynamo at onset, we considered 4 different values of E), and found 

the corresponding value of a, In Table 3.1, we show the values of a, found for each E),, respectively. 
For each pair their product, D, = ce, E), is calculated. 

Examining the data in Table 3.1 we find that the values of D, we obtain axe similar. Another 

important aspect of aw dynamos, is that the cases of positive and negative D are different, and we 

see that this is appaxent even at onset. Therefore treating the cases of D>0 and D<0 separately, 

we see that we have good agreement between the values of D,. This implies that the equations 

are close to scaling with D, and so the effect of meridional circulation in the equilibration of the 
dynamo at onset is small. This fact is further illustrated by the plot of this set of data in Figure 

3.2 where we show ac versus E), 

ce, 6ý 

8.12 +200 1624 

16.4 +100 1640 

15.2 -100 -1520 
7.57 -200 -1514 

Table 3.1: The data set for Figure 3.2. This shows the value of a, to 3 significant figures, and the 

corresponding value of E),. 

Examining Figure 3.2, we see the negative 19., solutions produced onset values consistently lower 

than their positive 00 counterparts. These solutions in fact turned out to have dipole parity, with 
the positive E),, solutions having quadrupole paxity. Both types of solution were oscillatory with a 
period of - 0.24. This aspect of parity selection for aw dynamos was also found by Roberts (1972) 

in his consideration of linear aw dynamos. Another interesting aspect which axises from this data 

set in Table 3.1 which is worth noting, is the suggestion that the onset of dynamo action occurs at 
a lower value of JE), j for larger values 16.1. 

We then investigated, for each of these values of E),,, the variation in the solutions as a,, is 
increased beyond critical. Figure 3.3 shows the variation of the magnetic energy with the dynamo 
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Figure 3.2: Here we show the value of a, for each 19ý considered. A's denote dipole parity solutions and 

*'s denote quadrupole parity solutions. 

number. Whilst we have shown that the dynamo number is not specifically a key parameter in 

this model, using IDI as our scale on the x-axis proves useful as it allows us to easily compare the 

solutions at different values of 19,, and therefore obtain some global information about the system. 

As IDI is increased (through fixing 19,, and increasing the strength of ce. ) beyond onset, we 

see that for D=2500, the dependence on the sign of E),, (and so D) becomes evident. For D>0 

the magnetic energy changes rapidly with the gradient of the curve quickly steepening as IDI is 

increased. For D<0 the magnetic energy changes much more slowly, allowing IDI to be increased 

all the way up to 10000. For the E) >0 solutions, it became too difficult to increase IDI beyond 

4400, as the magnetic energy of the solutions between consecutive values of a, for a fixed E),, 

changed so steeply. However the shape of the curve remains clear, and the difference between 

D>0 and D<0 is obvious. Since we generate these two cases, by changing the sign of 0, we 

explore the effect of the buoyancy force further in Section 3.8, where we aim to try and understand 

the mechanisms at work to produce these differences and the actual physical interpretation of the 

prescribed buoyancy force. 
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Figure 3.3: The following show the values of the average magnetic energy at the respective values of 
E),,. + : E), = -200, x: E). = -100,11 : E)ý = 50, A: ()ý = 100,0 : E)ý = 200. The error bars indicate the 

maximum and minimum amplitudes of the magnetic energy. The symbols in bold show the solutions which 
have undergone bifurcations to different behaviour. 

Rom Figure 3.3, we also note that the solutions all undergo bifurcations to different behaviour 

(exact details axe given later). These bifurcations see a difference in the time evolution of the 

magnetic energy for E), >0 solutions, and for E),, < 0, the bifurcation results in the solutions 

changing from dipole parity to becoming mixed. These are the solutions shown in bold in Figure 

3.3 and it is evident that these occur around the same value of IDI for the solutions at E), = 
200, -200, -100. We notice that the solutions at E), = 100 bifurcate slightly later and for E),, = 50 

we find the solutions for as far as we considered them, have yet to bifurcate. Examining Figure 

3.3 suggests that there may exist a threshold energy which solutions must reach before the nature 
of the solutions change. This however shows that the system can not be characterised by a single 
parameter; both a, and 19,, must be specified. The exact nature of the solutions and how they 

evolve with increasing IDI is described in more detail in Sections 3.5 and 3.6 for D>0 and D<0, 
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respectively. 

3.5 Solutions for E),, 

For E),, = 200, we investigated the bifurcations of the solutions as a. is gradually increased from 

its onset value of ac = 8.12 up to a. = 30. For ac :5a,, :5 16, the solutions have a quadrupole 

parity and vascillate sinusoidally in time with a period, T 0.24. The variation with time over one 

cycle of the magnetic energy is shown in Figures 3.5 and 3.6 (a) for 0, = a, = 8.12 and a, = 14, re- 

spectively, where we see that the length of a cycle has remained approximately constant, decreasing 

only slightly as ao is increased. The variation of the field and flow may be examined by following 

the snapshots of the solution over a cycle of the magnetic energy. These are shown in Figure 3.7 for 

ao = a, = 8.12 and Figure 3.8 for ao = 14. Examining the contour plots reveals that the solutions 

are reversing and complete half a period over one cycle of the magnetic energy. Comparing Figures 

3.7 and 3.8 we see that the evolution of magnetic field contours with time is very much the same 

despite the differences in the strength of the field. The flow contours vary slightly differently. The 

contours of the flow at the onset of dynamo action (shown in Figure 2.1) do not change with time, 

however once the solution is beyond onset as shown in Figure 3.8 for a, = 14, we see that the flow 

contours also evolve with time. 

As aý is increased to 18, we find a bifurcation in the behaviour of the solution. The time evo- 
lution of the magnetic energy is no longer sinusoidal and has instead developed a variation which 

exhibits an alternating peak/trough height. This is shown more clearly in Figure 3.6(b). As before, 

we plot snapshots of the solution over a cycle of the magnetic energy and these axe shown in Figure 

3.9. These solutions reveal that the quadrupole nature of the solutions has been maintained and 
has reversing features similar to those found in Figure 3.8. We find that following the evolution of 

solutions over a cycle of its magnetic energy, results in the solutions completing a period of its vari- 

ation. In this way the evolution is slightly different to the solutions found prior to the bifurcation 

which had only completed half a period over a cycle of magnetic energy. As a, is further increased, 

the solutions parity remains quadrupolar and the magnetic energy variation remains qualitatively 
the same. The only observed difference is a decrease in the period of the solutions as a,, is increased. 
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As discussed in Section 3.4, we found that the critical dynamo numbers were fairly similar, so 

we wondered if the bifurcation from sinusoidal behaviour to the periodic alternating peak height 

solution, would also occur around the same value of D. For 8, = 100 and 50 we looked to see if 

there is the same bifurcation pattern as found for E),, = 200. 
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Figure 3.4: As Figure 3.3, but for E),, >0 only. 0: 0,, = 50, ! ýý : E),,, = 100,0 : E),, = 200. 

The bifurcation for E), = 200, occurred at a,, ý-- 18, which gives a dynamo number of V= 3600. 

If the bifurcation for E), = 100 were to occur at the same value of D, then this suggests that the 

bifurcation should occur around a,, = 36. Following the E), = 100 branch of solutions as we increase 

ao from its onset value of a, = 16.4, we initially find the solutions exhibit similar behaviour to that 

found when E)o = 200, with solutions produced which are quadrupolax in nature and whose period 

of evolution is T ý-- 0.24. Paying particular attention to the solution at a,, = 36, we find that the 

quadrupole, 'paxity solution vacillates sinusoidally with time, indicating that the system had not yet 

bifurcated to the different time behaviour solution. Increasing a,, to 38, the solution retained its 

quadrupole parity and exhibits the same time behaviour as shown in Figure 3.6(b). This means 
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the dynamo number for the point of the bifurcation is V ;: zý 3800. 

Following the bifurcation pattern for 0, = 50, we see the same bifurcation pattern as found 

before. Now, we see that the bifurcation does not occur until beyond a,, = 88, as we have yet to 

find a periodic alternating peak height solution for E),, = 50. This confirms that the bifurcation 

of the solutions depends on both a,, and E),, and can not simply be characterised by their product 

D. The graph in Figure 3.4, shows clearly the bifurcation points in each of the branches of the 

solutions we considered, the bifurcated solutions being shown in bold. This graph (Figure 3-4) 

suggests that the bifurcation of the solutions may instead be dependent on the magnitude of the 

magnetic energy, there being a threshold energy beyond which the solutions are of the periodic 

alternating peak type. 
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Figure 3.5: The evolution of the magnetic energy over a cycle at the onset of dynamo action; a, = 8.12 and 
0, = 200. The A's indicate the points through the cycle which have been plotted and are shown in Figure 

3.7. The flow contours, which do not change with time, are shown in Figure 2.1. 
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t=tý+0.02 i=t. +0.04 t=t. +0.06 

511) 

Figure IT The above snapshots show the evolution of the solution over a cycle of magnetic energy at onset 

(a,, = a, ) for 9,, = 200. The first two rows show the Poloidal magnetic field at a contour interval of 0.001. 

The toroidal magnetic field is shown in the second two rows at a contour interval of 0.02. Here solid lines 
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Figure 3.8: Here we show for ck, = 14 and 9,, = 200 (from left to right) the poloidal field, toroidal field, 

angular velocity and meridional circulation contours using contour intervals of 0.05,0.5,25,0.25, respectively. 
This shows the evolution of the solution over a half period, 12' = 0.1056. 
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Figure 3.8 continued. 
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Figure 3.9: As Figure 3.8, but for a,, = 18 and E),, = 200. Here we use contour intervals of 0.1,1 , 50 , 0.5. 

This shows the evolution of the solutions over a period, T=0.19. 
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Figure 3.9 continued. 
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3.6 Solutions for E),, < 0. 

60 

For E), = -200, we proceeded in the same way as described in Section 3.5 for 6,, = 200, and 

followed the solutions as we increased aý- The magnetic energy variation with IDI is shown in Fig- 

ure 3.10. As described in Section 3.4, the solutions at onset have dipole parity and their magnetic 

energy vacillates with period, T ý-- 0.24. The periodic variation of the magnetic energy at onset is 

shown in Figure 3.11, where the superimposed triangles indicate the points over a cycle at which 

snapshots of the solution have been plotted. The magnetic field contours are shown in Figure 3.12, 

where we see that the magnetic field contours complete half a period in a cycle of the magnetic 

energy. The flow contours, which do not change with time at the onset of dynamo action, are 

shown in Figure 2.1. Increasing a,, beyond onset at ce, = ce, = 7.57, we find that the solutions 

remain qualitatively the same up to a, = 18, however the period of the solutions decreases as a. 
is increased and the amplitude of the solutions remains small. 
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Figure 3.10: As for Figure 3.3, but for Oo <0 only. +: Oo = -200, and x: E)o = -100. 
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At aý = 18, we find the system has undergone a bifurcation and the solutions change from being 

of dipole parity to mixed parity, as shown in the snapshots over a cycle in Figure 3.13. The magnetic 

energy maintains the sinusoidal time vaxiation, as shown in Figure 3.14. Through examining the 

evolution of the mixed solution over a cycle, we see that the magnetic field has completed half a 

period in a cycle of the magnetic energy. Interestingly, the flow appears to have completed a period 

over a cycle of the magnetic energy. Given the small amplitude of the magnetic energy vacillation 

and the gentle increase in the average magnetic energy as we increase a, as shown in Figure 3.10, 

we can with relative ease increase a,, up to 50 and find the mixed solution behaviour is maintained. 
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Figure 3.11: As for Figure 3.5, but for a, = 7.57 and 0,, = -200. 

For E), = -100, we expect a similar variation with magnetic energy, which enables us to take 

fewer points to follow the solutions as we increase a,, beyond onset at a. = a, = 15.2. We find 

qualitatively similar behaviour as we increase a,,; small amplitudes and increasing frequency with 

increasing a,. The bifurcation to mixed parity solutions occurs around a,, = 36. 
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Figure 3.12: As Figure 3.7, but for onset (a, - 7.57) for 0. = -200. Here the contour interval is 0.0002 

for the poloidal field (top two rows) and 0.005 for the toroidal field (bottom two rows). 
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Figure 3.13: As Figure 3.8, but for a,, = 18 and E), = -200. Here we use contour intervals of 0.05,0.5,20, 

0.2. The 5 snapshots are shown over a half period, 1: = 0.078, 2 
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Figure 3.13 continued. 
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Figure 3.14: As Figure 3.5, but for a. = 18 and 0,, = -200. 
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3.7 Comparison of the Solutions for D>0 and D<0. 

As discussed earlier, it is well established in the literature (see for example, Roberts 1972) the 

cases of D>0 and D<0 are distinctly different. The D>0 case at onset always produces 

solutions which have quadrupole parity and E) <0 at onset always produces solutions with dipole 

parity, regardless of the particular forms of a and w. As we move beyond onset we see the solutions 

evolve quite differently as we increase a, at fixed values of 6, This difference is made particularly 

clear by Figure 3.3, where we see that the V>0 solutions magnetic energy increases quite rapidly 

with IDI (or in effect, a,, ) compared with the solutions for D<0. 

The nature of the bifurcations of the solutions are also quite different. We find that for V>0 

the vacillating quadrupole solutions retain their quadrupole parity beyond the bifurcation, but the 

time dependence of these solutions changes. Whilst for E) < 0, we have the opposite effect; the 

time dependence remains qualitatively unchanged but the dipole solutions become of mixed parity 

after the bifurcation. We noted in Section 3.5, that the point of bifurcation did not depend on 

D and suggested that there is possibly a threshold energy which the system must reach before 

the solutions undergo a bifurcation. If this is the case, then our results clearly indicate that this 

threshold energy is entirely different in the cases of E) >0 and D<0. 

3.8 The role of E) in the equilibration of the dynamo. 

The equations governing our inertialess aw-type dynamo (taken from equations (2.11), (2.12), 

(2.15) and (2-17) in Chapter 2) are 

OA 2 

at =DA+ aB + N(? P, A) (3.1) 

aB 
=D2B+ M(v, A) - M(B, ip) (3.2) 6T 

-2 
LV) 

= ED 2V + N(B, A) (3.3) 
09Z 

2 
av 

= E(D 2)2V) + M(D 2 A, A) + M(B, B) + 
aE) (3.4) 5z- -507 



CHAPTER 3. aw-DYNAMOS WT 

where 

az 
D2 

N (X, Y) 

M(X, Y) 

FHO UT INERTIA. 66 

= Cos 0a- sin o 09 
ar r aO 

= V2 (r sin 0) -2 

= eo [V x (Xeo) xVx (Yeo)] 

= eo Vx [Xeo xVx (Yeo)] 

Now, at the onset of dynamo action the magnitude of the magnetic field, IBI is small. Therefore 

the Lorentz force terms will be of O(JB12) and so the contribution to the overall balance of equation 
(3.4) will be negligible. As we discussed in Section 2.7, the main balance of the momentum equa- 
tion then lies between the imposed buoyancy force and the Coriolis force; the buoyancy force then 

driving a thermal wind VT. Therefore, examining the components of the Lorentz force at the onset 

of dynamo action enables us to compare the effects of the imposed buoyancy force at E), = ±200, 

whilst the strength of the field is small. Figures 3.15 and 3.16 show a snapshot of the solution at 

onset for E), = 200 and -200, respectively. Below the snapshot of the solution in each figure we 

plot the r, 0 and 0 components of the Lorentz force. 

Examining Figure 3.15, we see that the 6,, = 200 solutions produce a Lorentz force that is 

largely confined within the tangent cylinder. The solutions in Figure 3.16 show the Lorentz force 

confined largely in the region outside the tangent cylinder and close to the equator. We examined 
the solutions we find at E), = ±100 (not shown) and find that the behaviour is similar; the location 

of the Lorentz force being dependent on the sign of E),,. 

Now we were interested in trying to determine whether the location of the Lorentz force; largely 

inside the tangent cylinder for E),, >0 and largely outside the tangent cylinder and close to the 

equator for E),, < 0, was due to the direction of the imposed buoyancy driven flow, or the parity of 
the solutions. In order to determine this, we imposed dipole symmetry on the code and looked for 

the onset of dynamo action at E), = 200 (for which the parity of solutions would have otherwise 
been quadrupolar). We found that onset occurred at ce, = 9.95, higher than for the quadrupole 

parity solution, as expected (see for example, Roberts (1972) for more details). Examining the 
Lorentz force components, as shown in Figure 3.17 we see that this dipole solution has the contours 

of the Lorentz force largely confined to within the tangent cylinder also, clearly indicating that 
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the direction of the buoyancy driven flow is responsible for the equilibrated location of the Lorentz 

force. We then consider the situation as we increase % beyond the onset of dynamo action, to see 

whether this behaviour is continued. 

Bp 

((vB)B), 

B 

((v8)8), 

Figure 3.15: Top: A snapshot of the solution at a, = 8.12 and 0, = 200. The contour intervals from left 

to right are; 0.001,0.002,20,0.1. Bottom: Here we show the r, 0,0 components of the Lorentz force for the 

above solution. The contour intervals from left to right are; 0.002,0.01,0.002. 
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Examining the solutions shown in Figures 3.18 and 3.19 we see that the snapshots of the 

solutions look qualitatively similar to those we obtained at onset and we also see that the angular 

velocity contours between Figures 3.18 and 3.19 are a similar shape, despite the flow being driven 

in opposite directions. We notice that the meridional circulation contours in each case are quite 

Bp B 

((cB), ). 

/ 

((Txe)xB), 

Figure 3.16ý As Figure 3.15, but for a, = 7.57 and E),, = -200. The contour intervals are 0.0002,0.005, 

20,0.1 (top, left-right). 0.0001,0.0005,0.00005 (bottom, left-right). 
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different. The contours of the Lorentz force show the same preference as we found at onset. 

Comparing the snapshots of the solutions in Figures 3.15,3.16,3.18 and 3.19 we see that at fixed 

values of (), as a, is increased beyond the onset of dynamo action at a,, the angular velocity 
Bp 

((Y. B). B), 

--. 01 

a 

((V. B). B), 

Figure 3.17: As Figure 3.15, but for a solution at onset (a. = 9.95) for E),, = 200 when dipole symmetry 
is imposed on the problem. The contour intervals are 0.0001,0.001,20,0.01 (top, left-right) and 0.00005, 

0.0001,0.00002 (bottom, left-right). 
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contours reveal that the flow induced by the Lorentz force partially counteracts the imposed flow. 

As noted earlier, as we increase a,,, the solutions undergo a bifurcation to different behaviour for all 

E), considered. For E), = 200, the solutions bifurcate at a,, = 18 from periodic quadrupole parity 

solutions to quadrupole solutions which exhibit a new periodic time dependence. For E)', = -200, 

the solutions also bifurcate around a,, = 18 where the periodic dipole solutions become of mixed 

8, 

co-) .- 

Figure 3.18: As Figure 3.15, but for a. = 12 and 200. The contour intervals are 0.02,0.5,20,0.1 

(top, left-right) and 1,2,1 (bottom, left-right). 
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parity. Examining the snapshots of the solutions at ce, = 20, as shown in Figures 3.20 and 3.21, 

for 6, = 200 and -200, respectively, we see that the plots of angular velocity and meridional 

circulation now look quite different between the two solutions. The contours of the Lorentz force 

appears as before in the case of E),, = 200. The Lorentz force contours at E),, = -200, remained 

B 

((TxB)xo). 

) 

Figure 3.19: As Figure 3.15, but for a,, = 12 and E),, = -200. The contour intervals are 0.02,0.5,20,0.05 

(top, left-right) and 1,1,0.5 (bottom, left-right). 
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confined largely outwith the tangent cylinder, but now the concentration in each component is no 

longer close to the equator. Since we are specifically interested in how E),, acts to equilibrate the 

system, we fix a, = 20 and examine snapshots of the solutions at E), = ±100. The solution for 

E),, = 100 is shown in Figure 3.22 and the E), = -100 solution is shown in Figure 3.23. For a,, = 20 
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Figure 3.20: As Figure 3.15, but for a, = 20 and E), = 200. The contour intervals are 0.1,1,20,1 (top, 

left-right) and 50,50,20 (bottom, left-right). 
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and E), = ±100, the solutions are just beyond onset (a, - 16) and so the solutions resemble 

those given in Figures 3.18 and 3.19, though clearly the flow is not nearly so strong. Our findings 

reveal that the Lorentz force components lie in the locations found before; largely within the 

tangent cylinder for E) = 100 and largely outside the tangent cylinder and close to the equator for 

E)O = -100. Comparing these solutions with those in Figures 3.20 and 3.21, it is difficult 

Bp 8 

0.0-8). ((ftB). O)o 

Figure 3.21: As Figure 3.15, but for a,, = 20 and E), = -200. The contonr intervals are 0.1,0.2,20,0.2 

(top, left-right) and 5,5,2 (bottom, left-right). 
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to abstract any further ideas about how the imposed buoyancy force modifies the Lorentz force 

to equilibrate the system. Despite fixing a,, = 20, we see that the forcing within the system is 

significantly larger for E),, = ±200 and so one can not deduce that the differences we are seeing are 

due to changing E),, (they could be due to simply increasing the level of forcing). To obtain any 

feeling for the effect of E), on the solutions, an approach of taking smaller jumps in E), at fixed ce,, 

8,8 
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Figure 3.22: As Figure 3.15, but for a,, = 20 and 0. = 100. The contour intervals are 0.02,0.1,20,0.01 

(top, left-right) and 0.5,2,0.2 (bottom, left-right). 



CHAPTER 3. aw-DYNAMOS WITHOUT INERTIA, 75 

may be the way forward. We note that whilst we have only shown randomly chosen snapshots of 

the solution in this discussion, we have examined the behaviour of the contours of the Lorentz force 

over a period. We find that whilst the magnitude of the components change, the location of the 

concentrations of each of the Lorentz force components remain confined largely inside the tangent 

cylinder for E), >0 and outside the tangent cylinder and close to the equator for E), < 0. 

ep 
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Figure 3.23: As Figure 3.15, but for a,, = 20 and 0,, = -100. The contour intervals are 0.01,0.1,20,0.01 

(top, left-right) and 0.05,0.2,0.05 (bottom, left-right). 
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3.9 Comparisons with previous work. 

76 

In this section we compare our findings with those of Roberts (1972) (Section 3.9.1) and Holler- 

bach and Clatzmaier (1998) (Section 3.9.2). 

3.9.1 Roberts Model. 

We compare our results with Roberts (1972) model 1, which appears in Section 5 of his paper. 
The model presented is a kinematic aw dynamo model, in which the effects of a prescribed merid- 
ional circulation are included with a parameter m which is varied in order to investigate the types 

of solutions found and the evolution of these solutions with changing the meridional circulation. As 

our model naturally determines the meridional circulation of the system, we compare our results 

with those obtained by Roberts in an effort to obtain a feeling for the magnitude of the meridional 

circulation in our model and to see how our results fit with those obtained by Roberts in his paper. 

Roberts considers flows of the form 

vxtf+vxvxsi 

and chooses a prescribed flow 

3 IF 
tI-3, 

r2 r2) 2p (COS tq) for aw' >0 (r) 8 
r- (3-5) 

+3V3 r2 r 2) 2p1 (COS tq) for aw' <0 

7168vr2 6 
729 ". ' q_ . )2 P2 (COS 19), (3-6) 

a(r) 
48-V3 

r 
2(l 

- r)2 [p, (COS 0) - P3(COSO)]. (3.7) 5 

where w' is the spatial gradient of the angular velocity, w= v/r sin 0 and a is the parametrisation 

of small-scale non-axisymmetric flows. The form of a is chosen such that it reaches its maximum 

value of unity at r 1/2 and 0= cos-'(l/vlr3-). Likewise the form chosen for the prescribed flow 

is such that w' 3vr3, r(1 - r2) and reaches its =2 maximum value of unity at r= llvr3-. Therefore the 

angulax velocity and meridional circulation of the prescribed flow, which are shown in Figure 3.24 
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are given as, 

V r2)2 for ow' >0 8 
w 

rsinO + 1ý5 
r2)2 

(3.8) 
8 for cew' <0 

Up V)r sin 0= 
716 8 V2- 

mr 6(l 
_ r)2 cos 0 sin 20 (3.9) 

243 

Roberts varied the magnitude of the circulation in the flow, considering -1 <m<1 and es- 

tablished the effect the circulation had on the dynamo process. Roberts plotted the variation of 7n 

with the critical Reynolds number, R= vrR--,, R, (oc vla-ýE),, = vý-E-)) and these are shown in Figures 

3.26 and 3.27. 

Figure 3.24: The angular velocity and meridional circulation of Roberts prescribed flow. The contour 

intervals are 0.1 and 0.02, respectively. On the left-hand side we show the flow in the case of aw' >0 and 

on the right-hand side, the case of caj' < 0. In both cases we have fixed m=1. 

To compare Roberts' model, with our own solutions we calculate the maximum value of the 

meridional circulation and angular velocity for his prescribed flow given in (3.8) and (3.9). These 

have maxiinum values, 

(or sin =T rn, 6T6 
3 V3- 

(v/7-sinO)max =8 
+3 vf3- 

8 

at r= 3/4 and 0= cos-'(I/v/-3) 

for au)' 

for aw' 

In order to estimate the parameter m for our results, we constructed the following ratio. For 
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(or sin 0) ,,,, x = 
Upmax 

(V/7* Sill W)M:: 
Wmax 

7/16v/'6- Upmax 

3V3-18 Wmax 
7 v/2- upmax 

m 
Wmax 

18V-2 Upmax 
m (3.10) 

7 wmax 

Similarly, in the aw' <0 case, 
18 vf2- Up 

m a,, 
7 Wmax 

where Upm,,,, is the maximum meridional circulation in the northern hemisphere from our results, 

and Wmax is the maximum angular velocity from our solutions. 

Now as we discussed in earlier sections (see for example, Sections 3.5 and 3.6), for all values 

of 0., our solutions have a periodic time dependence. As we have shown (see for example, Figure 

3.8), the shape and magnitude of the contours of the flow change continuously over a period of 
the solution. Therefore, in determining an estimate of the value of m for each of our solutions, we 

would then simply need to take the maximum of the values of the meridional circulation and angu- 
lar velocity over a period of the solution. However, focussing on the snapshots of the solution over 

a period, we find that the meridional circulation and angular velocity do not reach their maximum 
values simultaneously. 

Therefore, we proceed by calculating the value of rn for each snapshot of a solution over a cycle, 

and from this find the time vaxiation of m, which of course shares the same period as the solution 
itself. Figure 3.25 shows an example of the variation of m with time, and as we can see the value 

of m varies between a maximum and minimum value and so for each data point in Figures 3.28, 

3.29 and 3.30 we show the average value, with error bars indicating the amplitude of variation we 
find in m. 

Examhfing Figure 3.28, we see that our results give an estimate of Roberts' parameter m of 

-0.07 ;ým ;ý0 for E). >0 and -0.08 ;ým ;ý0.02 for E),, < 0. Comparing these estimates with 
Roberts' results in Figures 3.26 and 3.27, we see that our results lie firmly within the oscillatory 
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regime identified by Roberts, with the relative strength of the meridional circulation in our solutions 
too small to move the solutions into the steady regime. Our solutions appeax to favour a negative 

value of m as forcing is increased in both cases. The sign of m switches for the E), <0 solutions as 
the forcing is increased, due to an increase in the negative contours of w as a,, is increased. These 

quickly exceed the positive w contours, thus altering w,,, m from being positive to negative and so 

changing the sign of m. In the E),, >0 case, as a,, is increased, the negative contours of w increase 

reinforcing the existing negative angular velocity contours. 

Comparing Figure 3.28 with Roberts' results in Figures 3.26 and 3.27, we see that the parity 
selection and time dependent nature of our solutions matches Roberts' predictions for values of m 
close to zero. Our solutions do not appear to lie on the oscillatory branches indicated in Figures 
3.26 and 3.27, but it should be remembered that our model is non-linear, whilst Roberts' model is 
linear and so a precise fit is not expected as the flows axe quite different. Our solutions at onset, 
as shown for example in Figure 2.1, give the best match of Roberts' prescribed flow, allowing us to 

estimate where our onset solutions lie on Roberts critical curves. The value of m at onset is shown 
most clearly in Figure 3.29, where we see that E)o >0 solutions produce a value of m which is very 

close to zero but negative and for E),, <0 solutions, m is again very close to zero and has a positive 

sign. Another aspect to notice which applies to both 00 positive and negative, is the increase in 

the amplitude of m as IDI is increased. 
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-0.006 
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0,0 1 0.2 0-3 0.4 

Tim. 

Figure 3.25: The time dependence of our estimated value of m, calculated from the snapshots of the solution 
over a cycle. Here we take the solution at ct,, = 14 and E),, = 200, as pictured in Figures 3.6 and 3.8. 
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Figure 3.26: Roberts' Figure 7. Equivalent to our E), >0 case. "The critical Reynolds number, R, as 

a function of the meridional circulation speed, m, for the Braginsky model, normalised to conform with 
(3.5)-(3.7). The dashed lines refer to oscillatory modes. the truncation level was 18 harmonics and 20 grid 

points. It was supposed that aw' was positive". 

Figure 3.27: Roberts' Figure 8. Equivalent to our E), <0 case. "The case described in the caption to figure 

7 (Figure 3.26 above), except that aw' was assumed to be negative". 
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Figure 3.28: Estimates of the Roberts parameter m, for our E), >0 (top) and 0, <0 (bottom) solutions. 

As in Figure 3.3,0,, = 200: o, 19, = 100: A, Oj, = 50: 0, E), = -100: x and E),, = -200: +- Symbols in 

bold indicate solutions which have bifurcated. 
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We also examine how our estimates of m varies with a, These are shown in Figure 3.29. 

Focussing on the 0, >0 solutions first, we see that the solutions at onset (a, = 8.12 for E),, = 200 

and a, = 16.4 for Oo = 100) produce values of m close to zero, which as we increase a, the value 

of m decreases. At a. = 18 for 0,, = 200, the value of m reaches a minimum and then increases 

as a,, is further increased. A similar trend is shown for the solutions at 80 = 100 which finds m 

reaching a minimum at a,, = 36 and then increasing again. An interesting point to note is that the 

E),, = 200 and Oo = 100 solutions bifurcate at ao = 18 and ao = 38 respectively, which is close to 

the minimum points of these graphs. However the solutions shown at E),, = 50 do not share this 

behaviour, as they decrease and then increase without reaching a minimum value of m close to the 

solutions at 80 = 100 and E), = 200 and without undergoing a bifurcation. 

Examining the behaviour of the E), <0 solutions, we see that the values at onset (a, = 7.57 

for E),, = -200 and a, = 15.2 for E), = -100), again produce values of m close to zero. As we 

increase a, we see an increase in the value of m, however as commented earlier, once the negative 

contribution to the angular velocity exceeds the contribution to the positive w contours, the sign of 

m switches and we obtain negative values of m for all subsequent values of a,. The point at which 

the system bifurcates (ce,, = 18 for E),, = -200 and a,, = 36 for E),, = -100) almost coincides with 

the point at which solutions change from m being positive to negative. As a,, is further increased, 

the value of m decreases. 

In Figure 3.30, we replot the data shown in Figure 3.29 where we instead plot the variation of 

m with JE)j. This enables us to easily compare the variation between each of the values of E), For 

E), > 0, we are able to see very cleaxly that the 8, = 200 and 19,, = 100 solutions are exhibiting the 

same trend in the variation with m, with the solutions at E),, = 50 producing quite different results. 

For E),, < 0, we see very good agreement between the solutions at E), = -200 and 19,, = -100 

at small values of IDI, where the values of m coincide. At the larger values of IDI the agreement 

between the solutions is not neaxly as good as we found in the case of 6, > 0, however the solutions 

do exhibit the same decreasing trend in m as IDI is increased. 
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Figure 3.29: Variation of the Roberts parameter m, with a, for our E),, >0 (top) and 0,, <0 (bottom) 

solutions. As in Figure 3.3,9,, = 200: *, E),, = 100: L, Go = 50: 0, E),, = -100: x and 00 = -200: 
Symbols in bold indicate solutions which have bifurcated. 
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Figure 3.30: Variation of the Roberts parameter m, with IDI for our E),, >0 (top) and @,, <0 (bottom) 

solutions. As in Figure 3.3, E),, = 200: o, 0,, = 100: A, E). = 50: E], -100: x and E),, = -200: 
Symbols in bold indicate solutions which have bifurcated. 
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3.9.2 Hollerbach & Glatzmaier's model. 
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We may compare our results with those obtained in the Hollerbach and Glatzmaier (1998) pa- 

per. As noted earlier, the model we presented in Chapter 2 is the same as that used in their paper, 

with the difference lying in the form of the a-effect considered. We also note that the Ekman 

number, E, is 5x 10-4 in their model, and for most of our calculations in this chapter our Ekman 

number is fixed at 1X 10-4. In the course of our research, we had hoped to be able to extend 
Hollerbach and Glatzmaier's results by lowering the value of the Ekman number, so that it was in 

line with our own results. Unfortunately, we ran into resolution difficulties at parameter values of 

ao = 50, Go = 200, E=1X 10-4, and were unable to obtain an equilibrated solution. However, 

as Figure 3.1 showed, the dependence of the solutions upon E is not significant and so whilst a 
lower Ekman number may cause slight differences in equilibrated magnetic energies, for example, 

and slight changes in the point at which bifurcations occur, the general behaviour of the solutions 

remains unchanged. 

Comparing Hollerbach and Glatzmaiers' solutions with our own we see that in both cases the 

onset occurs as quadrupole parity dynamo waves which propagate from the equator to the poles. 

These (now well established) aspects of dynamo models, were discovered by Roberts (1972) as 

noted in Section 3.2. However, we note that the direction of propagation of the dynamo waves is 

independent of the parity of the solutions and is determined by the direction of the forced differ- 

ential rotation, i. e. the sign of E),,. This is clearly shown in the solutions by Hollerbach and Jones 

(1993b, 1995), whose dipole imposed parity solutions occur as dynamo waves which propagate from 

the equator to poles. This is also seen, for example, in the aw dynamo models considered by 

Hollerbach et al (1992), and Anufriev and Hejda (1998). 

Comparing the onset of dynamo action in the two models, we see that at E=5x 10-4, the 

a =: ao cos 0 model onsets first at a, - 6, with onset occurring in the a= ao cos 0 sin(7r (r - ri)) 

model around a, - 8.3. This difference is not unexpected as the average value of a in the 

a= ao cos 0 sin(7r(r - ri)) case is lower than in the a= ao cos 0 case, and so one would ex- 

pect the onset to occur at a higher value of a,, in the c' = Ci. cos 0 sin(7r(r - ri)) case. The period 

of the solution at onset is similar; Hollerbach and Glatzmaier find T=0.22, whilst we find T=0.24. 
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Beyond the onset of dynamo action we compare the field structures between the two models. 

An exact comparison of these models is made more difficult as Hollerbach and Glatzmaier (1998) 

do not reveal the magnetic energy of their solutions. Therefore, in comparing their solution at 

a,, = 10, we choose a value of a which produces solutions with broadly similar magnitudes, which 

we deduce will have a comparable magnetic energy. We find that choosing an a,, = 14, produces 

a good comparison. Figures 3.6(a) and 3.8 show the appropriate solution, plotted over its period, 

T=0.21. Comparing this solution with Figure 1 of Hollerbach and Glatzmaier (1998), we find the 

solutions are qualitatively the same. Solutions are, as expected, quadrupole dynamo waves which 

propagate from the equator to pole. 

Hollerbach and Glatzmaier's model then bifurcates at a,, -- 11, where solutions then become of 

mixed parity. They show a solution at a,, = 15 in Figure 2 of their paper. Our model bifurcates 

at a,, ý_- 18, to solutions which have a slightly different periodic time behaviour, but which retain 

their quadrupole parity, as shown in Figures 3.6(b) and 3.9. It is here that we establish that the 

different a-effect is making a substantial difference to the solutions. 

As we have shown, the solutions at onset and at low levels of forcing have produced qualitatively 

similar solutions for both forms of a. As a,, is increased and the system undergoes a bifurcation, we 

see the difference in the form of the a-effect results in a change in the nature of the solutions. The 

fact that the radial structure introduced to the a-effect does not take effect until a,, is sufficiently 

large seems very natural, and this is also found in the work by Fearn and Rahman (2004a). Holler- 

bach and Jones (1993a) presented an a2 -type model, which used a=a,, cos 0. This model was 

extended by Fearn and Rahman (2004a) who using a=a,, cos 0 sin(7r(r - ri)) found that at onset 

and small values of a,, the solutions they obtained were qualitatively similar. Fearn and Rahman's 

model then bifurcated as a,, was further increased, and an unusual spiky periodic behaviour set in. 

In Hollerbach and Jones model, they considered only oL,, up to 8, but their model was extended by 

Rahman (2003) up to a, = 22 who finds that no bifurcation occurs. 



CHAPTER 3. aw-DYNAMOS WITHOUT INERTIA. 

3.10 Conclusions. 

87 

In this chapter we investigated a number of aspects of our cew-type dynamo model. This served 

a number of purposes; this enabled comparisons with previous linear and non-linear aw models and 

also provided us with a solid reference case for the work including inertia in the following chapter. 

To conclude this chapter, we will summaxise the main findings of each section in turn and then 

finally place our model in the context of mean-field dynamos and its relevance to earlier work. 

Unlike a 2-type dynamo models at the onset of dynamo action, which consist of solving the in- 

duction equation in the absence of a flow for a, the aw-type model is a more complex system, since 

from the outset, we are driving a flow in the momentum equation via the prescribed buoyancy force. 

This therefore introduces the effects of viscosity into the system. In Section 3.3 we investigated 

the extent to which viscosity plays a role in the equilibration of the dynamo at onset. Our results 

show that as E is decreased towards zero (and its geophysically appropriate value - 0(10-")), 

our findings are consistent with a, approaching a constant (non-zero) value. 

We also examined the onset of dynamo action for 4 different values of E),,. As discussed in Chap- 

ter 2, analysis of linear aw models revealed that the behaviour of the dynamo may be characterised 

by a single parameter named the dynamo number, E). The dynamo number, determined as the 

product of the magnitude of the prescribed forcings, a,, and E), naturally allowed the governing 

equations of such models to be rescaled. As we showed in Section 2.9, our governing equations made 

such a rescaling impossible, even at the onset of dynamo action when the system is linear and the 

Lorentz force is negligible. Therefore, we were interested in seeing to what extent the parameter 

remained a useful measure in the system. In the literature (see for example Hollerbach et al (1992) 

and Anufriev and Hejda (1998)), it has been established that the cases for positive and negative 
V, are quite different, however in many cases dipole symmetry is imposed on the solutions which 

will affect the natural parity of the solutions and the ensuing bifurcation sequence. Our analysis 
in Section 3.4, in which we consider the dependence of the system on a. and 6,, at the onset of 
dynamo action, confirmed this result. In Section 2.9 we examined the governing equations and 
found that they did not scale exactly with 7). However focussing on the onset of dynamo action 

revealed that we have good agreement between the values of 'D,, which suggests that the equations 
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are close to scaling with V. Therefore despite a,, and 19,, requiring to be specified independently, D 

remains a useful measure in the system. Increasing a,, beyond onset for each value of E),, considered, 

the difference in the sign of D, becomes much more apparent. The bifurcation sequences of the 

solutions for D>0 and D<0, are described in detail in Sections 3.5 and 3.6, respectively. 

In examining the solutions for D>0 and D<0, we were interested in understanding the way 

in which the buoyancy force acts upon the system, and the influence this has on the equilibrating 

Lorentz force. We found that the distribution of the Lorentz force, either near the poles or close 

to the equator, depended on the sign of D, and was independent of the parity of the solutions. 

Finally, we focussed in on how our solutions compared with other models. Specifically we looked 

at Roberts (1972) study and the findings of Hollerbach and Glatzmaier (1998). Roberts presents 

a linear aw model, and includes a prescribed flow, which generates a meridional component of the 

flow, which he allows to have a variable magnitude, m. We compared our magnitudes of meridional 

circulation and found that we have qualitative agreement with his model and find that for all our 

results, our estimates of m remain very small; lying between ±0.08, which is within the regime 
identified by Roberts in which the strength of meridional circulation is not large enough to make 

solutions steady. We also compared with the Hollerbach and Glatzmaier (1998) model, as this is 

exactly the same model as we use, only we include a radial distribution in the form of the prescribed 

a-effect. Drawing parallels with a2 studies, which compare the same two a-effects and are in all 

other ways equal, we axe able to deduce the differences caused by introducing a radial structure in 

a. We find that including this radial form into the prescription of the a-effect only changes the 

form of the solutions once the strength of a,, is sufficiently large. 



Chapter 4 

aw-dynamos with inertia. 

4.1 Introduction. 

In this chapter we investigate the effect of inertia on the au)-type model we introduced in 

Chapter 3. The motivation for this study stems from the work by Fearn and Rahman (2004b) who, 

through their investigation of the effect of inertia on their a2 -type dynamo model, found that as 

the strength of inertia was increased, this enabled dynamo action to occur more easily. This result 

conflicted with results found in 2.513 and 3D models (see for example, Fearn and Morrison (2001), 

Christensen et al (1999)) which found that increasing the strength of inertia caused the dynamo 

to fail. In the a 2_type model considered by Fearn and Rahman (2004b), the dynamo is driven by 

the prescribed a-effect which is unaffected by inertia. Therefore we consider the effect of inertia on 

our au)-type dynamo model, where an w-effect is driven by the prescribed buoyancy force, E). In 

our aw-type model, the a-effect will be unaffected by inertia as in the a2 -case, however, inertia is 

now able to influence the w-effect through the balance of the momentum equation. Our aw-type 

model is then intermediate to the a2 -type model and the 2.5D hydrodynamic model. Since our 

aw-type model is just 2D but contains much of the physics considered important to the dynamo 

mechanism, it is hoped that it is simple enough that it may enable us to better understand the 

physical implications of introducing inertial effects into the system, and possibly reconcile Fearn 

and Rahman's results with the 2.5D and 3D models. 

89 
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4.2 Background 
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Fearn and Morrison (2001) investigated the effect caused by the introduction of inertia into a 
hydrodynamic geodynamo model. They include the effects of a finitely conducting inner core in 

a 2.51) model, which has full resolution in the radial and colatitude directions r, 0, but which is 

severely truncated in the azimuthal direction, 0. The resolution chosen in the azimuthal direction is 

simply the M=0 mode and the m=m, =2 mode, thus including only a single non-axisymmetric 

mode, which is sufficient to prevent Cowling's theorem coming into play. Fearn and Morrison, 

systematically increase the strength of inertia, E,, = ; 42, fixing all other parameters in the system, 2 

enabling them to see how the magnetic and kinetic energy in the system vary with Ro. They found 

that there existed an oscillatory weak field branch for 1X 10-4 < Ro <2x 10-4 and a chaotic 

strong field branch for 2x 10-4 < Ro <1X 10-3 
. Beyond Ro =1X 10-3 no solutions were found 

and dynamo action fails. In the weak field branch they find the solutions match up well with the 

inertialess solution obtained using a different code and observe the trend that with increasing Ro, 

there is an increase in magnetic energy. Beyond Ro ,2x 10-4, solutions switch to the chaotic 

strong field branch, which show a decrease in magnetic energy until around Ro -IX 10-3 when no 

further solutions are found and dynamo action stops. Their explanation of this inertia dependent 

behaviour is as follows; at zero or small values of Ro, the magnetic energy undergoes a rapid growth 

and decay pattern, by increasing the strength of inertia, this slows down the feedback between the 

field and flow, allowing the field to grow in strength. However, further increasing the strength of 
inertia, causes the inertia term in the momentum equation to have a more significant role, thus 

altering the force balance and making it harder to generate a magnetic field. They then investi- 

gated the effect caused by varying the magnitude of the (modified) Rayleigh number Ra. This term 

changes the importance of the buoyancy force in the momentum equation and therefore varying this 

term could help compensate for the high levels of inertia in the system. For investigating the effect 

of inertia, Ra = 50; therefore, as a test of whether the strength of the buoyancy force driving the 

flow, could act to prevent the system from decaying and cutting off dynamo action, they considered 
Ra = 45 and 55. At Ra = 45, they found similar behaviour to the case at Ra = 50, but of a slightly 
lower magnitýide. Increasing Ra to 55, however results in a solution which is quite different. The 

solution at higher Ra has a much more steady field of a higher average amplitude. The solutions at 
higher Ra axe no longer reversing dynamo solutions and their field structure reveals that solutions 



CHAPTER 4. aw-DYNAMOS WITH INERTIA. 91 

have become more asymmetric with more field diffusing into the inner core. Despite increasing Ra, 

as Ro is increased dynamo action still shuts off. 

Christensen et al (1999), present details of a parameter study of a 3D hydrodynamic dynamo 

model and investigate the dependence of solutions on different non-dimensional parameters. They 

find that through examining the boundary between stable and decaying solutions for different val- 

ues of the Ekman number, E as a function of the (modified) Rayleigh number Ra (see Section 

1.3 for a definition) and the magnetic Prandtl number Pm (= E ), that there exists a minimum Ro 

magnetic Prandtl number below which dynamo action does not occur, obtaining the approximate 

relation Pmuit = 450E3/4. They also found that dynamo action occurred when Ra exceeded some 

critical value, and that this critical value is increased at low magnetic Prandtl number. However, 

if Ra is too large for a given value of Pm, dynamo action dies out. This finding is in keeping with 
the 2.51) results of Fearn and Morrison, who find equivalently that as Ro is increased (at fixed E), 

dynamo action shuts off. 

Fearn and Rahman (2004), consider a mean-field a2 -type dynamo model, including the full 

inertia term, similar to the model we describe in Chapter 2, but in the absence of the prescribed 
buoyancy force. They find that, through increasing the strength of inertia, Ro, from close to 

zero (where they obtain very good agreement with the solution at Ro = 0, which is found using 

an independent code), the solutions begin with dipole parity solutions which exhibit an unusual 
(spiky' time dependence (see Section 5.2, for further details). As the strength of inertia is increased, 

these spiky solutions give way to steady solutions around Ro -2X 10-2 which retain their dipole 

parity. Beyond Ro =2X 10-2 solutions were steady, and as they gradually increase Ro, they 

observe a roughly linear increase in the magnetic and kinetic energy of the steady solutions until 
Ro ,8X 10-2. For Ro ýý 8.5 x 10-2 the solutions become chaotic. Fearn and Rahman's results 
in this model find that the effect of inertia actually acts to aid the production of magnetic field. 

This unexpected result could prove very revealing about the nature of the dynamo process and may 
help us to better understand the exact mechanisms present which act to inhibit dynamo action. 
Fearn and Rahman suggest that the failure of hydrodynamic models may be due to a more-than- 

compensating reduction in convective vigour or a reduction in the effectiveness of convection in 
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generating magnetic field as inertia is increased. Here we consider our aw-type model including the 

effect of inertia, and investigate how the solutions vary with Ro and how they compare with Fearn 

and Rahman's a 2-type model and the 2.5D and 3D hydrodynamic models. As our comparatively 

simple model includes most of the essential physics of the dynamo problem, it may be possible to 

determine the reasons for the decay of the hydrodynamic models as inertia is increased and the 

ability of inertia to facilitate dynamo action in Fearn and Rahman's a2-type model. 

4.3 Energy variation with increasing Ro. 

In Chapter 3 we investigated the behaviour of our aw-type dynamo and its dependence on the 

parameters aý and 0, Here we investigate the effect of increasing the strength of inertia on a 

solution at fixed a, E),, and E. We focus on solutions at a. = 30, %= 100 and E=2.5 X 10-4. 

As we gradually increase inertia from Ro =1x 10-5, we see a natural progression from 

the inertialess solution obtained using the model in Chapter 3. These solutions retain their 

quadrupole parity up to Ro =5x 10-3. The solutions then go through a transition region for 

5X 10-2 < Ro <7x 10-2. We examined the solutions at Ro = 5.5 x 10-2 and Ro =6x 10-2 and 

found that the solutions exhibited a more complex time dependence (different in each case) and 
have a mixed parity. 

Increasing the strength of inertia to Ro =7x 10-3, we find the system has bifurcated onto a 

new branch of solutions which have dipole parity. This sequence of bifurcations is shown in Figures 

4.1 and 4.2, where we plot the variation of the magnetic and kinetic energy of the solutions with 

increasing Ro. 

As we increase the strength of inertia, we see in Figure 4.2 an almost linear variation of the 

kinetic energy with Ro, which is expected given the equation for the kinetic energy in (2.51). The 

magnetic energy variation with Ro, shown in Figure 4.1, is quite different. The magnetic energy 

variation of the quadrupole parity solutions found for 0< Ro <5x 10-2 initially increases quite 

steeply with increasing Ro and then decreases more slowly as we continue to increase Ro. The 

solutions then become mixed paxity, as the system makes the transition from quadrupole to dipole 
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parity solutions. For the dipole parity solutions found for 7x 10-2 < Ro < 1.1 X 10-2 we see a 

similar behaviour in the magnetic energy variation as we observed for the quadrupole solutions. 

Here the magnetic energy of the solutions initially increases, though not as steeply as we see in the 

quadrupole parity region, and then decreases sharply as Ro is increased. 
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Figure 4.1: Plot of the variation of the average magnetic energy with Ro. 'Error bars' indicate the maximum 

and minimum amplitudes of the oscillatory solutions. The denote solutions which have a quadrupole parity, 

m show mixed parity solutions in the transition region and denotes dipole parity solutions. For all solutions 

shown above, a,, = 30,0,, = 100 and E=2.5 X 10-4. 

Obtaining solutions as we increase Ro, proved to be quite difficult. The solutions we used as 

initial conditions for subsequent runs at higher inertia needed to be well resolved spatially and fully 

equilibrated in time. Even taking these factors into consideration, if too laxge a step was taken in 

Ro, we found that the solution would decay away to zero. We also ran into difficulties with the 

timestep at which the code would run. As inertia is increased, the solutions changed much more 

rapidly in time, developing a ragged appearance. In order to resolve this rapidly changing time 

behaviour, we attempted to reduce the timestep, at which we ran the solutions. We found that we 

were unable to reduce the timestep, below 4x 10-6 ,a timestep lower than this value resulted in the 
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solution blowing up. In the dipole region of Figure 4.1, we are unable to follow the solution beyond 

Ro = 1.1 X 10-2 , as the values of Ro we considered resulted in a solution which decayed away to 

zero. It is of course possible that we are simply unable to find solutions beyond this point and that 

the strength of inertia is such that it inhibits dynamo action sufficiently to cut it off altogether, as 

this has been the finding of other models, for example the 2.5D hydrodynamic model of Fearn and 

Morrison (2001) or the 3D model of Christensen et al (1999). However, given the sensitivity of the 

model to the initial conditions and our inability to reduce the timestep below 4x 10-6, we believe 

that Figure 4.1 suggests that the dynamo mechanism is being inhibited by the increasing strength 

of inertia, but whether it shuts off the dynamo altogether at this point is unclear. We do note 

however, that the solution we obtain at Ro = 1.1 X 10-2 has evidence of becoming slightly mixed 

in parity, and it may be the generation of a non-dipole contribution in the system which leads to 

the decay of the solutions. 
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Figure 4.2: As Figure 4.1, but showing the kinetic energy vaxiation with Ro. 

i 

In Sections 4.3.1 and 4.3.2 we focus on the nature of the solutions in the quadrupole and dipole 

regions respectively, and plot snapshots of their variation over a period. 
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4.3.1 The Quadrupole Solutions. 

95 

Here we focus on a quadrupole solution at Ro =2X 10-3 . The A's featuring on the magnetic 

and kinetic energy variations shown in Figure 4.3, denote the points at which we have plotted 

the contours of the solution. We find that we have a reversing type solution which over a cycle 

of magnetic or kinetic energy, has undergone only half a period of its solution. Snapshots of the 

solution over the half period, 1=0.117 are shown in Figure 4.4. 2 
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Figure 4.3: Plot of the magnetic energy (top) and kinetic energy (bottom) variation over one cycle. For 

a, = 30,6ý = 100, E=2.5 x 10-4 and Ro =2x 10-3 
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Figure 4.4: The poloidal field, toroidal field, angular velocity and meridional circulation (from left to right) 

contours of the solution at 6 equally spaced snapshots over the half period, 1: = 0.117. For a. = 30,0,, 
2 

100, E=2.5 x 10-4 and Ro =2x 10-3, with contour intervals of 0.1,0.5 
, 

20 
, 

0.5, respectively. 



CHAPTER 4. aw-DYNAMOS WITH INERTIA. 
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Figure 4.4 continued. 
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4.3.2 The Dipole Solutions. 

98 

These dipole solutions are not reversing solutions and their behaviour over a period is shown in 

Figure 4.6. Figure 4.5 show how the magnetic and kinetic energies, vary over the period. The L's 

which feature on the plots in Figure 4.5 show the points at which the snapshot of the solutions are 

shown in Figure 4-6. 

60-- 
z 

50 

40 

30 

20 

10 

o E- 
0.00 

100 

so 

60 

40 

0 

0.05 0.10 0.15 0.20 0.25 
Time 

20 

0.00 0.05 0.10 0.15 0.20 0.25 
Time 

Figure 4.5: Plot of the magnetic energy (top) and kinetic energy (bottom) variation over one cycle. For 

aý = 30, E),, = 100, E=2.5 x 10-4 and Ro =8x 10-3. 
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Figure 4-6: As Figure 4.4, but for a,, = 30, E), = 100, E=2.5 x 10-4 and Ro =8x 10'. We show 

snapshots of the solution at 8 equally spaced points over the period, T=0.204. 
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Figure 4.6 continued. 
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Figure 4.6 continued. 
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4.4 Discussion of the solutions. 
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At small inertia, the quadrupole solutions we obtain are all similar to the solution shown at 

Ro = 2x 10-3 in Figure 4.4. These solutions also resemble the inertialess solutions found in Chapter 

3, for D>0 before the system has bifurcated, see for example Figure 3.8. These reversing solu- 

tions exhibit the trend which is common amongst aw dynamos and find that for D(= a,, 19ý) >0 

the solutions follow a cyclic evolution of the field which moves or drifts from the equator to the poles. 

When the strength of inertia is increased, the dipole solutions we obtain behave rather dif- 

ferently. Examining the behaviour of such a solution over a period of its cycle, as shown for 

Ro =8X 10-3 in Figure 4.6, we see that the location of the concentrations of the field and flow 

change very little over a cycle. We do see that the concentrations of field and flow move in an 

approximately cyclic way, moving down towards the equator and then to the right, and then up 

and back to where it began. This therefore does not exhibit the typical 'equator to pole' evolution 

which has been found in many other aw models, see for example Roberts (1972). This suggests 

that inertia is responsible for this approximately static behaviour of the field and flow, however if 

we examine the snapshots shown in Figure 4.6 we see that the strength of the field and flow change 

quite substantially over a cycle. It could be the static nature of the solutions which cause the 

difficulties in increasing the strength of inertia, and why the initial conditions we use are crucial in 

finding a solution as Ro is increased. 

4.5 Increasing ao and Ro. 

Examining Figure 4.1, we see that as Ro is increased the magnetic energy of the quadrupole 

parity solutions follows the pattern of increasing and then decreasing. The solution then undergoes 

a transition and then adopts dipole parity, repeating the same variation in magnetic energy. How- 

ever, once we reach Ro = 1.1 X 10-2 we axe unable to find any further solutions from this point. 
Therefore we were interested in trying to understand, if by increasing the forcing in the system, 

specifically through increasing a,,, could we prevent the system from decaying as the strength of 
inertia is further increased? 
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We specifically focus on increasing a. as a mechanism to prevent the decay of solutions as Ro 

is increased, for a number of reasons. In the work by Feaxn and Rahman (2004b) on their a2 -type 
dynamo model in which they investigated the effect of introducing inertia into the system, the 

direct forcing provided by the a-effect is unaffected by inertia and they find that increasing the 

strength of inertia increases the strength of the magnetic field generated; thus inertia actually acts 

to facilitate dynamo action. In their model, they found that the Lorentz force balances the inertia 

term in the momentum equation. Focussing on the aw-type model we consider here, a zonal flow 

is generated in the momentum equation by both the Lorentz force and the buoyancy force, as we 
discussed in Section 2-8.1. Therefore, these two forces will compete with each other to produce the 

zonal flow which will balance the remaining terms in the equation. By increasing the strength of 

the a-effect in the induction equation, the strength of the field will increase and so the Lorentz 

force will increase. Increasing the Lorentz force in the momentum equation balance may enable the 

Lorentz force to better balance the inertia term and so prevent the failure of the dynamo as Ro is 

increased. 

Also, if we compare Fearn and Morrison's 2.5D hydrodynamic model with our 2D aw-type 

model, we can identify that the buoyancy forces in both models are compaxable as they play the 

same role in the momentum equation. Therefore in some sense, increasing E),, in our model is equiv- 

alent to increasing Ra in theirs. Since Fearn and Morrison found that increasing Ra did not enable 

them to prevent dynamo action shutting off, we might well expect the same behaviour as we increase 

E),,,. We note however, that these models are not directly comparable as the buoyancy force in Fearn 

and Morrison's model is dynamically determined through the equation for thermal convection, and 

in our model the buoyancy force is prescribed. Had time allowed we would also have investigated 

this aspect of this model, to see whether we find the dynamo mechanism shuts off as (),, is increased. 

In Figure 4.7 we see the result of increasing a., on the magnetic and kinetic energy of the 

system. These chaotically varying solutions show that as a. is increased from 30 to 40 we are able 

to increase Ro, while previous attempts to increase Ro at a,, = 30 resulted in a solutions which 
decayed away to zero. This increase in Ro and a,, yields an expected increase in kinetic energy. In 

Figure 4.7(b) we see an approximately linear dependence of the kinetic energy with Ro, with the 
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Figure 4.7: As Figures 4.1 and 4.2, but extended to higher values of a,, and Ro. The top graph shows the 

variation of the magnetic energy with Ro and the bottom graph shows the variation of the kinetic energy 
with Ro. The 0 denote quadrupolar solutions and * dipolar solutions. D< denote mixed parity solutions in 
the transition region. These are calculated at a,, = 30.0 denotes mixed solutions at a,, = 40 and A denotes 

mixed solutions at ctý = 50. 
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solutions at a, = 40 still higher than the solutions we obtained at a, = 30. The a-effect which 

acts on the field, will not directly cause an increase in the kinetic energy of the system, but due 

to the feedback of the field on the flow, a modest increase in a,, increases the net forcing in the 

system, so leads to a small increase in kinetic energy. As a,, and Ro axe increased this leads to a 

fairly substantial increase in the magnetic energy of the system. Increasing Ro further at a,, = 40, 

the magnetic energy falls suggesting that having increased the strength of a. is not sufficient to 

prevent the dynamo from decaying as the strength of inertia is increased. Increasing ao to 50 and 

Ro to 1.4 x 10-2, we find the solution which is shown in Figure 4.8, exhibits an erratic, rapidly 

varying time dependence, which has a low average magnetic energy, but which does not appear 

to be decaying. The kinetic energy by compaxison, shows large variations with time, chaotically 

varying between - 70 and - 390. 
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Figure 4.8: The time vaxiation of the magnetic energy of the solution at a. = 50, E)" = 100, E=2.5 x 10-4 

and Ro = 1.4 x 10-2 . Here we show the variation of the solution for nearly 40 diffusion times; the solution 

previously having run for over 25 diffusion times, allowing any transient behaviour to die away. 
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Figure 4-9: As Figure 4.8 but showing the time variation of the kinetic energy of the solution at a,, = 50, 

E),, = 100, E=2.5 x 10-4 and Ro = 1.4 x 10-2. 

4.6 More Dipole Solutions. 

As we commented in Section 4.3, we have to be very careful of the solutions we choose as our 
initial conditions. 

We found previously, that if the solutions we chose as initial conditions had not fully equilibrated, 

then the next run at higher values of Ro decayed to zero. Using a solution obtained from the aw 

with inertia model which we consider in Chapter 6 as an initial condition, we found that the 

equilibrated solution we obtained has dipole parity. As we reduced Ro towards zero, we found 

that the dipole parity of the solutions was maintained. We took these dipole parity solutions and 

used it in the code for the aw-type model without inertia and again found that the nature of the 

solution remained dipolar, however the magnetic energy of this dipole solution was lower than the 

quadrupole parity solution found at these same Parameter values. It is of course perfectly feasible 

that a lower energy dipole solution may exist, as the systems preferred state will always be one of 
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Figure 4.10: The top plot (a) shows the variation of the average magnetic energy with Ro and the bottom 

plot (b) shows the variation of the average kinetic energy with Ro. 'Error bars' indicate the maximum and 

minimum amplitudes of the oscillatory solutions. The * denotes dipole parity solutions. For all solutions 

shown above, ao = 30,0, = 100 and E=2.5 x 10-1. 



CHAPTER 4. aw-DYNAMOS WITH INERTIA. 

higher energy. 

108 

As a test of this, we took one of the dipole solutions we obtained at small inertia and gave it a 

small quadrupole perturbation to test how stable these dipole solutions were and how sensitive they 

were to the initial conditions used. We found that the solution quickly evolved to a quadrupole 

parity solution as expected. However, this shows that the model is fairly sensitive to the initial 

conditions used, that if a solution exists which is close to the solution used as an initial condition, 

then the system may not evolve to the correct state of the system, or we may have to wait a long 

time for such a transition to occur. 

As a point of interest, we decided to follow this dipole branch of the solution as we increased the 

strength of inertia in the system. We were only able to follow the Solution as far as Ro =2x 10-3, 

with solutions remaining fairly similar along this branch. As the strength of inertia is increased we 

naturally see an increase in kinetic energy, as shown in Figure 4.10(b). The magnetic energy, shown 

in Figure 4.10(a), also increases as we increase Ro, however once we reach Ro =2x 10-3, we see the 

magnetic energy of the system has dropped sharply. The solution we obtain at Ro =2x 10-3 Was 

well resolved in both r and 0 directions, however in attempting to increase the strength of inertia 

further, we were unable to obtain an equilibrated solution. At this time we have no conclusive ideas 

about why we are unable to follow this solution further (despite reducing the timestep to 1X 10-7), 

but believe that there must be a substantial change in the solution at this point, making it difficult 

to follow the solution beyond this point. This growing and decaying of the solutions with increasing 

Ro was observed in Section 4.3 for the natural branch of solutions. 

We consider in more detail the time evolution of these dipole solutions. We focus on the 

behaviour of the solution we obtain at Ro =1X 10-3, as the other solutions we find on this branch 

are likely to be similar. The magnetic and kinetic variation over a cycle is shown in Figure 4.11. 

We plot the snapshots of the solution over the cycle, in Figure 4.12 where we see that we have a 

reversing solution, which after 1 cycle of the magnetic or kinetic energy has completed only half a 

period of its ýolution. Examining the dipole solution shown in Figure 4.12, we see that the solution 

exhibits the same cyclic evolution of the field, which drifts from the equator to the pole, as we 
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found for the quadrupole parity solutions at small inertia. 
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Figure 4.11: The magnetic (top) and kinetic (bottom) energy va-riation with time for the dipole solution at 
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Figure 4.12: As Figure 4.4, but for a. = 30, E),, = 100, E=2.5 x 10-4 and Ro =IX 10-3. We show 

snapshots of the solution at 5 equally spaced points over the half period, 1: = 0.1. 2 
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Figure 4.12 continued. 
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4.7 Conclusions. 
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In this chapter we have investigated introducing inertial effects into the aw-type dynamo model 

we investigated in Chapter 3. Our results reveal two branches of solutions at small Ro, a quadrupole 

branch and a dipole branch. From Chapter 3 our results in the absence of inertia found that so- 

lutions for D= aol9o > 0, the natural parity choice of the solutions was quadrupolar, and so as 

we increase inertia we should see a continuity of the solutions as Ro is increased, which is what 

we find. The dipole branch, which is lower in energy, was discovered accidentally and arose out of 

our choice of initial conditions, however when a small quadrupole perturbation was applied to the 

solution the solution evolved onto the quadrupole branch, confirming that the quadrupole branch 

was indeed the correct one to follow and the energetically favoured state of the system. 

We focussed on the quadrupole branch of solutions in Section 4.3. The kinetic energy variation 

of the solutions with Ro is shown in Figure 4.2, where we see that the kinetic energy increases 

approximately linearly with Ro. The variation of the magnetic energy with Ro is shown in Figure 

4,1. The magnetic energy initially increases quite steeply with Ro and then slowly decreases. The 

solutions then goes through a transition phase in which the solutions are mixed and have a unusual 

time dependence. These transition solutions then give way to dipole solutions, which then follow a 

similar variation in magnetic energy as Ro is increased, as we saw for the quadrupole solutions. The 

low energy dipole branch of solutions, discussed in Section 4.6, also exhibited this same behaviour 

with increased Ro. The magnetic energy initially increases and then decreases as Ro is increased. 

This time instead of finding the solutions undergoing a bifurcation to new behaviour, the solutions 

appear to decay away to zero as we increase Ro. This shutting off of dynamo action, had been 

found in studies by many others, see for example Fearn and Morrison (2001) and Christensen et 

al (1999). However we have succeeded in reaching higher values of Ro (lower Pm) than either of 

these studies, as Fearn and Morrison were only able to reach Ro as high as 1X 10-3. Christensen 

et al (1999) found dynamo action died out for a range of values of Pm (= ElRo), which depended 

on Ra, but did not achieve a Rossby number as laxge as we have obtained here. 

We were then interested in whether it would be possible to prevent this shutting off of dynamo 

action as Ro is increased through increasing the forcing within our model. We chose to do this 
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through increasing the strength of our a-effect, since the a-effect is unaffected by inertia and Fearn 

and Rahman (2004b) found that in their a2-type model, dynamo action did not shut off as Ro was 
increased. We found that increasing a,, from 30 to 40, caused a significant increase in magnetic 

energy, however fixing a,, at 40 and increasing Ro slightly, the magnetic energy falls. Increasing 

a,, to 50, we find that the average magnetic energy falls to - 20 occasionally exhibiting energetic 

peaks where the magnetic energy reaches as high as - 30, as shown in Figure 4.8. 

Fearn and Morrison's work on their 2.5D hydrodynamic model, found that they were unable to 

prevent the dynamo shutting off as Ro is increased, despite increasing the forcing in the system. 
From this study it certainly seems possible to reach higher values of Ro through increasing ce, 
however it as yet remains unclear whether one can completely override the shutting off mechanism 

of the dynamo through this process. 



Chapter 5 

a2w-dynamos without inertia. 

5.1 Introduction. 

In this chapter, we investigate an a2w-type model. This dynamo model is a more general, 
intermediate model between the aw-type model we considered in Chapter 3 and the a2_type model 

considered by Fearn and Rahman (2004a). The C, 2_type model and cew-type model are very different 

problems as we see through comparing our results in Chapters 3 and 4 with Fearn and Rahman's 

studies. Through considering the a2w-type model, we hope to be able to reconcile these two models. 
Therefore, we begin with the a2 solution at fixed % and we investigate the effect of introducing 

our buoyancy driven w-effect. This study will also provide us with a reference case for the work we 

present in Chapter 6, where we then include the effects of inertia. 

5.2 Background 

Recent work by Fearn and Rahman (2004a) focussed on an axisymmetric non-linear a2_type 

model in a spherical shell geometry retaining a finitely conducting inner core. Solutions have 

a dipole parity imposed upon them, as integration times are long and expensive, though a test 

solution found without the parity restriction was dipolar. Here the parametrised ce-effect is now 

allowed to act on both toroidal and poloidal parts of the field in order to generate poloidal and 
toroidal field'in turn. In their investigation, the chosen ce variation is a=a,, cos 0 sin(7r (r - ri)). 
Using this model, they investigate a range of values of the Ekman number, 5x 10-5 <E<2.5 x 10-3, 

and find that an interesting type of solution develops in a region of parameter space. They find 

114 
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that for E>4x 10-4 solutions remain steady, for all values of a,,. For 1X 10-4 <E<3x 10-4, 

where the lower bound on E is limited by the numerics, they find an unusual periodic disturbance 

develops when aý exceeds some critical value. They find that the solutions grow rapidly until their 

maximum value is reached, where the solutions then undergo a rapid decay. The solutions then 

follow a slow decay for most of the period, where during this slow decay phase the solutions resemble 

the solutions found in the steady regime. Once the solutions reach their minimum magnetic energy 

they then begin to grow rapidly and the cycle begins again. The periodic nature of these solutions 

was found to depend on the Ekman number and the value of a,,. The trend that evolved was that 

as the Ekman number decreased, the period of the disturbance decreased for a fixed value of a,,. 

In addition, examining the solution at increased values of a,, yielded the result that the period 

decreased, eventually tending to a fixed value as % -+ oo. 

5.3 Variation of magnetic energy with E),. 

Figure 5.1, shows the magnetic energy variation with (),. In Figure 5.1 we chose to represent 

the periodic solutions in a different way to the spiky solutions, as it did not naturally make sense to 

take the average of the spiky solutions, since in reality the average would be close to the minimum 

of each solution. We have chosen to represent the spiky solutions in the same way as presented 

by Fearn and Rahman (2004a), plotting the maximum and minimum amplitudes of the magnetic 

energy variation. The representations we have used here for the periodic solutions, is the same as 

we used in Chapter 3 for the aw-type dynamos, where we plot the average magnetic energy and 

use cerror bars' to indicate the maximum and minimum amplitudes of the magnetic energy. This 

helps to reinforce the similarity between these solutions. 

From Figure 5.1 we see very cleaxly the distinction between the steady, periodic, and spiky 

solutions, with the transition from steady to spiky solutions occurring around OP = -7 and a 

transition between the steady solutions to periodic behaviour beyond E)o = -30 as E), is decreased. 

The time dependence of the spiky periodic solutions is shown in Figures 5.10,5.11 and 5.12 for vari- 

ous values of E).. The time dependence of the periodic solutions can be found in Figures 5.3 and 5.4. 

Let us examine the magnetic energy vaxiation for E),, > -4. We see that the maximum and 
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minimum energies achieved for the spiky periodic behaviour remains approximately constant for E),, 

up to 50. For E), > 50 the solutions maximum magnetic energy begins to increase sharply, and the 

minimum magnetic energy decreases quickly to close to zero. This suggests that for E), > 50 the 

differential rotation driven by the imposed buoyancy force is beginning to have a more significant 

effect on the system. The steady solutions we find for -30 < On ý<- 10, shows a fairly linear 

increasing variation in magnetic energy as we decrease 0,,. As we further decrease 0., we find 

that periodic behaviour has set in. We see that the average magnetic energy of the solution at 

00 = -50 is close to the energy of the steady solution, showing a continuous change in tile energy 

of the solutions. As E),, is decreased further, the magnetic energy falls reaching a minimum around 

E)ý = -100. Decreasing E),, to -120, we find that the solution has changed slightly, tile magnetic 

energy variation with time becoming more smooth and the average energy has increased slightly. 
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Figure 5.1: Variation of magnetic energy with 0,, for E=2.5 x 10-4. o indicate the maximum and minimum 

amplitudes of the spiky type solutions, see for example Figure 5.10. * show the magnetic energies of the 

steady solutions and A show the average magnetic energy of periodic solutions, see for example Figure 5.3. 

The 'error bars' indicate the maximum and minimum amplitudes of the periodic solutions. 
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5.4 Variation of the period with E),,. 
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The graph in Figure 5.2 shows the variation of the period, T of the solutions with 6, This 

graph shows the behaviour of respective periods of the spiky solutions and the periodic solutions. 
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Figure 5.2: The variation of the period of the solutions versus 19, for E=2.5 x 10-4. The * show the spiky 

periodic solutions and the Zý show the periodic solutions. 

The period of the spiky solutions vaxiation with E),, appears similar to that found by Fearn and 

Rahman (2004a, b) in their work on the a 2_type model with and without the effects of inertia. The 

variation of the period with 8,, shows a similar trend to that found in the Ce2_type model's variation 

with a,. However, as a,, is increased, the period tended to a constant value. In our variation with 

E), we see that for -4 < E),, < 50 shows a similar structure, but instead of tending to a constant 

value as E), is increased further, the period then begins to increase again. This behaviour exhibits 

a vaxiation similar to that found in Fearn and Rahman's (2004b) studies of the effect of inertia on 

their a 2-type model. There they find, as they increase the strength of inertia Ro, the period of the 

spiky solutions decreases and then increases again, in a manner similax to that shown in Figure 5.2, 

as we increase E), 
- 

Their variation with increasing Ro eventually results in a bifurcation to steady 
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behaviour, a transition we do not observe here with increasing E),,. We discuss these solutions 

further in Section 5.7. 

In Figure 5.2 we see how the period of the periodic type solutions changes with decreasing E),. 

We see that as we decrease 0., the period of the solutions decrease from the vertical asymptote 

generated by (the infinite period of) the steady solutions. As E)') is decreased, the period of the 

solutions decreases, appearing to tend towaxds a constant. value. We discuss these solutions in more 

detail in Section 5.5. 

5.5 Periodic solutions. 

As we decreased E),, from the -30, which produced a steady solution, we see that the solutions 

bifurcate to give the periodic behaviour as shown in Figure 5.3 at E),, = -50 and -70 and Figure 

5.4 at E)O = -100 and -120, respectively. 

As we decrease E), from -50 to -70, we see that having increased the strength of the imposed 

buoyancy driving, has resulted in a shorter period of evolution, and a smoothing of the time vari- 

ation. The magnetic energy of the system has also decreased. As 19,, is further decreased to - 100, 

there is a continued reduction in the magnetic energy and period of evolution as E),, is decreased. 

Reducing E),, to -120 we see from Figure 5.4(b), that the magnetic energy variation has become 

smoothed, the average energy has increased slightly and the period of the vacillation has continued 

to fall, though Figure 5.2 suggests that this will level off as E),, is decreased further. 

Examining the snapshots of the solution over a cycle of the magnetic energy shown in Figures 

5.5) 5.6,5.7 and 5.8 we are able to see how the solutions evolve with time and gain some under- 

standing of how decreasing (3,, affects the solutions. We see that these are reversing solutions, 

which undergo half a period of their solution over a cycle of the magnetic energy. We notice that 

these solutions over their half period evolution show some similar features to those found for the 

steady and spiky periodic solutions shown in Figures 5.9,5.13 and 5.14. We see that snapshots at 

t= to + 0.2375 -4 to + 0.95 in Figure 5.5 and t= to + 0.328 in Figure 5.6 look very much like the 

steady solutions in Figure 5.9. 
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An aspect which is also found in the slow decay phase of the spiky periodic solutions. A 

feature which is reminiscent of the spiky periodic solutions is the presence of a nearly geostrophic 

component of the flow in t=t,, + 1.6625 of Figure 5.5 and t=t,, + 0.492 of Figure 5.6. This kind 

of geostrophic behaviour in the flow was found in the spiky periodic case (see Fearn and Rahman 

(2004a, b) for more details) when the magnetic energy of the solution was in the rapid growth phase 
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Figure 5.3: The magnetic energy variation of the solution at a,, = 11, E=2.5 x 10-4 and (a) 0,, 50 

(top) and (b) 0, = -70 (bottom). The triangles indicate the points over a cycle at which the solutions is 

plotted. Snapshots of the solutions over a cycle may be found in Figures 5.5 and 5.6, respectively. 
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of its time evolution. If we examine our time dependent magnetic energy variation as shown in 

Figures 5.3 and 5.4, we also see a rapid decrease in the energy. We see that as we reduce 0ý to 

-100 and -120, the solutions do not share the resemblance of the steady and spiky solutions to 

the same extent. We also do not see the same concentration of the geostrophic flow-like contours 

next to the rotation axis. This is likely due to the smoothed magnetic energy variation. 
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Figure 5-4: As Figure 5.3, but for (a) 0. = -100 (top) and (b) Oo = -120 (bottom). Snapshots of the 

solutions over a cycle may be found in Figure 5.7 and 5.8, respectively. 
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Figure 5.5: (From left to right) The poloidal field, toroidal field, angular velocity and meridional circulation 

components at contour intervals of 0.05,0.3,10,0.1, respectively. For ce,, = 11,0,, = -50 and E=2.5 x 10-4, 

we show 8 evenly spaced snapshots of the solution over a half period, 21 
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Figure 5-6: As Figure 5.5, but for 0. = -70. Here we show 5 evenly spaced snapshots of the solution over 

a half period, 1: = 0.82. 2 
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Figure 5.7: As Figure 5.5, but for E),, = -100. Here we show 5 evenly spaced snapshots of the solution over 

a half period, E=0.41. 
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Figure 5-8: As Figure 5.5, but for 0,, = -120. Here we show 5 evenly spaced snapshots of the solution over 

a half period, 1: = 0.319. 2 
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5.6 Steady solutions. 
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For -30 < E), < -7, the solutions we obtain are steady. Figure 5.9, shows the components of 

the field and flow. 

Figure 5.9: Here we show (from left to right) the poloidal field, toroidal field, angular velocity and ineridional 

circulation contours of the solutions using contour intervals of 0.05,0.3,10,0.1, respectively. In each case 

a, = 11, E=2.5 x 10-4 and (top to bottom) (a) 0,, = -10, (b) 0ý = -20 and (c) 0. = -30. Solutions are 

steady and have magnetic energies of 7.32,8.98,10.41, respectively. 

Examining the solutions in Figure 5.9, we see that the steady solutions are qualitatively similar, 

with the field increasing in strength as 19, is decreased. The meridional circulation contours in each 

solution appear very similar with only a very modest increase in strength with decreasing E),,. The 

biggest differences occur in the angular velocity contour plots, which show quite naturally as E), 

is decreased) there is an increase in the generation of positive contours. These steady solutions 

also resemble the steady solutions found by Fearn and Rahman (2004a) in their a2_type model. 

As discussed in Section 5.2, Fearn and Rahman found steady solutions existed beyond the onset 

of dynamo action until a exceeded cep (-- 10.8 for E=2.5 x 10-4 ), at which point the solutions 

then became time dependent with the solutions exhibiting a spiky periodic behaviour. Figure I of 

Fearn and Rahman (2004a), shows a steady solution at a. = 10 and E=2.5 x 10-4. 
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5.7 Spiky solutions. 
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From the variation of the period of the solution with E),, shown in Figure 5.2, we may draw 

comparisons with the behaviour found by Fearn and Rahman (2004a, b) in their a2-type model 

with and without the effects of inertia. First considering the a2_type model in the absence of in- 

ertia, they examine the variation of the period with ce, Their findings reveal a vertical asymptote 

around a,, = 10.8 in a graph of the period versus a., for an Ekman number of 2.5 x 10-4 (they 

consider other values of E, and find the value of ao for the transition from steady to spiky periodic 

solutions varies slightly). Beyond this value of ao, solutions become periodic, exhibiting a spiky 

behaviour. As ao is increased the period of the spiky behaviour decreases, eventually tending to 

a constant value, see Figure 3 of Fearn and Rahman (2004a). In consideration of our a2w-type 

model, we begin with the a2-type model at a, = 11 and E=2.5 x 10-4, which produces the spiky 

periodic behaviour and add in an imposed differential rotation, of strength determined by E),, to 

investigate how this solution is changed. We see that a transition from steady to spiky solutions 

occurs in our model around E),, = Op - -7. Beyond Op, as (),, is increased the period of solution 

decreases, however instead of tending to a constant value as we see in the a2 case, beyond E)o - 50 

the period of the solutions begin to increase. This variation of the period may be likened to that 

found by Fearn and Rahman (2004b), in their investigation. In this model, they begin with an 

Ro =0 solution at ao = 11 and E=2.5 x 10-4 and gradually increase the strength of the inertia, 

Ro. They find that as Ro is increased, the period of these spiky solutions decreases and then in- 

creases again, eventually tending to the vertical asymptote around Ro = 0.012 in the graph of the 

period versus Ro. Beyond the vertical asymptote as Ro is further increased, the solutions are steady. 

The plots in Figures 5.10,5.11 and 5.12, show the periodic behaviour of the spiky solutions at 

different values of (), (N. B. The timescales on the horizontal axes are not the same in all plots). 

The solutions at small values of 8, very much resemble the solutions found in the a2 -type model 

in the absence of inertia. At higher values of E),, at E), ) = 50 for example, the solution exhibits a 

slight change to this established behaviour pattern. Closer inspection of Figure 5.12(a) reveals an 

alternating peak height. For the period of this cycle, we take the time between the two large peaks 
(or two small peaks), as one naturally would to calculate the period of oscillation of a disturbance. 

We notice that it is not simply the case that the solution requires a longer run time, as the smaller 
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Figure 5.10: Time variation of magnetic energy for a. = 11, E=2.5 x 10-4 and (top to bottom) (a) 
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Figure 5.11: As Figure 5.10, but for top-bottom, (a) 0. = 10, (b) E). = 20 and (c) E),, = 30. The period in 
each case is 2.81,2.15,1.64, respectively. 
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height peak does not fall directly in between the two large peaks on either side, lying 0.9 diffusion 

times to the right of a large peak and 0.82 diffusion times to the left. Examining the periodic 

behaviour of E), = 70, we see the same trend as in E)O = 50, with the period occurring as 2.84 

diffusion times, and the lower peak sitting off centre again, lying 1.48 diffusion times to the right of 

a large peak and 1.38 diffusion times to the left. In the magnetic energy variation in Figure 5.12(b), 

we also see the emergence of low amplitude peaks or kinks to the left of the large peaks, with the 

exponential decay phase of the solutions unaffected. The solution at 0', = 100, exhibits a similar 

periodic behaviour, but now includes much more (comparatively) low amplitude time dependent 

behaviour. The solutions are clearly much more complex here and the equilibration mechanism 

less clear cut. We also tried increasing E),, to 150 (solutions not shown). The time variation here 

is substantially more complicated, but initial results suggested that the periodic behaviour would 

be continued. Given Figure 5.2, the period of this solution is: anticipated to be quite large and 

computationally such a calculation would take a substantial length of time to run. We note that 

whilst Figure 5.2 appears qualitatively similar to the observed variation of the period with Rossby 

number in Fearn and Rahman's (2004b) model, we do not find a transition to steady behaviour as 

E), is increased. 

Figure 5.13: As Figure 5.9, but for (top to bottom) (a) 0. = -3, (b) E). = -2 and (c) E),, = -1. Here we 

show snapshots of these periodic solutions in the slow decay phase, which resemble the steady solutions in 

Figure 5.9 
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Figure 5.14: As Figure 5.9, but for (top to bottom) (a) E),, = 10, (b) 0, = 20, (c) E). = 30, (d) E),, = 50, 

(e) E),, = 70 and (f) 9ý = 100. Here we show snapshots of these periodic solutions in the slow decay phase. 
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If we compare the snapshots of the solutions in Figures 5.13 and 5.14, with the steady solutions 

we obtained at E),, = -10, -20, -30, shown in Figure 5.9, we find the solutions are qualitatively 

very similar. Therefore, we conclude that what we are seeing in this slow decay phase is essentially 

the steady solution, but slowly decaying, as found by Fearn and Rahman (2004a). In the slow 

decay phase, the similarity of the figures suggests that the imposed buoyancy driving does not have 

a significant effect on the solutions for 0. > Op. The main difference (as expected) lies in the 

angular velocity contours. When E),, remains close to zero, the solution not surprisingly appears 

very similar to the solution at E)ý = 0. Figures 5.9 and 5.14 provide us with a very good compar- 

ison, as these give the solution at negative and positive values of 0., respectively, as the solution 

Moves away from the a 2-type model solution. The steady solutions in Figure 5.9, show that as (),, 

is decreased, the positive contours initially present on the axis above the inner core, spread out 

around the inner core and then further into the main body of the fluid, consistent with an increase 

in differential rotation, as generated by the imposed buoyancy force alone, (see for example Figure 

2.1). The negative contours which initially appeared close to the axis and at the pole, remain in 

approximately the same location but of a slightly smaller magnitude as E),, is decreased. For the 

snapshots of the spiky oscillatory solutions shown in Figure 5.14(a), we see that the E),, = 10 solu- 

tion appears similar to the E),, =0 solution with a contour of the induced angular velocity almost 

superimposed on top. As 19, is increased, the positive contours present above the inner core and 

close to the rotation axis are eliminated by the strong negative contours produced by the imposed 

buoyancy driving. It is possible that the presence of the Positive contours above the inner core has 

a stabilising effect on this spiky oscillatory behaviour. 

Another aspect perhaps worthy of comment is, if we examine the the snapshots shown in Figures 

5.13 and 5.14 we see that some of the solutions shown have positive field contours where others 

have negative field contours. This shows the reversing nature of these solutions and also reinforces 

the very basic fact that the governing dynamo equations (2-3-2.5) admit magnetic fields B, but 

also admit -B, as the equations themselves axe unchanged. 
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5.8 Taylor's constraint. 
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Fearn and Rahman (2004a) examined in close detail the behaviour of the spiky oscillatory 

solutions obtained by their a2_type model, and in particular the dependence of the solutions on 

Taylor's constraint. They followed the behaviour of the solution over a period of its oscillation, 

focussing particular attention on the change in solutions over the spike. In the rapid growth phase 

of its oscillation, they found that the solution grew at essentially the linear growth rate in this 

phase. In addition, they observe a reversal of the field, and find that the evolution of the flow is 

almost geostrophic in this region. As the strength of the magnetic field increases, the geostrophic 

flow decreases leaving behind a weak magnetic wind. Beyond the rapid growth phase, the solution 

moves into the rapid decay phase where the system, having reached its maximum magnetic energy, 

sees a rapid decay in the toroidal component of magnetic field. The poloidal magnetic field decays 

more slowly. The poloidal flow closely mirrors the toroidal component of the magnetic field. The 

greatest differences appear in the contours of the angular velocity as these change drastically over 

a very short space of time, with the differential rotation increasing quickly as the magnetic energy 

reaches its maximum, and then the geostrophic component of the flow evolves as the field decays. 

To help explain this behaviour, they focus on the systems dependence on Taylor's constraint 

(see also Section 1.5). Using, 

T(s) = 
fc(, )[(V x B) x BlodS 

(5-1) 
ma, xfc(., ) 1[(V x B) x BloldS 

to obtain a measure of the extent to which Taylor's constraint (1.21) holds. The steady solutions 

and the snapshots of the solutions in the slowly decaying phase, satisfy Taylor's constraint. They 

investigate the ability of the system to satisfy Taylor's constraint in the spiky region of its periodic 

evolution. Taylor's constraint is reasonably well satisfied over a cycle, though the extent to which 

it is satisfied over a cycle varies. 

Given the similarity of the behaviour of both our a2w-type model and Fearn and Rahman's 

(2004b) a2-type model with inertia to the original inertialess a2 -type model considered by Fearn 

and Rahman (2004a), leads us to believe that the particular details over a cycle of the solution axe 
likely to be very similar, and therefore not worthy of an indepth and time-consuming analysis at 
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this time. 

5.9 Comparison of solutions as we vary 

Fearn and Rahman (2004a) investigated in detail the mechanism responsible for the spiky pe- 

riodic behaviour of their a2 -type model, for a,, > ap. The spiky periodic behaviour sees a rapid 

increase in magnetic energy, followed by a much slower decay. In the slow decay phase, the solutions 

resemble the steady solutions which were found at values of cq, < ap, 

In this chapter, we considered an a2w-type dynamo model, by incorporating the imposed buoy- 

ancy force, Or in order to generate an w-effect, as discussed in Section 2.7, and investigate the 

effect of varying the magnitude of this force, 0,,. In Section 1.6.4, we discussed the general CV2W 

model and its two limiting cases; the a2 model and the aw model. 

Let us examine the governing equations presented in Chapter 2. Equations (2.11), (2.12), (2.15) 

and (2.17) in the absence of inertia axe 

aA 
D2A+ ceB + N(vf, A) (5.2) at 

aB 
D2B+ eo - V[aV x (Aeo)] + M(v, A) - M(B, V)) (5.3) Tt 

-2W ED 2V + N(B, A) (5.4) 
09Z 

2 
av 

E(D 2)2, p + M(D 2 A, A) + M(B, B) + 490 (5.5) TZ -Fo 

where 

0 sin 0a 
Cos O. F - ýo , jz- rr 

D2 V2 
- (r sin 0)-2 

N(X, Y) = eo - (V x (Xeo) xVx (Yeo)) 

M(X, Y) = ep. Vx[XepxVx(Yeo)] 

Now we see that in (5.2) the a-effect acts on the toroidal field to generate poloidal field. In 

(5.3) the a-effect acts on the poloidal field to generate toroidal field. The imposed buoyancy force 
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appearing in equation (5.5), generates a thermal wind v which feeds into the term M(v, A) in equa- 

tion (5.3) to act on the poloidal field to generate toroidal field. These two terms in (5.3) both then 

act to generate the toroidal component of the field. In the limit that eo - V[aV x (Aeo)] > M(v, A), 

the balance of the equations is a2 whereas eo - V[aV x (Ae46)) < M(v, A), results in the balance of 

the equations being aw. 

The solutions we find for -50 ;ý E),, ;ý 50 resemble those found in the cXtype model investi- 

gated by Fearn and Rahman (2004a), which saw a change from steady solutions to spiky periodic 

behaviour as ao was increased. The period of the spiky periodic behaviour decreased as ao is 

increased eventually tending to a constant value. We see this same trend as E), is increased from 

-30 up to 50, changing from steady solutions to spiky periodic behaviour. This is in keeping with 

the dynamo equations being in the a2_type model limit. 

For 19,, < -50 we see that the steady solutions have given way to periodic solutions, which 

are reminscent of the cew solutions we obtained in Chapter 3. This type of behaviour as E), is 

decreased is not unexpected. As we discussed above in our examination of the limits of the equa- 

tions, when the strength of the imposed buoyancy force is sufficiently strong, M(v, A) will exceed 

eo - V[aV x (Aeo)] and the character of equations becomes more like the aw-type model. The 

solutions we find here exhibit a periodic variation with magnetic energy, which examining the 

graphs in Figures 5.3 and 5.4, we see an initial decrease in the average magnetic energy which then 

increases slightly appeaxing to level off as E), is decreased. We also see a decrease in the period of 

the solutions eventually appearing to tend to a constant value as we lower E),,. If we compare this 

behaviour with the aw solutions we find in Chapter 3 we see the decreasing trend in the period is 

quite common, but did not find a decrease in the average magnetic energy of the solutions at all, 

and therefore deduce that this must be a feature of the a2w-type model, presumably axising from 

the presence of the a-term in (5.3). 

For E),, > 50, the spiky periodic solutions continue, but instead of the period tending to a 

constant value, as was observed in the a2 -type model with increasing a,, with increasing (). we 

see the period of the solution increases as E),, is increased beyond 50. The behaviour we find here 
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is not like the chaxacteristic aw solutions we found in Chapter 3, but shaxes similarities with the 

work by Fearn and Rahman (2004b) on their a2-type dynamo including the effect of inertia. The 

influence of inertia on the a2 -type model is a quite different problem to the one of the effect of 0,, 

on our a 2w-type model. The equilibrating mechanism in each case is different, and we see that as 

we increase E),, despite the similarities in the vaxiation of the period the solutions become more 

complex in their time behaviour, unlike in the a2 case where, as Ro is increased the time variation 

of the solutions remains qualitatively the same and only the period changes. Whilst the contours of 

the magnetic field and meridional circulation are very similax, we also see differences in the angular 

velocity contours of the solutions in the slow decay phase, between the a2-type model with inertia 

and the a 2w-type model. The a 2w solutions naturally see a greater contribution to the angular 

velocity, as the buoyancy force drives an angular velocity in the flow. The angular velocity contours 

in the a 2-type model with inertia change very little with an increase in Ro, whilst in the slow decay 

phase. We examine the combination of these two effects more closely in the Chapter 6, where we 

include the full inertia term in the a2 w-type model we presented here. 

5.10 Conclusions. 

The results of Fearn and Rahman's (2004a) a2_type model, which introduced a radial structure 

to the a-effect, produced solutions whose variation with magnetic energy exhibited an unusual spiky 

periodic time behaviour. Hollerbach and IerleY (1991) were the first to observe time dependent so- 

lutions using an a2 model. They considered an a2 dynamo model in a rotating spherical shell, 

neglecting inertial effects, focussing on the behaviour of solutions as they chose different forms for 

their prescribed a-effect. Some of their choices revealed steady solutions, whilst other choices led 

to unsteady periodic behaviour. In Fearn and Rahman (2004b), they included inertial effects into 

the system and investigated how the behaviour of the system changes as inertia is increased. In this 

Chapter we investigated an a2 w-type model, in which we take Fearn and Rahman's (2004a) a2 -type 

model and included the prescribed buoyancy driven w-effect. The main aim of our investigation 

here, was to see how our imposed buoyancy force modified the behaviour of their solutions. 

Fixing a, = 11 (which revealed spiky solutions in the a2 -model), we then varied the strength 

of E),. Our studies revealed a bifurcation from steady solutions to spiky solutions around E), - -7, 
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similar to the behaviour in the a2 case, which saw a transition from steady solutions to the spiky 

solutions as a, was increased beyond the onset of dynamo action. In the spiky behaviour regime, 

we increased E)ý and found that instead of the period of the solutions tending towards a constant 

value, as had been found in the a2 -type model, the period decreased to a minimum and then in- 

creased again. This behaviour at large E),, was reminiscent of the periodic behaviour of the spiky 

solutions in Fearn and Rahman's (2004b) a2 -type model which included inertial effects. In this 

model as the strength of inertia is increased, the period of the solutions initially decreases and 

then increases again eventually tending to infinity, as the solutions then become steady. Our vari- 

ation with period also resembles this behaviour as shown in Figure 5.2, but increasing 0,, as high 

as 100 we found no evidence of steady behaviour setting in or of a bifurcation to different behaviour. 

As we decreased e, away from the steady solutions at E),, = -30, we found the solutions became 

periodic, as shown in Figures 5.3 and 5.4. We see that as E),, is decreased, the time variation of 

the magnetic energy becomes smoothed out by the increasing influence of 6, The period of these 

solutions decreases as E),, is decreased, eventually tending to a constant value as shown in Figure 

5.2. The evolution of the solutions over a cycle of the magnetic energy revealed that the solutions 

themselves appeared very similar as E),, is decreased, which also shared elements of the steady and 

spiky solutions. The magnetic field contours completed half a period in a cycle of the magnetic 

energy, with the flow completing a full period in this time. These solutions were reminiscent of 

the aw solutions found in Chapter 3, which is not altogether unexpected as the aw-type dynamo 

is a natural limiting case of the a2w-type model when 6,, is large, as we discussed in Section 5.9. 

For -50 < 0,, < 50, the solutions resemble the a2-type solutions of Fearn and Rahman (2004a) 

suggesting that the a 2w-type dynamo is in the a2 regime and the u)-effect is dominated by the 

a-effect term in the governing equations. 

It should be noted that the code has a dipole imposed paxity in order to enable faster integration 

times, an especially important consideration given the length of the period for some of the values 

of E), However, as has been commented by Hollerbach and Glatzmaier (1998) and Sarson et al 
(1998), it is possible that we may obtain solutions which are radically different from a general 

mixed-parity model, especially at high values of E), 
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a2W-dynamos with inertia. 

6.1 Introduction. 

In this chapter we include the effect of inertia in the a2w-type model that we introduced in the 

previous chapter. In addition, we investigate how the solutions at a fixed value of Ro change as 

we vary the strength of the imposed buoyancy driving. Through varying both these parameters, 

we are able to obtain a map of Ro - 6,, space. Examining these solutions may help to reveal the 

mechanisms within the system which are responsible for the enhanced generation of dynamo action 

in the a2-type model and the apparent failure of the dynamo in the cew-type model investigated in 

Chapter 4. 

6.2 Background 

In the same way as we approached the au)-type model we considered in Chapters 3 and 4, we 

extend the work on the a2 w-type model discussed in Chapter 5 by including the effect of inertia, 

and investigating the behaviour of the solutions as Ro is increased. We summarised the findings of 

Fearn and Rahman (2004b) in Chapter 4, see Section 4.2 for further details. Also relevant here is 

the work we presented in Chapter 5, as this gives us the Ct2W Solutions in the inertialess case, which 

the solutions we obtain in this chapter should tend towards as Ro is reduced to zero. 

138 
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6.3 The effect of the imposed buoyancy force. 

In this section we investigate the effect the imposed buoyancy force has on the a'-type dynamo 

with inertia solutions found by Fearn and Rahman (2004b), described in Section 4.2. We begin 

with their solution at a,, = 11, Ro =2x 10-2 and E=2.5 x 10-4. Our of choice of parameters 

here, is simply due to the fact that, at this particular value of the Rossby number, the effect of 

inertia had been sufficient to change the character of the solutions from the spiky periodic type 

found in the absence of the inertia and at low values of inertia, to steady solutions. It therefore 

seemed an obvious place to begin the investigation of the effect of the buoyancy force, as we were 

already aware that this magnitude of the Rossby number should be sufficient to alter the balance 

of the system of equations and produce some interesting results; hopefully illuminating how these 

effects influence the equilibration mechanism. 

We then consider higher values of Ro. Fixing a, = 11 and E=2.5 x 10-4 we then take 
Fearn and Rahman's solution at Ro =5X 10-2, as this lies firmly in the middle of the range 

of values which yielded steady solutions. The next values we choose for the strength of inertia 

are 7x 10-2 and 8X 10-2, which lay toward the limit of resolution of Fearn and Rahman's so- 
lutions. Through considering this range of values of Ro we are able to vary E), in each case and 

see if there is a general trend in the variation of the magnetic and kinetic energy, as Ro is increased. 

In Figures 6.1 and 6.2 we show the variation of the magnetic and kinetic energies with 0,, at 
fixed values of a,, = 11 and E=2.5 x 10-4 - Figure 6.1 (a) shows this variation at Ro =2x 10-2. 

In Figure 6-1(b) the Rossby number has been increased to 5x 10-', and the process of studying 

the solutions produced at varying values of (). is repeated. Compaxing Figures 6-1(a) and 6.1(b), 

we see that they exhibit the same trend as 0. is increased. The shape of these two graphs appears 

similar between the two values of Ro. The results we obtained at Ro =7x 10-2 and 8x 10-2 axe 

shown in Figure 6.2. We encountered numerical difficulties in reducing E),, below -20 and so have 

no results in this region. However for E), ý! -20, the energy variation with E),, appears similar to 

that found at Ro =2x 10-2 and Ro =5x 10-2 . The behaviour of the solutions in Figure 6.1 for 

E), < -20 as Oo is decreased is erratic and does not show the same evolution as for Oo positive, 

which sees a natural progression from steady solutions to oscillatory ones. The erratic solutions 
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obtained for E),, <- 20 also appear to be a trend occurring in both Figures 6.1 (a) and 6.1 (b). How- 

ever, further evidence of this erratic behaviour of the solutions at higher values of Ro proves more 

difficult due to their unpredictable time-dependent behaviour, and hence the absence of solutions 

on the left-hand side of Figure 6.2(a) and 6.2(b). 

The variation in the magnetic and kinetic energy we see with increasing E),, in Figures 6.1 and 

6.2, arises from the fact that this is an a2w-type dynamo model and the behaviour may be explained 

as follows. When E), = 0, our dynamo is then simply the a2-type model of Fearn and Rahman 

(2004b) and the dynamo is maintained by the a-effect alone, see Section 2.8.1 for a discussion on 

the equilibration of this type of dynamo model. As we increase E), from zero, the buoyancy force 

drives a zonal flow in the momentum equation. As discussed in Section 2.8.1, the a-effect in the 

induction equation (2.35) acts on both components of the magnetic field to generate field, which 

then feeds into the Lorentz force appearing in the momentum equation (2.36). The Lorentz force 

then drives a zonal flow in the momentum equation which competes with the zonal flow driven by 

the buoyancy force. For 19, > 0, the graphs in Figures 6.1 and 6.2, suggest that these two flows are 

acting in the same direction and so producing a stronger net zonal flow. This then balances the 

remaining terms in the momentum equation, ultimately obtaining a flow, U, which feeds into the 

advection term in the induction equation, producing a large magnetic field B which feeds into the 

Lorentz force equilibrating the dynamo. 

Examining Figures 6.1 and 6.2, we see that the magnetic and kinetic energy both increase as E),, 

is increased beyond zero, which is consistent with this explanation. In Figure 6.1 (a), we notice that 

as we increase E), the solutions change from steady solutions to oscillatory solutions - consistent 

with the solutions moving from the a2 regime to the aw regime. As we increase the strength of Ro 

the solutions follow this same pattern, but as E),, is increased the time-dependence of the solutions 

is now chaotic. This is likely due to the magnitude of the inertia term. Through compaxing Figures 

6.1 and 6.2 we see that the field is able to grow much stronger and more quickly as Ro is increased, 

supporting the a2 result of Feaxn and Rahman who found that inertia acted to facilitate dynamo 

action. 
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We also notice that as the strength of inertia is increased, the solutions have evolved to a 

more chaotic time dependent state. This is especially evident in the low E),, solutions which at 

Ro =2X 10-2,5 X 10-2 7x 10-2 are steady, but which, once Ro is increased to 8x 10-2, are 

unsteady but do not exhibit any periodicity in their low amplitude behaviour. Focussing on the 

results in Figure 6.2(b) reveals that the only steady solutions we obtain at Ro =8x 10-2 appear 

at E),, = -10 and 0. All other solutions obtained are unsteady and chaotically vaxying in time. 

For 0, < 0, the zonal flow driven by the buoyancy force now acts in the opposite direction to 

the flow driven by the Lorentz force. When 10,, j is small, the zonal flow driven by the Lorentz force 

dominates the buoyancy driven flow but the net zonal flow generated is weaker than in the 0,, >0 

case described above but acts in the same direction. The equilibration of the dynamo then proceeds 

in the manner described above, but generates a smaller magnetic field, and hence the decrease in 

the magnetic energy curve in Figures 6.1 and 6.2. As we decrease E),, further, the zonal flow driven 

by the buoyancy force exceeds that driven by the Lorentz force term, and the net zonal flow now 

acts in the opposite direction causing the balance of the equations to be quite different. Examining 

Figure 6.1 the graphs suggest that this switch in the direction of the net zonal flow occurs around 

E),, = -30, as at this point the character of the solutions change from being steady to being time 

dependent and there is a suggestion from the graphs that the kinetic energy exceeds the magnetic 

energy in this region. In Figure 6.2 we are unable to reduce Oo below -20, which is likely to be 

as a result of the switch in the direction of the net zonal flow, with the magnitude of Ro now too 

large to allow us to follow the solutions any further. 

6.4 The effect of inertia. 

In this section we regraph the solutions shown in Section 6.3 so that we may examine more 

easily the behaviour of the magnetic and kinetic energies of the solutions with Ro at fixed values 

of E),,. These results axe shown in Figures 6.3,6.4,6.5,6.6 and 6.7. 

Examining each of these graphs in turn, we see that for all but Figure 6.6(a), the kinetic and 

magnetic energies increase with increasing Ro. As Ro is increased from zero, the spiky solutions 

we find for 0,, > -7 (see Chapter 5 and also Figures 6.3 and 6.4) become steady showing the 
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same variation with Ro as found by Fearn and Rahman (2004b) in their Ce' studies. The difference 

caused by the introduction of E),, is simply to increase the magnitude of the magnetic and kinetic 

energies and change the nature of the solutions from being steady to time dependent, as shown 

in Figure 6.3(a) for E),, = 100. We also see that even at low values of E), (see for example Figure 

6.4), increasing the strength of inertia is sufficient to change the solutions from being steady to 

having a time dependence. From the inertialess study we presented in Chapter 5, we found for 

E),, ;ý -7, the solutions we obtained were steady but became periodic as E), is decreased. As we 

increase Ro, the solutions in Figure 6.5 exhibit the same energy variation with Ro as found in Fig- 

ures 6.3 and 6.4 once Ro >2X 10-2 as the solutions axe no longer in the viscously controlled regime. 

The solution at E), = -30 shown in Figure 6.6(a) shows an increase and then a decrease in the 

magnetic energy, with the expected increase in kinetic energy with Ro. As we decrease E),, to -40 

we find that the values of the magnetic and kinetic energies lie fairly close together and increase 

as Ro is increased, with the kinetic energy slightly exceeding the magnetic energy. Decreasing E), 

to -50 and -70 as shown in Figure 6.7, we see that the kinetic and magnetic energies occur close 

together at RO =2x 10-2, but then once Ro is increased to 5x 10-2 the difference in the values is 

quite significant, with the kinetic energy exceeding the magnetic energy. Given that we only have 

2 or 3 datapoints in Figures 6.6 and 6.7 it is difficult to discern the behaviour of the system at 

large Ro and whether the solutions beyond Ro =2x 10-2 exhibit the roughly linear behaviour 

found for -20 < E)o : 5- 100- It is likely the reason the variation with Ro for (),, = -30 is different 

to the increasing trend in energy found for all other values of E), considered, is due to the change 

in direction of the net driven zonal flow, as discussed in Section 6.3. 

Graphs in Figures 6.3,6.4 and 6.5 show for Ro 
->- 

2x 10-2 a fairly linear variation of their 

magnetic and kinetic energies with Ro. This linear trend was found in Fearn and Rahman's (2004b) 

work on the effects of inertia on their a2-type dynamo. Fearn and Rahman noted that inertial 

effects do not appeax to have a controlling influence on the solutions until beyond Ro ýý 1.2 x 10-2. 

Therefore in Section 6.5 we consider only solutions beyond Ro =2x 10-2. We also limit our 

attention to values of (),, between 100 and -20, as the energy variation appears linear. As we see 
from Figures 6.6 and 6.7 we are unable to obtain sufficient points to determine whether this linear 
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behaviour is continued below E),, = -20 due to numerical dffficulties as the strength of inertia is 

increased. 
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Figure 6-3: Energy versus Ro for E=2.5 x 10-4, ao 11 and from top to bottom (a) 00 = 100 and (b) 

(),, = 50. o represent average magnetic energy, with error bars used to indicate the maximum and minimum 

amplitudes of unsteady solutions. ý* represent the average kinetic energy, with the-indicating the maximum 
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6.5 Linear variation of Energy with Ro. 

In this section we investigate more closely the linear relationship we identified between the 

energy and the Rossby number at different values of E),. This linearity between the energy and Ro 

was identified in the a 2-type dynamo of Feaxn and Rahman, whose solutions axe shown by A in 

Figures 6.8 and 6.9. 
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Figure 6.8: Magnetic energy versus Ro for E=2.5 x 10-4 and a,, = 11. We considered a range of values 

of E),, and noticed the linear trend in each. The following symbols are used to represent average magnetic 

energies, with error bars used to indicate the maximum and minimum amplitudes of unsteady solutions; 
E),, = 100: [3, E), = 50: o<, E),, = 20: o, E),, = 10: A, 0ý = 0: *, iq,, = -10: x and Go = -20: +. 

In Fearn and Rahman (2004b), they observe a linear dependence between the magnetic/kinetic 

energy and the Rossby number, when Ro 1.2 x 10-2 10-2, For Ro < 1.2 x solutions are spiky and 
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viscosity has a controlling influence. We then investigate whether the same dependence applies in 

our a 2w-type model. Examining the graphs in Figures 6.8 and 6.9, we see that both the magnetic 

and kinetic energy vary in a roughly linear way with Ro, where E,, and Ek are the magnetic and 

kinetic energies respectively (E,,, oc Ro and Ek oc Ro). We see from the definitions for the magnetic 

and kinetic energy given in Section 2.10, that 
11 

12 
-f IU12 IB dVc<Ro and Ek=lRo dVoc Ro. 

v2 Ivo 

This then suggests that JBI - Roll' and JUI - Rol. If we examine the induction equation as given 

in (2.4) we see that the leading order term balance is then independent of Ro. 
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Figure 6.9: As Figure 6.8 but for the kinetic energy. 

Examining the momentum equation, (2.5), we see that the Lorentz force and the inertial terms 

are both of order Ro, whilst the viscous term remains of order E. For values of Ro close to zero, 
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viscosity has a controlling influence, however as Ro is gradually increased from zero, beyond some 

critical value, the effect of inertia becomes more important and a balance is struck between the 

Lorentz force and the inertial terms which results in an increase in JBI with Ro'12. 

In Figure 6.8 we plot the magnetic energy against Ro and apply a least squares fit to the data 

points to obtain the best fit straight line through the points (we use Microsoft Excel to do this). 

Similarly, in Figure 6.9 we show the kinetic energy variation with Ro and again apply a least squares 

fit to the datapoints. We investigated whether there is any correlation between the gradient of these 

lines and E), The equations of these straight lines are given in Table 6.1 below. 

E,,, = 4091.6Ro - 6.3193 and Ek = 1887.5Ro - 7.4316, for E), 100 

Em = 1524. lRo + 2.3471 and Ek = 578.86Ro - 0.9171, for E),, 50 

Em = 933.45Ro - 2.8674 and Ek = 400.9ORo - 3.3608, for E),, = 20 

E,,, = 733.98Ro - 2.6662 and Ek = 392.45Ro - 4.7324, for 0. = 10 

E,, = 507.98Ro - 0.6062 and Ek = 370.93Ro - 4.8436, for E)o =0 
E,,, =479.5ORo-2.8000 and Ek=422.64Ro-6.0529, forE), =-10 
Em=401.24Ro-2.2631 and Ek=436.3lRo-4-5345, for0o=-20. 

Table 6-1: The equations of the lines of best fit for the magnetic and kinetic energy variation with Ro for 

each value of E), considered. 

Therefore, using the gradient of the lines, taken from the best fit equations in Table 6.1 we plot 

the gradient against E),,. The plot of the gradient versus (),, in the magnetic energy case is shown 

in Figure 6.10. As Figure 6.10 shows, there is a definite trend in the data points, to which we chose 

to fit a third order polynomial. The cubic curve we obtain (again using Microsoft Excel) is, 

gradient = 0.001683 + 0.0722E)2 + 00 11.547E)o + 591.79. 

Similarly in the kinetic energy case we plot the gradient of these lines against 0., which is shown 

in Figure 6.11. Fitting a third order polynomial to the datapoints, we obtain the cubic curve, 

gradient = 0.0012E)3 + 0.0485E)2 _ 001.5627E),, + 394.23. 
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The plots in Figures 6.10 and 6.11 capture in a slightly different way the information which is 

presented in Section 6.3. If we consider the case in which Ro is fixed, then we see that these figures 

are simply a more general representation of the variation of the magnetic and kinetic energy with 

E), as shown in Figures 6.1 and 6.2. 

6.6 The effects of inertia and differential rotation. 

The graph shown in Figure 6.12, shows the types of solutions found as both E),, and Ro are 

varied. The data along the E),, =0 axis is taken from the results obtained by Fearn and Rahman 

(2004b) on their work on the a2-type dynamo model, which was extended as discussed earlier to 

include an w-effect and thus produce an a2 w-type dynamo model. Fýrom this graph we can easily see 

how the inertialess a2W-type model discussed in Chapter 5, fits with the C, 2 -type model investigated 

by Fearn and Rahman (2004b) and the more general inertia a2w-type model we have discussed in 

this chapter. 

We see how these solutions evolve from spiky type solutions into steady solutions, which then 

become periodic and eventually chaotic type solutions as the Rossby number is increased. There 

is also the suggestion of a similar trend as JE), j is increased away from o. Combining the variation 

of both of the factors, we see that there exist regimes in which certain types of solution can be 

expected to occur. 

The contour plots in Figures 6.13,6.14,6.15 and 6.16, show the components of magnetic field 

and flow at E),, = 100,50,20, -20 respectively. Within each of these figures, we show the solution 

at increasing values of inertia; Ro =2x 10-2 ,5x 10-2 
,7x 10-2 

,8x 10-2 - This then enables 

a comparison with the a2 results (at 8, = 0) obtained by Fearn and Rahman (2004b) (see their 

Figure 6). (Note that our choice of contour interval here differs from Fearn and Rahman's, as it 

was necessary to increase the contour intervals of Bp, B, Up in order to accomodate the strong field 

and flow shown in Figure 6.13, but decrease the contour interval from 20 to 10 for W. The angular 

velocity contour interval at 20 gave very good agreement between the plots at different values of 

E),, however this did not help us to understand how the imposed buoyancy driving was affecting 

the flow) - 
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Figure 6.12: (),, versus Ro for E=2.5 x 10-4 and ct,, = 11. o represent spiky solutions, x represents steady 

solutions, A represents periodic solutions and 0 represent chaotic solutions. 

6.6.1 The effect of inertia 

Examining the solutions in Figures 6.13,6.14,6.15 and 6.16 at fixed values of 8, as we increase 

the value of Ro, we see that in increasing the strength of inertia there is a movement of the B and 
U,, contours away from the CMB and towards the equator. The contours also become confined to 

outside of the tangent cylinder. The poloidal field (Bp) increases in strength as Ro is increased 

and we also see a shift in the concentration of poloidal field components in a similar manner as 

found for the B and Up contours as the influence of inertia is increased. The behaviour shown in 

Figure 6.13 appears slightly different, though it should be noted that at this value of 19,,, all of the 

solutions shown are time dependent, and so the Pictures shown are just snapshots. However we see 

the same general trend that the contours gradually move towards the equator filling the whole space. 
I 

We now focus on the w contours and the effect caused by increasing the strength of inertia. We 
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see that, as Ro is increased in each of Figures 6.13,6.14,6.15 and 6.16, there do not appear to be 

any substantial changes in the form of the flow. For E),, > 0, we see that the contours essentially 

provided by the buoyancy force alone form parallel contours to the inner core. As Ro is increased, 

these negative contours become slightly suppressed and become concentrated around the tangent 

cylinder. Further increasing inertia introduces a positive contour symmetric about the equator, 

which grows in strength as Ro is increased. In the case of E) < 0, we see slightly different behaviour 

here, since the imposed buoyancy driving is now acting in the opposite direction. We see few 

significant differences between the solutions as Ro is increased, though the positive contours that 

develop as Ro is increased in the case of E), > 0, axe also present here but now link up with the 

positive contours produced by the imposed buoyancy driving, and hence the solutions for E), <0 

appear slightly different. We will of course discuss the development of the solutions with changing 
0,, in more detail in Section 6.6.2. 

6.6.2 The effect of the imposed differential rotation. 

In this Section we examine more closely the variation of the solutions with 6. at fixed Rossby 

number. 

Considering the case Ro = 0.02. 

We begin by considering the solutions at Ro = 0.02 as solutions for E), = 50,20, -20 are steady 

and may enable us to establish some ideas about the general trends in the evolution of the solutions 

with (),, before we examine the solutions at higher values Ro. 

The form of the solution for (),, = 100,50,20, -20 (shown in Row 1 of Figures 6.13,6.14,6.15 

and 6.16, respectively) appears very similiar in each case. We see, as Go is increased, the field and 
flow increase in strength, which is quite natural as we axe increasing the amount of imposed forcing 

in the system. We note that the solution at E), = -20 appears slightly weaker than its counterpart 

at 0,, = 20, however, as we have observed earlier, the system is sensitive to the direction of the 

imposed buoyancy driven flow, and we expect to find different solutions for ±E),,. More generally 

we see that with increasing E)o, contours appear to become more elongated, moving down towaxds 

the equator. 
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Comparing the solutions at E),, 20 and -20, we see the contours of B and Up are a slightly 
different shape, the solutions at E) 20 appearing more round, with the solutions at E), = -20 

appearing more oval shaped. The biggest differences, as one would expect, lie in the contours of 

the angular velocity. The a2 solution at Ro = 0.02 has a small positive contribution to the angular 

velocity aligned with the vertical z-axis, and a concentration of negative contours near the pole. If 

we now examine the solution at E),, = -20, we see a stronger concentration of positive contours close 

to the vertical z-axis and a weaker negative concentration near the pole. These aspects are reversed 

when we examine the solutions at e. = 20. These differences are likely caused by the direction of 

the imposed buoyancy driven flow, as E), <0 generates positive angular velocity contours parallel 

to the inner core with E),, >0 conversely producing negative angular velocity contours parallel 

to the inner core. This we believe is the main mechanism behind the distribution of the angular 

velocity contours. 

Increasing the strength of Inertia to Ro = 0.05. 

Examining the solutions in (Row 2 of) Figures 6.13,6.14,6.15 and 6.16 at Ro = 0.05, we in- 

vestigate whether the trends we observed in the case of Ro = 0.02 still hold. The solutions remain 

steady at G, = 50,20, -20, but the solution shown at E), = 100 is now a snapshot of a chaotic time 

dependent solution. 

We see that the trends we identified in the case of Ro = 0.02, seem to borne out by the solutions 

at Ro = 0.05. We see that, as 6,, is increased, there is an increase in the strength of the field and 
flow and we again see an elongation and movement of the contours of B and Up towards the equator. 

At E),, = 100 the solution, having become chaotically time dependent, has also become of mixed 

parity. At this level of forcing it is difficult to identify any d'scernable traits associated with the 

increase in E), though the solution is now very strong and fills most of the space. 

Further increasing the strength of Inertia to RO = 0-07,0.08. 

Examining the solutions for each value of 19,, at both Ro = 0.07 and Ro = 0.08, we see that 

there is very little difference between the solutions. The strength and form of the field and flow 
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appears essentially the same in both cases. We again see that, as 19, is increased, the trend of the 

contours of B and Up becoming stretched towards the equator appears to hold, except at E), = 100 

where the solution is already chaotic and of mixed paxity. 

6.6.3 Comparing the effects of inertia and buoyancy. 

If we compare the effects of inertia and buoyancy, wý see that these very different terms have a 

similar behaviour on the solutions. We see that increasing Ro or increasing 00 causes B and Up to 

increase in strength and also become elongated in the direction of the equator. The Bp also grows 

in strength and the concentration of the field is also observed to move round and down towards the 

equator. Since these two effects have a similar influence on the magnetic field and poloidal flow, 

we axe then interested in how changing either one of these parameters alters the angular velocity 

component of the flow. 

Examining Figures 6.13,6.14,6.15 and 6.16, we see that inertia introduces a small amplitude 

positive angular velocity component to the flow, which acts to suppress the radial extent of negative 

Contours close to the inner core. Increasing the strength of inertia appears to cause the angular 

velocity contours to cluster close to the z-axis and poles and near the inner core tangent cylinder. 
The angular velocity components also exhibit only a very small variation with z as Ro is increased. 

If we now examine the top row of Figures 6.13,6.14,6.15 and 6.16, and see how changing E),, 

alters the angular velocity contours of the flow. We see that the solutions at Oo >0 and E),, <0 

axe quite different, as has been found previously. For comparison purposes we will therefore simply 
focus on the E), >0 solutions. As we naturally expect, increasing E),, generates more thermal wind, 

of the form given in Section 2.7, as one would find in the absence of a magnetic field and no inertia 

or viscosity in the system. Including these other forcing terms, the resulting equilibrated systems 

angular velocity is modified as shown. This angular velocity is then responsible for stretching 

out lines of toroidal field to generate poloidal field. At the higher (fixed) values of Ro, the angular 

velocity contours appear dominated by the effect of inertia, though the increased number of angular 

velocity contours concentric to the inner core axe evident. 
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Figure 6.13: The following 4 rows show the solution at a,, = 11,0. = 100, E=2.5 x 10-4. The top row 
shows the solution at Ro =2x 10-2 . 

Row 2 Ro =5x 10-2 
, row 3 Ro =7x 10-2 

, and row 4 Ro =8x 10-2. 
The plots going from left to right show the poloidal field, toroidal field, angular velocity and nieridional 

circulation at contour intervals of 0.25,1,10,0.25, respectively. 
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Figure 6.14: As Figure 6.13, but for 0, = 50. 
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Figure 6.15: As Figure 6.13, but for 0, = 20. 
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Figure 6.16: As Figure 6.13, but for E),, = -20. 
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6.7 Conclusions. 
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In this chapter, we investigated our a2u)-type model including the effects of inertia. Our aim 

was to investigate the dependence and evolution of the solutions with Ro and E),. Through an ex- 

ploration of Ro - E)o parameter space, we were able to map out this area and also bring together the 

results of Fearn and Rahman's a'-type model with inertia and the work we presented in Chapter 

5 on the a 2w-type model in the absence of inertia. The map showing the regions in which different 

types of solutions exist within the Ro - E). parameter space, is shown in Figure 6.12. In this we see 

the evolution of solutions from the spiky periodic type discussed in Chapter 5, to steady solutions, 

which then become time dependent as Ro and E), axe varied. 

In Section 6.3 we discussed the likely way in which the dynamo equilibrates. We suggested for 

E), > -30, the zonal flow driven by the imposed buoyancy force, reinforced the zonal flow driven 

by the Lorentz force in the momentum equation. This flow is then balanced by the other terms in 

the momentum equation, with the viscous term playing a role in damping the flow. The flow is also 

modified by the effect of the inertia term and this term replaces the viscous term at leading order 

in the momentum balance as Ro is increased. The resulting flow obtained from the balance of the 

momentum equation then feeds into the advection term in the induction equation, equilibrating 

the dynamo. We investigated the way in which the energy of the solutions evolve with E)" at fixed 

Ro, in Section 6.3 and as shown in Figures 6.1 and 6.2 we see that we obtain a stronger field and 

flow as E),, (> -30) and Ro axe increased. In Section 6.4, we fixed (),, and varied the strength of 

inertia. We found that, as had been found in the a2_type model with inertia considered by Fearn 

and Rahman (2004b), the magnetic and kinetic energy vary linearly with Ro, as shown in Figures 

6.10 and 6.11. 

For E),, < -30, we suggested that the zonal flow driven by the imposed buoyancy force exceeds 

the zonal flow driven by the Lorentz force. The net driven zonal flow is then acting in the opposite 

direction and the resulting balance of the momentum equation is quite different. The equilibrated 

flow then increases as E), is decreased or Ro is increased, but the magnetic field as shown in 

Figures 6.1 and 6.2, is inhibited by these effects and is much less capable of growing as E),, is de- 

creased or Ro is increased. As discussed in Section 6.4, we encountered numerical difficulties as we 
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increased Ro and reduced E),, and we unable to obtain solutions below E),, = -30 for Ro >5x 10-2. 

The linear dependence we observed in Section 6.4 between the energy of the system and the 

strength of inertia for certain values of E),,, is examined more closely in Section 6.5. This particular 

variation had also been observed in the work by Fearn and Rahman (2004b) on their a2-type 
dynamo model with inertia. Examining the solutions between 2x 10-2 < Ro <8X 10-2 and 

-20 < 6, < 100 and drawing a line of best fit through each set of points, we see that for each 0,, 

the solutions lines form a fan shape in both the magnetic energy-Ro space and kinetic energy-Ro 

space. Given this observed fan shaped behaviour with E),,, we plotted the gradient of the best fit 

lines against Oo. Fixing Ro, the gradient plotted on the y-axis of Figures 6.10 and 6.11 is then 

simply the magnetic and kinetic energies respectively. These curves then approximate the energy 

variation with E)o shown in Figures 6.1 and 6.2. 



Chapter 

Conclusions. 

The aim of this thesis is to understand more about the role of inertia in the Earth's dynamo. In 

order to do this, we consider non-linear mean-field aw and a2w-type models which capture much 

of the essential physics of the problem, enabling us to investigate the influence of inertia on the 

solutions. 

In Chapter 3, we investigated the aw-type dynamo model in the absence of inertia. The reasons 
for this axe two-fold. Firstly, this provided us a reference case for the work presented in Chapter 

4 which included inertia and secondly this enabled comparisons with other aw models. As dis- 

cussed in Section 2.9, we were unable to rescale our governing equations with the dynamo number, 

D=a,, E),,, as had been found in linear, kinematic aw models. However as our results in Section 3.4 

showed, we had good agreement between the values of D, at the onset of dynamo action, suggesting 

that our equations are close to scaling with D. In our discussion in Section 2.9 we suggested that 

the reason our equations were unable to rescale with D, was due to the presence of the meridional 

circulation in the equations. Given the good agreement we find in our results suggests that the 

effect of meridional circulation is small. This finding is also emphasized by the compaxison of our 

solutions with the work of Roberts (1972) presented in Section 3.9.1, where we found that our 

estimates of Roberts' paxameter m (a measure of the strength of the prescribed meridional circula- 

tion) remained very small and was not large enough to lie in the steady regime identified by Roberts. 

We also compared our solutions with the aw-type model presented by Hollerbach and Glatzmaier 
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(1998). This model was the same as the model we use, only differing in the choice of their a-effect. 

They chose a= ao cos 0, whilst our model used a=a, cos 0 sin(ir(r - ri)). We found that the 

inclusion of a radial structure in the form of the a-effect only became important once the strength 

of the a-effect is sufficiently large. This finding is also found by Fearn and Rahman (2004a) in their 

studies on a 2-type dynamo models. 

In Chapter 4 we investigated the effect of inertia on our aw-type dynamo model. Fixing all 

parameters in the system and varying only the strength of inertia, Ro, we found a continuous evo- 

lution of the solution from the Ro =0 case (explored using a different numerical code) investigated 

in Chapter 3, to solutions at higher values of Ro. We were able to follow the solutions as high as 

Ro = 1.1 X 10-2 , at which point we were unable to find any further non-decaying solutions as Ro 

is increased. This suggested that the dynamo was shutting down - behaviour which had also been 

found in the 2.5D hydrodynamic model of Fearn and Morrison (2001) and the 3D hydrodynamic 

model of Christensen et al (1999) as Ro was increased (or equivalently, as Pm = ElRo was de- 

creased). 

We then investigated the possibility of preventing the failure of the dynamo as Ro is increased, 

through increasing the forcing in the system. We were motivated to investigate this possibility, 

as, in Feaxn and Morrison's study they attempted to prevent the failure of dynamo action by in- 

creasing the strength of buoyancy driving in their model. Unfortunately this did not prevent the 

dynamo shutting off as Ro was increased. We chose to increase the strength of the a-effect, as 

this is unaffected by inertia, and Fearn and Rahman's (2004b) a2 -type dynamo studies found that 

inertia actually acted to facilitate dynamo action. Our studies here show that it possible to reach 

higher values of Ro through increasing the strength of the a-effect, however it is uncleax whether 

we can prevent the dynamo shutting off. 

In Chapter 5, we investigate an a2w-type model which allows us to reconcile the a2 -type model 

considered by Fearn and Rahman (2004a) and the aw-type model considered in Chapter 3. Fearn 

and Rahman's a2 solutions produced an unusual spiky periodic time dependence once the strength 

of a, was sufficiently large. Beginning with a spiky periodic solution at a. = 11 as an initial con- 
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dition, we began varying the strength of the imposed buoyancy force. As we discussed in Section 

2.8, the a 2w-type dynamo model has two limiting cases; the a2-type model and the aw-type model. 
We found that the solutions we obtained for -50 < E)ý < 50 resembled the solutions found in the 

a 2-type model, and for E),, ;ý -50, the solutions were periodic and similar to the solutions found 

in Chapter 3. The solutions we found for 0. > 50 maintained their spiky periodic behaviour and 

shared similarities with Fearn and Rahman's (2004b) a2_type model solutions which included the 

effect of inertia. We believe that increasing the strength of the buoyancy driving acts to reinforce 

the zonal flow driven by the Lorentz force, and so the character of the behaviour found remains 

qualitatively the same. 

The work we presented in Chapter 5 then forms a base for the investigation of the effect of iner- 

tia considered in Chapter 6. Including inertial effects in the a'w-type model allowed us to reconcile 

the results of Chapter 4 and the work of Fearn and Rahman (2004b) which included the effect of 

inertia in their a 2-type model. The roughly linear behaviour of the magnetic and kinetic energy 

with Ro found in Fearn and Rahman's a2 model, also held for fixed values of (), for E), > -20. 
5X 10 We encountered numerical difficulties for E),, < -30 for Ro > -2 so have been unable to 

determine whether this behaviour is continued for E),, < -20. Through varying Ro and E),, we 

were able to explore the Ro - E), parameter space and found regions of parameter space in which 
different types of solutions existed, see Figure 6.12. We found that as Ro is increased solutions 
became more chaotically time dependent, and it became more difficult to decrease Bo. 

In conclusion, from our studies of aw and a2 w-type dynamo models, inertia seems to have an 

inhibiting effect on the solutions as its strength is increased, as shown by our results in Chapter 4. 

The dynamo mechanism is also fairly sensitive to the direction of the driven zonal flow, as shown in 

Chapters 3 and 5. Introducing inertia to this problem then makes obtaining solutions more difficult 

for E), <0 as Ro is increased, as shown in Chapter 6. 
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Appendix A 

Proofs of Theorems. 

For the proofs presented here, we assume a spherical shell geometry with length scaled with the 

outer core radius r, (= 1). 

A. 1 Cowling's Theorem. 

Theorem 1 (Cowling) A two-dimensional or axisymmetric magnetic field can not be maintained 
by fluid motions. 

Sketch Proof. 

We begin by separating the field and flow into the axisymmetric and non-axisymmetric parts, 

0, t) + B'(r, 0,0, 

U= U(r, 0, t)+U 1 (r, 0,0, 

where the axisymmetric components axe defined as, e. g. 

ii, (r, 0, t) =1 
10 21' 

B, (r, 0,0, t) d0 27r 0 

and we define the non-axisymmetric component, B' by subtraction as B' =B-A. We therefore 

have, 

B=B+B' and U=U+Ul 
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The axisymmetric component may be further decomposed into zonal and meridional parts, 

Bp + Bk 

ff =Vx (A(r, 0, t)ek) + Bep (A. 1) 

and 
up 

+ Uo 
U=Vx (tk(r, 0, t)e0) + veo. (A. 2) 

Applying these decompositions to (1.3), allows the Induction equation to be divided into axisym- 

metic and non-axisymmetric parts, respectively 
aB 
5T ýVx (Uxly+iý) +VIE, (A. 3) 

i9B' Vx (U x B'+ U' XE+ gl) + V2 B, (A. 4) 

where C =: U' x B'. The axisymmetric equation (A 
- 3) may be further broken down into meridional 

and zonal parts, 

(9A 1-2 
T+-Up-V(sA) = DA+To (A-5) t8 

OB 
+ sup. v 

(B) 
=D2B+ sRp - 

(-v) + (v x T)o (A. 6) at ss 
where D2= V2 _ 8-2. 

We will now illustrate the truth of Cowling's theorem. 

For an axisymmetric magnetic field, B' =0 and so 6=0. Therefore equation (A. 5) is simply 

aA 1-2 
-5F + 78-ino Up - V(sA) =DA. (A-7) 

Multiplying through (A. 7) by S2A, and integrating over all space V we have 

df 182 
A2 dV f 

sAUp - V(sA)dV +f '92 A 
(V2 

- ; 
1-2 ) 

AdV (A-8) 
V2VV 

Wt- 
V 1,1, 

The LHS of equation (A. 8) is a measure of the rate of change of the meridional magnetic field, 

which cleaxly is non-negative. Now considering the two terms on the RHS of equation (A. 8) in 

turn. The first term can be written as, 

-f sA-Up - V(sA)dV fV (sA)2UP dV f1 (sA)2UP - edS 
VV 

(2 

2 
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by applying the divergence theorem and using V- Up = 0, (where here S is the surface (at infinity) 

bounding V). Outside r=1, Up = 0, and so this first term in equation (A. 8) vanishes. 

If we now consider the second term on the RHS of (A-8), we notice we can also write 

2 AV2 A=V. (32 AVA) - IV(sA)12 +A2 

which allows us to apply the divergence theorem to the second term appearing in equation (A. 8), 

to give 

s 1ý 
s2A V2 AdV 

f 
(82 AVA) - e, dS -f IV(sA)12 dV (A. 9) 

fv 
; 2) 

sv 

The only source of A is currents flowing inside r=1, so (since JBI must fall off at least as quickly 

as r -3 as r -4 oo), JAI must fall off at least as quickly as r-2. Since we are assuming an infinite 

volume of fluid with U- 1/r as r -4 oo, the surface integral in equation (A. 9) must therefore fall 

off at least as quickly as r-1 so vanishes in the limit r -+ co. Therefore we axe simply left with 

2A V2 _1 Ad =-f IV(sA) 12 dV T2 vv 
fv 

1, 

which shows that the meridionaJ field energy is strictly decreasing. The more realistic case con- 

sidered by Braginsky (1964a) of a finite volume of fluid, bounded by an insulator at r=1, is similar. 

Again given C=0 for an axisymmetric field and applying our newly found result that the 

meridional magnetic field will inevitably decay (so we may consider A= 0), the zonal magnetic 
field equation (A. 6) is simply 

aB 
=_ 

(B) 
+ (V2 

_ 8-2 SUP -v )B 
ts 

Applying a similar analysis to the zonal component of magnetic field, as we used to prove that 

the meridional component of the field must inevitably decay, yields the same result for the zonal 

component. Therefore since both the meridional and zonal components of the field must decay when 

,c=0, we see that the axisymmetric field can not be maintained in the absence of a contribution 
from the non-axisymmetric field and flow. 
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A. 2 Axisymmetric dyriamos - energetics. 

The axisymmetric induction equations presented in Section 1.6.4 are 

8A 
+1 Up - V(sA) = v2 -1A+ Eo (A. 10) iit- -S (r sin 0)2 

aB (B) 
= 

(V2 

6q- 
+ SU, -v-1 

)B+sRp. 
V(v)+(Vxl)o (A. 11) 

s 
-rs i -no) 2s 

where we have decoupled the axisymmetric field and flow in zonal and meridional. parts as given in 

(A. 1) and (A. 2). 

Now as discussed in Section 1.6.4 we can replace the 'source' non-axisymmetric contribution to 

the axisymmetric problem with a parametrisation of the effects of a non-axisymmetric flow through 

the so-called a effect. 

1= U'x B'= a-B- (A. 12) 

The source for the poloidal component of the field is a prescribed a effect. In an a2 dynamo model, 

the toroidal component of the field is generated by an a effect and in an aw dynamo model the 

toroidal field is generated by the prescribed w effect. In the more general case of an a2 w dynamo 

model, the toroidal field is generated by both a and w effects. 

The differential rotation, v appearing in (A. 11) is the -UO appearing in (1.22). In kinematic 

problems the thermal wind UT is prescribed rather than being determined as in Equation (1.24). 

As first shown by Childress (1969) and as we will show below, the thermal wind is the only com- 

ponent of v which can lead to an increase in the toroidal field energy. As we will see, the magnetic 

wind (1.23) has no effect on the toroidal field energy and the effect of the geostrophic flow is de- 

pendent on the role of Ekman suction. 

If we assume that we have a spherical shell model which is bounded by an insulating mantle, and 

assume that the Taylor cylinder in Figure 1.1 does not intersect the inner core, we have ZB = -zT. 
I 

Therefore to obtain the energetics of the toroidal component of the field we multiply equation 
(A. 11) by B and integrate over the whole volume of the core. Therefore we obtain, 
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f 8B (B (V2 
B yt-dV + BsUp -V dV B BdV 

v 

fv 

v (r sin 0)2 

+f Bsffp -V 
(V) dV +f B(V x -F)OdV (A. 13) 

vv vSv 

The first term on the LHS of (A. 13) can be written as 

fB aB 
dV =aB 

2) 
dV 

v& 
5t- 

fv (-2 (A. 14) 

which is simply the rate of change of the toroidal field energy. The next term we consider is the 

second term on the RES of (A. 13). 

Bsffp - dV Bsffp -V dV +f Bsiip -V dV 
8v8 

fv 

s 
iv 

(UM) 

1, 

( UT 

+ 
(Bsffp-V(ýýa-)dV 

iv 3 

since the zonal flow is simply the sum of the magnetic wind, the thermal wind and the geostrophic 

flow, as given by equation (1.22). Therefore if we consider the contribution by the geostrophic flow, 

we know that UG : -- UG(s) u)Gs, and therefore we have, 

EG 
f 

BsRp -V 
(UG) 

dV 
v vs 

f 
BsB, dA)G 

dV 
v ds 

f 2-yr ZT 

sBB, 
dWG 

dzdsdo 
0 

fO ' f-ZB 

ds 

27r 
Is2 dWG 

7-ds 
fo 

ds 

where T is an alternative form of Taylor's constraint given by 

ZT 

BOBdz =0 

(A. 16) 

(A. 17) 

see e. g. Fearn (1994) for further details. When Taylor's constraint is satisfied, this term vanishes, 

and so the geostrophic flow has no net effect on the toroidal field energy. However, if Taylor's 

constraint is not satisfied and T 54 0, we may proceed by integrating equation (A-16) by parts, 

EG = 21r 
1s2 dwG 

7-ds = 21r[was2T11 - 27r 
1 

WG 
d 

(8 2n ds (A. 18) 
fo 

ds 0 
fo 

ds 

-27rE-1/2 
fi (COSO)1/2 d 

(S2, r) 
2 

ds (A. 19) 
2 S3 ds 
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we see that the first term on the RES of equation (A. 18) goes to zero, since applying the boundary 

conditions requires that 7' =0 on r=1. This leaves us with equation (A. 19) which is negative 

definite. This shows that the geostrophic flow will not lead to an increase in toroidal field energy 

and in fact acts to reduce it when the effects of Ekman suction are important. When viscous effects 

axe important, equilibration in the system occurs when B2= O(EG) = O(E-1/2B4 ), i. e. when 

B= O(El/4). At this amplitude, other non-linear effects are unimportant. 

Now for axisymmetric fields with JBI > IBmI we may show that Um = B2/s, so from equation 

(A. 13) the advection term combines with the magnetic wind term from equation (A. 15) to give, 

BsUp -V 
(B) 

dV BsRp -V dV 
s 

fv fv (U") 

f 
Bs 

[ýUp 
_V 

(B)) 
- 

(Rp 
-V dV 

vs 
f 

Bs V. 
(BUP 

V- dV 
vIss 

fv 
Bs 

IV. B UP V. 
B2 

dV 
s 

(72 RP) 
I 

V. 
(B2 

;UpV. (B31ip) ] 
dV (A. 20) 

fv [2s 

Applying the divergence theorem, this vanishes as B=0 on the insulating boundary (see Braginsky 

1975). In a similar way considering the diffusive term in equation (A. 13), we have 

B 
(V2 

BdV 
f BV2 BB2 dV 

v 

fv 
(r sin 0)2 1 (r sin 0)2 

fV- 
(BVB) - (VB)2 

B 
dV 

v (r sin 0)2 

f 
(BVB) - dS - (VB)2 + 

B2 
0)2 

dV 
S 

fv [ 
-(r sin 

I 

where the surface integral goes to zero, as B=0 on the boundary and this condition also enables 

the remaining volume integral to be rewritten as 

fB v2 -1 BdV = 
V(sB) 2 

dV (A. 22) 
(r sin 0)2 

)- fv (8 

which is negative definite. 

Thus the magnetic diffusion and the w-effect associated with the geostrophic flow are sinks of 

toroidal field energy. As both the advective and magnetic wind terms have no net effect on the 
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toroidal field energy, the only possible sources are the thermal wind and the a-effect term. Applying 

a similar analysis to the poloidal field equation yields a similar result; the a-effect term on the RHS 

of equation (A. 10) is the only possible source of poloidal field. In the absence of these terms we 

have the familiax Cowlings theorem from Section 1.2.3 and Appendix A. 1. 



Appendix B 

Numerical Method. 

In this appendix we will attempt to describe briefly the numerical method which is used to 

adapt our mathematical model presented in Chapter 2, to the numerical code which we use in 

our simulations. The original 3D code was developed by Dr. R. Hollerbach, and a more thorough 

description of the implementation of the numerical scheme may be found in Hollerbach (2000). 

This code was modified by Dr. M. M. Rahman as part of his PhD research, to cut the code down 

to 2D. Further details may be found in Rahman (2003). 

B. 1 The Modelling Equations. 

F)rom Chapter 2, the modelling equations governing our aw or a 2(0_type models are 

aB 
t t . Y_ = V2 B+Vx (uj x 

in the inner core, and 

(B. 1) 

aB 
= V2 B+V x (aB)+V x (U xB) (B. 2) 

19t 
in the outer core, where B is the large-scale axisymmetric magnetic field, U is the large-scale 

axisymmetric fluid flow and ui = Qjr sin OeO where f1i denotes the inner core angular velocity. In 

our model we choose the axis of rotation of the inner and outer cores to be the same. Here the 

superscript ^ is used to denote inner core quantities. In the outer core, our induction equation 
(B. 2) is coupled to the momentum equation, 

au Ro 
(&+ 

(U - V)U) +AxU= -Vp + EV2U + (V x B) xB+ Or. (B. 3) 

180 
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We defined our parametrised a-effect as 

a=a, cos 0 sin (7r (r - ri)) (B. 4) 

and chose a prescribed buoyncy force Or of the form 

0,, r cos 2o (B. 5) 

such that the buoyancy force drives a differential rotation (or W-effect) in the flow of the form 

w= E),, r. 

The Boundary Conditions. 

At the core-mantle boundary, we have insulating boundary conditions on the field, 

B=B (e) on r= rý (B. 6) 

where B(') is the external potential field. We have continuity conditions on the field at the inner 

core boundary as we assume a finitely conducting inner core. 

f3 =B and lbi- = E-L on r= ri (B. 7) 

For the fluid we assume no-slip conditions on the inner core and core mantle boundaries, thus 

Ur, Uo=O 
, 

UO=QirsinO at r= ri (B. 8) 

Url UO, UO =0 at r=r, (B. 9) 

B-2 Poloidal /Toroidal decomposition. 

Since we have divergence free fields and flows, V-B=V-U=0, the governing equations given 

in (B. 1), (B. 2) and (B-3) may be decomposed into poloidal and toroidal parts using 

UVx (ee, ) +VxVx (fe, ) (B. 10) 

BVx (ge, ) +VxVx (her) (B. 11) 

f3 Vx (§er) +VxVx (her) (B. 12) 
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where e, f, g, h, ý, h axe scalax functions of r, 0. More generally these may be assumed to be functions 

of r, 0,0, however we axe considering an axisymmetric model and so all quantities are independent 

of 0. The scalars e, f, g, h, §, h may be expanded in spherical harmonics as, 
LU 

e (r, 0) =E eki MPI (COS 0), 

l=1 
LB 

g(r, 0) =Z gkl HPI (COS 0), 
l=1 

LB 
ä (r, 0) = 

Y: jki (r) Pl (cos 0), 
j=J 

LU 
f (r, 0) =E fki (r) Pl (cos 0) (B. 13) 

l=1 
LB 

h hki (r) Pi (cos 0) (B. 14) 

LB 
h (r, 0) =E hki (r) Pl (COS 0) 

- 
(B. 15) 

l=1 

In Chapter 2, the decomposition we presented for the field and flow is given in (2.6) and (2.7). 

This decomposition is slightly different from the form we adopt here. However, these decompositions 

are entirely equivalent, and are related through the following expressions. 

A= _l8h 
1 ag 

B= 
r ýTO 

1, gf 1 ae 
Fo v= --- rr 190 

B. 3 The Induction Equation Decomposition. 

Applying the decompositions (B. 15) to (B. 1), the r component and the r component of the curl 

of (B. 1) give, 

LB 1 (1 + 1) d9 
- Li hi (r) Pl (cos 0) = e, -Vx (ui x lä) (B. 16) 

LB 
LI]jl(r)Pi(cos0) = e, -VxVx(uixÜ) (B 

- 17) -r2 

where the operator Ll is defined as 
, 42 + 0 Li = 5ý2- -- 

r2 
(B. 18) 

As described in Chapter 2, we consider two types of dynamo model; the a2 w-type model and 

the aw-type model. In the a2W_type model, the prescribed a-effect acts on all components of the 

field, however in the aw-type model, the a-effect is limited to act only upon the 0 component of 



APPENDIX B. NUMERICAL METHOD. 183 

the field. Therefore applying the decompositions (B. 14), the r component and the r component of 

the curl of the induction equation, (B. 2) are 
LB 1(I +a-L, hi(r)PI(coso) =e (B. 19) -r2 r-Vx (U xB+ aB) 

LB 1(1 + L, gl(r)PI(cosO) = er-VXVX(UxB+aB) -, 
r2 at 

(B. 20) 

in the a 2w-type model, and 
LB 

I(i +a -LI hi(r)PI(cosO) = er'VX(UXB+aB) -r2 (B. 21) 

LB 

LI]gl(r)PI(cosO) = er'VXVX(UXB) (B. 22) -r2 
I 
Yt 

in the aw-type model. 

B. 3.1 The Spectral Boundary Conditions. 

On the core mantle boundary, r= rý, the insulating boundary conditions (B-6), written in 

spectral notation axe simply, 

91 + 
1) 

h, =0 (B. 23) 
( 

-dýr- -r 

The continuity conditions given in (B. 7) can be rewritten in terms of the spectral coefficients 

gi, hi, ýi, hi. Continuity of the magnetic field across the inner core boundary, gives 

hi = hi, g, = §j, 
d 

h, =d ht on r= ri (B. 24) dr dr 

Continuity of the tangential component of the electric field is more tricky to deal with. The 

non-dimensionalised Ohm's Law is given as, 

J=E+UxB 

Therefore, rearranging this equation for E and using J=VxB, we obtain, 

E=VxB-UxB 

Now since we axe generating the field through a prescribed a-effect, this may be more correctly 

written as 

E= VxB -U xB -aB. (B. 25) 
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Since both the field and flow are continuous across the inner core boundary, their cross product 

must also be continuous, and therefore for continuity we require that, 

nxt = nxF, (B. 26) 

nx(Vxb) = nx(VxB-ceB) (B. 27) 

(Vxt)o = (Vxl3-aB)o (B. 28) 

Applying the decompositions (B. 14) and (B. 15), we obtain 

dýdd 
gi ý -gi - aThl on r= ri (B. 29) dr dr r 

Now, our prescribed a-effect given in (B. 4), naturally goes to zero at r= ri and therefore, the final 

boundary condition is simply, 

d-d 
gi = 7-gi on r= ri (B . 30) dr r 

B. 4 The Momentum Equation Decomposition. 

The approach used in decomposing the momentum equation is different depending on whether 

the inertia term is included on the LHS of (B. 3). The reasons for this lie in the stability of the 

code, see Hollerbach (2000) for further details. 

B. 4.1 Including Inertia. 

We begin by taking the curl and the curl of the curl, of (B. 3) in order to eliminate the pressure 

gradient term. Then, applying the decompositions (B. 13, B. 14), the r components of the curl and 

the curl of the curl give, 

LU I(i + Ro ELI) el(r)PI(cosO) =e r2 r-Vx F1 (B. 31) 
at 

LU 
- 

ly + 1) 
Ro 49 

- ELI Lifl(r)PI(cosO) = e,. VxVxF, (B-32) -r2 

where F1 is, 

F, = -2k xU- Ro(U - V)U + (V x B) xB+ E)r (B. 33) 
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Now we can rewrite (U - V)U =V 
(IU2F) 

-UX (V x U), which upon taking the curl we see that 

the V2 will drop out. Therefore, we actually calculate (, Yi) 

Fl = -2kx U+RoU x (V xU)+(V x B) xB+E)r. (B. 34) 

B. 4.2 Neglecting Inertia. 

In the models considered in Chapters 3 and 5, we neglect the inertia term in (B. 3), therefore 

taking the curl and the curl of the curl of (B-3), as before, the r components axe then, 

LU ly + 1) 
ELI el (r) PI (cos 0) +2 

(1(1+1) 
ft (r) sin 0d PI (Cos 0) 

r2 r o9r dO 

2l(l+1) 2 
_os 0R fl(r) 1 (cos 0) =, ý , -V x F2 (B. 35) är- jo- 

LU + 1) 2f, +2 1(1 + 1) ad ý(- 
EL (r) PI (cos 0) el(r) sin O-PI(cosO) 

r2 
I dO 

21(1+1) (2 49 d 
ci(r)cosOTOPj(cosO)=C-, -VxVxF2 r 

(B. 36) 
r2 r) 

where F2 iSi 

F2ý(VXB) xB+E)r (B-37) 

Using the recurrence relations (Abramowitz and Stegun, 1965) 

sin 0d PI (Cos 0) = 
l(l + 1) [Pl+ i (Cos 0) - PI -, 

(Cos (B. 38) dO 21+1 

Cos 0d PI (Cos 0) =1 Kl + 1)P1+1 (Cos 0) + 1PI-1 (Cos 0)] (B. 39) dO 21+1 

in (B. 35) and (B. 36) allows us to eliminate the derivatives in 0 and replace them with expressions 

involving the spherical harmonics, thus 

LU l(1 + 1) 2l(1 + 2)(1 + 1) (1 + 1) 
r) P Z 

r2 
ELI ei (r) Pl (cos 0) + 

V+i -r3 
r2, gr 

f" i+i(coso) 

+ '9 ) fl(r)PI-, (cos0) =ý-Vx F2 (B. 40) V+i 
( 

73- jr- 
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LU i(i + 1) EL 2f, (r)p, (COSO)+21(1+2)(I+I) (1+1) 1a 
el(r)P, +I(cosO) -r2 21+1 r3 r2 

2l(1 - 1)(1 + 1) 1 '9 ) ei (r) P, ä _j(cos0) XVX F2 
21+1 

( 
73- + 

r- 
(B. 41) 

B. 4.3 The Spectral Boundary Conditions. 

Applying the decompositions (B. 13) to our no-slip boundary conditions in (B-8, B. 9) we find 

el(r) = Qir 2, fj (r) =d fj (r) =0 at r= ri (B. 42) dr 

el (r) = ft (r) =d fl(r) =0 at r=r. (B-43) dr 

F! rom (B. 42) we see that the inner core rotation Qj depends only on the single mode, el, which 

needs to be determined as part of the solution. Now Qj is determined through the torque balance 

on the inner core, where we require that the total axial torque, IP is given by, 

CRoýýQ-' =r (B. 44) at 

where C=-! 7rr5 (for inner and outer cores of equal density) and Ro is the Rossby number. 15 i 

CRo = 5.86 x 1034kgM2 is the polar moment of inertia of the inner core. The total torque on the 

inner core is balanced by the sum of electromagnetic and viscous torques, thus 

where 

r'ý FB + rv (B-45) 

7r 

-FB = 27rrj3 I BOB, 
lr=ri 

sin 2 OdO, is the electromagnetic torque and 

7r 

Fv = E27rri3 r' sin OdO is the viscous torque. 
' RO Lri 

2 fo 
ý r- r 

Including Inertia. 

Thus, on the inner core boundary we have the following torque balance 

E27r ýr2 
r3 2 Odo = CR02ni ri i- r r=ri 

sin OdO + 27r IBB, ý 

r=ri 
sin 

19t 
7r 

2 Odo 
1' 

2 Mirrý sin + 27rrj3 f BOBr sin OdO = CRo2-Q-' (B. 46) ,fr- 0 
ýr 

r2 
ri r=ri 

Therefore, we timestep (B. 44) along with the momentum equation to determine Qj at each timestep, 

which allows us to determine what the inhomogeneous boundary condition on e1 (r) should be. 
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Neglecting Inertia. 

187 

In the absence of inertia, the integrated viscous torque, must be balanced by the electromagnetic 

torque, 

E27rrý 
7r " 

.9 
lr=ri 

sin2 OdO + 21rr 3V BOBr sin 
20do 

=0 (B. 47) 
Or r 

r 
(U fo 

r=ri 
i. e. 

81r 
Er! 

df 
BkBr sin 2 OdO (B. 48) 

Z Tr r2 0 3 
(el) lr=ri 

0 r=ri 
This therefore allows us to use this as our inhomogeneous boundary condition on el, since B is 

known at each timestep of the induction equation. 

B. 5 Radial Functions. 

In the outer core we adopt the following radial decomposition for the scalar functions 
KU+2 KU+4 

el (r) =E ek1Tk-1(X), fl(r) = 
1: fklTk-I(X) (B. 49) 

k=1 k=1 
KB+2 KB+2 

gl(r) E 9k1Tk-1(4 hi(r) E hkiTk-, (x) (B. 50) 
k=1 k=1 

where Tk-, are Chebyshev polynomials. Here we define x through the relation 

r, + ri + r, - ri 
22 

(B. 51) 

so that across the shell, ri :! ý r<r, :r is normalised to xE [-1,11. In all our models, we fix 

the ratio of inner to outer core radii, --"ý = . 
1. For the velocity coefficients, we have KU radial r. 3 

collocation points at which the spectral coefficients are evaluated. For the el functions we have 2 

boundary conditions, and for the fj functions we have 4 boundary conditions to be applied. For 

the field coefficients, we have KB radial collocation points at which the spectral coefficients are 

evaluated, with 2 boundary conditions on g and h. The truncations of the field and flow coefficients 

need not be the same, and can be varied as appropriate to the resolution of the solutions. 

In the inner core, we can not apply the same radial decomposition to the field coefficients § and 

since the radial distance now includes the origin. Now it can be shown that (see for example, 

Kerswell. and Davey 1996), the following symmetries must hold 

§1(-r) = (-1)1+'§I(r) & hl(-r) = (-1)1+'hi(r) (B. 52) 
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From (B. 52) we see that for I even, must tend to zero as quickly as r2, and for 1 odd, must 

tend to zero as quickly as r3. 

Therefore, one possible expansion in keeping with these requirements is, 
KBI+1 KBI+I 

§kIT2k- I(r 
hkIT2k-I (B-53) 

k=1 
ri 

k=1 
ri 

where 
1, for I odd (B. 54) 
2, for 1 even 

The number of radial collocation points in the inner core is KBI, with an additional boundary 

condition to be applied for each Having adopted T2k-1 (-L) as the radial decomposition, we note ri 
that for 0<r< ri, the origin is not included as a collocation point, thus avoiding the coordinate 

singularity. The truncation of the field coefficients in the inner core is KBI = KB12, so that we 

have the same radial resolution in the inner and outer cores. 

B. 6 Solution of the Induction Equation. 

Now that we have set up our system of equations, we need to use a timestepping method in 

order to advance the spectral coefficients forward in time. To this, we use a second order Runge- 

Kutta method, which has been modified so that the diffusive terms may be treated implicitly. This 

method comprises of two steps 

The Predictor Step. 

Beginning with all the spectral coefficients at timestep n, we then evaluate the spectral coef- 

ficients of the forcing term e, -Vx (U xB+ aB) at timestep n. We then evaluate the forcing 

terms at each of the collocation points xj, j = 1, KB and call them DGj. Applying the time 

a derivative, Tt and operator, L, to qkI, where qkI represents the spectral coefficients, we have 

a qn+l - qn, 
at qkl =-- ki 

At 
k, Llqkl = Ll 

2 
(B. 55) 

Therefore, enforcing (13.19) (or (B. 21)) at the KB collocation points in the outer core, we obtain 
KB+2 I(I + 1) [(hn+l 

-hn O-5AtLj (hn+l +hn) Tk_, (Xj) = AtDHj (B. 56) E 
r2 ki kl ki ki 

k=l j 
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and at the KBI collocation points in the inner core, 

189 

KBI+l 1(1+ 17 
n+l (; ýn+l 

nA [(h h" )- O-5AtLt h+h 
r? ki ki ki ki rl'T2k-I(Xj) --= 

At, 5Hj (B. 57) 

k=l 

Including the boundary conditions, this gives us an additional 3 equations which allow us to invert 

this system of equations for h'k, +' and h'k, +' 

Clearly this same procedure can be applied to (B. 20) (or (B. 22) in the aw case), and we will 

obtain the same form for the LHS, but now applied to the gki and §kI. The spectral form of the 

RHS, will of course be different, and we will come to a discussion on how these are calculated later. 

2. The Corrector Step. 

Now that we have this estimate of the coefficients at timestep n+1, we again evaluate the 

forcings at the collocation points and call them DH3ý- To obtain an improved estimate of the 

coefficients at timestep n+1, we then have the KB equations 

KB+2 i(i + 1) 
n+l n) n+'+h n)] Tk_ I (Xj) = 

At 
(DH; E -, 

r2 
[(hki - 

hkl 
- O-5AtLj (hki ki ;+ DHj) (B. 58) 

k=l j2 

and the KBI equations 

KBI+l i(i + 1) [(h'+' 
- 

h' )-0.5AtL, (h'+' + h' )] rl'T2k-l(Xj) 
At 

DHI E 
-2 ki ki kl ki 

2+ 
b7H- 

j) (B 
. 59) 

k=l 
r3 

which together with the boundary conditions allow these systems of equations to be inverted for 

h'+' and hn+' respectively. kI kI 

The above system of equations (B. 58) and (B-59) can be written in matrix form, 

XW+ 1= Yh' + AtDH (B. 60) 

Xhn+l = Yhn+At(DH'+DH) (B. 61) 2 

where 

n hn, hn n 
1)1]T 

h= [hni� h2, , 
h(KB+2)1,11 

211 *«', h(KBI+ 

DH = [DH, I, DH21, - -, DH DH DH O]T (KB)17 01 0) (KBI)h 
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These square matrices, X, Y, are of dimension KBDIM = KB + KBI + 3. Their first KB 

rows are given as 

Xjk + [1 - 0.5AtLIJ Tk- 1 (xj) (B. 62) 
r2 j 

Yjk + [1 + 0.5AtLI] Tk- 1 (xj) (B. 63) 
r2 j 

fori KB. For j KB+3,. -. KBDIM, 

I(i + 1) 
Xjk ý -r2 [1-0.5AtLj]r"T2k-1(Xj) (B-64) 

j 

Yjk ý 
ly + 1) [1 + 0.5AtLjj rl'T2k- 1 (Xj) (B. 65) 

rJ2 

The KB + 1, KB + 2, KB +3 rows of X are the boundary conditions on the field, given in equations 

(B. 23), (B. 24) and (B. 30). The corresponding 3 rows of the matrix Y are zero. 

Notice that equations (B. 62), (B-63), (B. 64) and (B. 65) are independent of time and so will be 

the same at each timestep. Therefore, these matrices can be precomputed, as well as their product 

X-ly. 

B. 7 Solution of the Momentum Equation. 

The approach adopted for solving the momentum equation, as indicated earlier in Section BA, 

is different depending on whether we include the effect of inertia. The method of solution in each 

case is described below. 

B. 7.1 Including Inertial effects. 

When we include the effect of inertia, we have the system of equations given in (B. 31) and 

(B. 32). Now in order to timestep these equations, we enforce them at the KU radial collocation 

points and then apply the second order Runge-Kutta predictor-corrector method, as used in Section 

B. 6 to advance the coefficients from one timestep to the next. 

1. The Predictor Step. 

Following the the procedure described in Section B. 6 for the induction equation, we calculate 

the spectral coefficients of the forcing terms e, -Vx PI at timestep, n, at each of the collocation 
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points xj, j=1, ---, KU, and call them DEj. 

Reinforcing (B. 31) at these KU collocation points xj gives 

KU+2 ly + 1) 

-[Ro(ý'+' - e') - O. 5AtELI(6'+' + e')]Tk-, (xj) = AtDEj (B-66) 
r2 

kI kI ki ki 
k=1 j 

where we additionally include the two boundary conditions on e, as given in (B. 42) and (B-43). 

Therefore we axe able to invert this system for Ok1+1. 

2. The Corrector Step. 

Now we may use this estimate of ýn+' at timestep, n+1, to obtain an improved estimate of ki 

the coefficients at timestep n+1. Evaluating the forcings again at the collocation points, xj, and 

calling them DEj, we then have the KU equations 

KU+2 + 1) 
[Ro(ek'+l - n) n)IT 

At 
(D Ej' +D Ej) (B-67) e -0.5AtELI(eknl+'+e k-I(Xj) = 

rJ2 
I ki kl ki 2 

k=l 

which together with the two boundary conditions allows the system (B. 67) to be inverted for en+1 kI 

The above system of equations, may then be written in matrix form as 

Xjjn+l = Yen + AtDE 

Xe n+l = Ye n+ 
At 

(DE+ DE) 
2 

where 

en= le n, en,... ,en 
IT 

11 21 (KU+2)1 

DE = [DEll, DE21, ---, 
DE(KU)l, 0, ojT 

The first KU rows of X, Y axe given as 

Xj k 
10 + 1) [Ro - MAtELI] Tk-1 (Xj) (B. 68) 

rJ2 

Yjk ly + 1) [Ro + UAtELI] Tk- 1 (xj) (B. 69) 
r2 j 

for KU, whilst the final two rows of X implement the boundary conditions, and the 
final two rows of Y are zero. 
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The same procedure is applied to equation (B-32) at the same KU collocation points. From 

this analysis we obtain 

Xr+l = Yf' + AtDF (B. 70) 

Xfn+l = yfn+At(DF'+DF) (B. 71) 
2 

where 
ýn n ]T [fln 7, 11 f211, f(ýKU+4)1 

DF = [DF, 1, DF21, ---, DF(KU), 10101 (), o]T 

Xjk = _1(1+1)[Ro-0.6AtELj]LjTk_j(xj) (B. 72) 
r2 j 
+ 1) 

Yjk =--. 2 
[Ro+0AAtELj]LjTk_j(xj) (B. 73) 

j 

Notice that the matrices X, Y, defined in (B. 72) and (B. 73) are slightly different from those de- 

rived for the ekI in (B. 68) and (B. 69). Adopting matrices X, Y in (B. 68) and (B. 69) with no-slip 

boundary conditions for the system of equations in (B-70) and (B. 71) causes the equations to be 

unstable. By changing the weighting of the diffusive terms in (B. 72) and (B. 73), stabilizes the code, 

but results in a reduction in the accuracy of the diffusive terms. Weighting the known and unknown 

terms equally results in an accuracy of O(At2) , but with any other weighting, the accuracy is only 

O(At) with respect to the diffusive terms. 

The boundary conditions axe incorporated in the same way as in the case which neglects inertia, 

with the boundary condition on the inner core boundary simply given as 

e(KU+1)1(r) -, *,, ý 9jr, ý, (B-74) 

but since we are including inertia in both the inner and outer cores we must also timestep the 

torque balance equation (B. 44) at the inner core boundary in order to determine Qj. Therefore, 

equation (B. 44) may be written as 

nn+l = wi +1 (ipn+l rn) 
i1 CRo + (B. 75) 

Thus we may determine Qj from (B. 75), so that we may determine the inhomogeneous boundary 

condition on e(KU+1)1('r)- In this case, we suitably modify the corresponding column of DE, by 

replacing 0 with 11jr,?. 
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13.7.2 Neglecting Inertial effects. 

193 

Neglecting inertial effects, our system of equations is as given in (B. 40) and (B-41). Since there 

is no time derivative appearing in these equations, we can solve these directly at each timestep. 

We notice from these equations that el couples to f1±1 and f, couples to e1±1. This poses no 

problems, as the equations separate into two symmetry classes; odd 1 for el and even 1 for fj in 

one class, and even 1 for el and odd 1 for f, in the other, which allows each case to be treated 

independently. The system of equations can then be written in matrix form, AX =Y where A 

contains the details of (B. 40) and (B-41), X contains the spectral coefficients for the appropriate 

symmetry class and T contains the r component of the first and second curls of the non-linear force 

term, F2. 

To obtain the spectral coefficients e and f, we need to invert the matrix A. Fortunately, the 

matrix A, takes a block tridiagonal form, which doesn't change with each timestep. Therefore, this 

matrix can be precomputed, along with their LU decomposition using the NAG routine FOINAF, 

and then efficiently inverted at each timestep using the NAG routine F04NAF. The non-linear 

forcings Y are incorporated into the system via the pseudo-spectral method described in Section 

B. 8. The dimensions of the block structure for A, are determined by the angular truncation, LU 

- which gives the number of blocks, and the size of the blocks by the radial truncation KU. The 

blocks for the e spectral coefficients are (KU + 2) x (KU + 2), and (KU + 4) x (KU + 4) for the 

f coefficients, once the boundary conditions are included. 

B. 8 Nonlinear forcing and pseudo-spectral method. 

In the previous sections we have presented the different systems of equations depending on 

which problem we are solving. In the inner core, the RHS of equations (B. 16) and (B. 17), are 

simply zero, as we only consider the axisymmetric case. The RHS of the equations which we must 

solve in the outer core, axe less straightforward to deal with and so we use the pseudo-spectral 

method to evaluate these forcing terms. The pseudo-spectral method involves repeatedly switching 
back and forth between spectral and real space. 

The first step in calculating the the non-linear forces on the RES of the momentum and induc- 
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tion equations is to calculate in real space, the vector quantities U, VxU, B, VxB, etc. using 

the spectral coefficients. This procedure requires the spectral coefficients to be multiplied by terms 

involving Tk-, (x) and its derivatives at radial collocation points KN, which are different from the 

timestepping matrix collocation points and these points are now uniformly spaced. Similarly, we 

multiply by appropriate terms in PI (cos 0) and its derivatives at angular collocation points LN. We 

take KN =1 maxjKB, KU} +1 and LN =1 max{LB, LU} + 2. The next step is also calculated 22 

in real space, and this simply involves calculating pointwise the required cross-products of terms, 

such as UxB in the induction equation, or (V x B) xB in the momentum equation. 

In order to then calculate the first or second curls of the forcing terms we need to return to 

spectral space. For any vector, V= (V,, VO, VO), we need to multiply by matrices in Tk (x) and 

p, (cos 0) as follows, 

Z VkiTk-1(X)Pi(COS 0) V, = (B. 76) 
k, 1 

Vo = EVok'Tk-l(x)sinOPI(cos0) (B. 77) 
k, 1 

k Yp = EVO'Tk-l(x)sinOPI(cos0) (B. 78) 
k, i 

to obtain the vector in spectral space. To calculate VxV, we need to multiply by more precom- 

puted matrices. To calculate VxVxV, we then simply repeat this process. The matrices that are 

precomputed for the timestepping procedure incorporate the necessary spectral to real conversion 

in r to get back the original KB collocation points at which the equations are evaluated. 

It may seem immensely time consuming to be constantly switching between spectral and real 

space, but in fact this is a very efficient way to do the calculations. Since matrix multiplication is 

associative, the matrices may be calculated all together, so that only one multiplication within the 

actually code is required. Also, these matrices do not depend on time, and so are the same at each 

timestep, allowing all the matrices to precomputed prior to running the code. 
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