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Abstract 
 

An advanced mathematical model of the Voltage Source Converters (VSC) suitable for 
optimal power flow (OPF) solutions using Newton’s method for augmented Lagrangian 
functions has been developed in this research, using first principles – this model is far more 
flexible and realistic than the existing VSC models aimed at fundamental frequency power 
systems studies. The model is based on a new set of power injections, which take place at 
both the DC and the AC sides of the voltage source converter. Unlike existing models, which 
are based on the use of the controllable voltage source paradigm, the new VSC model takes 
into account, in an aggregated form, the phase shifting and scaling up/down nature of the 
Pulse Width Modulation (PWM) control. The physical attributes of the DC/AC converter 
relating to the amplitude modulation ratio is well encapsulated by a complex tap-changing 
ratio variable which enters the OPF formulation as two fully independent state variables. 
Furthermore, the new VSC model makes provisions for the independent representation of the 
ohmic and switching losses, together with a variable capacitive susceptance which represents 
the DC capacitor contribution corresponding to a given VSC’s operating condition. This is a 
very powerful and flexible modelling resource, which is amenable to a more realistic 
representation of the operational characteristics of actual voltage source converters. 
 
The nodal active and reactive powers of the VSC are suitably modified to accommodate more 
complex models corresponding to back-to-back, point-to-point and multi-terminal High 
Voltage Direct Current (HVDC) transmission links, within Newton’s OPF algorithm – the 
various model representations of the HVDC links use two o more VSC models, resulting in a 
new and more powerful way of VSC-HVDC representation. These models are subsequently 
used to interconnect otherwise independent AC systems. Since the AC systems operate 
asynchronously, multiple Slack buses are required to carry out power flows and OPF 
solutions.  
 
The new models are developed and presented in quite a comprehensive manner throughout 
the thesis. System simulations are carried out in order to illustrate the VSC-HVDC modelling 
flexibility in representing various modes of VSC-HVDC operation by selecting a range of 
control modes. It should be noticed that a straightforward extension of the VSC model yields 
a new STATCOM model of unrivalled modelling flexibility. It has been observed that the 
new models do not impair the strong convergence characteristics exhibited by Newton’s 
iterative method. 
 
As an integral part of this research, a computer program written in MATLAB has been 
developed to perform OPF system simulations. The program is capable of solving 
conventional power systems of an arbitrary complexity, multi-terminal VSC-HVDC 
transmission links and combined AC/DC transmission systems. It follows that less complex 
systems comprising one or more STATCOM, back-to-back and point-to-point VSC-HVDC 
can be solved with ease, using the Newton OPF computer program.  It should be brought to 
attention that existing power systems commercial or distribution free packages with OPF 
facilities do not possess the advanced modelling capabilities exhibited by the new VSC model 
and its extensions, presented in this thesis.  
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List of Variables  
 

The following variables are used in the mathematical expressions throughout this thesis: 
 

! 

x : Vector of system’s state variables  
 

! 

y : Objective function’s variable(s)  
 

! 

"  : The complex nodal voltage phase angle (degrees) 
 

! 

V : The complex nodal voltage magnitude  
 

! 

Y =G + jB : Nodal addmitance  
 

! 

G: Electrical conductance  
 

! 

B: Electrical susceptance 
 

! 

Z =1 Y = R + jX : System impedance 
 

! 

R: Electrical resistance 
 

! 

X : Electrical reactance 
 

! 

S = P + jQ: The nodal complex apparent power  
 

! 

P : Nodal active power 
 

! 

Q: Nodal reactive power 
 

! 

" : Lagrangian multiplier for active equality constraints 
 

! 

u : Lagrangian multiplier for active inequality constraints 
 

! 

z = [x,y,",u]T : Vector of all the system’s variables and multipliers 
 

! 

ma = Te j" ps : Compound transformer model’s complex variable tap phasor 
 

! 

T : Variable tap changer ratio 
 

! 

"ps: Variable phase shifter angle 
 

! 

" or # : Penalty parameter/factor 
 

! 

j = "1 : The complex operator 
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Partial Derivative Notation 
 

For simplicity and in order to avoid making up too much space in writing the partial 
derivatives, a special notation is used in this thesis.  
 
Notice that this is for notation purposes only. 

 
If 

! 

X  is a function of vector 

! 

zi = [a,b]T  then its second order partial derivative (or the 
Hessian terms) with respect to 

! 

zi  is written throughout this thesis as such: 
 

! 

"ab
2 X =

# 2X
#a#b

 

 
The first order partial derivative (or the Jacobian and Gradient terms) is written as below: 
 

! 

"aX =
#X
#a

 

 
These terms have been used on numerous occasions throughout the chapters in this thesis. 
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1 Introduction 
 

1.1  Project Outline 
 

The management of the flow of electricity in an electrical power system has been an 

ongoing challenge for power engineers since the time of the early transmission 

systems – the names of Edison, Ferranti, Tesla, Steinmetz and more recently, 

Hingorani and Gyugyi are closely associated with this endeavour. It is yet not 

practical to store electrical power at the multi-MW-level in one storage device, hence, 

a balance between generation and load must be met at each point in time – 

allowances must be made for power system losses.  Furthermore, the electrical power 

network is prone to undergoing various kinds of instabilities and it is highly 

vulnerable to experiencing short-circuit faults due to both external and internal 

phenomena which are random in nature. Not withstanding such difficulties, a smooth 

management of the flow of electricity is of paramount importance to the reliable and 

uninterrupted operation of the electrical power network [1, 2]. From the early days of 

the electricity supply industry the power network has been equipped with various 

kinds of ancillary devices aimed at ensuring its continued and safe operation. This 

ancillary equipment has been designed to control specific variables of the power 

network at specific points, namely, voltage magnitude, line impedance and reactive 

power flow [3, 4]. From very early on, it was recognized that iron core inductors and 

bank of capacitors were very effective devices for counteracting the operational over-

voltages and under-voltages that are quite natural phenomena in overhead 

transmission lines and cables. However, such devices were permanently connected or 

their connection/disconnection was carried out by mechanical means, which meant 

slow responses and not able to aid the power network during emergency conditions. 

More recently developments in the area of power electronics have given birth to a 

new set of controllers, which are both faster and far more reliable than their older 

counterparts, which were mechanically controlled. The large array of new devices are 

all electronically controlled and are said to belong to a family of power system 

controllers termed Flexible AC Transmission Systems (FACTS) [2-4]. The FACTS-

based technology is living up to its promise to deliver power system’s enhanced 

reliability and stability as well as power quality [2]. It is little wonder that the global 
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electricity supply industry, large manufacturers of electrical equipment and the 

research establishment all have thrown their weight behind the FACTS initiative, 

originally developed and nurtured in EPRI, Palo Alto, California two decades ago [2-

24] This research project advances further the understanding and applicability of 

FACTS controllers from the vantage of network-wide modelling aimed at optimal 

power flow solutions. 

  

A key aim of this research project is to develop advanced mathematical models of a 

particular kind of a FACTS component termed the Voltage Source Converter (VSC) 

which is made up of a pre-defined array of fully controlled power electronic switches, 

typically Insulated Gate Bipolar Transistors (IGBT) (or Gate Turn-Off Thyristors – 

GTO) [2-4, 25-27]. The Pulse Width Modulation (PWM) scheme is used to control 

the switching in the IGBT valves (on and off states) in such a way that the VSC is 

capable of either importing or exporting reactive power from the network to regulate 

voltage magnitude up to its rated capacitive value. If a suitable source of active power 

is available on the DC side of the VSC then the regulating capabilities extend to 

active power in addition to reactive power [2-4, 26, 28-38]. VSC’s have proven to be 

extremely fast (with IGBT switching capacity standing at up to 10 kHz) in 

responding to network demands - voltage magnitude regulation, active power transfer 

capacity improvement, reactive power compensation, power quality disturbance 

amelioration and the damping of sustained power system oscillations [4]. 

 

The latest break-through in the applicability of the FACTS technology has been the 

use of two VSCs to transmit AC power using the rectification/inversion resource 

afforded by the VSC structure, having given rise to the new area of High Voltage 

Direct Current Transmission using Voltage Source Converters (VSC-HVDC) [2, 28, 

32, 36, 39]. Two competing brand names are currently in the market: ABB’s HVDC-

Light and Siemens’s HVDC Plus. Two distinct possibilities are well established, the 

zero distance or back-to-back scheme and the point-to-point scheme where 

underground cables or submarine cables of a considerable length link the two VSCs 

on their DC sides.  

 

Bulk electrical power is transmitted mainly by using High Voltage Alternating 

Current (HVAC) transmission lines or cables, from source to demand. For distances 
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longer than 700 km it becomes economically justifiable to transmit the electricity 

using classical High Voltage Direct Current (HVDC) lines [5, 28, 32, 36, 40].  

 

The classical (conventional) HVDC technology uses power thyristors, which are 

semi-controlled valves with line commutating capabilities. However, the six-pulse or 

higher-pulse thyristor-based converter is indeed a fully controlled bridge (i.e. Gratz 

Bridge) – they are termed Current Source Converters (CSC). Power thyristors switch 

on at only once per cycle. Notwithstanding this low-switching characteristic of the 

classical HVDC, this technology remains unassailable for bulk power, long-distance 

transmission applications but its Achilles heel has been the lack of progress in 

expanding the technology to cover the growing demand for truly multi-terminal 

HVDC transmission schemes - the current state of the technology is the Sardinia-

Corsica-Italy (SACOI) HVDC scheme which is a three-terminal link where the three 

converters are connected in series. Owing to the need to balance the currents, it does 

not seem plausible to operate a meshed DC system using CSCs [32, 36]. 

 

However, the development of a new kind of power electronics equipment (IGBTs or 

GTOs) which are fully controlled and switch on and off at a rate considerably higher 

than the fundamental, has opened a new window of opportunity for the development 

of truly multi-terminal HVDC systems. This is possible because the converter 

structures arising from the combined use of fully controlled valves and PWM control 

are VSCs as opposed to CSCs [32, 36, 37]. Due to the characteristics of these 

converters and their ability for seamless control of all the fundamental components of 

the power system, namely voltage, active and reactive powers, they introduce better 

flexibility and controllability in the system than conventional line commuted 

thyristor-based HVDC transmission systems [3-5, 28, 29, 33, 35, 36, 38-42].  VSC-

HVDC is better placed to play a full role in providing interconnections for the safe 

and efficient integration of renewable sources of energy - for instance, Wind Farms 

and PV installations into the AC grid [4, 28, 32, 33, 43, 44].  

 

Furthermore, VSC-HVDC links may be used to interconnect two or more 

independent networks each with a multiple autonomous segments of generation and 

demand. In the case of a segmented power system the main advantage of such a 

configuration would be that the different areas would be completely isolated from one 

another and that re-synchronisation would no longer be required (as it is the case in 
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AC connections). Hence, the fault contribution of each area would be limited to that 

area and other sections of the system will be screened [4, 36, 41]. Furthermore 

independent active/reactive support of the VSC provides voltage regulation at the 

point of connection as well as power flow control from one area to the other 

improving the system’s stability and overall power quality. For instance in the case of 

excessive reactive power demand due to the use of heavy loads, the converters will 

provide the amount of required reactive power, fixing the voltage at a pre-specified 

level which is well within the safe operational margins and in accordance to the grid 

requirements [41].  

 

The VSC-HVDC interconnection systems are finding favour in the interconnection of 

renewable sources of energy, for example, offshore Wind Farms, to the utility grid 

via DC undersea cables [33, 43, 44]. The HVAC transmission technology is not 

considered the best option for interconnecting off-shore sources of energy to the 

utility grid, since the active power transfer capability becomes impaired due to the 

highly capacitive nature of the currents in submarine/underground AC cables after 

only a few tens of kilometres [33]. By contrast, VSC-HVDC systems do not suffer 

such shortcomings - the only limitations of DC submarine/underground cables will be 

their thermal and physical limits as opposed to operational limits. 

 

VSCs do not require a source of reactive power to achieve commutation, they are 

able to control reactive power independently of the AC system and are a good choice 

for interconnecting a weak AC grid to a strong one where rotating sources of reactive 

power, namely generators or synchronous condensers, are limited; in some cases they 

may just not be available [4, 28, 32, 42]. Owing to their great many operational 

advantages, VSC-HVDC systems are in pole position to become the technology of 

choice in future power transmission design and development scenarios, once the 

electronic valve technology develops further – higher power ratings and smaller 

switching losses would need to be achieved. 

 

The main drive of this project is to develop a flexible and robust mathematical model 

for assessing, at the system level, the operational characteristics of the VSC-HVDC 

systems, which are more likely to be the basis of future power grids.  
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In recent years much research has been put into the area of mathematical modelling 

of VSC-HVDC technology [2, 6, 11, 23, 26, 29, 31, 35, 37, 38, 45-48], but an 

advanced model for power flows and optimal power flow analyses, beyond the 

conventional models based on the controllable voltage source concept, is still lacking. 

Accordingly, this research project has been tasked with developing such an advanced 

model to ensure optimal power flow solutions of VSC-HVDC-based transmission 

systems, which are robust towards the convergence and where all the operational 

characteristics of actual VSCs are suitably encapsulated. This stands in contrast to 

previous VSC-HVDC models where the VSC is treated as a controllable voltage 

source where the converter’s PWM control characteristics are not explicitly 

represented. Therefore, results generated using the equivalent voltage source concept 

may not necessarily be accurate since limits violations in, for instance, the PWM 

linear limits or the capacitor rating values may not be easily detected. Also, the 

switching losses accrued by the PWM control may not be easily accounted for even 

in an approximated manner. 

 

Efforts have been made to overhaul the voltage source model with means of 

overcoming such shortcomings. For instance, the amplitude modulation index of the 

PWM control has been included as a separate state variable in the OPF formulation 

[26, 31]. However, this method of modelling still regards the VSC as a controllable 

voltage source with nodal active and reactive powers that are a function of the system 

voltage phasors but which do not link directly with the PWM control characteristic.  

 

In contrast, the new VSC-OPF model introduced in this project produces a new set of 

active and reactive powers that explicitly incorporates the PWM amplitude 

modulation ratio. In this way, the VSC controls the output voltage phasor in both 

phase angle and magnitude directly to achieve active and reactive power control, 

closely following the control behaviour of the actual VSC. Meanwhile, it inherently 

accounts for the converter’s switching losses in the form of a shunt resistor. The new 

VSC model possesses great many modelling advantages over previous models in 

terms of flexibility and accuracy of representation and, at the same time, maintains 

the strong numerical performance of the original Newton’s method. A fact of 

paramount importance which has so far not been emphasized is that the nodal 

structure of the new model makes it straightforward to combine it with other elements 

of the power system either in its AC side or in its DC side. In its AC side it may 
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combine with a tap-changing transformer to make up a STATCOM. Connections in 

their DC sides open the door for VSC-HVDC modelling representation. 

 

Indeed, the new VSC OPF model is easily extended to represent back-to-back and 

point-to-point VSC-HVDC links and, more importantly, multi-terminal VSC-HVDC 

configurations. The back-to-back configuration essentially comprises two VSC 

converters connected in series in their DC sides and the point-to-point system 

includes a DC cable between the two VSCs. The multi-terminal VSC-HVDC system 

practically posses no restriction in the form that the DC network may take; it can be 

multi-terminal radial or multi-terminal meshed. The converter is modelled in OPF in 

such a way that it reflects the independent active/reactive power control of the actual 

VSC. Moreover, it does include the DC transmission losses within the VSC power 

flow equations. No other OPF model developed for the VSC is known to possess 

such strong analytical capabilities. 

 

An OPF with such well developed VSC-FACTS and HVDC modelling attributes is 

an essential platform to incorporate models of the various kinds of renewable energy 

sources, which more often than not are connected to the power grid through power 

electronic converters of the VSC type. This lay on the realm of future research but it 

is quite clear the modelling and software foundations presented in the thesis has 

opened the door for the optimal power flow solutions of electrical power systems 

where large blocks of renewable generation lies side-by-side with conventional 

generation leading up to the new power system paradigm, the so-called smart-grid 

technology. 

 

The mathematical framework used to develop the OPF models of the VSC, 

STATCOM and the various VSC-HVDC schemes is the well-known power 

formulation that incorporates “cost” function that are minimized/maximized – the 

application is termed Optimal Power Flow (OPF) and the solution procedure is 

Newton’s method [1, 2, 49-61]. The OPF is essentially a constrained non-linear 

optimisation problem that is applied to electrical power grids to ascertain the system’s 

optimum operating point in steady state while adhering to a specified set of operating 

constraints.  
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Henceforth, the purpose of the OPF solution is to define the operating conditions 

within which an arbitrary power system, which may be under the influence of 

multiple power controllers, operates optimally. The OPF algorithm determines these 

conditions through fine-tuning system’s state variables which are kept within safe 

operational margins. These limits are called constraints and are essential for the 

realistic representation of the system behaviour [2, 49, 54, 57, 59, 60].  

 

Due to the complexity of modern power systems especially the great many non-

linearity introduced by controllers of various kinds, among them the power 

electronics-based controllers, the OPF is solved by iteration. A large number of 

methods are available to solve the ensuing set of non-linear equations with Newton’s 

iterative method having proven its worth in the application researched in this work 

and this has been chosen to be the main solution algorithm [4, 62-64]. Typically in an 

OPF problem formulation, the objective function to be minimized is taken to be the 

generator’s fuel cost function, which is a quadratic function of the generator’s active 

power [1, 2]. If the objective function is taken to be the generator’s fuel cost function 

then, upon convergence, the OPF will yield the optimum results for the generators’ 

active power generation and their load dispatch. The economic load dispatch of 

generators within a power system is arguably one of the most important aspects of 

steady state optimization analysis in power system studies. It should be noted that 

throughout this research project, for purposes of maintaining consistency, the 

objective function is always taken to be the generator’s cost function. Other 

alternative objective functions can however be selected depending on the purposes of 

the problem. The generic OPF modelling criterion introduced in this thesis is 

designed to incorporate any types of objective functions as long as they can be 

represented by smooth convex analytical expressions. 

 

In summary the main objective of this project is to develop a robust mathematical 

model for Voltage Source Converters and VSC-HVDC links used to design safe and 

reliable interconnections in power systems. Coupled with their strong controllability 

features, they contribute to developing fully flexible and controllable power systems, 

which are more immune to unforeseen disturbances. Such a power grid would be the 

foundation of future system design scenarios. 
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1.2  Main Concepts 
 

The following concepts are the main topics featured in this research: 

 

• Optimal Power Flow Algorithm 

• Flexible AC Transmission Systems (FACTS) – Shunt Controllers  

• Voltage Source Converters 

• High Voltage Direct Current Transmission systems based on Voltage Source 

Converters (VSC-HVDC) 

1.2.1  Optimal Power Flow Algorithm 

 

The OPF algorithm using Newton’s method is the main analytical toolbox of this 

project. All the mathematical models presented in this research thesis are designed for 

the OPF simulations and analysis. The models are tested in a variety of system 

configurations, both small and medium size test systems. 

1.2.2  Flexible AC Transmission Systems (FACTS) and FACTS-based Power 

Systems 
 

One of the main topics of concern in this research is the modelling of the latest 

generation of FACTS devices, which are based on the use of Voltage Source 

Converters. However, the thrust of the research has been in the incorporation of these 

models into the OPF algorithm using Newton’s method to enable improved OPF 

analysis in electrical power networks to enable the global power industry to 

experiment realistic operating scenarios where the new FACTS technologies are 

incorporated. 

1.2.3  Voltage Source Converters (VSCs) 

 

The voltage source converter comprises the major body of this work. The VSC 

controls the network parameters using Pulse Width Modulation scheme, which gives 

rise to a controllable output voltage phasor. An advanced model for the voltage 

source converter has been developed in this project, which accounts for the 

converter’s control characteristics as exclusive state variables in the OPF formulation. 

The model presented in this research is the first of its kind, which is considered a 
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complete paradigm shift in power injection modelling methods especially VSC-based 

systems including VSC-HVDC of various kinds. 

1.2.4  VSC-HVDC Transmission Systems 

 

The VSC-HVDC transmission is a relatively new technology, which has several 

promising features especially in modern power system design scenarios due to the 

robust capabilities of the self-commutated voltage source converter. The VSC-HVDC 

is gaining momentum particularly in recent years due to its robust operating features 

enabled by a relatively simple control method, namely the PWM. In this research, a 

robust mathematical model for VSC-HVDC transmission systems has been 

developed which is suitable for carrying out OPF analysis for a wide range of system 

configurations.  

1.3  Aims and Objectives 
 

The main objectives behind the research reported within this thesis are listed as 

below. 

 

• To incorporate VSC-FACTS and VSC-HVDC modelling capabilities in an 

existing Optimal Power Flow program written in MATLAB code. The 

program has the capability to carry out optimal power flow solutions for 

practically any type of electrical power network - small, medium and large 

scale - and exhibiting any configurations which is operational in practice. The 

network may include or may not include VSC-FACTS and VSC-HVDC. The 

OPF computer program written in MATLAB has been written to be solved 

using Newton’s method and therefore all the models developed throughout 

this project are compatible with Newton’s method.  

 

• To develop a generic robust modelling criterion for the OPF algorithm using 

Newton’s method for augmented Lagrangian functions suitable for modelling 

different kinds of power system components, including power flow 

controllers and VSC-HVDC transmission links.  
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• To develop a comprehensive and flexible model for the Voltage Source 

Converter within the OPF algorithm which must include the PWM switching 

control characteristic in an aggregated form as well as the switching losses 

that occur in any realistic converter. The new model is an essential 

improvement to the existing VSC controllable voltage models and therefore a 

new set of nodal power flows must be realized. The new VSC-OPF model 

must exert the realistic converter’s four-quadrant power control operation. 

 

• To develop a new OPF model for modern shunt reactive compensators, 

namely Static Compensator (STATCOM) based on the new VSC modelling 

paradigm; the interfacing tap-changing transformer ought to be incorporated. 

The new model must possess the control capabilities of a realistic 

STATCOM and must not add unduly to the complexity in the OPF 

simulation using Newton’s method for augmented Lagrangian functions.  

 

• To extend the newly developed VSC-OPF model into the realm of VSC-

HVDC transmission links. The VSC-HVDC models must work seamlessly 

for both back-to-back, point-to-point power transfer applications and multi-

terminal VSC-HVDC systems. It must also include the capabilities of 

realistic VSC-HVDC systems in controlling both active power and voltage 

magnitude in an arbitrary system.  

 

• To carry out a series of OPF simulations for a variety of systems including 

shunt VSC-FACTS controllers for the purposes of optimal reactive power 

control and direct voltage regulation. Notice that neither series VSC-FACTS 

(SSSC) nor compound shunt-series VSC-FACTS controllers (UPFC) will be 

addressed in this research. 

 

• To devise and perform OPF simulation scenarios for multi-terminal VSC-

HVDC links to accommodating several realistic autonomous AC grids into 

one single interconnected system to prove further the notion that multi-

terminal VSC-HVDC links are well suited to carrying out the integration, in 

an asynchronous manner, of otherwise independent system.  
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1.4  Main Contributions to the Field of Power Systems Research 
 

As a result of this research project, the following contributions have been made to the 

field of power system analysis and modelling. 

 

• A robust computer program for solving OPF problem using Newton’s 

method for augmented Lagrangian function has been developed in 

MATLAB. Apart from carrying out OPF solutions for systems with 

conventional configurations, this program includes mathematical models 

developed throughout this research for advanced shunt controllers as well as 

multi-terminal VSC-HVDC systems. The program has been used for carrying 

out robust OPF simulations for a range of standard test systems such as the 

IEEE 14 and 30-bus systems, as well as for other contrived systems.  

 

• A generic modelling criterion has been introduced which is suitable for 

developing mathematical models for OPF algorithm within the augmented 

Lagrangian function framework. The generalized OPF modelling approach is 

sufficiently flexible to accommodate any type of power system component 

since the Lagrangian functions associated with the models are developed 

from their nodal active and reactive powers. This particular modelling 

approach is developed in such a way that the component’s steady state 

operational control abilities are featured as exclusive state variables within 

the OPF algorithm. Consequently, all the models for system controllers that 

are presented throughout this thesis have been based on this general 

modelling approach.  

 

• An advanced mathematical model for the STATCOM within the OPF 

algorithm using Newton’s method has been developed. For completeness, the 

controllable voltage source STATCOM model based on the augmented 

Lagrangian function framework has also been developed for comparative 

purposes with the advanced model of the STATCOM. It calls to attention that 

here-to-fore, no STATCOM-OPF models for Newton’s method for 

augmented Lagrangian functions seem to have been reported in the open 

literature. The STATCOM models based on the equivalent voltage source 
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concept that have been reported are for positive-sequence power flows and 

three-phase power flows. 

 

• A comprehensive OPF model for the Voltage Source Converter has been 

developed which is not based on a controllable voltage source behind the 

coupling impedance. The new VSC-OPF model accommodates realistic VSC 

control characteristics in the form of exclusive state variables in the OPF 

formulation. Furthermore, the model describes the performance of an actual 

VSC in AC/DC systems with a high degree of fidelity. The bi-directional 

active and reactive power flow control of a realistic VSC is modelled using 

the appropriate control constraints. To date, the VSC-OPF model developed 

as part of this research seems to be the most powerful analytical model 

developed for the purpose of OPF solutions – both in terms of the number of 

state variables that it encapsulates and in terms of the modularity which may 

grow incrementally to be a STATCOM or that may be expanded very 

dramatically to become a full multi-terminal VSC-HVDC system of an 

arbitrary configuration. 

 

• Suitable connections of two or more VSC-OPF building blocks yield VSC-

HVDC transmission link models, namely the back-to-back, the point-to-point 

and the multi-terminal schemes. The nodal active and reactive powers for the 

VSC-OPF model are modified to inherently include the DC link’s 

transmission losses. The VSC-HVDC OPF model and its extensions, is the 

most comprehensive mathematical representation to date of a multi-terminal 

VSC-HVDC system, which, nonetheless, is fully flexible and easy to 

integrate in any modelling representation of the electrical power system. In 

order to test its strong modelling and simulation capabilities, a series of 

system simulations for both back-to-back, point-to-point and multi-terminal 

VSC-HVDC systems are presented. 
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1.5  Publications 
 

The following IEEE Transactions publications are under current preparation: 

 

1. Acha, E. and Kazemtabrizi, B., “A New STATCOM Model for Power 

Flows using the Newton-Rapson method”, to be submitted to IEEE 

Transactions on Power Systems, July 2011 

2. Acha, E. and Kazemtabrizi, B., “The Incorporation of a New VSC-HVDC 

Link Model in Power Flows”, to be submitted to IEEE Transactions on 

Power Systems, July 2011 

3. Acha, E. and Kazemtabrizi, B., “A Generalized Model of the Voltage 

Source Converter for Multi-terminal VSC-HVDC Power Flows”, to be 

submitted to IEEE Transactions on Power Systems, July 2011 

4. Kazemtabrizi, B. and Acha, E., “An Advanced STATCOM Model for OPF 

using Newton’s method”, to be submitted to IEEE Transactions on Power 

Systems, August 2011 

5. Kazemtabrizi, B. and Acha, E., “The Incorporation of VSC-HVDC links in 

an OPF using Newton’s method”, to be submitted to IEEE Transactions on 

Power Systems, August 2011   

6. Kazemtabrizi, B. and Acha, E., “Flexible Models of Multi-terminal VSC-

HVDC links for OPF using Newton’s method”, to be submitted to IEEE 

Transactions on Power Systems, August 2011   

7. De la Villa, A., Acha, E., Kazemtabrizi, B. and Gomez-Exposito, A., “An 

Advanced STATCOM Model for State Estimation”, to be submitted to IEEE 

Transactions on Power Systems, September 2011 

8. De la Villa, A., Acha, E., Kazemtabrizi, B. and Gomez-Exposito, A., “The 

Representation of Multi-terminal VSC-HVDC in a State Estimator”, to be 

submitted to IEEE Transactions on Power Systems, October 2011 

 

The following international textbook is in preparation under contract to be delivered 

to Wiley & Sons in October 2011: 

 

Enrique Acha, Rodrigo J Garcia-Valle, Luigi Vanfretti, Antonio de la Villa,  

Pedro L Roncero-Sanchez and, Behzad Kazemtabrizi, “VSC-FACTS, HVDC 
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and PMU: Modelling, Analysis and Simulation in Power Grids”, John Wiley & 

Sons, London 2012 

1.6  Thesis Outline 
 

This thesis has been prepared in six chapters, including Introduction and Conclusion 

as such: 

 

• Chapter 2  

 

The principles of the Optimal Power Flow problem and its solution 

algorithm, Newton’s method for augmented Lagrangian functions, have been 

thoroughly explained in this chapter. A general modelling criterion has been 

presented in this chapter, which is suitable for creating exclusive Lagrangians 

for any type of power system equipment taking advantage of their associated 

nodal powers. The general modelling criterion is also used to reflect the 

system’s operational controllability using additional Lagrangians 

corresponding to the control equipments’ associated equality constraints. 

This is followed by a series of carefully devised system simulations to 

properly depict the analytical prowess of the OPF algorithm using Newton’s 

method for augmented Lagrangian functions. The method of handling 

system’s empirical restrictions using exact penalty functions to create 

augmented Lagrangians has also been explained. The chapter closes with a 

succinct review of alternative OPF solution algorithms, which are not based 

on iterative numerical analysis techniques.   

 

• Chapter 3  

 

In this chapter, the model for a Static Compensator (STATCOM) aimed at 

OPF solutions has been introduced, which represents the STATCOM as a 

controllable voltage source. The solutions afforded by this model are 

compared with those given by the Static VAR Compensator (SVC) OPF 

model, an alternative and older FACTS equipment which serves the same 

primary function as the STATCOM. A variety of power system 

configurations are used for the purpose of this comparison. 
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• Chapter 4 

 

In this chapter, a new and advanced model for the Voltage Source Converter 

for the OPF algorithm has been introduced. Contrary to conventional models, 

the new VSC-OPF model does not treat the VSC as a controllable voltage 

source behind the coupling impedance. As a result, a set of newly developed 

nodal active and reactive powers are introduced, which inherently include the 

PWM control characteristics of the VSC as exclusive state variables 

effectively circumventing most of the mathematical shortcomings of the VSC 

model based on the controllable voltage source concept. This model has been 

tested as a series compensator in a group of stand-alone AC network tests. 

Subsequently, the chapter concludes with describing the conditions whereby 

the new model is used to describe the behaviour of a realistic voltage source 

converter. This is followed by a series of radial DC system simulations in 

which the VSC is used to feed a DC load. Incorporating the new VSC model 

with a variable tap changer transformer in such system configurations will 

yield to modelling the STATCOM based on the new VSC modelling 

paradigm. However the new STATCOM-OPF model has not been addressed 

in this chapter.  

 

• Chapter 5 

 

The new VSC-OPF model presented in the previous chapter is expanded and 

suitably modified in order to model back-to-back, point-to-point and multi-

terminal VSC-HVDC links power transmission applications. A series of 

simulations are presented in this chapter to illustrate the behaviour of the new 

VSC-HVDC OPF models. The most comprehensive mathematical 

representation of a multi-terminal point-to-point VSC-HVDC system based 

on the newly developed VSC-OPF model is presented in this chapter and it is 

applied to medium-size AC systems. 

 

• Chapter 6 

 

The general conclusions are drawn in this chapter for the whole research 

work. This is followed by a series of suggestions for further research in 
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different areas of power system analysis and modelling which may be built 

upon the new research ideas, concepts, methods and code assembled together 

in this timely piece of research. 
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2 Optimal Power Flow 
 

The main body of this chapter comprises explanation of the theoretical background of 

the mathematical framework, namely Optimal Power Flow (OPF) algorithm, upon 

which models of power systems in this project are based. The OPF algorithm has been 

used ever since the early 1960’s with a variety of solution algorithms developed to date 

[1]. In this chapter, the foundations of the mathematical algorithm used to formulate and 

solve the OPF problem has been explained in detail. The Augmented Lagrangian 

Function framework is chosen to formulate the OPF problem, which is then solved using 

Newton’s method. The method’s robustness and fast convergence rate is illustrated by 

depicting a few empirical simulations applied to both experimental and realistic power 

systems. The chapter then concludes with a brief section entailing to the alternative 

solution algorithms including meta-heuristic methods for solving the OPF problem. It 

should however be noted that the mathematical toolbox throughout this research has 

been remained the OPF Newton’s method algorithm.  

2.1  Introduction  
 

The vast degree of density of modern interconnected power systems (networks) as 

well as high rises in fossil fuel prices particularly in recent years, require an 

effective solution for power system planners and engineers to properly cope with 

the ever increasing problem of economic distribution of power between generators 

within the network. Setting proper system operating conditions and strategies 

without compromising system’s operational restrictions is therefore a requirement 

of modern robust power system design solutions [2, 3]. Consequently, in recent 

years, the OPF tool has become widely used for especially economic power dispatch 

purposes as well as determining system’s optimum operating point.  

  

The Optimal Power Flow (OPF) problem is a variant of constrained power flow 

problems. It is applied to the set of power flow equations that are constrained by 

system’s operational characteristics, such as thermal and static stability limits of the 

transmission lines, generator and load bus voltages and phase angles, nodal active 

and reactive powers and depending on the system’s configurations and control 

equipment, other associated state variables [2]. It often comprises an objective 

function (such as the generator’s active power cost or transmission losses), which is 
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then subjected to power system’s operational restrictions. The alleged restrictions 

imposed on system’s state variables and on nodal power flow equations 

accordingly, represent the boundaries of the OPF solution space and are dubbed the 

constraints, which are of equality and inequality types [1-7]. A given solution to the 

OPF problem must always satisfy these restrictions. The OPF feasibility criteria are 

called the optimality conditions [3, 8-11] and are discussed in detail further in this 

chapter.  

 

For a feasible solution to exist, these conditions must always be met upon reaching a 

solution. Consequently, optimal power flows are very effective way to determine 

the network’s state variables that yield the best operating conditions when subjected 

to credible operations restrictions such as thermal or stability limits [12]. 

Furthermore, OPF can also be used to determine the state of a network while under 

the control of FACTS devices using their control characteristic as operating 

constraints [3]. For instance, an SVC (Static VAR Compensator), which is set to 

regulate the voltage of a given bus, is an additional operating constraint in the OPF 

formulation. In this case, the OPF solution is no longer the ‘minimum cost’ solution 

(if the objective is set to minimise generation costs) but it will yield best operating 

conditions that the network achieves while using SVC as a voltage regulating 

device. As a result it makes OPF a powerful analytical solution toolbox with 

application to almost any network, regardless of its configuration and equipment 

used. 

 

Throughout this research the effort has been put into developing advanced models 

for a special group of electronically controlled devices, namely Voltage Source 

Converters (VSCs), which are used to regulate power system’s fundamental 

parameters (Voltage, Phase Angles and Nodal Powers). Using the modelling 

criterion introduced in this chapter, various test case scenarios are deduced to 

properly analyse the behaviour of power networks, which may include a variety of 

devices including several FACTS equipment. 

 

In the subsequent sections, the OPF mathematical formulation using Newton’s 

method has been addressed thoroughly, followed by an extensive literature review 

on previous works done with regards to both devising mathematical solution 

algorithms.  
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Since the optimal power flow problem is closely inter-related to the Conventional 

Power Flow problems, it is only appropriate to start with outlining the general 

principles governing the power flow theory using Newton’s method, which apply to 

both the OPF and CPF (Conventional Power Flow) problems.  

2.2  An Overview of Power Flow Problem 
 

The primary purpose of solving conventional power flow problem is to determine 

the condition of the network under steady-state operation by evaluating its nodal 

voltage magnitudes and phase angles (voltage phasors) as well as nodal active and 

reactive powers and power flows of transmission lines [2, 3, 12]. Due to the 

complex nature of power systems, conventional algebraic solutions are not suitable 

for solving power flow problems and as a result, the set of non-linear equations are 

solved using iterative numerical analysis methods, such as Gauss-Seidel or 

Newton’s method [12-15]. Power flow equations are particularly used in devising 

contingency analysis studies in the event that a change occurs in system’s 

configuration, for instance when adding or removing a transmission line or a 

generator. They are also appropriate for purposes of stability studies in evaluating 

the condition of the system, after the presence of chief disturbances such as short 

circuit faults [2]. Power flow equations therefore, are suitable for determining 

system’s conditions under which it maintains stability by determining its state 

variables in such a way that they agree well within their operating boundaries. 

 

Unlike conventional power flow studies, the purpose of optimal power flow 

however is to evaluate the system’s optimum operating point under specific 

conditions dictated by system’s operation and equipment physical restrictions [6]. 

Consequently, the results obtained from an optimal power flow solution algorithm 

may not necessarily agree with those given by solving the set of conventional power 

flow equations even though both are based on the same network and subject to same 

operating constraints. 

 

For reasons stated further in this chapter (section 2.3) the algorithm chosen for 

modelling purposes throughout this research has been the already well-established 

Newton’s method for an Augmented Lagrangian Function [3-9, 11].  
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Pure Newton’s method [3, 13-16] solves a given non-linear equation 

! 

F(x) = 0 for 

! 

x  using its Taylor series expansion approximation; supposing a solution vector 

! 

x(i)  
exists for function 

! 

F(x)  then its Taylor expansion applies as shown in equation 

(2.1) at iteration 

! 

i  converting the non-linear function 

! 

F(x)  to a series of linear 

equations:  

 

 

! 

F(x(i)) = F(x( i"1)) + # F (x(i"1))$x( i)  2.1  

 

 

Solving 

! 

F(x(i)) = 0  for 

! 

x(i) will yield to the following set of linear equations given 

by the matrix of first order partial derivatives of 

! 

F  or the Jacobian of 

! 

F :  

 

 

! 

F(x(i"1)) = " # F (x(i"1))$x( i)  2.2  

 

 

In which we have: 

 

 

! 

"x( i) = # $ F (x(i#1))#1F(x( i#1)) 2.3  

 

 

According to equation (2.3), Newton’s method is applied to almost any non-linear 

function provided that they are continuously differentiable over the solution space 

[13, 14] and that the Jacobian of 

! 

F  is non-singular [10]. This mathematical fact 

applies for both conventional as well as optimal power flow algorithms that utilise 

Newton’s method.  

 

In power systems analysis paradigm, the function becomes the non-linear power 

flow equations (nodal active and reactive powers) based on network’s nodal 

admittance (or impedance) matrix [3, 6, 12] as shown below: 

 

 

! 

S =V .I* 2.4  
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Replacing for system’s current, for a given bus 

! 

i , the following expression is 

written in the complex polar coordinates:  

 

 

! 

Si = Pi + jQi =Vi .[ Yik
*

k

Nbus

" .Vk
*] =Vi .e

j# i . (Gik $ jBik ).Vk .e
$ j# k

k

Nbus

"  
2.5  

 

 

By implementing complex algebra to equation (2.5), the real and imaginary parts of 

equation (2.5) are calculated. These are shown in equations (2.6) and (2.7) and 

represent the nodal active and reactive powers of the system: 

 

 

! 

Pi = Re{Vi .e
j" i . (Gik # jBik ).Vk .e

# j" k

k

Nbus

$ } =Vi . {Vk[Gik cos(" i #" k ) + Bik sin(" i #" k )]}
k

Nbus

$  
2.6  

 

 

 

! 

Qi = Im{Vi .e
j" i . (Gik # jBik ).Vk .e

# j" k

k

Nbus

$ } =Vi . {Vk[Gik sin(" i #" k ) # Bik cos(" i #" k )]}
k

Nbus

$  
2.7  

 

 

These equations are the principal equations for modelling power system 

components in both conventional and optimal power flow algorithms. 

 

Applying Newton’s method (equations 2.2 and 2.3) to the set of non-linear power 

equations in equation (2.5) for a given vector of state variables 

! 

x = [",V ]T in a n-

bus system, will give rise to the set of n-nodal equations shown in (2.8): 

 

 

! 

["S] = #[$xS]"x  2.8  

 

 

Equation (2.8) is the direct result of applying Newton’s method to a non-linear 

function (or a group of functions in this case nodal active and reactive powers), 

which comprises several elements.  

 

Knowing that 

! 

S = [P,Q]T  is defined as the set of nodal active and reactive powers 

in an arbitrary power system, the matrix of first-order partial derivatives of the 

nodal active/reactive power equations with respect to network’s vector of state 

variables as shown in equation (2.9) and is called the Jacobian of 

! 

S  [3]: 
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! 

J = ["xS] = [dP
dx
, dQ
dx
]T  

2.9  

 

 

In an interconnected power system the vector of state variables consists of the nodal 

voltage magnitudes and phase angles as depicted in equation (2.10): 

 

 

! 

x = [",V ]T  2.10  

 

 

In which 

! 

" = ["2,...,"Nbus]
T is the sub-vector of phase angles (except for the Slack 

bus) and 

! 

V = [V2,...,VNbus]
T is the sub-vector of nodal voltage magnitudes (except 

for the Slack bus). The Slack bus is the reference bus in the power flow problem 

formulation and it always is chosen to be a generator bus with bulk power 

generation capable of handling unforeseen situations that may occur in order to 

maintain the system’s steady state operation [2].   

 

The matrix 

! 

["S] = ["P,"Q]T  is called the matrix of mismatch equations and 

! 

["x] = ["#,"V ]T  is called the correction (or direction) vector, which in the course 

of the solution maintains a declining pace until its pre-defined tolerance level is 

reached [2, 3, 12]. Consequently the set of linear equations to be solved in iteration 

! 

i  via Newton’s method take the form of equation (2.11) below: 

 

 

! 

"x( i) = #J #1( i#1)["P,"Q]T ( i#1) 2.11  

 

 

As seen from equation (2.11), the conventional Power Flow problem is based on the 

co-efficient matrix of first-order partial derivatives of nodal power equations (the 

Jacobian), it should be noted that increasing the order of partial derivatives would 

result in less sparsity of the co-efficient matrix but more speed. In case of Optimal 

Power Flow as it will be mentioned later, a special matrix of second-order partial 

derivatives is used which guarantees both good sparsity and convergence speed [4, 

6].  

 

The initial conditions as required by Newton’s method for both CPF and OPF, are 

defined depending on the types of the nodes in any arbitrary system. The voltage-
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controlled buses, for instance, are those with generators (or any other voltage 

regulating devices) connected to them whereas load buses are those connected to 

loads for which the complex voltage phasors are to be determined through the 

power flow solution [2, 3]. The basic theory of conventional power flows is 

explained in a comprehensive manner in [2] and therefore it is not stressed here any 

further. It should be noted that focus of this research is on a variant of constrained 

power flow problems, namely optimal power flow. A comprehensive discussion is 

therefore given regarding OPF as the main mathematical toolbox of this research in 

the next section.  

2.3  Optimal Power Flow Algorithm 
 

The general principles outlining the optimal power flow formulation and its solution 

algorithm based on Lagrangian functions is presented in a comprehensive fashion in 

this section. The problem formulation presented here is the basis of all the 

modelling that is carried out in this research project.  

2.3.1 An Overview of Optimal Power Flow Problem: Formulation and Solution 

Algorithms 

 

The OPF has several applications in power systems analysis and design [1, 6]. Due 

to the vast complexity of today’s modern power networks they are more prone to 

incurring instability due to even smallest undesired changes in their operation. The 

OPF therefore seems like a reliable tool for devising multiple assessment scenarios 

implemented to a power system in order to ensure its continued safe operation. For 

instance, strong AC couplings exist in a power network with AC line/cable 

interconnections, which in cases of power imbalances, due to a sudden loss of 

generation or line tripping in one area that causes a change in network operating 

frequency, are likely to induce frequency deviations to units in other areas which 

eventually leads to system collapse [2].  

 

Considering the feasibility criteria of OPF, applying an economic dispatch analysis 

achieved by OPF algorithm to this particular system will guarantee the safe 

distribution of loads between multiple generating points while maintaining 

generation at an optimum level that agree well with system’s operational as well as 

equipments’ physical constraints, hence keeping the balance between demand and 
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generation at all times and minimising the possibility of equipment failure as well as 

other undesired dynamic responses. This very fact makes OPF an essential tool for 

modern network analysis, planning and design.  

 

The OPF by definition is a constrained non-linear convex optimisation problem and 

therefore it belongs to the category of non-linear programming. Non-linear 

programming refers to the group of optimisation problems in which the objective 

function to be minimised (or optimised) or constraints show non-linearity [9-11]. 

Convexity on the other hand means that the solution space contains at least one 

global minimum [7, 9, 17]. It is necessary to mention that the OPF solutions carried 

out throughout this thesis yield the best possible solution, which from practical 

perspective is the optimum solution. Depending on the types of constraints used, the 

optimisation problems are categorised into three main groups, namely Equality 

Constrained Problems (ECP), Inequality Constrained Problems (ICP) and General 

Programming Problems [8, 10].  

 

A general programming problem refers to those classes of optimisation problems, 

which contain both equality and inequality constraints. Most of the optimisation 

problems applied to physical systems (power networks included) are of this type. 

 

Within the power systems paradigm, the equality constraints refer to the conditions 

which must hold if the system is to continue normal steady-state operation, in other 

words, the operation of a given power system is stable as long as the nodal power 

balance equations hold for each bus. Moreover, the inequality constraints are the 

result of implementing network’s realistic operating conditions as well as equipment 

limits, for instance complex voltage in each node in an inter-connected power 

system is bounded by its upper and lower margins which are then enforced to ensure 

system operates within its static stability margins. Several solution methods have 

been proposed to solve the general programming problems. The most conventional 

and reliable method is to use numerical solution methods aimed at decreasing the 

gradient of the problem’s objective function. These are collectively known as 

gradient-based methods. There are generally three categories of such solution 

algorithms for a general non-linear programming problem such as the OPF [3, 8-

11].  

I. Interior Point Methods (e.g. Logarithmic Barrier Function)  
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II. Exterior Point Methods (e.g. Quadratic Penalty Function) 

III. Exact Penalty Function Methods (e.g. Augmented Lagrangian 

Function) 

   

Lagrangian and penalty function methods share the same mathematical principles 

that aim to convert the constrained problem of OPF into a single (or a series of) 

unconstrained problem by penalising the objective function for points outside the 

feasible solution space (hence the name exterior point method) [9, 10]. The main 

difference between the two is that in penalty function methods (for instance in 

quadratic penalty function method), the objective function is penalised directly 

whereas in Lagrangian type methods, it is the Lagrangian function (formed via the 

use of Lagrangian multipliers) that is penalised. The latter has considerable 

numerical advantage over the former approach in that the optimal solution is 

reached without having to enlarge the penalty parameters of the penalty function to 

near infinity, a common problem in exterior point methods which introduces ill-

conditioning and therefore numerical difficulties [8-10]. The augmented Lagrangian 

function by comparison is therefore considered as an improvement to the penalty 

function method, for it is only necessary to form one single unconstrained problem 

by combining a Lagrangian function (using multipliers) and a quadratic penalty 

function (using penalty parameters) together, therefore it has a better convergence 

rate than pure penalty function methods (obviously given the right initial 

conditions).  

 

Another alternative to exterior point methods is the use of Barrier Functions [8-11, 

18-22]. The barrier functions (typically logarithmic) prevent the solution points of 

the dual problem (unconstrained penalised function) from crossing the feasible 

space by setting barriers against its boundaries [9]. Because in this method the 

optimum is reached from within the solution space they are formally called Interior 

Point Methods.  

  

Over the course of the years, comprehensive research has been carried out in the 

area of OPF on both methods (exterior or interior point) and there are several 

publications in open literature that address the problem of the OPF [1, 4-7, 18-35].  
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These works are normally divided into two categories; the first group pertains to the 

principal analysis and definition of OPF, which has been developed since the late 

60s. One of the most important works done in the area of OPF formulation is the 

first-order gradient decent approach proposed by Dommel and Tinney in [1]. In this 

paper published in 1968 the principles of a Jacobian based OPF solution algorithm 

via Newton’s method is presented, which attempts to minimise a set of linear 

equations developed from Lagrangian function of the system by directly evaluating 

a gradient of objective function. Since this method uses Jacobian terms to evaluate 

the state variables via Newton’s method just like a conventional power flow 

problem (section 2.2) it gets highly complicated in real multi-node systems, it has 

also less convergence rate (although it maintains quadratic convergence) than higher 

order methods such as explicit Hessian-based solutions [4, 5].  

 

On the other hand, applying Newton’s method to explicit Hessian matrix would 

result in improved convergence rate at the expense of losing the higher degree of 

sparsity in the matrix of coefficients. The less sparsity of Hessian matrix is a 

mathematical fact and stems from the definition of the Hessian as being the second 

order partial derivatives of a function (in case of a power system, nodal powers) 

with respect to state variables (for instance nodal voltages or phase angles). 

According to definition of Hessian/Jacobian terms the non-neighbouring partial 

derivative terms in the Jacobian matrix are always zero but not in the Hessian 

matrix, which will ultimately yield to a more crowded Hessian matrix for the same 

system [4]. As an improvement to the Hessian approach a newly defined second 

order partial derivatives matrix of coefficients is introduced in [6] by direct 

evaluation of the Lagrangian multipliers in the system of linear equations, thus 

combining both Hessian and Jacobian terms to achieve better sparsity and yet better 

convergence rate. One of the difficulties of the method developed in [6] is in the 

nature of active inequality constraints, however the constraint handling has been 

improved in [7, 23, 26] with introducing the augmented Lagrangian function by 

combining multipliers and penalty functions.  

 

From globally convergent algorithm to improvements in interior-point methods, 

there is a diverse range of different methods to solve the OPF problem. However in 

this research project the proposed solution algorithm has been the Newton’s method 

for an augmented Lagrangian function [6, 7] combining the strong attributes of both 
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Newton’s method and non-linear programming method of augmented Lagrangian 

function. The second group of papers relate to the variety of approaches (solutions) 

and modifications taken regarding the OPF mathematical solution algorithms [18-

20, 22, 28-31, 34-36].  

 

Most recently the trend in developing solution algorithms for OPF problem has been 

slightly shifted from gradient-based conventional numerical analysis (such as the 

augmented Lagrangian method) to direct search methods, heuristic approaches and 

evolutionary programming, and algorithms such as Particle Swarm Optimisation 

have come to light in the realm of power systems research [24, 27, 32, 33]. These 

so-called alternative approaches shall be considered in a separate section (section 

2.5) at the end of this chapter but it should be mentioned here that analysing various 

approaches to the problem of optimisation is a purely mathematical argument, 

which is out of the scope of this research project. In the subsequent paragraphs, 

however, the basics of the OPF solution algorithms based on Lagrangian methods, 

has been presented.  

2.3.2 Newton’s Method for Augmented Lagrangian Function in Optimal Power 

Flow: Mathematical Toolbox 

 
For reasons stated above (numerical stability, improved convergence), in this 

research, the augmented Lagrangian function is chosen to formulate the OPF 

problem. The explicit Newton’s method discussed in previous section is used to 

solve the system of linear equations formed with the matrix of second order partial 

derivatives of the augmented Lagrangian function as the objective function with 

respect to system’s state variables. This method in comparison with the pure penalty 

function method and interior point methods has the best convergence rate possible. 

Furthermore it handles the constraint violations by combining multipliers and 

quadratic penalty functions together to achieve better reliability in finding the 

optimal solution [8]. All the models developed in the subsequent chapters are within 

such framework and therefore the sound understanding of the mathematical toolbox 

developed here is of paramount importance. It should be noted that the purpose of 

applying Newton’s method is to minimise the augmented Lagrangian function and 

eventually determine the optimal solution.  
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2.3.2.1  Optimal Power Flow Problem Formulation: Objective Function, System State 

Variables Vector and the Constraints Set 

 

The goal of the OPF algorithm is to find a series of settings for network parameters 

that are both feasible and yield to the optimum operating point of the system. For 

this purpose, the OPF must possess an objective function. Normally the objective 

function for an interconnected power system is chosen to be the generators’ cost 

function, namely a quadratic function based on the generators incremental cost 

curve [2]. However alternative types of the objective function, such as transmission 

losses, reactive powers and equipment locations, may be chosen depending on the 

network requirements. It should be noted that the mathematical formulation 

described in this chapter remains generic regardless of the type of the objective 

function chosen, and consequently all the models developed in next chapters, are 

compatible as long as they are applied in Newton’s method framework for any 

network configuration of any size and with any type of objective function. For 

consistency purposes, the objective function chosen throughout this research has 

been the non-linear generator cost function as explained in [3] and is shown in 

equation (2.12): 

 

For 

! 

Ng generators in a given system the cost function is defined as below: 

 

 

! 

F(Pg ) = (a j + bjPg j
+ c jPg j

2 )
j=1

Ng

"  
2.12  

 

 

It is taken to be a quadratic function of generator’s active power or 

! 

Pg  based on its 

cost curve produced by cost coefficients 

! 

a , 

! 

b and 

! 

c . The generators’ active power 

schedule is initially determined through a loss-less economic dispatch analysis as 

explained in [2, 3].  

 

This means that at the start of the OPF algorithm the loads are distributed in such a 

way that the incremental cost of generation of all the generating points remain 

similar (equal incremental cost criterion), in other words the rate of the generation 

costs with respect to changes occurring in the generators outputs is constant or 

! 

"Pg
F(Pg ) = const .  
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This criterion provides a suitable starting condition for the OPF algorithm. The 

solution of the OPF algorithm however determines the final distribution of loads 

between the generators taking into account the system’s losses as well [2].  

 

The OPF in its most general form is formulated in equation (2.13) as a general non-

linear programming problem.  

 

For the given objective function 

! 

f (y)  in 

! 

Rn  space the following expression is 

written:  

 

 Minimise 

! 

f (y)   

 

Subject to 

  

! 

h(x) = 0

g(x) " 0

# 

$ 
% 

& 
% 

 

2.13  

 

 

Where  

 

! 

h(x) is taken to be the set of equality constraints, and  

 

! 

g(x)  is the set of inequality constraints (operational limits) 

 

And 

! 

x  is the state variables vector (primal variables) comprising of the system’s 

nodal voltage magnitude and phase angles as well as variables associated with any 

FACTS equipment or transformers present in the system as shown in equation 

(2.14) below. They help define the system as a whole:  

 

 

! 

x = [",V ,xF #T ,y]
T  2.14  

 

 

! 

y  is the sub-vector of state variables associated with the objective function whose 

values are set to achieve the optimum. For instance for the objective function to be 

the generators’ cost function the vector 

! 

y = [Pg ]
T

 applies, which corresponds to the 
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generators’ active power output. In order to adhere to the conditions of the 

Newton’s method the objective function needs to be chosen as a convex function 

with continues differentiability within the OPF solution space.  

 

System’s state variables (equation 2.14) are essentially categorised into two main 

types, namely Control and Dependent variables [1, 3, 4, 6, 7, 23]. By definition, 

control variables are those whose values are set throughout the solution process in 

order to achieve the optimum operating point whereas dependent variables are those 

classes of state variables whose values depend on the condition of the system as 

well as control variables. For instance generating buses are of control type, because 

their terminal voltage is regulated by means of generator field control, as long as the 

generator operates within its reactive power limits (AVR works under normal 

operating conditions). On the other hand in the event of a violation in generator’s 

reactive power its voltage no longer represents a control variable but its magnitude 

will depend on the amount of generator’s violated reactive power, which is now 

fixed during the course of the solution. Other examples of control variables include, 

transformer tap ratios and phase shifter angles as well as control parameters of 

FACTS equipment. Moreover, load bus complex voltages are of dependent type 

variables whose values depend on the amount of nodal active/reactive power flows. 

 

As seen in equation (2.13), the objective function by definition is always subject to 

system operating constraints. The system equality constraints are categorised into 

two main groups namely, Functional and Variable constraints [1]. The most 

important functional constraint is the system nodal power balance equation, which 

accounts for its normal steady-state operation. 

 

As stated in equations (2.15) and (2.16) for a given bus  the following applies:    

   

 

! 

Pik " Pgk + Pdk = 0
i

n
#  

For 

! 

k =1,...,Nbuses 

2.15  

 

 

And 

 

! 

'k'
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! 

Qjk
"Qgk

+Qdk
= 0

j

n
#  

For 

! 

k =1,...,Nbuses 

2.16  

 

 

These equations state that in each node throughout the solution process, the balance 

between demand and generation must maintain for a continued steady-state 

operation (the algebraic summation of all the powers coming into and going out of 

the node must be equal). They hold for a normal AC system as well as FACTS-

based systems. Other functional constraints are implemented, if needed, on power 

flow control equations (for example for active/reactive power control in a Voltage 

Source Converter). These particular constraints are addressed thoroughly in next 

chapters.  

 

The variable constraints are exclusively used to model the control of system 

operation (Voltage Regulation, Phase Angle Control, Transformer Variable Tap 

Control) and therefore are defined on control variables. For example in case of a 

static VAR compensator, an additional equality constraint is added to its 

corresponding nodal voltage magnitude. The variable equality constraints are 

enforced using penalty functions.  

 

The inequality constraints set (both on parameter and functional) are called the 

binding set [3] and normally comprise the generators’ reactive power limits for 

generating buses, along with voltage and active power constraints for other buses as 

well as limits for additional equipment such as FACTS devices or transformers 

(equations 2.17-2.20): 

 

 

! 

QGk

min "QGk
"QGk

max  2.17  

 

 

 

! 

Pk
min " Pk " Pk

max  2.18  

 

 

 

! 

|Vk
min |"# k

min $|Vk |"# k $|Vk
max |"# k

max  2.19  
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! 

xF "T
min # xF "T # xF "T

max  2.20  

 

 

If a violation occurs throughout the course of the solution, the binding set of 

variables are enforced to their limits by means of exact penalty functions (penalising 

their Lagrangians) in order to satisfy the OPF optimality conditions [3, 9-11]. It 

should be noted that the functional inequalities are bounded to the system via 

Lagrangian multipliers only if a violation occurs in their values, whereas the 

functional equalities are bounded to the system throughout the solution process [3]. 

To add or remove any functional constraints to or from the system formulation, it 

may be necessary to penalise their corresponding Lagrange multipliers [3]. This fact 

is explained more thoroughly in further chapters, where the system operation can be 

described through different functional equality constraints using unique multipliers.  

2.3.2.2  Optimal Power Flow Solution Process: Newton’s method for Augmented 

Lagrangian Function 

 

As mentioned earlier, the purpose of Lagrange multipliers is to convert the 

constrained problem of OPF into an unconstrained problem by forming a 

Lagrangian function.  

 

Using Lagrange multipliers method, the problem formulation given in equation 

(2.13) is converted into one single unconstrained problem for the newly created 

augmented Lagrangian function as shown in equation (2.21) below:  

 

 Minimise 

! 

L(x,",y,u# )  

 

2.21  

 

 

Where 

! 

L  is the new objective function and has the following general form: 

 

 

! 

L(x,",y,u# ) = fi(y)i
$ + " j

T h j (x) +
j

$ %# (u# ,g# (x)) 2.22  

 

 

In which  
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! 

fi(y)"  is the summation of all the objective functions  

 

! 

h(x)  is the set of equality constraint equations (equations 2.15 and 2.16) 

 

! 

g(x)  is the set of inequality constraint equations 

 

! 

x  is the state variables vector that includes both control and dependent variables 

(equation 2.14) 

 

! 

"  is the vector of equality constraint multipliers  

 

! 

u  is the vector of inequality constraint multipliers  

 

! 

"# (uk,g# (x)) is the quadratic penalty function for corresponding active inequality 

constraints (active binding set).  

 

The equality constraints are handled via the Lagrange multipliers (dual variables) 

that in turn, represent the sensitivity of the objective function to the changes in 

system’s constraints [1, 3, 6, 8]. For example in case of active power balance shown 

in equation (2.15), its Lagrange multiplier corresponds to the changes in the 

objective function with respect to changes in the active power equality constraint 

(for each 1 MW of increase in power for instance) at the optimum operating point 

[2]. Consequently the Lagrange multiplier associated with a given bus ‘

! 

i’ is defined 

as below:  

 

 

! 

"i =#hi
L =

dfi
dhi

 
2.23  

 

 

Each of the system functional constraints has to be added to the system Lagrangian 

using its associated multiplier. The active inequality constraints are added to the 

system, in case of limit violations using the quadratic penalty function.  

 

For practical purposes, it is assumed that during the course of OPF solution the 

inequalities remain inactive (in other words the system is assumed to work under 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 38 

normal steady-state conditions) therefore the augmented Lagrangian introduced in 

equation (2.22) takes the following form: 

 

 

! 

L(x,",y) = f i(y)i
# + " j

T h j (x)j
#  2.24  

 

 

Equation (2.24) states that the system Lagrangian function is essentially the 

summation of all the objective functions along with the nodal active and reactive 

power equations set in equations (2.15) and (2.16). In section (2.3.4) the modelling 

criterion for power system components is given for properly form a Lagrangian 

function. By applying Newton’s method to equation (2.22) the OPF is solved as a 

set of linear equations as such: 

 

 

! 

"zz
2 L(z) # $z ="zL(z)  2.25  

 

 

In which 

! 

'z'  is the vector of state variables as well as Lagrange multipliers (primal 

and dual variables vectors) as such: 

 

 

! 

z = [x,",y]T  2.26  

 

 

And 

! 

"z  is the mismatch (or correction) vector as shown in equation (2.27). 

 

 

! 

"z = ["x,"#,"y]T  2.27  

 

 

! 

"zL  is the search direction or the gradient vector of the Lagrangian function, which 

should always be decreasing so as to minimise the system Lagrangian. Upon 

convergence of Newton’s iterations, the gradient vector should be within a pre-

determined tolerance typically taken to be 1e-9 [3].  

 

The system of equations depicted above is illustrated with second and first order 

partial derivatives matrices, namely Hessian and Jacobian terms collectively 

comprising a coefficients matrix, taking into account the objective function and its 
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associated control variable as well. The matrix of coefficients should not be 

confused with explicit Hessian evaluation of the Lagrangian function [4, 5], which 

would be much less sparse. Instead, the matrix of coefficients 

! 

"zz
2 L(z)  is a 

combination of Hessian and Jacobian terms which maintains an acceptable degree 

of sparsity through using of Jacobian terms and at the same time achieves quadratic 

convergence rate in the Newton’s loop by using higher-order partial derivative 

terms of the Lagrangian [6].  

 

 

! 

"xx
2 L(x,#,y) "xh(x)

T "xy
2 L(x,#,y)

"xh(x) "yh(x)
T

"yh(x) "yy
2 f (y)

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 
*

+x
+#

+y

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

= ,

"x f (y) +"xh(x)
T #

+h(x)
"y f (y) +"yh(x)

T #

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 
 

2.28  

 

 

Notice the vector of mismatch equations in the gradient vector is dubbed 

! 

"h(x)  
which corresponds to the mismatch of nodal active and reactive powers, presented 

in section (2.2).  

 

If the objective function is taken to be the generators’ cost function as presented in 

equation (2.12), then equation (2.28) is expressed in expanded form using Jacobian 

and Hessian terms as such: 

 

 

! 

"
# 2
2 L "#V

2 L "#x
2 L "# h

"V#
2 L "
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2 L "Vx

2 L "V h
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2 L "xV

2 L "
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2 L
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2 L "
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* 
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"# h(x)
T $
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T $

"xF -T
h(x)T $

,h(x)
"Pgi

f (Pgi ) - $pk

% 

& 

' 
' 
' 
' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
* 
* 
* 

 

2.29  

 

 

In which the following expressions are written for the Hessian/Jacobian terms 

associated with the generator cost function in equation (2.12): 

 

For the 

! 

ith  generator connected to the 

! 

kth  bus, the system Lagrangian (ignoring 

the quadratic penalty function) is written as such: 

 

 

! 

L = ai + biPgi + ciPgi
2 + "pk

( Pk# $ Pgi + Pdi ) + "qk ( Qk# $Qgi
+Qdi

)  2.30  
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Therefore calculating for the first and second partial derivatives of the following 

function with respect to the objective function variable, namely the generator active 

power output, would result in the following expressions: 

 

 

! 

"# pPgi
2 L = 0 +"Pgi

( Pk $ Pgi + Pdi ) + 0% &

"# pPgi
2 L = $1

 

2.31  

 

 

And 

 

 

! 

"Pgi
2

2 L ="Pgi
2

2 (ai + biPgi + ciPgi
2 ) + 0 + 0#

"Pgi
2

2 L = 2ci
 

2.32  

 

 

The partial derivatives of the objective function with respect to all the other 

variables in this particular case are zero since the generator cost function is only a 

function of 

! 

Pg .  

 

Equation (2.29) essentially represents the general format of OPF iterative solution 

via Newton’s method for any type of network configuration and regardless of the 

equipment present. The vector of variables in equation (2.29), include all the state 

variables associated to the system, it also consists of the system’s Lagrange 

multipliers whereby the equipment’s constraints are bounded to create the system 

Lagrangian. As a result of using multipliers the Lagrangian function depicts the 

system’s realistic behaviour characteristics in forms of functional constraints (power 

balance equations).  

 

Notice that the penalty function 

! 

"# (u# ,g# (x))  corresponding to the binding set (the 

set of inequality constraints) is not included in the Lagrangian function because they 

are not activated at the start of first iteration, in other words, active set only contains 

the state variables associated to the equality constraints and their corresponding 

multipliers (functional constraints). If a limit violation occurs during the course of 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 41 

the solution, the penalty function will be activated forcing the violated inequality to 

its limits to satisfy the optimality conditions. Consequently the penalty function 

adds the set of activated inequalities to the already existing active set. The algorithm 

then solves the objective function for this newly updated active set.  

2.3.2.3  Karush-Kuhn-Tucker Necessary Optimality Conditions (NOC’s) 

 

The OPF convergence criteria are expressed using the necessary optimality 

conditions otherwise known as the KKT conditions [1, 6, 9, 11] for a feasible 

solution. According to these conditions, upon convergence an optimum operating 

point, 

! 

z* = [x*,"*,u*]T , has been definitely reached only if all the following 

statements are true: 

 

1. 

! 

"xL(z
*) # 0  : The gradient vector with respect to state variables has to 

have reached a pre-determined tolerance level near zero (internal 

iterations must converge) 

 

2. 

! 

"#L(z
*) = h(x*) = 0  : All equality constraint must be satisfied, in other 

words the network must be operating under normal working conditions 

 

3. 

! 

u"
*g"

* = 0 : The product of the vector of inequality constraint multipliers 

and their corresponding inequalities must always be equal to zero 

(system works under normal conditions) 

 

The last condition illustrates the feasibility of a solution, stating that for a given 

point to be acceptable, either of the following conclusions must always be true, if 

! 

u"
* = 0 , then its corresponding inequality constraint must hold if a solution is to 

exist, namely 

! 

g"
* < 0 . On the other hand if 

! 

g"
* = 0  then its corresponding multiplier 

must be positive, namely 

! 

u"
* > 0 , indicating that the alleged inequality has been 

activated during the solution process and is enforced to its limit boundaries [9]. 

Once again the KKT conditions emphasise the strong degree of reliability of 

Newton’s method in terms of providing good realistic results based on system’s 

operating constraints.   
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2.3.3 Quadratic Penalty Function in Augmented Lagrangian Method (Exact 

Penalty Function) 
 

The quadratic penalty function defines an arbitrary boundary to the OPF solution 

space. It is only associated with active inequalities on state variables (and not 

functions) and has the general form illustrated in equation (2.33). In this research 

the quadratic penalty function 

! 

"  is not actually a pure penalty function, instead it is 

a penalised Lagrangian function or exact penalty function for the set of active 

inequalities (or the active binding set) [8]. As discussed in section (2.2), combining 

the Lagrangian function with a penalty function to bind the constraints to their 

respective limits has significant numerical advantages over pure penalty function 

methods where increasing the penalty parameter to near infinity to bind a value to 

their limits will result in ill-conditioned solutions. The quadratic penalty function 

binds the active inequalities, as new variable equalities, to the system Lagrangian 

through their associated inequalities multipliers, namely 

! 

u . For the 

! 

kth  active 

inequality, the quadratic penalty function takes the following form: 

 

 

! 

"k (uk,#,gk (x)) =

uk (gk $ gk
max ) +

#
2
(gk $ gk

max )2,uk +#(gk $ gk
max ) % 0

uk (gk $ gk
min ) +

#
2
(gk $ gk

min )2,uk +#(gk $ gk
min ) & 0

zero

' 

( 

) 
) ) 

* 

) 
) 
) 

 

2.33  

 

 

The multiplier associated to active inequalities is upgraded using the expression 

below [3,8]: 

 

 

! 

uk
i =

uk
i"1 +# i"1(gk " gk

max )2,uk
i"1 +# i"1(gk " gk

max ) $ 0
uk
i"1 +# i"1(gk " gk

min )2,uk
i"1 +# i"1(gk " gk

min ) % 0
zero

& 

' 
( 

) 
( 

 

2.34  

 

 

This function is essentially called the augmented Lagrangian function and has two 

properties: a Lagrangian function for the active inequality defined by the multiplier 

! 

uk  which basically binds the active inequality to its limit boundaries within the OPF 

solution space, and a penalty function defined by penalty parameter 

! 

" , which is 
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used to penalise the Lagrangian function for any violations that takes place. The 

continuous differentiability is maintained for the augmented Lagrangian function by 

choosing a quadratic penalty function [9].  

 

The function is non-zero for any violations in system state variables vector. The 

non-zero penalty parameter is initialised at a typically large constant, but care needs 

to be taken, as too large a constant would lead to ill conditioning of the coefficients 

matrix, which may lead to unfeasible solutions [8-11]. Nevertheless, it should 

maintain an increasing pace throughout the course of the solution, if there is an 

active binding set, according to a pre-determined criterion usually set by the user at 

the start of the iterative process. However upon convergence the product of the 

active inequality multiplier and its corresponding constraint must be zero, which 

means that with the act of penalty parameter the corresponding inequality constraint 

is enforced to its limit boundaries, and satisfied the third KKT condition namely, 

! 

uk (gk " gk
lim ) = 0 .   

 

Notice that this function in added only after the Newton’s iterations solves the 

system (internal loop) when all state variables are checked against their 

corresponding limits so that the violated ones may be included in the active set via 

their associated multipliers [3, 6, 8, 23, 26]. Should there be any violations in the 

constraints set the augmented Lagrangian function is then solved in another iteration 

of the internal loop with the active variable inequalities bounded towards their 

corresponding limits through the action of the penalty function [9]. The multipliers 

associated with active inequalities however are only updated after the internal loop 

using equation (2.34). This method effectively enforces the limit boundaries of the 

violated state variables and satisfies the third KKT necessary optimality conditions, 

if there is a feasible solution, otherwise the algorithm will not converge towards a 

solution in which case it is said that the network conditions are not realistically 

presented.  

 

The pure penalty function method may be used to enforce the effects of variable 

equalities on certain control variables for instance voltage regulation at a given bus 

is achieved by penalising its corresponding nodal voltage magnitude for points other 

than a pre-specified value. To showcase this property in the OPF algorithm a 

parametric example is given in the next section.  
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2.3.4 Modelling Criterion of Power System components in OPF: A Parametric 

Example  

 

Defining models for power system components in the OPF algorithm calls for 

careful formation of Lagrangian functions for each existing component. 

Consequently creating the system’s Lagrangian function is the most important stage 

in the OPF solution algorithm and therefore it is stressed here as a parametric 

example. Figure (2.1) shows a simple 4-node system in which a transformer and a 

shunt compensator are also present.  

 
 

A hierarchical solution process is given which if followed thoroughly would help to 

create Lagrangian functions for the most complex systems as well as the simple 

ones. This method has been used in the computer program developed for this 

research project as well and has proven its robustness against a variety of test cases.  

 

Each system component, transmission lines, generators, shunt compensators, 

transformers and FACTS equipment are modelled by their complex nodal power 

equations in steady state operation. The nodal powers eventually form the power 

balance equation, which essentially states if the system is working under normal 

operating conditions. As a result, the power balance equation is the most important 

functional equality constraint in the OPF that describes the steady state behaviour of 

the network and needs to be bounded to the system Lagrangian using appropriate 

multipliers. Therefore to form the Lagrangian function properly, the power flow 

equations (2.6) and (2.7) has to be calculated thoroughly for all the models for 

system components and equipment that are connected to the system nodes. Forming 

the appropriate admittance matrix is crucial as the first step in determining system 

nodal powers. If for instance, there are FACTS and transformer devices present in 
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create Lagrangian functions for the most complex systems as well as the simple 
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balance equation, which essentially states if the system is working under normal 
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Figure 2.1 - 4-node Test System 
Figure 2.1 - 4-node Test System 
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the system, their associated powers are calculated based on their models defined by 

unique nodal admittance matrices. The same applies for transmission lines as well 

as shunt compensators.  

 

Step One – State Variables Vector: 

 

The first step in formulating the Optimal Power Flow using Lagrangian Function for 

such a system is to identify the vector of state variables assuming that the objective 

function is the generators’ cost functions as given by equation (2.12) and that bus 1 

is the slack node. The complete vector of state variables is given in equation (2.35): 

 

 

! 

x = ["2,"3,"4 ,V1,V2,V3,V4 ,Bshunt3
,Pg1 ,Pg2 ]

T  2.35  

 

 

Knowing that for each functional equality constraint, there is a Lagrange multiplier, 

the system Lagrangian can be formed appropriately by following the stages below:  

 

Step Two – Calculating Nodal Powers: 

 

1. Forming the nodal admittance matrix for the system (excluding transformers 

and other FACTS devices): 

 

 

! 

YTL =

Y11 "Y12
"Y12 Y22

Y33 "Y34
"Y43 Y44

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

2.36  

 

 

2. Calculating nodal powers for all nodes (excluding transformers and/or other 

equipment) – Transmission line models: 

 

Rewriting equation (2.5), the nodal apparent powers are calculated for each 

node as such for the ‘

! 

ith ’ node: 

 

! 

STL i =Vi .[ YTL ik
*

k=1

4

" .Vk
*] =Vi .e

j# i . (Gik $ jBik ).Vk .e
$ j# k

k=1

4

"

i = [1,2,3,4]

% 

& 
' 

( 
' 

 

2.37  
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3. Forming the nodal admittance matrix for transformers and/or other 

equipment (including FACTS): 

 

This system, includes one transformer and one shunt compensator each of 

which has their own associated admittance matrix: 

 

Transformer (assuming it is a fixed tap transformer with tap changing 

facility on primary side) [37]: 

 

 

! 

YTR =
YTR22 "TYTR23
"TYTR32 T 2YTR33

# 

$ 
% 

& 

' 
(  

2.38  

 

 

Shunt branch (assuming it is a fixed shunt susceptance for instance a 

capacitor bank with the susceptance value of ‘

! 

Bshunt ’): 

  

 

! 

Yshunt = " jBshunt  2.39  

 

 

For detailed modelling of transformers refer to chapter four and [3]. 

 

4. Calculating transformer powers and/or other equipment powers: 

 

Based on the transformer nodal admittance matrix, its power is calculated as 

such for the transformer side connected to the ‘

! 

sth’ node: 

 

 

! 

STR s =Vs.[ YTR sk
*

k=2

3

" .Vk
*] =Vs.e

j# s . (GTR sk $ jBTR sk ).Vk .e
$ j# k

k=2

3

"

s = [2,3]

% 

& 
' 

( 
' 

 

2.40  

 

 

And finally the calculated reactive power associated with the shunt element: 

 

 

! 

Qshunt3
= "V3

2 jBshunt3  2.41  
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5. Calculating total nodal powers in each node: 

 

 

! 

Pn
calc = PTLn + PTRn  2.42  

 

 

 

! 

Qn
calc =QTLn

+QTRn
+Qshuntn

 2.43  

 

 

6. Forming the power balance equations for the ‘

! 

nth ’ node (Functional 

equality constraints set): 

 

 

! 

Pn
calc " Pgn + Pdn = 0

Qn
calc "Qgn

+Qdn
= 0

# 
$ 
% 

& % 
 

2.44  

 

 

Step Three – Forming System Lagrangian: 

 

 

! 

Lsystem = f i(Pgi )
i=1

ngen

" + #pn
(Pn

calc $ Pgn + Pdn )
n=1

nbus

" + #qn (Qn
calc $Qgn

+Qdn
)

n=1

nbus

"  
2.45  

 

 

Equation (2.45) represents the system’s total Lagrangian function. It includes the 

effects of all the controllers and transformers that may be present in the system 

configuration in the form of total calculated nodal powers. This particular function 

is then solved using Newton’s method as depicted in detail in section (2.3.2). It 

should be noted that in this particular example the only functional equalities are 

power balance equations however, there might be cases that due to the presence of 

power flow controllers (for instance Voltage Source Controllers) additional 

functional equalities have to be added to the system Lagrangian to incorporate the 

power regulation features associated with those controllers. This very fact is 

explained in detail in chapter four.  

 

Step Four – Linear System of Equations: 

 

The linear system of equations to be solved via Newton’s method for the system 

Lagrangian formed in equation (2.45) is presented in the following equation (The 

general format of linear system of equations is given in equation 2.29). The 
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multipliers associated with equality constraints are added to the vector of state 

variables to form the vector ‘

! 

z ’.  

 

The linear system of equations consisting of the second order partial derivatives of 

the Lagrangian function with respect to vector ‘

! 

z ’and the gradient is formed as 

shown in equation (2.46): 
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2.46  

 

 

If there are any violations, the active set is augmented and the system Lagrangian is 

expanded by the quadratic penalty function thus creating an augmented Lagrangian 

function which is then solved via Newton’s method. It should be noted here that the 

process for forming the Lagrangian function is irrespective to the type of the 

objective function and therefore can be used for any type of OPF.   

 

Step Five – Control of System Operation 

 

The quadratic penalty is also used to enforce equality constraints on certain control 

variables. For instance, in the case of the system shown in Figure (2.1), the control 

variable in node 3 is obviously its nodal voltage namely, ‘

! 

V3 ’.  

 

Assuming that the shunt compensator is used to fix the nodal voltage magnitude in 

node 3 to a specified value will result in the introduction of a variable equality 

constraint in the form of equation (2.47) below: 
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! 

V3 "Vspec = 0  2.47  

 

 

Equation (2.47) essentially states that during the solution process the incremental 

changes in the voltage magnitude in node 3 should be infinitesimal. Therefore it is 

necessary to nullify its associated increment in the system of linear equations. To 

enforce the equality constraint on voltage magnitude in node 3 it is necessary to 

penalise it for other than zero increments, this is done by constructing a quadratic 

penalty function shown in equation (2.48): 

 

 

! 

"(V3) =
1
2
#(V3 $Vspec )

2  
2.48  

 

 

It is clearly seen from the expression in equation (2.48) that the penalty function is 

non-zero for all nodal voltage magnitudes except the specified value.  

 

If the penalty factor ‘

! 

"’ is chosen to be sufficiently large (its value does not change 

throughout the solution process), then by adding its derivatives to the corresponding 

Hessian and gradient terms the nodal voltage magnitude in node 3 is essentially 

enforced to the specified value.  

 

The first and second derivatives of the penalty function associated with ‘

! 

V3 ’ are 

added to the linear system of equations given in equation (2.46) resulting in a zero 

increment in ‘

! 

"V3’. 

 

 

! 

d"(V3)
dV3

=#(V3 $Vspec )

d2"(V3)
dV3

2 =#

% 

& 
' ' 

( 
' 
' 

 

2.49  

 

 

The concept of enforcing variable equality constraints via quadratic penalty 

functions is used several times throughout this research and will again be explained 

in greater detail in the next chapter where models for shunt compensators are 

introduced for the OPF algorithm.  
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Step Six – Augmented Lagrangian Function: 

 

If the quadratic penalty function is activated to enforce the violated variables to their 

limit boundaries, equation (2.45) changes as shown below: 

 

Assuming after global iteration ‘1’, a violation occurs in the amount of the voltage 

in node 2 (which is a PQ load node so its voltage magnitude is a dependant variable 

and therefore prone to limit violation), the quadratic penalty function according to 

definition in equation (2.33) is activated as such: 

 

If 

! 

V2
(2) >V2

max :  

 

(The number in parentheses represents the iteration step)  

 

 

! 

Lsystem
Aug ( 2) = f i

(2)(Pgi )
i=1

ngen

" + #pn (Pn
calc $ Pgn + Pdn )
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"
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+ #qn (Qn
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"
(2)

+ u2
(2)(V2

(2) $V2
max ) +

%2
(2)

2
(V2

(2) $V2
max )2 

2.50  

 

 

In which case the Hessian/Jacobian self-terms in the matrix of coefficients 

associated with node 2 in equation (2.46) would take the following forms: 

 

Jacobian Self-Element/Gradient: 

 

 

! 

"V2
Lsystem
Aug ( 2) = #pn

n=1

nbus

$ ."V2
Pn
calc ( 2) + #qn

n=1

nbus

$ ."V2
Qn

calc ( 2) + u2
(2) +%2

(2)(V2
(2) &V2

max )  
2.51  

 

 

Hessian Self-Element: 

 

 

! 

"V2
2

2 Lsystem
Aug ( 2) = #pn

n=1

nbus

$ ."V2
2

2 Pn
calc ( 2) + #qn

n=1

nbus

$ ."V2
2

2 Qn
calc ( 2) +%2

(2) 
2.52  

 

 

Equations (2.51) and (2.52) clearly show the effectiveness of the quadratic penalty 

function in enforcing the voltage in node 2 to its limit boundaries. Equation (2.52) 

essentially nullifies the increments in the amount of voltage in node 2 in the 

correction vector via the penalty parameter ‘

! 

" ’, which is a very large constant. 
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Equation (2.51) on the other hand penalises the gradient vector and prevents it from 

deviating anymore from the limit boundaries of the solution space. The quadratic 

method is effective as the penalty parameter increases however by combining the 

penalty function method and the multiplier ‘

! 

u2’ to bind the violated variable to its 

limits the need for increasing the penalty parameter towards near infinity decreases. 

This method therefore is not prone to ill conditioning due to very large values in the 

penalty parameter ‘

! 

" ’ [8, 9].  

 

Eventually, the Lagrangian function attributed to this particular system is solved via 

Newton’s method by forming the set of linear equations shown in equation (2.29) 

for a gradient vector that leads to the optimum solution. The optimum obtained 

through Newton’s method must then satisfy the KKT conditions stated in previous 

section.  

2.3.5  Summary of Newton’s Method for an Augmented Lagrangian Function 

 

The main reasons for choosing Newton’s method to minimise the augmented 

Lagrangian function are the fast convergence rate of this particular solution method 

and its better reliability in comparison with pure penalty function methods. 

However it is fair to say that the numerical reliability of the Newton’s method 

depends mostly on initial conditions, if they are not chosen properly there could be 

several undesired ramifications such as producing a near singular Hessian matrix 

during the Newton’s internal loop iterations which would lead to non-feasible 

solutions. Below is a summary of key points of using Newton’s method for an 

augmented Lagrangian function, as the main mathematical toolbox of this research 

project:  

 

1. Solution time is proportional to network size (the bigger the system, the 

more time it needs to converge; however network size does not alter the 

convergence characteristic)  

 

2. The state variables are divided into two categories: control (generators’ 

voltage and active powers; transformers’ tap ratios or phase shifters’ 

angles) and dependent (loads’ voltage magnitudes; phase angles) 
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3. Equality constraints are divided into two types: Functional and Variable, 

Functional constraints are bounded to the system Lagrangian via 

Lagrange multipliers whereas Variable constraints are bounded using 

penalty functions; Both functional and variable constraints are used to 

control and depict the system operation realistically  

 

4. For each functional equality constraint there is an equality multiplier and 

for each active inequality constraint there is an inequality multipliers 

(dual variables) 

 

5. Active inequality constraints are added to the system Lagrangian using 

their associated multipliers, their violated values are then enforced to 

their associated limits via the use of penalty functions 

 

6. Solution algorithm consists of solving a set of linear equations based on 

Newton’s method which minimises the system’s Lagrangian Function 

 

7. It gives robust practical solutions (for system operators and real time 

simulation) and applies to all of the optimisation problems regarding 

OPF  

 

8. Quadratic convergence rate depends on the nature of the initial conditions  

 

9. The objective function sensitivity to constraints is dealt with through the 

multipliers  

 

10. Hessian might be singular which yields to no solutions (if the initial 

conditions are badly selected) 

 

11. The Karush-Kuhn-Tucker necessary optimality conditions (NOC’s) 

guarantee a minimum for the objective function although they cannot 

guarantee a global minimum; they also define the convergence rate of the 

algorithm towards a solution point 
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12. The solution is within the operational characteristics of the system and 

any violation will be dealt with automatically within the algorithm and 

active inequalities will be forced to their limits (no external tuning is 

required) 

 

A complete flow chart for the OPF solution process for augmented Lagrangian 

function via Newton’s method has been given in section (2.5). Notice that the 

flowchart is an improved version of the one given in [3], which better illustrates 

several stages pertaining OPF via Newton’s method. The flowchart in section (2.5) 

can also be used for such cases that systems with control equipment (for instance 

FACTS devices or VSC converters) are present to control given system parameters. 

The process outlining the incorporation of control features into the OPF algorithm 

has been discussed briefly in this chapter, however it will be re-emphasised in 

subsequent chapters where models for FACTS devices are explicitly developed for 

the OPF algorithm. For now a few practical case scenarios involving real and 

experimental power systems have been presented below in a more comprehensive 

manner to depict the crucial role of the OPF in defining network’s conditions.  

2.4  Optimal Power Flow Scenarios applied to Power Systems 

 
In this section multiple case scenarios are presented separately to depict the OPF 

characteristics and solutions when applied to real power systems. The OPF 

formulation based on Newton’s method for Lagrangian functions developed in this 

chapter is the basis of a computer simulation program that is created for the 

purposes of optimal power analysis in this research project.  

 

In the following section, several assessment scenarios are devised based on a variety 

of interconnected power systems where a general OPF solution is implemented 

without any FACTS devices. In the subsequent chapters with the introduction of 

mathematical models associated to different FACTS equipments, FACTS-based 

OPF is however applied. For consistency purposes, it is assumed that the aim in 

solving the OPF in these scenarios is the economic assessment of the system and 

therefore the objective function to be minimised is chosen to be the generators’ cost 

functions as shown in equation (2.12). The hierarchical solution process to construct 

the system Lagrangian that is introduced in section (2.3.4) is applied in the 
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following test scenarios to properly model the steady-state behaviour of each system 

within the optimal power flow algorithm.  

 

Five case scenarios have been presented to assess the various characteristics of the 

OPF and its robustness in dealing with almost any power system configuration. 

These scenarios comprise 8-, 9-, 11-, 14- and 30-node systems two of which are 

IEEE test cases (14 and 30 bus systems). In the subsequent sub-sections each 

system is introduced and their corresponding OPF simulation results are presented. 

The data pertaining to each system is presented in a separate section in Appendix II.  

2.4.1  8-node System 

 

The first case scenario is for an 8-node system as shown in figure (2.2). Unless 

otherwise stated the assumptions below apply to all the case scenarios presented in 

this chapter.  

 

• Base power is 100 MVA  

• Bus 1 is taken to be the Slack bus with voltage upper limit of 1.5 p.u. 

• System objective function is taken to be the generators’ cost curves  

• Generators initial active dispatch is given by the lossless economic dispatch 

at the start of the OPF algorithm  

• All the multipliers are initiated at zero 

• The powers injection to the node is determined by a negative sign whereas 

power leaving a node by a positive sign 

 

A general OPF is run for the system given in figure (2.2) with the aim to determine 

the optimum operating point of this system. The OPF is run to minimise the 

objective function, which is taken to be the generators’ cost curve functions as given 

in equation (2.12). There are no controllers or shunt compensators present in the 

system. Applying the OPF algorithm to such a network to obtain the optimum 

operating point requires solving equation (2.29) via Newton’s method, in which the 

system Lagrangian has the general form of equation (2.44) at the start of the OPF 

iterative process. It should be noted however that all the state variables are within 

their operational limits which if violated are enforced to their corresponding 

boundaries via the use of the quadratic penalty function shown in equation (2.33), 

with the dual variables for the violated inequalities being updated at the end of each 
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global iteration via equation (2.34). Upon convergence the solution is only deemed 

feasible if it satisfies all the KKT optimality conditions otherwise it will be rejected. 

The corresponding nodal active and reactive powers are included in the system 

Lagrangian through their associated multipliers. As mentioned earlier the nodal 

powers required to form the functional equality constraints corresponding to the 

power balance equations are formed via system’s associated admittance matrix and 

the complex apparent power equation as explained extensively in the parametric 

example shown in section (2.3.4). The OPF is formulated for the 8-node system as 

below: 

 

• System’s objective function: 

 

 

! 

fi = 60 + 3.4PGi
+ 0.004PGi

2  2.53  

 

 

• Constraints set: 

 

! 

PG (p.u.)  

! 

QG (p.u.) 

! 

0.1" PG1 " 2.0  

! 

"5.00 #QG1
# 5.00  

! 

0.1" PG2 " 2.0 

! 

"3.00 #QG2
# 3.00  

Table 2.1 – Generators Constraints Set 

 
• Transformers and Other Controllers: 

 

Transformer 

No. 

Sending 

Bus 

Receiving 

Bus 

! 

Xt
(p.u) 

Tap 

(primary) 

1 3 6 0.05 1.0 

2 5 7 0.05 1.0 

Table 2.2 - Fixed Tap Transformer Data 

The following results have been obtained by solving the OPF problem for the 8-bus 

system under given constraints after 4 global iterations. 
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• OPF Results: 

 
  

Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 0.9015 0.0305 399.0173 

2 0.9895 0.2292 435.6118 

 

834.6291 $/hr 

Table 2.3 - Generators' Optimal Power Flow Dispatch 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

~ 

~ 

1 3 

2 

6 4 

7 

8 

5 

G1 

G2 

0.9015 

0.9895 0.2292 

0.0305 

Figure 2.2 – 8-node Test System 
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Sending End (p.u.) Receiving End (p.u.) Line 

No. 

Send   Rec 

! 

Pi  

! 

Qi  

! 

Pj  

! 

Qj  

Incurred Losses (p.u.) 

1 1 2 +0.5410 -0.0066 -0.5362 -0.0525 +0.0048-j0.0591 

2 1 3 +0.3605 +0.0371 -0.3518 -0.0706 +0.0087-j0.0335 

3 2 3 +0.2994 +0.0477 -0.2947 -0.0808 +0.0047-j0.0331 

4 2 4 +0.3839 +0.0370 -0.3764 -0.0617 +0.0075-j0.0246 

5 2 5 +0.6425 +0.0969 -0.6284 -0.0899 +0.0141+j0.0070 

6 6 4 +0.1965 -0.0003 -0.1961 -0.0217 +0.0003-j0.0220 

7 4 7 +0.0454 -0.0003 -0.0453 -0.0280 +0.0001-j0.0283 

8 4 8 +0.1272 +0.0337 -0.1265 -0.0601 +0.0006-j0.0265 

9 8 5 -0.0735 -0.0399 +0.0737 +0.0178 +0.0002-j0.0221 

Table 2.4 - System Optimal Power Flow 

Sending End (p.u.) Receiving End (p.u.) Transformer No. 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 +0.1965 +0.0014 -0.1965 +0.0003 

2 -0.0453 -0.0279 +0.0453 +0.0280 

Table 2.5 - Calculated Transformers Powers (at optimum) 

Bus No. 1 2 3 4 5 6 7 8 

Multiplier 

$/hr 

4.12 4.19 4.33 4.36 4.38 4.34 4.37 4.40 

Table 2.6 - Incremental Generation Costs (Multipliers) 

• Results Discussion: 

 

The results obtained here state that under steady state operation the economic way 

to operate the system is within these specific conditions as determined by the OPF 

solution. Consequently operating the generators outside these optimal boundaries 

means that the system is deviated from its optimal operating point. The optimum 

value for the objective function with respect to all the constraints has been 

calculated to $834.63 per hour of fuel consumption. As seen from the voltages, the 

voltage magnitude at node 2 has reached its upper limit and is therefore fixed at that 

value by the use of augmented Lagrangian method using the combination of 

multipliers and penalty parameters in the quadratic penalty function defined in 

equation (2.33).  It is very important to know that the amount of objective function 

is dependent on the system configuration and therefore it may differ for the same 

generators if there is a change in its configuration, for instance if a power controller 
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or shunt compensator is added. This fact is addressed thoroughly in the following 

chapters where power regulators such as Voltage Source Converters are added to 

the similar systems that are presented here.  

2.4.2  9-node System 

 
The next system to be tested for the OPF is a 9-node system with the configuration 

shown in figure (2.3). The assumptions mentioned in the previous case scenario also 

apply for this system with the exception that the upper limit for the slack bus 

voltage is reduced to 1.1 per unit of voltage magnitude. There are three machines in 

this system each of which are assigned their own distinct objective function. 

According to the OPF formulation the optimum operating point achieved by solving 

the OPF in such a system would be the summation of the optimum values of all the 

objective functions included in the system (equations 2.24 and 2.45).  

 

Two test runs are presented for this system: firstly the 9-node system is simulated 

without any compensators and the results are given, however in a next test run a 

shunt compensator similar to the one in section (2.3.4) is added to node 9 for 

purposes of fixing its voltage to 1.0 per unit. 

 

The OPF is run again for the compensated system and the results for each case 

scenario are compared. It is expected that the system should behave better when the 

compensator is in place with the voltage profile improved. The purpose of this 

simulation is to show that the OPF solution process and modelling criteria 

introduced in this chapter are suitable for portraying the system behaviour 

characteristics in a variety of different circumstances.  

 

The OPF problem is formulated as such for the 9-node system shown in figure (2.3): 

 

• System’s objective functions: 

 

 

! 

f1 =150 + 5PG1 + 0.1100PG1
2  2.54  

 

 

! 

f2 = 600 +1.2PG2 + 0.0850PG2
2

 
2.55  

 

! 

f3 = 335 + PG3 + 0.1225PG3
2

 
2.56  
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• Constraints set: 

 

! 

PG (p.u.)  

! 

QG (p.u.) 

! 

0.1" PG1 " 2.5  

! 

"3.00 #QG1
# 3.00  

! 

0.1" PG2 " 3.0  

! 

"3.00 #QG2
# 3.00  

! 

0.1" PG3 " 2.7 

! 

"3.00 #QG3
# 3.00  

Table 2.7 - Generators Constraints Set 

• Transformers and other controllers: 

 

Transformer 

No. 

Sending 

Bus 

Receiving 

Bus 

! 

Xt
(p.u) 

Tap 

(primary) 

1 1 4  0.0576 1.0 

2 3 6 0.0586 1.0 

3 2 8 0.0625 1.0 

Table 2.8 - Fixed Tap Transformers Data 

• Compensator connecting transformer (Test Run Two only): 

 

Transformer No. Compensated Bus 

! 

Xt  
(p.u.) 

Tap 

(primary) 

4 9 0.0500 1.0 

Table 2.9 - Fixed Tap Connecting Transformer Data 

The OPF is run for the 9-node system and is converged to the following results after 

4 global iterations.  
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• OPF Results: 
 

o Test Run One: Uncompensated System 

 
 

 

Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 0.8869 -0.1603 1458.7059 

2 1.3619 0.3801 2339.9148 

3 0.9513 -0.0630 1538.6328 

 

 

 

5337.2536 $/hr 

Table 2.10 - Generators Optimal Power Flow Dispatch 

 
 
 
 
 

0.1603 

1.3619 

~ 

~ ~ 

G1 

G2 G3 

1 

2 3 

4 

5 6 7 8 

9 

0.8869 

0.9513 0.3801 0.0630 

 

0.9+j0.3 

1.0+j0.35 

1.25+j0.50 

Figure 2.3 - 9-node Test System (Optimal Power Flow Solution) 
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Sending End (p.u.) Receiving End (p.u.) Line 

No. 

Send   Rec 

! 

Pi  

! 

Qi  

! 

Pj  

! 

Qj  

Incurred Losses (p.u.) 

1 4 5 +0.6386 -0.1850 -0.6321 +0.0476 +0.0065-j0.1374 

2 5 6 -0.2679 -0.3476 +0.2713 -0.0420 +0.0034-j0.3869 

3 6 7 +0.6800 -0.0669 -0.6752 -0.1344 +0.0047-j0.2013 

4 7 8 -0.3248 -0.2156 +0.3257 +0.0510 +0.0009-j0.1646 

5 8 9 +1.0362 +0.2259 -1.0023 -0.3874 +0.0339-j0.1615 

6 9 4 -0.2477 -0.1126 +0.2483 -0.0190 +0.0006-j0.1316 

Table 2.11 - System Optimal Power Flow 

Sending End (p.u.) Receiving End (p.u.) Transformer No. 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 +0.8869 -0.1603 -0.8869 +0.2039 

2 +0.9513 -0.0630 -0.9513 +0.1090 

3 +1.3619 +0.3801 -1.3619 -0.2768 

Table 2.12 - Calculated Transformer Powers (at optimum) 

Bus No. 1 2 3 4 5 6 7 8 9 

Multiplier 

$/hr 

24.51 24.35 24.31 24.52 24.93 24.31 24.55 24.36 25.84 

Table 2.13 - Incremental Generation Costs (Multipliers) 
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o Test Run Two: Compensated System 

 

 
 

 

Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 0.8873 -0.1037 1459.6768 

2 1.3608 0.2996 2337.2439 

3 0.9504 -0.1139 1536.4676 

 

 

 

5333.3883 $/hr 

Table 2.14 - Generators Optimal Power Flow Dispatch 

 
 
 
 
 
 

0.1037 

G1 

1.3608 

~ 

~ ~ 

G2 G3 

1 

2 3 

4 

5 6 7 8 

9 

0.8873 

0.9504 0.2996 0.1139 

 

0.9+j0.3 

1.0+j0.35 

1.25+j0.50 

0.1010 

Figure 2.4 - 9-node Compensated Test System (Optimal Power Flow Solution) 
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Sending End (p.u.) Receiving End (p.u.) Line 

No. 

Send   Rec 

! 

Pi  

! 

Qi  

! 

Pj  

! 

Qj  

Incurred Losses (p.u.) 

1 4 5 +0.6370 -0.1252 -0.6306 -0.0109 +0.0064-j0.1361 

2 5 6 -0.2694 -0.2891 +0.2724 -0.0927 +0.0030-j0.3818 

3 6 7 +0.6780 -0.0693 -0.6731 -0.1235 +0.0049-j0.1929 

4 7 8 -0.3269 -0.2265 +0.3279 +0.0675 +0.0010-j0.1590 

5 8 9 +1.0329 +0.1281 -1.0003 -0.2907 +0.0326-j0.1626 

6 9 4 -0.2497 -0.1088 +0.2503 -0.0214 +0.0006-j0.1302 

Table 2.15 - System Optimal Power Flow 

Sending End (p.u.) Receiving End (p.u.) Transformer No. 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 +0.8873 -0.1037 -0.8873 +0.1466 

2 +0.9504 -0.1139 -0.9504 +0.1602 

3 +1.3608 +0.2996 -1.3608 -0.1956 

4 +0.0000 +0.1010 -0.0000 -0.1005 

Table 2.16 - Calculated Transformer Powers (at optimum) 

Bus No. 1 2 3 4 5 6 7 8 9 

Multiplier 

$/hr 

24.52 24.33 24.28 24.52 24.93 24.28 24.53 24.33 25.72 

Table 2.17 - Incremental Generation Costs (Multipliers) 

• Results Discussion: 

 

From the results above it is clearly inferred that the OPF is a very effective tool in 

ascertaining system’s operating conditions under different constraints. Comparing 

the results obtained by the OPF in Test Run One to the ones obtained for Test Run 

Two, it is seen that the presence of the shunt compensator at node 9 has little effect 

on moving the system’s optimum operating point, which is understandable 

considering that the objective function was chosen to the generator’s active power 

generation. Chart (2.1) illustrates this very fact that despite the presence of a shunt 

compensator the system’s optimum operating point has so little deviations and the 

OPF eventually converged to the same operating point albeit with little changes in 

the amounts of active and reactive powers in the system given by tables (2.13) and 

(2.17). It should however be noted that node 9 has the highest incremental cost of 

generation which means it would be more expensive to generate for every megawatt 
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of power that is consumed in node 9. This is because that this node is physically 

located in farthest location than the other nodes.  

 

However the changes occurred in system’s voltage profile as well as the amounts of 

reactive power produced by the generators are more conspicuous. Chart (2.2) shows 

the reactive power generation/consumption by the generators in each test run.  

 
Chart 2.1 - Incremental Cost Price Comparison – Minimal Deviation from Optimum Operating Point 

 
Chart 2.2 - Generators Reactive Power Dispatch 

As shown in chart (2.2), generator in node 2 provides the main bulk of reactive 

power to the system with the other two generators acting as sink nodes for the 

remainder of reactive power that is not consumed by the system loads. From the 
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OPF results obtained for each test run, it is seen that the amount of reactive power in 

generator 2 has decreased from 38.01 MVARs to 29.96 MVARs due to the presence 

of the shunt compensator in node 9.  

 

The results show that given the conditions set by the constraints at the start of the 

simulation, continuous optimum operation of the generators in the 9-node system, 

costs approximately 5340 $/hr of fuel consumption provided that the generators 

power dispatch remain as the values obtained here. Deviating from this point will 

result in higher costs of active power generation. Obviously if the conditions of the 

system changed or if the system configuration changed in any way by adding or 

removing components which will result in a change in the calculated nodal powers 

in the power balance equation (equations 2.15 and 2.16), the optimum point of 

operation would be different from the ones obtained in this case scenario.  

 

Test run 2 shows that by applying shunt reactive compensation in node 9, a more 

relaxed voltage profile can be achieved. The voltage profile for each test run is 

shown in chart (2.3).  

 

 
Chart 2.3 - 9-node System Voltage Profile (in per unit) 

In both cases the OPF is converged in 4 iterations and the KKT optimality 

conditions are satisfied. In order to include the effects of shunt compensator a new 

variable equality constraint (on node 9 voltage magnitude) is added to the system 
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constraints set via the use of penalty functions added to the corresponding Hessian 

and Jacobian entries to nullify the terms associated with the increments of the 

voltage magnitude in node 9 effectively fixing its value to 1.0 per unit (see section 

2.3.4). 

2.4.3  11-node System 

 
A modification of the 8-node system is represented in this next case scenario. The 

modified system consists of 11 nodes and three identical generators similar to the 

ones used for the 8-node system. However, apart from the generators, two dedicated 

shunt compensators act as voltage regulators in nodes 6 and 7.  

 

The OPF is formulated for the 11-node system via the following tables: 

 

• System’s objective functions: 

 

 

! 

fi = 60 + 3.4PGi
+ 0.004PGi

2  2.57  

 

 

• Constraints set: 

 

! 

PG (p.u.)  

! 

QG (p.u.) 

! 

0.1" PG1 " 2.5  

! 

"5.00 #QG1
# 5.00  

! 

0.1" PG2 " 2.7 

! 

"3.00 #QG2
# 3.00  

! 

0.1" PG3 "1.5 

! 

"3.00 #QG3
# 3.00  

Table 2.18 - Generators Constraints Set 

• Transformers and other controllers: 

 

Transformer 

No. 

Sending 

Bus 

Receiving 

Bus 

! 

Xt
(p.u) 

Tap 

(primary) 

Compensators 

Bus 

1 3 6 0.0500 0.987 6 

2 5 7 0.0500 0.957 7 

Table 2.19 - Fixed Tap Transformers Data and Shunt Compensators 
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The OPF is run for the following system and is converged after four iterations: 

 

• OPF Results: 

 

 
 

 

Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 0.8154 -0.1265 363.8156 

2 0.8842 -0.3336 391.8911 

3 0.9674 -0.0597 426.3420 

 

 

 

1182.0488 $/hr 

Table 2.20 - Generators Optimal Power Flow Dispatch 

 
 

0.1287 

0.3336 

0.1265 ~ 

~ ~ 

1 

2 

7 

5 

8 

11 

10 
9 

0.8842 0.9674 

3 

4 6 

0.8154 

G1 

G3 G2 

0.3198 

0.45+j0.15 

0.20+j0.10 

0.40+j0.05 

0.60+j0.10 

0.20+j0.10 

0.45+j0.15 0.20+j0.05 

0.10+j0.01 

0.0597 

Figure 2.5 - 11-node Test System (Optimal Power Flow Solution) 
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Sending End (p.u.) Receiving End (p.u.) Transformer No. 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 +0.2271 -0.3229 -0.2271 +0.3293 

2 -0.1652 -0.1805 +0.1652 +0.1831 

Table 2.21 - Transformers Calculated Powers (at optimum) 

Bus No. 1 2 3 4 5 6 7 8 9 10 11 

Multiplier 

$/hr 

4.05 4.11 4.26 4.31 4.39 4.27 4.39 4.34 4.35 4.17 4.19 

Table 2.22 - Incremental Generation Costs (Multipliers) 

Shunt 

Device  

Bus No. Reactive Power Compensation (p.u.) 

1 6  0.3198 (capacitive) 

2 7  0.1287 (capacitive) 

Table 2.23 - Shunt Reactive Powers (Compensators) 

• Results Discussion: 

 

Like the prior simulation case scenarios the OPF converges in four iterations. Its 

results state that at optimum the cost of generation would be approximately 1182 

$/hr for the system. The incremental cost of generation for nodes follow a similar 

pattern with each node contributing to approximately 4.3 $/hr of increase in cost for 

each 1 MW of power increase. Similar to the 9-node system, in this particular case 

scenario the shunt compensators are set to regulate the voltage magnitudes in nodes 

6 and 7. However the shunt compensators in this system are set to regulate the 

voltage magnitude within a more relaxed range rather than just fixing them to a pre-

determined value. As mentioned earlier, equality constraints on control variables are 

enforced by defining specific penalty functions (in the 9-node system a penalty 

function was defined to enforce the voltage magnitude of node 9 to 1.0 per unit), 

however in this case because the shunt compensators are free to regulate the voltage 

within a range rather than fixing their magnitude to a pre-determined value there is 

no need to penalise the voltage magnitudes in nodes 6 and 7 so long as they do not 

violate their limits.  

 

The results obtained here shows that there is no violation in the voltage magnitudes 

and upon convergence all the variables are within their specified limits and the OPF 

result satisfies the KKT conditions. 
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The next two case scenarios are taken from IEEE test systems (14- and 30-node 

systems), the OPF algorithm developed in this research and presented in this chapter 

is applied to these realistic power networks. The purpose of applying the OPF 

algorithm to IEEE test systems is to illustrate the robustness of the OPF algorithm 

and formulation, which has been developed and presented in this chapter in dealing 

with realistic systems.  

 

For simplicity purposes only the final OPF results are mentioned here, it should be 

noted that the comprehensive system data for all the systems simulated in this 

chapter is given in Appendix II.  The data for IEEE test systems presented in this 

chapter and all the other chapters can be found online in the following web address: 

 

University of Washington, Power Systems Test Case Archives: 

(http://www.ee.washington.edu/research/pstca)  

2.4.4  IEEE 14-node System 

 

The IEEE 14-node system is shown in figure (2.6) illustrating the generators 

economic power dispatch as obtained by the OPF. The OPF is converged in 3 

iterations and the following results are obtained. The voltage limits are set to 1.06 

and 0.9 per unit for load buses and 1.15 and 0.9 for all other buses including the 

reference bus. There are five identical generators operating in the system with the 

following expression for their cost curves as objective functions: 

 

 

! 

fi = 0.2 + 0.3PGi
+ 0.01PGi

2  2.58  

 

 

A shunt compensator similar to the one introduced in the parametric example and 

present in two previous case scenarios, is tasked to regulate the voltage at node 9.  
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• OPF Results: 

 

Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 +0.5083 -0.0144 41.2811 

2 +0.5156 +0.1051 42.2527 

3 +0.5366 +0.1831 45.0885 

4 +0.5183 +0.0388 42.6156 

5 +0.5306 +0.1179 44.2742 

 

 

 

 

 

215.5123 $/hr 

Table 2.24 - Generators Optimal Power Flow Dispatch 

 

 
 

 

 

0.2012 

G1 G2 G3 

G4 

~ ~ ~ 

~ 

~ 

1 2 3 

4 

5 

6 

7 8 

9 

10 11 

12 
13 14 

0.5083 0.5156 0.5366 

0.5183 

0.5306 

0.0144 0.1051 0.1831 

0.0388 

0.1179 
 
 

G5 

Figure 2.6 - 14-node Test System (Optimal Power Flow Solution) 
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Sending End (p.u.) Receiving End (p.u.) Transformer 

No. 

Sending 

End 

Receiving 

End 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 4 7 -0.1502 -0.0069 +0.1502 +0.0115 

2 4 9 +0.0155 +0.0232 -0.0155 -0.0228 

3 5 6 -0.0305 +0.1541 +0.0305 -0.1480 

4 7 8 -0.5306 -0.0707 +0.5306 +0.1179 

5 7 9 +0.3804 +0.0592 -0.3804 -0.0439 

Table 2.25 - Transformer Calculated Powers (at optimum) 

Bus No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Multiplier 

$/hr 

1.32 1.33 1.37 1.36 1.35 1.34 1.36 1.36 1.36 1.37 1.36 1.36 1.36 1.37 

Table 2.26 - Incremental Generation Cost (Multipliers) 

Shunt 

Device  

Bus No. Reactive Power Compensation (p.u.) 

1 9 0.2021 (capacitive) 

Table 2.27 - Shunt Reactive Powers (Compensators) 

• Results Discussion: 

 

The results obtained from the OPF algorithm indicate that the optimum operating 

point of the system costs approximately 215 $/hr of generators’ fuel consumption. 

There are no violations in the system and the OPF is converged in four iterations.  

2.4.5  IEEE 30-node System 

 

The IEEE 30-node system is a familiar test system in academic papers and therefore 

it has been tested here to showcase the capability of the OPF algorithm. The system 

is a section of the US power system and its data can be found in the power systems 

tests case archive at the following address (University of Washington: 

http://www.ee.washington.edu/research/pstca). This system consists of 6 generators, 

34 transmission lines, 7 transformers feeding 30 loads in the network and 2 shunt 

compensators in nodes 10 and 24. A general layout of the 30-node system 

illustrating the OPF solution is given in figure (2.7). The original system operates in 

132/33 KV range. The OPF algorithm produces its results in per unit and the 

appropriate bases need apply in order to generate the voltage levels in kilo volts. 

Choosing an arbitrary base level for the system power is however redundant since 
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the OPF algorithm gives the final economic distribution of powers in per unit. It is 

assumed that all generators operate within a similar output voltage level and a 

similar base MVA has been adopted for the whole system regardless of the voltage 

levels to maintain consistency and simplify objective function calculations.  

 

The OPF algorithm is applied to this system with the following expressions defining 

the systems objective functions: 

 

 

! 

f1 = 2.00PG1 + 0.02PG1
2  2.59  

 

 

! 

f2 =1.75PG2 + 0.0175PG2
2

 
2.60  

 

! 

f3 =1.00PG3 + 0.0625PG3
2

 
2.61  

 

! 

f4 = 3.25PG4 + 0.083PG4
2

 
2.62  

 

! 

f5 = 3.00PG5 + 0.025PG5
2

 
2.63  

 

! 

f6 = 3.00PG6 + 0.025PG6
2

 
2.64  

 

• OPF Results: 

 

The OPF algorithm is applied to the system and it has been observed that it 

converges in 5 iterations. There is a voltage violation in nodes 12 and 24 where the 

OPF algorithm has successfully enforced their corresponding magnitudes to 1.05 

per unit (the upper limit). Voltages in other nodes remained within their respective 

limits. The 30-node system is a good example of how the quadratic penalty function 

method combined with the Lagrangian multipliers effectively act together to satisfy 

the KKT conditions. The OPF results are detailed in tables (2.29-2.32). 
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Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 +0.5770 +0.0053 181.9648 

2 +0.7451 +0.1619 227.556 

3 +0.2865 +0.2594 79.9660 

4 +0.6968 +0.4167 266.7753 

5 +0.2883 -0.1871 107.2659 

6 +0.2801 -0.0488 103.6320 

 

 

 

 

 

 

967.1601 $/hr 

Table 2.28 - Generators Optimal Power Flow Dispatch  

Sending End (p.u.) Receiving End (p.u.) Transformer 

No. 

Sending 

End 

Receiving 

End 

 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 6 9 +0.0654 +0.0870 -0.0654 -0.0847 

2 6 10 +0.0920 +0.0262 -0.0920 -0.0213 

3 9 11 -0.2883 +0.2122 +0.2883 -0.1871 

4 9 10 +0.3537 -0.1276 -0.3537 +0.1422 

5 4 12 +0.1601 +0.1890 -0.1601 -0.1740 

6 12 13 -0.2801 +0.0593 +0.2801 -0.0488 

7 28 27 +0.1731 +0.0394 -0.1731 -0.0284 

Table 2.29 - Transformers Calculated Powers (at optimum) 
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Bus No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Multiplier 

$/hr 

4.31 4.36 4.40 4.42 4.58 4.44 4.52 4.41 4.44 4.44 4.44 4.40 4.40 4.47 4.49 

Table 2.30 - Incremental Generation Costs (Multipliers) - First 15 nodes 

Bus No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Multiplier 

$/hr 

4.45 4.46 4.54 4.55 4.52 4.49 4.48 4.52 4.52 4.51 4.59 4.47 4.45 4.59 4.67 

Table 2.31 - Incremental Generation Costs (Multipliers) - Second 15 nodes 

Shunt 

Device  

Bus No. Reactive Power Compensation (p.u.) 

1 10  0.2071 (capacitive) 

2 24  0.0474 (capacitive) 

Table 2.32 - Shunt Reactive Powers (Compensators) 
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Figure 2.7 - 30-node Test System (Optimal Power Flow Solution) 
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• Results Discussion: 

 

As shown in the 9-node case scenario, it can be observed here that the shunt 

compensators at buses 10 and 24 provide reactive power requirements locally 

improving the system’s voltage profile at these buses. There are six machines in this 

system four of which operate as over-excited synchronous generators providing 

reactive power whereas the remaining two that are connected to nodes 11 and 13 

respectively provide only active power and absorb reactive power therefore as the 

OPF algorithm dictates, achieving optimum operating point of the system does not 

depend on these two machines operation in the over-excited region. However if the 

voltages in nodes 11 and 13 were to be fixed by controlling the field current of their 

machines (by including two additional variable equalities) the results would have 

been different. Once again these results confirm the flexibility of the OPF 

formulation and the modelling criterion introduced in this chapter in dealing with a 

variety of operational circumstances.  

 

The result obtained here state that in order for the system to operate economically it 

is required to spend 967 $/hr, deviating from this point would obviously generate 

bigger values for the objective function.  

 

It is clearly inferred from the results shown in table (2.30) and (2.31) that it would 

be costlier to generate power to nodes that are physically located farther from the 

points of generation. For instance the cost of increasing demand by 1 MW in node 

30 costs approximately 4.67$, whereas in comparison it costs less to transmit 1 MW 

increase in power to node 26 which physically is closer to the nearest point of 

generation, namely node 8. As it is seen from the case scenarios presented in this 

section, the OPF algorithm is a very useful tool in analysing the system’s behaviour 

under different circumstances for example for purposes of economic distribution of 

loads between different generators (economic dispatch). For instance from the 

results it can be observed that for improving economic performance of the system it 

may be useful to add local condensers to provide active power locally to the more 

isolated nodes (node 30). One of the main purposes of this project is to study 

systems that are used for the purpose of connecting autonomous generating facilities 

that are remotely located from each other in an optimum fashion that is both 

economical and improves the reliability of the system. In chapter 4 the principles of 
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modelling for Voltage Source Converters that are useful for creating VSC-HVDC 

interconnections are explained. These VSC-HVDC inter-links are then used to 

connect remotely located areas of local generation-consumption (micro-grids). The 

OPF algorithm is then used to devise the optimum operating points of such systems 

under a variety of circumstances and conditions. In the next section the OPF 

solution process is given in a flow chart.  
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2.5  Optimal Power Flow Formulation: A Flow Chart 
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2.6  Alternative Solution Algorithms for OPF including Meta-

Heuristics 
 

Apart from the already well established Newton’s method for augmented 

Lagrangian function, there are a handful of alternative solution algorithms for 

solving complex optimisation problems such as the OPF that are not necessarily 

based on numerical methods. The groups of alternative OPF solution algorithms are 

mostly based on either Fuzzy mathematical methods [24] or Meta-heuristic 

algorithms that are generic and can be applied to a variety of practical programming 

problems (from engineering type problems to finance and economics as well as 

biology) including the OPF [10]. Because they are purely based on direct search 

methods inspired by natural phenomena, they are particularly useful for devising 

global optimisation algorithms because unlike numerical methods such as the 

Newton’s method, they allow for temporary expansions of the solution space 

therefore the possibility of being trapped in a neighbourhood of local minima is 

little in such solution algorithms [17]. Examples of Meta-heuristics include Ant 

Colony Systems, Tabu Search methods, Simulated Annealing, Variable 

Neighbourhood Search and Particle Swarm Optimisation [10, 27, 32, 33, 38]. The 

PSO algorithm particularly has shown to be very effective in solving OPF problem 

in being able to reach a global solution [32], however it should be noted that such 

globally convergent solution algorithms are time consuming and therefore it is not 

practical for real time simulation applications. The modelling criterion for 

conventional programming methods such as the augmented Lagrangian function as 

explained in this chapter can still be used in Meta-heuristic approaches as well for 

formulating the optimisation problem however the difference is in the solution 

algorithm chosen. There can either be conventional algorithms such as Newton’s 

method, which are fast and more reliable or the slower but globally convergent 

algorithms such as PSO can be used to solve a non-linear programming problem 

such as the OPF. As mentioned earlier the scope of this project is not to investigate 

the features of different mathematical programming approaches for the OPF but to 

use one to develop robust models in order to be used in power system analysis 

scenarios.  
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2.7  Conclusion 

 
The augmented Lagrangian function as a very effective tool for converting a 

constrained non-linear programming problem such as the OPF into an unconstrained 

simpler programming problem is presented thoroughly in this chapter. The solution 

algorithm for solving the OPF is chosen to be the Newton’s method due to its strong 

convergence characteristic and its flexibility in applying to almost any power 

system with any configuration as well as equipment present. The OPF via Newton’s 

method consists essentially of two parts, one is the internal iteration loop which is 

the main loop for minimising the Lagrangian function using a system of linear 

equations (Hessian/Jacobian terms) whereas on the other hand the state variables 

limit check process is carried out in the outer loop where, if necessary, the effects of 

violated constraints are added to the system Lagrangian using quadratic penalty 

functions. It is shown that using a combination of multipliers to include the effects 

of equality constraints as well as active inequality constraints and quadratic penalty 

function to account for constraints’ limit violations are more effective that merely 

using pure penalty function methods which are prone to numerical ill-conditioning. 

 

There are two categories of equality constraints: variable and functional. Variable 

equalities are always on control variables and are enforced to the system 

formulation using penalty functions (just like active inequalities). Functional 

equalities, on the other hand, are power flow control equations that describe the 

state of operation in a system. The most important functional equality constraints 

are the power balance equations, which need to hold for the entirety of the OPF 

solution process. The functional equalities are added to the system formulation 

using their associated Lagrangian multipliers. 

 

The purpose of presenting the numerical simulations in this chapter was to depict 

the robustness of the Newton’s method in solving the OPF problem in different 

situations. Moreover the OPF algorithm has been applied to two case scenarios 

involving realistic power systems. 

 

There is however other alternative approaches to the Newton’s method, which are 

mostly based on Heuristic search methods. These methods, while similar to 

conventional optimisation approaches in formulating the constrained optimisation 
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problem (using Lagrangian functions or penalty functions) of the OPF, are different 

in solution. The augmented Lagrangian function still is used to formulate the OPF 

problem however the solution algorithm applied to the OPF is different from the 

Newton’s method. They take more time to converge; nevertheless they mostly reach 

a global solution.  
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3 Optimal Power Flow Modelling for Shunt FACTS 

Controllers  
 

The principles pertaining the modelling of shunt reactive FACTS controllers are 

extensively explained in the following chapter. Modelling of FACTS controllers is 

carried out using the same generic criteria developed in previous chapter for modelling 

various power system components within the OPF algorithm. The models developed are 

then solved using Newton’s method for a variety of different configurations. Even 

though the first part of this chapter comprises a general overview of FACTS modelling 

within the Augmented Lagrangian Function framework for different devices (Series, 

Shunt and Hybrid), the main area of focus has remained the shunt reactive compensator. 

Models for both Thyristor Controlled Reactor (TCR) based Static VAR Compensator 

(SVC) and the more advanced Voltage Source Converter (VSC) based Static 

Compensator (STATCOM) have been presented accordingly. Furthermore, for the first 

time a comparison study has been carried out for both models in several real and 

experimental power systems to fully depict the robustness of the models and their ability 

to cope with different circumstances in optimising the system performance while 

maintaining the steady state voltage profile and eventually improving system stability. 

3.1  Introduction 
 

In this research project a power system is seen as an actively managed system 

having full flexibility in power flow regulation and voltage control by using power 

electronics based controllers otherwise known as FACTS (Flexible AC 

Transmission Systems). The seamless control of power systems’ fundamental 

parameters, namely nodal voltage magnitude and phase angle is essential for the 

continuous steady state operation of the system [1]. The flexibility and enhanced 

stability margins brought about by FACTS make them essential elements of modern 

power systems design in almost any voltage level making understanding the 

operational characteristics of FACTS devices and controllers one of the most 

important concepts in power systems research. 

 

Recent developments in the area of power electronics design and development have 

spawned a new breed of fully controlled semi-conductors such as GTOs (Gate Turn-
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Off Thyristors) and IGBTs (Insulated Gate Bipolar Transistor) with turn-off 

capability [2]. Such devices have considerable advantage over the conventional 

Thyristors in that their turn-off compatibilities do not depend on the line current and 

they can be turned on and off at anytime [1].  

 

IGBT valves switched with Pulse Width Modulation (PWM) schemes for instance 

are mainly used in medium voltage self-commuted controllers such as Voltage 

Source Converters (VSCs) providing independent bi-directional active and reactive 

power control capability on the AC side (four quadrant operation) as well as bi-

directional DC power control [1-3]. In contrast, a Thyristor-controlled Current 

Source Converter (CSC), only provides active power support while consuming 

reactive power, so their AC current is always lagging [1, 2]. Sinusoidal PWM 

(SPWM) is used to switch the valves at rates higher than fundamental frequency 

therefore reducing the levels of low-order harmonics albeit at the cost of increasing 

switching losses [1].  

 

The FACTS controllers are essentially grouped into two main categories based on 

the type of the power electronics used in them, namely the Variable Impedance 

Type and the Switching Converter Type [1, 2, 4, 5]. Most of the newer more 

advanced FACTS controllers belong to the latter category. For example the Voltage 

Source Converter introduced in [1] is a controller device capable of providing direct 

active and reactive power support depending on the application it is providing to the 

system [2]. It can be used as an active series capacitor in form of a Static Series 

Synchronous Controller (SSSC) for improving the transmission line’s total transfer 

capability (TTC) or it can be used as a Synchronous Voltage Source (SVS) to 

provide shunt compensation in STATCOM for fast nodal voltage support at its point 

of connection by consuming/delivering reactive power and hence keeping the 

voltage levels at an acceptable range [1, 2, 6].  

 

The variable impedance type category is however, the group of FACTS devices that 

are generally based on line-commutated Thyristor Controlled Reactor (TCR) valves 

in parallel with fixed capacitor/reactor groups that compared to the converter type 

FACTS are less reliable and generate more low-order harmonics [1, 2, 5, 7, 8]. An 

SVC is a typical example of this particular type of FACTS equipment, which 

contains a TCR valve in parallel with a switched (mechanical or electronic) 
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capacitor bank for providing reactive power compensation [1, 9-11]. The Thyristor 

Controlled Series Capacitor (TCSC) is used for long transmission line impedance 

compensation and is generally a fixed capacitor bank again in parallel with a TCR 

valve, which is then connected typically in mid-point in series with the impedance 

of the compensated long transmission line providing fast series impedance 

compensation and improving the line’s active power transfer capability [1, 12, 13].  

 

In both SVC and TCSC, unlike the VSC based controllers such as the STATCOM, 

the act of compensation is carried out by manipulation of the TCR’s thyristors’ 

firing angles [8, 14, 15]. Due to the firing angle control of the TCR, these 

controllers tend to have a net reactive impedance which is either inductive or 

capacitive depending on the value of the firing angle as well as the application they 

are used in and therefore they are called the variable impedance type FACTS 

controllers [1, 2, 8, 10, 14, 15]. The variable impedance type FACTS controllers are 

modelled simply as variable shunt or series impedances in power flow studies.  

 

VSC-based controllers such as the STATCOM or SSSC, on the other hand, provide 

direct active/reactive power compensation via controlling the amplitude and phase 

angle of their associated voltage injections at their points of compensation achieved 

through Pulse Width Modulation switching or any other means [1, 2]. For example a 

STATCOM regulates the voltage at its point of connection by controlling the 

amplitude of its converter voltage relative to the nodal voltage of bus to which it is 

connected much like a synchronous condenser [1, 4, 6, 9, 16]. Moreover the SSSC 

controls the active power transmission capacity by injecting a controllable series 

voltage at its point of connection which then can control the net phase angle 

difference between the sending and receiving ends of the transmission line, 

essentially increasing (or decreasing) the total active power transmission capacity of 

the line [4].  Some FACTS controllers can be a combination of both series and shunt 

controllers and are called Hybrid (or Combined) Controllers [1]. The most 

important Hybrid Controller is the Unified Power Flow Controller (UPFC) first 

proposed in [17], which is a combination of a STATCOM and a SSSC.  Since the 

UPFC is essentially based on VSCs it belongs to the category of switching converter 

type FACTS controllers. The UPFC in principle is used to control all the 

fundamental parameters in a power system, namely the voltage magnitude, phase 

angle and power flow [1]. The shunt converter provides voltage regulation by 
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providing shunt reactive compensation exactly as a STATCOM whereas the series 

converter provides phase angle compensation and line impedance compensation 

through injecting a controllable series voltage to the compensated transmission line 

it is set to control [1, 2]. The categorisation of FACTS controllers is a very useful 

tool in identifying the operational principles of different FACTS devices when it 

comes to their modelling in power flow studies. For example, knowing that the SVC 

is a conventional thyristor-controlled variable impedance FACTS controller is 

helpful in order to model the SVC as a variable shunt susceptance in power flow 

studies as done in [10]. The two main categories of FACTS devices along with their 

respective controllers and their applications are summarised in [1].  

 

Regardless of which type of FACTS controllers present in the system they have a 

discernible influence on the operation of the system in steady state. Therefore one of 

the most important aspects of solving the OPF problem is to assess the conditions of 

the system while under the control of FACTS equipment. For instance electronically 

controlled shunt compensators may be used to regulate voltages in load buses in 

modern power systems. Applying OPF in such a system will yield to the optimum 

settings in which the system operates while maintaining voltages constant at 

regulated buses in forms of active equality constrains.  

 

In the next section the concept of modelling FACTS equipment for power flow 

studies is explained. This is followed by a brief literature review on the most 

important works done in the area of FACTS-OPF modelling.  

3.2  An Overview of FACTS Modelling for Power Flow Studies 

(Conventional and Optimal)   
 

Considering current advancements in the fields of Flexible AC Transmission 

Systems, there has been a lot of research material published in the area of FACTS 

modelling in power systems particularly with relations to OPF algorithms [4, 10, 16, 

18-21]. The FACTS models for power flow studies are essentially categorised into 

two groups of steady state and dynamic models. Steady-state models of FACTS 

equipment are used in conventional as well as optimal power flow study scenarios 

that are formulated and solved via numerical analysis algorithms such as Newton’s 

method. Depending on the operational principles of the FACTS controller, the 
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steady-state models are either Power Injection Models (PIM) or Variable Impedance 

Models [22]. For example in [10] a variable shunt susceptance power flow model 

for the SVC has been presented for both conventional and optimal power flow 

algorithms. The SVC model is developed in such a way that it can be used in power 

flow solution algorithms that are solved via Newton’s method. Furthermore, In [14] 

a similar variable series impedance model has been developed for conventional 

power flow solved via Newton’s method for the TCSC.  

 

However, almost all modern VSC-based FACTS controllers are modelled as power 

injections at their points of connection [22]. In other words, the FACTS device is 

purely modelled as series or shunt voltage-dependent power injections depending on 

its type and operational characteristics. A voltage source converter in this paradigm 

is therefore modelled as a controllable voltage source injecting an amount of 

active/reactive power based on its source voltage and phase angle [5]. Since VSC 

type controllers provide independent active and reactive power support in the AC 

side there can be various control strategies for a power flow model of such devices 

[1]. The model can be configured to provide direct voltage control or direct power 

control depending on its application and operational principles. Developing power 

injection models (or sometimes controllable voltage source models) for switching 

converter type FACTS controllers has become the subject of much study in the past 

years with publications on models developed for both conventional and optimal 

power flow algorithms becoming more and more common [4, 7, 19, 20, 22, 23].  

 

For instance in [4], the STATCOM is presented as a controllable shunt voltage 

source which injects a controllable reactive power to its point of connection, 

moreover, in the same paper the SSSC is modelled as a series voltage source with 

which the net transmission capacity of the compensated line is controlled. Hybrid 

FACTS controllers in this way can easily be modelled as a group of series/shunt 

power injections. For instance an early version of UPFC power injection modelling 

for conventional power flow studies has been given in [24] and its OPF counterpart 

in [5, 19]. The UPFC-OPF model introduced in [5] is devised for Newton’s method 

for augmented Lagrangian function which means that the UPFC is modelled as an 

exclusive Lagrangian, whereas in [19] the OPF algorithm for which the model is 

developed is not mentioned.  
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Although the power injection model is a fairly accurate account of the operational 

characteristics of the switching converter type FACTS controller, it lacks a 

fundamental parameter, namely it is unable to properly model the converter’s 

internal switching losses [22]. Furthermore the effects of the converter PWM 

control in providing active and reactive powers are ignored (modulation ratios). To 

include the effects of PWM switching as well as converter’s internal losses and DC 

link losses, a new and more advanced model for VSCs has been created. The 

converter’s PWM control is represented in form of a complex tap ratio with a 

controllable magnitude and phase angle. This model, appropriately called the 

compound transformer model, has been developed as part of this research for OPF 

algorithm and is the building block of VSC-HVDC system models, which are 

presented, in the next two chapters. In the next section, the FACTS-OPF modelling 

application in power system study scenarios is investigated in more detail by 

simulating SVC and STATCOM incorporated systems. 

 

There have been other useful publications regarding other types of FACTS 

equipment, for instance regarding power flow models for Thyristor Controlled 

Series Compensator (TCSC) a power flow model in Newton’s method has been 

described in [14] as well as [20] and [23], which contain power injection models 

(based on controllable voltage sources) for Voltage Source Converters and VSC-

HVDC systems. In the next chapter a more comprehensive study on different 

models for VSC based systems will be presented.  

3.3  Shunt Compensator Modelling in OPF using Newton’s method 

for Augmented Lagrangian Function 
 

In this section, models developed for SVC and STATCOM controllers, suitable for 

OPF algorithm using Newton’s method for Lagrangian functions, are elaborately 

depicted. The difference between SVC and STATCOM is in the nature of their 

operation [1]. Even though both provide reactive power compensation, SVC 

operation is based on injecting a reactive current (either capacitive or inductive) in 

the system by switching capacitors. However STATCOM regulates voltage directly 

by the operation of its VSC. The converter will control its output voltage and inject 

or consume reactive power to and from the system, more like a synchronous 

condenser [1]. Therefore SVC model is based on a shunt variable susceptance 
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whereas STATCOM model is based on controllable voltage source. Furthermore, as 

an advantage to SVC, the STATCOM can be configured to provide active power to 

its point of connection through an energy storage device such as a large capacitor 

(not the DC voltage source capacitor in VSC) or battery or a group of fuel cells [1, 

4, 16]. The active power control capability of the STATCOM is presented for the 

first time within the OPF algorithm in the model developed in this chapter and its 

effectiveness is tested.  

 

Shunt compensation is a necessity in modern power systems, which feed several 

kinds of loads in order to keep a constant voltage profile and ensure good power 

quality for the consumer. There are two possible cases in shunt compensation [1, 2, 

5, 9-11, 16]:  

 

1. The voltage is sagging due to excessive reactive consumption caused by 

heavy industrial loads; in this case the compensator will inject reactive 

power to its point of control to compensate the needed reactive power and 

keep the voltage magnitude constant 

 

2. In some unlikely cases the voltage starts increasing dramatically which may 

have been caused due to load rejection, Ferranti effects in open end lines are 

also a main cause of voltage increase; in such peculiar situations the 

compensator starts consuming the excess reactive power in order to preclude 

the voltage from increasing any more 

SVC comprises two sets of legs, one set includes capacitor banks, which can be 

switched on or off, and the other contains TCR valves (or Thyristor Controlled 

Reactor valves). Whenever there is a need for reactive power the TCR’s switching 

angle will increase making SVC’s current more capacitive and vice versa [8, 10]. 

STATCOM comprises a VSC behind connecting shunt transformer impedance (or 

reactance) [16] typically between 0.1 to 0.15 per unit [1] (In empirical examples 

presented in this chapter the STATCOM model’s coupling impedance has a value of 

0.05 per unit). VSC may also be connected to energy storage to provide active 

power control or account for small switching losses that occur in realistic converters 

[1]. STATCOM will then provide the required reactive power dispatch to the system 

through operation of the VSC. The converter voltage is controlled to provide 

reactive power compensation at the point of connection; the STATCOM model can 
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also be configured to provide direct reactive power rather than voltage regulation to 

the point of connection. The STATCOM’s main advantage towards the SVC is that 

it is capable of providing capacitive compensation even in very low voltage levels 

and therefore provides a more promising platform on which the system can remain 

stable [1].  

 

It should be noted that SVC and STATCOM operation principles are discussed in 

detail in several publications [1, 2, 5, 6, 10, 16, 25] and will not be discussed here 

any further. In this section the principles outlining the modelling criteria for SVC 

and STATCOM is however presented. It is stressed here that because of the vital 

application of shunt compensators in improving system stability by regulating the 

voltage developing OPF models for such devices is of paramount importance when 

studying FACTS based systems. 

3.3.1  STATCOM OPF Formulation (Controllable Voltage Source Model) 

 

The mathematical approach developed in previous chapter for formulating the OPF 

problem by forming an augmented Lagrangian function is used to model the 

STATCOM operation here.  
 

The STATCOM regulates reactive power by controlling its converter voltage 

magnitude much like a synchronous condenser [1, 16], it is therefore modelled as a 

controllable voltage source with close to zero active power exchange (converter 

voltage is in phase with the system nodal voltage) with the system (neglecting the 

ohmic losses as well as presence of any sort of energy storage units) [4, 16, 22].  

 

The power balance equations given in previous chapter (Equations 2.15 and 2.16) 

also apply in a system with STATCOM taking into account the effects of 

STATCOM reactive power output (which is voltage dependent) in the reactive 

power balance equation as explained thoroughly in the parametric example of 

chapter two. The STATCOM controllable voltage source model is the first model 

with an additional functional equality constraint that is presented in this research. 

The functional equality constraint is on STATCOM’s output reactive power, which 

is a function of its output converter voltage. Equation (3.2) shows the exclusive 

Lagrangian formed out of STATCOM’s reactive power constraint. The state 

variables vector associated with the STATCOM are the voltage magnitude and 
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phase angle of the controllable voltage source representing STATCOM’s voltage 

source converter as such: 

 

 

! 

zstatcom = ["conv,Vconv,#qconv ]
T  3.1  

 

  

The vector of variables in equation (3.1) is used to form the STATCOM Lagrangian 

function in equation (3.2).  

 

 

! 

Lconv (x,") = "qconv (Qconv #Qspecified )  3.2  

 

 

This function should account for the STATCOM’s control constraints, which is on 

converter’s output reactive power as shown in equation (3.3):  

 

 

! 

Qconv "Qspecified = 0 3.3  

 

 

In addition to the functional constraint in equation (3.3), STATCOM can be 

configured for direct voltage regulation, in which case it behaves exactly like a 

synchronous condenser with zero active power output.  

 

The direct voltage regulation shows itself as a variable equality constraint on 

STATCOM’s output voltage as shown in equation (3.4).  

 

 

! 

Vi "Vspecified = 0  3.4  

 

 

As explained in chapter two the variable equality constraints are enforced 

throughout the OPF solution process using exclusive quadratic penalty functions in 

forms of equation (3.5). 

 

 

! 

"(Vi) =
1
2
#(Vi $Vspecified )

2  
3.5  
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This function is defined in such a way that penalises the system Lagrangian for 

points outside the pre-specified nodal voltage for node 

! 

i . It should be stressed here 

that STATCOM’s converter voltage should not be penalised as it is assumed that 

STATCOM regulates voltage with the free operation of the converter, therefore 

penalising the converter’s voltage along with the nodal voltage at which point the 

STATCOM is connected will produce inaccurate results. The controllable voltage 

source model shown in figure (3.1) represents the operation of the VSC in the 

STATCOM device (designated here as 

! 

k ) as an adjustable (or controllable) voltage 

phasor, namely 

! 

Vconv(k )"#conv(k ), which should not be confused with the system’s 

vector of voltage phasors.  

 
Figure 3.1 - STATCOM Controllable Voltage Source Model 

According to figure (3.1) the STATCOM regulates the voltage magnitude by 

injecting currents to its point of compensation. The converter output reactive power 

thus takes the form of equation (3.6): 

 

 

! 

Qconv = Im{Vk .Ic
*} =Vk . V j .[Gkj sin" kj # Bkj cos" kj ]

j=k

i

$  
3.6  

 

 

Substituting for the vector of state variables pertaining the STATCOM’s converter 

shown in equation (3.1), equation (3.6) is re-written as such: 

 

 

! 

Qconv = "Vconv
2 Bc "VconvVi[Gc sin(#conv "$ i) " Bc cos(#conv "$ i)] 3.7  

 

 

!

!

!

!

!
! 

Qi
mod =Qi +Qi

inj

!

"#$!
%&'()*!
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This equation represents the STATCOM’s reactive power behind the connecting 

transformer, namely 

! 

Yc . The injected reactive power element calculated at node 

! 

i  

will however take the form of equation (3.8) below: 

 

 

! 

Qi
inj = "Vi

2Bc "ViVconv[Gc sin(# i "$conv ) " Bc cos(# i "$conv )] 3.8  

 

 

Consequently, the Lagrangian function associated to the STATCOM operation takes 

the following form: 

 

 

! 

Lstatcom (x,") = "qi (Qi
mod #Qgi

+Qdi
) + "qconv (Qconv #Qspecified )  3.9  

 

 

Where 

 

! 

Qi
mod =Qi +Qi

inj  is the total calculated nodal power taking into account the 

contribution of the STATCOM at node ‘

! 

i ’ as well  

 

! 

Qconv  is the reactive power flow between converter and compensated bus 

 

! 

Qspecified  is the pre-determined reactive power in order to be maintained for a fix 

voltage profile 

! 

Vi  is the nodal voltage to be regulated by STATCOM 

 

! 

Vspecified  is the pre-determined voltage magnitude to be set by the user  

 

! 

Qi
mod =Qi

system +Qconv  is the newly formed injected nodal reactive power at the 

point of compensation 

 

Consequently, the system of linear equations presented in equation (2.29) in chapter 

two is solved for the newly updated system Lagrangian including the STATCOM’s 

exclusive Lagrangian.  
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If the STATCOM is set to regulate reactive power at its point of connection, 

equation (3.3) will become active (equation 3.2 is added to the system Lagrangian) 

whereas the converter voltage is set free to accept any value, albeit within limits, 

depending on the amount of injected reactive power. This is essentially different 

from when the STATCOM is operating under voltage regulation mode, where the 

reactive power control constraint is deactivated (by penalising its multiplier, namely 

! 

"qconv ) and the nodal voltage at the compensated bus (equation 3.4) is fixed to a pre-

determined value via penalty function given in equation (3.5) (See the parametric 

example in chapter two). One of the main differences between a STATCOM 

controllable voltage source model and a generator model is that the functional 

constraint on the reactive power in a generator is normally deactivated during the 

normal operation of the generator and is only activated to enforce the generator’s 

reactive power to its binding limits [5], whereas in a STATCOM model equation 

(3.3) may be activated throughout the OPF solution process to represent the reactive 

power control feature of the STATCOM.  

 

The expanded exclusive system of equations in forms of Hessian and Jacobian 

terms associated with the STATCOM power injection model is therefore presented 

in its most general form in equation (3.10).  

 

 

! 

" 2L
"# 2

" 2L
"#"V

dQi
mod

d#
dQconv

d#
" 2L
"V"#

" 2L
"V 2

dQi
mod

dV
dQconv

dV
dQi

mod

d#
dQi

mod

dV
dQconv

d#
dQconv

dV

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 

*

+#

+V

+,qi

+,qconv

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) 

= -

.#L

.V L

+Qi
mod

Qconv -Qspec

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) 

 

3.10  

 

 

Through Newton’s iterative method the system of linear equations is solved 

iteratively for vector of state variables. After the internal iterations is finished the 

values for state variables as well as their associated Lagrangians, are checked 

against the system limits to determine and update the active set. The violated 

inequalities are enforced to their boundaries using the quadratic penalty function.  
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3.3.2  SVC OPF Formulation (Variable Susceptance Model) 

 

Unlike STATCOM, which is based on voltage source converters, SVC is merely a 

capacitor bank controlled by static thyristor switches (or TCR’s) and therefore its 

mathematical model is based on a variable shunt susceptance [10]. By varying the 

amount of shunt susceptance, SVC will either inject or consume reactive power to 

or from its point of compensation [9]. The variable shunt susceptance model is 

shown in figure (3.2): 

 
Figure 3.2 - SVC Variable Susceptance Model 

SVC is modelled as a variable shunt susceptance connected to the point of 

compensation via an impedance [5]. As shown in equation (3.11), the nodal reactive 

power in an SVC-connected node is a function of SVC’s shunt susceptance and not 

the voltage. This adds a new functional equality constraint to the set of constraints 

in the OPF formulation to include the effects of the SVC.  

 

 

! 

QSVC = "Vi
2BSVC  3.11  

 

 

Therefore SVC’s exclusive Lagrangian takes the following form: 

 

 

! 

LSVC = "#SVCVi
2BSVC  3.12  

 

 

Notice that unlike the STATCOM Lagrangian in equation (3.2), the SVC 

susceptance model cannot provide direct reactive power support since its reactive 

!

"#$!
%&'()!

! 

ISVC !

! 

QSVC = "Vi
2BSVC !

!
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power function depends on the SVC’s susceptance, namely 

! 

BSVC  and not the nodal 

voltage magnitude. It is best to think of the SVC as a variable capacitor and not a 

synchronous generator [10].  

 

The SVC operation in voltage regulation mode is however, defined by creating a 

new variable constraint on the nodal voltage of the SVC compensated bus, namely 

! 

Vi  in figure (3.2) as shown in equation (3.13). 

 

 

! 

Vi "Vspecified = 0  3.13  

 

 

The SVC enters voltage regulation mode by penalising the nodal voltage at its point 

of connection just like the STATCOM.  

 

It is noted that the SVC compensated bus is modelled as a PVQ load bus in SVC 

feasible operation space, whereas the STATCOM regulated bus, is modelled as a 

PV generating bus (as if a generator is connected) within its limits. If for some 

reason the STATCOM reactive power violates limits, the compensated bus is 

changed into a generator PQ bus in which case the voltage is free to take up any 

value depending on the value of the violated reactive power. However if the SVC 

somehow violates its limits (of the variable shunt susceptance), its associated bus is 

converted to a special form of load PQ bus where the reactive power injected from 

the SVC is fixed at 

! 

QSVC = "Blim #Vi
2 . The SVC is not to be modelled as a 

generator PQ bus outside of its limit boundaries because its reactive power is then 

merely a function of the bus voltage magnitude and doesn’t reflect the effects of the 

variable shunt susceptance limit which clearly produces inaccurate results [5, 10]. 

 

The models presented in this section for both SVC and STATCOM are the simplest 

form of modelling FACTS controllers, which properly include their control 

characteristics. However as an improvement to both power injection model and 

variable impedance model, the mathematical models developed in this research that 

are presented in the following chapters, are considered as the most advanced models 

for voltage source converters that are capable of illustrating the operational 

behaviour of VSC based controllers such as STATCOM’s in their most detailed 

form. In chapter four the new concept of modelling VSC as a combination of a 
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power injection model and a variable impedance model is introduced. The VSC 

model is then used to model VSC-HVDC schemes as well as stand alone AC 

systems. For now this chapter concludes with several test case scenarios depicting 

the behaviour characteristics the two OPF models developed for STATCOM and 

SVC.  

3.4  Optimal Reactive Power Control in Power Systems 
 

In the following section, the concept of optimal reactive power control is introduced 

by presenting a few test case scenarios. The 8-node system as the benchmark 

example is presented first. Both SVC variable susceptance model and STATCOM 

controllable voltage source model are implemented to this system. Subsequently, 

the STATCOM model is applied to IEEE 30-node system in order to illustrate the 

optimal reactive control in a realistic power system configuration. For comparison 

studies the shunt controller models, where applicable, are replaced by the 

STATCOM model in the 30-node system. The objective function is again chosen to 

be the generators’ cost functions. The OPF is applied in a variety of distinct case 

scenarios to best reflect the realistic operating conditions in a given power system 

and generate a good comparison platform. The purpose of the OPF is then to 

determine the optimum operating points while utilising the shunt controllers to 

regulate the flow of reactive power and achieve an improved voltage profile in the 

system.  

3.4.1  Compensated 8-node System 

 

Two distinctive scenarios are presented in this section; one entails an SVC 

connected to the system in order to provide indirect shunt reactive support whereas 

in the other, the SVC is replaced by a STATCOM. Subsequently, both SVC and 

STATCOM OPF models have been put to test and a comparison between the results 

of the two has been made to draw appropriate conclusions.  

 

The main difference between the STATCOM and SVC is not in the nature of their 

purpose but in their operation. The STATCOM is basically a Voltage Source 

Converter that is connected to the compensated bus through connecting impedance 

whereas the SVC is a collection of TCR’s in parallel with switched capacitor banks. 

Both provide reactive power compensation and regulate voltage at their point of 
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connection to improve voltage profile and consequently overall stability of the 

system.  

 

The system Lagrangian is augmented by the exclusive Lagrangian terms 

corresponding to STATCOM and SVC models presented in equations (3.2) and 

(3.12) respectively. For simulation purposes, the controllers are added to bus 4. In 

case of the SVC an additional connecting transformer is required to attach the SVC 

model to node 4, however the STATCOM model does not require such 

configuration and can be connected to its point of compensation directly. The reason 

is that the STATCOM is modelled as a synchronous condenser behind connecting 

impedance. The voltage in bus 4 is then controlled by the operation of the shunt 

compensators, namely SVC and STATCOM. Consequently the OPF program is run 

and results below are obtained.  

 

There are essentially three different cases: 

 

1. Case One: SVC is connected but not regulating voltage at bus 4 

2. Case Two: SVC in connected and is regulating voltage at bus 4 

3. Case Three: STATCOM is connected and is regulating voltage at bus 4  

 

It should be noted that STATCOM OPF model is capable of both direct and indirect 

voltage regulation, which for the consistency purposes the former mode is chosen in 

the simulations.  

 

1. Case One 

 

The OPF solution for compensated 8-bus system (with SVC) is shown in 

figure (3.3) (all the initial conditions remain the same as in chapter two 

simulations; the objective function is also the same and therefore is not 

mentioned here again). 

 

The OPF is run knowing that the SVC is free to regulate the voltage at node 

4 within its allowable boundaries. The OPF converges in 3 iterations and the 

following results are obtained: 
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Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 0.9010 (0.9015) -0.0138 (0.0305) 398.826 

(399.0173) 

2 0.9891 (0.9895) 0.0572 (0.2292) 435.4471 

(435.6118) 

 

834.2731 

(834.6291) $/hr 

Table 3.1 - Generator's Optimal Power Flow Dispatch (the amounts in parentheses belong to the 

uncompensated case) 

 
Figure 3.3 - 8-node System OPF Solution (SVC Case One) 

Sending End (p.u.) Receiving End (p.u.) Transformer No. 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 +0.2005 -0.0746 -0.2005 +0.0766 

2 -0.0447 -0.0632 +0.0447 +0.0634 

Table 3.2 - Calculated Transformer Powers (at optimum) 

 
 
 
 

~ 

~ 

1 3 

2 

6 4 

7 

8 

5 

G1 

G2 

0.9010 

0.9891 0.0572 

0.0138 

SVC Final 
Susceptance: 
0.1780  0.2126 

0.2107 
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Bus No. 1 2 3 4 5 6 7 8 

Multiplier 

$/hr 

4.12 4.19 4.33 4.35 4.37 4.33 4.37 4.39 

Table 3.3 - Incremental Generation Costs 

SVC No. Reactive Power (per unit) Variable Shunt Susceptance (per unit) 

1 0.2126 (capacitive) 0.1780 

Table 3.4 - SVC Operation (Case One) 

• Results Discussion: 

 

As seen in chart (3.1) the overall voltage profile of the system compared to 

the uncompensated case in chapter two, has increased particularly in node 4 

where the SVC is connected. The increase in voltage profile is mainly due 

to SVC’s reactive power generation at its point of connection. The voltage 

magnitude in node 4 has increased from 1.0707 per unit obtained from 

solving the general OPF problem in previous section to 1.0833 per unit. 

Table (3.4) shows the amount of reactive power generation by the SVC at 

the end of the OPF solution process as 21.26 MVARs of capacitive reactive 

power (21.07 MVARs of which reaches node 4) maintaining a value of 

0.1780 per unit for the variable shunt susceptance. 

 
Chart 3.1 - 8-node System Nodal Voltage Comparison (Uncompensated Case vs. SVC Case One) 

There is an improvement, albeit strikingly small, in value of the objective 

function when compared to the results from the uncompensated system 

solution, which means that the presence of the SVC for improving the 
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voltage profile has slightly decreased the amount of active power flows in 

the system and the generators accordingly which then improves the 

optimum operating point of the system even further. However it should be 

noted that the operation of the SVC, or any other shunt compensators, have 

little effect in the amount of active power flow in the system. Unless there is 

an energy storage facility connected to the shunt compensator the active 

power exchange between it and the system would be nearly zero per unit. 

The active power control capability only applies to the shunt controllers that 

are based on voltage source converters such as the STATCOM. The SVC 

can provide neither direct reactive nor active power support to its point of 

connection. 

 

The shunt compensation capability of the SVC OPF model may be better 

presented in an extreme operating condition where the amount of reactive 

power demand/excess in node 4 is extremely heavy. To illustrate the 

robustness of the SVC OPF model in being able of depicting the shunt 

compensation behaviour properly, the reactive power in bus 4 is permitted 

to vary between ranges of -45 MVARs (excess in reactive power) to +45 

MVARs (demand of reactive power) and subsequently the SVC OPF model 

is put to test for each case. Table (3.5) illustrates the SVC OPF model 

behaviour when subjected to a variable reactive power schedule in node 4. 

As shown in this table, it is clear that the SVC OPF model is capable of 

maintaining the voltage magnitude within its limit boundaries (0.9 to 1.1 per 

unit) even if subjected to extreme operating conditions where lack or heavy 

usage of reactive power is noticeable in the system. The solutions obtained 

by the OPF algorithm must agree with the KKT optimality conditions and 

therefore must maintain the constraints within their corresponding limits.  

 

Reactive Power 

Demand/Excess  

! 

V4 (p.u) 

! 

QSVC (p.u) 

! 

BSVC (p.u) 

! 

fi
i
" ($/hr) 

-45 MVARs 1.0841 0.2729 (inductive) -0.2377 834.2716 

-15 MVARs 1.0841 0.0239 (inductive) -0.0203 834.2716 

Zero MVARs 1.0841  0.1752 (capacitive) +0.1469 834.2716 

+15 MVARs 1.0833  0.3150 (capacitive) +0.2615 834.2730 

+45 MVARs 1.0834  0.6274 (capacitive) +0.5077 834.2729 

Table 3.5 - SVC Model Reactive Compensation Capability in OPF 
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The KKT conditions set by the OPF algorithm ensure that the SVC always 

operates within its linear boundaries (

! 

"0.75 # BSVC # +0.75  per unit), 

which in turn is enforced to represent the operating limits of the SVC used 

in this simulation. The SVC shunt susceptance is initialised at an arbitrary 

value (in this simulation it is 

! 

BSVC
ini = 0.5 per unit). If the network operation 

is so extreme that the SVC shunt susceptance is violated, the OPF then 

discards the given solution as being not feasible under realistic steady state 

operation. This behaviour again shows the strong robustness of OPF 

algorithm in depicting network’s realistic conditions via utilising operating 

constraints. As seen in table (3.5), in extreme cases of reactive power excess 

(-45 and -15 MVARs), the SVC model is actually consuming excess 

amounts of reactive power in order to prevent any over-voltages. Such 

situations can properly model undesirable circumstances such as load 

rejection or open end lines in which extreme amounts of excess reactive 

power would bring about over-voltages in the system. The purpose of 

applying SVC OPF model is therefore to determine the conditions of 

operation by which the system not only maintains stability but also operates 

at an optimum level. If the above reactive power conditions happen in the 

system without the operation of the SVC, the voltage profile obviously 

deviates more severely which may bring the system’s nodal voltage profile 

dangerously close to its limits and consequently bring about system voltage 

collapse. The extreme voltage variations due to the changing nature of the 

reactive power demand in bus 4 are shown in table (3.6).  

 

Reactive Power 

Demand/Excess  

! 

V4 (p.u) 

! 

fi
i
" ($/hr) 

-45 MVARs 1.1000  896.740 

-15 MVARs 1.0826 834.279 

Zero MVARs 1.0737 834.486 

+15 MVARs 1.0646 835.027 

+45 MVARs 1.0458 837.171 

Table 3.6 - Voltage Magnitude Variations at the presence of no SVC 

The more reactive power changes, the more it affects the nodal voltage at 

bus 4, which is more remarkable at either ends of the reactive power range. 

If the variation in reactive power perpetuates, the voltage magnitude in node 
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4 eventually goes over the limits (as it is the case in -45MVARs range 

where the OPF algorithm enforced the nodal voltage magnitude in node 4 to 

its upper limit, namely 1.1 per unit). Table (3.6) clearly illustrates the 

crucial role the SVC as a shunt reactive controller plays in maintaining a 

fixed voltage profile in the 8-node system.  

 

2. Case Two 

 

In this scenario, the SVC is set to control the voltage magnitude at node 4 to 

be always 1.1 per unit whatever the system conditions may be. The voltage 

regulation feature of SVC is represented in the OPF algorithm as a variable 

equality constraint on nodal voltage at bus 4 as depicted in equation (3.12). 

As mentioned in chapter two, the equality constraints (variable and 

functional) are used in the OPF for the purpose of representing equipment 

control facilities used in the system. In case of a shunt compensator capable 

of voltage regulation, the nodal voltage at the compensated bus becomes 

another equality constraint that needs to be added to the set of constraints. 

The voltage is then enforced to its pre-determined value via the use of a 

quadratic penalty function similar to the one introduced in chapter two. The 

penalty function contains the penalty factor, which is a typically large 

number. By adding the first and second order derivatives of the penalty 

function defined for the nodal voltage magnitude in node 4, to the 

corresponding Hessian/Jacobian terms in the system of linear equations, the 

algorithm essentially enforces the nodal voltage magnitude in node 4 to a 

pre-determined value, namely 1.1 per unit (See control of system operation 

in chapter two). The OPF algorithm is then run to obtain results reflecting 

this new condition. Tables (3.7 – 3.10) illustrate the results by the OPF 

algorithm while the SVC is controlling the voltage at bus 4. It should be 

noted that in this scenario the reactive power demand is taken to be 5 

MVARs, namely the default reactive power conditions at bus 4. The OPF is 

converged in four iterations; the solution is shown in figure (3.4). 
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Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 0.9028 -0.0218 399.5602 

2 0.9886 -0.2152 435.1970 

 

834.7574 $/hr 

Table 3.7 - Generators Optimal Power Flow Dispatch (SVC Regulating Voltage) 

 
Figure 3.4 - 8-node System OPF Solution (SVC Case Two) 

 

Sending End (p.u.) Receiving End (p.u.) Transformer No. 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 +0.2062 -0.1708 -0.2062 +0.1738 

2 -0.0437 -0.1106 +0.0437 +0.1112 

Table 3.8 - Calculated Transformer Powers (at optimum) 
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Bus No. 1 2 3 4 5 6 7 8 

Multiplier 

$/hr 

4.12 4.19 4.34 4.36 4.38 4.34 4.37 4.40 

Table 3.9 - Incremental Generation Costs 

SVC No. Reactive Power (per unit) Variable Shunt Susceptance (per unit) 

1 0.5013 (capacitive) 0.3979 

Table 3.10 - SVC Operation (Case Two) 

• Results Discussions: 

 

Once again the results obtained here by the OPF algorithm shows how the 

SVC OPF model is capable of improving the overall voltage profile of the 

system which consequently has a direct effect on improving system’s 

performance in terms of voltage stability and power quality. The SVC 

generates 50.13 MVARs of reactive power (49.13 MVARs of which is 

injected to node 4) to keep the voltage magnitude at node 4 fixed at 1.1 per 

unit. The voltage regulation capability is modelled as a new variable 

equality, which is then added to the system of equations through a special 

penalty function. The system voltage profile compared to Case One has 

been improved as shown in chart (3.2) below.  

 

 
Chart 3.2 - 8-node System Voltage Comparison (SVC Case One vs. SVC Case Two) 
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3. Case Three 

 

In this case scenario the SVC is replaced by a STATCOM at bus 4. The 

STATCOM OPF voltage source model that is presented previously is used 

in the algorithm to regulate voltage at bus 4. Since the STATCOM model 

represents connecting impedance, there is no need for an additional 

connecting transformer as it was the case with the SVC model. It should be 

noted that for the purposes of simulation the STATCOM converter’s 

impedance is taken to be 0.05 per unit.    

 

The STATCOM voltage regulation feature is once again added as a variable 

equality with appropriate corresponding penalty function to enforce its 

magnitude to the pre-determined value of 1.1 per unit. Assuming the same 

initial conditions for the 8-node system, as well as the same objective 

function presented in chapter two, the OPF is run for the STATCOM 

model, which again converged after four iterations. It has been immediately 

observed that when in voltage control mode, STATCOM produces the exact 

same results as for the SVC, illustrated in tables (3.7 – 3.10), which 

indicates that as long as STATCOM and SVC are working within their 

limits, their voltage regulation features have similar effects on the operation 

of the network as given by the OPF results, despite the difference in their 

methods of modelling.  

 

The STATCOM converter is injecting 50.13 MVARs of reactive power, 

49.13 MVARs of which are consumed by node 4 to keep the voltage fixed 

at 1.1 per unit.  

 

The STATCOM OPF model however, can be re-configured to provide 

active power compensation to the system. In order to study the potential 

applications of VSC-based controllers in a real power system, it is assumed 

that STATCOM’s converter is used as a means to connect an energy storage 

device to bus 4.  
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In order to add active power flow control capability to the STATCOM OPF 

model, it is only necessary to add a new functional constraint to STATCOM 

Lagrangian in equation (3.9) in form of equation (3.14) as such: 

  

 

! 

LPconv = "pconv
(Pconv # Pspecified ) 3.14  

 

 

The active power regulation might indicate the presence of energy storage 

devices connected to STATCOM’s converter as well. Once again assuming 

same initial conditions and knowing that STATCOM is set to inject 10 

MWs of active power, the following results are obtained: 

 

The OPF is converged in three iterations with the following results: 

 

Generator 

No. 

Active Power 

Dispatch (p.u.) 

Reactive Powers 

(p.u.) 

Optimal Cost of 

Generation $/hr  

Optimal Value of 

Total Generation 

1 0.8529 -0.0262 379.0879 

2 0.9338 -0.1926 412.3590 

 

791.4470 $/hr 

Table 3.11 - Generators Optimal Power Flow Dispatch  

Sending End (p.u.) Receiving End (p.u.) Transformer No. 

! 

Ps  

! 

Qs 

! 

Pr  

! 

Qr  

1 +0.1675 -0.1622 -0.1675 +0.1645 

2 -0.0600 -0.1056 +0.0600 +0.1063 

Table 3.12 - Calculated Transformers Powers (at optimum) 

Bus No. 1 2 3 4 5 6 7 8 

Multiplier 

$/hr 

4.08 4.15 4.28 4.30 4.32 4.29 4.32 4.34 

Table 3.13 - Incremental Generation Costs 

STATCOM 

No. 

Converter’s Reactive Power 

(per unit) 

Injected Reactive Power at node 4 

1 +0.4675 -0.4584 

Table 3.14 - STATCOM Operation at optimum (Voltage Regulation Mode)  
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The goal of this exercise was to indicate the effects of local active power 

regulation on system’s total performance. The optimal power flow solution 

has also been shown in figure (3.5). It is also observed that by utilising 

STATCOM’s voltage source converter, the system provides 10MWs of 

active power at bus 4 locally, which decreases the system total active 

generation resulting in a significant drop in the final value of the objective 

function to 791.4 $/hr from 834.7 $/hr in previous scenarios. Since the 

STATCOM’s active power exchange with the system has little influence in 

the voltage variations occurring in the system and particularly at node 4, the 

system’s voltage profile remains the same as before.   

 
Figure 3.5 - 8-node System OPF Solution with STATCOM in place of SVC 

The system’s voltage profile for the SVC and STATCOM cases while 

regulating voltage at node 4 to 1.1 per unit has been presented in chart (3.3). 

 It is clearly observed that both controllers follow the same pattern in 

regulating the voltage, which is what initially was expected.  
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Chart 3.3 - STATCOM Model vs. SVC Model Voltage Regulation Modes produce the exact same results 

It proves from the last simulation scenario that the presence of STATCOM 

is advantageous to the SVC since STATCOM’s connecting converter can 

provide both active and reactive power to its point of connection should the 

need arises and the possible facilities are available (for example if the 

converter is connected to a micro-generator). This very fact shows one of 

the most important benefits of using converter based FACTS devices 

instead of more conventional variable impedance types [4].  

 

The voltage source converter power control characteristics are investigated more 

thoroughly in next two chapters where a new and advanced model for VSC is 

described. It is clearly shown here that using VSC based FACTS such as 

STATCOM has the benefit of providing a smoother and more comprehensive 

control capability to the system whereby the system’s reliability is improved even 

further [1]. As it is shown in this simulation providing local active power regulation 

is seamlessly realised through connecting local sources of energy via VSCs. In next 

chapters the VSC-HVDC links suitable for such interconnections are thoroughly 

investigated and the appropriate OPF models are developed and tested. In the next 

section the STATCOM controllable voltage source model is applied to the IEEE 30-

node system to illustrate its operational characteristics in dealing with a realistic 

power system configuration.  

3.4.2  Compensated IEEE 30-node System 

 

The IEEE 30-node system was introduced in previous chapter. It is shown from the 

system data (both in chapter two and Appendix II) that the IEEE 30-node system 

possesses two shunt compensators in nodes 10 and 24. The general OPF simulation 
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carried out in chapter two regarded these shunt compensators as fixed capacitors, 

with shunt susceptance values of 0.19 and 0.043 per unit respectively. However, for 

the purposes of simulation here, the shunt compensator in node 24 is replaced with a 

fully functional STATCOM voltage source model.  

 

The STATCOM is allowed to operate freely within the permitted nodal voltage 

range of 0.9-1.05 per unit and the OPF is run, which has converged in 9 iterations. 

There have been voltage magnitude violations in nodes 9, 10 and 12, in which the 

OPF has successfully bounded the violated voltage magnitude to its upper limit, 

namely 1.05 per unit, using the quadratic penalty function.  

 

Furthermore, in another run, the STATCOM is tasked with maintaining the voltage 

magnitude at node 24 to 1.00 per unit, which is done by introducing a new variable 

equality constraint for voltage magnitude in node 24 in the OPF formulation. As 

there have been no violations in the amounts of voltages in the system, the OPF 

converges in three iterations this time. It is observed that by varying the voltage 

between 0.095-1.05 the STATCOM effectively manages to maintain the voltage and 

prevent a collapse. The results for the STATCOM simulation in the 30-node system 

have been presented in table (3.15) below: 

 

 Bus No. Target Voltage 

(p.u.) 

Obtained 

Voltage 

(p.u.) 

STATCOM’s 

converter’s 

voltage (p.u.) 

Converter’s 

reactive 

power (p.u.) 

Calculated 

injected 

reactive 

power (p.u.) 

SVC’s 

injected 

reactive 

power (p.u.) 

24 

! 

0.9 "V24 "1.05
 

1.0356 1.0406 0.1029 

(capacitive) 

0.1024 

(capacitive) 

0.1022 

(capacitive) 

24 

! 

V24 =1.00  1.000 1.0022 0.0446 

(capacitive) 

0.0445 

(capacitive) 

0.0446 

(capacitive) 

Table 3.15 - STATCOM and SVC Comparison in IEEE 30-node System (Compensation at node 24) 

In both cases the results for simulating the same configuration with the SVC is also 

given for comparison (note that in this case scenario the SVC variable impedance 

model is directly connected to node 24 and is not behind a connecting transformer). 

As it is seen from the table, the SVC produces the exact same results which again 

stresses the fact that both devices provide the same compensation capability within 

their operating range albeit they are completely different in terms of operation and 

modelling [1]. 
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The STATCOM can also be configured to control reactive power at the point of 

connection. In another test run for the 30-node system, the STATCOM is 

controlling the reactive power at node 24 to be exactly 0.1 per unit and the OPF is 

run once more. According to the STATCOM modelling criteria presented in section 

(3.3.1), the reactive power control is modelled as a functional constraint in the form 

of equation (3.3), which in turn deactivates equation voltage control in equation 

(3.4). As a result, the nodal voltage magnitude in node 24 is no longer penalised 

whereas the STATCOM reactive power constraint is added to the system 

Lagrangian throughout the solution process.  

 

The OPF is run and the following results are obtained after seven iterations: 

 

 Bus No. Target 

Converter’s 

Reactive Power 

(p.u.) 

Obtained 

Voltage 

(p.u.) 

STATCOM’s 

converter’s 

voltage (p.u.) 

Converter’s 

reactive 

power (p.u.) 

Calculated 

injected 

reactive 

power (p.u.) 

24 0.1000 1.0354 1.0402 0.1000 

(capacitive) 

0.0995 

(capacitive) 

Table 3.16 - STATCOM controlling reactive power at node 24 

For the purpose of controlling the reactive power of the converter, the last rows and 

columns pertaining the STATCOM’s functional equality constraint on its reactive 

power must be included in the system of linear equations as depicted in equation 

(3.10). As before, the influence of the exact penalty function is conspicuous in 

dealing with voltage violations in nodes 9, 10 and 12 all of which are effectively 

bounded by the OPF algorithm to their upper limits of 1.05 per unit. As seen from 

table (3.16), the STATCOM model this time fixes the amount of reactive power its 

converter is producing to 0.1 per unit effectively freeing the system voltage, 

however both converter’s reactive power and the system voltage must be within 

their limits otherwise the algorithm may reject the solution as it may not satisfy the 

KKT optimality conditions. The results presented in table (3.16) resemble to a great 

deal to those obtained in table (3.15) when STATCOM is not regulating the voltage, 

which means that the STATCOM model’s effect on nodal voltage is closely 

interrelated with its reactive power control capability. It is therefore imperative that 

the nodal voltage be freed to take up a value depending on the value of the reactive 

power, which is set by the user; otherwise the STATCOM’s voltage source 
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representation will not produce accurate results. In both cases the objective function 

takes the minimum value of approximately 967$ per hour of fuel consumption.  

3.5  Conclusions 
 

The OPF models for two types of the most important shunt controllers have been 

developed and presented in this chapter. The SVC-OPF model as mentioned in [10] 

is modelled as a variable shunt susceptance within its boundary region for realistic 

results. The STATCOM, on the other hand, is modelled as a shunt power injection 

to its point of connection. The STATCOM’s converter’s power is a function of its 

voltage and comprises its exclusive functional equality constraint. However, the 

STATCOM can also be configured to directly regulate nodal voltage magnitude at 

its point of compensation in which case there is no need for an additional functional 

equality constraint, even though an additional variable constraint on the 

compensated nodal voltage magnitude is necessary. Because the STATCOM’s 

converter reactive power as well as the nodal injected reactive power is a function 

of the nodal voltage magnitude of the compensated bus, they are closely interrelated 

and therefore they cannot be activated in conjunction with each other. The 

STATCOM, unlike the SVC, is modelled as a controllable voltage source in its 

entire region of operation. The model developed here for the STATCOM is the 

simplest form of power injection model for a shunt VSC-based controller. It 

effectively represents the operation of the voltage source converter in form of a 

controllable voltage/power source. It should be noted that this model, although 

effective, lacks some fundamental features, mostly it does not model the internal 

switching losses of the VSC and takes no account of the PWM control of the 

converter. For these reasons a new model is developed for the VSC as the building 

block of almost all modern switching converter type FACTS controllers, including 

the STATCOM, which can then be used to model both STATCOM and SSSC as 

well as VSC-HVDC systems. This model, dubbed the compound transformer model 

is introduced in the next chapter. The OPF models developed in this chapter and 

subsequent chapters are for steady-state operation only.  
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4 Advanced Voltage Source Converter Model in 

Optimal Power Flow algorithm using the 

Compound Transformer Concept 
 

In this chapter, the principles of modelling the power converters, particularly the fully 

controlled self-commutated Voltage Source Converter (VSC), in the Optimal Power 

Flow algorithm using Newton’s method for augmented Lagrangian function, has been 

explained. The new power injection modelling method uses an advanced concept called 

the Compound Transformer Model whereby the VSC is effectively modelled as a 

transformer with controllable variable complex tap ratio. Mathematically, it has been 

shown that the Pulse Width Modulation (PWM) attributes for controlling a voltage 

source converter can properly be represented by the operation of the compound 

transformer’s complex tap ratio. Therefore, the compound transformer has been 

introduced as a suitable, more accurate mathematical platform to describe the operation 

of the VSC and VSC-based systems for the purposes of optimal power flow analysis. 

Accordingly, a new set of nodal active and reactive power injections for the VSC 

operation in the network in the form of a compound transformer has been developed 

and presented. The new modelling approach is advantageous over the conventional 

controllable voltage source models since it explicitly includes the control capabilities of 

the VSC in the form of state variables in the OPF mathematical formulation. Two 

categories of simulations follow the mathematical formulation of the new compound 

transformer model. In the first set of simulations the compound transformer has been 

tested as a stand-alone device and several OPF simulations have been carried out to 

verify its robustness in controlling power system parameters, namely voltage and active 

power in both ends of the transformer. In the second set, its operation as a voltage source 

converter feeding a DC load has been tested and verified. The DC active power 

regulation is achieved via the phase angle compensation of the compound transformer’s 

variable phase shifter. The latter set of simulations is crucial for further High Voltage 

Direct Current Transmission system models based on VSCs (VSC-HVDC) presented in 

the next chapter. It has been shown that the VSC compound transformer model concept 

is a major improvement over the previous controllable voltage source modelling 

approach. It yields a more realistic and elaborate description of the operation of the 

actual voltage source converters in power system applications.  
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4.1  Introduction 
 

Power converters have been playing a decisive role in modern power system 

configurations for decades now. They are essentially used to convert DC power to 

AC power in a power network in order to meet certain operating conditions, for 

instance, synchronising autonomous AC grids with each other or transferring bulk 

amounts of active power over longer distances, where the active power transfer 

capacity is severely impaired due to the operational restrictions of a typical High 

Voltage AC Transmission (HVAC) line [1, 2]. However, with the advancements in 

the power electronics technologies and the emergence of renewable sources of 

energy (for instance Wind and Solar Power), which are more susceptible to voltage 

and frequency deviations and affect the overall power quality of the system, the 

need for reliable operation of the power system free from voltage imbalances and 

other dynamic issues seems obvious. Sensitive industrial loads such as induction 

machines that require a constant source of reactive power compensation as well as 

loads that operate in variable frequency and voltage ranges all exert undesired 

effects on the steady state operation of the network decreasing its reliability and 

power quality [3]. Unfortunately, conventional power converters that are based on 

semi-controlled semi-conductors such as thyristors, require line-commutation and 

therefore provide limited controllability and flexibility in adopting more advanced 

power network configurations, for instance in connecting variable speed induction 

machines to the AC grid [3]. On the other hand, relative simplicity in control 

strategies applied to newer breed of power electronics devices such as IGBTs or 

GTOs have led to the introduction of fully controlled self-commutated power 

converters whereby the output voltage waveform is controlled in both phase angle 

and magnitude using flexible switching schemes such as Pulse Width Modulation 

(PWM) [2, 4, 5]. These converters in turn have been used in many applications 

ranging from fast and reliable interconnection of remotely located distributed 

generation sources to the power grid to synchronising autonomous AC grids with 

each other in High Voltage Direct Current transmission systems [6, 7]. Furthermore, 

almost all of the modern FACTS controllers, namely the switching converter type 

FACTS controllers such as the STATCOM or UPFC are based on self-commutated 

voltage source converters that provide fast and reliable voltage/power control for the 

system [8]. 
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There are generally two categories of power converters, regardless of the type of 

power electronics device (fully or semi controlled) used in them and only with 

respect to the type of their DC source [2]. They can be configured as either Voltage 

Source Converters (VSC) or Current Source Converters (CSC). Self-commutated 

converters can operate as both CSCs and VSCs, whereas the line-commutated 

converters can only operate as CSCs [2, 8]. The two categories of power converters 

are shown in figures (4.1) and (4.2) respectively [8]. 

 
Figure 4.1 - Voltage Source Converter - Fully Controlled Self Commutated Converter  

 
 

Figure 4.2 - Current Source Converter - (a) Fully Controlled Line Commutated Converter (b) Fully 

Controlled Self Commutated Converter  
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As it is seen in figure (4.1), the VSC possesses a DC voltage source (typically a 

large/medium capacitor) whose voltage polarity in the DC side never changes and 

therefore the direction of the power flow to and from the converter is controlled by 

changing the direction of the DC current [2, 8]. It should be noted that the bi-

directional DC current in a VSC requires adding anti-parallel diodes to the fully 

controlled semi-conductor used for conversion (either GTOs or IGBTs in most 

recently made converters) to provide a return path for the current from the AC side 

to the DC side to realise rectification [8, 9]. As a result, all practical voltage source 

converter topologies include valves with a fully controlled semi-conductor (GTO or 

IGBT) coupled with anti-parallel diodes [10]. By contrast, in a CSC the DC current 

has only one direction and it is the changing in the DC voltage polarity that governs 

the direction of the power flow to and from the converter [2, 8]. Conventional line-

commutated converters utilise thyristors, which have both forward and reverse 

voltage blocking capabilities [8].  

 

The VSCs are more flexible and introduce better controllability in the system than 

the CSCs since they utilise fully controlled power electronics and therefore are self-

commutated [4, 9]. As it is seen from figure (4.1), the VSC provides bi-directional 

active and reactive power in the AC side as well as bi-directional active power in 

the DC side [2]. As a result, the VSCs operate in all four quadrants of the P-Q plane 

[2, 3]. In comparison, if a CSC is based on semi controlled power electronics (for 

instance thyristors), then it requires reactive power from the AC side to achieve 

commutation and therefore is incapable of operating in four quadrants of the P-Q 

plane and it can only operate in two quadrants (consuming reactive power) [8]. If a 

CSC is based on fully controlled power electronics devices, it can too provide bi-

directional active and reactive power on the AC side, however most bi-directional 

self-commutated converters are VSCs.  

 

Fully controlled self-commutated voltage source converters constitute a major part 

of this research and therefore their associated operational principles followed by 

their potential applications in modern power systems are adequately explained 

further in this section. The CSC operation and applications are therefore out of the 

scope of this project and will not be mentioned here any further.  
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In a voltage source converter, the active and reactive powers between the converter 

and the AC system are controlled by altering the phase angle and voltage magnitude 

of the converter’s voltage against the AC system voltage using PWM for switching 

fully-controlled semi-conductors (for example IGBTs) [4, 11-13]. Unlike 

conventional line-commutated converters, in a PWM-controlled voltage source 

converter both active and reactive power flows between the converter and the AC 

system are regulated independently, which results in improving system reliability 

and delivered power quality [2, 3, 5, 8, 11, 13, 14].  

 

In an actual PWM-controlled voltage source converter, the active power flow as 

well as its direction is controlled by regulating the incurred phase angle difference 

between the converter’s output voltage and the AC system voltage [3, 8, 11-13]. 

Moreover, the voltage magnitude is also controlled in a PWM-controlled VSC by 

changing the amplitude modulation index of the converter [2, 8, 12-14]. On the 

other hand, the VSC controls the reactive power through controlling the converter 

voltage magnitude (up to its capacitive rating) against the AC system voltage much 

like a synchronous condenser [4, 8, 12, 14, 15]. If the converter voltage output is 

bigger than the AC system voltage, the converter then supplies reactive power to the 

system and vice versa [11, 12]. The seamless reactive power controllability in 

voltage source converters makes them ideal for interconnecting to weaker systems 

stronger ones without the need for additional reactive power compensators.  

 

Since the VSC provides both active and reactive power flows to the system it is 

appropriate to assume that from the power system perspective, the voltage source 

converter is seen as an ideal voltage source, for instance a synchronous condenser, 

behind coupling impedance (or reactance) [4]. In fact, the voltage source converters 

have been modelled as controllable voltage sources (hence active and reactive 

power injections) almost in every power flow study scenario [4, 5, 9, 11, 13, 14, 16, 

17].  

 

However, in this project an alternative path for modelling the VSC in power flow 

studies, more specifically in optimal power flow analysis, has been chosen, which is 

not based on idea controllable voltage sources.  
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Considering the fact that the instantaneous power has to remain equal between AC 

and DC sides of an actual voltage source converter [8], then a voltage source 

converter can validly be thought of as an ideal transformer behind coupling 

impedance. The transformer, dubbed the compound transformer, is a relatively new 

concept in modelling power converters and has certainly never been used to model a 

VSC before. The concept stems from the fact that introducing a variable phase 

shifter angle and assuming a variable transformer ratio control the voltage phasors 

in either sides of this “compound device” in both phase angle and magnitude just 

like a real voltage source converter. Subsequently, the nodal active and reactive 

powers are controlled in a compound transformer exactly like an actual voltage 

source converter. Essentially, the rectifier or inverter operation of the voltage source 

converter is chosen based on the direction of the nodal power injections for the 

compound transformer model.  

 

In this chapter, a comprehensive analysis has been carried out for the new 

compound transformer model and it has been shown that this new modelling 

criterion is capable of portraying the most accurate and elaborate representation of 

the operational principles of a real voltage source converter. It will also be 

mentioned later that modelling the operation of an actual VSC as a compound 

transformer has an important mathematical advantage over the conventional 

controllable voltage source models, since it explicitly includes the effects of PWM 

control characteristics of the converter into the OPF formulation.   

4.2  Compound Transformer Concept  
 

The compound transformer shown in figure (4.3a), in itself is a special kind of 

electronically controlled FACTS device, which possesses the capabilities of an On-

Load Tap Changer (OLTC) and an electronically controlled Phase Shifting 

Transformer (PST) simultaneously [18]. It is observed that such a device is capable 

of providing the means to control network’s fundamental parameters, namely active 

power flow and voltage magnitude in sending and receiving ends.  

 

The phase shifter facility in the compound transformer, essentially resembles the 

operation of a Phase Angle Regulator (PAR), which provides phase angle 

compensation with the amount of 

! 

±"ps by injecting a controllable series voltage 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 121 

with adjustable phase angle and magnitude, namely, 

! 

V inj"# inj = ±V inj e± j# inj

 to 

the line [8, 18, 19]. Ultimately, the phase angle regulator in the compound 

transformer model controls the amount of active power across the line by regulating 

the incurred phase angle difference between the sending and receiving ends of the 

line, 

! 

" sr ±#ps  in figure (4.3a) [8, 15, 18, 20, 21]. On the other hand, if the PAR is 

coupled with an OLTC, then the nodal voltage magnitudes in the line are also 

controlled directly by a continuous tap magnitude ratio, 

! 

T .  

 

Consequently, by combining the controlling facilities of both PAR and OLTC 

together, the compound transformer can essentially be thought of as an ideal 

transformer with an incurred continuous variable complex tap ratio with the value of 

! 

mps = T" ±#ps = T e± j# ps  as shown in figure (4.3a) [12, 18, 20].  

 

As seen in figure (4.3b), the complex tap ratio effectively controls the nodal 

voltages in both magnitude and phase angle, which yields to full control in both 

nodal active and reactive powers. For consistency purposes, it is assumed that the 

tap changer facility of the OLTC and subsequently the compound transformer is 

located at the primary side of the transformer. All the impedance calculations are 

therefore carried out with reference to the primary side for subsequent models 

introduced in this chapter and the following chapter.  

 
Figure 4.3 - Compound Transformer - (a) The variable phase shifter ratio models both active power and 

nodal voltage magnitude controls (b) Phasor diagram for leading operation  
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It should be noted that the reactive power in a compound transformer model 

configuration is regulated indirectly through the nodal voltage magnitude 

adjustments. Much like a practical OLTC, It is then up to the system to provide 

necessary reactive power requirements to account for the pre-determined voltage 

magnitude at the point of control [8]. Consequently, in terms of OPF mathematical 

formulation, the effects of the OLTC (direct voltage regulation) is formulated as a 

variable equality constraint on the voltage magnitude at which bus it is set to 

regulate much like the STATCOM/SVC OPF models presented in chapter three. 

However, care needs be taken so as not to violate the limits of the tap changer 

magnitude in the complex tap ratio of the compound transformer. For practical 

VSC-HVDC OPF modelling the direct voltage regulation capability of the 

compound transformer will also be subject to the VSC’s capacitive ratings.  

4.3  VSC Compound Transformer Model for Optimal Power Flow 

Algorithm via Newton’s Method  
 

Considering the operational principles of the compound transformer device 

introduced in figure (4.3a), it is obvious that it provides an appropriate framework 

for elaborate modelling of the operating principles of the PWM-controlled voltage 

source converter using its controllable variable complex tap ratio.  

 

The VSC in power flow analysis is traditionally modelled as a controllable voltage 

source behind coupling impedance (or reactance), which injects controllable active 

and reactive power (as functions of its converter voltage) to the AC system [5, 11].  

 

However the conventional power flow modelling approach of the VSC has a 

fundamental drawback in that it does not model the converter’s internal switching 

losses, which in case of PWM control due to the relative high switching frequency 

may increase [8]. Furthermore, it ignores the role of PWM control characteristics 

(phase shifting and line voltage magnitude adjustments) in regulating system 

parameters [14, 22].  

 

As mentioned in [14], since conventional voltage source converter power injection 

models do not include the effects of PWM amplitude modulation ratio as well as the 

switching losses, there is no way of verifying whether these values are within limits 
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if such models are used for OPF analysis. Therefore, they do not provide accurate 

grounds for describing the operation of a real voltage source converter for the 

purposes of optimal power flow analysis.  

 

Unlike the conventional controllable voltage source models proposed in [5, 11, 14] 

though, the compound transformer model presented in this chapter, takes into 

account the effects of the PWM control in a VSC in form of a controllable variable 

complex tap, namely 

! 

mps = T"#ps, as shown in figure (4.4a).  

 

On the other hand, as an improvement to the model concept shown in figure (4.3a), 

the compound transformer used to model the voltage source converters explicitly 

comprises the converter’s internal switching losses as a shunt ohmic resistance in 

parallel with a shunt susceptance representing the DC capacitor (DC source/sink 

voltage).  

 
Figure 4.4 - (a) VSC Compound Transformer Model (b) Phasor diagram for converter's lagging operation 

and control on primary 
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transmission systems for back-to-back, point-to-point and multi-terminal 

configurations in next chapter.  

 

The operational principles of the compound transformer model are presented in 

form of a phasor diagrams in figure (4.4b) for converter’s leading operation and 

basic voltage and power control modes on primary. The power and voltage control 

on secondary follows the same principles and therefore have not been shown. It 

should be noted that in figure (4.4b), it has been assumed that the receiving end 

voltage has zero phase angle. According to figure (4.4a), the compound 

transformer’s active power flow between nodes 

! 

s and 

! 

r  is defined as such 

(temporarily ignoring the shunt branch): 

  

 

! 

Pps =
Vs Vr

Zps

sin(" s #" r ±$ps)  
4.1  

 

 

In which the following relationship between the sending and receiving voltages 

apply: 

 

 

! 

Vs = TVr  4.2  

 

 

Equation (4.1) essentially states that in the compound transformer, the active power 

flow is regulated, by varying the controllable phase shift 

! 

"ps to obtain the required 

phase angle difference suitable for achieving a pre-specified control target for 

! 

Pps . 

This is basically similar to controlling the phase angle difference between the 

converter’s voltage and the AC system voltage in a PWM-controlled voltage source 

converter [11]. The phase shifter angle operation has been shown in forms of series 

voltage injections to the primary voltage in the phasor diagram in figure (4.4b). 

Furthermore, the nodal voltage magnitude in the compound transformer model is 

controlled using the variable tap changer magnitude ratio 

! 

T . Equation (4.2) 

therefore is a mathematical representation of the VSC PWM amplitude modulation 

index that can take up any value within the converter’s physical and operational 

boundaries [13, 14]. Ultimately, both from equations (4.1) and (4.2) as well as 

phasor diagram in figure (4.4b) it is clear that the operation of the variable complex 

tap ratio in the compound transformer would result in a controllable output voltage 
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in both phase angle and magnitude and eventually by controlling these parameters 

both active and reactive powers are controlled.  

 

A direct benefit of modelling the voltage source converter, as a compound 

transformer with coupling impedance (which models the converter’s connection 

transformer) is that the resultant value of the complex tap ratio phasor is explicitly 

included in the derived calculated nodal active and reactive power injections in both 

ends of the compound model. This means that throughout the course of the OPF 

solution process, the algorithm chooses the optimum tap magnitude ratio as well as 

the phase angle difference values associated with the desired voltage magnitude and 

the active power flows in either side of the converter. Defining an explicit control 

variable in form of the complex tap ratio guarantees that the control targets are 

achieved in the OPF without violating the complex tap ratio’s respective limits, 

since they have to satisfy the KKT optimality conditions (particularly the third 

condition). Consequently, the results obtained from the compound transformer 

model is much more accurate than the conventional voltage source power injection 

models.  

4.3.1  Derived Nodal Power Flows in Compound Transformer Model 

 

According to the single line diagram representation of the compound transformer 

model shown in figure (4.4a), the addmitance matrix pertaining the compound 

model is calculated as such taking into account the shunt branch as well: 

 

 

! 

YT =
Y "(T#$ps)Y

"(T#"$ps)Y T 2Y +Y0

% 

& 
' 

( 

) 
*  

4.3  

 

 

In which the following self- and mutual-elements of the series transformer 

addmitance matrix are defined: 

 

 

! 

Y =Gss + jBss = "Gsr " jBsr  4.4  
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And 

 

 

! 

G =Gss =
Rps

Rps
2 + Xps

2  
4.5  

 

 

 
 

4.6  

 

 

The complex apparent power for the compound transformer model is calculated as 

the product of the nodal voltage magnitudes in primary and secondary with the 

complex conjugates of the currents flowing in each node as presented in equation 

(4.7). 
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4.7  

 

 

Replacing for complex conjugate currents with the relation 

! 

I* =YT
*V * , equation 

(4.7) is re-written in polar coordinates, as such: 

 

 

! 

Ss
Sr

" 

# 
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& 
' =

Vse
j( s
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j( r
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*
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Vse

) j( s
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4.8  

 

 

Which eventually yields the two general expressions corresponding the complex 

nodal apparent powers for primary and secondary sides of the compound 

transformer model in polar coordinates: 

 

Sending end (primary side): 

 

! 

Ss =Vs
2Y * "TVsVrY

*e j(# s "# r "$ ps ) 4.9  

 

 

Receiving end (secondary side): 

 

! 

Sr = (T 2Y * +Y0
*)Vr

2 "TVrVsY
*e j(# r "# s +$ ps )  4.10  
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By performing basic complex algebra on equations (4.9) and (4.10) taking into 

account equations (4.4-4.6) associated with the converter’s addmitance matrix and 

knowing that the shunt branch addmitance is defined as 

! 

Y0 =G0 + jB0 , the nodal 

active and reactive powers for the sending and receiving ends of the compound 

transformer model are, in polar form, calculated as shown in equations (4.11-4.14). 

Note that the details of calculations leading to the nodal powers are presented in 

Appendix I of this thesis and therefore will not be mentioned here. 

 

Powers at sending end (or primary side): 

 

 

! 

Ps =Vs
2G "TVsVr[Gcos(# sr "$ps) + Bsin(# sr "$ps)] 4.11  

 

 

 

! 

Qs = "Vs
2B "TVsVr[Gsin(# sr "$ps) " Bcos(# sr "$ps)] 4.12  

 

 

Powers at receiving end (or secondary side): 

 

 

! 

Pr =Vr
2(G0 +T 2G) "TVrVs[Gcos(# sr "$ps) " Bsin(# sr "$ps)] 4.13  

 

 

 

! 

Qr = "Vr
2(B0 +T 2B) "TVrVs["Gsin(# sr "$ps) " Bcos(# sr "$ps)]  4.14  

 

 

The calculated nodal powers presented in equations (4.11-4.14) essentially define 

the operation of the VSC in form of the compound transformer model’s active and 

reactive power injections and therefore they have to be taken into account in the 

compound transformer exclusive Lagrangian when modelling the VSC in the OPF 

algorithm. It should be noted that these nodal power equations take into account the 

VSC internal switching losses in form of 

! 

P0 =G0Vr
2.  

4.3.2  Compound Transformer OPF Formulation  

 

The OPF general formulation presented in chapter two applies for the compound 

transformer model as well. This means that all the equality constraints particularly 

the power balance equations, which define the steady state operation of the system 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 128 

must hold. The newly defined power injections, namely equations (4.11-4.14) are 

therefore included in the system’s power balance equations. 

 

The compound transformer model is formulated in the OPF by defining a new 

vector of state variables, containing the control variables of the transformer complex 

tap ratio as presented in equation (4.15). 

 

 

! 

zps = ["ps,T,#" ps
]T  4.15  

 

 

As mentioned earlier, the compound transformer is developed to model the 

operation of VSC and VSC-based systems in particular. Therefore its control 

constraints are the same as the VSC control capabilities, namely, seamless control 

on active power flow in both ends as well as nodal voltage magnitude.  

 

Consequently, The compound transformer’s operating constraints are defined on its 

active power flow as well as the nodal voltage magnitude at either ends of the 

transformer.  

 

The active power flow constraint is defined as a new functional equality for the 

compound transformer model’s active power flow, namely equation (4.16). 

 

 

! 

Pps " Pspecified = 0 4.16  

 

 

Furthermore, the voltage control constraint is defined as a variable equality on the 

voltage magnitude of the 

! 

ith  side of the compound transformer model as such: 

 

 

! 

Vi "Vspecified = 0  4.17  

 

 

When the compound transformer model is used to model the operation of a real 

voltage source converter, equations (4.16) and (4.17), essentially define the 

boundary region of the OPF solution space at the presence of the converter. 

Furthermore, the multiplier term 

! 

"# ps
 in equation (4.15) corresponds to the 
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compound transformer’s exclusive active power functional equality constraint 

shown in equation (4.16), which is used to activate its associated Lagrangian 

function. 

 

In addition to these equalities, the following nodal power balance equations must 

hold for both sides of the compound transformer model: 

  

 

! 

Pi
calc "Pgi

+Pdi = 0
i#[s,r]

 
4.18  

 

 

And 

 

 

! 

Qi
calc "Qgi

+Qdi
= 0

i#[s,r]
 

4.19  

 

 

In which 

! 

Pi
calc  and 

! 

Qi
calc  are the total calculated injected powers at 

! 

ith  node 

connected to the compound transformer, which include the model’s nodal active and 

reactive power injections in equations (4.11 – 4.14) (See parametric example in 

chapter two). All the state variables associated with the compound transformer 

model have to be within their respective limits.  Eventually, the functional equalities 

defined in equations (4.16) as well as (4.18) and (4.19) are added to the system of 

equations by defining the compound transformer model’s Lagrangian as such: 

 

 

! 

LPS = "pi
(Pi

calc # Pgi + Pdi )i$[s,r]
% + "q j

(Qj
calc #Qg j

+Qd j
) + "& ps

(Pps # Pspe )j$[s,r]
%  4.20  

 

 

In which  

  

! 

Pi
calc  and 

! 

Qj
calc  are the total calculated nodal active and reactive powers of the 

either ends of the compound transformer model  

 

! 

Pgi  and 

! 

Qg j
 are the active and reactive power generation of the converter’s 

corresponding buses  
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! 

Pdi  and 

! 

Qd j
 are the active and reactive power demands of the converter’s 

corresponding buses 

 

! 

Pspe  is the amount of regulated active power flow to be achieved based on system’s 

operation and requirements 

 

! 

Pps  is the active power flow within the compound transformer (in case of a VSC it 

is bi-directional in both DC and AC sides of the converter)  

 

The Lagrangian function in equation (4.20) is used to model the operation of the 

voltage source converter in the OPF algorithm. It should be noted that at the start of 

the OPF solution process, it is assumed that all constraints are within limits so the 

exact penalty function corresponding to violated inequalities (equation 2.33) is not 

activated and therefore is not shown in equation (4.20). However, the functional 

equality constraint corresponding to the compound transformer’s active power flow 

(equation 4.16) may be activated throughout the OPF solution process only if the 

transformer is tasked with controlling the active power. The functional inequalities 

associated with the generator’s active and reactive powers are not activated at the 

start of the OPF solution process and will only be added to the system should a 

violation occur in their respective values.  

 

On the other hand, if need be, the variable equality constraint on the compound 

transformer’s voltage magnitude defined in equation (4.17) is included in the OPF 

formulation using the special quadratic penalty function shown in equation (4.21). 

 

 

! 

"(Vi) =
1
2
#(Vi $Vspecified )

2 4.21  

 

 

In which, 

! 

" is the large pre-defined penalty factor which is fixed throughout the 

solution process. 

 

The penalty function defined in equation (4.21) effectively penalises the nodal 

voltage magnitude for points other than the target voltage magnitude dictated by 

system operating requirements. The voltage consequently is enforced to the target 

value, by adding the first and second partial derivatives of the penalty function to 
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their corresponding Hessian and Jacobian terms in the linear system of equations 

associated with the compound transformer model (equation 4.23).  

 

The compound model’s control parameters associated with the complex tap of the 

transformer are naturally bounded to their physical and operational limits as shown 

in equation (4.22) by the use of exact quadratic penalty functions. The augmented 

Lagrangian approach, therefore, guarantees reaching an optimum operating point, 

which is well within the system’s operational and physical boundaries by satisfying 

the third KKT optimality conditions.  

 

 

! 

Tmin "#ps
min < T"#ps < Tmax "#ps

max  4.22  

 

 

When it comes to checking limit violations, the compound transformer’s control 

variables have priority over their associated nodal power injections simply because 

of the fact that the latter are functions of the former. Generally if the complex tap 

ratio is not violated, then it is most likely that a violation in the amount of nodal 

active and reactive power injections will not occur unless the network conditions 

dictate a violation. For instance in case of voltage control, the network’s reactive 

power demand (for a specified voltage magnitude) might violate the compound 

transformer’s nodal reactive power limit in which case, its amount is enforced 

towards its limit boundaries using appropriate Lagrangian multipliers. 

 

The system of linear equations presented in equation (4.23) is developed exclusively 

for the compound model presented in figure (4.4a). It should be noted that the 

partial derivatives of the matrix of coefficients, namely Hessian and Jacobian terms, 

are calculated with respect to the matrix of state variables 

! 

z = [",V ,T,#ps,$p,$q ,$# ps
]T .  

 

The linear system of equations presented in equation (4.23) comprises the second 

order partial derivatives of the newly updated Lagrangian function, containing the 

compound transformer’s exclusive Lagrangian in equation (4.20), with respect to 

the vector of state variables 

! 

z , which in turn includes the exclusive variables 

associated with the compound transformer model that is shown in equation (4.15). 

This linear system of equations is then solved within the OPF, using Newton’s 
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iterative method introduced in chapter two. It should be noted that the expressions 

for the exclusive terms of second order partial derivatives with respect to the 

compound transformer model’s state variables are presented in Appendix I of this 

thesis.  

 

 

! 

"
# 2
2 L "#V

2 L "#$
2 L "#T

2 L "#P
calc "#Q

calc "#Pps
(k )

"V#
2 L "V 2

2 L "V$
2 L "VT

2 L "VP
calc "VQ

calc "VPps
(k )

"$#
2 L "$V

2 L "
$ 2
2 L "$T

2 L "$P
sr "$Q

sr "$Pps
(k )

"T#
2 L "TV

2 L "T$
2 L "T 2

2 L "TP
sr "TQ

sr "TPps
(k )

"#P
calc "VP

calc "$P
sr "TP

sr 0 0 0
"#Q

calc "VQ
calc "$Q

sr "TQ
sr 0 0 0

"#Pps
(k ) "VPps

(k ) "$Pps
(k ) "TPps

(k ) 0 0 0

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
* 
* 
* 
* 
* 

+
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,V
,$ps

,T
,-p

,-q
,-$ ps

% 

& 

' 
' 
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' 
' 
' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
* 
* 
* 
* 
* 

= .

"#L
"V L
"$ ps

L
"T L
,Pcalc

,Qcalc

(Pps
(k ) . Pspecified )

% 

& 

' 
' 
' 
' 
' 
' 
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' 

( 

) 

* 
* 
* 
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4.23  

 

 

The upper indicator 

! 

(k)  in equation (4.23) denotes compound transformer model 

mode of power control, which essentially determines whether the power regulation 

is on the sending end or the receiving end of the compound transformer model. The 

upper indicator 

! 

sr  denotes the exclusive nodal power injections associated with the 

compound transformer. The compound transformer OPF formulation is 

consequently used to model the operation of the voltage source converter within the 

OPF algorithm, guaranteeing that the VSC PWM control characteristics, namely the 

compound transformer’s controllable variable complex tap ratio, is kept within 

limits by satisfying the KKT conditions upon reaching an optimum.  

4.3.3   Compound Transformer Model Modes of Operation 

 

The compound model possesses four inherent control modes (modes of operation) 

inferred from its functional and variable equalities introduced in equations (4.16) 

and (4.17).  

 

It can be set to any one of these four control modes by activating its corresponding 

control equalities on its voltage and active power flow. The compound transformer 

modes of operation are presented in table (4.1) below. 
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Mode Control State  Power Equality Voltage Equality 

No Control Mode 1 Deactivate Lagrangian Function Remove Penalty Function 

Voltage Only Mode 2 Deactivate Lagrangian Function Add Penalty Function 

Power Only Mode 3 Activate Lagrangian Function Remove Penalty Function 

Voltage/Power Mode 4 Activate Lagrangian Function Add Penalty Function 

Table 4.1 - Compound Transformer Model Modes of Operation 

As seen from table (4.1), in order to activate any of the control modes it is only 

necessary to activate their corresponding control equalities. For example, regarding 

the compound model shown in figure (4.4a), if the compound transformer model is 

set to control the voltage at node 

! 

s, its associated voltage magnitude will be 

penalised for points other than the target voltage using the penalty function 

presented in equation (4.21). Moreover, the power control mode in the compound 

transformer model requires the activation of the Lagrangian function associated 

with the compound transformer’s power flow equations shown in equation (4.24).  

 

 

! 

L"#ps = "# ps
(Pps

(k ) $ Pspecified )  4.24  

 

 

The term 

! 

(k)  essentially takes two values, namely 1 and 2. If 

! 

k =1, then it means 

that the transformer is regulating power at primary, whereas if 

! 

k = 2 it indicates 

that it is regulating power at secondary. For instance, regarding the compound 

model in figure (4.4a), it is assumed that the converter is regulating power at its 

primary side (or node 

! 

s), the Lagrangian function associated with converter’s power 

control then takes the shape of equation (4.25). 

 

 

! 

L"#ps = "# ps
(Pps

(1) $ Pspecified ) = "# ps
(Ps $ Pspecified )  4.25  

 

 

Similarly for power control on the secondary side, equation (4.25) is altered as such: 

 

 

! 

L"#ps = "# ps
(Pps

(2) $ Pspecified ) = "# ps
(Pr $ Pspecified )  4.26  
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The power at primary or secondary can either be negative or positive, which 

essentially determines the direction of the power from sending to receiving end or 

vice versa.  

 

In case of a VSC, the positive and negative signs in the compound transformer 

model would correspond to the inverting and rectifying operation of the converter. 

If the power sign at the AC side were positive (or if the power at DC side were 

negative) then the converter would act as a rectifier, whereas if the power sign at the 

AC side were negative (or if the power sign at the DC side were positive) then the 

converter acts as an inverter. The power control constraint in equation (4.24) 

guarantees bi-directionality of the active power flow to and from the converter in 

the compound transformer model.  

 

The compound transformer model can also be configured to control both power and 

voltage concurrently (which is its default mode of operation in most VSC-based 

system simulations such as VSC-HVDC links), in which case both control equalities 

on voltage and converter’s active power flow are activated and their associated 

control constraints have to be added to the OPF formulation using their associated 

penalty/Lagrangian functions. It should be noted that the Lagrangian associated with 

the functional equality constraint on compound transformer’s active power, namely 

equation (4.24), is active throughout the solution process. However, if the 

compound transformer is set to regulate voltage only or if it does not control any 

network parameters, then this equation is effectively deactivated using an 

appropriate quadratic penalty function to penalise its associated multiplier, namely 

! 

"# psi
. It then becomes active only if there is a power limit violation in either side of 

the converter.  

 

Eventually, by referring to table (4.1), nine distinct control combinations are derived 

for the compound transformer model (and subsequently for VSC compound model 

operation) as seen in table (4.2).  
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VSC Control Mode Voltage Control Power Control 

1.0.0. N/A N/A 

2.1.0. Sending End N/A 

2.2.0. Receiving End N/A 

3.1.0. N/A Sending End 

3.2.0. N/A Receiving End 

4.1.1. Sending End Sending End 

4.1.2. Sending End Receiving End 

4.2.1. Receiving End Sending End 

4.2.2. Receiving End Receiving End 

Table 4.2 - Compound Transformer Model Control Modes 

These control combinations correspond to whichever state variable the compound 

transformer model is controlling and whether its associated value is regulated on the 

its sending end or receiving end. The 3-digit notation is a practical way of 

identifying the compound model modes of operation and will be referred to several 

times throughout this chapter and next.  

4.4   AC Stand-alone Operation Tests 
 

In order to properly test the compound transformer model’s various modes of 

operation, a simple system test comprising 4-nodes has been devised. The 

compound transformer model is tested as a stand-alone device, whose operation can 

be interpreted as a series power regulator connecting the generator to node 3 via the 

impedance with the value of 

! 

Z1 = R1 + jX1, feeding the load in node 3 while 

providing fast nodal voltage and power support via the variable complex tap phasor. 

The data for the 4-node system is found under system data in Appendix II and 

therefore will not be mentioned here. For consistency purposes, however, it is 

necessary to mention that the objective function has taken to be the same as the 

objective function in the 8-node system that was featured in previous chapters. 

Moreover, It should be noted that the results depicted in the following system tests 

are in per unit. The purpose of running the OPF algorithm is as always, indentifying 

the optimum point of operation in which the generators’ fuel cost is at minimum. 

Where applicable, the compound transformer is tasked with regulating the voltage 

magnitude and/or active power flow to 1.0 per unit.  The OPF solution for the 4-

node system is obtained by solving the exclusive system of linear equations 

pertaining to the compound model shown in equation (4.23) via Newton’s iterative 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 136 

process, taking into account the limits on the complex tap in equation (4.22). The 

control modes are selected by referring to table (4.1) in order to activate/deactivate 

the control constraints on active power (equation 4.16) and/or nodal voltage 

magnitude (equation 4.17). In the following OPF simulations, the compound 

transformer model is tested in several modes of operations and the results are 

presented in figures (4.5-4.11) respectively. 

4.4.1  Control Mode: 1.0.0. 

 

 
Figure 4.5 - Compound Transformer as a series compensator (No Control) 
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4.4.2  Control Mode: 2.1.0. 

 

 
Figure 4.6 - Compound Transformer as a series compensator (Voltage Control on primary) 

4.4.3  Control Mode: 2.2.0. 
 

 

 

 
Figure 4.7 - Compound Transformer as a series compensator (Voltage Control on secondary) 
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4.4.4  Control Mode: 3.1.0. 

 

 
Figure 4.8 - Compound Transformer as a series compensator (Power Control on primary) 

4.4.5  Control Mode: 3.2.0. 
 

 
Figure 4.9 - Compound Transformer as a series compensator (Power Control on secondary) 
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4.4.6  Control Mode: 4.2.2. 

 

 
Figure 4.10 - Compound Transformer as a series compensator (Power on secondary; Voltage on secondary) 

4.4.7  Control Mode: 4.2.1. 
 

 
Figure 4.11 - Compound Transformer as a series compensator (Power on primary; Voltage on secondary) 

4.4.8  Results Discussion 
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Evidently, the compound transformer model in such a system configuration does 

behave like a series compensator. The compound transformer’s phase shifter 

variations are responsible for active power flow loop control between nodes 2, 3 and 

4. In particular, the power flowing across the transmission line between nodes 2 and 

4 is largely affected by the operation of the compound transformer model, and 

whether the compound transformer is controlling active power or not. The reactive 

power flow, on the other hand is indirectly controlled by the compound 

transformer’s tap changer ratio variations.  

 

Table (4.3) summarises the compound model’s modes of operation in the depicted 

4-node system as such:  

 

 Control Mode 

! 

T"#ps 

! 

V2"#2  

! 

V3"#3  

! 

fg1  $/hr 

1.0.0. 

! 

1"0.0° 

! 

0.9384"# 8.33°  

! 

0.9520"#13.21°  602.397 

2.1.0. 

! 

0.9990"0.0°  

! 

1"# 7.64° 

! 

1.0182"#11.99°  597.893 

2.2.0. 

! 

0.9350"0.0°  

! 

0.9398"# 8.45°  

! 

1"#13.69°  608.237 

3.1.0. 

! 

1"# 5.60°  

! 

0.9361"# 8.23°  

! 

0.9562"# 9.19°  599.029 

3.2.0. 

! 

1"# 6.08°  

! 

0.9355"# 8.22°  

! 

0.9561"# 8.85°  599.110 

4.2.2. 

! 

0.9413"# 4.79°  

! 

0.9383"# 8.35°  

! 

1"#10.25°  603.730 

4.2.1. 

! 

0.9412"# 4.32°  

! 

0.9387"# 8.36°  

! 

1"#10.58°  603.790 

Table 4.3 – Compound Transformer Model’s Modes of Operation as a Series Compensator in the 4-node 

System Simulations 

It can be seen that in every mode of operation, the variable complex tap phasor, 

namely 

! 

mps = T"#ps takes a different value (as obtained by the OPF algorithm), 

which corresponds to its associated control mode (either 1,2,3 or 4). The direction 

of the power flow to or from the transformer’s ends depend on the network 

operating conditions as well as the compound transformer model’s own modes of 

operation. In case of reactive power flow, the amount and direction of the power 

depends on the transformer’s voltage control constraint, whether it’s controlling the 

voltage or not and on which side it is set to maintain the voltage.  

 

It should be mentioned again that the compound model modes of operation are 

selected via adding or removing appropriate penalty terms to activate/deactivate the 

associated control constraints on voltage or active power as seen in table (4.1).  
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Whenever the converter is set to regulate the voltage, the tap changer has to be 

operational, whereas in power control mode the phase shifter has to operate to 

provide the required phase angle difference associated with the target value of 

active power. On the other hand, whenever the compound transformer model is set 

to control both voltage magnitude and active power simultaneously, the variable 

complex tap phasor in the compound model becomes operational. Since the 

compound transformer’s complex tap is included in the vector of state variables, its 

limit boundaries has to be checked after finishing each internal loop so that it can 

satisfy the third KKT optimality condition. Notice that the variable complex tap 

ratio inequality constraints have priority over the nodal voltage and power flow 

inequalities of the compound transformer model. Eventually, through the process of 

limit check the results obtained by the OPF guarantee that the equipments’ physical 

limits are not violated. Charts (4.1) and (4.2) show the performance of the 

compound model in voltage and power control modes (including modes 4.1.2. and 

4.1.1. which were not included in the simulations) via the operation of the tap 

changer ratio as well as the phase shifter angle respectively. Notice that both values 

are kept well within their specified limit boundaries by the OPF algorithm.  

 
Chart 4.1 - Compound Model’s Phase Shifter Angle Variations in the 4-node System Simulations (within 

limits) 
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Chart 4.2 - Compound Model's Tap Changer Ratio Variations in the 4-node System Simulations (within 

limits)  

In mode 1 (no control) both phase shifter and tap changer can either be operational 

in which case their final values are dictated by the OPF algorithm otherwise they 

can be fixed to their initial values as it is the case here using appropriate penalty 

functions.  

 

The objective function value varies between approximately 597$/hr to 608$/hr in 

different control modes, which clearly indicates the fact that the final value of the 

objective function and in turn the 4-node system’s final dispatch depends on the 

compound transformer’s behaviour in the system.  

4.5  DC Stand-alone Operation Tests  
 

The compound transformer model can be used to model a voltage source converter 

for supplying DC loads, which are defined as a real power demand, 

! 

Pd . Since the 

DC node (compound transformer’s receiving end) has only a real voltage 

component, the required phase angle difference to achieve the target value of the 

real power supplied to the DC load is achieved via the operation of the phase shifter 

in the compound transformer. By using the appropriate penalty functions to 

deactivate its associated increments in the linear system of equations the OPF 

algorithm essentially ignores the DC bus phase angle component. Consequently, the 

“true” conditions of a DC bus can be properly accommodated in the compound 

transformer model without the need for introducing additional connection buses or 

exclusive state variables. 
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One of the major benefits of using compound transformer in DC system tests is the 

ability to properly model the operation of VSC-FACTS controllers such as the 

STATCOM provided that the VSC compound transformer model is coupled with a 

coupling transformer. The system simulations that are presented in this section can 

be reconfigured as a STATCOM-OPF model if it is assumed that the coupling 

transformer leakage reactance is added to the reactance of the transmission line 

connecting the VSC compound transformer model to the generator. The DC tests 

presented in the following sections also form the basics of OPF modelling 

pertaining to the more complex multi-terminal VSC-HVDC systems that are 

mentioned in next chapter.  

 

In order to regulate the power at DC bus to the required amount (demand in DC 

bus), the functional equality constraint associated with the compound transformer 

model’s active power, which was mentioned in equation (4.16), is simplified to the 

form of equation (4.27) as such: 

 

 

! 

Pr " Pd = 0 4.27  

 

 

Which in turn would create the Lagrangian function for active power regulation at 

the DC bus as presented in equation (4.28). The Lagrangian function then is added 

to the VSC compound model’s Lagrangian function (equation 4.20) and will be 

included in the system of linear equations. 

 

 

! 

L" ps
= #" ps

(Pr $ Pd )  4.28  

 

 

In the following case scenarios the VSC compound transformer model is used to 

supply (interconnect) a DC load at the converter’s DC side bus using the functional 

equality shown in equation (4.28) in order to maintain the active power at that node 

to a pre-determined value (the DC load demand). The reactive power in the DC bus 

naturally comes to zero since there is no source of reactive power demand at this 

bus.  
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4.5.1  Case One 

 

In the OPF solution shown for the AC system presented in figure (4.12), the power 

network is supplying a DC load at 100 MWs using a VSC compound transformer 

model. 

 
Figure 4.12 – Compound Transformer feeding the DC Load  

The voltage at the DC node is kept constant at the value of 1.1 per unit at all times 

using its associated penalty function introduced in equation (4.21). The power is 

regulated at the DC bus to 100 MWs using the Lagrangian function in equation 

(4.28) to bind the functional equality in equation (4.27) to the system Lagrangian. 

As a result, the VSC compound model is operating in mode 4, and therefore phase 

shifter and tap changer are both operational. The OPF is run for the same objective 

function as in previous test cases and is converged in three iterations.  

 

As it is seen from figure (4.12), the VSC has successfully kept the active power at 

100 MWs at the DC load bus with the phase shifter taking a value of 15.05 degrees. 

The voltage at the DC bus has also been maintained at 1.1 per unit. As expected, 

there is no reactive power flow at the converter’s DC side bus. Furthermore, the 

converter’s internal ohmic losses have arrived at 1.21 MWs. 

 

The generator’s optimum power flow dispatch is shown in figure (4.12) to be at 

approximately 137 MWs of active power and 7.59 MVARs of reactive power. The 

reason why there is so little of reactive power generation is that most of the reactive 

power is generated by the voltage source converter that feeds the reactive 

requirements in node 2 with the rest being the losses in the system. The objective 

function final value (optimal value of generation) has arrived at 601.03 $/hr. It  5 

2. DC System  STATCOM 
 

3) is regulated at 1.1 p.u. 
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should be noted that the generator cost data is the same as previous case. The rest of 

the system data is presented in Appendix II.  

4.5.2  Case Two 

 

The AC network in figures (4.13) as well as (4.14), is used to supply 100 MWs of 

demand at the DC node (node 3) using the voltage source converter compound 

transformer model. For consistency purposes, the same objective function as before 

applies for the generators in this system. Furthermore, the compound transformer is 

tasked with maintaining the voltage magnitude at the DC bus to 1.1 per unit. The 

power constraint at the DC node is again added to the system Lagrangian and 

subsequently included in the system of linear equations using the Lagrangian 

function in equation (4.28). The following sets of simulations have been carried out 

for the case two: 

 

 
Figure 4.13 – VSC Compound Transformer feeding the DC Load  

 

 6 

 
3. Multi-generator DC System 
 
Case of a multi-

.1 p.u. 
 

a. 
through loss-less economic dispatch (cannot be set to a pre-determined value) 
 
Ctrl = 4.2.2. Cost Value =  0.06012378 
Cost Value (when angle is not forced to zero) = 0.06012378 / angle = 1.867 / phase 
shifter angle = -12.03 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.7059 

0.0510 

0.4391 

0.1827 

0.4504 

0.1599 

1 

1 

0 

1.0249 

0.4766 
0.0121 

0.5859 

0.2939 

X0 R0 

R1 X1 

011V

RL1 
jXL1 

3 

2 

21.49974.02V  1.13V  

0.6075 

0.2507 

0.6050 

m=0.9459 -10.15  

1 

0.25 

0.20 

17.10025.14V  

RL1 
jXL1 

5 

0.2555 

0.2109 

4 

RL1 

jXL1 

06.29688.05V



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 146 

 
Figure 4.14 – VSC Compound Transformer feeding the DC Load (Generator 2 active power schedule 

limited to 0.3 per unit) 

In both case scenarios the generators’ active power distribution is obtained by the 

OPF algorithm, however in second attempt, the generation capacity in second 

machine which is connected to node 4 is extremely limited (30 MWs maximum) 

and therefore the bulk of the active power in the system is being generated by the 

first generator (slack bus generator).  

 

By comparing the results from two simulations it can be seen that even though the 

power flow distribution has changed in the system, it has limited effect on the power 

flow inside the converter, since the compound transformer model has isolated the 

DC load from the rest of the system. It is imperative to note that the capability of 

isolating loads from system disturbances is one of the most vital roles a voltage 

source converter and subsequently a VSC-based interconnection system can play in 

increasing system stability margins [2].  

 

The active power of the second generator is kept fixed to its upper limit, namely 30 

MWs by activating its corresponding functional inequality constraint. The first 

generator, however, is still free to take up any value of active power dispatch, albeit 

within limits. Noticeably, there is no reactive power flow in node 3, which is 

expected since this node supplies the DC load, however the converter supplies 
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reactive power to node 2 from where it is distributed amongst the network’s 

transmission lines. Once again it is stressed that the power demand in the DC bus is 

satisfied via the operation of the phase shifter angle, whereas the voltage is 

regulated through the operation of the tap changer.  

 

The operation of the complex tap ratio for all three DC test cases has been 

summarised in table (4.4).  

 

DC Test Case Complex Tap Ratio AC Side Voltage DC Side Voltage 

Case One 

! 

0.9037"#15.05 

! 

0.9496"# 8.53 

! 

1.1"0.0 

Case Two - 1 

! 

0.9459"#10.15 

! 

0.9974"# 4.21 

! 

1.1"0.0 

Case Two - 2 

! 

0.9271"#12.92 

! 

0.9761"# 6.74  

! 

1.1"0.0 
Table 4.4 - VSC Compound Model DC Load Test Results 

It should be noted that the VSC compound transformer model in a VSC-HVDC 

transmission system behaves exactly as it is depicted here in the DC test simulations 

providing both voltage and active power control requirements to the converter’s DC 

as well as AC nodes. Consequently, the compound transformer model provides a 

strong mathematical tool to properly model any VSC-HVDC transmission system in 

any configuration (Back to Back, Point-to-Point and Multi-terminal) and for any 

purpose simply via the operation of the variable complex tap in the compound 

transformer model.  

4.6  5-node Benchmark System Test: Changes in System Conditions 
 

In this section, the compound transformer model has been tested in the 5-node 

benchmark system in [12] in order to precisely determine its potential influence on 

deviating the optimum operating point in the OPF algorithm. The compound 

transformer in this system acts as a series compensator regulating active power 

across the line connecting between nodes “Lake” and “Main”.  

 

According to the system data presented in Appendix II, the active power demand in 

“Main” is 40 megawatts, which, in normal operation, where no active power 

regulation is carried out, is provided by the system through the lines connected to 

“Main”. The optimum active power flow solution as obtained by the OPF algorithm 
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at “Main” in the 5-node benchmark system has been presented in figure (4.15) 

below. 

 
Figure 4.15 - Partial OPF Solution for the normal 5-node Benchmark system; Notice the active power flow 

between “Lake” and “Main”  

However, by connecting the compound transformer between “Lake” and “Main” the 

active power transferred between these nodes can be regulated seamlessly using the 

phase shifter angle variations in the compound model.  

 
Figure 4.16 - Partial OPF Solution for the 5-node Benchmark system with the compound transformer 

regulating power between "Lake" and "Main" 

Within the OPF algorithm, setting the power control constraint requires activation 

of equation (4.16) via adding its Lagranigan in equation (4.24) to the system 

Lagrangian. The compound transformer model is added to the system configuration 

using the dummy bus “Comp1” and the OPF is run for operating mode 3.2 (power 

control on receiving end). The OPF converges in 6 iterations with the results shown 

in figure (4.16). 

 

As it can be seen from the results obtained by the OPF shown in figure (4.16), the 

compound transformer has successfully regulated the amount of active power 

between “Lake” and “Main” to 40 MWs, with the active power at “Main” arriving 

at 39.82 MWs to support the active power demand there. The compound 
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transformer model has regulated the pre-determined amount of active power by 

varying its phase shifter angle to -5.114 degrees, which means that the overall 

incurred phase angle difference between voltage phase angles in “Lake” and “Main” 

has been shifted by approximately 5 degrees resulting in increasing the power flow 

to 40 MWs from previously 14.87 MWs in the first test run in figure (4.15). A 

significant shift in the bulk of active power flow between the transmission lines 

connected to “Main” is noticeable by comparing the OPF results shown in figures 

(4.15) and (4.16). The bulk of active power now flows in the line connecting “Lake” 

and “Main”.  

 

On the other hand, comparing the results in figures (4.15) and (4.16) shows that in 

the second test run the generators active power dispatch particularly in “South” has 

been increased, which indicates that using the compound transformer model to 

regulate the power while adding more flexibility to the system operation comes at 

the price of increasing the objective function final value by approximately 1%, from 

748 $/hr to 757 $/hr. However, this increase in the objective function value 

(generators’ increase in fuel consumption) is justified by the fact that the compound 

transformer model improves system stability margins by improving its 

controllability in active power flow.  

 

The main reason as to why the cost function increases in the second test run, in 

other words why the optimal power flow does not converge towards the same point, 

is that by using the compound transformer to regulate active power between “Lake” 

and “Main”, a new functional equality constraint is introduced, which is suitable for 

controlling the active power along the transmission line between these two nodes. 

Therefore, by simply adding the new functional constraints, the boundaries of the 

solution region will change from that of the first test run where no power regulating 

devices are present. It is precisely due to the change of boundaries of the solution 

region that there is less degree of freedom for the cost function variations during the 

course of the solution process that ultimately yields a different optimum operating 

point. It is imperative to note that FACTS controllers are tasked with improving 

system stability by actively controlling the system parameters. However, applying 

the OPF in each system depends on the conditions of that system alone, which are 

essentially the constraints, which the optimisation problem’s objective functions are 

subjected to.  
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On the other hand, if the compound transformer had been used in mode 1 the results 

would have been similar to those in figure (4.15), since the OPF boundary regions 

would have remained the same as before.  

4.7  Conclusion  
 

In this chapter an advanced model for the voltage source converter in optimal power 

flow has been introduced. The model is based on the fact that the operation of a 

PWM-controlled VSC can be modelled more precisely as a compound transformer 

device with controllable complex tap phasor to include the characteristics of the 

PWM control in the OPF mathematical formulation.  

 

Based on the operational principles of a PWM-controlled VSC, the complex tap 

ratio variations accurately model the voltage and phase angle control of the 

converter’s output voltage phasor giving rise to independent active and reactive 

power control. Furthermore, by adding a shunt branch to the equivalent circuit of 

the compound transformer, the converter’s internal switching losses are modelled as 

a shunt resistive branch, whereas the DC bus capacitor is modelled as a shunt 

susceptance.  

 

The new model is essentially different from previous modelling approaches [5, 11, 

14, 16], which often regard the VSC as a controllable voltage source much like a 

synchronous condenser behind coupling impedance (or reactance) [4].  

 

The active power in the compound transformer model is controlled via the 

variations in the amount of variable phase shifter angle in the compound 

transformer, which is capable of achieving control targets by way of phase angle 

control much like a real PWM-controlled voltage source converter. The voltage 

relations between the sending and receiving side of the compound transformer is 

controlled via the variable tap changer ratio, which in case of a PWM-controlled 

VSC, corresponds to the amplitude modulation index [13, 14] of the converter. This 

gives rise to indirect reactive power control by way of direct nodal voltage 

magnitude control.  

 

The bi-directional power flow control is also maintained by selecting the 

appropriate modes of operation in the compound transformer. The active power 
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control entails activating the active power functional equality constraint, which 

remains active throughout the solution process. However, in certain modes of 

operation where no active power regulation is desired, penalising its corresponding 

multiplier will deactivate the Lagrangian function associated with the active power 

control constraint.  

 

The behaviour characteristics of the model developed in this chapter within the OPF 

algorithm has been tested thoroughly in a variety of simulations aimed at portraying 

different circumstances under which the compound transformer may be chosen to 

operate. In the AC stand-alone tests, the compound model has been tested as a 

stand-alone device with the purpose to verify whether all the control modes work 

properly. In the DC tests, the compound transformer models the operation of a 

voltage source converter used to feed a DC load. Using the phase shifter angle 

compensation in the compound transformer model, it has been observed that the 

new VSC model is capable of providing the required amount of active power to the 

DC node regardless of the changes in system conditions at the AC side, which 

means that the new VSC compound transformer model is capable of isolating the 

DC loads from the AC network. This particular characteristic of the compound 

transformer model plays a vital role in performing OPF calculations in systems with 

VSC-HVDC links. In the next chapter the details of modelling the VSC-HVDC 

systems using the new compound transformer model are explained.   
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5 Advanced Mathematical Modelling of Back-to-

Back, Point-to-Point and Multi-terminal VSC-

HVDC Transmission Systems in OPF using 

Newton’s Method 
 

This chapter introduces a new optimal power flow model for the High Voltage Direct 

Current Transmission systems that are based on Voltage Source Converters (VSC-

HVDC). The model is suitable for OPF solutions for Lagrangian functions using 

Newton’s iterative method. The compound transformer concept introduced in previous 

chapter has been used to model back-to-back, point-to-point and multi-terminal VSC-

HVDC transmission systems. Since voltage source converters are capable of regulating 

network parameters independently, the VSC-HVDC systems are particularly suitable 

for safe and reliable integration of autonomous operating AC grids, such as local 

generation based micro-grids with each other and the utility grid. Furthermore, due to 

the PWM control of the voltage source converters, these self-commutated converters are 

capable of safe grid-integration of renewable sources of energy where the output voltage 

is prone to variations in both frequency and magnitude. Consequently, the VSC-HVDC 

systems are becoming an integral part of many modern power system designs, where 

flexibility of operation is a paramount necessity. They advantage the conventional line-

commutated converter, due to their capability of controlling all the system parameters, 

which eventually help to improve system reliability and increase stability margins. 

Throughout this chapter, using the compound transformer concept, a comprehensive 

model for VSC-HVDC systems are developed within the OPF algorithm and tested 

against a variety of system conditions to verify its operational robustness.  It has been 

observed that the compound transformer model is perfectly capable of simulating the 

HVDC power transmission at a common DC node. However, in order to fully realise the 

potential of compound transformers in modelling point-to-point HVDC systems, they are 

modified in such a way that they inherently include the DC link transmission losses. The 

models described in this chapter constitute the most realistic representation of a VSC-

HVDC system within the OPF algorithm. 
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5.1  Introduction 
 

The High Voltage Direct Current (HVDC) transmission systems that are based on 

fully controlled self-commutated Voltage Source Converters, dubbed VSC-HVDC 

system, are the newest advent in DC power transmission technology [1-7]. As stated 

in previous chapter, benefits of HVDC transmission over High Voltage AC 

transmission (HVAC), is mostly conspicuous in bulk power transmission over long 

distances (more than 700 km), where the impedance of the AC system plays a 

significant role in limiting its total transfer capability and at the same time reduces 

system stability margins by being more prone to frequency and/or voltage 

deviations due reactive power consumption by the AC transmission lines [1, 6-9]. 

As a result, since the AC system requires reactive power for maintaining the 

voltage, in an HVAC power transmission system, reactive power compensators are 

installed in several locations in order to ensure system’s perpetual steady state 

operation [2].  

 

The bulk power transmission capability is particularly severely limited in case of 

underground/submarine HVAC cables, due to the presence of highly capacitive 

currents generated by cables, which in turn reduces the permissible transfer distance 

to a few tens of kilometres [10]. By contrast, an HVDC cable exerts no capacitive 

charge and therefore there are virtually no distance limitations for HVDC 

submarine/underground cables except for the natural distance limit imposed by the 

cable’s physical restrictions (for instance thermal limits) [9]. Consequently, the 

HVDC transmission systems are the ideal choice for transferring a large amount of 

generated active power from remotely located sources of energy, for instance 

offshore wind farms [6, 10-13].  

 

On the other hand, HVAC interconnections require synchronous operation between 

their respective AC segments. A disturbance in a given segment may affect the 

operation of the rest of the system and introduce difficulties in recovery process of 

the system [14]. For example in case of active power imbalances in a segment the 

induced frequency deviations may be in such great extent that some systems may 

never recover towards a steady state point of operation [15]. Given enough 

generation capacity, an HVDC system is practically impervious to such implications 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 156 

and therefore is a much more desired option for creating safe interconnections 

between multiple isolated AC systems [6, 8].  

 

There are two technologies for HVDC power transmission systems, namely Current 

Source Converter based (CSC-HVDC) and the more advanced, more efficient 

Voltage Source Converter based (VSC-HVDC) [1, 3-5, 7, 8]. 

 

Most high power HVDC converters are in fact designed based on thyristor-

controlled converters (for example a current source converter or CSC), which 

require commutation by the AC system [1, 6, 7]. Consequently, these line-

commutated converters require a source of reactive power for commutation between 

valves and therefore are incapable of providing reactive power to the AC system, a 

great feat in the otherwise self-commutated converters [3, 6, 8, 9, 16, 17]. They are 

also susceptible to generating high levels of low order harmonics, which requires 

installing AC filters, which in turn provide the required reactive power 

compensation to the line-commutated converter in a conventional HVDC system [4, 

6, 8]. Considering the shortcomings of the line-commutated converters, the voltage 

source converter, therefore, seems like an ideal choice for introducing both voltage 

and active power controllability to an interconnected power system [8, 18]. 

Consequently, the VSC-based systems are more beneficial than the conventional 

thyristor-controlled systems.  

 

Similar to an individual voltage source converter, which is based on fully controlled 

power electronics (GTO or IGBT), the VSC-HVDC system parameters, namely 

active power flow as well as nodal voltages can also be controlled through fast pulse 

width modulation (PWM) schemes for switching the fully controlled power 

electronics [1, 3-6, 8, 10, 16-20]. The PWM essentially controls the converters’ 

active and reactive power flows by controlling the phase angle and magnitude of the 

converters nodal voltage against the AC system voltage respectively [4, 6, 16, 17]. 

As mentioned in chapter four, with VSC-HVDC systems, the bi-directional 

independent active power flow control on the AC side of the converters, essentially 

improves system reliability by realising four-quadrant power control operation [3, 4, 

6, 21].  
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The most significant aspect of seamless active power regulation capability of VSC-

HVDC is that they can be utilised to link autonomous power networks (either 

distribution systems or industrial loads or even renewable sources of energy) to 

create an interconnected web of independently operating systems without the need 

for re-synchronisation [1, 6, 8].  

 

One of the key advantages of VSC-HVDC tie lines in segmented power systems is 

that they improve power flow flexibility within the interconnected network; through 

seamless active power flow control the system’s total active power can then be 

optimally dispatched between segments in such a way that that agrees well within 

the network’s stability limits [8, 15].  Provided that there is enough generation 

capacity in a segmented system, the VSC-HVDC active power control capability is 

particularly helpful to circumvent system-wide frequency collapses in case of 

undesired disturbances, since the active power is transmitted through the converters 

in a controlled manner and the disturbed section is effectively isolated from the rest 

of the system by the converters. This feature is mostly useful in connecting local 

power networks [22] or to create DC hubs in order to convert large scale AC 

networks into a series of smaller, more manageable segments [8, 15].  

 

On the other hand, the system voltage stability may also increase in light of the fact 

that VSC-HVDC systems, unlike conventional HVDC systems, are capable of 

providing reactive power to the AC system as well eliminating the need for sources 

of reactive power compensation to achieve successful commutation [1, 4, 9, 10, 16]. 

In the voltage source converter, utilising PWM amplitude modulation ratio can 

directly control the system voltage magnitude.  

 

Due to utilising fast switching frequencies in PWM-controlled converters, the VSC-

HVDC system, in comparison with a conventional HVDC system, generates lower 

levels of low order harmonics and therefore contributes to lowering the costs of 

construction by requiring smaller harmonics filters [1, 3, 4, 12, 23]. The only 

downside of high PWM switching frequencies is that the converter’s internal 

switching losses may increase significantly. As a result, in this project the internal 

switching losses are included in the mathematical OPF model of VSC-HVDC 

systems as a shunt resistive branch.  
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The VSC-HVDC systems are used in both back-to-back and point-to-point systems 

much like a conventional HVDC transmission system. A point-to-point VSC-

HVDC system is a DC transmission system in which the DC power flows through a 

DC transmission line between two separate points, whereas a back-to-back VSC-

HVDC system is a DC transmission system in which there is no DC transmission 

line and the converter stations are virtually connected together. Since there is 

practically no limitation on the number of terminals in VSC-HVDC systems they 

can be used to form multi-terminal configurations for virtually any number of 

terminals [6, 8]. 

 

Furthermore, due to independent active and reactive power control in VSC-HVDC 

systems, a weak AC system can seamlessly be connected to a stronger system (for 

example the utility grid) in such a fashion that system stability may not be 

compromised [4, 24]. A weak AC system may be categorised as a low inertia 

system in which there are no (or few) generators present [24]. Connecting such 

systems to a strong system, for instance the utility grid, using conventional HVDC 

systems without means of increasing system generation capacity is virtually 

impossible since the thyristor-based converters would not be capable of line-

commutation [1]. However, since a VSC-HVDC system generates voltage 

waveform by means of PWM, they can be used as interconnection systems for 

weaker AC grids without jeopardising the voltage stability [24].  

 

The VSC-HVDC systems can also be used to interconnect renewable sources of 

energy such as offshore wind farms that are susceptible to voltage/frequency 

deviations to the utility grid [4, 6, 8, 10, 11, 13]. In case of an offshore wind farm, 

for instance, the VSC-HVDC system is tasked with regulating the system frequency 

using seamless active power control while at the same time supplying reactive 

power to the induction generators in the offshore wind farm realising a stable 

voltage output [11].  

 

Fast and reliable voltage regulation realised through PWM switching coupled with 

the need for no reactive power compensation to achieve commutation in voltage 

source converter essentially leads to producing a stable output voltage waveform 

impervious to any deviations in the voltage magnitude which may bring about 

instability in the system. Consequently from the power system working perspective, 
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the VSC-HVDC system is much more beneficial over the conventional HVDC 

transmission links.  

 

The major benefits of VSC-HVDC transmission systems over the more 

conventionally used CSC-HVDC systems (based on line commutated converters) as 

well as HVAC are categorised in the following [1, 3-6, 8-10, 13, 16, 18, 21, 23, 24]: 

 

1. They are capable of performing four quadrant power operation due to their 

bi-directional independent active and reactive power regulations  

 

2. They yield improved voltage stability margins due to the direct voltage 

control capability of the voltage source converter; useful in interconnecting 

power grids that are most susceptible to voltage magnitude variations, for 

instance weak AC grids, distributed energy systems and micro-grids 

 

3. They yield improved frequency stability margins through seamless active 

power transfer regulation between different autonomous segments provided 

that enough generation resources are available  

 

4. They are practically free of commutation failure even in systems with small 

generation capacity (weak AC grid, passive loads) due to the self-

commutating capability of the voltage source converter 

 

5. They produce smaller levels of harmonics due to the higher semi-conductor 

switching frequencies used by the PWM control but they introduce high 

frequency harmonics that require special attention 

 

6. They have faster response time than conventional HVDC to the system 

dynamics of the higher PWM switching frequency 

 

7. They are useful for grid-connection of renewable sources of energy, where 

a stable output voltage waveform is desired 

 

In the following sections, a detailed mathematical model for VSC-HVDC 

transmission systems, based on the compound transformer model has been 
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presented for back-to-back, point-to-point and multi-terminal VSC-HVDC 

configurations. It has been shown that using compound transformers, the VSC-

HVDC transmission system can effectively be modelled within the optimal power 

flow algorithm and all of its operational characteristics, namely active power flow 

control as well as nodal voltage magnitude control, will be included in the system of 

equations as explicit state variables. Furthermore, the models described in this 

chapter are suitable for multi-terminal configurations, where more than two 

converter stations (or terminals) are used to link multiple AC systems to each other. 

Unlike conventional HVDC, there is virtually no restriction on the number of 

terminals in a multi-terminal VSC-HVDC topology and models presented in this 

chapter can be expanded to incorporate however many number of terminals 

required.  

5.2  Advanced Back-to-Back VSC-HVDC Mathematical Model in 

Optimal Power Flow Algorithm using Compound Transformer 

Model 
 

In the following section, the compound transformer model developed in previous 

chapter has been used and expanded to model high voltage direct current 

transmission systems based on voltage source converters in the OPF algorithm. The 

mathematical formulation of the compound transformer model has remained similar 

to previous chapter for back-to-back configurations, however in order to include the 

DC link losses, the OPF formulation is modified for modelling point-to-point DC 

power transmission (VSC-HVDC with DC link present). The additional reactive 

power constraint, to ensure a zero reactive power in the DC bus is also added to the 

system formulation for all VSC-HVDC models. The operation of the VSC-HVDC 

modelled with compound transformer is governed by selecting proper equality 

constraints on voltage and active powers which are in turn based on the system 

requirements as well as limits. In the following sub-sections, the OPF formulation 

regarding back-to-back VSC-HVDC systems has been presented. 
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5.2.1  Back-to-Back VSC-HVDC Compound Model’s OPF Formulation 

 

The back-to-back VSC-HVC system typically comprises two converter stations, one 

acting as a rectifier, converting AC power into DC, whereas the other acts as an 

inverter, converting DC power to AC. Back-to-back HVDC links are mostly used to 

synchronise two different AC networks operating in different frequencies to each 

other [1]. However, they may also be used to facilitate a safe, reliable and flexible 

interconnection between multiple isolated AC grids [1, 7, 8].  

 

Bi-directional independent active and reactive power control on the AC side will 

give the voltage source converter stations the ability to effectively control the 

network parameters in order to achieve network operational requirements and 

maintain stability even when feeding the most sensitive loads.  

 

The simplest configuration of a VSC-HVDC system is a back-to-back configuration 

comprised of two converters, namely a rectifier and an inverter. Throughout this 

research a VSC-HVDC system comprising of only two VSC stations is called a 

Two-terminal system. Any VSC-HVDC system comprising of more than two 

voltage source converter stations is however called a Multi-terminal system. In the 

following section, the mathematical formulation of both two- and multi-terminal 

back-to-back VSC-HVDC systems within the optimal power flow algorithm using 

the compound transformer Lagrangian function has been explained thoroughly and 

the required modes of operation to achieve a realistic HVDC power have been 

elaborated.  

5.2.1.1  Two-terminal Back-to-Back VSC-HVDC OPF Model using Compound 

Transformer  

 

In order to form a two-terminal back-to-back VSC-HVDC link, two compound 

transformers (shown in figure 4.4a) representing two voltage source converter 

stations are connected to each other through their receiving ends, which then act as a 

common DC bus as shown in figure (5.1).  
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Figure 5.1 – Two-terminal Back-to-Back VSC-HVDC Compound Transformer Model (Notice that the 

common node is at the receiving ends) 

As mentioned in previous chapter, the active power regulation at the DC bus is 

obtained via the operation of the phase shifter in the compound transformer. As seen 

from figure (5.1), the nodal admittance matrix for the two-converter system is 

derived based on the compound transformer’s nodal admittance matrix given in 

equation (4.3) in polar coordinates: 
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Referring to the general expression for the complex nodal apparent power for the 

compound transformer presented in equation (4.8) for an individual compound 

transformer, the complex nodal apparent powers for the two-terminal back-to-back 

VSC-HVDC in figure (5.1) are calculated as follows: 
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Eventually the complex nodal apparent powers for each converter station are 

derived from equation (5.2). 
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Sending End: 
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Ultimately, given equations (5.3-5.6), the nodal active and reactive powers for the 

two-terminal VSC-HVDC system is developed in a similar fashion as for an 

individual compound transformer presented in equations (4.11-4.14) and therefore 

they will not be repeated here. Notice that the DC bus voltage is defined with the 

general expression, 

! 

Vri
"# ri

, however since the DC bus voltage does not have an 

angle, The angle 

! 

" ri , is accordingly penalised to properly constitute the conditions 

of the DC bus voltage.  

 

In order to include the two-terminal back-to-back VSC-HVDC link model to the 

optimal power flow formulation a new vector of state variables is defined and added 

to the vector of system sate variables: 

 

 

! 

zps = ["psi
,Ti,#" psi

]T  5.7  

 

Each compound transformer representing the converter stations possesses its own 

control-constraints on both nodal voltages as well as active power flows. Knowing 
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that a real voltage source converter is capable of four-quadrant power flow 

operation, the compound transformers in a two-terminal back-to-back VSC-HVDC 

system should also be capable of injecting/consuming both active and reactive 

power to and from the AC system.  

 

For the 

! 

ith  compound transformer in a two-terminal configuration the following 

constraints are defined on active power as well as nodal voltage magnitude. 

 

The functional equality on compound transformer’s active power flow for the 

! 

lth  

side of the 

! 

ith  compound transformer:  

 

 

! 

Ppsi
(l ) " Pspei = 0 5.8  

 

(

! 

l"[1,2] with 1 corresponds to sending and 2 to receiving ends of the compound 

transformer)  

 

The nodal voltage variable equality constraint in the 

! 

jth  side of the 

! 

ith  compound 

transformer:  

 

 

! 

V ji
"Vspei

= 0  5.9  

 

Consequently, the functional equality constraint on the power is added to the system 

Lagrangian using its associated Lagranigan multiplier, namely 

! 

"# psi
. Furthermore, 

should the need arises, the variable equality constraint is added to the system 

formulation by using the appropriate pure penalty functions as explained in previous 

chapters. The penalty function used to enforce the nodal voltage variable equality 

constraint is similar to the general quadratic pure penalty function given in equation 

(4.21) in chapter four. It is added to the system Lagrangian only if the compound 

transformers are regulating the voltages. The general modes of operation of a back-

to-back VSC-HVDC system are further explained later on in this chapter. It should 

be noted that apart from the exclusive control constraints for the compound 

transformer modes of operation the normal system constraints, namely the power 

balance equations must also hold for normal steady state operation throughout the 

OPF solution process.  
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The Lagrangian function for a two-terminal back-to-back VSC-HVDC system 

comprising of two compound transformers is shown in equation (5.10). 
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! 

Pij
calc  is the total calculated active power in the 

! 

ith  side of the 

! 

jth  converter 

including its exclusive nodal active power  

 

! 

Qkm
calc  is the total calculated reactive power in the 

! 

kth  side of the 

! 

mth  converter 

including its exclusive nodal reactive power (the compound model’s nodal reactive 

power at the DC bus is maintained at zero by an additional constrained explained 

further in this chapter) 

 

! 

Ppsn
(l )  is the 

! 

nth  compound transformer power flow on its 

! 

lth  side (

! 

l"[1,2]) 

 

By selecting the active power control constraints for both compound transformers at 

their receiving ends (DC bus) throughout the solution process, the DC power flow 

balance between the two converters are obtained. The variable phase shifter angle is 

responsible to compensate for the required phase angle difference between the 

converters and the AC system so that the required DC active power flow 

requirements are met.  

5.2.1.2  Multi-terminal Back-to-Back VSC-HVDC OPF Model using Compound 

Transformer 

 

The back-to-back multi-terminal VSC-HVDC compound transformer model has 

been shown in figure (5.2). 
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Figure 5.2 - Multi-terminal Back-to-Back VSC-HVDC Compound Transformer Model Configuration 

The admittance matrix for a multi-terminal back-to-back VSC-HVDC system is 

constructed similarly to the two-terminal system in figure (5.1) and is shown in 

equation (5.11). 
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5.11  

 

This equation is essentially an expansion of equation (5.1), instead of forming a 

! 

4 " 4  matrix; the admittance matrix for back-to-back multi-terminal VSC-HVDC is 

expanded to incorporate a 

! 

2n " 2n  matrix for 

! 

n converters.  

 

Equation (5.11) therefore is the generalisation of the admittance matrix in equation 

(5.1) that is valid for a multi-terminal back-to-back VSC-HVDC system for any 

number of converters.  
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Similarly the complex nodal apparent powers are derived for a 

! 

n-converter multi-

terminal back-to-back VSC-HVDC compound model (

! 

n > 2) as shown in equation 

(5.12). Consequently, equations (5.11) and (5.12) represent the back-to-back VSC-

HVDC compound transformer model. 

 

The complex nodal apparent power equations for a 

! 

n-converter multi-terminal 

back-to-back VSC-HVDC compound model: 
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5.12  

 

From which the following general expressions for the complex nodal apparent 

powers for a multi-terminal back-to-back VSC-HVDC compound model are 

derived: 

 

Sending Ends for the 

! 

nth  converter: 

 

 

! 

Ssn =Vsn
2Yn

* "TnVsn
Vrn
Yn
*e j(# sn "# rn "$ psn )  5.13  

 

Receiving Ends for the 

! 

nth  converter: 

 

 

! 

Srn = (Tn
2Yn

* +Y0n
* )Vrn

2 "TnVrn
Vsn
Yn
*e j(# rn "# sn +$ psn ) 5.14  

 

Similarly the active and reactive nodal powers for each converter are derived from 

the following general expressions in a multi-terminal back-to-back VSC-HVDC 

compound transformer model configuration. Furthermore, the equality constraints 

depicted in equations (5.8) and (5.9), on the converter’s active power flow as well as 

its nodal voltages apply for each converter in a multi-terminal configuration.  
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Eventually for 

! 

ncomp > 2  converters in a multi-terminal VSC-HVDC system 

modelled by compound transformers, equation (5.10) is expanded as such:  

 

 

! 

LPS = "pi (Pi j
calc # Pgi j + Pdi j )

i=s

r

$
j=1

ncomp

$ + "qkm (Qkm
calc #Qgkm

+Qdkm
)

k=s

r

$
m=1

ncomp

$ + "% psn
(Ppsn

(l ) # Pspen )
n=1

ncomp

$  
5.15  

 

The Lagrangian function in equation (5.15) is the most general format of the system 

Lagrangian function in a power system incorporating a multi-terminal back-to-back 

VSC-HVDC.  

5.2.2  Reactive Power Constraint 
 

For a realistic representation of HVDC systems, it is imperative that the total 

reactive power injection at DC bus remains zero, which means that there should not 

be any reactive power at the DC side of the converter model. As mentioned earlier, 

the compound transformer models the characteristics of PWM control in the voltage 

source converter, however, it is incapable of limiting the reactive power injection at 

DC bus to zero. This is because the tap changer ratio, namely 

! 

T  is responsible for 

direct voltage magnitude regulations (on either ends of the compound transformer), 

which means that the reactive power flow is free to vary within the system’s 

permitted operational limits as long as there is no voltage/tap changer ratio limit 

violation, in other words, the direct voltage regulation feature of the tap changer has 

an indirect effect on the amount of reactive power needed for the system to maintain 

that voltage making the DC side bus act as a type PV bus.  

 

Consequently, if there is no constraint on this amount of power, the converter model 

draws reactive power from the system and ultimately the converter itself. Therefore, 

in order to circumvent the effects of reactive power consumption by the DC side bus 

in the compound transformer model, the shunt susceptance of the converter 

therefore needs to be variable, acting much like an SVC (Static VAR Compensator), 

to compensate for the excess reactive power injected to the DC bus, converting it to 

a type PVQ bus, with Q always set to zero per unit. 

 

In order to properly model the reactive power constraint at the DC side bus (or 

receiving end), the vector of state variables in equations (4.15) and subsequently in 

(5.7) needs to be augmented by the value of the variable shunt susceptance of the 
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compound model, namely, 

! 

B0. The variable shunt susceptance is then constrained 

within the VSCs’ capacitive range, which means that the system voltage regulation 

is subject to the converters’ capacitive range.  

 

The receiving end reactive power is added to the system formulation as a functional 

equality as shown in equation (5.16). 

 

 

! 

Qr = 0  5.16  

 

Adding a new functional equality constraint to the system formulation means 

creating a new Lagrangian in form of equation (5.17) using the multiplier and 

! 

"B . 

 

 

! 

LQr
= "B (Qr # 0) 5.17  

 

Eventually, the vector of state variables will be expanded to incorporate the new 

variable shunt susceptance as well as the reactive power constraint’s multiplier. 

 

 

! 

zps = ["ps,T,#" ps
,B0,#B ]

T  5.18  

 

Consequently, the following state variables need to be initiated at the start of OPF 

algorithm in order to properly model the behaviour of a VSC-HVDC system 

modelled by compound transformers for both back-to-back and point-to-point 

applications. 

 

By adding the reactive power constraint the Lagrangian function in equation (5.15) 

takes the following form: 

 

 

! 

LPS = "pi (Pi j
calc # Pgi j + Pdi j )

i=s

r

$
j=1

ncomp

$ + "qkm (Qkm
calc #Qgkm

+Qdkm
)

k=s

r

$
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$ + "% psn
(Ppsn
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& =1

ncomp
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5.19  
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5.2.3  Linear System of Equations 
 

The OPF linear system of equations is formed with respect to the Lagrangian 

introduced in equation (5.19) for a multi-terminal back-to-back VSC-HVDC system 

as such: 

 

For the 

! 

ith  converter station equation (4.23) is re-written as such: 
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5.20  

 

By iteratively solving equation (5.20) the OPF generates the system optimum 

operating point whilst at the same time adhering to the compound transformer 

exclusive control constraint to control system operation. The reactive power 

constraint guarantees that there would be no reactive power flow in the DC bus. It 

should be reminded that the exclusive state variables associated with the compound 

transformer are checked against any limit violations and should the need arises they 

are enforced towards their respective boundaries using exact penalty functions. It 

should be noted that equation (5.16) is true for both two- and multi-terminal back-

to-back VSC-HVDC configurations.  

5.2.4   Back-to-Back VSC-HVDC Compound Model’s Modes of Operation  
 

In order to properly model the operation of a VSC-HVDC system, the compound 

models used need to be operated in either power only or combined power/voltage 

control modes via activating the appropriate voltage/power control constraints 

(equations 5.8 and 5.9) as shown in table (5.1). 
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Mode Control State  Power Equality Voltage Equality 

Power Only Mode 3 Activate Lagrangian Function Remove Penalty Function 

Voltage/Power Mode 4 Activate Lagrangian Function Add Penalty Function 

Table 5.1 - Back-to-Back VSC-HVDC Compound Model's Plausible Modes of Operation 

Generally, in a typical VSC-HVDC system, one converter is tasked with controlling 

the voltage at the DC bus whereas the other converter is tasked with controlling the 

active power flow. However, when the voltage source converters are modelled as 

compound transformers, both devices have to be set to power control mode in order 

to facilitate DC power flow transfer as shown in figure (5.3) below. 

 
Figure 5.3 - A two-station Back-to-Back VSC-HVDC System modelled with Compound Transformers 

(Notice the Active Power Control Constraints are on the receiving ends) 

In the following configuration for a back-to-back VSC-HVDC system, the first 

compound model dubbed “CompT1” acts as a rectifier station with an active power 

flow injecting to the DC bus.  

 

Therefore its associated power control constraint corresponding to the compound 

transformer’s active power flow is activated; hence equation (5.8) is re-written as 

follows: 

 

 

! 

Pps1
(2) " Pspe1 = "Pr1 " Pspe1  5.21  

 

The minus sign in the above equation indicates that the power is flowing from the 

converter to the DC node, thus realising rectification.  
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On the other hand the second compound model, namely “CompT2” behaves as an 

inverter, and therefore its associated functional equality on its power flow is re-

written as such: 

 

 

! 

Pps2
(2) " Pspe1 = +Pr2 " Pspe1  5.22  

 

The plus sign indicates that the active power is entering the second converter from 

the DC node, hence achieving inverting operation. The power signs here are merely 

notations, which are used so as to determine the direction of the active power flow 

to and from the converters. If the power enters the converter from the DC bus, hence 

if the converter operates as an inverter, the sign would be positive, whereas if it 

flows out of the converter and to the DC bus, hence if it operates as a rectifier, the 

sing would be negative. This notation method has been used infrequently 

throughout this chapter to better describe the rectification and inversion operation of 

the voltage source converter models. 

 

In the following example, in order to preserve the rectifier-inverter operation and 

thus preserving a unidirectional DC power, “CompT1” has to inject power to the 

DC node, whereas “CompT2” has to receive power from the DC node and therefore 

their associated powers are negative and positive respectively. Consequently, 

choosing positive signs for both converters will obviously yield to inaccurate or 

even unfeasible solutions. In order to bind the functional equality constraints for 

converters’ active powers, their associated Lagrangians are activated and added to 

the system Lagrangian as shown in equations (5.23) and (5.24).  

 

The rectifier station: 

 

 

! 

L"# ps1 = "# ps1
(Pps1

(2) $ Pspe1 ) = "# ps1
($Pr1 $ Pspe1 )  5.23  

 

And the inverter station: 

 

 

! 

L"# ps2 = "# ps2
(Pps2

(2) $ Pspe1 ) = "# ps2
(+Pr2 $ Pspe1 )  5.24  
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In order to maintain the active power balance in DC node, thus preserving the 

normal steady state operating conditions in the system, both converters are 

constrained towards a similar amount of pre-determined active power flow, namely 

! 

Pspe1 . Since there is no DC link losses in a back-to-back configuration maintaining 

the active power balance at the DC node is done simply by selecting equal 

functional constraints for each rectifier-inverter set of converters (equations 5.23 

and 5.24).  

 

However, in a point-to-point VSC-HVDC system where the active power is flowing 

through a DC transmission link from one converter to the other, the situation is 

changed, since now there is the element of DC transmission losses that need to be 

taken into account. Mathematically, the calculated nodal powers developed for the 

back-to-back VSC-HVDC compound model (equation 5.13 and 5.14) is incapable 

of maintaining the power balance in such systems. However, by expanding the 

compound transformer model in such a way that it accounts for the DC transmission 

losses inherently, the active power balance is maintained. This fact is further 

explained later where the mathematical model for the expanded compound 

transformer model is introduced. Referring to the example in figure (5.3), if the 

rectifier station, is tasked with keeping the voltage magnitude at DC node to a 

certain pre-determined amount, its mode of operation is set to 4.2.2., whereas the 

inverter station operates in mode 3.2.0. with no voltage regulation.  

 

In accordance with the mathematical formulation of the compound transformer 

model, the second station is also capable of regulating the voltage in its sending end 

(hence the AC node), and its mode of operation can be changed to 4.1.2. indicating 

that it regulates voltage in its AC side bus realising indirect reactive power control 

in the AC side. The different permitted control modes for a back-to-back VSC-

HVDC compound transformer model are summarised in table (5.2) below: 

 

Converters’ Plausible Control Modes Voltage Control Power Flow Control 

3.2.0. N/A DC Node 

4.1.2. AC Node DC Node  

4.2.2. DC Node DC Node 

Table 5.2 - Back-to-Back VSC-HVDC Converter Station's Control Modes 
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5.3  Optimal Power Flow Control in Back-to-Back VSC-HVDC 

Transmission Systems  
 

In order to achieve network’s optimum operating performance as well as minimise 

generation costs the optimal power flow algorithm has been carried out for the back-

to-back VSC-HVDC compound transformer model in the following system 

simulations. The VSCs are used to control the active power between various 

autonomous sections in such a fashion that it agrees with system’s operational 

restrictions. Consequently, in the VSC-HVDC compound transformer OPF models, 

the equality constraints associated with the compound transformers’ active power 

flows are used to optimally control the active power between the independent 

sections defining new boundaries on the OPF solution space. Furthermore, they 

determine the direction of the flow of power from one converter to the other in the 

back-to-back VSC-HVDC system (as well as point-to-point systems). As mentioned 

in previous chapter, the voltage and active power control characteristics of a voltage 

source converter are modelled through the variable complex tap ratio in the 

compound transformers. Therefore, in voltage/power control modes, the complex 

tap ratio has to be free to take up any values according to its associated control 

constraint (whether on the voltage or active power) otherwise the system is 

incapable of controlling the state variable and the OPF will generate inaccurate 

results.  

 

The OPF algorithm for the HVDC systems modelled with compound transformers is 

initialised similarly to the other FACTS-OPF scenarios with the exception of the 

slack bus. Since the HVDC links multiple sections in a power network in an 

asynchronous manner, correct implementation of the optimal power flow algorithm 

(as well as conventional power flow algorithms) calls for selection of multiple slack 

buses in the system, which essentially gives rise to several fully decoupled OPFs 

that are solved for one single Lagrangian function pertaining to the whole system 

This fact has been explained more clearly with the assistance of the following key 

test scenarios. The data for all of the following system simulations has been given in 

Appendix II. The objective function is the same as in equation (2.53) for the 8-node 

benchmark system.  
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5.3.1  Two-terminal Back-to-Back VSC-HVDC 

 

Figure (5.4) illustrates an OPF solution for a two-terminal back-to-back VSC-

HVDC link. Each AC grid represents an independent AC grid with its own machine. 

The back-to-back VSC-HVDC system is used to connect the autonomous operating 

AC grids to each other in a controlled manner. The power is therefore being 

transferred through the VSC-HVDC link from node 1 to node 5 (infinite bus). Both 

nodes 1 and 5 are taken to be slack buses for their respective AC grids. In order to 

add the back-to-back compound transformer model to the system OPF formulation, 

its associated exclusive Lagrangian presented in equation (5.19), is added to the 

system overall Lagrangian. The power balance equations associated with each 

compound transformer as well as the active power flow constraint and the DC 

reactive power constraint is included in this Lagrangian function. The complex 

nodal apparent powers associated with the back-to-back VSC-HVDC compound 

transformer model are calculated by solving equation (5.2). Consequently the nodal 

active and reactive powers associated with each compound transformer, namely 

equations (5.3-5.6), are derived from complex nodal apparent powers. The OPF is 

then solved for the two-terminal back-to-back system by solving the linear system 

of equations shown in equation (5.20) taking into account the vector of state 

variables pertaining to the compound transformers’ controllable complex tap phasor 

(equation 5.7).  

 
Figure 5.4 - Two-terminal Back-to-Back VSC-HVDC Compound Transformer Model OPF Solution (node 

“5” is the infinite bus) 
 8 

4. Back-to-Back HVDC  
 
Case of two compound devices to make up a -to-back HVDC link to interconnect 
two independent AC systems. The back-to-back is connected between buses 2 and 4, with 
bus 3 being the DC bus where the voltage is regulated at 1.1 p.u. and the power entering the 
inverter at 0.5 p.u. Notice that these systems require multiple slack buses, one for each AC 
system. The second slack generator, connected to bus 5, is better though of as an infinite 
bus-bar. The HVDC link interconnects the two AC systems in an asynchronous manner, 
giving rise to two fully decoupled AC systems, each with its own slack generator. 
Additional notes for OPF: 

a. The control settings must be the same as in conventional power flow (i.e. the power 
signs, etc.) 

b. must be penalized (to zero or any other 
given angle) 

c. Limits in generators must increase to incorporate the negative region (i.e. one of the 
generators in a situation where powers have opposite signs will only act as an 
absorbent of active power and will not generate anything therefore in order for 
algorithm to converge the limits should increase to include the absorption of active 
power with negative signs) 

d. Ctrl modes are as follows: 
VSC1 Ctrl = 4.2.2 
VSC2 Ctrl = 3.2 (one additional test run have been carried out with second generator 
control mode set also to 4.2.2 and results are slightly different since both tap 
changing facilities are operational however powers are regulated to their required 
amounts but angles in phase shifter are slightly different so are the tap changers) 

e. Below are the simulation results for two test runs: 
In first test run active power flows from bus 1 to bus 5 therefore VSC1/VSC2 act as 
inverter/rectifier 
In second test run the direction of active power flow reverses (i.e. from bus 5 to 
bus1) therefore this time VSC2/VSC1 act as inverter/rectifier 

f. Results (Power flowing from bus 1 to 5) VSC1Ctrl = 4.2.2/VSC2Ctrl = 3.2 
Cost Value = 0.03449096 
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According to the control equality constraints on both the converters’ active power 

flows as well as their nodal voltage magnitudes the compound transformers’ modes 

of operation are selected by activating the appropriate Lagrangian/penalty functions 

as shown in table (5.3). The rectifier station is also tasked with maintaining the DC 

nodal voltage magnitude to 1.1 per unit. 

 

Converter Mode of 

Operation 

Power Equality Voltage Equality Power/Voltage Control 

Rectifier Station 4.2.2. Activate Lagrangian Function Add Penalty Function DC Node 

Inverter Station 3.2.0. Activate Lagrangian Function Remove Penalty Function DC Node 

Table 5.3 - Two-terminal Back-to-Back VSC-HVDC Compound Transformer Model Modes of Operation  

In order to activate the power equality constraint (equation 5.8) it is only necessary 

to add its corresponding Lagrangian to the system Lagrangian function using the 

appropriate multipliers, namely 

! 

"# psi
, which remains active throughout the solution 

process. 

 

The voltage variable equality (equation 5.9), on the other hand, is added to the 

system formulation by penalising nodal voltage magnitude at the DC bus using a 

pure penalty function that has been described previously.  

 

As seen from figure (5.4), the back-to-back system is connected between nodes 2 

and 4 with node 3 being the DC node. Through activating the compound 

transformers’ functional equalities on active power, the VSC-HVDC link regulates 

the DC power to 0.5 per unit. It should be noted that the objective function for the 

infinite bus corresponds to the value of the work whereas the objective function in 

node 1 corresponds to the cost of fuel generation. The OPF is run for the above 

system converging in three iterations and the following observations are 

immediately made following the results: 

 

• Generator in node 1 generates 0.80 per unit of active power 

• The power arriving at the inverter station in the back-to-back system is 

fixed to 0.5 per unit 

• The power arriving at the infinite bus is approximately 0.22 per unit 
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• The phase angles in both slack buses must be penalised (towards zero or an 

arbitrary value) in order for the OPF algorithm to converge (requirement for 

multiple slack buses) 

• The voltage and powers in the VSC-HVDC system is being controlled 

through the operation of the variable complex tap ratio  

 

The cost functions as obtained by the OPF have been summarised in table (5.4) 

below. 

 

Slack Bus Generator Infinite Bus Overall Cost Function 

1 359.531 $/hr N/A 

5 N/A 14.622 $/hr 

344.909 $/hr 

 

Table 5.4 – System Optimum Cost (in $/hr)  

It has been observed from table (5.4), that approximately for each 360 $/hr spending 

on the generation cost, 14.6 $/hr has been turned into work. The rest accounts for 

the cost of consumption by the network loads in nodes 2 and 4 as well as 

transmission losses bringing the overall cost of fuel generation to 344.9 $/hr at the 

optimum operating point and taking into account the compound transformers’ 

control constraints on powers and voltages. The voltage at the DC node, as 

mentioned before, has been set to 1.1 per unit by penalising its associated nodal 

voltage magnitude within the OPF solution process. No violations in the state 

variables vector as well as functions have been observed.  

 

In order to reverse the direction of the active power transfer through the back-to-

back VSC-HVDC system (from node 5 to node 1) it is only necessary to alter the 

signs in the power control constraints associated with the compound transformers as 

explained in section (5.3.2).  

 

In this case, the output power in the first converter (nodes 2 and 3) has to be set to 

positive (indicating inversion), whereas the output power in the second converter 

(nodes 4 and 3) has to be set to negative (indicating rectification) in their 

corresponding power control constraints in a similar fashion as in equations (5.21) 

and (5.22) so as to maintain a power transfer between nodes 5 and 1. The OPF 

solution for the case where power is directed from node 5 to node 1 (now the 

infinite bus) is shown in figure (5.5). The rest of the system data remains intact 
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including the compound transformers’ modes of operation in table (5.3) with a 

minor exception that this time it is the inverter station that is tasked with 

maintaining the voltage at the DC bus (since the power is now being transferred 

from node 5 to 1). Therefore, even though the system is symmetrical and even 

though no change in the converters’ modes of operations are made, due to the 

reversal of the DC current, the functional equality constraints on the converters’ 

active powers in fact did change. Consequently, the OPF expectedly converges 

towards a different optimum operating point than in the first test run as observed in 

table (5.5). 

 

Slack Bus Generator Infinite Bus Overall Cost Function 

1 N/A 16.832 $/hr 

5 365.941 $/hr N/A 

349.109 $/hr 

 

Table 5.5 - System Optimum Cost (in $/hr) 

 
Figure 5.5 - Two-terminal Back-to-Back VSC-HVDC Compound Transformer Model OPF Solution (node 

"1" is the infinite bus) 

If, however, the constraints remain the same as in the first test run (the modes of 

operation interchange), the OPF then converges towards exactly the same operating 

point as obtained in the first test run.  

 

There are other plausible modes of operation with which the back-to-back VSC-

HVDC system in the above example can operate. For instance, the second converter 

can be set to regulate the voltage in node 4, whereas the first converter is used to 

 9 

g. Results (Power flowing from bus 5 to 1) VSC1Ctrl=4.2.2/VSC2Ctrl=3.2 
Cost Value = 0.03491094 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

h. Another case has been tested where ctrl modes have been opposite but power flow 

VSC2Ctrl was set to 4.2.2! The same results have been re-
with the difference that this time the sides of the diagram are interchanged (i.e. since 
it is a symmetrical diagram generator 1 changes places with generator 2 and so is the 
case for other elements in the circuit; the results are therefore interchanged) 
Power Flow direction 5 to 1 VSC1Ctrl = 3.2/VSC2Ctrl = 4.2.2 
Cost Value = 0.03449096 
 

i. Special Cases 
 
Case One: 
 
Angle in bus 5 generator is penalized to a different value than zero 
 
Settings: 
Must be generator PV bus (type 2 in program) 
Phase shifter angle in VSC2 will increase from 2.50 degrees to 7.5048 degrees 
All the other values are the same except for bus 3 angle which increases by 5 
degrees from 0.36 to 5.36 degrees! 
Cost value remains the same 
 
Case Two: 
 
Sending and receiving end in VSC2 has been interchanged 
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regulate the voltage in node 3, namely the DC node. In any case, selecting a mode 

of operation for the compound transformers is done by activating or removing the 

appropriate associated Lagrangian functions (in case of active power control) or 

pure penalty function (in case of nodal voltage magnitude control) to or from the 

system Lagrangian and the linear system of equations respectively (See sections 

5.3.2).  

 

The reactive power at the DC node has been remained zero for both of the above 

system simulations by activating equation (5.16). 

 

5.3.2  Multi-terminal Back-to-Back VSC-HVDC 
 

An OPF solution for a multi-terminal back-to-back VSC-HVDC interconnection 

link has been presented in figure (5.6) below. 

 

 
Figure 5.6 - Multi-terminal Back-to-Back VSC-HVDC Compound Transformer Model OPF Solution (nodes 

“5” and “7” are infinite buses) (notice the variable shunt susceptance values in per unit) 

 10 

 
multi-terminal back-to-back hree independent AC 

systems. The converter connected between buses 2 and 3 is the rectifier whereas the 
converters connected between buses 3 and 4 and 3 and 6 both act as inverters. 
 
The voltage at the DC bus is regulated at 1.1 p.u. and the power leaving the rectifier at 1 p.u. 
whereas those entering the inverters are each set at 0.5 p.u.  Notice that the shunt branches 
of the three converters are grouped together and placed (artificially) at bus 3, this giving rise 
to the values of power flows at bus 3. 
 

a. VSC1Ctrl = 4.1.2/ VSC2Ctrl = 4.2.2/ VSC3Ctrl = 3.2 
Cost Value = 0.05811871 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.0242 

0.4879 

1.0324 

0.9822 

1.2824 

0.7822 

1.3952 

0.5566 

1.13V  
83.29607.04V  

0.4879 

63.912V  

011V  

1 

RL1 

jXL1 

015V  

0.2345 

0.4829 

0.2189 

0.5141 

0.25+j0.20 

2 4 

0.25+j0.20 

RL2 

jXL2 

5 

 

R1 jX1 m1=0.9943 -15.57  m2=0.8562 6.10  R2 jX2 
3 

R3 

jX3 

m3=1 2.50  

0.25+j0.20 6 

RL3 

jXL3 

7 

 

0.4831 0.5353 

0.2331 0.3353 

0.2255 0.3200 

36.00433.16V  

017V
 

0.4845 

0.2829 0.0363  
 

 

  



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 180 

The multi-terminal back-to-back VSC-HVDC link shown in figure (5.6) consists of 

three voltage source converters modelled by compound transformers. It has been 

used to interconnect three autonomous AC grids with each other to deliver power 

generated in node 1 to nodes 5 and 7, which are taken as infinite buses in this 

particular example. The converter connected between nodes 2 and 3 act as a 

rectifier, whereas the other two converters act as inverters. The voltage at the DC 

bus is regulated at 1.1 per unit and the power leaves the rectifier at 1 per unit 

entering the inverters at 0.5 per unit each. Notice that the shunt branches of the three 

converters are grouped together and placed (artificially) at bus 3, thus giving rise to 

the values of power flows at this node. The OPF algorithm converged in four 

iterations with no violations in the state variables or functions. Similar to two-

terminal test runs, the OPF is initialised by setting three slack buses in the system, 

namely nodes 1, 5 and 7 to solve three decoupled AC power flows.  

 

The Lagrangian function exclusive to the compound transformers for a back-to-back 

multi-terminal system such as the one in figure (5.6) is formed using equation 

(5.19). Consequently, the linear system of equations in equation (5.20) is formed to 

solve the OPF. The converters’ modes of operation as dictated by the network 

operational requirements in terms of active power flow as well as nodal voltage 

magnitude regulation are selected according to table (5.6).  

 

Converter Mode of 

Operation 

Power Equality Voltage Equality Voltage 

Control 

Power 

Control 

VSC1  

(nodes 2-3) 

4.1.2. Activate Lagrangian Function Add Penalty Function AC Node 

(node 2) 

DC Node 

VSC2 

(nodes 4-3) 

4.2.2. Activate Lagrangian Function Add Penalty Function DC Node DC Node 

VSC3 

(nodes 6-3) 

3.2.0. Activate Lagrangian Function Remove Penalty Function N/A DC Node 

Table 5.6 - Multi-terminal Back-to-Back VSC-HVDC Compound Transformer Model Modes of Operation 

(notice that the rectifier station is tasked with maintaining the voltage at the AC side) 

According to the results obtained by the OPF, at the optimum operating point, the 

system draws approximately 1.4 per unit of active power from node 1 to be 

delivered to nodes 5 and 7 respectively. VSC1 is tasked with maintaining the 

voltage magnitude at its AC side, whereas the DC node voltage is fixed by VSC2. 

VSC3 does not regulate voltage magnitudes at either its AC or DC sides. Upon 
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convergence, approximately 0.23 per unit of active power arrives at both nodes 5 

and 7, with the rest of the power dispatch being consumed by loads in each 

independent AC grid segment. The rest of the generated active power accounts for 

the transmission losses. The active power is being distributed between the AC 

segments according to a pre-determined criterion via each converter station. 

Consequently, the rectifier station, namely VSC1, is tasked with regulating the 

active power at the DC side at 1 per unit, 0.5 per unit of which is directed towards 

VSC2 and the remaining 0.5 per unit towards VSC3 through the action of the 

inverter stations. By activating active power flow constraints similar to equation 

(5.8), each converter maintains its target active power flow in accordance with the 

mentioned criterion.  

 

The cost functions associated with the OPF solution depicted in figure (5.6) are 

shown is table (5.7) below, notice that the synchronous machines in nodes 5 and 7 

act as motors not generators.  

 

Slack Bus Generator Infinite Bus Overall Cost Function 

1 612.247 $/hr N/A 

5 N/A 16.437 $/hr 

7 N/A 14.622 $/hr 

 

581.187 $/hr 

 

Table 5.7 - System Optimum Cost (in $/hr) 

As shown in table (5.7), the overall cost function as obtained by the OPF is 581.18 

$/hr of generator fuel consumption at the slack node.  

 

• Operational Flexibility: 

 

To verify the flexibility of operation brought to the system by the presence of the 

multi-terminal VSC-HVDC compound transformer models, two different case 

scenarios, other than the one already presented, have been devised, which are shown 

in figures (5.7) and (5.8) respectively.  

 

It has been assumed, that each autonomous AC grid in figure (5.6) has a variable 

demand pattern that has to be addressed accordingly by the voltage source 

converters in the back-to-back VSC-HVDC interconnection link. It has also been 
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assumed that all the generators are capable of addressing the demands variations 

within their respective limits.  

 

Consequently, through activating and/or deactivating appropriate equalities (on 

voltage and/or active power) the voltage source converters respond to the changes in 

the network operational requirements. Conspicuously, solving the OPF for each 

case scenario then yields the best operating point for the system, subject to those 

particular restrictions.  

 

The required active power flow dispatch at the DC node for each converter has been 

shown in table (5.8) for the three case scenarios. OPF solution presented in figure 

(5.6) pertains to case one. 

 

Case Scenario VSC1 VSC2 VSC3 

One -1.0  +0.5  +0.5  

Two  -1.0  -0.5  +1.5  

Three +1.0  -0.5  -0.5  

Table 5.8 - The Multiple Test Case Scenarios Required Active Power Dispatch (at the DC node) 

The positive and negative signs denote the direction of the DC active power 

dispatch between the three converters, as it is required by the system. For 

consistency purposes, the compound transformers’ control modes are assumed to 

remain similar to those in table (5.6) for all three case scenarios. The optimal power 

dispatch for the three machines along with the final cost is shown in table (5.9) for 

the three case scenarios (the powers are in per unit). Machine 1 is connected to node 

1, Machine 2 to node 5 and Machine 3 to node 7. The negative sign in the machines’ 

power dispatch indicate that they are receiving active power, hence act as motors 

not generators.  

 

Case Scenario Machine 1  Machine 2 Machine 3 Optimum Cost ($/hr) 

One +1.3952 -0.2189 -0.2255 581.187 $/hr 

Two +1.3952 +0.8345 -1.1513 690.486 $/hr 

Three -0.6964 +0.8384 +0.8206 573.307 $/hr 

Table 5.9 - System Optimal Power Flow Dispatch (in per unit) 

The variable complex tap ratio final position as obtained by the OPF has been 

illustrated in table (5.10) for all three case scenarios. 
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Case Scenario VSC1  VSC2 VSC3 

One 

! 

0.994"#15.57  

! 

0.856"+ 6.10  

! 

1.000"+ 2.50  

Two 

! 

0.994"#15.57  

! 

1.029"# 9.65 

! 

1.000"+13.67  

Three 

! 

0.911"+10.78  

! 

1.036"# 9.75 

! 

1.000"# 9.27 
Table 5.10 - Operation of Complex Tap Ratio for the three Converter Stations 

It is observed from table (5.9) that the OPF converges towards different operating 

points for each case scenario, which is due to the changing in mainly the active 

power constraints. In the first case scenario, the power is being delivered from node 

1 to infinite buses 5 and 7 with the voltage source converters regulating the power at 

the DC node according to table (5.8).  

 

However, in the second case scenario, the active power control constraints change 

slightly to reflect on the conditions of the system. It is assumed that the demand in 

the third slack node, namely node 7 has been increased. The network therefore 

responds to this increase in demand by configuring the voltage source converters in 

such a way so that the amount of active power arriving at the third converter 

increases to 1.5 per unit. This is done by changing the conditions of the active 

power constraints of the three compound transformers in the OPF algorithm 

(increasing their specified powers). It is therefore observed that this increase in 

power would result in a different final power dispatch at the optimum.  

 

The power is now being transferred through the back-to-back VSC-HVDC 

interconnection link from both nodes 1 and 5 towards node 7 with the amounts 

given in table (5.9) (See figure 5.7).  
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Figure 5.7 – Multi-terminal Back-to-Back VSC-HVDC Compound Transformer Model Test Case Two OPF 

Solution 

Similarly by changing the operational requirements of the network for the third time 

in the final case scenario (figure 5.8), the voltage source converters are again 

reconfigured to respond accordingly (again by referring to table 5.8) and therefore 

the OPF will converge towards a different operating point. 

 

By ensuring that the KKT conditions are always satisfied upon convergence and 

adhering to the control equality constraints set at the start of the solution process, 

the final power dispatch given by the OPF is the optimum operating point of the 

network in which the system maintains stability and improved reliability through the 

operation of the voltage source converters.  

 

As seen from table (5.10) the variable complex tap ratio associated with each 

compound transformer takes a different value, which depends on the nature of their 

control mode. For instance, since the third converter, VSC 3, does not regulate 

voltage, its associated variable tap ratio remains constant, which indicates that its 

 12 
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nodal voltages are free to take up any values within their permitted range. In other 

words it operates in power only control mode as in table (5.6).  

 

The other two converters, on the other hand, regulate both nodal voltage magnitude 

as well as active power and therefore their associated variable complex tap ratios 

take up the required values to satisfy their activated control constraints. Again, by 

activating the reactive power constraint at the DC bus shown in equation (5.16), the 

reactive power at the DC bus remains zero throughout the OPF solution process for 

all of the presented test cases. The optimal power flow solution in case 3 has been 

presented in figure (5.8) below. 

 

 
Figure 5.8 – Multi-terminal Back-to-Back VSC-HVDC Compound Transformer Model Test Case Three 

OPF Solution  

The case scenarios presented in this section clearly indicate the new OPF model of 

the voltage source converter based on compound transformer concept is not only the 

most elaborate mathematical model for a VSC but also is decisively capable of 

portraying the control capabilities of VSC in HVDC applications in respond to any 
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sort of system demand in terms of both active power transfer capacity and voltage 

regulation requirements. By simply selecting the appropriate mode of operation, 

depicted in table (5.2) for each compound transformer, the above meshed system 

operates in a variety of circumstances and adopts to any change in the active power 

demand thanks to the power and voltage control capabilities of the compound 

transformers. The OPF then yield to an optimum point within which the network 

maintains steady state operation under the set circumstances.  

5.3.3  Multi-terminal Back-to-Back VSC-HVDC: Four Terminals Meshed 

 

The voltage source converters are used in a multi-terminal back-to-back 

configuration to connect the four independent AC grids to each other forming a 

four-terminal meshed system whose OPF solution is depicted in figure (5.9).  

 

As seen from figure (5.9), the multi-terminal system is being used to transfer the 

power generated by Machines 1,2 (nodes 1 and 5) to Machines 3,4 (nodes 7 and 9).  

 

VSC1 as well as VSC2 act as rectifiers regulating active power at their DC sides to 

1 per unit, whereas VSC3 and VSC4 act as inverters receiving 1 per unit DC active 

power flow. Furthermore, VSC3 and VSC4 are tasked with regulating the voltage at 

the AC side, whereas VSC1 and VSC2 are maintain the voltage at the DC side 

giving rise the following modes of operation in table (5.11). 

 

Converter Mode of 

Operation 

Power Equality Voltage Equality Voltage 

Control 

Power 

Control 

VSC1  

(nodes 2-3) 

4.2.2. Activate Lagrangian Function Add Penalty Function D C Node  DC Node 

VSC2 

(nodes 4-3) 

4.2.2. Activate Lagrangian Function Add Penalty Function DC Node 

 

DC Node 

VSC3 

(nodes 6-3) 

4.1.2. Activate Lagrangian Function Add Penalty Function AC Node 

(node 6) 

DC Node 

VSC4 

(nodes 8-3) 

4.1.2. Activate Lagrangian Function Add Penalty Function AC Node 

(node 8) 

DC Node 

Table 5.11 - Multi-terminal Back-to-Back VSC-HVDC Compound Transformer Model Modes of Operation 

for the Four-terminal Meshed 
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Figure 5.9 - Multi-terminal back-to-back VSC-HVDC Compound Transformer Model OPF Solution: Four-
terminal Meshed 

Considering that the system in figure (5.9) requires four slack buses for each AC 

segment, the OPF is run for the following DC active power flow conditions and has 

converged in four iterations. Table (5.12) illustrates the optimal cost function value 

for each machine along with the final optimum operating cost.  

 

Slack Bus Generator Infinite Bus Overall Cost Function 

1 637.2450 $/hr N/A 

5 637.2450 $/hr N/A 

7 N/A 157.377 $/hr 

9 N/A 157.377 $//hr 

 

959.7360 $/hr 

 

Table 5.12 – Four-terminal Meshed System Optimum Cost (in $/hr) 
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1.13V  78.100477.14V  78.100477.12V  

011V  

1 

RL1 

jXL1 

015V  

0.25+j0.20 

2 4 

0.25+j0.20 

RL2 

jXL2 

R1 jX1 m1=1.08 -16.28  m2=1.08 -16.28  R2 jX2 
3 

R3 

jX3 

m3=0.911 10.78  

0.25+j0.20  
!"!

RL3 

jXL3 

7 

 

10.50.16V  

017V  

RL4 

jXL4 

0.0484 

  

R4 

jX4 

 

0.25+j0.20 

5 

10.50.18V  

019V  

01.4503 

1.0175 

0.6964 0.3879 

0.6964 0.3879 

1.2934 

1.3313 

0.7282 0.3244 

0.7282 0.3244 

1.0434 

1.5313 
1.0121 

0.9782 0.1244 

0.9782 0.1244 

m3=0.911 10.78  

0.9879 

8 

9 
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The compound transformer’s modes of operation have been selected in such a way 

that the operation of the system remains symmetrical as it is seen from figure (5.9). 

 

The above example can be used to model a Wind Farm power transfer system. The 

power from two wind farms, namely nodes 1 and 5 are eventually being delivered to 

the utility grid, nodes 7 and 9 after being distributed optimally and symmetrically 

throughout the network. Later in this chapter a similar interconnection system based 

on multi-terminal point-to-point VSC-HVDC model is applied to a realistic system 

configuration that is based on the IEEE 14-bus test system.  

5.4  Advanced Point-to-Point VSC-HVDC Compound Model’s OPF 

Formulation using Expanded Compound Transformer Model 
 

Most of the HVDC systems require long DC transmission lines for transferring bulk 

DC power between at least two points within a given power system. Throughout 

this research, such systems are said to fulfil point-to-point power transmission 

applications. The modelling criterion of a point-to-point VSC-HVDC transmission 

system using the compound model, however, differs from that of the back-to-back 

systems in its active power flow constraint, since it needs to account for the DC 

losses occurring at the DC transmission link. In the following section, the 

compound transformer model has been expanded to incorporate the effects of the 

DC transmission losses in point-to-point power transmission applications for VSC-

HVDC systems. 

5.4.1  Problem of Point to Point active power control in Compound 

Transformer Model 
 

Referring to the complex nodal powers derived for the compound transformer 

model in back-to-back configurations, namely equations (5.13) and (5.14), it has 

been clearly observed that the compound transformer model is only capable of 

controlling active power at its own point of connection, namely either its sending 

(primary) or receiving (secondary) ends. This means that the compound transformer 

model is not capable of maintaining the power balance between two nodes separated 

by a transmission line. Even though not being able to maintain power balance 

between two separate points is not an issue for local power regulation applications 

and back-to-back connections (synchronising various AC sections or connecting a 
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weak network to a strong one), it poses a dilemma in point-to-point HVDC 

applications where DC links/cables are added to the system configuration. A two-

terminal point-to-point VSC-HVDC system has been presented in figure (5.10). 

 
Figure 5.10 - Two-terminal Point-to-Point VSC-HVDC System (Notice the DC power losses in the DC 

transmission line) 

It is obvious that the power transferred through the DC link in such a system will 

incur some, albeit, very small DC losses due to the conductors’ resistance towards 

the DC current, namely 

! 

Pdc = RdcIdc
2 . For DC power transmission from rectifier to 

inverter, the following functional equality constraints are defined: 

 

The Rectifier station: 

 

 

! 

Pps1
(2) " Pspe1 = "Pr1 " Pspe1  5.25  

 

The Inverter station: 

 

 

! 

Pps2
(2) " Pspe2 = +Pr2 " Pspe2  5.26  

 

Basic circuit theory suggests that the following power balance equation must be 

satisfied at the inverter station: 

 

 

! 

Pr2 = Pr1 " Pdc
losses

 5.27  

 

Within the optimal power flow formulation paradigm, this means that the inverter’s 

functional equality must be constrained towards the amount shown in equation 

!

"#"!

!

!

!

!

"#$!

!

!%&'()*)&+!,(-()./! 0/1&+(&+!,(-()./!
!

! !!

2'!/.3&!4! 2'!/.3&!5!

! 6.7&+!-(!(8&!)/1&+(&+!9(-()./!

! ! !
!

!

!

!

!

!

! !

!%&'()*)&+!,(-()./! 0/1&+(&+!,(-()./!
!

! !

! :.;;./!3'!/.3&!

6.7&+!-(!(8&!)/1&+(&+!9(-()./!!

!

<=>-/3&3!:.;>.?/3!@.3&A!
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(5.27), which essentially requires knowing the DC transmission losses in advance 

(as a separate state variable). However, it is virtually impossible to determine the 

DC transmission losses at the start of the OPF algorithm. Furthermore, one of the 

requirements of maintaining a HVDC power transmission is activating both 

functional equalities on converters’ active powers simultaneously (See section 

5.2.4).  

 

Since the DC losses are unknown at the start of the OPF solution process and there 

is no way to initialise them without knowing the power flows, the functional 

equality at the inverter station cannot be activated accurately. Therefore using 

compound transformer model for modelling point-to-point VSC-HVDC systems 

will generate inaccurate results due to ill conditioning of the OPF solution space. 

The only possible scenario for modelling a point-to-point VSC-HVDC operation 

with compound transformer model is to bind both powers at a pre-determined 

amount by adding their corresponding Lagrangians to the system Lagrangian. 

However, due to incurred losses in the DC transmission link, the OPF algorithm 

simply ignores the active power equalities and sets the powers for both converters in 

such a way that the DC losses are also included so that the power balance in 

equation (5.23) is not violated. It is quite obvious that this form of modelling is 

unreliable because the algorithm no longer is within the chosen set of equality 

constraints and therefore its results are not accurate results even if they converge to 

a possible solution.  

 

Knowing that controlling the amount of active power flow between voltage source 

converters is one of the most essential applications of VSC-HVDC systems 

particularly in forming interconnections between various autonomous segments, 

including such strong characteristics in their mathematical models becomes equally 

important. In the next section the VSC compound transformer model has been 

expanded to incorporate the effects of DC line losses. 
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5.4.2  Expanded Compound Transformer Model Reduced Admittance Matrix 

and Derived Nodal Powers 
 

The expanded compound transformer model used to model the point-to-point VSC-

HVDC transmission systems is shown in figure (5.1) below: 

 

 
 
Figure 5.11 - The Expanded (Augmented) Compound Transformer Model 

The DC transmission link has been added to the compound transformer model using 

a dummy bus called “DC-node”.  

 

Based on the single line diagram representation shown in figure (5.11), the 

admittance matrix is derived as shown in equation (5.28) below: 

 

 

! 

YT =

Y "(T#$ps)Y
"(T#"$ps)Y T 2Y +Y0 +Ydc "Ydc

"Ydc Ydc

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

 

5.28  

 

Using Kron’s reduction technique, presented in [14], to mathematically eliminate 

“DC-node”, 

! 

YT  is converted into a reduced matrix comprising the effects of DC 

line/cable. In this way the expanded model will retain the form of a two-node model 

presented in the previous section. It should be noted that for the OPF algorithm, the 

expanded model is still seen as a two-node transformer model.  

 

!
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!

!

!

!
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!%&'()*)&+!,(-()./! 0/1&+(&+!,(-()./!
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! !!
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A proper point-to-point VSC-HVDC system is therefore formed, by connecting a 

compound transformer (figure 4.4a) as well as an expanded compound transformer 

(figure 5.11) to each other. This particular configuration, while it maintains the 

effects of a DC line/cable in form of internal series resistance, is still seen by the 

OPF algorithm as a back-to-back system. Consequently, if using expanded 

compound model, the system in figure (5.10) takes the shape of figure (5.12). 

 

The power in the first converter can now be easily fixed to a pre-determined amount 

using its Lagrangian, knowing that it inherently includes the DC losses as well. In 

this way the active power control features can easily be added taking into account 

the DC losses in the calculated injected powers as internal losses of the expanded 

model.  

 
Figure 5.12 - Expanded Compound Transformer Model Reconfiguration (Notice the shift in output power 

controls and the power balance at the common DC node) 

Referring to the expanded model presented in figure (5.11), the new reduced matrix, 

dubbed 

! 

YT
'  is shown in equation (5.29). 

 

 

! 

YT
' =

1
K

Y (Y0 +Ydc ) "(T#$ps)YYdc
"(T#"$ps)YYdc Ydc (T

2Y +Y0)
% 

& 
' 

( 

) 
*  

5.29  

 

In which  

 

 

! 

K = T 2Y +Y0 +Ydc 5.30  
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! !!
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According to the new admittance matrix presented in equation (5.29), the power 

flows used to derive the expanded model have to be re-calculated to incorporate the 

effects of DC line/cable by re-calculating the nodal complex apparent powers. The 

equation for calculating nodal complex apparent powers for the compound 

transformer model presented in equations (4.7) is re-written for the expanded 

model’s admittance matrix in equation (5.29) as such: 

 

 

! 

Ss
Sr

" 

# 
$ 

% 

& 
' =

Vs

Vr

" 

# 
$ 

% 

& 
' 
Is
Ir

" 

# 
$ 
% 

& 
' 

*

 
5.31  

 

Substituting for the complex conjugate currents with the product of the reduced 

admittance matrix and the expanded model’s nodal voltages, equation (5.31) is re-

written as such in polar coordinates: 

 

 

! 

Ss
Sr

" 

# 
$ 

% 

& 
' =

Vse
j( s

Vre
j( r

" 

# 
$ 

% 

& 
' 
1
K*

Y *(Y0
* +Ydc

* ) )TY *Ydc
* e) j* ps

)TY *Ydc
* e+ j* ps (T 2Y * +Y0

*)Ydc
*

" 

# 
$ 

% 

& 
' 
Vse

) j( s

Vre
) j( r

" 

# 
$ 

% 

& 
'  

5.32  

 

By comparing equation (5.32) with the nodal power equations for the normal 

compound transformer model (equation 4.7), the effects of DC link/cable in form of 

admittance 

! 

Ydc  is discernible. However, it should be noted that in a real DC line 

there is no series reactance and therefore for purposes of simulation the DC line’s 

series reactance has to be set to zero.  

 

Ultimately, by solving equation (5.32) for the nodal complex apparent powers, the 

general expressions for active and reactive nodal powers for the expanded model are 

derived as shown in equations (5.33-5.36) for the sending and receiving ends of the 

expanded compound transformer model. 

 Powers at sending end (or primary side): 

 

 

! 

Ps =Vs
2Geq1 "TVsVr[Geq1dc cos(# sr "$ps) + Beq1dc sin(# sr "$ps)] 5.33  

 

 

! 

Qs = "Vs
2Beq1 "TVsVr[Geq1dc sin(# sr "$ps) " Beq1dc cos(# sr "$ps)] 5.34  
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Powers at receiving end (or secondary side): 

 

 

! 

Pr =Vr
2Geq2 "TVrVs[Geq2dc cos(# sr "$ps) " Beq2dc sin(# sr "$ps)] 5.35  

 

 

! 

Qr = "Vr
2Beq2 "TVrVs["Geq2dc sin(# sr "$ps) " Beq2dc cos(# sr "$ps)]  5.36  

 

The equivalent conductance and susceptance terms shown in the above equations 

entail the changes in the admittance matrix of the expanded compound transformer. 

They are basically the re-defined reduced admittance matrix terms for the expanded 

compound transformer model to include the DC transmission line’s admittance. The 

precise calculations yielding the equivalent admittance terms for the expanded 

model are carried out and presented in next section. 

5.4.3  Equivalent Admittance Elements for the Expanded Compound 

Transformer in Rectangular and Polar Forms 
 

The equivalent admittance elements, pertaining to the reduced admittance matrix, in 

nodal active and reactive power flows presented in equations (5.33-5.35) are 

calculated by solving equation (5.32) for the complex nodal apparent powers in 

sending and receiving ends of the expanded compound transformer shown in figure 

(5.11). By doing simple matrix algebra equation (5.32) will result in the following 

equations: 

 

Complex apparent nodal power at sending end: 

 

 
  

! 

Ss = (K*)"1(Vse
j# s )[Y *Vs

*(Y0
* +Ydc

* )e" j# s "TVr
*Y *Ydc

* e" j($ ps +# r )]%Ss = (K*

1
!)

"1[Y *(Y0
* +Ydc

* )Vs
2

2
" # $ $ % $ $ "TVsVr

*Y *Ydc
* e j(# s "# r "$ ps )

4
" # $ $ $ % $ $ $ ]

 

5.37  

 

Complex apparent nodal power at receiving end: 

 

 
  

! 

Sr = (K*)"1(Vre
j# r )["TY *Ydc

*Vs
*e j($ ps "# s ) +Ydc

*Vr
*(T 2Y * +Y0

*)e" j# r ]%Sr = (K*)"1["TVrVs
*Y *Ydc

* e j(# r "# s +$ ps )

5
! " # # # # $ # # # # +Ydc

*Vr
2(T 2Y * +Y0

*)
3

! " # # $ # # ]
 

5.38  

 

From equations (5.37) and (5.38), the following self- and mutual complex nodal 

powers are derived in polar coordinates. 
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Self-Sending End: 

 

 

  

! 

Sss = (K*)"1
1

! " # [Y
*(Y0

* +Ydc
* )Vs

2

2
! " $ $ # $ $ ] 

5.39  

 

Self-Receiving End: 

 

 

  

! 

Srr = (K*)"1
1

! " # [Ydc
*Vr

2(T 2Y * +Y0
*)

3
! " $ $ # $ $ ]  

5.40  

 

Mutual Send and Receive: 

 

 

  

! 

Ssr = (K*

1
!)

"1["TVsVr
*Y *Ydc

* e j(# s "# r "$ ps )

4
" # $ $ $ % $ $ $ ] 

5.41  

 

Mutual Receive and Send: 

 

 

  

! 

Srs = (K*)"1
1

! " # ["TVrVs
*Y *Ydc

* e j(# r "# s +$ ps )

5
! " $ $ $ $ # $ $ $ $ ] 

5.42  

 

Solving for 

! 

(K*)"1 term: 

 

Referring to equation (5.30) it is known that: 

 

 

! 

K = T 2Y +Y0 +Ydc 5.43  

 

Therefore its complex conjugate is defined in rectangular form as such: 

 

 

  

! 

K* = (T 2G +G0 +Gdc )
"'

! " # # $ # # # j(T 2B + B0 + Bdc )
""

! " # # $ # #  5.44  

 

And its inverse: 

 

 

! 

(K*)"1 = (#' " j#")"1 =
#' + j#"

#'
2

+ #"
2 = #R + j# I  

5.45  
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Solving for 

! 

"R  and 

! 

" I  will yield to the following equations: 

 

 

! 

"R =
"'

"'
2

+ ""
2 =

T 2G +G0 +Gdc

K 2  
5.46  

 

And  

 

 

! 

" I =
"'

"'
2

+ ""
2 =

T 2B + B0 + Bdc

K 2  
5.47  

 

Solving sub-equation (2) in equation (5.39), the following auxiliary admittance 

elements are derived with respect to the expanded compound model’s sending end: 

 

 

! 

G11 =G(G0 +Gdc ) " B(B0 + Bdc )
B11 = "G(B0 + Bdc ) " B(G0 +Gdc )
# 
$ 
% 

 
5.48  

 

In which 

 

! 

Y =G + jB  is the coupling admittance of the expanded compound transformer 

 

! 

Y0 =G0 + jB0  is the shunt admittance of the expanded compound transformer 

 

! 

Ydc =Gdc + jBdc  is the series line admittance of the expanded compound 

transformer (to simulate a DC transmission line 

! 

Bdc  must be set at zero) 

 

Subsequent sub-equations (3), (4) and (5) are also solved similarly yielding to the 

following auxiliary admittance terms: 

 

Sub-equation (4): 

 

 

! 

G12 =GGdc " BBdc

B12 = "(GBdc + BGdc )
# 
$ 
% 

 
5.49  

 

Solving for mutual Send-Receive complex nodal apparent powers in polar form: 
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! 

Ssr = ("R + j" I )(#TVsVr)[G12 + jB12](cos($ sr #%ps) + j sin($ sr #%ps))&

Psr = (#TVsVr ){("RG12 # " I B12)cos($ sr #%ps) # ("RB12 + " IG12)sin($ sr #%ps)}
Qsr = (#TVsVr ){("RB12 + " IG12)cos($ sr #%ps) + ("RG12 # " I B12)sin($ sr #%ps)}

' 
( 
) 

 

5.50  

  

Sub-equation (3): 

 

 

! 

G22 =Gdc[T
2G +G0] " Bdc[T

2B + B0]
B22 = "Bdc[T

2G +G0] "Gdc[T
2B + B0]

# 
$ 
% 

 
5.51  

 

Solving for self sending and receiving end powers: 

 

Sending End: 

 

 

! 

Sss = ("R + j" I )(G11 + jB11)Vs
2 #

Pss = ("RG11 $ " I B11)Vs
2

Qss = (" IG11 + "RB11)Vs
2

% 
& 
' 

 

5.52  

 

Receiving End: 

 

 

! 

Srr = ("R + j" I )(G22 + jB22)Vr
2 #

Prr = ("RG22 $ " I B22)Vr
2

Qrr = (" IG22 + "RB22)Vr
2

% 
& 
' 

 

5.53  

 

Sub-equation (5): 

 

 

! 

G21 =GGdc " BBdc

B21 = "(GBdc + BGdc )
# 
$ 
% 

G12 =G21

B12 = B21

# 
$ 
% 

 

5.54  

 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 198 

Solving for mutual Receive-Send power: 

 

 

! 

Srs = ("R + j" I )(#TVrVs)[G21 + jB21](cos($ rs +%ps) + j sin($ rs +%ps))&

Prs = (#TVsVr ){("RG21 # " I B21)cos($ sr +%ps) # ("RB21 + " IG21)sin($ sr +%ps)}
Qrs = (#TVsVr ){("RB21 + " IG21)cos($ sr +%ps) + ("RG21 # " I B21)sin($ sr +%ps)}

' 
( 
) 

 

5.55  

 

Ultimately, comparing equations (5.50), (5.52), (5.53) and (5.55) with the complex 

nodal active and reactive powers in equations (5.33-5.36), the following equivalent 

admittance terms are derived. 

 

Self-elements: 

 

 

! 

Geq1 = "RG11 # " I B11
Beq1 = "RB11 + " IG11

$ 
% 
& 

Geq2 = "RG22 # " I B22
Beq2 = "RB22 + " IG22

$ 
% 
& 

 

5.56  

 

 

Mutual elements: 

 

 

! 

Geq1dc = "RG12 # " I B12
Beq1dc = "RB12 + " IG12

$ 
% 
& 

Geq2dc = "RG21 # " I B21
Beq2dc = "RB21 + " IG21

$ 
% 
& 

 

5.57  

 

The re-defined self- and mutual elements of the reduced matrix help define the new 

nodal active and reactive powers, with which the Lagrangian function for the 

expanded compound transformer model is created.  

5.4.4  The Expanded Compound Transformer Constraints Set within the OPF  

 

The normal functional as well as variable equality constraints for the compound 

transformer apply in the expanded form as well. These constraints include the 

steady-state power balance equations as well as the expanded compound model’s 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 199 

active power control constraint. The expanded model may also be used to regulate 

nodal voltage magnitude at its points of connection, which means that the variable 

equality constraint on the expanded model’s nodal voltages may be activated should 

the need arises. The reactive power constraint in equation (5.16) also applies in case 

of the expanded compound transformer model for maintaining a zero reactive power 

flow in point-to-point VSC-HVDC models. 

5.4.5  The Expanded Compound Transformer Exclusive Lagrangian  

 

The general format of the exclusive Lagrangian function for the expanded 

compound transformer model in figure (5.11) is similar to that of the compound 

transformer model shown in equation (4.20) taking into account the new re-defined 

nodal active and reactive powers (equations 5.33-5.36) in the power balance 

equations and the new reactive power functional equality constraint as shown 

below. 

 

 

! 

LPS = "pi
(Pi

calc # Pgi + Pdi )i$[s,r]
% + "q j

(Qj
calc #Qg j

+Qd j
) + "& ps

(Pps # Pspe )j$[s,r]
% + "B (Qr # 0.0) 5.58  

 

Eventually, the linear system of equations containing the second order partial 

derivatives of the Lagrangian with respect to the state variables vector in equation 

(5.18) is formed. 
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calc
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2 L "B0V
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Using this model, the VSC-HVDC links are modelled properly for point-to-point 

applications. The OPF is solved for the above linear system of equations using 

Newton’s iterative process, taking into accounts the additional equalities as well as 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 200 

power balance equations. In the following section, the principles of modelling a 

point-to-point VSC-HVDC system using the expanded compound transformer have 

been described in greater detail.  

5.4.6  Point-to-Point VSC-HVDC System OPF Formulation using Expanded 

Compound Transformer  
 
A point-to-point VSC-HVDC configuration is shown in figure (5.13) below: 
 

 
Figure 5.13 - Two-terminal Point-to-Point VSC-HVDC Expanded Compound Transformer Model 

It has been observed that the optimum configuration for modelling a point-to-point 

VSC-HVDC using the compound transformer model is to use at least one expanded 

compound model to account for DC transmission losses. However depending on the 

system two expanded models can also be added together to constitute a point-to-

point VSC-HVDC system. The modelling approach essentially follows the same 

principles as in the back-to-back VSC-HVDC systems.  

 

The above model contains the effects of the DC transmission line losses as an 

internal resistive branch within the expanded compound transformer model 

admittance matrix as shown in previous section. Similarly, the multi-terminal VSC-

HVDC transmission link is depicted in figure (5.14). 
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Figure 5.14 - Multi-terminal VSC-HVDC Expanded Compound Transformer Model 

The expanded compound transformer modes of operation follow the same principles 

of the compound transformer heeding the plausible modes of operation given in 

table (5.2) to establish a DC power flow.  

 

Furthermore, The additional reactive power equality at the DC bus is added to the 

system Lagrangian by activating its associated Lagrangian function introduced in 

equation (5.17) as shown in table (5.13). 

 

Converter Type Model Reactive Power Equality 

Compound Transformer Activate Lagrangian Function 

Expanded Compound Transformer Activate Lagrangian Function 

Table 5.13 - Reactive Power Equality Constraint for Point-to-Point VSC-HVDC Model 

The complex nodal powers in a multi-terminal VSC-HVDC model are calculated 

similar to the back-to-back models noting the different admittance elements 

associated with normal and expanded compound transformers.  

 

!

!

!

"#$%&'()*+,-!./01-2!

!

! !! !! !
!

!

!

3#22#,!4)!,#4-!5 !

5 !!

!
!

!

!

!

!

!

! !

!

!

!

!



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 202 

For the two-terminal point-to-point VSC-HVDC model in figure (5.13), which 

comprises of one compound transformer and one expanded model, the admittance 

matrix is defined as such: 
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From equation (5.60) the complex nodal powers for the two-terminal system in 

figure (5.13) is calculated by calculating the product of the complex voltages and 

the complex conjugate currents as such: 
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Eventually, by conducting matrix multiplication, the complex nodal apparent 

powers for both voltage source converter models are derived as below: 

 

Sending End: 
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*e j(# s1 "# r1 "$ ps1 )  5.62  

 

And  
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And  
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! 
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*Vr2
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Vs2
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The nodal active and reactive powers for the two-terminal point-to-point VSC-

HVDC compound transformer model are eventually derived from equations (5.62-

5.65). The same procedure can be applied to any number of converters in a multi-

terminal VSC-HVDC compound transformer model to derive the nodal active and 

reactive power flows. 

 

Eventually, for a multi-terminal VSC-HVDC similar to the one in figure (5.14) 

comprising of 

! 

nconv  converters comprising of 

! 

ncomp  compound transformers 

and 

! 

nex  expanded compound transformers the admittance matrix is formed similar 

to the two-terminal point-to-point system. 

 

For simplicity purposes, the admittance matrix in equation (5.11) associated with 

multi-terminal back-to-back VSC-HVDC compound transformer models has been 

divided into four sub-matrices as shown below: 
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Equation (5.66) essentially entails a multi-terminal system where 

! 

ncomp  

converters are modelled as compound transformers. On the other hand, for a multi-

terminal system only comprising of 

! 

nex  expanded compound transformers a 

similar admittance matrix is written: 
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5.67  

 

Equation (5.67) contains the reduced admittance matrix elements associated with 

the expanded model given in equation (5.29). Combining the two admittance 

matrices in equations (5.66) and (5.67) will yield to the addmitance matrix for a 

multi-terminal VSC-HVDC system as shown in equation (5.68). 
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Eventually the complex nodal powers for a multi-terminal VSC-HVDC compound 

transformer model comprising of 

! 

ncomp  compound transformers and 

! 

nex  

expanded compound transformers is calculated as shown in equation (5.69).  
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It should be noted that equation (5.69) presents the most comprehensive 

representation of the complex nodal powers for a multi-terminal VSC-HVDC 

system, which has been modelled using compound transformers. The nodal powers 

can then be calculated for inclusion in the Lagrangian functions associated with 

each converter in the system. In this way the multi-terminal VSC-HVDC system is 

essentially modelled in a comprehensive manner within the optimal power flow 

algorithm.  

   

The functional equality constraints on converters’ nodal active and reactive powers 

as well as control constraints on converters active power are added to the OPF 

formulation by creating the  Lagrangian for point-to-point and multi-terminal VSC-

HVDC models. It should be noted that the Lagrangian should contain the additional 

reactive power constraint for the expanded compound transformers as well: 

 

Two-terminal Point-to-Point: 
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Multi-terminal: 
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The linear system of equations is essentially similar in form to equation (5.59) for 

both two-terminal point-to-point and multi-terminal VSC-HVDC compound 

transformer models. Ultimately, the system is solved within the OPF algorithm by 

iteratively solving equation (5.59) taking into account the limits on both variable 

and functional constraints as well. In the following sections, the new point-to-point 

VSC-HVDC model has been tested within the OPF algorithm.  

5.5  The Inequality Constraints  
 

As for any other OPF formulation, the state variables vector for both compound 

transformer and the expanded compound transformer has upper and lower limits, 

which are determined based on their operational requirements. The inequalities 

exclusive to the compound transformer model are on its variable complex tap 

phasor stated in equation (4.22). Furthermore, in VSC-HVDC models, there is the 

additional inequality constraint, which is on the (expanded) compound 

transformer’s variable shunt susceptance as shown in equation (5.72), which 

properly corresponds to the VSC’s capacitive ratings.  

 

 

! 

B0
lower " B0 " B0

upper
 5.72  

 

The variable inequality constraints are activated only if there is a violation in their 

associated values, in which case they are to be bounded to the system Lagrangian 

using the quadratic exact penalty function, which was introduced in chapter two. It 

should be noted that the priority of activation is on the system’s nodal voltages as 

well as phase angles and then the compound transformers’ exclusive variables. The 

direct voltage regulation of the VSC compound transformer model therefore 

depends on whether there is a violation in the shunt susceptance values or not. The 

functional inequality constraints are bounded to the system using appropriate 

Lagrangians. As mentioned in chapter four, the compound transformers’ variable 

complex tap phasor have priority over the nodal active and reactive powers. As 

always, the limits are checked on variables and functions only after Newton’s 

internal iterations loop (solving the linear system of equations). 
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5.6  Optimal Power Flow Control in Point-to-Point VSC-HVDC 

System Configurations 
 

In order to better depict the robust operability as well as control capabilities of the 

compound transformers in modelling voltage source converters, a variety of case 

scenarios pertaining to point-to-point VSC-HVDC applications have been presented 

in this section. In the following examples the objective functions remain similar to 

that of the 8-node benchmark example in chapter two, namely equation (2.53), with 

the rest of the system data being presented in Appendix II. 

5.6.1  Two-terminal Point-to-Point VSC-HVDC 

 

The OPF solution for a two-terminal point-to-point VSC-HVDC system has been 

shown in figure (5.15).  

 
Figure 5.15 - Two-terminal Point-to-Point VSC-HVDC Compound Transformer Model OPF Solution (node 

“5” is the infinite bus) 

As seen in figure (5.15), the VSC-HVDC link is used to connect two autonomous 

AC grids to each other via a DC transmission link. Thus the power generated in 

node 1 is now being transferred through the DC link towards node 5, hence the 

infinite bus. Due to the presence of the DC transmission link (in form of an ohmic 

resistance), the DC transmission losses are accounted for, and thus, the expanded 

compound transformer introduced in figure (5.11) is used to take into account these 

losses. The expanded model is added to the OPF formulation by creating its 
!"
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exclusive admittance matrix as shown in equation (5.29), which once connected to a 

normal compound transformer yields to the admittance matrix with the general 

expression of equation (5.68) representing the whole point-to-point VSC-HVDC 

system.  

 

Furthermore, the exclusive Lagrangian function for the two-terminal point-to-point 

VSC-HVDC system is formed as shown in equation (5.70) and by taking into 

account the power balance equations as well as all the necessary functional 

equalities including the reactive power equality at the DC bus. The Lagrangian 

function is then added to the system Lagrangian in the OPF formulation. The 

converters’ modes of operation with which they control the system parameters are 

selected according to table (5.14). 

 

Converter Mode of 

Operation 

Power Equality Voltage Equality Power/Voltage Control 

Rectifier Station 4.1.2. Activate Lagrangian Function Add Penalty Function AC Node (node 2) 

Inverter Station 4.2.2. Activate Lagrangian Function Add Penalty Function DC Node 

Table 5.14 - Two-terminal Point-to-Point VSC-HVDC Compound Transformer Model Modes of Operation  

Similar to back-to-back test cases, solving the OPF for point-to-point VSC-HVDC 

models also call for selecting multiple slack buses, which in this case are buses 1 

and 5.  

 

Ultimately, once all the conditions are set, the OPF is run for the above system and 

is converged in four iterations, without any violations.  

 

The following cost function values for each machine as well as the optimum cost 

value for the whole system are obtained by the OPF and are shown in table (5.15).   

 

Slack Bus Generator Infinite Bus Overall Cost Function 

1 360.825 $/hr N/A 

5 N/A 14.370 $/hr 

346.457 $/hr 

 

Table 5.15 - System Optimum Cost (Point-to-Point) (in $/hr) 

Comparing these results with the ones obtained for the two-terminal back-to-back 

system shown in table (5.4) clearly shows a slight increase in the amount of the 

objective function value. It has been observed that the overall cost function for 
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transferring 0.5 per unit of active power through the two-terminal point-to-point 

VSC-HVDC is slightly costlier (346.5 $/hr) than transferring the same amount of 

power through the back-to-back VSC-HVDC link (344.5 $/hr). The cost surcharge 

occurs in the system due to the presence of the DC transmission link, which 

predictably incurs a very small amount of losses. As mentioned earlier, the DC 

transmission losses are inherently accounted for in the expanded model. The active 

power is therefore regulated in such a way that it includes the DC transmission 

losses as shown in figure (5.12). The OPF, however, still sees the point-to-point 

VSC-HVDC as a back-to-back system with the DC transmission link modelled as 

an internal ohmic resistance within the expanded model. Consequently, in 

modelling point-to-point applications using expanded compound transformer, the 

active power is regulated until after the DC transmission losses are incurred in the 

system, therefore one does not need to worry about their presence, since they are 

already accounted for.  

5.6.2  Multi-terminal VSC-HVDC 

 

A multi-terminal VSC-HVDC transmission link has been used to connect three 

independent AC girds to each other forming the power system presented in figure 

(5.16).  

 

The converters modes of operation are shown in table (5.16) accordingly. 

 

Converter Mode of 

Operation 

Power Equality Voltage Equality Voltage 

Control 

Power 

Control 

VSC1  

(nodes 2-3) 

4.1.2. Activate Lagrangian Function Add Penalty Function AC Node 

(node 2) 

DC Node 

VSC2 

(nodes 4-3) 

4.2.2. Activate Lagrangian Function Add Penalty Function DC Node DC Node 

VSC3 

(nodes 6-3) 

4.2.2. Activate Lagrangian Function Add Penalty Function DC Node DC Node 

Table 5.16 - Multi-terminal VSC-HVDC Compound Transformer Model Modes of Operation  

As seen from figure (5.16) to model the point-to-point system, two expanded modes 

with equal DC resistances are connected to a normal compound transformer model. 

The power is transferred through nodes 1 and 5 towards node 7 via the multi-

terminal VSC-HVDC system.  
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In order to add the multi-terminal system to the OPF formulation it is only 

necessary to form its Lagrangian function as shown in equation (5.71), taking into 

account the exclusive nodal powers associated with the expanded model, namely 

equations (5.33-5.36) as well as all the control constraints as dictated by table 

(5.16).  

 
Figure 5.16 - Multi-terminal VSC-HVDC Compound Transformer Model OPF Solution 

 

The OPF is carried out for the above system with the results below. 

 

Slack Bus Generator Infinite Bus Overall Cost Function 

1 616.952 $/hr N/A 

5 395.440 $/hr N/A 

7 N/A 278.391 $/hr 

 

733.998 $/hr 

 

Table 5.17 – Multi-terminal VSC-HVDC System Optimum Cost (in $/hr) 
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Given the control criteria presented in table (5.16), the results obtained here are 

comparable to those shown in figure (5.7), namely case two of the back-to-back 

multi-terminal system. Again, by a simple comparison a slight increase in the 

amount of final objective function is observable, which is due to the presence of the 

incurred transmission losses in the DC link.  

 

As always the DC link reactive power remains zero by activating its associated 

functional equality shown in equation (5.16).  

5.7  Multi-terminal VSC-HVDC Interconnection System for a 

realistic AC Network 
 

In the following case scenario, a 46-node system comprising of 15 generators 

illustrated in figure (5.17), has been introduced.  

 
Figure 5.17 – 46-node Test System (only the connecting bus in each 14-bus segment has been shown) 

The 46-node system consists of three similar segments each based on the IEEE 14-

bus test system, which is in turn a realistic distribution system, interlinked through a 

multi-terminal VSC-HVDC interconnection system similar to the one illustrated in 

the previous case scenario (figure 5.16). As mentioned earlier, one of the major 

purposes of utilising a multi-terminal VSC-HVDC system is to create reliable links 

for such segmented power systems. The converters are then tasked to control system 
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active power flow within the DC interconnection system in such a way that 

conforms well with system operating restrictions.  

 

In order to accommodate the point-to-point multi-terminal system, two expanded 

compound transformer models are coupled with one normal model. As shown in 

figure (5.17), the multi-terminal point-to-point VSC-HVDC is used to connect AC 

System 1 to 2 and 3. Accordingly, the amount of 0.4 per unit of active power is to 

be delivered from AC System 3 to AC Systems 1 and 2 using the proper control 

modes as illustrated in table (5.18) below. In this way the operational symmetry of 

the entire system is properly preserved.  

 

Converter Mode of 

Operation 

Power Equality Voltage Equality Voltage 

Control 

Power 

Control 

VSC1  

(nodes 43-46) 

4.1.2. Activate Lagrangian Function Add Penalty Function AC Node 

(node 43) 

DC Node 

VSC2 

(nodes 44-46) 

4.1.2. Activate Lagrangian Function Add Penalty Function AC Node 

(node 44) 

DC Node 

VSC3 

(nodes 45-46) 

4.2.2. Activate Lagrangian Function Add Penalty Function DC Node DC Node 

Table 5.18 – Multi-terminal VSC-HVDC Compound Transformer Model Modes of Operation for the 46-

node System 

As it is shown in table (5.18), VSC1 and VSC2 are tasked with regulating the 

voltage at their AC side whereas the task of maintaining the DC bus voltage has 

been given to VSC3. As always, since the three AC segments are connected through 

the VSC-HVDC link, solving the OPF requires solving three decoupled AC power 

flows for each segment. Buses 1, 15 and 29 have been chosen to act as slack buses 

for their close proximity to the VSC-HVDC system.  

 

By solving the system Lagrangian similar to the one in equation (5.71), which 

includes all the necessary functional equalities (including the additional reactive 

power constraint for the DC link) the OPF, after 5 iterations, converged and 

generated the results presented in tables (5.19-5.20).  

 

Notice the symmetry between the results for generators in segments 1 and 2, which 

indicates that an equal amount of active power is distributed between these two 

segments. The same symmetry is appropriately reflected on the final amounts for 
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each generator’s individual cost function as obtained by the OPF. The final value of 

the objective function, which essentially is the summation of all the optimum values 

for the individual cost functions, is arrived at 766.73 $/hr.  

 

Generator No. Generator Bus Active Power Dispatch (in 

per unit) 

Optimum Cost (in 

$/hr) 

1 1 0.5202 42.8660 

2 2 0.5273 43.8299 

3 3 0.5492 46.8353 

4 6 0.5299 44.1754 

5 8 0.5433 46.0133 

6 15 0.5202 42.8660 

7 16 0.5273 43.8299 

8 17 0.5492 46.8353 

9 20 0.5299 44.1754 

10 22 0.5433 46.0133 

11 29 0.7478 78.5479 

12 30 0.7455 78.1468 

13 31 0.6000 54.1999 

14 34 0.6000 54.1999 

15 36 0.6000 54.1999 

Table 5.19 – 46-node System Final OPF Results 

As for the previous multi-terminal test cases, the reactive power in the DC link has 

to be zero. Therefore the additional reactive power control constraint at the DC bus, 

namely equation (5.16) is activated and added to the system Lagrangian using its 

associated multiplier. Subsequently, the following results are obtained upon 

convergence of the OPF algorithm for each VSC in accordance with their control 

modes depicted in table (5.18) as well as the activated reactive power constraint.  
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Active Power (p.u.) Reactive Power (p.u.) VSC No. 

! 

T"#ps 

AC Side DC Side AC Side DC Side 

VSC1 (Inverter) 

! 

0.9810"#1.6794  -0.1887 +0.2000 -0.2309 Zero 

VSC2 (Inverter) 

! 

0.9810"#1.6794  -0.1887 +0.2000 -0.2309 Zero 

VSC3 (Rectifier) 

! 

1.0330"# 7.1832  +0.4139 -0.4000 -0.4608 Zero 

Table 5.20 – 46-node System Final VSC Results 

Meanwhile, since the converters have identical data their internal switching losses 

have also been equal to 0.01 per unit. The results presented here clearly illustrates 

the fact that the new compound transformer model is suitable for analysing  medium 

scale segmented power networks that are most likely to be part of future modern 

system design scenarios. 

5.8  Conclusion 
 

The optimal power flow models suitable for realistic representation of VSC-HVDC 

transmission systems for back-to-back, point-to-point and eventually multi-terminal 

system configurations have been extensively and thoroughly presented throughout 

this chapter.  

 

The OPF models introduced in this chapter are based on the compound transformer 

concept presented in previous chapter. The normal compound transformer is 

appropriate for modelling back-to-back VSC-HVDC systems where due to presence 

of no transmission line between the converters, the DC losses are negligible. Similar 

model is applied for modelling the multi-terminal back-to-back systems. However, 

the compound transformer model poses a predicament in modelling point-to-point 

and multi-terminal systems in which DC power flows through DC links and 

therefore incurs losses. Due to the incurred losses, it is virtually impossible to 

control the active power remotely between two points separated by a transmission 

line since setting the appropriate functional equality constraints calls for knowing 

the losses in advance.  

 

To circumvent this problem, the compound transformer model has been expanded to 

virtually incorporate the DC transmission losses in its admittance matrix and 

subsequently its derived nodal active and reactive power flows. Therefore, when 

modelling point-to-point applications, the OPF still sees the expanded compound 

transformer models connected to each other as simply back-to-back models. In 
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order to realise power regulation at the DC node, hence maintain DC power 

transmission, it is then only necessary to activate the now expanded model’s nodal 

active power at the receiving end, which inherently includes the DC transmission 

losses as well. The VSC-HVDC compound transformer model has been tested for 

back-to-back, multi-terminal back-to-back, point-to-point and multi-terminal. It has 

been realised from the simulations that the compound transformer is capable to 

satisfy the required control constraints by using the appropriate Lagrangian/penalty 

functions.  

 

The compound transformer’s variable complex tap ratio is responsible for 

representing the PWM-control characteristics of the converters. The incurred phase 

angle difference between the sending and receiving ends of the compound 

transformer for a specific amount of active power regulation at the DC node is 

essentially obtained by the variations in the phase shifter angle in the compound 

transformer. The tap changer ratio in the compound transformer is on the other hand 

responsible for achieving voltage magnitude regulation in either AC or DC ends of 

the converter. The Lagrangian function associated with active power functional 

equality is activated throughout the solution process for all HVDC applications and 

cannot be deactivated. However, as mentioned in chapter four, if the voltage source 

converter is used as a single compensator and not in an HVDC configuration, this 

function can be deactivated, should the need arises, by simply penalising its 

associated multiplier.  

 

Furthermore, the reactive power equality constraint at the DC node is activated by 

adding an additional term to the VSC-HVDC compound transformer model 

Lagrangian for back-to-back and point-to-point systems as well as multi-terminal 

configurations where no reactive power flows are desired in the DC bus.  
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6 Conclusion 
 

6.1  General 
 

The main focus of this research project was to develop comprehensive and flexible 

mathematical models, aimed at out Optimal Power Flow studies, for a variety of 

power system components specifically, the fully controlled self-commutated 

Voltage Source Converter (VSC). This model proved to be the basis with which to 

model a new variant of High Voltage Direct Current transmission systems, namely 

VSC-HVDC. The work is also concerned with developing models for VSC-FACTS 

controllers, such as the STATCOM suitable for shunt reactive power compensation. 

Through a series of carefully devised test cases as well as simulation studies, 

various models pertaining to different power system components, have all been 

successfully tested using the OPF algorithm.  

 

The optimal power flow algorithm, decidedly, is the most important analytical 

toolbox used to ascertain the optimum point of steady state operation of an arbitrary 

power system under a variety of circumstances, which may be under the influence 

of different controllers. It can be solved for a variety of objective functions, 

however, in this research project for consistency purposes, the objective function 

has remained the generators’ quadratic cost function. For this reason, the results 

generated by the OPF are the optimum operating point of the system in which the 

generators power dispatch as well as the power flows within the system yield to 

optimum costs. Since the OPF is a useful tool in determining system’s optimum 

operating point under different circumstances it has been widely used in modern 

power system analysis and design scenarios.   

 

All of the models presented throughout this research work have been developed 

within the Augmented Lagrangian Function framework, which has been proven to 

be a robust analytical framework for constrained optimisation analysis of large-scale 

non-linear physical systems, electrical systems included. The models therefore have 

all been formulated within this particular analytical framework, which would then 

be solved using Newton’s iterative method.  
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The OPF is carried out for systems with or without FACTS controllers. It has then 

been observed that FACTS controllers exert an influence into the system behaviour 

characteristics since comparing results for FACTS-OPF simulations with systems 

with no FACTS controllers yielded different values of the obtained optimum. 

Therefore, it is concluded that the presence of controllers in an arbitrary system 

effectively modifies the boundaries of the solution region of the OPF problem, in 

which an optimum operating point can be obtained. This very fact is discernible 

from simulation studies carried out in chapters two, three and four for a variety of 

systems including the benchmark 8-node system, the IEEE 30-node system as well 

as the benchmark 5-node system. It was observed that the optimum operating point 

of the system slightly changes when results from compensated and uncompensated 

systems are compared with each other.  

 

In Chapter Two, the principles of OPF algorithm, as the main analytical toolbox of 

this research project, have been thoroughly introduced. A variety of solution 

algorithms have been presented for solving a non-linear constrained optimisation 

problem such as the OPF, which mostly consider converting the constrained 

problem into a single or a group of unconstrained problems by penalising the 

objective function for points outside the feasible solution space. Two inter-related 

methods have been presented, namely the Penalty Function method and the 

Augmented Lagrangian Function method. It has been argued that the latter is 

mathematically more viable that the former since it does not directly penalise the 

objective function but it is the Lagrangian function that is being penalised. Thus it 

has been shown that using the augmented Lagrangian function method has 

considerable numerical advantage and achieves better convergence rates than pure 

penalty function methods. The augmented Lagrangian function method then has 

been used in the power systems paradigm in order to develop models for 

conventional power systems components such as generators, transmission lines as 

well as transformers and loads. The non-linear OPF problem is then formulated 

based on the augmented Lagrangian approach, which is solved by Newton’s method 

using a system of linear equations formed from the derivatives of the Lagrangian 

function. The optimum operating point is reached by a decreasing pace in the 

gradient through iteratively solving the linear system of equations. It has been 

explained that by combining the Hessian and Jacobian elements together the 

solution algorithm can maintain both good level of sparsity in the matrix of 
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coefficients in the linear system of equations as well as an acceptable convergence 

rate. The system constraints have been categorised into equality and inequality 

constraints. In addition, the latter is exclusively handled using a special set of 

penalty functions dubbed the exact penalty function, which is essentially the 

augmented Lagrangian function. The system steady state operation as well as any 

controllability lies within the role of equality constraints. Two types of equality 

constraints were introduced: Variable and Functional. It has been shown that the 

most important set of functional equality constraints are the system power balance 

equations, which effectively denote system’s normal steady state conditions and 

therefore must be satisfied throughout the solution process. The other types of 

functional constraints are mostly associated with FACTS controllers and are used to 

model the system controllability. The functional equality constraints pertaining to 

the system control criteria are activated by adding their additional Lagrangians to 

the system Lagrangian whereas the variable equality constraints, which are mostly 

for cases of direct voltage regulation, are activated using appropriate pure quadratic 

penalty functions in order to nullify their associated state variable increments 

throughout Newton’s iterations. The OPF algorithm has been extensively tested for 

8-, 9-, 11-, 14- and 30-node systems to show its robustness in dealing with different 

operational circumstances.  

 

With regards to Chapter Three, the concept of FACTS-OPF modelling has been 

introduced as an approach into developing mathematical models for FACTS 

controllers within the optimal power flow algorithm. The same hierarchical process 

presented in chapter two has been utilised in this chapter to formulate OPF models 

for shunt compensators, in particular the variable impedance type Static VAR 

Compensator (SVC) and the more advanced VSC-type Static Compensator 

(STATCOM). Since there was no STATCOM-OPF model that is based on 

augmented Lagrangian function framework it was decided to introduce a good 

conventional controllable voltage source model for the STATCOM that is 

compatible with the OPF. As a result, a new Lagrangian function for the 

STATCOM was developed. The STATCOM model presented is capable of direct 

voltage regulation as an exclusive variable equality as well as reactive power 

compensation as an exclusive functional equality. However, it was argued that the 

two control constraints couldn’t be activated simultaneously. It was discussed that 

since STATCOM’s converter reactive power is a function of its nodal voltage 
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magnitude, in voltage control mode, the reactive power has to remain free so that it 

could take up any value that agrees with the target voltage magnitude. This 

phenomenon resembles the voltage regulation in Generator PV buses, in which 

penalising the associated Lagrange multiplier deactivates the generators’ reactive 

power functional equality constraint. As a result, it was stated that if a STATCOM 

is directly regulating voltage magnitude in a given node, that node is essentially 

seen as a PV node. Through a series of simulation scenarios on the 8-node 

benchmark system the STATCOM-OPF model’s controllability has been verified 

and its robustness against a variety of operational circumstances tested. By 

comparing results obtained from both SVC-OPF and STATCOM-OPF models, it 

was inferred that if similar control constraints are activated, for instance if both 

devices are regulating the voltage magnitude in similar associated compensated 

buses, then the OPF converges towards the exact same operating point regardless of 

the type of the shunt compensator. Once again this mathematical phenomenon 

proves the decisive role of equality constraints in shaping the OPF feasible solution 

space.   

 

In Chapter Four, the main goal of this project, which was to develop an advanced 

mathematical model within the OPF algorithm for Voltage Source Converter (VSC), 

has been successfully realised. Accordingly, an elaborate mathematical model 

within the OPF algorithm was presented that describes the behaviour characteristics 

of a fully controlled self-commutated Voltage Source Converter (VSC), which is 

then used to create multi-terminal HVDC transmission systems. As an improvement 

to the conventional modelling criterion, which basically treats the VSC as 

controllable voltage source behind coupling impedance, in this research project, for 

the first time, a new VSC model for the OPF algorithm was introduced, which was 

essentially based on what is called a Compound Transformer possessing a variable 

complex tap phasor. No other mathematical model, associated with VSCs, is known 

to possess such strong analytical capabilities within the OPF algorithm. The VSC 

Compound Transformer model details the PWM control characteristic of an actual 

VSC in form of a controllable variable complex tap phasor. Consequently, the 

active power flow control is realised by phase angle compensation of the phase 

shifter in the compound transformer, whereas the nodal voltage magnitude is 

maintained using the variable tap changer ratio. Based on the compound model’s 

control constraints, which are introduced on its active power flow as well as nodal 
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voltages, four distinct control modes (modes of operation) have been presented. The 

same criteria for activating different functional/variable equality constrains govern 

the selection process of these control modes according to the system operating 

requirements. The compound transformer model has been successfully tested for all 

the possible control mode combinations in a simple AC system comprising one 

generator. In DC system simulations it was observed that by leaving the phase 

shifter angle to reach the required phase angle difference between ends of the 

compound transformer, in order to reach a given target value for converter’s active 

power, the phase angle component of the DC node voltage can be properly ignored 

in the OPF solution process. As a result, the DC node has only voltage magnitude 

component with no phase angle eliminating the need for introducing additional 

connection buses in further system simulations such as multi-terminal VSC-HVDC 

test cases.  

 

The DC tests have been carried out for a single voltage source converter compound 

transformer model feeding a DC node. It was clearly shown that the VSC compound 

transformer model is capable of regulating the system parameters, namely the 

voltage magnitude as well as active power flow, in both system configurations. 

Furthermore, the new model has successfully isolated the DC node from any 

changes in the AC side, which in the case of the DC system, was the generators’ 

active power capacities. It was argued that the VSC in DC system simulations 

presented in chapter four in fact could be configured as a new STATCOM-OPF 

model. Consequently it was proved that the compound transformer model reliably 

provides a new mathematical platform for analysing and modelling the behaviour 

characteristics of the VSC-type FACTS controllers including the STATCOM.  

 

Eventually, in Chapter Five, the model presented in chapter four was used to derive 

necessary nodal active and reactive powers that are suitable for modelling multi-

terminal VSC-HVDC transmission systems for back-to-back, point-to-point and 

multi-terminal system configurations. The back-to-back models were entirely based 

on the compound transformer model developed in chapter four. However, it was 

shown that for modelling point-to-point VSC-HVDC systems, it is necessary to 

improve the compound transformer model even further. Thus the expanded 

compound transformer model was introduced, which is exclusively used to model 

point-to-point VSC-HVDC and their associated multi-terminal systems. Since 
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maintaining a DC power transmission calls for activating the power equality 

constraints at the DC node for each converter it was then argued that in a point-to-

point system using the normal compound transformer model, it is virtually 

impossible to maintain a DC power balance, due to the presence of the DC link 

transmission losses which are virtually unknown at the start of the OPF process. The 

expanded compound transformer model, on the other hand, circumvented this 

problem by including the DC transmission losses as an internal resistive branch 

within the model. Consequently, the expanded model coupled with normal 

compound transformer models were shown capable of accurately representing the 

operational characteristics of any VSC-HVDC configuration with any number of 

terminals. In order to model multi-terminal VSC-HVDC configurations, both back-

to-back and point-to-point VSC-HVDC models were developed for ‘

! 

n’ number of 

terminals by introducing a special ‘

! 

2n " 2n ’ admittance matrix from which their 

associated nodal active and reactive powers are derived. Ultimately, the nodal 

powers are used to create the Lagrangian comprising the control constraints of the 

VSC compound models. The VSC compound model Lagrangian is then added to the 

system Lagrangian in order to carry out the OPF solution process. Since there is no 

reactive power in the DC side, the compound transformer model when used for 

describing the operation of VSC-HVDC links required an additional functional 

equality constraint on the DC bus reactive power effectively rendering it to zero. It 

was observed that for maintaining the reactive power constraint at the DC node the 

shunt branch susceptance needed to be variable. Therefore, the shunt susceptance in 

the compound transformer model (and in the expanded model) was added to the 

vector of state variables so that a Lagrangian function can be introduced for the DC 

link reactive power flow as a function of the variable shunt susceptance. Through 

different simulation scenarios for different back-to-back, point-to-point and multi-

terminal configurations the robustness of the VSC-HVDC compound transformer 

models in a variety of plausible control modes has been tested and verified.  

Arguably, the OPF model presented in this chapter for the multi-terminal VSC-

HVDC links is the most comprehensive description of the multi-terminal VSC-

HVDC systems to date. 

6.2  A Final Note Regarding Embedded HVDC into an AC System 
 

The system simulations presented in this thesis particularly in chapter five did not 

include VSC-HVDC systems that are embedded within an AC system. The reason 
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was that it was mainly assumed that the VSC-HVDC system is used to connect 

different autonomous AC grids to each other to create a web of asynchronously 

interconnected AC grids. In order to properly carry out an OPF solution for such 

systems, it is required to introduce multiple slack nodes as independent reference 

points for each autonomous AC section. The OPF will then calculate the state 

variables for each section with respect to their own slack nodes. While this may 

work satisfactorily when using VSC-HVDC models developed in this thesis to 

create asynchronous AC grids, the reliability of the solution method is yet to be 

realised if the situation reverses, namely if the VSC-HVDC system is embedded in 

an arbitrary AC grid. The argument is that the necessity to select multiple slack 

nodes in an embedded system may create numerical difficulties especially if there 

are not enough candidate nodes to be selected as independent reference points. 

Therefore care needs to be taken if the models are used to simulate embedded VSC-

HVDC systems within AC grids. The best and simplest suggestion is to divide the 

AC grid into multiple sections, each with their own slack nodes. It should however 

be stressed here that the modelling criterion and the structures of the admittance 

matrices for multi-terminal VSC-HVDC models presented in chapter five remain 

the same regardless of the configuration of the system. 

6.3  Suggestions for Possible Future Work 
 

The work presented in this research has been extensive and thorough. It presents a 

new paradigm in VSC-FACTS and HVDC modelling for optimal power flows. It 

introduces one of the most realistic and flexible mathematical models for the 

voltage source converter and ensuing VSC-HVDC transmission systems. 

Nevertheless, the contributions to the field of power system research in this work 

can be expanded even further. The following are suggested as possible future 

research items: 

 

• Mathematical models for Doubly-fed Induction Machines can be added to 

the VSC-HVDC compound models in order to carry out precise optimal 

power flow analysis on integration systems based for renewable sources of 

energy, mainly wind farms 

 

• Possible investigation into the compound transformer model so that the 

shunt branch can be interchanged between secondary and primary sides of 
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the transformer which ultimately gives better flexibility in adopting various 

system configurations  

 

• A comprehensive study can be carried out for developing exclusive 

FACTS-OPF models for VSC-type FACTS controllers including the 

STATCOM, SSSC and UPFC (a preliminary STATCOM-OPF simulations 

was presented as DC system simulations in chapter four, which can be used 

to expand upon)  

 

• Alternative objective functions may be chosen for performing OPF 

solutions in the systems presented throughout this thesis;  
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Appendix I   
 

I Complex Nodal Power Calculations 
 

The complex nodal powers are at the heart of any power system-modelling scenario 

depicting power flows. In order to derive the nodal active and reactive powers in an 

arbitrary power system it is imperative to first derive its nodal admittance matrix, 

from which the required elements to properly calculate the nodal active and reactive 

powers are obtained. In the following sections the nodal powers for elements used 

in power systems are calculated. The powers used to model the compound 

transformer in chapter four are also presented in this section.  
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I.1  Complex Nodal Power for a given node  
 

Using complex algebra the complex nodal apparent power flow in a given node 

! 

n  is 

defined as the product of its nodal voltage and complex conjugate of current, as 

such: 

 

! 

Sn =Vn .In
*   

 

Knowing the following expression is true for admittance matrix of any system, the 

term above is expanded further and the nodal active and reactive powers are 

calculated as such.  

 

! 

Y = [G + jB]T  

 

! 

Sn =Vn .[ Ynk
* .Vk

*

k

Nbus

" ]#Sn =Vn .[ (Gnk $ jBnk ).Vke
$ j% k

k

Nbus

" ].e j% n #

#

Sn =Vn .[ (Gnk $ jBnk ).Vke
j(% n $% k )

k

Nbus

" ]#

#

Sn =Vn .[ (Gnk $ jBnk ).Vk .(cos%nk + j sin%nk )
k

Nbus

" ]#

#

Sn =Vn .[ (VkGnk cos%nk + jVkGnk sin%nk $ jVkBnk cos%nk +VkBnk sin%nk )
k

Nbus

" ]#

#

Pn = Re(Sn ) =Vn . [Vk (Gnk cos%nk + Bnk sin%nk )]
k

Nbus

"

Qn = Im(Sn ) =Vn [Vk (Gnk sin%nk $ Bnk cos%nk )]
k

Nbus

"

& 

' 

( 
( 
( 

) 

( 
( 
( 
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I.2 Load Tap Changer Transformer 

 

For a given load tap changer connecting two fictitious nodes, 

! 

k  and 

! 

m  together, the 

admittance matrix is formed as such: 

 

! 

YTransformer =
Y "TY
"TY T 2Y
# 

$ 
% 

& 

' 
(  

 

In which the following expressions apply for the self and mutual admittance 

elements: 

 

! 

Self " Elements

Gkk =G
Bkk = B
Gmm = T 2G
Bmm = T 2B

# 

$ 

% 
% 

& 

% 
% 

Mutual " Elements

Gkm =Gmk = "TG

Bkm = Bmk = "TB

# 

$ 
% % 

& 
% 
% 

 
 

The complex apparent power for the node 

! 

t  connected to the transformer is defined 

below: 

 

! 

St =Vt .[ Yti
*

i=k

m

" .Vi
*] =Vt .e

j# t . (Gti $ jBti).Vi .e
$ j# i

i=k

m

"

t = [k,m]

% 

& 
' 

( 
' 
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Similar to the previous section, the active and reactive power for the sending and 

receiving ends of the transformer are calculated as such: 

 

! 

St =Vt[ Vi(Gti " jBti)e
j(# t "# i )

i=k

m

$ ] =Vt[ Vi(Gti " jBti)(cos# ti + j sin# ti)
i=k

m

$ ]%

St =Vt[ (ViGti cos# ti + jViGti sin# ti " jViBti cos# ti +ViBti sin# ti)
i=k

m

$ ]%

Pt = Re(St ) =Vt Vi(Gti cos# ti + Bti sin# ti)
i=k

m

$

Qt = Im(St ) =Vt Vi(Gti sin# ti " Bti cos# ti)
i=k

m

$

 

 

Replacing for the self and mutual elements in the calculated active and reactive 

power equations, the active and reactive powers for sending and receiving ends of 

the transformer are calculated as follows, knowing that 

! 

"km = " k #"m : 

  

Sending End: 

 

! 

Pk =Vk
2G "TVkVm[Gcos# km + Bsin#km ]  

 

! 

Qk = "Vk
2B "TVkVm[Gsin# km " Bcos# km ]  

 

Receiving End: 

 

! 

Pm =Vm
2T 2G "TVmVk[Gcos#mk + Bsin#mk ] 

 

! 

Qm = "Vm
2T 2B "TVmVk[Gsin#mk " Bcos#mk ] 

 

For consistency purposes the phase angle difference is always calculated with 

respect to the primary hence, 

! 

"mk  in nodal active and reactive powers for the 

receiving end of the transformer is replaced by 

! 

"# km .  
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Therefore the nodal powers at the receiving end of the transformer are re-written as 

such: 

 

! 

Pm =Vm
2T 2G "TVmVk[Gcos# km " Bsin#km ]  

 

! 

Qm = "Vm
2T 2B "TVmVk["Gsin#km " Bcos#km ] 

 

The same criteria applies for nodal active and reactive power calculations pertaining 

to the compound transformer in chapter four, heeding the difference between the 

admittance matrix elements.  
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I.3  Compound Transformer Model Nodal Power Calculations 

 

The admittance matrix pertaining to the compound transformer model developed 

and presented in chapter four is given below (See figure 4.4a). The effects of the 

variable complex tap ratio as well as the shunt branch are included in the admittance 

matrix. 

 

! 

YCompT =
Y "(T#$ps)Y

"(T#"$ps)Y T 2Y +Y0

% 

& 
' 

( 

) 
* 

 
 

The nodal active and reactive powers for the compound transformer are calculated 

exactly the same as in a normal load tap changing transformer heeding its associated 

admittance elements as such for a compound transformer connected between 

fictitious nodes 

! 

k  and 

! 

m : 

 

! 

GCompT =
Gkk "TGkme

+ j# ps

"TGmke
" j# ps T 2Gmm +G0

$ 

% 
& 

' 

( 
)  

 

And 

 

! 

BCompT =
Bkk "TBkme

+ j# ps

"TBmke
" j# ps T 2Bmm + B0

$ 

% 
& 

' 

( 
)  

 

Knowing the expressions for the self- and mutual elements of the admittance matrix 

components and the equation for complex nodal apparent power, the active and 

reactive powers are therefore derived as such: 

 

Sending End: 

 

! 

Pk =Vk
2G "TVkVm[Gcos(# km "$ps) + Bsin(#km "$ps)] 

 

! 

Qk = "Vk
2B "TVkVm[Gsin(#km "$ps) " Bcos(# km "$ps)] 
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Receiving End: 

 

! 

Pm =Vm
2(G0 +T 2G) "TVmVk[Gcos(#mk "$ps) " Bsin(#mk "$ps)]  

 

! 

Qm = "Vm
2(B0 +T 2B) "TVmVk["Gsin(#mk "$ps) " Bcos(#mk "$ps)] 
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II Hessian and Jacobian Elements for the VSC 

Compound Transformer Model  
 

In this section, the first and second order partial derivatives (Jacobian and Hessian 

elements) pertaining to the compound transformer model is presented in two sub-

sections.  

 

II.1  The Compound Model  
 

Partial derivatives for the Hessian and Jacobian terms, as well as the Gradient 

vector, for the compound model are derived from the powers defined below for a 

compound transformer that is connected between the nodes 

! 

k  and 

! 

m : 

 

 

! 

Pk =Vk
2G "TVkVm[Gcos(# km "$ps) + Bsin(#km "$ps)] [1] 

 

 

! 

Qk = "Vk
2B "TVkVm[Gsin(#km "$ps) " Bcos(# km "$ps)] [2] 

 

 

! 

Pm =Vm
2(G0 +T 2G) "TVmVk[Gcos(#km "$ps) " Bsin(# km "$ps)] [3] 

 

 

! 

Qm = "Vm
2(B0 +T 2B) "TVmVk["Gsin(#km "$ps) " Bcos(# km "$ps)] [4] 

 

The following auxiliary terms are also defined based on the active and reactive 

powers in sending and receiving ends of the converter: 

 

Sending End: 

 

 

! 

Nkm =Gcos("km #$) + Bsin(" km #$) 
 

[5] 

 

 

! 

Hkm =Gsin("km #$) # Bcos(" km #$) 
 

[6] 
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Receiving End: 

 

 

! 

Nmk =Gcos(" km #$) # Bsin(" km #$)  
 

[7] 

 

 

II.1.1 Hessian/Jacobian with respect to vector 

! 

z1 = [",V ,#p ,#q ]
T  

 

II.1.1.1  Hessian with respect to phase angle 

! 

"k  

 

 

! 

"# k# k

2 Pk = +TVkVmNkm  
 

[9] 

 

 

! 

"# k# k

2 Qk = +TVkVmHkm  
 

[10] 

 

 

! 

"# k# k

2 Pm = +TVmVkNmk  
 

[11] 

 

 

! 

"# k# k

2 Qm = +TVmVkNmk  
 

[12] 

 

II.1.1.2  Hessian with respect to 

! 

"k,Vk  

 

 

! 

"# kVk
2 Pk = +TVmHkm  

 

[13] 

 

 

! 

"# kVk
2 Qk = $TVmNkm  

 

[14] 

 

 

 

! 

Hmk = "Gsin(#km "$) " Bcos(# km "$)  
 

[8] 



!"#$%&"#'(")*!+,%))'-.*+/*!0)#'1#%2&'-")*34516375*8'-9:*'-*;+<%2*4=:#%&:*0:'-.*
>?#'&")*;+<%2*@)+<:*

*
 

 234 

 

! 

"# kVk
2 Pm = $TVmHmk  

 

[15] 

 

 

! 

"# kVk
2 Qm = +TVmNmk  

 

[16] 

 

For partial derivatives with respect to phase angle and voltage magnitudes of the 

receiving end (

! 

"# mVm
2 X ) the indices 

! 

k  and 

! 

m  are interchanged.  

 

II.1.1.3  Hessian with respect to phase angle 

! 

"m  

 

 

! 

"# m# m

2 Pk = +TVkVmNkm  
 

[17] 

 

 

! 

"# m# m

2 Qk = +TVkVmHkm  
 

[18] 

 

 

! 

"# m# m

2 Pm = +TVmVkNmk  
 

[19] 

 

 

! 

"# m# m

2 Qm = +TVmVkHmk  
 

[20] 

 

II.1.1.4  Hessian with respect to 

! 

"k,"m  

 

 

! 

"# k# m

2 Pk = $TVkVmNkm  
 

[21] 

 

 

! 

"# k# m

2 Qk = $TVkVmHkm  
 

[22] 
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! 

"# k# m

2 Pm = $TVmVkNmk  
 

[23] 

 

 

 

! 

"# k# m

2 Qm = $TVmVkHmk  
 

[24] 

 

II.1.1.5  Hessian with respect to 

! 

"k,Vm  

 

 

! 

"# kVm
2 Pk = +TVkHkm  

 

[25] 

 

 

! 

"# kVm
2 Qk = $TVkNkm  

 

[26] 

 

 

! 

"# kVm
2 Pm = $TVkHmk  

 

[27] 

 

 

! 

"# kVm
2 Qm = +TVkNmk  

 

[28] 

 

For partial derivatives with respect to 

! 

"m ,Vk  (

! 

"# mVk
2 X ), the indices 

! 

k  and 

! 

m  are 

interchanged.  

 

II.1.1.6  Hessian with respect to 

! 

Vk  

 

 

! 

"VkVk
2 Pk = 2G  

 

[29] 

 

 

! 

"VkVk
2 Qk = #2B 

 

[30] 

 

 

! 

"VkVk
2 Pm = 0  

[31] 
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! 

"VkVk
2 Qm = 0 

 

[32] 

 

II.1.1.7  Hessian with respect to 

! 

Vm  

 

 

! 

"VmVm
2 Pk = 0  

 

[33] 

 

 

! 

"VmVm
2 Qk = 0 

 

[34] 

 

 

! 

"VmVm
2 Pm = 2(G0 +T 2G)  

 

[35] 

 

 

! 

"VmVm
2 Qm = #2(B0 +T 2B)  

 

[36] 

 

II.1.1.8  Hessian with respect to 

! 

Vk,Vm  

 

 

! 

"VkVm
2 Pk = #TNkm  

 

[37] 

 

 

! 

"VkVm
2 Qk = #THkm  

 

[38] 

 

 

! 

"VkVm
2 Pm = #TNmk  

 

[39] 

 

 

! 

"VkVm
2 Qm = #THmk  

 

[40] 
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II.1.1.9  Jacobian with respect to 

! 

"k  

 

 

! 

"# k
Pk = +TVkVmHkm  

 

[41] 

 

 

! 

"# k
Qk = $TVkVmNkm  

 

[42] 

 

 

! 

"# k
Pm = $TVmVkHmk  

 

[43] 

 

 

! 

"# k
Qm = +TVmVkNmk  

 

[44] 

 

For Jacobian terms of powers with respect to 

! 

"m (

! 

"# k
X ), the indices 

! 

k  and 

! 

m  are 

interchanged.  

 

II.1.1.10  Jacobian with respect to 

! 

Vk  

 

 

! 

"Vk
Pk = 2VkG #TVmNkm  

 

[45] 

 

 

! 

"Vk
Qk = #2VkB #TVmHkm  

 

[46] 

 

 

! 

"Vk
Pm = #TVmNmk  

 

[47] 

 

 

! 

"Vk
Qm = #TVmHmk  

 

[48] 
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II.1.1.11  Jacobian with respect to 

! 

Vm  

 

 

! 

"Vm
Pk = #TVkNkm  

 

[49] 

 

 

! 

"Vm
Qk = #TVkHkm  

 

[50] 

 

 

! 

"Vm
Pm = 2(G0 +T 2G)Vm #TVkNmk  

 

[51] 

 

 

! 

"Vm
Qm = #2(B0 +T 2B)Vm #TVkHmk  

 

[52] 

 

II.1.2 Exclusive Hessian/Jacobian with respect to vector 

! 

zps = ["ps,T,#" ps
]T  

 

II.1.2.1  Hessian/Jacobian with respect to 

! 

"ps 

 

The Hessian/Jacobian terms of powers with respect to 

! 

"ps  follow the two general 

formats stated below and therefore will not be repeated here: 

 

 

! 

H"#$ ps z
2 X =#% mz

2 X  
 

[53] 

 

 

! 

J"#$ ps
X =#% m

X  

 

[54] 

 

II.1.2.2  Hessian/Jacobian with respect to 

! 

T  

 

• 

! 

dTd" k  

 

! 

"T# k
2 Pk = +VkVmHkm  

 

[55] 
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! 

"T# k
2 Qk = $VkVmNkm  

 

[56] 

 

 

! 

"T# k
2 Pm = $VmVkHmk  

 

[57] 

 

 

! 

"T# k
2 Qm = +VmVkNmk  

 

[58] 

 

For Hessian terms with respect to 

! 

T"m (

! 

"T# m
2 X ) the indices are interchanged. 

 

• 

! 

dTdVk  

 

! 

"TVk
2 Pk = #VmNkm  

 

[59] 

 

 

! 

"TVk
2 Qk = #VmHkm  

 

[60] 

 

 

! 

"TVk
2 Pm = #VmNmk  

 

[61] 

 

 

! 

"TVk
2 Qm = #VmHmk  

 

[62] 

 

• 

! 

dTd"pk
 

 

! 

"TPk = #VkVmNkm  
 

[63] 

 

• 

! 

dTd"qk  

 

! 

"TQk = #VkVmHkm  
 

[64] 
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• 

! 

dTd"pm
 

 

! 

"TPm = 2TVm
2G #VmVkNmk  
 

[65] 

 

• 

! 

dTd"qm  

 

! 

"TQm = #2TVm
2B #VmVkHmk  

 

[66] 

 

• 

! 

dTdVm  

 

! 

"TVm
2 Pk = #VkNkm  

 

[67] 

 

 

! 

"TVm
2 Qk = #VkHkm  

 

[68] 

 

 

! 

"TVm
2 Pm = 4TGVm #VkNmk  

 

[69] 

 

 

! 

"TVm
2 Qm = #4TBVm #VkHmk  

 

[70] 

 

• 

! 

dTd"ps  

  

! 

"T# ps

2 X ="T# ps

2 X  
 

[71] 

 

• 

! 

dT 2 
 

! 

"T 2
2 Pm = 2GVm

2
 

 

[72] 

 

 

! 

"T 2
2 Qm = #2BVm

2
 

 

[73] 
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II.1.2.3  Gradient terms with respect to 

! 

"# ps
 

 

 

! 

"#$ps
L =

%Pkm
(1) = Pk & Pspecified

%Pkm
(2) = Pm & Pspecified

' 
( 
) 

* )  

 

[74] 

 

II.2 The Expanded Compound Transformer Model 
  

This section contains the Hessian and Jacobian elements for the expanded 

compound transformer model explained in chapter five. Notice that the partial 

derivatives (exclusive terms) are based on active and reactive powers associated 

with the expanded compound transformer model. It should be noted that the 

expanded compound transformer is used to model point-to-point and multi-terminal 

VSC-HVDC links. The vector of state variables for modelling point-to-point VSC-

HVDC link has the additional elements pertaining to the converter’s shunt variable 

susceptance to bind the reactive power at the DC node to zero, which takes the 

shape of 

! 

zps = ["ps,T,#" ps
,B0,#B ]

T . 

 

Note: the partial derivatives for the expanded model are exactly the same with 

respect to sub-vector 

! 

[z1,"ps,#" ps
]T , the only difference is in partial derivatives with 

respect to 

! 

T  and 

! 

B0 , because the admittance matrix elements of the expanded 

model are themselves functions of transformer’s tap changer magnitude and 

variable shunt susceptance. In order to calculate their corresponding Hessian and 

Jacobian elements the following auxiliary equations are introduced: 

 

II.2.1 Auxiliary Equations – Tap Changer 
 

Based on the VSC expanded model calculations and its reduced addmitance matrix 

(See chapter five), the following applies to the partial derivatives with respect to 

converter tap changer magnitude:  

 

 

! 

(K*)"1 = #R + j# I $%T (K
*)"1 =%T (#R ) + j%T (# I )  

 

[75] 
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Solving for 

! 

"T (K
*)#1  we will have the following partial derivatives: 

 

 

! 

"T#R =
"T#

' (|K |2) $ #' ("T |K |
2)

(|K |2)2
=
n1
d  

 

[76] 

  

 

! 

"T# I =
"T#

"(|K |2) $ #"("T |K |
2)

(|K |2)2
=
n2
d  

 

[77] 

 

 

! 

"T
2#R =

d("T n1) $ n1("T d)
d2  

 

[78] 

 

 

! 

"T
2# I =

d("T n2) $ n2("T d)
d2  

 

[79] 

 

In which the following terms are defined: 

 

 

! 

|K |2= "' 2 + ""
2
#

$T |K |
2=$T ("

' 2 ) +$T ("
"2)

$T 2
2 |K |2=$T 2

2 ("' 2 ) +$T 2
2 (""2)

% 
& 
' 

( '  

 

[80] 

 

Followed by these auxiliary equations: 

 

 

! 

"T#
' = 2TG1 

 

[81] 

 

 

! 

"T 2
2 #' = 2G1 

 

[82] 

 

 

! 

"T#
" = 2TB1 

 

[83] 
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! 

"T 2
2 #" = 2B1 

 

[84] 

 

 

! 

"T (#
' 2) = 4T 3G1

2 + 4TG1G0 + 4TG1Gdc  
[85] 

 

 

! 

"T 2
2 (#' 2) =12T 2G1

2 + 4G1G0 + 4G1Gdc  
 

[86] 

 

 

! 

"T (#
"2) = 4T 3B1

2 + 4TB1B0 + 4TB1Bdc  
 

[87] 

 

 

! 

"T 2
2 (#"2) =12T 2B1

2 + 4B1B0 + 4B1Bdc  
 

[88] 

 

 

! 

"T (n1) = ("T 2
2 (#' ))K 2

$ ("T 2
2 (K 2))#'  

 

[89] 

 

 

! 

"T (n2) = ("T 2
2 (#"))K 2

$ ("T 2
2 (K 2))#" 

 

[90] 

 

 

! 

"T (d) = 2 |K |2 "T |K |
2
 

 

[91] 

 

The impedance elements are also themselves functions of the converter’s tap 

changer and therefore they are needed for nodal powers partial derivatives: 

 

Self-Elements: Sending End 

 

 

! 

"T (Geq1) = ("T#R )G11 $ ("T# I )B11  
 

[92] 

 

 

! 

"T 2
2 (Geq1) = ("T 2

2 #R )G11 $ ("T 2
2 # I )B11  

[93] 
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! 

"T (Beq1) = ("T#R )B11 + ("T# I )G11 
 

[94] 

 

  

! 

"T 2
2 (Beq1) = ("T 2

2 #R )B11 + ("T 2
2 # I )G11 

 

[95] 

 

Self-Elements: Receiving End  

 

Auxiliary Equations:  

 

  

! 

"TG22 = ("T#
' )Gdc $ ("T#

")Bdc  
 

[96] 

 

  

! 

"T 2
2 G22 = ("T 2

2 #' )Gdc $ ("T 2
2 #")Bdc  

 

[97] 

 

  

! 

"TB22 = #{("T$
' )Bdc + ("T$

")Gdc} 
 

[98] 

 

  

! 

"T 2
2 B22 = #{("T 2

2 $' )Bdc + ("T 2
2 $")Gdc} 

 

[99] 

 

Main Equations: 

 

 

! 

"T (Geq2) = ("T#R )G22 + ("TG22)#R ${("T# I )B22 + ("TB22)# I} 
 

[100] 

 

 

! 

"T 2
2 (Geq2) = ("T 2

2 #R )G22 + 2("T#R )("TG22) + ("T 2
2 G22)#R

${("T 2
2 # I )B22 + 2("TB22)("T# I ) + ("T 2

2 B22)# I}  

 

[101] 
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! 

"T (Beq2) = ("T#R )B22 + ("TB22)#R + ("T# I )G22 + ("TG22)# I  
 

[102] 

 

 

! 

"T 2
2 (Beq2) = ("T 2

2 #R )B22 + 2("T#R )("TB22) + ("T 2
2 B22)#R

+("T 2
2 # I )G22 + 2("TG22)("T# I ) + ("T 2

2 G22)# I
 

 

[103] 

 

Mutual Elements: 

 

  

! 

"TGeq1dc ="TGeq2dc = ("T#R )G12 $ ("T# I )B12  
 

[104] 

 

  

! 

"T 2
2 Geq1dc ="T 2

2 Geq2dc = ("T 2
2 #R )G12 $ ("T 2

2 # I )B12  
 

[105] 

 

  

! 

"TBeq1dc ="TBeq2dc = ("T#R )B12 + ("T# I )G12  
 

[106] 

 

  

! 

"T 2
2 Beq1dc ="T 2

2 Beq2dc = ("T 2
2 #R )B12 + ("T 2

2 # I )G12  
 

[107] 

 

Power auxiliary equations (first and second order partial derivatives): 

 

Sending End: 

 

  

! 

"T
i Nkm ="T

i Geq1dc cos(# km $%ps) ±"T
i Beq1dc sin(#km $%ps)  

 

[108] 

 

  

! 

"T
i Hkm = ±"T

i Geq1dc sin(# km $%ps) $"T
i Beq1dc cos(# km $%ps)  

 

[109] 

 

For receiving end auxiliary equations the indices 

! 

k  and 

! 

m  are interchanged. The 

negative signs in (

! 

± ) apply in auxiliary equations for receiving end nodal powers.  
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II.2.2 Hessian/Jacobian terms with respect to 

! 

T  
 

• 

! 

dTd" k  

  

! 

"T# k
2 Pk = +VkVm (T"THkm +Hkm ) 

 

[110] 

 

  

! 

"T# k
2 Qk = $VkVm (T"TNkm + Nkm ) 

 

[111] 

 

  

! 

"T# k
2 Pm = $VkVm (T"THmk +Hmk )  

 

[112] 

 

  

! 

"T# k
2 Qm = +VkVm (T"TNmk + Nmk )  

 

[113] 

 

For Hessian terms with respect to 

! 

T"m (

! 

"T# m
2 X ) the indices are interchanged. 

 

• 

! 

dTdVk  

  

! 

"TVk
2 Pk = 2("TGeq1)Vk #Vm (T"TNkm + Nkm )  

 

[114] 

 

  

! 

"TVk
2 Qk = #2("TBeq1)Vk #Vm (T"THkm +Hkm )  

 

[115] 

 

  

! 

"TVk
2 Pm = #Vm (T"TNmk + Nmk )  

 

[116] 

 

  

! 

"TVk
2 Qm = #Vm (T"THmk +Hmk )  

 

[117] 
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• 

! 

dTd"p /dTd"q  

  

! 

"TPk = ("TGeq1)Vk
2 #VkVm (T"TNkm + Nkm )  

 

[118] 

 

  

! 

"TQk = (#"TBeq1)Vk
2 #VkVm (T"THkm +Hkm )  

 

[119] 

 

  

! 

"TPm = ("TGeq2)Vm
2 #VkVm (T"TNmk + Nmk ) 

 

[120] 

 

  

! 

"TQm = (#"TBeq2)Vm
2 #VkVm (T"THmk +Hmk )  

 

[121] 

 

• 

! 

dTdVm  

  

! 

"TVm
2 Pk = #Vk (T"TNkm + Nkm ) 

 

[122] 

 

  

! 

"TVm
2 Qk = #Vk (T"THkm +Hkm )  

 

[123] 

  

! 

"TVm
2 Pm = 2("TGeq2)Vm #Vk (T"TNmk + Nmk )  

 

[124] 

 

  

! 

"TVm
2 Qm = #2("TBeq2)Vm #Vk (T"THmk +Hmk )  

 

[125] 

 

• 

! 

dTd"ps  

  

! 

"T# ps

2 X ="T# ps

2 X  
 

[126] 

 

• 

! 

dT 2 
  

! 

"T 2
2 Pk = ("T 2

2 Geq1)Vk
2 # (T"T 2

2 Nkm + 2"TNkm )VkVm  
[127] 
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! 

"
T 2
2 Qk = (#"

T 2
2 Beq1)Vk

2 # (T"
T 2
2 Hkm + 2"THkm )VkVm  

 

[128] 

 

  

! 

"T 2
2 Pm = ("T 2

2 Geq2)Vm
2 # (T"T 2

2 Nmk + 2"TNmk )VkVm  
 

[129] 

 

  

! 

"
T 2
2 Qm = (#"

T 2
2 Beq2)Vm

2 # (T"
T 2
2 Hmk + 2"THmk )VkVm  

 

[130] 

 

II.2.3 Auxiliary Equations – Variable Shunt Susceptance 
 

The variable shunt susceptance is defined in order to simulate the conditions of a 

DC link in which reactive power flow is zero. Consequently the variable shunt 

susceptance puts a new constraint on converter’s receiving end reactive power 

forcing it into zero. Since the expanded model admittance matrix elements are 

themselves functions of its shunt susceptance, therefore new partial derivatives with 

respect to the expanded model’s variable shunt susceptance need to be defined.  

The auxiliary equations for Hessian and Jacobian terms with respect to 

! 

B0  are 

defined as such: 

 

 

! 

(K*)"1 = #R + j# I $%B0
(K*)"1 =%B0

(#R ) + j%T (# I )  
 

[131] 

 

 

! 

"B0
#R =

$("B0
(#"2))#'

(|K |2)2
=
a1
d  

 

[132] 

 

 

! 

"B0
# I =

(|K |2) $ ("T (#
"2 ))#"

(|K |2)2
=
a2
d  

 

[133] 
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! 

"B0
2

2 #R =
d("B0

a1) $ a1("B0
d)

d2  

 

[134] 

 

 

! 

"B0
2

2 # I =
d("B0

a2) $ a2("B0
d)

d2  

 

[135] 

 

In which the following non-zero terms are defined with respect to compound 

model’s variable shunt susceptance: 

 

 

! 

"B0
#" =1 
 

[136] 

 

 

! 

"B0
(#"2) = 2B0 + 2T 2B1 + 2Bdc  

 

[137] 

 

 

! 

"B0
2

2 (#"2) = 2  

 

[138] 

 

 

! 

"B0
(a1) = #"B0

2
2 ($"

2

)$' = #2$' 
 

[139] 

 

 

! 

"B0
(a2) = #"B0

2
2 ($"

2

)$" = #2$"  
 

[140] 

 

 

! 

"B0
(d) = 2 |K |2 "B0

(#"2)  
 

[141] 

 

Notice the difference between auxiliary partial derivatives with respect to the shunt 

branch variable susceptance and the ones developed in the previous section which 

were all based on compound model’s controllable tap changer magnitude.  
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The impedance elements are as well defined as functions of the variable shunt 

susceptance, and therefore their partial derivatives are as such: 

 

Self-Elements: Sending End 

 

Auxiliary Equations: 

 

 

! 

"B0
G11 = #B1  

 

[142] 

 

 

! 

"B0
2

2 G11 = 0  

 

[143] 

 

 

! 

"B0
B11 = #G1  

 

[144] 

 

 

! 

"B0
2

2 B11 = 0  

 

[145] 

 

Main Equations: 

 

 

! 

"B0
(Geq1) = ("B0

#R )G11 $ #R ("B0
G11) ${("B0

# I )B11 + ("B0
B11)# I}  

 

[146] 

 

 

! 

"B0
2

2 (Geq1) = ("B0
2

2 #R )G11 + 2("B0
#R )("B0

G11) $ ("B0
2

2 # I )B11 $ (2"B0
# I )("B0

B11)  
 

[147] 

 

 

! 

"B0
(Beq1) = ("B0

#R )B11 + #R ("B0
B11) + ("B0

# I )G11 + ("B0
G11)# I  

 

[148] 

 

 

! 

"B0
2

2 (Beq1) = ("B0
2

2 #R )B11 + 2("B0
#R )("B0

B11) + ("B0
2

2 # I )G11 + (2"B0
# I )("B0

G11)  
 

[149] 
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Self-Elements: Receiving End 

 

 

! 

"B0
G22 = 0 

 

[150] 

 

 

! 

"B0
2

2 G22 = 0  

 

[151] 

 

 

! 

"B0
B22 = #Gdc  

 

[152] 

 

 

! 

"B0
2

2 B22 = 0  

 

[153] 

 

Main Equations: 

 

 

! 

"B0
(Geq2) = ("B0

#R )G22 ${("B0
# I )B22 + ("B0

B22)# I} 
 

[154] 

 

 

! 

"B0
2

2 (Geq2) = ("B0
2

2 #R )G22 $ ("B0
2

2 # I )B22 $ (2"B0
# I )("B0

B22)  
 

[155] 

 

 

! 

"B0
(Beq2) = ("B0

#R )B22 + #R ("B0
B22) + ("B0

# I )G22 
 

[156] 

 

 

! 

"B0
2

2 (Beq2) = ("B0
2

2 #R )B22 + 2("B0
#R )("B0

B22) + ("B0
2

2 # I )G22  

 

[157] 

 

Mutual Elements: 

 

  

! 

"B0
Geq1dc ="B0

Geq2dc = ("B0
#R )G12 $ (" B0

# I )B12  
 

[158] 
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! 

"B0
2

2 Geq2dc ="B0
2

2 Geq2dc = ("B0
2

2 #R )G12 $ ("B0
2

2 # I )B12  

 

[159] 

 

  

! 

"B0
Beq1dc ="B0

Beq2dc = ("B0
#R )B12 + ("B0

# I )G12  
 

[160] 

 

  

! 

"B0
2

2 Beq1dc ="B0
2

2 Beq2dc = ("B0
2

2 #R )B12 + ("B0
2

2 # I )G12  

 

[161] 

 

The power auxiliary equations are formed with respect to the shunt susceptance and 

their general expressions are the same as in the equations with respect to the 

variable tap changer. Therefore they will not be mentioned here. 

 

II.2.4 Hessian/Jacobian terms with respect to variable shunt susceptance 

 
Most of the general expressions associated with Hessian and Jacobian terms of the 

expanded model’s nodal powers with respect to its shunt susceptance resemble the 

ones with respect to the variable tap changer ratio, however some terms are different 

and are presented in this section: 

 

• 

! 

dB0d"k  

  

! 

"B0# k
2 Pk = +TVkVm"B0

Hkm  
 

[162] 

 

  

! 

"B0# k
2 Qk = $TVkVm"TNkm  

 

[163] 

 

  

! 

"B0# k
2 Pm = $TVkVm"THmk  

 

[164] 

 

  

! 

"B0# k
2 Qm = +TVkVm"TNmk  

 

[165] 
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For Hessian terms with respect to 

! 

B0"m (

! 

"B0# m
2 X ) the indices are interchanged. The 

Hessian components with respect to the variable phase shifter and the shunt 

susceptance are the same as 

! 

"B0# m
2 X  terms and will not be re-written here. 

 

• 

! 

dB0dVk  

  

! 

"B0Vk
2 Pm = #TVm"B0

Nmk  
 

[166] 

 

  

! 

"B0Vk
2 Qm = #TVm"B0

Hmk  
 

[167] 

 

For Hessian terms with respect to 

! 

dB0dVm  (

! 

"B0
2

2 X ), the indices are interchanged.  

 

• 

! 

dB0d"p /dB0d"q  

  

! 

"B0
Pk = ("TGeq1)Vk

2 #TVkVm"B0
Nkm  

 

[168] 

 

 

  

! 

"B0
Qk = (#"B0

Beq1)Vk
2 #TVkVm"B0

Hkm  
 

[169] 

 

  

! 

"B0
Pm = ("B0

Geq2)Vm
2 #TVkVm"B0

Nmk  
 

[170] 

 

  

! 

"B0
Qm = (#"B0

Beq2)Vm
2 #TVkVm"B0

Hmk  
 

[171] 

 

• 

! 

dB0
2 

  

! 

"B0
2

2 Pk = ("B0
2

2 Geq1)Vk
2 # (T"B0

2
2 Nkm )VkVm  

 

[172] 
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! 

"
B0
2

2 Qk = (#"
B0
2

2 Beq1)Vk
2 # (T"

B0
2

2 Hkm )VkVm  

 

[173] 

 

  

! 

"B0
2

2 Pm = ("B0
2

2 Geq2)Vm
2 # (T"B0

2
2 Nmk )VkVm  

 

[174] 

 

  

! 

"
B0
2

2 Qm = (#"
B0
2

2 Beq2)Vm
2 # (T"

B0
2

2 Hmk )VkVm  

 

[175] 

 

• 

! 

dTdB0 

 

Since the Jacobian elements with respect to 

! 

T  have already been calculated in 

equations (110-113), to calculate the Hessians with respect to both 

! 

T  and 

! 

B0 , it is 

only necessary to calculate the derivatives of equations (110-113) with respect to 

! 

B0 . In other words the expression below applies: 

 

  

! 

"TB0
2 X ="B0

("T X)  
 

[176] 

 

And 

! 

X  pertains to the expanded model nodal active and reactive powers.  

 

It should be noted that in all of the above calculations regarding the expanded 

model, there is no susceptance element in the DC link and therefore by default 

! 

Bdc  

has been set to zero. If a non-zero value is chosen for the susceptance element, the 

current passing through the link admittance no longer represents a DC current.  
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Appendix II  
 
Test System Data (in per unit) 
 

Note: The following system data have been used for all the system simulations that are 

presented in this thesis. For multi-terminal VSC-HVDC system simulations including the 

multi-terminal back-to-back test cases, the machines limits region have been expanded to 

properly reflect on their operating conditions as synchronous motors.  

 
• 8-node System 

 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.1" PG1 " 2.0  

! 

"5.00 #QG1
# 5.00  0.00 0.00 

2 Generator P,V 

! 

0.1" PG2 " 2.0 

! 

"5.00 #QG2
# 5.00  0.20 0.10 

3 Load P,Q 0.00 0.00 0.45 0.15 

4 Load P,Q 0.00 0.00 0.40 0.05 

5 Load P,Q 0.00 0.00 0.60 0.10 

6 Load P,Q 0.00 0.00 0.00 0.00 

7 Load P,Q 0.00 0.00 0.00 0.00 

8 Load P,Q 0.00 0.00 0.20 0.10 
Table I.1 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.02 0.06 0.00 0.06 

2 1 3 0.08 0.24 0.00 0.05 

3 2 3 0.06 0.18 0.00 0.04 

4 2 4 0.06 0.18 0.00 0.04 

5 2 5 0.04 0.12 0.00 0.03 

6 6 4 0.01 0.03 0.00 0.02 

7 4 7 0.04 0.12 0.00 0.025 

8 4 8 0.04 0.12 0.00 0.025 

9 5 8 0.04 0.10 0.00 0.020 

Table I.2 – Line Data 

 
 
 

Table I.3 – Limits Data 

Slack  

! 

0.9 "Vslack "1.5  
Generator Bus 

! 

0.9 "Vgen "1.1 
Load Bus 

! 

0.9 "Vload "1.1 
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• 9-node System 
 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.1" PG1 " 2.5  

! 

"3.00 #QG1
# 3.00  0.00 0.00 

2 Generator P,V 

! 

0.1" PG2 " 3.0  

! 

"3.00 #QG2
# 3.00  0.00 0.00 

3 Generator P,V 

! 

0.1" PG3 " 2.7 

! 

"3.00 #QG3
# 3.00  0.00 0.00 

4 Load P,Q 0.00 0.00 0.00 0.00 

5 Load P,Q 0.00 0.00 0.90 0.30 

6 Load P,Q 0.00 0.00 0.00 0.00 

7 Load P,Q 0.00 0.00 1.00 0.35 

8 Load P,Q 0.00 0.00 0.00 0.00 

9 Load P,Q 0.00 0.00 1.25 0.50 
Table I.4 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 4 5 0.0170 0.0920 0.00 0.1580 

2 5 6 0.0390 0.1700 0.00 0.3580 

3 6 7 0.0119 0.1008 0.00 0.2090 

4 7 8 0.0085 0.0720 0.00 0.1490 

5 8 9 0.0320 0.1610 0.00 0.3060 

6 9 4 0.01 0.850 0.00 0.1760 

Table I.5 – Line Data 

Transformer 

No. 

Sending 

Bus 

Receiving 

Bus 

! 

Xt
(p.u) 

Tap 

(primary) 

1 1 4  0.0576 1.0 

2 3 6 0.0586 1.0 

3 2 8 0.0625 1.0 

4 (Test Run 

Two Only) 

4 9 0.0500 1.0 

Table I.6 – Transformer Data 

 

 

 

Table I.7 – Limits Data 

 

 

 

Slack  

! 

0.9 "Vslack "1.1 
Generator Bus 

! 

0.9 "Vgen "1.1 
Load Bus 

! 

0.9 "Vload "1.1 
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• 11-node System 
 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.1" PG1 " 2.5  

! 

"5.00 #QG1
# 5.00  0.00 0.00 

2 Generator P,V 

! 

0.1" PG2 " 2.7 

! 

"3.00 #QG2
# 3.00  0.20 0.10 

3 Load P,Q 0.00 0.00 0.45 0.15 

4 Load P,Q 0.00 0.00 0.40 0.05 

5 Load P,Q 0.00 0.00 0.60 0.10 

6 Load P,Q 0.00 0.00 0.00 0.00 

7 Load P,Q 0.00 0.00 0.00 0.00 

8 Load P,Q 0.00 0.00 0.20 0.10 

9 Load P,Q 0.00 0.00 0.45 0.15 

10 Generator P,V 

! 

0.1" PG3 "1.5 

! 

"3.00 #QG3
# 3.00  0.20 0.05 

11 Load P,Q 0.00 0.00 0.10 0.01 

Table I.8 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.02 0.06 0.00 0.060 

2 1 3 0.08 0.24 0.00 0.050 

3 2 3 0.06 0.18 0.00 0.040 

4 2 4 0.06 0.18 0.00 0.040 

5 2 10 0.04 0.12 0.00 0.030 

6 6 4 0.01 0.16 0.00 0.020 

7 4 7 0.04 0.12 0.00 0.025 

8 4 8 0.04 0.12 0.00 0.025 

9 8 5 0.04 0.10 0.00 0.020 

10 5 9 0.04 0.12 0.00 0.045 

11 9 10 0.04 0.12 0.00 0.045 

12 8 11 0.08 0.18 0.00 0.045 

13 10 11 0.00 0.14 0.00 0.020 
Table I.9 – Line Data 

Transformer 

No. 

Sending 

Bus 

Receiving 

Bus 

! 

Xt
(p.u) 

Tap 

(primary) 

1 3 6 0.05 0.987 

2 5 7 0.05 0.957 

Table I.10 – Transformer Data 
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Shunt 

Device No. 

Shunt Bus Shunt Susceptance 

1 6 0.25 

2 7 0.10 
Table I.10 – Shunt Data 

 

 

 

Table I.11 – Limits Data 

 

• 14-node System 
 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.1" PG1 " 2.5  

! 

"0.6 #QG1
# 0.8  0.00 0.00 

2 Generator P,V 

! 

0.1" PG2 " 2.7 

! 

"0.4 #QG2
# 0.6  0.2170 0.1270 

3 Generator P,V 

! 

0.1" PG3 " 2.7 

! 

"0.2 #QG3
# 0.4  0.9420 0.1900 

4 Load P,Q 0.00 0.00 0.4780 0.0390 

5 Load P,Q 0.00 0.00 0.760 0.160 

6 Generator P,V 

! 

0.1" PG4 " 2.7  

! 

"0.2 #QG4
# 0.4  0.1120 0.0750 

7 Load P,Q 0.00 0.00 0.00 0.00 

8 Generator P,V 

! 

0.1" PG5 " 2.7 

! 

"0.2 #QG5
# 0.4  0.00 0.00 

9 Load P,Q 0.00 0.00 0.2950 0.1660 

10 Load P,Q 0.00 0.00 0.090 0.0580 

11 Load P,Q 0.00 0.00 0.0350 0.0180 

12 Load P,Q 0.00 0.00 0.0610 0.0160 

13 Load P,Q 0.00 0.00 0.1350 0.0580 

14 Load P,Q 0.00 0.00 0.1490 0.0500 

Table I.12 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.01938 0.05917 0.00 0.0528 

2 1 5 0.05403 0.22304 0.00 0.0492 

3 2 3 0.04699 0.19797 0.00 0.0438 

4 2 4 0.05811 0.17632 0.00 0.0340 

5 2 5 0.05695 0.17388 0.00 0.0346 

6 3 4 0.06701 0.17103 0.00 0.0128 

7 4 5 0.01335 0.04211 0.00 0.0000 

Slack  

! 

0.9 "Vslack "1.5  
Generator Bus 

! 

0.9 "Vgen "1.1 
Load Bus 

! 

0.9 "Vload "1.2  
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8 6 11 0.09498 0.19890 0.00 0.0000 

9 6 12 0.12291 0.25581 0.00 0.0000 

10 6 13 0.06615 0.13027 0.00 0.0000 

11 9 10 0.03181 0.08450 0.00 0.0000 

12 9 14 0.12711 0.27038 0.00 0.0000 

13 10 11 0.08205 0.19207 0.00 0.0000 

14 12 13 0.22092 0.19988 0.00 0.0000 

15 13 14 0.17093 0.34802 0.00 0.0000 

Table I.13 – Line Data 

Transformer 

No. 

Sending 

Bus 

Receiving 

Bus 

! 

Xt
(p.u) 

Tap 

(primary) 

1 4 7 0.20912 0.987 

2 4 9 0.55618 0.969 

3 5 6 0.25202 0.932 

4 7 8 0.17615 1.0 

5 7 9 0.11001 1.0 

Table I.14 – Transformer Data 

Shunt 

Device No. 

Shunt Bus Shunt Susceptance 

1 9 0.19 

Table I.15 – Shunt Data 

 

 

 

Table I.16 – Limits Data 

 

• 30-node System 
 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.0 " PG1 " 0.8  

! 

"0.6 #QG1
# 0.8  0.00 0.00 

2 Generator P,V 

! 

0.0 " PG2 " 0.8 

! 

"0.4 #QG2
# 0.5  0.2170 0.1270 

3 Load P,Q 0.00 0.00 0.0240 0.0120 

4 Load P,Q 0.00 0.00 0.0760 0.0160 

5 Generator P,V 

! 

0.0 " PG3 " 0.50 

! 

"0.2 #QG3
# 0.4  0.9420 0.1900 

6 Load P,Q 0.00 0.00 0.00 0.00 

7 Load P,Q 0.00 0.00 0.2280 0.1090 

8 Generator P,V 

! 

0.0 " PG4 " 0.75  

! 

"0.2 #QG4
# 0.5  0.3000 0.3000 

Slack  

! 

0.9 "Vslack "1.15  
Generator Bus 

! 

0.9 "Vgen "1.15  
Load Bus 

! 

0.9 "Vload "1.06  
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9 Load P,Q 0.00 0.00 0.00 0.00 

10 Load P,Q 0.00 0.00 0.0580 0.0200 

11 Generator P,V 

! 

0.0 " PG5 " 0.30 

! 

"0.2 #QG5
# 0.4  0.00 0.00 

12 Load P,Q 0.00 0.00 0.1120 0.0750 

13 Generator P,V 

! 

0.0 " PG6 " 0.40 

! 

"0.2 #QG6
# 0.4  0.00 0.00 

14 Load P,Q 0.00 0.00 0.0620 0.0160 

15 Load P,Q 0.00 0.00 0.0820 0.0250 

16 Load P,Q 0.00 0.00 0.0350 0.0180 

17 Load P,Q 0.00 0.00 0.0900 0.0580 

18 Load P,Q 0.00 0.00 0.0320 0.0090 

19 Load P,Q 0.00 0.00 0.0950 0.0340 

20 Load P,Q 0.00 0.00 0.0220 0.0070 

21 Load P,Q 0.00 0.00 0.1750 0.1120 

22 Load P,Q 0.00 0.00 0.00 0.00 

23 Load P,Q 0.00 0.00 0.0320 0.0160 

24 Load P,Q 0.00 0.00 0.0870 0.0670 

25 Load P,Q 0.00 0.00 0.00 0.00 

26 Load P,Q 0.00 0.00 0.0350 0.0230 

27 Load P,Q 0.00 0.00 0.00 0.00 

28 Load P,Q 0.00 0.00 0.00 0.00 

29 Load P,Q 0.00 0.00 0.0240 0.0090 

30 Load P,Q 0.00 0.00 0.1060 0.0190 

Table I.17 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.0192 0.0575 0.00 0.0528 

2 1 3 0.0452 0.1652 0.00 0.0408 

3 2 4 00570 0.1737 0.00 0.0368 

4 3 4 0.0132 0.0379 0.00 0.0340 

5 2 5 0.0472 0.1983 0.00 0.0418 

6 2 6 0.0581 0.1763 0.00 0.0374 

7 4 6 0.0119 0.0414 0.00 0.0010 

8 5 7 0.0460 0.1160 0.00 0.0204 

9 6 7 0.0267 0.0820 0.00 0.0170 

10 6 8 0.0120 0.0420 0.00 0.0090 

11 12 14 0.1231 0.2559 0.00 0.00 

12 12 15 0.0662 0.1304 0.00 0.00 

13 12 16 0.0945 0.1987 0.00 0.00 
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14 14 15 0.2210 0.1997 0.00 0.00 

15 16 17 0.0524 0.1923 0.00 0.00 

16 15 18 0.1073 0.2185 0.00 0.00 

17 18 19 0.0639 0.1292 0.00 0.00 

18 19 20 0.0340 0.0680 0.00 0.00 

19 10 20 0.0936 0.2090 0.00 0.00 

20 10 17 0.0324 0.0845 0.00 0.00 

21 10 21 0.0348 0.0749 0.00 0.00 

22 10 22 0.0727 0.1499 0.00 0.00 

23 21 22 0.0116 0.0236 0.00 0.00 

24 15 23 0.1000 0.2020 0.00 0.00 

25 22 24 0.1150 0.1790 0.00 0.00 

26 23 24 0.1320 0.2700 0.00 0.00 

27 24 25 0.1885 0.3292 0.00 0.00 

28 25 26 0.2544 0.3800 0.00 0.00 

29 25 27 0.1093 0.2087 0.00 0.00 

30 27 29 0.2198 0.4153 0.00 0.00 

31 27 30 0.3202 0.6027 0.00 0.00 

32 29 30 0.2399 0.4533 0.00 0.00 

33 8 28 0.0636 0.2000 0.00 0.0428 

34 6 28 0.0169 0.0599 0.00 0.0130 

Table I.18 – Line Data 

Transformer 

No. 

Sending 

Bus 

Receiving 

Bus 

! 

Xt
(p.u) 

Tap 

(primary) 

1 6 9 0.2080 0.978 

2 6 10 0.5560 0.969 

3 9 11 0.2080 1.0 

4 9 10 0.1100 1.0 

5 4 12 0.2560 0.932 

6 12 13 0.1400 1.0 

7 28 27 0.3690 0.968 

Table I.19 – Transformer Data 

Shunt 

Device No. 

Shunt Bus Shunt Susceptance 

1 10 0.19 

2 24 0.043 

Table I.20 – Shunt Data 
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Table I.21 – Limits Data 

 

• Compound Transformer General Data 
 

The following parameters apply to the compound transformer introduced in figure (4.4a); 

the numbers are in per unit.  

 

! 

R1 0.01 

! 

X1  0.10 

! 

R0  0.04 

! 

X0 -1.9992 

Table I.22 – Compound Transformer Model Parameters (per unit) 

 

• AC System 
 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.1" PG1 " 2.0  

! 

"5.00 #QG1
# 5.00  0.00 0.00 

2 Load P,Q 0.00 0.00 0.25 0.20 

3 Load P,Q 0.00 0.00 1.00 0.00 

4 Load P,Q 0.00 0.00 0.00 0.00 

Table I.23 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.05 0.10 0.00 0.00 

2 2 4 0.05 0.10 0.00 0.00 

3 3 4 0.05 0.10 0.00 0.00 

Table I.24 – Line Data 

Slack  

! 

0.9 "Vslack "1.2  

Generator Bus 

! 

0.9 "Vgen "1.2  

Load Bus 

! 

0.9 "Vload "1.2  

Table I.25 – Limits Data 

 

 

 

Slack  

! 

0.9 "Vslack "1.10  
Generator Bus 

! 

0.9 "Vgen "1.10  
Load Bus 

! 

0.9 "Vload "1.05  
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• DC System – Case One 
 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.1" PG1 " 2.0  

! 

"5.00 #QG1
# 5.00  0.00 0.00 

2 Load P,Q 0.00 0.00 0.25 0.20 

3 Load P,Q 0.00 0.00 1.00 0.00 

Table I.26 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.05 0.10 0.00 0.00 

Table I.27 – Line Data 

Slack  

! 

0.9 "Vslack "1.2  

Generator Bus 

! 

0.9 "Vgen "1.2  

Load Bus 

! 

0.9 "Vload "1.1 

Table I.28 – Limits Data 

 
•  DC System – Case Two 

 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.1" PG1 " 2.0  

! 

"5.00 #QG1
# 5.00  0.00 0.00 

2 Load P,Q 0.00 0.00 0.00 0.00 

3 Load P,Q 0.00 0.00 1.00 0.00 

4 Generator P,V 

! 

0.1" PG2 " 2.0 

! 

"5.00 #QG2
# 5.00  0.00 0.00 

5 Load P,Q 0.00 0.00 0.25 0.20 

Table I.29 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.05 0.10 0.00 0.00 

2 2 4 0.05 0.10 0.00 0.00 

3 4 5 0.05 0.10 0.00 0.00 

Table I.30 – Line Data 

Slack  

! 

0.9 "Vslack "1.2  

Generator Bus 

! 

0.9 "Vgen "1.2  

Load Bus 

! 

0.9 "Vload "1.1 

Table I.30 – Limits Data 
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• Two-terminal back-to-back VSC-HVDC 
 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

"0.3 # PG2 # 2.0  

! 

"5.00 #QG1
# 5.00  0.00 0.00 

2 Load P,Q 0.00 0.00 0.25 0.20 

3 Load P,Q 0.00 0.00 0.00 0.00 

4 Load P,Q 0.00 0.00 0.25 0.20 

5 Generator P,V 

! 

"0.3 # PG2 # 2.0  

! 

"5.00 #QG2
# 5.00  0.00 0.00 

Table I.31 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.05 0.10 0.00 0.00 

2 2 5 0.05 0.10 0.00 0.00 

Table I.32 – Line Data 

Slack  

! 

0.9 "Vslack "1.2  

Generator Bus 

! 

0.9 "Vgen "1.2  

Load Bus 

! 

0.9 "Vload "1.1 

Table I.33 – Limits Data 

 
• Multi-terminal back-to-back VSC-HVDC 

 
Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

"0.8 # PG2 # 2.0  

! 

"5.00 #QG1
# 5.00  0.00 0.00 

2 Load P,Q 0.00 0.00 0.25 0.20 

3 Load P,Q 0.00 0.00 0.00 0.00 

4 Load P,Q 0.00 0.00 0.25 0.20 

5 Generator P,V 

! 

"0.8 # PG2 # 2.0  

! 

"5.00 #QG2
# 5.00  0.00 0.00 

6 Load P,Q 0.00 0.00 0.25 0.20 

7 Generator P,V 

! 

"1.5 # PG3 # 2.0  

! 

"5.00 #QG3
# 5.00  

0.00 0.00 

Table I.34 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.05 0.10 0.00 0.00 

2 4 5 0.05 0.10 0.00 0.00 

3 6 7 0.05 0.10 0.00 0.00 

Table I.35 – Line Data 
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Slack  

! 

0.9 "Vslack "1.2  

Generator Bus 

! 

0.9 "Vgen "1.2  

Load Bus 

! 

0.9 "Vload "1.1 

Table I.36 – Limits Data 

 

• Multi-terminal back-to-back VSC-HVDC: Four-terminal meshed 
 

This system is essentially an expansion of the previous system (Three-terminal) and thus 

its associated data are identical. The only difference is the machines’ active power 

operating region, which has been redefined to best reflect the operating conditions of the 

system:  

 
Machine 1 

! 

"0.7 # PG1 # 2.0  
Machine 2 

! 

"0.7 # PG2 # 2.0  
Machine 3 

! 

"0.7 # PG3 # 2.0  
Machine 4 

! 

"0.7 # PG4 # 2.0  
Table I.37 – Machine Limits 

The reactive power operating limits have been similar to those of the previous system.  

 
• DC Link Data 

 

The DC link resistance has been chosen to be 0.001 per unit for all the point-to-point and 

multi-terminal VSC-HVDC system simulations presented throughout this thesis.  

 

• Point-to-Point and Multi-terminal VSC-HVDC System Data 
 

The point-to-point system data essentially remains similar to back-to-back and multi-

terminal back-to-back system data presented above taking into account the DC link data 

by using the expanded compound transformer model in the system configuration.  

 

• 46-node System  
 

The system data for each AC segment is exactly identical to the system data pertaining to 

IEEE 14-bus system. The VSC-HVDC system data is also the same as in previous test 

cases.  
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• 5-node System 
 

Bus 

No. 

Bus Type 

! 

PG (p.u.)  

! 

QG (p.u.)  

! 

Pd (p.u.) 

! 

Qd (p.u.)  

1 Generator P,V 

! 

0.1" PG2 " 2.0 

! 

"5.00 #QG1
# 5.00  0.00 0.00 

2 Load P,Q 

! 

0.1" PG2 " 2.0 

! 

"3.00 #QG2
# 3.00  0.20 0.10 

3 Load P,Q 0.00 0.00 0.45 0.15 

4 Load P,Q 0.00 0.00 0.40 0.05 

5 Load P,Q 0.00 0.00 0.60 0.10 

Table I.38 – Bus Data 

Line No. Sending 

End 

Receiving 

End 

! 

Rline (p.u.)  

! 

Xline (p.u.)  

! 

Gline (p.u.)  

! 

Bline (p.u.)  

1 1 2 0.02 0.06 0.00 0.06 

2 1 3 0.08 0.24 0.00 0.05 

3 2 3 0.06 0.18 0.00 0.04 

4 2 4 0.06 0.18 0.00 0.04 

5 2 5 0.04 0.12 0.00 0.03 

6 3 4 0.01 0.03 0.00 0.02 

7 4 5 0.08 0.24 0.00 0.05 

Table I.39 – Line Data 

Slack  

! 

0.9 "Vslack "1.5  

Generator Bus 

! 

0.9 "Vgen "1.1 

Load Bus 

! 

0.9 "Vload "1.2  

Table I.40 – Limits Data 

 

 

 

 

 

 

 


