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Abstract

There is a growing interest in combining different levels of detail of biological

phenomena into unique multi-scale models that represent both biochemical details

and higher order structures such as cells, tissues or organs.

The state of the art of multi-scale models presents a variety of approaches often

tailored around specific problems and composed of a combination of mathematical

techniques. As a result, these models are difficult to build, compose, compare and

analyse.

In this thesis we identify process algebra as an ideal formalism to multi-scale

modelling of biological systems.

Building on an investigation of existing process algebras, we define process

algebra with hooks (PAH), designed to be a middle-out approach to multi-scale

modelling. The distinctive features of PAH are: the presence of two synchro-

nisation operators, distinguishing interactions within and between scales, and

composed actions, representing events that occur at multiple scales. A stochastic

semantics is provided, based on functional rates derived from kinetic laws. A

parametric version of the algebra ensures that a model description is compact.

This new formalism allows for: unambiguous definition of scales as processes

and interactions within and between scales as actions, compositionality between

scales using a novel vertical cooperation operator and compositionality within

scales using a traditional cooperation operator, and relating models and their

behaviour using equivalence relations that can focus on specified scales.

Finally, we apply PAH to define, compose and relate models of pattern for-

mation and tissue growth, highlighting the benefits of the approach.



To my parents Giancarlo and Marisa and to my brother Matteo.

To Melita, Daniela, Pietro, Cristina, Chiara, Anna, Andrea,

Luca, Stefano, Maurizio, Martin, Karin,

Rosetta, Giorgio, Ida, Mariano,

Rosetta, Silvio, Silvana, Willy,

Rina, Livio, Lina, Giovanni.

Always in my heart wherever I am.



Acknowledgements

I would like to thank Prof. Muffy Calder for the guidance and support she

has given me throughout these years. It has been great to have her always on my

side to help me improve my research skills and to encourage me to pursue all my

ideas.

I would like to thank also Dr. Federica Ciocchetta, a talented researcher and

a friend, for the fun we had working together.

Finally I would like to thank Oberdan and Michele, who made me feel that

Italy and Trentino were not that far away from Glasgow, and my family, in

particular my parents, who always supported me and my decisions, making me

feel that I could accomplish anything I wanted.



Declaration

A preliminary version of the process algebra introduced in Section 5.2 has been

published (Degasperi and Calder, 2010) under the supervision of Prof. Muffy

Calder.

The process algebra introduced in Section 5.2, the definition of isomorphism

and related properties in Section 6.2.1 and the case study in Section 7.3 have been

published (Degasperi and Calder, 2011) under the supervision of Prof. Muffy

Calder.

All the work reported in this thesis has been performed by myself, unless

specifically stated otherwise.

Andrea Degasperi

July 2011



Abbreviations

SBML - systems biology markup language

ODE - ordinary differential equation

PDE - partial differential equation

CME - chemical master equation

SSA - stochastic simulation algorithm

CTMC - continuous time Markov chain

CA - cellular automata

CCS - calculus of communicating systems

CSP - communicating sequential processes

PEPA - performance evaluation process algebra

EMPA - extended Markovian process algebra

SPA - simple process algebra

sSPA - stochastic simple process algebra

pSPA - parametric simple process algebra

PAwP - process algebra with priorities

sPAwP - stochastic process algebra with priorities

PAH - process algebra with hooks

sPAH - stochastic process algebra with hooks

psPAH - parametric stochastic process algebra with hooks



Contents

1 Introduction 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Choice of Multi-Way Synchronisation . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9

2.1 Biological Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The Complexity of Organisms . . . . . . . . . . . . . . . . 9

2.1.2 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Metabolic and Signalling Pathways . . . . . . . . . . . . . 10

2.1.4 Biological Mechanisms of Cell Differentiation and Decision

Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Traditional Modelling Methods . . . . . . . . . . . . . . . . . . . 12

2.2.1 ODE: The Law of Mass Action . . . . . . . . . . . . . . . 12

2.2.2 Generalised Mass Action . . . . . . . . . . . . . . . . . . . 13

2.2.3 Michaelis-Menten kinetics . . . . . . . . . . . . . . . . . . 14

2.2.4 Chemical Master Equation . . . . . . . . . . . . . . . . . . 15

2.2.5 Stochastic Simulation Algorithm . . . . . . . . . . . . . . . 17

2.2.6 Deterministic and Stochastic Approaches . . . . . . . . . . 18

2.2.7 Continuous Time Markov Chain . . . . . . . . . . . . . . . 19

2.2.8 CTMC with Levels of Concentration . . . . . . . . . . . . 21

2.2.9 Compartments . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.10 Reaction-Diffusion Equations . . . . . . . . . . . . . . . . 23

2.2.11 Modelling Cells and Tissues . . . . . . . . . . . . . . . . . 25

2.2.12 Cellular Automata . . . . . . . . . . . . . . . . . . . . . . 25

2.2.13 Multi-Scale Models . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Formal Modelling Methods . . . . . . . . . . . . . . . . . . . . . . 26

vi



CONTENTS

2.3.1 Multi-Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Labelled Transition System . . . . . . . . . . . . . . . . . 27

2.3.3 An Introduction to Process Algebra . . . . . . . . . . . . . 29

2.3.4 Process Algebras for Biology . . . . . . . . . . . . . . . . . 31

2.3.5 Related formalisms . . . . . . . . . . . . . . . . . . . . . . 35

2.3.6 Strong and Markovian Bisimulations . . . . . . . . . . . . 36

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Single-Scale Modelling with Process Algebra with Multi-way
Synchronisation 38

3.1 Simple Process Algebra . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Simple Process Algebra and Biochemistry . . . . . . . . . 40

3.1.2 Simple Process Algebra and Tissue Growth . . . . . . . . . 43

3.2 Stochastic Semantics for Simple Process Algebra . . . . . . . . . . 49

3.2.1 Stochastic Simple Process Algebra . . . . . . . . . . . . . 52

3.2.2 Formalisation of Functional Rates . . . . . . . . . . . . . . 55

3.2.3 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.4 The Rating Routines . . . . . . . . . . . . . . . . . . . . . 63

3.2.5 Stochastic Simple Process Algebra and Tissue Growth . . 66

3.3 Parametric Simple Process Algebra . . . . . . . . . . . . . . . . . 68

3.3.1 Parametric Simple Process Algebra and Biochemistry . . . 71

3.3.2 Parametric Simple Process Algebra and Tissue Growth . . 73

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Multi-Scale Modelling with Process Algebra with Priorities 75

4.1 Mechanisms of Interaction Between Scales . . . . . . . . . . . . . 75

4.1.1 Modelling Thresholds with Simple Process Algebra . . . . 77

4.2 Process Algebra with Priorities . . . . . . . . . . . . . . . . . . . 81

4.2.1 Modelling Thresholds with Process Algebra with Priorities 82

4.2.2 Process Algebra with Priorities and a Three Layers Example 84

4.2.3 Process Algebra with Priorities and Tissue Growth with

Biochemistry . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.4 Drawbacks of the Action Priorities Approach . . . . . . . . 89

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



CONTENTS

5 Multi-Scale Modelling with Process Algebra with Hooks 92

5.1 Process Algebra with Hooks . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Process Algebra with Hooks: Basic Examples . . . . . . . 96

5.1.2 Process Algebra with Hooks and a Three Layers Example . 101

5.1.3 Process Algebra with Hooks and Tissue Growth with Bio-

chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.4 Comparison of Process Algebra with Hooks and Process

Algebra with Priorities . . . . . . . . . . . . . . . . . . . . 105

5.2 Stochastic Semantics for Process Algebra with Hooks . . . . . . . 107

5.2.1 Stochastic Process Algebra with Hooks . . . . . . . . . . . 108

5.2.2 Rating sPAH models . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 Stochastic Process Algebra with Hooks and a Three Layers

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.4 Stochastic Process Algebra with Hooks and Tissue Growth

with Biochemistry . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Relations for Stochastic Process Algebra with Hooks 124

6.1 Relating Biological Systems at Specified Scales . . . . . . . . . . . 124

6.2 Three Fundamental Relations . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Isomorphism and (T,Γ)-isomorphism . . . . . . . . . . . . 130

6.2.2 Markovian (T,Γ)-bisimulation . . . . . . . . . . . . . . . . 140

6.2.3 Practical Use of the Relations . . . . . . . . . . . . . . . . 149

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Case Study 151

7.1 Parametric Stochastic Process Algebra with Hooks . . . . . . . . 151

7.2 Multi-Scale Model of Pattern Formation . . . . . . . . . . . . . . 153

7.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.2 Example of Use of Congruence . . . . . . . . . . . . . . . . 160

7.3 Multi-Scale Model of Tissue Growth . . . . . . . . . . . . . . . . 164

7.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

viii



CONTENTS

8 Conclusions 171

8.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A Stochastic Process Algebra with Priorities 175

A.1 Stochastic Process Algebra with Priorities . . . . . . . . . . . . . 178

B Case Study Complete Model Definitions 184

B.1 Detailed Definition of the Multi-Scale Model of Tissue Growth . . 184

References 190

Index 196

ix



List of Figures

1.1 Jigsaw representation of compositionality and behaviour abstrac-

tion in a multi-scale model. . . . . . . . . . . . . . . . . . . . . . 8

2.1 Example of a CTMC. Numbers on the transitions are exponential

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Illustration of the concept of levels of concentration. . . . . . . . . 21

2.3 The scale separation map (Walker and Southgate, 2009). Depend-

ing on the biological system or the level of details chosen, models

refer to specific time and spatial scales. Models A and B refer to

two different time and spatial scales. . . . . . . . . . . . . . . . . 26

2.4 a) Example of a labelled transition system. b) Example of a rated

labelled transition system. . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Semantics of a simple process algebra with multi-way synchronisa-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Biochemical reactions and transport between three regions in space. 40

3.3 Explicit modelling of empty space. Every region in space has its

associated process, even if it is empty space. . . . . . . . . . . . . 44

3.4 Graphical representation of process Empty1. . . . . . . . . . . . . 45

3.5 Implicit modelling of empty space on a line. Each region has a

position identified by a natural number. . . . . . . . . . . . . . . . 47

3.6 Stochastic semantics of a simple process algebra. . . . . . . . . . . 53

3.7 Semantics for the evaluation of functional rates. . . . . . . . . . . 56

3.8 Example of a derivation for a valid evaluation of a functional rate. 57

3.9 Semantics of parametric simple process algebra, part one of two. . 69

3.10 Semantics of parametric simple process algebra, part two of two.

Operations on the right hand side of rules are evaluated. . . . . . 70

x



LIST OF FIGURES

4.1 Tissue infection at different abstraction levels: on the left, cellular

scale; centre: molecular scale; on the right: tissue scale. . . . . . . 76

4.2 Interactions between scales. Only if the concentration of a cer-

tain molecule (molecular scale) is high, then a cell can duplicate

(cellular scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Dependencies between scales. Cellular events such as death and

duplication (cellular scale), imply changes in concentration of molecules

(molecular scale) inside the cells. . . . . . . . . . . . . . . . . . . 77

4.4 Example of a threshold definition problem in simple process alge-

bra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Reachable states and transitions generated by the example in Sec-

tion 4.2.2. Squares are intermediate states, i.e. states that precede

transitions labelled by actions with priority higher than 1. Auto

transitions (actions move or absorb in states from 1 to 9) are not

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Graphical representation of processes Empty1 and NA1. . . . . . 89

5.1 Semantics of process algebra with hooks. Union of multi-sets is

denoted by ∪ and sum of multi-sets is denoted by ]. . . . . . . . 95

5.2 Reachable states and transitions generated by the example in Sec-

tion 5.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Graphical representation of processes NA1 and Empty1. . . . . . . 105

5.4 Two approaches to the use of actions in process algebra in a multi-

scale setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Stochastic semantics of process algebra with hooks. Union of

multi-sets is denoted by ∪, while sum of multi-sets is denoted by ]. 110

5.6 Rated derivation graph generated by the example in Section 5.2.3. 119

6.1 Two biological systems, if observed at different scales, can present

distinct or analogous behaviour. . . . . . . . . . . . . . . . . . . . 125

6.2 Filtered derivation graphs of the example in this section. a) if ra =

rd, the transition systems are T-isomorphic. b) if rd = ra + re = r

the transition systems are Markovian T-bisimilar. . . . . . . . . . 129

7.1 Semantics of parametric stochastic process algebra with hooks.

Other inference rules are as in Figure 5.5. . . . . . . . . . . . . . . 153

xi



LIST OF FIGURES

7.2 The French Flag Model implemented with partial differential equa-

tions. In the picture, two concentration thresholds divide the space

into three regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3 Discretisation of the space of the French Flag Model into 20 re-

gions. The variable M(i) indicates the concentration of M at

region 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.4 Agent definitions of processesM(i, w), T (i, z, w), TA(i) and TB(i),

from the multi-scale model of pattern formation. . . . . . . . . . . 156

7.5 Example of simulations of the process algebra with hooks French

Flag Model. On the left: commitments of regions to cell speciali-

sations after 6 seconds. On the right: concentration levels after 6

seconds of the same simulation runs. Top row is the initial condition.159

7.6 Two extensions of the psPAH French Flag Model. In the first

extension, top, two species A and B are added. In the second

extension, bottom, species C is added. . . . . . . . . . . . . . . . 160

7.7 Rated derivation graphs of model processes A0(n)BC
∅
B0(n) and

C0(n), with n ∈ R. Parameter n is omitted. . . . . . . . . . . . . 161

7.8 Agent definitions of processes C(i, j, w) and T (i, j), from the multi-

scale model of tissue growth. . . . . . . . . . . . . . . . . . . . . . 166

7.9 Three sample runs with k3 equal to 4, 5 and 6 Molar/s. Black

squares represent regions containing tissue. . . . . . . . . . . . . . 167

7.10 Number of tissue regions with parameter k3 equal to 4, 5 and 6

Molar/s, with 100 simulations for each configuration. In the top

row, all 100 simulations are shown, while in the bottom row average

and standard deviation of the same runs. . . . . . . . . . . . . . . 168

xii



List of Tables

7.1 In this table we illustrate the commitments of the 20 regions of

the French Flag Model over 100 simulations and at different time

points. For each region, counts over the simulations of commit-

ments (A, B or none, i.e. not committed) are given. . . . . . . . . 158

xiii



Chapter 1

Introduction

Systems Biology and traditional modelling techniques. Systems Biology

(Kitano, 2002) is an emerging discipline that aims to improve our understanding

of the dynamics of biological processes with the aid of mathematical models. As

our knowledge about the mechanics and the complexity of biological phenom-

ena increases, predictive models become necessary to validate understanding and

generate new hypotheses.

The level of detail at which biological processes are most commonly mod-

elled is biochemical reactions, using mathematical approaches such as ordinary

differential equations (ODE) and stochastic processes (Klipp et al., 2005). These

approaches are used to represent the change in time of the concentration or num-

ber of molecules involved in the reactions, under the assumption that they are well

mixed and at constant temperature. If more complex phenomena are considered,

such as organogenesis (organ development) or tissue growth, other approaches are

employed to represent diffusion of molecules, using partial differential equations

(PDE) (Meinhardt, 2008), or higher order structures such as cells or tissue, us-

ing cellular automata (CA) (Ermentrout and Keshet, 1993) or other agent based

techniques. With PDEs the change of concentration of molecules at different po-

sitions in space can be modelled and boundaries for the diffusion can be defined.

With CA, individual cells and their behaviour, such as movement in space, can

be modelled.

Formal Methods for Systems Biology. Alongside the mentioned modelling

approaches, descriptive languages, e.g. SBML (Hucka et al., 2003), and graphical

notations, e.g. Kitano Map (Kitano, 2003), have been developed to help writing,
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maintaining and sharing models. This is achieved with unambiguous and de-

scriptive definitions of components and interactions within a model. In addition,

formalisms from the field of computer science have been proposed not only to pro-

vide an unambiguous definition of biological phenomena, but also to improve the

overall modelling approach. They are characterised by being executable, i.e. they

can produce behaviour according to one or more associated semantics. Most im-

portantly, both the syntax and semantics of these formalisms are mathematically

well defined, creating a mathematical framework where formal reasoning between

syntax and semantics is possible. Some of the most successful formalisms are pro-

cess algebras and other calculi (Bortolussi, 2006; Ciocchetta and Hillston, 2009;

Hillston, 1996; Priami and Quaglia, 2005), rewriting rules (Blinov et al., 2004;

Danos et al., 2007) or programming languages (Calzone et al., 2006; Pedersen

and Plotkin, 2008).

Process Algebra for Systems Biology. Process algebras are a family of calculi

developed to represent and analyse formally the behaviour of concurrent systems,

such as programs on a computer or computers in a network (Hoare, 1985; Milner,

1989). They have been shown to be one of the most promising approaches to

the formalisation of biological systems, because of the deep analogies that exist

between concurrent agent interactions and biochemical reactions (Regev et al.,

2001). In particular, process algebra provides:

• a formalisation of biological systems, where biological entities are repre-

sented by processes and biological events are represented by actions that

the processes can perform asynchronously or synchronously. Synchronisa-

tion can be binary, where exactly two processes participate to an action, or

multi-way, where two or more processes participate to an action;

• compositionality, i.e. the possibility of constructing a system as the sum of

its constituent components. This is represented as a cooperation or parallel

composition of processes;

• well established techniques to reason about behaviour. In particular, a

theory of relations based on behaviour, that allows systems to be compared

or part of a system to be abstracted with other parts that are behaviourally

equivalent;

2



• multiple semantics can be derived automatically from a model definition,

which allow for complementary analysis techniques such as ordinary differ-

ential equations, stochastic simulation or continuous time Markov chains.

The development and application of process algebra for biology has usually

been aimed at modelling biochemical reactions and compartments. Specifically, it

has involved the modelling of a single level of detail, whether this is biochemistry

(Calder et al., 2006a; Ciocchetta and Hillston, 2009; Priami and Quaglia, 2005;

Priami et al., 2001) or membrane (Cardelli, 2005). In an exception, multiple

levels of detail are modelled with a single process algebra in Bioambients (Regev

et al., 2004), where biochemistry and modifications of membranes, and so spatial

organisation, are considered.

Multi-scale modelling. More recently there has been a growing interest in

combining different levels of detail of biological phenomena into single multi-

scale models that represent both biochemical details and higher order structures.

This is a necessary step to achieve a complete understanding of the emerging be-

haviour in a complex biological phenomenon. Model construction follows mainly

two approaches: bottom-up and top-down. The former begins from identifying

elementary parts, such as molecules, and aims at explaining more complex phe-

nomena as the emergent behaviour of its components. The latter begins instead

from reproducing observed phenomena and then adds internal details, attempt-

ing to recreate governing mechanisms. Different mathematical approaches are

often considered for different scales and integrated into a multi-scale model tai-

lored around a specific biological problem (Dada and Mendes, 2011; Walker and

Southgate, 2009; Walker et al., 2008). As a consequence, composition and com-

parison of two multi-scale models is often very difficult.

It has been proposed (Noble, 2006) that new, more flexible modelling tech-

niques should allow for a middle-out approach. This means that one begins

studying, and so modelling, a biological phenomenon from any level of detail or

spatial scale and, in a second stage, extending its study and so its model ei-

ther up scale, integrating with other components, or down scale, adding more

internal details. To our knowledge, no formal approach has been proposed that

specifically addresses the problem of integrating multiple scales under the same

mathematical framework and that has the flexibility of treating different scales

as the same formal objects.

3



1.1 Thesis Statement

Process algebra as ‘middle-out’ approach. In this thesis we propose that

process algebra is a perfect candidate as a middle-out approach for multi-scale

modelling. In particular, its natural support of compositionality and its abstrac-

tion mechanisms can provide the required flexibility that writing and composing

multi-scale models require. This leads us to our thesis statement.

1.1 Thesis Statement

There is currently a need for a flexible and compositional modelling approach that

supports the integration of multiple scales, to aid the understanding of complex

biological phenomena such as organogenesis and tumour growth.

We propose that process algebra is a perfect candidate, because of its natural

support of compositionality and its abstraction mechanisms.

We demonstrate this by developing and applying a process algebra dedicated

to the multi-scale modelling of biological systems, after having explored the lim-

itations of current process algebraic approaches.

1.2 The Choice of Multi-Way Synchronisation

In this thesis we consider mainly process algebras with multi-way synchronisation.

Our choice of multi-way over binary synchronisation is motivated as follows:

• it allows one to model biochemical reactions with any number of reactants

and products with a single action, and so atomically (Calder and Hillston,

2009). Moreover, a rate based on one of a variety of kinetic laws (Segel,

1993) can be associated to that action. In general, kinetic laws approximate

sequences of reactions and are employed when it is difficult to measure rates

of some of those reactions in biological experiments;

• it is more amenable for a multi-scale scenario, where multiple scales can be

affected by the same event at the same time.

1.3 Contributions

The main contributions of this thesis are:

4



1.4 Publications

• the definition of process algebra with hooks, a novel process algebra designed

for multi-scale modelling of biological systems. Its main features are: ex-

plicit modelling of scales and interactions within and between scales; use

of composed actions in a multi-way synchronisation setting; a vertical co-

operation operator in addition to the standard cooperation operator for

composition of processes; a stochastic semantics based on functional rates;

• the definition of a functional rate semantics for process algebras based on

biological principles, where actions can be rated only if closed, i.e. only if

all the expected participants to that action synchronise;

• an investigation of the use of a simple process algebra and a process al-

gebra with action priorities in the multi-scale scenario. This investigation

highlights drawbacks that are addressed by process algebra with hooks;

• the definition of three congruence relations to relate and substitute pro-

cess algebra with hooks processes. They relate processes by their structure

(isomorphism), by their structure with focus on a specified scale ((T,Γ)-

isomorphism) and by their spatial and temporal behaviour at a specified

scale (Markovian (T,Γ)-bisimulation). The proof of congruence for (T,Γ)-

isomorphism and Markovian (T,Γ)-bisimulation is possible because of the

concept of closed actions introduced with our definition of functional rates;

• the illustration of use of process algebra with hooks to model, simulate and

relate multi-scale models of pattern formation and tissue growth.

1.4 Publications

Investigation of the thesis and related topics led to the following publications:

• A. Degasperi and M. Calder. Multi-Scale Modelling of Biological Systems in

Process Algebra with Multi-Way Synchronisation. CMSB 2011, to appear

in ACM Digital Library, 2011;

• A. Degasperi and M. Calder. Process Algebra with Hooks for Models of

Pattern Formation. CS2Bio2010, ENTCS 268, pages 31-47, Elsevier, 2010;
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• A. Degasperi and M. Calder. Relating PDEs in Cylindrical Coordinates and

CTMCs with Levels of Concentration. CS2Bio2010, ENTCS 268, pages 49-

59, Elsevier, 2010;

• A. Degasperi and M. Calder. On the Formalisation of Gradient Diffusion

Models of Biological Systems. PASTA Workshop 2009, unreviewed, 2009;

• F. Ciocchetta, A. Degasperi, J. Hillston, M. Calder. Some investigations

concerning the CTMC and the ODE model derived from Bio-PEPA. FBTC

2008, ENTCS 229(1), pages 145-163, Elsevier, 2009.

1.5 Thesis Outline

The thesis is organised as follows. After discussing background material in Chap-

ter 2, we investigate the use of a simple process algebra with multi-way synchro-

nisation (SPA) to model a single spatial scale in Chapter 3. In Chapter 4 we move

the focus on to multi-scale modelling showing how SPA is not suited to model

desired inter-scale interactions and how a process algebra with priorities (PAwP)

can be used as well as the drawbacks of this approach. Building on the previ-

ous chapters, we propose process algebra with hooks (PAH) in Chapter 5 which

presents the advantages of PAwP with respect to SPA, without its drawbacks. In

Chapter 6 we continue the characterisation of PAH introducing three equivalence

relations, while in Chapter 7 we apply a parametric stochastic version of PAH to

the modelling of two case studies. Conclusions and future work are in Chapter 8.

We now present a more detailed overview of the thesis.

In Chapter 2 we cover background material, from useful biological concepts

in Section 2.1, to a survey of traditional modelling approaches in Section 2.2, and

a discussion of formal methods for systems biology with focus on process algebra

in Section 2.3.

In Chapter 3 we show how a simple process algebra with multi-way synchro-

nisation (SPA) can be used to model a single spatial scale. First, we introduce

a non stochastic version of the semantics (Section 3.1) and propose examples of

modelling biochemistry and tissue growth (Sections 3.1.1 and 3.1.2). Second,

we consider a stochastic semantics for simple process algebra (sSPA) based on

functional rates (Section 3.2). An example of the application of stochastic sim-

ple process algebra is in Sections 3.2.5. To conclude the chapter on modelling a
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single scale, we propose a parametric process algebra (pSPA) that makes model

definition more compact (Section 3.3). Examples are given in Sections 3.3.1 and

3.3.2.

In Chapter 4 we introduce the concept of interactions between scales (Section

4.1) and discuss how SPA is not ideal to model such interactions (Section 4.1.1).

Then, we introduce a process algebra with priority of actions (PAwP, in Section

4.2). Actions with low priority are considered local and represent the behaviour

of a single scale. Actions with high priority are considered inter-scale interrupts,

i.e. signals operating between scales. We illustrate how this algebra can be

employed successfully to the multi scale modelling of biological systems with

examples (Sections 4.2.3 and 4.2.2). Finally, we highlight some drawbacks of

the use of action priorities: the creation of additional, intermediate, biologically

meaningless states; the lack of control by the modeller when multiple inter-scale

signals happen at the same time; the lack of explicit syntactic elements that could

unambiguously represent scales and actions operating within and between scales

and that could improve the overall compositionality of the algebra.

In Chapter 5 we introduce process algebra with hooks (PAH, in Section 5.1),

which is designed for multi scale modelling of biological systems and which ad-

dresses the drawbacks identified in PAwP. In particular, instead of using separate

actions for intra and inter-scale interactions, composed actions are used. This

means that a single composed action can perform both interactions within and

between scales. Examples are presented in Sections 5.1.3 and 5.1.2. A compari-

son between PAwP and PAH is given in Section 5.1.4. Stochastic process algebra

with hooks (sPAH) is introduced in Section 5.2 with examples in Sections 5.2.4

and 5.2.3.

In Chapter 6 we continue the characterisation of sPAH, defining congruences

on processes, which can relate processes with equivalent behaviour at a specified

scale, abstracting away as much as possible from other scales. Although at a

certain scale the behaviour of biological systems can be different, e.g. different

biochemical networks are present, at a higher or lower scale behaviour could be

analogous under a certain notion of equivalence, e.g. in both cases cells prolifer-

ate and die at the same rate. Equivalence relations can also be used to substitute

parts within a model with equivalent and possibly less complex alternatives (Fig-

ure 1.1).
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Figure 1.1: Jigsaw representation of compositionality and behaviour abstraction
in a multi-scale model.

In Chapter 7 we introduce a parametric version of sPAH, called psPAH, and

illustrate the use of the algebra in two case studies: multi-scale models of pattern

formation (Section 7.2) and tissue growth (Section 7.3). In particular, we show

how to define, simulate and relate models in psPAH.

In Chapter 8 we present our conclusions and future work related to this thesis.

Finally, in Appendix A we define for completeness a stochastic version of

PAwP, using our approach to functional rates, and in Appendix B we give a

complete definition of the multi-scale model of tissue growth of Section 7.3.
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Chapter 2

Background

In this chapter we survey useful biological concepts in Section 2.1, traditional

modelling approaches in Section 2.2 and discuss formal methods for systems bi-

ology with focus on process algebra in Section 2.3.

2.1 Biological Concepts

In this section we cover concepts useful to the understanding of the biology in

the thesis. Our references for this section are (Nelson and Cox, 2004) and (Klipp

et al., 2005).

2.1.1 The Complexity of Organisms

Every organism, whether it is an animal, a plant or a bacterium, consists of

biochemical molecules, which participate in complex interactions and collective

behaviour. These molecules have highly specific functions and can be organised

in higher order structures, such as membranes, cells, tissues or organs. Physical

forces and chemical reactions allow organisms to function as dynamic entities,

able to sense the environment they are in and respond accordingly. In this in-

troduction, we discuss some of the principles that allow cells to make decisions,

with focus on pattern formation in the development of organisms.

We begin by explaining what proteins are and how they can interact to cre-

ate metabolic and signalling networks. Then we overview mechanisms of cell

differentiation and memory.
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2.1.2 Proteins

In order to explain what proteins are, we briefly introduce the central dogma of

molecular biology. DNA (deoxyribonucleic acid) is the molecule, in every cell,

that contains information about how to construct (synthesise) proteins. This

information is coded as a sequence of bases: adenine, thymine, guanine and

cytosine. When a protein needs to be built, a process called transcription copies

the necessary sequence of bases from the DNA to a strand of RNA (ribonucleic

acid). Then, during translation, the RNA binds to a molecule called ribosome

and the information present in the RNA is used to construct a chain of amino

acids. After a chain of amino acids is formed, this chain folds, thanks to bonds

and forces acting on it, leading to the final shape of the protein.

A gene is a sequence of DNA which encodes one or more proteins or a strand

of RNA that has a function in the cell or organism. A gene is said to be expressed

if its sequence of DNA is transcribed and, possibly, translated into a protein.

Proteins fulfil numerous functions in the cell, from being just part of the

cellular structure to having roles in the metabolism of the cell or in the delivery

of signals. The main characteristic of proteins that enables them to have so

many different functions is their ability to bind to other molecules specifically

and tightly. The regions in the protein where other molecules may bind are

called binding sites. These regions are defined by their shape and by the chemical

properties that surround them, allowing only very specific molecules to bind.

Proteins can also bind to other proteins or be integrated into membranes. When

a protein binds to another molecule, it can also change some of its properties and

abilities to bind.

Enzymes. An enzyme is a protein whose role is to catalyse, i.e. to accelerate,

a biochemical reaction. Enzymes allow reactions that are normally unfavourable

in nature to take place, lowering their activation energy. We will call reactants

the molecules that take part in catalysed reactions and products the molecules

that are generated. Usually enzymes only catalyse very specific reactions.

2.1.3 Metabolic and Signalling Pathways

The metabolism of a cell is a highly organised process, that involves thousands

of reactions that are catalysed by enzymes and whose ultimate goal is to pro-

vide everything the cell needs to survive and reproduce. Metabolism provides
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energy and material for building and maintaining the cell. Metabolic pathways

are networks of biochemical interactions that involve mainly mass and energy

transfer.

On the other hand, a signalling pathway is a sequence of biochemical inter-

actions that leads to the transmission of external signals from outside to inside

the cell and to the movement of information inside the cell. Examples of signals

are hormones, pheromones, heat, cold, light or even the appearance or concen-

tration change of substances such as glucose or potassium or calcium ions. The

interpretation of these external signals triggers the cell response.

2.1.4 Biological Mechanisms of Cell Differentiation and

Decision Making

The genome, i.e. the set of all genes of an organism, is normally identical in every

cell. Cell differentiation, and so specialisation of function, is achieved by selecting

different genes to be expressed in individual cells, while the genetic information

contained in all of them is mostly identical. Gene selection controls four essential

processes of a cell: cell proliferation, cell specialisation, cell interactions and cell

movements.

Many biological processes are transient, i.e. changes in gene expression are

temporary. For example, a response to an external signal can activate genes as a

response. When the signal is gone, the response ceases.

A stable choice of gene expressions is possible because of cell memory. Which

genes are expressed depends on the past, along with the present environment.

Memory is essential for the creation of organised tissues and for the stable main-

tenance of cell specialisation.

Although other mechanisms are possible, cell differentiation is mainly achieved

by sensing concentration levels of specific proteins. Even a single protein, present

in high concentration, can activate entire pathways and transcription circuits,

deciding irreversibly the fate of the cell it is in. Multiple thresholds (for example

high, medium and low concentration) are not uncommon.

Thus, if the concentration of a protein in a cell can determine its differen-

tiation, two originally identical cells with different fates must have reached a

different concentration level for that protein at a key moment in time, when the

selection took place. How this different concentration level arises is probably the
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most important question addressed by the field of Developmental Biology. In

general, this phenomenon involves a notion of spatial location.

Using memory, cells can remember their position, referred to as positional

value. During organism development, the memorisation of position is often an

intermediate step between non-specialised and specialised cells.

A group of cells can be influenced by a signal coming from neighbouring cells,

called an inductive signal, driving one or more of the members of the group into

a different developmental pathway. This process is called inductive interaction

and it consists of a signal limited in time and space. An inductive signal can

be long range, e.g. highly diffusible molecules, or short range, e.g. cell-to-cell

interactions. Inductive signal molecules are often referred to as morphogens.

2.2 Traditional Modelling Methods

Biological interactions can be modelled and studied at different levels of detail.

It is possible to concentrate on the properties of individual reactions as well as

studying the system as a whole. In this section, we consider models of biochemical

reactions, as this is the most popular level of detail.

The main mathematical approaches to quantitative analysis we discuss in

this section are: Ordinary Differential Equations (ODEs), Stochastic Simulation

Algorithm (SSA) based on the Chemical Master Equation (CME), Continuous

Markov Chain with levels (CTMCs with levels) and Reaction-Diffusion Equations

(RDE).

2.2.1 ODE: The Law of Mass Action

ODEs are the most common way of modelling chemical or biochemical inter-

actions. They express the rate of change in time of the concentration of the

participants of a biochemical reaction in an environment where molecules are

well-mixed. Each biochemical reaction is associated with a rate of change, called

the velocity of the reaction. Velocities are usually dependent on the concentration

of the molecules that are involved in the modelled reaction. Often, a velocity is

expressed in terms of a kinetic law, i.e. an equation that expresses the dynam-

ics of multiple biochemical interactions at a time. A kinetic law may take into
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account which molecules can be measured in a biological experiment in order to

determine the value of constant parameters (Segel, 1993).

The key characteristic of the ODE approach is the fact that it shows the

most likely behaviour of the system, assuming continuous concentrations, i.e. an

infinite number of interacting molecules.

A common kinetic law is the law of mass action, introduced in the 19th century

(Guldberg and Waage, 1879). It states that the rate at which a species is produced

or consumed by a reaction is proportional to the amount of reactants and the

stoichiometry, i.e. how many copies of a reactant are involved in the reaction.

For example, the velocity of the reaction

S1 + S2 � 2P

can be formulated as

v = v+ − v− = k+ · [S1] · [S2]− k− · [P]2

where S1, S2 and P are molecular species, v is the velocity, v+ is the velocity of

only the forward reaction, v− is the velocity of the backward reaction and k+ and

k− are the proportionality factors, called kinetics or rate constants. The symbol

[·] denotes the concentration of the species, usually expressed in moles per litre

(mol/L) or molar (M). We use bold-capital font for molecules. The dynamics

of the concentrations of the species can be described by Ordinary Differential

Equations (ODEs) for example the equations for the reactions above are given

by:

d[S1]

dt
=
d[S2]

dt
= −v

d[P]

dt
= 2v

The value of the concentrations of S1, S2 and P through time are obtained

by integration of these ODEs.

2.2.2 Generalised Mass Action

In this section we generalise and formalise the concepts we introduced in the

previous section.
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Modelling intracellular dynamics in a quantitative way is concerned with

the estimation through time of the number of molecules of n different species

S1, . . . ,Sn, which can interact according to m biochemical reactions Rj. In gen-

eral, a biochemical reaction Rj can be formalised as follows:

Rj : κj1Sp(j,1) + κj2Sp(j,2) + ...+ κjLjSp(j,Lj)
kj−→ κjLj+1Sp(j,Lj+1) + ...+ κjTjSp(j,Tj)

where Lj is the number of reactants and Tj is the number of reactants and prod-

ucts in Rj, κjz is the stoichiometric coefficient of the reactant species Sp(j,z),

Kj=
∑Lj

z=1 κjz denotes the molecularity of the reaction Rj and the index p(j, z)

selects those Si participating in Rj. The stoichiometric coefficient indicates how

many copies of a species participate to a reaction.

Assuming a constant temperature and that diffusion in the cell is fast, so that

we can assume a homogeneously distributed mixture in a fixed volume V , the

General Mass Action (GMA) model of the system can be defined by n ordinary

differential equations (ODEs) as follows:

d[Si]

dt
=

m∑
j=1

djikj

Lj∏
z=1

[Sp(j,z)]
κjz i = 1, 2, ..., n (2.1)

where the kjs are rate constants, dji denotes the change in molecules of Si resulting

from a single Rj reaction and m is the number of reactions. Symbol [Si] is the

concentration of the species Si.

2.2.3 Michaelis-Menten kinetics

Other kinetic laws can be obtained adding further assumptions to a set of Mass

Action equations. An example is the Michaelis-Menten kinetics, a model of en-

zymatic reactions that is well established in the field of systems biology (Briggs

and Haldane, 1925):

E + S
k1,k−1←→ ES

k2−→ E + P

where E is the enzyme, S the substrate, ES the temporary enzyme-substrate

complex and P is the product of the reaction. Characteristics of this model

are that the process is considered irreversible, i.e. the product cannot become a
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substrate, and the enzyme is not affected by the reactions and can be used again

after it leaves the substrate or the product.

The ODEs of the model, according to the GMA law, are the following:

d[S]

dt
= −k1 · [E] · [S] + k−1 · [ES]

d[ES]

dt
= k1 · [E] · [S]− (k−1 + k2) · [ES]

d[E]

dt
= −k1 · [E] · [S] + (k−1 + k2) · [ES]

d[P]

dt
= k2 · [ES]

This system of ODEs can be simplified using further assumptions. One of

these is that we consider the conversion of E and S into ES and vice versa to

be much faster than the decomposition of ES into E and P (k1, k−1 � k2, the

quasi equilibrium assumption). The other assumption is that during the course of

the reactions a state is reached where the concentration of ES remains constant.

This is called the quasi steady-state assumption, due to the fact that we consider

the concentrations of the intermediates (ES) to reach equilibrium much faster

than those of the product and substrate. Using these assumptions and some sim-

ple manipulation, one can obtain the following simplified velocity for the above

enzymatic reaction:

d[P]

dt
= k2[Etot]

[S]

[S] +Km

=
Vmax[S]

[S] +Km

where [Etot] = [ES] + [E], Vmax (also written kcat) is the maximum velocity of

the production of P, given by k2[Etot] and Km = (k−1 + k2)/k1 is called the

Michaelis constant. The parameters Vmax and Km can be easily estimated with

few biological experiments.

2.2.4 Chemical Master Equation

CME based approaches were introduced in order to take into account the stochas-

tic effect due to the probability of molecule collisions, especially when the number

of molecules of a species reduces to a few units (McQuarrie, 1967). In the CME,
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each molecule of the system is modelled and has a probability to react, thus al-

lowing modelling of likelihood of states of the system. A state is a snapshot of

the number of molecules for each species at a given time. This is at the price of

a sometimes problematic computational complexity.

In CME based approaches we wish to determine for each molecular species Si

the probability P (#Si(t) = si) that at time t there are si molecules (with #Si

denoting the number of molecules of the species Si). For n molecular species, let

s ∈ Nn denote the n dimensional state vector. The vectors dj ∈ Zn are the step

changes occurring for elementary reactions indexed by j. If S is an n dimensional

variable, we write P (#S = s) as Ps(t). In order to describe the changes in random

variable S, we consider the following two state transitions:

s− dj
aj(s−dj)−→ s

s
aj(s)−→ s + dj

The first denotes a transition from another state to the state s; the second denotes

moving away from the state s. Most important, aj(s − dj) is referred to as the

propensity function of the reaction Rj, that is the probability per unit time, of a

change dj occurring, given that we are in the state s− dj.

With these definitions we can define the Chemical Master Equation (CME)

(Gillespie, 1977):

dPs(t)

dt
=

m∑
j=1

[aj(s− dj)P(s−dj)(t)− aj(s)Ps(t)]. (2.2)

This equation describes the probabilities of moving in or out of the state s. For

each state s we have then a differential-difference equation of this form. This

equation has been derived using physical assumptions about the probability that

the single molecules have to collide and therefore react. In particular, Gillespie

(Gillespie, 1977) derived the parameter cjdt, the average probability that a par-

ticular combination of Rj reactants molecules will react accordingly in the next

infinitesimal time interval dt. The propensity function aj(s) is the product of cj

and hj(s), the number of distinct combinations of Rj reactant molecules. The

term cjdt is called the stochastic rate constant.
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It is interesting to remark that it has been proved there is a correspondence

between cj and the GMA rate constant kj (Wolkenhauer et al., 2004):

cj =

(
kj

(NAV )Kj−1

)
·
Lj∏
z=1

(κjz!) (2.3)

where NA is the Avogadro number and V is the cell volume. This allows one to

pass from one method to the other as soon as either cj or kj has been identified

from experimental data.

2.2.5 Stochastic Simulation Algorithm

A major difficulty with the CME is that its analytical solution is usually in-

tractable. For this reason, Gillespie (Gillespie, 1977) developed the Stochastic

Simulation Algorithm (SSA), a Monte Carlo simulation of the CME. A single

simulation represents one exact possible evolution of the system, while a set of

thousands of these simulations can be used to identify a probability function that

is an approximation of the CME.

This algorithm proceeds with a loop in which, at every iteration, two param-

eters are randomly taken from previously defined probability distributions: the

time of the next reaction and which reaction will occur next. In order to compute

these values, the joint probability that reaction Rj will be the next reaction and

will occur in the infinitesimal time interval [t, t+δt), given (#S = s), is computed:

P (τ, j|s, t) = aj(s)e−a0(s)τ (2.4)

where a0(s)=
∑m

j=1 aj(s).

Starting from 2.4, the probabilities of the next reaction and the time of the

next reaction can be obtained:

P (τ |s, t) = a0(s)e−a0(s)τ τ ≥ 0

P (j|τ, s, t) =
aj(s)

a0(s)
j = 1, ...,M
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From these distributions, random Monte Carlo samples can be taken using two

uniform random numbers r1 and r2 from [0, 1]. Time delay τ is given by:

τ =
1

a0(s)
ln

(
1

r1

)
(2.5)

The index j of the selected reaction is the smallest integer in [1,m] such that

j∑
j′=1

aj′(s) > r2a0(s) (2.6)

Once these two values are computed, the system is updated adding the selected

dj to s and τ summed to t.

CME and SSA are very specific to the biochemical context. We now turn our

attention to a more general type of stochastic model: continuous time Markov

chains (CTMCs).

2.2.6 Deterministic and Stochastic Approaches

A deterministic approach to the modelling of biochemical reactions is charac-

terised by producing the most likely behaviour of the system and expressing its

output as the continuous concentration of the biochemical species. In contrast,

a stochastic approach considers the likelihood of alternative behaviours and ex-

presses its output as discrete quantities, such as number of molecules or levels of

concentration.

Deterministic ODE based models are widely used in modelling biochemical

interactions. They represent the most efficient approach, able to model hundreds

of reactions at the same time. However, ODE does not account for randomness or

stochasticity, which are key features of biochemical interactions (McAdams and

Arkin, 1999). When experimental evidence for the modelled systems presents

low variability or all the species in the systems are present in large quantities, we

might consider ODEs to be the most suitable representation. However, even in

systems which exhibit low variability this may be due to high resistance to noise

and some behaviour may be lost with a deterministic approach.

An example of such behaviour is the circadian clock, a biochemical system

that presents oscillations. It has been shown that only stochastic models allow
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identification of which interactions are required for the oscillations to resist the

randomness of the interactions (Barkai and Leibler, 2000). Another example can

be found in the repressilator presented here, where experimental data highlights

weak resistance to noise (Elowitz and Leibler, 2000).

In general, a stochastic approach offers a more accurate representation of the

biological interactions under study. However, this type of approach presents the

main drawback of being computationally expensive, thus limiting the size of the

biochemical network that can be analysed.

2.2.7 Continuous Time Markov Chain

Definition 2.1 Continuous time Markov chain. A continuous time Markov

chain (CTMC)(Ross, 1983) is a pair (U,→) where:

• U is a countable set of states;

• → is a set of transitions with →⊆ (U ×R>0×U). The real number associ-

ated with each transition is the rate for the exponential time delay for the

transition to happen.

The set of transitions → can be interpreted as the infinitesimal generator

matrix Q = {qij}, i, j ∈ U , which collects the rates of the transition from state i

to j. The elements qij of the matrix Q are defined as follows:

if i 6= j then qij =

{
r if ∃r ∈ R>0, (i, r, j) ∈→
0 otherwise

qii = −
∑

j 6=i qij

The probability Pij(t) to move from a state i to a state j within a time t is given

by an exponential distribution with rate qij, i.e.

Pij(t) = 1− e−qijt

In the presence of multiple transitions outgoing from a state i, a race condition

is employed. A race condition implies that the transitions outgoing from a state

i are in competition and that the faster transition will be triggered, determining

the next state j. Once this happens a new race starts to determine the successive
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Figure 2.1: Example of a CTMC. Numbers on the transitions are exponential
rates.

state. Because each transition is associated with an exponential time delay, the

time delay to leave i will also be exponentially distributed with a rate equal to

the sum of the rates of the outgoing transitions.

An Example of a CTMC is depicted in Figure 2.1. In this example, U =

{a, b, c} while the infinitesimal generator matrix is given by:

Q =


−2.5 0.5 2

0 −1 1

0.8 0 −0.8


Sampling over a CTMC. Given the initial state u ∈ U of a CTMC, a next

state and a time delay can be sampled in analogy with SSA (Section 2.2.5).

Using qu =
∑

j quj and rand1 and rand2 uniform random numbers in [0, 1],

the time delay τ is given by:

τ =
1

qu
ln

(
1

rand1

)

The index j of the selected reaction is the smallest integer in [1, n] such that

j∑
i=1

qui > rand2qu

The sampling can be repeated until no transitions are possible, i.e. an absorbent

state is reached, or until the sum of the time delays reaches a time threshold. A
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Figure 2.2: Illustration of the concept of levels of concentration.

sequence of samplings forms a trace of the form u, τ1, u1, τ2, u2, . . . , τm, um, also

called a Monte Carlo simulation of the CTMC. A collection of simulations can

be used to estimate the probability density function capturing the likelihood of

the states of the CTMC in time.

In the next section we illustrate how CTMCs can be used to model biochemical

reactions.

2.2.8 CTMC with Levels of Concentration

The CTMC with levels is a family of CTMCs that can be used to model biochemi-

cal species abstracting their concentration with discrete levels. The Markov chains

belonging to this family have a common definition and differ only in the number

of levels used for each species and the amount of concentration represented by

one level. Models of biochemical interactions written in ODEs can be converted

easily into CTMC with levels.

The original idea behind CTMC with levels was to represent signals in a cell,

in terms of high and low concentration of species involved in signalling pathways

(Calder et al., 2006b). It then became evident that an arbitrary number of

levels could be used. Moreover, Kurtz’s Theorem (Kurtz, 1971) provides a strong

theory that links CTMCs with different number of levels with one another and

that relates them to ODE models of the same modelled system.

In Figure 2.2 we illustrate the concept of levels of concentration. Initially, a

preliminary investigation is necessary, in order to identify the maximum concen-

tration M ∈ R+ for each species. Then a number N ∈ N is chosen to divide the
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range of values into discrete levels {0, 1, ..., N}. The step size or granularity of

the model is defined as h = M/N and represents the amount of concentration

represented by one level.

A state of a CTMC with levels of concentration is defined as the vector σ =

(〈S1〉, ..., 〈Sn〉). The notation 〈Si〉 indicates the current level of concentration of

the species Si, with 0 ≤ 〈Si〉 ≤ N . An index j is assigned to each biochemical

reaction. The dynamics of the reactions are described by kinetic laws vj, such

as Mass Action or Michaelis-Menten. We consider the case in which each species

has the same step size h.

The rates of the CTMC, used to pass from one state to another, are defined

as follows. Let d[Si]/dt = vj(x,dj) be a kinetic law, Si one of the products, x

the vector of concentrations of reactants and modifiers of reaction j and dj =

(d1,j, ..., dn,j) the vector of the stoichiometric coefficients of reaction Rj. Consider

the following linear approximation:

[Si]t′ ≈ [Si]t + vj(xt,dj) · (t′ − t)

where [Si]t is the concentration of the species Si at time t and t′ − t = ∆t is the

time difference between t′ and t. We can now define the step size of the species

Si as h = [Si]t′ − [Si]t - the difference in concentration between two levels. With

h fixed we can define:

λj =
1

∆t
=
vj(xt,dj)

h

where λj is defined as the rate, or parameter of an exponential distribution

g(t, j) = e−λjt, with mean E[g(t, j)] = 1/λj = ∆t. Since xt = σt · h, λj is

the rate of the reaction j and is a function of the current state σt. A reaction j

brings the current state from σu to σv = σu + dj.

An interesting theoretical result is derived from Kurtz’s Theorem (Kurtz,

1971). It states that, in the limit of a decreasing step size in the CTMC, the

most likely time evolution tends to the ODE simulation. For a more detailed

explanation see (Ciocchetta et al., 2009).

2.2.9 Compartments

Compartments are spatial locations that abstract cells, organelles (e.g. mito-

chondria) or other entities that can contain molecular species and that are char-

acterised by a volume.
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Let A be a species inside a compartment Ca with volume Va that can be

transported to another compartment Cb with volume Vb, where it takes the new

name B. This can be represented by the following transport reaction Rt:

Rt : A −→ B

The ODEs for this model are:

v = k[A] Va ·
d[A]

dt
= −v Vb ·

d[B]

dt
= v (2.7)

where v is the velocity of the transport in moles per time unit. The rates of the

corresponding CTMC with levels can be derived as follows. From Equation (2.7),

we can infer the rate λ of the exponential distribution of the time necessary to

transport one level of concentration of A from Ca to Cb.

Consider the following difference equations:

Va ·
∆[A]

∆t
= −v Vb ·

∆[B]

∆t
= v

⇒ Va ·
∆〈A〉 · ha

∆t
= −v Vb ·

∆〈B〉 · hb
∆t

= v

where ∆〈A〉 and ∆〈B〉 are the changes in number of levels of A and B after the

transport of one level of concentration from Ca to Cb. We assume these to be

∆〈A〉 = −1, i.e. A decreases one level and ∆〈B〉 = 1, i.e. B increases one level.

We then obtain:

λ =
1

∆t
=

v

Vb · hb
=

v

Va · ha
(2.8)

It is worth noting that Equation (2.8) implies that hb = ha · Va/Vb.

2.2.10 Reaction-Diffusion Equations

So far we have assumed that biochemical reactions happen in a well-mixed en-

vironment. This implies that diffusion of molecules is so fast that whenever
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biochemical reactions take place, molecules are immediately rearranged to a well-

mixed solution. However, many processes in biology, such as pattern formation in

development, can be modelled only if diffusion of molecules in space is represented

explicitly.

Modelling diffusions of species S is defined at a macroscopic level by Fick’s

equation, a Partial Differential Equation (PDE) of the form:

∂[S]

∂t
= DS∇2[S] (2.9)

where DS is the diffusion coefficient of species S, [S] now represents the concen-

tration density of S at a point in space and ∇2 is the Laplacian operator, which

can be interpreted in different ways, depending on the coordinate system. When

diffusion is considered along with local biochemical interactions, the following

reaction-diffusion equation (RDE) is employed (Berg, 1993; Jones and Sleeman,

1983):

∂[S]

∂t
= DS∇2[S]± React (2.10)

where React represents the velocities of other reactions involving species S. In

order to compute the concentration of S in a volume, [S] has to be integrated

in that volume. An example of reaction-diffusion equation in one-dimensional

coordinates is:

∂[S](t, x)

∂t
= DS

∂2[S](t, x)

∂x2
− kdeg[S](t, x) (2.11)

where x indicates the position and t the time. In order to solve a RDE, initial

conditions and boundary conditions need to be specified. In particular, boundary

conditions are constraints to be applied at the edges of the spatial area considered.

Usually they specify whether the boundaries reflect or absorb the concentration

that reaches the edges. Models defined by reaction-diffusion equations can also

be approximated by a CTMC with levels. In this case, space has to be divided

into regions and the diffusion term of the equations is approximated by the mass

action kinetic law. For details about this procedure see (Erban et al., 2007).
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2.2.11 Modelling Cells and Tissues

Until now we have discussed modelling approaches used to represent biochemical

reactions and movement of molecules. This is the most common level of detail

for models of metabolic and signalling pathways. However, when we shift our

interest to cells, tissues and organs, the complexity of the number of molecules

and the interaction involved is such that molecular models become difficult if not

prohibitive to analyse. Details are thus hidden in favour of explicit modelling of

higher order structures. Moreover, at these scales, the molecular details of entities

and interactions are often still unclear or unknown. In this scenario, agent-based

systems (Macal and North, 2010) such as cellular automata are employed.

2.2.12 Cellular Automata

Cellular automata (CA) (Ermentrout and Keshet, 1993; Packard and Wolfram,

1985), are characterised by discrete states and discrete time steps. A set of simple

rules is used to move from a state to another in a deterministic way. In detail, a

state in CA is usually represented by a grid, where each cell can assume two or

more states. At each discrete time step, rules are applied to update the state of

each cell in the grid according to the state of its neighbouring cells.

CA have the advantage of being simple yet able to adapt to many different

scenarios, such as models of diffusion, pattern formation and tumour growth.

Most importantly, rules can be applied to the cells in parallel, ensuring fast

simulations of large models that are often too complex for other approaches.

Main criticisms to this approach are that CA might be too simple to provide

significant insights to the biological phenomena modelled.

2.2.13 Multi-Scale Models

One of the most difficult problems in Biology is to understand how small simple

parts like molecules work together to form complex organisms. The modelling

of molecules and biochemical reactions in isolation is a relatively simple task,

when compared to the modelling of more complex systems and processes such

as the cardiovascular system or the morphogenesis of organs. A fundamental

challenge comes from the fact that biological phenomena appear at different time

scales, from milliseconds to years, and that levels of organisation of molecules
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Figure 2.3: The scale separation map (Walker and Southgate, 2009). Depending
on the biological system or the level of details chosen, models refer to specific
time and spatial scales. Models A and B refer to two different time and spatial
scales.

reach different spatial scales, from micrometres to metres. Usually, a modelling

approach is able to model effectively only a specific time and spatial scale (Figure

2.3). As a consequence, approaches based on a combination of multiple modelling

techniques have emerged (Dada and Mendes, 2011; Walker and Southgate, 2009).

These approaches are usually tailored around a specific phenomenon. For exam-

ple, models of tumour growth use agent-based models of tissue interactions, and

ODEs models for biochemical reactions (Athale et al., 2005; Wang et al., 2005).

As a side note, multi-scale models are also of relevance in computing. For

example, models of internet worms spread have been implemented using ODEs

and process based approaches (Nicol, 2008).

2.3 Formal Modelling Methods

In this section we discuss formal approaches to the modelling of biological systems,

with the main focus on process algebras. We begin introducing definitions of

multi-sets, labelled transition system (LTS) and rated LTS.

2.3.1 Multi-Sets

In this section we give the definition of multi-sets that we will use through-

out the thesis. We use {| and |} to delimit a multi-set. For example, A =

{|5, 6, 6, 7, 7, 7|} is a multi-set.
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We define a multi-set M as the pair (M ′,mM), where M ′ is a set containing the

same elements of M with no repetitions and mM is the associated multiplicity

function, such that for all x ∈ M ′, mM(x) is equal to the number of times x

appears in M ′. For all x ∈ M ′, mM(x) is equal to zero if x does not appear in

M ′. For example, multi-set A is defined as the pair (A′,mA), where A′ ⊂ N,

A′ = {5, 6, 7}, and mA : N→ N, mA(5) = 1, mA(6) = 2 and mA(7) = 3.

Given two multi-sets A and B, defined as (A′,mA) and (B′,mB), the following

operations are defined:

• multi-set union: A ∪ B = (A′ ∪ B′,mA∪B), where for all x ∈ A′ ∪ B′,
mA∪B(x) = max(mA(x),mB(x));

• multi-set sum: A]B = (A′∪B′,mA]B), where for all x ∈ A′∪B′, mA]B(x) =

mA(x) +mB(x);

• multi-set intersection: A ∩B = (A′ ∩B′,mA∩B), where for all x ∈ A′ ∩B′,
mA∩B(x) = min(mA(x),mB(x));

• multi-set difference: A \ B = (A′,mA\B), where for all x ∈ A′, mA\B(x) =

min(0,mA(x)−mB(x)).

Moreover we define:

• A ⊆ B ⇔ for all x ∈ A′ ∪B′, mA(x) ≤ mB(x);

• |A| =
∑
x∈A′

mA(x).

2.3.2 Labelled Transition System

Definition 2.2 Labelled transition system. A labelled transition system (LTS)

is a triple (U,Lab,→) where:

• U is a countable set of states;

• Lab is the set of labels;

• → is a multi-set of transitions with →⊆ (U × Lab × U,m→) where m→ :

(U × Lab ×U)→ N>0 indicates the multiplicity of each transition in →. If

(a, x, b) ∈→, we denote this also as the labelled transition a
x−→ b.
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Figure 2.4: a) Example of a labelled transition system. b) Example of a rated
labelled transition system.

An example of a LTS is depicted in Figure 2.4 a, where U = {a, b, c}, Lab =

{x, y, z} and →= {|(a, x, b), (a, x, b), (a, x, c), (a, y, c), (c, z, b)|}.
Definition 2.3 Rated labelled transition system. A rated LTS is a triple (U,Lab,→
) where:

• U is a countable set of states;

• Lab is the set of labels;

• → is a multi-set of transitions with →⊆ (U × Lab × R>0 × U,m→) where

m→ : (U×Lab×R>0×U)→ N>0 indicates the multiplicity of each transition

in →. The real number associated with each transition is the rate for the

exponential time delay for the transition to happen.

An example of a rated LTS is depicted in Figure 2.4 b, where U = {a, b, c}, Lab =

{x, y, z} and →= {|(a, x, 0.2, b), (a, x, 0.2, b), (a, x, 1, b), (a, x, 2, c), (a, y, 0.8, c),

(c, z, 0.3, b)|}.
Sampling over a rated LTS. Given a rated LTS (U,Lab,→) and initial state

u ∈ U , we can sample the next state and a time delay in the same way as in the

sampling over a CTMC (Section 2.2.7). In particular, a CTMC can be obtained

from a rated LTS. The infinitesimal generator matrix Q = {qij}, i, j ∈ U , can be

obtained as follows:

if i 6= j then qij =

{
r if ∃x, (i, a, x, j) ∈→ and r =

∑
k∈K(i,j) k

0 otherwise
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qii = −
∑

j 6=i qij

where K(i, j) = {|k | (i, a, k, j) ∈→ |}.

2.3.3 An Introduction to Process Algebra

Fundamental concepts. A process algebra is characterised by a syntax and by

one or more semantics. While the former defines how a process algebra model

is written, the latter defines how the behaviour of a model is determined from

its syntactic definition. The fundamental elements in a process algebra are au-

tonomous agents called processes. Each process is characterised by its behaviour,

expressed in terms of actions it can perform. For example, if a process P performs

a sequence of three a actions, we can denote it as:

P , a.a.a.nil

where “.” is the sequential operator and nil is defined as the deadlock process,

i.e. the process that cannot perform any action. A labelled transition is usually

employed to show that process can perform an action and become another process.

For example, P can perform action a and become process P ′, defined as P ′ ,

a.a.nil. This is denoted as:

P
a−→ P ′

Process P ′ is called a one-step derivative of P , while if a process can be obtained

after any number of transitions from P , this is called simply a derivative of P .

The set of derivatives of a processes and all the labelled transitions from such

derivatives form a derivation graph, which is an LTS where the set of states U is

the set of all derivatives and the set of labels Lab is the set of all actions.

It could be the case that process P can choose non deterministically between

multiple actions available. This is denoted using the choice operator “+”. For

example:

Q , a.nil + b.nil + c.d.nil

Here Q can produce the following three labelled transitions:

Q
a−→ nil Q

b−→ nil Q
c−→ d.nil
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Most importantly, processes can synchronise on actions. Synchronisation can be

binary between two actions with complementary names, in the style of calculus of

communicating systems (CCS) (Milner, 1989), or multi-way between any number

of actions sharing the same name, in the style of communicating sequential pro-

cesses (CSP) (Hoare, 1985) and later of performance evaluation process algebra

(PEPA) (Hillston, 1996). As we anticipated in the introduction to this thesis,

we follow the latter approach. Multi-way synchronisation is possible using the

cooperation operator BC
L

. The set of actions L, or cooperation set, indicates

which actions are used for synchronisation. For example, given the processes:

R , a.nil + b.nil S , a.nil + b.nil + c.nil

and the overall model defined as R BC
{a,c}

S, we have that only the following tran-

sitions are possible:

R BC
{a,c}

S
a−→ nil BC

{a,c}
nil R BC

{a,c}
S

b−→ nil BC
{a,c}

S R BC
{a,c}

S
b−→ R BC

{a,c}
nil

Because action a is in the cooperation set, R and S can synchronise on a, but

cannot perform a individually. On the contrary, b is not in the cooperation set,

so R and S cannot synchronise on b, though they can perform b individually.

Finally, c cannot be performed by S, because it is present in the cooperation set,

which would require that also R had the possibility of performing c.

Another key feature of process algebra is the possibility for actions to become

hidden. This is usually expressed by replacing the name of an action with the

hidden action type τ . This substitution may happen in an implicit way, as in CCS,

or in an explicit way, as in CSP. In CCS, as a result of a binary synchronisation,

the name of the two complementary actions that synchronise is replaced by τ .

As no other actions will synchronise, there is no need for the rest of the system

to know what specific action took place, information that is therefore considered

internal to the participants to the synchronisation. In contrast, in CSP there is

no way to know how many processes will synchronise, because of the multi-way

synchronisation. For this reason it is the responsibility of the modeller to place

hiding (\) operators appropriately in the system. For example, with R BC
{a,c}

S \{b}
we impose that if R BC

{a,c}
S can perform action b, that action will be replaced with

τ upon application of \{b}. This results in the following labelled transitions:

(R BC
{a,c}

S) \ {b} a−→ (nil BC
{a,c}

nil) \ {b} (R BC
{a,c}

S) \ {b} τ−→ (nil BC
{a,c}

S) \ {b}
(R BC

{a,c}
S) \ {b} τ−→ (R BC

{a,c}
nil) \ {b}

30



2.3 Formal Modelling Methods

Action Priorities. Action priorities have been introduced in the process algebra

theory to model interrupt mechanisms in computer systems (Baeten et al., 1986;

Cleaveland and Hennessy, 1990). In this extension, p:a indicates that action a is

performed with priority p, with p ∈ (N \ {0}). Actions with higher priority have

precedence and block actions with lower priority. Consider the following process:

Q , 1:a.nil + 2:b.nil + 3:c.1:d.nil

The only enabled labelled transition is Q
c−→ 1:d.nil, because action c has the

highest priority if compared with the other available actions a and b. Moreover,

consider the following processes:

R , 1:a.nil + 2:b.nil S , 1:a.nil + 2:b.nil + 3:c.nil

In this case, the only enabled transitions are:

R BC
{a,c}

S
b−→ nil BC

{a,c}
S R BC

{a,c}
S

b−→ R BC
{a,c}

nil

Because although the action with highest priority is c, c is not available, i.e. it

cannot be performed by process R BC
{a,c}

S. This is because c is in the cooperation

set of BC
{a,c}

and is available in S, but not in R.

Relations. Finally, relations are usually defined between processes, to express

to which extent the behaviour of two processes can be considered the same. In

particular, fundamental to every process algebra theory are the notions of equiv-

alences, such as isomorphism or bisimulation (Milner, 1989), and whether such

equivalences are also congruences or not. In general, if an equivalence relation is

a congruence it ensures that the substitution of a process within a system with

an equivalent process will produce a system which is identical to the original one,

at least with respect to the behaviour preserved by the chosen equivalence.

2.3.4 Process Algebras for Biology

Modelling biological systems with existing formalisms, either algebras, calculi or

languages, requires an abstraction, i.e. a matching between biological entities

and the syntactic components of the chosen formalism.

In process algebra, this was first introduced with the “molecule-as-computation”

abstraction (Regev et al., 2001), using π-calculus (Milner, 1999) where each
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molecule in a system is represented by one or more concurrent processes, abstract-

ing the behaviour and/or interactions it might have. Two molecules can react

when their corresponding processes share a complementary channel, abstracting

complementary binding sites. An example is the following process definition of a

molecule M:

M , (νm)x!m.(m!a+m?a) + x?p.(p!a+ p?a)

where x!m represents the action of sending the name m into channel x and x?p

is the action of receiving from channel x a name that will replace p and all its oc-

currences in the local sequence of actions. Symbols ‘.’, ‘+’ and ‘|’ are respectively

the sequential operator, the choice operator and the parallel operator. Synchro-

nisation can happen only in a binary fashion, when a send and a receive action

that are divided by a parallel operator are executed together. Symbol νm is the

scope restriction of the name m, and it is often used to delimit the processes that

define a molecule or to restrict interactions, implementing compartmentalisation.

On the one hand, π-calculus is mathematically well understood and brings

with it many associated tools. On the other hand, it may be a too low-level

language. The language beta binders (Priami and Quaglia, 2005) tries to im-

prove this aspect by enriching the syntax inserting the processes that abstract

the behaviour of a biological entity in a box. Boxes are allowed to communicate

internally, as in π-calculus, and externally, through special channels, or interfaces.

A set of types is assigned to each channel that is used for external communica-

tions. Two boxes can then interact if they share at least one type, leading to

more flexibility and higher non-determinism. Finally, boxes can fuse or divide

using two types of function, join and split, that are essentially rewriting rules.

This is an example of the parallel instantiation of two beta binders bio-processes:

β(x : {a, b})[!xz.P1|Q1] ‖ β(y : {a, c})[?yu.P2|Q2]

where the boxes containing an extended version of π-calculus processes are de-

limited by the brackets [·] and the interfaces are declared within the β(·). In this

case x is an external channel with types a and b. The two boxes can interact via

channels x and y, because they share a common type a.
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The languages π-calculus and beta binders present similar drawbacks. They

are highly expressive languages that allow many ways to model the same system,

requiring experts to perform the modelling. Moreover, the level of detail that is

considered might be too high for the usual need of biologists. This is because

often not all the interactions are well understood and, considering quantitative

analysis, it is extremely difficult to obtain reliable stochastic rates for all the

events or a sufficient amount of measurements for all the states an entity can

assume.

A different approach is taken by PEPA (Hillston, 1996). The syntax of this

language is much simpler, without the notion of passing of information through

communication. An important characteristic is the synchronisation not only be-

tween two processes that present complementary channels, but between all pro-

cesses that share the same available action name, allowing the modelling of re-

actions that involve an arbitrary number of molecular species. Because of this,

the PEPA approach has the flexibility of abstracting more than one biological

interaction with a single action.

Although modelling each molecule as a process is possible, a population ap-

proach has been preferred in current PEPA applications. This means that a pro-

cess represents the number of molecules or the level of concentration of a species.

After an event is observed, these processes change to new processes expressing

different quantities. This approach is denoted “species-as-process” abstraction.

This is an example:

AH , (α1, r1).AL AL , (α2, r2).AH

BH , (α2, r2).BL BL , (α1, r1).BH

AH BC{α1,α2}
BL

α1−→ AL BC{α1,α2}
BH

Here two species A and B are modelled using processes that represent their

amount in the system, either high or low. α1 and α2 are the actions on which

the processes can synchronise, while r1 and r2 are the rates at which the actions

occur. The labelled transition shows what happens if α1 takes place from an

initial system AH BC
α1,α2

BL.

Bio-PEPA (Ciocchetta and Hillston, 2009) is an extension of PEPA specifi-

cally designed to model biochemical interactions with a “species-as-process” ab-
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straction. There are several improvements that are introduced in Bio-PEPA with

respect to PEPA. First of all, it introduces syntax elements to better describe the

nature of the interactions. In addition there is the possibility to define functions

that express the reaction velocities, based on biochemical kinetics, that can be

used to generate both ODEs and CTMCs. Finally, Bio-PEPA supports the de-

scription of a species in terms of its level of concentration. For example consider

the following Bio-PEPA model of the interactions between two molecules A and

B. The first line gives the process definitions, while the second line a transition

from the initial system.

A , (prod, 1)↑A + (mm, 1)↓A B , (mm, 1)↑B + (deg, 1)↓B

A(10) BC
{mm}

B(0)
mm−−→ A(9) BC

{mm}
B(1)

As it can be seen in the initial state A(10) BC
{mm}

B(0), Bio-PEPA introduces para-

metric processes to keep track of the current amount of each species in terms of

levels of concentration (here 10 for A and 0 for B). Process definitions become

species definitions, a compact list of possible actions, such as prod, with asso-

ciated stoichiometry and a symbol that indicates the effect of an action on the

population of a species, such as ↑ for increase. A functional rate, not shown, is

associated with each action.

A drawback of PEPA and Bio-PEPA with respect to π-calculus is the need

to define each species and complex that may form (Calder and Hillston, 2009).

In π-calculus and related calculi the combinatorial problem of complex formation

or internal molecular modifications is addressed by the calculus and not by the

modeller. As a consequence, in PEPA the state of the system is given by a process

for each species, indicating its current amount while in π-calculus the state of the

system is given by one or more processes for each molecule, with possibly many

copies of the same processes indicating the presence of multiple copies of the same

species.

Several process algebras have been defined or extended to integrate a notion

of locality of the biochemical interactions. The P-systems (Pǎun and Rozenberg,

2002) and Brane Calculi (Cardelli, 2005) focus on computing with and on dynamic

membranes. Dynamic compartments are exploited by Bioambients (Regev et al.,

2004), a biological version of Mobile Ambient (Cardelli and Gordon, 2000), a
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language developed for mobile computation. Static compartments are used in

Bio-PEPA (Ciocchetta and Guerriero, 2009).

In general, every language presents the possibility of performing different

analyses starting from the same description, automatically implementing ODEs,

CTMCs or a version of SSA. Most process algebras have tools for simulations

and analysis of models. Some of them are Spim (the stochastic Pi Machine)

(Phillips and Cardelli, 2004), the Beta Workbench (Dematté et al., 2008), the

PEPA Eclipse Plug-in (Tribastone et al., 2009) and the Bio-PEPA Workbench

(Duguid, 2009).

Additionally, formal models of biological systems can be analysed using model

checking, testing properties written in continuous stochastic logic (Heath et al.,

2008).

2.3.5 Related formalisms

Formal definitions of biological systems that aim to facilitate maintenance and

sharing of models are descriptive languages, e.g. SBML (Hucka et al., 2003), and

graphical notations, e.g. Kitano Map (Kitano, 2003).

Formal modelling of biochemical interactions that are closely related to pro-

cess algebras are those based on rewriting rules, such as κ-calculus (Danos et al.,

2007), BioNetGen (Blinov et al., 2004), and Pathway Logic (Talcott, 2008). In

these cases, the definition of a molecule is given only by its name and the state of

its binding sites, leaving the definition of the possible interactions and modifica-

tions to the rewriting rules. This leaves more flexibility to the possible evolutions

of a system, although it introduces the problem of writing unambiguous rules. A

key feature is, like in π-calculus, that there is no need to state every molecule

and complex that may form due to interactions or modifications. Two exam-

ples of formalisms based on rewriting rules that support compartmentalisation

are bioκ-calculus (Laneve and Tarissan, 2007) and stochastic bigraphs (Krivine

et al., 2008).

Finally, yet another approach involves the definition of high level languages,

presented as umbrella descriptions that can potentially be converted to any of

the mentioned formalisms. Two examples are BIOCHAM (Calzone et al., 2006)

and LBS (Pedersen and Plotkin, 2008).
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2.3 Formal Modelling Methods

2.3.6 Strong and Markovian Bisimulations

In this section we give more details about strong bisimulation and Markovian

bisimulation in process algebra.

Strong bisimulation. A binary relation R on P (the set of processes) is a strong

bisimulation if whenever P R Q:

• for all P ′ with P
a−→ P ′, there is Q′ such that Q

a−→ Q′ and P ′ R Q′;

• for all Q′ with Q
a−→ Q′, there is P ′ such that P

a−→ P ′ and P ′ R Q′.

Strong bisimilarity, written ∼, is the union of all strong bisimulations:

∼=
⋃
{R | R is a strong bisimulation}

Thus P ∼ Q holds if there is a strong bisimulation R with P R Q. It can be

shown that ∼ is an equivalence relation (Milner, 1989).

Markovian bisimulation. Consider labelled transitions where, along with the

action performed by a process, a rate for the action is present, i.e. transitions

of the form P
a,r−→ P ′, where r ∈ R>0. Usually, the semantics of an algebra, e.g.

PEPA (Hillston, 1996), determines the rate. Here we consider rates as parameters

of exponential distributions of the time necessary for actions to be performed.

Consider now the following two processes:

P , (a, 1).P ′ + (a, 1).P ′ Q , (a, 2).Q′

The two processes are not strong bisimilar, because P
a,1−→ P ′ while Q

a,2−→ P ′.

However, they are in some sense equivalent, because the sum of the rates from P

to P ′ via action name a is 2, as from Q to P ′. In other words, the probability

of moving from P to P ′ in a certain time via a is identical to the the probability

of moving from Q to P ′ in the same time via a. This equality is captured by

Markovian bisimilarity.

An equivalence relation R on processes is a Markovian bisimulation if

PRQ ⇐⇒ ∀a ∈ Act ∀C ∈ P/R, ν(P, a,C) = ν(Q, a,C)

where Act is the set of all action names, P is the set of all processes, P/R is the

set of all equivalence classes of the equivalence relation R and ν(P
a−→ C) is the

sum of all the rates from P to all processes in C via action name a.

Markovian bisimilarity, written ∼m, is the union of all Markovian bisimula-

tions:
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2.4 Summary

∼m=
⋃
{R | R is a Markovian bisimulation}

Thus P ∼m Q holds if there is a Markovian bisimulation R with P R Q. It can

be shown that ∼m is an equivalence relation (Hillston, 1996).

Markovian bisimulation is based on probabilistic bisimulation (Larsen and

Skou, 1991) and the lumpability property of CTMCs (Kemeny and Snell, 1960).

A CTMC is lumpable if its states can be partitioned and aggregated preserving

the Markov property.

2.4 Summary

In this chapter we have introduced and discussed the background material of

this thesis. First, we gave an overview of related biological concepts (Section

2.1). Second, we illustrated some of the most popular mathematical approaches

to the modelling of biological systems, with a main focus on the modelling of

molecular interactions (Section 2.2). Finally, we discussed formal approaches,

with main focus on the process algebra theory and its application to the modelling

of biological systems (Section 2.3). In the next chapter we investigate the use

of a simple process algebra with multi-way synchronisation to model biochemical

interactions and tissue growth.

37



Chapter 3

Single-Scale Modelling with

Process Algebra with Multi-way

Synchronisation

In this chapter we show how biological systems can be modelled with a process

algebra with multi-way synchronisation, focussing on a single scale. First, we dis-

cuss how to represent biological entities and events with processes and actions,

using a simple process algebra with multi-way synchronisation (Section 3.1). Sec-

ond, we augment the algebra with functional rates, obtaining a stochastic simple

process algebra (Section 3.2.1). With this augmented algebra, quantitative mod-

els can be constructed. Finally, we show how processes can be parametrised to

reduce the model definition (Section 3.3). We give example models of biochemical

reactions and tissue growth (Sections 3.1.1, 3.1.2, 3.2.5, 3.3.2).

3.1 Simple Process Algebra

A minimal syntax of a process algebra with multi-way synchronisation (SPA) is:

P ::= nil | a.P | P + P | P BC
L
P | A

where:

• P is a process, P ∈ P, with P the set of processes;
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3.1 Simple Process Algebra

Prefix Choice Left

a.P
a−→ P

P
a−→ P ′

P +Q
a−→ P ′

Choice Right Coop Left

Q
a−→ Q′

P +Q
a−→ Q′

P
a−→ P ′

P BC
L
Q

a−→ P ′ BC
L
Q

if a 6∈ L

Coop Right Synchronisation

Q
a−→ Q′

P BC
L
Q

a−→ P BC
L
Q′

if a 6∈ L
P

a−→ P ′ Q
a−→ Q′

P BC
L
Q

a−→ P ′ BC
L
Q′

if a ∈ L

Agent

P
a−→ P ′

A
a−→ P ′

if A , P

Figure 3.1: Semantics of a simple process algebra with multi-way synchronisation.

• nil is the deadlock process;

• a is an action, a ∈ Actions, with Actions the set of actions;

• a.P expresses the fact that action a has to be performed in order to change

process a.P into the new process P ;

• P + P expresses the non deterministic choice between two processes. Once

one is chosen, the other is discarded;

• P BC
L
P expresses the cooperation between two independent processes via

the cooperation set L, with L ⊆ Actions;

• A is used to define processes recursively, via the agent definition A , P .

This implies that process P can be substituted with the agent name A.

The semantics for this syntax, given in operational semantics (Plotkin, 1981),

is shown in Figure 3.1. The semantics produces a labelled transition system (see

Section 2.3.2).

Using SPA we can describe behaviour at a scale or, in other words, the be-

haviour of biological entities observed at a certain level of detail. For example,
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3.1 Simple Process Algebra

Figure 3.2: Biochemical reactions and transport between three regions in space.

we can model biochemical reactions, transport of biochemical species or tissue

growth. We illustrate these examples in the next sections.

3.1.1 Simple Process Algebra and Biochemistry

The concentration of biochemical species can be abstracted using processes that

represent levels of concentration (Calder et al., 2006b). If we use one process for

each concentration level, a maximum number of levels N has to be specified. For

example, given a biochemical species A, and N = 10, we can define process A0

to represent zero concentration and process A10 to represent that the concentra-

tion of A has reached its maximum. Actions are used to abstract biochemical

reactions, leading to jumps between concentration levels. If compartments or

spatial regions are considered, transport of biochemical species can be modelled

analogously.

As an example, consider three adjacent regions R0, R1 and R2. In each region,

three types of biochemical species may be present: A, B and C. Molecules of A

can react with molecules of B, yielding molecules of C. Concentration of C can

also be transported between adjacent regions. In order to distinguish species in

different regions, we write A1, for example, to indicate species A in region R1.

This is illustrated in Figure 3.2. Finally, we use process A12 to indicate that in

region 1, species A has concentration level 2.

The biochemical reactions are as follows:

Ra0 : A0 + B0 → C0 Ra1 : A1 + B1 → C1

Ra2 : A2 + B2 → C2 Rt01 : C0 → C1

Rt10 : C1 → C0 Rt12 : C1 → C2

Rt21 : C2 → C1

We can model this system using the following processes:
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3.1 Simple Process Algebra

A00 , nil B00 , nil C00 , a0.C01 + t10.C01

A01 , a0.A00 B01 , a0.B00 C01 , a0.C02 + t10.C02 + t01.C00

A02 , a0.A01 B02 , a0.B01 C02 , t01.C01

A10 , nil B10 , nil C10 , a1.C11 + t21.C11 + t01.C11

A11 , a1.A10 B11 , a1.B10 C11 , a1.C12 + t21.C12 + t12.C10

+t01.C12 + t10.C10

A12 , a1.A11 B12 , a1.B11 C12 , t12.C11 + t10.C11

A20 , nil B20 , nil C20 , a2.C21 + t12.C21

A21 , a2.A20 B21 , a2.B20 C21 , a2.C22 + t12.C22 + t21.C20

A22 , a2.A21 B22 , a2.B21 C22 , t21.C21

The initial state of the model is defined by the following process:

(A02 BC
L

(B02 BC
L
C00))BC

K
(A12
BC
L′

(B12
BC
L′
C10))BC

K′
(A22
BC
L′′

(B22
BC
L′′
C20))

where L = {a0}, L′ = {a1}, L′′ = {a2}, K = {t01, t10} and K′ = {t12, t21}.
An example of a valid transition is:

(A02 BC
L

(B02 BC
L
C00))BC

K
(A12
BC
L′

(B12
BC
L′
C10))BC

K′
(A20
BC
L′′

(B20
BC
L′′
C22))

a1−→
(A02 BC

L
(B02 BC

L
C00))BC

K
(A11
BC
L′

(B11
BC
L′
C11))BC

K′
(A20
BC
L′′

(B20
BC
L′′
C22))

where, following the execution of action a1, processes A12, B12 and C10 change

into processes A11, B11 and C11 indicating that reaction Ra1 took place in region

R1 and that concentration levels have been updated accordingly. Another valid

transition is:

(A02 BC
L

(B02 BC
L
C00))BC

K
(A12
BC
L′

(B12
BC
L′
C10))BC

K′
(A20
BC
L′′

(B20
BC
L′′
C22))

t21−→
(A02 BC

L
(B02 BC

L
C00))BC

K
(A12
BC
L′

(B12
BC
L′
C11))BC

K′
(A20
BC
L′′

(B20
BC
L′′
C21))
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3.1 Simple Process Algebra

where, following the execution of action t21, processes C22 and C10 change into

processes C21 and C11, indicating that transport of concentration of C took place

from region R2 to region R1.

A disadvantage of SPA is that every region requires the definition of its own

processes, yielding long and repetitive process algebra descriptions. This will be

improved with the introduction of parametric processes and actions (Section 3.3).

To give an idea of the different style of modelling of the π-calculus with respect

to SPA, we reproduce here an example of a biochemical reaction Ra : A + B →
C from (Regev, 2002).

In π-calculus all molecules present in the system are modelled. In the case of

reaction Ra we need definitions of processes representing molecules A and B in

both bound and unbound states. Definitions are as follows:

A , (νx)(bind !x.BoundA(x))

BoundA(x) , x!a.A

B , bind?y.BoundB(y)

BoundB(y) , y?b.B

where (νx)(P ) means that the channel name x is private to process P , bind !x is

an send action, expressing the sending of action name x through channel bind ,

and bind?y is a receive action, expressing the receiving of name y through channel

bind . Processes BoundA(x) and BoundB(y) are parametric processes.

The initial state of the system is given by the cooperation between A and B

processes, for example:

A|B|A|B|A|B

where there are three A processes representing three A molecules and three B

processes representing three B molecules. At the execution of action bind !x by

a process A, private channel x is shared with a process B, by synchronisation

with action bind?y. Selection of exactly one process A and one process B for the

synchronisation is possible because synchronisation in π-calculus is binary and

can happen only between a send and a receive sharing the same channel name

(bind). This results in the new state:

(νx)(BoundA(x)|BoundB(x))|A|B|A|B
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3.1 Simple Process Algebra

The process (νx)(BoundA(x)|BoundB(x)) indicates that a molecule A and a

molecule B are bound. The fact that processes BoundA(x) and BoundB(x) share

a private channel x indicates that the corresponding molecules are bound with

one another. Thus (νx)(BoundA(x)|BoundB(x)) represents a product molecule

C.

The advantage of using π-calculus with respect to SPA is that greater level

of detail can be reached, with the possibility of representing and observing the

behaviour of single molecules. Multiple copies of the same process are included

in the system to indicate the presence of a certain quantity of a biochemical

species. Because of the sharing of private channels, it is possible to identify

processes that have interacted or can interact, representing complex formation

and compartmentalisation.

The disadvantage of using π-calculus with respect to SPA is that it is much

more complex to write and understand, while the binary as opposed to multi-

way synchronisation may force the modeller to write models in a greater level of

details that is actually needed, such as in the case of biochemical reactions with

many reactants and many products.

Now we turn our attention to how spatial regions can be modelled in SPA.

3.1.2 Simple Process Algebra and Tissue Growth

In this section we show how tissue growth can be modelled in SPA. In particular

we show that, because of multi-way synchronisation, the most suitable way to

represent tissue growth is to define a finite area of space organised into regions,

such as a grid, and model explicitly the available finite empty regions along with

the tissue. We propose a model based on explicit modelling of empty space, fol-

lowed by a discussion of issues that occur in models with implicit modelling of

empty space.

Explicit Modelling of Empty Space. In this setting, processes represent

either empty regions of space or regions containing tissue. Tissue can become

empty space through tissue death or can interact with surrounding empty space,

converting it into new adjacent tissue via tissue replication. When tissue is sur-

rounded by tissue, replication is inhibited. Moreover, we use a process for each

region in space we want to consider. This defines an area outside which growth
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3.1 Simple Process Algebra

Figure 3.3: Explicit modelling of empty space. Every region in space has its
associated process, even if it is empty space.

is not permitted and guarantees that the model will generate a finite state space.

For simplicity, we consider three regions, depicted in Figure 3.3.

Tissue can either die (apoptosis) and become empty space or perform dupli-

cation (mitosis) expanding to an adjacent empty space, which becomes tissue.

As the initial condition we consider only region R1 occupied by tissue, while the

remaining regions are empty. Processes beginning with Empty represent empty

regions, with Empty0 denoting that region R0 is empty. Processes beginning

with Tissue represent tissue regions, with Tissue0 denoting that region R0 con-

tains tissue. Actions beginning with apo can be performed by tissue processes to

change into empty space, representing cell death. Actions beginning with mito

can be performed by a tissue process in synchronisation with an empty space

process. As a result the empty space process involved is converted into a tissue

process. Actions beginning with mito have a direction, from tissue to empty

space. For example, mito12 can only be performed in synchronisation by Tissue1

and Empty2. Finally, the definition of the processes is:

Empty0 , mito10.Tissue0

Empty1 , mito01.Tissue1 + mito21.Tissue1

Empty2 , mito12.Tissue2

Tissue0 , apo0.Empty0 + mito01.Tissue0

Tissue1 , apo1.Empty1 + mito10.Tissue1 + mito12.Tissue1

Tissue2 , apo2.Empty2 + mito21.Tissue2

Process Empty1 is illustrated in Figure 3.4. The initial state of the model is

defined by the following process:

(Empty0BC
L

Tissue1)BC
K

Empty2
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3.1 Simple Process Algebra

Figure 3.4: Graphical representation of process Empty1.

where L = {mito10,mito01} and K = {mito12,mito21}. Examples of valid

derivations are:

(Empty0BC
L

Tissue1)BC
K

Empty2
apo1−−→ (Empty0BC

L
Empty1)BC

K
Empty2

(Empty0BC
L

Tissue1)BC
K

Empty2
mito12−−−−→ (Empty0BC

L
Tissue1)BC

K
Tissue2

It should also be noted that the following transition is prevented:

(Empty0BC
L

Tissue1)BC
K

Tissue2
mito12−−−−→

This is because, although Tissue1 could perform mito12, mito12 ∈ K, Tissue2

cannot provide mito12 for synchronisation. In other words, neither derivation

rule Coop Left nor Synchronisation are applicable.

We will return to this model when we will discuss a multi-scale model of tissue

growth (Section 4.2.3).

Implicit Modelling of Empty Space. An alternative is the definition of a

tissue process that can self replicate, without the need to synchronise with empty

space processes. An example of this approach is given by the following process

definition:

Tissue , apo.nil + mito.(Tissue BC
∅

Tissue)

The initial state of the model could be defined simply as Tissue. The number

of regions that are turned into tissue is given by the number of Tissue processes

in the model. However, there are two issues concerning this approach:

1. following action apo, representing tissue death, a nil process is introduced

which is cumbersome to remove and which may block actions of other pro-

cesses;
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3.1 Simple Process Algebra

2. if relative positions of regions have to be considered, then growth in an

infinitely large space cannot be modelled and confined growth produces a

combinatorial explosion of the definition of the model.

Consider the two points in turn:

1. for example, consider the above definition of the Tissue process and the

following transition:

Tissue BC
∅

Tissue
apo−−→ Tissue BC

∅
nil

It is clear that in the long run nil processes will accumulate. Thus, it is

desirable to replace Tissue BC
∅
nil with Tissue. In this example, this is ap-

propriate, because P BC
L
nil can be substituted by P if P and all processes

P ′ that can be reached via valid transitions from P cannot perform actions

in L. However, in general we may want new regions of tissue to commu-

nicate with existing ones, implying that L should contain actions used for

such communication. As a consequence, it would be difficult to remove

BC
L
nil, because P and P BC

L
nil are in general not equivalent. For example

consider the following definition of process Tissue:

Tissue , a.Tissue + apo.nil + mito.(Tissue BC
{a}

Tissue)

This represents tissue where action a is executed by all tissue regions to-

gether. Now consider the following transition:

Tissue BC
a

Tissue
apo−−→ Tissue BC

a
nil

This transition produces a state where BC
a
nil is blocking action a, but we

cannot remove it because Tissue BC
a
nil and Tissue are not equivalent.

2. in order to distinguish which regions of tissue are adjacent, we need to ex-

tend this model, using different names for processes representing tissue in

different regions. On the one hand, if we want tissue to be able to grow

indefinitely, we have to specify an infinite number of processes. On the

other hand, if a confined space composed of a finite number of regions is

considered, a model can be defined, but its definition presents a combina-

torial problem. Without loss of generality, we can define a self replicating

tissue on an horizontal line of regions as follows, where Tissue1 represents

tissue in region R1 (Figure 3.5):
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Figure 3.5: Implicit modelling of empty space on a line. Each region has a position
identified by a natural number.

Tissue1 , apo1.nil + mito12.(Tissue1BC
∅

Tissue2)

+mito10.(Tissue1BC
∅

Tissue0))

The initial state of the model is given by the process Tissue1 alone. It is

clear that this definition is not appropriate, because it may lead to multiple

copies of process Tissue2. For example:

Tissue1
mito12−−−−→ Tissue1BC

∅
Tissue2

mito12−−−−→
(Tissue1BC

∅
Tissue2)BC

∅
Tissue2

In order to overcome this problem, the definition of Tissue1 needs to encode

whether adjacent tissue is present or not. For example, if Tissue1 replicates

adding process Tissue2, Tissue1 has to be updated to avoid the addition

of another Tissue2 process. But this is not enough. If Tissue3 is present in

the model, it should be updated as well because it is adjacent to Tissue2.

Moreover, a similar neighbour update has to be performed when action

apo1 is performed.

Unfortunately, there is no trivial solution to this problem. We illustrate

why with an example. Assume we can define a Tissue1 (and analogous

definitions for Tissue2, Tissue3...) process as follows:
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Tissue1 , apo1.nil + mito12.(Tissue1′ BC
L

Tissue2)

+mito10.(Tissue1′′ BC
K

Tissue0 + mito-10.Tissue1′′

+mito32.Tissue1′)

Tissue1′ , apo1.nil + apo2.Tissue1

+mito10.(Tissue1′′′ BC
K

Tissue0) + mito-10.Tissue1′′′

Tissue1′′ , apo1.nil + apo0.Tissue1

+mito12.(Tissue1′′′ BC
L

Tissue2) + mito32.Tissue1′′′

Tissue1′′′ , apo1.nil + apo2.Tissue1′′ + apo0.Tissue1′

The four Tissue1 processes represent different action capabilities of a re-

gion depending on the surrounding regions. Tissue1 expresses the actions

available when regions are empty on the left and on the right, Tissue1′

when tissue is present only on the right, Tissue1′′ when tissue is present

only on the left and Tissue1′′′ when tissue is surrounding the current region.

However, this solution is not correct. The reason is that since, for example,

Tissue1 is responsible for the addition of Tissue2, it should also be able to

determine which version of Tissue2 has to be introduced, choosing between

the four stated above and depending on whether Tissue3 is present or not.

In fact, because of this mechanism, if a model were composed of Tissue1

and Tissue100, the behaviour of Tissue1 would depend on the fact that

Tissue100 is present in the model. This implies a combinatorial explosion

of process definitions.

Another problem is the choice of cooperation sets L and K. For example,

apo(i) should be placed in both L and K, in order to communicate to

adjacent tissue that region i is empty again. However, once a Tissue process

becomes nil, there is no trivial way to remove it, blocking all the other

parametric actions in the two cooperation sets.

We can conclude that, because of the problems discussed in this section, in

the context of modelling tissue growth with multi-way synchronisation, the ex-

plicit modelling approach of empty space is preferable to the implicit modelling

approach of empty space.
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3.2 Stochastic Semantics for Simple Process Algebra

3.2 Stochastic Semantics for Simple Process Al-

gebra

In this section we define a stochastic semantics based on functional rates for SPA.

The motivation for functional rates comes from the fact that rates of biological

events often depend on the current state of the system itself. More precisely, only

a part of a biological system contributes to the determination of the rate of an

event. In terms of process algebra, this means that an action is associated with

a set of processes and these processes are associated with variables and values

that are used to evaluate functional rates. An example is the evaluation of a

rate for a biochemical event. Processes represent the concentration of species

(the variables) and the current concentration level (the values). Functional rates

based on kinetic laws are associated with actions. When processes synchronise

via a specific action, the corresponding functional rate is evaluated according to

the information associated to the processes.

In order to obtain a stochastic semantics for SPA, with the characteristics

outlined above, we define:

• a new syntax for SPA, which should guarantee that at any time variables

and values can be associated with processes (Section 3.2.1);

• a new semantics that determines which actions are valid along with collect-

ing variables and values from the processes that participate in the actions.

In particular we use functions Var : Pm → Names and Val : Pm → R, with

Names the set of parameter names. Variables and values are stored into

an environment Γ. We define Γ as a partial function, with Γ : Names→ R.

We assume that Γ can be represented as a set of pairs of the form (n,Γ(n)) ∈
Names×R. Moreover, we assume that Γ can be extended using set union.

The union Γ1 ∪ Γ2 is well defined only if for all a, b ∈ Names, if (a, x) ∈ Γ1

and (b, y) ∈ Γ2 then a 6= b. The semantics yields labelled transitions with

pairs (a,Γ) as labels, where a is an action and Γ an environment (Section

3.2.1);

• a syntax for functional rates (Section 3.2.2);
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3.2 Stochastic Semantics for Simple Process Algebra

• a semantics for functional rates, that, given an environment determines

valid evaluations of a functional rate to an actual rate, i.e. a real number

(Section 3.2.2);

• a mechanism to decide when a functional rate can or cannot be evaluated for

a specified pair (a,Γ). This evaluation is performed on a derivation graph

generated by the semantics of the algebra and produces a rated derivation

graph, where rated labels have the form (a, r), with r ∈ R>0, while labels

that cannot be rated are unchanged (Section 3.2.4).

We illustrate some of the concepts just discussed with an example. Consider

the following biochemical reaction Ra between biochemical species A, B and C

and corresponding velocity va:

Ra :A+B→vaC, va = ka[A][B]

The velocity va expresses the amount of concentration of A and B that is con-

sumed per time unit. The symbol [·] means concentration, e.g. [A] is the con-

centration of species A, while ka is a constant. To represent the interactions of

Ra, we use the following processes:

A0 , nil B0 , nil C0 , a.C1

A1 , a.A0 B1 , a.B0 C1 , a.C2

A2 , a.A1 B2 , a.B1 C2 , nil

We use the processes as levels of concentration abstraction, in analogy with

Section 3.2. The three processes for each species represent a different concentra-

tion level, from 0 to 2. The maximum concentration is fixed to M , while N is the

maximum number of levels, here 2. The concentration represented by one level

is given by h, with h = M/N .

As explained above, we associate a variable name and a value to each of the

processes. To do so, we use functions Var(·) and Val(·). In particular we need to

provide the following information:
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Var(A0) = levelA Var(B0) = levelB Var(C0) = levelC

Val(A0) = 0 Val(B0) = 0 Val(C0) = 0

Var(A1) = levelA Var(B1) = levelB Var(C1) = levelC

Val(A1) = 1 Val(B1) = 1 Val(C1) = 1

Var(A2) = levelA Var(B2) = levelB Var(C2) = levelC

Val(A2) = 2 Val(B2) = 2 Val(C2) = 2

The velocity va is used to produce the functional rate associated with action

a in analogy with that for CTMC with levels (Section 2.2.8):

fa = (ka · levelA · h · levelB · h)/h

This means that in order to evaluate fa we need to provide an additional environ-

ment containing values for constants h and ka. This could be Γ = {(h, 1), (ka, 1)}.
Now assume that the initial state of the model is given by:

A2 BC
a

(B2 BC
a
C0)

Intuitively, an appropriate stochastic semantics should permit the following

transition:

A2 BC
a

(B2 BC
a
C0)

(a,ra)−−−→ A1 BC
a

(B1 BC
a
C1)

with ra = 4, resulting from the evaluation of fa.

We propose that the aim of a stochastic semantics should be to determine

if an action a is possible and, at the same time, collect information about the

variables and values associated with the processes that synchronise on a. For

example, a valid transition is:

A2 BC
a

(B2 BC
a
C0)

(a,Γ′)−−−→ A1 BC
a

(B1 BC
a
C1)

with Γ′ = {(levelA, 2), (levelB, 2), (levelC, 0)}. We call the pair (a,Γ′) an activ-

ity. We can rate activity (a,Γ′) using Γ′, fa and the additional constant environ-

ment Γ containing values of variables h and ka. The result of the rating of (a,Γ′)

is the rated activity (a, ra).
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3.2.1 Stochastic Simple Process Algebra

In order to define a suitable stochastic semantics for SPA, we first modify the

syntax. In particular, we want to make sure that variables and values can always

be associated with processes in a model. In order to do so, we associate variables

and values only with agents and restrict the model definition to cooperations of

agents. This means that agents now play a central role in the algebra. Thus,

we divide the syntax into definition processes (D) and model processes (M) as

follows:

D ::= nil | a.A | D +D

M ::= A |M BC
L
M

where:

• D is a definition process, D ∈ Pd, while M is a model process, M ∈ Pm.

Definition and model processes are disjoint and are both processes, i.e.

Pd ∪ Pm = P and Pd ∩ Pm = ∅;

• agent A is defined as A , D, that is we use definition processes to define

the behaviour of agents, restricting agent definitions to choices of actions;

• a model is defined by a model process M , which in turn is either an agent

A or a cooperation between model processes M BC
L
M ;

• action execution a.A is always followed by an agent A. This ensures that

at any time the state of a model will consist of a cooperation of agents;

• each agent A is associated with a variable and a value, that is functions

Var(A) ∈ Names, with Names the set of parameter names, and Val(A) ∈
R must be defined for all agents A. This, along with the above definitions,

ensures that variables and values can always be associated with processes

in a model.

The stochastic semantics for this new syntax is shown in Figure 3.6. With

this semantics, information of variables and values is collected in the set Γ. In

the derivation rule Synchronisation, union of environments Γ1 and Γ2 is valid

only if for all a, b ∈ Names, if (a, x) ∈ Γ1 and (b, y) ∈ Γ2 then a 6= b. The
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Prefix Choice Left

a.A
a−→ A

D1
a−→ A

D1 +D2
a−→ A

Choice Right Coop Left

D2
a−→ A

D1 +D2
a−→ A

M1
(a,Γ)−−−→M ′

1

M1 BC
L
M2

(a,Γ)−−−→M ′
1
BC
L
M2

if a 6∈ L

Coop Right Synchronisation

M2
(a,Γ)−−−→M ′

2

M1 BC
L
M2

(a,Γ)−−−→M1 BC
L
M ′

2

if a 6∈ L
M1

(a,Γ1)−−−→M ′
1 M2

(a,Γ2)−−−→M ′
2

M1 BC
L
M2

(a,Γ1∪Γ2)−−−−−→M ′
1
BC
L
M ′

2

if a ∈ L

Agent

D
a−→ A′

A
(a,Γ)−−−→ A′

if A , D ∧ Γ = {(Var(A),Val(A))}

Figure 3.6: Stochastic semantics of a simple process algebra.

collected environments will be used in a second moment to computed the rates

of the transitions, producing a rated derivation graph.

We refer to this new process algebra as stochastic simple process algebra

(sSPA). A valid derivation for the running example in Section 3.2 is the following

transition:

A2 BC
a

(B2 BC
a
C0)

(a,Γ)−−−→ A1 BC
a

(B1 BC
a
C1)

where Γ = {(levelA, 2), (levelB, 2), (levelC, 0)}. In general, the stochastic se-

mantics produces a derivation graph consisting of an initial state, the reachable

states and valid transitions. In order to define this formally we introduce the

following definitions.

Definition 3.1 Activity. The pair (a,Γ) such that a ∈ Actions and Γ ⊆
Names× R is called an activity.

Definition 3.2 One step derivative. If M
(a,Γ)−−−→ M ′ then M is a one step

derivative of M .
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3.2 Stochastic Semantics for Simple Process Algebra

Definition 3.3 Derivative. If Mi
(a,Γ)−−−→ . . .

(a′,Γ′)−−−→ Mj then Mj is a derivative of

Mi.

Definition 3.4 Derivative Set. The derivative set of a model process M ∈ Pm
is denoted by ds(M) and is defined as the smallest set of model processes such

that:

• M ∈ ds(M);

• if Mi ∈ ds(M) and Mi
(a,Γ)−−−→Mj then Mj ∈ ds(M).

Definition 3.5 Current actions for definition processes. The set of actions that

D ∈ Pd can perform is denoted by Actions(D) and is defined as:

• Actions(nil) = {||};

• Actions(a.A) = {|a|};

• Actions(D1 +D2) = Actions(D1) ] Actions(D2).

with {||} delimiting a multi-set and ] the sum of multi-sets.

Definition 3.6 Current activities for model Processes. The set of activities that

M ∈ Pm can perform is denoted by Activities(M) and is defined as:

• Activities(A) = {|(a,Γ) | a ∈ Actions(D)∧A , D∧Γ = {(Var(A),Val(A))}|};

• Activities(M1 BC
L
M2) =

{|(a,Γ) | (a,Γ) ∈ Activities(M1) ∧ a 6∈ L|}
] {|(a,Γ) | (a,Γ) ∈ Activities(M2) ∧ a 6∈ L|}
]{|(a,Γ1∪Γ2) | (a,Γ1) ∈ Activities(M1)∧(a,Γ2) ∈ Activities(M2)∧a ∈ L|}.

Definition 3.7 Activity set. The set of all activities that a model process M ∈
Pm or one of its derivatives can perform is given by:

−−−−−−→
Activities(M) =

⊎
Mi∈ds(M)

Activities(Mi)
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Definition 3.8 Derivation graph. Given a model component M ∈ Pm, the

derivation graph D(M) is the labelled directed graph with:

• set of nodes ds(M);

• multi-set of transition labels
−−−−−−→
Activities(M);

• multi-set of labelled transitions→⊆ ds(M)×
−−−−−−→
Activities(M)×ds(M). Given

M ′ ∈ ds(M), (M ′, a,Γ,M ′′) ∈→ iff M ′ (a,Γ)−−−→M ′′.

The derivation graph of the running example of Section 3.2, D(A2 BC
a

(B2 BC
a
C0))

is:

A2 BC
a

(B2 BC
a
C0)

(a,Γ)−−−→ A1 BC
a

(B1 BC
a
C1)

(a,Γ′)−−−→ A0 BC
a

(B0 BC
a
C2)

with Γ = {(levelA, 2), (levelB, 2), (levelC, 0)} and Γ′ = {(levelA, 1), (levelB, 1),

(levelC, 1)}.
Before we can introduce the formal definition of a rated derivation graph, we

introduce the syntax of functional rates and semantics for valid evaluations.

3.2.2 Formalisation of Functional Rates

We introduce now a formal definition of functional rates and their evaluation.

The syntax of functional rates is given by:

f ::= k | i | f op1 f | op2(f) | f f

op1 ::= + | − | ∗ | / op2 ::= exp | log | sin | cos

where:

• k ∈ R;

• i ∈ Names, i.e. i is a parameter name;

• f is a functional rate, f ∈ F, which essentially is an arithmetical expression,

with operators op1 and op2;

• op1 are unary operators, while op2 are binary operators.
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Constant Variable

Γ ` k → k
k ∈ R

Γ ` i→ k
Γ(i) = k

Unary Operator
Γ ` exp→ k1

Γ ` op2(exp)→ k2

k2 = op2(k1)

Binary Operator
Γ ` exp1 → k1 Γ ` exp2 → k2

Γ ` exp1 op1 exp2 → k3

k3 = k1 op1 k2

Exponential Operator
Γ ` exp1 → n1 Γ ` exp2 → n2

Γ ` expexp2

1 → n3

n3 = nn2
1

Figure 3.7: Semantics for the evaluation of functional rates.

In order to evaluate functional rates expressed with this syntax, we use the

semantics in Figure 3.7. This is in fact a standard operational semantics for

arithmetical expressions. Given an environment Γ ⊆ Names×R and a functional

rate f , f evaluates to k if Γ ` f → k is a valid derivation. It is of course

possible to add other constant values such as the step size h or kinetic constants

to the environment Γ before the evaluation of the functional rate. We illustrate

this with an example. Recall the functional rate we defined earlier, fa = (ka ·
levelA · h · levelB · h)/h. The environment Γ we derived for a possible transition

is Γ = {(levelA, 2), (levelB, 2), (levelC, 0)}. With the addition of environment

Γ′ = {(ka, 1), (h, 1)}, it follows that f evaluates to 4, because Γ′′ ` f → 4,

Γ′′ = Γ ∪ Γ′, with the derivation in Figure 3.8.

3.2.3 Normalisation

In this section we derive a well formed definition of sSPA processes that guarantees

that the rates are computed correctly. In addition, we introduce the concept of

set of participants. An action a is associated with a functional rate fa if and

only if it is associated with a set of participants pa. This latter indicates which

variables, and so which entities participate to the biological event represented by
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action a. These variables are also sufficient to evaluate fa, though not all of them

may be necessary. In fact, pa is not just the set of variables used to evaluate fa,

it is used to represent the scope of action a, and so to identify if all processes

associated with variables in pa that are assumed to synchronise on a have done so.

This mechanism is the key to the proof of congruence of the equivalence relations

we introduce in Chapter 6.

In some cases the rate ra computed from a functional rate fa associated with

action a is not correct and requires to be scaled. Namely, the rate computed is

divided by the number of actions a a process can perform. This procedure is

referred to as normalisation in (Bernardo, 1996), and usually needs to be applied

when a single rate is associated with multiple actions, a situation often caused

by non deterministic choices. The well formed definition ensures normalisation is

performed correctly and is sound with respect to biological assumptions.

In sSPA as defined so far, we identify two sources of non deterministic choice

that require particular attention, one generated by the + operator and the other

by the BC
L

operator. The first type of non deterministic choice always requires

normalisation, while the second type requires normalisation only in some cases

and might interfere with the normalisation of the first. To illustrate this problem

and motivate the solution, consider the following four processes, recalling the

agent definitions of our running example for this section:

1. A′1 BCa (B1 BC
a
C1)

2. A1 BC
a

(B1 BC
a

(C1 BC∅ C1))

3. A1 BC
a

(B1 BC
a

(C1 BC∅ D1))

4. (A1 BC∅ A1)BC
a

(B1 BC
a
C1)

Additional agent definitions and associated variables and values are:

A′1 , a.A0 + a.A2 Var(A′1) = levelA Val(A′1) = 1

D1 , a.D2 Var(D1) = levelD Val(D1) = 1

The current activities of the four processes are:

1. Activities(A′1 BCa (B1 BC
a
C1)) = {|(a,Γ), (a,Γ)|}

2. Activities(A1 BC
a

(B1 BC
a

(C1 BC∅ C1))) = {|(a,Γ), (a,Γ)|}
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3. Activities(A1 BC
a

(B1 BC
a

(C1 BC∅ D1))) = {|(a,Γ), (a,Γ′)|}

4. Activities((A1 BC∅ A1)BC
a

(B1 BC
a
C1)) = {|(a,Γ), (a,Γ)|}

where Γ = {(levelA, 1), (levelB, 1), (levelC, 1)} and Γ′ = {(levelA, 1),

(levelB, 1), (levelD, 1)}. Recall that the functional rate associated with a is:

fa = (ka · levelA · h · levelB · h)/h

The activities can then be rated using fa and the additional set Γ′′ = {(h, 1),

(ka, 1)}. We can assume (a,Γ) is rated to (a, 1), because Γ ∪ Γ′′ ` fa → 1

and (a,Γ′) is also rated to (a, 1), because Γ′ ∪ Γ′′ ` fa → 1. Thus, assuming

RatedAct(M) is the multi-set of rated activities of process M :

1. RatedAct(A′1 BCa (B1 BC
a
C1)) = {|(a, 1), (a, 1)|}

2. RatedAct(A1 BC
a

(B1 BC
a

(C1 BC∅ C1))) = {|(a, 1), (a, 1)|}

3. RatedAct(A1 BC
a

(B1 BC
a

(C1 BC∅ D1))) = {|(a, 1), (a, 1)|}

4. RatedAct((A1 BC∅ A1)BC
a

(B1 BC
a
C1)) = {|(a, 1), (a, 1)|}

In the case of process 1, the two rated activities (a, 1) and (a, 1) should be

normalised, that is the actual rated activities should be divided by the multiplicity

of (a,Γ), in this case 2. This is because, under the non deterministic choice caused

by the + operator in A′1, we assume that the rate ra evaluated from the functional

rate fa, represents the total exit rate for action a. This assumption is based on the

fact that the two a actions represent two different outcomes of the same biological

event involving the same biological species. Thus, the actual multi-set of rated

activities for process 1 should be:

RatedAct(A′1 BCa (B1 BC
a
C1)) = {|(a, 0.5), (a, 0.5)|}

If the deterministic choice is generated by the BC
L

operator, as in processes 2,

3 and 4, it becomes more complicated to determine whether normalisation should

be applied. It usually depends on what processes and actions represent, and what

functional rate is associated with the actions.

In the case of process 2, the two identical rated activities (a, 1) and (a, 1)

should also be normalised. This is because the non deterministic choice is between

two agents C1 which represent the concentration of biochemical species C, which
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in turn does not contribute to the determination of the rate. The concentrations of

A and B determine the exit rate for action a, while the produced concentration

of C can be added non deterministically to one of the pools of concentration

represented by the two agents C1. Thus, the actual multi-set of rated activities

for process 2 should be:

RatedAct(A1 BC
a

(B1 BC
a

(C1 BC∅ C1))) = {|(a, 0.5), (a, 0.5)|}

In the case of process 3, the two rated activities (a, 1) and (a, 1) should also

be normalised. This should be done even if the environment of those activities

differ, as in this case, where one activity has environment Γ, while the other Γ′.

The reason is analogous to that for process 2. The total exit rate is determined

by the concentration of A and B, while the produced concentration can be the

concentration of C or of D. The actual multi-set of rated activities for process 3

should be:

RatedAct(A1 BC
a

(B1 BC
a

(C1 BC∅ D1))) = {|(a, 0.5), (a, 0.5)|}

In the case of process 4, the two rated activities (a, 1) and (a, 1) should not be

normalised. This is because the non deterministic choice is between two agents

A1 that represent the concentration of biochemical species A, which in turn con-

tributes to the determination of the rate. More precisely, we can observe that

the rate of action a is proportional to the concentration level represented by A1.

Each agent A1 represents a certain “pool” of concentration of species A, which

can interact independently with species B and C. The total concentration of A

present in the system is the sum of the concentration represented by the two

agents A1. Since the rate is proportional to the concentration of A, then the

total exit rate should be given by the sum of the two individual rates.

We have seen that for processes 1, 2, 3 and 4 the multi-set of rated activ-

ities is {|(a, 1), (a, 1)|} if normalisation is not applied. We have also seen that

normalisation is applied only in some cases, which might be difficult to identify.

In particular, without the knowledge of what process performed the actions and

what type of non determinism is involved, we are not able to determine whether

normalisation is necessary or not. In order to have an automatic procedure for

normalisation, we propose that the non-determinism caused by BC
L

operator is

not valid. This can be enforced easily if:
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• in every state of the system there is only one process associated with a

certain variable. This can be ensured by insisting that the initial state

has this property and that for all agents A, whenever A
(a,Γ)−−−→ A′ then

Var(A) = Var(A′), conditions that can be tested on the definition of the

model;

• an action a is associated with a set of participants pa ⊆ Names, in this

case pa = {levelA, levelB, levelC}. An activity (a,Γ) can be rated only

if the variables contained in Γ are exactly the variables contained in pa.

This ensures that if there is a non deterministic choice between agents with

different associated variables, only one will be considered a valid choice for

rate evaluation.

With these constraints, it is easy to see that processes 2 and 4 are not well

formed, because they present two processes with the same associated variable,

that is levelC in the first case and levelA in the second. Moreover, in the case

of process 3, activity (a,Γ′) cannot be evaluated to (a, 1) because Γ′ does not

contain exactly the variables contained in pa.

Finally, the use of a set of participants pa raises the question of what happens

if processes associated with variables not in pa synchronise on a. This could have

the effect of turning an activity that can be rated (variables in Γ equal to pa) into

one that cannot be rated. For example, consider the following model process:

5. A1 BC
a

(B1 BC
a

(C1 BC
a
D1))

The corresponding set of current activities is:

5. Activities(A1 BC
a

(B1 BC
a

(C1 BC
a
D1))) = {|(a,Γ′′)|}

where Γ′′ = {(levelA, 1), (levelB, 1), (levelC, 1), (levelD, 1)}. Activity (a,Γ′′)

cannot be rated, because the variables in Γ′′ are not exactly the variables in

pa. To prevent this situation we add the following constraint:

• if fa is a functional rate in F then a derivative of process P can perform

action a if and only if Var(P ) is in pa.

We can now define an sSPA model and a well formed sSPA model:

Definition 3.9 sSPA model. An sSPA model is a tuple:
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(AgentDef ,M,Actions,Names,F,Γ, Participants,Var ,Val)

where:

• AgentDef is the finite set of agent definitions {A1 , D1, A2 , D2, . . . };

• M is the initial state of the model, with M ∈ Pm;

• Actions is the finite set of actions;

• Names is the finite set of parameter names;

• F is the finite set of functional rates;

• Γ is the finite set of constant model parameters, with Γ ⊆ Names× R;

• Participants is the finite set of sets of participants;

• Var and Val are the functions associating agents with variables (i.e. pa-

rameter names) and values, with Var : Pm → Names and Val : Pm → R.

Definition 3.10 Well formed sSPA model. An sSPA model is well formed if

and only if:

1. Given a model process as a cooperation of agents, of the form

A1 BC
L1
A2 BC

L2
. . . BC

Ln−1
An

then ∀Ai, Aj if i 6= j then Var(Aj) 6= Var(Aj);

2. Given a definition process as a choice of sequential actions, of the form

A ,
∑
i

ai.Ai

then ∀Ai Var(A) = Var(Ai);

3. ∀a s.t. fa ∈ F

∃(a,Γ) ∈
−−−−−−→
Activities(P )⇔ Var(P ) ∈ pa
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3.2.4 The Rating Routines

In the previous sections we have defined how to evaluate a functional rate f

using the environment Γ of an activity and an additional constant environment

Γ′. In this section we define a mechanism to determine when it is appropriate to

evaluate a functional rate and we determine what happens when an evaluation

is not possible. The result is a rating procedure that converts a derivation graph

(Definition 3.8) into a rated derivation graph.

Recall again our running example. If we consider a model composed only of

process A2, the following derivation is valid:

A2
(a,{(levelA,2)})−−−−−−−−−→ A1

Given the above transition and the functional rate fa associated with action

a, it is clear that an evaluation of fa is not possible. In fact, environment Γ =

{(levelA, 2)} is missing variable levelB. In this case, we call the transition and

the activity (a,Γ) open.

Now consider the following transition:

A2 BC
a
B2

(a,Γ′)−−−→ A1 BC
a
B1

where Γ′ = {(levelA, 2), (levelB, 2)}. In this case, fa can be evaluated correctly,

because all the necessary variables are included in Γ′. However, we consider this

transition open as well and we do not allow the functional rate to be evaluated

just yet. This is because not all the processes that will be affected by the action

synchronise on a.

Formally, we consider the list of participants of action a, pa = {levelA, levelB,
levelC}. Participants are variables required for the evaluation of the rate to be

successful. These may not only be variables whose values we need to know in

order to evaluate the rate, but also variables associated with elements that will

be affected by the reaction.

The concept of participants of an action has an important role in our ap-

proach to functional rates. Later on we will show how we exploit this concept

in compositionality (Section 6). Intuitively, we use the list of participants to

indicate exactly which processes will synchronise on a certain action. Once the

environment Γ collected from the execution of action a contains all the variables

in pa, fa can be evaluated and we assume no further processes will synchronise.
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This is a quite strong assumption and it is based on the observation that, at least

in biology, one should always be able to identify which elements in a system are

affected by a certain event.

Finally, we know that some transitions can be turned into rated transitions,

while others cannot. This implies that the derivation graph resulting after the

rating operation will include two types of transitions, open transitions and rated

transitions.

We proceed now to the formalisation of the procedure used to rate activities

and the definition of a rated derivation graph.

Definition 3.11 Function envVar. The function envVar extracts the set of

variables in an environment Γ ⊆ Names× R:

envV ar(Γ) = ({i | (i, k) ∈ Γ})

Definition 3.12 Open activity. An open activity is an activity (a,Γ) where Γ

does not contain the exact variables present in the participant set pa, i.e. pa 6=
envV ar(Γ).

Definition 3.13 Function openActivities. The function openActivities selects

open activities from a set of activities A ⊆ Actions× 2Names×R:

openActivities(A) =

(
{|(a,Γ) | pa 6= envV ar(Γ) ∧ (a,Γ) ∈ A |}

)

Definition 3.14 Current open activities. Given a model process M ∈ Pm, the

set of open activities that P can perform is defined as:

OpenAct(M) = openActivities(Activities(M))

Definition 3.15 Open activity set. The set of all open activities that a model

process M ∈ Pm can perform is given by:

−−−−−−→
OpenAct(M) = openActivities(

−−−−−−→
Activities(M))
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Definition 3.16 Closed activity. A closed activity is an activity (a,Γ) where Γ

contains the exact variables present in the participant set pa, i.e. pa = envV ar(Γ).

Definition 3.17 Function closedActivities. The function closedActivities selects

closed activities from a set of activities A ⊆ Actions× 2Names×R:

closedActivities(A) = (A \ openActivities(A))

Definition 3.18 Current closed activities. Given a model process M ∈ Pm, the

set of closed activities that M can perform is defined as:

ClosedAct(M) = closedActivities(Activities(M))

Definition 3.19 Closed activity set. The set of all open activities that a model

process M ∈ Pm can perform is given by:

−−−−−−−→
ClosedAct(M) = closedActivities(

−−−−−−→
Activities(M))

Definition 3.20 Rated activity. The pair (a, r) such that a ∈ Actions and

r ∈ R>0 is called a rated activity.

Definition 3.21 Function rateActivities. Given an environment Γ, rateActivi-

ties converts a set of activities A ⊆ Actions×2Names×R into a set of rated activities

B ⊆ Actions× R:

rateActivities(Γ)(A) =

{|(a, ra) | Γ ∪ Γ′ ` fa → k ∧ ra = k/π(A, (a,Γ′)) ∧ (a,Γ′) ∈ A ∧ fa ∈ F |}

where π(A, (a,Γ′)) returns the number of occurrences of (a,Γ′) in the multi-set

A.

Definition 3.22 Current rated activities. Given a model process M ∈ Pm and

an environment Γ ⊆ Names× R, the set of rated activities that M can perform

is defined as:

RatedAct(M)Γ = rateActivities(Γ)(ClosedAct(M))
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3.2 Stochastic Semantics for Simple Process Algebra

RatedAct(M)Γ can be written RatedAct(M) if Γ is clear from the context.

Definition 3.23 Rated activity set. Given an environment Γ ⊆ Names× R,

the set of all rated activities that a model process M ∈ Pm can perform is given

by:
−−−−−−→
RatedAct(M)Γ = rateActivity(Γ)(

−−−−−−−→
ClosedAct(M))

−−−−−−→
RatedAct(M)Γ can be written

−−−−−−→
RatedAct(M) if Γ is clear from the context.

Definition 3.24 Rated derivation graph. Given a model process M ∈ Pm and an

environment Γ ⊆ Names× R, the rated derivation graph Dr(M)Γ is the labelled

directed graph with:

• set of nodes ds(M);

• multi-set of transition labels
−−−−−−→
RatedAct(M)Γ;

• multi-set of labelled transitions →r⊆ ds(M) ×
−−−−−−→
RatedAct(M)Γ × ds(M).

Given M ′ ∈ ds(M), (M ′, a, ra,M
′′) ∈→r iff M ′ (a,Γ′)−−−→ M ′′, (a,Γ′) ∈

ClosedAct(M) and {|(a, k)|} = rateActivities(Γ)({|(a,Γ′)|}) and ra

= k/π(ClosedAct(M), (a,Γ′)).

• multi-set of labelled transitions→o⊆ ds(M)×
−−−−−−→
OpenAct(M)×ds(M). Given

M ′ ∈ ds(M), (M ′, a,Γ′,M ′′) ∈→o iffM ′ (a,Γ′)−−−→M ′′ and (a,Γ′) ∈ OpenAct(M).

Dr(M)Γ can be written Dr(M) if Γ is clear from the context.

The rated derivation graph of the running example of Section 3.2,

Dr(A2 BC
a

(B2 BC
a
C0))Γ, with Γ = {(ka, 1), (h, 1)}, is:

A2 BC
a

(B2 BC
a
C0)

(a,4)−−→ A1 BC
a

(B1 BC
a
C1)

(a,1)−−→ A0 BC
a

(B0 BC
a
C2)

3.2.5 Stochastic Simple Process Algebra and Tissue Growth

We return now to the example we introduced in Section 3.1.2, with the addition

of functional rates. In particular, we associate a constant rate kapo to apoptosis,

i.e. tissue death, and a rate kmito to mitosis, i.e. tissue replication. In order

to demonstrate that a rate can depend on the current state of the system, we

assume that kmito is the total rate of mitosis of a region containing tissue, that

66



3.2 Stochastic Semantics for Simple Process Algebra

is the sum of the rates of all mitosis actions from that region. This implies that

functional rates of mitosis actions depend on whether adjacent regions contain

tissue or not.

The definition of the processes is:

Empty0 , mito10.Tissue0 + mito12.Empty0

Empty1 , mito01.Tissue1 + mito21.Tissue1

Empty2 , mito12.Tissue2 + mito10.Empty2

Tissue0 , apo0.Empty0 + mito01.Tissue0 + mito12.Tissue0

Tissue1 , apo1.Empty1 + mito10.Tissue1 + mito12.Tissue1

Tissue2 , apo2.Empty2 + mito21.Tissue2 + mito10.Tissue2

The initial state of the model is defined by the following process:

Empty0BC
L

Tissue1BC
K

Empty2

where L = {mito10,mito01} and K = {mito12,mito21}. Variables and values

associated to processes are:

Var(Empty0) = Var(Tissue0) = region0 Val(Empty0) = 0 Val(Tissue0) = 1

Var(Empty1) = Var(Tissue1) = region1 Val(Empty1) = 0 Val(Tissue1) = 1

Var(Empty2) = Var(Tissue2) = region2 Val(Empty2) = 0 Val(Tissue2) = 1

Functional rates and sets of participants are defined as:

fmito01 = kmito pmito01 = {region0, region1}

fmito12 = kmito/(2− region0) pmito12 = {region0, region1, region2}

fmito21 = kmito pmito21 = {region2, region1}

fmito10 = kmito/(2− region2) pmito10 = {region0, region1, region2}

fapo0 = kapo papo0 = {region0}

fapo1 = kapo papo1 = {region1}

fapo2 = kapo papo2 = {region2}

For example, fmito12 implies that if region R0 is empty then the rate for mito12

has to be divided by 2. The case is analogous for fmito10. As a consequence

Tissue1 performs mitosis always at a total rate of kmito .

Examples of valid derivations are:
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3.3 Parametric Simple Process Algebra

Empty0BC
L

Tissue1BC
K

Empty2
(apo1,Γ)−−−−→ Empty0BC

L
Empty1BC

K
Empty2

Empty0BC
L

Tissue1BC
K

Empty2
(mito12,Γ′)−−−−−−→ Empty0BC

L
Tissue1BC

K
Tissue2

where Γ = {(region1, 1)} and Γ′ = {(region0, 0), (region1, 1), (region2, 0)}. Us-

ing the additional environment Γ′′ = {(kmito , 1), (kapo , 2)}, the transitions can be

rated yielding:

Empty0BC
L

Tissue1BC
K

Empty2
(apo1,2)−−−−→ Empty0BC

L
Empty1BC

K
Empty2

Empty0BC
L

Tissue1BC
K

Empty2
(mito12,0.5)−−−−−−−→ Empty0BC

L
Tissue1BC

K
Tissue2

3.3 Parametric Simple Process Algebra

We have seen in several examples so far that model definitions tend to be repet-

itive when modelling levels of concentration or entities located in space. In this

section we show how the description of a model written in SPA can be reduced

by the introduction of parameters and an “if then else” construct.

The syntax of the parametric simple process algebra with multi-way synchro-

nisation (pSPA) is:

P ::= nil | a(exp, . . . , exp).P | P + P | P BC
L
P | [bexp]?P : P | A(exp, . . . , exp)

exp ::= k | i | exp+ exp | exp− exp | exp/k′

bexp ::= exp = exp | exp < exp | bexp ∧ bexp | bexp ∨ bexp | ¬bexp | true | false

where:

• P is a process, P ∈ P, with P the set of processes;

• nil is the deadlock process;

• a is an action, a ∈ Actions, with Actions the set of actions;

• exp1, . . . , expn is a non empty list of expressions;

• exp is an expression, which can be an real number k, k ∈ R, a sum of

two expressions, a difference between two expressions, a division between

an expression and an real number k′ ∈ (R \ {0}), the parameter name

i ∈ Names;

68



3.3 Parametric Simple Process Algebra

Prefix Choice Left

a(exp1, . . . , expn).P
a(exp1,...,expn),true−−−−−−−−−−−→ P

P
a(exp1,...,expn),b−−−−−−−−−→ P ′

P +Q
a(exp1,...,expn),b−−−−−−−−−→ P ′

Coop Left Choice Right

P
a(exp1,...,expn),b−−−−−−−−−→ P ′

P BC
L
Q

a(exp1,...,expn),b−−−−−−−−−→ P ′ BC
L
Q

a(exp1, . . . , expn)

6∈ L

Q
a(exp1,...,expn),b−−−−−−−−−→ Q′

P +Q
a(exp1,...,expn),b−−−−−−−−−→ Q′

Coop Right

Q
a(exp1,...,expn),b−−−−−−−−−→ Q′

P BC
L
Q

a(exp1,...,expn),b−−−−−−−−−→ P BC
L
Q′

a(exp1, . . . , expn)

6∈ L

Synchronisation

P
a(exp1,...,expn),b1−−−−−−−−−−→ P ′ Q

a(exp1,...,expn),b2−−−−−−−−−−→ Q′

P BC
L
Q

a(exp1,...,expn),b1∧b2−−−−−−−−−−−−→ P ′ BC
L
Q′

a(exp1, . . . , expn) ∈ L

IfThenElse True

P
a(exp1,...,expn),b−−−−−−−−−→ P ′

[bexp]?P : Q
a(exp1,...,expn),b∧bexp−−−−−−−−−−−−−→ P ′

IfThenElse False

Q
a(exp1,...,expn),b−−−−−−−−−→ Q′

[bexp]?P : Q
a(exp1,...,expn),b∧¬bexp−−−−−−−−−−−−−−→ Q′

Agent

P
a(exp1,...,expn),b−−−−−−−−−→ P ′

A(k1, . . . , kn′)
a(z1,...,zn),true−−−−−−−−→ P ′′

A(i1, . . . , in′) , P ∧ Γ ` P ′ → P ′′

∧ Γ ` exp1 → z1 ∧ · · · ∧ Γ ` expn → zn
∧Γ ` b→ true ∧ ∀j. kj, zj ∈ R,
with Γ = {(i1, k1), . . . , (in′ , kn′)}

Figure 3.9: Semantics of parametric simple process algebra, part one of two.

69



3.3 Parametric Simple Process Algebra

Evaluate Exp Constant Evaluate Variable

Γ ` k → k
if k ∈ R

Γ ` i→ k
if i ∈ Names ∧ Γ(i) = k

Evaluate Exp Binary Operator

Γ ` exp1 → k1 Γ ` exp2 → k2

Γ ` exp1 op exp2 → k3

if k3 = k1 op k2

∧op ∈ {+,−,=, <}

Evaluate Division Evaluate Bexp Constant
Γ ` exp1 → k1

Γ ` exp1/k′ → k2

if k2 = k1/k
′

Γ ` b→ b
if b ∈ {true, false}

Evaluate Bexp Binary Operator

Γ ` bexp1 → b1 Γ ` bexp2 → b2

Γ ` bexp1 op bexp2 → b3

if b3 = b1 op b2

∧op ∈ {∧,∨}

Evaluate Negation Evaluate Process Constant
Γ ` bexp→ b

Γ ` ¬bexp→ b′
if b′ = ¬b

Γ ` nil→ nil

Evaluate Prefix

Γ ` exp1 → k1 · · ·Γ ` expn → kn Γ ` P → P ′

Γ ` a(exp1, . . . , expn).P → a(k1, . . . , kn).P ′

Evaluate Choice Evaluate Agent

Γ ` P → P ′ Γ ` Q→ Q′

Γ ` P +Q→ P ′ +Q′
Γ ` exp1 → k1 · · ·Γ ` expn → kn

Γ ` A(exp1, . . . , expn)→ A(k1, . . . , kn)

Evaluate Cooperation

Γ ` P → P ′ Γ ` Q→ Q′

Γ ` P BC
L
Q→ P ′ BC

L′
Q′

L′ = {a1(k11, . . . , k1n1), . . . , am(km1, . . . , kmnm)}

∧L = {a1(exp11, . . . , exp1n1), . . . , am(expm1, . . . ,

expmnm)} ∧ Γ ` expij → kij for appropriate i, j

Evaluate IfThenElse True Evaluate IfThenElse False

Γ ` bexp→ true Γ ` P → P ′

Γ ` [bexp]?P : Q→ P ′
Γ ` bexp→ false Γ ` Q→ Q′

Γ ` [bexp]?P : Q→ Q′

Figure 3.10: Semantics of parametric simple process algebra, part two of two.
Operations on the right hand side of rules are evaluated.
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• a(exp1, . . . , expn) is a parametric action, a(exp1, . . . , expn) ∈ Pactions,

with Pactions the set of parametric actions and exp1, . . . , expn a non empty

list of expressions;

• a(exp1, . . . , expn).P expresses the fact that parametric action a(exp1, . . . , expn)

has to be performed in order to change process a(exp1, . . . , expn).P into the

new process P ;

• P + P expresses the non deterministic choice between two processes. Once

one is chosen, the other is discarded;

• P BC
L
P expresses the cooperation between two independent processes via

the cooperation set L, with L ⊆ Pactions;

• bexp is a boolean expression, defined as the constant true or false, the

equality test of expressions exp1 = exp2, the “less than” test exp1 < exp2,

the conjunction or disjunction of two boolean expressions or the negation

of a boolean expression;

• [bexp]?P : Q corresponds to P if the evaluation of bexp returns true or Q if

it returns false;

• A(exp1, . . . , expn) is used to recursively define processes, via the agent def-

inition A(i1, . . . , in) , P , with i1, . . . , in ∈ Names and n ∈ (N \ {0}).

The semantics of pSPA is shown in Figures 3.9 and 3.10. The use of parameters

may reduce significantly the length of the description of a process algebra model.

In following two sections we illustrate the use of parameters in two examples.

We will come back to parameters when we introduce the syntax used for the

implementation of process algebra with hooks in Section 7.

3.3.1 Parametric Simple Process Algebra and Biochem-

istry

We now rewrite process definitions for the example in Section 3.1.1 using pSPA.

In particular, we can use the notation A(1, 2) to indicate the concentration of

species A in location 1 is 2.
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3.3 Parametric Simple Process Algebra

A(i, j) , [0 < j]?a(i).A(i, j − 1) : nil

B(i, j) , [0 < j]?a(i).B(i, j − 1) : nil

C(i, j) , [0 < j]?

([j < 2]?

a(i).C(i, j + 1) + t(i+ 1, i).C(i, j + 1)

+t(i, i+ 1).C(i, j − 1) + t(i− 1, i).C(i, j + 1)

+t(i, i− 1).C(i, j − 1)

: t(i, i+ 1).C(i, j − 1) + t(i, i− 1).C(i, j − 1))

: a(i).C(i, j + 1) + t(i+ 1, i).C(i, j + 1) + t(i− 1, i).C(i, j + 1)

The new initial state is:

nil BC
H

(A(0, 2)BC
L
B(0, 2)BC

L
C(0, 0))

BC
K

(A(1, 2)BC
L′
B(1, 2)BC

L′
C(1, 0))BC

K′
(A(2, 0)BC

L′′
B(2, 0)BC

L′′
C(2, 2))

where H = {t(−1, 0), t(0,−1), t(2, 3), t(3, 2)} L = {a(0)}, L′ = {a(1)}, L′′ =

{a(2)}, K = {t(0, 1), t(1, 0)} and K′ = {t(1, 2), t(2, 1)}.
Examples of valid derivations are:

nil BC
H

(A(0, 2)BC
L
B(0, 2)BC

L
C(0, 0))

BC
K

(A(1, 2)BC
L′
B(1, 2)BC

L′
C(1, 0))BC

K′
(A(2, 0)BC

L′′
B(2, 0)BC

L′′
C(2, 2))

a(1),true−−−−−→ nil BC
H

(A(0, 2)BC
L
B(0, 2)BC

L
C(0, 0))

BC
K

(A(1, 1)BC
L′
B(1, 1)BC

L′
C(1, 1))BC

K′
(A(2, 0)BC

L′′
B(2, 0)BC

L′′
C(2, 2))

and

nil BC
H

(A(0, 2)BC
L
B(0, 2)BC

L
C(0, 0))

BC
K

(A(1, 2)BC
L′
B(1, 2)BC

L′
C(1, 0))BC

K′
(A(2, 0)BC

L′′
B(2, 0)BC

L′′
C(2, 2))

t(2,1),true−−−−−−→ nil BC
H

(A(0, 2)BC
L
B(0, 2)BC

L
C(0, 0))

BC
K

(A(1, 2)BC
L′
B(1, 2)BC

L′
C(1, 1))BC

K′
(A(2, 0)BC

L′′
B(2, 0)BC

L′′
C(2, 1))
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3.3.2 Parametric Simple Process Algebra and Tissue Growth

Consider the model of tissue growth in Section 3.1.2. We extend our previous

approach using pSPA.

Explicit Modelling of Empty Space. Using pSPA we can define generic

Empty and Tissue processes as follows:

Empty(i) , mito(i− 1, i).Tissue(i) + mito(i+ 1, i).Tissue(i)

Tissue(i) , apo(i).Empty(i) + mito(i, i− 1).Tissue(i)

+mito(i, i+ 1).Tissue(i)

The initial state of the model is given by the following process:

nil BC
L

Empty(0)BC
K

Tissue(1)BC
H

Empty(2)

where L = {mito(−1, 0),mito(0,−1),mito(3, 2),mito(2, 3)}, K = {mito(0, 1),

mito(1, 0)} and H = {mito(1, 2),mito(2, 1)}. Here we use nil BC
L

to specify the

boundaries of the model.

Examples of valid derivations are:

nil BC
L

Empty(0)BC
K

Tissue(1)BC
H

Empty(2)
mito(1,2)−−−−−→ nil BC

L
Empty(0)BC

K
Tissue(1)BC

H
Tissue(2)

and

nil BC
L

Empty(0)BC
K

Tissue(1)BC
H

Empty(2)
apo(1)−−−→ nil BC

L
Empty(0)BC

K
Empty(1)BC

H
Empty(2)

3.4 Summary

In this chapter we have illustrated how biological entities and events can be

represented by processes and actions using a simple process algebra with multi-

way synchronisation. Then we extended the algebra with a stochastic semantics

which permits the use of functional rates for the actions. Concepts of open and

closed activities have been introduced to determine whether a functional rate can

be evaluated or not. These concepts are inspired by the observation that biological

interactions require a set of participants that can be determined beforehand.
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3.4 Summary

Finally, we defined a parametrised version of the simple process algebra, to reduce

the length of model definitions. Several examples using simple process algebra

and its extensions have been given throughout the chapter.

In the next chapter we address the problem of modelling multiple spatial scales

and the interactions within and between spatial scales.

74



Chapter 4

Multi-Scale Modelling with

Process Algebra with Priorities

In this chapter we discuss mechanisms of interactions between spatial scales of

biological systems. After an introduction of possible relationships between scales

at the beginning of Section 4.1, we focus on modelling dependencies between

the concentration level of biochemical species at the molecular scale and the

behaviour of the cell at the cellular scale in Section 4.1.1. In the same section we

demonstrate that the simple process algebra defined in Chapter 3 is not effective

in modelling such dependencies.

In Section 4.2 we investigate the use of a process algebra with action priorities

to model the interactions between scales in a more effective way. We show it is

suited to the task, as we highlight in Sections 4.2.1, 4.2.2 and 4.2.3. However,

this algebra has not been designed to model multi-scale scenarios and fails to

address in its syntax and semantics some of the issues that arise from this context.

We conclude with a discussion of drawbacks of the use of process algebra with

priorities in Section 4.2.4. For completeness we also provide a stochastic semantics

based on functional rates in Appendix A.

4.1 Mechanisms of Interaction Between Scales

In this thesis we are primarily concerned with spatial scales and we assume that

events take place at the same time scale.
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A

B
C

D

A B

C
DA B

C
D

A B

C
D

A B

C
D

A B

C
D

A B

C
D A

Figure 4.1: Tissue infection at different abstraction levels: on the left, cellular
scale; centre: molecular scale; on the right: tissue scale.

In this setting we want to model relationships between scales such as:

• Abstractions. Entities and events at a given scale can be described in

more detail using the entities and events of another scale. For example,

cells are composed of molecules and cell movement is the result of molecular

interactions.

• Interactions. The behaviour of entities at a given scale changes depending

on events performed at other scales. For example, if a cell finds nutrients,

molecular digestive processes can be performed.

An example of abstraction is illustrated in Figure 4.1. At the cellular scale

(on the left of the figure), cell A is infected and can infect cells B, C or D.

At the molecular scale (centre), molecules can move between cells and a specific

molecular configuration (i.e. concentration of each species) can be associated

with the cellular phenotype of cell infection. At the tissue scale (on the right), a

portion of tissue presents a certain degree of infection, determined by the number

of infected cells.

An example of interaction is illustrated in Figure 4.2. A dependency is defined

between the molecular scale (on the left of the figure) and the cellular scale (on the

right of the figure): cellular duplication is possible if and only if the concentration

of molecule A is above a certain threshold. In other words, high concentration of

molecule A activates the ability of the cell to duplicate.

Other examples of dependencies are illustrated in Figure 4.3. If a cell dies (top

of figure) this implies the concentration of the molecules inside it is dispersed. If

a cell C duplicates (bottom of figure), independent concentrations of molecules

originally in C will be present in both the resulting cells C’ and C”.
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Figure 4.2: Interactions between scales. Only if the concentration of a certain
molecule (molecular scale) is high, then a cell can duplicate (cellular scale).

C
C'

C''

Figure 4.3: Dependencies between scales. Cellular events such as death and du-
plication (cellular scale), imply changes in concentration of molecules (molecular
scale) inside the cells.

In the next section we attempt to implement dependencies between scales

with the simple process algebra defined in Chapter 3.

4.1.1 Modelling Thresholds with Simple Process Algebra

Dependencies between scales can be modelled with action synchronisations be-

tween processes that represent different scales. This can be implemented easily

using SPA as long as actions at a given scale always have the same effect at other

scales. However, it is possible that entities at a certain scale perform the same

action many times and only some instances of that action affect other scales.

Usually this involves some mechanism of memory, or counting, in order to know

when an action at a scale affects other scales. An example is the dependency
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A3 , a.A2 B3 , nil

A2 , a.A1 B2 , a.B3

A1 , a.A0 B1 , a.B2

A0 , nil B0 , a.B1

C1 , nil

C0 , x.C1

Initial state: (A3 BC{a} B0)BC
{x}

C0

Figure 4.4: Example of a threshold definition problem in simple process algebra.

between the behaviour of a cell and the concentration of molecules inside the cell,

as depicted in Figure 4.2. In this case, biochemical reactions are performed con-

tinuously inside a cell, but only some instances of these reactions are responsible

for the change in behaviour of the cell (because a threshold has been reached).

An example of the problem of defining a dependency between a concentration

threshold and the behaviour of a cell in SPA is illustrated in Figure 4.4. SPA

processes are on the left while their graphical representation is on the right of the

figure. Action a represents a biochemical reaction that converts concentration of

molecule A into concentration of molecule B. Action x represents a change in

the behaviour of the cell, from C0 to C1. The circled a action indicates that a

concentration threshold for B is crossed. If we assume that the behaviour of the

cell associated with high B concentration is C1, then x should be performed in

synchronisation with the circled a action, or at least performed immediately after

it, with no delay.

With the following three examples we illustrate the limitations of SPA in

dealing with this particular problem.

Example 1. Consider the following example. In a cell there are two molecular

species A and B, involved in the following reactions:

Ra : →A Rb : A→

Rc : →B Rd : B→

Re : A → B Rf : B → A

We consider a maximum number of levels of concentration equal to 2. The pro-

cesses for A and B are:
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A0 , a.A1 + f.A1 A1 , a.A2 + f.A2 + b.A0 + e.A0 A2 , b.A1 + e.A1

B0 , c.B1 + e.B1 B1 , c.B2 + e.B2 + d.B0 + f.B0 B2 , d.B1 + f.B1

In addition, the cell that contains species A and B can either move or absorb

nutrients. This is represented by the following process:

Cell , move.Cell + absorb.Cell

The initial state is:

(A1 BC{e,f}B1)BC
∅

Cell

In the proposed model, the molecular scale and the cellular scale are inde-

pendent. The cell can move and absorb nutrients regardless of what biochemical

reactions take place.

Example 2. Consider now the introduction of a dependency between scales.

Assume that the cell absorbs nutrients and does not move as long as the concen-

tration level of molecule B is high, i.e. 2. If the concentration level of B is not

2, then the cell moves continuously, ignoring nutrients. In order to model this

dependency, process Cell needs to synchronise with processes B1 and B2. This

requires the use of new actions to represent crossing concentration threshold of

B, from 1 to 2. Moreover, processes A0, A1 and A2 need to be updated so they

can still synchronise with B to perform reactions Re and Rf . The updated model

is the following:

A0 , a.A1 + f.A1 A1 , a.A2 + f.A2 + b.A0 + e.A0 A2 , b.A1 + e.A1

+fy.A1 +ex.A0 + fy.A2 +ex.A1

B0 , c.B1 + e.B1 B1 , cx.B2 + ex.B2 + d.B0 + f.B0 B2 , dy.B1 + fy.B1

CellM , move.CellM + cx.CellA + ex.CellA

CellA , absorb.CellA + dy.CellM + fy.CellM

The new initial state is:

(A1 BC
{e,ex,f,fy}

B1) BC
{cx,dy,ex,fy}

CellM

The dependency between the concentration of B and the behaviour of the cell

has been introduced with the addition of actions cx, dy, ex and fy. These actions
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represent a threshold crossing, with suffix x denoting that the concentration of

B changes from level 1 to 2 and suffix y denoting that the concentration of B

changes from 2 to 1. Most importantly, as a consequence of the introduction of

these new actions, the processes that represent A must be altered, in order to

synchronise with the new actions ex and fy.

Example 3. Consider now a more complex dependency between the molecular

and the cellular scale. Assume that the cell absorbs nutrients if and only if a

specific configuration of the biochemistry is present. In particular, if the concen-

trations of A and B are high at the same time, i.e. both level 2, then the cell

absorbs nutrients; it moves otherwise. This new dependency requires the defini-

tion of two thresholds and the modification of the processes representing the cell,

the latter to monitor how many species have passed the threshold.

The updated model is as follows:

A0 , a.A1 + f.A1 A1 , ax.A2 + fx.A2 + b.A0 + e.A0 A2 , by.A1 + ey.A1

+fy.A1 +ex.A0 + fxy.A2 +exy.A1

B0 , c.B1 + e.B1 B1 , cx.B2 + ex.B2 + d.B0 + f.B0 B2 , dy.B1 + fy.B1

+ey.B1 +fy.B0 + exy.B2 +fxy.B1

CellM0 , move.CellM0 + ax.CellM1 + cx.CellM1 + ex.CellM1 + fx.CellM1

CellM1 , move.CellM1 + ax.CellA + cx.CellA + ex.CellA + fx.CellA
+by.CellM0 + dy.CellM0 + ey.CellM0 + fy.CellM0

+exy.CellM1 + fxy.CellM1

CellA , absorb.CellA + by.CellM1 + dy.CellM1 + ey.CellM1 + fy.CellM1

The new initial state is:

(A1 BC
L
B1)BC

K
CellM0

where L = {e, ex, ey, exy, f, fx, fy, fxy} and K = {ax, by, cx, dy, ex, ey,
exy, fx, fy, fxy}. The model definition is longer and more complex because

cell processes need to synchronise with all actions representing the crossing of a

threshold or the crossing of more than one threshold at the same time. Moreover,

three processes are used to count how many species have crossed their threshold:

CellM0, none of them, CellM1, one of them, and CellA, both of them.

It is evident that the addition of new thresholds increases the number of action

names. In general, the definition of dependencies that require this or any similar

type of counting may result in long descriptions that are difficult to read.
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As a solution to this problem we propose to employ a process algebra with

action priorities instead of SPA. In the next section we investigate this approach.

4.2 Process Algebra with Priorities

The syntax for a process algebra with multi-way synchronisation and action pri-

orities (PAwP) is:

P ::= nil | p:a.P | P + P | P BC
L
P | A

The only addition with respect to SPA introduced in Section 3.1, is the asso-

ciation of a priority p ∈ (N \ {0}) to actions. We use p:a to indicate that action

a is performed with priority p. Moreover, we assume that for any two prioritised

actions p1:x1 and p2:x2, if x1 = x2 then p1 = p2.

The main difference between the semantics of PAwP and the semantics of

SPA defined in Section 3.1 is that we have to specify how priorities are handled.

In general we want to execute only the actions that have the highest priority. As

explained in (Bernardo, 1996), only if we know all the potential moves from a

state, we can correctly select the actions with the highest priority.

We now introduce a semantics for PAwP, based on the semantics of extended

Markovian process algebra (EMPA) (Bernardo, 1996). Note that EMPA has a

stochastic semantics and here we adopt only its treatment of priorities. With

{||} delimiting a multi set and ] the union of multi sets, we use the following

definitions:

• PM(P ) returns the potential moves of a process P , PM(P ) ⊆ (N \ {0})×
Actions× P. PM(P ) is defined by structural induction as:

PM(nil) = ∅

PM(p:a.P ) = {|(p, a, P )|}

PM(P1 + P2) = PM(P1) ] PM(P2)

PM(P1 BC
L
P2) = {|(p, a, P ′1 BCL P2) | (p, a, P ′1) ∈ PM(P1) ∧ a 6∈ L}

]{(p, a, P1 BC
L
P ′2) | (p, a, P ′2) ∈ PM(P2) ∧ a 6∈ L|}

]{|(p, a, P ′1 BCL P ′2) | (p, a, P ′1) ∈ PM(P1) ∧ (p, a, P ′2)

∈ PM(P2) ∧ a ∈ L|}

PM(A) = PM(P ) if A , P
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• Select(PM(P )) returns the potential moves of P with the highest priority

and is defined as:

Select(PMSet) = {|(p, a, P ) | (p, a, P ) ∈ PMSet ∧ ∀(q, b, Q) ∈ PMSet,

p ≥ q|}

Using the functions defined above, the semantics of PAwP is given by the

following derivation rule:

(p, a, P ′) ∈ Select(PM(P ))

P
a−→ P ′

In the next section we show how the threshold examples in Section 4.1.1 can

be modelled more effectively with PAwP.

4.2.1 Modelling Thresholds with Process Algebra with

Priorities

Consider Examples 1, 2 and 3 in Section 4.1.1. We now illustrate how these

examples can be modelled with PAwP. The idea is that actions with priority 1

represent events that happen within a scale, while actions with priority higher

than 1 are interrupts that occur between scales.

Example 1 presents two independent scales and can be converted from simple

process algebra to process algebra with priorities by simply assigning priority 1

to all actions.

Example 2 presents a dependency between scales: a cell absorbs nutrients if

concentration level of molecule B is equal to 2, i.e. it is high, or moves if the

concentration level of B is either 0 or 1, i.e. is not high. Model definition in

process algebra with priorities is as follows:

A0 , 1:a.A1 + 1:f.A1 A1 , 1:a.A2 + 1:f.A2 A2 , 1:b.A1 + 1:e.A1

+1:b.A0 + 1:e.A0

B0 , 1:c.B1 + 1:e.B1 B1 , 1:c.2:x.B2 + 1:e.2:x.B2 B2 , 1:d.2:y.B1

+1:d.B0 + 1:f.B0 +1:f.2:y.B1

CellM , 1:move.CellM + 2:x.CellA

CellA , 1:absorb.CellA + 2:y.CellM

82



4.2 Process Algebra with Priorities

The new initial state is:

(A1 BC{e,f}B1) BC
{x,y}

CellM

Example of valid transitions are:

(A1 BC{e,f}B1) BC
{x,y}

CellM
b−→ (A0 BC{e,f}B1) BC

{x,y}
CellM

(A1 BC{e,f}B1) BC
{x,y}

CellM
move−−−→ (A1 BC{e,f}B1) BC

{x,y}
CellM

(A1 BC{e,f}B1) BC
{x,y}

CellM
e−→ (A0 BC{e,f} 2:x.B2) BC

{x,y}
CellM

Most importantly, from state (A0 BC{e,f} 2:x.B2) BC
{x,y}

CellM the only derivation pos-

sible is:

(A0 BC{e,f} 2:x.B2) BC
{x,y}

CellM
x−→ (A0 BC{e,f}B2) BC

{x,y}
CellA

Compare the above definition with Example 1 of Section 4.1.1. The only

additions are actions with priority 2 (x and y), placed right after an action crosses

the concentration threshold for molecule B. These actions are used as interrupts

to communicate a change in cell behaviour to the processes representing the cell.

Compare now the definition with Example 2 of Section 4.1.1. The following

improvements can be noted:

• only the processes representing the concentration of B and the behaviour

of the cell have been altered, while processes representing the behaviour of

A are left unaltered;

• the cell processes do not synchronise with as many specific action names

from the molecular scale as in Example 2, but only with action names x

and y, which just indicate threshold crossing;

• in this particular example we have a clear distinction between actions that

happen within a scale (priority 1) and actions that happen between scales

(priority 2).

In conclusion, the description is more compact and more readable.

In the next section we propose a PAwP model of Example 3 in Section 4.1.1.

After that, in Section 4.2.3 we propose a multi-scale model of tissue growth.
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4.2.2 Process Algebra with Priorities and a Three Layers

Example

In this section we introduce an example similar to Example 3 in Section 4.1.1.

With this example we show how PAwP can be used to model the flow of inter-

scale information between three scales. The result is a more readable model with

improved compositionality.

Recall the scenario of Example 3 in Section 4.1.1. A cell absorbs nutrients

and does not move when the concentration of both molecules A and B is high,

while the same cell moves and does not absorb nutrients when at least one of

A and B is not present in high concentration. The reactions performed at the

molecular scale are:

Ra : → A Rb : A →

Rc : → B Rd : B →

Re : A → B Rf : B → A

In this implementation we use additional processes to count how many of

species A and B present high concentration. We use P0 to indicate none of

them, P1 one of them and P2 both of them. These intermediate processes will

then communicate to the processes representing the cell when a change in cell

behaviour has to take place. This is in contrast with our implementation of

Example 3 in Section 4.1.1, where the role of counting was assigned directly to

the processes representing the cell. This different approach demonstrates that

more than two scales can be used. Moreover, the use of P0 as an intermediate

layer between the molecular and cellular scale improves the compositionality of

the model: if one desires to test other dependencies between scales, then process

P0 can be substituted with a different process to count, for example, if at least

one of A and B is above a concentration threshold or if exactly one of the two is.

The PAwP model is defined by the following processes:

A0 , 1:a.A1 + 1:f.A1 B0 , 1:c.B1 + 1:e.B1 P0 , 2:p.P1

A1 , 1:a.2:p.A2 + 1:b.A0 B1 , 1:c.2:p.B2 + 1:d.B0 P1 , 2:q.P0

+1:f.2:p.A2 + 1:e.A0 +1:e.2:p.B2 + 1:f.B0 +2:p.3:x.P2

A2 , 1:b.2:q.A1 + 1:e.2:q.A1 B2 , 1:d.2:q.B1 + 1:f.2:q.B1 P2 , 2:q.3:y.P1

CellM , 3:x.CellA + 1:move.CellM CellA , 3:y.CellM + 1:absorb.CellA

84



4.2 Process Algebra with Priorities

The initial state of the model is given by:

((A0 BC
L
B0)BC

H
P0)BC

K
CellM

where L = {e, f}, H = {p, q} and K = {x, y}. The states of the model, reachable

from the initial state, are:

1: ((A0 BC
L
B0)BC

H
P0)BC

K
CellM 2: ((A0 BC

L
B1)BC

H
P0)BC

K
CellM

3: ((A1 BC
L
B0)BC

H
P0)BC

K
CellM 4: ((A1 BC

L
B1)BC

H
P0)BC

K
CellM

5: ((A0 BC
L
B2)BC

H
P1)BC

K
CellM 6: ((A1 BC

L
B2)BC

H
P1)BC

K
CellM

7: ((A2 BC
L
B0)BC

H
P1)BC

K
CellM 8: ((A2 BC

L
B1)BC

H
P1)BC

K
CellM

9: ((A2 BC
L
B2)BC

H
P2)BC

K
CellA 10: ((A0 BC

L
2:p.B2)BC

H
P0)BC

K
CellM

11: ((A0 BC
L

2:q.B1)BC
H
P1)BC

K
CellM 12: ((2:p.A2 BC

L
B0)BC

H
P0)BC

K
CellM

13: ((2:q.A1 BC
L
B0)BC

H
P1)BC

K
CellM 14: ((A1 BC

L
2:q.B1)BC

H
P1)BC

K
CellM

15: ((2:q.A1 BC
L
B1)BC

H
P1)BC

K
CellM 16: ((A1 BC

L
2:p.B2)BC

H
P0)BC

K
CellM

17: ((2:p.A2 BC
L
B1)BC

H
P0)BC

K
CellM 18: ((A2 BC

L
2:p.B2)BC

H
P1)BC

K
CellM

19: ((2:p.A2 BC
L
B2)BC

H
P1)BC

K
CellM 20: ((A2 BC

L
B2)BC

H
3:x.P2)BC

K
CellM

21: ((A2 BC
L

2:q.B1)BC
H
P2)BC

K
CellA 22: ((2:q.A1 BC

L
B2)BC

H
P2)BC

K
CellA

23: ((A2 BC
L
B1)BC

H
3:y.P1)BC

K
CellA 24: ((A1 BC

L
B2)BC

H
3:y.P1)BC

K
CellA

25: ((2:q.A1 BC
L

2:p.B2)BC
H
P1)BC

K
CellM 26: ((2:p.A2 BC

L
2:q.B1)BC

H
P1)BC

K
CellM

27: ((2:q.A1 BC
L
B2)BC

H
3:x.P2)BC

K
CellM 28: ((A2 BC

L
2:q.B1)BC

H
3:x.P2)BC

K
CellM

States and transitions are shown in Figure 4.5.

To illustrate the use of compositionality in this model, consider the change

of the condition for the cell to absorb nutrients from “both A and B above the

threshold” to “at least one of A and B above the threshold”. To apply this

change, it is sufficient to replace process P0 with the following process Q0:

Q0 , 2:p.3:x.Q1 Q1 , 2:q.3:y.Q0 + 2:p.Q2 Q2 , 2:q.Q1
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4.2 Process Algebra with Priorities

Figure 4.5: Reachable states and transitions generated by the example in Section
4.2.2. Squares are intermediate states, i.e. states that precede transitions labelled
by actions with priority higher than 1. Auto transitions (actions move or absorb
in states from 1 to 9) are not shown.

4.2.3 Process Algebra with Priorities and Tissue Growth

with Biochemistry

In this section we propose an extension of the tissue growth example with explicit

modelling of empty space introduced in Section 3.1.2. Here we combine the tissue

scale with a biochemical scale and define dependencies between the two scales,

producing a multi-scale model.

In analogy with the model proposed in Section 3.1.2, we consider three regions

of space, R0, R1 and R2 which can be empty or can contain tissue. Here we

consider two different types of tissue: active and inactive. Active tissue is tissue

that can either die, or can grow (actions beginning with mito, for mitosis, cell

duplication). Inactive tissue can only die and not grow. Empty regions are

modelled with processes beginning with Empty , e.g. Empty1 if region R1 is
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empty. Active tissue is modelled with processes beginning with Tissueon, e.g.

Tissueon1, that can perform actions beginning with apo, for apoptosis, or actions

beginning with mito, for mitosis, e.g. mito12 if growth happens from region R1

to region R2. Inactive tissue is modelled with processes beginning with Tissueoff ,

e.g. Tissueoff 1, that can perform actions beginning with apo.

The biochemical scale consists of molecular species A, modelled using the pro-

cesses as levels of concentration abstraction, with concentration levels from 0 to

2. Each region contains an independent concentration of A. Processes represent-

ing the concentration of A participate in biochemical reactions, here modelled

with actions a and b, that respectively increment and decrease the concentration

levels of A by one. In addition, we use processes prefixed with NA, that cannot

perform any action, when the corresponding region is empty. For example, we

use NA1 when R1 is empty and no biochemical reactions are possible.

Dependencies between the biochemical and the tissue scale are as follows:

• in a region, tissue is active if and only if the concentration level of A is 2,

while the tissue is inactive otherwise. This dependency is modelled using

the threshold system explained in Section 4.2.1. Actions beginning with

mitoon and mitooff have priority 2 and are used to communicate to the

tissue scale when a threshold has been crossed;

• no biochemical action takes place in empty space. This dependency is

modelled by imposing that whenever a tissue process performs an apoptosis

action, the process representing the concentration of A in the same region

synchronises with that action, changing to an NA process. Analogously,

an NA process changes to a concentration process whenever empty space

turns into tissue.

The model is defined as follows:
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NA0 , 1:mito10.A00

A00 , 1:apo0.NA0 + 1:a0.A01

A01 , 1:apo0.NA0 + 1:a0.2:mitoon0.A02 + 1:b0.A00

A02 , 1:apo0.NA0 + 1:b0.2:mitooff 0.A01

Empty0 , 1:mito10.Tissueoff 0

Tissueoff 0 , 1:apo0.Empty0 + 2:mitoon0.Tissueon0

Tissueon0 , 1:apo0.Empty0 + 1:mito01.Tissueon0

+2:mitooff 0.Tissueoff 0

NA1 , 1:mito01.A10 + 1:mito21.A10

A10 , 1:apo1.NA1 + 1:a1.A11

A11 , 1:apo1.NA1 + 1:a1.2:mitoon1.A12 + 1:b1.A10

A12 , 1:apo1.NA1 + 1:b1.2:mitooff 1.A11

Empty1 , 1:mito21.Tissueoff 1 + 1:mito01.Tissueoff 1

Tissueoff 1 , 1:apo1.Empty1 + 2:mitoon1.Tissueon1

Tissueon1 , 1:apo1.Empty1 + 1:mito12.Tissueon1

+1:mito10.Tissueon1 + 2:mitooff 1.Tissueoff 1

NA2 , 1:mito12.A20

A20 , 1:apo2.NA2 + 1:a2.A21

A21 , 1:apo2.NA2 + 1:a2.2:mitoon2.A22 + 1:b2.A20

A22 , 1:apo2.NA2 + 1:b2.2:mitooff 2.A21

Empty2 , 1:mito12.Tissueoff 2

Tissueoff 2 , 1:apo2.Empty2 + 2:mitoon2.Tissueon2

Tissueon2 , 1:apo2Empty2 + 1:mito21.Tissueon2

+2:mitooff 2.Tissueoff 2

The initial state of the model is defined by the following process:

(NA0BC
∅
A11 BC∅ A22)BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)
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Figure 4.6: Graphical representation of processes Empty1 and NA1.

with L = {mitoon0, mitooff 0, mitoon1, mitooff 1,mitoon2,mitooff 2,

apo0, apo1, apo2, mito10, mito01, mito21, mito12}, K = {mito10,mito01},
K = {mito21,mito12}. A graphical representation of processes NA1 and Empty1

is illustrated in Figure 4.6.

Examples of valid transitions are:

(NA0BC
∅
A11 BC∅ A22)BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

b2−→ (NA0BC
∅
A11 BC∅ 2:mitooff 2.A21)BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

(NA0BC
∅
A11 BC∅ A22)BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

apo1−−→ (NA0BC
∅
NA1BC

∅
A22)BC

L
(Empty0BC

K
Empty1BC

K′
Tissueon2)

Notice that in this case there is only one biochemical species, A, and that

the use of actions with priority higher than 2 is not necessary. In fact one could

model the threshold as in Example 2 in Section 4.1.1. However, we assume that

the model will be extended with additional biochemical species and reactions, as

will be the case in Section 7.3.

4.2.4 Drawbacks of the Action Priorities Approach

PAwP has not been designed for multi-scale modelling of biological systems and

there are a few disadvantages. These are:
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• the introduction of intermediate states, which could be biologically mean-

ingless, i.e. inconsistent with the description of the system modelled. These

states are characterised by outgoing transitions labelled by actions with pri-

ority higher than 1. In Section 4.2.2 states from 10 to 28 are intermediate

states. Some of these states are inconsistent with the definition of the sys-

tem. For example, state 24 present process CellA, representing the food

absorbing phenotype, but only the concentration of B is above a threshold,

instead of both A and B as required. Intermediate states can be removed

in a second moment merging states that are connected by transitions with

action priority higher than 1;

• the use of actions with priorities higher than 1 can produce paths composed

of such actions between two biologically meaningful states. If more than

one path is possible between two states, these paths could contain different

actions. This is a problem if one considers only one of these paths to be

correct. For example, consider the following two paths from Section 4.2.2:

8
e−→ 25

p−→ 27
x−→ 22

q−→ 24
y−→ 6

8
e−→ 25

q−→ 16
p−→ 6

The two paths between the two biologically meaningful states 8 and 6

present different sequences of actions. In the first path cellular scale ac-

tions x and y are performed, while this is not the case in the second path.

In practice we have a non deterministic choice of behaviour at the cellular

scale. Assume now that in this case only the second sequence of actions

is the correct one. Indeed this is reasonable, because the first sequence

contains x, which should be performed only when both A and B are above

their concentration threshold, while this is not the case because action e

simply converts one level of concentration of A in one of B. The operation

of specifying which path is the correct one will have to be performed a pos-

teriori, once all the paths between two biologically meaningful states have

been computed. We note this operation could be automatic. For example

one could impose that the shortest path is the correct one.

• PAwP does not present syntactic elements that can be used to define explic-

itly and without ambiguities distinct scales and actions that work within
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and between scales. We have discussed in Section 4.2.2 that the compo-

sitionality of a multi-scale model can be improved if actions with priority

1 are used for actions operating within a scale and actions with priority

higher than 1 for actions operating between scales. However, nothing in

the algebra forces a modeller to apply this good practice. For example, in

Section 4.2.3 tissue action apo1 synchronises directly with a biochemical

process such as A11.

The disadvantages mentioned above do not prevent a modeller from using PAwP

in a multi-scale scenario. The first two can be addressed after all transitions from

a state have been computed, while the third is a matter of style of modelling.

4.3 Summary

We began this chapter with a discussion of some of the possible relationships

between spatial scales of biological systems. We then addressed the problem

of modelling such relationships using two existing process algebras with multi-

way synchronisation: simple process algebra and process algebra with priorities.

While the limitations of the first became evident quickly, the second proved to

be fairly well suited to the task. However, process algebra with priorities has

not been designed to model multi-scale scenarios and presents some drawbacks

that have been highlighted at the end of this chapter. Although these drawbacks

do not in general compromise the use of process algebra with priorities, they

nevertheless need to be addressed outside the syntax and the semantics of the

algebra.

In the next chapter we introduce a process algebra with hooks that has been

designed for multi-scale modelling and addresses the above drawbacks. For com-

pleteness, we define a stochastic semantics for process algebra with priorities

based on functional rates, in analogy with Section 3.2.1. This can be found in

Appendix A.
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Chapter 5

Multi-Scale Modelling with

Process Algebra with Hooks

In this chapter we introduce process algebra with hooks, a process algebra de-

signed for multi-scale modelling of biological systems. In Section 5.1 we introduce

the syntax, the main novel features are composed actions and a new vertical oper-

ator. Together, these features provide explicit modelling of scales and interactions

within and between scales. In Section 5.1.1 we give some basic examples using

process algebra with hooks and in Sections 5.1.2 and 5.1.3 we give process algebra

with hooks versions of the examples introduced in the previous chapter. A com-

parison between process algebra with hooks and process algebra with priorities

is given in Section 5.1.4. Finally, we present a stochastic version of the algebra

based on functional rates in Section 5.2, with additional examples in Sections

5.2.4 and 5.2.3.

5.1 Process Algebra with Hooks

A preliminary version of process algebra with hooks (PAH) has been published

in (Degasperi and Calder, 2010). In our previous work we followed a bottom-up

approach where the biochemical scale determines the rates and other scales are

abstractions of lower scales. Here we follow a middle-out (Noble, 2006) approach

where one can begin modelling at any scale, and then relate to higher or lower

scales.
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The syntax of PAH is:

P ::= nil | A[E].P | P + P | P BC
L
P | P BC

L
P | A

where:

• P is a process, P ∈ P, with P the set of processes;

• L, A and E are multi-sets of actions, with L = (L′,mL), A = (A′,mA)

and E = (E′,mE). Moreover, L′ ⊆ Actions, A′ ⊆ Actions ∧ A 6= ∅, E′ ⊆
Actions ∧ |E′| ≤ 1, with Actions the set of actions;

• A[E] is a composed action. Actions in A are called layer actions, while

actions in E are called hook actions;

• nil is the deadlock process;

• A[E].P expresses the fact that the composed action A[E] has to be per-

formed in order to change process A[E].P into the new process P ;

• P + P expresses the non deterministic choice between two processes. Once

one is chosen, the other is discarded;

• P BC
L
P expresses the horizontal cooperation between two independent pro-

cesses on the same scale via the cooperation multi-set L;

• P BC

L
P expresses the vertical cooperation between two independent pro-

cesses on different scales via the cooperation multi-set L;

• A is used to recursively define processes, via the agent definition A , P .

Conventions for the notation of actions are as follows. Given a composed

action A[E], if |A| = 1 or |E| = 1, then set delimiters can be omitted, e.g. if

A = {|a|}, then it can be written a. If E = ∅ then the hook part of the composed

action can be omitted completely, that is A[∅] can be written A.

The main differences between PAH and SPA of Chapter 3, are the substitution

of simple a actions by more complex composed actions A[E] and the addition of

the vertical cooperation operator BC

L
. The intended interpretation of these new

features is as follows:
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5.1 Process Algebra with Hooks

• A[E] is interpreted as “on this scale perform the actions in multi-set A all

together, while broadcasting actions in multi-set E to the other scales”. It

implies that actions in A affect the local scale while actions in E

affect other scales. We refer to actions performed by a process as layer

actions if they belong to multi-set A and hook actions if they belong to

multi-set E. Hook actions will be synchronised with layer actions on other

scales;

• BC

L
has the role of synchronising layer actions on one side of the operator

with hook actions on the other side via actions present in L. It implies

that the process on the left is on a different scale to the process

on the right and that the actions in L work between scales. No

hook-with-hook or layer-with-layer action synchronisations are allowed by

this operator.

The semantics of PAH is defined by the derivation rules in Figure 5.1.

Rule Prefix is an axiom that expresses that process A[E].P can become pro-

cess P via the execution of composed action A[E]. Although we restrict the set

E in the syntax to be either empty or a singleton, this set can merge with others

upon the application of rules Layer Synchronisation, Vertical Synchroni-

sation Left and Vertical Synchronisation Right, producing a multi-set of

hooks. We use multi-sets to allow a more general and flexible composition both

within and between scales. Example 4 in Section 5.1.1 provides an example of

these compositions.

Rules Choice Left and Choice Right express choice between the execution

of composed actions.

Rule Layer Synchronisation is a weaker version of the same rule for SPA

(Section 3.1). In fact, this rule can be applied even if the labels of the transitions

from processes P and Q are not identical: it is only requested that multi-sets

A and B share at least a name and that this name is also in L. The result-

ing transition presents the multi-set union of multi-sets of layer actions A and

B, to represent the result of the synchronisation. Conversely, multi-set sum of

multi-sets of hooks E and F is used to represent the collection of hooks summing

the multiplicity of the hook actions. In rules Asynchronous Left and Asyn-

chronous Right, processes in cooperation can proceed asynchronously only if

action set A does not share actions with cooperation set L.
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Prefix Asynchronous Right

A[E].P
A[E]−−→ P

Q
A[E]−−→ Q′

P BC
L
Q

A[E]−−→ P BC
L
Q′

A ∩ L = ∅

Choice Right Asynchronous Left

Q
A[E]−−→ Q′

P +Q
A[E]−−→ Q′

P
A[E]−−→ P ′

P BC
L
Q

A[E]−−→ P ′ BC
L
Q

A ∩ L = ∅

Choice Left Layer Synchronisation

P
A[E]−−→ P ′

P +Q
A[E]−−→ P ′

P
A[E]−−→ P ′ Q

B[F]−−→ Q′

P BC
L
Q

A∪B[E]F]−−−−−→ P ′ BC
L
Q′

A∩B∩L 6= ∅

Agent Vertical Asynchronous Right

P
A[E]−−→ P ′

A
A[E]−−→ P ′

A , P
Q

B[F]−−→ Q′

P BC

L
Q

B[F]−−→ P BC

L
Q′

B ∩ L = ∅ ∧

¬(∃P A[E]−−→ P ′.

A ⊆ F ∩ L)

Vertical Asynchronous Left

P
A[E]−−→ P ′

P BC

L
Q

A[E]−−→ P ′ BC

L
Q

A ∩ L = ∅ ∧

¬(∃Q B[F]−−→ Q′.

B ⊆ E ∩ L)

Vertical Synchronisation Left

P
A[E]−−→ P ′ Q

B[F]−−→ Q′

P BC

L
Q

A∪B[(E\B)]F]−−−−−−−−→ P ′ BC

L
Q′

B ⊆ E ∩ L ∧ ¬(∃Q B′[F′]−−−→ Q′′.

(B′ ⊆ E ∩ L) ∧ (|B′| > |B|))

Vertical Synchronisation Right

P
A[E]−−→ P ′ Q

B[F]−−→ Q′

P BC

L
Q

A∪B[(F\A)]E]−−−−−−−−→ P ′ BC

L
Q′

A ⊆ F ∩ L ∧ ¬(∃P A′[E′]−−−→ P ′′.

(A′ ⊆ F ∩ L) ∧ (|A′| > |A|))

Figure 5.1: Semantics of process algebra with hooks. Union of multi-sets is
denoted by ∪ and sum of multi-sets is denoted by ].
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The behaviour induced by the BC

L
operator is regulated by the rules Vertical

Synchronisation Left, Vertical Synchronisation Right, Vertical Asyn-

chronous Left and Vertical Asynchronous Right. Rules differing in the

name only by Left and Right are symmetric, so we explain only one of them. In

Vertical Synchronisation Left, the synchronisation is between the multi-set

of hook actions on the left hand side (E) and the multi-set of layer actions on the

right hand side (B), via actions in the cooperation multi-set L. More specifically,

some inter-scale actions in E are interpreted by another scale via B. For this to

happen we impose in the side rule that B must be included in both E and L.

The resulting transition presents the multi-set union of multi-sets A and B, while

B is subtracted from E to represent the fact that some of the hook actions of

the left hand side have been used. Multi-set sum is used between E \ B and F

to collect the remaining hook actions. It may be that more than one transition

from Q presents a multi-set of suitable layer actions B. In this case, we consider

the largest B multi-sets, imposed by the side condition, which states that there

is no other transition from Q which presents a multi-set of layer actions B′ in-

cluded in both E and L that is larger than B. This gives the possibility to the

modeller to choose how the model should behave when multiple hook actions are

offered in a single transition (see Examples 3 and 4 in Section 5.1.1). Consider

now the inference rule Vertical Asynchronous Left. In this case, we allow

a single process to transition asynchronously only if there are no actions in the

multi-set A which are also contained in L. This is because the actions in the

vertical cooperation set L are hooks and if A∩L 6= ∅ then A contains hooks and

the transition is not intended to be used asynchronously, but only to respond to

hook actions that might arise from transitions from Q. Moreover, this rule can

only be applied if no transitions from Q present a multi-set of layer actions B

suitable for synchronisation, i.e. included in both E and L.

In the next sections we illustrate the use of PAH with a series of basic exam-

ples, followed by examples taken from the previous chapter.

5.1.1 Process Algebra with Hooks: Basic Examples

Example 1. The behaviour of a cell depends on the concentration of species M.

Let Mi (i = 0, 1, 2, 3) be the processes representing species M with concentration

level i. Let Cell0 and Cell1 be processes representing two distinct behaviours (the

phenotypes) of the cell.
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M0 , a.M1 Cell0 , x.Cell1

M1 , a[x].M2 + b.M0 Cell1 , y.Cell0

M2 , a.M3 + b[y].M1

M3 , b.M2

The initial state is:

M1 BC

{|x,y|}
Cell0

The above processes can be represented with the following graphical representa-

tion:

Actions a and b represent biochemical reactions that increase or decrease, re-

spectively, the concentration of M. The behaviour of the cell changes when the

concentration of M passes a threshold. In this case, the action x denotes Cell0

becomes Cell1, when M1 becomes M2; and conversely Cell1 becomes Cell0 with

action y when M2 becomes M1. The composed action a[x] carries two distinct

pieces of information: a means the biochemical reaction Ra has happened, while

x means a change at the cellular scale has been triggered. We do not represent

the execution of a[x] as an interleaving of the action names a and x. Instead, a[x]

generates a single labelled transition, thus:

M1 BC

{|x,y|}
Cell0

{|a,x|}[∅]−−−−→M2 BC

{|x,y|}
Cell1

Without the cell process Cell0, the same transition is:

M1
a[x]−−→M2

In this transition, the hook x is exposed, but not observed by any process.

Example 2. More complex relations between scales can be described. In this

example, a change of behaviour of a cell is triggered when the concentration of

molecule A exceeds the concentration of molecule B. Processes Pi can be used to

count the difference between the concentration levels of A and B. The graphical

representation of the processes is given by:
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The initial state is:

((A1 BC{|s|} B2) BC

{|a,b|}
P−1) BC

{|x,y|}
Cell0

Species A can degrade (dA), B can be produced (pB), while both A and B can

synchronise (on s) so that a level of B is converted into a level of A. Processes

Pi, i ∈ {−2, . . . , 2}, represent the difference between the current level of A and

of B, while a and b actions represent events that make this difference increase by

2 and decrease by 1 respectively. An example transition is:

((A1 BC{|s|} B2) BC

{|a,b|}
P−1) BC

{|x,y|}
Cell0

{|s,a,x|}[∅]−−−−−→ ((A2 BC{|s|} B1) BC

{|a,b|}
P1) BC

{|x,y|}
Cell1

Example 3. If a scale triggers more than one hook action, these hook actions can

be observed individually by multiple observers or together by a single observer.

Consider the following processes:

Processes A0 and B1 can produce the following transition:

A0 BC{|s|} B1
s[{|x,y|}]−−−−→ A1 BC{|s|} B0

In this case, two different instances of s synchronise, their set of hook actions

merge in the resulting activity. Now consider the addition of processes P0, Q0

and R0. Two possible examples of transition are:

(A0 BC

{|x|}
P0)BC

{|s|}
(B1 BC

{|y|}
Q0)

{|s,x,y|}[∅]−−−−−→ (A1 BC

{|x|}
P1)BC

{|s|}
(B0 BC

{|y|}
Q1)

(A0 BC{|s|} B1) BC

{|x,y|}
R0

{|s,x,y|}[∅]−−−−−→ (A1 BC{|s|} B0) BC

{|x,y|}
R1
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In the first transition, hook actions x and y are observed individually by processes

P0 and Q0. If only hook action x were present, it would still be observed by P0

and the same for y with Q0. In the second transition, hook actions x and y are

observed at the same time by process R0. This can happen only if both x and y

are present.

Example 4. In some cases, a scale may trigger a multi-set of hook actions.

Consider the following example. A cell contains three biochemical species A, B

and C. The cell changes its behaviour if the biochemical scale reaches a specific

configuration, that is when the concentrations of A and B are low and when the

concentration of C is high. Species A, B and C are produced (actions pA, pB

and pC ) and degrade (actions dA, dB and dC ) in the cell. Finally, species A, B

and C are involved in the biochemical reaction Rs : A + B → C. The model is

defined as:

The initial state is:

((A1 BC{|s|} B1 BC{|s|} C1) BC

{|p,p,p,q|}
P0) BC

{|x,y|}
Cell0

Again we use processes Pi, i ∈ {0, . . . , 3}, to count the concentration required for

change at the cellular scale. In this particular case, a single transition can involve

more than one identical hook action (i.e. p). The transition is the following:

((A1 BC{|s|} B1 BC{|s|} C1) BC

{|p,p,p,q|}
P0) BC

{|x,y|}
Cell0

{|s,p,p,p,x|}[∅]−−−−−−−→

((A0 BC{|s|} B0 BC{|s|} C2) BC

{|p,p,p,q|}
P3) BC

{|x,y|}
Cell1

Another transition of the derivation graph generated by this model is:

((A2 BC{|s|} B1 BC{|s|} C1) BC

{|p,p,p,q|}
P1) BC

{|x,y|}
Cell0

{|s,p,p,x|}[∅]−−−−−−→

((A1 BC{|s|} B0 BC{|s|} C2) BC

{|p,p,p,q|}
P3) BC

{|x,y|}
Cell1
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5.1 Process Algebra with Hooks

The use of multi-sets allows for a compact definition of this model, where we use

the same action p to indicate that either A, B or C have reached the concentration

required for a change in behaviour of the cell.

Without multi-sets, an alternative definition of the same model is as follows:

The above version of the model uses actions a, b and c in place of p creating a

combinatorial problem. As a result, the derivation graph of process P0 presents

19 transitions instead of eight.

Example 5. The positioning of hook actions on actions at the biochemical scale

is particularly useful when geometrical space is considered. Let Aen denote the

process representing a concentration level n of species A in region Re. Concen-

tration can migrate to and from region Re and many different transport actions

will have the same effect of lowering or increasing the concentration of A in one

region, as shown in the following diagram (only outgoing transport shown):

The concentration of A is decreased, from Aen to Aen−1, through a transport

action of the form transp-es, s ∈ {b, d, f, h}. Correspondingly, at region Rs, the

concentration of A increases, from Asm to Asm+1. If we want to denote that a

threshold is crossed when passing from level n to n − 1 of A at Re, we can add

a hook action to the four transport actions, transp-es, obtaining transp-es[y].
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Example 6. In this example we show how to abstract multiple regions to a single

region, with respect to a specific property. Consider an area Rl of 3× 3 regions,

labelled from Ra to Ri. We ignore detail of the biochemical reactions, but assume

that at some point each of these locations can become infected, exposing hook

action a, or they can recover, exposing hook action b. We are not interested in

which region has changed its status, only the number infected in Rl. A scale that

represents the degree of infection of area Rl is defined by three processes, Rlow,

Rmed and Rhigh.

Processes Pi, i ∈ {0, . . . , 9} are used to count the number of infected regions. If

the number of infected regions is between 0 and 2, the degree of infection is low;

between 3 and 5 it is medium; larger than 5 it is high. Hooks x and y identify

transitions between stages of infection.

5.1.2 Process Algebra with Hooks and a Three Layers Ex-

ample

In Section 4.2.2 we modelled three scales using PAwP. We defined a biochemical

scale, a cellular scale and an intermediate layer which we used to count how

many of biochemical species A and B presented their concentration above a

threshold. This produced a considerable number of intermediate states, i.e. states

from which only actions with priority higher than 1 are possible. Here, we show

how we can rewrite the same example in PAH, and generate only states that

are biologically meaningful. In particular, each state corresponds to a different

combination of concentration levels of the two biochemical species A and B. The

processes are:
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A0 , a.A1 + f.A1 B0 , c.B1 + e.B1 P0 , p.P1

A1 , a[p].A2 + b.A0 B1 , c[p].B2 + d.B0 P1 , q.P0 + p[x].P2 + {|p, q|}.P1

+f [p].A2 + e.A0 +e[p].B2 + f.B0 P2 , q[y].P1

A2 , b[q].A1 + e[q].A1 B2 , d[q].B1 + f [q].B1

CellM , move.CellM + x.CellA CellA , absorb.CellA + y.CellM

The most interesting difference between this and the PAwP description in

Section 4.2.2 is the additional choice of {|p, q|}.P1 of process P1. This additional

choice allows the modeller to determine what process P1 should do if two hook

actions originate from the biochemical scale. The initial state of the model is

given by:

((A0 BC
L
B0) BC

H
P0) BC

K
CellM

where L = {|e, f |}, H = {|p, q|} and K = {|x, y|}. The states of the model reachable

from the initial state are:

1: ((A0 BC
L
B0) BC

H
P0) BC

K
CellM 2: ((A0 BC

L
B1) BC

H
P0) BC

K
CellM

3: ((A1 BC
L
B0) BC

H
P0) BC

K
CellM 4: ((A1 BC

L
B1) BC

H
P0) BC

K
CellM

5: ((A0 BC
L
B2) BC

H
P1) BC

K
CellM 6: ((A1 BC

L
B2) BC

H
P1) BC

K
CellM

7: ((A2 BC
L
B0) BC

H
P1) BC

K
CellM 8: ((A2 BC

L
B1) BC

H
P1) BC

K
CellM

9: ((A2 BC
L
B2) BC

H
P2) BC

K
CellA

The nine states correspond exactly to the first nine states of the PAwP model,

Section 4.2.2. States and transitions of the model are shown in Figure 5.2. In-

teresting transitions are 8
{|c,p,x|}−−−−→ 9, which involves all three layers at once, and

8
{|e,p,q|}−−−−→ 6, where the concentration of A and B cross their respective threshold

at the same time, from different directions, with no effect to the cellular scale.
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Figure 5.2: Reachable states and transitions generated by the example in Section
5.1.2.

5.1.3 Process Algebra with Hooks and Tissue Growth with

Biochemistry

In this section we show how the example introduced in Section 4.2.3 can be

modelled using PAH. Because PAH adopts an explicit distinction between actions

operating within a scale and between scales, new actions have to be introduced.

In particular, a direct synchronisation between biochemical and tissue scales via

actions such as apo1 or mito21 would be prevented by the vertical operator BC
L

.

Instead, we introduce inter-scale actions bioff 1 and bioon1 to communicate the

effects of apo1 and mito21 across scales. Processes can be rewritten as follows:

NA0 , bioon0.A00

A00 , biooff 0.NA0 + a0.A01

A01 , biooff 0.NA0 + a0[mitoon0].A02 + b0.A00

A02 , biooff 0.NA0 + b0[mitooff 0].A01

Empty0 , mito10[bioon0].Tissueoff 0

Tissueoff 0 , apo0[biooff 0].Empty0 + mitoon0.Tissueon0

Tissueon0 , apo0[biooff 0].Empty0 + [mito01].Tissueon0

+mitooff 0.Tissueoff 0
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NA1 , bioon1.A10

A10 , biooff 1.NA1 + a1.A11

A11 , biooff 1.NA1 + a1[mitoon1].A12 + b1.A10

A12 , biooff 1.NA1 + b1[mitooff 1].A11

Empty1 , mito21[bioon1].Tissueoff 1

+mito01[bioon1].Tissueoff 1

Tissueoff 1 , apo1[biooff 1].Empty1 + mitoon1.Tissueon1

Tissueon1 , apo1[biooff 1].Empty1 + mito12.Tissueon1

+mito10.Tissueon1 + mitooff 1.Tissueoff 1

NA2 , bioon2.A20

A20 , biooff 2.NA2 + a2.A21

A21 , biooff 2.NA2 + a2[mitoon2].A22 + b2.A20

A22 , biooff 2.NA2 + b2[mitooff 2].A21

Empty2 , mito12[bioon2].Tissueoff 2

Tissueoff 2 , apo2[biooff 2].Empty2 + mitoon2.Tissueon2

Tissueon2 , apo2[biooff 2].Empty2 + mito21.Tissueon2

+mitooff 2.Tissueoff 2

The initial state of the model is defined by the following process:

(NA0BC
∅
A11 BC∅ A22) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

with L = {|bioon0, biooff 0, bioon1, biooff 1, bioon2, biooff 2, mitoon0,

mitooff 0, mitoon1, mitooff 1, mitoon2, mitooff 2|}, K = {|mito10, mito01|}, K =

{|mito21, mito12|}.
A graphical representation of processes NA1 and Empty1 is given in Figure

5.3.

Examples of valid transitions are:

(NA0BC
∅
A11 BC∅ A22) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

{|b2,mitooff 2|}−−−−−−−−→ (NA0BC
∅
A11 BC∅ A21) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueoff 2)

(NA0BC
∅
A11 BC∅ A22) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

{|apo1,biooff 1|}−−−−−−−−→ (NA0BC
∅

NA1BC
∅
A22) BC

L
(Empty0BC

K
Empty1BC

K′
Tissueon2)
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Figure 5.3: Graphical representation of processes NA1 and Empty1.

An example of an action that is not allowed from the initial state is:

(NA0BC
∅
A11 BC∅ A22) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

{|mitooff 2|}−−−−−−→ (NA0BC
∅
A11 BC∅ A22) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueoff 2)

The reason is that rule Vertical Synchronisation Right does not allow mitooff 2

to be executed, because mitooff 2 ∈ L. The only way mitooff 2 can be executed

is via synchronisation with a hook action performed on the left hand side of BC

L
.

5.1.4 Comparison of Process Algebra with Hooks and Pro-

cess Algebra with Priorities

So far we have seen how PAH can be employed to model biological scales and

interactions between scales. The most important difference between PAH and

PAwP (Section 4.2) is their different approach to the use of actions to represent

events within and between scales in a multi-scale setting. We sum up this differ-

ence in Figure 5.4. On the left of the figure, priorities are attached to actions.

Actions with priority 1 are considered local while actions with priority 2 are

broadcasted to the other scales. On the right of the figure, actions are composed,

where the first component, a, interacts locally, while the second component, x,

interacts with other scales.

We contend that PAH overcomes the drawbacks of PAwP (as discussed in

Section 4.2.4) as follows:
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Figure 5.4: Two approaches to the use of actions in process algebra in a multi-
scale setting.

• no intermediate states are introduced. In PAwP, actions with priority higher

than 1 are used to communicate the effect of an event happening at a scale

to other scales. As the event and its inter-scale effect are modelled by two

distinct actions, this creates intermediate states. In PAH, an event and its

inter-scale effect are fused into a single composed action which generates a

single transition;

• more control is given to the modeller concerning how to model the response

of a scale to events generating multiple inter-scale effects at the same time.

In PAwP, multiple inter-scale effects are modelled by the interleaving of

actions with priority higher than 1. As we discussed in Section 4.2.4, this is

a problem if the modeller needs to specify which interleaving is the correct

one. In fact this cannot be specified within the algebra and requires a dedi-

cated implementation. In PAH, multiple inter-scale events are modelled as

a multi-set of hook actions. With this approach, the modeller can specify

whether multiple inter-scale effects at a single time produce a different re-

sponse with respect to the single effects taken individually. This is possible

within the algebra by using sets of actions to synchronise with multi-sets of

hooks;

• scales and interactions within and between scales can be defined without

ambiguities. While PAwP does not present syntactic elements that abstract

explicitly the concepts of scales and interactions within and between scales,

PAH provides them. The syntactic elements are composed actions and a

new vertical synchronisation operator.
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In the next section we introduce a stochastic semantics for PAH.

5.2 Stochastic Semantics for Process Algebra with

Hooks

In this section we define a stochastic semantics for PAH, in analogy with Section

3.2.1. Before we give a formal definition, we illustrate the main challenges with

an example.

Consider Example 2 of Section 4.1.1. In PAH agent definitions are as follows:

A0 , a.A1 + f.A1 A1 , a.A2 + f.A2 A2 , b.A1 + e.A1

+b.A0 + e.A0

B0 , c.B1 + e.B1 B1 , c[x].B2 + e[x].B2 B2 , d[y].B1 + f [y].B1

+d.B0 + f.B0

CellM , move.CellM + x.CellA

CellA , absorb.CellA + y.CellM

The initial state is:

(A1 BC{|e,f |}B1) BC

{|x,y|}
CellM

An appropriate stochastic semantics for PAH should construct an environment

Γ to evaluate the appropriate functional rates. This should be done in analogy

with our approach for sSPA in Section 3.2.1.

We assign variables and values to agents:

Var(A0) = A Var(B0) = B Var(CellM) = cell

Val(A0) = 0 Val(B0) = 0 Val(CellM) = 1

Var(A1) = A Var(B1) = B Var(CellA) = cell

Val(A1) = 1 Val(B1) = 1 Val(CellA) = 2

Var(A2) = A Var(B2) = B

Val(A2) = 2 Val(B2) = 2

Functional rates and sets of participants for actions are:

107



5.2 Stochastic Semantics for Process Algebra with Hooks

fa = ka/h pa = {A} fd = (kd ∗B ∗ h)/h pd = {B}

fb = (kb ∗ A ∗ h)/h pb = {A} fe = (ke ∗ A ∗ h)/h pe = {A,B}

fc = kc/h pc = {B} ff = (kf ∗B ∗ h)/h pf = {A,B}

Two valid derivations for the above example should be:

(A1 BC∅ B2) BC
{|x,y|}

CellM
(b,Γ)−−→ (A0 BC∅ B2) BC

{|x,y|}
CellM

(A1 BC∅ B2) BC
{|x,y|}

CellM
({|a,x|},Γ′)−−−−−−→ (A2 BC∅ B2) BC

{|x,y|}
CellA

where Γ = {(A, 1)} and Γ′ = {(A, 1)}. Notice that in the second derivation Γ′

should be used to evaluate fa, while the set of actions performed is {|a, x|}. This

implies that we need a new mechanism to identify the correct functional rate

to use, in this case fa and not fx or f{|a,x|}. Using the additional environment

Γ = {(h, 1), (ka, 1), (kb, 1), (kc, 1), (kd, 1), (ke, 1), (kf , 1) }, the two examples of

rated transitions should be:

(A1 BC∅ B2) BC

{|x,y|}
CellM

(b,1)−−→ (A0 BC∅ B2) BC
{|x,y|}

CellM

(A1 BC∅ B2) BC

{|x,y|}
CellM

({|a,x|},1)−−−−−→ (A2 BC∅ B2) BC
{|x,y|}

CellA

We suggest that it should be responsibility of the modeller to ensure that

every action set A on a valid transition M
(A[E],Γ)−−−−→M ′ contains one and only one

action a such that fa ∈ F. If this is not the case for a transition, then rating of

such transition should not be possible.

5.2.1 Stochastic Process Algebra with Hooks

In analogy with Sections 3.2.1 we proceed to the definition of a new syntax and

semantics for PAH. The syntax is given by:

D ::= nil | A[E].A | D +D

M ::= A |M BC
L
M |M BC

L
M

where:

• D is a definition process, D ∈ Pd, while M is a model process, M ∈ Pm.

Definition and model processes are disjoint and are both processes, i.e.

Pd ∪ Pm = P and Pd ∩ Pm = ∅;
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5.2 Stochastic Semantics for Process Algebra with Hooks

• Agents are defined as A , D, that is we use definition processes to define

the behaviour of agents;

• a model is defined by a model process M , which in turn is either an agent

A or a cooperation between model processes M BC
L
M ;

• action execution A[E].A is always followed by an agent A. This ensures

that at any time the state of a model will be constituted of cooperations of

agents;

• functions Var(A) and Val(A) must be defined for each agent A, with

Var(A) ∈ Names, Val(A) ∈ R and Names the set of parameter names.

The stochastic semantics of the new syntax is presented in Figure 5.5. We

refer to this new process algebra as stochastic process algebra with hooks (sPAH).

In analogy with sSPA, we use the semantics to construct environments that

will be used by the rating routines to derive a rated derivation graph. In Section

5.2.2 we define constraints on a sPAH model that ensure that the computation of

rates is always correct, in analogy with Section 3.2.3 for sSPA. These constraints

are effective also because in the derivation rule Vertical Synchronisation Left

we discard Γ2 (in Vertical Synchronisation Right we discard Γ1), a mechanism

that guarantees that we can use a single set of participants pa, as for sSPA.

We introduce now definitions necessary to define the derivation graph for

sPAH processes, in analogy with Sections 3.2.1. In addition, we give a semantics

of sPAH in terms of multi-set of moves. This semantics is necessary in Chapter

6, where the multiplicity of the transitions between sPAH processes is used in the

definition of equivalence relations.

Definition 5.1 Activity. The pair (A[E],Γ) such that A,E ⊆ Actions and

Γ ⊆ Names× R is called an activity.

Definition 5.2 One step derivative. If M
(A[E],Γ)−−−−→ M ′ then M is a one step

derivative of M .

Definition 5.3 Derivative. If Mi
(A[E],Γ)−−−−→ . . .

(A′[E′],Γ′)−−−−−→Mj then Mj is a derivative

of Mi.
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5.2 Stochastic Semantics for Process Algebra with Hooks

Prefix Agent

A[E].A
A[E]−−→ A

D
A[E]−−→ A′

A
(A[E],Γ)−−−−→ A′

A , D

∧ Γ = {(Var(A),Val(A))}

Choice Left Asynchronous Left

D1
A[E]−−→ A

D1 +D2
A[E]−−→ A

M1
(A[E],Γ)−−−−→M ′

1

M1 BC
L
M2

(A[E],Γ)−−−−→M ′
1
BC
L
M2

A ∩ L = ∅

Choice Right Asynchronous Right

D2
A[E]−−→ A

D1 +D2
A[E]−−→ A

M2
(A[E],Γ)−−−−→M ′

2

M1 BC
L
M2

(A[E],Γ)−−−−→M1 BC
L
M ′

2

A ∩ L = ∅

Layer Synchronisation

M1
(A[E],Γ1)−−−−−→M ′

1 M2
(B[F],Γ2)−−−−−→M ′

2

M1 BC
L
M2

(A∪B[E]F],Γ1∪Γ2)−−−−−−−−−−−→M ′
1
BC
L
M ′

2

A ∩B ∩ L 6= ∅

Vertical Asynchronous Left

M1
(A[E],Γ)−−−−→M ′

1

M1 BC

L
M2

(A[E],Γ)−−−−→M ′
1 BC

L
M2

A ∩ L = ∅ ∧

¬(∃M2
(B[F],Γ′)−−−−−→M ′

2.

B ⊆ E ∩ L)

Vertical Asynchronous Right

M2
(B[F],Γ)−−−−→M ′

2

M1 BC

L
M2

(B[F],Γ)−−−−→M1 BC

L
M ′

2

B ∩ L = ∅ ∧

¬(∃M1
(A[E],Γ′)−−−−−→M ′

1.

A ⊆ F ∩ L)

Vertical Synchronisation Left

M1
(A[E],Γ1)−−−−−→M ′

1 M2
(B[F],Γ2)−−−−−→M ′

2

M1 BC

L
M2

(A∪B[(E\B)]F],Γ1)−−−−−−−−−−−→M ′
1 BC

L
M ′

2

B ⊆ E ∩ L ∧ ¬(∃M2

(B′[F′],Γ′2)
−−−−−−→M ′′

2 .

(B′ ⊆ E ∩ L) ∧ (|B′| > |B|))

Vertical Synchronisation Right

M1
(A[E],Γ1)−−−−−→M ′

1 M2
(B[F],Γ2)−−−−−→M ′

2

M1 BC

L
M2

(A∪B[(F\A)]E],Γ2)−−−−−−−−−−−→M ′
1 BC

L
M ′

2

A ⊆ F ∩ L ∧ ¬(∃M1

(A′[E′],Γ′1)
−−−−−−→M ′′

1 .

(A′ ⊆ F ∩ L) ∧ (|A′| > |A|))

Figure 5.5: Stochastic semantics of process algebra with hooks. Union of multi-
sets is denoted by ∪, while sum of multi-sets is denoted by ].
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5.2 Stochastic Semantics for Process Algebra with Hooks

Definition 5.4 Derivative Set. The derivative set of a model process M ∈ Pm
is denoted by ds(M) and is defined as the smallest set of model processes such

that:

• M ∈ ds(M);

• if Mi ∈ ds(M) and Mi
(A[E],Γ)−−−−→Mj then Mj ∈ ds(M).

Definition 5.5 Current moves of a definition process. The multi set of moves

that D ∈ Pd can perform is denoted by Moves(D) and is defined as:

• Moves(nil) = {||};

• Moves(A[E].A) = {|(A[E], A)|};

• Moves(D1 +D2) = Moves(D1) ]Moves(D2).

with {||} delimiting a multi set and ] the sum of multi sets.

Definition 5.6 Current moves of a model process. The multi set of moves that

M ∈ Pm can perform is denoted by Moves(M) and is defined as:

((A[E],Γ),M ′) ∈ Moves(M) iff M
(A[E],Γ)−−−−→ M ′, with the same multiplicity as

the number of derivation trees that can derive M
(A[E],Γ)−−−−→M ′ using the derivation

rules in Figure 5.5.

Definition 5.7 Current composed actions for definition processes. The multi

set of composed actions that D ∈ Pd can perform is denoted by CompAct(D)

and is defined as:

CompAct(D) = {|A[E] | (A[E], A) ∈Moves(D)|}

Definition 5.8 Current activities for model Processes. The multi set of activities

that M ∈ Pm can perform is denoted by Activities(M) and is defined as:

Activities(M) = {|(A[E],Γ) | ((A[E],Γ),M ′) ∈Moves(M)|}
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5.2 Stochastic Semantics for Process Algebra with Hooks

Definition 5.9 Activity set. The multi set of activities that a model process

M ∈ Pm and its derivatives can perform is given by:

−−−−−−→
Activities(M) =

⊎
Mi∈ds(M)

Activities(Mi)

Definition 5.10 Derivation graph. Given a model component M ∈ Pm, the

derivation graph D(M) is the labelled directed graph with:

• set of nodes ds(M);

• multi set of transition labels
−−−−−−→
Activities(M);

• multi set of labelled transitions→⊆ ds(M)×
−−−−−−→
Activities(M)×ds(M). Given

M ′ ∈ ds(M), (M ′,A[E],Γ,M ′′) ∈→ iff M ′ (A[E],Γ)−−−−→ M ′′, with the same

multiplicity of ((A[E],Γ),M ′′) in Moves(M ′).

5.2.2 Rating sPAH models

In analogy with the functional rate evaluation in sSPA (Sections 3.2.3 and 3.2.4),

we proceed now to the definition of a sPAH model, the rating routines and the

rated derivation graph for sPAH models.

Definition 5.11 sPAH model. An sPAH model is a tuple:

(AgentDef ,M,Actions,Names,F,Γ, Participants,Var ,Val)

where:

• AgentDef is the finite set of agent definitions {A1 , D1, A2 , D2, . . . };

• M is the initial state of the model, with M ∈ Pm;

• Actions is the finite set of actions;

• Names is the finite set of parameter names;

• F is the finite set of functional rates;

• Γ is the finite set of constant model parameters, with Γ ⊆ Names× R;
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5.2 Stochastic Semantics for Process Algebra with Hooks

• Participants is the finite set of sets of participants;

• Var and Val are the functions associating agents with variables (i.e. pa-

rameter names) and values, with Var : Pm → Names and Val : Pm → R.

In order to ensure correct and unambiguous rate evaluation and to guarantee

that congruence relations (Chapter 6) can be defined on sPAH processes, we

employ the following additional constraints:

• each functional rate fa ∈ F is associated with a set of participants pa ⊆
Names;

• at any time only one agent can be associated with a certain variable;

• whenever an agent A performs an action (application of derivation rule

Agent), the resulting agent A′ will be associated with the same variable A

is associated with;

• only agents associated with variables in pa can perform action a. This is

to prevent an additional synchronisation via BC
L

changing a closed activity

into an open activity, due to an increase of the size of Γ.

• actions used as hook actions must not be associated with functional rates;

• an activity (A[E],Γ) can be rated only if Γ contains exactly the variables

in pa and A contains exactly one action name a such that fa ∈ F. Such

activity is called closed. An activity that is not closed is called open;

• if more than one transition from a certain state is associated with the same

functional rate, the evaluated rate has to be normalised, i.e. it has to be

divided by the number of such transitions.

The above constraints are formalised by the following definitions. With these

we can define a rated derivation graph.

Definition 5.12 Well formed sPAH model. A sPAH model is well formed if and

only if:
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5.2 Stochastic Semantics for Process Algebra with Hooks

1. Given a model process as a cooperation of agents of the form

A1 ◦ A2 ◦ · · · ◦ An

then ∀Ai, Aj if i 6= j then Var(Aj) 6= Var(Aj), where ◦ is either a vertical

or horizontal cooperation;

2. Given a definition of an agent A as a choice of sequential actions of the form

A ,
∑
i

ai.Ai

then ∀Ai Var(A) = Var(Ai);

3. ∀a s.t. fa ∈ F, ∀A agents

∃(A[E],Γ) ∈
−−−−−−→
Activities(A) s.t. a ∈ A ∪ E⇔ Var(A) ∈ pa

Moreover, whenever M1 BC
L
M2 then ∀a s.t. fa ∈ F

a ∈ L⇔ ∃(A[E],Γ) ∈
−−−−−−→
Activities(M1),

(B[F],Γ′) ∈
−−−−−−→
Activities(M2) s.t. a ∈ A ∧ a ∈ B

4. hook actions are not associated with functional rates:

∀A agents, ∀(A[E],Γ) ∈
−−−−−−→
Activities(A), ∀a s.t. fa ∈ F, a 6∈ E

5. ∀A agents defined as

A ,
∑
i

Ai[Hi].Ai

∀a s.t. fa ∈ F, if a ∈ Ai then Ai = {|a|}.

Definition 5.12 ensures that whenever M
(A[H],Γ)−−−−−→M ′ then either ∀a s.t. fa ∈ F

a 6∈ A or ∃!a s.t. fa ∈ F and a ∈ A. In other words, for every valid transition,

the set of layer actions contains at most one action associated with a functional

rate.
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Definition 5.13 Function envVar. The function envV ar extracts the set of

variables in an environment Γ ⊆ Names× R:

envV ar(Γ) = ({i | (i, k) ∈ Γ})

Definition 5.14 Function activeActions. The function activeActions selects

actions a such that a functional rate in the set F is associated with a, i.e. fa ∈ F,

from a action set A ⊆ Actions:

activeActions(A)F = ({a | a ∈ A ∧ fa ∈ F})

Definition 5.15 Open activity. An open activity is an activity (A[E],Γ) where

at least one of the following conditions are true:

• the number of active actions in A is different from one, i.e.

|activeActions(A)F| 6= 1;

• if |activeActions(A)F| = 1 and a ∈ activeActions(A)F, Γ does not contain

the exact variables present in the participant set pa, i.e. pa 6= envV ar(Γ).

Definition 5.16 Function openActivities. The function openActivities selects

open activities from a set of activities A ⊆ 2Actions × 2Actions × 2Names×R:

openActivities(A) ={∣∣∣∣(A[E],Γ)

∣∣∣∣ (A[E],Γ) ∈ A ∧ (|activeActions(A)F| 6= 1

∨(activeActions(A)F = {a} ∧ pa 6= envV ar(Γ)))

∣∣∣∣}


Definition 5.17 Current open activities. Given a model process M ∈ Pm, the

multi set of open activities that P can perform is defined as:

OpenAct(M) = openActivities(Activities(M))

Definition 5.18 Open activity set. The multi set of all open activities that a

model process M ∈ Pm can perform is given by:

−−−−−−→
OpenAct(M) = openActivities(

−−−−−−→
Activities(M))
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Definition 5.19 Closed activity. A closed activity is an activity (A[E],Γ) where:

• |activeActions(A)F| = 1, a ∈ activeActions(A)F and Γ contains the exact

variables present in the participant set pa, i.e. pa = envV ar(Γ).

Definition 5.20 Function closedActivities. The function closedActivities se-

lects closed activities from a set of activities A ⊆ 2Actions × 2Actions × 2Names×R:

closedActivities(A) = (A \ openActivities(A))

Definition 5.21 Current closed activities. Given a model process M ∈ Pm, the

multi set of closed activities that M can perform is defined as:

ClosedAct(M) = closedActivities(Activities(M))

Definition 5.22 Closed activity set. The multi set of all closed activities that a

model process M ∈ Pm can perform is given by:

−−−−−−−→
ClosedAct(M) = closedActivities(

−−−−−−→
Activities(M))

Definition 5.23 Open moves of a model process. Given a model process M ∈
Pm, the multi set of open moves of M , denoted OpenMoves(M), is defined as:

OpenMoves(M) = {|(a,M ′) | (a,M ′) ∈Moves(M) ∧ a ∈ OpenAct(M))|}

Definition 5.24 Rated activity. The pair (A[E], r) such that A,E ⊆ Actions

and r ∈ R>0 is called a rated activity.

Definition 5.25 Function rateActivities. Given an environment Γ ⊆ Names×
R, rateActivities converts a set of activities A ⊆ 2Actions×2Actions×2Names×R into

a set of rated activities B ⊆ 2Actions × 2Actions × R:

rateActivities(Γ)(A) ={∣∣∣∣(A[E], r)

∣∣∣∣ (A[E],Γ′) ∈ A ∧ {a} = activeActions(A)F

∧ Γ ∪ Γ′ ` fa → k ∧ ra = k/π(A, (a,Γ′)) ∧ fa ∈ F

∣∣∣∣}
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where π(A, (a,Γ′)) returns the number of occurrences of (A[E],Γ′) in the multi

set A such that {a} = activeActions(A)F.

Definition 5.26 Current rated activities. Given a model process M ∈ Pm and

an environment Γ ⊆ Names× R, the multi set of rated activities that M can

perform is defined as:

RatedAct(M)Γ = rateActivities(Γ)(ClosedAct(M))

RatedAct(M)Γ can be written RatedAct(M) if Γ is clear from the context.

Definition 5.27 Rated activity set. Given an environment Γ ⊆ Names× R,

the multi set of rated activities that a model process M ∈ Pm and its derivatives

can perform is given by:

−−−−−−→
RatedAct(M)Γ = rateActivities(Γ)(

−−−−−−−→
ClosedAct(M))

−−−−−−→
RatedAct(M)Γ can be written

−−−−−−→
RatedAct(M) if Γ is clear from the context.

Definition 5.28 Rated moves of a model process. Given a model process M ∈
Pm and an environment Γ ⊆ Names × R, the multi set of rated moves of M ,

denoted RatedMoves(M)Γ, is defined as:

RatedMoves(M)Γ = {|((A[E], r),M ′) | ((A[E],Γ′),M ′) ∈Moves(M ′) ∧ (A[E],Γ′)

∈ ClosedAct(M) ∧ {|((A[E], k))|} = rateActivities(Γ)({|(A[E],Γ′)|})∧

activeActions(A)F = a ∧ r = k/π(ClosedAct(M), (a,Γ′))|}

Definition 5.29 Rated transitions. Given M ∈ Pm and Γ ⊆ Names× R,

M
(A[E],r)−−−−→Γ M ′ is a valid rated transition iff M

(A[E],Γ′)−−−−−→ M ′, (A[E],Γ′) ∈
ClosedAct(M), {|((A[E], k))|} = rateActivities(Γ)({|(A[E],Γ′)|}),
activeActions(A)F = a and r = k/π(ClosedAct(M), (a,Γ′)).

Definition 5.30 Rated derivation graph. Given a model process M ∈ Pm and an

environment Γ ⊆ Names× R, the rated derivation graph Dr(M)Γ is the labelled
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directed graph with:

• set of nodes ds(M);

• multi set of transition labels
−−−−−−→
RatedAct(M)Γ;

• multi set of labelled transitions →r⊆ ds(M) ×
−−−−−−→
RatedAct(M)Γ × ds(M).

Given M ′ ∈ ds(M), (M ′,A[E], ra,M
′′) ∈→r iff M ′ (A[E],ra)−−−−−→Γ M

′′, with the

same multiplicity of ((A[E], ra),M
′′) in RatedMoves(M ′)Γ.

• multi set of labelled transitions→o⊆ ds(M)×
−−−−−−→
OpenAct(M)×ds(M). Given

M ′ ∈ ds(M), (M ′,A[E],Γ′,M ′′) ∈→o iff M ′ (A[E],Γ′)−−−−−→ M ′′ and (A[E],Γ′) ∈
OpenAct(M), with the same multiplicity of ((A[E],Γ′),M ′′) in Moves(M ′).

Dr(M)Γ can be written Dr(M) if Γ is clear from the context.

In the following sections we illustrate the use of sPAH, augmenting examples

of previous sections with functional rates.

5.2.3 Stochastic Process Algebra with Hooks and a Three

Layers Example

In this section we show how the example in Section 5.1.2 can be augmented with

functional rates. The processes are:

A0 , a.A1 + f.A1 B0 , c.B1 + e.B1 P0 , p.P1

A1 , a[p].A2 + b.A0 B1 , c[p].B2 + d.B0 P1 , q.P0 + p[x].P2 + {|p, q|}.P1

+f [p].A2 + e.A0 +e[p].B2 + f.B0 P2 , q[y].P1

A2 , b[q].A1 + e[q].A1 B2 , d[q].B1 + f [q].B1

CellM , move.CellM + x.CellA CellA , absorb.CellA + y.CellM

The initial state of the model is given by:

((A0 BC
L
B0) BC

H
P0) BC

K
C1

where L = {|e, f |}, H = {|p, q|} and K = {|x, y|}. Variables and values:
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Figure 5.6: Rated derivation graph generated by the example in Section 5.2.3.

Var(A0) = A Var(A1) = A Var(A2) = A

Val(A0) = 0 Val(A1) = 1 Val(A2) = 2

Var(B0) = B Var(B1) = B Var(B2) = B

Val(B0) = 0 Val(B1) = 1 Val(B2) = 2

Var(P0) = P Var(P1) = P Var(P2) = P

Val(P0) = 0 Val(P1) = 1 Val(P2) = 2

Var(CellM) = cell Var(CellA) = cell

Val(CellM) = 1 Val(CellA) = 2

The states of the model, reachable from the initial state, are:

1: ((A0 BC
L
B0) BC

H
P0) BC

K
CellM 2: ((A0 BC

L
B1) BC

H
P0) BC

K
CellM

3: ((A1 BC
L
B0) BC

H
P0) BC

K
CellM 4: ((A1 BC

L
B1) BC

H
P0) BC

K
CellM

5: ((A0 BC
L
B2) BC

H
P1) BC

K
CellM 6: ((A1 BC

L
B2) BC

H
P1) BC

K
CellM

7: ((A2 BC
L
B0) BC

H
P1) BC

K
CellM 8: ((A2 BC

L
B1) BC

H
P1) BC

K
CellM

9: ((A2 BC
L
B2) BC

H
P2) BC

K
CellA

The functional rates and sets of participants associated to the actions are:
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fa = ka/h pa = {A}

fb = (kb ∗ lA ∗ h)/h pb = {A}

fc = kc/h pc = {B}

fd = (kd ∗ lB ∗ h)/h pd = {B}

fe = (ke ∗ lA ∗ h)/h pe = {A,B}

ff = (kf ∗ lB ∗ h)/h pf = {A,B}

A rated derivation graph can be produced using the additional environment set

Γ = {(h, 1), (ka, 1), (kb, 1), (kc, 1), (kd, 1), (ke, 1), (kf , 1)}. States and transitions of

Dr(((A0 BC
L
B0) BC

H
P0) BC

K
CellM)Γ are shown in Figure 5.6.

5.2.4 Stochastic Process Algebra with Hooks and Tissue

Growth with Biochemistry

We show now how we can augment the example in Section 5.1.3 with functional

rates. Agent definitions are as follows:

NA0 , bioon0.A00

A00 , biooff 0.NA0 + a0.A01

A01 , biooff 0.NA0 + a0[mitoon0].A02 + b0.A00

A02 , biooff 0.NA0 + b0[mitooff 0].A01

Empty0 , mito10[bioon0].Tissueoff 0

Tissueoff 0 , apo0[biooff 0].Empty0 + mitoon0.Tissueon0

Tissueon0 , apo0[biooff 0].Empty0 + [mito01].Tissueon0

+mitooff 0.Tissueoff 0

NA1 , bioon1.A10

A10 , biooff 1.NA1 + a1.A11

A11 , biooff 1.NA1 + a1[mitoon1].A12 + b1.A10

A12 , biooff 1.NA1 + b1[mitooff 1].A11

Empty1 , mito21[bioon1].Tissueoff 1

120



5.2 Stochastic Semantics for Process Algebra with Hooks

+mito01[bioon1].Tissueoff 1

Tissueoff 1 , apo1[biooff 1].Empty1 + mitoon1.Tissueon1

Tissueon1 , apo1[biooff 1].Empty1 + mito12.Tissueon1

+mito10.Tissueon1 + mitooff 1.Tissueoff 1

NA2 , bioon2.A20

A20 , biooff 2.NA2 + a2.A21

A21 , biooff 2.NA2 + a2[mitoon2].A22 + b2.A20

A22 , biooff 2.NA2 + b2[mitooff 2].A21

Empty2 , mito12[bioon2].Tissueoff 2

Tissueoff 2 , apo2[biooff 2].Empty2 + mitoon2.Tissueon2

Tissueon2 , apo2[biooff 2].Empty2 + mito21.Tissueon2

+mitooff 2.Tissueoff 2

The initial state of the model is defined by the following process:

(NA0BC
∅
A11 BC∅ A22) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

with L = {|bioon0, biooff 0, bioon1, biooff 1, bioon2, biooff 2, mitoon0,

mitooff 0, mitoon1, mitooff 1,mitoon2,mitooff 2|}, K = {|mito10,mito01|}, K =

{|mito21,mito12|}.
Variables and values of the agents are:

Var(NA0) = A0 Var(A00) = A0 Var(A01) = A0 Var(A02) = A0

Val(NA0) = 0 Val(A00) = 0 Val(A01) = 1 Val(A02) = 2

Var(Empty0) = R0 Var(Tissueoff 0) = R0 Var(Tissueon0) = R0

Val(Empty0) = 0 Val(Tissueoff 0) = 1 Val(Tissueon0) = 2

Var(NA1) = A1 Var(A10) = A1 Var(A11) = A1 Var(A12) = A1

Val(NA1) = 0 Val(A10) = 0 Val(A11) = 1 Val(A12) = 2
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5.2 Stochastic Semantics for Process Algebra with Hooks

Var(Empty1) = R1 Var(Tissueoff 1) = R1 Var(Tissueon1) = R1

Val(Empty1) = 0 Val(Tissueoff 1) = 1 Val(Tissueon1) = 2

Var(NA2) = A2 Var(A20) = A2 Var(A21) = A2 Var(A22) = A2

Val(NA2) = 0 Val(A20) = 0 Val(A21) = 1 Val(A22) = 2

Var(Empty2) = R2 Var(Tissueoff 2) = R2 Var(Tissueon2) = R2

Val(Empty2) = 0 Val(Tissueoff 2) = 1 Val(Tissueon2) = 2

Functional rates and sets of participants are:

fa0 = ka/h pa0 = {A0}

fb0 = (kb ∗ A0 ∗ h)/h pb0 = {A0}

fapo0 = kapo papo0 = {R0}

fa1 = ka/h pa1 = {A1}

fb1 = (kb ∗ A1 ∗ h)/h pb1 = {A1}

fapo1 = kapo papo1 = {R1}

fa2 = ka/h pa2 = {A2}

fb2 = (kb ∗ A2 ∗ h)/h pb2 = {A2}

fapo2 = kapo papo2 = {R2}

fmito01 = km pmito01 = {R0, R1}

fmito12 = km pmito12 = {R1, R2}

fmito10 = km pmito10 = {R1, R0}

fmito21 = km pmito21 = {R2, R1}

Examples of valid transitions are:

(NA0BC
∅
A11 BC∅ A22) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

({|b2,mitooff 2|},2)−−−−−−−−−−→ (NA0BC
∅
A11 BC∅ A21) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueoff 2)

(NA0BC
∅
A11 BC∅ A22) BC

L
(Empty0BC

K
Tissueoff 1BC

K′
Tissueon2)

({|apo1,biooff 1|},1)−−−−−−−−−−→ (NA0BC
∅

NA1BC
∅
A22) BC

L
(Empty0BC

K
Empty1BC

K′
Tissueon2)
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5.3 Summary

5.3 Summary

In this chapter we have introduced process algebra with hooks, a novel process

algebra designed for multi-scale modelling of biological systems. The distinctive

features of the algebra are composed actions and a new vertical operator. These

new elements ensure that both the effects that an event produces at the scale

where it originates and the effects that propagate to other scales can be mod-

elled with a single transition. We illustrated the use of the algebra with several

examples and we compared it with process algebra with priorities, illustrating

how the former addresses the criticisms we highlighted in the latter. Finally, we

developed a stochastic semantics for process algebra with hooks, which supports

functional rates. This has been done following the approach to functional rates

we developed in Chapter 3.

In the next chapter we introduce three fundamental equivalence relations for

process algebra with hooks.
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Chapter 6

Relations for Stochastic Process

Algebra with Hooks

In this chapter we introduce three equivalence relations for stochastic process

algebra with hooks: isomorphism (≡), T-isomorphism (≡T) and Markovian T-

bisimulation ('T). The last two equivalences relate processes at specified scales.

In Section 6.1 we introduce the idea behind these relations and discuss the con-

cept of the filtering of activities. In Section 6.2 we define the relations and give

fundamental results such as equational laws and proofs of congruence. Finally,

we discuss the practical use of these relations in Section 6.2.3.

6.1 Relating Biological Systems at Specified Scales

It is common practice to describe the behaviour of a biological system at a specific

scale. When we do that, details of other scales are neglected as much as possible,

only referred to when they are strictly necessary. For example, we compare the

behaviour of two distinct populations of cells and observe that they proliferate

at the same speed. The discussion is at the cellular scale, with cells as entities

and the action of proliferation, or cell duplication, as event. Then, we might

investigate further and discover that a cell duplicates in the first population only

when a chemical A is present, in a certain amount. With this new observation, we

are referring to a different scale: the molecular scale. Investigating even further,

we might find that in the second population cell duplication is possible only if
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Figure 6.1: Two biological systems, if observed at different scales, can present
distinct or analogous behaviour.

chemicals E and F are present, at the same time and in a certain quantity. Thus at

the molecular scale the behaviour of the two populations is different. Choosing

which scale should be compared is responsibility of the modeller. In this

example, if we want to know whether the rate of growth of the two populations

is the same, the answer is yes. If instead we want to know whether the molecular

mechanisms that lead to cell duplications are the same, the answer is no. Figure

6.1 summarises this scenario: at the top of the figure, at the molecular scale, the

cell populations are different, however, at the bottom of the figure, at the cellular

scale, they are indistinguishable.

We will formalise these notions in sPAH with relations that will allow us to:

• compare the behaviour of two different process algebra models with respect

to a specified scale;

• substitute parts of a model with behaviourally equivalent and less complex

ones.

In order to relate models at a specified scale, we define a mechanism to focus

on a specified scale in sPAH. This mechanism is called filtering and consists of

removing undesired action names from valid rated transitions belonging to a rated

derivation graph. The result will be a filtered derivation graph. Because actions
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6.1 Relating Biological Systems at Specified Scales

are associated with functional rates, removing actions interferes with rating. As

a consequence, rating of transitions should always precede filtering.

In sPAH actions from every scale are collected into a unique action multi-set

that labels valid transitions. If we want to focus on a specific scale, all we need to

do is to keep only the actions pertaining to a given scale. For example, consider

the following rated transition:

M
({|a,h,x|}[{|y,z|}],r)−−−−−−−−−−→Γ M

′

From this transition it is possible to infer that actions a, h and x have been

performed, that hook actions y and z have not been used in any synchronisation

and that the rate of the transition is r. Now assume that we are interested

in only the behaviour represented by the actions in T, with T = {|x, y|}. The

corresponding filtered transition should be:

M
({|x|},{|y,z|},r)−−−−−−−−→T,Γ M

′

Notice that the rate and the multi-set of hook actions is untouched. Moreover, a

filtered activity is a triple, to distinguish it from a rated activity, which is a pair.

We introduce now the formal definitions of filtered activities, filtered transitions

and filtered derivation graph.

Definition 6.1 Filtered activities. The triple (A,E, r) such that A and E are

multi-sets of actions and r ∈ R>0 is called a filtered activity.

Definition 6.2 Function filterActivities. Given a multi-set of actions T, fil-

terActivities converts a multi-set of rated activities A into a multi-set of filtered

activities:

filterActivities(T)(A) = {|(B,E, r) | (A,E, r) ∈ A ∧B = A ∩ T|}

Definition 6.3 Current filtered composed actions of a definition process. Given

a multi-set of actions T, the multi-set of filtered composed actions that D ∈ Pd
can perform is denoted by FiltCompAct(D)T and is defined as:

FiltCompAct(D)T = {|(B,E) | A[E] ∈ CompAct(D) ∧B = A ∩ T|}
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6.1 Relating Biological Systems at Specified Scales

Definition 6.4 Current filtered activities of a model process. Given a multi-

set of actions T and an environment Γ ⊆ Names × R, the multi-set of filtered

activities that a model process M ∈ Pm can perform is denoted by FiltAct(M)T,Γ

and is defined as:

FiltAct(M)T,Γ = filterActivities(T)(RatedAct(M)Γ)

Definition 6.5 Filtered activity set. Given a multi-set of actions T and an

environment Γ ⊆ Names × R, the multi-set of filtered activities that a model

process M ∈ Pm and its derivatives can perform is denoted by
−−−−−→
FiltAct(M)T,Γ

and is defined as:

−−−−−→
FiltAct(M)T,Γ = filterActivities(T)(

−−−−−−−−−→
RatedAct(M)Γ)

Definition 6.6 Filtered moves of a definition process. Given a multi-set of

actions T, the multi-set of moves that a definition process D ∈ Pd can perform is

denoted by FiltMovesDT and is defined as:

FiltMoves(D)T = {|((B,E), A) | (A[E], A) ∈Moves(D) ∧B = A ∩ T|}

Definition 6.7 Filtered moves of a model process. Given a multi-set of actions

T and an environment Γ ⊆ Names × R, the multi-set of moves that a model

process M ∈ Pm can perform is denoted by FiltMovesMT,Γ and is defined as:

FiltMoves(M)T,Γ = {|((B,E, r), A) | ((A[E], r), A) ∈ RatedMoves(M)∧B = A∩T|}

Definition 6.8 Filtered transitions of a definition process. Given D ∈ Pd and a

multi-set of actions T, D
(B,E)−−−→T A is a valid filtered transition iff D

A[E]−−→ A for

some A such that B = A ∩ T.

Definition 6.9 Filtered transitions of a model process. Given M ∈ Pm, a multi-

set of actions T and an environment Γ ⊆ Names× R, M
(B,E,r)−−−−→T,Γ M

′ is a valid

filtered transition iff M
(A[E],r)−−−−→Γ M

′ for some A such that B = A ∩ T.
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6.2 Three Fundamental Relations

Definition 6.10 Filtered derivation graph. Given a model process M ∈ Pm, a

multi-set of actions T and an environment Γ ⊆ Names× R, the filtered derivation

graph Df (M)T,Γ is the labelled directed graph with:

• set of nodes ds(M);

• multi-set of transition labels
−−−−−→
FiltAct(M)T,Γ;

• multi-set of labelled transitions →f⊆ ds(M) ×
−−−−−→
FiltAct(M)T,Γ × ds(M).

Given M ′ ∈ ds(M), (M ′,A,E, ra,M
′′) ∈→f iff M ′ (A,E,ra)−−−−→T,Γ M

′′, with the

same multiplicity of ((A,E, ra),M
′′) in FiltMoves(M ′)T,Γ.

• multi-set of labelled transitions→o⊆ ds(M)×
−−−−−−→
OpenAct(M)×ds(M). Given

M ′ ∈ ds(M), (M ′,A[E],Γ′,M ′′) ∈→o iff M ′ (A[E],Γ′)−−−−−→ M ′′ and (A[E],Γ′) ∈
OpenAct(M), with the same multiplicity of ((A[E],Γ′),M ′′) in Moves(M ′).

Df (M)T,Γ can be written Df (M) if T and Γ are clear from the context.

With the notion of filtered derivation graph we can now define relations be-

tween sPAH processes based on filtering and relate sPAH processes at specified

scales.

6.2 Three Fundamental Relations

Three equivalence relations on sPAH processes are defined: isomorphism (≡),

T-isomorphism (≡T) and Markovian T-bisimulation ('T). In particular:

• Isomorphism (≡) ensures that two processes generate equivalent derivation

graphs. This equivalence is used to prove fundamental equivalence laws,

such as P1 BC
L
P2 ≡ P2 BC

L
P1;

• T-isomorphism (≡T) ensures that two processes generate equivalent deriva-

tion graphs after rating and filtering activities;

• Markovian T-bisimulation ('T) ensures that two processes produce the same

rated and filtered activities at the same time and with the same probability,

while presenting identical open transitions.

Before introducing the formal definitions of three fundamental relations, we

illustrate them with an example. Consider the following processes:
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6.2 Three Fundamental Relations

Figure 6.2: Filtered derivation graphs of the example in this section. a) if ra = rd,
the transition systems are T-isomorphic. b) if rd = ra + re = r the transition
systems are Markovian T-bisimilar.

A0 , a[b].A1 D0 , b[c].D1 A1 , nil D1 , nil

B0 , b[c].B1 E0 , d.E1 B1 , nil E1 , nil

C0 , d[b].C1 C1 , nil

Consider two sPAH model processes: A0 BC

{|b|}
B0 and (C0 BC

{|b|}
D0)BC

{|d|}
E0. The fol-

lowing transitions are possible:

A0 BC

{|b|}
B0

({|a,b|}[c],Γ)−−−−−−→ A1 BC

{|b|}
B1

(C0 BC

{|b|}
D0)BC

{|d|}
E0

({|d,b|}[c],Γ′)−−−−−−−→ (C1 BC

{|b|}
D1)BC

{|d|}
E1

These are the only possible transitions. We cannot consider them equivalent

in the sense that they generate isomorphic derivation graphs, so A0 BC
{|b|}

B0 6≡

(C0 BC

{|b|}
D0)BC

{|d|}
E0. However, if we decide to select only actions in the multi-set

T = {|b|}, and rating yields rates ra and rd, we obtain transitions:

A0 BC

{|b|}
B0

({|b|},{|c|},ra)−−−−−−−→T A1 BC

{|b|}
B1

(C0 BC

{|b|}
D0)BC

{|d|}
E0

({|b|},{|c|},rd)−−−−−−−→T (C1 BC

{|b|}
D1)BC

{|d|}
E1

If ra = rd, the two models generate T-isomorphic filtered derivation graphs, writ-

ten A0 BC

{|b|}
Bl

0 ≡{|b|} (C0 BC{|b|} D0)BC
{|d|}

E0 (Figure 6.2, a). We will show later that ≡T

is a congruence for sPAH processes, which means that substituting one for the

other within a larger sPAH model will produce a sPAH model that is T-isomorphic

to the original one.

Now assume A0 , a[b].A1 + e[b].A1, where e is a biochemical action. This

produces an additional transition for A0 BC

{|b|}
B0:

A0 BC

{|b|}
B0

({|e,b|}[c],Γ′′)−−−−−−−→ A1 BC

{|b|}
B1
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that filtered for {|b|} becomes:

A0 BC

{|b|}
B0

({|b|},{|c|},re)−−−−−−−→T A1 BC

{|b|}
B1

As a result the two models are no longer T-isomorphic. However, if rd = ra+re =

r, both A0 BC
b
B0 and (C0 BC

{|b|}
D0)BC

{|d|}
E0 can move to a terminal state with filtered

set of layer actions {|b|} and set of hook actions {|c|} with a total rate of r. In other

words, the pair ({|b|}, {|c|}) appears on an activity at the same time with the same

probability, implying the two model processes are Markovian T-bisimilar, written

A0 BC

{|b|}
B0 '{|b|} (C0 BC

{|b|}
D0)BC

{|d|}
E0 (Figure 6.2, b). Again, we will demonstrate 'T

is a congruence for process algebra with hooks processes.

In the next two sections we define formally the three equivalence relations and

their fundamental properties.

6.2.1 Isomorphism and (T,Γ)-isomorphism

In this section we define formally isomorphism (≡) and (T,Γ)-isomorphism (≡T,Γ)

on sPAH processes. Two sPAH processes are considered isomorphic if their deriva-

tion graphs are equivalent, i.e. if it is possible to define a bijection F between the

states of the two derivation graphs such that the moves of the image under F of

a state are always identical to the moves of the same states where in each move

the resulting state is replaced by its image under F. A similar definition is given

for (T,Γ)-isomorphism, where a filtered derivation graph is considered instead of

a derivation graph.

In addition we prove that ≡⊂≡T,Γ (Propositions 6.18 and 6.19), we give equa-

tional laws for ≡ (Proposition 6.20) and we show that both ≡ and ≡T,Γ are

congruences (Propositions 6.22 and 6.23).

Definition 6.11 Function apply. Given a function f : P → P and a multi-set

of filtered moves MSet, function apply applies f to MSet in the following way:

apply(f)(MSet) = {|(a, f(P )) | (a, P ) ∈MSet|}

Definition 6.12 Model process isomorphism. A function F: ds(M1)→ ds(M2)

is a model process isomorphism between M1 and M2 (M1,M2 ∈ Pm), if F is
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6.2 Three Fundamental Relations

bijective and ∀M ′
1 ∈ ds(M1),

Moves(F(M ′
1)) = apply(F)(Moves(M ′

1))

Definition 6.13 Isomorphic model processes. Two model processes M1,M2 ∈
Pm are isomorphic, written M1 ≡M2, if there is a model process isomorphism F

between them such that D(F(M1)) = D(M2).

Definition 6.14 Model process (T,Γ)-isomorphism. Given an environment Γ ⊆
Names× R and an action multi-set T, a function F: ds(M1) → ds(M2) is a

model component (T,Γ)-isomorphism between M1 and M2 (M1,M2 ∈ Pm), if F

is bijective and ∀M ′
1 ∈ ds(M1),

FiltMoves(F(M ′
1))T,Γ = apply(F)(FiltMoves(M ′

1)T,Γ)

and

OpenMoves(F(M ′
1)) = apply(F)(OpenMoves(M ′

1))

Definition 6.15 (T,Γ)-isomorphic model processes. Given an environment Γ ⊆
Names× R and an action multi-set T, two model processes M1,M2 ∈ Pm are

(T,Γ)-isomorphic, written M1 ≡T,Γ M2, if there is a model component (T,Γ)-

isomorphism F between them such that Df (F(M1))T,Γ = Df (M2)T,Γ.

If Γ is clear from the context, we write M1 ≡T M2 instead of M1 ≡T,Γ M2 and

we say M1 and M2 are T-isomorphic.

Definition 6.16 Isomorphic definition processes. Two definition processesD1, D2 ∈
Pd are isomorphic (D1 ≡ D2) iff there exists an bijective function F : ds(D1) →
ds(D2) such that ∀A ∈ ds(D1), A ≡ F(A) and

Moves(D2) = apply(F)(Moves(D1))

Definition 6.17 (T,Γ)-isomorphic definition processes. Given a multi-set of

actions T and an environment Γ ⊆ Names×R, two definition processes D1, D2 ∈
Pd are (T,Γ)-isomorphic (D1 ≡T,Γ D2) iff there exists an bijective function F :
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ds(D1)→ ds(D2) such that ∀A ∈ ds(D1), A ≡T,Γ F(A) and

FiltMoves(D2)T = apply(F)(FiltMoves(D1)T)

Proposition 6.18 Given M1,M2 ∈ Pm,

M1 ≡M2 ⇒ ∀ multi-sets of actions T,∀Γ ⊆ Names× R, M1 ≡T,Γ M2

Proof. We just need to prove is that ∀ multi-sets of actions T, ∀Γ ⊆ Names×R,

∀M ′
1 ∈ ds(M1) if Moves(F(M ′

1)) = apply(F)(Moves(M ′
1)) then

FiltMoves(F(M ′
1))T,Γ = apply(F)(FiltMoves(M ′

1)T,Γ)

and

OpenMoves(F(M ′
1)) = apply(F)(OpenMoves(M ′

1)

which is trivially true because filtered moves and open moves are derived from

the moves of processes in the same way.

Proposition 6.19 Given D1, D2 ∈ Pd,

D1 ≡ D2 ⇒ ∀ multi-sets of actions T,∀Γ ⊆ Names× R, D1 ≡T,Γ D2

Proof. Observe that if D1 ≡ D2 then there exists an bijective function F :

ds(D1)→ ds(D2) such that ∀A ∈ ds(D1) then A ≡ F(A) and

Moves(D2) = apply(F)(Moves(D1))

This implies that ∀ multi-sets of actions T, ∀Γ ⊆ Names × R, ∀A ∈ ds(D1)

then A ≡T,Γ F(A) because of Proposition 6.18. Moreover, FiltMoves(D2)T =

apply(F)(FiltMoves(D1)T) because filtered moves are derived in the same way

from the moves of processes.
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Proposition 6.20 Equational laws for isomorphic sPAH processes. The fol-

lowing laws can be proved using the stochastic operational semantics and the

definition of model and definition process isomorphisms. These are only some

examples of equational laws that can be proved on sPAH processes.

1. D1 +D2 ≡ D2 +D1;

2. (D1 +D2) +D3 ≡ D1 + (D2 +D3);

3. M1 BC
L
M2 ≡M2 BC

L
M1;

4. (M1 BC
L
M2)BC

L
M3 ≡M1 BC

L
(M2 BC

L
M3);

5. M1 BC

L
M2 ≡M2 BC

L
M1;

6. (M1 BC
L
M2)BC

K
M3 ≡ M1 BC

L
(M2 BC

K
M3), if ∀(A[E],Γ) ∈

−−−−−−→
Activities(M1),

∀(N[H],Γ′′) ∈
−−−−−−→
Activities(M3), N ∩ (L \K) = ∅ ∧ A ∩ (K \ L) = ∅;

Proof. We prove each law in turn:

1. Moves(D1 + D2) = Moves(D1) ]Moves(D2) = Moves(D2 + D1) with F

the identity function id : Pm → Pm.

2. proof analogous to 1.

3. We choose model process isomorphism F as

∀M ′
1
BC
L
M ′

2 ∈ ds(M1 BC
L
M2), F(M ′

1
BC
L
M ′

2) = M ′
2
BC
L
M ′

1

with M ′
1 ∈ ds(M1) and M ′

2 ∈ ds(M2). Clearly, because of the symmetry of

operator BC
L

,

Moves(F(M ′
1
BC
L
M ′

2)) = apply(F)(Moves(M ′
1
BC
L
M ′

2))

4. proof analogous to 3.

5. We choose model process isomorphism F as

∀M ′
1 BC

L
M ′

2 ∈ ds(M1 BC

L
M2), F(M ′

1 BC

L
M ′

2) = M ′
2 BC

L
M ′

1
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with M ′
1 ∈ ds(M1) and M ′

2 ∈ ds(M2). Clearly, because of the symmetry of

operator BC

L
,

Moves(F(M ′
1 BC

L
M ′

2)) = apply(F)(Moves(M ′
1 BC

L
M ′

2))

6. We choose model process isomorphism F as

∀(M ′
1
BC
L
M ′

2)BC
K
M ′

3 ∈ ds((M1 BC
L
M2)BC

K
M3),

F((M ′
1
BC
L
M ′

2)BC
K
M ′

3) = M ′
1
BC
L

(M ′
2
BC
K
M ′

3)

with M ′
1 ∈ ds(M1), M ′

2 ∈ ds(M2) and M ′
3 ∈ ds(M3). Using the additional

conditions of 6. we have

Moves(F((M ′
1
BC
L
M ′

2)BC
K
M ′

3)) = apply(F)((Moves(M ′
1
BC
L
M ′

2)BC
K
M ′

3))

Proposition 6.21 Equational laws for (T,Γ)-isomorphic sPAH processes. Be-

cause of Propositions 6.18 and 6.19, the equational laws for isomorphic sPAH

processes hold as equational laws for (T,Γ)-isomorphic sPAH processes.

Proposition 6.22 Isomorphism as a Congruence. If P1, P2 ∈ P such that

P1 ≡ P2, then

1. A[E].P1 ≡ A[E].P2, with P1, P2 agents

2. P1 +Q ≡ P2 +Q, with P1, P2, Q ∈ Pd

3. P1 BC
L
Q ≡ P2 BC

L
Q, with P1, P2, Q ∈ Pm

4. P1 BC

L
Q ≡ P2 BC

L
Q, with P1, P2, Q ∈ Pm

Proof. We prove each case in turn:

1. A[E].P1 and A[E].P2 are definition processes. Because P1 ≡ P2 there exists

model process isomorphism F between them such that F(P1) = P2 and
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P1 ≡ F(P1). Clearly, we have

Moves(A[E].P2) = apply(F)(Moves(A[E].P1))

2. From the assumptions we know that ∃F : ds(P1) → ds(P2) bijective such

that F(P1) = P2 and ∀A ∈ ds(P1), A ≡ F(A) and

Moves(P2) = apply(F)(Moves(P1))

Thus, we need G : ds(P1 + Q) → ds(P2 + Q) bijective such that ∀A ∈
ds(P1 +Q), A ≡ F(A) and

Moves(P2 +Q) = apply(G)(Moves(P1 +Q))

We define G as:

G(A) =

A, if Q
a−→ A

F(A), if P1
a−→ A

Both cases of G ensure that G(A) ≡ A. Finally:

Moves(P2 +Q) = Moves(P2) ]Moves(Q) =

apply(F)(Moves(P1)) ] apply(id)(Moves(Q)) = apply(G)(Moves(P1 +Q))

3. We know there is a model process isomorphism F between P1 and P2. Each

element of ds(P1 BC
L
Q) has the form P ′1 BCL Q′. We define a model process

isomorphism G as: ∀P ′1 BCL Q′ ∈ ds(P1 BC
L
Q), with P ′1 ∈ ds(P1) and Q′ ∈

ds(Q),

G(P ′1 BCL Q′) = F(P ′1)BC
L
Q′

G is a model process isomorphism because F is a model process isomorphism.
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In fact:

Moves(G(P ′1 BCL Q′)) = Moves(F(P ′1)BC
L
Q′) =

{|((A[E],Γ), R BC
L
Q′) | ((A[E],Γ), R) ∈Moves(F(P ′1)) ∧A ∩ L = ∅|}]

{|((A[E],Γ),F(P ′1)BC
L
Q′′) | ((A[E],Γ), Q′′) ∈Moves(Q′) ∧A ∩ L = ∅|}]

{|((A[E],Γ), R BC
L
Q′′)) | ((A1[E1],Γ1), R) ∈Moves(F(P ′1))∧

((A2[E2],Γ2), Q′′) ∈Moves(Q′) ∧A1 ∩A2 ∩ L 6= ∅∧

A = A1 ∪A2 ∧ E = E1 ] E2 ∧ Γ = Γ1 ∪ Γ2|} =

{|((A[E],Γ),F(P ′′1 )BC
L
Q′) | ((A[E],Γ),F(P ′′1 )) ∈ apply(F)(Moves(P ′1))∧

A ∩ L = ∅|}]

{|((A[E],Γ),F(P ′1)BC
L
Q′′) | ((A[E],Γ), Q′′) ∈ apply(id)(Moves(Q′))∧

A ∩ L = ∅|}]

{|((A[E],Γ),F(P ′′1 )BC
L
Q′′)) | ((A1[E1],Γ1),F(P ′′1 )) ∈ apply(F)(Moves(P ′1))

∧((A2[E2],Γ2), Q′′) ∈ apply(id)(Moves(Q′)) ∧A1 ∩A2 ∩ L 6= ∅∧

A = A1 ∪A2 ∧ E = E1 ] E2 ∧ Γ = Γ1 ∪ Γ2|} =

apply(G)(Moves(P ′1 BCL Q′)

4. With the same procedure used for 3, we define a model process isomorphism

G as: ∀P ′1 BC

L
Q′ ∈ ds(P1 BC

L
Q), with P ′1 ∈ ds(P1) and Q′ ∈ ds(Q),

G(P ′1 BC

L
Q′) = F(P ′1) BC

L
Q′

G is a model process isomorphism because F is a model process isomorphism

and it can be proved in analogy with point 3.

Proposition 6.23 (T,Γ)-isomorphism as a Congruence. If P1, P2 ∈ P such that

P1 ≡T,Γ P2, then

1. A[E].P1 ≡T,Γ A[E].P2, with P1, P2 agents
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2. P1 +Q ≡T,Γ P2 +Q, with P1, P2, Q ∈ Pd

3. P1 BC
L
Q ≡T,Γ P2 BC

L
Q, with P1, P2, Q ∈ Pm

4. P1 BC
L
Q ≡T,Γ P2 BC

L
Q, with P1, P2, Q ∈ Pm

Proof. Proof of each case:

1. Clearly ds(A[E].P1) = {P1} and ds(A[E].P2) = {P2}. Thus we construct

a bijective function G : ds(A[E].P1) → ds(A[E].P2) as G(P1) = P2, while

we already have as an assumption that P1 ≡T,Γ P2 and so P1 ≡T,Γ G(P1).

Finally, the only filtered composed action possible for both processes is

(A ∩ T)[E]. This implies that

FiltMoves(A[E].P2)T = apply(G)(FiltMoves(A[E].P1)T)

2. We know P1, P2 ∈ Pd and there exists a bijective function F : ds(P1) →
ds(P2) s.t. ∀A ∈ ds(P1), A ≡T,Γ F(A) and

FiltMoves(P2)T = apply(F)(FiltMoves(P1)T)

Observe that ds(P1 +Q) = ds(P1)∪ds(Q) and ds(P2 +Q) = ds(P2)∪ds(Q).

We construct G : ds(P1 +Q)→ ds(P2 +Q) as follows:

G(A) =

F(A) if A ∈ ds(P1)

A if A ∈ ds(Q)

this implies that ∀A ∈ ds(P1 +Q), A ≡T,Γ G(A) and

FiltMoves(P2 +Q)T = FiltMoves(P2)T ] FiltMoves(Q)T =

apply(F)(FiltMoves(P1)T) ] apply(id)(FiltMoves(Q)T) =

apply(G)(FiltMoves(P1 +Q)T)

3. We know P1, P2 ∈ Pm, and there exists an bijective function F : ds(P1) →
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ds(P2) s.t. F(P1) = P2 and ∀P ′ ∈ ds(P1)

FiltMoves(F(P ′))T,Γ = apply(F)(FiltMoves(P ′)T,Γ)

We construct a (T,Γ)-isomorphism G : ds(P1 BC
L
Q) → ds(P2 BC

L
Q) such

that ∀P ′ BC
L
Q′ ∈ ds(P1 BC

L
Q)

FiltMoves(G(P ′ BC
L
Q′))T,Γ = apply(G)(FiltMoves(P ′ BC

L
Q′)T,Γ)

We choose G(P ′ BC
L
Q′) = F(P ′)BC

L
Q′. In fact:

FiltMoves(G(P ′ BC
L
Q′))T,Γ = FiltMoves(F(P ′)BC

L
Q′)T,Γ =

{|(a,R BC
L
Q′) | (a,R) ∈ FiltMoves(F(P ′))T,Γ|}]

{|(a,F(P ′)BC
L
Q′′) | (a,Q′′) ∈ FiltMoves(Q′)T,Γ|}]

{|((A,E, r), R BC
L
Q′′)) | ((A1[E1],Γ1), R) ∈ OpenMoves(F(P ′))∧

((A2[E2],Γ2), Q′′) ∈ OpenMoves(Q′)A1 ∩A2 ∩ L 6= ∅∧

(A1 ∪A2[E1 ] E2],Γ1 ∪ Γ2) ∈ ClosedAct(F(P ′)BC
L
Q′)∧

{|(A,E, r)|} = filterActivities(T)(rateActivities(Γ)(

{|(A1 ∪A2[E1 ] E2],Γ1 ∪ Γ2)|}))|} =

apply(G)(FiltMoves(P ′ BC
L
Q′)T,Γ)

Notice that if an activity is filtered it will no longer synchronise via BC
L

,

because it is derived from a closed activity and because of condition 3 in

Definition 5.12 (well formed process algebra with hooks models). Moreover,

new filtered moves can be obtained only from the synchronisation of two

open activities which form a single closed activity. The last = is correct

because

FiltMoves(F(P ′))T,Γ = apply(F)(FiltMoves(P ′)T,Γ)
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and because

OpenMoves(F(P ′)) = apply(F)(OpenMoves(P ′))

4. We know P1, P2 ∈ Pm, and there exists an bijective function F : ds(P1) →
ds(P2) s.t. F(P1) = P2 and ∀P ′ ∈ ds(P1)

FiltMoves(F(P ′))T,Γ = apply(F)(FiltMoves(P ′)T,Γ)

We construct a (T,Γ)-isomorphism G : ds(P1 BC

L
Q) → ds(P2 BC

L
Q) such

that ∀P ′ BC

L
Q′ ∈ ds(P1 BC

L
Q)

FiltMoves(G(P ′ BC

L
Q′))T,Γ = apply(G)(FiltMoves(P ′ BC

L
Q′)T,Γ)

We choose G(P ′ BC

L
Q′) = F(P ′) BC

L
Q′. In fact:

FiltMoves(G(P ′ BC

L
Q′))T,Γ = FiltMoves(F(P ′) BC

L
Q′)T,Γ =

{|((A,E, r), R BC

L
Q′) | ((A,E, r), R) ∈ FiltMoves(F(P ′))T,Γ ∧ ¬(∃B,E′,

Γ′, Q′′ s.t. ((B[E′],Γ′), Q′′) ∈Moves(Q′) ∧B ⊆ E ∩ L)|}]

{|((B,E′, r),F(P ′) BC

L
Q′′) | ((B,E′, r), Q′′) ∈ FiltMoves(Q′)T,Γ ∧ ¬(∃A,

E,Γ′, R s.t. ((A[E],Γ′), R) ∈Moves(F(P ′)) ∧A ⊆ E′ ∩ L)|}]

{|((A ∪ (B \ T), (E \B) ] E′, r), R BC

L
Q′′) | ((A,E, r), R) ∈

FiltMoves(F(P ′))T,Γ ∧ ((B[E′],Γ2), Q′′) ∈Moves(Q′) ∧B ⊆ E ∩ L∧

¬(∃B′,E′′,Γ′2, Q′′′ s.t. ((B′[E′′],Γ′2), Q′′′) ∈Moves(Q′) ∧B′ ⊆ E ∩ L∧

|B′| > |B|)|}]
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{|(((A \ T) ∪B, (E′ \A) ] E, r), R BC

L
Q′′) | ((A,E,Γ1), R) ∈

Moves(F(P ′)) ∧ ((B,E′, r), Q′′) ∈ FiltMoves(Q′)T,Γ ∧A ⊆ E′ ∩ L∧

¬(∃A′,E′′,Γ′1, R′ s.t. ((A′[E′′],Γ′1), R′) ∈Moves(F(P ′)) ∧A′ ⊆ E′ ∩ L∧

|A′| > |A|)|} =

apply(G)(FiltMoves(P ′ BC

L
Q′)T,Γ)

Notice that synchronisation via BC

L
only affects the action sets in the ac-

tivity, leaving the rate unaltered. In particular, if ((A,E, r), P ′′) is a filtered

move of P ′, this cannot synchronise with filtered moves of Q′ via BC

L
. This

is because of condition 4 in Definition 5.12 and because B ⊆ L ∩ E should

hold for a move ((B[E′],Γ), Q′′) of Q′. Because E cannot contain active ac-

tions (i.e. actions a such that fa ∈ F) then B does not as well and activity

(B[E′],Γ) is therefore open.

6.2.2 Markovian (T,Γ)-bisimulation

In this section we define formally Markovian (T,Γ)-bisimulation ('T,Γ) on sPAH

processes. The definition is based on strong equivalence in PEPA (Hillston, 1996)

and integrated equivalence in EMPA (Bernardo, 1996). Two sPAH processes

are considered Markovian (T,Γ)-bisimilar if it is possible to group the states of

their filtered derivation graphs into equivalence classes in such a way that states

belonging to the same equivalence class are characterised as follows:

• the sum of the rates of rated moves presenting the same action sets from a

state in an equivalence class toward the states of another equivalence class

is the same for all states in the same equivalence class;

• the set of open moves from a state in an equivalence class toward the states

of another equivalence class is the same for all states in the same equivalence

class.

In addition we prove that ≡T,Γ⊂'T,Γ (Propositions 6.31 and 6.32), and we

show that 'T,Γ is an equivalence relation (Proposition 6.28) and a congruence

(Proposition 6.34).
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Definition 6.24 Functions µT,Γ and νT,Γ. Function µT,Γ returns the rate r at

which a model process M can become M ′ with filtered transitions labelled with

(A,E). Function νT,Γ returns instead the rate at which M can move to a set of

model processes C with filtered transitions labelled with (A,E).

µT,Γ(M,A,E,M ′) =
∑
ri∈I

ri

where I = {|r | ((A,E, r),M ′) ∈ FiltMoves(M)T,Γ|}. For each rate r, the same

multiplicity of ((A,E, r),M ′) in FiltMoves(M)T,Γ is used.

νT,Γ(M,A,E,C) =
∑
M ′∈C

µT,Γ(M,A,E,M ′)

Definition 6.25 Open Activities toward a set of model processes. The multi-set

of activities toward a set of model processes C ⊆ Pm of a model process M ∈ Pm
is defined as:

OpenAct(M,C) = {|(A[E],Γ) | ((A[E],Γ),M ′) ∈ OpenMoves(M) ∧M ′ ∈ C|}

Definition 6.26 Model process Markovian (T,Γ)-bisimulation. Given an action

multi-set T and an environment Γ ⊆ Names × R, an equivalence relation over

model processes R ⊆ Pm × Pm is a model process Markovian (T,Γ)-bisimulation

iff whenever (M1,M2) ∈ R then ∀ action multi-sets A and E and ∀C ∈ Pm/R

νT,Γ(M1,A,E,C) = νT,Γ(M2,A,E,C)

and

OpenAct(M1,C) = OpenAct(M2,C)

Definition 6.27 Model process Markovian (T,Γ)-bisimilarity. Model process

Markovian (T,Γ)-bisimilarity, denoted 'T,Γ, is the union of all model process

Markovian (T,Γ)-bisimulations, i.e.

'T,Γ=
⋃
{R | R is a model process Markovian (T,Γ)-bisim.}
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Two model processes M1,M2 ∈ Pm are Markovian (T,Γ)-bisimilar, denoted

M1 'T,Γ M2, iff there is a model process (T,Γ)-bisimulation R between them such

that (M1,M2) ∈ R.

If Γ is clear from the context, we write M1 'T M2 instead of M1 'T,Γ M2 and

we say M1 and M2 are Markovian T-bisimilar.

Proposition 6.28 Model process Markovian (T,Γ)-bisimilarity is an equivalence

relation.

Proof. A model process Markovian (T,Γ)-bisimilarity is an equivalence relation

iff it is symmetric, reflexive and transitive. The first two properties are trivially

true. We prove transitivity.

Prove that if P 'T,Γ Q and Q 'T,Γ R then P 'T,Γ R.

P 'T,Γ Q implies there exists an equivalence relation over model processes

R1 ⊆ Pm × Pm such that (P,Q) ∈ R1 and R1 is a model process Markovian

(T,Γ)-bisimulation. In the same way, Q 'T,Γ R implies there exists an equivalence

relation over model processes R2 ⊆ Pm × Pm such that (Q,R) ∈ R2 and R2 is

a model process Markovian (T,Γ)-bisimulation. We prove that there exists an

equivalence relation over model processes R3 ⊆ Pm × Pm such that (P,R) ∈ R3

and R3 is a model process Markovian (T,Γ)-bisimulation.

We propose R3 such that (P,R) ∈ R3 ⇔ (∃Q ∈ Pm s.t. (P,Q) ∈ R1 and

(Q,R) ∈ R2).

In fact, if (P,R) ∈ R3 then ∀ action multi-sets A and E and ∀C3 ∈ Pm/R3

νT,Γ(P,A,E,C3) = νT,Γ(P,A,E,C1) = νT,Γ(Q,A,E,C1)

= νT,Γ(Q,A,E,C2) = νT,Γ(R,A,E,C2) = νT,Γ(R,A,E,C3)

and

OpenAct(P,C3) = OpenAct(P,C1) = OpenAct(Q,C1)

= OpenAct(Q,C2) = OpenAct(R,C2) = OpenAct(R,C3)

with C1 ∈ Pm/R1, C2 ∈ Pm/R2 and with C1 ∩ C2 6= ∅, C1 ∩ C3 6= ∅ and

C2 ∩ C3 6= ∅.
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Definition 6.29 Filtered composed actions toward a set of model processes.

Given a multi-set of actions T, the multi-set of composed actions toward a set of

model processes C ⊆ Pm of a definition process D ∈ Pd is defined as:

FiltCompAct(D,C)T = {|(A,E) | ((A,E), D′) ∈ FiltMoves(D)T ∧D′ ∈ C|}

Definition 6.30 Markovian (T,Γ)-bisimilar definition processes. Given an ac-

tion multi-set T and an environment Γ ⊆ Names × R, two definition processes

D1, D2 ∈ Pd are definition process Markovian (T,Γ)-bisimilar (D1 'T,Γ D2) iff

∀C ∈ Pm/ 'T,Γ

FiltCompAct(D1,C)T = FiltCompAct(D2,C)T

Proposition 6.31 Given M1,M2 ∈ Pm,

∀Γ ⊆ Names× R, ∀ multi-sets of actions T, M1 ≡T,Γ M2 =⇒ M1 'T,Γ M2

Proof. We prove that ≡T,Γ is a model process Markovian (T,Γ)-bisimulation. Ob-

serve that M1 ≡T,Γ M2 iff M2 = F(M1) with F model process (T,Γ)-isomorphism.

By definition of model process (T,Γ)-isomorphism we have that ∀M ′
1 ∈ ds(M1)

FiltMoves(F(M ′
1))T,Γ = apply(F)(FiltMoves(M ′

1)T,Γ)

and

OpenMoves(F(M ′
1)) = apply(F)(OpenMoves(M ′

1))

This implies that ∀M ′ first derivative of M1, ∀M ′′ ∈ ds(M ′)

FiltMoves(F(M ′′))T,Γ = apply(F)(FiltMoves(M ′′)T,Γ)

and

OpenMoves(F(M ′′)) = apply(F)(OpenMoves(M ′′))

Which implies M ′ ≡T,Γ F(M ′). From this we derive that, ∀ multi-sets of actions
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A and E and ∀C ∈ Pm/ ≡T,Γ

νT,Γ(M1,A,E,C) =
∑
M ′∈C

µT,Γ(M1,A,H,M
′) =

∑
M ′∈C

µT,Γ(F(M1),A,H,F(M ′))

=
∑
M ′∈C

µT,Γ(M2,A,H,M
′) = νT,Γ(M2,A,H,C)

and

OpenAct(M1,C) = OpenAct(M2,C)

This is possible because M ′ and F(M ′) are (T,Γ)-isomorphic and belong to the

same equivalence class C ∈ Pm/ ≡T,Γ.

Proposition 6.32 Given D1, D2 ∈ Pd,

∀Γ ⊆ Names× R, ∀ multi sets of actions T, D1 ≡T,Γ D2 =⇒ D1 'T,Γ D2

Proof. Given arbitrary Γ ⊆ Names × R and T ⊆ Actions, D1 ≡T,Γ D2 implies

there exists a bijective function F : ds(D1) → ds(D2) such that ∀A ∈ ds(D1),

A ≡T,Γ F(A) and

FiltMoves(D2)T = apply(F)(FiltMoves(D1)T)

We know from Proposition 6.31 that A ≡T,Γ F(A) implies A 'T,Γ F(A). Thus,

A and F(A) are in the same equivalence class C ∈ Pm/ 'T,Γ. This implies

∀C ∈ Pm/ 'T,Γ

FiltCompAct(D1,C)T = FiltCompAct(D2,C)T

Proposition 6.33 Equational laws for Markovian (T,Γ)-bisimilar sPAH pro-

cesses. Because of Propositions 6.31 and 6.32, the equational laws for (T,Γ)-

isomorphic sPAH processes hold as equational laws for Markovian (T,Γ)-bisimilar

sPAH processes.
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Proposition 6.34 Markovian (T,Γ)-bisimulation as a Congruence. If P1, P2 ∈ P
such that P1 'T,Γ P2, then

1. A[E].P1 'T,Γ A[E].P2, with P1, P2 agents

2. P1 +Q 'T,Γ P2 +Q, with P1, P2, Q ∈ Pd

3. P1 BC
L
Q 'T,Γ P2 BC

L
Q, with P1, P2, Q ∈ Pm

4. P1 BC

L
Q 'T,Γ P2 BC

L
Q, with P1, P2, Q ∈ Pm

Proof. Proof of each case:

1. We know by assumption that P1 'T,Γ P2. This implies P1, P2 ∈ C, with

C ∈ Pm/ 'T,Γ. Now, FiltMoves(A[E].P1)T = {|(((A \ T),E), P1)|} and

FiltMoves(A[E].P2)T = {|(((A \ T),E), P2)|}. This implies ∀C ∈ Pm/ 'T,Γ

FiltCompAct(A[E].P1,C)T = FiltCompAct(A[E].P2,C)T

2. P1 + Q and P2 + Q are definition processes. Because P1 'T,Γ P2 we have

that ∀C ∈ Pm/ 'T,Γ

FiltCompAct(P1 +Q,C)T =

FiltCompAct(P1,C)T ] FiltCompAct(Q,C)T =

FiltCompAct(P2,C)T ] FiltCompAct(Q,C)T =

FiltCompAct(P2 +Q,C)T

3. We prove that the relation R = {(P1 BC
L
Q,P2 BC

L
Q) | P1 'T,Γ P2} is a

Markovian (T,Γ)-bisimulation. We consider four cases:

(a) ∀r ∈ R, (A,E, r) 6∈ FiltAct(P1 BC
L
Q)T,Γ. This implies that ∀r ∈

R, (A,E, r) 6∈ FiltAct(P2 BC
L
Q)T,Γ, because a filtered activity for

P BC
L
Q is either a filtered activity of P , a filtered activity of Q or

it is derived from a closed activity which is the synchronisation of an

open activity from P and one from Q and P1 'T,Γ P2 implies
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• ∀r ∈ R, (A,E, r) 6∈ FiltAct(P1)T,Γ ⇔ ∀r ∈ R, (A,E, r) 6∈
FiltAct(P2)T,Γ;

• ∀C ∈ Pm/ 'T,Γ OpenAct(P1,C) = OpenAct(P2,C).

It follows that ∀C ∈ Pm/ 'T,Γ

νT,Γ(P1 BC
L
Q,A,E, C) = νT,Γ(P2 BC

L
Q,A,E, C) = 0

(b) ∃r ∈ R, ((A,E, r), P ′1 BCL Q) ∈ FiltMoves(P1 BC
L
Q)T,Γ. Recall that

P1 'T,Γ P2 implies

∃r ∈ R, ((A,E, r), P ′1) ∈ FiltMoves(P1)T,Γ ⇔

∃r′ ∈ R, ((A,E, r′), P ′2) ∈ FiltMoves(P2)T,Γ

with P ′1 'T,Γ P
′
2, because νT,Γ(P1,A,E, [P

′
1]'T,Γ

) = νT,Γ(P2,A,E, [P
′
1]'T,Γ

).

It follows that

νT,Γ(P1 BC
L
Q,A,E, [P ′1 BCL Q]R) = νT,Γ(P1,A,E, [P

′
1]'T,Γ

) =

νT,Γ(P2,A,E, [P
′
1]'T,Γ

) = νT,Γ(P2 BC
L
Q,A,E, [P ′2 BCL Q]R)

It is also important to recall that if an activity is filtered then it is

derived from a closed activity, which in turn means that no further

synchronisation is possible via BC
L

. This is because of Condition 3 in

Definition 5.12.

(c) ∃r ∈ R, ((A,E, r), P1 BC
L
Q′) ∈ FiltMoves(P1 BC

L
Q)T,Γ. It follows

that

νT,Γ(P1 BC
L
Q,A,E, [P1 BC

L
Q′]R) = νT,Γ(Q,A,E, [Q′]'T,Γ

) =

= νT,Γ(P2 BC
L
Q,A,E, [P1 BC

L
Q′]R)

Because P1 'T,Γ P2 and so P2 BC
L
Q′ ∈ [P1 BC

L
Q′]R.

(d) ∃r ∈ R, ((A,E, r), P ′1 BCL Q′) ∈ FiltMoves(P1 BC
L
Q)T,Γ. The filtered

move ((A,E, r), P ′1 BCL Q′) must be the result of a synchronisation be-

tween an open move from P1 and an open move from Q. In par-

ticular, it must be that ∃(A1[E1],Γ1) ∈ OpenAct(P1, [P
′
1]'T,Γ

) and
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6.2 Three Fundamental Relations

∃(A2[E2],Γ2) ∈ OpenAct(Q, [Q′]'T,Γ
) such that:

• B = A1 ∪A2, E = E1 ] E2 and Γ′ = Γ1 ∪ Γ2;

• (B[E],Γ′) ∈ ClosedAct(P1 BC
L
Q);

• {a} = activeActions(B)F;

• {|(A,E, k)|} = filterActivities(T)(rateActivities(Γ)({|(B[E],Γ′)|}));

• r = k/π(ClosedAct(P1 BC
L
Q), (a,Γ′)).

Moreover, from P1 'T,Γ P2 we have that

((A1[E1],Γ1), P ′1) ∈ OpenMoves(P1)⇔

((A1[E1],Γ1), P ′2) ∈ OpenMoves(P2)

with P ′1 'T,Γ P
′
2, becauseOpenAct(P1, [P

′
1]'T,Γ

) = OpenAct(P2, [P
′
1]'T,Γ

).

It follows that

νT,Γ(P1 BC
L
Q,A,E, [P ′1 BCL Q′]R) = νT,Γ(P2 BC

L
Q,A,E, [P ′1 BCL Q′]R)

where P ′2 BCL Q′ ∈ [P ′1 BCL Q′]R.

4. We prove that the relation R = {(P1 BC

L
Q,P2 BC

L
Q) | P1 'T,Γ P2} is a

Markovian (T,Γ)-bisimulation. We consider four cases:

(a) ∀r ∈ R, (A,E, r) 6∈ FiltAct(P1 BC

L
Q)T,Γ. This implies that ∀r ∈

R, (A,E, r) 6∈ FiltAct(P2 BC

L
Q)T,Γ, because a filtered activity for

P BC

L
Q is either a filtered activity of P , a filtered activity of Q or

it is derived from a synchronisation of a filtered activity from P and

an open activity from Q or a filtered activity from Q and an open

activity from P and P1 'T,Γ P2 implies

• ∀r ∈ R, (A,E, r) 6∈ FiltAct(P1)T,Γ ⇔ ∀r ∈ R, (A,E, r) 6∈
FiltAct(P2)T,Γ;

• ∀C ∈ Pm/ 'T,Γ OpenAct(P1,C) = OpenAct(P2,C).

It follows that ∀C ∈ Pm/ 'T,Γ

νT,Γ(P1 BC

L
Q,A,E, C) = νT,Γ(P2 BC

L
Q,A,E, C) = 0
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6.2 Three Fundamental Relations

(b) ∃r ∈ R, ((A,E, r), P ′1 BC

L
Q) ∈ FiltMoves(P1 BC

L
Q)T,Γ. This implies

that ((A,E, r), P ′1) ∈ FiltMoves(P1)T,Γ and that ¬(∃B,F,Γ′, Q′ s.t.

((B[F],Γ′), Q′) ∈Moves(Q) ∧B ⊆ E ∩ L). Moreover,

∃r ∈ R, ((A,E, r), P ′1) ∈ FiltMoves(P1)T,Γ ⇔

∃r′ ∈ R, ((A,E, r′), P ′2) ∈ FiltMoves(P2)T,Γ

with P ′1 'T,Γ P
′
2, because νT,Γ(P1,A,E, [P

′
1]'T,Γ

) = νT,Γ(P2,A,E, [P
′
1]'T,Γ

).

It follows that

νT,Γ(P1 BC

L
Q,A,E, [P ′1 BC

L
Q]R) = νT,Γ(P1,A,E, [P

′
1]'T,Γ

) =

νT,Γ(P2,A,E, [P
′
1]'T,Γ

) = νT,Γ(P2 BC

L
Q,A,E, [P ′1 BC

L
Q]R)

(c) ∃r ∈ R, ((A,E, r), P1 BC

L
Q′) ∈ FiltMoves(P1 BC

L
Q)T,Γ. This implies

that ((A,E, r), Q′) ∈ FiltMoves(Q)T,Γ and that ¬(∃B,F,Γ′, P ′1 s.t.

((B[F],Γ′), P ′1) ∈Moves(P1) ∧B ⊆ E ∩ L).

Because ∀C ∈ Pm/ 'T,Γ, OpenAct(P1,C) = OpenAct(P2,C) then

νT,Γ(P1 BC

L
Q,A,E, [P1 BC

L
Q′]R) = νT,Γ(Q,A,E, [Q′]'T,Γ

) =

νT,Γ(P2 BC

L
Q,A,E, [P1 BC

L
Q′]R)

(d) ∃r ∈ R, ((A,E, r), P ′1 BC

L
Q′) ∈ FiltMoves(P1 BC

L
Q)T,Γ. This implies

that filtered move ((A,E, r), P ′1 BC

L
Q′) is the result of the synchronisa-

tion of a filtered move of P1 and an open move of Q or the synchroni-

sation of a filtered move from Q and an open move from P1.

In this case we have

νT,Γ(P1 BC

L
Q,A,E, [P ′1 BC

L
Q′]R) =∑

i∈I

νT,Γ(P1,Ai,Ei, [P
′
1]'T,Γ

) +
∑
j∈J

νT,Γ(Q,Aj,EJ , [Q
′]'T,Γ

) =

∑
i∈I

νT,Γ(P2,Ai,Ei, [P
′
1]'T,Γ

) +
∑
j∈J

νT,Γ(Q,Aj,EJ , [Q
′]'T,Γ

) =

νT,Γ(P2 BC

L
Q,A,E, [P ′1 BC

L
Q′]R)
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6.2 Three Fundamental Relations

Once again because

∃r ∈ R, ((A,E, r), P ′1) ∈ FiltMoves(P1)T,Γ ⇔

∃r′ ∈ R, ((A,E, r′), P ′2) ∈ FiltMoves(P2)T,Γ

with P ′1 'T,Γ P
′
2, because νT,Γ(P1,A,E, [P

′
1]'T,Γ

) = νT,Γ(P2,A,E, [P
′
1]'T,Γ

).

Moreover

• i ∈ I if and only if ∃B,F,Γ′, Q′ s.t. ((B[F],Γ′), Q′) ∈ Moves(Q)

and B ⊆ Ei ∩ L and A = Ai ∪ (B ∩ T) and E = (Ei \ B) ] F

and ¬(∃B′,F′,Γ′′, Q′′ s.t. ((B′[F′],Γ′′), Q′′) ∈Moves(Q) and B′ ⊆
Ei ∩ L and |B′| > |B|);

• j ∈ J if and only if ∃B,F,Γ′, P ′1 s.t. ((B[F],Γ′), P ′1) ∈Moves(P )

and B ⊆ Ej ∩ L and A = Aj ∪ (B ∩ T) and E = (Ej \ B) ]
F and ¬(∃B′,F′,Γ′′, Q′′ s.t. ((B′[F′],Γ′′), P ′′1 ) ∈ Moves(P1) and

B′ ⊆ Ej ∩ L and |B′| > |B|).

We also use the fact that ∀C ∈ Pm/ 'T,Γ, OpenAct(P1,C) = OpenAct(P2,C).

Since we proved all four cases, the result holds.

6.2.3 Practical Use of the Relations

The three relations defined in this chapter represent the foundation of the theory

of relations on sPAH. They are the strongest relations one can define, consider-

ing in turn the structure of the model (isomorphism), filtering of activities (T-

isomorphism) and timing and probability of actions (Markovian T-bisimulation).

In a case study in Section 7.2, we will illustrate how the fact that Markovian

T-bisimulation is a congruence can be exploited to extend the equality of parts

of two model to the entire models.

As it can be expected from such strong relations, they may be too strong for

many biological applications, but other relations can be defined using these as a

starting point. In particular, in biology one is often interested in knowing whether

two systems are almost rather than exactly the same, and possibly to which extent

they are similar. We will discuss more about this in the last chapter, in the future

work section.
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6.3 Summary

6.3 Summary

In this chapter we discussed the idea of relating quantitative multi-scale models of

biological systems at a specified scale using process algebra with hooks. After in-

troducing filtering as a procedure that can be used to focus on a specified scale, we

defined three relations on process algebra with hooks models: isomorphism (≡),

T-isomorphism (≡T) and Markovian T-bisimulation ('T). In turn, isomorphism

relates processes that produce isomorphic derivation graphs, T-isomorphism re-

lates processes that produce derivation graphs that are isomorphic after rating

and filtering and Markovian T-bisimulation relates processes that perform the

same filtered actions with the same probability at the same time. Fundamental

properties of the relations, such as equational laws and congruence are also pro-

vided. Although these relations are probably too strong to be of practical use

in the biological setting, they nevertheless can be considered the fundamental

relations, the starting point from which other relations can be defined.
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Chapter 7

Case Study

In this chapter we illustrate how process algebra with hooks can be employed to

model complex multi-scale scenarios. Before presenting the models we introduce

a parametric version of stochastic process algebra with hooks (Section 7.1); this is

a minor extension, which does not affect the theory of earlier chapters, but makes

model descriptions more compact. The two scenarios we model in this chapter

are: a typical problem of pattern formation (Section 7.2), and a multi-scale model

of tissue growth (Section 7.3). We perform analysis using an interpreter and

simulator developed for parametric stochastic process algebra with hooks.

7.1 Parametric Stochastic Process Algebra with

Hooks

In this section we introduce the syntax of a parametric version of sPAH. We

augment sPAH defined in Section 5.2 with parametrised processes and actions, in

analogy with our definition of pSPA in Section 3.3, and we obtain a parametric

stochastic process algebra with hooks (psPAH). The syntax of psPAH is as follows:

D ::= nil | L′[L′′].A(exp, . . . , exp) | D +D | if bexp then D else D

M ::= A(k, . . . , k) |M BC
L
M |M BC

L
M

exp ::= k | i | exp+ exp | exp− exp | exp/exp | exp ∗ exp

bexp ::= exp = exp | exp < exp | bexp ∧ bexp |

bexp ∨ bexp | ¬bexp | true | false
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7.2 Multi-Scale Model of Pattern Formation

The main differences between this and the non parametric version are:

• actions have the form a(exp, . . . , exp), where exp, . . . , exp is a list of expres-

sions;

• k ∈ R and i is a parameter name, i.e. i ∈ Names;

• a definition process can also be an if-then-else construct: if bexp then D else D;

• agent definitions have now the form A(i1, . . . , in) , D, where i1, . . . , in is a

list of parameter names;

• the evaluation of the expressions is performed when inference rule Agent

is applied;

• the definitions of functional rates and the variables associated with agents

are also parametric.

The semantics is given in Figure 7.1. Given an environment Γ, the evaluation

of an expression exp into a real number k is denoted by Γ ` exp → k, the

evaluation of a boolean expression bexp into b ∈ {true, false} is denoted by

Γ ` bexp→ b, while the evaluation of the list of expressions of all the actions in a

set A is denoted by Γ ` A → A′, where A′ contains only actions with evaluated

expressions.

An interpreter for psPAH has been implemented in the functional program-

ming language OCaml. The interpreter reads as input the description of a psPAH

model along with a model time threshold for the simulations. Simulations are per-

formed on a model, producing traces of states and time delays using the sampling

method for rated LTSs (Section 2.3.2).

Simulations have been performed on a laptop computer with Ubuntu Linux,

two Intel Core 2 Duo 2.20 GHz CPUs and 2 GB of RAM.

In the following examples the number of simulations performed is chosen to

be reasonable to obtain an accurate analysis of the models in the reasonable time

of one or two working days.
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7.2 Multi-Scale Model of Pattern Formation

Prefix

A[E].A(exp1, . . . , expn)
A[E],true−−−−−→ A(exp1, . . . , expn)

Choice Left Choice Right

D1
A[E],b−−−→ A(exp1, . . . , expn)

D1 +D2
A[E],b−−−→ A(exp1, . . . , expn)

D2
A[E],b−−−→ A(exp1, . . . , expn)

D1 +D2
A[E],b−−−→ A(exp1, . . . , expn)

If Then Else True

D1
A[E],b−−−→ A(exp1, . . . , expn)

if bexp then D1 else D2
A[E],b∧bexp−−−−−−→ A(exp1, . . . , expn)

If Then Else False

D2
A[E],b−−−→ A(exp1, . . . , expn)

if bexp then D1 else D2
A[E],b∧¬bexp−−−−−−−→ A(exp1, . . . , expn)

Agent

D
A[E],b−−−→ A′(exp1, . . . , expn)

A(k1, . . . , kn)
(A′[E′],Γ′)−−−−−→ A′(k′1, . . . , k

′
n)

*

*

if A(i1, . . . , in) , D ∧ Γ = {(i1, k1), . . . , (in, kn)} ∧ Γ ` b→ true

Γ ` exp1 → k′1 ∧ · · · ∧ Γ ` expn → k′n ∧ Γ ` A→ A′ ∧ Γ ` E→ E′

∧ Γ′ = {(Var(A(k1, . . . , kn)), V al(A(k1, . . . , kn)))}

Figure 7.1: Semantics of parametric stochastic process algebra with hooks. Other
inference rules are as in Figure 5.5.

7.2 Multi-Scale Model of Pattern Formation

In this section we give a psPAH specification of the French Flag Model (Wolpert,

1968), an example of how a group of identical cells can be differentiated into

subgroups with different specialisations using positional information. For the

biological background of this section see Section 2.1.4.

A morphogen M diffuses from a source into a tissue. In the long run, the

region close to the source presents a high concentration of M, while the further

a region is from the source, the lower the concentration of M is in that region.

The concentration of M in a region indicates the positional information, i.e. the
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Figure 7.2: The French Flag Model implemented with partial differential equa-
tions. In the picture, two concentration thresholds divide the space into three
regions.

position with respect to the source. Different specialisations are assigned to a

region depending on the concentration of M in that region. Of great importance

are concentration thresholds that delimit the concentration ranges associated with

different specialisations.

One of the simplest models of this scenario is the following partial differential

equation (PDE) (Alon, 2006):

∂M(t, x)

∂t
= D

∂2M(t, x)

∂x2
− αM(t, x)

The above equation models the concentration of M in time and space in one-

dimensional coordinates. The element D
∂2M(t, x)

∂x2
is the diffusion of M, while

αM(t, x) is its degradation. Constant D is the diffusion constant and α is the

degradation constant; we assume these two constants to be equal to 1. Boundary

conditions are:

1. M(t, 0) = 1 with 0 ≤ t <∞, i.e. a constant source of M at position 0;

2. M(t,∞) = 0 with 0 ≤ t < ∞, i.e. concentration of M is lost in the

surroundings.

Steady state solution of the PDE model is shown in Figure 7.2. In the figure, the

steady state solution is shown (continuous line). Two concentration thresholds
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7.2 Multi-Scale Model of Pattern Formation

Figure 7.3: Discretisation of the space of the French Flag Model into 20 regions.
The variable M(i) indicates the concentration of M at region 1.

(at 0.2 and 0.5, dotted lines) divide the area in three regions (R1, R2 and R3).

Each of these regions are characterised by a different specialisation.

We propose now a representation of the PDE model in psPAH. Because the

PDE model is continuous in the concentration of M and in space, while psPAH

uses a discrete representation of these quantities, we provide a discretisation. We

assume 20 levels for the concentration of M (parameter maxLevels = 20), with

maximum concentration equal to 1 and concentration of each level equal to h =

1/20 = 0.05, and we assume 20 regions of space (parameter regions = 20), with

total length equal to 3 and length of each region equal to deltaX = 3/20 = 0, 15.

The spatial discretisation is illustrated in Figure 7.3.

In order to represent the two boundary conditions we have:

• the left most region presents a constant concentration level of 20, which

guarantees that concentration flows continuously from the left;

• the right most region presents a constant concentration level equal to 0,

which implies that this region absorbs concentration levels.

We define agent M(i, w) (Figure 7.4) to indicate that morphogen M in region

i presents concentration level w. Actions t(i, j) represent transport of M from

region i to region j, while actions deg(i) represent degradation of M in region i.

We model specialisation of regions explicitly as follows. Two thresholds are

considered: one between 4 and 5 concentration levels and the other between 10

and 11. Whenever a concentration threshold is crossed in a region, the speciali-

sation of the region changes. The presence of two thresholds implies that three

specialisations are possible, corresponding to high, medium and low concentration

ranges of M. In addition, we consider that regions of tissue can commit perma-

nently to a specialisation, if the concentration of M in those regions stays at a

certain concentration range long enough. A commitment means that the cells in

the committed region have memorised their positional information and further
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7.2 Multi-Scale Model of Pattern Formation

M(i, w) ,
if i == 1 then //first region, the source of M
t(1, 2).M(1, w)

else
if i == regions then //last region, absorbing
t(regions− 1, regions).M(regions, w)

else //any other region
if w > 0 then //degradation of M

if w == (thr1 + 1) ∨ w == (thr2 + 1) then
deg(i)[y(i)].M(i, w − 1)

else
deg(i).M(i, w − 1)

else
nil

+ //transport of M to next region
if i < regions ∧ w > 0 then

if w == (thr1 + 1) ∨ w == (thr2 + 1) then
t(i, i+ 1)[y(i)].M(i, w − 1)

else
t(i, i+ 1).M(i, w − 1)

else
nil

+ //transport of M from next region
if i < (regions− 1) ∧ w < maxLevels then

if w == (thr1) ∨ w == (thr2) then
t(i+ 1, i)[x(i)].M(i, w + 1)

else
t(i+ 1, i).M(i, w + 1)

else
nil

+ //transport of M to previous region
if i > 2 ∧ w > 0 then

if w == (thr1 + 1) ∨ w == (thr2 + 1) then
t(i, i− 1)[y(i)].M(i, w − 1)

else
t(i, i− 1).M(i, w − 1)

else
nil

+ //transport of M from previous region
if i > 1 ∧ w < maxLevels then

if w == (thr1) ∨ w == (thr2) then
t(i− 1, i)[x(i)].M(i, w + 1)

else
t(i− 1, i).M(i, w + 1)

else
nil

T (i, z, w) ,
if w < 2 then
x(i).T (i, 0, w + 1)

else
nil

+
if w > 0 then

(y(i).T (i, 0, w − 1)+
if z < 1 then
mem(i).T (i, z + 1, w)

else
if w == 2 then
mem(i).TA(i)

else
mem(i).TB(i)

else
nil

TA(i) , nil

TB(i) , nil

Figure 7.4: Agent definitions of processes M(i, w), T (i, z, w), TA(i) and TB(i),
from the multi-scale model of pattern formation.
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7.2 Multi-Scale Model of Pattern Formation

changes to the concentration of M will not affect the chosen specialisation. We

use agent T (i, z, w) (Figure 7.4) to represent tissue region i with specialisation w,

while parameter z is part of the implementation of the commitment procedure.

Parameter w is equal to 2 when the concentration of M is high, 1 when it is

medium and 0 when it is low. Inter-scale actions x(i) and y(i) are used to syn-

chronise processes M(i, w) and T (i, z, w). To obtain a commitment of a region

we define a two-step memorisation:

1. when w is 1 or 2, T (i, 0, w) can perform actionmem(i) and become T (i, 1, w);

2. if T (i, 1, w) performs mem(i) then it becomes TA(i) or TB(i), depending

on whether w is 2 or 1 respectively. Agents TA(i) and TB(i) are deadlock

processes that represent the commitment of tissue region i to specialisations

A and B, respectively.

In addition, if T (i, 1, w) changes specialisation from w to w′ then the process

becomes T (i, 0, w′). This implies that the attempt at memorising specialisation

w is forgotten and a new attempt at memorising specialisation w′ can begin. The

agent definitions of the French Flag Model are shown in Figure 7.4.

The initial state of the model is given by the following model component:

(M(1, 20) BC

{|x(1),y(1)|}
TA(1)) BC

{|t(1,2)|}
(M(2, 0) BC

{|x(2),y(2)|}
T (2, 0, 0)) · · ·

· · · BC
{|t(19,20)|}

(M(20, 0) BC

{|x(20),y(20)|}
T (20, 0, 0))

Functional rates for actions t(i, j) and deg(i) are obtained from approximation

of the diffusion and degradation elements in the PDE. In addition, we define the

functional rate for action mem(i) as a the constant value 10. In particular:

ft(i,j) = D ∗M(i) ∗ h/(deltaX ∗ deltaX ∗ h)

fdeg(i) = alpha ∗M(i) ∗ h/h

fmem(i) = 10
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7.2 Multi-Scale Model of Pattern Formation

Table 7.1: In this table we illustrate the commitments of the 20 regions of the
French Flag Model over 100 simulations and at different time points. For each
region, counts over the simulations of commitments (A, B or none, i.e. not
committed) are given.

Time Comm. 1 2 3 4 5 6 7 8 9 10

0s
A 100 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0

none 0 100 100 100 100 100 100 100 100 100

1.5s
A 100 100 99 98 93 81 66 35 17 8

B 0 0 1 2 7 15 17 30 35 51

none 0 0 0 0 0 4 17 35 48 41

3s
A 100 100 99 98 93 85 81 62 42 12

B 0 0 1 2 7 15 17 33 42 72

none 0 0 0 0 0 0 2 5 16 16

4.5s
A 100 100 99 98 93 85 83 65 47 17

B 0 0 1 2 7 15 17 33 46 78

none 0 0 0 0 0 0 0 2 7 5

6s
A 100 100 99 98 93 85 83 66 53 18

B 0 0 1 2 7 15 17 33 46 79

none 0 0 0 0 0 0 0 1 1 3

Time Comm. 11 12 13 14 15 16 17 18 19 20

0s
A 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0

none 100 100 100 100 100 100 100 100 100 100

1.5s
A 6 1 0 0 0 0 0 0 0 0

B 34 38 28 16 10 5 0 0 0 0

none 60 61 72 84 90 95 100 100 100 100

3s
A 12 3 0 0 0 0 0 0 0 0

B 73 76 69 48 28 13 2 2 0 0
none 15 21 31 52 72 87 98 98 100 100

4.5s
A 13 4 0 0 0 0 0 0 0 0

B 82 88 84 67 48 23 8 2 0 0

none 5 8 16 33 52 77 92 98 100 100

6s
A 14 4 0 0 0 0 0 0 0 0

B 83 95 96 79 61 31 12 3 0 0

none 3 1 4 21 39 69 88 97 100 100

158
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commitments concentrations

0s

6s

6s

6s

position position

Figure 7.5: Example of simulations of the process algebra with hooks French Flag
Model. On the left: commitments of regions to cell specialisations after 6 seconds.
On the right: concentration levels after 6 seconds of the same simulation runs.
Top row is the initial condition.

7.2.1 Analysis

100 simulations were performed on the model, recording the concentration level

of M in the three regions, up to 6 seconds. Commitments of regions was also

recorded. Figure 7.5 illustrates the initial condition and the typical results from

single simulations at time 6 seconds. Although some variability between the

runs is visible, a pattern of three distinct commitments is always visible. The

images in the figure are constructed from the model component representing the

current state at time 6 seconds. Each picture represents a one-dimensional space

divided into 20 regions with source of morphogen M in the left most region. On

the left, commitments to cell differentiation are shown: regions committed to A

are represented by the colour black, regions committed to B by grey, while non-

committed regions by white. On the right, the corresponding concentration levels

are shown: each concentration level is represented by a different shade of grey,

from black (maximum concentration) to white (absence of concentration). The

top row shows the initial condition (time 0s), while the other three rows show

three different simulations at time 6s.
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7.2 Multi-Scale Model of Pattern Formation

Figure 7.6: Two extensions of the psPAH French Flag Model. In the first ex-
tension, top, two species A and B are added. In the second extension, bottom,
species C is added.

Additional data is illustrated in Table 7.1. In this table commitments of

regions are shown. At time 0, only region 1, the source, is committed to speciali-

sation A, while all the other regions are not committed. As the time approaches

6 seconds, we can see the proportion of the 100 simulations in which the regions

commit to a certain specialisation. For example, regions 2 to 5 present a clear

preference for specialisation A, while regions 12 and 13 have a marked preference

for specialisation B. Although some variability is present, a change in preference

from left to right is evident.

7.2.2 Example of Use of Congruence

We illustrate now how the concepts of compositionality and congruence in process

algebra can be used to reason about the behaviour of the French Flag Model. In

particular, we prove two different extensions of the French Flag model to be

Markovian (T,Γ)-bisimilar by extending the equality of part of the system to

the equality of the whole system. The two extensions consist of the addition of

biochemical species A and B in the first case and C in the second. These new

species do not interact with morphogen M and do not diffuse, but nevertheless

produce their own behaviour becoming part of the system. The two extensions

are illustrated in Figure 7.6.

Consider the following two molecular models:

1. the concentration of two molecules A and B are modelled by agent processes

representing their concentration as either high or low. Species A and B are
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7.2 Multi-Scale Model of Pattern Formation

Figure 7.7: Rated derivation graphs of model processes A0(n)BC
∅
B0(n) and

C0(n), with n ∈ R. Parameter n is omitted.

produced or degraded independently according to the mass action kinetic

law. Process definitions are as follows:

A0(i) , pA(i).A1(i) A1(i) , dA(i).A0(i)

B0(i) , pB(i).B1(i) B1(i) , dB(i).B0(i)

Reactions, functional rates and set of participants are as follows (parameters

k = 1 and h = 1):

RpA : → A fpA(i) = k/h ppA(i) = {A(i)}

RdA : A→ fdA(i) = k ∗ A(i) ∗ h/h pdA(i) = {A(i)}

RpB : → B fpB(i) = k/h ppB(i) = {B(i)}

RdB : B→ fdB(i) = k ∗B(i) ∗ h/h pdB(i) = {B(i)}

The rated derivation graph Dr(A0(n)BC
∅
B0(n)), where n ∈ R, is shown in

Figure 7.7, on the left.

2. concentration of molecule C is modelled with three agents, representing

high, medium and low concentration. Species C inhibits its own produc-

tion, so the functional rate associated to the production of C is inversely

proportional to its concentration. Species C can also degrade according to

mass action. Process definitions are as follows:

C0(i) , pC(i).C1(i) C1(i) , pC(i).C2(i) + dC(i).C0(i)

C2(i) , dC(i).C1(i)

Reactions, functional rates and set of participants are as follows (parameters

k = 1, k′ = 0.5 and h = 1):
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7.2 Multi-Scale Model of Pattern Formation

RpC : → C fpC(i) = 1/(k′ ∗ h ∗ (1 + C(i) ∗ h)) ppC(i) = {C(i)}

RdC : C→ fdC(i) = k ∗ C(i) ∗ h/h pdC(i) = {C(i)}

The rated derivation graph Dr(C0(n)), where n ∈ R, is shown in Figure

7.7, on the right.

Notice that for all n ∈ R, A0(n)BC
∅
B0(n) 'T,Γ C0(n) for any T such that T ∩

{|pA, pB, pC, dA, dB, dC|} = ∅ and with the appropriate environment Γ. In other

words, the two psPAH model components are equivalent if we abstract away from

the specific actions they can perform, retaining only the timing and likelihood

of those actions. Recall that set T indicates on which actions rated derivation

graphs Dr(A0(n)BC
∅
B0(n)) and Dr(C0(n)) should be compared. Moreover, a

suitable environment Γ is a set of parameters where constant parameters of the

two models are merged without conflict of names.

Assume now that the French Flag Model is updated with the addition of

chemicals A and B, which do not interact with morphogen M, but that are nev-

ertheless present in the system. Assume also that we are interested in comparing

the behaviour of the resulting model with the behaviour of the French Flag Model

updated with the addition of C instead. Without the need for looking at the ac-

tual behaviour of the two new systems, we can prove that their overall behaviour

is identical. We prove this simply using the fact that A0(n)BC
∅
B0(n) and C0(n)

are Markovian (T,Γ)-bisimilar and the fact that Markovian (T,Γ)-bisimulation

is a congruence (Proposition 6.34) and it is transitive (Proposition 6.28).

Because of Proposition 6.34 we have that:

(A0(1)BC
∅
B0(1))BC

∅
M(1, 20) 'T,Γ C0(1)BC

∅
M(1, 20)

which in turn implies that:

((A0(1)BC
∅
B0(1))BC

∅
M(1, 20)) BC

{|x(1),y(1)|}
TA(1) 'T,Γ

(C0(1)BC
∅
M(1, 20)) BC

{|x(1),y(1)|}
TA(1)

(7.1)

In the same way we have:
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7.2 Multi-Scale Model of Pattern Formation

((A0(2)BC
∅
B0(2))BC

∅
M(2, 20)) BC

{|x(2),y(2)|}
T (2, 0, 0) 'T,Γ

(C0(2)BC
∅
M(2, 0)) BC

{|x(2),y(2)|}
T (2, 0, 0)

(7.2)

At this point, notice that whenever X 'T,Γ Y and W 'T,Γ Z, then X BC
L
W 'T,Γ

X BC
L
Z 'T,Γ Y BC

L
Z. By the transitivity of 'T,Γ (Proposition 6.28), we have

X BC
L
W 'T,Γ Y BC

L
Z. Using this result and Equations (7.1) and (7.2) we have:

((A0(1)BC
∅
B0(1))BC

∅
M(1, 20)) BC

{|x(1),y(1)|}
TA(1) BC

{|t(1,2)|}

((A0(2)BC
∅
B0(2))BC

∅
M(2, 0)) BC

{|x(2),y(2)|}
T (2, 0, 0)

'T,Γ

(C0(1)BC
∅
M(1, 20)) BC

{|x(1),y(1)|}
TA(1) BC

{|t(1,2)|}

(C0(2)BC
∅
M(2, 0)) BC

{|x(2),y(2)|}
T (2, 0, 0)

Continuing this demonstration with the composition of the processes representing

the remaining spatial regions we obtain:

((A0(1)BC
∅
B0(1))BC

∅
M(1, 20)) BC

{|x(1),y(1)|}
TA(1) BC

{|t(1,2)|}

((A0(2)BC
∅
B0(2))BC

∅
M(2, 0)) BC

{|x(2),y(2)|}
T (2, 0, 0) BC

{|t(2,3)t(3,2)|}

· · · ((A0(20)BC
∅
B0(20))BC

∅
M(20, 0)) BC

{|x(20),y(20)|}
T (20, 0, 0)

'T,Γ

(C0(1)BC
∅
M(1, 20)) BC

{|x(1),y(1)|}
TA(1) BC

{|t(1,2)|}

(C0(2)BC
∅
M(2, 0)) BC

{|x(2),y(2)|}
T (2, 0, 0) BC

{|t(2,3)t(3,2)|}

· · · (C0(20)BC
∅
M(20, 0)) BC

{|x(20),y(20)|}
T (20, 0, 0)

(7.3)

Equation (7.3) finally proves that the addition of molecules A and B and the

addition of molecule C to the French Flag Model have the same effect on its

spatio-temporal behaviour. The two extended versions of the French Flag Model

are Markovian (T,Γ)-bisimilar for any action set T as long as T does not contain

actions of molecules A, B or C and Γ is the union of all constant parameters

of the different parts composing the model, without conflicts of names. If this

is the case we can assert that, for example, the commitment of the regions to a
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7.3 Multi-Scale Model of Tissue Growth

specialisation (T = {|mem(1), . . . ,mem(20)|}) happens with the same timing and

with the same probability in both models.

7.3 Multi-Scale Model of Tissue Growth

We now turn our attention to a multi-scale model of tissue growth. This model is

constructed in analogy with our earlier tissue growth model introduced in Section

4.2.3 and modelled in process algebra with hooks in Section 5.1.3. We define it

as a multi-scale model because two scales are present, tissue and biochemistry,

and the two scales need to interact. In particular, we show how one can define

a model where growth and death of tissue depend on the local concentration of

biochemical species. Here we give an overview of the model, while leaving the

complete specification in Appendix B.1.

At the tissue scale we consider an area divided into regions of the same size and

shape. We consider a grid of 10 × 10 regions, each region is denoted by R(i, j).

Each region can be empty (agent E(i, j)) or contain tissue. There are four types

of tissue: tissue that can neither grow nor die (agent T (i, j)); tissue that can

grow, but not die (Tm(i, j)); tissue that can die but not grow (Ta(i, j)); tissue

that can both grow and die (Tam(i, j)). Tissue processes change between these

four agents depending on the configuration of the biochemical scale. The event of

growth is represented by action growth(i, j, i2, j2) which is performed by a tissue

agent in region R(i, j) in synchronisation with an adjacent empty space E(i2, j2)

in region R(i2, j2). Two regions are considered adjacent if they share an edge.

If no adjacent region is empty, growth is inhibited. The event of tissue death is

represented by action death(i, j). We assume that actions growth(i, j, i2, j2) and

death(i, j) have constant rates kgrowth and kdeath .

The biochemical scale consists of biochemical species A, B and C, present

in all regions. The concentration of each species varies between a concentration

level of 0 and 10 (parameter maxLevels = 10). In particular, we use agent

A(i, j, w) to denote that species A in region R(i, j) presents concentration level

w. Analogously for species B and C. Concentration level of the three species

can change because of the following local biochemical reactions (and associated

velocities):
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7.3 Multi-Scale Model of Tissue Growth

R1 : A + B → C v1 = k1[A][B]

R2 : → A v2 = k2 R3 : → B v3 = k3

R4 : C → v4 = k4[C] R5 : B → B’ v5 = k5[C]

where R5 is the transport of concentration of B from a compartment to an ad-

jacent compartment. The following constraints, which require communication

between scales, must hold:

• tissue can grow if and only if the concentration level of A in the same

region is 5 or more. Actions growthon(i, j) and growthoff (i, j) are used as

hook actions to indicate that a threshold has passed at the biochemical

scale. Tissue processes can synchronise with these hook actions and change

accordingly;

• tissue can die if and only if the concentration level of C in the same region

is 5 or more (parameter thr = 5). Actions deathon(i, j) and deathoff (i, j)

are used as hook actions to indicate that a threshold has passed;

• a region is empty if and only if there is no biochemistry. To represent the

absence of biochemistry we use processes NA(i, j), NB(i, j) and NC(i, j).

Actions bioon(i, j) and biooff (i, j) work across scales and ensure this is the

case.

Consider for example the definition of agents C(i, j, w) and T (i, j), shown in

Figure 7.8. In a region R(i, j), if the concentration level of C (i.e. w) is below

its maximum and A and B are available then C can participate in reaction R1,

represented by action r1(i, j). If w is equal to 4 (w == thr − 1), then action

r1(i, j) carries also hook action deathon(i, j), which in turn could synchronise

with the tissue scale, bringing T (i, j) to Ta(i, j). We note that without the use

of a parametric version of PAH, 100 definitions of T (i, j) and 1000 definitions of

C(i, j, w) processes would have been necessary, one for each region and level of

concentration to model.

The complete definition of the model along with parameter values can be

found in Appendix B.1. The initial state is a grid composed of agents E(i, j)

in all regions with the exception of R(6, 6), where agent Tm(6, 6) is used. At

the biochemical scale, agents NA(i, j), NB(i, j) and NC(i, j) are used with the

exception of A(6, 6, 5), B(6, 6, 0) and C(6, 6, 0). In terms of model processes,
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7.3 Multi-Scale Model of Tissue Growth

C(i, j, w) ,
biooff (i, j).NC(i, j)
+
if w < maxLevels then

if w == (thr − 1) then
r1(i, j)[deathon(i, j)].C(i, j, w + 1)

else
r1(i, j).C(i, j, w + 1)

else
nil

+
if w > 0 then

if w == thr then
r4(i, j)[deathoff (i, j)].C(i, j, w − 1)

else
r4(i, j).C(i, j, w − 1)

else
nil

T (i, j) , growthon(i, j).Tm(i, j) + deathon(i, j).Ta(i, j)

Figure 7.8: Agent definitions of processes C(i, j, w) and T (i, j), from the multi-
scale model of tissue growth.

the initial state consists of a vertical synchronisation between a model process

representing the entire biochemical scale and the model process representing the

tissue scale, Biochem BC

H
Tissue, with cooperation set H containing the list of

all hook actions used in the model.

7.3.1 Analysis

Examples of simulations of the model are shown in Figure 7.9. A region is white

when an agent of the type E(i, j) is found, black otherwise (i.e. tissue of some

kind is found). As an example of analysis of the system, we focus on the role the

production of species B has on tissue growth and death. Although B does not

regulate tissue processes directly, it is involved along with A and C in reaction

R1. Intuitively, if the concentration of B is low, A is not consumed and growth
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7.4 Discussion

0s 2s 4s 6s 8s 10s

k3 = 4

k3 = 5

k3 = 6

Figure 7.9: Three sample runs with k3 equal to 4, 5 and 6 Molar/s. Black squares
represent regions containing tissue.

becomes likely, while C is not produced and tissue death becomes unlikely. The

parameter which regulates the production of B is k3. Thus, we observed the

behaviour of the system using three different values for k3, 4, 5 and 6 M/s,

performing 100 simulation runs for each configuration. The results are shown in

Figure 7.10, where one can see that increasing the production rate of B decreases

the growth/death ratio.

7.4 Discussion

The two multi-scale models presented in this chapter allowed us to give a complete

view of how psPAH is intended to be used. In particular, we have seen that:

• psPAH models can be built from existing traditional models. In Section

7.2 we converted a reaction-diffusion PDE model into a psPAH description

via a discretisation of space and concentration. In general, this approach

introduces uncertainty in the model, because PDEs represent only the most

likely behaviour, while psPAH introduces likelihood of events. Uncertainty

can be reduced with a finer discretisation at the price of an increase of the

number of states of the model. Notice that a finer discretisation only affects
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Figure 7.10: Number of tissue regions with parameter k3 equal to 4, 5 and 6
Molar/s, with 100 simulations for each configuration. In the top row, all 100
simulations are shown, while in the bottom row average and standard deviation
of the same runs.
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the size of the initial state of the psPAH model, while the parametric agent

definitions are unaltered;

• additional scales can be easily added to existing models using process al-

gebra compositionality. In Section 7.2, we converted the biochemical scale

model of diffusion and degradation of morphogen M into a psPAH descrip-

tion and subsequently augmented it with explicit representations of tissue

and commitment to tissue specialisations;

• psPAH forces an explicit representation of scales and actions between and

within scales, resulting in an explicit multi-scale compositionality. In both

models of pattern formation and tissue growth, processes on different scales

are clearly distinguishable because of the use of the BC

L
operator. While in

the first model we distributed BC

L
over the spatial regions, in the second

model we used BC

L
only once, defining a clear distinction between the bio-

chemical and tissue scales. This latter approach guarantees a multi-scale

compositionality of the model, where a scale can be easily substituted with

another. Notice that this approach is also possible in the first model, though

an additional layer is required to manage multiple hook actions (t(i, j) may

offer both y(i) and x(j) at the same time);

• a psPAH model can be analysed with traditional techniques. We analysed

the behaviour of both models quantitatively using stochastic simulations.

An example of sensitivity analysis was also given in the tissue growth exam-

ple, where a constant parameter was altered at the biochemical scale and

change in quantitative behaviour was observed at the tissue scale;

• qualitative information about quantitative behaviour can be derived us-

ing process algebra related techniques. In Section 7.2.2 we proved that

two extensions of the French Flag Model have the same spatio-temporal

behaviour, without investigating their behaviour quantitatively. Moreover,

this was achieved by simply observing that just a small part of the two mod-

els was equivalent and then proving that this equivalence could be extended

to the entire models.
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7.5 Summary

7.5 Summary

In this section we have illustrated the use of process algebra with hooks to define

and simulate multi scale models of pattern formation and tissue growth. In order

to define the models compactly we extended the algebra with parametric processes

and actions and with the if-then-else construct. We illustrated how parametric

stochastic process algebra with hooks can be used to model and analyse two multi-

scale scenarios: pattern formation and tissue growth. Finally, we highlighted the

benefits of using a process algebraic approach in these scenarios. Most notably,

we have seen how one can manipulate models and reason on their behaviour using

process algebra with hooks compositionality and theoretical results.
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Chapter 8

Conclusions

The multi-scale modelling of biological systems consists of the integration in the

same model of multiple levels of detail, from molecules, to cells, to tissues and so

on. Usually, different levels of detail are represented by different mathematical

approaches, e.g. concentration of molecules by ordinary differential equations,

evolution of tissue by cellular automata. Moreover, models are often tailored

around the specific system under study. As a result, multi-scale models are

difficult to write, maintain, share, compose and compare.

In this thesis we have demonstrated that process algebra, and in particular

process algebra with hooks, provides an effective mathematical framework to

construct, compose and compare multi-scale models.

First, we investigated the use of a simple process algebra to model a single scale

of a biological phenomenon, focussing on biochemical reactions and tissue growth.

As a result of this investigation, we proposed a novel approach to functional rates

in process algebra with multi-way synchronisation, where we assume that actions

can be rated only when all the expected participants synchronise. In addition,

we considered the use of parameters to reduce the length of definitions in models

with repetitive process definition, which is often the case if concentration levels

and geometrical space are considered.

Second, we investigated the use of the simple process algebra and a process

algebra with priorities to model multi-scale scenarios, with attention to the in-

teractions between scales and the representation of thresholds. In particular, we

assumed that the quantitative behaviour at a scale affects other scales only when

certain configurations or states are reached, for example when one or more bio-
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chemical species passes a concentration threshold. We observed that the simple

process algebra encountered a combinatorial problem in the process definition

when multiple thresholds are considered. Conversely, the process algebra with

priority showed to possess mechanisms able to represent effectively both inter-

actions within and between scales. However, we demonstrated that the style

of modelling of process algebra with priorities presented drawbacks which, in a

multi-scale scenario, require to be addressed. The drawbacks are: the introduc-

tion of intermediate and biologically meaningless states; the lack of control by

the modeller on the response to simultaneous inter-scale events; the lack of syn-

tactic elements that can define unambiguously scales and interactions within and

between scales.

Third, we proposed process algebra with hooks for multi-scale modelling of

biological systems. Building up from our investigations, we defined this algebra

to address the drawbacks of process algebra with priorities and to support our

approach to functional rates. Characteristics of the algebra are the use of com-

posed actions and a novel vertical composition operator. In addition, we defined

three congruence relations on process algebra with hooks. In particular, one of

them, Markovian (T,Γ)-bisimulation, has been designed to relate models that

present the same behaviour at a specified scale, at the same time with the same

probability. Most notably, our approach to functional rates was fundamental to

the proof of congruence.

Finally, we illustrated the use of process algebra with hooks to define, compose

and relate models of pattern formation and tissue growth.

With the above results we demonstrated that:

• define. Process algebra with hooks can be used independently of the scale

one decides to model first. Each scale can be treated as the same formal

object: a process. For example, we modelled the biochemical scale (Section

5.2.3) or the tissue scale (Section 5.2.4);

• compose. Composition of scales is facilitated by the intrinsic composition-

ality of the process algebra approach and by the novel vertical cooperation

operator. Interactions between scales are unambiguously identified by hook

actions. For example, we modelled interactions between the biochemical

scale and the tissue scale in Sections 7.2 and 7.3;
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8.1 Future Directions

• relate. The framework of process algebra with hooks allows formal reason-

ing about behaviour of models. As a consequence, relations can be defined

between models, capturing a specified degree of equality or similarity. In

particular, we defined three equivalence relations in Sections 6.2.1 and 6.2.2

and we illustrated how one of them can be used to infer qualitative infor-

mation about quantitative behaviour in Section 7.2.2.

Although we have set the foundations of process algebra with hooks for multi-

scale models, further research is necessary before it can be considered as com-

petitive as other more consolidated mathematical approaches. At present, three

challenges need to be addressed. First, an efficient stochastic simulation algo-

rithm needs to be defined, in order to allow modelling of large systems and un-

derstand the time and space complexity limitations of using process algebra with

hooks. Second, other equivalence relations should be defined. The ability to

relate models and their behaviour is the most appealing feature of the process

algebra approach. Although we defined three fundamental relations, these may

be too strong to relate biological systems, where often one is interested in how

similar two models are, rather than whether they are exactly the same. The time

complexity of testing of the equalities has also to be investigated. Finally, pro-

cess algebra with hooks needs to be compared with state of the art approaches

to multi-scale modelling. This will be possible only once the two previous points

are addressed. Without efficient simulations and flexible equivalence relations it

would be difficult to quantify differences in time complexity and model manipu-

lation.

In the following section we outline how one should proceed to address the

above lines of research.

8.1 Future Directions

• efficient stochastic simulations of process algebra with hooks models. At

the moment, the simulator that samples trajectories of transitions is not

optimised. In fact, at each step the complete set of rated transitions is

computed, while it could be the case that only a few processes are affected

by the last step and that only a few transitions need to be updated. A first

improvement is to determine which processes are affected by a transition.
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8.2 Summary

With this information, improvements to stochastic simulations of biochemi-

cal reactions and their diffusion, e.g. (Elf and Ehrenberg, 2004; Gibson and

Bruck, 2000), can be adapted and integrated in our approach;

• definition of approximate relations on process algebra with hooks processes.

We may require a more qualitative interpretation of behaviour, where two

systems can be considered similar, though not identical. Approximate

equivalence relations (Tini, 2010) and distance measures between models

may prove an interesting direction to explore if we want to compare bio-

logical systems. Parameters that identify positions could be used to define

metrics for approximate equivalence relations;

• Comparison of process algebra with hooks with other approaches. The above

two points will have to be developed in order to have a fair comparison.

Consider, for example, the case of comparing process algebra with hooks

with cellular automata. Fundamental to cellular automata is the ability

to provide fast simulations of large systems, while it does not provide the

mathematical framework of process algebra. In order to compare the two

approaches, one needs to determine how the time complexity of optimised

simulations of process algebra with hooks models compares with that of cel-

lular automata, and what flexible relations on processes provide a practical

advantage.

8.2 Summary

We have developed and illustrated the use of a novel process algebra designed

for multi-scale modelling of biological systems. Its mathematical framework pro-

vides a flexible environment where quantitative, dynamic, multi-scale models of

biological systems can be defined, composed and compared.

We have provided the foundations of a new approach; future work is required

to determine its full potential.
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Appendix A

Stochastic Process Algebra with

Priorities

In this appendix we define a stochastic semantics for PAwP, in analogy with

Section 3.2.1.

Recall Example 2 of Section 4.2.1:

A0 , 1:a.A1 + 1:f.A1 A1 , 1:a.A2 + 1:f.A2 A2 , 1:b.A1 + 1:e.A1

+1:b.A0 + 1:e.A0

B0 , 1:c.B1 + 1:e.B1 B1 , 1:c.B′1 + 1:e.B′1 B2 , 1:d.B′2 + 1:f.B′2
+1:d.B0 + 1:f.B0

B′1 , 2:x.B2 B′2 , 2:y.B1

CellM , 1:move.CellM + 2:x.CellA

CellA , 1:absorb.CellA + 2:y.CellM

The initial state is:

(A1 BC{e,f}B1) BC
{x,y}

CellM

An appropriate stochastic semantics for PAwP based on functional rates

should construct an environment Γ to evaluate functional rates when the ac-

tion considered has priority 1. This should be done in analogy with our approach

for sSPA in Section 3.2.1. If the action considered has a priority higher than

1, then the rate should be ∞, that is the action has no delay and is preformed

instantaneously.
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As in Section 3.2.1 we assign variables and values to agents:

Var(A0) = A Var(B0) = B Var(B′1) = B Var(CellM) = cell

Val(A0) = 0 Val(B0) = 0 Val(B′1) = 2 Val(CellM) = 1

Var(A1) = A Var(B1) = B Var(B′2) = B Var(CellA) = cell

Val(A1) = 1 Val(B1) = 1 Val(B′2) = 1 Val(CellA) = 2

Var(A2) = A Var(B2) = B

Val(A2) = 2 Val(B2) = 2

Functional rates and sets of participants for actions are:

fa = ka/h pa = {A} ff = (kf ∗B ∗ h)/h pf = {A,B}

fb = (kb ∗ A ∗ h)/h pb = {A} fmove = kmove pmove = {cell}

fc = kc/h pc = {B} fabsorb = kabsorb pabsorb = {cell}

fd = (kd ∗B ∗ h)/h pd = {B} fx =∞ px = {B, cell}

fe = (ke ∗ A ∗ h)/h pe = {A,B} fy =∞ py = {B, cell}

A valid derivation for the above example should be:

(A1 BC{e,f}B1) BC
{x,y}

CellM
(1:b,Γ)−−−→ (A0 BC{e,f}B1) BC

{x,y}
CellM

where Γ = {(A, 1)}. From state (A1 BC{e,f}B
′
1) BC
{x,y}

CellM the only derivation pos-

sible should be:

(A1 BC{e,f}B
′
1) BC
{x,y}

CellM
(2:x,Γ′)−−−−→ (A1 BC{e,f}B2) BC

{x,y}
CellA

where Γ′ = {(B, 2), (cell, 1)}. Although Γ′ is not used to evaluate fx, it is neces-

sary to verify that envV ar(Γ′)= px, i.e. that the variable contained in Γ are ex-

actly the variables contained in the set of participants px. The operation of rating

should then distinguish between actions with priority 1 and actions with priority

higher than 1. This means that valid transitions should carry the priority of the

action on their label. Using the additional environment Γ = {(h, 1), (ka, 1), (kb, 1),

(kc, 1), (kd, 1), (ke, 1), (kf , 1), (kmove, 1), (kabsorb, 1)}, two examples of rated transi-

tions should be:

176



(A1 BC{e,f}B1) BC
{x,y}

CellM
(b,1)−−→ (A0 BC{e,f}B1) BC

{x,y}
CellM

(A1 BC{e,f}B
′
1) BC
{x,y}

CellM
(x,∞)−−−→ (A1 BC{e,f}B2) BC

{x,y}
CellA

where the priority of the actions is now not necessary and so dropped.

Recall that we are assuming that we can always determine all the biological

entities that interact for a specific event. This allows us to identify unequivocally

which processes will participate to an action in a certain moment. This is our

assumption for biological interactions within a scale. However, this might not hold

in the case of interactions between scales via instantaneous actions. Consider the

following example:

A , 1:a.A′ B , 1:b.B′ C , 2:x.C ′

A′ , 2:x.A′′ B′ , 2:x.B′′

Var(A) = levelA Var(B) = levelB Var(C) = celltype

Var(A′) = levelA Var(B′) = levelB

with initial state:

(ABC
∅
B)BC

{x}
C

Assume now that processes A and B represent the biochemical scale and C the

cellular scale. In this example, the condition for C to change its state is that either

A performs action a or B performs action b. This implies that the instantaneous

action x can have two different sets of participants, that is {levelA, celltype} and

{levelB, celltype}. In order to allow the determination of the correct participants

to instantaneous actions, we impose that if fx = ∞ then the set of participants

px is a set of sets of parameter names. In this case we have:

fa = ka/h pa = {levelA}

fb = kb/h pb = {levelB}

fx =∞ px = {{levelA, celltype}, {levelB, celltype}}

Another constraint we have to impose is that given prioritised action p:x,

fx = ∞ if and only if p > 1. This way, instantaneous actions are exactly all

actions with priority higher than 1.

177



A.1 Stochastic Process Algebra with Priorities

A.1 Stochastic Process Algebra with Priorities

In analogy with Section 3.2.1 we proceed to the definition of a new syntax and

semantics for PAwP. The syntax is given by:

D ::= nil | p:a.A | D +D

M ::= A |M BC
L
M

where:

• D is a definition process, D ∈ Pd, while M is a model process, M ∈ Pm.

Definition and model processes are disjoint and are both processes, i.e.

Pd ∪ Pm = P and Pd ∩ Pm = ∅;

• Agents are defined as A , D, that is we use definition processes to define

the behaviour of agents;

• a model is defined by a model process M , which in turn is either an agent

A or a cooperation between model processes M BC
L
M ;

• action execution p:a.A is always followed by an agent A. This ensures that

at any time the state of a model will be constituted of cooperations of

agents;

• functions Var(A) and Val(A) must be defined for each agent A, with

Var(A) ∈ Names, Val(A) ∈ R and Names the set of parameter names.

In order to define a stochastic semantics for this new syntax, we use the

following additional definitions:

• PM(M), M ∈ Pm, returns the potential moves of a process M , PM(M) ⊆
(N \ {0}) × Actions × 2Names×R × Pm. PM(M) is defined by structural

induction as:
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A.1 Stochastic Process Algebra with Priorities

PM(nil) = ∅

PM(p:a.A) = {|(p, a, A)|}

PM(D1 +D2) = PM(D1) ] PM(D2)

PM(A) = {|(p, a,Γ, A) | (p, a, A) ∈ PM(D) ∧ A , D ∧ Γ = {(Var(A),Val(A))}|}

PM(M1 BC
L
M2) = {|(p, a,Γ,M ′

1
BC
L
M2) | (p, a,Γ,M ′

1) ∈ PM(M1) ∧ a 6∈ L|}

]{|(p, a,Γ,M1 BC
L
M ′

2) | (p, a,Γ,M ′
2) ∈ PM(M2) ∧ a 6∈ L|}

]{|(p, a,Γ1 ∪ Γ2,M
′
1
BC
L
M ′

2) | (p, a,Γ1,M
′
1) ∈ PM(M1)

∧(p, a,Γ2,M
′
2) ∈ PM(M2) ∧ a ∈ L|}

• Select(PM(M)) returns the potential moves of M with the highest priority

and is defined as:

Select(PMSet) = {|(p, a,Γ,M) | (p, a,Γ,M) ∈ PMSet ∧ ∀(q, b,Γ′,M ′) ∈
PMSet.p ≥ q|}

Using the functions defined above, a stochastic semantics for PAwP of actions

and functional rates is given by the following derivation rule:

(p, a,Γ,M ′) ∈ Select(PM(M))

M
(p:a,Γ)−−−−→M ′

We refer to this new process algebra as stochastic process algebra with prior-

ities (sPAwP). Most of the definitions we introduced in Section 3.2.1 are almost

unchanged. The definitions differ only in the fact that they need to consider

priorities and instantaneous actions, with rate ∞.

Definition A.1 Activity. The couple (p:a,Γ) such that p ∈ (N \ {0}), a ∈
Actions and Γ ⊆ Names× R is called an activity.

Definition A.2 One step derivative. If M
(p:a,Γ)−−−−→ M ′ then M is a one step

derivative of M .

Definition A.3 Derivative. If Mi
(p:a,Γ)−−−−→ . . .

(p′:a′,Γ′)−−−−−→Mj then Mj is a derivative

of Mi.
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A.1 Stochastic Process Algebra with Priorities

Definition A.4 Derivative Set. The derivative set of a model process M ∈ Pm
is denoted by ds(M) and is defined as the smallest set of model processes such

that:

• M ∈ ds(M);

• if Mi ∈ ds(M) and Mi
(p:a,Γ)−−−−→Mj then Mj ∈ ds(M).

Definition A.5 Current activities for model Processes. The set of activities

that M ∈ Pm can perform is denoted by Activities(M) and is defined as:

Activities(M) = {|(p:a,Γ) | (p, a,Γ,M ′) ∈ Select(PM(M))|}

Definition A.6 Activity set. The set of all activities that a model process

M ∈ Pm or one of its derivatives can perform is given by:

−−−−−−→
Activities(M) =

⊎
Mi∈ds(M)

Activities(Mi)

Definition A.7 Derivation graph. Given a model component M ∈ Pm, the

derivation graph D(M) is the labelled directed graph with:

• set of nodes ds(M);

• multi set of transition labels
−−−−−−→
Activities(M);

• multi set of labelled transitions→⊆ ds(M)×
−−−−−−→
Activities(M)×ds(M). Given

M ′ ∈ ds(M), (M ′, p:a,Γ,M ′′) ∈→ iff M ′ (p:a,Γ)−−−−→M ′′.

Definition A.8 Open activity. An open activity is an activity (p:a,Γ) where:

• if p = 1 then Γ does not contain the exact variables present in the partici-

pant set pa, i.e. envVar(Γ)6= pa;

• if p 6= 1 then the set of variables contained in Γ is not in the set of possible

sets of participants pa, i.e. envVar(Γ)6∈ pa.
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A.1 Stochastic Process Algebra with Priorities

Definition A.9 Function openActivities. The function ‘openActivities’ selects

open activities from a set of activities A ⊆ (N \ {0})× Actions× 2Names×R:

openActivities(A)= {|(p:a,Γ) | ((p = 1 ∧ envVar(Γ) 6= pa)

∨(p 6= 1 ∧ envVar(Γ) 6∈ pa)) ∧ (p:a,Γ) ∈ A|}

Definition A.10 Current open activities. Given a model process M ∈ Pm, the

set of open activities that P can perform is defined as:

OpenAct(M) = openActivities(Activities(M))

Definition A.11 Open activity set. The set of all open activities that a model

process M ∈ Pm can perform is given by:

−−−−−−→
OpenAct(M) = openActivities(

−−−−−−→
Activities(M))

Definition A.12 Closed activity. A closed activity is an activity (p:a,Γ) where

:

• if p = 1 then Γ contains the exact variables present in the participant set

pa, i.e. envVar(Γ)= pa;

• if p 6= 1 then the set of variables contained in Γ is in the set of possible sets

of participants pa, i.e. envVar(Γ)∈ pa.

Definition A.13 Function closedActivities. The function ‘closedActivities’ se-

lects closed activities from a set of activities A ⊆ (N\{0})×Actions×2Names×R:

closedActivities(A) = (A \ openActivities(A))

Definition A.14 Current closed activities. Given a model process M ∈ Pm, the

set of closed activities that M can perform is defined as:

ClosedAct(M) = closedActivities(Activities(M))
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A.1 Stochastic Process Algebra with Priorities

Definition A.15 Closed activity set. The set of all open activities that a model

process M ∈ Pm can perform is given by:

−−−−−−−→
ClosedAct(M) = closedActivities(

−−−−−−→
Activities(M))

Definition A.16 Rated activity. The couple (a, r) such that a ∈ Actions and

r ∈ R>0 ∪ {∞} is called a rated activity.

Definition A.17 Function rateActivities. Given an environment Γ, “rateAc-

tivities” converts a set of activities A ⊆ (N \ {0}) × Actions × 2Names×R into a

set of rated activities B ⊆ Actions× (R ∪ {∞}):

rateActivities(Γ)(A) =

{|(a, ra) | ((Γ ∪ Γ′ ` fa → k ∧ ra = k/π(A, (p:a,Γ′)) ∧ p = 1)

∨(p 6= 1 ∧ ra =∞)) ∧ (p:a,Γ′) ∈ A ∧ fa ∈ F|}

where π(A, (p:a,Γ′)) returns the number of occurrences of (p:a,Γ′) in the multi

set A.

Definition A.18 Current rated activities. Given a model process M ∈ Pm and

an environment Γ ⊆ 2Names×R, the set of rated activities that M can perform is

defined as:

RatedAct(M)Γ = rateActivities(Γ)(ClosedAct(M))

RatedAct(M)Γ can be written RatedAct(M) if Γ is clear from the context.

Definition A.19 Rated activity set. Given an environment Γ ⊆ 2Names×R, the

set of all rated activities that a model process M ∈ Pm can perform is given by:

−−−−−−→
RatedAct(M)Γ = rateActivity(Γ)(

−−−−−−−→
ClosedAct(M))

−−−−−−→
RatedAct(M)Γ can be written

−−−−−−→
RatedAct(M) if Γ is clear from the context.

Definition A.20 Rated derivation graph. Given a model process M ∈ Pm and

an environment Γ ⊆ 2Names×R, the rated derivation graph Dr(M)Γ is the labelled

directed graph with:
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A.1 Stochastic Process Algebra with Priorities

• set of nodes ds(M);

• multi set of transition labels
−−−−−−→
RatedAct(M)Γ;

• multi set of labelled transitions →r⊆ ds(M) ×
−−−−−−→
RatedAct(M)Γ × ds(M).

Given M ′ ∈ ds(M), (M ′, a, ra,M
′′) ∈→r iff M ′ (p:a,Γ′)−−−−→ M ′′, (p:a,Γ′) ∈

ClosedAct(M) and {|(a, k)|} = rateActivities(Γ)({|(p:a,Γ′)|}) and

ra = k/π(ClosedAct(M), (p:a,Γ′)).

• multi set of labelled transitions→o⊆ ds(M)×
−−−−−−→
OpenAct(M)×ds(M). Given

M ′ ∈ ds(M), (M ′, p:a,Γ′,M ′′) ∈→o iff M ′ (p:a,Γ′)−−−−→ M ′′ and (p:a,Γ′) ∈
OpenAct(M).

Dr(M)Γ can be written Dr(M) if Γ is clear from the context.

183



Appendix B

Case Study Complete Model

Definitions

B.1 Detailed Definition of the Multi-Scale Model

of Tissue Growth

In this section we provide the complete definition of the multi-scale model of

tissue growth presented in Section 7.3

Constants:

k1 = 1/(Ms) k2 = 5 M/s k3 = 5 M/s

k4 = 1/s k5 = 1/s h = 1 M

kdeath = 1 event/s kgrowth = 1 event/s maxLevels = 10

rows = 10 cols = 10 thr = 5

Functional rates and sets of participants:

fr1(i,j) = k1 ∗ A(i, j) ∗ h ∗B(i, j) ∗ h/h

pr1(i,j) = {A(i, j), B(i, j), C(i, j)}

fr2(i,j) = k2/h

pr2(i,j) = {A(i, j)}

fr3(i,j) = k3/h
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B.1 Detailed Definition of the Multi-Scale Model of Tissue Growth

pr3(i,j) = {B(i, j)}

fr4(i,j) = k4 ∗ C(i, j) ∗ h/h

pr4(i,j) = {C(i, j)}

fr5(i,j,i2,j2) = k5 ∗B(i, j) ∗ h/h

pr5(i,j) = {B(i, j), B(i2, j2)}

fdeath(i,j) = kdeath

pdeath(i,j) = {R(i, j)}

fgrowth(i,j,i2,j2) = kgrowth

pgrowth(i,j,i2,j2) = {R(i, j), R(i2, j2)}

Agent definitions:

NA(i, j) , bioon(i, j).A(i, j, 0)

A(i, j, w) , biooff (i, j).NA(i, j)

+(

if w < maxLevels then

if w == (thr − 1) then

r2(i, j)[growthon(i, j)].A(i, j, w + 1)

else r2(i, j).A(i, j, w + 1)

else nil)

+(

if w > 0 then

if w == thr then

r1(i, j)[growthoff (i, j)].A(i, j, w − 1)

else r1(i, j).A(i, j, w − 1)

else nil)

NB(i, j) , bioon(i, j).B(i, j, 0)
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B.1 Detailed Definition of the Multi-Scale Model of Tissue Growth

B(i, j, w) , biooff (i, j).NB(i, j)

+(

if w < maxLevels then

r3(i, j).B(i, j, w + 1)

+(if i > 1 then r5(i− 1, j, i, j).B(i, j, w + 1) else nil)

+(if i < rows then r5(i+ 1, j, i, j).B(i, j, w + 1) else nil)

+(if j > 1 then r5(i, j − 1, i, j).B(i, j, w + 1) else nil)

+(if j < cols then r5(i, j + 1, i, j).B(i, j, w + 1) else nil)

else nil)

+(

if w > 0 then

r1(i, j).B(i, j, w − 1)

+(if i > 1 then r5(i, j, i− 1, j).B(i, j, w − 1) else nil)

+(if i < rows then r5(i, j, i+ 1, j).B(i, j, w − 1) else nil)

+(if j > 1 then r5(i, j, i, j − 1).B(i, j, w − 1) else nil)

+(if j < cols then r5(i, j, i, j + 1).B(i, j, w − 1) else nil)

else nil)

NC(i, j) , bioon(i, j).C(i, j, 0)

C(i, j, w) , biooff (i, j).NC(i, j)

+(

if w < maxLevels then

if w == (thr − 1) then

r1(i, j)[deathon(i, j)].C(i, j, w + 1)

else r1(i, j).C(i, j, w + 1)

else nil)

+(

if w > 0 then

if w == thr then
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B.1 Detailed Definition of the Multi-Scale Model of Tissue Growth

r4(i, j)[deathoff (i, j)].C(i, j, w − 1)

else r4(i, j).C(i, j, w − 1)

else nil)

E(i, j) ,

(if i > 1 then growth(i− 1, j, i, j)[bioon(i, j)].T (i, j) else nil)

+(if i < rows then growth(i+ 1, j, i, j)[bioon(i, j)].T (i, j) else nil)

+(if j > 1 then growth(i, j − 1, i, j)[bioon(i, j)].T (i, j) else nil)

+(if j < cols then growth(i, j + 1, i, j)[bioon(i, j)].T (i, j) else nil)

T (i, j) , growthon(i, j).Tm(i, j) + deathon(i, j).Ta(i, j)

Tm(i, j) ,

(if i > 1 then growth(i, j, i− 1, j).Tm(i, j) else nil)

+(if i < rows then growth(i, j, i+ 1, j).Tm(i, j) else nil)

+(if j > 1 then growth(i, j, i, j − 1).Tm(i, j) else nil)

+(if j < cols then growth(i, j, i, j + 1).Tm(i, j) else nil)

+growthoff (i, j).T (i, j) + deathon(i, j).Tam(i, j)

+{growthoff (i, j), deathon(i, j)}.Ta(i, j)

Ta(i, j) , death(i, j)[biooff (i, j)].E(i, j)

+apooff(i, j).T (i, j) +mitoon(i, j).Tam(i, j)

+{growthon(i, j), deathoff (i, j)}.Ta(i, j)

Tam(i, j), [R(i, j), 2] , death(i, j)[biooff (i, j)].E(i, j)

+(if i > 1 then growth(i, j, i− 1, j).Tam(i, j) else nil)

+(if i < rows then growth(i, j, i+ 1, j).Tam(i, j) else nil)

+(if j > 1 then growth(i, j, i, j − 1).Tam(i, j) else nil)

+(if j < cols then growth(i, j, i, j + 1).Tam(i, j) else nil)

+growthoff (i, j).Ta(i, j) + deathoff (i, j).Tm(i, j)
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Associated variables and values:

Var(NA(i, j)) = Var(A(i, j, w)) = A(i, j);

Val(NA(i, j)) = 0; Val(A(i, j, w)) = w;

Var(NB(i, j)) = Var(B(i, j, w)) = B(i, j);

Val(NB(i, j)) = 0; Val(B(i, j, w)) = w;

Var(NC(i, j)) = Var(C(i, j, w)) = C(i, j);

Val(NC(i, j)) = 0; Val(C(i, j, w)) = w;

Var(E(i, j)) = Var(T (i, j)) = Var(Ta(i, j)) = Var(Tm(i, j))

= Var(Tam(i, j)) = R(i, j);

Val(E(i, j)) = 0; Val(T (i, j)) = 1; Val(Ta(i, j)) = 1;

Val(Tm(i, j)) = 1; Val(Tam(i, j)) = 1;

Model process and initial state:

((NA(1, 1) BC
L1,1

NB(1, 1) BC
L1,1

NC(1, 1)) BC
K1,1

. . . BC
K1,9

(NA(1, 10) BC
L1,10

NB(1, 10) BC
L1,10

NC(1, 10))

) BC
K1,10

(· · ·
· · · BC

K6,5
(A(6, 6, 5) BC

L6,6
B(6, 6, 0) BC

L6,6
C(6, 6, 0)) BC

K6,6
· · ·

· · · ) BC
K9,10

(

(NA(10, 1) BC
L10,1

NB(10, 1) BC
L10,1

NC(10, 1)) BC
K10,1

. . . BC
K10,9

(NA(10, 10) BC
L10,10

NB(10, 10) BC
L10,10

NC(10, 10)))

BC

H

(E(1, 1) BC
N1,1
· · · BC

N1,9
E(1, 10)) BC

N1,10
· · ·

· · · (E(6, 1) BC
N6,1
· · ·Tm(6, 6) · · · BC

N6,9
E(6, 10)) · · ·

· · · (E(10, 1) BC
N10,1
· · · BC

N10,9
E(10, 10))

L1,1 = {r1(1, 1), bioon(1, 1), biooff (1, 1)}
K1,1 = {r5(1, 1, 1, 2), r5(1, 2, 1, 1)}
K1,9 = {r5(1, 9, 1, 10), r5(1, 10, 1, 9)}
L1,10 = {r1(1, 10), bioon(1, 10), biooff (1, 10)}
K1,10 = {r5(1, 1, 2, 1), r5(2, 1, 1, 1), r5(1, 2, 2, 2), r5(2, 2, 1, 2), r5(1, 3, 2, 3),
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r5(2, 3, 1, 3), r5(1, 4, 2, 4), r5(2, 4, 1, 4), r5(1, 5, 2, 5), r5(2, 5, 1, 5), r5(1, 6, 2, 6),

r5(2, 6, 1, 6), r5(1, 7, 2, 7), r5(2, 7, 1, 7), r5(1, 8, 2, 8), r5(2, 8, 1, 8), r5(1, 9, 2, 9),

r5(2, 9, 1, 9), r5(1, 10, 2, 10), r5(2, 10, 1, 10)}
H = {bioon(1, 1), biooff (1, 1), deathon(1, 1), deathoff (1, 1), growthon(1, 1), growthoff (1, 1),

bioon(1, 2), biooff (1, 2), deathon(1, 2), · · · , deathoff (10, 9), growthon(10, 9), growthoff (10, 9),

bioon(10, 10), biooff (10, 10), deathon(10, 10), deathoff (10, 10), growthon(10, 10),

growthoff (10, 10)}
N1,9 = {growth(1, 9, 1, 10), growth(1, 10, 1, 9)}
N1,10 = {growth(1, 1, 2, 1), growth(2, 1, 1, 1), growth(1, 2, 2, 2), growth(2, 2, 1, 2),

growth(1, 3, 2, 3), growth(2, 3, 1, 3), growth(1, 4, 2, 4), growth(2, 4, 1, 4),

growth(1, 5, 2, 5), growth(2, 5, 1, 5), growth(1, 6, 2, 6), growth(2, 6, 1, 6),

growth(1, 7, 2, 7), growth(2, 7, 1, 7), growth(1, 8, 2, 8), growth(2, 8, 1, 8),

growth(1, 9, 2, 9), growth(2, 9, 1, 9), growth(1, 10, 2, 10), growth(2, 10, 1, 10)}
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