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SYNOPSIS 

The elastic analyses of three-dimensional symmetric 

and asymmetric st ractures consisting of various load 

bearing elements have been presented in this thesis. 

Based on the continuous connection technique, closed- 

form solutions have been presented for the particular 

cases of uniform symmetric cross-wall and wall-frame 

structures subjected to distributed lateral loads. 

A modification to the continuum method of analysis of 

wall-frame structures has been made to allow the base 

flexibility of the two components to be included. 

The analyses have been extended to structures 

consisting of cores, coupled shear walls and rigidly- 

jointed framework assemblies, and also to structures 

which consist of two different sets of coupled shear walls, 

cores and frames. 

Based on the folded plate theory and the continuum 

approach solutions have been presented for asymmetric 

partially closed core structures subjected to torsional 

loading. Transformations have been derived to enable a 

symmetrical building structure subjected to torsion to 

be analysed as an equivalent plane structure subjected to 

in-plane bending forces. 
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An approximate method of analysis has been presented 

for asymmetric structures subjected to bending and 

torsional loading. In order to examine the validity 

and accuracy of the r ethods presented three example 

structures which were analysed previously by various 

investigators have been considered. Finally, a parameter 

study has been carried out to assess the relative 

importance of the various structural parameters. 
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INTRODUCTION 



CHAPTER 1 

INTRODUCTION 

1.1 General 

Buildings in general can be regarded as one of the 

cost significant signs of civilization. In the past, 

engineers and architects have designed and constructed 

buildings which have related closely to the cultural, 

social and economic needs of their era. In fact buildings 

are often described as expressing the power and socio- 

economic development of any society , and this is clearly 

the reason why ancient Egyptian, Persian, Greek and Roman 

designers planned some of the most magnificent monumental 

structures built some hundreds, or thousands, of years 

ago. 

Although various forms of buildings have been designed 

by engineers throughout the centu riesp the designing and 

erection of tall buildings in a systematic and scientific 

way is almost wholly a 20th century development. 

1 

The socioeconomic developments in industrialised nations, 

especially the United States, have increasingly required the 

construction of tall apartment and office buildings in 

urban areas. This is due to increase in population 'and 

postwar affluence on one hand, and scarcity and high 

costs of land on the other. As a result, a large number of 

tall buildings have been constructed to meet these social 

and economic demands. 
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While there is no general agreement as to what 

constitutes a tall building, from the structural engineer's 

point of view, a tall building is one whose planning, or 

design, or operation and use is influenced by the quality 

of "tallness". Thus it is not the absolute height nor 

number of storeys that counts. 
2 

After the second world war the need for more economic 

and safer tall building structures has encouraged engineers 

throughout the world to look for new philosophies and 

strategies for designing tall buildings. Up to that time, 

most buildings were designed in a conventional way; that 

is, structural engineers connected columns and beams 

together to create a structural grid for resisting lateral 

forces in both directions as well as innate gravitational 

loads. In such a rigid-frame type of system, the building's 

resistance to lateral forces stemmed from the rigidity of 

the column-beam connections3, Fig. 1.1 .A large number 

of research activities together with the greater refinement 

in analysis which the computer has allowed, has led to the 

development of new structural systems and a re-examination 

. of the more conventional structural forms aimed at achieving 

greater efficiency with respect to lateral load resisting 

functions. 

The structural units which may be adopted for providing 

lateral stiffness to buildings are essentially frames, cores, 

shear walls or their combinations, in conjunction with the 
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floor systems. The basis of the classification is the mode 

of deformation of the system when subjected to lateral 

loading. Frames deform in a predominantly shear mode, 

Fig. 1.2(a), while single walls deform in an essentially 

bending mode as illustrated in Fig. 1.2(b). hen the two 

units are constrained to deflect together by the stiff 

floor slabs, considerable redistribution of lateral forces 

occurs throughout the height of the building with heavy 

interactions near the top and bottom, Fig. 1.2(c). 

Any of the structural units mentioned above, singly or 

in combination , form a structural system. However, each 

of these systems tends to be more suitable for a particular 

range of height from an economic point of view. Table 1.1 

presents a preliminary guide to the selection of a structural 

system4. 

The selection of an appropriate system for a specific 

height of building helps the structural engineer to utilize 

his building materials more efficiently and hence reduce 

the building costs. For example, for a sixty storey 

building, the cost difference between a rigid-frame system 

against a more suitable structural system (i. e. tube in 

tube) is very large indeed. The former would require 

roughly double the amount of steel. 

Figs. 1.3(a), 1.3(b) and 1.3(c) show typical plan 

layouts of shear wall, shear Tall frame and coupled shear wall 

f 
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core-frame systems for tall buildings. 

1.2 Review of Previous Research 

In the past two decades a large number of methods for 

the analysis of tall building structures have been presented, 

many of which have found application in the design office. 

Some of the methods presented are applicable to the elastic 

analysis of tall buildings, while some are suitable for 

the elas"o-plastic analysis of such buildings. Since this 

thesis is concerned with the elastic analysis of tall 

building structures, the publications considered for the 

literature review relate only to the elastic analysis of 

these structures. 

The most important methods developed and in use for 

the analysis of the structural units present in a tall 

building are; the frame analogy method, the finite element 

method and the continuous connection technique. 

The frame analogy method is simply an extension of 

the stiffness method of analysis of conventional frames. 

The wall is analysed as a frame, except that the finite 

width of the wall is incorporated by stiff arms connecting 

the ends of the beams to the centoidal axes of the wall, 

and the beams are assumed to be infinitely stiff from the 

neutral axis of the wall to the edge of the actual opening. 

The method can take into account changes in wall thickness, 

r 
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storey height, opening sizes, and concrete elasticity at 

various locations within the height of the building. Any 

combination of load cases can be considered. A solution 

may be derived by standard matrix procedures using any 

of the widely available computer frarerork programs. 

The technique appears to have been used first by 

R acLeod516 in the analysis of coupled shear wall structures. 

Further developments were due to Kratky and Puri7 who 

developed a subroutine to modify a standard framework 

program, thereby achieving the same result, and Schwaighofer 

and hicroys8 who used a framework analysis program that 

incorporates a variable member stiffness subroutine. 

In the finite element method of analysis, the continuous 

structure is divided into a mesh of two-dimensional elements 

connected at their nodes. Simplified assumptions are made 

for the mode of deformation or stress distribution in each 

element, from which the stiffness matrix corresponding to 

the nodes is established. Then by combining these element 

stiffnesses, the total stiffness matrix for the structure 

is formed. Following the same procedure to that for a frame 

analysis a solution for the nodal displacements and forces 

may be achieved. This method is well established and has 

generally been used for checking accuracy of the results 

obtained by other techniques. The finite element method is 

highly versatile in that variations in geometry and loading 

can be taken into account but a digital computer is a pre- 

11 
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requisite for this method. The finite element method is 

not suitcble for the analysis of the overall three- 

dimensional structures because of its time and cost 

limitations. However, it is particularly useful for the 

detailed analysis of localized stresses and displacements 

in complex situations. 

The continuous connection technique is probably the 

only method suitable for hand calculations and it can 

easily be programmed for small computers. In the case of 

coupled shear walls, the usual assumptions of the continuous 

technique are that the discrete set of connecting beams or 

floor slabs may be replaced by an equivalent continuous 

medium of same overall stiffness. Since both walls are 

assumed to deflect equally at all heights, so their slopes 

are the same, and hence the connecting beams deflect with 

a point of contraflexure at mid-span. If the connecting 

medium is then assumed I cut' at the line of contraflexure 

the only forces acting at that position are shear flow and 

axial force intensities per unit height. The behaviour of 

the structure may be expressed by a second order differential 

equation. Closed-form solutions may be achieved for standard 

load cases, enabling the complete distribution of forces 

and deflections to be determined for the uniform coupled 

shear walls. 

The continuous technique has been used by many 

investigators, for the analysis of two-dimensional systems. 

f 
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It was first applied to the approximate analysis of 

coupled shear walls by Beck9 who used the shear forces in 

the connecting medium as the statically indeterminate 

function and treated the single case of uniform coupled 

shear walls on rigid foundation, subjected to a uniformly 

distributed lateral load. More comprehensive studies were 

followed by Rosman10,11 who derived solutions for a wall 

with two symmetric bands of openings, with various 

conditions of support at the lower end (piers on rigid 

basement, on separate foundations, and on various forms 

of column supports). Two loading cases, a uniform wind pressure, 

and a point load at the top of the building were considered. 

Using the continuum approach Coull and Choudhury12,13914 

developed closed-form solutions based on vertical cantilever 

beam concepts and presented curves for rapid calculation 

of the stresses, maximum deflections, axial forces in 

connecting beams and shear forces in any system of coupled 

shear walls subjected to uniformly distributed, and 

concentrated point loads at the top. The basic analysis 

was then extended by Coull and Yuri to cover the cases 

where the wall thickness 15 
and cross-sections16 are 

variable. There are relatively few published works available 

which deal with foundation deformation criteria in tall 

buildings; perhaps the most readily available and convenient 

are those developed by Tso and Chan17, and Coull1s who 

presented an analysis for coupled shear walls supported on 
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elastic foundations and subjected to the simple lateral 

load cases of a uniformly and triangularly distributed 

load and a point load at the top. Coull19 also considered 

the effects of a finite differential settlement between 

the foundations of two coupled shear walls. 

Many investigators presented simplified theories for 

the analysis of three-dimensional symmetric structures 

which may be reduced to equivalent plane systems. Based 

on the continuous connection technique, Heidebrecht and 

Stafford Smith 
20 

devised a method for the analysis of 

symmetric structures consisting of shear walls and rigidly- 

jointed frame assemblies. The method is suitable for 

the static analysis of uniform and non-uniform planar 

structures, and for dynamic analysis of uniform structures. 

Using the continuum approach, Cou1121 presented a method 

for the analysis of regular symmetric structures consisting 

of coupled shear walls and cores. He considered the shear 

flow intensity in the connecting beams of the coupled shear 

walls as the unknown variable. The solution for the shear 

flow was then used to determine the deflections and the 

internal forces. Stafford Smith and Abergel22 presented 

a method for the analysis of structures of the form considered 

by Cou1121. In their analysis coupled shear walls and cores 

were transformed into a single coupled shear wall with 

modified parameters. Expressions were given for the 

horizontal deflections and the internal forces. Arvidsson23 

devised a method for structures consisting of coupled shear 
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walls and frames. His method is based on the continuum 

approach and the complementary energy theory, and a 

solution was obtained by Eulerts formula. 

Despite a large amount of research carried out on 

the behaviour of tall building structures, published 

studies which deal with the analysis of three-dimensional 

systems are few in number. In an asymmetric structure 

which consists of different load bearing units, such as 

independent and coupled shear walls, rigidly-jointed 

frameworks, and open box-type cores, lateral forces resulting 

from wind and/or earthquake action produce both lateral 

and torsional displacements. Relatively little work has 

been done in this particular area, and the problem is 

further complicated if warping of the core assemblies due 

to the in-plane deformations of the floor slabs are 

considered. 

In many current structural forms of tall buildings, the 

lateral resistance of the structure is provided entirely or 

partly by the central core which contains the lift shafts, 

stair wells and other service ducts. Due to an asrmnetry 

of the structural layout or to an eccentric alignment of 

lateral loads torsional as well as bending deformations 

may be induced in the core walls. 

The torsional analysis of core structures has been 

presented by many investigators. Based on Vlasov's theory 

and stiffness matrix analysis Stafford Smith and T aio. nath24 
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devised a method in which particular attention was paid 

to the warping displacements and the associated stresses 

which accompany torsional displacements. The basic 

features of the theory relating the rotations, bimoments 

and warping stresses were presented, neglecting the 

effect of the connecting beams and the floor slabs. The 

method was then extended to include the effects of the 

connecting members. Tso and Biswas25 presented a method 

of analysis which was based on Viasov' s theory and 

continuous connection technique. The governing differential 

equation was obtained by equilibrium consideration of the 

internal and applied torques. 

Based on the folded plate theory, T awfik26 presented 

a method in which the core was considered as an assembly 

of vertical panels rigidly connected along their edges, 

the influence of openings in any of the panels was included 

by the use of the continuous connection technique. 

A comprehensive report describing various numerical 

methods for analysis of three-dimensional structure up to 

1972 was presented by Stamato27. The methods presented 

assumed linear elastic behaviour of the structural members 

and were classified into three categories; continuous 

methods, simplified discrete methods, and refined discrete 

methods. Using a stiffness matrix analysis Clough and King 
23 

devised a method for the multistorey frame structures. The 

r 
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method of analysis was intended to be programmed for 

solution by a digital computer and the basic features 

of the program written for the IBi.. 7090 were described. 

Vinkur and Gluck29 presented a method which considered 

the structure subdivided into main structural units for 

which the separate in-plane stiffness matrices were 

determined. Equations were formulated for the combinations 

of the units to the equilibrium of the floors with respect 

to translations along a pair of arbitrary orthogonal 

horizontal axes, and the rotation about an arbitrary 

vertical axis. Their solution gave values for the 

translations and rotation of each floor, and hence in-plane 

displacements of each unit, from which the unit actions 

were determined. Starnato and Mancini3o presented a method 

which was based on the continuous approach and matrix 

analysis. In the analysis frame assemblies were replaced 

by equivalent shear cantilevers. Solutions were derived 

for the deflection rotation and the internal forces. 

Wynhoven and Adams31 analysed three-dimensional wall-frame 

structures by employing slope-deflection equations to 

formulate equations of equilibrium for the structure. These 

equations were then arranged in matrix form and solved for 

the unknown displacements by using a modified Gauss Elimination 

technique. In a further study using model structures they32 

considered the influence of torsional displacements through- 

out the structure. 

An approximate analysis for the asymmetric wall-frame 

structures which is based on decoupling of the coupled 
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torsion-bending differential equations of equilibrium 

was developed by Rutenburg and Heidenbrecht33. The 

equilibrium equations were decoupled by using an orthogonal 

transformation. The deformations and stress resultants in 

the wall and frame assemblies were obtained by combining 

the respective coefficients which had been tabulated from 

the solved decoupled equations. 

Using an approximate frame analysis hortelmans, Roeck 

and Van Gemert34, and Haris35 devised methods for the 

approximate analysis of high-rise buildings which consist 

of wall and frame assemblies; the former method leads to 

a system of four simultaneous linear equations, which can 

be solved with a pocket calculator, while the latter is an 

approximate stiffness method which requires a computer 

for analysis. 

Coull and Irwin36 presented an approximate method for 

the torsional analysis of three-dimensional structures 

consisting of parallel assemblies of coupled shear walls 

and core elements. In this method the continuum technique 

is used to determine the flexibility matrix of each 

assembly, and by inversion the stiffness matrix is obtained. 

After determining the component stiffness matrices the 

complete structure is solved by matrix analysis. 

A simplified method of analysis of three-dimensional 

buildings whose structure consists essentially of parallel 
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systems of shear wall assemblies and box-core elements was 

presented by Cou11 and Adams37. In this method it was 

assumed that the load distribution on each element could 

be represented with sufficient accuracy by a polynomial 

in the height coordinate. Due to ill-conditioning of 

the matrices involved this assumption led to errors at 

higher and lower storey levels of the building. The 

method was later extended by Coull and Mohammed38 to 

include rigidly jointed frames in the analysis, and in order 

to obtain more accurate results a top concentrated inter- 

active force was added to the polynomial load distribution 

on each assembly. 

The first international symposium on tall buildings 

was held in the Department of Civil Engineering, University 

of Southampton39 in April 1966. Since then a number of 

regional conferances and symposia have been held all over 

the world. A major event was the International Conference 

on Planning and Design of Tall buildings which took place 

at Lehigh2 University in August 1972. These conferences 

produced several valuable papers on the design and analysis 

of tall building. A very useful collection of papers was 

published by the American Concrete Institute40 and more 

recently a comprehensive series of monographs on the planning 

and design of tall buildings was published by the American 

Society of Civil Engineers 1. 
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1.3 Reasons for Present Study 

Most of the studies on the three-dimensional analysis 

of tall buildings are related either to the flexural 

behaviour of s; mmetrical sy steps or the torsion-bending 

analysis of structures with relatively simple structural 

layouts. However, many of these methods require the use 

of a computer, and may also require special programming. 

Few of the methods presented are suitable for rapid hand 

calculation by practising engineers in the preliminary 

proportioning of components at the initial stages of 

the design process. As a result, methods of analysis 

which are less dependent on large scale computers are 

highly desirable. 

1.4 Scope of the Thesis 

This thesis is devoted to the "exact" analyses of 

three-dimensional symmetric and asymmetric structures, 

which consist of combinations of different load bearing 

elements, such as shear walls, coupled shear walls, cores, 

and rigidly-jointed frameworks , subjected to lateral 

forces which produce bending and torsion. By using the 

continuous medium approach, and representing a frame by an 

equivalent shear cantilever, closed-form solutions to the 

problems are possible. Closed-form solutions may be 

achieved for standard load cases, enabling the complete 

distribution of forces and deflections to be determined 

and design curves to be produced. 
f 
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In chapter 2, the analysis of coupled shear wall-core 

and wall-frame symmetrical structures subjected to bending 

have been considered. Frames have been represented by 

equivalent shear cantilevers and the effects of shearing 

deformations which occur in the frame at the base level, 

and the base shear which results have been investigated. Two 

numerical examples have been considered. 

In chapter 3, the analysis of symmetrical structures 

consisting of assemblies of identical coupled shear walls, 

cores, and frames subjected to bending has been studied. 

In order to illustrate the typical behaviour of such systems 

a numerical example has been considered. 

In chapter 4, the analysis of symmetrical structures 

consisting of two different groups of coupled shear walls 

and cores subjected to bending has been considered. The 

analysis has then been extended to include framework 

assemblies. The typical behaviour of such structures has 

been demonstrated by a numerical example. 

Chapter 5 describes the torsional analysis of 

symmetric and asymmetric core structures. The folded 

plate and continuum techniques have been used for the 

analysis. 

Chapter 6 includes the torsional analysis of symmetric 

coupled shear wall structures, shear wall-core structures, 

and shear wall-core-frame structures. The torsional 

0. 
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analysis of symmetric structures consisting of shear walls, 

coupled shear walls, cores and frames has then been 

formulated. 

In chapter 7, the anc. lysis of asym. zetric structures 

consisting of parallel assemblies of cores, shear walls 

and frames subjected to bending and torsion has been 

considered. The analysis has then been extended to include 

frame assemblies in two orthogonal directions. 

Chapter 8 describes comparison of the results from 

present analysis with other published works, and a 

numerical parameter studies together with relevant 

discussions. 

Chapter 9 includes the conclusions drawn from the above 

studies and suggestions for future work. 

r 
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Fig. 1.3('c) Typical layout of a high-rise building with 
coupled shear wall-core-frame interaction 
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Frame 5.2 Up to 15 Up to 20 Very good 
haar- wall (e rate) 9.3 Un tM 1 rin Gnncl 

Staggered wall beam 5.4 U to 40 Good 
Shear walls acting with 
fames 5-5 Up to 40 Up to 70 Good 

Single framed tube 5.6 Up to 40 Up to 60 Very good 
Tube-in-tube 5-7 U to 80 UD to 100 Good 

Table 1 
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NOTAT ION 

A1' A2 cross-sectional areas of coupled walls 

b clear span between coupled walls 

E elastic modulus 

h storey height 

H total height 

Ii second moment of area of wall i (i = 1,2,3) 

+I2+13 I11 

Ic second moment of area of connecting beams 

1 distance between centroidal axes of coupled walls 

Mi bending moment in wall i (i = 1,2,3) 

M static applied moment 

N axial force in coupled walls 

ni axial force in connecting media (i = 1,2) 

Qi concentrated interactive forces (i = 1,2) 

q shear force intensity in connecting medium of 

coupled shear walls 

S shear force in wall i (i a 19293) i 

w uniformly distributed lateral force intensity 

y lateral deflection 

ae , )6 structural parameters 

k parameter oCH 

non-dimensional height (x/H) 

01 axial force function 

ßi2 shear flow function in connecting beams 

03 axial force function in coupled walls 

04 top deflection function 



5'06 maximum moment functions in coupled walls and 

core respectively 

GA effective shearing rigidity of shear cantilever 

S shear force in shear wall 
w 

Sf shear force in frame 

M bending moment in shear wall 
W 

M bending moment in frame 
f 

6 base slope' 

A effective shear area of shear wall 
w 

GA shearing rigidity of shear wall 
W 

0 shearing rigidity ratio 

S base shear 0 

M base moment 
0 
x height above base 

f 



CHAPTER 2 

BENDING ANALYSES OF SY`47. ITRIC COUPLED 

SHEAR WALL-CORE, AND WALL-FRAKE 

STRUCTURES 

2.1 Introduction 

In many tall building structures the resistance to 

lateral forces is provided by coupled shear walls, core 

and frame assemblies. Careful arrangement of these 

elements in a tall building can also provide the 

architectural functions of dividing and enclosing space, 

and providing fire and acoustic insul o. tion between 

dwellings. When these assemblies are subjected to 

distributed lateral loads, their modes of behaviour are 

different. A cantilever core or an independent shear wall 

deforms in a bending mode, a frame in a shear mode, and a 

coupled shear wall system bends with a reversal of curvature 

in the higher levels. However, in a typical tall building 

structure these elements are constrained to act together 

by floor slabs, and, as a result, when subjected to lateral 

forces a considerable redistribution of load may occur 

throughout the height of the building. 

If the structural layout and the loading are symmetrical 

the three-dimensional structure may be replaced by an 

equivalent plane system in which the various load bearing 

elements are connected together in series by pin-ended 

rigid links 20'21 The links simulate the actions of the 
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floor slabs, which are assumed rigid in their own plane 

but flexible out of plane. 

In this chapter, analyses are presented for symmetrical 

coupled shear wall-core and wall-frame structures by using 

the continuous connection technique. 

To simplify the analysis it is assumed that a frame 

assembly may be replaced by an equivalent shear cantilever 

which has the same effective stiffness. Closed-form 

solutions may be achieved for standard load cases, enabling 

the complete distribution of forces and deflections to be 

determined rapidly. In order to demonstrate the typical 

structural response of such systems, two numerical examples 

are considered. In the analysis of symmetrical wall-frame 

structures, the shear cantilever representation of frame 

elements is discussed in detail, and an extension to the 

analysis is presented to allow shearing deformations of 

both walls and frames at ground level to be included, and 

allow an assessment to be made of the shears carried by 

the frame. 

2.2 Analysis of regular symmetric coupled shear wall-core 
Structures 

Consider a three-dimensional regular symmetric structure 

which consists of assemblies of identical coupled shear walls, 

box cores and floor slabs, as shown in Fig. 2.1(a). Due to 

the high in plane rigidity of the floor slabs, it is 

assumed that each horizontal section of the structure 
f 
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undergoes only a rigid body movement. A simplified analysis 

can then be presented by replacing the three-dimensional 

structure by an equivalent plane system, in which, the 

various elements are constrained to act in series by a 

set of pin-ended rigid members, which are assumed to 

simulate the actions of the floor slabs. Fig. 2.1(b) 

shows the plane system which is used for the initial analysis. 

2.2.1 Assumptions 

The following assumptions are made for the analysis: 

(i) The coupled shear walls have uniform sectional 

properties, spacing and dimensions throughout 

the height and are rigidly built in at the base. 

(ii) The coupling beams have uniform sectional properties, 

spacing and flexural rigidities. 

(iii) The independent shear wall or box core has uniform 

sectional properties and dimensions throughout 

the height of the building and is rigidly fixed 

at the base. 

(iv) The axial deformationsin the connecting beams are 

negligible and the coupled shear wall and core 

assemblies deflect equally. Hence, the coupling 

beams deflect with a point of contraflexure at 

their mid-span. 

r 
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2.2.2 Analysis 

Consider initially the plane system shown in Fig. 21(c). 

The basic idea of the continuum approach is the replacement 

of the discrete set of connecting beams of flexural 

rigidity EI by an equivalent continuous system of laminas 

of flexural rigidity EIc/h per unit height. If a 

vertical cut is now made at the line of contraflexure 

in the continuous medium (Fig. 2.1(d)), the only forces 

present at that position are shear and axial forces of 

intensity q and n1 per unit height respectively. Under the 

action of external and internal forces, there is no relative 

vertical movement at the cut section. Therefore, at any 

height x, the compatibility equation may be shown to be 

x$ 
d13 

2E1 q-1 (Ä +ý)q (ý` ) dig 1 
°12 

0 17 (2.1) 

The three terms in equation (2.1) are, the relative displace- 

ment due to bending of the walls under external load, the 

deflection due to bending and shear of the cantilevered 

lamina, and the relative displacement of the walls due to 

axial forces, respectively. 

In equation (2.1) 

1= distance between wall centroids 

b clear span of the coupling beams 

h- storey height 

Ea Young's modulus 
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Ic = second moment of area of the coupling beams 

A1, A2 = Cross-sectional areas of the walls 

x= height above base 

NI= auxiliary variables 

y= horizontal deflection 

In a similar manner, the set of discrete rigid pin- 

ended links between the coupled walls and the core element 

is replaced by a continuous medium which transmits an 

axial force of intensity n2 per unit height. The 

equivalent structure and the loading pattern is shown in 

Fig. 2.1(d). The respective moment-curvature relationships 

at any height x for the coupled shear walls and core in 

Fig. 2.1(c) are 

H 
2 

EI1 S M1 =M-2 
dx 

+ d1) q (%`) d (A) -M al 
x 

(2.2) 

U 

EI2 
dy= 

M2 =- (2 + d2) q (ýý d (, \ )+ Mai - Mgt 
x 

(2.3) 

3 E1 y_M3 
a2 m 11 

dx 
(2.4) 

where dI and d2 are the distances from the 'cuts section 

to the centroidal axis of the coupled walls (Fig. 2.1(d)); 
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I1112 and 13 are the second moments of area of wall 

1,2 and 3; M is the static applied moment, and Mal and 

Mat are the moments due to the axial forces in the two 

connecting media, given by 

M=p (H - x) +2w (H - x) 
2+5H (H - x) 

2(2 H+ x) 

(2.5) 

H 

Mal a ni (\) (>- x) dX + Qi (H - x) (2.6) 
z 

H 

Mat a n2(> (X- x) d)% + Q2 (H - x) (2-7) 

Jx 

Q, and Q2 are the concentrated interactive forces which 

generally exist at the top of the connecting media as shown 

in Fig. 2.1(d), and 

P- concentrated point load at the top of the structure 

W= uniformly distributed load intensity 

u= triangularly distributed load intensity 

On addition of equations (2.2), (2.3) and (2.4) the overall 

moment-curvature relationship is given by 

2a 
EI ()= I-1 

dz Jx c (a) dý (2.8) 

where I-11 + I2 +I 
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Differentiation of equation (2.8) with respect to x yields 

an expression for the shear flow q, given by 

q=1 (- ä1 + 
1-2) (2.9) 
dx 

Thus 

24 ä=id2+ EI ) (2.10) 
dx dx4 

On differentiating equation (2.1) with respect to x, and 
H 

substituting for äx 
and 

I 
q(') d) from equations 

x 
(2.10) and (2.8), the governing differential equation 

becomes 

da 
_2d1 

d2M k2 _ ß2) 
dx4 

« 
dx2 EI dx2 

where 

2 12Ic12 
Ba 

/` b3hI 

ý 
A1g212 oc2 . 2+AI ) 

1 lß + A2 

(2. ») 

f 



24 

The general solution of equation (2.11) is obtained by 

adding the complementary function and the particular 

integral solutions of the equation, and may be expressed 

in the form 

y=C0+ C1 x+ C2 sinhpcx + C3 cosho<x + y, I 
(2.12) 

Where Co, C1, C2 and C3 are constants of integration and ypj 

is the particular integral solution. These quantities may 

be determined from the necessary boundary conditions and 

the specific loading pattern. 

Boundary Conditions 

The constants Coy C11 C2 and C3 may be determined 

by considering the top and bottom boundary conditions 

for the system. If the structure is rigidly built in at 

the base, x-o, then 

ynO and e0 
ä (2.13) 

At the top of the structure, there are no axial forces and 

bending moments. Thus, at x-H 

2 
o 

dx 
(2" 14) 

f 
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From equations (2.1) and (2.13) it can be deduced that 

q=o at x=o, hence from equation (2.9), at x=o 

d3, Lr 
=1 

di(o) 

dx3 EI dx (2.15) 

Uniformly Distributed Wind Loading 

The differential equation (2.11) may be solved for 

the three standard load cases, the only essential difference 

being in the particular integral solution. However, in 

order to obtain a solution, consider the particular case of 

a uniformly distributed wind loading of intensity w per 

unit height. In that case, 

xm1 ''a(H - X) 

(2.16) 

dX m_ w($ _ x) 

d2 2sw 

dz 

2 
On substituting for M and 

d in equation (2.11), it 7x2 7 

becomes 

d4 
o2 

d EI 1-2 (a z) 
2 (2.17 

dz dz 2 

lar 
The simplest part iou integral part of the general solution 

then becomes 

f 
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YPZ =2 
giL2 (2, e2) 2]=2 

-2« -2) 
3 

4a EI 
tO(2 

6 EI 

+ (« -2) x4 
242E1 

(2.18) 

On substituting for the particular integral function in 

equation (2.12) the general solution becomes 

y-C +C 22- (oo2-4A 2)H2 
x2 LA3 

01 40? 2 EI oc2' 

-wH (02 _ý 
2) 

z3 
6a2EI 

+2 (J -, e2) x4 + C2 sinhax + C3 coshes x 
24-K EI 

(2.19) 

Using the boundary conditions (2.13) to (2.15) the 

integration constants Co, C1, C2 and C3 may be found to 

be 

1 

Co (1 + aH sinh (E) 
oe. EI coshocH 

wg 1B2 C1_ 
EI x4 

2 
C2 - 

EI 

acA 
5 

4, ý2 
ý3 a 

d6 EI cosho<H 
(1 +aH sinhQtH) 

(2.20) 
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Then, on substituting for (Co)-(C3) into equation (2.19), 

the general solution becomes 

H4 2 
ys $ 

24 
(i-ä 2) 

[(1)4+41] 

s2 12 

«2g 
21 2 

1+ k sieh k- cosh kk sieh k (1-i) 
2.21 

Z 
k cosh k 

where 

(2.22) 

k= ocS 

j 
and k are the non-dimensional height and stiffness 

variables respectively, and are used to emphasize the 

dependence of the solution on these two variables. 

On differentiating equation (2.8) with respect to x 

and substituting for the deflection and moment functions 

from equations (2.16) and (2.21), the shear flow q in the 

connecting medium becomes 

q2 sinh k¬-k cosh k (1 
(2.23) 

i< k coshk 
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The axial force N in each coupled wall at any height x is 

given by 

H 

Hq (ý) d (2.24) 
x 

On substituting for shear flow q from equation (2.23) 

into equation (2.24) the axial force N becomes 

i 

2 
Nw 

l«2 

1(1 
-j)2 f cosh k- cosh k-k sinh k (1 -ý) 

k2 cosh k 

(2.25 

The moments in the walls can be obtained by considering 

equations (2.2), (2.3)p (2.4) and (2.8) and are given by 

Ii 
Mi (M -1 N) (2.26) 

where i-1,2 and 3 for walls 1,2 and 3 respectively. 

From equations (2.2), (2.4), (2.8) and (2.24), Mai and 

Mat are given by 

Mai _ (1 - 
Il 

I)M+ 

; dal 
13 

M1 N) 

( I1 1-1- di) N (2.27) 

(2.28) 

On differentiating equations (2.7) and (2.8) twice with 

respect to x, the distribution of axial force intensities 



29 

in the connecting media become 

Mal 
(2.29) 

dz2 

2 d 

2a2 
(2.30) n2 

dY 

Hence, on substituting for Mai and Ma2 from equations 

(2.27) and (2.28) into equations (2.29) and (2.30), the 

axial force distributions nI and n2 become 

dl) ol (2.31) 

and 

2 
n2 a`'I 1+2 01 (2.32) 

where the axial force function V, is 

1 01 a cosh k cosh ký +k sinn k (1 - 
¬) 

-1 (2.33) 

The lateral force distributions in walls 19 2 and 3 are 

then given by w- n1, n, - n2 and n2 respectively. 

A consideration of equations (2.31) and (2.32) 

demonstrates the possible errors involved in an assumption 
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commonly made in design that the externally applied loads 

are distributed between the walls in proportion to their 

flexural rigidities. The axial force function 01 can 

therefore be thought of, as a lateral force redistribution 

factor. 

30 

The variation of axial force function 01 for a range 

of values of stiffness variable k is illustrated in Fig. 2.2 It 

can be deduced that coupled shear walls carry a larger 

proportion of the lateral loads in the upper levels and less 

in the lower levels. The curves also indicate that as the 

stiffness variable k increases, the redistribution of lateral 

loads between coupled shear walls and core elements becomes more 

significant at lower levels. 

The shear forces in the coupled shear walls and core 

assemblies may be found by considering the conditions of 

equilibrium of a small vertical element of each structural 

unit (Fig. 2.1(e)). For the coupled shear walls, the shear 

forces S1 and S2 are 

S1= _ax1 + (2 + d1)q (2.34) 

+ (2 + d2) q (2.35) S2' _T -x 2 

and, for the independent wall or box core, the shear force 

S3 is 
dM3 

dx 
(2.36) 
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Hence, on substituting for q9 M11 M2 and M3 from equations 

(2.23) and (2.26) into equations (2.34) 
- (2.36), the 

shear forces S19 S2 and S3 become 

ZK 

+siehk¬ -k cosh k (1- ) 

k cosh k 

(2.37) 

s2 ý' H? (1 - 
ý) 

-'? 2 
(I2 1-2- d2) 1 -J) 

1b 

+sinhký-kcosh k(1-) 

k cosh k 

(2.38) 

S3 H (1 -) - '62 (1 -) + sinh k ýi 
-k cosh k(1 -ý) 

°(k cosh k 

(2.39) 

At the base, j=o, the shear forces become 

I 
Si Iý wH 

I 
52 I2 C4 H 

S3s -ý 
W fi 

I 
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A 

i. e. irrespective of the relative stiffness of the coupled 

wall element, the base shear in the individual wall is 

always proportional to the flexural rigidity. 

From equations (2.37) - (2.39) it is found that shear forces 

exist at the top of the structure in the various elements. 

These shear forces can only be caused by concentrated 

interactive forces at the top of each connecting medium, 

as shown in Fig. 2.1(d), such that 

s1(H) -- e1, 

Hence, 

s2(H) - Q1 - Q2' s3(H) - Q2 

Q1 ýWH (=1 1-2-d1) 
rA2 

(sinhk - k) (2.40) 
L w1 k coshk 

2 
wH 

'2 (sieh k- k) (2.41) 

oC "k cosh k 

Figs. 2.3 and 2.4 illustrate the variations at any level of 

the shear flow function ßi2 in the connecting beams, and the 

axial force function 03 in each coupled wall respectively. 

Hence 
2 

qg 
d- 

1.42 
02 

2 '2 
(2'42) 

N wH 
loC2 

03 

and 02 and 03 are given by 
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10 

02 1-¬+ sinh k II 
-k cosh k (1 - 

`f) (2.43) 

k cosh k 

ý3 a2 (1 - )2 + cosh k- cosh kI -k sieh k (1 -) 
k2 cosh k 

(2044) 

The maximum deflection which occurs at the top of the 

structure and the maximum moments which are present at 

the base of each assembly can be determined using equations 

(2.21) and (2.26). Hence 

W H4 
ymax ' EI 

04 

M1+2 '2 WH2 05 (2.45) 

max 

Mw .12 ý6 w H2 lax 

where 

1+k sieh k- cosh k (2.46) 
4 k2 2 k2 cosh k 

I1+2 
2 (1 

-1+k 
sinh k- cosh k) (2.47) 05 

I2 k2 cosh k 

ý6 2 (2 -1+ 
ksinh k- cosh k) (2.48 

rk2 
cosh k 

and 

0! 
2 

'2 
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Figs. 2.5,2.6 and 2.7 show the forms of functions 04' 

05 and 06 for a range of values of the stiffness parameter k. 

2.2.3 Application to three-dimensional structures 

The analysis developed may be applied to three- 

dimensional regular symmetric structures consisting of box 

cores and a number of identical coupled shear walls, such 

as those in Fig. 2.8. If it is assumed that the lateral 

loads acting on the building have a resultant which acts as 

a vertical line load at the axis of symmetry of the structure, 

no rotation will occur and all assemblies will undergo the 

same lateral deflection at any level. The three-dimensional 

structure may then be replaced by an equivalent two dimensional 

system, which is obtained by assembling the parallel units 

in series with rigid pin-ended connecting links at each floor 

level as shown in Fig. 2.1(b). As the coupled shear walls 

are identical, the structure may be replaced by a simpler 

equivalent plane system in which the stiffness of a single 

coupled shear wall element is the sum of the stiffness of 

individual coupled shear wall assemblies (Fig. 2.1(c)). The 

summation is simply performed by adding the relevant areas 

and second moment of areas of walls and connecting beams, 

i. e. if there are n coupled walls, the values of I1, I2, 

A1, A2 and I. in the formulae must be replaced by nI1, n12 

and so on. Similarly, the stiffness of the core element 

in the equivalent plane system may be obtained by adding 
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the flexural rigidities of all core assemblies. The 

equivalent- plane system may then be analysed using the 

formulae developed in section (2.2.2). The loads and 

corresponding forces are divided equally among individual 

elements, and between the core units in proportion to 

their flexural rigidities. The common deflection may be 

obtained directly from equation (2.21). 

2.2.4 Numerical example 

The floor plan for this example is shown in Fig. 2.9. 

This thirty storey structure consists of two end U-shape 

cores and five pairs of coupled shear walls. The relevant 

structural data are: storey height m 2.5 m; total 

building height - 75 m; for each core, I= 19.75 m5 ; for 

coupled shear walls, I=12-3.6m4, A1- A2 = 1.2 m2, 

Ic = 10.67 x 10-4 m4, b=2m, 1=8m, E- 21 x 106 kN/m2. 

The relevant structural parameters are then: o. H a 4.61, 

, BH = 3.91. 

The lateral deflections and internal forces in 

different assemblies may be found fron the formulae 

presented in section 2.2.2 . The distributions may be 

expressed in terms of a series of functures F1 to F9 

as follows, 

2 
I F1' ý'_ » 

3 



36 
j 

M M2 1 (. aH2 F 
1 

L. D3 = wF6 

S3 =wHF9 I 

wh ere 

I 

(w 
2 

2 )F5 

L. D1+2s `JF7 

ºS ° ºS 2a2W 
HF8 

L. D - Lateral load distribution in the various elements 

equal tow- n2 and n2 in coupled shear walls and 

core respectively. 

The distributions of lateral deflection and internal 

forces are shown in Figs. 2.10 - 2.18. The magnitudes of 

the top concentrated interactive forces Q1 and Q2 may be 

determined from equations (2.40) - (2.41) and are found to 

be: Q1 a 0. o37wH, Q2 - 0.074 wH, that is 3.7%o and 7.4% 

of the total lateral load respectively. 

A commonly adopted design rule is to assume that lateral 

forces are distributed among the various assemblies uniformly, 

such that the resulting deflections at the top of the 

structure are equal. The lateral load distributions which 

would occur then are shown by broken lines in Figs. 2.17 

and 2.18. The corresponding distributions of the axial force 

forces in the coupled shear walls, bending moments and 

shear forces in the two components are shown by broken 
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lines in Figs. 2.12 to 2.14,2.17 and 2.18 respectively. 

It is clearly indicated that considerable errors may 

arise if these simple design procedures are used. 

2.3 Replacement of rigid 1, y-jointed frame by equivalent 

shear cantilever. 

A laterally loaded frame element deforms in a 

predominantly shearing mode as a result of the racking 

action in each storey, produced by the bending of the 

columns in double curvature. In order to achieve a 

simplified generalised analysis, the overall mode of 

behaviour of the complete frame may be simulated by 

replacing the frame by an equivalent shear cantilever of 

shearing rigidity GA, and infinite flexural rigidity. The 

axial deformations of the columns under the action of 

lateral forces are then assumed to be negligible. 

In order to produce a correct distribution of lateral 

forces, the shearing rigidity of the equivalent cantilever 

must be chosen so that the horizontal displacement of both 

frame and cantilever must be the same when subjected to the 

same shear force. 

Consider the single storey segment of a frame panel 

shown in Fig. 2.19(a). In particular cases where the 

columns are closely spaced, and the beams relatively deep, 

the finite size of the joint relative to the free column 
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height and beam span should be taken into account. This 

may be done by assuming that short rigid arms exist at 

each node, of width equal to the width of the column, and 

of height equal to the depth of the beams. 

It is assumed that the columns are constrained to 

deflect equally at each floor level due to the high in-plane 

rigidity of the floor slabs, and that the beams deflect 

with a point of contraflexure at their mid-span position. 

It is further assumed that the columns bend with points of 

contraflexure at their mid-height positions. The forces 

on the frame segment, and effective boundary conditions, 

are then as shown in Fig. 2.19(c). 

If a horizontal shear force Q is applied at the node Dq 

the resulting horizontal deformation AN may readily be 

calculated from the moment-deformation characteristics of 

the frame segment. 

For an equivalent shear cantilever element of the same 

bay width, subjected to the same shearing force Q' (Fig. 2.19(b)ý, 

the load-displacement relationship iss 

11 ah 

On equating the two relationships, it is found that 

the effective shearing rigidity GA becomes 
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t 
GA Z 

122 Ih (1 + e? 
) 

e 

t2 

where 
21h (1+ 2/e) 

Z1+ 

e 

Id1 

1+ 
tl 

)2 + 

Id2 
(1 + 

tj 
,2 

11 11 12 12 

in which Ih - second moment of area of column, h- storey 

height, Id and Id are the second moments of area of the 
12 

adjacent beams of total lengths d1 and d2 respectively, t1 

and t2 are the length and height of the rigid arms, and 

ea il 
t 

11a dý - t1 

12=d2-t1 

This relationship is applicable also to an exterior 

column if the second moment of area of one of the beams 

is taken to be zero. The total shear stiffness of the 

equivalent cantilever is then equal to the sum of the 

individual GA values of the bays. 

Ifs as is frequently the case with tall buildings, 

Id 
1= 

Id 
2° 

Id, and d, -d2=d ,or 11 = 12 =1=d-t1 

Gý sI 
12EIý, ý1+t2 

Z1 
e2 e 
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t2 

where Z1 a 1+ 
1 1+ e) 

Id(1 +t 1/1) 2 

If the spans of the beams and heights of the columns 

are relatively large in comparison with the joint dimensions, 

t1 and t2 may be taken to be zero in the above expressions. 

2.4 Analysis of symmetric shear wall-frame structures 

Consider a three-dimensional symmetric structure which 

consists of assemblies of independent shear walls or box 

cores and rigidly-jointed frames, constrained to act 

together by the floor slabs, as shown in Fig. 2.20(a). 

Due to the high in-plane rigidity of the floor slabs, it is 

again assumed that each horizontal section of the structure 

undergoes only a rigid body movement. On replacing the 

three-dimensional structure by an equivalent plane system 

as described in section 2.2, a simplified analysis may be 

achieved. Fig. 2.20(b) shows the plane system which is 

used for the initial analysis. 

2.4.1 Analysis 

Consider the structure shown in Fig. 2.20(b). The set 

of discrete pin-ended links between the shear wall and the 

frame can be replaced by a continuous medium which transmits 

an axial force of intensity n3 per unit height. The 

equivalent structure and the loading pattern are shown in 

Fig. 2.20(c). 



The shear force-displacement characteristics of the 

constituent wall and frame components may be expressed 

as, 

SW 
a 

EI (2.49) 

dx, 

Sf=GAdx (2.50) 

where SA and Sf are the shear forces on the wall and frame, 

EI and GA are the flexural and equivalent shearing rigidities 

of the wall and frame, and y is the lateral deflection. 

The moment-curvature relationship for the shear wall 

is 

EI 
2 

-MW=M-Ma3 
dz 2 

(2.51) 

where MW is the moment on the wall, M is the static applied 

moment and M 
a3 

is the moment due to the axial forces in the 

connecting medium. 

The equations governing the behaviour of the structure, 

referring to Fig. 2.20(c) are 

d4 y :. I 
L-dM-n (2.52) 
dx4 dx2 3 

2 

- GA äs n3 (2.53) 

41 

t 
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On adding equations (2.52) and (2.53), the governing 

differential equation becomes 

2ds1 d2M 
- De. EI da4 dz2 dx2 

where c<2 = EI 

(2.54) 

The solution of the differential equation (2.54) consists of 

two parts, complementary function and the particular 

integral and is given by 

y A0 + A1 x+ A2 sinh ocx + A3 cosh oc x+ yPI (2.55) 

where Ai (i -0- 3) are constants of integration and yPI 

is the particular integral solution. These quantities may be 

obtained from the boundary conditions and the loading pattern. 

Boundary Conditions 

For a conventional structure which is fixed at the 

base and free at the top, the four boundary conditions 

required for a complete solution are 

Atx=0, y=o, d 
=0 (2.56) 

Atx-H, M3 =p (2.57) 

where M and 3 are the externally applied bending moment and 

shear force respectively. 
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Equations (2.57) may be expressed in terms of the 

lateral deflection y as 

dy= 09 GAS - EI a y= 0 (2.58) 
dx2 

dx dx3 

In the particular case of a top concentrated applied lateral 

load, used in equivalent static earthquake loadings, the top 

shear S(H) will be put equal to the applied load P. and 

the boundary condition (2.58) becomes 

P =S(H) ' GA d- E2 A3 

dx 

Uniformly distributed wind loading 

The differential equation (2.54) may be solved for 

the three standard load cases. However, in order to obtain 

a solution, the case of a uniformly distributed wind loading 

of intensityw per unit height is again considered. The 

applied static moment and its derivations are given by 
2 

equations (2.16) and on substituting ford 2 in equation 
dx 

(2.54), it becomes 

d42 
-2dW (2.59) 

dx4 
« 

dx2 
a EI 

The simplest particular integral then becomes 

_2 YPI 
2ä EI 

(2.60) 
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On substituting -, PI in equation (2.55) the general solution 

becomes 

ys Ao + Aý a-2 
EI 

x ---- 
2 

2a 
+ A2 sinh ax+ A3 co shoc Y. 

(2.61) 

The integration constant Ai (i -0 -3) may be found using 

the boundary conditions (2.56) - (2.57), to be 

_W ý° 
EIc(4 cosho<H 

wg Al 1s 
O< EI 

- WE 

2 sOC3 
EI 

w 
A3 

EIO cosh o(H 

(«H sinho(H +1 

(°H sinh0CH + 1) 

(2.62) 

Then, on substituting for(A0) - (A3) into equation (2.61), 

the general solution becomes 

y3 c_ 

EI 
_ 

k4 
(k 

cosh 
sinn kk+1) 

cosh k- 1) -k sinn k 

+ k2(f -2 ý2) 

(2.63) 

where and k are as defined in equations (2.22) 
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The shear force on the wall and frame may be obtained 

by substituting for the deflection from (2.63) into 

equations (2.49)-(2.50) and are given by 

Sa Wg 
k sinn k ±-) sink k+ cosh k (2.64) 

Wk cosh k 

Sf vj H (kksinh kk+ 1) 
Binh k cosh ký+ (1 -) cosh 

(2.65) 
On substituting for the deflection from equation (2.63) 

into equation (2.51) the moment in the shear wall becomes 

wH2 2 
[(k 

s 
coiehsh 

kk+1 Mw cosh k¬ -k sink k-1 ýk 

(2.66) 

The moment in the frame is then given by 

Mf -MMR (2.67) 

WH2 k2 (1 _ 
ý)2 (k sinh k+ 1) 

cosh k 
k2 cosh k 

+k sink ký +I (2.68) 

From equations (2.53) and (2.63) the axial force distribution 

becomes 

k si nh k+1 
n3s-ý'`ý ( 

coshk ) coshkj -k sinhk¬- 1 (2.69) 
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As before (section 2.2.2), the concentrated interactive 

force at the top of the connecting medium is given by 

Q3 a -SW(H) (2.70 

Hence, from equation (2.64), Q3 becomes 

Q3 _ýk 
sinh k+1) 

sink k+ cosh k (2.71) 
k cosh k 

Figs. 2.21 - 2.26 show the variations at any height of 

the deflection and the internal force functions (P1)-(P6) 

where 

s 
ci E4 

Y EI pig SA -C.. ) P2 Sr -WH P3 
i 

(2.72) 

wH2 MR s2 P4 wH2 Mf -2 P5, n=- wP6 

Application to three-dimensional structures 

Using the same procedure as explained in section 

2.2.3, the analysis presented may be applied to three- 

dimensional symmetric structures consisting of independent 

shear walls or box cores and rigidly jointed framework 

assemblies, i. e. if there are n frames the value of GA 
n 

must be replaced by 5 (GA) 
i=1 1 

2.4.2 Numerical example 

The floor plan for this example is shown in Fig. 2.27. 

This thirty storey structure consists of two central, cores 
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and six rigidly jointed frame assemblies. The relevant 

structural data are: storey height h-2.5 m; total 

building height H= 75m ; for each core, Is1.86 m4; 

for each frame the dimensions of the columns are 0.35m4 0.35 n, 

and beams are 0.35 m thick and 0.37 m deep, then GAS 6x 10 (each frame), 

E= 21 x 10 kM/m2 . The relevant structural parameter 
6 

'<H becomes: o<H - 5.09. 

The distribution of deflections and internal forces 

are shown in Fig. 2.28 - 2.33. The magnitude of the 

top concentrated interactive force Q3 may be determined 

from equation (2.71) or from Figs. 2.28 - 2.29, and is 

found to be: Q3 = 0.184wH or 18.4% of the total lateral 

load. In Figs. 2.29 to 2.33 broken lines show the results 

obtained by using the commonly adopted design procedure 

mentioned in section (2.4.4). 

2-4.3 Inclusion of base flexibility of wall-frame components 
in the general analysis 

The use of the second boundary condition of equation 

(2.56) in association with (2.50) reveals that the shear 

force Sf in the frame at the base of the structure is 

always zero, irrespective of the relative stiffness of the 

two components, and the flexural wall element will carry 

the total horizontal shear at the foundation level. 
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In many structures, because of load redistribution 

throughout the height, the flexural element does carry a 

very large proportion of the applied shear at the base level. 

However, for frames which are relatively much stiffer than 

slender walls, the error involved in the analysis may 

become significant. 

The difficulty arises with the basic continuum approach, 

in which two independent components with disimilar load- 

deformation characteristics are constrained to deflect 

equally at all points on the height. This difficulty 

does not arise with discrete methods of analysis, since 

the local bending of the frame columns over the first 

storey height induces shears at the base level. 

At the top of the structure, a fictitious concentrated 

axial load is found to exist at the top of the continuous 

linking medium, which allows an equal and opposite shear 

force Q3 to exist in both frame and wall, and ensures 

that the slope at the top of the frame is not zero. The 

total shear force is of course zero in the absence of 

any applied concentrated horizontal load. 

Modified analysis 

In order to allow a shearing deformation of the frame 

to exist at ground level, it is assumed that the shearing 

deflections of the wall are no longer neglected near the 

base where shearing stresses are high. Since both 
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components are assumed to deflect equally, the base 

slope A is then given by 

S 

(2.73) At zodGm GA w 

Where GAA is the shearing rigidity of the wall, with AR 

being the effective shear area. 

Since the applied shear 5 is equal to the sum of the 

individual shears in the components, the alternative base 

condition becomes 

A dx 
GA + GA 

w 
(2.74) 

In order to compare the results with those obtained 

by the earlier analysis (2.4.2), the particular case is 

considered of a uniformly distributed lateral load of 

intensity w per unit height. Then, at any level the 

applied shear force and bending moment are, 

S3 JH(1 -') ,M 
`ý22 (1 - ¬)2 (2.75) 

On substituting equation (2.75) into (2.54), and using 

the modified boundary conditions, the solution becomes 

wg 4 Ok sinh k+1 
Y EI(k)4 

( 
cosh k)( Co sh k_ 1) 

2 

-k sieh ký+ k2 
2) (2.76) 
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in which 0 is the shearing rigidity ratio, 

GA 

GA +w GA (2.77) i 
R 

Except for the introduction of the parameter 09 

equation (2.76) is similar to the solution obtained 

in section (2.4.2), and the two solutions are identical 

when 0- 1. 

The corresponding expressions for bending moments 

and shearing forces in the wall component become 

? (ek sinn k+ 1) coshki - 0k sinkký -1 ö k2 cosh k 

(2.78) 

and 

wkOk cosh k- ýý k sieh k+ 1) 
Binh k SJ 

0 cosh k 

(2.79) 

For convenience, the moments and shears have been 

expressed in terms of the maximum total applied moment 

Mo and shear So at the base. The expressions again 

become identical to the earlier solutions (2.4.2) in 

the particular case when O=1. 

The moments and shears on the frame component follow 

from equilibrium conditions to be 
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Mf (1 -)2 - Mw 
(2.80) 

o0 

Sf Sw 
(2.81) 

SS 
00 

Numerical results 

In order to illustrate quantitatively the influence 

of the shearing flexibility at ground level, the variations 

of the most significant structural actions with relative 

stiffness parameter k, for the complete range of values 

of the shearing ratio 0, from zero to unity, have been 

evaluated, although the extreme value of zero has clearly 

no physical significance. Figs. 2.34,2.35 and 2.36 show 

respectively, in non-dimensional form, the variations of 

the maximum base wall moment M(o), the maximum basic 

frame moment Mf(o), and the frame and wall top shear force 

Sf(H) (- - SJH) ), equal to the concentrated interactive 

connecting force. 

It is unnecessary to illustrate the variations of 
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the maximum base wall shear force SW(o) and frame shear force 

Sf(o) since these are given by the simple expressions 

SW(o) 
as 

Sf(o) 1- (2.82) 
SS 

00 



Equation (2.82) shows that the values of the base 

shears are directly dependent on the shearing stiffness 

ratio 0, but are independent of the relative stiffness k. 

However, the influence of 0 on the base moment MW(o) 

and Mf(o), and the top shears SW(H) and Sf(H) varies 

with k, being greatest at lowest values of the relative 

stiffness parameter. 

The direct influence of the ratio 0 on the maximum 

top deflection y(H) is more difficult to illustrate 

52 

simply, since the value of the function in equation (2.76) 

tends to be dominated by the term 1/k4 , which varies 

from being extremely large to extremely small as k 

increases from 0 to 109 which is a reasonable range of values 

for the quoted structures. Thus the function in the main 

external brackets only of equation (2.76) is used in 

Fig. 2.37, which shows the variation of y(H) x EI(k)4/&-)H 
4 

with k for the range of values of shearing stiffness 

ratio 0. The curves show that the influence of 0 on the 

top deflection is similar at all values of k. 
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CHAPTER3 

BENDING ANALYSIS OF STRUCTURES CONSISTING 

OF IDENTICAL COUPLED SHEAR WALLS, CORES 

AND RIGIDLY-JOINTED FRAME ASSEMBLIES 



NOTATION 

II12 cross-sectional areas of coupled walls. 

b clear span between coupled walls. 

E elastic modulus. 

GA effective shearing rigidity of shear cantilever. 

h storey height. 

H total height. 

Ii second moment of area of wall 'i' (i s 1,2,3) 

I 11 + I2 + 13 

I second moment of area of connecting beams. 
c 

1 distance between centroidal axes of coupled walls. 

Mi bending moment in wall i (i - 1,2,3) 

M4 bending moment carried by frame. 

M applied static moment. 

N axial force in coupled walls. 

ai axial force intensities in connecting media (i - 1,2,3) 

qi concentrated interactive forces (i = 1,2,3) 

q shear force intensity in connecting medium of 

coupled shear walls. 

Si shear force in wall i (i - 1920) 

S4 shear force in frame. 

w uniformly distributed lateral force intensity. 

x height above base. 

y horizontal deflection. 

a structural parameters, 

non-dimensional height (x/H) 

s 

Other subsidiary symbols are defined locally in the text. 
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C 11 APTER3 

BENDING ANALYSIS OF STRUCTURES CONSISTING 

OF IDENTICAL COUPLED SHEAR WALLS, CORES 

AND RIGIDLY-JOINTED FRAME ASSEMBLIES 

3.1 Introduction 

Many tall building structures consist of assemblies of 

independent and coupled shear walls, cores, and rigidly- 

jointed frames, constrained to act together by the floor 

slabs. Fig. 3.1 shows in plan an idealised structure, 

consisting of three main types of structural assembly, 

subjected to wind forces. 

In this chapter, based on the continuum approach, a 

general closed-form solution is presented for structures 

consisting of cores, coupled shear walls and rigidly-jointed 

frame assemblies. 

3.2 Analysis 

Consider the action of the plane system of Fig. 3.2(a)ß 

consisting of a pair of coupled shear walls linked to a single 

cantilevered wall which is linked in turn to a rigidly-jointed 

frame. The single cantilever may be either an independent 

shear wall or a box core which can be assumed to behave as a 

simple beam. The axially rigid pin-ended links, which simulate 

the action of the floor slabs, transmit axial forces only, and 
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e 

enable the desired load redistribution to take place between 

components. 

In the case of the coupled shear walls, the usual 

assumptions of the continuum approach are that the discrete 

set of connecting beams of flexural rigidity EIc may be 

replaced by an equivalent connecting medium of flexural rigidity 
EIc/h 

per unit height, if h is the storey height. Since both 

walls deflect equally, the connecting beams deflect with a 

point of contraflezure at mid-span. If the connecting medium 

is then assumed 'cut' at the line of contraflexure (Fig. 3.2(b)), 

the only forces acting at that position are a shear flow of 

intensity ' q' and an axial force of intensity ' nI I per unit 

height. No resultant relative vertical displacement occurs 

at the cut section, and the compatibility equation at any 

level ' x' may be shown to be, 

X 

#Z qb*h 
-13 1 (3.1) 

I 
E{ý 

+Ä) N dx -0 
20 

where the three terms represent respectively the relative 

displacements due to the slopes of the walls, the deflexions 

of the connecting beams, and the axial deformations of the 

walls. The axial force N in each wall is given by 

R 

N 

j 

q dx (3.2) 



In equation (3.1), y is the horizontal deflexion, 1 the 

distance between wall centroids, b the clear span of the 

beams, and 11 and A2 the cross-sectional areas of the walls. 

In an analogous manner, it is assumed that the discrete 

systems of pin-ended links between the three components may 
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be replaced by continuous media transmitting axial forces 

of intensities n2 and n3 per unit height as shown in Fig-3.2(b). 

For analytical purposes, the frame component may be 

replaced by an equivalent continuous shear cantilever to 

model the predominantly shearing mode of behaviour. The 

structural behaviour of the shear cantilever is defined by 

the relationship, 

!A 
'dA (3.3) 

where O is the shear strain, S4 is the shear force at any level, 

and GA is the equivalent shearing rigidity of the framework. 

The respective moment-curvature relationships for the 

coupled walls and core in Fig-3.2(b) are, 

EI1 d- M1 - M-(2 + dl) N- Mai (3.4) 
dx 

EIZ 
d. M2 - -(2 + d2) N+ Mai -I. a2 

(3.5) 
dx 
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d2 E13 
d2- 

M3 - Ma2 - Mai (3.6) 

where M is the static applied moment and ä1, a2 and Mai are 

the moments on the walls due to the axial forces in the three 

sets of connecting beams, given by, 

H 

Mal n, (%`) (, \- x) da + Q1(H - x) (3.7) 

x 

H 

ä2 - n2 (1) (>ý- x) dx + Q2(H - z) (3.8) 
z 

H 

xa3 - n3 (Ä) (X- x) dÄ + q3(H - x) (3.9) 

where Q1 , Q2 and Q3 are the concentrated forces which exist 

in the connecting media at the top of the structure, 
20921 

(Fig. 3.2(b) ). 

The addition of equations (3.4), (3.5) and (3.6) yield 

the overall moment-curvature relationship, 

2 
EI2=M-Mai-1N (3.10) 

in which I-11+12+ 13 



The shear force in the frame component S4 is, 

S n dx + Q 4 3 3 
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(3.11) 

Substitution of equations (3.7), (3.8), (3.9) and (3.11) 

into (3.4), (3.5) (3.6) and (3.3) respectively, and 

differentiating the first three twice and adding to the first 

differential of the last, yields, 

EI 
d4 

- GA 
d2 

- 
d22 

+ ]4 
dz dx dz 

(3.12) 

On eliminating the terms in q and N from equations (3.1), 

(3.2), (3.10) and (3.12), the governing differential equation 

finally becomes, 

d- 
- m2 

d+ 
n2 

d2M 
+1 

d4b[ (3-13) 
dz dz4 dz2 

- EI dz2 EI d 

where 

m2 .OIL++ y2 9 n2 . a2 ö 29 

a2 s 
GA 
EI ßg2 12Ic12 

b3h1 

a 

i 

121 (+ 1) 

b 3h Al 2 
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The general solution of equation (3.13) for any form 

of lateral loading may be expressed in the form 

y Co +0 1x/H + C2 cosh(kz/H)+ C3 sinh(k x/H) 

+ C4 cosh (r x/H) 
(3.14) 

+C5 sink (r z/H) + yP I. 

where Ci (i -0 to 5) are constants of integration to be 

determined from the necessary boundary conditions, and yP1 

is the particular integral solution, that is, any solution 

for a specified form of applied moment M. 

In Equation (3-14)9 

k- pH andr -P 

where p2 -2 (m2 + 
Im 4- 4n2) 

2 
and 

n=1 (m2 m4 - 4n2) 
P 

It may readily be shown by inspection of the physical 
3ý 

relationships in equation (13) that m4 44n29 and so the 

roots of the equation, p andn /p 
, are always real 

(cf. Appendix 1). 
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Boundary conditions 

In order to determine the constants 01 of equation (3.14), 

it is necessary to derive six independent boundary conditions 

for the structure. 

If the structure is rigidly built in at the base, then 

At x- 0, ys0 and 
d-0 (3.15) 

At the top, the axial force N and the bending moment in 

each wall are equal to zero, and so, 

2 
AtxsH 2 s0 

dz 

From equation (2) l rN -q 

Differentiation of equation (3.10), followed by 

substitution of equations (3.8), (3.9) and (3.11), gives, 

EI d- GA äx 
» 

dx 
+ lq 

dm3 

(3.16) 

At x-0, the slope 
dx 

is zero, and hence, from equation 

q is also zero. Thus, at the base, the following 

condition holds, 

EI 
dm At x: 0, 

d3 
I dx(0) 

(3"17) 
dx 



i 

On differentiating equation (3.1)p and using the fact 

that N and 
d Y/dz2 are each zero at the top, it follows that 

dq/dx is zero also. Hence, from equation (5.12), 

lt z-H 
d4y 1 d2M(H) 

EI dz4 dx2 
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(3.18) 

On differentiating equation (3.12) and, substituting for 

d q/di from the derivative of equation (3.1), the remaining 

boundary condition becomes, 

ätxs 0 d5 
dz5 

1 a3M(o) M EI dz3 
+ (, 2 +16 2) 

dýLU x 
o) (3.19) 

It may readily be shown that in the particular cases 

involving the interaction between two components only, the 

general equation and boundary conditions reduce to those 

given in the earlier published solutions. 

Uniformly distributed wind loading 

In order to achieve a solution, suppose that the particular 

case is considered of a uniformly distributed wind loading of 

intensity w per unit height. In that case, 

Ms 2w (H-x)2 

and 

(3.20) 

dz2sw 

dx 
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On substituting for the moment function in equation (3.13, 

the simplest particular integral becomes 

2 
yPI '2 EI (3.21) 

2d 

Then on substituting equation (3.14) into the boundary 

conditions (3.15)-(3.19), and solving for the integration 

constants, it is found that 

4 p 2 
Co" 2 

2 2 4)(rsinhr+1) 

n Eloc cosh rn -p 

1 
2 

w 
22 

(ý-- ý--)(k sinkk+ 1 
p Elcosh k 2_P4 

n 

C1 
EIa 

w .22 
2 C2 Elcosh 4 2 ký k sieh k+1 

p p n 

C3 
pEI 

( 
n2_ p4 

c4"' (r s inh r+1 
n2 EIa2cosh r n2 p4 

4H (CA 
2 

p2 
5n EIec2 n2 _ p4 

Hence, 
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H2 (¬ -2 
2) ý e1 r1 

+k sieh k- cosh k 
eL1 TIC 3 

-ksiehk(1-)J 

_p2e2 
1 1+ rsinh r cosh r¬- r sieh r (1 

e3 n2 

(3.22) 

in which 

Jný 1- k2 co ah k 

A2. r2 cosh r 

A- -p2 1 

A2=ý2-p2 

63- n2 -p 

and for convenience, the non-dimensional height ¬- x/H is used. 

Equation (3.22) emphasises the dependence of the solution on 

three variables, the height j and the relative stiffness 

parameters k and r. 

Substitution of equation (3.22) into the earlier equations 

yields closed-form solutions for the forces in the various 

structural components. The shear flow q in the connecting 

medium becomes 

q- 103 Z2r 
[sinhrf_rCOShr [sins 

k¬ - kcoshk(1- ) 
Jý 1 (3.23) 
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On substituting for q from equation (3.23) into equation 

(3.2) 9 the axial force in each coupled wall becomes 

N 
2k2 1 

ie3 02 
[cosh 

r- cosh rý - rsinhr (1-ý) - 

I 
(cosh 

k- cosh k¬ -k sinh k (1 -4). 1 
I (3.24) 

ai 

The bending moment Mi in wall i (i - 19293) can be 

determined by substituting for y from equation (3.22) into 

equations (3.4) - (3.6) and is given by 

wit 2 e1 k2 
Mi =2Ke (cosh k¬ + ksinh k (1-4)) 

of 13 Lc 
22 

+ 13 02. r (cosh r+ rsinhr (1- )) -1 (3.25) 
s3 °2 

The moment carried by the frame component M49 may be 

obtained from the overall moment equilibrium, i. e. 

Mý+M2+M3+M4+N1=M 

and is given by 

M4 s2 WH2 (1-ý)2 ++ fe2/y 2) 

W2 e2 
r2 sI 4 cosh ký +k sink k (1 

P31J 

4e2 
-x-24 e3 2 

cosh r j+ rsinh r(1 _ý (3.26) 
n 



A consideration of the conditions of equilibrium of 

a small vertical element of each wall yields the shear 

force S1 and S2 in the two walls (Fig. 3.3) 
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S1 ax1 
(2 + dl)q 

d1l 
S2 =_ ax2 + (2 + d2)q (3.27) 

and, for the independent wall and frame, the shear force 

S3 and S4 are 

Z _ý 
S3 a dI 

S4 a dx (3.28) 

Hence, on substituting for q, M1 (i = 1,2,3) and M4 from 

equations (3.23), (3.25) and (3.26) into equations (3.27) 

-(3.28) the shear force in the walls and frame become 

S1 
4f ii 

p03-(2+dJ)w 
8F1 

3] (3.29) 

L#j +C- 
Il 

ý-e2+(b +d )ýOL_. 23 
a2 e3 21 lnA 32 

u, 
I2 e1 b /fp 

23-Ip3- 
w(2 + d2) 3 F1 

(3.30) 

ca 
I2 

;ne2b fl2p3 
+-Iý2e3+ W(2 + d2) 1n e3 F2 

`''a 0± ýFw2 Pn e2 F (3.3 ) s3 =1P 63 1-12 6-3 1 

S4 H1 +"P 
23 

Fý +ne3 F2 (3.32) -) 
3 
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I 

where the functions FI and F2 are 

F1 (1/cosh 
k) 

[sinn 
ks- k cosh k (1 -) 

(3.33) 

- p. ) F2 (11coshr) [sieh 
rt- r cosh r (i 

On substituting for M, Mi (i - 1,2,3) and N into 

equations (3.4) - (3.6), the moments on the walls due to 

axial forces in the three sets of connecting beams, 

become 

al lag 21221O. L 

_ 
C_> 

z, 
8, 

+ 
(2 

+ d1)ý? g3 
3 (3.34) 

_ 
132 I19 (b +d) Ig? _ 

°ý2e 312ý211 ä2 
F4 

2 I1 
2 

1 
,42 

mat 
ý2 

+2 ý$2 ýi +( 

-e (I1 I 2) e 
1+ p2 F 

33 (3.35) 

(I 1 02 
- 

p-22- 
F 

o( 031 y2 4 

U 



Mai 2 ß'H2 (1 - i)2 +- 2-2 ýF3 
ý 

in 
2np 

ýe2 

n2 e3 F4 

where the functions F3 and F4 are 

(3.36) 

F3 (1/co 
sh k) 

[cosh 
ký+k sink k (1 -)J 

(3.37) 

F4 ' (1/cosh 
r) 

[ 
cosh r ¬+rsinh r (1 - 

The axial forces in the connecting media follow from 

equations (3.34) - (3.36), since 

ni s 
d2 Mai 

-7- dm 

and becomes 

(i - 1,2,3) 

ni sw_ 
e III 01 f (2 + d1) 16-1 g 

3 

1'92+d1) 
Fe 

32 lö 

n2 a w- e (I1---+ e1 +p) F 
12 

33 

(3.38) 

(3.39) 

(3.40) 
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} 

_w 
ö2 

Ii 
f 

12 
a2 P2 -5-3 1e2ý ý) 

F4 
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wag w2 
n3 tý_ ee1 F1 -2 F2 

38 3 
(3.41) 

If the expressions for MI to M4 and q are substituted 

into equations (3.27) and (3.28), it is found that shear 

forces exist in the various components at the top of the 

continuous structure. It must again be deduced that 

these can only be caused by concentrated interactive forces 

at the top of each connecting medium, as shown in Fig. 3.2(b), 

such that, 

51 (a) - -Ql , S2 ($) - Q1 - Q2 , S3 ($) - a2 - Q3 , 

S4 ýHý a3 

These are found to be, 

e a2 
2 I2 

+Ib Qý 
P83 -pI- (2 + d2) 1 jL1 

(3.42) 

+ -P-- 
1e2[pI2 2+ dl) pn63 

I212 

Q2 =w 
ä (°12 - 

13 
P2ý L1 

P3 

e (3.43) 
e3i p2 - i3 ? f2) z2 
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3 i"' 
p2 

e1L+w 
p392 

e3 1 n93 

where 

L1 s cosh k 
ýsinh k- k) 

L2 
cosh r 

(sinh r- r) 

L2 

NUMERICAL EXAPSPLE 

A 

(3.44) 

In order to illustrate the theoretical results, a 

representative 30-storey structure of the form shown in 

Fig. 3.4is considered. The structure consists of two central 

U-shaped cores, two pairs of coupled flank shear walls, and 

four rigidly-jointed frame assemblies. The influence of the 

two individual central columns in resisting lateral forces 

is assumed negligible. 

The relevant structural data are: 

Storey height h-2.8 m 

Total building height H- 84 m 

For each core Ia1.86 m4 

For coupled walls, j1 =12s 3.6 m4 

A1 -A2= 1.2 m2 

Zc-10.67z104m4 

b2m 1- 8m 

E- 21 x 106 kN/m2 
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For each frame, GA =6x 104 kN 
The dimensions of the columns are 0.35 mx0.35 m 
and the beams are 0.35 m thick and 0.39 m deep. 

Then, on adding the properties of the three groups of 

elements, the relevant structural parameters become, 

ocH 2.11 

pa = 5.34 

ý$ 2.59 

The laternal deflections and internal forces in the 

different components may be determined from the earlier 

equations (3.22) to (3.44)" Since the coupled shear walls 

are identical, the forces in each are the same. The 

distributions may be expressed in terms of series of 

functions ¢1 to 012 as follows, related where appropriate 

to the applied load intensity w, the total shear W H, and 

the total statical moment wH2. These functions are 2 

defined as 

WH4 Ys EI 
01 

2 
q=w H02, N2 03 

222 
ý1 = M2 =2 ("2 ) o4, M3 a' 2 05 , 314 = 

`' 2 06 

Si -S2- 
1 WH 07' $3=WH 080 S4'cH09 
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The lateral load distributions on the coupled shear walls, 

core and frames are respectively w 01pt ol, andw¢12" 

The distributions of deflection, internal forces and i 

lateral loads are shown in Figs. 3.5 to 3.17" 

The magnitudes of the concentrated interactive forces 

are found to be 

q1 = 0-0351(-)H 

Q2 s 0.0702 WH 

Q3 - 0.1003 OH 

r 

i 
4 

Figs. 3.5 - 3.17 illustrate the general form of structural 

action which occurs in composite structures of this nature, 

in which continuous redistributions of lateral forces 

occur as a result of the different load deflection 

characteristics of the components. Figs. 3.7 - 3.8 show 

typical distributions of shear flow and axial forces in a 

system of laterally loaded coupled shear walls. 

Figs. 3.15 - 3-17 indicate that the lateral forces are 

small in the upper levels of both cores and frames, but 

they increase rapidly in the lower levels. The lateral 

forces are carried largely by the coupled shear walls, and 

are roughly uniform throughout the height, giving rise to a 

roughly linear distribution of shearing forces as shown in 

Fig. 3.12. The top concentrated force on the frame has a 
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magnitude of 10% of the total lateral load, and produces an 

approximately linear distribution of bending moments 

throughout the height. The shear force is roughly constant 

throughout the height, and gives rise to an efficient 

uniform design. The bending moments in both coupled walls 

and cores are both small and negative in sense in the 

upper levels, due to coupling actions of the connecting 

beams and the top axial forces, but increase rapidly in the 

lower levels due to the redistribution of lateral forces. 

The distribution which would occur in the case of the 

commonly adopted design procedure discussed earlier are 

indicated by the broken lines in Figs. 3.7 - 3.17. Although 

considerable errors still occur in the force actions at 

different levels, the degree of accuracy is generally better 

than that obtained with the lateral force distributions, 

and this lends credibility to the relatively crude design 

procedure. For completeness, the deflection profiles of the 

individual elements, obtained by matching deflections at 

the top only, are shown in Fig. 3.5. The figure illustrates 

the predominantly shearing nature of the frame deformations, 

and indicates the load redistribution which is required to 

ensure that the three components deflect equally at all 

levels. 

Although the curves presented demonstrate the typical 

forms of structural actions in structures of this nature, 

the actual magnitudes of the forces in each component 



will naturally depend on their relative stiffness. 

3.3 Application of the general theory to particular cases 

(i) Core structures 

For structures consisting of independent shear wall or 

core units only, the parameters oc29 16 
2 

and Zr 
2 in equation 

(3.13) do not exist and hence this equation becomes 

d6-1 d4M 

dx 
a 

dx 
(3.45) 

The general solution of equation (3.45) for uniformly 

distributed wind loading of intensity (. ) per unit height 

is 

y- ao + aI x+ a2 x2 + a3 x3 + a4 x4 + a5 x5 (3.46) 

where ai (i -0 -5) are constants of integration to be 

determined from the necessary boundary conditions. 

On substituting equation (3.46) into the boundary 

conditions (3.15) 
- (3.19), and solving for the integration 

constants, they become 

2 
ö aý ' a1'ß ' a2a 4E1 

72 

wH w 
aji_6EI a4= 24EI' , a5s0 
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A 

Hence, the general solution becomes 

wH4 14,32 y EI 
ý24 z6+4 (3.47) 

Equation (3.47) is the general solution of any cantilever 

subjected to uniformly distributed lateral loads. 

(ii) Wall-frame structures 

For structures consisting of independent shear walls 

or box cores and rigidly jointed frame work assemblies the 

parameters '62 and in equation (3.13) do not exist 

and hence equation (3.13) becomes 

d64 
- oc 

dy 
-0 

dx dx4 
(3.48) 

The general solution of equation (3.48) for uniformly 

distributed loading of intensity w per unit height is 

y-bo+b1 x +b2 x2+b3x3+b4coshocx+b5 sinhc< x 

(3.49) 

where bi (i s 0-5) are constants of integration to be 

evaluated from the necessary boundary conditions. 

On substituting equation (3.49) into the boundary 
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conditions (3.15) - (3-19)9 and solving for the integration 

constants, the general solution becomes as given by 

equation (2.63) 

(iii) Coupled shear wall - core structures 

For structures consisting of coupled shear walls and 
2 

independent wall or core assemblies, the parameter oc in 

equation (3.13) is set equal to zero, and hence equation 

(3.13) becomes 

- m2 d_ (m2 - B2) EI 
60 (3.5 Qý 

dz dz 

where m2 s 182 f ? j2 

The general solution of equation (3.50) for uniformly 

distributed wind loading of intensity c. )per unit height 

is 

y- eo + e1x + e2x 
2+ 

e3x 
3+ 

eax 
4+ 

e5 cosh mx + e6 sinh mx 

(3.51) 

when ei (i -0 -6) are constants of integration to be 

determined from the necessary boundary conditions. 

On substituting equation (3.51) into the boundary 

conditions (3.15) - (3.19), and solving for the integration 

constants, they become 
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02 
e-- 0 EIm cosh mH 

wi82H 

mI 

82 s 4EI 
m2 

WE rp2. 
- e'3 - 6EI 

ý/ 

i 

(mH sinh mil +1 

2W 

4 

wý ý2 e4 24'-EZ 
1-2 

m 

e5- `'''B2 
6 

(mH sinhmH+1) 
EIm cosh mH 

wp2g 
es 
6 EIm5 

Hence the general solution becomes 

wH4 1 
Y' EI 24 

where 

k nH 

X/H 

iý - 
ý) cý - ý)4 + 41[ -1 + 22 

iZ - 
22) 

mmk2 

1+k sinh k- cosh ki-k sink k (1 -j (3.52) 

k2 cosh k 

Equation (3.52) is the same as equation (2.21) presented 

in Chapter 2, except that o< is replace by m. The internal 

forces may readily be shown to be the same as the ones 

presented in Chapter 2. 
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CHAPTER 4 

ANALYSES OF THREE-DIMENSIONAL SY11 BIC 

STRUCTURES CONSISTING OF SETS OF IDENTICAL 

COUPLED SHEAR WALL, CORE AND RIGIDLY- 

JOINTED FRAMEWORK ASSEMBLIES SUBJECTED TO 

LATERAL LOADS 
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NOTATION 

14 

AA2' A3' A4 c ols-sectional areas of walls, 1,2,3 and 4 

b1, b2 clear spans between coupled walls 

E elastic modulus 

GA effective shearing rigidity of shear cantilever 

h storey height 

g total height 

Ii second moment of area of wall i (i = 1,2,3,4,5) 

I I1 + 12 + 13 + 14 + 15 

Io1' Ic2 second moments of area of the connecting beams 

1 , 1 distances between centroidal axes of coupled 1 2 
walls 

Mi bending moment in wall i (i = 1,2,3,4,5) 

M applied static moment 

Nl, N2 axial forces in coupled walls 

ni axial force intensities in connecting media 
(i = 1,2,3,4) 

Qi concentrated interactive forces (i = 1,2,3,4) 

qj, q2 shear force intensities in connecting media 
of coupled shear walls 

Si shear force in wall i (i = , 
2,3,4,5) 

W uniformly distributed lateral force intensity 

x height above base 

y horizontal deflection 

°C , 1491, /402 structural parameters 

t non-dimensional height (x/H) 
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CHAPTER 4 
j 

ANALYSES OF THREE-DIMENSIONAL SYMMETRIC 

STRUCTURES CONSISTING OF SETS OF IDENTICAL 

COUPLED SHEAR WALL, CORE AND RIGIDLY- 

JOINTED FRAMEWORK ASSEMBLIES SUBJECTED TO 

LATERAL LOADS 

4.1 Introduction 

In general, a tall building structure is a complex 

three-dimensional system consisting of various combinations 

of interconnected structural assemblies, namely, walls, 

coupled shear walls, service cores, rigidly-jointed frames 

and floor systems. When subjected to laterally distributed 

loads considerable redistribution of lateral forces can 

occur throughout the height of the building. The load 

redistribution characteristics of three-dimensional 

symmetric structures consisting of identical coupled shear 

walls and cores was discussed in Chapter 2. 

In many tall buildings, due to the architectural 

and structural requirements, it is necessary to use 

different sets of identical coupled shear walls, service 

cores and rigidly jointed frame assemblies in conjunction 

with floor systems. Phe aim of this chapter is to present 

an "exact" elastic analysis of three-dimensional symmetrical 

structures consisting of two different sets of identical 

coupled shear wall assemblies, service cores and/or 
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independent shear walls. The analysis is later extended to 

include rigidly-jointed framework assemblies. A general 

idealised structural representation of such structures 

is shown in Fig. 4.1 which depicts"building with central 

cores. It is assumed that the applied lateral load on 

the building has a resultant at the same fixed position 

throughout the height of the building, that is the resultant 

acts as a vertical line load. If the floor slabs are 

assumed to be rigid in their own planes, a 
lteral 

applied 

force at any position off the line of symmetry, but parallel 

to it, may be replaced by a statically equivalent force at 

the axis of symmetry and a twisting moment about it. The 

analysis may then be treated as a superposition of a 

symmetrical pure bending action and a skew-symmetric pure 

torsional action. 

In the case where the resultant of the horizontal load 

acts as a vertical line load at the axis of symmetry of the 

building there is no rotation in the horizontal plane and 

all assemblies will undergo the same horizontal deflection 

at any level. Hence, the three-dimensional structure may 

be replaced by an equivalent plane system in which the 

components are constrained to act in series by rigid pin- 

ended links as shown in Figs. 4.2 and 4.3. The pin-ended 

links simulate the action of floor slabs, and are assumed 

infinitely rigid in plane, but flexible out of plane. The 

stiffness of the two pairs of coupled shear walls are equal 
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to the sum of the stiffness of the respective sets of 

identical coupled shear walls, and the flexural rigidity 

of the single cantilevered wall is equal to the sum of 

the flexural rigidities of all the cantilevered service 

cores and/or independent shear walls in the building. 

In the case of skew-symmetric pure torsional action, 

a technique has been developed (Chapter 6) for transforming 

the three-dimensional system into an equivalent plane 

structure consisting of equivalent components constrained 

to act together by rigid pin-ended links such as those 

indicated in Figs. 4.2 and 4.3. The plane structure may 

by analysed using the technique developed for the case of 

pure bending action, and the forces and deformation 

subsequently transformed back into the original system. 

In some buildings, the service cores are composed 

of coupled shear walls rather than cantilevered walls. An 

example of such structures is shown in Fig. 4.4(a). From 

a structural point of view, these buildings are considered 

to consist of two different sets of identical coupled shear 

walls which are symmetrically arranged. therefore, for the 

purpose of analysis, the procedure explained above will still 

apply. 3ence, the three dimensional structure may be 

replaced by the equivalent plane system shown in rig. 4.4(b). 

Finally, by using continuum techniques and representing 

a frame by an equivalent shear cantilever, closed-form 
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solutions may be achieved for standard load cases, enabling 

the complete distribution of forces and deflections to be 

determined rapidly. A numerical example demonstrates the 

typical structural behaviour of such systems. 

ANALYSIS OF THREE-DIMENSIONAL SY TRIC 

STRUCTURES CONSISTING OF SETS OF IDENTICAL 

COUPLED SHEAR WALL AND CORE ASSEMBLIES 

SUBJECTED TO LATERAL LOADS 

4.2 Analysis 

Consider the action of the plane system of Fig. 4.29 

consisting of two different pairs of coupled shear walls 

linked to a single cantilevered wall. The single cantilever 

may be either an independent shear wall or a box core which 

can be assumed to behave as a simple beam. The axially 

rigid pin-ended links transmit axial forces only, and enable 

the desired load redistribution to take place between 

components. 

In the case of coupled shear walls as described in 

earlier chapters the discrete sets of connecting beams of 

flexural rigidities EIci and EI 
c2 may be replaced by 

equivalent connecting media of flexural rigidities EIc1/h 

and EIc2/h per unit height, if h is the storey height. 
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The compatibility equations at any level x'may be 

shown to be 

b 3hq 

N dx o (4.1 11 d 
12EIc1 E 

(A1 +A0 

3x b hq 

0 

N2 dz o (4.2) 12 d 
12E102 E (Ä3+ Ä4) 

where the three terms in each equation represent respectively 

the relative displacements due to the slopes of the walls, 

the deflections of the connecting beams and the axial 

deformations of the walls. The axial forces N1 and N2 in 

the walls are given by 

H 
N1 s gldz (4.3) 

z 

H 

N2 = g2dz (4.4) 

In equations (4.1) and (4.2), y is the horizontal 

deflection, 11 and 12 the distances between wall centroids, 

b1 and b2 the clear spans of the beams and A1, A2, A3 and 

A4 the cross-sectional areas of the walls. 

In an analogus manner, it is assumed that the discrete 

system of pin-ended links between the three components may 

be replaced by continuous media, transmitting axial forces 
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of intensities n2 and n4 per unit height as shown in 

Fig. 4.5. 

The respective moment-curvature relationships for the 

five walls in Fig. 4.5 are 

b 
EIS 

d= M1 =2- (21 +dN 
ä1 

(4.5) 
dz 2 

EI 2 
d-2 M2 -N (L' 

1+ Mal ä2 (4.6) 
dx 

d3 b2 
E13 

dx2 
=M3=- (2 +d3) N2+Mat-Mai (4.7) 

2b 
EI4 - M4 -- (Z? + d4) N2 + Mai - Mao (4.8) 

dz2 

2 
E15 _X15 ä4 (4.9) 

dx2 

where M is the static applied moment and Mai, Ma2' Mai and 

Mao are the moments on the walls due to the axial forces 

in the four sets of connecting beams, given by 

Mal - 
H 

n1(ýº) (A- x) d> + Q1 (H - x) (4.10) 

x 

ä2 ' 
H 

n2(ß`) ÜX- x) dX + Q2 (H - x) (4.11) 

x 

H 

Mai = n3(X) (X- x) d X+ Q3 (H - x) (4.12) 
x 
H 

1Ma4 ' n4(X) x) diº + Q'2 (H 
- x) ( 4.13) 

x 
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.f 

where Q19 Q2, Q3 and Q4 are the concentrated forces which 

exist in the connecting media at the top of the structure, 

(Fig. 4-5). 

The addition of equations (4.5) to (4.9) yields the 

overall moment curvature relationship 

EI d=M- 1ý Ný - 12 N2 (4.14) 
dx 

in which 

I=I1+I2+13+14+15 

On differentiating equations (4.1) and (4.2) twice, 

multiplying by 11 and 12 respectively and adding them, 

yields 

1 
d2g1 

+1 
d2g2 

- 112q, %4 -12 
2q 

1 dx2 2 d=2 1222 
3 

(4"15) 

= (1"12 +ßg22) EI y 
dx3 

12Icl112 

1b13hI 

2 12Ic2122 
A2 - 

b23 hI 

121 
c1 11 

1b 
13 h Al A2 

2 
12Ic2 

11 Y2 °b 3h 
ýA3Ä4 

2 
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Differentiating equation (4.14) thrice, yields 

d2g1 
+1 

d2g2 
-- 

d3M 
+ EI d 

dz2 2 dx2 dz3 dx5 
(4.16) 

On substituting for the second order derivative terms 

in q1 and q2 from equation (4.15) into (4.16) it becomes 

Ei äz55X 
- ii Yi 2 

q1 - 12 '2 2q2 

- (pl2 +, e22) EI d d33 (4.17) 3 dx dx 

On differentiating equation (4.14) and solving it 

simultaneously with equation (4.17), the shear flows 

q1 and q2, in the connecting media become 

EI d_ 222d 
qý a 

11 (Yl 2 
-Y22) L dx5 

(ýl +'82 +2 
dx3 

(4.18) 
1 d3M ö2 dM 

1 
EI 

dx3 
f EI dx J 

q 
EI dL 

_ rQ 2+2 
+ä2) 

d 
2 12(Y2 2 

_11 
2) dx5 `ý 1 Iß 21 dx3 

dl&] d +s? 

2. 

(4.19) EI dx3 EI dx 
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Back substitution of either of equations (4.18) or 

(4.19) into (4.1) or (4.2) respectively, yields 

d2d2d1 d5M 22A )3 +n 3Iýdx5(ö1 +1i2 
dx dxT 

-m 
dx5 dx 

(4.20) 
2y2 dMI 

12 dx 

where 

m2 fl i 
2+ 

fl 22 +Y, 
2 

+y 22 

n2 12y22 +J02 
2K1 2 

+ýr1 
2 
12 

2 

On integrating equation (4.20) once, it becomes 

d6 2 d4 2 d2 1 d4M 22 d2M 
-- -m4+nd2 EI d4 

týý +ý2 ) 
dx2 

(4.21) 
+2ýj22 yý MJ+c1 

On differentiating equations (4.14) and (4.17) twice and 

once respectively, hence substituting for the fourth and 

sixth order differential terms in y (at x- H) into 

equation (4.21), the integration constant C1 becomes zero 

and the governing differential equation finally becomes 
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d6 2d2d1 d4M 22 d2M 
m 

dz dz di2 EI dx 12 dx2 

(4.22) 

22l 
+7jß2 M 

The general solution of equation (4.22) for any 

form of lateral loading may be expressed in the form 

Co + C1 X/H + C2 cosh(kz/$)+ C3 sinh(kx/$) 

+ C4 cosh(r x/�) + C5 einh(rz/$ý+ yp, 

(4.23) 

where Ci(i -o- 5) are constants of integration to be 

determined from the necessary boundary conditions, and 

yPI is the particular integral solution, i. e. any solution 

for a specific form of applied moment M. 

In equation (4.23) k- PH and r= nH/P where 

P2 = 
[M2 

+ (m4 - 4n2) 
, /2 

n2/P2 = [M2 - (m4 - 4n2)1 1 /2 

It may readily be seen by inspection of the physical 

relationships in equation (4.22) that m4 4 4n2, and so the 

roots of the equation, P and n /p 
,9 are always real 

(cf. Appendix 1). 
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Boundary conditions 

In order to determine the constants 0i of equation 

(4.23), it is necessary to derive six independent boundary 

conditions for the structure. If the structure is rigidly 

built at the base, then at x=o 

Y=0 and dy/dx =o (4.24) 

At the top, the axial forces N1 and N2 and the bending 

moment in each wall are equal to zero, and so, at x-H 

2 Aa 
=o 

dx 
(4.25) 

dN1 dN2 
From equations (4.3) and (4-4), 

dx -q1 and x- -q29 

and from equations (4.1), (4.2) and (4.24), q1 - q2 -0 

at x-o. Hence, differentiating equation (4.14), and 

using the fact that dN1/dx 
anddN2/dx are each equal to 

zero at the base, the following conditions holds at x-o 

d1d? d 

dx5 EI dx (4.26) 

On differentiating equation 4.14) twice, and using 
2 

the fact that d N1/dx2 
and d N2/dx2 

are each equal to 

zero at the top, the following condition holds at x- II 



.0 

d1 d2M ýH ) 
dx4 EI dx2 

(4.27) 

A consideration of equations (4.17) and (4.16) yields the 

following condition, at x=o 

53 
(4.28) EI 

d%3 
(°} + (612 + X22} d (o) 

dx5 

From a consideration of the above boundary conditions 

it may be deduced that the sixth order differential 

equation (4.22) seems to incorporate an element of a rigid 

body movement ( i. ee top and base displacements and a base 

rotation). It is due to this rigid body movement that there 

exist four boundary conditions at x-o and two at xaH. 

Uniformly distributed wind loading 

In order to achieve a solution, suppose that the 

particular case is considered of a uniformly distributed 

wind loading of intensity w per unit height. In that case 

Ma 2 W(H-x)2 

and 

d22 

dx (4.29) 

87 

and 
d4M 

o 
dx4 
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On substituting for the moment function in equation 

(4.22), the simplest particular integral becomes 

422 

ypI 
L. ýH 

2i 

Y2 [(1)4 
4 (H) 3+2 (m2 + 22 24n EI Hn 

(4.30) 
2 

- 
)r'= 

2) 

(H 2 
Y, Y2 

Then on substituting equation (4.23) into boundary 

conditions (4.24) to (4.28), and solving for the 

integration constants, it is found that 

Cýa (O3 - m2 A 2)E/rig 

C2 1/(n2 - p4) cosh k (41n2/p2 +42/H) 

- (n2 a2- p2v3) sieh k/p3 

C3 = (n2A 2- P21ý 3)/p3 
(n 2- A4) 

l4 
p5/n3 (n2 - p4) cosh rI 

P (D2/H + p24 ) 

+ (4 
3- p2ý1) SiAr 

C5 p5 (4 
3- p242) / n3 (n2 - p4) 

Co-C2-C4 
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where 

A1'w (18 
12y24 + ß22y14) 

n4EI 

22 
wH ii1 2 ý2 3 EI 

n2 
- 

H22, 03 wEI (pi + p2 ) 

Then on substituting for (C0) - (C5) and Yp1 into 

equation (4.23), the general solution becomes 

Ya 
(A3 m2a2)H 

2 
n 

ýO) 

H4 22222 
wH Y1 g'2 543 12 m2 H2 ty2 

2 4n 

1 
+2 

EI 
- 4ý +H2n 2+ 2- 

ä1 2 w2 2J 

+1 t4ýn2 +ý2 
(n2 - p4) cosh k p2 

H 

( n2A 2- P2A 3) 
- 

p3 
x sinhk (cosh k¬ -1) 

2 
n2A2-Pý3 P5(ý3-82 2 +324 sinh k+324 sinh r 
p (n -P) n(n P) 

n3(n2 

5 

-p4) cosh r p{ + p2 46 1)+ý°3 - p242) sinter 

(cosh rý - 1) 

(4.31) 
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where 
ý- 

x/H 

is the non-dimensional height variable. Equation (4.31) 

is dependent on the non-dimensional height ý' total height 

H. relative stiffness parameters k and r, and parameters 

Y11 Y'2, m, n, p, A 1,62 and43. These latter parameters 

are in turn related to k and r. 

Substitution of equation (4.31) into the earlier 

equations yields closed form solutions for the forces in 

the various structural components. Using equations (4.18) 

and (4.19), the shear flows q1 and q2 in the connecting 

media become 

+ C3 cosh k 
1O2 

EI ['4 
2 

'22 i2 
+05 (C4 sinh r¬ + C5 cosh r¬) += (2 + 1ý (¬ " 1) 

n 

(4.32) 

and 

q2 
EI 

26 
(C2 sinh kl + C3 cosh k¬ 

12(Y2 -i% 

WHY y2 
+0 (C4 sinh ri + C5 cosh r ý) +1"( 22 

EI n 

(4.33) 
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in which 

, D4=p3 (p2-m2+öý2) 

n3 
2 

O5 n3 (2 - m2 ii2 

PP 

. A6 =p3(p2_m2+Y22) 

3 
n2 d7= P3 (p2 - m2 + ö22) 

On substituting for q, and q2 from equations (4.32) 

and (4.33) into equations (4.3) and (4-4)9 the axial 

forces in the coupled shear-walls become 

EI 
p 

[c2 
(cosh k- cosh k) N1a11(Y, 2- X22, 

+C3 (sinhk - sinhkj) 

P+ 
C4(coshr - cosh r4ý) + C5(sinhr - sinhrf ) 

ýH2ý 
22 

2 ---ý= ,2+ 1) (1 -)2 (4.34) 
n 

and 

EI ýp [C2(cosh 
k- cosh ký) N2 

12 (ý22 2) 

+ C3(sinh k- Binh k j) + 
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P47 
+n C4(coshr - cosh r ¬) + C5(sinhr - sinter f) 

w$2y 
22 

-2(2+ 1) (1 - )2 (4.35) 
n 

The bending moment 1I in wall i (i = 1,2,3,4,5) can 

be determined by substituting for y from equation (4.23) 

into equations (4.5) to (4.9) and is given by 

Mi = EIi p2(CZ cosh k+ C3 sieh k)+2 (C4 cosh r 

+ C5sinh rý) 

22222 H ý1 ý2 
121 m2 + ýr 2 + 

n2 EI 2 
(1 -+ H2 n2 - 2ýr 

22 1 

(4.36) 

A consideration of the conditions of equilibrium of a 

small vertical element of each wall (Fig. 4.6) yields the 

shear forces S1, S2, S3 and S4 in the four walls (Fig. 4.6) 

dM b 

dx 

dM b 
SZ -+ (2ý + d2) qý 

dx 

(4.37) 
dM 

3ý- 
3b S +( +d3) q2 

dx 
dM b 

S4 -+ (2? + d4) q2 
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and for the independent wall or core, the shear force S5 

is 

cl M- 
Sý s 

dx 
(4.38) 

Hence, on substituting for q1, q2 and Ml (i - 1,2,3,4,5) 

from equations (4.32). (4.33) and (4.36) into equations 

(4.37) and (4.38) the shear force in the coupled shear 

wall and core assemblies may be obtained. 

On substituting for M, Ui (i = 1)2939495)9 Ni and N2 

into equations (4.5) to (4.9), the moments in the walls 

due to axial forces in the four sets of connecting beams 

may be found. Hence, the axial forces in the connecting 

media follow from equations (4.10) to (4.13), since 

ni 
d2 

(i ° 1,2,3,4) (4.39) 
Mai 

dx 

and becomes 
b7 dq1 d4 

n1 =w+ (2 + dl) d. - EIS 
dx4 

(4.40) 

d q1 
- EI dam' (4.41) n2 =w+ 11 d (1 +2) dx4 

n3 = n2 + (22 + d3) dx 3 dx4 
2- EI d- (4.42) 

d4 
n4 ° EI5 

dx4 
(4.43) 
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Hence, on substituting for q19 q2 and y from equations 

(4.23), (4.32) and (4.33) into equations (4.40) to (4.43), 

the axial forces in the connecting media may be found. 

If the expressions for M1 to M5, q, and q2 are 

substituted into equations (4.37) and (4.38), it is found 

that shear forces exist in the various components at the 

top of the continuous structure. It mist be deduced that 

these can only be caused by concentrated interactive forces 

at the top of each connecting medium, as shown in Fig. 4.5, 

such that 

s1(H) _- Qý, 

s4(H) = Q3 - Q4, 

s 2(H) a Q1 - Q2, S3(H) - Q2 - Q3, 

s5(H) = q4 

" Hence, 

Ql = dXýtH) - (2' + d1) ql (H) (4.44) 

Q2 
dM 

1+2 
(H) 

- 1ý q, ($) (4.45) 

Q e+2+3 
(H) 

-11 q1(H) - (2 
b 

+ a) 4 (H) (4.46) 3 ax 32 

d (H) 

4 (4.47) 

The internal force are dependent on the sane variables 

as the deflection y. 
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4.3 Numerical example 

In order to illustrate the theoretical results, a 

representative 30-storey structure of the form shown in 

Fig. 4.7 is considered. The structure consists of a 

central U-shaped core, four pairs of coupled shear walls 

(A) and two pairs of coupled shear walls (B). Connecting 

beams are 0.4m deep and of the same width as the walls. 

The relevant structural data are: 

Storey height h-2.8 m 

Total building height Ha 84 m 

For core I- 14.31 m4 

For coupled shear I1 a I2 = 3.6 m4 
walls (A) 

A1 =A2= 1.2 m2 
-4 

Icl = 10.67 x 10 m4 

b1 =6m 

1 12 m 

For coupled shear I3 = I4 = 12.8 m4 
Walls (B) 

A3 a A4 Q 2.4 m2 
-4 

Ic2= 16 x 10 m4 

b22m 

12 10 m 

and E 21 x 106 KN/m2 

Then, on adding the properties of the three groups of 
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elements, the relevant structural parameters for the 

overall structure become 

J6, H a 0.955 for set of coupled walls A 

ß2H = 3.581 for set of coupled walls B 

ö1 H = 0.499 for set of coupled walls A 

? S2 H = 2.44 for set of coupled walls B 

The lateral deflections and internal forces in the 

different components may be determined from the earlier 

equations (4.31) to (4.47). 

Since for each group the coupled shear wallsa re 

identical, the forces in each are the same. The distributions 

may be expressed in terms of a series of functions FI to 

F14 as follows, related where appropriate to the applied load 

intensity w9 the total shear force wH, and the total 
2 

statical moment 2H . These functions are defined as 

L,, g4 y EI F1 

22 
WH F2, q2 3 wH F39 N1 m ý`' 2 F49 N2 2$ 

_p 

M= M2 2C w-HZ )F' 143 °M4=2 (- 
2)F7' 

M. 145 =2 F8 

Sý S2 2 
-H F99 S3=S4=2wHF10,55mwgF11 
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The lateral load distributions on the two groups of coupled 

shear walls and core are respectively w F12, c. -) F13 and 

w Fl4 . 

The magnitudes of the concentrated interactive forces 

are found to be 

Q1 = 0.00495^' H 

Q2 = 0.00990 wH 

Q3 =-0.00715 wH 

g4 s-0.02420 -H 

Figures 4.10 to 4.23 illustrate the general forms of 

structural actions which occur in composite structures 

of this nature, in which continuous redistribution of lateral 

forces occurs as a result of different load-deflection 

characteristics of the components. Figs. 4.10 to 4.14 show 

typical distributions of lateral deflection, shear flow and 

axial forces in the two sets of laterally loaded coupled 

shear walls. 

Figures 4.15 to 4.17 show the distributions of total 

moments in two sets of coupled shear walls and core 

assemblies respectively. The bending moments in both 

ccupled walls and core are both small and negative in 

sense in the upper levels, owing to the coupling actions 

of the connecting beams and the top concentrated forces. 
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Figures 4.18 to 4.20 show the distribution of total 

shear forces in two sets of coupled shear walls and core 

assemblies. These indicate that the distribution of 

shearing forces are roughly linear in the coupled shear 

walls. 

Figures 4.21 to 4.23 indicate that the lateral forces 

on each assembly (i. e. set of coupled walls A. set of 

coupled walls B and core) are small in the upper levels of 

both sets of coupled shear walls and relatively large in 

the core, but they increase and decrease respectively in 

the lower levels due to the load redistribution. 

A commonly adopted design procedure is to assume that 

the load distribution on each structural component is 

uniform and of such a magnitude that the resulting deflections 

at the top of the structure are equal. The distributions 

which would occur in that case are indicated by broken 

lines in Figs. 4.21 to 4.23. The corresponding distributions 

of the shear flows and axial forces in the two sets of 

coupled shear walls are shown by the broken lines in Figs. 

4.11 to 4.14, and the moments and shear forces in the three 

components are shown similarly in Figs. 4.15 to 4.20. 

Although considerable errors still occur in the force actions 

at different levels, the degree of accuracy is generally 

better than that obtained with the lateral force distributions 

and this lends credibility to the relatively crude design 
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procedure. For completeness, the deflection profiles of 

the individual elements, obtained by matching deflections 

at the top only, afe shown in Fig. 4.9. 

Although the curves presented demonstrate the typical 

forms of structural actions, the actual magnitudes of 

the forces in each component will naturally depend on their 

relative stiffnesses. 

ANALYSIS OF THREE-DIMENSIONAL SYMMETRIC 

STRUCTURES CONSISTING OF SETS OF 

IDENTICAL COUPLED SHEAR WALL, CORE AND 

RIGIDLY- JOINT ED FRAMES SUBJECTED TO 

LATERAL LOADS 

4.4 Analysis 

Many tall building structures consist of assemblies 

of independent and different sets of identical coupled 

shear walls, cores, and rigidly jointed frames, constrained 

to act together by the floor slabs as shown in Fig. 4.1(b). 

Although the mathematical formulation for such 

structures is considerably harder, the analytical procedure 

is similar to that described in section 4.2. The plane and 

equivalent structures are shown in Fig. 4.3 and 4.8 

respectively. 

The respective moment-curvature relationships for the 
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coupled shear walls are given by equations (4.5) to (4.8)9 

and for core and frame assemblies they become correspondingly 

(Fig. 4.8) 

EI d 
5 ---2 = M5 = Mao - May (4-48) 

M6 = May (4-49) 

where May is the moment on the frame due to the axial 

force n5 in the connecting medium, given by 

H 
ä5 = n5 (%\) (%º - x) d> +Q5- x) (4.50) 

x 

where Q5 is the concentrated force which exists in the 

connecting medium at the top of the structure Fig. 4.8). 

The addition of equations (4.5) to (4.8), (4.48) and 

(4.49) yields the overall moment-curvature relationship 

2 
EIL +M6=M- 11 N1 - 12 N2 (4.51) 

Differentiating equation (4.51) thrice, yields 

EI dy 
- GA d--4 d3M 

+1 
d= 2+1 d2g2 

(4-52) 
dx5 dx3 dx3 1 dx2 2 dx2 

On substituting for the second derivative terms in 

q1 and q2 from equation (4.15) into (4.52) it becomes 

53121ö22_22 2) dY_ 11_ 2 
dx5 

(0C +, 8l +ß2 
dx3 EI q1 

EI "2 

3 1U 
ad Fit 

d x3 
(4-53) 
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2 
where oc2 = GA/EIS and b, v /622' X12 and '22 are as defined 

in section 4.2. 

On differentiating equation (4.51) and solving 

simultaneously with equation (4.53), the shear force 

intensities q, and q2 in the connecting media become 

3 EI d2222d 
q, 

11(ö12 -ö22) dz5 
- cC + f31 +ý2 + ? l2 ) 

dz3 

2 

22_1 d3M 
X2 

dM 
+C, 4 ý2 

dx EI d%3 
+ EI dx 

(4.54) 

EI 
[ýJ 

2222d 

2(ä22 
2) - (o( +"&l +`82 +) 

dx3 

221 d3M ii 
2 

dnl (4.55) + °ý ý1 
dz - EI j3 

x+ 
EI dx 

Substitution of either of equations (4.54) or (4.55) 

into (4.1) or (4.2) respectively, yields 

d_ 2 d5y 2 ýY 
-21 

d5d 
dx7 

m1 
dx5 

+ n1 
dx3 

p1 dx a ý; I 
dx5 

(y2+ý2) d314 
+2ý2 dM 

12 dx 2 dx 
j 

(4.56) 
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where 

mý2 ac' + f312 +l22 + ?-2+? i22 

22 n12 = , c2 ? Sý 
2+ 

04 
2 X22 + le, 

2' 
22 +'22 X12 + ijý 2 L11 

p2.. 
22 

12 

A consideration of equation (4.56) might suggest 

that this equation may be reduced to a sixth order 

differential equation if integrated once, but due to 

difficulty involved in finding the integration constant 

generated this process was ruled out. 

The complete solution of the seventh order differential 

equation is given by the addition of the complementary 

function and particular integral. The characteristic 

equation is 

A7 - mý2 A5 + ný2 ý3 - Pi2\ =0 (4.57) 

A numerical solution of equation (4.57) yields seven 

real and/or complex roots, zero, tX1, +>2 and +\3. 

Hence, the general solution of equation (4.56) for any 

form of lateral loading may be expressed in the form 

y=D0+ D1 cosh \1 x+ D2 sinh ý1 
x+ D3 cosh ý2x 

+ D4 sinh\2x + D5 cosh>3 x+ D6 sinh%3 x+ Ypi 

(4.58) 
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where Di(i -o- 6) are the constants of integration to 

be determined from the necessary boundary conditions, 

and yPI is the particular integral solution. 

Boundary conditions 

The first five boundary conditions are as expressed 

by equations (4.24) to (4.27). A consideration of 

equation (4.53) yields the following condition ' at x=o 

d5 
EI 

[ d3 
3°) + (W2 +%412 +/822) d (°)1 (4.59) 

(1X Lax J 

On differentiating equation (4.53) and using the fact 

that dq1/dx and dq2/dx are each equal to zero at the top, 

the following condition holds, at x=H 

6 
d4M 2 

=EI 
dx4 

(H) + (ý2 +fl1 
2 

+922) 
dx 
2 (g) (4.60) 

dx' 

Uniforn1y distributed wind loading t 

If a uniformly distributed wind loading of intensity ) 

per unit height is considered, then 

2 
X) 

and 

äX . -W (H - x) 

and 
d37 

=0 
dx3 

5 
and 

d'ßa0 

dx5 
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On substituting for the moment function in equation 

(4.56), the simplest particular 

, 22 wg2 1 
yPI =p2 

EI 2 
1 

integral becomes 

fig)2 -fig) (4.61) 

Then on substituting equation (4.58) into boundary 

conditions (4.24) to (4.27), (4.59), and (4.60), the 

constants of integration Di(i -o- 6) may be obtained. 

Therefore, for the case of a uniformly distributed load 

of intensity w per unit height a closed-form solution for 

the deflections is possible. On following the same 

procedure as described in section (4.2), closed-form 

solutions may be achieved for the moments, shear forces, 

axial forces in the walls and axial force intensities in 

the connecting media. As mentioned previously, the 

characteristic equation regarding the general differential 

equation can only be solved numerically, hence, a general 

solution can not be obtained. For any specific structure 

the parameters m, 
2, 

n, 
2 

and p, 
2 

may be calculated and used 

to solve the general equation (4.56). 
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CHAPTER 

ANALYSIS OF CORE STRUCTURES 

SUBJECTED TO TORSION 



NOTATION 

A cross-sectional area of wall ' n' 
n 

B core breadth 

D core length 

E modulus of elasticity 

G shear modulus 

H overall core height 

h storey height 

In second moment of area of wall In' about its local axis 

IC second moment of area of connecting beams 

Iw core warping moment of inertia 

GJ St. Venant torsional rigidity 

Mn in-plane bending moment in wall I n' 

N normal forces in wall In' 
n 

qn vertical shear flow along line n-n 

Sn horizontal shear force in wall In' 

T applied torque at any cross-section 

Tw core warping resistance 

T St. Venant torsional resistance 
s 

to applied distributed torque 

1 width of wall In' 
n 

t thickness of wall In' 
n 

x, y, z co-ordinate system 

Un displacement in x-direction of point In' 

Vn displacement in y-direction of point I n' 



Wn displacement in z-direction of point In' 

Of. structural parameter 

k non-dimensional structural parameter (a&H) 

non-dimensional height (/H) 

connecting medium stiffness constant 
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CHAPTER 5 

ANALYSIS OF CORE STRUCTURES 

SUBJECTED TO TORSION 

5.1 Introduction 

The torsion-bending analysis of symmetrical and 

asymmetrical structures consisting of coupled shear walls, 

cores, independent walls and frames are the objects of 

chapters 6 and 7. Hence, at this stage it is necessary 

to consider the behaviour of core structures when 

subjected to torsion. In many recent structural forms of 

tall buildings, the lateral resistance of the structure 

to wind or earthquake loading is provided entirely or 

partly by cores containing lift shafts, stair wells and 

other service ducts. If twisting is insignificant the core 

can be analysed as an independent shear wall or a coupled 

shear wall, as described in previous chapters. However, 

when the core is located asymmetrically in the building or 

the loading is eccentric the action of wind or earthquake 

will induce twisting as well as bending deformations. The 

need for access to lifts and other services grouped within 

the core requires it to have an open section, such as the 

commonly used F, U or H shapes. Usually at every floor level 

the openings are partly closed by connecting beams or floor 

slabs. As a consequence of its open section, and the low 

thickness/width and width/height ratios, a core may be 

classified as a thin-walled beam. When subjected to torsion, 

such a member tends to warp as well as bend as shown in Fig. 5.1. 
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Hence, torsion gives rise not only to the usual St. Venant 

shear stresses, but also to a system of vertical axial 

stresses caused by the constraints which prevent free 

warping of the cross-section. The latter stresses, although 

usually neglected, may be of such a magnitude as to merit 

consideration in the design. 

The torsional behaviour of perforated core structures 

subjected to applied torques have been studied by many 

investigators (eg. (24-26))and solutions have generally 

been based on Vlasov's theory of thin-walled beams, in 

conjunction with a continuous representation, or a stiffness 

matrix formulation of the connecting lintel beams. So far, 

hand methods of analysis have been devised for singly and 

doubly-symmetric open-section walls and computer methods 

for more complex arrangements. A need exists, therefore, 

for a continuum method of analysis for asymmetrical open- 

section shear walls with or without connecting beams which 

may be used in the appropriate analysis. 
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In this chapter, a method has been presented for the 

analysis of asymmetrical and hence, singly symmetrical core 

structures in tall buildings. The analysis has been achieved 

by using folded plate theory in conjunction with the continuum 

technique. In the analysis, the rotation deformation of the 

structure is used as the unknown variable. The method is 

suitable for hand calculation, using a desk calculator, and 

is specially useful in allowing the designer to proportion 
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members and components at the start of the design process. 

5.2 Assumptions 

Consider the typical asymmetrical core structure 

shown in Fig. 5.2(a) subjected to pure torsion. 

The following assumptions are made: 

(i) The perforated core has uniform sectional 

properties and dimensions throughout the 

height of the building and is rigidly fixed 

at the base. 

(ii) Diaphragm action of the floors is assumed, so 

that the whole structural assembly moves as a 

rigid body in each horizontal plane. 

(iii) The perforated core consists of assemblies of 

slender vertical plate elements, continuously 

connected at the corners, undergoing in-plane 

deformations only. 

(iv) The discrete set of connecting beams, of flexural 

rigidity EIc at each floor are replaced by an 

equivalent continuous connecting medium of 

flexural rigidity 
Elc/h 

per unit height. 

(v) The walls adjacent to the connecting beams 

deflect equally in the horizontal plane. Hence, 

the mid-span positions of the connecting beams 

are assumed to be points of contraflexue. 
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(vi) Under the action of the applied twisting moments, 

the core rotates about a fixed vertical axis Ox 

through the shear centre of the cross-section 

(origin O) q Fig. 5.2(b). 

5.3 Analysis of Asymmetrical core structures 

Consider the asymmetrical core structure of Fig. 5.2, 

where the origin 0 is assumed to coincide with the shear 

centre. During twisting, different points on the cross- 

section suffer different vertical displacements, thus cross- 

sections which are initially plane are deformed out-of-plane, 

as shown in Fig. 5.1(b). If this distortion, or 'warping', 

is constrained at any section, longitudinal stresses 

parallel to the axis Ox are induced in the core. Hence, the 

rigid body rotation about the axis Ox will consist of three 

displacements, V and W in the y and z directions respectively, 

and angular rotation E ? as shown in Fig. 5.2(b). 

The locations of the shear centres for channel cross- 

sectional shapes are given by G alambos 
41 

. The position 

of the shear centre has been determined as if the core 

was an open-section beam. This is based on the assumption 

that the connecting beams are shallow lintel beams or floor 

slabs and the portion in which the horizontal shear will flow 

is relatively small. However, analyses have been presented 

which consider the inclusion of connecting beams and the 

shear deformations of core panels 
42,43 

which could be 
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used if required. 

Displacements 

Consider the displacements of the core structure (Fig-5.2) 

with its beams cut at their mid-points 1. Since the cross- 

section of the core structure is restrained in its own plane 

by the rigid floor slabs, it rotates about the shear centre 

0. Therefore, a small rotation about the vertical axis Ox 

yields the following displacements of the significant points 

(1-5) and centroid of the core (Fig. 5.2(b)), where second 

order terms in e are neglected. 

wI =w2= w5-- (e+B)e 

W3 W4- - e6 
V2 - V3 - (n-f) e (5.1) 

V4-V5"-(m+f)6 

We--(e+L)A 

Y a-f9 C 

where the displacements V and W are in the y and z directions 

respebtively. 

Equilibrium conditions 

A consideration of the conditions of equilibrium of a 

small vertical element of each of the five constituent 

panels, yields the following relationships (Fig. 5.3(a)) 
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For panel 1 

dN1 
U +q, +q2=o 

2 

For panel 2 

d 
q1 +2 q2 

dN2 

dx q2 +3=o 

S2 = 
Jdmd= 

+ (q2 +q 32 
B] 

For panel j 

d3-q3+q =o 4 

rdM 
S 

4 

For panel 4 

-4+4=o 45 

dM 
s4 =-+ (q4 + q5.2 

For panel 5 

dN 
T-x 

a+C S5 - dX - (-2 ) q1 +2 q5 

[dLI5 

j 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 



111 

where Ni (i-1-5) and qi (i-1-5) are the axial forces in panels 

(1-5) and vertical shear flows at joints (1-5). 

Assuming that they behave as relatively slender beams, 

the moment-curvature relationships for the panels (1-5) 

become, on using equations (5-1) 

M1 -- (e+B) EIS d8 

dz2 

U2 -- (n-f) EI2 d28 

dx2 

M3 se E13 d22 (5.7) 
dz 

11 --(m+f)EI d2A 

dx 

M5 (e+B) EI5 d2e 

dx2 

where Ii is the appropriate second moment of area for the 

panel concerned. 

Compatibility conditions 

The conditions of vertical displacement compatibility 

between adjacent panels due to bending and axial deformations 

are, 

Along the line of contrafle; wre 1-1 
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zzz 
(a+d) x1 dz + 

(a+c) Y. ý dz - 
N1 dz 

02 EI1 02 EI 50 EA1 

(5.8) 
z 

+ dl 
EA 's 

qý -o 
o5 

Along the vertical joint 2-2 

xxxx 
tai '(1 dx + 

(B) M2 dx + 
N1 dx - 

N2 dx -o (5.9) 

02 
EIS 

02 
EI2 

o 
EA1 

o 
EA2 

Along the vertical joint 3-3 

xxZZ 
(2 Y2 dm + 

(2 ! dx+ N2 d= dz 0(5.10) 
EI 

2 
EI3 

0 
EA 20 Eia 

Along the vertical joint 4-4 

zzzz 
dz+ 2 dz mod=- fdz"0 (5.11) 

° 
EI3 

0 
EI 40 E$3 

°4 

Along the vertical joint 5-5 

xxxx 
(2) Mý dx t2 dx+ dx- dx -0 (5.12) 

EI5 
o 

EI4 
0 

EA4 
o 

EA5 

The addition of equations (5.8) to (5.12) yields 



A 

+ 

zzx 
(a + d) M1 dz +B 

M2 dx +D dz 

02 
EI 10 EI 2 EI 3 

xx 

BM4 dz+ 
(2+c) ndx 

-pE q1 =0 
oE4o5 

where 13 = 
1210 

, JO = second moment of area of the connecting 

a3h 
beams, a- span of the connecting beams and Ai (i -1- 5) are 

the cross-sectional areas of panels (1-5). 

On substituting for the moment functions from equations 

(5.13) 

(5,7) into (5.13), yields 

E P1 dA 
dx 

where P1 - 2BD. 

(5.14) 

From equations (5.9) to (5.12), the axial forces N1, N29 
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N and N4 become 

Ný s-Eli +B4 +D +B 
1l2 

2 EI5 EI4 E13 EI2 

+ (1) li 
-n (5.15) 

2 EI 
1 EA5 

N2 =-EA2 

[(c 
)+Bn +D + (B) M2-X 

2 EI 5 EI 4 EI 32 EI 2 EA 5 
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N3 -- EA3 (-'03 ) M2 
+B +(D) 

!- 

2 EI5 E14 2 EI3 EA5 

EA m 
+(B) - 2 EI5 2 EI4 EA5 

Addition of the equations containing the axial forces and shear 

flows from (5.2) to (5.6) yields 

dN1 
+ 

dA2 
+ _1 +d4+:: I -0 (5.16) 

Tx- d= dz dx dx 

From the conditions of vertical equilibrium 

NI N2+N3+N4+N5=0 (5.17) 

If the structure is subjected to a direct vertical load the 

right hand side of equation (5.17) will be equal to that 

applied load. 

On substituting for the axial forces N19 N2, N3 and N4 

from equations (5.15) and the moments M1, M2, M3, M4 and M5 

from equation (5.7) into (5.17), the axial force N5 becomes 

N- El 2 
55 (P +a 5) d2 (5.18) 

dx 

A consideration of equations (5.7), (5.15) and (5-18) 

I 

yields the axial forces N1, N2, N3 and N4 as 
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Ný -EA1 (P-c2-c3- c4) d (5.19) 
TX-7E 

N2--E12 (P-c3-c4) d 2(3 (5.20) 

d x 

Eia (P -04) d2 e (5.21) 
dz2 

N4 -- El4 P d29 (5.22) 

d z2 

where 

c ý - 1 
2 

(e + B) (d + 2a + 

c - (e + B) d+ (n - f) B 
2 2 2 

c (n - f) B- eD 
2 2 

c4-(m+f) B 
22 

c5-(e+B) c+(m+f) B 
22 

A. 1 +A2+A3+ 1 4+A5 

P1 A1 (02+03+ c4) +A2 (c3+c4) +A3 c4-A5 c5 

Substitution of the axial forces and moments into the 

appropriate equilibrium conditions (5.2) to (5.6) yields the 

shear flows at the core corners and the horizontal shear 

forces SI to S5 as, 



116 
I 

and 

q- E/3P de + EP die 
21 dz 2 

dz3 
(5.23) 

q3 = B, aP1 de + EP3 d38 (5.24) 
dx d 

q-E, eP de - EP die (5.25) 4 d= 4 
dx3 

q5 - EPP, de - EP5 d39 (5.26) 
dz 

dx3 

s1 ' EP6 d3 - EP ( + d) P, de (5.27) 
3 dz 2 

s2 s EP7 die - EfBP1 de (5.28) 

dz3 dz 

s3 m EP8 d3,9 e - EfDP1 d (5.29) 
dx ' 

S4 - EP9 d30 - EpBP1 ds (5.30) 
dz3 dx 

s5ýEP10d33-Ep(2+c)Pide (5.31) 
dx 

where 

p2-A1 (P-c2-c3-c4) 

P3 (A1 + A2) (P - c3 - c4) -A1 c2 

P4 (A4 + A5) P+ A5 c5 

P5 = A5 (p + c5) 

P6(e+B) I, -A1 d(P-c2-c3_c4) 
2 
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P7 (n - f) 12- A1 B(P - c2 A2 2 (P - e3 - c4) 

P8=-e13+D P(A4+15-A1 -A2)+A1 (0 
2+0 3+c4)+ 

2 
(c3 + c4) + 15 05 

P9 = (m + f) 14 + BP (A4 + 2A5) + A5 c5 B 
2 

P, 1 O- 
(e + B) 15 + A5 (P +c 5) 2 

If the core structure is subjected to an applied torque T 

at any level, its internal torsional resistance will be 

composed of the warping resistance TW, and the St. Venant 

torsional resistance TS. The warping resistance TW is 

produced by the horizontal shear force Si (i -1- 5)9 and 

the St. Venant torsional resistance TS is equal to GJ deg 
dz 

where 

n 
J= *hjtj3 

1=i 

in which 11 and ti are the width and the thickness of the wall 

panel i respectively. For obtaining the St. Venant torsional 

constant J. the contribution from the connecting beams are 

again neglected. 

The condition of overall equilibrium becomes 

T=Tw+ TS =- (B + e) S, - (a - f) 32+ eS3 - (m + f) S4 

- (e + B) S5 + GJ do (5.32) 
X 
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A 

On substituting for the horizontal shear forces from 

equations (5.27) to (5.31), equation (5.32) becomes 

T= EI,, d38 + GJ0 dA (5.33) 

d=3 d= 

Where I. is the core warping inertia given by 

IW=(e+B) P6+(n-f) P7-ePa+(m+f) P9+(e+ B)P10 

and 

J =, 9B 2+J Jo 
G P1 

Equation (5.33) can be expressed in the form 

d3A - 42 d6 --T 

dx3 dz EIu, 

where oe is the relative stiffness parameter defined as 

2 GJ 
oc =o 

EI 
w 

5.4 Singly-symmetric core structures 

(5.34) 

Fig. 5.4 shows an idealized singly-symmetric core structure. 

The same procedure as described in section (5.3) is applied for 

the analysis of this particular structure, except in this case 

1°0 

mnýD 2 

C -d 

L -B 2 
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Hence, the internal forces are 

N1 ' EA 1 
äl ate (5.35) 

dx 

N- TA D (B - e) d20 (5.36) 
2222 dx2 

and 

q, - -2Y2 ae (5.37) 
dx 

q2 = ZY2 de - EA1Y1 d3e (5.38) 
dz 

dx3 

q3 s2ll(2 de -E f1ö1 + A2 D (B - e) d39 (5.39) 
dz 22d; 3 

and 

S1--ßö2 D dG +E 
[(e 

+ B) I1 + A, d Y, d3e (5ý 4ýý dx 2 dx3 

s2=-2X2 B ae +ED 12 + A1? l1 B+ A2 4s (2 - e) 1-319 (5.41) 
dx 2 dx 

s32ýZD de -E 
[ei3-AlYiD-A2n2(B-e) 

die (5.42) 
dx 22 dx3 

where 

ýý ad (e + B) +D (B - e) 
22 

Y2 -j EBD 

The internal forces in the other panels follow from symmetry 

of the structure. 
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If the structure is subjected to an applied moment T 

at any level, the conditions of overall equilibrium becomes 

T=Tw+TS =-2(e + B) S1 - DS2 + eS3 + GJ de (5.43) 
dz 

On substituting for the horizontal shear forces Si (i 1- 3) 

from equations (5.40) to (5.42) into (5.43), the governing 

differential equation again becomes 

-EI, d36+GJ d9-T 

dx3 dz 

where 

(5.44) 

Iu, -2 (e + B)2 11+ D2 I2 + e2 13 + 2. A1yl 
2+ 

A2 (B - e)2 
2 

and 

Jo 4AEB2 D2+J 
G 

Solution of the governing differential equation 

The general solution of the governing differential equation 

(5.34) for any form of torsional loading may be expressed in 

the form 

9= Co + C1 Ioshot z+ C2 Sinhoc x+ epI (5.45) 

where Ci (0 - 2) are the constants of integration to be 

determined from the necessary boundary conditions, and 9 
PI 

is the particular integral solution for a specific form of 

applied torque T. 
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Boundary conditions 

In order to determine the constants Ci for equation (5-45)9 

it is necessary to derive three independent boundary conditions 

for the structure. If the structure is rigidly built in at 

the base, then at x-o 

9=o and de=o 
dx 

(5.46) 

At the top, the bending moments and axial forces in the wall 

panels are zero, and so from equations (5.7) and (5a8) to 

(5,22), at x-H 

d? 9 -o (5-47) 

d=2 

Solution of the governing differential equation 

In order to achieve a solution, suppose that the particular 

case is considered of a uniformly distributed torque of intensity 

to per unit height. In that case 

T to (H - x) (5.48) 

On substituting for T in equation (5.34), the simplest 

particular integral becomes 

t e PI ' GJ 
($ x- x2) (5.49) 

02 
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Then on substituting equation (5.45) into the boundary conditions 

(5.46) - 
(5.471, and solving for the integration constants, 

the general solution becomes 

E) =22 

[ACcosh 
kf -1) -k sieh k+ k2 (1 - 

L) (5.50) 
to H0k 

GJo 2 

where 

A_I+ ksinh k 
coshk 

and k- oc H and I_z 
H 

Equation (5.50) emphasizes the dependence of the solution on 

two variables only the height ý and the relative stiffness k. 

Substitution of equation (5.50) into the earlier equations 

yields closed-form solutions for internal moments, shear forces, 

axial forces and corresponding vertical stresses. 

Design Curves 

Figures 5.5 to 5.8 show design curves for the rotational 

parameter U19 and the rotational derivative parameters U29 U3 

and U4 for any single cell partially closed core structure 

subjected to uniformly distributed torque of intensity to per 

unit height. 

Q1 ' U2' U3 and U4 are given by 
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.4 

GJ k2 
0 IIý =_He 
0 

U 
GJ0k deb 

2 mlý tH dx 
0 

II 
GJ t d2A 

322 t dx2 
0 

(5.51) 

II 
GJOH die 

4tk d=3 
0 

Once the value of k is known, the values of parameters UI I U21 U3 

and U4 at the desired height can be obtained from the curves, 

then the rotation and rotational derivatives can be determined. 

The curves for rotational parameter ü1 can be used in 

conjunction with equations (5.1) to determine the displacements 

of the significant points (1-5), and the centroid of the core 

structures. 

The curves for U3 can be used together with equations (5.7) 

and (5.18) to (5.22) to determine the moments Mi and the axial 

forces Ni (i-1- 5) in the panels (1-5) respectively, 

The curves for U2 can be used in conjunction with 

equation (5.14) to determine the shear flow in the connecting 

beams (along line of contraflexure 1-1). The shear flows in 

the vertical joints qi (ia2- 5), and the horizontal shear 

forces Si (i -1- 5) can be computed by using the curves 

for U2 and U4 together with equations (5.23) to (5.31). 
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The method of analysis presented may be used to analyse 

any core structure providing it is open or partially closed 

by lintel beams, and no segment is completely closed. In 

the above analysis the St. Venant torsional constant J has 

been calculated disregarding the connecting beams. Hence, 

the actual value of J will be greater than the calculated 

value. However, this would not have a significant effect 

on the analysis, as the St. Venant torsional resistance is 

relatively small compared to the warping resistance. 
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CHAPTER6 

TORSIONAL ANALYSIS OF SYMMETRIC 

BUILDING STRUCTURES 



NOTATION 

AI A2 cross-sectional areas of coupled shear walls. 

b clear opening between coupled walls, 

E elastic modulus. 

GA effective shearing rigidity of shear cantilever. 

h storey height. 

I second moment of area. 

I second moment of area of connecting beams. 
c 

1 distance between centroidal axes of coupled walls. 

Y bending moment. 

N axial force in coupled walls. 

q shear flow in connecting medium of coupled walls. 

S shear force. 

T applied twisting moment. 

t intensity of applied twisting moment 

W lateral force intensity on transformed structure. 

x height above base. 

y horizontal deflection. 

zli, z21 distance of ith wall, frame, core or coupled wall 

z3i, z41 from central axis. 

«, ýg structural parameters. 

e angle of rotation of building. 

c, w, f, s suffices denoting core, wall, frame or coupled wall. 

i suffix denoting ith component. 

0 suffix denoting datum plane. 

prime denoting actions referred to transformed structure. 
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CHAPTER6 

TORSIONAL ANALYSIS OF SYMMETRIC BUILDING STRUCTURES 

6.1 Introduction 

In chapter 3, an "exact" analysis based on the continuum 

approach was presented for symmetrical structures consisting 

of assemblies of coupled shear walls, cores, and rigidly- 

jointed frames, subjected to lateral forces which produce 

bending. The frame components were represented by equivalent 

shear cantilevers. Due to the high in-plane rigidity of the 

floor slabs, it was assumed that each horizontal cross-section 

of the building underwent only a rigid body movement. A 

solution could then be achieved by replacing the three-dimensional 

structure by an equivalent plane system in which the components 

were constrained to act in series by a set of rigid pin-ended 

links which simulate the action of the floor slabs. The 

continuum approach, leading to a sixth order governing differential 

equation, enabled a closed solution to the problem to be achieved, 

and formulae were presented for the evaluation of the lateral 

deflections and forces (shears and moments on each component, 

and axial forces and lintel shears in the coupled shear walls) 

throughout the structure for the particular case of a uniformly 

distributed leading. 

If the symmetrical structure is subjected to eccentric loads, 

the analysis may be treated as a superposition of a symmetrical 

pure bending action, and a skew-symmetric pure torsional action. 

The former may be treated by the theory presented in chapter 3. 
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In the latter case, each horizontal cross-section undergoes 

rigid body rotations about the central axis, and the 

deflection of each component is proportional to its distance 

from the axis of rotation. It is then possible to transform 

the real three-dimensional structure into an equivalent plane 

located in any datum plan in the cross-section. This 

equivalent structure may be analysed "exactly" using the 

theory developed earlier, and the same formulae presented in 

chapter 3 used to obtain the deflections and forces in the 

substitute system. These actions may subsequently be trans- 

formed back into the original structure. A closed solution 

to the problem of eccentrically loaded symmetrical structures 

is thus possible. 

When using the continuum approach, the transformation 

factors are very simple and rapid solutions are possible. The 

object of this chapter is to demonstrate the technique and 

show how the earlier solution may be used directly for the 

torsional analysis of symmetrical structures. 

TRANSFORMATIONS 

6.2 Transformations for wall, core and frame assemblies. 

Consider a symmetrical structure which consists of 2M 

assemblies of independent shear walls, 2N rigidly-jointed 
6 

frames and 2Q service cores, as shown in Fig: 1, a typical 

wall till a typical frame 'it and a typical core (i) being 

located respectively at distances zli, z21 and z31 from 

the central axis of symmetry of the building. Due to the 
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symmetry of the structure, only one-half need be considered, 

Under the action of an applied twisting moment T, the 

structure will rotate about the central vertical axis Ox. 

each cross-section undergoing a rigid-body rotation 

in the horizontal plane due to the in-plane rigidity of 

the floor slabs. It is convenient to express all deformations 

in terms of the lateral deflection y0 at some arbitrarily 

chosen datum plane, normally in the plane of one of the 

structural assemblies, at distance zo from the axis of 

rotation, so that A= yo/zo. The lateral deflection of 

the ith wall, the ith frame and ith core then become, 

respectively, 

zii 
zlie s zo y0 

y fi 21 eazz yo (6.1) 21 

0 

z3i 
Yci ' Z3i e' 

zo Yo 

Since the torsional stiffness of shear walls and f ramesp 

are small compared with their bending stiffnesses, it may be 

assumed that the twisting moment is resisted entirely by 

differential shearing actions of these elements. For the 

core assemblies, the internal torsional resistance consists 

of the warping resistance and the St. Venant torsional 

resistance. The condition of overall torsional equilibrium 

of the structure then become 
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M 

T =2 Swi z11 + 

L iý1 1ý1 

QQ 

_ TW + TS 

i=1 i=1 

Sfi z21 + 
. 1= sci z31 

(6.2) 

in which Swi' Sfi and Sci are the shear forces in wall fit 

frame l il and core t il and Tw and T8 are the warping 

resistance and St. Versant resistance (including effect of 

beams) of the core respectively, (chapter 5), where 

TR (EI 
-)c i( 

d36 

de Tg a (GJo)ci 
dx 

Substituting for Tw and T. in equation (6.2) from above, T 

becomes, 
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MNQ 

T= 2 swi zli +sz+sz 
i=1 1=1 fi 2i 1=1 ci 31 

Q3Q 
EI de ýJ d8 

_( "'ýi +( 
Jci 

dx (6.3) 

On expressing the shears in the walls, frames and cores 

in terms of their flexural and shearing rigidities, equation 

(6.3) becomes, on using equation (6.1), 

MN 

T=2 -' (EI) 
z11 2d 

y0 + (GA) 
: 2i2 dyo 

i1 Wi 1io TX- 

(z31) 2 
"' 

d3 Y° d36 EI 

x -ciz -37 
> 

dd 
Jcid3 

0 is i=1 

(Gjýci de (6.4) 

ist 
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where (EI) 
wi and (EI)ci are the flexural rigidities of 

wall fit and core 'it respectively, and (GA) 
fi is the 

equivalent shearing rigidity of the frame 'it when 

represented by a shear cantilever, (GJ, )ci and (EIw)ci are 

the torsional and warping rigidities, of the core fit. 

From equation (6.1), 

and de a1 
dz z 0 

die aI 

dx3 Zo 

6.1 y 
z0 0 

dyo 

dz 

d3yo 

dx3 

hence, equation (6.4) becomes, 

M 
TaZ_ 

(EI)wi (z1i)2 
+ 

(EI)ci(Z 
1)2 3 

4a 

+ (EI 
0) 

dYo 1(GA)1j (Z21)2 
ei --- + 

i=1 dx3 i=1 

Q 

+ (GJO)ci dyo 

i-i 
x 

(6.5) 

An alternative procedure is to assume that all assemblies 

are transformed into an equivalent plane structure in the 

datum plane, the transformed components being constrained 

to act together in series by rigid pin-ended links which 

simulate the floor slabs. (Fig. 6.2). The applied torque T 

129 



130 

at any level may then be replaced by two equal and opposite 

shear forces So of magnitude T/2z0 at the datum positions. 

Since the building will normally be subjected to a 

distribution of twisting moment of intensity t(x) per unit 

height due to the wind pressures acting on the facade, in 

which each plane equivalent structure will be subjected 

to a load intensity )(x) of magnitude t/2z , then, 
0 

H 
w dz 

S (6.6) 
0z 

The equation of horizontal shear equilibrium in the 

equivalent transformed structure is then, 

NNq 

T S° - 2z '° Swi +s fi + SCi (6.7) 

i=1 i. 1 iý1 

Itt 

Where Swi, Sfi and Sci are the shear forces at any level 

in the substitute wall 'i', frame 'i' and core it respectively, 

given by, 

' Swi s -(EI) tw d3 ya 

dx3 

sI s (GA)fi dyo 

dz 

Sci -(El)ei d3y 

dz3 

Equation (6.7) may be expressed in terms of the lateral 

deflection yo of the substitute structure as, 
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YN 

So =- ()w d3yo 
+ (GA)fi dyo 7z» d 

0 i=i i=I dx 

Q 

- (EI) '3 
ci 

d yo 

i-1 dx3 

(6.8) 

in which (EI)'i, (GA)fi and (EI)ci are the transformed 

flexual and shear rigidities of wall 'i', frame 'i' and 

core Oil respectively. 

A comparison of equations (6.8) and (6.5) shows that 

the transformed stiffnesses are related to the real stiffness 

by x 
2 

wi 
i'l1 

Q 

ýEIýci 

i=1 

N 

(GL) 

i=1 

Y 

(z1i) 
wi 

i-1 0 

42 
z [(EI)0i 

( ate) 
0 

i=1 

+ (EIw)ci -r 
0 

2 
(GA)fi(2i 

0 
i=1 

Q 

+ (GJo) 

0 
The above equations can be written asp 
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(EI) 
wi ' (Ji. ) 

2 (EI), 

0 

(EI)ci ( )2 (EI)ci+ 
---'2 

(EIJci 
zo -wo 

NN 

(GA)fi (Z21)2 (GA) 
fi 

i-1 c ii 

+ (GJo)ci 

ia1 

(6.9) 

The elastic and shear moduli may of course be omitted 

from equations (6.9) to give the corresponding transformation, 

for the second moments of area and effective shear area. 

The transformations are simpler if the torsional rigidity 

GJo is relatively small and may be neglected, hence 

(GA)r, 
ia (Z2i)2 (GA)fi. 

0 

On substituting equation (6.6) into (6.8)p and 

differentiating, the governing differential equation for 

the substitute structure becomes, 

CEIý8 
d4Yo 

_ 
d2Yo 

a (GA), 
(6.10) 

dx4 dx2 

which is identical in form to that obtained from a pure 

bending analysis of a composite core, wall and frame 

structure. (This may be obtained from equation 3.12 with 

the effect of the coupled walls omitted (i. e. the term in 

the shear flow q is neglected)). In equation 6.10 
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(EI), - (EI)wi + (EI)ei 
i-1 

(ai)'- (GA)fi 

i-1 

(6. ») 

The solution of equation (6.10) yields the lateral deflection 

YO and hence the shears SRi, Sfi and Sci9 and moments 

Mw 1fi and Mci in the various wall, frame and core 

elements of the substitute structure (cf. from equations 

(2.64) to (2.68)). The corresponding forces in the real 

structure may be obtained simply by transforming back 

using the relationships, 

Swi z0 Swi Mwi z° Mwi 
z1i z1i 

sfi s= Sfi Mfi 'z Mfi ( 6.12) 
z21 z21 

z0 
Sz Sci 

z3i ci 
ýci z Mci 

31 

6.3 Transformations for coupled shear wall assemblies 

Coupled shear walls are subjected in addition to axial 

forces caused by the coupling actions of the lintel beams 

or floor slabs at each storey level, and the required 

transformations may be derived by considering a symmetrical 

structure consisting of 2R identical coupled wall assemblies 

as shown in Fig. 6.3(a), with a typical wall IV being located 
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at a distance z4i from the central axis. As in the earlier 

chapters, it is assumed that the discrete set of connecting 

beams may be replaced by a uniform equivalent connecting 

medium, to give the same effective stiffness per unit 

height, and the corresponding set of discrete shear 

forces in the beams are replaced by a shear flow q in the 

substitute medium. 

The equation of torsional equilibrium is then given by, 

R 

T2 Sgi z41 

i"1 
(6., 3) 

where Ssi is the shear force in the ith pair of coupled 

walls, which is related to the moment Msi on the walls 

and the internal shear flow qi by the relationship 

(chapters 2 and j) 

3 p 
S9is - d=si + 1qi - -(EI)si 3+ 1qi (6.14) 

dx 

where 1 is the distance between the centroids of the walls, 

Isi is the sum of the second moments of area of the two 

walls, and ysi is the lateral deflection. 

Since the lateral deflection ysi of wall i'is 

proportional to the distance z4i from the central axis, 

it follows that all internal forces are also proportional 

to that distance, That iss 
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qi - zý qo ' Ssi Sso ; psi ýso (6.15) 
000 

It is again assumed that all coupled walls may be 

transformed into an equivalent plane system at an arbitrary 

distance zo from the axis of symmetry. The transformed 

walls are connected in series by a set of rigid pin-ended 

links, or equivalent continuous medium, to simulate the 

floor slabs as shown in Fig. 6.3(b). The equation of 

horizontal equilibrium iss 

r So 
T/2zo 

' =1 
Ssi '- -(EI)si 

d3Ydz30 
+ liýqi (6.16) 

I1 

where Isi is the sum of the second moments of area, qi 
1 

is the shear flow in the connecting medium, and 1i is the 

distance between centroidal axes in the transformed ith 

pair of coupled walls. 

On substituting equations (6.9 ), (6.14) and 6.15) into 

(6.13), and comparing with equation (6.16), it may be 

shown that when, 

t li=1 

then, 

4i 
ý/ 2 

qo 
0 

Hence, 

(6.17) 

zz 
qi 3_ z41 

qi ; Ssi a -a -a z41 
Ssi ; Msi, 

41 
Msi (6.18) 
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For the general case of structures consisting of 

coupled shear walls, cores and frames, consider the 

idealized structure shown in Fig. 6.4. Following the 

same procedure as above, all assemblies may be transformed 

into the plane of the outermost coupled shear walls, 

distance zo fron the central axis. The compatibility 

equation of the coupled shear walls located at the datum 

plane at any level x may be shown to be 

dyo 
_ 

bah 
q_1 (1 1)N dx -o (6.19) No dx 12EIý oE Al + A2 

0 

The axial force N0 in each wall is givenby 

H 

No = q0 dx (6.20) 
Jx 

On using equations (6.9) and (6.17), the equations 

governing the behaviour of the structure (Fig. 6.5) 

become 

(ýI) 
d4y° d2jj 

++d) 
dq° 

-n (6.21) 
1 dx4 dx2 21 dx 1 

d4yo b dqo 
(LI)2 

4- 
(2 + d2) dx + ný - n2 (6.22) 

dx 

z2 d2y 

-() (GA)1 -2O = n2 - n3 (6.23 
0 dx 

2 1d4y 
(EI)3 + (1 

2) 
o 

o zo dx4 

d2y ( 6.24) 

- (Z 
2) 

(GJo)1 
dýn-n 

034 
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(z11}2 (EI) 
d4 VO 

_ 
ZZ111)2 

(b +d 
ddq°- 

+n-n zo 1 dx4 zo 2 1) dx 45 
(6.25) 

4y 
q (Z11)2(EI)2 

d4 
(Z-'ß-)2 (2 + d2) dX +n'- n6 (6.26) 

o dx o5 

2 

- (42 )2 (GA) 
2v 20 n 

0 dx 
(6.27) 

[(-z 2)2(EI)4 
+ (Z 2) (EIJ 

4 

dz 2= (6.28) 
0o 

Z1772 
) (GJ 

d 2y 

o)2 

d2- 
nT 

0 dx 

Where M is the static applied moment and ni(i = 1-7) are 

the axial forces in the connecting media (1-7)- 

The addition of equations (6.21) to (6.28) yields 

ýI 
d4y° 

- Gg 
d2yo d2M 

+L 
dq 

(6.29) 
dx4 dx2 dx2 dx 



where 

z (Iý + I2) + (")21t()2(1 
Z00 3) 

+( )214+( ) (I,,, )l+(')21 
zo 0J 
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GA (2 (GA)S +(2 (GA)2 + (72) (GJ0)l +(GJo)2 
000 

Z 2 ýý 1 L . , + c ý 0 

On eliminating the terms in qo and No from equations 

(6.19), (6.20) and (6.29), the governing differential 

equation finally become 

d6YO 

-m2d4yo +n 
d---0 1 (d4M _2d2M6.30 ) 

d_xT 
_ 

dz4 2 dx2 EI d%4 dx 

where 

m2 P2 +ý2 n2 =ä 
2 

2- Ei 
ý32 = (1 + (Z, 1)2 121,31 

Z0 b3 I 

1Ihc 
ýg +A 

12 
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Equation (6.30) is identical in form to the equation derived 

in chapter 3 for a set of cores, frames and coupled walls 

subjected to a uniformly distributed loading w, where w= 
t/2zoe 

The parameters oe- 
2 

, ,6 
!2 

and ý2 must now be defined for the 

transformed structure as shown in Table 1. 

The boundary conditions are the same as before, and so 

the solution of equation (6.30) will be identical to that 

given in chapter 3. The complete set of formulae will again 

apply, giving explicit expressions for the deflection y 0 
(and hence angle of rotation yo/zo) and all internal forces 

(shear flows, axial forces, shear forces and bending momenta) 

in the cores, frames and coupled walls of the transformed 

structure. 

The corresponding forces in the real structure are 

derived by transforming back using the simple relationships 

of equations (6.12) and (6.18). The axial forces in the 

slabs and the top concentrated interactive forces may be 

obtained from the equilibrium conditions for the individual 

components as in chapter 3. 

COMPUTATIONAL PROCEDURE 

The steps in the analysis are: - 

(1) Transform all elements into any datum plane at a 
distance zo from the central axis, by factoring all 

flexural and shearing rigidities according to equation 
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(6.11). Although the datum plane may be chosen in 

any suitable position, it is probably most convenient 

to use the plane of the outermost set of coupled walls 

to relate most closely to chapter 3. 

(2) Calculate the effective distributed loading w(. 
t/2z 

0) 
at this position. 

(3) Evaluate the structural parameters o, 
2, 

P2 and -01 
2 

using 

Table 1. The lateral deflection yon the shear flow 

in the connecting medium the axial force in each 

coupled wall, and the bending moments and shear forces 

in all components follow from equations (3.22) to (3.28) 

of chapter 3. 

(4) Calculate the corresponding forces in the components of 

the real structure by factorisation according to 

equations (6.12) and (6.18). 
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Fig. 6.3. Representation of three-dimensional symmetrical 
coupled shear wall structure by equivalent plane 
system. 
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CHAPTER? 

ANALYSIS OF THREE-DIMENSIONAL ASYr11 RIC 

STRUCTURES CONSISTING OF ASSEMBLIES OF 

CORES, SHEAR WALLS AND RIGIDLY-JOINTED 

FRAMEWORKS SUBJECTED TO BENDING AND 

TORSION. 



A NOTATION 

0(x, y, x) set of orthogonal reference axes 

E elastic modulus 

yi deflection of the element 'i' in the Oy direction 

zi deflection of the element 'i' in the Oz direction 

e rotation about vertical Ox axis 

yo, zo, co-ordinates of the origin 0 

w, f, c suffices denoting frame, shear wall and core 

assemblies 

lwi'lfi'lei horizontal distances between the centroids of 

shear wall, frame and core 'it and the datum 

axis Oy 

rwi'rfi'rci perpendicular distances between the centroids 

of shear wall, frame and core Oil and the datum 

axis Oz 

Swi'Sfi'Sci Shear forces in shear wall, frame and core 'i' 

in the Oy direction 

S' IS, , $1 shear forces in shear wall, frame and core fit 
wi fi ci 

in the 0z direction 

(Izýwi, (Izýci, (Iy)wi second moment of areas of shear wall 

(Iy)ci and core 'i' in two orthogonal directions 

(Iy)fi second moment of area of the columns 

(GA)fi effective shearing rigidity of the frame 'if 

located in the Oxy plane 

G shear modulus 

Jo, J torsional constants 



.0 

W distributed lateral load 

Iw warping constant 

D operator d/dx 

H total height 

W unformly distributed lateral force intensity 

ai structural parameters (i =1 - 9) 

bi structural parameters (i -1 - 6) 

B constants of integration (i s0- 5) i 

Ci constants of integration (i =0- 5) 

1 non-dimensional height (x/H) 

0 suffix denoting base of structure 

z eccentricity of lateral load relative to x axis 

Mwi' Mfi' M 
i, bending moments in the shear wall, frame and 

Mwi, Mfi'Mci core 'i' in two orthogonal directions 

yfi' Zfi deflections of frame 'i' located in the Oxz plane 

in two orthogonal directions Oy and Oz 

Ifi' lf' horizontal and perpendicular distances between 

the centoid of the ith frame (in Oxz plane) and 

the datum axes yz respectively 

tIzýfi'tfi second moment of area and effective shearing 

rigidity of the ith frame in the Oxz plane 
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CHAPTER 7 

ANALYSIS OF THREE-DIMENSIONAL ASYMMETRIC 

STRUCTURES CONSISTING OF ASSEMBLIES OF 

CORES, SHEAR WALLS AND RIGIDLY JOINTED 

FRAMEWORKS SUBJECTED TO BENDING AND 

TORSION. 

7.1 Introduction 

141 

The analyses of three-dimensional symmetrical structures 

consisting of assemblies of cores, shear walls and rigidly- 

jointed frameworks, subjected to lateral forces which 

produce bending and torsion were presented in chapters 2 and 

6 respectively. As described in chapter 2, considerable 

load redistribution can occur between assemblies which 

deform with a primarily bending configuration (e. g. box 

cores and shear walls) and those which deform with a primarily 

shear configuration (e. g. frames) when coupled together 

and subjected to distributed horizontal loading. It is 

therefore important to consider the distribution of load 

between the various assemblies in the complete structure. 

Practically all recent studies have been devoted to the 

planar interaction of flexural walls and frames. However, 

in many tall building structures the architectural and 

building services requirements result in the asymmetric 

location of core, shear wall and frame assemblies. Lateral 

forces resulting from wind and/or earthquake action produce 

a complex behaviour, involving both torsional and bending 
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deformations. A combined bending and torsional analysis is 

therefore required. 

As described in chapter 1, many investigators have 

presented methods which deal with this type of problem, 

using methods of analysis which require access to a digital 

computer for even the simplest loadings. None of the 

methods presented is suitable for rapid hand calculations 

for the initial proportioning of components at the preliminary 

stages of the design process. In particular, the warping 

behaviour of the core assemblies has often been neglected. 

However, if from structural asymmetry or eccentric loading 

the building is subjected to torsion, the core may be 

expected to play a useful part in resisting the twist. 

In this chapter a relatively simple hand method is 

presented for the static analysis of uniform asymmetric 

structures consisting of cores, shear walls and parallel 

assemblies of rigidly jointed frameworks. The analysis is 

later extended to include frame assemblies in two orthogonal 

directions. 

By using the general equilibrium conditions for the 

structure, and solving the three generated differential 

equations simultaneously, closed form solutions may be 

achieved for standard load cases, enabling the complete 

distribution of forces, deflections and rotations to be 

determined rapidly. 

I 
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7.2 Assumptions 

The proposed method is based on the following basic 

assumptions: 

1- The distributed wind loading acts at an 

angle -be to the longitudinal axis. 

2- The columnsp independent shear walls and box 

cores have uniform (sectional) properties and 

dimensions throughout the height of the 

building and are rigidly fixed at the base. 

3- Diaphragm action of the floors is assumed, so 

that the whole structural assembly moves as 

a rigid body in each horizontal plane. 

4- The rigidly-jointed frameworks are treated as 

vertical shear cantilevers. 

ANALYSIS OF STRUCTURES CONSISTING OF 

CORES, SHEAR WALLS AND PARALLEL 

ASSEMBLIES OF RIGIDLY-JOINTED FRAbE- 

WORKS 

7.3 Analysis 

Consider an asymmetrical building structure which 

consists of M assemblies of independent shear walls, N 

rigidly-jointed frameworks and R service cores as shown 
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in Fig. 7.1 . Under the action of wind forces which act at 

a distance z from the left hand corner 0 at an angle A 

to the longitudinal axis, the structure will undergo 

translational displacements yi and zi in the y and z 

directions, and the floors will undergo a rotational 

displacement A in the Oyz plane. For convenience 0 is 

chosen as datum point, and all displacements are referred to 

0, therefore, the displacements of any element (e. g. ith 

element) at level x in two orthogonal directions y and z 

may be expressed as 

ywi = yo + 1wi A 

yfi - TO + lfi e 

yci i yo + 1ci A 

zwi - zo - r*i© 

zfi = zo - rfi 6 ý7"ýý 

zci - zo - rci 0 

where f, w and c are suffices denoting frame, shear wall 

and core assemblies respectively, y0 and zo are the 

deflections of point 0 in the Ozy plane and lfi, 1wi' lci' 

rfi' rwi and rci are the horizontal and perpendicular 

distances between the centroids of frame, shear wall and 

core assemblies and the datum axes yz respectively (Fig-7-1). 

Using the notation of Fig. 7.1 and transferring the 

distributed lateral load W to the datum position 0l the 

equations governing the static equilibrium of the structure 

become 
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for equilibrium in Oy direction 

MNR 
vL Swi +> Sfi +s (7.2) 

i=1 ia1 iý1 

for equilibrium in Oz direction 

ttt 
Pa Sei + Sfi + Sei (7.3) 

i=1 i=1 i= 

for rotational equilibrium 

MNRMN 

T Sii lxi Sfi lfi - sci 1ci -ý T 
vi 

>fi 

s1 i=1 i-1 i-1 i"1 

(7.4) 

RMNR 

Tci + swi rwi + Swi rwi + Sci r ci 
i=1 i=1 i=1 ist 

where V3W sinoc ,P-W cosoc ,T Wz sinoc and 3Wi 

Sfi and Sci are the shear forces in the various elements in 

the Oy direction and Sei, Slip and Sei are the shear forces in 

the Oz direction. These forces act through the centroids and 

shear centre of the shear wall, frame and core assemblies 
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respectively and are given by 

3 
d ywi 

swi E(Zz) 
Wi dz3 

- 

3 (GA) 
d 

fi dx Sfi 

dyci 
Sci m- E(IZ )3 

ei dx3 

and 

z S E(Iy) 
d3wi 

wi Wi dz3 

I d3Zfi 
SAi -E (I7) 

fi dx3 

d3Zci 
Sci - E(Iy)ci 

dz3 

(7.5) 

(7.6) 

where (IZ)wi' (IZ)ci' (Iy)wi and (Iy)ci are the second 

moment of areas of the shear wall and core Ii' in the two 

orthogonal directions. (Iy) 
fi is the second moment of 

area of the columns and (GA) 
fi is the equivalent shearing 

rigidity of the frame 'it. 

In equation (7.4) Twig T fi and Tci are the internal 

torsional moments on the wall, frame and core 'it. For 

core assemblies, Tci consists of warping as well as 
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St. Venant torsional resistance given by equation (5.33), 

and for walls T 
wi a (GJ)Ai äz 

and the torsional 

resistances of the frame elements are given by Tfi 

d9 (GJ)f, 
d. 

Substituting for Swig Sfi and Sci from equations (7.5) 

into (7.2). V becomes 

MN 

d3 
Y_ . vwi dyfi 

E(Izýwi 
dz3 

+ (GA)fi 
dz 

i=1 i=1 

(7.7) 

R 

- E(Iz)ci 
d3y ci 
dz3 im1 

On experiencing the deflections in the various elements 

in terms of the datum deflection yo and the rotation A 

equation (7.7) becomes, on using equations (7.1) 

M 

d3 9ir E(Iz) 
wi dx3 

(Yo + 1, 
«1 

6 

ist 

N 

+ (GAý 
fi 

(y+ 
dm o 

lfi6 

i=1 (7.8) 

R 

E(Iz)ci d33 ýY0 + 1ci6 
d= 
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or 

Va 
dy° 

a 
de 

-a 
d3y0 

a 
die 

1 dx +2 dx 3 dz3 4 dz3 

where 

a1 = (GA)fi 

i-1 

N 

a2 (GA)fi lfi 

i=1 

MR 

a3 =r (ý (zz)wi 
i-1 i-1 

MR 

a4 E (ý (Iz) 
wi 

1wi +> (IZ) 
ei 

lei 

ia1 i-1 

(7.9) 

using equations (7.1) and (7.6) and following the same 

procedure as above, equation (7.3) becomes 

P- E(I )ai d3 (z - rwiO) -N E(I ) d3 (z -r A) 
dxý °Y : ti 7x3 o fi 

R 
3 

-I EC y) 
ci 

ax3 (Z° - rci6) (7.10) 

i=1 

or 

_ 
d3zo die Ps a5 
dx3.. 

+ a6 
dx3 

( 7.11) 
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I 

where mNR 

a5 E`> (IY)wi + fi + tlyýci 

MNR 

a6 ' E`ý üy )wi r wi t 
>(Iy)fi 

r fi +ý (Iy)ci r ci 
i=1 i=1 i=1 

In an analogous manner, on substituting for the shear 

forces SAi' Sfi' sci' S,,, Sfi, Sci and the internal 

torsional moments Twi and Tci from equations (7-5)t (7.6) 

and (5.33), and expressing the deflections interms of the 

datum deflections yo and z0, and rotation equation (7.4) 

becomes, on using equations (7.1) 

M 

T E(Iz)wi 1 
Wi 

is1 

(GA) 
fi 1fi 

i=1 

d3 

dx3 
(y0 + 1wi 9 

d 
dx 

(yo + lfie 

R 
d3 (Yo + lci e) + E(Iz)ci lci 3 dx iaj 

-Z (GJ). 
ºi de "R (GJ ) d8 

iah x 
iý 

0 ci dx 
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.0 

R 
dB 

+de 
i=1 

(GJ)fi 
dz is 

E(IU'ci 
3d 

M 

E(I) r (z -r 6) Y wi wi 
d3 

dz3 o wi 
i31 

N 

- E(Iy)fi rfi a3 
d33 

(zo - rfie ) 

i=1 

a 
z(I d3 

yýci rci j (ZO 
- rcie) 

i=1 dz 
(7.12) 

or 
dy d3Y 3 d3z 

T a2 x- + a7 d+a4 dx=3 
+ a8 

da 
-3-a6--5 ° (7.13) 

where mN ßN 
a7 (GJ)wi + (GA)filfi2 + (GJ0)ci + (GJ)fi) 

i=1 i=1 i=1 

MRR 

ag E ýIz) 
wi 

1wi2 + ýIZ)ci 1c12 + (IW)ci 

1° i-i 

MNR 

r, 12 + (Iy)fi rfi2 + (I 2) )ci rci Y 
_i1 i=1 1s1 
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A 

On substituting ford33 from equation (7,11) into 
dx 

(7.13) the latter equation becomes 

3ZO 
+a 

die (7.14) 
T- 

a6 
P--a2 

d. vo 
ta7de+a4 

d 

a5 dx 39 dx3 

where 

a9-a3-( )2 
a5 

Equations (7.9) and (7.14) may be expressed as 

(a1D - a3D3) yo + (a2D - a4D3) e-V (7.15) 

and 

a 
(-a2D + a4D3) yo + (a7D + a9D3) e-T- 

a6 
P (7.16) 

a5 

where D is the operator 
d 
dz 

On eliminating the terms in e and y0 from equations 

(7.15) and (7.16) respectively, the governing differential 

equations finally become 

d 
6y° 

2 d4y° 2d 
2y° 

6-n4+n2 (x) (7-17) 
dm dx dx 

d60 2 d40 2d2a 

dz6 
- 

dx4 
+n a2 02 ('Z) (7.18) 
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A 

where 

2a a7 - a1 a+ 2a2 a4 32- 

a4 a3 a9 

2 

n2 
a1 a7 + a2 

2 
a4 - a3 a9 

and 

1 dV d3V a2 a6 dP 
01(x) -a2-a a7 dz + a9 

dz3 
+ a5 dz 

43a9 

a5 dx3 
d3P (7.19) 

dT d3T 
a2 dx + a4 

dx3 

1Q- d3V 
- 

a1 a6 dP 
02(x) 'm 

a42-a3a9 
a2 dz a4 

dz3 a5 dz 

+a 
a6 d3p (7.20) 

3 a5 dx3 

dT d 3T 
+ aI ix- - a3 

dx3 

The general solutions of equations (7.17) and (7.18 

for any form of lateral loading may be expressed in the form 

yo m Bo + B1 X/� + B2 cos* x/B)+ B3 sinh(k x/B ) 

+ B4 cosh(r x/�)+ B5 sinh(r x/�)+ yopI ý7ý21) 
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and 

e Co +C 1 X/$ + C2 cosh(k x/H)+ C3 sinh(k z/$ 

+C4 cosh (r x/$)+ C5 sieh (r z/H)+ 0p (7.22) 

where Bi (i=0-5) and ci (i=0-5) are constants of integration 

to be determined from the necessary boundary conditions, 

and yo PI and API are the particular integral solutions, 

i. e, solutions for a specific form of loading. 

In equations (7.21) and (7.22) 

where 

p2= 
[m2 

+ (m4- 4n2) 
] 

/2 

1/2 
2 

irm2-(m4-4n2) 
]/2 

P2L 

k- pH and r' p- 

In this analysis p and A are assumed to be real, but 
P 

the same procedure applies even if they were complex, though 

the mathematical calculations would be lengthier and more 

laborious to deal with. 

Boundary conditions 

In order to determine the constants Bi and ci of 

equations (7.21) and (7.22), it is necessary to derive six 
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independent boundary conditions for each equation. If the 

structure is rigidly built in at the base, then at z-o 

Yo =0 and 
dyo 

-0 (7.23) 
crx 

and 

Ao and 
de 

=o (7.24) 
dx 

At the top, the bending moment in each element is equal to 

zero, and so, at x-H 

dYO 

°0 (7.25) 
A2 

and 
2 d 2-0 7.26) 

dz 

At x-o, equations (7.9) and (7.14) become, on using 

equations (7.23) and (7.24) 

(V) - -a 
d3yo) 

-a 
die (7.27) 

03l dx3 04 da3 o 

a d3y 3 
(r )o -a (P)o a4 (- 30)0 + a9 

( äx8 )o (7.28) 
5 dx 

Solution of equations (7.27) and (7.28) simultaneously yields 

the following boundary consitions, at xm of 
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d 3y 1aa46j2ag- 
(P)o +a (T) 

dx a4 - a3 a9 
9540 

(7.29) 

d3A 
2 .. a4(v)o+a" 

a6(p)o-a3(T)o 
3 dz a4 - a3 a9 5 

(7.30) 

Differentiation of equations (7.9) and (7.14) once, followed 

by substitution of equations (7.25) and (7.26), gives, at 

xsH 

(AV-) --a (d4Y°) a (doe) 
dx 11 3 dx4 H4 dx4 11 

and 

(dT) 
_ 

a6 dP) 
a (d4y°) +a (cI O 

dx H a5 dx H4 dx4 H9 dx4 $ 

Hence, from equations (7.31 and (7.32), at x-H 

d4 YO 1 

dx4 
- 

a42 - a3 a9 

dT 
+ a4 (atH 

a9 
ex)H 

a 
5 

(7.31) 

(7.32) 

(7.33) 

and 
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doe 
-a ýdv)+ ( (dp1 ýdT1ý 

dx4 
sa 2- 

a4 
dx Ha dx'H - aj dx's 

43a95 

(7.34) 

On differentiation of equations (7.9) and (7.11) twice, 

followed by substitution of equations (7.29) and (7,30), 

the remaining boundary conditions become, at x-o 

d5y0 
°-aY+a 

d2V 
dx5 2-a 10 

)0 
9 (t2)12 (P)o 

a43a9 

a 
(d22) + a, 1 

(T)o +a( )o1 (7.35) 
5 dx o4 dz J 

and 

d5A 1 
äaa2-aa a13 (y)o - a4 (äx2 )o+ a15 (P)o 

439 

2 
+ 2n-a14(T)0-a (d2) 7.36) 5 dz 3 d= 

where 
a, (a9)2 2a2 a4 a9 (a4)2 

a10 
2 

a4 - a3 a9 

_a, aa +a2)2+aa a +a a 
13 

4 a7 
2 

a4 - a3 a9 
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a6 
a12 s aýý 5 

2 
a a a _a a a -a (a ) - a a a , 4 9 2 3 9 2 4 3 4 7 

13 Z 

a - a a 4 3 9 

-a, (a4) 2+ 2a2 a3 a4 + (a3) 2 
a7 

a14 a 
a42 - a3 a9 

a6 
a15 a a14 a5 

Uniformly distributed wind loading 

In order to achieve a solution, the particular case 

of a uniformly distributed wind loading of intensity � per 

unit height is considered. In that case 

V-w sin a (H-x) 

P. w Cos ,. < (H-x) 

T=- wz sines(H-x) 

hence 

dx ' -w sinoc 

oC dX a- cos (7.37) 

dx 
z sin a 
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0 

and 

d22 d22 
ada0 

dx dx dx 

On substituting for the load functions 01 (x) and 

02 (x) in equations (7.17) and (7.18), the simplest particular 

integrals 70PI and Q Pi become 

wö 
2x2 

1 
YOPI -2 (7-38) 

2n 

and 

e 
wö 

2 
a2 2 (7.39) 

Pi " 
2a2 

where 
a 

2L- a7 sin K- a2ä cosy - atz sing 
a4 - a3 a9 5 

ö22 
21- a2 sink + aý a6 cosy + atz sinn 

a4 a3 a9 a5 

Substitution of equations (7.37) into the boundary 

conditions (7.29) - (7.36), yields the following conditions 

for the uniformly distributed load of w per unit height. 
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.0 

at x=o 

d3Y 
. ýwg 

dz3.1 

(7.40) 

d3C) 
zs Aý`'H 

and 

d5y 

dx5 
mo2 wg 

(7.41) 

d55 
a 1S2wH 

dz 

at x-H 

0Y 

dz4 
- oý w 

(7.42) 
doe 
dx4 

where 
1 

1 2 
a -a a 4 3 9 

a6 [a9 
am«_a4- 

a5 
Cosa - a4z since 

I 
2-a2-aa a10 sinof- a12 cosy - a,,, z sinoc 

439 



160 

a 
R1 21 a4 since+ a3ä cosoc+ a3z sin «C /`' a4 - a3 a9 5 

1 
622 

[a13 

sin o( + a15 . co s oc+ a14z sin oc 
a4 - a3 a9 

The remaining boundary conditions are as expressed by 

equations (7.23)- (7.26). 

Then on substituting equations (7.21) and (7.22) into 

the above boundary conditions, and solving for the 

integration constants, it is found that 

B0--B2 _B4 

24H 
$1 sw 22 

[P2 
(n2+p) 

P 

B2 4 2_p4) 

[(2 
- n2 A 

1) k sinn k+ P2(P Ä1- YI 2 2ý 

p (n cosh k 

cýH (n2A1 - p2'"2) 
B3 

P3(n2 - P4) 

4 

4' 
4P 

24 P2(PÖ1 - 2) r sinn r +(p2 -n2A n(n - p) co shr 11 

wHP5(A2 p, '&1) 
B5a 

nin2-P4) 
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0 

The constants Ci (i =0- 5) may be obtained simply, by 

substituting ß1, p2, and '2 for b1,42 and'd1 respectively 

in the above relationships. Hence, the general solutions 

for yo and 6 become 

2 
Yo a 4(n2 4 

[(2P 
o2 - n2o)k sinn k+ p2(p ö1-2 x 

p- p) coshk 

22 
wH(nö1 -p 62) 

cosh k- 1) +324 sinhk 
p (n -p1 

50 
-2 

+ 
BHP C22P ý4, 

sinh r+ 
P4 

24 

[P2(P24_)X 

n3 (n - P) n4 (n -P )cosh r 
r s: hhr 

2 
+ (P2 ýý - n21ý 1) 

(cosh r- 1) + _i 2P 42 2 (n2 +P4)ý1 
Pn 

wYi 
2$2 2 

+2 
2n (7.43) 

and 

e-424 (p2ß2 - n2j13')k sieh k+ p2(p1f5 - ö22) 
p (n -p )cosh k[1 

Wg(n2/ß1 - p2/B2) 
cosh k -1) + 

p3 (n 2- 
p4) 

sinh k 

HP5(16 2- P2181) S- p4ca 22 + , 
n3 (n2 - p4 

sink rZ f 
n4 (n 2- 

p4)cosh rP 
(P %31-f2) 

rsinhr 
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� 

+ tP2 2- 
n2ý (cosh r -1) + W112 X2 -ýn2 + p4)/-1 22 [2132 

Pn 

222 11 
+2 

2n 
(7.44) 

where 
ý is the non-dimensional height (a z/$) and k and r 

are the relative stiffness parameters . 

On integrating equation (7.11) thrice, the datum 

deflection zo becomes 

zo =ä6e+ 
`ý ? 4ä- (H - x) 

4+ Ao 2+ A1x + A2 (7.45) 
55 

where Ai (i -o- 2) are the constants of integration to be 

determined from the necessary boundary conditions, i. e, at 

z-o 

Z-O 
O 

dz 
0 

dx 

and, at x-H 

d2z 
0 

dx2 

(7.46) 

(7.47) 

On substituting equation (7.45) into the boundary conditions 

(7.46) - (7.47), and solving for the integration constants, 

it is found that 



163 

1-0 
0 

coH3 cosoc Aa- 65 

wH4 cosoc ý2 24 a'5 

Hence, the general solution for zo becomes 

Zo s a5 
8+w ý4a cosoc ý1 _ ¬) 4+ 41 -1) (7.48) 

55 

Substitution of equations (7.43), (7.44) and (7.48) 

into equations (7.1) and using equations (7.5) and (7.6) 

yields closed form solutions for the shear forces in the 

various elements in the two orthogonal directions. The 

shear forces in the ith wall, frame and core assemblies 

become 

SAi -- E(Iz)Wi (K1 + K2) (7.49) 

Sfi a (GA) 
fi 

(K3 + K4) 7.50) 

Sci =- E(Iz) 
ci 

(K5 + K6) (?. 51) 

Sei - E(IY)Wi a5- rwi) K7 c'- --a 
COSo (i 

-) 
55 

(7.52) 
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a6 
- Hcosa 

_) (7.53) 
a 

a wHcosa Sei - E(Iy)ci (a5 - rci) S7 - a5 
(ý -) (7.54) 

5 

where 

Ký p3 
[(B2 

+ lwi 02) sink k+ (B3 +ic 3) cosh k 

n3 K2 =3 
[(B4 

+ lwi C 4) sinh r+ (B5 + 1Wi c 5) cosh r 

K-$ (B1 +1 fi C l) +p (B2 + 1fi C 2) sinn k 3 

f (B3 +1 fi C 3) cosh k, I 

K4 ap (B4 +1 fi C4) sinter + (B5 +1 fi C 5) coshr 

K5 = p3 (B2 + 1ci c 2) sieh k I+ (B3 + 1ci c 3)cosh k 

K6 n- 
p3 (B4 + 1ci C 

4) sinhr + (B5 + 1ci 0 5) coshr 

K7 a p3 (C2 sieh kI + C3 cosh k)+ n3 (C sinhr +C5 cosh r)) 
p3 4 

The bending moments MWi' "Cif MI i' and MI 
i in the shear wall 

iý and core f il are given by 
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d2y 
wi 

wi s$ ýIzýwi 
dx2 

2 dyci 
Mci 'T ýIzý 

ci dx2 

and 

d2 zýi 

wi 
E (Iy)wi 

d=2 

Mei B (I 
y) 

d2 Zei 

ei ä 

(7.55) 

(7.56) 

The bending moments Mfi and Mfi in the frame I iV are 

related to the deflections yfi and zfi by the following 

relationships 

dMfi 
a- (GA) 

dyfi (7.57) 
dx fi dx 

2 

Mfi 3 E(I 
d Zfi 

7.58) 
2 y)fi dx 

Integrating equation (7.57) once and using the condition that 

Mfi Oat the top (¬ = 1), 11fi becomes 
11fi a -(GA)fi 

[Yj 
- yfi(H)J (7-59) 

where y fi 
(H) is the defle ction at the top of the frame 

'i' for the specified loading. 

Substitution of equations(7.43), (7.44) and (7.48) 

into equations (7.1) and using equations (7.55), (7.56) 
9 

(7.58) and (7.59) yields closed form solutions for the 
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bending moments in the various elements in the two 

orthogonal directions. It is found that 

Mwi aB (IZ)Wi K8 + K9 +Ä (i%2 + 1Wi ? l22) (7.60) 

Mfi - (GA) 
fi 

[K10 
f K11 + (B1 + 1fi C1) (1 -1) 

g2 2+ lfi22) ýý -ý 7.61) 
2n 

ciE ýi ýci 
[(K12 

+ IC13 +n2cy12+1j22)]7.62 

MiE (Iy)wi (a -r j) K14 + `'IH--2ac°s°c (1 2 7.63) 
55 

Mfi -$ (i) 
fi 

[(. ä 
- rfi) K14 + wH coscC 2 ](7.64) 

55 

a 
Cos Mai aE (Iy)ci (a6 -) K14 + 

wH2 
2a 

(i - 1) 2 (7.65) 
5 

rci 
5 

where 

K8 p2 
[(B2 

+ lwi 0 2) cosh kI+ 

2 
K9 p2 

[(34 

+ 1wi C4) cosh r+ 

(B3 + 1wi C 3) sieh k 

(B5 + lwi c 5) sieh rý 
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A 

Klo 31(82 + lfi C2) (cosh k- cosh k¬) + 

(B +1 fi c 3) 
(sink k- sinh k j) 1 3 

Kl1 
4( 

B4+1 fi c 4) 
(cosh r- cosh rf) + 

(B5 + 1fi a 5) 
(sinhr- sieh rl) 

I 

K12 a p2 (B2+ 1ci p 2) cosh ký + (B3 + 1ci c 3) sink k 

2 [B4 
+1C) cor + (B +1C) sieh rg13 2 c3 4ý5 ci 5 

Ký4 = p2 (C2 cosh kj+C3 sieh ki ) 

z 
+A (C cosh r+ C5 sinh r) + 22 

p24n 

ANALYSIS OF STRUCTURES CONSISTING OF CORE, 

SHEAR WALL AND RIGIDLY JOINTED FRAME 

ASSE: -BLIES IN TWO ORTHOGONAL DIRECTIONS 

7.4 Analysis 

In many tall building structures the architectural and/or 

structural requirements may necessitate the inclusion of 
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structural assemblies in two orthogonal directions. Fig. 7.2 

shows the plan form of a structure which consists of m 

assemblies of independent shear walls, 8 service cores, 

N rigidly jointed frames in the Oxy plane and Q rigidly 

jointed frames in the Oxz plane. 

Although the mathematical formulation for such 

structures is considerably more laborious, the analytical 

procedure is similar to that presented in section 7.3. 

The displacements of any element (e. g. ith element) at 

level x in two orthogonal directions y and z are given by 

equations (7.1) and the following equations 

yfi=Yo+Ifie zfi - zo - rßie (7.66) 

where Yfig 'fit Ifi and rfi are the deflections and 

horizontal and perpendicular distances between the centroid 

of the ith frame (in Oxz plane) and the datum axes yz 

respectively. 

The equilibrium equations may now be expressed as 

MNR 

v' Swi + Sfi + Sfi + Sci (7.67) 
i=1 i=1 iu1 i. 
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M 

P= S' 

i=1 

NR 

+ S± + Sfi + Sci 

i=1 i=1 i=1 

I 

(7.68) 

MNQ_ 

T= Swi lwi - Sfi lfi Sfi 1fi 

i= 1=1 i=1 

RN 

Sci 1ci -IT fi 
T 

fi 
i=1 iý1 a1 

MRMN 

Twi Tci +>SWirwi 
ii1 i=1 i=1 i= 

R 
I 

+ Sfi rfi + Sci rci 
i=1 i=1 

(7.69) 

Sfi rfi 

where T fi is the torsional resistance and S 
fi and Sfi 

are the shear forces in the y and z directions corresponding 

to the ith frame located in the Oxz plane, given by 

T fi 
(GJ dB 

fi dz 

d 

dx3 

yfi 
(7.70) fi =-E Z)fi 

3 

d Zfi 
Sfi a (Ggfi dx 
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10 

in which (Iz)fi and (GA)f, are the second moment of area 

and equivalent shearing rigidity of the ith frame in the 

Oxz plane respectively. 

Using the same procedure as in section (7.3), equations 

(7.67) - (7.69) may be expressed as 

dY0 
+ 

dG 
_ 

d3y0 d 3(q 
(7.71) V a1 da a2 dx b1 

dx3 
-b2 

dx3 

dZ0 de 
- 

d3Zo d3e (7.72) P b3 dx - b4 dx a5 
dx3 

+ a6 
dx3 

T a-a 
aý°+b aZ° 

+b 
dA+b d3y° 

a 
d3 Z° 

2 dx 4 dx 5 dx 2 dx3 6 dx3 

die 
+ b6 

dx3 (7.73) 

where a1, a2, a5 and a6 are as described in section (7.3), 

and bi (i =1- 6) are given by 

b1 - a3 +E (Iz)fi 

i=1 

b2 = a4 +E 
z)fi 

ifi 

i=1 
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Q 

b3 a ýGAýfi 

i=1 

b4 s ýGýý 
fi rfi 

i=1 

b5 a7 - (G7A) 2 
fi rfi 

i=1 
Q 

b6 a a8 +E (Iz)fi lfi 

iý1 

Equations (7.71) - (7.73) may be expressed as 

(a, D - b1D3) y0 + (a2D 
- b2D3)9 =V7.74) 

(b3D - a5D3)z0 + (-b4D + a6D3)6 =P (7.75) 

(-a2D + b2D3)y + (b4D - a6D3)z0 + (b5D + b6D3) 9-T 

(7.76) 

On eliminating the terms in A'y0 and z0 from 

equations (7.74 - (7.76 respectively, the governing 

differential equations finally become 
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d7 yo 
m2 

d5Yo 
-n2 

d3yo 2 dy° 

dx7 1 dx5 1 dx3 dx 
O3(x) 7.77) 

d7z 
2A2 d3z 2 dzo 

dx7 
+ m1 

dx5 
- n1 

dx3 
+ q1 dx 

ý4(x) 7.78) 

d79 2 d59 2 d39 2 d8 

dj 
+ m1 

dz5 
- n1 

dx3 
+ 11 ax ° 05(x) (7.79) 

where 

2=b b22 b3 + 2a2 a5 b2 + a1 (a6)2 + 2a6 b, b4 + a5 bý b5 
7 

a1 a5 b6_b1 b3 b6 

ný2 a1 
7 

{2a2 
b2 b3 + (a2)2 a5 + 2a1 a6 b4 + b, (b4)2 

+ aý a5 b5 + bI b3 b5 - a1 b3 b6 

qý 
2b [(a2)2 

b3 + aý (b4) + aý b3 b5 
7 

and 

03(x) - 
16 

7(-b3 
+ a5D2) (a2 - b2D2) T+ 

(a2 - b2D2) (b4 - a6D2) P+ (7.80) 

E (b4 - a6D2)2 + (b3 - a5D2) (b5 + b6D2) v 
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04X) b7 (a1 - b1D2) (b4 - a6D2) 

(- b4 + a6D2) (-a2 + b2D2) V+(7.81) 

[(-a2 
+b2D2)2+ (b5 + b6D2) (aý - b1D2) P 

05( + z) ab aý b3 - (a, a5 + býb3)D2 + a5 býD'4 T 
7 

[a2 
b3 -( a2 a5 + b2 b3)D2 + a5 b2 D4) V+ 

(7.82) 

- aý b4 + (bI b4 + a1 a6)D2 - a6 bI D4) P 

Where 

b7 a5 a6 b1 - (a6)2 b1 - a5 (b2)2 

A consideration of equations (7.77) - (7.79) might 

suggest that these equations may be reduced to sixth order 

differential equations if integrated once, but due to the 

difficulty involved in finding the integration constant 

generated this process was ruled out. 

The complete solutions of the seventh order differential 

equations are given by the addition of the complementary 

functions and the particular integrals. The characteristic 

equation is 

.X7+ý 
ý5 

ný2A 
3+ 

qý2A 'o (7.83) 
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A numerical solution of equation (7.83) yields seven real 

and/or complex roots, zero, j X19 +A2 and +-\3. Hence, 

the general solution of equations (7.77) - (7.79) for any 

form of lateral loading may be expressed in the form 

YO m Do + D, cosh i\1 x+ D2 sinh> 1x+ D3 cosh) 2x 
(7.84) 

+ D4 sinh 
)º 2x+ D5 cosh )º 3x+ D6 sinh i\ 3x+ yoPI 

20 E0 + E1 coshX, x + E2 sinh%1 x+ E3 cosh) 2x 
(7.85) 

+ E4 sinh )2x+ E5 cosh ý3x+ E6 sinh 3x+ zoPI 

A'Fo+P, cosh>l x+F2 sinh)1 x+F3cosh%2x 

(7.86) 

+ F4 sinh %2x+ F5 co sh. X 3x+ F6 sinh >3x+ 9pi 

where Di (i -o- 6), Ei (i =o- 6) and Fi (i -o- 6) are 

the constants of integration to be determined from the 

necessary boundary conditions, and y0P1, z0 1 and E) 
PI are 

the particular integral solutions. 

Boundary conditions 

The first three boundary conditions are as expressed 

by equations (7.23) - (7.26) and (7.46) - (7.47)" A 

consideration of equations (7.71) - (7.73) then yields 

the following conditions, at x"o 
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d3 
3--b 1b 1b 

7 
(b7 (V)0 + a5 b2 

[b1(T)a 
+ b2 

d= 
(V)o- a6 b1 b2(P)o 

d3 
j0 a1b a5 a6 b1 (T)o + b2(V)o - (a6)2 bI + b7 (P)o 

dx 57 

4349 
ab1 

Ia5[b(T) 
,ýo+ 

b2(V)o - a6b, (P)(7.87) 

Differentiating equations (7.71) - (7.73) once, and using 

the boundary conditions (7.25), (7.26) and (7.47) yields 

the following conditions, at x-H 

d4 

4 17 b b7 dx'H + a5 b2 b1 (dx)H+ b2 Qäx)H a6 bIb2QxH 
dx 17 

d4z 
4 a1a a5 a6 b1 (dz )H + b2 (dz)H - (a6)2 b1fb7 ýdzýH 

dx 57 

d46 1 dT dV dP 

dx4 b7 a5 b1 (dx)H + b2 (dx)H - a6 b1 (dx)H 

(7-88) 

Differentiating equations 7.71) - 7.73) twice, and using 

the boundary conditions (7.87 yields the following 

conditions, at x-o 
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d5 yo 1_ 

dz5 
- b1b7 b7 (L1)o + a5 b2 b1(L3)0 +b2(I, 1)o a6 b1 b2(L2)o 

d5z 
5' a1a a5 a6 b1(L3)o + b2(L1)o 

[(a6)2b1 
+ b7 (L2)0 

dx 57 

aye b 
a5 

[b1(L3)0 
+ b2(L1)o a6 b1 (L2 )o 

dz 7 
(7.89) 

where 

d2V d3 yo 
_ 

d39 (LI)o - (dz2)o -a (dz3 ýo a2 (dx3)o 

(L2)o (d22)a - b3 
d3 

+ 
3e) 

dz dz3ý 0 
b4 

dz 

33 
(L3 )a (d22)o + a2 (d 3 )o - b4 (d 

, 3°)o - b5(d33)o 
dx dx dx dx 

Finally, on differentiating equations (7.71) - (7.73) 

thrice, and using the boundary conditions (7.88), the seventh 

boundary conditions become, at x-H 

d6 

6-b1b7 b7(L4 + a5 b2 
dx 

[b, 
(L6)H + b2(L4)H 

_ a6 b1 b2(L5)H 
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6 
dzo 

alb a5 a6 
[bl6R 

+ b2(L4)gl - 
[(a6)2b1 

f b7)(L5)H 
dx J 5? 

6 
a5 

{bl(L6)E 
+ b2(L4)H a6 b1CL5>H 

dxb b1 

1]- 

7 

(7.90) 

where 

(L4)H = (d33)H al ( )H a2 (d44 )H 
dx dx dx 

(L5)H (d33)$ - b3 (d44°)$ + b4 (d44)$ 
dx dx dz 

3 d4y d4z 4 
(L6)g = (dz H+ a2 (d )g - b4 (ý )$ - b5 idz )s 

For any specific loading, the particular integrals 

yoPl zoPI and 6PI may readily be obtained. Then, on 

substituting equations (7.84) - (7.86) into the boundary 

conditions (7.23) - (7.26), (7.46) - (7.47), (7.87), (7.89) 

and (7.90), the constants of integration Di(i_ o- 6), Ei(i- o -6)and 

Fi (i =o- 6) may be obtained. Therefore, closed form 

solutions for deflections and rotation are possible. On 

following the same procedure as described in section (7.3)ß 

closed-form solutions may be achieved for the moments and 

shear forces in the various shear wall, frame and core 
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assemblies. As mentioned previously, the characteristic 

equations regarding the general differential equations can 

only be solved numerically, hence, general solutions can not 

be obtained. For any specific structure the parameters 

m, 
2, 

nj 
2 

and q, 
2 

may be calculated and used to solve the 

general equations (7.77) - (7.79)" 



ýpb 

T 

r-- --- -- 4 

1I 

-0- 1 

ý `f) I 
ýI 

i -ý ä 

I -- I- 
cn En 
.s1sI 

HU '' 
1ý v 

N 

k 

9 

I- 
19 

I -r1 4r 

Nt 0j ±1 
_ 
p 

f 

c+ 
Co a 

w 
C, 

O 07 
Ud 

Cd 
O 

"r+ O 

O D) 

C) a-4 
C -4 0.0 
UE 

a 

a 43 
o 
4 

a 
r Co ma 
C) 
. r4 b 

Co 
m 

in 
Ei f--4 
0 in 

ti 

ti 
w 



-V 
U) 

i 

I 

I_" 

N 

b 
b 

to 
. -4 
Id 
or 

a 
t, o 
ae o 
o) », 

Ic 43 
nU 

u 
w (r 

Q rl 
ub 

vd 

O 40 
0 

N 
43 o 
-4 

go o 
o or 
o4.2 
C, 
eý 14 

go 
4) 
ti 

41 a 
44-4 

r+ o 
b 
aa 

+, V 

r 

ao 
of 

sa 

ti's 

.r 

N 

N 

" 
m 

w 



CH APT ER8 

CO. ARISON WITH RELEVANT PUBLISHED 

DATA AND NUM RICAL PARAL: ETER STUDIES 



179 

0 

CHAPTER 8 

CO? JPARISON WITH RELEVANT PUBLISHED 

DATA AND NUMERICAL PARA1IET'ER STUDIES 

8.1 Introduction 

In order to substantiate the accuracy of the methods 

of analysis presented in chapter 3 and 7 for the analysis 

of symmetric and asymmetric structures consisting of 

different load bearing elements, comparison of these 

methods with relevant published work is essential. 

In view of the limited number of published data on 

structures of the forms considered, it has proved possible 

to compare the results from the present analysis with only 

three typical example structures which have been taken 

from different publications23' 
30' 34. The comparisons 

between the various methods are presented graphically, 

relevant conclusions are drawn and the differences are 

discussed. A numerical parameter study of the structural 

behaviour of a three-dimensional symmetric structure 

consisting of cores, coupled shear walls and rigidly-jointed 

frames considered in chapter 3 is carried out. As described 

previously, the closed-form solutions for deflecti:, ns and 

internal forces are dependent on three variables, the non- 

dimensional height j and the relative stiffness parameters 

k and r. Parameters k and r are in turn functions of the 

parameters o& H, PH and H which are given by 

2 GA 
°-C - EI 
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z 
2 12I_1 

b3 hI 

Y2 
121 

C1 1 
0h Al A2 

where GA is the equivalent shearing rigidity of the frames, 

E is the elastic modulus, I is the combined second moment 

of area of the coupled shear walls and cores, Ic is the 

second moment of area of the connecting beams. .1 is the 

distance between centroidal axes of the coupled walls, 

b is the clear span between the coupled walls, h is the 

storey height, A1 and A2 are the cross-sectional areas of 

the coupled shear walls and H is the total building height. 

The above formulae shows that: 

(i) the stiffness parameter oc2 is equal to the 

ratio of the shearing rigidity of the frames 

to the combined flexural rigidities of the 

coupled walls and cores. 

(ii) the stiffness parameter /3 
2 is a function of 

the ratio of the flexural rigidity of the 

connecting beams to the combined flexural 

rigidities of the coupled shear walls and 

cores. 

(iii) the stiffness parameter y2 is a function of 

the ratio of the flexural rigidity of the 

connecting beams to the flexural rigidity 
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of the coupled shear walls only. The 

effects of varying the parameters 

a(H, ýH and '6H on the top deflection, 

the maximum bending moments in the walls 

and frames and axial forces on the coupled 

walls are then considered. 

8.2 Comparison with previous research 

In order to examine the accuracy and validity of 

the methods, three examples which were analysed by previous 

investigators are considered. One of these examples is 

applicable to the theory presented in chapter 3 and the 

other two to that of chapter 7. These examples have been 

taken as presented in the various publications, i. e. the 

unit of the applied load in example I is in Mp and in 

example II all units are imperial. There are results 

described as being obtained from the discrete matrix 

method. The author has been unable to determine precisely 

what this method is, but it appears that this refers to a 

standard matrix frame analysis. 

XALPLE I 

In this example, a ten-storey plane structure of the 

form shown in Fig. 8.1(a) was considered. The structure 
p 

consists of a pair of symmetrical coupled shear walls and 
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a one-bay frame with identical columns and horizontal 

beams and a constant storey height throughout the 

structure. 

The relevant structural data area 

Storey height 

Total building height 

For coupled shear walls, 

and for the frame 

h 3m 

H= 30 

II a 12=0.5m4 

A1 =A2s0.5m2 

Ic m 8.523 x 10'4 m4 

1a4m 

b=1m 

E- 2x 106Mp/m2 

I. h=4x10-3m4 
Ib- 1.6x10-2m4 

1' a4m 

This example was analysed by A rvidsson23 using four 

methods; the equivalent shear wall frame method, the 

discrete matrix method, Rosman's method and his own 
s 

proposed method. Arvidson's method is based on the 

continuum approach and the complementary energy theory, 

and a solution was obtained by Euler's formula, in 

the equivalent shear wall frame method the coupled 

shear wall is represented by a homogeneous shear wall 

of an equivalent stiffness, so that, the lateral deflection 
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obtained is the same as that of the prototype system 

under a lateral distributed load. In Rosman's method, 

the connecting beams and frames are replaced by a continuous 

shear medium. By assuming that the shear force distribution 

in the connecting beams is similar to that of the frames 

the problem is reduced to a continuous shear wall-frame 

system. This assumption applies only when the areas of 

the coupled walls and frames are infinite. 

In order to analyse the example structure using the 

method presented in chapter 3, the equivalent shearing 

rigidity of the frame was first calculated by using the 

formula given in section (2.3). It was found that 

GA - 12800 Mp 

Hence, the relevant structural parameters became 

o<H=2.4 

P11 7.0 

YH=3.5 

which are fairly typical values for these parameters. 

Figs. 8.3 and 8.4 show the distribution of the 

shear force in the frame assembly, and the shear force 

in the connecting beams per storey height. The results 

from the method presented differ by less than V. from 

the Arvidsson' s and discrete matrix methods, but the 
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differences are much higher when compared to more 

approximate solutions, i. e. Rosman's and the equivalent 

shear wall-frame method. This is basically due to the 

simplifying assumptions made in the latter analyses. 

Rosman's method results in an over-estimation of the 

forces in the connecting beams and an under-estimation of 

the shear force in the frame. On the contrary, the 

equivalent shear wall-frame method results in an under- 

estimation of the shear force in the connecting beams 

and an over-estimation of the shear force in the frame. 

The structure was reanalysed by Arvidsson and the 

present method by changing the frame properties to 

Ih a 2.5 x 10_ 2 
m4 

lb a 0.1 m4 

The equivalent shearing rigidity is then found to be, 

GA - 80000 Mp 

hence l 

Ac H=6.0 

and the parameters PH and 111 remain the same. 

Figs. 8.5 and 8.6 show the distributions of the 

shear forces in the frame and the connecting beams. In 

this case the differences between the various methods 

are almost the same as before. 
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From the above examples it can be deduced that the 

present method agrees favourably with Arvidsson's and 

the discrete matrix methods. Compared to Arvidsson's 

method it has the advantage that core assemblies may 

also be included in the analysis. Earlier work has 

confirmed the accuracy of the continuum approach for 

uniform coupled shear walls44, and that of the shear 

cantilever concept for wall-frame structures20. 

Consequently, since no further approximations or assumptions 

have been introduced, it must be expected that the present 

analysis of combinations of all three components will be 

of comparable accuracy, and acceptable for design purposes. 

EXAMPLES II and III 

In order to compare the method of analysis presented 

in chapter 7 with other published work two example 

structures are considered. These examples are the only 

available published data which could be used for 

comparison purposes. Example II has been analysed by 

Stamato and ýiancini3° using a method of analysis which 

is based on the continuum approach and matrix analysis. 

A corresponding model made in perpex with the structural 

form of example II had previously been tested by Stamato. 

Example III has been analysed by Mortelmans et a134 using 

an approximate frame method of analysis which is based on 

the following assumptions 
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(i) the rotations at all the junction nodes 

of one beam have the same size. 

(ii) the beams are of constant stiffness. 

(iii) the bending moments concentrated in the 

nodes and exerted by the beams may be 

spread over the height of a floor. 

(iv) the horizontal wind load on the plane, 

elastic system, is constant. 

In both of the above examples it has been assumed 

that the structure rotates about the Ox axis, and deflects 

in the Oy direction only (Fig. 8.2). Hence, the governing 

differential equation (7.11) may be neglected and equations 

(7.9) and (7.14) become 

V =-a 
d3yo 

+a 
dyo 

+aA 3 dx3 1 dx 2 dx 

(8.1) 
dy0 

_dG T =-a2 dx a7 dx 

where 

V=uJ(H-x) 

T= -wz (H - x) 

N 

a (GA) 
ý i=1 fi 

N 

a2 ' (GA)fi lfi 
ia1 



187 

M 

a3 aE 
i= 

ýIz)wi 

NNM 

2 
- GA .1+ GJ + (G'aj ( 

i=1ý 
)f1 

fi i=1 
( 

o)fi i=1 o)wi) 

in which, c. ) is the uniformly distributed load, z is the 

eccentricity of the lateral load relative to the x axis, 

N is the number of frames, M is the number of cores or 

shear walls, fi and wi are suffices denoting frame and 

core or shear wall assemblies, lfi is the horizontal 

distance between centroids of frame Ii' and the datum 

axis Oy, GJ0 is the torsional rigidity and Iz is the second 

moment of area of the core or shear wall. 

On following the same procedure as described in 

chapter 7 the general solutions of the deflections y 0 
and the rotation 6 become 

yC+C cosh mx+C sinh mx +- (1 _22 oo2) 
(gX .. 

2 
m a3 7 

(8.2) 

and 

a77 

where 2 

M2 = 
3ý 

- 
a2 

a3 a3a7 
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CIO zag 
Cý 

m4 a3 

za 
C2= -ý'A ýi - a2 

m3 a3 
7 

Co =-C 

mH sinh mH+1 
cosh mH 

and 

n is the relative stiffness parameter. 

For the analyses of examples II and III the datum axes 

have been chosen as the centroidal axes of the shear-wall 

and core assemblies respectively. The choice of datum 

axes becomes important for these two particular examples 

where there is only one core or shear wall assembly in 

each structure. If the origin 0 is chosen as the left- 

hand corner of the example structure, m2 is then given 

by (chapter 7) 

a a - a a + 2a a 2 te, 7 1 9 2 4 
m 9 

2 
a _ a a 4 3 9 

where all a2, a3 and a7 as described above and a4 and a9 

are given by 

M 

a =E (I ) 
4 i=ý Zwi wi 

a=E (Iz) 12 9 
iýý wi wi 
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From a consideration of the denominator of m2 it can be 

deduced that this quantity becomes zero when there is 

only one core or shear wall component in the structure 

which leads to an infinity value for m2 and hence a solution 

becomes impossible. Therefore, for structures which 

contain none or more than one shear wall and/or core 

assemblies the choice of datum axes becomes arbitrary. 

However, for structures which contain only one shear wall 

or core element, their local centroidal axes should be chosen 

as the datum axes for the overall structure. 

EXARIPLE II 

This example is a ten-storey model structure of the 

plan form shown in Fig. 8.2(a) which was first considered 

by Stamato and Mancini30. The model of this structure 

was first tested by Stamato and analysed by his proposed 

method and also by a discrete matrix method. All the 

columns were 4 in. in both y and z directions, the beams 

were 4 in. thick and 5/4 in. deep and the wall was 4 in. 

and 4 in. in z and y directions respectively, and have a 

constant cross-section throughout the height of the building. 

The horizontal uniformly distributed load was Ws0.2 lb 

applied in the plane of frame 2. 

The relevant structural data are : 

Store1y height h5 in. 

total model height H- 50 in. 

For shear wall IZ = 1.3333 in. 4 



190 

I 

Jo = 1-3385 in. 4 

E=4.2 x 105 lb/sq. in. 

Go = 1.5 x 105 lb/sq. in. 

For each frame GA = 2960 lb 

Jcolumn s 0.05273 in. 4 

Then on adding the properties of the two groups of elements, 

the relevant structural parameters become 

a1 = 5919 lb 

a2 = 88791 lb in. 

a3 = 560000 lb. in. 2 

2 
a7 = 1627840 lb. in. 

Hence 

m 0.04384 in. '1 

The distributions of the deflection of frame 2 (Fig. 8.2(a)), 

rotation, bending moments in the wall, and shear forces in 

frame 2,3,4 and 5 are shown in Figs. 8.7 to 8.12. These 

figures also include the results obtained from Stamato and 

v1ancini's3° analysis, the discrete matrix analysis and 

experimental data. As the figures show there is close 

agreement between the results obtained by the various 

methods of analysis and the experimental data. The differences 

between the results obtained by the present method and 

Stamato's analysis for the deflection, rotation, bending 

moment and shear forces are less than 6%, while compared to 
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the discrete matrix analysis the difference between the 

tesults is about 10%. 

In view of lack of any other published data on 

structures of the form considered, it is not possible to 

compare the results from the present analysis with those 

from other more sophisticated techniques (e. g. Finite 

element methods). However, earlier work has confirmed 

the accuracy of the continuum approach for the structural 

components of the forms considered. As a result, since no 

further approximation or assumptions have been introduced 

it must be expected that the present analysis will be of 

comparable accuracy, and may be used for design purposes. 



192 

EXAMPLE III 

Fig. 8.2(b) shows the plan form of a ten-storey 

building which has been analysed by Lortelmans et a134. 

It consists of nine frames and a lift shaft. The 

dimensions of the columns were 0.28m and 0.7 m in z and 

y directions, horizontal beams were 0.2 m thick and 0.4 m 

deep, and the dimensions of the lift shaft were 6.5 m and 4m 

in z and y directions. The wall thickness of the lift 

shaft was 0.18, and the lateral uniformly distributed wind 

load was w=1 KN/m2. 

The relevant structural data are: 

Storey height h-3m 

Total building height H- 30 m 

For core IZ = 9.9897 m4 

Jo a 31.3172 ID4 

E-2.5 x 107 KN/m2 

Go = 1.0417 x 107 KN/m2 

For each frame GA - 60194 KN 

Jcolumn a 9.2839 x 10-3 m3 

Then, on adding the properties of the two groups of elements 

the relevant structural parameters become 

a1 521681 KN 

a2 = 5417460 KN m 

a3 = 249743208 KN m 

a7 474177878 KN m2 
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Hence, 

0.04291 

Figs. 8.13 and 8.14 show respectively the distributions 

of the lateral deflection in frame 1 (Fig. 8.2(b) ) and the 

rotation. In order to investigate the influence of the 

building height, the example structure was analysed 

successively by Mortelmans et a13 
4 for buildings of 496,8 

and 10 storeys. The comparison between the results 

obtained by the present method and Mortelmans' method is 

close and the higher the building the lower the differences 

between the results obtained by the two methods. Phis is 

expected since an analysis based on the continuum approach 

is generally more accurate for taller buildings. 

For a ten-storey building the differences between 

the results obtained by the present and Mortelmans' 

methods for the top deflection in frame 1, top rotation 

and the base moment in the lift shaft are about 6%, 7% 

and 8%, indicating that close agreement exists between 

these two methods of analysis. 

In many tall buildings box cores play an important 

role in providing both bending and torsional stiffness 

for the structure. Liortelmans et al have assumed that, 

due to crack formation, the bending and torsional 

rigidities of the lift shaft are reduced to one third and 

one tenth of the original value respectively. Figs. 8.16 
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and 8.17 show respectively, the distributions of the 

deflections in frame 1 (Fig. 8.2(b)) and the rotations 

for various stiffnesses. For cases I and II there is 

close agreement between the two methods, while there are 

significant differences for cases III and IV. These 

differences were expected since, in their analysis 

Mortelmans et al have assumed that at the base of the 

structure 
dy° 

= 
dA 

= 0. However, a conside ration of dx dx 

equation (8.1) indicates that for the present analysis 

at x=0 if dr° = 0, then, de 
=a. Consequently, 

7 
the larger the value of a7 the smaller the value of 

dA 

and hence a closer agreement between the boundary conditions 

assumed for the two methods of analysis, 

If the torsional effects of the columns are considered 

negligible, the parameter a7 may be expressed as 

8 

a7 =-(> (GA)fi lfi2 + Go Jo) 

i=1 

where 
8 

(GA)fi 1fi. "2 = 1.44465 x 108 KN m2 
i=1 

and 

G0 J0 = 3.2623 x 10 8 KN m2 

From above it is obvious that for this particular exanple, 
including a somewhat unrealistic closed box core, Go Jo is 
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a more important constituent part of a7 and any reduction 

of its value will in turn result in a higher value for 

dA 
and hence the overall analysis. dx 

For case I where Go Jo is unaltered 
d0 

= 2.5 x 10 5 

while when Go Jo is reduced to one tenth of its original 

value 
d- 

= 6.8 x 10 %i. 
e. almost three times larger. 

Therefore, it may be deduced that the large differences 

between the results obtained by the two methods for 

cases III and IV are mainly due to the boundary conditions 

chosen, and this is also true for case I where these 

differences are relatively small. It mzst be mentioned 

that as EI does not play any role regarding the boundary 

condition ()o, as expected (case II), its reduction to 

one third of its original value does not have any significant 

effects on the results obtained by the two methods. 

Figs. 8.18 and 8.19 illustrate the distribution of 

the torsional moments in the lift shaft for cases I and 

III respectively. There are significant differences at the 

base of the lift shaft due to the boundary conditions chosen 

as explained above. 

S. 3 .; umerical parameter studies 

In chapters 3 and 6 the explicit formulae used for 

the analysis purposes are basically the same. In both 

chapters the closed-form formulae used to determine the 
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deflections and the internal forces have all stemmed fron 

a single sixth order differential equation with constant 

coefficients which are in turn dependent on three non- 

dimensional structural parameters oc H, t9 H and "2f H. 

In order to investigate the effects of these 

structural parameters on the deflections and the internal 

forces it is necessary to establish an appropriate range 

for each of these parameters. By considering some typical 

dimensions of a modern apartment building, some idea may 

be gained of the effects of the various building dimensions 

on these parameters. The parameters oc2, (92 and -y 
2 

are 

given in section 8.1 where 

12 (2b+d1 +d2) 

Al =d1t 

A2 =d2t 

in which d1 and d2 are the distances from the inner 

edges of walls 1 and 2 to their centroids, and t is the 

thickness of the walls. 

Since a number of dimensions are involved, it is 

convenient to consider a single corridor opening b of 

2m, and a constant storey height h of 2.8 m, which 

are fairly typical of modern apartment buildings. 

The width of a building will generally lie 
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within the range of 14 and 22 m, so that (d1 + d2) will 

be between 12 and 20 m. If the two walls are assumed 

equal (d1 = d2 = d) the range of d will be between 6 and 

10 m. For apartment buildings with floor slabs of say, 

0.15 to 0.25 m thickness, the depths of the connecting 

beams varies from 0.3 to 0.6 m and have the same thickness 

as the shear walls, i. e., between 0.2 and 0.5 m. 

Taking a possible height range of 30-100 m the values 

of the parameters of H, ýH and -'H then become 

DH0.1 - 8.0 

13 H 0.5 - 15.0 
YH0.5 - 6.0 

The above values for the range of parameters d H, 

IaH and ÖH are of course approximate, as they depend on 

many variables. However, they do correspond to a fairly 

wide range of modern building structures. 

In order to assess the relative importance of the 
1 

structural parameters of H, /2 H and YH the distributions 

of the top deflections, the maximum axial forces in the 

coupled walls and the maximum bending moments in the 

coupled shear walls, cores and frames are sketched for 

representative values of oC H, 14 H and -d H. he distributions 

may be expressed in terms of a series of functions F1 to F4 

as follows, related where appropriate to the applied load 



198 

j 

intensity W, and the total base statical moment w H2/2. 

These functions are defined as 

ymax = (ýH4/EI)F1 

Nmax = (w$2/2) F2 

2 I1+2 
F'3 M1 

max ' M2 
max a (1/2) ýý'H ý2ý 

1 

2I M3 
max aýw$ /2) 

1 F3 

M4 
max = t. '$2/2)F4 

Figs. 8.20 to 8.23 show the distributions of the 

deflection and the internal force functionsF1, F2' F3 

and F4. A consideration of these figures indicates that, 

the maximum values of function F1 occurs when of H and AH 

are minimum regardless of the value of ýHp and FI has its 

minimum value when o% IH and 14 H are maximum and YH has its 

lowest value. This suggests that, in order to have a stiff 

structure; 

(i) the value of GA relative to EI should be 

large so that the parameter o(3 has a relatively 

large value 
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(ii) to include multiple coupled walls or coupled 

walls with relatively large cross-sectional 

areas in the building so that the relative 

values of 6H and /3 H are small and large 

respectively. 

As ß2 and .62 are interrelated it seems that an increase 

in the cross sectional areas of the coupled walls would 

also decrease the value of/92, but this can effectively 

be counteracted by the increase in the value of 1 in 

the case of larger walls or the factor which should be 

multiplied byl32 if multiple coupled walls are used 
12112 

(i. e. for n pairs of coupled shear walls /2 
2an3C 

bhI 
while r2 always remains the same). 

In order to assess the order of the relative importance 

of the structural parameters oC H, fl H and 2S H the particular 

case is considered when, -e H and %H have their lowest value, 

andfl H has its highest value, in this case the value of 

function F1 is about 3x 10-3, while when H has its 

lowest value and o( H has its highest value function F1 

is about 6.1 x 10-3, regardless of the value of y H. The 

same tendencies are found for other relative values of 

these parameters. Hence, it can be concluded that in order 

to stiffen a stucture both o1H and /3H should be increased 

but the latter plays a relatively more important role. 

The effect of YH on the overall structure is minimum, 
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although if only coupled walls are considered it can become 

significant. Similarly, a consideration of Figs. 8.21 

to 8.23 suggest that; 

(i) the axial force function F2 is a minimum when 

H has its lowest value , regardless of 

the values ofd H and IHK and F2 is a 

maximum when fi H has its highest value and 

oC H and "ZýH have their lowest values. As 

expected, oc H does not play a significant 

role since function F2 is almost wholly 

related to the action of the coupled shear 

walls. However, the role of ,H is 

relatively more significant than that of ( H. 

(ii) since the moments in the walls are functions 

of the second derivative of the deflection, 

the effects of the parameters of Hq /111 and 

YH on the function F3 are the same as on Fit 

as explained previously. 

(iii) the function F4 is a minimum (=6x 10-5) 

wheno( H and YH have their lowest values 

and/9H has its highest value, and F2 is a 

maximum (= 0.78) when aH and 19 H have their 

highest and lowest values respectively, 

regardless of the value of )(H. It may therefore 

be deduced that oC H plays a more significant 

role than/3 H and H. 
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In Appendix 2 design curves are included for the 

functions Fl, P3 and F4 which cover the full range of 

parameters oc H, 13 H and 2 H. 
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CHAP2ER 9 

CONCLUSIONS AND SUGGESTIONS 

FOR FUTURE WORK 

9.1 Conclusions 

"Exact" methods of analyses leading to closed-form 

solutions have been presented for three-dimensional 

symmetric and asymmetric structures, consisting of box 

cores, independent shear walls, coupled shear walls and 

rigidly-jointed frameworks. The analyses have been based 

on the continuous connection technique and lead to sixth 

order governing differential equations in terms of 

deflections or rotation. The solutions are then functions 

of the relative structural stiffness parameters. In the 

analyses, the frame assemblies have been represented by 

equivalent shear cantilevers of infinite flexural rigidities 

with the same overall shear stiffness as the frames. 

The governing differential equations were formulated 

for any generalload case, but in order to achieve closed- 

form solutions for the deflections and the internal forces 

the particular case of a uniformly distributed wind loading 

was considered. Solutions in similar forms may be obtained 

for any other form of loading which can be expressed as an 

integrable function of height. 

The methods of analyses presented may be used for 

both the preliminary and final stages of the design process 

to obtain solutions for three-dimensional tall building 
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structures subjected to any form of lateral loads which 

may produce bending and torsion of the structure. 

It has been shown that for buildings consisting of 

various load bearing elements, the commonly applied 

design rule of assuming that the lateral forces are 

distributed among the walls and frames in proportion to 

the top deflection of each component can lead to substantial 

errors in the lateral loads in each assembly as a result 

of the load redistribution which may occur. If this simple 

design rule is adopted the results obtained indicate that 

considerable errors may be incurred in the deflection and 

the internal forces. 

General theories were presented for the analyses of the 

particular cases of regular symmetrical cross-wall and wall- 

frame structures subjected to lateral forces which produce 

bending. The structures were analysed by transforming 

them into equivalent plane continuous systems. After the 

analyses of the simple structures were performed, the 

results were transformed back into the real three-dimensional 

systems. Phe closed solutions enabled the complete 

distributions of the forces and deflections throughout the 

structures to be determined, and the relative importance 

of the structural parameter k to be assessed quickly in 

the early stages of the design (for cross-wall structures 

k is a function of the ratio of the flexural rigidity of 

the connecting beams to the combined flexural rigidities 
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of the coupled shear walls and cores, and for wall-frame 

structures k is equal to the ratio of the shearing 

rigidity of the frames to the combined flexural rigidities 

of the combined walls and cores). Once the actions in 

the continuous systems have been established, the 

corresponding forces in any element of the real discrete 

structure may be determined. The forces in the columns 

and beams of the frame may be evaluated approximately by 

making assumptions regarding the positions of the points 

of contraflexure in each, as practised in the well-established 

Portal method of analysis. Complete solutions were presented 

for the particular case of a uniformly distributed wind load. 

There is little difficulty in deriving solutions for the 

other common load cases, the only difference lying in the 

particular integral term of the general solution of the 

equations. 

A number of non-dimensional design curves for the 

deflections and the internal forces were presented. It 

was shown that for cross-wall structures the coupled shear 

walls carry a larger proportion of the lateral loads in 

the upper levels and less in the lower levels. the curves 

also indicate that as the stiffness variable k increases, 

the redistribution of the lateral loads between coupled 

shear walls and core elements become more significant at 

the lower levels. the above conclusions also apply to 

wall-frame structures with the exception that in this case 

the independent shear wall or core assemblies carry the 
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larger proportion of the lateral loads in the upper levels 

and less in the lower levels. In order to illustrate 

the theoretical results two numerical examples were 

considered. 

A modification of the continuum method of analysis 

of wall-frame structures was made to allow the base flexibility 

of the two components to be included. Curves were presented 

to illustrate the influence of the relative shear stiffness 

ratio V on the main structural actions for a wide range of 

component stiffness ratios. The shear stiffness ratio 0 

is the ratio of the shearing rigidity of the wall to the 

combined rigidities of the wall and frame. The curves 

indicate that the influence of 0 on the base moments and 

top shears varies with ks being greatest at lowest values 

of the relative stiffness parameter k. It was also shown 

that the influence of 0 on the top deflection is similar 

at all values of k. 

The above general theories were later combined to 

produce an approximate theory for the analysis of regular 

symmetrical structures consisting of cores, coupled shear walls 

and rigidly-jointed frames subjected to lateral forces 

which produce bending. In order to demonstrate the typical 

structural behaviour of such systems a representative 

numerical example was considered. It was shown that the 

lateral forces were small in the upper levels of both 

cores and frames, but they increased rapidly in the lower 
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levels. The lateral forces were carried largely by the 

coupled shear walls, and were roughly uniform throughout 

the height, giving rise to a roughly linear distribution 

of shearing forces. The top concentrated force on the 

frame was of the order of about 10% of the total lateral 

load, and produce an approximately linear distribution of 

bending moments throughout the height. The bending 

moments in both coupled walls and cores were both small 

and negative in sense in the upper levels, owing to the 

coupling actions of the connecting beams and the top 

concentrated interactive forces, but increased rapidly 

in the lower levels owing to the redistribution of lateral 

forces. In order to compare the present method with 

other published data an example was considered which 

was first analysed by Arvidsson using his proposed method, 

Rosman's method, the equivalent shear wall-frame method 

and the so called discrete matrix method. The present 

method agreed favourably with Arvidsson's and computer-based 

discrete matrix methods but there were significant differences 

compared to the more approximate methods (Rosman's and 

equivalent shear wall-frame methods). 

The solutions mentioned above are not applicable to 

structures which contain two different sets of coupled 

shear walls. However, these solutions were extended to 

include the effects of two different sets of coupled shear 

walls. The distribution and structural actions of such 
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three-dimensional structures were illustrated by considering 

a typical example structure subjected to uniformly 

distributed lateral loads. It was shown that, in the upper 

levels the lateral loads on the two different sets of 

coupled shear walls were small and relatively large in 

the core assembly, but due to the load redistribution they 

increase and decrease respectively in the lower levels. 

In order to extend the earlier analysis to take into 

account the torsional behaviour of the structures mentioned, 

it was found necessary to consider the behaviour of asymmetric 

partially closed core structures. The analysis was achieved 

by using the folded plate theory in conjunction with the 

continuous connection technique, and lead to a third order 

governing differential equations in terms of a single 

variable 6, the angle of rotation and a single non- 

dimensional parameter k, the core relative stiffness. 

Design curves were presented for the rotation and its 

derivatives for any single cell partially closed core 

structures to enable solutions to be achieved for the 

resulting internal forces. 

It was then possible to extend the earlier analyses to 

consider the torsional behaviour of symmetrical structures. 

Simple transformations were derived to allow the equations 

developed for a continuum-based bending analyses for 

symmetrical structures to be used directly for torsion 

analyses also. Structures subjected to eccentric loading 
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producing bending and torsion may then be treated by 

a superposition of the two cases, the same explicit form 

of solution being valid for each. 

A relatively simple method of analyses was then 

presented for three-dimensional uniform asymmetric 

structures consisting of cores, independent shear walls, 

and parallel assemblies of rigidly-jointed frameworks. 

The analysis was extended to include frame assemblies in 

two orthogonal directions. By considering the general 

equilibrium conditions of the structure and solving the 

three generated governing differential equations 

simultaneously, closed-form solutions were obtained for 

the deflections, rotation, and the internal forces. The 

choice of the datum axes in the analysis is arbitrary 

with the exception that, for structures consisting of frames 

and only one core or an independent shear wall assembly, 

the local centroidal axes of the latter assembly should 

be chosen as the datum axes for the overall structure. 

Otherwise the governing stiffness parameter (which is a 

function of the torsional and bending properties of the 

various components) becomes infinity and a solution 

becomes impossible. In order to examine the validity and 

accuracy of the method of analysis presented, two example 

structures which had been previously analysed by various 

investigators were considered. One of these asymmetric 

example structures which consisted of a shear wall, and four 

frame assemblies located in two orthogonal directions was 
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first analysed by Stamato and Mancini using their proposed 

method and a so called discrete matrix method. The 

agreement between the results obtained using the present 

method and Stamato and Mancini's method was very close 

but compared to the discrete matrix method the differences 

were slightly higher. 

The second asymmetric example structure which 

consisted of nine frames and a box core was analysed 

successively by Mortelmans for buildings of 4,6,8 and 10 storeys. 

The agreement between the results obtained using 

the present method and Mortelmans' method was close, 

especially for the higher buildings of 8 and 10 storeys. 

This confirms the common belief that continuum-based 

techniques are more suitable for taller buildings. In 

their analysis Mortelmans et al assumed that due to crack 

formations the flexural and torsional rigidities of the 

lift shaft were reduced to one third and one tenth of the 

original value respectively. In this case there were 

significant discrepancies between the two methods which 

were due to the assumptions Cade in the present and 

Mortelmans' analyses. 

In view of the limited number of published data on 

structures of the form considered in this thesis, it w as 

not possible to compare the results from the analyses 

presented with those from other more sophisticated 

techniques (e. g. Finite element methods), and the example 
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structures considered for comparison purposes were the 

only ones available in the literature. However, earlier 

work has confirmed the accuracy of the continuum approach 

for uniform coupled shear wall structures, partially 

closed box core structures, and that of the shear cantilever 

concept for wall-frame structures. Consequently, since 

no further approximations or assumptions have been introduced, 

it must be expected that the present analyses of combinations 
of 

of all of these components will be `comparable accuracy, and 

acceptable for design purposes. 

In order to a ssess the relative importance of the 

structural parameters oc H, PH and if Ha numerical 

parameter study was carried out. The parameters c 

and f were defined as 

GA 
oC f( EI 

ic 

73 

EIS 
f 

EI 
s 

where GA is the effective shearing rigidity of the frames, 

EIc is the flexural rigidity of the connecting beams, EI 

is the flexural rigidity of the combined coupled walls and 

cores, EIs is the combined flexural rigidity of the 

coupled walls, and H is the total building height.. 
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From the curves presented for the top deflections, 

maximum axial forces in the coupled walls, and maximum 

bending moments in the walls and frames it was established 

that in order to have a stiff structure both oH and 

f8 H shoul d have relatively 1 arge value s and IH should 

have a relatively small value, but the effect of 14 H in 

increasing the stiffness was more significant than that 

of °H while the role of J(H was less significant. 

Regarding the axial forces in the coupled shear walls the 

role offl H is more pronounced than that of 'd H, and oc H 

does not play a significant role. Since moments in the 

walls are functions of the second derivative of the 

deflection, the effects of parameters oC H, /0 H and 'Ir H on 

the wall moments are the same as their effects on deflection. 

However, with respect to moments in the frames aH plays a 

more significant role than /3 H and Ir H. 

Finally, attempts were made to obtain general 

solutions fors 

(i) symmetric structures consisting of two 

sets of different coupled shear walls, cores 

and frames subjected to bending 

(ii) Asym=etric structures consisting of core3o 

independent shear walls and rigidly-jointed 

frames place in two orthogonal directions 

subjected to bending and torsion. 

Since the characteristic equations regarding the general 
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differential equations of such structures could only be 

solved numerically, general solutions were not possible, 

though for specific structural parameters solutions 

may be obtained. 

An attempt was also made to obtain a solution for 

the asymmetric structures consisting of cores,, independent 

shear walls, frames and coupled shear walls subjected to 

bending and torsion. However, no results were obtained. 

The difficulties encountered were mainly due to the 

coupling actions of the connecting beams which made it 

impossible to express the shear forces in the coupled 

walls in terms of the lateral deflection only. 

9.2 Suggestions for Future Work 

In this thesis simple methods have been presented 

for the analysis of three-dimensional symmetric and 

asymmetric structures subjected to bending and torsional 

loads. Clearly there is scope for further refinement and 

extension of the present study. Some of these possible 

investigations are given belows 

1- The extension of the present method to include 

the action of dynamic loadings arising from 

wind gusts and earthquakes. 

2- The methods presented deal with structures 

consisting of various structural elements 

in two orthogonal directions. An investigation/ 
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into the behaviour of structures consisting 

of obliquely placed load bearing elements 

is desirable. 

j- The methods presented are applicable to 

uniform regular structures. An extension 

of these methods to structures with variable 

configuration along the height needs further 

research. 

4- The methods presented relate to elastic analyses 

only, a need therefore exists to include the 

elasto-plastic behaviour of reinforced concrete 

elements in the analyses. 

5- An analysis for regular symmetrical structures 

consisting of two different sets of coupled 

shear walls cores and frames was presented in 

chapter 4. The analysis could be extended 

to include three or more sets of coupled shear 

wall assemblies. 

6- Construction of simple nomograms for the 

deflections, rotation, and the internal forces 

for the analyses presented is highly desirable. 

This would be very useful for the proportioning 

of the components in the early stages of the 

design. 
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APPENDIX I 

Proof that the roots of the character- 

istic equation of the differential 

equation (3.13) are real 

The characteristic equation of the differential 

equation (3.13) is given by, 

,\6- m2>4+n2\º2=o (1) 

The roots of equation (1) are given by, 

>1 1)2 =0 

and 22 1/2 

m 
±7 

(m4 - 4n 2) (2) X3,4 
=7 

where 

m2 
2+ 2 

+ý2 p 

n2 a2 '2 

in which 

2 GA 
o< _ vFI 

121 12 2 

b3 hI 

2 
y 

121 
c ý1 Ä + 3 bh 1 A2 
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For the differential equation (3.13 to have real 

roots, 

m4 -4 n2,0 0t 3) 

Consider the left-hand side of the inequality (3) 

) -4 d2 ý2 m4 - 4n2 
2+ 

132 + y2 
2 

044 +R4+-4+ 2a214 2+ 2of 2 y2 +2 fs2 _2 -4 
j 

. y2 

= oc4 + 'a 
4+ Y4 +2 0( 2p 2-2 

of 
2 

?j2-2 
2)2 

+ 4,2 Y2 

ýoe 2 
+ßg2 _X2)2 + 102 2r2 

Since the right-hand side of the above equation contains the 

sum of the squares, it must always be positive, hence 

0 m4 - 4n2 lgý 
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APPENDIX 2 

Design curves for deflection function Fl and 

moment functions F3 and F4 in coupled shear 

walls, cores and frames respectively as described 

in chapter 8 
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