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ABSTRACT 

ABSTRACT 

 

Finding rules that govern species distribution and coexistence is a fundamental aim of 

ecological research.  The rapidly expanding and increasingly mobile human race is 

challenging our understanding of some these rules.  Using long-term macroinvertebrate 

data collected from two river systems with contrasting legacies from human activity, this 

thesis investigates drivers of change in community structure and function, mechanisms 

underpinning these changes and how these changes affect the accurate assessment of the 

ecological condition of river systems. 

 

The reformation of the river invertebrate communities within the River Clyde system was 

not predicted by the simple improving measures of water physico-chemistry or life history 

characteristics of the re-colonising community.  This has serious implications for the 

accurate assessment of river health which is at present largely reliant on the physio-

chemical tolerance of macroinvertebrates to indicate prevailing environmental conditions.  

It is argued that reference condition predictions, like those obtained from the RIVPACS 

programme, may not be suitable when assessing the ecological health of a river subjected 

to long-term modification from human activity, like the River Clyde. 

 

Significant differences in the stable isotope signatures of resident and colonising 

populations of Rhyacophila dorsalis (a predatory Trichopteran) provided insight into some 

mechanisms underlying differences between reforming communities.  Trophic position 

estimates for some colonising populations of R. dorsalis were shown to be lower than 

expected considering their predatory status and, colonisation patterns were significant in 

predicting changes in occupied trophic position. 

 

The River Endrick is recognised internationally in terms of biodiversity.  Over the last 50 

years, the diversity of macroinvertebrate fauna of the river has significantly reduced, five 

species have become locally extinct and there has been a significant change in the 

distribution of 29 other species.  The macroinvertebrate community in the headwater of the 

river has undergone a dramatic change in structure and function.  The contrasting changes 

to the headwater community and changes in the structure and function of the 

macroinvertebrate community in the river system require further investigation. 

 

This thesis demonstrates the importance of investigating long-term change. 
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Freshwater systems are losing diversity faster than terrestrial and marine systems 

(Dudgeon, et; al., 2006) and rivers particularly, have been highlighted recently as being 

under the greatest threat from pervasive human activity (Vörösmarty, et al., 2010). 

 

River systems cover only 0.006% of the surface of the earth, yet freshwater ecosystems 

contain 6% of all described species (Dudgeon, et al., 2006).  Their importance as the 

largest source of renewable fresh water has, at least in part, driven global efforts to restore 

river systems impacted by human activity (Vörösmarty, et al., 2010), although effort is 

highly skewed towards developed regions (e.g. USA and Western Europe) (Vörösmarty, et 

al., 2010).  Despite their importance in economic and species diversity terms, there is still 

only a poor understanding of the processes by which animal communities in these systems 

respond to change.  This is partly due to a shortage of long-term studies detailing change 

over appropriate time scales (Jackson & Füreder, 2006). 

 

 1.1  Community ecology in a contemporary setting 

 

Finding rules that govern species distribution and coexistence is a fundamental aim of 

ecological research.  Through empirical studies (Odum, 1953, Huston, 1994) and 

theoretical modelling (May, 1973; Drake, 1990) we now have a better understanding of 

some of the fundamental rules that govern species distribution and how „natural‟ 

communities are assembled (Chesson, 2000), but there are still significant gaps in our 

understanding (Bell, 2000; Tilman, 2004; Adler, et al., 2007). 
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Eutrophication, pollution, non-native species introductions, habitat destruction and water 

abstraction are all well documented threats to the riverine biota (Carpenter, el. al., 1992).  

Each of these stressors are common globally but usually occur in relative isolation 

(Malmqvist & Rundle, 2002).  Contrasting this, global climate change has the potential to 

effect unprecedented changes over the coming century on a global scale (Parmesan & 

Yohe, 2002; Parmesan, 2006), through a combination of temperature changes, alterations 

to atmospheric and hydrological conditions and species invasions (IPCC, 2007).  The 

complicated interactions of these myriad stressors influencing freshwater systems means 

disentangling relative influence and uncovering mechanisms which are driving change in 

species distribution and community structure and function is at best, challenging. 

 

To assess ecological change accurately, target restoration effort appropriately and forecast 

the effects of human activity on ecosystem structure and function, an understanding of how 

communities are modified as a result of local and global environmental change is required. 

 

 1.2  Restoration ecology 

 

Restoration of disturbed systems is a complex process influenced by multiple deterministic 

and stochastic factors.  Physical disturbance can alter the availability of suitable habitat 

(e.g. the physical removal of habitat during a catastrophic flood (Snyder & Johnson, 

2006)), changes to available resources will affect species assemblage and abundance (e.g. 

fire affecting the nutrients available in soil (Coetsee, et al., 2010)), the dispersal abilities 

and proximity of colonising populations will influence colonisation patterns (Sutherland, 

1974; Palmer, 1996; Urban & De Meester, 2009), and changes to species range as a result 

of changes to global climate (e.g. Hickling et al., 2005) and the increased rate of 

colonisation and establishment of non-native species (Cohen & Carlton, 1998; Lockwood, 

et al., 2009) will also affect the structure and function of a community (Suding et al., 2004; 

Olsson et al., 2009; Paillex, et al., 2009). 

 

The ability to accurately measure the success of restoration is essential.  Accurate 

assessment of communities undergoing restoration or those deemed to have been restored 

is dependent on the predictability of restored community structure.  If the order in which 

species colonise a community is deterministic, given certain environmental conditions, 

then the results of colonisation (i.e. community structure) is predictable.  However, if the 
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assembly of a community is sensitive to the arrival order of colonists, community structure 

is much less predictable.   

 

Recently, through empirical investigation, the effect of historic changes to community 

structure and function has been highlighted as significant in influencing contemporary 

community structure and function (Fukami & Morin, 2003; Ledger, et al., 2006; Svensson, 

et al., 2009).  Influences of early colonists can affect the successful establishment of 

additional species, for example, through direct competition for resources where one 

competitor consumes more resources and prevents another from establishing (Tillman, 

1980); through intraguild predation, where one competitor predates upon another (Price & 

Morin, 2004); or through interference competition, where one species directly interferes 

with another by killing or hindering feeding (Chao & Levin, 1981; Amarasekare, 2002).  

These priority or, founder effects have been shown to significantly affect the structure of 

reassembled communities (Ledger, et al., 2006; Gerla, et al., 2009). 

 

Much research in this area has either focussed on the effects of invasive species on 

community structure and function (Suding et al., 2004; Erlandsson, et al., 2006; Ehrenfeld, 

2010), or has been confined to plant communities (Baer et al,. 2004; MacDougall & 

Turkington, 2005).  To further our understanding of community formation and the resultant 

effects on community function, investigation of drivers and mechanisms that underpin 

community formation in a „natural‟ setting is necessary. 

 

Currently, many assessments of riverine community recovery adopt the „reference 

condition approach‟ (Stoddard, et al., 2006), where communities that have been impacted 

by human activities are compared to a perceived ideal, often taking the form of either an 

analogous community deemed to be free of impact or to a historic reference community.  If 

consideration is made of the many influences affecting river communities and the effects 

from founder members, is the „reference condition approach‟ still appropriate or even 

feasible? 

 

 1.3  Measuring ecological change 

 

Currently, the most commonly cited indicator of ecological change is „biodiversity‟.  The 

etymology of this word reveals its modern origin from the late 1960s and it is frequently 
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used in place of more clearly defined, long established terms, such as species richness and 

species diversity (Purvis & Hector, 2000). 

 

Species richness is a measurement of the number of species within a given area.  It is 

usually acutely determined from samples of the whole community and, when combined 

with a measurement of relative abundance, a measure of species diversity is produced.  

These measurements are two of the most common ecological indicators used to detect 

change within ecosystems as they can be applied to the entire species range within an area, 

from soil microbes to top predators, or it can be used to focus on an organism subset (eg. 

woodland fungi) (Huston, 1994). 

 

Species richness and diversity vary naturally.  Gradients of species richness and diversity 

have been studied widely in ecology and many of the drivers underlying species 

distributions have been well described.  For example, diversity gradients associated with 

latitude show opposing relationships with terrestrial and aquatic systems.  The diversity of 

terrestrial systems increases with increasing latitude, while aquatic diversity decreases with 

increasing latitude.  These gradients have been linked with temperature and precipitation 

differences (Huston, 1994). 

 

 1.4  Bioindicators 

 

Some specific species or groups of species have provided a mechanism through which to 

monitor the health and integrity of specific environments or ecosystems.  These organisms 

are commonly referred to as bioindicators and are used to monitor and detect changes to 

the ecosystem arising from the influence of human activity.  One advantage bioindicators 

have is the ability to detect cumulative changes within an ecosystem which can be difficult 

or impossible to detect using physical and chemical measurements only. 

 

Species used as bioindicators have been drawn from across the animal and plant kingdoms.  

Lichens and mosses are often used to indicate local air quality as increased pollutant level 

has been shown to reduce species diversity in both these groups.  In the aquatic 

environment, sea birds have been used to monitor heavy metals entering the marine food 

chain (e.g. Burger & Gochfeld, 2000) and the bioaccumulation of human derived chemical 

components in fish tissue is used to monitor both freshwater and marine environments (e.g. 

Winter et al., 2005).  One group of bioindicators that have been used worldwide to assess 
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the health of running water are macroinvertebrates (invertebrates that can be seen with the 

naked eye). 

 

 1.5  Macroinvertebrates as bioindicators in running water 

 

River systems are highly varied in terms of flow, habitat and productivity (Vannote et al., 

1980).  Consequently, macroinvertebrate communities inhabiting these systems are 

generally heterogeneous, containing representatives from many phyla, with a wide range of 

abilities to tolerate a broad range of physical, chemical and biotic environmental 

conditions.  Thus, river systems contain species which are variable in their sensitivities to 

pollution (water physico-chemistry), and combined with both their relatively sedentary 

nature and moderately long life spans, means macroinvertebrate communities are shaped 

by the prevailing environmental conditions within an area. 

 

Using macroinvertebrate to monitor the biological health of running water was initially 

formalised in the early 1900's by Kolkwitz and Marsson (1909) through their development 

of the saprobic system for assessing organic pollution.  Kolkwitz and Marsson postulated 

that when a river received a heavy load of organic material, through the process of „natural‟ 

purification, the macroinvertebrate community would change downstream of the pollution 

influence through a series of zones of decreasing severity of impact (Kolkwitz, 1950).  It 

was only in the latter half of the 1900‟s that these methods received serious consideration 

for use in U. K. river system assessment (Hynes, 1966; Hawkes, 1997). 

 

To render the biological data collected for river bioassessment more accessible to non-

biologists, it became necessary to develop and present results in the form of an index or 

score.  The first widely accepted index used by river biologists in the U. K. was the Trent 

Biotic Index (Trent River Board, 1960; Woodiwiss, 1964).  This was then followed by the 

development of the Biological Monitoring Working Party (B. M. W. P.) scoring system 

(Biological Monitoring Working Party, 1978).  The final version of this scoring system 

assigns a score of 1 (organic pollution tolerant) to 10 (organic pollution sensitive) to 

common macroinvertebrate families found in flowing water within the U. K.  The B. M. 

W. P. score is the sum of the values of the B. M. W. P. families recorded in a sample.   

 

As, like many other ecological indices, the B. M. W. P. scoring system is influenced by the 

number of taxa in the sample, which is affected in turn by the sample size and, sampling 
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and sample processing proficiency.  To overcome this inherent weakness, the calculated B. 

M. W. P. score is divided by the number of contributing taxa, thus providing an average 

score, or Average Score per Taxon (A. S. P. T.).  It is this monitoring index system that is 

currently in use throughout the U. K. and has lead to the development of similar indices 

worldwide (AUSRIVS (Australia), Davies 2000; BEAST (North America), Reynoldson el 

al., 2000; SEPACSRI (Sweden), Davy-Bowker et al., 2006; PERLA (Czech Republic), 

Kokeš et al., 2006). 

 

 1.6  The importance of assessing long-term change 

 

Biological communities are flexible entities.  Natural variations in the biotic and abiotic 

environment shape community structure.  Natural change in community structure can be 

seasonal as the community responds to the changes in the availability of food resources and 

the associated life history cycles (Anderson & Cummins, 1979).  Other variations in 

community structure are episodic and are often associated with dramatic effects to 

community structure (e.g. destruction and re-growth following a forest fire (Coetsee, et al., 

2010), or the response of macroinvertebrate communities following a severe flood (Snyder 

& Johnson, 2006)). 

 

To quantify change which is a result of long-term human influence, community 

information needs to be collected over long enough time periods to differentiate accurately 

long-term trend signals superimposed on all other sources of variation in community 

structure (i.e. seasonal and episodic).  This is problematic.  Most scientific studies are 

restricted by the availability of resources to maintain data collection over long time 

periods, with the majority conducted over time periods of less than 5 years (Jackson & 

Füreder, 2006) and study periods of this length are unlikely to be long enough to allow 

detection of long-term trends (Bêche & Resh, 2007).  Only relatively few studies from 

freshwaters have been conducted which are significantly longer.  

 

Established in 1988 to provide chemical and biological data on the extent and degree of 

acidification of surface waters in the UK, the Acid Waters Monitoring Network has 

provided information about the long-term response of freshwaters to reductions in air 

pollution.  Following international efforts to reduce air pollution, atmospheric levels of 

sulphur and nitrogen oxides (associated with acid rain) have reduced (Davies, et al., 2005; 

Fowler et al., 2005) and water physico-chemistry of acid-sensitive sites have improved 
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followed this reduction (Davies, et al., 2005).  While there have been some small 

improvements in the biotic structure of these acid-sensitive sites (Monteith, et al., 2005) the 

response of the biota to improvements in water quality has not followed a similar recovery 

trajectory as water physico-chemistry and communities are still impoverished of acid-

sensitive species (Monteith, et al., 2005; Layer, et al., 2010).  Compared with the recovery 

of the water physico-chemistry, the differential response of the biota has been attributed to 

multiple mechanisms.  For example, the water physico-chemistry may still not be sufficient 

to support acid-sensitive taxa, there may be time lags associated with the dispersal 

capabilities of acid-sensitive species, or possibly a hysteresis in recovery as a result of 

ecological interactions closing off communities to acid-sensitive colonisation (Monteith, et 

al., 2005; Layer, et al., 2010). 

 

Data collected over a 25 year period from an acid affected stream (Broadstone Stream, 

UK) have provided valuable insights into patterns of change in food web structure 

(Hildrew & Townsend, 1976; Hildrew et al., 1985, Lancaster & Robertson, 1995, 

Woodward & Hildrew 2001).  Following acidification the predatory component of the food 

web has gone through distinct stages, initially aquatic predators dominating this system 

were Plectrocenemia conspersa (Trichoptera: Polycentropodidae), Sialis fuliginosa 

(Megaloptera: Sialidae) and predatory Chirnonomidae (Hildrew & Townsend, 1976; 

Hildrew et al., 1985, Lancaster & Robertson, 1995), in 1995 a new predator, Cordulegaster 

boltonii (Anisoptera: Cordulegasteridae), invaded the system (Woodward & Hildrew, 

2001) and since then brown trout (Salmo trutta) have invaded.  The information gathered 

during the studies conducted in this stream has provided detailed descriptions of 

trajectories through which the recovery of the riverine community is progressing. 

 

Using macroinvertebrate data collected over 5 years (1985 to 1989) from a Welsh river 

system, Weatherly & Ormerod (1990) established that persistence (constancy) in 

macroinvertebrate communities changed in concert across catchments, but their data 

encompassed too few years to attribute causal factors.  Through an extension of this study 

and the collection of data spanning a 25 year period (1985 to 2005), Durance & Ormerod 

(2007) were able to attributed these large scale temporal changes in community persistence 

to local climate cycles associated with the North Atlantic Oscillation (NAO) (Durance & 

Ormerod, 2007). 
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Research focusing on the effects invasive species have on ecosystems have highlighted the 

need to assess change over long time frames (Strayer, et al., 2006).  For example, in the US 

the imported species of fire ant, Solenopsis invicta, becomes invasive as the species 

spreads to new areas and reduces the abundance of native ant species (Porter & Savignano, 

1990).  However, 12 years following initial invasion of this species to an area, local 

populations of native ant species and other arthropods had increased to pre-invasion levels 

(Morrison (2002), highlighting the importance of conduction research over periods that are 

biological meaningful. 

 

The results from the studies detailed above have provided insight and targeted research 

direction to aid in the understanding of the how biological communities respond to long-

term changes.  These studies also highlight that, despite collecting information for decades, 

the continuation of these datasets is required to resolve the long-term recovery dynamics of 

systems affected by human influences. 

 

1.7  Quantifying long-term change 

 

In this thesis, two long-term biological data sets of macroinvertebrate community data, 

spanning 32 (the River Clyde) and 50 years (the River Endrick), are used to look for long-

term community change. 

 

  1.7.1  River Clyde history 

 

The River Clyde (located in west central Scotland) has supported and continues to support 

a large percentage (~ 30%; General Register Office for Scotland Report, 2007) of 

Scotland‟s population.  As a result the river has been subjected to large, often continuous 

inputs of pollutants from numerous sources of a varied nature and, has in the past been 

described as one of the worst polluted river basins in the U. K. (Hammerton, 1986). 

 

The Rivers (Pollution Prevention) (Scotland) Acts of 1951 and 1965 were the first of the 

river pollution Acts in Scotland to initiate major improvements to polluting discharges to 

river systems (Hammerton, 1986).  More recently, the European Commission enacted the 

Water Framework Directive (OJL, 2000) which “aims to improve fresh and salt water 

resources within the member states of the European Commission”.  This European 

environmental legislation resulted in the enactment of the Water Environment and Water 
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Services (Scotland) Act 2003.  These legislation have shifted the regulation of freshwater 

sources from local, site monitoring methods to an integrated approach at the scale of the 

river basin level. 

 

Water quality within Scotland is currently monitored by the Scottish Environment 

Protection Agency (S. E. P. A.) and was monitored previously by its predecessor 

organisation, the Clyde River Purification Board (C. R. P. B.), using water physico-

chemistry (e.g. dissolved oxygen, pH, alkalinity) since 1965 and macroinvertebrates since 

1975.  Macroinvertebrate data have been collected by both organisations using the same 

standard techniques (Doughty, R. C., pers. comms., 21/08/2007).  Using the water physico-

chemical information collected by both the S. E. P. A. and the C. R. P. B., changes to 

elements of water physico-chemistry within the River Clyde have been assessed since the 

mid 1970‟s through the Harmonised Monitoring Scheme (Anderson et al., 2010), a UK 

government organisation.  Within the River Clyde the physico-chemistry of the water has 

shown decreasing levels of nitrogen, orthophosphate, suspended solids, and biochemical 

oxygen demand, and increasing levels of saturated oxygen (Anderson et al., 2010).  These 

changes suggest that the physico-chemistry of the water is improving and is likely to be 

now supporting a more diverse macroinvertebrate community.  The situation is however 

complex.  There is strong seasonality in some of the trends and overall concentrations of 

some of the measured physico-chemical components remain relatively high.  For example, 

in the River Clyde, orthophosphate is found at high concentrations relative to the other 

river systems in Scotland, and although there is no overall annual change in orthophosphate 

concentration, the spring and summer months have shown a decreasing trend in 

orthophosphate (Anderson, et al., 2010). 

 

Generally the biological (macroinvertebrates) and chemical (water physico-chemistry) 

quality of the River Clyde has improved (Milne & Best, 1986, S. E. P. A., 2008).  Using 

biotic indices (B. M. W. P. score) and water physico-chemistry measurements the S. E. P. 

A. have classified the collected samples in a standard way since 1996 (S. E. P. A., 2008, 

Doughty, R. C., pers. comms., 21/08/2007).  Using data available from the S. E. P. A. 

website (S. E. P. A., 2006) the proportion of samples collected from the River Clyde that 

were attributed to “seriously polluted” water quality class (i.e. category D) has reduced 

from 0.07 in 1996 to 0.03 in 2006, while the proportion of samples that were attributed to 

“excellent” water quality (i.e. category A1) has increased from 0.01 in 1996 to 0.1 in 2006 

(Figure 1.1). 
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Figure 1.1:  Proportion of sites within the River Clyde catchment, between 1996 and 2006, 

belonging to the water quality classes A1, “excellent”, A2 “good”, B, “fair”, C, “poor” and 

D, “seriously polluted” (S. E. P. A., 2006) 

 

While the general water quality within the catchment has improved there are still some 

problems which may be affecting the macroinvertebrate biota.  Due to the presence of large 

coal measures that fall within the catchment of the River Clyde watercourse (Appendix A), 

there has been and continues to be some influence from mine water (S. E. P. A., 2008).  

Although most mines within the catchment are now disused, there has been an increase in 

mining activity in the relatively small patch of coal measures located in the south west of 

the catchment (see Appendix A), resulting in mine water discharging to the local river, the 

Douglas Water.  Continuous monitoring of macroinvertebrate data in the Douglas Water 

commenced in 1990 and as such data collected from this watercourse is not included in the 

analysis. 

 

The Douglas Water is a large tributary which joins the main channel of the River Clyde 

approximately 76 km from the main channel source.  The effects of the open cast mine 

working are associated with an increase in electrical conductivity of the water due to an 

increase in dissolved ions entering the water arising from the disturbed geology (Hynes, 

1966).  Using available water chemistry data collected at a site approximately 2 km 

downstream of the confluence of the Douglas Water with the main channel of the River 

Clyde, an assessment of temporal change in the electrical conductivity of river water, 

between 1978 and 2003, has not shown any simple linear change (linear regression of 

electrical conductivity (µS cm
-1

) on sampling date; F(1,112)=0.022, p=0.884; Figure 1.2).  It 
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is therefore assumed that any negative influences from open cast mining operations 

affecting the Douglas Water have been diluted and are thus unlikely to cause acute effects 

on the main river channel. 

 

 
Figure 1.2:  No significant linear change in electrical conductivity (measured as µS cm

-1
 at 

20 
o
C) of the River Clyde at the site approximately 2km downstream of the confluence of 

the Douglas Water with the River Clyde main channel. 

 

The general synopsis of water quality change in the River Clyde is one of improvement, 

but complex patterns of change are likely given the degree of urbanisation within the 

catchment and the complex interaction between changes in water chemistry and the 

resultant effects on the macroinvertebrate community. 

 

  1.7.2  River Clyde data set 

 

The comprehensive monitoring of water physico-chemistry and macroinvertebrate fauna 

from the River Clyde by the S. E. P. A. and the C. R. P. B. forms the basis of the River 

Clyde dataset.  The sampling programme was initiated in 1975 by the C. R. P. B and has 

continued since and from 1990 onwards has been under the control of the S. E. P. A. 

 

Available only as hard copies, the 6,188 field sheets were input to a database created in 

Microsoft Excel version 2003.  Due to the risk of data input error, checking mechanisms 

were put in place for each sample (i.e. field sheet) input.  Following the completion of data 

entry, the entire database was checked for any inconsistency by simple comparisons of 
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input data and calculated metrics, and a random 1% of the data was re-input and 

comparisons made with the original database.  The error rate of data entry was remarkably 

low and most errors were associated with the entry of duplicates of a single sample which 

were easily removed. 

 

To investigate changing community structure in the River Clyde, only samples collected 

from sites that were monitored annually between 1975 and 2006 were analysed.  The 

inclusion of sites was based on a compromise between temporal consistency and spatial 

spread within the catchment (Appendix A).  To mitigate the direct effects of changes to 

specific bankside operations (e.g. sewage treatment works) any samples that were collected 

to monitor specific discharges or were collected in response to a pollution event were 

removed from the database.  Data from all sites from 1991 to 1994 were lost by the S. E. P. 

A. in storage and thus not available for analysis.  The final dataset for the River Clyde 

comprised 3,446 samples collected from 65 sites between 1975 and 2006. 

 

  1.7.3  River Endrick history 

 

The River Endrick is also located in west central Scotland and is the largest river draining 

into Loch Lomond (by surface area, the largest lake in the U.K.).  Despite a shared 

watershed and close proximity (Appendix A), the River Endrick has escaped the same level 

of human influence to the water course as that experienced by the River Clyde as a result 

of the very low population density within the catchment (<0.1% of Scotland‟s population, 

General Register Office for Scotland Report, 2001).  No significant changes in water 

physico-chemistry have been detected through the Harmonised Monitoring Scheme 

(Anderson et al., 2010), although suspended solids within the Loch Lomond catchment 

area are decreasing (Anderson et al., 2010).  Evidence from recent monitoring of the 

Endrick watercourse by the S. E. P. A. has not recorded any sites of “seriously polluted” or 

“bad” water quality and in very recent years only sites of “excellent” or “good” water 

quality have been recorded (S. E. P. A., 2006) (Figure 1.3).  Generally water quality within 

the River Endrick catchment has been and remains of good ecological quality. 
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Figure 1.3:  Proportion of sites within the River Endrick catchment, between 1996 and 

2006, belonging to the water quality classes A1, “excellent” A2 “good”, B, “fair”, C, 

“poor” and D, “seriously polluted” (S. E. P. A., 2006) 

 

  1.7.4  River Endrick data set 

 

An ecological study of the invertebrate and vertebrate fauna of River Endrick between 

1959 and 1963 was undertaken by P.S. Maitland as PhD research through the University of 

Glasgow (Maitland, 1963).  One component of this work was to establish a reliable check-

list of the species of invertebrates found in the River Endrick.  Twelve sampling sites were 

chosen along the main river channel from the river source (defined here as the “start of the 

highest rising tributary” (Maitland, 1966a)) to the mouth (the point at which the river 

enters Loch Lomond (Figure 6.1).  “The twelve stations [sites] were selected more or less 

at random along the length of the river, though care was taken not to site any where fauna 

might be influenced by unnatural factors – e.g. near a sewage works or a ford” (Maitland, 

1966a).  Samples were collected at these 12 sites in October 1959, February 1960 and June 

1961.  These samples are referred to as the 1960 study period.  To investigate community 

structure change in the River Endrick, 7 of the original 12 sites were re-sampled in 2010 

using exactly the using the same timing and method employed in the 1960 study 

(Appendix A). 
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 1.8   Overall aims and thesis structure 

 

The main focus of this thesis is to investigate how long-term change is manifest in 

macroinvertebrate river communities using two river systems with contrasting legacies 

from human activity.  Although there is a good general understanding of the short term 

response of macroinvertebrate communities to changes in their local environment (e.g. 

Hynes, 1966; Clarke, et al., 2005), the long-term response to change is less well understood 

(Jackson & Füreder, 2006).  Work in this thesis aims to improve our general understanding 

of long-term change in river systems based on the findings from six studies, presented as 

six chapters.  The general aims of each are: 

 

1. In a river recovering from environmental degradation, are the response 

 trajectories (i.e. colonisation rates) of macroinvertebrate Families significantly 

 related to dispersal ability or physiological tolerance of water chemistry? 

 

The general aim of chapter 2 is to test the hypothesis that colonisation rate of 

macroinvertebrate Families is linked with either dispersal ability or physiological tolerance 

of water physico-chemistry, or both.  Dispersal ability was measured as a simple measure 

of flight capability associated with the winged adult stage in the insect groups and 

physiological tolerance was measured as the pollution tolerance of the macroinvertebrate 

family. 

 

2. What are the environmental drivers of community richness in a river recovering 

 from water quality degradation? 

 

The general aim of chapter 3 is to define and quantify the effects of some of the common 

measurements of local and landscape environmental change (e.g. land use, water physico-

chemistry and natural site characteristics) have in controlling macroinvertebrate 

community richness. 

 

3. Can communities recovering from long-term environmental degradation achieve 

 „pristine‟ condition? 

 

The general aim of chapter 4 is to test the hypothesis that communities re-forming 

following a period of degradation can achieve a composition similar to that expected in the 



15 
 

 
CHAPTER 1: Introduction 

absence of human influence.  This assumption forms the basic underlying principle of 

ecological monitoring. 

 

4. Do colonisation patterns affect resource use within a re-forming community? 

 

The general aim of chapter 5 is to test the effects differing colonisation trajectories have on 

the resource use of a colonising predator.  The resource use of a coloniser affects the 

individual directly but also affects the other members of the community that is being 

colonised.  Both these affects can have implications for the future functionality of the 

community. 

 

5. Changes in the species composition and distribution in the River Endrick after 50 

 years. 

 

The general aim of chapter 6 was to assess changes in the species composition of the River 

Endrick by comparing contemporary empirical data with historical data collected in 1960. 

 

6. Have the changes in species composition in the River Endrick affected community 

 structure and/or function? 

 

The general aim of chapter 7 was to investigate changes to the macroinvertebrate 

community structure and function over a period of 50 years.  As this river has had minimal 

influence from human activity, changes here may have arisen as a result of larger scale 

environmental patterns. 
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CHAPTER 2  Spatial and temporal changes in 

    aquatic macroinvertebrate families in 

    the River Clyde 

 

 

 

 

 

 

 

 

2.1  Introduction 

 

A fundamental question in ecology is; what determines species occurrence through time 

and space?  The contemporary answer to this question is particularly important as 

pervasive human activity is now challenging traditional, long held, views of species 

distributions.  Non-native species introductions, climate change and the modification and 

destruction of habitat are occurring at rapidly increasing rates (Cohan & Carlton, 1998; 

Lockwood et al., 2009), and are changing species distributions at local and regional levels 

(e.g. the expansion of the northern limit of many Odonate species within the UK as a result 

of climate change (Hickling et al.,2005)), to species distribution changes on a global scale 

(e.g. the introduction and establishment of the American signal crayfish (Pacifastacus 

leniusculus) (Gladman et al., 2009) and Chinese mitten crab (Eriocheir sinensis) within 

UK waterways). 

 

Fluctuations in species occurrence may arise over short time frames as a result of changing 

community dynamics in response to shifting local environmental conditions.  To quantify 

changes in species distributions which are not a result of short term fluctuations, data must 

be collected over long enough time periods to reflect fundamental changes to species 

distributions and not temporary modification, which can be misleading. 

 

Freshwater systems, particularly rivers are now recognised as the most endangered 

ecosystems in the world (Dudgeon et al., 2006; Vörösmarty et al., 2010).  Their importance 
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as the largest source of renewable fresh water has at least in part driven global efforts to 

restore river systems impacted by human activity (Vörösmarty et al., 2010), although effort 

is highly skewed towards developed regions (e.g. USA and Western Europe) (Vörösmarty, 

et, al., 2010).  Despite this there is still only a poor understanding of the process by which 

animal communities respond to restoration efforts.  This is, at least in part, due to a 

shortage of long-term studies detailing change over biologically meaningful time scales 

(Jackson & Füreder, 2006). 

 

My analysis of long-term changes in spatio-temporal distributions, made use of 32 years of 

macroinvertebrate monitoring data collected from 65 sites within a large river system 

recovering from a period of water quality degradation.  Using this data, I attempted to 

quantify changes in temporal occurrence and spatial distribution of aquatic 

macroinvertebrate families in the River Clyde. 

 

2.2  Methods 

 

To determine temporal and spatial relationships of macroinvertebrate families I used data 

on freshwater invertebrate community structure collected from a large river system 

between 1975 and 2006. 

 

 2.2.1  Study area 

 

The River Clyde is located in West Central Scotland (between Lat: 56
o
 N & 55

o
 30‟ N and 

Long: 004
o
 73‟ W & 003

o
 55‟ W).  The catchment covers an area of 3,125 km

2
 with a total 

river length of 4,165 km and 26 km
2
 of freshwater lochs and reservoirs.  Landuse in the 

catchment is dominated by agriculture (45%) and natural and semi-natural habitats (37%) 

with urban landuse comprising 18%, the remaining 1% being lochs and reservoirs.  

Although urban landuse does not dominate, in 2006, 31% (1.6M) of the total population of 

Scotland lived within the catchment (General Register Office for Scotland Report, 2007).  

With a history of heavy industry, the River Clyde has been described in the past as one of 

the worst polluted river basins in Britain (Hammerton, 1986). 
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 2.2.2  Invertebrate community composition 
 

Family occurrence within the River Clyde was determined from existing datasets.  

Invertebrate community samples were collected from 65 sites (n=3446; mean annual 

number collected per site = 2 ± 0.02 S.E.), using a standard kick-sampling method, during 

routine water quality monitoring by the Scottish Environment Protection Agency (SEPA) 

and its predecessor organisations.  The family groups recorded (detection or non-detection) 

were those from the current BMWP taxon list (not including Aphelocheridae, 

Brachycentridae, Goeridae, Lepidostomatidae, Odontoceridae, Psychimyiidae and 

Valvatidae, due to taxonomic and recording issues at the start of the study period) which 

are routinely recorded as part of the BMWP system (Armitage et al., 1983) used to assess 

running water quality in Great Britain. 

 

 2.2.3  Common macroinvertebrate families in the River Clyde 

 

To determine which families typified the community structure of the River Clyde 

catchment and to avoid including those families which appeared in collected samples only 

sporadically, the number of sites at which each family had been recorded in the River 

Clyde was determined.  Only those families which had been recorded at a minimum of 15 

of the 65 sites were determined as suitable representatives of the River Clyde 

macroinvertebrate community, and only these families were used in any further analysis. 

 

 2.2.4  Site characteristics 

 

For each site, a number of characteristics were measured; distance from the river source 

(km), altitude (m), slope (m km
-1

) were all derived from 1:50,000 scale Ordnance Survey 

maps using the methods detailed by Murray-Bligh et al. (1997) and; discharge category 

(Murray-Bligh et al., 1997), which provides a site specific measure of average annual 

discharge in cubic metres per second (m
3
 s

-1
), was provided by the SEPA hydrology unit.  

Due to the highly correlated nature of these variables (e.g. a site located at high altitude 

will likely be located in a smaller, steeper stream with a lower annual discharge, than a site 

located further downstream), principle components analysis (PCA) was used to produce a 

simplified specific index of relative position of each site within the catchment (i.e. the 

extracted first principle component score). 
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 2.2.5  Spatial occurrence and temporal change 
 

To determine spatial distribution and temporal changes for each of the common 

macroinvertebrate families, a binary logistic regression was used.  For each common 

family separately, the detection/non-detection of the family was first regressed on site 

position (first principle component score), sample year and a simple interaction between 

year and site position (year*site position).  If the interaction term did not contribute 

significantly to the regression, it was removed and the detection/non-detection of the 

family was regressed on year and site position.  If either year or site position did not 

contribute significantly, that variable (i.e. year or site position) was removed, and the 

regression of the detection/non-detection of the family was then undertaken using only the 

variable that did contribute significantly to the regression (i.e. only year or site position). 

 

The results from the logistic regression would therefore indicate three things: (1) if the 

family showed a significant spatial distribution pattern (site position) within the catchment, 

(2) if there had been a significant temporal change (year) in the occurrence of a family 

within the catchment and, (3) if the temporal change in family occurrence was significantly 

different at specific positions within the catchment (site position and year interaction). 

 

 2.2.6.  Temporal change associated with simple life 

   characteristics 

 

The regression coefficient of year (not including an interaction) regressed on family 

detection/non-detection in a logistic regression provides an indication of the relationship 

each family has with temporal change (year coefficient).  A relatively large regression 

coefficient associated with year will indicate a relatively rapid change in the occurrence of 

a family within the catchment (i.e. relatively rapid colonisation), while a small coefficient 

would indicate relatively slower colonisation.  To determine whether significant changes in 

the temporal occurrence of a family (i.e. colonisation rate) were related to simple measures 

of life history characteristics, the regression coefficient associated with year was first 

regressed on the revised BMWP score (Walley & Hawkes, 1997) of the family and 

secondly ANOVA was used to test the effect of flight capability (0 = no flight capability, 1 

= capable of flight dispersal).  Families which included aerial dispersal during their life 

cycle (i.e. those for which the adult stages had ability for flight, e.g. Beatidae) were defined 

as having flight capability (i.e. 1).  The remaining families were defined as having no flight 
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capability (i.e. 0).  This is only one mechanism through which freshwater 

macroinvertebrates disperse, many of the families in this study disperse through other 

mechanisms, for example, drifting in the water current (e.g. Gammaridae (Elliot, 2002)) or 

through upstream movements within the watercourse (e.g. Rhyacophilidae (Elliot, 1971). 

 

To conform with the assumptions of normality, the measurements for the site 

characteristics were log transformed (x‟ = log10 (x + 1)) before all analysis.  To account for 

any pseudo-replication associated with repeat site sampling, all regressions included 

sampling site as a random variable.  All statistical analyses were performed using R 

version 2.11.1 (R Development Core Team, 2010). 

 

2.3  Results 

 

 2.3.1  Common macroinvertebrate families from River Clyde 

 

Of the families comprising the BMWP list, 64 were recorded from the River Clyde 

catchment and 42 of these were recorded from a minimum of 15 sites and thus deemed 

common families (Table 2.1). 

 

 2.3.2  Site characteristics PCA 

 

The first principle component from the PCA of natural site variables (PC1) explained 

69.6% of total variance in site characteristics.  Slope and altitude were negatively loaded 

(−0.492 and −0.393 respectively) while distance from source and discharge category were 

positively loaded (0.549 and 0.549 respectively), thus the first principle component 

provided a good index for site location within the catchment.  Sites with low scores were 

generally smaller sized, located at a higher altitude (small upland), while sites with large 

scores were large rivers located at a lower altitude (large lowland). 

 

 2.3.3  Spatial occurrence and temporal change 

 

Using sample year and site position (PC1), individual logistic regressions of the 42 

common macroinvertebrate families produced 34 significant models (Table 2.1).  The 

individual regressions fell into six general categories; (1) a significant temporal change in 

occurrence which differs significantly depending on location within the catchment (i.e. 
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regressions with a significant interaction between sample year and site position); (2) a 

significant increase in occurrence over the study period and significantly higher probability 

of occurrence at large lowland sites (i.e. regressions with both year (positive coefficient) 

and site position (positive coefficient) contributing significantly); (3) a significant increase 

in occurrence over the study period and significantly higher probability of occurrence at 

small upland sites (i.e. regressions with both year (positive coefficient) and site position 

(negative coefficient) contributing significantly); (4) a significant increase in occurrence 

over the study period but no simple spatial distribution (i.e. year only contributing to the 

regression); (5) no significant change in occurrence over the study period, but a significant 

spatial distribution (i.e. site position only contributing to the model); and (6) no significant 

temporal change over the study period and no significant spatial distribution. 

 

Four families had significantly changed their probability of occurrence over the study 

period, and the rate of these changes in occurrence were significantly related to the 

position of the family within the catchment (i.e. situation 1 above; Table 2.1).  Two 

families (Haliplidae and Polycentropodidae), had a significant decrease in their probability 

of occurrence over the study period, and these decreases were significantly higher at larger 

more lowland sites.  Two families (Erpobdellidae and Simuliidae) had significantly 

increased their probability of occurrence over the study period.  Erpobdellidae had a higher 

rate of increase in occurrence in smaller more upland sites and Simuliidae had a higher rate 

of increase in occurrence in larger more lowland sites. 

 

Six families had a significant increase in probability of occurrence over the study period 

and had a higher probability of occurrence in large lowland sites (i.e. situation 2 above; 

Table 2.1). 

 

Thirteen families had a significant increase in probability of occurrence over the study 

period and had a higher probability of occurrence in small upland sites (i.e. situation 3 

above; Table 2.1). 

 

Eight families had a significant increase in probability of occurrence over the study period 

but had no simple spatial relationship (i.e. situation 4; Table 2.1).  The lack of spatial 

relationship is either due to ubiquity throughout sampling sites throughout the catchment 

(e.g. Baetidae, Rhyacophilidae, Tipulidae and Chironomidae are recorded from all sites) or 
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a more complex distribution pattern that does not following the simple description derived 

from the PC1 score. 

 

Three families (Lynmaeidae, Planorbidae and Gyrinidae) showed a significantly higher 

probability of occurrence at large lowland sites but did not show any significant change in 

occurrence over the study period (i.e. situation 5; Table 2.1) 

 

The remaining eight families had no significant simple relationship with spatial occurrence 

(site position) and had not changed the probability of their occurrence over the study 

period (i.e. situation 6 above; Table 2.1) 

 

 2.3.4  Temporal change associated with simple life 

   characteristics 

 

The regression coefficient associated with the year variable (i.e. colonisation rate) showed 

no significant relationship with pollution tolerance (i.e. revised BMWP score) (linear 

regression; p=0.275; Figure 2.1) or flight capability (ANOVA; p=0.158; Figure 2.1). 

 

 
(a) 

 
(b) 

Figure 2.1:  Relationship between colonisation rate (regression coefficient from temporal 

logistic regression) and (a) pollution tolerance and (b) flight capability (0 = no capability 

of flight dispersal; 1 = capable of flight dispersal). 
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Table 2.1: Recorded site frequency (65 sites in total) for the 42 common families, revised BMWP scores and coefficients and significance values from the 

associated logistic regressions.  Spatial distribution is site position (i.e. extracted PC1 scores); temporal change is year; spatio-temporal interaction is the 

interaction term, site position*year.  Significance levels corrected for multiple tests (Bonferroni method, β = α/N); p<0.05=*, p<0.01=**, p<0.001=***. 

          

Family 

Recorded  

Site 

Frequency 

Revised 

BMWP 

Score 

Regression 

Intercept 

Spatial 

Distribution 

(Sig.) 

Temporal 

Change 

(Sig.) 

Spatio-Temporal 

Interaction  

(Sig.) 

          

          

Families showing significant temporal change in their occurrence which differs significantly across the catchment 

          

Haliplidae 52 4.0 73.067 31.303 *** -0.038 *** -0.016 ** 

Polycentropodidae 51 8.6 20.075 28.642 *** -0.011 NS -0.014 *** 

Erpobdellidae 65 5.8 -124.500 -20.210 ** 0.063 *** 0.010 ** 

Simuliidae 63 2.8 -47.206 21.352 ** 0.024 *** -0.010 ** 
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Table 2.1: Continued. 

          

Family 

Recorded  

Site 

Frequency 

Revised 

BMWP 

Score 

Regression 

Intercept 

Spatial 

Distribution 

(Sig.) 

Temporal 

Change 

(Sig.) 

Spatio-Temporal 

Interaction  

(Sig.) 

          

          

Families showing significant increase in temporal occurrence and show increased probability at larger more lowland sites 

          

Planariidae 59 4.2 -56.753 0.192 *** 0.028 ***   

Dendrocoelidae 32 3.1 -56.911 0.735 *** 0.027 ***   

Ancylidae 64 5.6 -88.921 0.227 *** 0.045 ***   

Sphaeriidae 65 3.6 -72.501 0.291 *** 0.037 ***   

Physidae 40 1.8 -52.230 0.562 *** 0.025 ***   

Glossiphoniidae 65 3.1 -43.538 0.492 *** 0.022 ***   

Asellidae 64 2.1 -69.134 0.525 *** 0.035 ***   

Heptageniidae 65 9.8 -120.500 0.189 *** 0.061 ***   

Ephemerellidae 64 7.7 -36.892 0.115 ** 0.018 ***   

Caenidae 57 7.1 -37.236 0.336 *** 0.018 ***   

Elmidae 65 6.4 -91.788 0.164 *** 0.046 ***   

Hydropsychidae 65 6.6 -97.655 0.125 *** 0.049 ***   

Leptoceridae 56 7.8 -196.800 0.406 *** 0.098 ***   
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Table 2.1: Continued. 

          

Family 

Recorded  

Site 

Frequency 

Revised 

BMWP 

Score 

Regression 

Intercept 

Spatial 

Distribution 

(Sig.) 

Temporal 

Change 

(Sig.) 

Spatio-Temporal 

Interaction  

(Sig.) 

          

          

Families showing significant increase in temporal occurrence and show increased probability at smaller more upland sites 

          

Gammaridae 65 4.5 -162.100 -0.184 *** 0.082 ***   

Leptophlebiidae 56 8.9 -94.333 -0.385 *** 0.046 ***   

Perlodidae 54 10.7 -44.268 -0.141 *** 0.022 ***   

Dytiscidae 65 4.8 -60.869 -0.181 *** 0.030 ***   

Hydrophilidae 61 5.1 -112.800 -0.132 * 0.056 ***   

Limnephilidae 64 6.9 -110.600 -0.248 *** 0.055 ***   

          

          

Families showing a significant increase in occurrence over the study period but show no significant simple spatial distribution 

          

Baetidae 65 5.3 -177.955   0.091 ***   

Leuctridae 58 9.9 -111.555   0.056 ***   

Chloroperlidae 42 12.4 -49.171   0.024 **   

Rhyacophilidae 65 8.3 -170.357   0.086 ***   

Hydroptilidae 53 6.7 -246.600   0.122 ***   

Sericostomatidae 58 9.2 -240.800   0.120 ***   

Tipulidae 65 5.5 -58.143   0.029 ***   

Chironomidae 65 3.7 -68.693   0.036 **   
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Table 2.1: Continued. 

          

Family 

Recorded  

Site 

Frequency 

Revised 

BMWP 

Score 

Regression 

Intercept 

Spatial 

Distribution 

(Sig.) 

Temporal 

Change 

(Sig.) 

Spatio-Temporal 

Interaction  

(Sig.) 

          

          

Families showing no significant change in occurrence over the study period but have a significant spatial distribution 

          

Lymnaeidae 65 3.0 0.056 0.351 ***     

Planorbidae 57 2.9 -2.606 0.438 *     

Gyrinidae 28 7.8 -5.015 0.821 *     

          

          

Families showing no significant change in occurrence over the study and no simple spatial distribution 

          

Hydrobiidae 65 3.9        

Oligochaeta 65 3.5        

Taeniopterygidae 53 10.8        

Nemouridae 63 9.1        

Capniidae 28 10.0        

Perlidae 18 12.5        

Corixidae 20 3.7        

Sialidae 36 4.5        
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2.4  Discussion 

 

Significant relationships in both spatial distribution and temporal change in 31 

macroinvertebrate families have been highlighted from this study conducted over a 32 year 

period in the River Clyde.  All of these families, except Haliplidae and Polycentropodidae, 

have shown a significant increase in their probability of occurrence over the 32 year 

period, which is a likely result of the improvements made to the chemical water quality 

within the river system over this period. 

 

The majority (27) of families showed increase in occurrence throughout the catchment 

which was generally similar at all sites (i.e. there was no significant effect of the 

interaction of site position and year).  Two families, Erpobdellidae and Simuliidae, did 

show significant differences in the rates at which their occurrence increased as a result of 

their location within the catchment.  Erpobdellidae and Simuliidae both showed more rapid 

increases in occurrence at smaller more upland sites when compared with larger more 

lowland sites.  The reasons for these site-dependent temporal changes are not clear. 

 

Erpobdellidae are predatory Hirudinea (Moog, 2002) with an ability to withstand poor 

water quality (revised BMWP score is 2.8 (Walley & Hawkes, 1997)).  Against the 

background of general improving water quality within the River Clyde, it is counter 

intuitive that this group are colonising water which is of generally very good quality (pers. 

obs.), where supposition suggests that this group would be out competed for niche space by 

other predatory species better adapted for these cleaner conditions.  A PhD thesis 

undertaken in 1969 (MacPhee, 1969) detailed the limit of Erpobdellidae on the main stem 

of the River Clyde approximately 40km downstream of its detection in 2006 indicating that 

Erpobdellidae have expanded their range on the main stem of the river by 40km over a 37 

year period.  Historically, the factor limiting Erpobdellidae distribution to the lower 

reaches of the river system has changed, allowing invasion of the upper reaches of the 

watercourse where it is now common.  Erpobdellidae within the River Clyde are most 

commonly represented by Erpobdella octoculata and it is this species which is invading 

these cleaner waters (pers. obs.).  E. octoculata is an actively foraging predator (Kreuter et 

al., 2008) which shows some preference for the isopod Asellus aquaticus (Kreuter et al., 

2008).  A. aquaticus have also undergone a range expansion within the River Clyde, and 

have expanded their limit upstream on the main stem (MacPhee, 1969).  It is possible that 
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change within the river system allowing A. aquaticus to expand its range has in turn 

facilitated the range expansion of E. octoculata. 

 

Simuliidae within the River Clyde system are more common in the upper reaches where 

they have shown a significantly higher rate of increase in occurrence compared with larger 

more lowland sites.  Simuliidae are passive filter feeders (Jensen, 1996; Moog, 2002).  

Possible changes to the land management in the upper reaches of the river system may 

have increased the amount of particulate organic matter entering the watercourse, thus 

increasing the available food resource from this family. 

 

Against this background of general water quality improvement, two families, Haliplidae 

and Polycentropodidae, both decreased in occurrence within the River Clyde over the study 

period.  For both families, these decreases were significantly higher at large lowland sites. 

Mature Haliplid larvae perform season migrations to terrestrial overwintering and/or 

pupation sites close to the water‟s edge (Nilsson, 1996).  The reduction of the detection of 

this family has been significantly higher in larger more lowland parts of the catchment, 

where there has been increased development of the riverine corridor as part of urban 

expansion and flood prevention schemes.  It may be likely that the loss of this family has 

arisen as a result of the loss of suitable overwintering and pupation habitats. 

 

Polycentropodidae are predatory net-spinning case less Trichoptera (Edington & Hildrew, 

1995) and the reasons for the reduction in their occurrence within the River Clyde are not 

clear.  Toxic chemicals have been shown to influence the structure of nets spun by another 

Trichopteran, Hydropsyche angustipennis (Petersen & Petersen, 1984) and may be 

influencing nets spun by Polycentropodidae, reducing fitness and contributing to their 

decline.  However, it must be noted that the other net spinning Trichopteran families in this 

study have not shown this decline, including the family Hydropsychidae. 

 

Twenty two families had shown a significant simple spatial relationship within the River 

Clyde.  Six families had a significantly higher probability of occurrence at small upland 

sites and 16 had a significantly higher probability of occurrence at large lowland sites.  

There were some very general patterns within the two groups of families.  The only 

Plecopteran with a significant spatial distribution, Perlodidae, was associated with a higher 

probability of occurrence in small upland sites.  Perlodidae are generally large predators 

requiring clean well oxygenated water (Moog, 2002) which are more commonly found in 



29 
 

 
CHAPTER 2:  Spatial and temporal distribution change 

the upper parts of river catchments.  All Molluscan, Tricladian or Hirudinean groups 

showed a significantly higher probability of occurrence at large lowland sites.  These 

groups are generally associated with slower flows (Moog, 2002) found in lower sections of 

river systems. 

 

Colonisation rate (i.e. the regression coefficient associate with year) showed no significant 

simple relationship with either pollution tolerance or flight capability.  Following the 

improvements to the physico-chemical quality of the water within the river, those families 

with increased dispersal (i.e. capable of flight) should have been able to colonise sites at a 

faster rate.  However, there is considerable variability in flight ability between the families 

in this study (Verberk et el., 2008), so the simple measure of flight capability used here 

may be dampening more subtle effects of dispersal ability.  Furthermore, in this study no 

account has been taken of the contribution of invertebrate drift to the colonisation of sites 

within this study.  Colonisation rate was also not significantly related to the pollution 

tolerance measurement of a family used here.  The pollution tolerance of a family could be 

viewed as its physiological response to prevailing water physico-chemistry, and following 

the changes to water physico-chemistry it is expected that the number of families with low 

tolerance of poor water physico-chemistry will increase.  It is this relationship that forms 

the bedrock of water quality monitoring. 

 

The results from this study have shown that there is no simple relationship between the rate 

at which a family colonises a site and, the dispersal ability and the tolerance of that family 

to changes in water physico-chemistry.  This implies firstly, that a simple colonisation 

trajectory cannot be attributed to dispersal capability (in terms of flight) and water physico-

chemical tolerance and secondly, that the colonisation and establishment of families within 

the community is affected to a greater degree by intrinsic factors. 

 

The reversion of communities impacted by human activity to a more natural state is clearly 

complex.  Classical views of river community recovery from a polluting influence have 

most often followed community development downstream as the polluting influence wanes 

(e.g. Hynes, 1966).  More recently, some studies have attempted to account for temporal 

change but are often conducted over relatively short time frames (Jackson & Füreder, 

2006).  The results from this study have shown that changes in the spatio-temporal 

distribution of macroinvertebrate families following restoration in a river recovering from 

water quality degradation are complicated.  While the majority of families detailed in this 
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study have increased their occurrence over the 32 year period, two families have shown 

significant declines and another has shown counter intuitive spatial changes.  In addition to 

these changes, colonisation rates were shown to be unrelated to both flight capability and 

pollution tolerance.  It is likely therefore, that interactions within the existing community 

are contributing to the successful/unsuccessful colonisation and establishment of additional 

community members. 
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CHAPTER 3  Drivers of community diversity 

 

 

 

 

 

 

 

 

 

 

3.1  Introduction 

 

Freshwater systems, particularly rivers, are now recognised as the most endangered 

ecosystems in the world (Dudgeon et al., 2006; Vörösmarty et al., 2010).  Their importance 

as the largest source of renewable fresh water has, at least in part, driven global efforts to 

restore river systems impacted by human activity (Vörösmarty et al., 2010), although effort 

is highly skewed towards developed regions (e.g. USA and Western Europe) (Vörösmarty 

et al., 2010).  Despite this, there is still only a poor understanding of the processes by 

which animal communities revert to a more natural state, most commonly due to a shortage 

of long-term studies detailing change over biologically meaningful time scales (Jackson & 

Füreder, 2006). 

 

Ecosystem recovery is a response to the removal or modification of a negative influence 

resulting in a positive change towards a more natural state within an ecosystem.  

Understanding the processes by which aquatic ecosystems recover and to what extent 

human induced disturbance and natural drivers influence change is crucial for a targeted 

approach to the rehabilitation of river systems. 

 

There is a good understanding of the natural drivers that influence macroinvertebrate 

community structure.  A simple suite of map derived (e.g. altitude, slope, geographical 

location) and site derived (e.g. substrate composition, river width) measurements have 

been shown to have strong associations with macroinvertebrate community structure.  The 

strengths of these associations provides the basis for modelling which aims to predict 
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„natural‟ community structure at a sampling site (e.g. RIVPACS (UK), Wright et al., 1984; 

PERLA (Czech Republic), Kokeš et al., 2006; AUSRIVS (Australia), Simpson & Norris, 

2000). 

 

Human induced modifications to rivers are less well understood and are most commonly 

associated with negative influences (e.g. land use changes, modifications to the physical 

structure of the river, pollutant inputs and changes to hydrology (Paul & Meyer, 2001; 

Allan, 2004)).  The interconnectivity of human induced modifications; coupled with 

complicated remedial action needed to rectify their negative influence has been highlighted 

by rehabilitation studies from urban (Nienhaus et al., 2002; Suren & McMurtie, 2005) and 

agricultural landscapes (Lorenz et al., 2009).  While there have been some inroads made to 

set standards for successful river rehabilitation projects (Ward et al., 2001; Palmer et al., 

2005), an understanding of the long term relative importance of landscape and local 

influences affecting river communities is key to understanding the recovery process and 

has the ability to inform a targeted approach to stream rehabilitation. 

 

In this study I analysed long-term data (32 years) of freshwater invertebrate communities 

from a large river system recovering from a period of water quality degradation.  I 

specifically attempted to identify local and landscape scale drivers of change in structuring 

the richness of the macroinvertebrate community and quantify the magnitude of the effects. 

 

3.2  Methods 

 

 3.2.1  Study area 

 

The River Clyde is located in west central Scotland (between Lat: 56
o
 N & 55

o
 30‟ N and 

Long: 004
o
 73‟ W & 003

o
 55‟ W).  The catchment covers an area of 3,125 km

2
 with a total 

river length of 4,165 km and 26 km
2
 of freshwater lochs and reservoirs.  Land use in the 

catchment is dominated by agriculture (45%) and natural and semi-natural habitats (37%) 

with urban land use comprising 18%, the remaining 1% being lochs and reservoirs.  

Although urban land use does not dominate, in 2006, 31% (1.6M) of the total population of 

Scotland lived within the catchment (General Register Office for Scotland Report, 2007).  

With a history of heavy industry, the River Clyde has been described in the past as one of 

the worst polluted river basins in Britain (Hammerton, 1986). 
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 3.2.2  Invertebrate community composition 

 

Invertebrate community samples were collected from 59 sites (N = 2971; mean annual 

number of samples per site = 2 ± 0.02 S.E.), providing a broad spatial coverage within the 

catchment (Figure 3.1), using a standard kick-sampling method, during routine water 

quality monitoring by the Scottish Environment Protection Agency (SEPA) and its 

predecessor organisations between 1975 and 2006 (years 1991-1994 data were missing due 

to loss of records).  Community richness was determined from the list of 82 

macroinvertebrate families (not including Aphelocheridae, Brachycentridae, Goeridae, 

Lepidostomatidae, Odontoceridae, Psychimyiidae and Valvatidae, due to taxonomic and 

recording issues at the start of the study period) which are recorded as part of the BMWP 

system (Armitage et al., 1983) used to assess running water quality in Great Britain.  Using 

data at the taxonomic resolution provided by family from the constrained BMWP taxon list 

to determine community richness has been proven as a highly significant (r = 0.854, p < 

0.0001) representation of species richness found at running water sites in Great Britain 

(Wright et al., 1998). 

 

 3.2.3  Site characteristics 

 

For each site a number of characteristics were measured (Table 3.1). 

 

  3.2.3.1 Natural site characteristics 

 

Natural site characteristics (i.e. those which have shown strong associations with the 

prediction of macroinvertebrate fauna in models like RIVPACS (Wright et al., 1984)); 

distance from the river source (km), altitude (m), slope (m km
-1

) were all derived from 

1:50,000 scale Ordnance Survey maps using the methods detailed by Murray-Bligh et al. 

(1997) and; discharge category (Murray-Bligh et al., 1997), which provides a site specific 

measure of average annual discharge in cubic metres per second (m
3
 s

-1
), was provided by 

the SEPA hydrology unit (Table 3.2).  
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Figure 3.1:  Location of the 59 sites at which invertebrate data were collected (2971 

samples).  The size of the dot is relative to the mean number of samples collected at the 

associated water chemistry site in the year preceding the invertebrate sample collection. 

 

  3.2.3.2 Land use characteristics 

 

Land use characteristics for the watershed catchment upstream of the sampling site, were 

extracted from the CORINE Land Cover 1990 (CLC1990) dataset (EEA, 1990) using 

ArcGIS 9.2 (ESRI, 2007). 

 

  3.2.3.3 Physico-chemistry characteristics 

 

Water physico-chemistry at the invertebrate sampling sites was derived from existing data 

collected by SEPA throughout the River Clyde since 1961.  Routinely, 10 components of 

water chemistry were analysed and recorded (Table 3.1).  As physico-chemistry samples 

were rarely collected at the same location as the biotic sample, sites were paired based 

upon their proximity along the water course.  Each invertebrate sampling site was paired 

with a chemistry sampling site located within a mean distance of 1km (± 2km standard 

deviation) up- or downstream and with no ingress of a major tributary between paired sites. 
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The frequency of samples collected at water chemistry sampling sites showed some spatial 

differences (Figure 3.1), with many of the sampling sites in the upper part of the catchment 

having a lower mean sampling effort.  Each of the 60 water chemistry sampling records 

was inspected for systematic monthly and/or annual bias in the sampling time series.  For 

each site, an x-y plot of month on year was created and the date (month & year) of each 

sampling occasion plotted (Figure 3.2).  A visual inspection of the x-y plot for each of the 

water chemistry sites showed no systematic trend in the sample collection time series. 

 

Generally the water physico-chemistry within the River Clyde has improved over the study 

period (Figure 3.2) however, the highly correlated nature of these measured results in 

complex relationships which are difficult to disentangle  (Figure 3.3). 

 

As most of the freshwater invertebrate families here analysed have an annual life cycle 

and, are therefore likely to be influenced by historic changes in water physico-chemistry, a 

mean for each of the 10 chemical measures was calculated for the year preceding the 

collection of each invertebrate sample.  This provided a measure of the average value for 

water physico-chemistry in the year prior to a specific invertebrate community sample.  

While this measure may not encapsulate the entire influence changing water physico-

chemistry has on community structure, an annual average measurement is likely to provide 

a better indication of water chemistry change than a point measurement. 

 

 3.2.4  Statistical methods 

 

To identify and quantify the underlying determinants driving spatio-temporal variation in 

community taxon richness, a combination of principal components analysis (PCA) and 

linear regression was used. 

 

  3.2.4.1 Environmental drivers of community richness 

 

Explanatory spatial variables were grouped according to the environmental element to 

which they were related; natural site characteristics, upstream land use or water physico-

chemistry (Table 3.1).  Due to the highly correlated nature of the spatial explanatory 

variables (e.g. a site located at high altitude will likely be located in a smaller, steeper 

stream with a lower annual discharge, than a site located further downstream), PCA was 

used to produce an index which best described variation within these three environmental 
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elements.  For each of the three environmental elements separately, a PCA was undertaken 

and the values of the first principal component score (i.e. the one explaining the most 

amount of variation) were extracted, thus each sample had a unique measurement of 

natural site characteristic, upstream land use and water physico-chemistry.  To determine 

the unique relationship change community richness had, sample community richness was 

then regressed on these scores in three separate linear regressions. 

 

 

Figure 3.2:  Example of typical temporal sampling patterns at two water chemistry sites; 

(a) mean annual sampling frequency = 5, (b) mean annual sampling frequency = 11. 

 

  3.2.4.2 Temporal change 

 

To account for temporal change in the macroinvertebrate community within the River 

Clyde, community richness (sample richness), sample BMWP score, and sample ASPT 

score were separately regressed on sample year.  To account for temporal change in water 

physico-chemistry, the first principal component from the PCA was regressed on year. 

 

  

 

(a) 

 

(b) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

 
(j) 

 

 

Figure 3.3:  Temporal change in mean physico-chemical metrics measured from the River 

Clyde (1975 to 2006); (a) suspended solids (mg L
-1

); (b) pH; (c) alkalinity (mg L
-1

); (d) 

dissolved oxygen (mg L
-1

); (e) biochemical oxygen demand (mg L
-1

); (f) ammonia (mg L
-

1
); (g) nitrite (mg L

-1
); (h) nitrate (mg L

-1
); (i) ortho-phosphate (mg L

-1
); (j) chloride (mg L

-

1
).  All metrics are significantly (p<0.001) correlated (Spearman method) with year, except 

alkalinity and chloride. 
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  3.2.4.3 Univariate relationship with community richness 

 

To determine the unique relationship each variable and community richness had, each of 

the 19 explanatory variables were regressed on community richness separately. 

 

  3.2.4.4 Community richness change within the River Clyde 

 

For each of the 19 environmental variables which had a significant relationship with 

community richness, the regression equation explaining the relationship was used to 

calculate community richness change over the range of variables (minimum to maximum) 

for that environmental variable recorded from the River Clyde (Table 3.1).  For example, 

dissolved oxygen values over the 32 year period within the River Clyde varied from 6.23 

to 21.7 mg L
-1

.  This range was then used to calculate the change in community richness 

associated with this change in dissolved oxygen.  Thus, for the range of each 

environmental variable the resultant relative change in community richness could be 

quantified. 

 

To conform with the assumptions of normality, where appropriate, data were transformed 

(see Table 3.1 for details) before all analysis.  To account for any pseudo-replication 

associated with repeat site sampling, all linear regressions included sampling site as a 

random variable.  All statistical analyses were performed using R version 2.11.1 (R 

Development Core Team, 2010). 

 

3.3  Results 

 

 3.3.1  Environmental elements defined by PCA 

 

  3.3.1.1 Natural site variables PCA 

 

The first principal component from the PCA of natural site variables explained 71.2% of 

total variance in natural site characteristics.  Slope and altitude were negatively loaded 

while distance from source and discharge category were positively loaded (Table 3.1).  

Thus the first principal component provided a good index of where a site was located 

within the catchment.  Sites with large negative PC1 scores were low discharge, close to 

the source of the river, at high altitude with high slope, while sites with large positive 
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loadings were large rivers, with low slope, located at lower altitude far from the river 

source. 

 

  3.3.1.2 Upstream land use variables PCA 

 

The first principal component from the PCA of upstream land use variables explained 

51.6% of total variance in upstream land use.  Urban and agricultural land use had negative 

loadings while semi-natural, natural and open water land use had positive loadings (Table 

3.1), thus the first principal component provided a good index of the degree to which land 

upstream of a sampling site retained natural characteristics.  Sites associated with large 

negative loadings had more developed land use (i.e. increased urban and agricultural land), 

while sites with large positive loadings had more naturalised land use (i.e. semi- natural 

and natural land types). 

 

  3.3.1.2 Water physico-chemistry variables PCA 

 

The first principal component from the PCA of water chemistry variables explained 51.9% 

of total variance in site associated water physico-chemistry.  All variables, except 

dissolved oxygen, had negative loadings (dissolved oxygen was positively loaded) (Table 

3.1).  The first principal component thus provided a good general index of water physico-

chemistry, with a large negative value associated with poorer water quality (e.g. high 

nitrates, high suspended solids, high BOD (biochemical oxygen demand), low dissolved 

oxygen) and a large positive value associated with better water quality (e.g. higher 

dissolved oxygen, lower suspended solids). 

 

 3.3.2  Environmental elements relationship with community 

   richness 

 

All three separate regressions of the environmental elements on community richness were 

significant (Table 3.2).  Water physico-chemistry had a highly significant (p < 0.001) 

positive relationship with community richness, indicating that with increasing water 

quality the macroinvertebrate community became richer.  Upstream land use had a 

significant positive relationship with community richness, indicating that increasing 

amounts of semi-natural and natural land use upstream increased community richness.  

Natural site characteristics had a significant negative relationship with community 
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richness, indicating that community richness was significantly higher at large lowland sites 

compared to small upland sites. 

 

 3.3.3  Temporal change in the macroinvertebrate community 

   and environmental elements 

 

The linear regression of community richness on year produced a highly significant (F(1,2969) 

= 487; p < 0.001) linear relationship (community richness = 0.19 ( ± 0.01) * Year – 365.35 

(± 13.53) (± 1 S.E.)), which equated to a gain of 6 families to the River Clyde 

macroinvertebrate community over the 32 year study period (Figure 3.4).  The linear 

regression of BMWP score and ASPT on year were both highly significant positive 

relationships (BMWP, F(1,2969) = 583.8, p < 0.001; ASPT, F(1,2969) = 313.1, p<0.001; Figure 

3.3).  The linear regression of water physico-chemistry on year was a highly significant 

(F(1,2969) = 260, p < 0.001) positive relationship indicating that, using my index of water 

physico-chemistry, water quality within the River Clyde has improved significantly over 

the 32 year period (Figure 3.4). 

 

 3.3.4  Univariate community richness relationships 

 

  3.3.4.1 Natural site characteristics 

 

Slope, distance from source and discharge category were significant in predicting 

community richness within the River Clyde catchment.  Slope showed a significant 

negative relationship, while distance from source and discharge category had significant 

positive relationships with community richness (Table 3.1).  Altitude did not have a 

significant linear relationship with community richness. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.4:  Temporal relationship and significant linear regression of (a) community 

richness; (b) BMWP score; (c) ASPT; and (d) principal component index (PC1) of water 

physico-chemistry, in the River Clyde between 1975 and 2006 (1991 to 1994 data 

missing). 

 

  3.3.4.2 Upstream land use 

 

All land use types, except agricultural land use, had a significant univariate relationship 

with community richness (Table 3.1).  The area of upstream semi-natural, natural and open 

water land use had significant positive relationship with community richness while the area 

of upstream urban land use had a significant negative relationship (Table 3.1). 

 

  3.3.4.3 Water physico-chemistry 

 

Eight water physico-chemistry variables had a significant relationship with community 

richness (Table 3.1).  Six (BOD, ammonia, suspended solids, ortho-phosphate, nitrite and 

nitrate) had a significant negative relationship with community richness, and two (pH and 

dissolved oxygen) had a positive relationship (Table 3.1). 
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Table 3.1:  Variables used in this study grouped by environmental elements.  Range is the minimum and maximum value of the variable recorded from the 

River Clyde within the 32 year study period; transformation refers to the data transformation used (log = log10(x+1) and arcsin = arcsin(√x)); PC1 loading are 

the variable loadings from the first principal component from each environmental element PCA; regression results are the regression coefficients and 

significance from the linear regression of community richness on the explanatory variable (only significant regressions are detailed).  Community change is 

the loss (negative) or gain (positive) in community richness associated with the explanatory variable range recorded from the River Clyde (e.g. increasing 

BOD from 0.58 to 20.42 mg L
-1

 results in the loss of 15.6 families from the macroinvertebrate community). 

         
Model Variables Units 

Range 

(min-max) 
Trans. 

PC1 

Loading 

Regression Results Community 

Change Beta Intercept Sig. 

         

         

Natural site characteristics      

         

Discharge Category * (units) 1-9 log 0.550 6.100 11.812 0.0129 4.3 

Distance from Source (km) 4.9-123.4 log 0.540 3.143 11.812 0.0341 4.2 

Slope (m km
-1

) 0.6-26.3 log -0.506 -3.402 18.129 0.0163 -4.2 

Altitude (m) 2-169 log -0.388     

         
* Discharge category ranges (m

3
s

-1
): Category 1<0.31; 2=0.31-0.62; 3=0.62-1.25; 4=1.25-2.5; 5=2.5-5.0; 6=5-10; 7=10-20; 8=20-40; 9=40-80
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Table 3.1: Continued. 

         
Model Variables Units 

Range 

(min-max) 
Trans. 

PC1 

Loading 

Regression Results Community 

Change Beta Intercept Sig. 

         

         

Upstream land use       

         

Semi-Natural (% cover) 0-87 arcsin 0.502 4.952 14.091 0.0070 6.0 

Natural (% cover) 0-50 arcsin 0.488 5.227 13.886 0.0328 4.1 

Urban (% cover) 0-92 arcsin -0.472 -7.266 18.448 <0.0001 -9.3 

Agricultural (% cover) 3-87 arcsin -0.413     

Open Water (% cover) 0-9 arcsin 0.341 16.471 14.753 0.0073 0.6 

         

         

Physico-chemistry         

         

Ammonia (mg L
-1

) 0.01-12.37 log -0.375 -12.873 18.113 <0.0001 -14.4 

BOD (mg L
-1

) 0.58-20.42 log -0.325 -13.818 24.337 <0.0001 -15.6 

Nitrite (mg L
-1

) 0.002-0.933 log -0.370 -45.743 17.280 <0.0001 -13.1 

ortho-Phosphate (mg L
-1

) 0.002-5.350 log -0.346 -17.489 17.415 <0.0001 -14.0 

Suspended Solids (mg L
-1

) 1.04-146.5 log -0.260 -5.601 21.924 <0.0001 -10.4 

Nitrate (mg L
-1

) 0.083-9.65 log -0.328 -11.089 20.207 <0.0001 -11.0 

pH (units) 6.64-9.08 log -0.147 134.041 -108.895 <0.0001 16.1 

Dissolved Oxygen (mg L
-1

) 6.23-21.7 log 0.279 32.665 -18.545 <0.0001 16.2 

Chloride (mg L
-1

) 6.8-285.87 log -0.352     

Alkalinity (mg L
-1

) 13.83-318.33 log -0.315     
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Table 3.2:  Results from the individual regressions of community richness on the three 

environmental elements. 

     
Environmental Element Beta  Intercept t-statistic Sig. 

     

     

Water physico-chemistry 1.529 15.827 24.364 <0.0001 

Upstream land use 0.899 15.929 3.693 0.0005 

Natural site characteristics -0.666 15.974 -2.578 0.0125 

     
 

 3.3.5  Community richness change within the River Clyde 

 

In total, 15 of the original 19 explanatory variables were significant in predicting variation 

in community richness within the River Clyde.  The change in community richness 

associated with these 15 relationships was calculated for the range of associated recorded 

values from the River Clyde using the regression equation (Table 3.1).  The largest gain to 

the macroinvertebrate community was 16.2 families associated with increasing dissolved 

oxygen from 6.23 to 21.7 mgL
-1

 and the largest loss was 15.6 families associated with 

increasing BOD from 0.58 to 20.42 mgL
-1

. 

 

3.4  Discussion 

 

Clear and distinct drivers of community richness have been shown from the River Clyde 

over the 32 year study period.  The effects of water physico-chemistry, land use and natural 

site characteristics all show significant relationships with macroinvertebrate community 

richness.  The correlation of these variables makes quantifying their differential effects a 

complicated process.  Most of the variables used in this study are common metrics 

measured as part of the process to assess the ecological state of running water.  By using a 

combination of principal components analysis and linear regression I have attempted to 

quantify the influence of each variable in structuring macroinvertebrate community 

richness. My results highlight the relative importance of these drivers in structuring 

community richness in the River Clyde system over a 32 year period, but individual results 

must not be viewed in isolation. 

 

The drivers detailed in this study show variation in their spatial and temporal scale, which 

reflected their relative influence in determining community richness variation. Water 

physico-chemistry was the strongest driver, compared with upstream land use and natural 

site characteristics.  Water physico-chemistry varies spatially and over short time frames 
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(this is particularly pronounced in a river recovering from a period of water quality 

degradation).  Conversely, upstream land use and natural site characteristics show less 

temporal variation.  Characteristics like slope and altitude remain constant over millennia, 

and upstream land use can remain relatively constant for years.   

 

 3.4.1  Water physico-chemistry 

 

Principal components analysis of the 10 water chemistry measurements, taken in the year 

preceding the macroinvertebrate sample, highlighted the correlation between variables 

commonly used to define physico-chemical water quality.  Principal component one 

provided a biologically relevant index for water quality (i.e. negative loadings associated 

with BOD, ammonia nitrate etc and positive loading associated with dissolved oxygen) 

with increasingly negative PC1 scores indicative of poorer water quality.  The relationship 

between this index for water quality and macroinvertebrate community richness was highly 

significant and, although no direct comparison can be made between this relationship and 

the other two environmental elements (i.e. upstream land use and natural site 

characteristics), the strength of the relationship (i.e. p < 0.0001) suggests that, of the 

environmental elements analysed here, water quality is likely to be more important in 

explaining variation and driving change in macroinvertebrate community richness. 

 

Reductions in the amount of ammonia, nitrite and nitrate within the River Clyde accounted 

for individual gains of 14.4, 13.1 and 11 families to the macroinvertebrate community.  

Increasing concentrations of nitrogen based compounds, like ammonia, have been shown 

to reduce macroinvertebrate abundance (Versteeg et al., 1999) and affect macroinvertebrate 

community structure, with higher concentrations of ammonia and nitrate leading to 

dominance by a few species (Maul et al., 2004; Hichman & Lotfi, 2007).  Decreasing BOD 

within the river system also showed a significant negative relationship with community 

richness.  Within the River Clyde a decrease in BOD from 20.42 mgL
-1

 to 0.58 mgL
-1

 

accounted for an increase of 15.6 families to the macroinvertebrate community.  Ortho-

phosphate, suspended solids, pH (of the range measured here) and dissolved oxygen also 

showed significant relationships in structuring community richness.   
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 3.4.2  Upstream land use 

 

The first principal components score of the PCA of the five upstream land use types 

provided an intuitive index for upstream land use type.  Negative values of PC score 1 

were associated with upstream land use dominated by increasingly developed land (i.e. 

agricultural and urbanised land), while positive values were associated with more 

naturalised land use (i.e. semi-natural, natural and open water).  Macroinvertebrate 

community richness was significantly higher at sites which were dominated by more 

naturalised upstream land use compared to those sites with increased upstream 

modification. 

 

This relationship was reflected in the univariate analysis of the upstream land use types, 

with urban land use showing a highly significant negative relationship with community 

richness and, semi-natural, natural and open water each having a significant positive 

relationship with community richness.  Although only accounting for 18% of the total 

landuse type within the catchment, upstream urban land use had the strongest relationship 

(p<0.0001) with community richness change.  The overarching influence of this land use 

type was calculated to account for the loss of 9.3 families from the macroinvertebrate 

community if upstream urbanised land increased from 0 to 92%, roughly equating to a loss 

of one family for every 10% increased in urbanised land.  Urban land-use affects 

macroinvertebrate communities, through modifications to almost all conceivable aspects of 

the surrounding landscape and watercourse.  Alteration of the riparian zone in urban 

environments can result in more erratic hydrology caused by runoff over impervious 

substrates, modifications to the instream habitat through sediment inputs and 

channelisation, and restricted interactions at aquatic and terrestrial margins (Paul & Meyer, 

2001; Allan, 2004). 

 

Increased upstream semi-natural land use significantly increased macroinvertebrate 

community richness.  Semi-natural land use within the River Clyde catchment is 

dominated by natural grasslands (79% of semi-natural land use) and coniferous forest 

(18%).  Generally, semi-natural grasslands within the catchment are used as rough grazing 

for sheep, which may result in slight nutrient enrichment increasing productivity.  The 

positive relationship between coniferous forest and stream macroinvertebrate richness does 

not follow usual trend where this type of forestry has been reported to have a negative 

impact on richness (e.g. Ormerod et al., 1993).  However, in the areas of the River Clyde 
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where there is managed forestry, generally plantations have followed Forestry Commission 

guidelines (Forests & Water Guidelines, 2003) by employing a buffer zone of planted 

native deciduous trees.  It is likely that these buffer zones have increased the coarse 

particulate organic matter through leaf litter which has been shown to have a positive effect 

on community richness through resource provision in terms of food (Wallace et al., 1997) 

and case building materials (Eggert & Wallace, 2003).  .  Natural land use within the 

catchment is dominated by moors and heath (95% of total natural land use) which soil type 

in most commonly peat in the River Clyde catchment which has shown here to have a 

significant positive relationship with community richness. 

 

 3.4.3  Natural site characteristics 

 

The first PC score from the PCA of natural site characteristics provided an index for the 

location of a site within the catchment.  Negative scores were associated with small sites 

located at higher altitude (small upland), while positive scores were associated with larger 

sites at lower altitude (large lowland).  PC1 showed a positive relationship with community 

richness, with large lowland sites having significantly higher community richness than 

those sites located in small upland parts of the catchment.  Of the natural site 

characteristics discharge category, distance from the river source and slope were significant 

drivers in the prediction of community richness change.  Increasing discharge category and 

distance from the river source significantly increased community richness.  Both of these 

characteristics are a good surrogate for river size, with increasing discharge category and 

distance from source corresponding to increasing width and depth, which have been shown 

to have a positive correlation with family richness (Wright et al., 1998).  With increasing 

river size it is likely that there is an increase in the number of micro- and macro-habitats 

available, thus allowing a greater number of species to be supported.  Other studies have 

shown that discharge category is important in structuring macroinvertebrate communities 

(Wright et al., 1984; Murphy & Davy-Bowker, 2005). Increasing slope significantly 

reduced community richness which has been highlighted before (Wright et al., 1998).   
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 3.4.4  Temporal change in community richness 

 

Over the 32 year study period community richness in the River Clyde has increased on 

average by the addition of 6 families (0.18 families yr
-1

) to the macroinvertebrate 

community.  Other documented recovery times vary from less than a few months in 

response to flood disturbance, to recovery times in excess of 52 years as a result of 

channelisation (Niemi et al., 1990), however direct comparison here with published 

recovery times is difficult due to variations in sampling methods, biotic metrics quantified 

and the endpoints of recovery selected. 

 

Within the River Clyde there has been a significant improvement in the water quality, as 

revealed from the regression of water physico-chemistry PC1 score on year.  As, of the 

three environmental elements, water quality had the strongest relationship with community 

richness change, it is therefore likely that the significant temporal change in 

macroinvertebrate community richness is dominated by improvements made to water 

quality within the catchment. 

 

By using a spatially and temporally extensive dataset, I have been able to quantify the 

effects of various environmental drivers in changing macroinvertebrate community 

richness.  The highly complex interacting nature of these variables results in the reporting 

of only general patterns.  I recognise that the relationships detailed here are River Clyde 

specific; however the provision of results from a long-term study of a recovering river 

system is rare and providing results which can be interpreted for other study areas is key to 

further our understanding of restoration ecology, a relatively new area of scientific study. 
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CHAPTER 4  Do shifting dynamics of disturbed 

    riverine invertebrate communities 

    prevent them achieving a ‘pristine’ 

    condition? 

 

 

 

 

 

 

 

4.1  Introduction 

 

Freshwater systems, particularly rivers are now recognised as the most endangered 

ecosystems in the world (Dudgeon et al., 2006; Vörösmarty et al., 2010).  Their importance 

as the largest source of renewable fresh water has at least in part driven global efforts to 

restore river systems impacted by human activity (Vörösmarty et al., 2010), although effort 

is highly skewed towards developed regions (e.g. USA and Western Europe) (Vörösmarty 

et al., 2010). 

 

The restoration and recovery of disturbed systems is a complex process influenced by 

multiple deterministic and stochastic factors.  The dispersal abilities and proximity of 

colonising populations will influence colonisation patterns (Palmer, 1996; Sutherland, 

1974; Urban & De Meester, 2009).  The type of disturbance can influence habitat and 

resource availability through changes to the habitat as a direct result of the disturbance (e.g. 

catastrophic flood event) or change the resource availability (e.g. fire affecting soil 

nutrients).  These and many other factors constitute the ecological history of a community 

which has been shown to influence the endpoint structure of reassembled communities 

(Fukami & Morin, 2003; Ledger et al., 2006). 

 

Currently, the assessment of the degree to which a system has been disturbed often 

involves a comparison of current community composition to either a historic reference or a 

perceived ideal (Salagdo et al., 2010; Szkokan-Emilson et al., 2010).  Given recent insights 
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into the role that ecological history plays in shaping contemporary community 

composition, it is likely to be over-simplistic to use historic or perceived reference points 

as a bench mark against which to measure community recovery. 

 

One widely used model of impact assessment is the reference condition approach used to 

assess the biological quality of running waters.  Pioneered by Wright et al. (1984), the 

RIVPACS (River InVertebrate Prediction and Classification System) software approach 

has provided a template for water quality assessment which is now used worldwide 

(AUSRIVAS (Australia), Davies 2000; BEAST (North America), Reynoldson el al., 2000; 

SEPACSRI (Sweden), Davy-Bowker et al., 2006; PERLA (Czech Republic), Kokeš et al., 

2006).  RIVPACS software generates a list of „target‟ fauna based on a small suite of 

environmental characteristics (e.g. site distance from the source of the river, altitude, slope) 

which have been shown to be highly significant in predicting with good accuracy the 

macroinvertebrate community composition at a site free from human mediated impact 

(Wright et al., 1984).  The target fauna are listed as probabilities of capture at a site and 

these probabilities are used to generate biotic indices.  These predicted biotic indices are 

then compared to those calculated from the collected sample and, deviations from unity are 

frequently reported as a measure of the current biological state of a stretch of river.  

Deviation from predicted community composition does provide a suitable assessment of 

the degree to which the community at a site has been impacted, but is this deviation 

suitable to assess the degree of recovery of a community following disturbance? 

 

In this study I tested the validity of RIVPACS v.III+ (Clarke et al., 2005) predictions in a 

large river system recovering from a period of water quality degradation.  Using long-term 

data, I tested whether recovering communities are likely to attain a composition similar to 

the „target‟ composition predicted by RIVPACS. 

 

4.2  Methods 
 

To test the likelihood that recovering communities attain a composition similar to the 

„target‟ composition predicted by RIVPACS we used data on freshwater invertebrate 

community composition collected from a large river (catchment area = 3,125 km
2
), the 

River Clyde (Lat: 56
o
 N & 55

o
 30 N and Long: 004

o
 73W & 003

o
 55W) between 1975 and 

2006.  The River Clyde is recovering from a period of water quality degradation and its 
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invertebrate communities show a general increase in diversity.  However, significant 

differences occur between sites in the rate of change in community diversity. 

 

Invertebrate community samples were collected from 65 sites (N = 3446; mean annual 

number collected per site = 2 ± 0.02 S.E.), using a standard kick-sampling method, during 

routine water quality monitoring by the Scottish Environment Protection Agency (SEPA) 

and its predecessor organisations.  Community richness was determined from the list of 82 

macroinvertebrate families (not including Aphelocheridae, Brachycentridae, Goeridae, 

Lepidostomatidae, Odontoceridae, Psychimyiidae and Valvatidae, due to taxonomic and 

recording issues at the start of the study period) that are recorded as part of the BMWP 

system (Armitage et al., 1983) which is used to assess running water quality in Great 

Britain.  Using data at the taxonomic resolution provided by families from the constrained 

BMWP taxon list to determine community richness has been proven as a highly significant 

(r = 0.854, p < 0.0001) representation of species richness found at running water sites in 

Great Britain (Wright et al., 1998). 

 

 4.2.1  Common macroinvertebrate families in the River Clyde 

 

To determine which families typified the community composition of the River Clyde 

catchment and to avoid including those families which appeared in collected samples only 

sporadically, the number of sites at which each family had been recorded in the River 

Clyde was determined.  Only those families which had been recorded at a minimum of 15 

of the 65 sites were determined as suitable representatives of the River Clyde 

macroinvertebrate community. 

 

 4.2.2  Definition of site recovery 

 

To determine which sites were recovering, the annual rate of change in family richness was 

calculated using linear regression.  Number of families recorded in a sample was regressed 

on sampleyear for each site separately providing a site specific measurement of annual rate 

of change in family richness.  Those sites showing a significant (Bonferroni corrected) 

increase in family richness were determined to be recovering. 
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 4.2.3  Site community composition in 2006 

 

Each family‟s presence or absence was recorded for each of the 65 sites throughout the 32 

year period.  The start date of monitoring varied between sites with the majority (50 sites) 

starting in 1975 and 1976, and the latest starting in 1979 (8 sites).  Monitoring then 

continued until 2006 (years 1991-1994 data were missing due to loss of records), for all 

sites except two where monitoring ceased in 2003 and 2005.  To determine the probability 

of occurrence of the common macroinvertebrate families at a site in 2006 and to reduce the 

stochastic effect of variation in the detection of a family at a site, the presence/absence of a 

family was regressed on year in a logistic regression (Figure 4.1).  This provided a 

measurement of the probability of occurrence for each of the common families in the River 

Clyde for each of the 65 sites. 

  

Figure 4.1:  Probability of occurrence of families Asellidae and Nemouridae from one of 

the sites on the River Clyde.  Using the logistic regression, the probability of occurrence of 

the families is 82.6% and 16.7% respectively in 2006. 

 

 4.2.4. ‘Target’ community composition 

 

For all sites showing a significant change in family richness (i.e. undergoing recovery) the 

„target‟ community was predicted using RIVPACS III+ software (Clarke et al., 2005).  

Measurements of the environmental variables taken in 2006 in two sampling seasons 

defined as spring (February-May) and autumn (September-January) were used to predict 

the probability of capture of each family at a site in the absence of stress.  At each site 

separately, the probability of capture of each family was averaged for the two seasons to 

provide a site specific measurement of the probability of capture for each of the most 
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common families (those recorded at a minimum of 15 of the 65 sites) found in the River 

Clyde in 2006. 

 

 4.2.5. Comparison of community composition 

 

To determine the likelihood of RIVPACS predicting a suitable „target‟ macroinvertebrate 

composition for the River Clyde, for each of the common families individually, the 

probability of capture at a site (as determined from RIVPACS software) was paired with 

the probability of occurrence at a site (as determined from the logistic regression).  Paired 

t-tests were used to test the statistical difference between the predicted probability of 

capture (RIVPACS predictions) and the observed probability of occurrence (logistic 

regression results) for each of the common families separately.  To conform to the 

assumptions of normality, data were arcsine transformed (x‟=arcsine√x) before statistical 

testing. 

 

All statistical analysis was performed using R version 2.11.1 (R Development Core Team, 

2010). 

 

4.3  Results 

 

 4.3.1  Common macroinvertebrate families from River Clyde 

 

Of the families comprising the BMWP list, 64 were recorded from the River Clyde 

catchment and 42 of these were recorded from a minimum of 15 sites and thus deemed 

common families (Table 4.1).   

 

 4.3.2  Definition of site recovery 

 

Linear regressions of number of families recorded on year for each of the 65 sites in this 

study indicated 37 sites which had shown a significant (Bonferroni corrected) change in the 

number of macroinvertebrate families recorded over the 32 year period.  The rate of change 

in number of families ranged from an increase of 0.143 families per year to 0.545 families 

per year. 
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Table 4.1:  Mean of all sites (± 1 standard error), minimum and maximum, probability of 

occurrence (site logistic regression results) and probability of capture (RIVPACS 

predictions) for the 42 common macroinvertebrate families in the River Clyde between 

1975 and 2006. 

       

Family 

Probability of occurrence (Site) Probability of capture (RIVPACS) 

Mean  

(± S.E.) 
Min. Max. 

Mean 

(± S.E.) 
Min. Max. 

       
       
Ancylidae 80.6 (3.3) 0.0 100.0 67.5 (1.4) 46.9 80.0 

Asellidae 69.2 (5.8) 0.0 100.0 26.8 (2.5) 4.3 52.0 

Baetidae 99.3 (0.5) 83.3 100.0 97.8 (0.2) 94.6 99.4 

Caenidae 32.6 (5.1) 0.0 98.7 55.9 (3.6) 20.3 83.4 

Capniidae 4.1 (1.1) 0.0 27.8 4.0 (0.3) 0.0 7.5 

Chironomidae 94.0 (1.4) 62.7 100.0 96.3 (0.3) 93.8 98.9 

Chloroperlidae 21.9 (3.9) 0.0 76.4 30.0 (2.4) 8.8 59.6 

Corixidae 1.8 (0.8) 0.0 17.1 3.9 (0.3) 1.3 9.4 

Dendrocoelidae 16.7 (4.5) 0.0 97.5 6.3 (1.0) 0.1 30.7 

Dytiscidae 36.2 (4.2) 0.0 83.6 34.9 (1.8) 26.9 98.1 

Elmidae 80.1 (4.4) 0.6 100.0 96.5 (2.2) 16.3 99.7 

Ephemerellidae 38.3 (3.1) 5.3 95.2 31.0 (1.1) 13.1 41.9 

Erpobdellidae 72.8 (5.1) 0.0 100.0 44.2 (3.3) 11.7 75.0 

Gammaridae 93.4 (1.6) 57.6 100.0 82.6 (2.5) 11.2 96.5 

Glossiphonidae 50.1 (4.7) 0.2 98.8 42.2 (2.8) 7.8 65.3 

Gyrinidae 15.6 (4.8) 0.0 100.0 32.4 (2.5) 3.4 62.0 

Haliplidae 5.9 (2.3) 0.0 79.7 17.8 (2.3) 1.9 87.8 

Heptageniidae 90.5 (3.2) 11.2 100.0 87.9 (1.9) 27.0 97.8 

Hydrobiidae 67.1 (4.3) 0.4 99.6 59.3 (2.5) 25.6 76.8 

Hydrophilidae 29.1 (4.2) 0.0 82.1 45.9 (1.4) 31.1 81.4 

Hydropsychidae 81.8 (3.9) 6.8 99.9 90.1 (2.1) 17.5 96.5 

Hydroptilidae 28.0 (4.0) 0.0 86.5 26.6 (1.9) 5.9 41.3 

Leptoceridae 38.4 (5.5) 0.0 100.0 30.4 (2.5) 4.7 60.5 

Leptophlebiidae 37.2 (5.4) 0.0 95.4 25.8 (1.8) 13.1 82.5 

Leuctridae 55.6 (5.0) 0.0 97.8 59.1 (2.3) 36.6 84.3 

Limnephilidae 57.7 (4.3) 0.0 100.0 61.3 (3.0) 24.6 86.6 

Lymnaeidae 53.9 (4.3) 9.8 100.0 43.8 (2.3) 27.0 91.0 

Nemouridae 33.8 (3.9) 0.0 85.6 71.6 (2.2) 42.6 96.5 

Oligochaeta 96.9 (1.0) 74.4 100.0 95.6 (1.7) 36.5 98.9 

Perlidae 0.3 (0.2) 0.0 4.3 30.4 (2.3) 10.5 80.4 

Perlodidae 38.8 (4.9) 0.0 100.0 69.4 (2.1) 1.7 82.5 

Physidae 20.6 (4.2) 0.0 82.1 9.4 (1.4) 1.5 46.8 

Planariidae 53.0 (6.2) 0.0 100.0 44.7 (1.5) 0.8 55.3 

Planorbidae 17.8 (4.0) 0.0 98.1 11.1 (1.7) 0.8 52.0 

Polycentropidae 27.7 (4.8) 0.0 100.0 48.5 (1.5) 30.4 89.6 

Rhyacophilidae 88.7 (2.7) 26.0 100.0 86.9 (1.2) 53.5 93.7 

Sericostomatidae 57.5 (5.3) 0.0 100.0 49.4 (1.5) 7.4 61.9 

Sialidae 6.0 (2.7) 0.0 100.0 8.2 (1.9) 2.8 73.3 

Simuliidae 84.8 (1.9) 58.3 100.0 80.3 (2.2) 6.0 90.2 

Sphaeriidae 76.2 (2.9) 34.7 99.2 52.2 (2.2) 26.0 74.9 

Taeniopterygidae 15.3 (2.6) 0.0 44.8 30.2 (0.8) 15.3 38.9 

Tipulidae 66.5 (4.0) 7.9 100.0 82.8 (0.8) 70.6 89.5 
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 4.3.4.  Site community composition in 2006 
 

For each of the 42 common families recorded from the River Clyde, the probability of 

occurrence for each family was calculated for each of the 37 sites showing a significant 

change in family richness.  Each family showed a large range (0% to 100%) in probability 

of occurrence at a site (Table 4.1).   

 
 4.3.5  ‘Target’ community composition 
 

For the 37 sites showing a significant change in family richness, the RIVPACS „target‟ 

community composition was produced based on the 2006 physical and environmental data.  

For the 42 common families recorded from the River Clyde, RIVPACS predictions for the 

probability ranged from 0% to 100.0% (Table 4.1). 

 

 4.3.6  Comparison of community composition 

 

Paired t-tests revealed significant differences between the proportional probability of 

occurrence (logistic regression) and the probability of capture (RIVPACS predictions) for 

17 of the 42 common families in the River Clyde (Table 4.2). 

 

Six families (Sphaeridae, Asellidae, Baetidae, Gammaridae, Erpobdellidae and Ancylidae) 

had significantly higher probability of occurrence at a site than that predicted by RIVPACS 

software.  Eleven families (Perlidae, Nemouridae, Corixidae, Taeniopterygidae, Haliplidae, 

Perlodidae, Gyrinidae, Hydrophilidae, Caenidae, Chloroperlidae and Polycentropodidae) 

had significantly lower probability of occurrence at a site than the probability of capture 

predicted by RIVPACS (Table 4.2).  

 

A t-test of the BMWP score for those families with a lower observed probability of 

occurrence than predicted by RIVPACS was significantly (p = 0.003) higher (mean 7.4) 

than those with an higher observed probability of occurrence than predicted by RIVPACS 

(mean 4.2), thus indicating that RIVPACS was generally over-predicting pollution 

intolerant families and under predicting pollution tolerant families. 
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Table 4.2:  p-value after Bonferroni correction (parenthesis) and BMWP score of family 

(square brackets) for macroinvertebrate families showing a statistically significant 

difference between site probability of occurrence and RIVPACS predicted probability of 

capture. 

  Higher probability at a site than 

RIVPACS predictions 

Lower probability at a site than 

RIVPACS predictions 

  

      

Sphaeridae 

Asellidae 

Baetidae 

Gammaridae 

Erpobdellidae 

Ancylidae 

(<0.001) 

(<0.001) 

(<0.001) 

(<0.001) 

(<0.05) 

(<0.05) 

[3] 

[3] 

[4] 

[6] 

[3] 

[6] 

Perlidae 

Nemouridae 

Corixidae 

Taeniopterygidae 

Haliplidae 

Perlodidae 

Gyrinidae 

Hydrophilidae 

Caenidae 

Chloroperlidae 

Polycentropodidae 

(<0.001) 

(<0.001) 

(<0.001) 

(<0.001) 

(<0.001) 

(<0.001) 

(<0.01) 

(<0.01) 

(<0.01) 

(<0.05) 

(<0.05) 

[10] 

[7] 

[5] 

[10] 

[5] 

[10] 

[5] 

[5] 

[7] 

[10] 

[7] 

      
 

4.4  Discussion 

 

Using only family groups which are known to be common in the River Clyde catchment I 

have shown that there are significant discrepancies between the macroinvertebrate fauna at 

recovering sites within the River Clyde compared with predictions of occurrence of „target‟ 

fauna for these sites using RIVPACS III+ software.  RIVPACS over predicted the 

probability of occurrence of eleven families in recovering sites (compared with the 

observed probability of occurrence) and significantly under predicted for six families.  For 

25 families there was no significant difference between observed and predicted family 

occurrence probability.  Thus, the application of a simple comparison of a RIVPACS 

prediction of community composition with a collected sample would likely, significantly 

underestimate the actual recovery of that site in terms of BMWP score.  Those families 

which had a higher probability of occurrence at a site than that predicted by RIVPACS 

were relatively pollution tolerant (BMWP score ranged from 3 to 6), while those with a 

lower probability of occurrence at a site than that predicted by RIVPACS were relatively 

less pollution tolerant. 

 

There are several possible mechanisms that may explain this pattern of results.  During the 

period of water quality degradation, community composition would have been dominated 

by pollution tolerant families (the basis of pollution indices).  Following improvements to 
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water quality, the pollution tolerant families resident in the community may influence 

endpoint community composition by occupying niches which, under more „natural‟ 

conditions, would be occupied by other less pollution tolerant families.  For example, the 

pollution tolerant family Asellidae in the River Clyde is represented by Asellus aquaticus.  

Food items for this isopod are diverse and include resource gathering via shredding, 

grazing, detrivorous, xylophagous and predatory feeding mechanisms (Moog, 2002).  

Initially the ability of this species to withstand poor water quality would have given it a 

competitive advantage and allowed it to persist.  Following improvements to water quality, 

the diverse feeding strategies may have enabled A. aquaticus to occupy niche space, which 

would under more „natural‟ conditions be occupied by other species (for example those 

families over predicted by RIVPACS software). 

 

It is also likely that families over represented by RIVPACS predictions may have been 

unable to invade and establish within a community following water quality improvements 

as niche space under improved water quality conditions may now be occupied by other 

families adopting a similar niche space which recolonised first.  For example, niche space 

for the active predatory family Perlidae may now be occupied by another actively foraging 

predator, like Rhyacophilidae (Elliott, 2005) or Erpobdellidae (Kreuter et al., 2008).  Both 

Rhyacophilidae and Erpobdellidae are more tolerant of poor water quality than is the 

family Perlidae, possibly allowing them to establish within a community before water 

quality recovers enough to support Perlidae. 

 

Fundamental changes to the landscape may also be hindering the colonisation and 

establishment of some groups as a result of increased urbanisation (Smith et al., 2009).  For 

example, the presence of road culverts along river stretches has been shown to affect the 

upstream dispersal abilities of Trichoptera (Blakely et al., 2006).  Changes to the physical 

structure of the river, in terms of riparian vegetation, substrate structure and flow 

modifications (Allan, 2004; Paul & Meyer, 2001), may be hindering the re-colonisation of 

some groups resulting in their over-prediction by the RIVPACS model. 

 

Invasive species may also be influencing the disparity between site community 

composition and RIVPACS predictions.  The over prediction of Gammaridae may be a 

result of the presence of the invasive North American freshwater amphipod Crangonxy 

pseudogracilis which is now widespread throughout the River Clyde catchment (pers. 

obs.).  This invasive amphipod has been shown to tolerate complementary and contrasting 
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physico-chemical regimes to the native G. pulex (MacNeil et al., 2000) possibly expanding 

the riverine distribution of the family Gammaridae in the River Clyde.  This expanded 

distribution may result in increased detection rates of this family at sites which, under 

pristine (i.e. non-invaded) conditions would not support Gammaridae to the same degree. 

 

The disparity between site observations and RIVPACS predictions may have serious 

implications for the assessment of recovery in running water systems.  The results from the 

2006 survey undertaken by SEPA (Scottish Environment Protection Agency) at the sites 

used in this study show that 18 of the 37 sites in this study have achieved „excellent‟ status 

in terms of taxon richness.  Of these 18 sites however, 16 were downgraded as a result of 

lower than predicted Average Score Per Taxon (ASPT).  The ASPT is the average family 

pollution score for the sample (i.e. the BMWP score divided by number of scoring taxa), 

thus downgrading the community as a result of low average score suggested that the 

community may have recovered in terms of richness but is showing a significantly 

different community composition than that expected if the site had not been subjected to 

poor water quality.  It is therefore likely that a large investment would be required to return 

community composition to that of the perceived ideal as it may involve culling certain 

species to allow others to re-establish (Persson et al., 2007). 

 

The use of community traits and functionality has been suggested previously as a more 

accurate bio-monitoring assessment tool (Doledec et al., 1999).  However it may be 

possible to resolve the disparity between RIVPACS predictions and contemporary 

community composition by readdressing the balance between the taxonomic and functional 

response of the recovering community, by changing the current banding for richness and 

ASPT categories.  This is therefore likely to produce a more accurate assessment of 

community recovery using existing assessment mechanisms. 
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CHAPTER 5  Resource use of an invading predator 

    is predicted by colonisation patterns 

 

 

 

 

 

 

 

 

 

5.1  Introduction 

 

Understanding the rules that govern community assembly is becoming increasingly 

important.  Management of new species invasions, shifts in conservation direction from 

maintaining pristine to rehabilitating disturbed habitats and global efforts to restore 

damaged ecosystems all require an understanding of how communities are formed.  

Resource competition within a community is a fundamental mechanism involved in 

community structure and function.  Much recent research has focussed on the effect 

invasive (i.e. non-native) species have on the invaded community (Ehrenfeld, 2010) and 

resultant resource competition with native species (Olsson et al., 2009; Suding et al., 

2004).  Restoration ecology has also provided some insights into the effects of resource 

competition but research in this field is mostly focused onplant communities.  Here too, 

research into resource utilisation most often involves manipulating the interaction between 

invasive and native species as part of the recovery process (e.g. MacDougall & Turkington, 

2005; but see Baer et al., 2004).  Mechanisms governing resource use in a community 

reforming from a native species pool and subject to natural processes are less well 

understood. 

 

The utilisation of resources following colonisation and establishment within a community 

has implications for both the coloniser and the colonised community.  A colonising 

organism can affect community resource utilisation through multiple pathways.  For 

example, direct competition for resources (Amarasekare, 2002; Maron & Marler, 2008; 
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Baer et al., 2004) competition for physical space (Erladsson et al., 2006) and changes to 

the physical habitat following colonisation (Kilronomos, 2002) can influence the quality 

and quantity of resources available and can ultimately effect ecosystem function (e.g. 

Persson et al., 2007). 

 

The influence of the community on the resources used by the colonising species has 

implications for the future functioning of the community.  Resource use affects the growth 

and reproduction of an organism (Naya et al., 2007; Browne et al., 2006) and its offspring 

(Kyneb & Toft, 2006), which may ultimately affect community functionality.  Resource 

usage of colonising organisms may therefore provide insight into the future functionality of 

recovering or invaded communities. 

 

Stable isotope analysis has provided a powerful tool to analyse the resource use of animals.  

Variation in the stable isotopes of nitrogen and carbon in tissue provides insights into long 

term diet as 
15

N and 
13

C isotopes are enriched relative to 
14

N and 
12

C isotopes, in consumer 

tissue compared to the resource consumed (DeNiro & Epstein, 1978; DeNiro & Epstein 

1981).  On average, the 
15

N/
14

N ratio increases by 3-4 ‰ (Post, 2002) per trophic level, 

while 
13

C/
12

C has a relatively smaller fractionation, increasing on average by 0.5-1‰ per 

trophic level (Post, 2002).  Change in nitrogen isotope enrichment is frequently used to 

identify trophic position, while carbon isotopic enrichment is used to identify the utilised 

carbon source.  Nitrogen and carbon stable isotope ratios can provide information about the 

long term resource utilisation of individual animals. 

 

Rhyacophila dorsalis is a predatory Trichopteran (Moog, 2002) and, when present in 

riverine macroinvertebrate communities, is indicative of good water quality.  Resource use 

of R. dorsalis within a river recovering from a period of water quality degradation may 

provide some insights into mechanisms governing community assembly.  Using stable 

isotope ratios of resident and re-colonising R. dorsalis populations, here I investigated 

differences in resource utilisation between these two population types and attributed 

resource use differences to colonisation patterns.  Specifically, I investigated whether 

competition, the richness of the colonised community, the rate at which colonisation 

proceeded and the time elapsed since colonisation, affected the resultant resource use of 

this colonising predator. 
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5.2  Methods 

 

 5.2.1  Study area and site selection 

 

The River Clyde is located in West Central Scotland (between Lat: 56
o
 N & 55

o
 30‟ N and 

Long: 004
o
 73‟ W & 003

o
 55‟ W).  The catchment covers an area of 3,125 km

2
 with a total 

river length of 4,165 km and 26 km
2
 of freshwater lochs and reservoirs.  Landuse in the 

catchment is dominated by agriculture (45%) and natural and semi-natural habitats (37%) 

with urban landuse comprising 18%, the remaining 1% being lochs and reservoirs.  

Although urban landuse does not dominate, in 2006, 31% (1.6M) of the total population of 

Scotland lived within the catchment (General Register Office for Scotland Report, 2007).  

The River Clyde has been described in the past as one of the worst polluted river basins in 

Britain (Hammerton, 1986), but has in recent decades shown a marked improvement in 

water quality as a result of restoration efforts. 

 

Sampling sites were chosen based on the presence of Rhyacophilidae in historic 

macroinvertebrate monitoring records collected between 1975 and 2006 by the Scottish 

Environmental Protection Agency (SEPA) and its predecessor organisations.  Sites at 

which Rhyacophilidae had been recorded throughout the 32 year period (i.e. the 

Rhyacophilid population had always been resident) were defined as „resident sites‟.  Sites 

at which Rhyacophilidae had been initially absent or only recorded very occasionally in the 

monitoring records time series and then, had subsequently recolonised the site (i.e. in later 

years Rhyacophilidae were consistently recorded at the site) were defined as „colonisation 

sites‟.  Using these criteria, 5 „resident sites‟ and 7 „colonisation sites‟ were identified 

(Figure 5.1).  Rhyacophilidae in the River Clyde are almost exclusively represented by 

Rhyacophila dorsalis (Curtis). 

 

 5.2.2  Colonisation patterns 

 

Rhyacophilidae colonisation patterns at the 7 colonisation sites were determined using 

historic detection/non-detection records.  To reduce the stochastic variation in the detection 

of Rhyacophilidae at a site, Rhyacophilidae detection/non-detection was regressed 

separately on both year and community richness using logistic regression (Figure 5.2).  

Community richness was defined as the number of macroinvertebrate Families recorded in 

each sample as determined from the list of 82 macroinvertebrate Families recorded as part 
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of the BMWP system (not including Aphelocheridae, Brachycentridae, Goeridae, 

Lepidostomatidae, Odontoceridae, Psychimyiidae and Valvatidae, due to taxonomic and 

recording issues at the start of the study period) (Armitage et al., 1983).  In the regressions 

of Rhyacophilidae occurrence on year and on community richness, Rhyacophilidae were 

defined as colonising a site when the probability of detection was 50%.  Using this 50% 

detection probability from these two regressions, three site (i.e. community) specific 

measurements of colonisation pattern were defined. 

 

 

Figure 5.1:  Location of the 5 resident (circles) and 7 colonising (crosses) populations of 

Rhyacophila dorsalis in the River Clyde. 

 

Firstly, from the logistic regression of Rhyacophilidae detection/non-detection on year, the 

rate at which Rhyacophilidae had colonised the community was measured as the regression 

coefficient.  Secondly, from the same logistic regression, the time elapsed since 

colonisation was defined as the time between the 50% probability of detection of 

Rhyacophilidae at a site and the sample collection in October 2009.  Finally, from the 

regression of Rhyacophilidae detection/non-detection on community richness, the 
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community richness of the site at which Rhyacophilidae colonised (i.e. 50% probability of 

detection) was determined. 

 

 
(a) 

 
(b) 

Figure 5.2:  Colonisation pattern of Rhyacophilidae at site CWC071I.  From the 

regression of Rhyacophilidae detection/non-detection on (a) year, the rate of colonisation 

(i.e. the regression coefficient) was 0.277, and the year in which there was a 50% (i.e. 0.5) 

probability of detection was 1990.9 (November 1990).  From the regression of 

Rhyacophilidae on (b) community richness, the 50% probability of detection was when the 

community had a richness of 14.1 Families. 

 

A simple measurement of competition was also determined from the historic records.  

Using the same logistic regression method, detection/non-detection records for other 

Families recorded at a site were individually regressed on year.  Those Families with a 

greater than, or equal to 50% probability of occurrence in the year at which 

Rhyacophilidae had colonised the site, were defined as being established members of the 

community at the point of Rhyacophilidae colonisation.  The functional feeding groups of 

these established community members were defined as per Moog (2002) and the number 

of other predatory Families at the time of Rhyacophilidae colonisation was determined, 

and provided a simple measurement of competition. 

 

 5.2.3  Stable isotope analysis 

 

Stable isotope analysis was used to establish resource utilisation in both resident and 

colonising populations of R. dorsalis.  In October 2009, 10 final instar R. dorsalis 

individuals were collected by kick-sampling using a 500 μm pond net at each of the 5 
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resident and 7 colonisation sites.  To account for differences in basal nitrogen and carbon 

at each site (basal nitrogen and carbon have been shown to vary between sites (e.g. Dekar 

et al., 2009)), 10 individual Heptageniidae (scraper Ephemeropterans, Moog (1990)) were 

also collected from each site, to provide a measure of nitrogen and carbon signatures at this 

trophic position (Andersen & Cabanna, 2007). 

 

For stable isotope analysis, R. dorsalis and the Heptageniidae samples were dried in an 

oven at 40
o
C to constant weight.  Head capsules of the animals were removed and weighed 

into tin caps.  Isotopic analysis of carbon and nitrogen were carried out at the NERC Life 

Sciences Mass Spectrometry Facility, East Kilbride, Scotland, by continuous flow isotope 

ratio mass spectrometry (CF-IRMS), using a Costech ECS 4010 elemental analyser 

interfaced with a ThermoFisher Scientific Delta XPPlus IRMS.  Stable isotopes are 

expressed conventionally as parts per thousand (‰) delta values (δ
13

C and δ
15

N), in 

relation to the international standards for carbon (PeeDee Belemnite) and nitrogen 

(atmospheric nitrogen).  Precision, obtained from replicate analyses of internal gelatin 

standards was 0.13 ‰ (carbon) and 0.11 ‰ (nitrogen).   

 

 5.2.4  Isotopic baseline corrections 

 

As basal resources have been shown to vary considerably in their δ
15

N and δ
13

C 

measurements between sites (e.g. Dekar et al., 2009), I corrected for these differences 

before analysis.  To determine the trophic position (TP) of both resident and colonising R. 

dorsalis, corrections to the δ
15

N were calculated using the following equation 

recommended by Anderson & Cabana (2007): 

 

2
4.3

NN
TP baseline

15

RD

15













 
  

 

Where; TP = trophic position of either resident or colonising R. dorsalis, i.e. the corrected 

value of δ
15

N; δ
15

NRD = the measured N isotopic ratio of resident or colonising R. dorsalis; 

δ
15

Nbaseline = the isotopic N ratio of primary consumers; 3.4 = one trophic level 

fractionation increment of δ
15

N (Post (2002); 2 = is the trophic position of the organism 

used to estimate the baseline (i.e. a primary consumer, here Heptageniidae).  δ
15

Nbaseline 

was calculated using the mean nitrogen signals from primary consumers of the Family 
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Heptageniidae.  Members of the Family Heptageniidae are algal scrapers, which have been 

shown to be effective as a measurement of baseline δ
15

N (Andersen & Cabanna, 2007). 

 

Basal carbon resources were corrected by the following method: 

 

mean

13

RD

13 CCCcorr   

 

Where: Ccorr = the corrected carbon signature of either resident or colonising R. dorsalis; 

δ
13

CRD = the carbon isotope signal of either resident or colonising R. dorsalis; δ
13

Cmean = is 

the mean primary consumer (Heptageniidae) carbon isotope signal.   

 

Niche width (NW) was determined at the catchment scale (all sites combined) and at the 

population level (individual sites) for resident and colonising R. dorsalis using corrected 

δ
15

N (TP) and δ
13

C (Ccorr) values.  NW was calculated as the area encompassed by the 

smallest polygon containing all the individuals from each population (individual sites) and 

all the individuals of resident or colonising R. dorsalis (resident or colonising sites 

combined) in δ
15

N and δ
13

C niche space (Layman et al., 2007).  The area of each niche 

width polygon was calculated using ArcGIS (ESRI, 2007). 

 

 5.2.5  Statistical analysis 

 

Differences between trophic position (TP), carbon signature (Ccorr) and niche width (NW) 

between resident and colonising populations of R. dorsalis were tested with ANOVA and 

variance ratio tests.  To explore further whether TP, Ccorr or NW were affected by 

colonisation patterns (i.e. colonisation rate, time since colonisation, community richness at 

colonisation and competition) a combination of non-parametric (Spearman‟s rank 

correlation) and parametric (linear regression) was employed.  Spearman‟s correlations 

initially established whether a real relationship existed between the independent (TP, Ccorr 

and NW) and dependent variables (colonisation patterns).  Significant correlations were 

investigated further with individual linear regressions, with each independent variable (TP, 

Ccorr or NW) regressed separately.  All statistical analyses were performed using SPSS 

version 13.0 (SPSS, 2004). 
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5.3  Results 

 

 5.3.1  Colonisation patterns 

 

Colonisation patterns of Rhyacophilidae varied between sites (Table 5.1).   

 

The coefficient from the logistic regression of Rhyacophilidae detection/non-detection on 

year, at each site, ranged from 0.147 to 0.277 and provided a measure of the rate at which 

Rhyacophilidae colonised a site.  The value of the coefficient is an abstract number, but is 

indicative of colonisation rate, with a small number equating to a relatively slower 

colonisation compared to a high number indicative of a faster colonisation rate.  For 

example, the site with the largest regression coefficient (ie the fastest colonisation rate) 

was CWC071I (regression coefficient = 0.277).  Using the regression equation from this 

site it took 7.9 years for the probability of detection of Rhyacophilidae to increase from 

25% to 75%.  At the site with the slowest colonisation rate (i.e. smallest regression 

coefficient), CRC020I (regression coefficient = 0.147), the time taken for Rhyacophilidae 

detection to increase from 25% to 75% was 15 years, almost twice that of site CWC071I.  

From the same regressions (i.e. Rhyacophilidae detection/non-detection on year) the time 

elapsed since colonisation (i.e. number of years since 50% probability of detection and 

sampling date in October 2009) range from 6.2 to 21.2 years.  From the regressions of 

Rhyacophilidae detection/non-detection on community richness at each site, the 

community richness at which Rhyacophilidae colonised a site (i.e. 50% probability of 

detection) ranged from a community richness of 10.8 to 19.5 Families present at 

colonisation (Table 5.1).  The simple measurement of competition at each site ranged from 

the presence of 0 to 7 predatory Families established within the community (i.e. greater 

than or equal to 50% probability of detection in the year at which Rhyacophilidae had also 

a 50% probability of detection) range from 0 to 7 predatory Families present (Table 5.1). 
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Table 5.1:  Regression coefficients from the logistic regressions of Rhyacophilidae detection/non-detection on year and community richness and 

the associated colonisation pattern measurements.  Time elapsed is the time between the 50% probability of detection of Rhyacophilidae at a site 

and the sample collection in October 2009; richness is the community richness of the site at which Rhyacophilidae colonised (i.e. 50% probability 

of detection); competition is the number of other predatory Families at the time of Rhyacophilidae colonisation.  The logistic regressions take the 

form y = 1 / (1+ ℮ 
−(β0 + β1x)

). 

         

Site 
Year Community Richness 

Rate 
Time 

Elapsed 
Richness Competition 

β0 β1 β0 β1 

         

         

CKE026I -519.120 0.259 -10.028 0.5131 0.259 6.2 19.5 7 

CNC004I -519.3143 0.261 -8.088 0.6072 0.261 14.3 13.3 2 

CRC020I -291.609 0.147 -3.222 0.2997 0.147 20.6 10.8 0 

CSC010I -400.508 0.200 -7.634 0.5279 0.200 11.7 14.5 5 

CSC013I -323.810 0.163 -5.607 0.3526 0.163 18.6 15.9 5 

CWC025I -533.742 0.268 -4.055 0.25515 0.268 21.2 15.9 4 

CWC071I -551.531 0.277 -8.271 0.5862 0.277 18.9 14.1 1 
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 5.3.2  Organisms 

 

R. dorsalis individuals collected from all the sites belonged to instar 5 (head width range 

1.06-1.39mm; mean=1.21±0.08 (St Dev)), apart from two animals collected at one site that 

were instar 4 (head capsule width 0.73 & 0.77mm) (Elliot, 1968).  Ten R. dorsalis 

individuals were collected from each site (3 samples were lost during processing, thus 

reducing sample size to 9 and 8 for site CWC025I and site CWC071I respectively). 

 

At each site 10 Heptageniidae were collected (apart from at site CSC010I where only 5 

were collected).  Of the Heptageniidae collected; at 7 sites the animals collected were all 

Ecdyonurus spp., at 2 sites the animals collected were Rhithrogena semicolorata and at one 

site both Ecdyonurus spp. and Rhithrogena semicolorata were collected.  At the site where 

both species of Heptageniidae were present, 10 Ecdyonurus spp. and 10 Rhithrogena 

semicolorata were collected (i.e. 20 individual Heptageniidae in total).  By collecting both 

species from this site I could establish whether significant differences existed when using 

different species to correct for basal ranges of δ
15

N and δ
13

C. 

 

 5.3.3  Isotopic baseline corrections 

 

To ensure that the corrections for basal δ
15

N and δ
13

C did not differ according to the 

species used for baseline (i.e. differences between Ecdyonurus spp. and R. semicolorata), 

at the site where both species were present, the δ
15

N and δ
13

C ranges for Ecdyonurus spp. 

and R. semicolorata were compared using ANOVA.  Significant differences (ANOVA; p < 

0.001, F(2,18)=36.475) were present in the δ
15

N of the two species, however no significant 

differences were detected between the δ
13

C values.  As differences in δ
15

N would affect the 

baseline corrections for the trophic position (TP) of R. dorsalis, at the two sites where only 

R. semicolorata was collected, TP of R. dorsalis at these sites was adjusted to account for 

this difference.  At the site where both Ecdyonurus spp. and R. semicolorata were present, 

TP of R.dorsalis calculated using R. semicolorata was 0.66 higher than TP calculated using 

Ecdyonurus spp..  At the two sites where R. semicolorata was used to correct δ
15

N the 

trophic position of R. dorsalis was thus reduced by 0.66.  
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 5.3.4  Statistical analysis 

 

  5.3.4.1 Colonising and resident population differences 

 

The total niche width (NW) of colonising R. dorsalis (all sites combined; NWcolonising = 

100.20) was 1.7 times that of the total niche width of resident R. dorsalis (NWresident 

=56.58) (Figure 5.3).  At the population (site) level NW ranged from 1.11 to 19.24 for 

resident populations and from 2.71 to 26.76 for colonising populations (Table 5.2).  There 

was no significant difference in mean niche width between resident and colonising 

populations (ANOVA; p = 0.885, F(1,10) = 0.022) and there was no significant difference in 

the variance of niche width between resident and colonising populations (variance ratio F-

test; p > 0.05; F(6,4) = 1.471). 

 

Across all sites, the trophic position of resident R. dorsalis ranged from 1.42 to 2.97 (mean 

= 1.95 ± 0.60 (S.E.)) and for colonising sites trophic position ranged from 0.83 to 3.33 

(mean = 2.02 ± 0.84 (S.E.)) (Table 5.2).  There was no significant difference in the mean 

trophic position (ANOVA; p = 0.502, F(1,115) = 0.453) but colonising populations had a 

significantly higher variance in trophic position than resident populations (F-test; p < 

0.001, F(66,49) = 2.641).  Colonising and resident populations were on average utilising the 

same trophic position, but the variation in trophic position was significantly different 

between the two population types. 

 

Across all sites, the Ccorr for resident R. dorsalis ranged from −2.33 to −1.03 (mean = -

0.45 ± 0.19 (S.E.)) and range from −3.08 to 3.41 (mean = 0.35 ± 0.16 (S.E.)) for colonising 

populations (Table 5.2).  The difference in the mean Ccorr between colonising and resident 

populations was significantly different (ANOVA; p = 0.001, F(1,115) = 11.104).  There was 

no significant difference in the variance of Ccorr between colonising and resident 

population of R. dorsalis (variance ration F-test; p > 0.05, F(49,66) = 1.072).  Thus 

colonising populations of R. dorsalis, were on average using a more enriched carbon 

source than resident populations, however the variation in the carbon source used between 

the colonising and resident populations was similar.   
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Figure 5.3:  Total niche widths (polygon areas) at the species level using calculated 

trophic position and carbon range (corrected stable isotope ratios of δ
15

N and δ
13

C 

respectively) for resident (open shapes, light grey, NWresident =56.58) and colonising (solid 

shapes, dark grey, NWcolonising = 100.20) R. dorsalis.  Different shapes represent different 

populations (sites). 

 

  5.3.4.2 Colonisation patterns and trophic position 

 

Non-parametric correlations and linear regressions revealed significant relationships 

between trophic position occupied and colonisation patterns of R. dorsalis populations 

(Table 5.3; Figure 5.4). 

 

Richness of the community at colonisation significantly influenced the trophic position 

occupied by R. dorsalis (Table 5.3, Figure 5.4a).  R. dorsalis colonising a relatively 

impoverished community (i.e. low community richness) occupied a significantly higher 

trophic position when compared to R. dorsalis populations which had colonised relatively 

rich (i.e. higher community richness) communities.  
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Table 5.2:  Mean corrected isotopic values and niche width for resident and colonising 

populations of R. dorsalis.  TP (trophic position) is the corrected δ
15

N value; Ccorr is the 

corrected δ
13

C value; NW is niche width (see text for explanation); numbers in parenthesis 

are standard deviation. 

     

  TP Ccorr NW 

     

     

Resident Populations 

 
  

CCL017I  1.55 (0.14) -1.73 (1.39) 9.25 

CDN007I  1.50 (0.21) -0.72 (1.70) 19.24 

CGY017I  2.14 (0.09) 0.54 (0.29) 1.11 

CKE022I  2.08 (0.32) -0.69 (0.67) 12.18 

CRC017I  2.45 (0.28) 0.37 (0.43) 7.18 

     

Colonising Populations 

 
  

CKE026I  1.28 (0.26) -0.26 (1.75) 26.76 

CNC004I  2.39 (0.42) 1.23 (0.30) 6.22 

CRC020I  2.30 (0.19) 0.10 (0.80) 8.02 

CSC010I  1.32 (0.27) -0.38 (0.41) 5.24 

CSC013I  2.96 (0.31) -0.61 (0.52) 5.58 

CWC025I  1.30 (0.17) 2.36 (0.88) 7.52 

CWC071I  2.47 (0.09) 0.44 (0.65) 2.71 

     

 

The number of predatory Families present in the community at the time of colonisation (i.e. 

my measure of competition) significantly influenced the trophic position occupied by R. 

dorsalis (Table 5.3, Figure 5.4b).  Trophic position occupied by R. dorsalis populations 

which had colonised a community with a relatively low number of previously established 

predatory Families, was significantly higher than that occupied by R. dorsalis populations 

which had colonised a community with a relatively higher number of previously 

established predatory Families.  The linear regression of trophic position on number of 

predatory Families provides a simple measurement of the effect increasing competition has 

on the resultant trophic position occupied by colonising populations of R. dorsalis.  Using 

this equation, by increasing the number of predatory Families present from 0 present to 7 

present, the trophic position occupied by R. dorsalis decreased by approximately 1 (0.94) 

level.  
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Table 5.3:  Results from the significant Spearman correlations and individual linear 

regressions of trophic position on four colonisation variables. 

        

  Correlation Results Regression Results 

  p-value ρ p-value r
2

adj coefficient intercept 

        

        

Richness  0.002 -0.366 0.001 0.156 -0.111 3.667 

Competition  0.001 -0.390 <0.001 0.204 -0.136 2.484 

        

 

 
(a) 

 
(b) 

Figure 5.4:  Significant linear relationships between trophic positions occupied by 

colonising populations of Rhyacophila dorsalis and (a) richness of the colonised 

community; (b) number of established predatory Families in the community (different 

symbols represent different populations (sites)). 

 

  5.3.4.3  Colonisation patterns and carbon range 

 

Non-parametric correlations and linear regressions revealed significant relationships 

between carbon source and colonisation patterns of R. dorsalis populations (Table 5.4; 

Figure 5.5).  The rate at which R. dorsalis colonised a site was significantly related to the 

carbon source utilised (Table 5.4; Figure 5.5a).  R. dorsalis with rapid colonisation rates 

were utilising a more enriched δ
13

C source than those populations with slower colonisation 

rates. 

 

The time that had elapsed since R. dorsalis colonisation significantly influenced the carbon 

source utilised (Table 5.4; Figure 5.5b).  Populations of R. dorsalis which had been 

established for a relatively long time were utilising a significantly more enriched δ
13

C 

source when compared to those populations which had only recently colonised a site. 



73 
 

 
CHAPTER 5: Resource use and colonisation patterns 

 

Table 5.4:  Results from the significant Spearman correlations and individual linear 

regressions of carbon range (Ccorr) position on three colonisation variables.  The linear 

relationship between Ccorr and competition is not significant at the p < 0.05 level but does 

indicate a trend (i.e. p < 0.10). 

        

  Correlation Results Regression Results 

  p-value ρ p-value r
2

adj coefficient intercept 

        

        

Rate  <0.001 0.477 <0.001 0.172 10.723 -2.037 

Time Elapsed  <0.001 0.574 0.001 0.135 0.094 -1.191 

Competition  0.006 -0.330 0.064 0.037 -0.122 0.772 

        

 

The relationship between carbon range and the number of predatory Families established in 

the community at the time of R. dorsalis colonisation was not significant as a simple linear 

relationship (Table 5.4).  Further investigation of the relationship between Ccorr and 

number of predatory Families was significant as a second order function (quadratic; p = 

0.004, r
2
 = 0.157) function (Figure 5.5c).  The relationship between enriched δ

13
C source 

use and the measurement of competition used in this study is clearly complex. 

 

5.4  Discussion 

 

Clear and consistent patterns in the mechanisms controlling resource utilisation of a 

coloniser have been shown.  At the catchment level (i.e. all sites combined), colonising R. 

dorsalis had a larger niche width when compared to that of resident R. dorsalis.  A 

difference in niche width following colonisation is often attributed to an increased 

competitive plasticity of the colonising species for resources, to my knowledge this has 

only been demonstrated with invasive species (e.g. Olsson et al., 2009).  As it is highly 

likely that the species colonising in this study have arisen from a common pool for the 

species, differences highlighted here are likely to be shaped by the composition and 

structure of the community to which colonisation has occurred, rather than competitive 

plasticity. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.5:  Significant linear relationships between corrected carbon source (Ccorr) of 

colonising populations of R. dorsalis and (a) colonisation rate of R. dorsalis; (b) time 

elapsed since colonisation.  (c) Significant quadratic relationship between Ccorr of 

colonising R. dorsalis and competition community (different symbols represent different 

populations (sites)). 

 

The trophic position of colonising R. dorsalis was significantly affected by the richness 

and composition of the community to which colonisation occurred.  In low richness 

communities and communities containing fewer predatory Families (i.e. low competition) 

colonising R. dorsalis occupied a significantly higher trophic position.  Resource utilisation 

is effected by interspecific competition, with competition for resources resulting in trophic 

position changes in a species (Vander Zanden et al., 1999).  With an increasing number of 

predatory Families in a community utilising resources, the availability of resource space 

for colonisers will possibly decrease.  It is also likely that the resident predatory Families 

have become adapted to defending the optimum resources available to them, thus resource 

niche space available to novel colonisers will be at the fringes of existing predatory 

Families recourse niches.  It is therefore likely that in a community with an increased 
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number of resident predatory Families, the resource niche available for colonisation will be 

suboptimal for a novel colonising predator, resulting in a lowering in the trophic position 

occupied by the colonising predator, as seen here. 

 

The maximum time elapsed since colonisation in this study is just over 20 years, and as 

time elapsed did not show a significant relationship with trophic position occupied, it is 

likely that the competitive forces controlling resource utilisation in these colonisers have 

remained consistent throughout the study period.  This contradicts findings from other 

studies where trophic position has been shown to change following the colonisation of an 

invasive species (Vander Zarden et al., 1999).  This contradiction may have arisen due to 

either, the length of time elapsed in this study has not been long enough to detect 

significant temporal change or, there may be different temporal controls influencing 

trophic position development during native species recolonisation. 

 

The significant relationship between time elapsed and the carbon signature (Ccorr) of R. 

dorsalis utilised may have arisen as a result of the progression of the community to which 

colonisation had occurred.  In this study, the communities under investigation have all 

undergone, or are currently undergoing the process of recovery from a period of water 

quality degradation.  It is therefore likely that the basal carbon signatures of these 

communities have changed during the recovery process as a result of improving water 

quality.  For example, in a study from New Zealand, Rogers (2003) demonstrated that the 

isotopic carbon signatures of biota surrounding a sewage outfall were shown to become 

more δ
13

C enriched following the cessation of the discharge, which arose as a result of the 

reduction in the input of relatively isotopically light sewage detritus.  The biota in the study 

showed a differential response to this change in carbon input, with the primary producer 

(seaweed, Ulva lactuca) showing a much more rapid response to the change in basal 

carbon source (i.e. faster increase in δ
13

C tissue values), compared to the relatively slower 

change in δ
13

C values in the tissue of primary consumers (blue mussels, Mytilus 

galloprovincalis and limpets, Callana dendiculata).  Although difficult to make direct 

comparisons, there may be similar mechanisms underlying the temporal change in the 

carbon signature of R. dorsalis in the recovering communities in this study.  The increase 

in the carbon signature of R. dorsalis with increasing time since colonisation may be a 

result of the improvements in the water quality and the resultant changes to basal carbon 

source at a site.   
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The relationship between carbon signature and the numbers of predatory Families at the 

point of R. dorsalis colonisation is complex.  It is possible that the mechanisms underlying 

this are an interaction between the changes to the basal carbon as a result of improving 

water quality, the differential rate at which members of the community respond to the 

change in basal carbon (Rogers, 2003) and the inter-specific effects of competition.   

 

Comparisons of the trophic position estimates for the resident and colonising populations 

in this study have shown significantly higher variation in the trophic position occupied by 

colonising populations of R. dorsalis.  Multiple individuals from three colonising 

populations are exploiting a trophic position lower compared to that of resident 

populations; individuals from another colonising population are exploiting a higher trophic 

position; and the remaining colonising populations show considerable overlap with 

resident populations trophic positions.  Variation in both trophic position and utilised 

carbon source of the colonising populations has been significantly linked with colonisation 

patterns.  Changes in resource utilisation may have implications for life history strategies, 

growth and disease resistance, which have been shown to be influenced by diet quality 

(Naya et al., 2007; Olsson et al., 2008; Browne et al., 2006).  Diet quality has been shown 

to influence offspring fitness (Kyneb & Toft, 2006), affecting subsequent generations.  If 

we assume that increased fitness and disease resistance of community members promote 

community stability, it is likely that colonisation patterns influencing resource use may 

have direct implications for the functionality and hence the stability of a community.  This 

has major implications for restoration ecology, as the ability of a community to withstand 

future environmental fluctuations may have arisen through the colonisation mechanisms 

which restructured the community. 
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CHAPTER 6  Long-term changes to species 

    distribution in the River Endrick 

 

 

 

 

 

 

 

 

 

6.1  Introduction 

 

Species distribution changes are occurring at rapidly increasing rates (Vitousek et al., 

1997; Mack et al., 2000; Walther et al., 2002).  Documenting changes in distribution is 

important to provide a mechanism through which research can be targeted to (hopefully) 

yield pertinent insights into factors contributing to distributional changes.  Generally, 

studies in this area of science are primarily concerned with the movement of non-native 

species or changes to longitudinal limits often associated with climate change.  There are 

some long term monitoring programmes which have been designed to track long term 

change without targeting specific species or specific mechanisms.  The data accumulated 

from these studies has provided insights into population change for a host of organism 

groups.  Long-term records gathered through the Continuous Plankton Recorder survey has 

documented plankton species distribution (Warner & Hays, 1994) providing information 

which has been used to track the impacts of climate change (e.g. Beaugrand & Ried, 2003) 

and changes to commercially important fish stocks (e.g. Reid et al., 2001).  Monitoring of 

British bird and moth populations have provided data with which to assess long term 

population changes and infer mechanisms underlying the observed long-term trends (e.g. 

Peach et al., 1999; Salma et al., 2007; Conrad et al., 2004). 

 

Long-term studies on freshwater systems are more scarce (Jackson & Füreder, 2006).  This 

is surprising for two reasons.  Firstly, streams are a major route through which minerals 

and materials are cycled (Vannote et al., 1980) and their physical structure results in a 

highly varied habitat mosaic.  As a consequence of the variety of available recourses and 
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habitats, the macroinvertebrate fauna inhabiting these systems is varied, in terms of species 

richness and functional diversity.  Secondly, fresh waters have been highlighted as being 

under the greatest threat from global climate change and are now recognised as one of the 

most threatened ecosystems globally (Vörösmarty et al., 2010).  Both this variety in 

species richness and their sensitivity to changing climate make river systems an 

exceptional ecosystem to document species distribution changes. 

 

Historic records of species from river systems can be sporadic (sample location and date 

undefined), vague (no details of collection method) and unreliable (taxonomic 

identification problems) meaning, the comparison of historic species distribution with 

contemporary records can be problematic or impossible.  Some suitable datasets are 

however available.  Using material I collected in 2010 and historic data collected during a 

PhD undertaken between 1959 and 1963 (Maitland, 1963), I assessed distributional 

changes of macroinvertebrate species in a river system after a 50 year period. 

 

6.2  Methods 

 

 6.2.1  Study area 

 

The River Endrick is located in West Central Scotland, between Lat: 56
o
 06‟ N & 55

o
 58‟ 

N and Long: 004
o
 07‟ W & 004

o
 31‟ W (Figure 6.1).  The watershed of the river lies 

entirely in the midland valley of Scotland which is dominated by soft (old red sandstone) 

solid geology.  The river rises at a height of 495m and flows in a generally westerly 

direction for 49 km where it enters Loch Lomond (a large (71 km
2
) lake).  Landuse within 

the catchment is dominated by agriculture but four settlements are also likely to influence 

the river (Maitland, 1966a) (Figure 6.1).   

 

 6.2.2  Historic studies of the River Endrick fauna 

 

Two major studies of the macroinvertebrate fauna of the River Endrick have been 

undertaken previously. 
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  6.2.2.1 1960 study 

 

An ecological study of the invertebrate and vertebrate fauna of River Endrick between 

1959 and 1963 was undertaken by P.S. Maitland as a PhD thesis through the University of 

Glasgow (Maitland, 1963).  Part of this thesis was to establish a reliable check-list of the 

species of invertebrates found in the River Endrick.  Twelve sampling sites were chosen 

along the main river channel from the river source (defined here as the “start of the highest 

rising tributary” (Maitland, 1966a)) to the mouth (the point at which the river enters Loch 

Lomond (Figure 6.1).  “The twelve stations [sites] were selected more or less at random 

along the length of the river, though care was taken not to site any where fauna might be 

influenced by unnatural factors – e.g. near a sewage works or a ford” (Maitland, 1966a).  

Samples were collected at these 12 sites in October 1959, February 1960 and June 1961.  

These samples are referred to as the 1960 study period. 

 

  6.2.2.2 1990 study 

 

The 12 sampling sites on the River Endrick were resampled in 1990 by Doughty and 

Maitland (1994).  Due to differences in sampling months (samples were collected in 

March/April and August 1990) and sampling technique (multiple standard kick samples), 

direct comparisons of invertebrate assemblages in 1990 with the 1960 study are not 

possible.  Notwithstanding this disparity in sample collection, reference will be made to 

these samples if biologically appropriate (Doughty & Maitland, unpublished data). 

 

 6.2.3  2010 study 

 

  6.2.3.1 Site selection 

 

Of the original 12 sites in the 1960 study, 7 were re-sampled in February, June and October 

2010, using the same timing and method employed in the 1960 study, providing 

comparable samples from the two study periods.  Two of the original 12 sites were not 

included in the 2010 study for biological reasons.  The site at the mouth of the river was 

not included as it was likely that it would have been influenced to a greater degree by 

changes within the lake and thus samples collected here may not reflect riverine change.  

The changed location of the effluent discharge from the sewage works at Balfron meant 

that the study site there was now located downstream of this discharge and no longer 
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appropriate.  The site at Drymen Bridge included 7 possible habitats to be sampled.  

Following the original protocol, this would result in 70 mins of collected material in each 

of the three months, a total of 3.5 hours of collected material and was discounted due to 

time constraints.  Of the remaining 9 sampling sites 7 were chosen to provide an even 

spread of sampling sites along the main channel of the river (Figure 6.1). 

 

 
 

Figure 6.1:  Location of the 12 sampling sites on the main channel of the River Endrick 

from the 1960 study period and the 7 sites (solid circles) re-sampled in the 2010 study 

period; four settlements in the catchment are detailed as hatched ovals. 

 

 

  6.2.3.2 2010 sample collection 

 

Samples were collected at the 7 sites in 2010 except from one sample which was collected 

in February 2011 (Table 6.1).  Due to extreme weather in February 2010 sampling on the 

river was problematic due to ice cover.  Nominal February samples were collected between 

15th February 2010 and 16th March 2010, and one collected on 14th February 2011.  

These samples will be referred to as „spring samples‟.  Samples collected in June 2010 

were collected within one week (between 9th and 15th June) and will be referred to as 
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„summer samples‟, and samples collected in October were collected within one week 

(between 11th to 15th October) and will be referred to as „autumn samples‟. 

 

Material was collected using the same method employed in the 1960 study (Maitland, 

1966a) using the semi-quantitative survey techniques recommended by Macan (1958) and 

Hynes (1961).  Confirmation of the exact sampling technique employed in 1960 was 

achieved through discussion with P. S. Maitland.  At each site, material was collected for 

10 minutes in each distinct habitat, “using whatever method of collecting seemed to be 

most suitable for the habitat in question” (Maitland, 1966a), using a standard pond net 

(1mm mesh; bag depth 0.2m; 25x25 cm frame).  The distinct habitats at each site were the 

same as those defined in the 1960 study (Table 6.1).  Each collection was placed 

individually in a plastic bag with a label. 

 

In the laboratory, the soft bodied animals (i.e. Hirudinea and Tricladida) were removed and 

identified before preservation due to identification difficulties with preserved material.  

The remaining material was then placed in a plastic bag with a label, 70% industrial 

methylated spirit (IMS) added and then stored in a fridge for future sorting and 

identification. 

 

Sorting and identification was carried out in the laboratory.  The content of each bag was 

washed through a 500μm sieve to remove the IMS and fine silts.  Material was then 

examined over white and black backgrounds in small quantities and all animals removed.  

Animals were then identified to species using the appropriate identification key (see 

Appendix D for full list of keys used) and numbers of each species recorded.  Species 

identification was completed for; Tricladida, Hirudinea, Crustacea, Ephemeroptera, 

Plecoptera, Hemiptera, Neuroptera, Trichoptera, Lepidoptera and Coleoptera. 

 

 6.2.4  Species abundance and distribution 

 

For each species, three unique pieces of information were used to assess distributional 

change.   
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  6.2.4.1 Occupied site changes 

 

Changes to the number and location of the sites occupied by each species were determined 

from the detection / non-detection of each species at each of the 7 site in each study period. 

 

  6.2.4.2 Site abundance 

 

As the time spent within each site varied between sites (although was constant sampling 

seasons and years) depending on the number of habitats sampled (Table 6.1), the number 

of individuals collected at a site were standardised to the number of individuals collected at 

a site per hour (for all seasons combined).  This will be referred to as a standard sample.  

This allowed for direct comparison with the numbers collected during the 1960 study 

period, which had been standardised in the same way (Maitland, 1966a). 

 

Original numbers were not available for the 1960 study period.  The number of individuals 

of each species collected at a site in a standard sample (i.e. number of individuals per one 

hour sampling at a site) was derived from the charts presented in Maitland (1966a).  The 

charts were scanned at high resolution.  The scanned images were then imported into 

ArcGIS (ESRI, 2007) and the numbers at each of the 7 sites were derived using the 

“measure” function.  These derived numbers were also used to calculate the total number 

of each species collected during the 1960 survey. 

 

At each of the 7 sites, for both study periods, there was a measurement of individual 

species abundance in the form of number of individuals collected in a standard sample (i.e. 

number of individuals of a species collected in one hour at a site), and total number 

collected during the study period. 

 

  6.2.4.3 Frequency of occurrence 

 

The number of individuals of a species collected at a site (in a standard sample) was 

converted to a frequency of the total number of individuals of that species collected from 

the River Endrick (i.e. total number of all 7 standard samples), for each study period 

separately.  This provided a measurement of frequency of occurrence of each species in 

each study period along the main channel of the river.  A visual analysis of an x-y plot of 
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study frequency of occurrence against site distance from the source of the river allowed a 

simple assessment of abundance distribution change in each study period. 

 

Table 6.1:  Details of location (Easting & Northing), sampled habitat, sampling dates 

(yyyy.mm.dd) and total sample time for each of the 7 sites in this study.  Sampled 

locations, habitats and times are identical to those of the 1960 study. 

     

Site Location: 

Easting 

Northing 

Sampled Habitats 

(10 min in each) 

Sample 

Dates 

Total 

Sample 

Time 

     

     

Source 

(1) 

268162 

688929 

(1) Gravel and peat in riffle 

(2) Moss growing over gravel and peat 

2011.02.14 

2010.06.13 

2010.10.15 

60 min 

     

Burnfoot 

(2) 

268162 

688929 

(1) Boulders in riffle 

(2) Stones in pool 

(3) Moss growing on solid rock 

 

2010.03.14 

2010.06.15 

2010.10.14 

90 min 

     

Fintry  

(3) 

266102 

686200 

(1) Stones in riffle 

(2) Stones in pool 

(3) Moss growing on stones 

 

2010.03.11 

2010.06.12 

2010.10.12 

90 min 

     

Dalfoil 

(4) 

257000 

688100 

(1) Stones in riffle 

(2) Stones in pool 

2010.02.19 

2010.06.11 

2010.10.12 

60 min 

     

Drumtian 

(5) 

251646 

687845 

(1) Stones in riffle 2010.02.18 

2010.06.10 

2010.10.12 

30 min 

     

Dalnair 

(6) 

249791 

685920 

(1) Stones in riffle 

(2) Silted stones at edge of river 

(3) Partly emergent weed in silt at river edge 

2010.03.01 

2010.06.09 

2010.10.11 

80 min
§
 

     

Woodend 

(7) 

244677 

688531 

(1) Sand in mid-stream 

(2) Partly emergent weed in silt at river edge 

2010.02.15 

2010.06.09 

2010.10.11 

50 min
‡
 

     
§
 10 min sample in thick weed not collected on 2010.03.01 due to non-existence of habitat, 

‡
10 min sample in mid-stream sand not collected on 2010.10.11 due to high river levels 

preventing access to this habitat 
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 6.2.5  Distribution analysis 

 

Using the species abundance and distribution information from the 1960 and 2010 study 

periods, changes in the distribution of species within the River Endrick would fall into 6 

general categories: 

 

(a)  Similar distribution in both study periods.  This is in terms of both spatial distribution 

(i.e. distribution along the length of the river) and abundance distribution (i.e. site 

abundance). 

 

(b)  Possible local extinction of a species.  The detection of a species in the 1960 study but 

no detection in the 2010 study would represent a possible loss of a species from the river 

fauna. 

 

(c)  Species previously unrecorded.  The detection of a species in the 2010 study but no 

detection in the 1960 study would represent an addition to the river fauna. 

 

(d)  Different distribution in the 2010 study compared with the 1960 study.  Here the 

distribution of a species has changed in terms of spatial distribution and/or abundance 

distribution.  

 

In the case of situation (b) and (c) special attention will be paid to improvements in the 

identification keys which may influence these results.  As 5 of the original 12 sites were 

not surveyed in 2010, in the case of situation (c), a non-detection in the 1960 study will be 

confirmed with the inclusion of these additional sites (i.e. a species may not have been 

recorded in 1960 at one of the seven sites used in this study, but may have been detected at 

one of the other sites, thus not truly absent from the river in 1960). 

 

 6.2.6  Statistical analysis 

 

To determine whether distributional changes (both spatial and abundance) in situations (d) 

were significant a combination of Fisher‟s exact test and the Kendall coefficient of 

concordance test was used. 
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In situation (d) where site occupancy was similar in both study periods, the Kendall test 

was used to test whether differences in the abundance (i.e. number of individuals of the 

species collected in one hour sampling) along the length of the river had changed.  For 

each species individually, the total number collected in one hour of sampling (i.e. a 

standard sample) at each of the 7 sites were ranked for each study period (i.e. 1960 and 

2010) separately, the ranks of the 7 sites in each study period were then compared using 

Kendall‟s test of concordance, following the method in Siegel (1956).  The significance of 

Kendall‟s coefficient, W, provides an indication of the concordance (i.e. similarity) of the 

rank of the sites between the two study periods.  The larger the p-value associated with W 

indicates an increasing dissimilarity between the two study periods in terms of site 

abundance.  While Kendall‟s test does not test the significance of the difference (Kendall‟s 

method tests for similarity) in the rank of site abundance between the two study periods, 

large p-values associated with W could be interpreted as highly dissimilar abundance 

distributions.  Chi-squared tests were not employed for testing species abundance 

distribution change here, due to the large number of sites at which either no individuals or 

very low number of individuals, were recorded. 

 

In situation (d) where there is a change in site occupancy, Fisher‟s exact test was used to 

test whether the detection of a species outwith the historic distribution (i.e. 1960 study 

period) was significant.  In order to compare similar samples, the number of species 

collected in a standard sample (i.e. in one hour of sampling at a site, for all seasons 

combined) were used in Fisher‟s exact test.  The contingency table for Fisher‟s exact test 

took the form: 

 

 New Sites Historic Sites 

1960 a b 

2010 c d 

 

where; new sites were the sites at which the species had been recorded in 2010 but not in 

1960; historic sites were the sites at which the species had been recorded in 1960, a = 0 

(i.e. no individuals were recorded at the new sites in 1960); b = the total number of 

individuals collected during the 1960 study (i.e. the total number collected in standard 

samples from the 7 sites); c = the total number of individuals collected at the new sites in 

the 2010 study (i.e. the total number collected in standard samples from the new sites); d = 

the total number of individuals collected from the same sites in both 2010 and 1960.  A 

two-sided test was employed as the null hypothesis of detection was not directional (i.e. no 
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a priori knowledge of the detection of a species at a new site).  Kendall‟s test of 

concordance was then used to assess possible differences in the abundance distribution of 

the species between the two study periods. 

 

Differences in the total number of each species collected in each study period were 

investigated using χ
2
 (with Yates correction for small sample size) (Zar, 1999): 

 








 


exp

0.5)|obsexp(|
χ

2
2

c
 

 

where, „exp‟ is the total number of species collected in 1960, „obs‟ is the total number 

collected in 2010.  χ
2
 may produce spurious significance when either „exp‟ or „obs‟ in the 

above equation is 0 or very low (i.e. less than 5) thus, if the number collected in 1960 (i.e. 

„obs‟) or 2010 (i.e. „exp‟) was 0 or <5 then the value was either replaced with 5 as 

recommended by Quinn & Keough (2002).  This χ
2

c was used to test for significant 

differences in total number of individuals of each species collected in each study period 

and whether an extinction or collection of a new species was likely to be significant. 

 

Fisher‟s exact test was performed using R version 2.11.1 (R Development Core Team, 

2010), and Kendall‟s W and χ
 2

 and the associated p-values were calculated manually using 

Microsoft Excel version 2007. 

 

6.3  Results 

 

122 species (48,834 individuals) were identified from material collected during the 2010 

study period and are detailed in Appendix B.   

 

Distribution analysis was only undertaken for species where reliable identification in both 

study periods could be made.  Distribution of the Tricladida, Hirudinea, Malacostraca, 

Ephemeroptera, Plecoptera, Hemiptera, Trichoptera (not including the Families Beraeidae, 

Brachycentridae, Goeridae, Hydroptilidae, Lepidostomatidae, Leptoceridae, and 

Odontoceridae due to identification issues in the 1960 study period), and Coleoptera (7 

common species) were compared between the two study periods.  From this group of 

invertebrate orders, the distribution of 81 species was investigated further. 
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Thirteen species showed a significant change in spatial distribution (i.e. site occupancy) 

with an associated change in abundance distribution (i.e. category d, above), 13 species 

had possible (i.e. a high p-value associated with the W statistic from Kendall‟s test) 

changes in abundance distribution (i.e. category d), 8 species previously unrecorded were 

recorded in the River Endrick in 2010 (i.e. category c), 4 species have possibly been lost 

from the river since 1960 (i.e. category b) and 43 species show similar spatial and 

abundance distribution in the two study periods (i.e. category a).  Distributional details of 

the 43 species which had similar distribution in each study period are summarised in 

Appendix C. 

 

 6.3.1  Invertebrata 

 

The distribution of each of the 81 species is reported in a standard format.  Each species is 

assessed separately under the criteria of the distribution analysis (i.e. belonging to one of 

the 4 categories, a-d).  The spatial distribution (i.e. site occupancy) is represented as a 

simple distributional map where contiguous distribution along the watercourse is 

representative of species detection at adjoining sites.  The abundance distribution is 

represented in graphical form, with distance from the river source (i.e. site location) as the 

x-axis and frequency of occurrence (see methods) as the y-axis.  Each table summarises the 

numerical details of each species collection during each study period, the numbers for the 

1960 period are derived from charts.  Each table details: the total number of individuals 

collected in each study period (Total); the total river mean (± standard deviation) corrected 

for sampling effort for each study period separately was calculated as the mean number of 

individuals collected in a standard sample (i.e. 1 hour sample) for the 7 sites combined for 

each study period separately; and the number of sites at which the species was collected in 

each study period.  Those species which have not undergone any significant distributional 

change are detailed in Appendix C.  Species are ordered phyletically at the level of Class 

and Order and then alphabetically from genus. 
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  6.3.1.1  Tricladida 

 

Five species of Tricladida were identified from the River Endrick in the 2010 study, one 

species fewer than the 1960 study, indicating a possible local extinction of one species 

(Crenobia alpina) from the River Endrick.  Peaks in Tricladida species abundance remain 

similar between the two study periods (Figure 6.2) with peak abundance for Tricladida at 

two distinct points along the length of the river (9 km and 44 km from the river source).  

These two peaks are representative of two different Tricladida assemblages; Polycelis 

felina found exclusively in the upper reaches of the river and the remaining four species 

found only in the lower reaches of the river. 

 

 
 

Figure 6.2:  Frequency of occurrence of Tricladida at each of the 7 sites during the 1960 

and 2010 study of the River Endrick. 

 

Table 6.2:  Species of Tricladida with similar distribution patterns in both study periods 

(i.e. (a) Similar distribution in both study periods. above); species distributions are detailed 

in Appendix 7.C. 

 
Species 

 
 

Dugesia lugubris 

Polycelis felina 

Polycelis nigra 

Polycelis tenuis 
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Crenobia alpina was relatively common in the 1960 study period but was not detected in 

any sample collected in the River Endrick in 2010 (Table 6.3; Figure 6.3).  The non-

detection of this species was significant (χ
2

c = 37.630, p < 0.0001) and it is therefore highly 

likely that C. alpina has been lost from the River Endrick (Figure 6.3).  (b) Possible local 

extinction of a species 

 

Table 6.3:  Numerical summary of C. alpina collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); 

number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 48 4.86 (± 10.11) 2 

2010 0 0 0 

    
 

 
(a) 

 
(b) 

Figure 6.3:  Distribution of C. alpina in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of C. alpina in each 

study period.  
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Dendrocoelum lacteum was relatively uncommon in both 1960 and 2010 (Table 6.4).  D. 

lacteum is found exclusively in the lower reaches of the river (Figure 6.4), but site 

occupancy differed significantly (Fisher‟s test (spatial distribution), p = 0.0003) between 

years with D. lacteum now occupying a location further downstream in 2010 compared 

with 1960 (Figure 6.4a).  Distribution of relative abundance changed (Kendall‟s test 

(distribution of species abundance); 0.192, p = 0.890; Figure 6.4b) but absolute abundance 

was not significantly different (χ
2

c = 0.0357, p = 0.850) between 1960 and 2010 (Table 

6.4).  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.4:  Numerical summary of D. lacteum collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 7 1.14 (± 2.04) 2 

2010 6 0.86 (± 2.27) 1 

    
 

 
(a) 

 
(b) 

Figure 6.4:  Distribution of D. lacteum in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of D. lacteum in each 

study period.  
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  6.3.1.2  Hirudinea 

 

Six species of Hirudinea were identified from the River Endrick in the 2010 study.  This is 

less than that recorded in the 1960 study, however those species not detected in 2010 were 

recorded as rare in the 1960 study and it is likely that the reduced number of sample 

locations has resulted in the non-detection of Theromyzon tessulatum, Hemiclepsis 

marginata and Dina lineata in the 2010 study.  Distribution of the Hirudinea has changed 

between the two study periods (Figure 6.5).  Peak abundance appears to have moved 

upstream and the length of the river occupied by Hirudinea appears to have increased in an 

upstream direction, (Figure 6.5).   

 

 
 

Figure 6.5:  Frequency of occurrence of Hirudinea at each of the 7 sites during the 1960 

and 2010 study of the River Endrick. 

 

Table 6.5:  Sporadic occurrences of Hirudinea species in both study periods (identification 

to be confirmed. 

 
Species 

 
 

Batracobdella paludosa 

Glossiphonia heteroclita 

 
 

In the 2010 study, one individual of the species Batracobdella paludosa and two 

individuals of the species Glossiphonia heteroclita were collected from the site at Fintry 

(site 3), and one individual of the species Erpobdella testacea was collected from Dalnair 

(site 6).  The identification of these species has not been confirmed and are not discussed 

further.  
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Erpobdella octoculata was abundant in both 1960 and 2010 (Table 6.6).  E. octoculata is 

found in the lower middle reaches of the river (Figure 6.6) but site occupancy has 

significantly increased upstream in 2010 (Fisher‟s test; p = 0.001) from the 1960 range 

(Figure 6.6a).  Distribution of relative abundance changed (Kendall‟s test; W = 0.589, p = 

0.314; Figure 6.6b) and absolute abundance has significantly decreased (χ
2

c = 6.992, p = 

0.008) between 1960 and 2010 (Table 6.6).  Peak abundance for this species has moved 

upstream in 2010 compared with 1960.  (d) Different distribution in 2010 compared with 

1960. 

 

Table 6.6:  Numerical summary of E. octoculata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 212 20.29 (± 52.36) 2 

2010 173 32.71 (± 47.83) 4 

    
 

 
(a) 

 
(b) 

Figure 6.6:  Distribution of E. octoculata in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of E. octoculata in each 

study period.  
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Glossiphonia complanata was common in both 1960 and 2010 (Table 6.7).  G. complanata 

is generally found in the middles reaches of the river (Figure 6.7), but the detection of G. 

complanata upstream of the 1960 range was not significant (Fisher‟s exact test, p = 0.357).  

Distribution of relative abundance changed (Kendall‟s test; W = 0.692, p = 0.217; Figure 

6.7b) and absolute abundance has decreased significantly (χ
2

c = 13.133, p = 0.0003) 

between 1960 and 2010 (Table 6.7).  Peak abundance for this species has moved upstream 

in 2010 compared with 1960.  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.7:  Numerical summary of G. complanata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 32 3.86 (± 6.89) 3 

2010 11 2.14 (± 3.76) 3 

    
 

 
(a) 

 
(b) 

Figure 6.7:  Distribution of G. complanata in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of G. complanata 

in each study period.  
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CHAPTER 6: River Endrick species composition 

Helobdella stagnalis was common in the lower half of the river in 1960 but appears to 

have undergone an extreme range expansion and is now found along the length of the 

River Endrick (Table 6.8; Figure 6.8).  The detection of H. stagnalis upstream of the 1960 

spatial limit was significant (Fisher‟s exact test; p = 0.033; Figure 6.8a).  Distribution of 

relative abundance changed (Kendall‟s test; W = 0.821, p = 0.131; Figure 6.8b) and 

absolute abundance has significantly decreased (χ
2

c = 78.856, p < 0.0001) between 1960 

and 2010 (Table 6.8).  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.8:  Numerical summary of H. stagnalis collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 109 311.71 (± 22.88) 4 

2010 20 2.71 (± 2.69) 6 

    
 

 
(a) 

 
(b) 

Figure 6.8:  Distribution of H. stagnalis in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of H. stagnalis in each 

study period.  
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CHAPTER 6: River Endrick species composition 

  6.3.1.3  Crustacea 

 

Only the Malacostraca were considered in the 2010 study.  Three species were recorded in 

the 2010 study, representing an increase of one species of Malacostraca (Crangonyx 

pseudogracilis) in the River Endrick since 1960.  Abundance distribution of Malacostraca 

within the River Endrick may have changed in 2010 compared with the 1960 study period 

(W = 0.404; p = 0.138; Figure 6.9).   

 

 
 

Figure 6.9:  Frequency of occurrence of all Malocostraca at each of the 7 sites during the 

1960 and 2010 study of the River Endrick. 

 

Table 6.9:  Species of Crustacea with similar distribution patterns in both study periods 

(i.e. (a) Similar distribution in both study periods. above); species distributions are detailed 

in Appendix 7.C. 

 Species 

 
 

Gammarus pulex 
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CHAPTER 6: River Endrick species composition 

Asellus aquaticus was common in both 1960 and 2010 (Table 6.10).  A. aquaticus was 

common in the lower reaches of the river in 1960 but was recorded upstream of this limit 

in 2010 (Figure 6.10a).  The lack of continuous distribution is likely due to no pool habitat 

sampled in either study period at site 5 (all A. aquaticus were collected in pool habitat at 

the new upstream sites) it is therefore likely that the distribution is contiguous (Figure 

6.10a).  Due to significantly higher abundance in 2010 (χ
2

c = 288.151, p < 0.0001) and the 

low numbers collected from the new upstream sites, the detection at these sites is not 

significant (Fisher‟s test; p = 0.127).  Although the range of this species may have 

increased upstream the peak in abundance appears to have moved downstream (Kendall‟s 

test, W = 0.696, p = 0.213) (Figure 6.10b).  (d) Different distribution in 2010 c.f. 1960. 

 

Table 6.10:  Numerical summary of A. aquaticus collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); number of 

sites at which species collected. 

    Study Period Total Number River Mean Number of Sites 

    
    1960 134 14.57 (± 25.83) 2 

2010 331 52.14 (± 124.93) 4 

     

 

(a) 

 

(b) 

Figure 6.10:  Distribution of A. aquaticus in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of A. aquaticus in each study 

period.  
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CHAPTER 6: River Endrick species composition 

Crangonyx pseudogracilis is a new species to the River Endrick since the 1960 study 

period (Table 6.11; Figure 6.11b).  The collection of this species in the River Endrick is 

highly significant (χ
2

c = 3.6e
4
, p < 0.0001).  C. pseudogracilis is a non-native gammaridean 

amphipod, which was first recorded in Britain in the 1930s and is now widespread 

throughout the UK (Sutcliffe, 1991).  Individuals of this species were collected solely from 

habitats with a slow current (pool and emergent macrophyte), except one individual 

collected from riffle habitat at Dalnair (site 6). (c) Species previously unrecorded. 

 

Table 6.11:  Numerical summary of C. pseudogracilis collected in the 1960 and 2010 

study periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 0 0 0 

2010 434 75.86 (± 195.89) 2 

    
 

 
(a) 

 
(b) 

Figure 6.11:  Distribution of C .pseudogracilis in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of C. 

pseudogracilis in each study period.  
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CHAPTER 6: River Endrick species composition 

  6.3.1.4  Ephemeroptera 

 

22 species of Ephemeroptera were identified from the River Endrick during the 2010 study 

period.  This is a similar number to that found in 1960 (21), but there has been some loss 

and gains of some species.  Cloeon simile and Baetis vernus were recorded in the 1960 

study but not in the 2010 study.  Baetis niger, Baetis scambus, Cloeon dipterum and 

Leptophlebia vespertina were recorded in 2010 but not in 1960.  Due to difficulties in the 

separation of Ecdyonurus insignis and E. torrentis, analysis of these species has been 

combined.  Distribution of the Ephemeroptera has remained consistent between the two 

study periods (Figure 6.12).   

 

 
 

Figure 6.12:  Frequency of occurrence of Ephemeroptera at each of the 7 sites during the 

1960 and 2010 study of the River Endrick. 

 

Table 6.12:  Species of Ephemeroptera with similar distribution patterns in both study 

periods (i.e. (a) Similar distribution in both study periods. above); species distributions are 

detailed in Appendix 7.C. 

 
Species 

 
 

Ameletus inopinatus 

Baetis muticus 

Baetis rhodani 

Caenis rivulorum 

Centroptilum luteolum 

E torrentis/insignis 

Ecdyonurus venosus 

Habrophlebia fusca 

Leptophlebia marginata 

Paraleptophlebia cincta 

Rhithrogena semicolorata 

Serratella ignita 

Siphlonurus lacustris 
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CHAPTER 6: River Endrick species composition 

Baetis niger was collected from site 2 (Burnfoot) in 2010 (Table 6.13; Figure 6.13).  Two 

individuals were collected from moss habitat in the autumn collection, but the detection of 

this species from the 2010 survey was not significant (χ
2

c = 0.05, p = 0.823).  Identification 

of these two individuals needs to be confirmed, this species was collected from this site 

during the 1990 study (Doughty & Maitland, unpublished data) but was not collected 

during the 1960 study.  (c) Species previously unrecorded. 

 

Table 6.13:  Numerical summary of B. niger collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); 

number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 0 0 0 

2010 2 0.19 (± 0.50) 1 

    
 

 
(a) 

 
(b) 

Figure 6.13:  Distribution of B. niger in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of B. niger in each study 

period. 
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CHAPTER 6: River Endrick species composition 

Baetis scambus is a new species to the River Endrick since the 1960 study period (Figure 

6.14) and was recorded in significantly large numbers (χ
2

c = 5.3e
4
, p < 0.0001) during the 

summer 2010 study period (Table 6.14).  521 individuals were collected almost exclusively 

in summer months (3 individuals were collected in the autumn sample at Dalnair (site 6)) 

during the 2010 study.  Individuals of this species were almost always collected from 

habitat in fast flow conditions (i.e. riffle and moss on rock).  Of the 521 individuals 

collected, 516 were collected from riffle or moss habitat.  (c) Species previously 

unrecorded. 

 

Table 6.14:  Numerical summary of B. scambus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 0 0 0 

2010 521 59.29 (± 102.76) 4 

    
 

 
(a) 

 
(b) 

Figure 6.14:  Distribution of B. scambus in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of B. scambus in each 

study period.  
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CHAPTER 6: River Endrick species composition 

Baetis vernus was abundant in the 1960 study period but was not detected in any sample 

collected in the River Endrick in 2010 (Table 6.15; Figure 6.15).  The non-detection of this 

species was highly significant (χ
2

c = 4.8e
2
, p = 4.7e

-97
) and it is therefore highly likely that 

B. vernus has been lost from the River Endrick (Figure 6.15).  (b) Possible local extinction 

of a species 

 

Table 6.15:  Numerical summary of B. vernus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 488 422.0 (± 63.14) 2 

2010 0 0 0 

    
 

 
(a) 

 
(b) 

Figure 6.15:  Distribution of B. vernus in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of C. alpina in each 

study period.  
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CHAPTER 6: River Endrick species composition 

Electrogena lateralis was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.16; Figure 6.16).  E. lateralis was 

collected from the upper reaches in both 1960 and 2010 but the species was also collected 

downstream of the 1960 range in 2010 (Figure 6.16a). The detection of E. lateralis at the 

new sites downstream of the 1960 range was significant (Fisher‟s test; p < 0.001; Figure 

6.16a).  Distribution of relative abundance changed (Kendall‟s test; W = 0.272, p = 0.775; 

Figure 6.16b) and absolute abundance has reduced significantly (χ
2

c = 85.454, p < 0.0001) 

between 1960 and 2010 (Table 6.16).  Peak abundance for this species has moved 

downstream in 2010 compared with 1960.  (d) Different distribution in 2010 compared 

with 1960. 

 

Table 6.16:  Numerical summary of E. lateralis collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 140 13.29 (± 29.81) 2 

2010 32 5.86 (± 8.47) 4 

     

 
(a) 

 
(b) 

Figure 6.16:  Distribution of E. lateralis in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of E. lateralis in each 

study period.  
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CHAPTER 6: River Endrick species composition 

Leptophlebia vespertina is a new species to the River Endrick since the 1960 study period 

and was recorded from 3 sites in the upper part of the river in 2010 (Table 6.17; Figure 

6.17).  The collection of this species in the River Endrick is highly significant (χ
2

c = 1.9e
3
, 

p < 0.0001).  L. vespertina was recorded at the source site (site 1) in the 1990 study 

(Doughty & Maitland, unpublished data).  (c) Species previously unrecorded. 

 

Table 6.17:  Numerical summary of L. vespertina collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 0 0 0 

2010 104 12.57 (± 21.98) 3 

    
 

 
(a) 

 
(b) 

Figure 6.17:  Distribution of L. vespertina in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of L. vespertina 

in each study period.  
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CHAPTER 6: River Endrick species composition 

Procloeon pennulatum was common in both 1960 and 2010 (Table 6.18).  P. pennulatum 

was collected from the lower reaches in both 1960 and 2010 but the species was also 

collected upstream of the 1960 range in 2010 (Figure 6.18a).  The detection of P. 

pennulatum at the new site upstream of the 1960 range was significant (Fisher‟s test; p < 

0.001; Figure 6.18a).  Distribution of relative abundance changed (Kendall‟s test; W = 

0.563, p = 0.345; Figure 6.18b) and absolute abundance has increased significantly (χ
2

c = 

6.75, p = 0.009) between 1960 and 2010 (Table 6.18).  Peak abundance for this species has 

moved upstream in 2010 compared with 1960.  (d) Different distribution in 2010 compared 

with 1960. 

 

Table 6.18:  Numerical summary of P. pennulatum collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected.  

    
Study Period Total Number River Mean Number of Sites 

    
    1960 27 3.57 (± 8.20) 2 

2010 41 6.00 (± 12.90) 3 

    
 

 
(a) 

 
(b) 

Figure 6.18:  Distribution of P. pennualtum in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of P. pennualtum 

in each study period.  
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CHAPTER 6: River Endrick species composition 

Paraleptophlebia submarginata was collected from the River Endrick in 1960 and 2010 

but the distribution of this species has changed (Table 6.19; Figure 6.19).  P. submarginata 

was collected from the upper reaches in both 1960 and 2010 but the species was also 

collected downstream of the 1960 range in 2010 (Figure 6.19a). The detection of P. 

submarginata at the new sites downstream of the 1960 range was significant (Fisher‟s test; 

p < 0.001; Figure 6.19a).  Distribution of relative abundance changed (Kendall‟s test; W = 

0. .607, p = 0.295; Figure 6.19b) and absolute abundance increased significantly (χ
2

c = 

220.006, p < 0.0001) between 1960 and 2010 (Table 6.19).  (d) Different distribution in 

2010 compared with 1960. 

 

Table 6.19:  Numerical summary of P. submarginata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 45 5.00 (± 7.09) 3 

2010 145 17.14 (± 20.51) 6 

    
 

 
(a) 

 
(b) 

Figure 6.19:  Distribution of P. submarginata in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of P. 

submarginata in each study period.  
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CHAPTER 6: River Endrick species composition 

  6.3.1.5  Plecoptera 

 

20 species of Plecoptera were identified from the River Endrick during the 2010 study 

period.  This is the same number of species recorded during the 1960 study period, but the 

composition of the Plecoperan fauna has changed.  During the 2010 study period, three 

species were not detected (Taeniopteryx nebulosa, Amphinemura standfussi and 

Chloroperla tripunctata) and three novel species were detected (Diura bicaudata, 

Nemourella picteti and Nemoura cinerea).  Distribution of the Plecoptera has remained 

consistent between the two study periods (Figure 6.20).   

 

 
 

Figure 6.20:  Frequency of occurrence of Plecoptera at each of the 7 sites during the 1960 

and 2010 study of the River Endrick. 

 

Table 6.20:  Species of Ephemeroptera with similar distribution patterns in both study 

periods (i.e. (a) Similar distribution in both study periods. above); species distributions are 

detailed in Appendix 7.C. 

 Species 

 
 

Amphinemura sulcicollis 

Brachyptera risi 

Capnia bifrons 

Dinocras cephalotes 

Euleuctra geniculata 

Isoperla grammatica 

Leuctra hippopus 

Leuctra nigra 

Leutra inermis 

Nemoura avicularis 

Siphonoperla torrentium 
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CHAPTER 6: River Endrick species composition 

Amphinemura standfussi was not detected in the River Endrick during the 2010 study 

period but was recorded, but was found at one site in low abundance in 1960 (Table 6.21; 

Figure 6.21).  Due to the low number recorded in 1960 the non detection of this species 

from the River Endrick in 2010 is not significant (χ
2

c = 0.05, p = 0.823).  A. standfussi was 

not collected during the 1990 study (Doughty & Maitland, unpublished data).  (b) Possible 

local extinction of a species 

 

Table 6.21:  Numerical summary of A. standfussi collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected.   

    
Study Period Total Number River Mean Number of Sites 

    
    1960 4 4.00 (± 0.57) 1 

2010 0 0 0 

    
 

 
(a) 

 
(b) 

Figure 6.21:  Distribution of A. standfuusi in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of A. standfuusi 

in each study period.  
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CHAPTER 6: River Endrick species composition 

Diura bicaudata is a new species to the River Endrick since the 1960 study period and was 

recorded at low abundance from 1 site at the source of the river in 2010 (Table 6.22; Figure 

6.22).  Three individuals were collected from moss habitat in the spring collection, but the 

detection of this species from the 2010 survey was not significant (χ
2

c = 0.05, p = 0.823).  

This species was collected from this site during the 1990 study (Doughty & Maitland, 

unpublished data) but was not collected during the 1960 study.  (c) Species previously 

unrecorded. 

 

Table 6.22:  Numerical summary of D. bicaudata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 0 0 0 

2010 3 0.43 (± 1.13) 1 

    
 

 
(a) 

 
(b) 

Figure 6.22:  Distribution of D. bicaudata in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of D. bicaudata 

in each study period. 
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CHAPTER 6: River Endrick species composition 

Chloroperla tripunctata was relatively common in the 1960 study period but was not 

detected in any sample collected in the River Endrick in 2010 (Table 6.23; Figure 6.23).  

Due to the low number recorded in 1960 the non detection of this species from the River 

Endrick in 2010 is not significant (χ
2

c = 3.521, p = 0.061).  17 individuals of C. tripunctata 

were collected during the 1990 study at the same sites this species was recorded from in 

1960 (Doughty & Maitland, unpublished data).  (b) Possible local extinction of a species 

 

Table 6.23:  Numerical summary of C. tripunctata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 12 1.29 (± 2.22) 2 

2010 0 0 0 

    
 

 
(a) 

 
(b) 

Figure 6.23:  Distribution of C. tripunctata in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of P. bipunctata 

in each study period.   
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CHAPTER 6: River Endrick species composition 

Leuctra fusca was collected from the River Endrick in 1960 and 2010 but the distribution 

of this species has changed (Table 6.24; Figure 6.24).  The range of this species appears to 

have contracted to the middle reaches of the river in 2010 compared to a more widespread 

distribution in 1960.  Distribution of relative abundance changed (Kendall‟s test; W = 

0.589; p = 0.314; Figure 6.24b) and absolute abundance has decreased significantly (χ
2

c = 

575.397, p < 0.0001) between 1960 and 2010 (Table 6.24).  (d) Different distribution in 

2010 compared with 1960. 

 

Table 6.24:  Numerical summary of L. fusca collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); 

number of sites at which species collected.  

    
Study Period Total Number River Mean Number of Sites 

    
    1960 606 85.43 (± 69.98) 6 

2010 15 4.29 (± 8.98) 2 

    
 

 
(a) 

 
(b) 

Figure 6.24:  Distribution of L. fusca in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of L. fusca in each study 

period. 
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CHAPTER 6: River Endrick species composition 

Leuctra moselyi was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.25; Figure 6.25).  The range of this 

species appears to have expanded from a range confined to the middle reaches in 1960 to a 

range covering a larger length of the river in 2010 (Figure 6.25a).  Site occupancy differed 

significantly between years (Fisher‟s test; p = 0.042).  Distribution of relative abundance 

changed (Kendall test; W = 0.696, p = 0.213) and absolute abundance increased 

significantly (χ
2

c = 9.4e
3
, p < 0.0001) between 1960 and 2010 (Figure 6.25b).  (d) Different 

distribution in 2010 compared with 1960. 

 

Table 6.25:  Numerical summary of L. moselyi collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected.  

    
Study Period Total Number River Mean Number of Sites 

    
    1960 30 5.14 (± 9.25) 2 

2010 563 115.86 (± 211.84) 4 

    
 

 
(a) 

 
(b) 

Figure 6.25:  Distribution of L. moselyi in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of L. moselyi in each 

study period.  
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CHAPTER 6: River Endrick species composition 

Nemoura cambrica was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.26; Figure 6.26).  N. cambrica was 

collected from the middle reaches in both 1960 and 2010 but the species was also collected 

upstream and downstream of the 1960 range in 2010 (Figure 6.26a).  During the 1960 this 

species was recorded from 4 of the 12 study sites, but always in low numbers.  The 

detection of this species in 2010 outwith the historic range in 1960 was significant 

(Fisher‟s exact test; p = 0.003; Figure 6.26a).  Distribution of relative abundance changed 

(Kendall‟s test; W = 0.401, p = 0.567; Figure 6.26b) and absolute abundance has increased 

significantly (χ
2

c = 1.4e
3
, p < 0.0001) between 1960 and 2010 (Table 6.26).  (d) Different 

distribution in 2010 compared with 1960. 

 

Table 6.26:  Numerical summary of N. cambrica collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected.   

    
Study Period Total Number River Mean Number of Sites 

    
    1960 2 0.57 (± 1.51) 1 

2010 91 16.00 (± 19.00) 6 

     

 
(a) 

 
(b) 

Figure 6.26:  Distribution of N. cambrica in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of N. cambrica in each 

study period. 
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CHAPTER 6: River Endrick species composition 

Nemoura cinerea is a new species to the River Endrick since the 1960 study period and 

was recorded from 1 site at the source of the river in 2010 significantly large numbers (χ
2

c 

= 1.8e
4
, p < 0.0001) (Table 6.27; Figure 6.27).  N. cinerea was also recorded at the site at 

the source of the river (site 1) in the 1990 study (Doughty & Maitland, unpublished data).  

(c) Species previously unrecorded. 

 

Table 6.27:  Numerical summary of N. cinerea collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 0 0 0 

2010 306 43.7 (± 115.66) 1 

    
 

 
(a) 

 
(b) 

Figure 6.27:  Distribution of N. cinerea in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of N. cinerea in each 

study period.   
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CHAPTER 6: River Endrick species composition 

Nemurella pictetii is a new species to the River Endrick since the 1960 study period and 

was recorded from 2 sites on the River Endrick in 2010 significantly large numbers (χ
2

c = 

2.2e
4
, p < 0.0001) (Table 6.28; Figure 6.28).  334 individuals were collected in all seasons 

at the site located near the source of the river and one individual was collected during the 

summer collected at Dalnair (site 6).  The individual collected at Dalniar was a larger well 

developed nymph.  (c) Species previously unrecorded. 

 

Table 6.28:  Numerical summary of N. pictetii collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected.  

    
Study Period Total Number River Mean Number of Sites 

    
    1960 0 0 0 

2010 334 47.71 (± 125.80) 2 

    
 

 
(a) 

 
(b) 

Figure 6.28:  Distribution of N. pictetii in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of N. pictetii in each 

study period.   
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CHAPTER 6: River Endrick species composition 

Perla bipunctata was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.29; Figure 6.29).  The range of this 

species appears to have expanded from a range in the upper middle reaches in 1960 to a 

range occupying a position further downstream in 2010 (Figure 6.29a).  Site occupancy 

differed significantly between years (Fisher‟s test; p < 0.001).  Distribution of relative 

abundance changed (Kendall‟s test; W = 0.357, p = 0.638; Figure 6.29b) and absolute 

abundance increased significantly (χ
2

c = 13.556, p = 0.0002) between 1960 and 2010 

(Figure 6.29b).  Peak abundance for this species has moved downstream in 2010 compared 

with 1960.  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.29:  Numerical summary of P. bipunctata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 31 3.14 (± 3.72) 2 

2010 10 2.77 (± 5.26) 2 

    
 

 
(a) 

 
(b) 

Figure 6.29:  Distribution of P. bipunctata in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of P. bipunctata 

in each study period.   
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Perlodes microcephala was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.30; Figure 6.30).  P. microcephala was 

collected from the upper reaches in both 1960 and 2010 but the species was also collected 

downstream of the 1960 range in 2010 (Figure 6.30a), although the detection downstream 

is equivocal (Fisher‟s exact test; p = 0.079).  Distribution of relative abundance changed 

(Kendall‟s test; W = 0.576, p = 0.329; Figure 6.30b) and absolute abundance increased 

significantly (χ
2

c = 77.521, p < 0.0001) between 1960 and 2010 (Figure 6.30b).  (d) 

Different distribution in 2010 compared with 1960. 

 

Table 6.30:  Numerical summary of P. microcephala collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 12 1.14 (± 1.95) 2 

2010 43 4.57 (± 5.77) 4 

    
 

 
(a) 

 
(b) 

Figure 6.30:  Distribution of P. microcephala in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of P. 

microcephala in each study period.  
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Protonemura meyeri was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.31; Figure 6.31).  P. meyeri was collected 

from the upper reaches in both 1960 and 2010 but the species was also collected 

downstream of the 1960 range in 2010 (Figure 6.31a). The detection of P. meyeri at the 

new sites downstream of the 1960 range was significant (Fisher‟s test; p < 0.001; Figure 

6.31a).  Distribution of relative abundance changed (Kendall‟s test; W = 0.692, p = 0.217; 

Figure 6.31b) and absolute abundance has increased significantly (χ
2

c = 1.5e
3
, p < 0.0001) 

between 1960 and 2010 (Table 6.31).  (d) Different distribution in 2010 compared with 

1960. 

 

Table 6.31:  Numerical summary of P. meyeri collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected.   

    
Study Period Total Number River Mean Number of Sites 

    
    1960 466 48.71 (± 64.51) 3 

2010 1328 130.00 (± 218.13) 6 

    
 

 
(a) 

 
(b) 

Figure 6.31:  Distribution of P. meyeri in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of P. meyeri in each 

study period.   
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Taeniopteryx nebulosa was not detected in the River Endrick during the 2010 study period 

but was recorded, although not in abundance, from 3 sites in 1960 (Table 6.32; Figure 

6.32).  The non-detection of this species was significant (χ
2

c = 6.891, p = 0.009) and it is 

therefore highly likely that T. nebulosa has been lost from the River Endrick (Table 6.32; 

Figure 6.32).  (b) Possible local extinction of a species 

 

Table 6.32:  Numerical summary of T. nebulosa collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 16 1.71 (± 2.13) 3 

2010 0 0 0 

    
 

 
(a) 

 
(b) 

Figure 6.32:  Distribution of T. nebulosa in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of T. nebulosa in each 

study period.   
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  6.3.1.6  Hemiptera 

 

The majority of this group, both in terms of number of species and abundance, remain 

confined to the lower reaches of the River Endrick (Figure 6.33).  Seven species of 

Hemiptera were recorded during the 2010 study period.  From the 7 study sites, nine 

species were recorded during the 1960 study period, seven of which were also recorded in 

the 2010 study period.  Velia caprai, Nepa cinerea, Hesperocorxia sahlbergi, Sigara 

distincta and Micronecta poweri were not recorded during the 2010 study period.  One 

individual of Paracorixia concinna was recorded from the River Endrick in the 2010 study.   

 

 
 

Figure 6.33:  Frequency of occurrence of Hemiptera at each of the 7 sites during the 1960 

and 2010 study of the River Endrick. 

 

Table 6.33:  All six species of Hemiptera recorded in both study periods had similar 

distribution patterns in both study periods (i.e. (a) Similar distribution in both study 

periods. above); species distributions are detailed in Appendix C. 

 
Species 

 
 

Gerris costai 

Gerris lacustris 

Notonecta glauca 

Sigara dorsalis 

Sigara falleni 

Sigara fossarum 
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  6.3.1.7  Trichoptera 

 

Due to significant identification issues associated with this order (particularly with the 

Family Limnephilidae), the Trichopteran fauna of the River Endrick will not include 

detailed analysis of species from the Families, Beraeidae, Brachycentridae, Goeridae, 

Hydroptilidae, Lepidostomatidae, Leptoceridae, Limnephilidae and Odontoceridae.  A full 

list of the Trichopteran species recorded during the 2010 study can be found in Appendix 

B.  Distribution of the Trichoptera has remained consistent between the two study periods 

(Figure 6.34).   

 

 
 

Figure 6.34:  Frequency of occurrence of Trichoptera at each of the 7 sites during the 1960 

and 2010 study of the River Endrick. 

 

Table 6.34:  Species of Trichoptera with similar distribution patterns in both study periods 

(i.e. (a) Similar distribution in both study periods. above); species distributions are detailed 

in Appendix C. 

 
Species 

 
 

Hydropsyche pelluidula 

Hydropsyche siltalai 

Lype phaeopa 

Plectrocnemia conspersa 

Polycentropus flavomaculatus 

Polycentropus irroratus 

Rhyacophila dorsalis 
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Cyrnus trimaculatus was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.35; Figure 6.35).  C. trimaculatus is found 

exclusively in the lower reaches of the river (Figure 6.35a) but site occupancy differed 

significantly (Fisher‟s test, p < 0.001) between years with C. trimaculatus now occupying a 

location further downstream in 2010 compared with 1960 (Figure 6.35a).  Distribution of 

relative abundance changed (Kendall‟s test; W = 0.380, p = 0.602; Figure 6.35b) and 

absolute abundance increased significantly (χ
2

c = 858.05, p< 0.0001) between 1960 and 

2010 (Table 6.35).  Peak abundance for this species has moved downstream in 2010 

compared with 1960.  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.35:  Numerical summary of C. trimaculatus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 5 0.43 (± 1.13) 1 

2010 71 11.86 (± 30.93) 2 

    
 

 
(a) 

 
(b) 

Figure 6.35:  Distribution of C. trimaculatus in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of C. 

trimaculatus in each study period.  
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Glossosoma boltoni was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.36; Figure 6.36).  G. boltoni was collected 

from the site 4 (Dalfoil) in 1960 and 2010 but the species was also collected downstream of 

the 1960 range in 2010 (Figure 6.36a).  Site occupancy differed significantly between years 

(Fisher‟s test; p < 0.001).  Distribution of relative abundance changed (Kendall‟s test; W = 

0.388, p = 0.588; Figure 6.36b) and absolute abundance was not significantly different (χ
2

c 

= 0.019, p = 0.890) between 1960 and 2010 (Table 6.36).  Peak abundance for this species 

has moved downstream in 2010 compared with 1960.  (d) Different distribution in 2010 

compared with 1960. 

 

Table 6.36:  Numerical summary of G. boltoni collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 12 1.71 (± 4.54) 1 

2010 13 1.57 (± 2.57) 3 

    
 

 
(a) 

 
(b) 

Figure 6.36:  Distribution of G. boltoni in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of G. boltoni in each 

study period.  
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Psychomyia pusilla was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.37; Figure 6.37).  Distribution of relative 

abundance changed (Kendall‟s test; W = 0.531, p = 0.383; Figure 6.37b) and absolute 

abundance decreased significantly (χ
2

c = 34.382, p < 0.0001) between 1960 and 2010 

(Table 6.37).  Peak abundance for this species has moved upstream in 2010 compared with 

1960.  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.37:  Numerical summary of P. pusilla collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 121 13.57 (± 12.41) 5 

2010 56 7.57 (± 9.54) 4 

    
 

 
(a) 

 
(b) 

Figure 6.37:  Distribution of P. pusilla in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of P. pusilla in each 

study period.  
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Rhyacophila munda was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.38; Figure 6.38).  The range of this 

species appears to have moved downstream from a range in the upper reaches of the river 

in 1960, to a range occupying a position further downstream in 2010 (Figure 6.38a).  Site 

occupancy differed significantly between years (Fisher‟s test; p < 0.001).  Distribution of 

relative abundance changed (Kendall‟s test; W = 0.411, p = 0.553; Figure 6.38b) and 

absolute abundance increased significantly (χ
2

c = 115.953, p < 0.0001) between 1960 and 

2010 (Table 6.38).  Peak abundance for this species has moved downstream in 2010 

compared with 1960.  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.38:  Numerical summary of R. munda collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 37 4.14 (± 7.08) 2 

2010 103 9.71 (± 17.76) 2 

    
 

 
(a) 

 
(b) 

Figure 6.38:  Distribution of R. munda in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of R. munda in each 

study period.  
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Sericostoma personatum was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.39; Figure 6.39).  The range of this 

species appears to have expanded from a range confined to the upper middle reaches in 

1960 to a range covering a larger length of the river in 2010 (Figure 6.39a).  Site 

occupancy differed significantly between years (Fisher‟s test; p < 0.001).  Distribution of 

relative abundance changed (Kendall‟s test; W = 0.339, p = 0.667; Figure 6.39b) and 

absolute abundance increased significantly (χ
2

c = 616.05, p< 0.0001) between 1960 and 

2010 (Figure 6.39b).  Peak abundance for this species has moved downstream in 2010 

compared with 1960.  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.39:  Numerical summary of S. personatum collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 5 0.43 (± 1.14) 1 

2010 61 9.71 (± 12.50) 5 

    
 

 
(a) 

 
(b) 

Figure 6.39:  Distribution of S. personatum in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of S. personatum 

in each study period.   
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Tinodes waeneri was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.40; Figure 6.40).  T. waeneri was 

collected only from the middle reaches of the river in 1960, but the species was collected 

only from the upper reaches of the river in 2010 (Figure 6.40a).  The detection of T. 

waeneri at the new site upstream of the 1960 range was significant (Fisher‟s test; p < 

0.002).  Distribution of relative abundance changed (Kendall‟s test; W = 0.192, p = 0.889; 

Figure 6.40b) and absolute abundance decreased significantly (χ
2

c = 7.347, p = 0.0067) 

between 1960 and 2010 (Table 6.40).  Peak abundance for this species has moved 

upstream.  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.40:  Numerical summary of T. waeneri collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 18 2.29 (± 4.86) 2 

2010 6 0.57 (± 1.51) 1 

    
 

 
(a) 

 
(b) 

Figure 6.40:  Distribution of T. waeneri in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of T. waeneri in each 

study period.   
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  6.3.1.8  Coleoptera 

 

Due to the sporadic occurrence of this group within the River Endrick system („some forty 

species have been recorded, though many of them on only one or two occasions‟ Maitland 

(1966a)) only seven species common to both study periods will be investigated further.  A 

full species list recorded from the study periods is detailed in Appendix B.  The combined 

distribution of these seven species of Coleoptera as a group has remained consistent 

between the two study periods (Figure 6.41).   

 

 
 

Figure 6.41:  Combined frequency of occurrence of 7 species Coleoptera at each of the 7 

sites during the 1960 and 2010 study of the River Endrick. 

 

Table 6.41:  Species of Coleoptera with similar distribution patterns in both study periods 

(i.e. (a) Similar distribution in both study periods. above); species distributions are detailed 

in Appendix C. 

 
Species 

 
 

Elmis aenea 

Esolus parallelopipedus 

Hydraena gracilis 

Limnius volkmari 

Oulimnius tuberculatus 
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Haliplus wehnckei was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.42; Figure 6.42).  H. wehnckei was 

collected only from the lower reaches in 1960, but was collected at 3 new upstream sites in 

2010 (Figure 6.42a).  The detection of this species in 2010 outwith the historic range in 

1960 was significant (Fisher‟s exact test; p = 0.008).  Distribution of relative abundance 

changed (Kendall‟s test; W = 0.509, p = 0.411; Figure 6.42b) and absolute abundance was 

not significantly different (χ
2

c = 1.841, p = 0.175) between 1960 and 2010 (Table 6.42).  

(d) Different distribution in 2010 compared with 1960. 

 

Table 6.42:  Numerical summary of H. wehnckei collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 11 2.29 (± 3.30) 1 

2010 16 1.57 (± 4.16) 4 

    
 

 
(a) 

 
(b) 

Figure 6.42:  Distribution of H. wehnckei in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of H. wehnckei in each 

study period.   
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Oreodytes sanmarki was collected from the River Endrick in 1960 and 2010 but the 

distribution of this species has changed (Table 6.43; Figure 6.43).  The range of this 

species has extended downstream from a range in the upper reaches of the river in 1960, to 

a range occupying a position further downstream in 2010 (Figure 6.43a).  Site occupancy 

differed significantly between years (Fisher‟s test; p =0.003).  Distribution of relative 

abundance changed (Kendall‟s test; W = 0.705, p = 0.206; Figure 6.43b) and absolute 

abundance increased significantly (χ
2

c = 27.191, p < 0.0001) between 1960 and 2010 

(Table 6.43).  (d) Different distribution in 2010 compared with 1960. 

 

Table 6.43:  Numerical summary of O. sanmarki collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 17 1.71 (± 2.21) 3 

2010 39 4.57 (± 3.64) 5 

    
 

 
(a) 

 
(b) 

Figure 6.43:  Distribution of O. sanmarki in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of O. sanmarki in each 

study period.   



130 
 

 
CHAPTER 6: River Endrick species composition 

6.4  Discussion 

 

The riverine macroinvertebrate fauna of the River Endrick has changed significantly in the 

last 50 years.  Of the 78 species examined in this study there has been a possible local 

extinction of five species, the addition of 7 new species  (not previously recorded) to the 

river system, one of which is non-native, and 22 have undergone a significant change in 

spatial and abundance distribution (Table 6.44). 

 

Table 6.44:  Species showing significant distributional change. 

     
Local Extinctions  Range Extensions 
TRICLADIDA  HIRUDINEA 

 Crenobia alpina   Helobdella stagnalis 

EPHEMEROPTERA   Erpobdella octoculata 

 Baetis vernus  EPHEMEROPTERA 

PLECOPTERA   Procloeon pennulatum 

 Taeniopteryx nebulosa   Electrogena lateralis 

 Amphinemura standfussi 
*
   Paraleptophlebia submarginata 

 Chloroperla tripunctata 
*
  PLECOPTERA 

    Protonemura meyeri 

New Additions   Leuctra moselyi 

CRUSTACEA   Perlodes microcephala 

 Crangonyx pseudogracilis  TRICHOPTERA 

EPHEMEROPTERA   Sericostoma personatum 

 Baetis scambus   Cyrnus trimaculatus 

 Baetis niger   Glossosoma boltoni 

 Leptophlebia vespertina  COLEOPTERA 

PLECOPTERA   Haliplus wehckei 

 Nemoura cinerea   Oreodytes sanmarki 

 Nemurella pictetii    

 Diura bicaudata  Range Contractions 
   PLECOPTERA 

Range Changes   Leuctra fusca 

TRICLADIDA  TRICHOPTERA 

 Dendrocoelum lacteum   Psychomyia pusilla 

HIRUDINEA    

 Glossiphonia complanata    

CRUSTACEA    

 Asellus aquaticus    

PLECOPTERA    

 Nemoura cambrica    

 Perla bipuncata    

TRICHOPTERA    

 Tinodes waeneri    

 Rhyacophila munda    

     *
 Results equivocal 
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 6.4.1  Local extinctions 

 

Crenobia alpina appears now to be locally extinct in the River Endrick.  C. alpina is a 

stenothermic cold water species and the loss of this species has been noted from another 

British west coast river system, the Llyn Brianne (Durnace & Ormerod, 2010).  In this 

study the loss of this species was linked to changes in large scale weather patterns (the 

North Atlantic Oscillation) which had a combined effect of disturbing both prey 

availability and the competitive interaction of C. alpina with a sympatrically associated 

Planarian, Phagocata vitta.  These combined effects resulted in the local extinction of C. 

alpina and an increase in the numbers of P. vitta in the Llyn Brianne.  In the River Endrick, 

the local extinction of C. alpina was accompanied by a significant increase in the total 

number of Polycelis felina collected in the 2010 compared with total numbers in 1960.  It 

is likely that P. felina is responding in a similar way to P. vitta in the Llyn Brianne system 

(P. vitta has never been recorded from the River Endrick) and, the mechanisms 

contributing to the local extinction of C. alpina in the River Endrick are likely similar to 

those detailed by Durance & Ormerod (2010). 

 

The loss of the previously substantial population (16 individuals were collected in the 1960 

study) of Taeniopteryx nebulosa represents a major loss for the River Endrick, as this 

species is a threatened endemic in the Red Book Data (RBD).   

 

No individuals of Baetis vernus were collected from the upper reaches of the river in 2010, 

compared with the 488 individuals of this species collected in 1960, and may represent a 

substantial loss from the headwaters of the River Endrick.  B. vernus has been classified as 

using grazer/detrivorous feeding mechanisms, moderately saprobically tolerant and shows 

a preference for moderate flow regimes (Moog, 2002).  Possible reasons for the loss of this 

unremarkable species are not apparent however, the appearance of Baetis scambus during 

the 2010 survey (B. scambus was not recorded during the 1960) suggests that there may 

have been identifications issues of these two species during either or both survey periods.  

 

There is also evidence of the local extinction of the Chloroperlid, Chloroperla tripunctata 

and the Plecopteran Amphinemura standfussi but the loss of these species from the River 

Endrick are not statistically robust and require further investigation.  All four species which 

have possibly been lost from the River Endrick (C. alpina, T. nebulosa, A. standfussi and 
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C. tripunctata) were historically collected from the middle upper to upper reaches of the 

River Endrick. 

 

 6.4.2  New species 

 

Crangonyx pseudogracilis, an invasive species of North American Malacostraca, was 

recorded from the lower reaches of the River Endrick in 2010.  This species was first 

recorded in Britain in the 1930‟s and is now widespread throughout the UK (Sutcliffe, 

1991).  C. pseudogracilis was first recorded in Loch Lomond in 1992 (Adams, pers. 

comm.), although it may have been established there some time before this.  It was almost 

certainly not present at detectable levels pre 1990 in the River Endrick as the 1990 study 

did not record its presence (Doughty & Maitland, unpublished data) and the taxonomists 

from the 1990 study were aware of its presence at that time from an adjacent river, the 

River Clyde (Doughty, 1992).  The range of C. pseudogracilis now extends approximately 

15km upstream from the entry of the River Endrick to Loch Lomond.  At the upper limit of 

the distribution of C. pseudogracilis, 10 individuals were found in pool habitat and 1 

individual in riffle, suggesting that these animals show some preference for slower flow, 

which is likely to be limiting their distribution to the lower reaches in the River Endrick. 

 

Six species native to Scotland were also recorded in 2010, which were not recorded in 

1960.  Baetis scambus was abundant during the 2010 study period and was recorded from 

throughout the length of the River Endrick.  The other five new species (Baetis niger, 

Leptophlebia vespertina, Nemurella picteti, Nemoura cinerea and Diura bicaudata) were 

generally recorded from the upper reaches of the river.  All six of these species were also 

recorded during the study undertaken in 1990 (Doughty & Maitland, unpublished data). 

 

 6.4.3  Range extensions 

 

The significant upstream increase in the distribution and peak abundance of Erpobdella 

octoculata is counterintuitive.  During the 1960 study period, the upstream limit of this 

species coincided with the inflow of the Blane Water, (Maitland, pers. comms.) a 

moderately polluted (at that time) tributary joining the river 800m upstream of the 

sampling site at Dalnair.  Since the 1960 study period, the Blane Water has improved in 

quality (possibly accounting for the reduction in numbers of this pollution tolerant species 

at Dalnair in the 2010 study), and against this improvement in water quality, this species 
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has expanded into relatively cleaner water.  The mechanisms controlling the expansion of 

this species approximately 12.5 km upstream are not possible to explain within the scope 

of the data collected so far. 

 

Another Hirudinea, Helobdella stagnalis, also appears to have undergone a range 

expansion, although results from the 2010 study are equivocal.  During the 1990 study, 35 

individuals of this species were collected in 12 minutes of sampling from the site at the 

source (site 1) (Doughty & Maitland, unpublished data) in March and August, it is 

therefore highly likely that this species has significantly increased the upstream limit of its 

distribution approximately 12 km to the source of the river. 

 

Procloeon pennulatum has a changed distribution in 2010 compared to the distribution in 

1960 with a significant increase in abundance upstream of its historic limit.  This species is 

uncommon in Scotland, and is found more often in southern English rivers (Macadam & 

Bennett, 2010).  The relatively large numbers collected in 2010 (compared with numbers 

collected during the 1960 study) indicate a possible northerly expansions and refuge for 

this species in the River Endrick. 

 

Historically restricted to the upper/upper middle reaches of the river, Electrogena lateralis, 

Paraleptophlebia submarginata, Protonemura meyeri, Perlodes microcephala and 

Sericostoma personatum have all shown significant changes in their abundance and 

distribution downstream in the 2010 study period.  These species show a wide range in 

tolerance to the different effects of changing weather patterns (Durnace & Ormerod, 2007).  

P. submarginata, and S. personatum have been highlighted as species intolerant of warm 

wet winters associated with changes in the North Atlantic Oscillation, while, P. 

microcephala has been shown to be tolerant of similar warm wet conditions (Durance & 

Ormerod, 2007).  Often changes in the distribution of a species is attributed to changes in 

global climate, it is clear from species distribution changes in the middle reaches of the 

River Endrick that more complex interactions within the riverine community are 

contributing to changes in these species distributions. 

 

Drivers of the shift in peak distribution of Cyrnus trimaculatus to approximately 10 km 

downstream of the historic (1960) peak distribution are not clear.  C. trimaculatus is a net-

spinning Polycentropodid predator (Edington & Hildrew, 1995; Moog, 2002), and the 

distribution change shown here may be a result of this species responding to changes in 
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community structure and the availability of prey.  Changes in the distribution of C. 

trimaculatus may also be linked with changes in flow patterns within the river.  Different 

species of the net spinning Polycentropids have been shown to have distinct longitudinal 

distribution along the course of a river which has been linked to flow patterns (Edington & 

Hildrew, 1995). 

 

 6.4.4  Range contractions 

 

Leuctra fusca and Psychomyia pusilla have both contracted their range towards the middle 

reaches of the River Endrick.  Competition for resources arising from the number of 

species that have expanded their range into the middle reaches of the river (see above) may 

be affecting the distribution of these two species. 

 

 6.4.5  Range changes 

 

The significant change in spatial and abundance distribution of, Dendroceolum lacteum 

may be linked to the change in abundance distribution of Asellus aquaticus.  Peak 

abundance of the populations of both these species now occupy a similar location, further 

downstream of their historic distribution recorded in the 1960 study.  To survive 

successfully, when living in symparty with other Tricladidas (as is the case on the River 

Encrick), D. lacteum, requires the presence of A. aquaticus as a food resource (Reynoldson 

& Young, 1966).  It is likely that factors driving peak abundance of A. aquaticus 

downstream has resulted in a corresponding downstream shift in D. lacteum. 

 

Perla bipunctata and Rhyacophila munda have both shown significant changes in their 

abundance and distribution downstream in the 2010 study period.  Both these species have 

opposing tolerances to changing weather patterns (Durnace & Ormerod, 2007).  R. munda 

has been shown to be intolerant of warm wet winters associated with changes in the North 

Atlantic Oscillation, while, P. bipunctata has been shown to be tolerant of similar warm 

wet conditions (Durance & Ormerod, 2007).  The similarity in the range changes of these 

two species coupled with their differential response to large scale climate indicates a 

complex mechanism resulting in distributional change, where other environmental and 

biotic interaction are involved. 
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 6.4.6  Abundance changes 

 

Despite showing a general stasis in distribution between the 1960 and 2010 study periods 

(i.e. category (a), Appendix C), 37 species had significant differences in absolute 

abundance recorded (i.e. total number of individuals collected) in each study period (Table 

6.44).  The reasons surrounding abundance changes for those species listed in Table 6.44 

are not immediately apparent and require further investigation although general theories for 

some species have been made. 

 

The significant increase in the Tricladida, P. felina, has already been explained above in 

relation to the local extinction of C. alpina. 

 

At the site located at the source of the river, Ameletus inopinatus has shown a significant 

reduction in abundance in 2010 compared with 1960.  In 1960 and 1990 a total of 19 and 

42 individuals of this species were collected respectively.  The single individual collected 

during the 2010 study period represents a significant decline in number of this species at 

the source of the River Endrick.  In contrast to this possible species decline another 

Siphlonurid, Siphlonurus lacustris, was first recorded at the site at the source of the river 

during the 2010 study period.  These species share similar feeding requirements and life 

histories, but in contrast to A. inopinatus (a cold water stenothermic species (Gledhill, 

1958)), S. lacustris can tolerate a broader range of temperatures.  It is possible that a 

taxonomic replacement of the Siphlonuridae is progressing at the source of the River 

Endrick. 

 

The significant increase in the abundance of Seratella ignita in the River Endrick in 2010 

contradicts findings from the River Test in Hampshire which has shown a decline in the 

abundance of this species over a 10 year period between 1995 and 2004 (Bennett & 

Gilchrist, 2010).  S. ignita is generally thought to be univoltine in cold waters (Elliot et al., 

1988) but there is some evidence that in warmer waters in southern England there may be 

both summer and winter generations (Langford & Bray, 1969).  In the 1960 study period 

all nymphs of S. ignita were collected in the summer samples (Maitland, 1965).  In 2010, 

11 nymphs were collected in autumn samples at sites 4 and 5.  It may be likely that 

changes in the River Endrick are facilitating a change in generation time of this species 

more similar to that which occurs in southern British rivers, which may in turn be 

influencing abundance patterns. 
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The significant reduction in the abundance of Amphinemura sulcicollis in the River 

Endrick may be linked to similar mechanisms that have influenced the increased 

abundance of S. ignita.  Nymphal growth of A. sulcicollis occurs during winter and spring 

(in the 1960 study period the nymphal growth occurred between September and May 

(Maitland, 1966b)), thus collections of nymphs in the summer samples in the 1960 study 

period were very low (Maitland, 1966b), as these samples coincided with the adult flight 

period.  During the 2010 study, 36 and 32 individuals were collected from sites 2 and 3 

respectively during summer sampling.  This represents an increase in the abundance of this 

species in summer months in the River Endrick (c.f. Figure 1 in Maitland, 1966b).  It may 

be likely that changes in the River Endrick are facilitating changes in the life history of this 

species which is influencing abundance patterns.   

 

6.5  Conclusions 

 

In the last 50 years, the macroinvertebrate fauna of the River Endrick has changed 

significantly.  Changes to the distribution of some species, and the loss and gain of others 

have resulted in complex changes to distribution patterns.  Some of these changes are a 

likely result of changes to large scale weather patterns and associated temperature shifts 

(e.g. the loss of C. alpina and changes to the Siphlonuridae at the source of the river), 

while other changes appear more complex.  The middle reaches of the river have 

undergone considerable colonisation from species historically confined to the upper 

reaches of the river system.  This increase in downstream distribution is significant and the 

resultant changes in community structure require further investigation.  Changes to the 

lower reaches of the river have been explained in terms of species interactions and predator 

prey relationships and changes in abundance patterns have been linked with possible 

changes in life history strategies. 

 

The primary cause(s) of species distribution and abundance changes in the River Endrick 

are unclear.  No specific mechanism could account for the mosaic of shifting species 

distribution and abundance, and it is therefore likely that multiple abiotic and biotic 

mechanisms are contributing to the changing community structure within the River 

Endrick.  
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Table 6.45:  Species which have maintained a similar distribution in 1960 and 2010 but 

have significantly increased or decreased in absolute abundance between the two study 

periods. 

     Abundance Increases  Abundance Decreases 

     

TRICLADIDA  EPHEMEROPTERA 

 Polycelis tenuis    Ameletus inopinatus  

 Polycelis felina    Baetis muticus  

    Centroptilum luteolum 

CRUSTACEA   Ecdyonurus venosus 

 Gammarus pulex   Leptophlebia marginata  

    Paraleptophlebia cincta  

EPHEMEROPTERA   Habrophlebia fusca 

 Siphlonurus lacustris    

 Baetis rhodani   PLECTOPTERA 

 Rhithrogena semicolorata    Amphinemura sulcicollis  

 Ecdyonurus torrentis/insignis
*
   Leutra inermis  

 Serratella ignita    Isoperla grammatica  

 Caenis rivulorum    Dinocras cephalotes  

    Siphonoperla torrentium  

PLECOPTERA    

 Brachyptera risi   TRICHOPTERA 

 Nemoura avicularis    Polycentropus flavomaculatus  

 Euleuctra geniculata     

 Leuctra hippopus   COLEOPTERA 

 Leuctra nigra    Esolus parallelopipedus 

 Capnia bifrons     

     

HEMIPTERA    

 Notonecta glauca     

 Sigara falleni     

     

TRICHOPTERA    

 Hydropsyche siltalai     

 Plectrocnemia conspersa     

     

COLEOPTERA    

 Hydraena gracilis     

 Elmis aenea     

 Oulimnius tuberculatus     

 Limnius volkmari     

     *
 These species have been analysed together due to identification issues. 
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CHAPTER 7  Diversity and community function 

    change in a river with a legacy of 

    minimal human influence 

 

 

 

 

 

 

 

 

7.1  Introduction 

 

Biological communities are flexible entities.  Variations in the biotic and abiotic 

environment can lead to changes in community structure through changes in species 

distribution and abundance.  The degree to which these changes influence community 

function is the basis of much recent research, most often associated with human induced 

modifications to the environment and the resultant effects on ecosystem function (Chapin 

et al., 2000; Schmitz et al., 2003; Arthrington et al., 2010). 

 

Freshwater ecosystems are losing biodiversity faster than terrestrial and marine systems 

(Dudgeon et al., 2006) and rivers particularly have been highlighted recently as under the 

greatest threat from pervasive human activity (Vörösmarty et al., 2010).  Human activity 

has been shown to influence riverine community structure through myriad routes.  Changes 

to hydrological flow through water impoundment have been shown to influence 

community structure and function (Armitage, 2006; Kanno & Vokoun, 2010).  Inputs of 

pollutants to rivers have affected riverine community structure for centuries (Hynes, 1966; 

Friberg et al., 2010) and, more recently, the influences of invasive species and global 

climate change have been shown to have a significant effect on the species composition in 

river systems (Woodward et al., 2002; Devin et al., 2005; Durance & Ormerod, 2007). 

 

There is generally a good understanding of the mechanisms controlling the distribution of 

species in river systems, but how changes in community structure are manifest in river 
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systems are not so well understood.  Structural change in communities can result in 

changes in the functional groups present within the community, ultimately affecting how 

the community functions.  Community function corresponds to the biological and 

ecological response of the community to the environment and can be measured by general 

biological and ecological traits of community members.  Changes in community function 

may provide an indication of possible mechanisms which facilitated the original change.  

For example, impoundment of a watercourse affects flow and temperature of the 

watercourse downstream, this  in turn influences the communities downstream to those 

tolerating decreased flows and increased temperatures (Spence & Hynes, 1971; Lessard & 

Hayes, 2003) 

 

The previous chapter highlighted significant changes in the distribution and abundance of 

macroinvertebrate species in the River Endrick.  Using simple measures of community 

structure and derived measures of community function, I analyse how species changes 

have affected the structure and function of the macroinvertebrate community in the River 

Endrick after 50 years. 

 

7.2  Methods 

 

 7.2.1  Study area 

 

The River Endrick is located in West Central Scotland, between Lat: 56
o
 06‟ N & 55

o
 58‟ 

N and Long: 004
o
 07‟ W & 004

o
 31‟ W (Figure 7.1).  The watershed of the river lies 

entirely in the midland valley of Scotland which is dominated by soft (old red sandstone) 

solid geology.  The river rises at a height of 495m and flows in a generally westerly 

direction for 49 km where it enters Loch Lomond (a large (71 km
2
) lake).  Landuse within 

the catchment is dominated by agriculture but four settlements are also likely to influence 

the river (Maitland, 1966) (Figure 7.1).   

 

 7.2.3  River Endrick community structure 

 

Collections of the macroinvertebrate fauna of the River Endrick were made in 1960 and 

2010 at seven sites along the main channel of the river (Figure 7.1) using the same sample 

collection method in each study period (Maitland, 1966).  Samples collected in October 

1959, February 1960 and June 1961 will be referred to as the 1960 study period.  Samples 
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collected in February/March 2010, June 2010, October 2010 and February 2011, will be 

referred to as the 2010 study period.  Collected samples were identified to species and the 

number of each species recorded.  Samples collected in February, June and October were 

combined to provide an annual measure of the macroinvertebrate community at each of the 

7 sites in each study period.  As sampling effort at each site differed due to habitat 

differences, samples were standardised to a constant sampling effort of number of 

individuals of each species collected per one hour sampling at a site.  For each site in each 

study period a standard measure of the macroinvertebrate community was available for 7 

sites in each study period.  (For a full description of collection methods please refer to 

chapter 6). 

 

 
 

Figure 7.1:  Location of the 7 sampling sites on the main channel of the River Endrick. 

 

 7.2.4  Changes in community structure 

 

Measures of community richness (total number of recorded species), abundance (total 

number of recorded individuals) and diversity (Shannon-Weiner index of diversity), were 

calculated for each site.  To assess any change in simple community structure between the 
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study periods, differences between site community richness, community abundance and 

community diversity were compared between years.  The significance of any differences 

were tested using chi-squared, for the richness and abundance measures, and for 

differences in Shannon-Weiner diversity, the method in Waite (2000) was applied.   

 

To determine the degree to which the structure of the community had changed between and 

within study periods, Bray-Curtis similarities were calculated.  Firstly, to determine the 

degree to which the species abundance of the river community as a whole had changed 

between the two study periods, the similarity between study periods was calculated for the 

whole river (i.e. all sites combined).  Secondly, to determine the degree to which the 

species abundance of the community changed along the length of the river, from source to 

mouth, the similarity in adjacent sites species abundance was calculated for each study 

period separately.  Thirdly, to determine the degree to which the sites had changed between 

study periods, the similarity between species abundance at the same site in each study 

period (i.e. the similarity between site 1 in 1960 and site 1 in 2010) was calculated.  

Finally, to determine overall change in species abundance patterns for both study periods, a 

complete linkage dendrogram was produced to assess the degree of clustering between 

sites.  Complete linkage clustering was used in preference to a simple linkage clustering as 

single linkage clustering can be sensitive to noise in the data (Milligan, 1996) and complete 

linkage clustering delineates clusters with clear discontinuities (Legender & Legendre, 

1998). 

 

 7.2.5  River Endrick community function 

 

Changes to community function arising through any changes to species composition 

between the two study periods were investigated using three separate measures of 

community function.  Functional feeding abundance, saprobic abundance and flow 

preference were defined using data available in Moog (2002).  Functional feeding 

abundance provided an insight into community structure changes associated with changes 

in available food resources.  Saprobic abundance provided insight into the effects changes 

in the water chemistry within the river had on macroinvertebrate community structure.  

Differences in flow preference of the macroinvertebrate community between the two study 

periods provided insight into changes to the flow characteristics of the watercourse and the 

resultant effects on community structure. 
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  7.2.5.1 Functional feeding abundance 

 

At each site, in each study period separately, the functional feeding abundance of the 

macroinvertebrate community was calculated based on the species recorded, including 

abundance, and the functional feeding groups of the species as defined by Moog (2002).  

Moog (2002) defines the functional feeding group of each species into 10 categories 

(shredders, grazers, active filter feeders, passive filter feeders, detritus feeders, leaf 

borers/miners, xylophagous, predators, parasites and other feeding types).  These 10 

categories are then ranked for each species from, 0 indicating no use of that feeding 

mechanism to a 10 indicating a unique feeding mechanism (e.g. the functional feeding 

group of Leuctra fusca has been defined as; shredder – 3, grazer – 3, and detritus feeder – 

4).  Functional feeding groups for the Tricladida were derived from Reynoldson (1978), 

(because there are no published data), Rhyacophila munda was assigned the same 

functional feeding categories as R. dorsalis, and Crangonyx pseudogracilis was assigned 

the same functional feeding categories as Gammarus pulex.  

 

In each study period separately, functional abundance was calculated on a site by site basis.  

For each species, at each site, the recorded abundance of that species was proportionally 

divided according to the 10 functional feeding categories of that species as defined by 

Moog (2002).  For example, if 120 Leuctra fusca were collected at a site, the functional 

feeding abundance contributed by L. fusca to the macroinvertebrate community would be 

36 shredders, 36 grazers and 48 detritus feeders.  Using these calculated species functional 

feeding abundances, for each site, in each study period, total functional feeding abundance 

was calculated for the macroinvertebrate community, by summing the number of each of 

the 10 functional feeding categories.  Thus, for each site, in each study period, the 

abundance of each of the 10 categories provided a measurement of community functional 

feeding abundance. 

 

  7.2.5.2 Saprobic abundance 

 

At each site, in each study period separately, the saprobic abundance of the 

macroinvertebrate community was calculated based on the species recorded, including 

abundance, and the saprobic group of the species as defined by Moog (2002).  Moog 

(2002) defines the saprobic group of each species into 5 categories (xenosaprobic – fully 

clean water; oligosaprobic – little or no influence; beta-mesosaprobic – moderately 



143 
 

 
CHAPTER 7: River Endrick community change 

influenced; alpha-mesosaprobic – heavily polluted; and polysaprobic – extremely 

polluted).  These 5 categories are then ranked for each species from, 0 indicating no 

association with that water type, to a 10 indicating a unique association with that water 

type (e.g. the saprobic association of Leuctra fusca has been defined as; oligosaprobic – 2, 

beta-mesosaprobic – 6, and alpha-mesosaprobic – 2).  Saprobic ranks were not available 

for Tricladida, Hemiptera, 1 species of Malacostraca (Crangonyx pseudogracilis), 3 

species of Plecoptera (Dinocras cephalotes, Nemurella pictetii, and Protonemura meyeri) 

and 1 species of Trichoptera (Rhyacophila munda).  These species were thus not included 

in this part of analysis.  The measure of saprobic abundance used here would provide an 

indication of any changes to the macroinvertebrate community which may have arisen as a 

result of changes to the water physio-chemistry within the River Endrick. 

 

In each study period separately, saprobic abundance was calculated on a site by site basis.  

For each species, at each site, the recorded abundance of that species was proportionally 

divided according to the 5 saprobic categories of that species as defined by Moog (2002).  

For example, if 120 Leuctra fusca were collected at a site, the saprobic abundance 

contributed by L. fusca would be 24 oligosaprobic, 72 beta-mesosaprobic and 24 alpha-

mesosaprobic.  Using these calculated species saprobic abundances, for each site, in each 

study period, total saprobic abundance was calculated for the macroinvertebrate 

community, by summing the number of each of the 5 saprobic categories.  Thus, for each 

site, in each study period, the abundance of each of the 5 categories provided a 

measurement of community saprobic abundance. 

 

  7.2.5.3 Flow and temperature preference 

 

At each site, in each study period separately, the flow preference of the macroinvertebrate 

community was calculated based on the species recorded, including abundance, and the 

flow preference of the species as defined by Moog (2002).  Moog (2002) defines the flow 

and temperature preference of each species into 10 categories (eucrenal – mountain string, 

maximum temperature <9
o
C; hypocrenal – mountain stream, maximum temperature <9

o
C; 

epirhithral – upper-trout region, maximum temperature <9
o
C; metarhithral – lower-trout 

region, maximum temperature <13
o
C; hyporhithral – grayling region, maximum 

temperature <18
o
C; epipotamal – brabel region, maximum temperature ≥20

o
C; 

metapotamal – bream region, maximum temperature >20
o
C; hypopotamal – brackish-water 

region, maximum temperature >20
o
C; littoral zone – lentic sites; profundal zone – lake 
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bottom).  These 10 categories are then ranked for each species from, 0 indicating no 

association with that flow type, to a 10 indicating a unique association with that flow type 

(e.g. the flow preference of Leuctra fusca has been defined as; epirhithral – 1, metarhithral 

– 2; hyporhithral – 3 (2.9); epipotamal – 2; metapotamal – 2; littoral zone – + (0.1); the „+‟ 

associated with the littoral zone here is given a 0.1 rank and the largest associated rank 

(hyporhithral) is reduced by 0.1, this method is applied throughout).  Flow preferences 

were not available for Tricladida, Hemiptera, 1 species of Malacostraca (Crangonyx 

pseudogracilis), and 1 species of Trichoptera (Rhyacophila munda).  These species were 

thus not included in this part of analysis. 

 

In each study period separately, flow preference was calculated on a site by site basis.  For 

each species, at each site, the recorded abundance of that species was proportionally 

divided according to the 10 flow categories of that species as defined by Moog (2002).  For 

example, if 120 Leuctra fusca were collected at a site, the flow preference of L. fusca 

would be epirhithral – 12, metarhithral – 24, hyporhithral – 34.8, epipotamal – 24, 

metapotamal – 24 and littoral zone – 1.  Using these calculated species flow preferences, 

for each site, in each study period, total flow and temperature preference was calculated for 

the macroinvertebrate community, by summing the number of each of the 10 flow 

categories.  Thus, for each site, in each study period, the abundance of each of the 10 

categories provided a measurement of community flow preference. 

 

 7.2.6  Changes in community function 

 

To determine the degree to which the function of the community had changed between and 

within study periods, Bray-Curtis similarities were calculated separately for the three 

measures of community function (i.e. functional feeding abundance, saprobic abundance 

and flow preference) derived from the species community structure data and the 

information on species functional feeding groups provided by Moog (2002) (see above). 

 

For each of the three measures of community function, a complete linkage dendrogram was 

produced to assess the degree of clustering between sites.  To standardise the clustering for 

each of the 3 community function measures, sites were clustered based on an 80% or 

greater Bray-Curtis similarity linkage.  For each of the 3 measures of community function, 

the pattern of site clustering was investigated further to determine possible mechanisms 

underlying the clustering.  This was done by combining all sites within each cluster and 
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calculating relative abundance for each category associated with the community function 

measure being investigated (e.g. for saprobic abundance there are 5 categories).  For each 

community function, the combined abundance for each of the cluster groups was then 

plotted as a histogram of relative cluster abundance on the categories of community 

function.  The three histogram plots were then used to determine possible underlying 

mechanisms which resulted in community clustering patterns.  

 

 7.2.7  Statistical analysis 

 

Chi-squared statistic for differences in richness and abundance and t-statistic calculation 

for Shannon-Weiner differences were calculated using Microsoft Office Excel 2007 

(Microsoft, 2007).  Bray-Curtis similarities and cluster dendrograms were produced using 

Primer version 6.1.5 (Clarke & Gourley, 2006) on log (x+1) transformed abundance data. 

 

7.3  Results 

 

 7.3.1  Community structure changes 

 

Differences in the richness, abundance and diversity of the communities on the River 

Endrick varied between years (Table 7.1).  Richness in terms of number of species 

recorded remained similar between sites over the 50 years, except for the community at site 

4 which has significantly increased in the number of recorded species.  Abundance at all 

sites had increased significantly and diversity (measured as Shannon-Weiner index) had 

decreased significantly at all sites (Table 7.1) 

 

Between 1960 and 2010, for the whole river system (i.e. all sites combined), the species 

structure of the River Endrick (of those species examined) was 79% similar.  The similarity 

in species abundance between adjacent sites in each study period separately ranged from 

46% to 79% in the 1960 study period and ranged from 35% to 86% in the 2010 study 

period (Table 7.2).  The similarity in site species abundance between the two study periods 

ranged from 41% to 64% (Table 7.3).  The dendrogram of species abundance similarities 

revealed 4 distinct site clusters (upper reaches, middle reaches, lower reaches and site 1 in 

2010) and highlighted low similarity between site 1 in 2010 and other sites in the two study 

periods (Figure 7.2).  Except for Site 1 in 2010, the clustering of sites fitted well with a 

general downstream pattern from the source of the river, which is likely linked to 
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longitudinal changes to physical (e.g. slope, altitude, substrate) and chemical (e.g. 

nutrients, suspended solids) characteristics (Vannote et al., 1980). 

 

Table 7.1:  Measures of community structure from 1960 and 2010 and significance of 

difference: species richness is the total number of species recorded; number of individuals 

is the total number of individuals recorded; diversity is the Shannon-Weiner index of 

diversity; Sig. is the significance of the difference between the two measures between 

study years at each site. 

           Species Richness Number of Individuals Diversity 

 1960 2010 Sig. 1960 2010 Sig. 1960 2010 Sig. 

          

          

Site 1 27 20 0.211 1859 1811 0.271 2.591 2.242 <0.01 

Site 2 34 39 0.440 1586 3571 <0.001 2.900 2.422 <0.003 

Site 3 41 40 0.938 3489 5693 <0.001 2.879 2.620 <0.003 

Site 4 36 49 0.037 3185 10292 <0.001 2.924 2.126 <0.003 

Site 5 35 42 0.272 2765 16364 <0.001 2.458 2.197 <0.01 

Site 6 38 50 0.062 1668 4140 <0.001 2.577 1.993 <0.005 

Site 7 26 29 0.624 530 1533 <0.001 2.502 2.255 <0.01 

          
 

Table 7.2:  Bray-Curtis similarity measures for adjacent sites in both study periods for 

measurements of species abundance. 

   

 Species Abundance 

(% similarity) 

 1960 2010 

   

Site 1 & Site 2 74 35 

Site 2 & Site 3 71 71 

Site 3 & Site 4 75 70 

Site 4 & Site 5 79 87 

Site 5 & Site 6 74 71 

Site 6 & Site 7 46 37 
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Table 7.3:  Bray-Curtis similarity measures for sites in both study periods (e.g. similarity 

between site 1 in 1960 and site 1 in 2010) for measurements of species abundance 

(species), functional feeding abundance (feeding), saprobic abundance (saprobic), and flow 

preference (flow). 

     

 Species 

(% similarity) 

Feeding 

(% similarity) 

Saprobic 

(% similarity) 

Flow 

(% similarity) 

     

Site 1 41 95 98 85 

Site 2 72 95 94 93 

Site 3 71 96 95 93 

Site 4 70 92 89 90 

Site 5 69 83 83 84 

Site 6 66 90 91 91 

Site 7 64 83 86 88 

     

 

 7.3.2  Community function changes 

 

  7.3.2.1 Functional feeding abundance 

 

Six (shredder, grazer, passive filter feeder, detritus feeders, xylophagous and predators) of 

the original 10 functional feeding categories were associated with the species recorded 

from the River Endrick in the 1960 and 2010 study period (Figure 7.2).  Between 1960 and 

2010, for the whole river system (i.e. all sites combined), the functional feeding abundance 

of the River Endrick (of those species examined) was 94% similar.  The similarity in site 

functional feeding abundance between study periods ranged from 83% to 96% (Table 7.4).  

The dendrogram of functional feeding abundance revealed three distinct cluster groups 

(Figure 7.4).  A histogram of relative functional feeding abundance in each of the three 

cluster groups revealed the relative influence of the difference feeding mechanisms had in 

clustering sites (Figure 7.5).  Cluster group 1 (Site 7 in 1960) was associated with a high 

relative abundance of individuals with shredding and predatory feeding mechanisms.  

Cluster group 2 contained 5 communities collected from sites 3 and 4 in both 1960 and 

2010, and site 5 in 2010, and was associated with a high relative abundance of individuals 

with detrivorous and passive filter feeding mechanisms.  Cluster group 3 contained 8 

communities collected from sites 1, 2 and 6 in 1960 and 2010, site 5 in 1960 and site 7 in 

2010, and was associated with a high relative abundance of individuals using a grazing 

feeding mechanism.  Further separation of group 2 and group 3 clusters may have been 

accentuated by the relative abundance ratio of individuals with grazing feeding 
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mechanisms (GRA) to individuals with detritus feeding mechanism (DET), which is lower 

in group 2 cluster when compared with group 3 cluster (Figure 7.5). 

 

 
Figure 7.2:  Functional feeding composition of the River Endrick community in 1960 and 

2010 (SHR – shredder, GRA – grazer, PFIL – passive filter feeder, DET – detritus feeders, 

XYL – xylophagous, PRE – predator). 

 

 
Figure 7.3:  Complete linkage dendrogram of species abundance at each of the 7 sites in 

both study periods.  Clustering has been made manually into 4 distinct groups (lower, 

middle, upper reaches, and site 1 in 2010). 

 



149 
 

 
CHAPTER 7: River Endrick community change 

 
Figure 7.4:  Complete linkage dendrogram of functional feeding abundance at each of the 

7 sites in both study periods.  Clustering has been made at 80% similarity into 3 distinct 

cluster groups. 

 
 

Figure 7.5:  Relative abundance of the different feeding mechanisms in the 3 groups 

highlighted from the functional abundance dendrogram.  (SHR – shredder, GRA – grazer, 

PFIL – passive filter feeder, DET – detritus feeders, XYL – xylophagous, PRE – predator). 
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  7.3.2.2 Saprobic abundance 

 

Between 1960 and 2010, for the whole river system, the saprobic abundance of the River 

Endrick was 94% similar (Figure 7.6).  The similarity in site saprobic abundance between 

study periods ranged from 83% to 98% (Table 7.3).  The dendrogram of saprobic 

abundance revealed four distinct groups (Figure 7.7).  A histogram of relative saprobic 

abundance in each of the four groups revealed the relative importance of the different 

saprobic tolerance in each of the cluster groups (Figure 7.8).  Cluster group 1 contained 3 

communities from sites 4, 5 and 6 collected in 2010, and was associated with a high 

relative abundance of beta-mesosaprobic individuals (i.e. species with a high tolerance of 

water degraded by human activities).  Cluster group 2 contained 3 communities collected 

from site 7 in 1960 and 2010 and site 6 in 1960, and was associated with a high relative 

abundance of alpha-mesosaprobic and polysaprobic individuals (i.e. species with an ability 

to tolerate heavily/extremely polluted water conditions).  Cluster group 3 contained 2 

communities both collected at site 2 in 1960 and 2010, and was associated with a high 

relative abundance of individuals with oligosaprobic tolerance (i.e. species with little or no 

tolerance of human influenced water conditions).  Cluster group 4 contained 6 

communities collected from site 1 and 3 in 1960 and 2010 and site 4 and 5 in 1960, and 

was associated with a high relative abundance of individuals with xenosaprobic tolerance 

(i.e. species showing a propensity for water conditions that have not been influenced by 

human activities). 

 

 

Figure 7.6:  Saprobic composition of the River Endrick community in 1960 and 2010 (x – 

xenosaprobic; o – oligosaprobic; b – beta-mesosaprobic; a – alpha-mesosaprobic; p – 

polysaprobic). 
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Figure 7.7:  Complete linkage dendrogram of saprobic abundance at each of the 7 sites in 

both study periods.  Clustering has been made at 80% similarity into 4 distinct cluster 

groups. 

 

 

 
Figure 7.8:  Relative abundance of the different saprobic tolerance in the 4 groups 

highlighted from the saprobic abundance dendrogram.  (x – xenosaprobic; o – 

oligosaprobic; b – beta-mesosaprobic; a – alpha-mesosaprobic; p – polysaprobic). 
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  7.3.2.3 Flow and temperature preference 

 

Between 1960 and 2010, for the whole river system, the flow preference of the River 

Endrick was 94% similar (Figure 7.9).  The similarity in site flow and temperature 

preference between study periods ranged from 84% to 93% (Table 7.3).  The dendrogram 

of flow and temperature preference revealed three distinct cluster groups (Figure 7.10).  A 

histogram of the relative abundance in each of the three cluster groups revealed the relative 

importance of the different flow and temperature preference in each of the three cluster 

groups (Figure 7.11).  Cluster group 1 was associated with a high relative abundance of 

individuals with a preference for slow flow conditions and higher maximum temperature 

(i.e. littoral, epipotamal and metapotamal).  Cluster group 1 contained only communities 

collected from site 7 which is the site in the lower reaches of the river.  Cluster group 2 was 

associated with a high relative abundance of individuals with a preference for high flow 

conditions (i.e. eucrenal, hypocrenal, and epirhithral).  Cluster group 2 contained only the 

2010 site 1 community.  Cluster group 3 was associated with a high relative abundance of 

individuals with a preference for moderate flow and temperature conditions (i.e. 

metarhithral and hyporhithral).  Cluster group 3 contained 11 communities collected from 

sites 2 to 6 in both study periods and the community collected at site 1 in 1960. 

 
Figure 7.9:  Flow and temperature composition of the River Endrick community in 1960 

and 2010 (EUC – eucrenal; HYC – hypocrenal; ER – epirhithral; MR – metarhithral; HR – 

hyporhithral; EP – epipotamal; MP – metapotamal; HP – hypopotamal; LIT – littoral zone; 

PRO – profundal zone). 
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Figure 7.10:  Complete linkage dendrogram of flow and temperature preference at each of 

the 7 sites in both study periods.  Clustering has been made at 80% similarity into 3 distinct 

cluster groups. 

 

 
Figure 7.11:  Relative abundance of the different flow preferences in the 3 groups 

highlighted from the flow preference dendrogram.  (EUC – eucrenal; HYC – hypocrenal; 

ER – epirhithral; MR – metarhithral; HR – hyporhithral; EP – epipotamal; MP – 

metapotamal; HP – hypopotamal; LIT – littoral zone; PRO – profundal zone). 
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7.4  Discussion 

 

The biodiversity of the macroinvertebrate community in the River Endrick has reduced 

significantly since 1960.  The macroinvertebrate community within the river has shown 

differential change in structure and function between the two study periods.  Some 

communities have remained consistent in terms of structure and function while others have 

shown distinct differences between study periods. 

 

Generally, community structure fits well with the longitudinal gradient of changing 

physical and chemical factors associated with river systems (Vannote et al., 1980).  

Communities in both study periods clustered well into upper, middle and lower reaches, 

but within study period clustering was evident.  This is clearly evident in the middle 

reaches of the river where the communities at sites 4, 5 and 6 clustered into study periods 

(Figure 7.3). 

 

 7.4.1  Headwaters 

 

Notwithstanding the general consistency in community structure patterns within the 

catchment over 50 years, the structure of the headwater community was distinctly different 

in 2010 from all other communities collected from the River Endrick.  Further 

investigation of community function changes has highlighted some broad mechanisms 

which may be driving this change.  In terms of both functional feeding and water chemistry 

tolerance the headwater community in the River Endrick has remained highly similar 

between study periods, indicating that available food resources and the chemical 

characteristics of the water in the headwaters has remained similar over the 50 year period.  

The separation of the 2010 headwater community in terms of flow preferences however, 

indicated a broad driver of change associated with flow rates and temperature tolerances, 

resulting in the separation of this community. 

 

Changes to the flow and temperature preference of the headwater community in 2010 has 

resulted in a community dominated to a greater degree by species showing a preference for 

high altitude flow conditions and low (< 9
o
C) maximum temperatures (Moog, 2002).  In 

addition to these changes, there was also some indication of a high abundance of species 

associated with littoral and profundal „flow‟ preferences (i.e. very slow flow and > 20
o
C 

temperatures), only the communities located in the lower reaches of the river had a higher 
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relative abundance of these species types.  The contrasting nature of flow preferences of 

the species comprising the headwater community of the River Endrick in 2010 highlights 

the complex nature of changing conditions and the resultant effects on community 

structure. 

 

 7.4.2  Upper reaches 

 

Communities in the upper reaches of the catchment (i.e. communities at sites 1, 2 and 3, 

not including the community at site 1 in 2010) were grouped together in terms of species 

composition.  Within the upper reaches cluster, the communities at site 1 and site 2 in 1960 

were more similar than communities at site 2 in 2010 and site 3 in both study periods.  This 

indicates shift in the community site 2 in 2010 to a composition more similar to that at site 

3, further downstream.   

 

Functional feeding composition of communities at site 1 and 2 showed relatively high 

abundances of species using a grazing feeding mechanism.  The community at site 3 was, 

to a greater degree, dominated by species showing detrivorous feeding mechanisms.  This 

pattern of feeding function was consistent in both study periods.  Community water 

chemistry preference in the upper reaches of the river was consistent at a site level in both 

study periods, although distinctions were apparent between different sites.  Water 

chemistry preference of the communities at sites 1 and 3 were influenced by a relatively 

high abundance of species showing a complete intolerance of water conditions affected by 

human activities (i.e. xenosaprobic).  At site 2, relatively high abundance of species with a 

general intolerance of water conditions affected by human activities (i.e. oligosaprobic), 

separated site 2 communities from the others in the River Endrick.  Generally, community 

function in the upper reaches of the river was dominated by species with a requirement for 

very clean water.  In terms of flow preference, community function in the upper reaches of 

the river remained similar at sites 1 (in 1960), 2 and 3 in both study periods, although 

complex mechanisms appear to be separating sites and study periods within this large 

general group. 
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 7.4.3  Middle reaches 

 

Communities in the middles reaches of the River Endrick (i.e. communities at sites, 4, 5 

and 6) were grouped together in terms of species composition, but there was a distinct 

separation of these sites between study periods.  Functional feeding composition of the 

communities in the middle reaches of the river has remained broadly consistent.  

Functional feeding composition of the community at site 4 has maintained a relatively high 

abundance of species using detrivorous and passive filter feeding mechanisms in both 

study periods.  The community at site 6 has maintained a relatively high abundance of 

species using grazing feeding mechanisms.  The community at site 5 has changed between 

study periods.  Functional feeding composition of this community in 1960 was more 

similar to that of the community at site 6, and by 2010 functional feeding composition of 

the community at site 5 was more similar to site 4. 

 

Community function, in terms of water chemistry tolerance, in 1960, was similar at sites 4 

and 5 which had relatively high abundances of species with no tolerance of water 

conditions influenced by human activities.  The community at site 6 in 1960 has a 

relatively high abundance of species associated with mildly (i.e. alpha-mesosaprobic) to 

grossly (i.e. polysapribic) human impacted water conditions.  In 2010, community function 

was similar for sites 4, 5 and 6 in 2010, with a high abundance of mildly pollution tolerant 

species in these communities.  The move in community function at site 6 from one with a 

high tolerance of human influenced water chemistry to a community with a lower tolerance 

of human influenced water conditions has likely arisen as a result of improvements to the 

water quality of a tributary inflowing just upstream of site 6 (Doughty & Maitland, 1994).  

As the water quality in the River Endrick has remained at a generally high standard 

throughout the study period (Doughty & Maitland, 1994), it is surprising that the sites 4 

and 5 are clustered differently than their 1960 analogues.  The samples collected from 

these sites (i.e. sites 4 and 5) in 1960 clustered with sites 1 and 3 from both study periods.  

The communities at sites 4, 5 and 6 in 2010 were also less similar to other communities in 

the study in terms of water chemistry tolerance.  Against the background of consistently 

clean water, this suggests more subtle mechanisms controlling community structure that 

cannot be predicted by the simple measure of biological water quality detailed in Doughty 

& Maitland (1994). 
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Structuring of the community in terms of species preference for flow conditions in the 

middle reaches was broadly similar at sites 4, 5 and 6 in both study periods, although high 

similarity existed between sites 4 and 5 in 2010 and sites 4 and 5 in 1960 .  Community 

structure determined by flow characteristics in the middle reaches was dominated by a high 

relative abundance of species with a preference for moderate flow types (i.e. metarhithral 

and hyporhithral) associated with a temperature range from 5 
o
C to 14 

o
C and not more 

than 18 
o
C (Moog 2002) which fits well with these communities position within the River 

Enrdick. 

 

 7.4.4  Lower reaches 

 

The macroinvertebrate community in the lower reaches of the river (i.e. communities 

collected at site 7) was highly similar in terms of species composition in both study 

periods.  Functional feeding composition of the community in the lower reaches was 

distinctly different in the two study periods.  Specifically, the functional feeding 

composition of the community in the lower reaches of the river in 1960 was distinctly 

different from all other communities in the river system due to a relatively higher 

abundance of predatory species and species using a shredding feeding mechanism.  In 

contrast, the community at site 7 in 2010 had a relatively high abundance of species using 

grazing feeding mechanisms.  Reasons for the changes to the feeding function of the 

community between the two study periods are not clear.  A comparison of photographs 

taken of the lower reaches of the river does not reveal any obvious change in the vegetation 

cover present; in fact this section of the river appears to have remained remarkably similar.  

The high relative abundance of predatory invertebrates in 1960 is indicative of a low 

abundance of fish predators.  Since the 1960 study, Loch Lomond has seen an large 

increase in non-native fish species (Adams, 1994) some of which are present in the lower 

reaches of the river (pers. obs.).  The changing fish fauna of the lower reaches of the river 

may be influencing the change in feeding function of the macroinvertebrate community in 

the lower reaches of the river.  The invasion of the non-native, Crangonyx pseudogracilis, 

may also be influencing community structure in the lower reaches of the river. 

 

Structuring of community function in terms of water chemistry and flow conditions was 

similar in both study periods, with the community in the lower reaches of the river 

dominated by a relatively high abundance of species with an ability to tolerate highly 

influenced water conditions, highly reduced flows and high maximum temperatures.  As 



158 
 

 
CHAPTER 7: River Endrick community change 

the water quality in the River Endrick is high (Doughty & Maitland, 1994), the high 

saprobic tolerance of the lower reaches community is not indicative of poor water quality, 

but a reflection of species within the community being able to tolerate the lower oxygen 

conditions associated with reduced flow in the lower parts of the river.   

 

7.5  Conclusions 

 

The macroinvertebrate community of the River Endrick has shown a significant decline in 

biodiversity in the last 50 years.  Changes, in terms of structure and function of the 

macroinvertebrate community, have shown some general trends (i.e. the longitudinal 

distribution of communities with distance downstream) but also some counterintuitive 

change (i.e. the increase in both cold and warm water adapted species in the headwaters of 

the river).  The distinct difference in community structure in the headwaters of the 

catchment in 2010 is not surprising, but the mechanisms underlying the change are.  River 

headwaters are likely to be subjected to the greatest change as a result of global climate 

change.  Warming is predicted to be especially pronounced in high altitude systems (IPCC, 

2007), and it is expected that these effects will have a marked effect on the biota (Wrona. 

et al., 2006; Heino et al., 2009).  The small nature of headwaters (i.e. shallow, narrow and 

often exposed with no large vegetation cover) means the effects of increasing temperatures 

and changes to hydrology are likely to affect the communities in these areas to the greatest 

extent, mostly with an associated loss of cold water adapted species at high altitudes 

(Durance & Ormerod, 2007).  The results here do not completely reflect this general trend 

as there has been an increase in both the relative abundance of species with a requirement 

of cold fast flows and an increase in the relative abundance of species with a requirement 

for warmer slow flows.  The contrasting nature of community change in the headwaters o 

the River Endrick clearly requires further investigation.  Changes in the community 

structure in the middle reaches of the river in terms of saprobic tolerance cannot be simply 

explained in terms of change to the level of human influence on the water conditions 

within the River Endrick and also requires further investigation. 
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CHAPTER 8  General Discussion 

 

 

 

 

 

 

 

 

 

 

In this thesis six studies have investigated long-term change in aquatic macroinvertebrate 

communities in two river systems with contrasting legacies from human activity.  As 

freshwater ecosystems are losing biodiversity faster than terrestrial and marine systems 

(Dudgeon et al., 2006) and rivers particularly have been highlighted recently as under the 

greatest threat from pervasive human activity (Vörösmarty et al., 2010), finding 

mechanisms that drive change and how change is manifest in river systems is imperative. 

 

The short-term response of the macroinvertebrate community to changes in water physio-

chemistry are well known (Hynes, 1966), and have formed the basis of biological 

monitoring of waterways worldwide.  The long-term response of the macroinvertebrate 

community to changing water physio-chemistry is less well understood (Jackson & 

Füreder, 2006).  In chapter 2, long-term change in the spatial and temporal distribution of 

common macroinvertebrate Families revealed complex colonisation patterns which were 

not explained by simple measures of life-history (flight capability) or pollution tolerance.  

Although the majority of macroinvertebrate Families in the River Clyde have increased 

their occurrence over the 32 year study period, against the background of improving water 

physio-chemistry, two Families have shown a significant decline and another has shown 

counter intuitive spatial change.  Chapter 3 investigated relative influence of the local 

environment in structuring the richness of the macroinvertebrate community.  Variation in 

water physio-chemistry was identified as the strongest driver of change in 

macroinvertebrate community richness, but the intimate link between land use and water 

physio-chemistry was also important. 
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Results from chapter 2 and chapter 3 highlighted the important role water physio-chemistry 

has in structuring macroinvertebrate communities, but also that recolonisation and 

establishment within a community following changes to water physio-chemistry is not a 

purely physiological (i.e. pollution tolerance) response.  These chapters indicate that 

interactions between community members within a reforming community are also 

important structuring forces. 

 

Finding assembly rules in community ecology is key to providing insight into the 

mechanisms underpinning changes in ecosystems arising as a result of a response to 

environmental fluctuation, restoration and non-native species introduction.  The degree to 

which existing community structure influences community formation was investigated in 

chapter 4. 

 

The differential response of macroinvertebrate Families in communities reforming 

following improvements to previously impacted river systems (chapter 2 and chapter 3) 

presents a challenge for the accurate assessment of biotic condition.  One commonly 

employed method of biotic assessment in river systems is the reference condition approach, 

where impacted communities are compared with analogous pristine communities.  In 

chapter 4 the suitability of this reference condition method was tested with a commonly 

used software programme, RIVPACS (River InVertebrate Prediction and Classification 

System; Wright et al., 1984).  RIVPACS is used to predict the structure of communities in 

the absence of human influence, using a small suite of measured environmental variables.  

Comparisons of predicted „pristine‟ community composition with the composition of 

communities reforming in the River Clyde revealed significant differences between 

idealised community composition and extant community composition.  These significant 

differences were attributed to the influence of founding community composition on the 

composition of the contemporary community (Ledger et al., 2006). 

 

Some of the possible mechanisms driving differences in the community structure following 

colonisation and establishment of individuals in a reforming community were investigated 

in chapter 5.  Resource use by a colonising predator was shown to be influenced 

significantly by competition and colonisation patterns.  Colonisation and establishment 

within an already diverse community significantly reduced the trophic position occupied 

by the coloniser, which was linked to increased competition with already established 

predatory species.  The effect of these differences in resourse use as a result of colonisation 
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patterns may have serious consequences for future functionality of the community as 

resource use has been shown to influence future generations.  The results from this chapter 

are important, not only in the context of community reformation but also in furthering our 

understanding of the mechanisms involved in community assembly. 

 

Insights gained from the analysis of the long-term data collected from the River Clyde has 

provided an interesting insight into some of the mechanisms involved in community 

reformation following disturbance.  Communities also alter as a result of „natural‟ changes 

to their environment. 

 

In spite of the geographic proximity, the River Endrick has not been influenced, to the 

same degree as the River Clyde, by human activities.  Despite this lack of obviously direct 

influence, results from chapter 6 and chapter 7 have highlighted significant changes in the 

macroinvertebrate community of this river over a 50 year period.  

 

In chapter 6, changes in the distribution and abundance of 78 species were investigated.  

The local extinction of three species and the possible extinction of three additional species 

represent a major loss for this river system.  One of these, the loss of Crenobia alpina, is 

not a phenomenon unique to the River Endrick as the loss of this species has been noted 

from another British west coast river system (Durance & Ormerod, 2010).  Distribution 

changes of some species may have arisen through alterations to the availability of food 

resources, and prevailing flow and/or temperature conditions.  There is also some evidence 

of life history changes in some species, but this requires further investigation. 

 

The primary causes of species distribution and abundance changes in the River Endrick are 

unclear.  No specific mechanism could account for the mosaic of shifting species 

distribution and abundance patterns, and it is therefore likely that multiple abiotic and 

biotic mechanisms are contributing to the changing community structure within the River 

Endrick. 

 

Possible changes to the diversity and functionality of communities in the River Endrick 

arising as a result of the changes in species distribution and abundance were investigated in 

chapter 7.  The significant loss in community diversity at all study sites since 1960 fits with 

global trends but presents a bleak view of the macroinvertebrate community in this river 

system.  While community function fitted generally well with the longitudinal 
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environmental gradient associated with river systems (Vannote et al., 1980) there have 

been changes in community function over the 50 year study period.  Significant changes in 

community structure and function at the headwaters of the catchment complimented and 

contrasted findings from other river systems (Durance & Ormerod, 2007.  Superficially the 

change in the headwaters was not related to a change in the available food resources or to 

changes in the water saprobity.  The change in the headwater community was linked to the 

increased relative abundance of both cold water adapted and warm water adapted species.  

This apparently contradictory finding requires further investigation. 

 

The results of this study present some interesting perspectives on contingent long-term 

change in river communities.  The River Clyde macroinvertebrate community has 

increased in richness over the 32 year study period, which contrasts the long-term trends 

from the River Endrick.  Differences in the taxonomic resolution of the two river studies 

likely account for some of this contradiction, but the overwhelming response of the 

macroinvertebrate community to improvements in water physio-chemistry in the River 

Clyde would almost certainly mask any subtle change in species distribution, like those 

illustrated from the River Endrick.   

 

8.1  Future work 

 

The results from this thesis have highlighted the differential response of macroinvertebrate 

communities to long-term change in river systems. 

 

The River Endrick and the Loch Lomond area are of national and international importance 

for biodiversity.  Within the Loch Lomond catchment there 3 protected sites (2 of 

international importance) which are directly associated with the River Endrick.  The 

significant loss in biodiversity in the River Endrick may have serious consequences for 

both the river and the lake, after all invertebrates are the primary food resource for the 

majority of fish species some of which have a commercial value to the area (i.e. Atlantic 

salmon, Salmo salar, and brown/sea trout, S. trutta).  Thus, the mechanistic functions 

driving biodiversity loss and species distribution change on the River Endrick need to be 

investigated and identified.  Initial findings of the work presented here should provide a 

springboard for small scale studies targeting specific species.  For example, investigation 

of the possible life history changes in Seratella ignita, and Anphinemura sulcicollis; the 

effects of competitive interaction between the invasive Crangonyx pseudogracilis and its 
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native analogue Gammarus pulex; the effects of the counter intuitive range expansion of 

Asellus aquaticus and Erpobdella octoculata.  Results from these small scale studies 

should provide an insight into the relative magnitude of influence these changes may have 

in the future, in addition to providing information on possible remediation routes. 

 

River biomonitoring must evolve with the changing nature of river communities.  Intrinsic 

changes to assembly mechanisms of community reformation following remediation efforts 

must be accounted for in an accurate assessment of biological condition.  The innovative 

methods developed by the Institute of Freshwater Ecology through the use of reference 

sites for river bioassessment (i.e. RIVPACS software) need updating.  The majority (1,842) 

of the total (2,175) samples which comprise the reference site data set for Great Britian 

were collected pre mid 1990‟s (Figure 8.1) and „natural‟ changes to these reference sites 

must be considered to provide an accurate assessment of contemporary river condition, if 

this methodology is not to become outdated. 

 

 
Figure 8.1: Annual frequency of samples collected for RIVPACS reference database for 

Great Britain (CEH, 2010). 
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APPENDIX A Overview of the land use and solid geology 

   of the two river systems (River Clyde and 

   River Endrick) and the location of the 

   sampling sites used in this study. 

 

Figure A.1:  General land use within the River Clyde and the River Endrick.  Land use 

types have been derived from the CORINE landcover dataset (EEA, 1990). 
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Figure A.2:  General solid geology within the River Clyde and the River Endrick.  Solid 

geology has been derived from the British Geological Survey dataset DiGMapGB-625.  

Reproduced with the permission of the British Geological Survey ©NERC. All rights 

Reserved. 
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Figure A.3:  Location of the sampling sites used in this study. 
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APPENDIX B Species of Tricladida, Hirudinea, Megaloptera,  

   Ephemeroptera, Plecoptera, Hemiptera, Neuroptera,  

   Trichoptera, Lepidoptera and Coleoptera recorded in the  

   1960 and 2010 study periods 

 

Table B.1: List of species recorded in the 1960 and 2010 study periods.  Numbers indicate 

the number of sites from which the spices was recorded; + indicates the detection at one of 

the original 5 sites not included in the 2010 study 

      1960 2010 

    

TRICLADIDA   

 Crenobia alpina 2 0 

 Dendroceolum lacteum 2 1 

 Dugesia lugubris 2 1 

 Polycelis felina 1 3 

 Polycelis nigra 2 2 

 Polycelis tenuis 2 1 

    

HIRUDINEA   

 Batracobdella paludosa 1 1 

 Dina lineata 1 0 

 Erpobdella octoculata 2 4 

 Erpobdella testacea 0 1 

 Glossiphonia complata 3 3 

 Glossiphonia heteroclita 2 1 

 Helobdella stagnalis 4 6 

 Hemiclepsis marginata 1 0 

 Theromyzon tessulatum 1 0 

    

MEGALOPTERA   

 Asellus aquaticus 2 4 

 Crangonxy pseudogracilis 0 2 

 Gammarus pulex 5 6 

    

EPHEMEROPTERA   

 Ameletus inopinatus 1 1 

 Baetis muticus 5 3 

 Baetis niger 0 1 

 Baetis rhodani 6 5 

 Baetis scambus 0 4 

 Caenis rivulorum 5 6 

 Centroptilium luteolum 3 1 

 Ecdyonurus torrentis/insignis 6 6 

 Ecdyonurus venosus 5 5 

 Electrogena lateralis 2 4 
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Table B.1: continued 

      1960 2010 

    

EPHEMEROPTERA contd.   

 Habrophlebia fusca 3 4 

 Leptophlebia marginata 4 4 

 Leptophlebia vespertina 0 3 

 Paraleptophlebia cincta 1 2 

 Paraleptophlebia submarginata 3 6 

 Procloeon pennulatum 2 3 

 Rhithrogena semicolorata 5 5 

 Serratella ignita 7 6 

 Siphlonurus lacustris 1 4 

    

PLECOPTERA   

 Amphinemoura standfussi 1 0 

 Amphinemoura sulcicollis 7 5 

 Brachyptera risi 4 3 

 Capnia bifrons 4 4 

 Chloroperla tripunctata 2 0 

 Dinocras cephalotes 3 2 

 Diurna bicaudata 0 1 

 Euleuctra geniculata 2 3 

 Isoperla grammatica 6 5 

 Leuctra hippopus 7 7 

 Leuctra inermis 6 7 

 Leuctra fusca 6 2 

 Leuctra moselyi 2 4 

 Leuctra nigra 1 2 

 Nemoura avicularis 4 5 

 Nemoura cambrica 1 6 

 Nemoura cinerea 0 1 

 Nemurella pictetii 0 2 

 Perla bipunctata 2 2 

 Perlodes microcephala 2 4 

 Protonemura meyeri 3 6 

 Siphonoperla torrentium 6 5 

 Taeniopteryx nebulosa 3 0 

    

HEMIPTERA   

 Gerris costai 1 1 

 Gerris lacustris 1 1 

 Hesperocorxia sahlbergi + 0 

 Nepa cinerea 1 0 

 Notonecta glauca 1 2 

 Paracorixia concinna 0 1 

 Sigara distincta 1 0 

 Sigara dorsalis 1 2 
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Table B.1: continued 

      1960 2010 

    

HEMIPTERA contd.   

 Sigara falleni 1 1 

 Sigara fossarum + 1 

 Velia caprai 6 0 

    

NEUROPTERA   

 Sialis lutaria 1 1 

 Sialis fuliginosa 1 4 

    

TRICHOPTERA   

 Adicella reducta 0 1 

 Agapetus fuscipes 3 1 

 Agraylea multipunctata 1 0 

 Anabolia nervosa 1 0 

 Athripsodes aterrimus 0 2 

 Athripsodes cinereus 0 1 

 Beracodes minutus  1 

 Berae pullata 0 1 

 Brachycentrus subnubilus 0 1 

 Chaetopteryx villosa 0 1 

 Cyrnus trimaculatus 1 2 

 Drusus annulatus + 2 

 Glossosoma boltoni 1 3 

 Halesus digitatus 0 3 

 Halesus radiatus 0 4 

 Hydropsyche pelluidula 4 4 

 Hydropsyche siltalai 5 5 

 Hydroptilia sp.  + 6 

 Ithytrichia sp. 0 1 

 Lepidostoma hirtum   

 Limniphilis lunatus 0 1 

 Linmiphilus fuscicornis 0 1 

 Lype phaeopa 1 1 

 Lype phaeopa 0 1 

 Mystacides azuna 0 1 

 Mystacides longicornis 0 1 

 Odontocerum albicore 0 3 

 Philopotamus montanus + 2 

 Plectrocnemia conspersa 2 4 

 Polycentropus flavomaculatus 6 6 

 Polycentropus irroratus 1 1 

 Polycentropus irroratus 0 1 

 Potamophylax cingulatus 0 4 

 Potamophylax latipennis 0 3 

 Psychomyia pusilla 5 4 
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Table B.1: continued 

      1960 2010 

    

TRICHOPTERA contd.   

 Rhyacophila dorsalis 6 5 

 Rhyacophila munda 2 2 

 Sericostoma personatum 1 5 

 Silo pallipes 0 1 

 Tinodes waeneri 2 1 

 Wormaidia occipitalis 0 1 

    

LEPIDOPTERA   

 Nymphula nymphaeata 1 1 

    

COLEOPTERA   

 Agabus bipustulatus + 0 

 Agabus guttatus + 2 

 Anacaena globulus 0 1 

 Brychis elevatus 1 0 

 Coelostoma orbiculare 0 1 

 Deronectes elegans 3 0 

 Donacia versicolorea + 0 

 Dytiscus marginata 0 1 

 Elmis aenea 7 7 

 Esolus parallelpipedus 6 4 

 Gyrinus aeratus 0 1 

 Gyrinus substriatus 1 0 

 Haliplus confinis 0  

 Haliplus lineatocollis + 0 

 Haliplus wehnckei 1 4 

 Helodes marginata 3 0 

 Helophorus aquaticus 1 0 

 Helophorus brevipalipis 0 3 

 Helophorus granularis 1 0 

 Helophorus. dorsalis + 0 

 Hydraena gracilis 6 5 

 Hydraena nigrita + 0 

 Hydrobius fuscipes 0 1 

 Hydrocyphon deflexicollis + 0 

 Hydroporus ferrugineus 1 0 

 Hydroporus melanarius 1 0 

 Hydroporus memnonius 0 1 

 Hydroporus rufifrons 1 0 

 Hygrotus inaequalis + 0 

 Ilybuis fuliginosus 0 1 

 Laccobius biguttatus 1 0 

 Laccophilus minutus 1 0 

 Limnebius papposus 1 0 
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APPENDIX B: River Endrick species list 

Table B.1: continued 

      1960 2010 

    

COLEOPTERA contd.   

 Limnius volkmari 7 5 

 Orectochilus villosus 3 0 

 Oreodytes sanmarki 3 5 

 Oreodytes septentrionalis 3 0 

 Oulimnius tuberculatus 7 7 

 Platambus maculatus + 2 

 Riolus cupreus + 0 

 Riolus subviolaceus 0 3 

 Stictotarsus duodecimpustulatus 0 2 
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APPENDIX C: River Endrick species showing no significant distributional change 

APPENDIX C Species with similar distribution on the 

   River Endrick in the 1960 and 2010 study 

   periods 

 

C.1  Tricladida 

 

Dugesia lugubris was relatively uncommon in both 1960 and 2010 (Table C.1).  D. 

lugubris is found exclusively in the lower reaches of the River Endrick (Figure C.1a).  Site 

occupancy and distribution of abundance appear similar in both study periods (Figure 

C.1b).  (a) Similar distribution in 1960 and 2010.  

 

Table C.1:  Numerical summary of D. lugubris collected in the 1960 and 2010 study periods; total 

number collected; river mean corrected for sampling effort (± standard deviation); number of sites 

at which species collected.   

    
Study Period Total Number River Mean Number of Sites 

    
    1960 18 2.42 (± 5.59) 2 

2010 11 1.57 (± 4.16) 1 

    
 

 
(a) 

 
(b) 

Figure C.1:  Distribution of D. lugubris in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of D. lugubris in each study 

period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Polycelis felina was relatively common in both 1960 and 2010 (Table C.2).  P. felina is 

found exclusively in the upper reaches of the River Endrick (Figure C.2a).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.2b).  Absolute 

abundance as increased significantly (χ
2

c = 4.9e
3
, p < 0.0001) between 1960 and 2010 

(Table C.2).  (a) Similar distribution in 1960 and 2010.  

 

Table C.2:  Numerical summary of P. felina collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); 

number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 29 2.71 (± 7.18) 1 

2010 490 46.86 (± 105.65) 3 

    
 

 
(a) 

 
(b) 

Figure C.2:  Distribution of P. felina in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of P. felina in each study 

period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Polycelis nigra was relatively common in both 1960 and 2010 (Table C.3).  P. nigra is 

found exclusively in the lower reaches of the River Endrick (Figure C.3a).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.3b).  (a) 

Similar distribution in 1960 and 2010.  

 

Table C.3:  Numerical summary of P. nigra collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); 

number of sites at which species collected.  

    
Study Period Total Number River Mean Number of Sites 

    
    1960 21 2.86 (± 6.72) 2 

2010 36 5.28 (± 13.55) 2 

    
 

 
(a) 

 
(b) 

Figure C.3:  Distribution of P. nigra in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of P. nigra in each study 

period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Polycelis tenuis was relatively common in both 1960 and 2010 (Table C.4).  P. tenuis is 

found exclusively in the lower reaches of the River Endrick (Figure C.4a).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.4b).  Absolute 

abundance as increased significantly (χ
2

c = 70.389, p < 0.0001) between 1960 and 2010 

(Table C.4).  (a) Similar distribution in 1960 and 2010.  

 

Table C.4:  Numerical summary of P. tenuis collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); 

number of sites at which species collected.   

    
Study Period Total Number River Mean Number of Sites 

    
    1960 52 7.14 (± 17.61) 2 

2010 113 19.43 (± 50.53) 2 

    
 

 
(a) 

 
(b) 

Figure C.4:  Distribution of P. tenuis in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of P. tenuis in each 

study period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

C.2  Crustacea 

 

Gammarus pulex was relatively common in both 1960 and 2010 (Table C.5).  G. pulex is 

found along almost all of the River Endrick (excluding the extreme upper reaches; Figure 

C.5a).  Site occupancy and distribution of abundance appear similar in both study periods 

(Figure C.5b).  Absolute abundance as increased significantly (χ
2

c = 3.9e
3
, p < 0.0001) 

between 1960 and 2010 (Table C.5).  (a) Similar distribution in 1960 and 2010.  

 

Table C.5:  Numerical summary of G. pulex collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); 

number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 185 24.00 (± 23.14) 5 

2010 1034 212.42 (± 367.42) 6 

    
 

 
(a) 

 
(b) 

Figure C.5:  Distribution of G. pulex in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of G. pulex in each study 

period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

C.3  Ephemeroptera 

 

Ameletus inopinatus is found only at the source of the River Endrick (Figure C.6a).  Site 

occupancy and distribution of abundance are identical in both study periods (Table C.6; 

Figure C.6a).  Absolute abundance has decreased significantly (χ
2

c = 9.59, p = 0.0020) 

between 1960 and 2010 (Table C.6).  (a) Similar distribution in 1960 and 2010.  

 

Table C.6:  Numerical summary of A. inopinatus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 1 2.71 (± 7.18) 1 

2010 19 0.14 (± 0.38) 1 

    
 

 
(a) 

 
(b) 

Figure C.6:  Distribution of A. inopinatus in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of A. inopinatus 

in each study period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Baetis muticus was common in both 1960 and 2010 (Table C.7).  B. muticus is found along 

the middle reaches of the River Endrick (Figure C.7a).  Site occupancy and distribution of 

abundance appear similar in both study periods (Figure C.7b).  Absolute abundance has 

decreased significantly (χ
2

c = 224.232, p < 0.0001) between 1960 and 2010 (Table C.7).  

(a) Similar distribution in 1960 and 2010.  

 

Table C.7:  Numerical summary of B. muticus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 312 43.14 (± 45.35) 5 

2010 47 5.43 (± 7.91) 3 

    
 

 
(a) 

 
(b) 

Figure C.7:  Distribution of B. muticus in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of B. muticus in each 

study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Baetis rhodani was extremely abundant in both 1960 and 2010 (Table C.8).  B. rhodani is 

found along almost all of the River Endrick (Figure C.8a) and was collected in all seasons 

and in all habitat types.  Site occupancy and distribution of abundance appear similar in 

both study periods (Figure C.8b).  Absolute abundance has increased significantly (χ
2

c = 

210.859, p < 0.0001) between 1960 and 2010 (Table C.8).  (a) Similar distribution in 1960 

and 2010.  

 

Table C.8:  Numerical summary of B. rhodani collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 1474 209.71 (± 212.98) 6 

2010 2032 439.81 (± 657.56) 5 

    
 

 
(a) 

 
(b) 

Figure C.8:  Distribution of B. rhodani in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of B. rhodani in each 

study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Caenis rivulorum was abundance in both study periods (Table C.9).  Site occupancy and 

distribution of abundance appear similar in both study periods (Figure C.9).  Absolute 

abundance has increased significantly (χ
2

c = 1.2e
3
, p < 0.0001) between 1960 and 2010 

(Table C.9).  (a) Similar distribution in 1960 and 2010. 

 

Table C.9:  Numerical summary of C. rivulorum collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 200 30.29 (± 35.71) 5 

2010 1550 164.14 (± 339.63) 6 

    
 

 
(a) 

 
(b) 

Figure C.9:  Distribution of C. rivulorum in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of C. rivulorum in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Centroptilum luteolum was collected in both 1960 and 2010 (Table C.10).  C. luteolum was 

found along the middle reaches of the River Endrick in 1960 but was only recorded from 

the lower reaches of the River in 2010 (Figure C.10a).  Site occupancy and distribution of 

abundance appear similar in both study periods (Figure C.10b).  Site occupancy has not 

changed significantly between 1960 and 2010 (Fisher‟s exact test; p = 0.615).  Absolute 

abundance has decreased significantly (χ
2

c = 224.232, p < 0.0001) between 1960 and 2010 

(Table C.10).  (a) Similar distribution in 1960 and 2010.  

 

Table C.10:  Numerical summary of C. luteolum collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 223 30.57 (± 73.59) 3 

2010 16 2.29 (± 6.05) 1 

    
 

 
(a) 

 
(b) 

Figure C.10:  Distribution of C. luteolum in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of C. luteolum in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Ecdyonurus torrentis/insignis
*
 was abundant in both 1960 and 2010 (Table C.11).  E. 

torrentis/insignis is found along almost all of the River Endrick (Figure C.11a).  Site 

occupancy and distribution of abundance appear similar in both study periods (Figure 

C.11b).  Absolute abundance has decreased significantly (χ
2

c = 8.5e
3
, p < 0.0001) between 

1960 and 2010 (Table C.11).  (a) Similar distribution in 1960 and 2010.  

 

Table C.11:  Numerical summary of E. torrentis/insignis collected in the 1960 and 2010 

study periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 140 9.43 (± 9.80) 6 

2010 1234 127.29 (± 180.44) 6 

    
 

 
(a) 

 
(b) 

Figure C.11:  Distribution of E. torrentis/insignis in the river Endrick in 1960 and 2010; 

(a) spatial distribution (site occupancy); (b) relative frequency of occurrence of E 

torrentis/insignis in each study period. 

 

* 
These species have been analysed together due to identification issues. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Ecdyonurus venosus was abundant in both 1960 and 2010 (Table C.12).  E. venosus is 

found along almost all of the River Endrick (excluding the lower reaches and extreme 

upper reaches; Figure C.12a).  Site occupancy and distribution of abundance appear similar 

in both study periods (Figure C.12b).  Absolute abundance has decreased significantly (χ
2

c 

= 13.389, p = 0.0003) between 1960 and 2010 (Table C.12).  (a) Similar distribution in 

1960 and 2010.  

 

Table C.12:  Numerical summary of E. venosus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 183 30.00 (± 37.90) 5 

2010 133 31.57 (± 46.85) 5 

    
 

 
(a) 

 
(b) 

Figure C.12:  Distribution of E. venosus in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of E. venosus in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Habrophlebia fusca was collected in both 1960 and 2010 (Table C.13).  H. fusca was 

found along the lower middle reaches of the River Endrick (Figure C.13a).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.13b).  Site 

occupancy has not changed significantly between 1960 and 2010 (Fisher‟s exact test; p = 

0.102).  Absolute abundance has decreased significantly (χ
2

c = 11.358, p = 0.0008) 

between 1960 and 2010 (Table C.13).  (a) Similar distribution in 1960 and 2010.  

 

Table C.13:  Numerical summary of H. fusca collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 37 4.71 (± 6.63) 3 

2010 16 2.29 (± 2.43) 4 

    
 

 
(a) 

 
(b) 

Figure C.13:  Distribution of H. fusca in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of H. fusca in each study 

period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Leptophlebia marginata was common in both 1960 and 2010 (Table C.14).  L. marginata 

was found in the extreme lower reaches and the upper reaches of the River Endrick in both 

1960 and 2010 (Figure C.14a).  Site occupancy and distribution of abundance appear 

similar in both study periods (Figure C.14b).  Absolute abundance has decreased 

significantly (χ
2

c = 5.879, p = 0.015) between 1960 and 2010 (Table C.14).  (a) Similar 

distribution in 1960 and 2010.  

 

Table C.14:  Numerical summary of L. marginata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 31 3.14 (± 5.37) 4 

2010 17 2.00 (± 3.00) 4 

    
 

 
(a) 

 
(b) 

Figure C.14:  Distribution of L. marginata in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of L. marginata 

in each study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Paraleptophlebia cincta occurred sporadically in the River Endrick in both 1960 and 2010 

(Figure C.15, Table C.15).  Absolute abundance has decreased significantly (χ
2

c = 8.679, p 

= 0.0032) between 1960 and 2010 (Table C.15).  (a) Similar distribution in 1960 and 2010.  

 

Table C.15:  Numerical summary of P. cincta collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 21 2.00 (± 5.29) 1 

2010 7 1.00 (± 2.23) 2 

    
 

 
(a) 

 
(b) 

Figure C.15:  Distribution of P. cincta in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of P. cincta in each 

study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Rhithrogena semicolorata was abundant in both 1960 and 2010 (Table C.16).  R. 

semicolorata is found along almost all of the River Endrick (excluding the lower reaches 

and extreme upper reaches; Figure C.16a).  Site occupancy and distribution of abundance 

appear similar in both study periods (Figure C.16b).  Absolute abundance has increased 

significantly (χ
2

c = 1.5e
5
, p < 0.0001) between 1960 and 2010 (Table C.16).  (a) Similar 

distribution in 1960 and 2010.  

 

Table C.16:  Numerical summary of R. semicolorata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 237 29.71 (± 39.31) 5 

2010 6173 1473.86 (± 2143.03) 5 

    
 

 
(a) 

 
(b) 

Figure C.16:  Distribution of R. semicolorata in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of R. 

semicolorata in each study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Serratella ignita was extremely abundance in both study periods (Table C.17).  All 

individuals of this species were collected only in the summer months in 1960 (Maitland, 

1965).  While the majority of individuals were collected in the summer samples in 2010, 

11 individuals were collected in autumn samples from site 5 and site 6. Absolute 

abundance has increased significantly (χ
2

c = 3.0e
4
, p < 0.0001) between 1960 and 2010 

(Table C.17).  (a) Similar distribution in 1960 and 2010. 

 

Table C.17:  Numerical summary of S. ignita collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 1989 264.57 (± 252.58) 7 

2010 9728 1434.49 (± 1568.19) 6 

    
 

 
(a) 

 
(b) 

Figure C.17:  Distribution of S. ignita in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of S. ignita in each study 

period.
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APPENDIX C: River Endrick species showing no significant distributional change 

Siphlonurus lacustris found exclusively in the lowers reaches in 1960, this species was 

recorded from the site at the source of the river in 2010 (Figure C.18a).  33 individuals 

were collected from the river in 2010; 22 were collected from the lower reaches compared 

to 11 from the upper reaches (Figure C.18b). Those specimens collected in the lower 

reaches were found exclusively in habitats with slow flow (i.e. pool and emergent 

macrophyte), while the specimens collected from the upper reaches were predominantly 

found in faster flowing conditions (i.e. in riffle and moss covered rock).  The detection of 

this species in 2010 outwith the historic range in 1960 was not significant (Fisher‟s exact 

test; p = 0.224).  Absolute abundance has increased significantly (χ
2

c = 151.250, p = 

0.0020) between 1960 and 2010 (Table C.18).  (a) Similar distribution in 1960 and 2010. 

 

Table C.18:  Numerical summary of S. lacustris collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 3 0.43 (± 1.13) 1 

2010 33 3.86 (± 4.52) 4 

    
 

 
(a) 

 
(b) 

Figure C.18:  Distribution of S. lacustris in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of S. lacustris in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

C.4  Plecoptera 

 

Amphinemura sulcicollis was abundance in both study periods (Table C.19).  Site 

occupancy and distribution of abundance appear similar in both study periods (Figure 

C.19).  Absolute abundance has decreased significantly (χ
2

c = 285.387, p < 0.0001) 

between 1960 and 2010 (Table C.19).  (a) Similar distribution in 1960 and 2010. 

 

Table C.19:  Numerical summary of A. sulcicollis collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 1433 158.71 (± 201.67) 7 

2010 793 76.05 (± 127.84) 5 

    
 

 
(a) 

 
(b) 

Figure C.19:  Distribution of A. sulcicollis in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of A. sulcicollis 

in each study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Brachyptera risi was collected in both 1960 and 2010 (Table C.20).  B. risi was found 

along the lower middle reaches of the River Endrick (Figure C.20a).  Site occupancy and 

distribution of abundance appear similar in both study periods (Figure C.20b).  Absolute 

abundance has increased significantly (χ
2

c = 190.571, p < 0.0001) between 1960 and 2010 

(Table C.20).  (a) Similar distribution in 1960 and 2010.  

 

Table C.20:  Numerical summary of B.risi collected in the 1960 and 2010 study periods; 

total number collected; river mean corrected for sampling effort (± standard deviation); 

number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 53 7.57 (± 8.40) 4 

2010 154 41.71 (± 66.03) 3 

    
 

 
(a) 

 
(b) 

Figure C.20:  Distribution of B. risi in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of B.risi in each study 

period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Capnia bifrons distribution of this species in the two study periods remains broadly 

similar, with two populations present on the River Endrick (Figure C.21).  The large of the 

two populations was found in the upper reaches in 1960 and 2010 (Figure C.21b).  

Absolute increased has increased significantly (χ
2

c = 548.350, p < 0.00001) between 1960 

and 2010 (Table C.21).  (a) Similar distribution in 1960 and 2010.  

 

Table C.21:  Numerical summary of C. bifrons collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 36 4.57 (± 6.11) 4 

2010 177 27.71 (± 57.62) 4 

    
 

 
(a) 

 
(b) 

Figure C.21:  Distribution of C. bifrons in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of C. bifrons in each 

study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Dinocras cephalotes was common in both study periods (Table C.22).  Site occupancy and 

distribution of abundance appear similar in both study periods (Figure C.22).  Absolute 

abundance has decreased significantly (χ
2

c = 62.095, p = 0.0002) between 1960 and 2010 

(Table C.22).  (a) Similar distribution in both study periods. 

 

Table C.22:  Numerical summary of D. cephalotes collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 87 8.43 (± 18.46) 3 

2010 13 1.29 (± 2.63) 2 

    
 

 
(a) 

 
(b) 

Figure C.22:  Distribution of D. cephalotes in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of D. cephalotes 

in each study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Euleuctra geniculata was recorded in both study periods in the middle reaches of the river 

(Table C.23; Figure C.23).  Site occupancy and distribution of abundance appear similar in 

both study periods (Figure C.23).  Absolute abundance has increased significantly (χ
2

c = 

1.7e
3
, p < 0.0001) between 1960 and 2010 (Table C.23).  (a) Similar distribution in both 

study periods. 

 

Table C.23:  Numerical summary of E. geniculata collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 22 5.43 (± 12.30) 2 

2010 214 46.29 (± 92.30) 3 

    
 

 
(a) 

 
(b) 

Figure C.23:  Distribution of E. geniculata in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of E. geniculata 

in each study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Isoperla grammatica was abundant in both study periods (Table C.24).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.24).  Absolute 

abundance has decreased significantly (χ
2

c = 138.743, p = 0.0002) between 1960 and 2010 

(Table C.24).  (a) Similar distribution in both study periods. 

 

Table C.24:  Numerical summary of I. grammatica collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 722 78.57 (± 117.22) 6 

2010 405 40.86 (± 61.06) 5 

    
 

 
(a) 

 
(b) 

Figure C.24:  Distribution of I. grammatica in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of I. grammatica 

in each study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Leuctra hippopus was highly abundant in both study periods (Table C.25).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.25).  Absolute 

abundance has increased significantly (χ
2

c = 291.424, p = 0.0002) between 1960 and 2010 

(Table C.25).  (a) Similar distribution in both study periods. 

 

Table C.25:  Numerical summary of L. hippopus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 489 52.86 (± 69.91) 7 

2010 867 100.43 (± 110.09) 7 

    
 

 
(a) 

 
(b) 

Figure C.25:  Distribution of L. hippopus in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of L. hippopus in each 

study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Leutra inermis was highly abundant in both study periods (Table C.26).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.26).  Absolute 

abundance has decreased significantly (χ
2

c = 13.572, p = 0.0002) between 1960 and 2010 

(Table C.26).  (a) Similar distribution in 1960 and 2010. 

 

Table C.26:  Numerical summary of L. inermis collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 672 73.29 (± 76.82) 6 

2010 576 70.14 (± 95.03) 7 

    
 

 
(a) 

 
(b) 

Figure C.26:  Distribution of L. inermis in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of L. inermis in each 

study period. 
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APPENDIX C: River Endrick species showing no significant distributional change 

Leuctra nigra was only recorded from the extreme upper reaches of the River Endrick in 

both 1960 and 2010 (Figure C.27).  Site occupancy and distribution of abundance are 

similar in both study periods (Table C.27; Figure C.27a).  Absolute increased has increased 

significantly (χ
2

c = 232.408, p < 0.00001) between 1960 and 2010 (Table C.27).  (a) 

Similar distribution in 1960 and 2010.  

 

Table C.27:  Numerical summary of L. nigra collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 30 4.29 (± 11.34) 1 

2010 114 16.14 (± 42.27) 2 

    
 

 
(a) 

 
(b) 

Figure C.27:  Distribution of L. nigra in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of L. nigra in each study 

period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Nemoura avicularis was recorded in both study periods in the extreme upper and lower 

reaches of the river (Table C.28; Figure C.28).  Site occupancy and distribution of 

abundance appear similar in both study periods (Figure C.28).  Absolute abundance has 

increased significantly (χ
2

c = 1.6e
3
, p < 0.0001) between 1960 and 2010 (Table C.28).  (a) 

Similar distribution in both study periods. 

 

Table C.28:  Numerical summary of N. avicularis collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 65 8.43 (± 14.71) 4 

2010 384 54.57 (± 126.45) 5 

    
 

 
(a) 

 
(b) 

Figure C.28:  Distribution of N. avicularis in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of N. avicularis 

in each study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Siphonoperla torrentium was common in both study periods (Table C.29).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.29).  Absolute 

abundance has decreased significantly (χ
2

c = 110.068, p = 0.0002) between 1960 and 2010 

(Table C.29).  (a) Similar distribution in both study periods. 

 

Table C.29:  Numerical summary of S. torrentium collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 296 32.29 (± 43.29) 6 

2010 115 12.57 (± 17.00) 5 

    
 

 
(a) 

 
(b) 

Figure C.29:  Distribution of S. torrentium in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of S. torrentium 

in each study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

C.5  Hemiptera 

 

Gerris costai was only collected at the site located close to the source of the river in both 

study periods (Table C.30; Figure C.30).  (a) Similar distribution in both study periods. 

 

Table C.30:  Numerical summary of G. costai collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 1 0.14 (± 0.38) 1 

2010 1 0.14 (± 0.38) 1 

    
 

 
(a) 

 
(b) 

Figure C.30:  Distribution of G. costai in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of G. costai in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Gerris lacustris (L.) remains restricted to the lower reaches in both study periods (Figure 

C.31; Table C.31).  No abundance data were available for G. lacustris in 1960, so only 

spatial distribution is presented for this species.  (a) Similar distribution in both study 

periods. 

 

Table C.31:  Numerical summary of G. lacustris collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 na na 1 

2010 2 0.57 (± 1.51) 1 

    
 

 
 

Figure C.31:  Spatial distribution of G. lacustris in the river Endrick in 1960 and 2010.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Notonecta glauca was relatively common in both 1960 and 2010 (Table C.32).  N. glauca 

is found exclusively in the lower reaches of the River Endrick (Figure C.32a).  Site 

occupancy and distribution of abundance appear similar in both study periods (Figure 

C.32b).  Absolute abundance has increased significantly (χ
2

c = 90.018, p < 0.0001) 

between 1960 and 2010 (Table C.32).  (a) Similar distribution in 1960 and 2010.  

 

Table C.32:  Numerical summary of N. glauca collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 14 2.00 (± 5.29) 1 

2010 50 7.00 (± 18.08) 2 

    
 

 
(a) 

 
(b) 

Figure C.32:  Distribution of N. glauca in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of N. glauca in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Sigara dorsalis was relatively common in both 1960 and 2010 (Table C.33).  S. dorsalis is 

found exclusively in the lower reaches of the River Endrick (Figure C.33a).  Site 

occupancy and distribution of abundance appear similar in both study periods (Figure 

C.33b).  (a) Similar distribution in 1960 and 2010.  

 

Table C.33:  Numerical summary of S. dorsalis collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 13 1.86 (± 4.91) 1 

2010 23 3.71 (± 9.39) 2 

    
 

 
(a) 

 
(b) 

Figure C.33:  Distribution of S. dorsalis in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of S. dorsalis in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Sigara falleni was relatively common in both 1960 and 2010 (Table C.34).  S. dorsalis is 

found exclusively in the lower reaches of the River Endrick (Figure C.34a).  Site 

occupancy and distribution of abundance appear similar in both study periods (Figure 

C.34b).  Absolute abundance has increased significantly (χ
2

c = 42.284, p < 0.0001) 

between 1960 and 2010 (Table C.34).  (a) Similar distribution in 1960 and 2010.  

 

Table C.34:  Numerical summary of S. falleni collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 22 3.14 (± 8.32) 1 

2010 53 8.71 (± 23.06) 1 

    
 

 
(a) 

 
(b) 

Figure C.34:  Distribution of S. falleni in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of S. falleni in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Sigara fossarum was collected from the lower reaches of the river in both 1960 and 2010 

from different sites.  In 1960 this species was collected from the site at the mouth of the 

river.  No abundance data were available for S. fossarum in 1960, so only spatial 

distribution is presented for this species.  (a) Similar distribution in both study periods. 

 

Table C.35:  Numerical summary of S. fossarum collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 na na na 

2010 4 0.57 (± 1.51) 1 

    
 

 
 

Figure C.35:  Spatial distribution of S. fossarum in the river Endrick in 1960 and 2010.  
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APPENDIX C: River Endrick species showing no significant distributional change 

C.6  Megaloptera 

 

Sialis fuliginosa was collected sporadically throughout the length of the River Endrick in 

both study periods (Figure C.36).  No abundance data were available for S. fuliginosa in 

1960, so only spatial distribution is presented for this species.  (a) Similar distribution in 

both study periods. 

 

Table C.36:  Numerical summary of S. fuliginosa collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 na na 1 

2010 7 1 (± 1.52) 3 

    
 

 
 

Figure C.36:  Spatial distribution of S. fuliginosa in the river Endrick in 1960 and 2010.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Sialis lutaria was collected only in the lower reaches of the river in both study periods 

(Figure C.37).  No abundance data were available for S. lutaira in 1960, so only spatial 

distribution is presented for this species.  (a) Similar distribution in both study periods. 

 

Table C.37:  Numerical summary of S. lutaira collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 na na 1 

2010 9 1.3 (± 4.03) 1 

    
 

 
 

Figure C.37:  Spatial distribution of S. lutaira in the river Endrick in 1960 and 2010.   
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APPENDIX C: River Endrick species showing no significant distributional change 

C.7  Trichoptera 

 

Hydropsyche pelluidula was common in both study periods (Table C.38).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.38).  Absolute 

abundance has remained similar (χ
2

c = 3.875, p = 0.050) between 1960 and 2010 (Table 

C.38).  (a) Similar distribution in both study periods. 

 

Table C.38:  Numerical summary of H. pelluidula collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 46 5.00 (± 8.14) 4 

2010 62 8.71 (± 10.67) 4 

    
 

 
(a) 

 
(b) 

Figure C.38:  Distribution of H. pelluidula in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of H. pelluidula 

in each study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Hydropsyche siltalai was highly abundant in both study periods (Table C.39).  Site 

occupancy and distribution of abundance appear similar in both study periods (Figure 

C.39).  Absolute abundance has increased significantly (χ
2

c = 136.220, p < 0.0001) 

between 1960 and 2010 (Table C.39).  (a) Similar distribution in both study periods. 

 

Table C.39:  Numerical summary of H. siltalai collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 1550 175.57 (± 266.81) 5 

2010 2010 282.43 (± 316.16) 5 

    
 

 
(a) 

 
(b) 

Figure C.39:  Distribution of H. siltalai in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of H. siltalai in each 

study period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Lype phaeopa occurred sporadically in the River Endrick in both 1960 and 2010 (Figure 

C.40, Table C.40).  (a) Similar distribution in 1960 and 2010.  

 

Table C.40:  Numerical summary of L. phaeopa collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 1 0.14 (± 0.38) 1 

2010 5 1.00 (± 2.65) 1 

    
 

 
(a) 

 
(b) 

Figure C.40:  Distribution of L. phaeopa in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of L. phaeopa in each 

study period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Plectrocnemia conspersa detected in 2010 in small numbers (1 and 3 individuals collected) 

at two additional sites downstream of the distribution detailed from the 1960 study (Figure 

C.41).  The detection of this species in 2010 outwith the historic range in 1960 was not 

significant (Fisher‟s exact test; p = 0.558).  Absolute abundance has increased significantly 

(χ
2

c = 750.948, p = 0.0020) between 1960 and 2010 (Table C.41).  (a) Similar distribution 

in both study periods. 

 

Table C.41:  Numerical summary of P. conspersa collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 53 6.71 (± 13.55) 2 

2010 235 31.28 (± 65.66) 4 

    
 

 
(a) 

 
(b) 

Figure C.41:  Distribution of P. conspersa in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of P. conspersa 

in each study period.  



213 
 

 
APPENDIX C: River Endrick species showing no significant distributional change 

Polycentropus flavomaculatus was highly abundant in both study periods (Table C.42).  

Site occupancy and distribution of abundance appear similar in both study periods (Figure 

C.42).  Absolute abundance has decreased significantly (χ
2

c = 130.556, p < 0.0001) 

between 1960 and 2010 (Table C.42).  (a) Similar distribution in both study periods. 

 

Table C.42:  Numerical summary of P. flavomaculatus collected in the 1960 and 2010 

study periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 777 89.71 (± 83.52) 6 

2010 458 64.14 (± 75.43) 6 

    
 

 
(a) 

 
(b) 

Figure C.42:  Distribution of P. flavomaculatus in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of P. 

flavomaculatus in each study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Polycentropus irroratus was recorded only once in each study period at two different sites 

(Table C.43; Figure C.43).  (a) Similar distribution in both study periods. 

 

Table C.43:  Numerical summary of P. irroratus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 1 0.14 (± 0.38) 1 

2010 1 0.14 (± 0.38) 1 

    
 

 
(a) 

 
(b) 

Figure C.43:  Distribution of P. irroratus in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of P. irroratus in each 

study period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Rhyacophila dorsalis was abundant in both study periods (Table C.44).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.44).  Absolute 

abundance has not changed significantly (χ
2

c = 1.636, p = 0.201) between 1960 and 2010 

(Table C.44).  (a) Similar distribution in both study periods. 

 

Table C.44:  Numerical summary of R. dorsalis collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 367 48.29 (± 57.42) 6 

2010 342 51.57 (± 67.87) 5 

    
 

 
(a) 

 
(b) 

Figure C.44:  Distribution of R. dorsalis in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of R. dorsalis in each 

study period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

C.8  Lepidoptera 

 

Nymphula nymphaeta was collected from the lower reaches of the river in both study 

periods (Figure C.45).  No abundance data were available for N. nymphaeta in 1960, so 

only spatial distribution is presented for this species.  (a) Similar distribution in both study 

periods. 

 

Table C.45:  Numerical summary of N. nymphaeta collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 na na 1 

2010 2 0.3 (± 0.91) 1 

    
 

 
 

Figure C.45:  Spatial distribution of N. nymphaeta in the river Endrick in 1960 and 2010. 
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APPENDIX C: River Endrick species showing no significant distributional change 

C.9  Coleoptera 

 

Elmis aenea was common in both study periods (Table C.46).  Site occupancy and 

distribution of abundance appear similar in both study periods (Figure C.46).  Absolute 

abundance has increased significantly (χ
2

c = 1.8e
3
 p < 0.0001) between 1960 and 2010 

(Table C.46).  (a) Similar distribution in both study periods. 

 

Table C.46:  Numerical summary of E. aenea collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 511 68.57 (± 41.38) 7 

2010 1479 169.14 (± 149.55) 7 

    
 

 
(a) 

 
(b) 

Figure C.46:  Distribution of E. aenea in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of E. aenea in each 

study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Esolus parallelopipedus was common in both study periods (Table C.47).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.47).  Absolute 

abundance has decreased significantly (χ
2

c = 363.373, p < 0.0001) between 1960 and 2010 

(Table C.47).  (a) Similar distribution in both study periods. 

 

Table C.47:  Numerical summary of E. parallelopipedus collected in the 1960 and 2010 

study periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 561 93.00 (± 122.61) 6 

2010 109 15.71 (± 18.77) 4 

    
 

 
(a) 

 
(b) 

Figure C.47:  Distribution of E. parallelopipedus in the river Endrick in 1960 and 2010; 

(a) spatial distribution (site occupancy); (b) relative frequency of occurrence of E. 

parallelopipedus in each study period.  
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APPENDIX C: River Endrick species showing no significant distributional change 

Hydraena gracilis was common in both study periods (Table C.48).  Site occupancy and 

distribution of abundance appear similar in both study periods (Figure C.48).  Absolute 

abundance has increased significantly (χ
2

c = 30.003 p < 0.0001) between 1960 and 2010 

(Table C.48).  (a) Similar distribution in both study periods. 

 

Table C.48:  Numerical summary of H. gracilis collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 85 10.14 (± 8.09) 6 

2010 136 17.57 (± 16.43) 5 

    
 

 
(a) 

 
(b) 

Figure C.48:  Distribution of H. gracilis in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of H. gracilis in each 

study period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Limnius volkmari was common in both study periods (Table C.49).  Site occupancy and 

distribution of abundance appear similar in both study periods (Figure C.49).  Absolute 

abundance has increased significantly (χ
2

c = 1.5e
3
, p < 0.0001) between 1960 and 2010 

(Table C.49).  (a) Similar distribution in both study periods. 

 

Table C.49:  Numerical summary of L. volkmari collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 610 105.14 (± 137.32) 7 

2010 1572 237.37 (± 266.77) 5 

    
 

 
(a) 

 
(b) 

Figure C.49:  Distribution of L. volkmari in the river Endrick in 1960 and 2010; (a) spatial 

distribution (site occupancy); (b) relative frequency of occurrence of L. volkmari in each 

study period.   
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APPENDIX C: River Endrick species showing no significant distributional change 

Oulimnius tuberculatus was common in both study periods (Table C.50).  Site occupancy 

and distribution of abundance appear similar in both study periods (Figure C.50).  Absolute 

abundance has increased significantly (χ
2

c = 850.142, p < 0.0001) between 1960 and 2010 

(Table C.50).  (a) Similar distribution in both study periods. 

 

Table C.50:  Numerical summary of O. tuberculatus collected in the 1960 and 2010 study 

periods; total number collected; river mean corrected for sampling effort (± standard 

deviation); number of sites at which species collected. 

    
Study Period Total Number River Mean Number of Sites 

    
    1960 283 87.29 (± 75.35) 7 

2010 744 32.71 (± 31.31) 7 

    
 

 
(a) 

 
(b) 

Figure C.50:  Distribution of O. tuberculatus in the river Endrick in 1960 and 2010; (a) 

spatial distribution (site occupancy); (b) relative frequency of occurrence of O. 

tuberculatus in each study period. 
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APPENDIX D:  Keys used for invertebrate identification 

Appendix D  Keys used in the identification of macroinvertebrate 

   species from the River Endrick 

 

D.1  Tricladida 

 

Reynoldson, T. B.  1978  A key to British species of Freshwater Triclads.  Freshwater 

Biological Association, Ambleside.  pp. 32. 

 

D.2  Hirudinea 

 

Elliot, J. M. & Mann, K. H.  1979  A key to the British Freshwater Leeches.  Freshwater 

Biological Association, Ambleside.  pp. 72. 

 

D.3  Malacostraca 

 

Gledhill, T., Sutcliffe, D. W. & Williams, D.W.  1976  Ket to British Freshwater 

Crustacea: Malacostraca.  Freshwater Biological Association, Ambleside.  pp. 72. 

 

D.4  Ephemeroptera 

 

Elliot, J. M., Humpesch, U. H. & Macan, T. T.  1988  Larvae of the British Ephemeroptera: 

A key with ecological notes.  Freshwater Biological Association, Ambleside.  pp. 145. 

 

Macadam, C & Bennett, C.  2010  A pictorial guide to British Ephemeroptera.  FSC 

Publications, Shrewsbury.  pp. 128 + iv. 

 

D.5  Plecoptera 

 

Hynes, H. B. N.  1977  Adults and nymphs of British stoneflies (Plecoptera): A key.  

Freshwater Biological Association, Ambleside.  pp. 92. 

 

D.6  Odonata 

 

Brooks, S.  1999  Field guide to the Dragonflies and Damselflies of Great Britain and 

Ireland.  British Wildlife Publishing, Dorset.  pp. 160.  
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APPENDIX D:  Keys used for invertebrate identification 

D.7  Hemiptera 

 

Jansson, A.  1996  Heteroptera Nepomorpha, Aquatic Bugs.  In: Aquatic insects of North 

Europe – A Taxonomic Handbook Volume 1 (ed. Nilsson, A.N.) pp. 91-104. 

 

Macan, T. T.  1965  A key to British Water Bugs (Hemiptera-Heteroptera).  Freshwater 

Biological Association, Ambleside.  pp. 78. 

 

D.8  Neuroptera 

 

Elliot, J. M.  1996  British Freshwater Megaloptera and Neuroptera: A key with ecological 

notes.  Freshwater Biological Association, Ambleside.  pp. 69. 

 

D.9  Trichoptera 

 

Eddington, J. M. & Hildrew, A. G.  1995  A revised Key to the Caseless Caddis Larvae of 

the British Isles, with Notes on their Ecology.  Freshwater Biological Association, 

Ambleside.  134 pp. 

 

Hickin, N. E.  1967  Caddis Larvae.  Larvae of the British Trichoptera.  Hutchinson & Co. 

Ltd., London.  476 + xi pp. 

 

Wallace, I. D., Wallace, B & Philipson, G. N.  2003  Keys to the case-bearing caddis larvae 

of Britain and Ireland.  Freshwater Biological Association, Ambleside.  259 pp. 

 

D.10  Lepidoptera 

 

Agassiz, D. J. L.  1996  Lepidoptera Pyralidae, (China Mark) Moths.  In: Aquatic insects of 

North Europe – A Taxonomic Handbook Volume 1 (ed. Nilsson, A.N.) pp. 257-263. 

 

D.11  Coleoptera 

 

Friday, L. E.  1988  A key to the adults of British water beetles.  Field Studies 7:1-151 
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APPENDIX D:  Keys used for invertebrate identification 

Hansen, M.  1996  Coleoptera Hydrophiloidae and Hydraenidae, Water Scavenger Beetles.  
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