University
of Glasgow

Shannon, Mark (2011) The construction of high-performance virtual
machines for dynamic languages. PhD thesis.

http://theses.gla.ac.uk/2975/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.qgla.ac.uk/
theses@gla.ac.uk

Unuiversity

of Glasgow

The Construction of
High-Performance Virtual Machines
for Dynamic Languages

Mark Shannon, MSc.

Submitted for the Degree of
Doctor of Philosophy

School of Computing Science
College of Science and Engineering
University of Glasgow

November 2011

Abstract

Dynamic languages, such as Python and Ruby, have become more widely used
over the past decale. Despite this, the standard virtual machines for these lan-
guages have disappanting performance These virtual macdines are slow, nat be-
cause methods for achieving better performance ae unknown, but because their
implementation is hard. What makes the implementation o high-performance
virtua madhines difficult is nat that they are large pieces of software, but that
there ae fundamental and complex interdependencies between their componrents.
In order to work together corredly, the interpreter, just-in-time compil er, garbage
colledor and library must al conform to the same predse low-level protocols.

In this dissertation | describe amethodfor constructing virtual macdines for dy-
namic languages, and explain how to design a virtual machine tod kit by bulding
it aroundan abstrad madhine. The design and implementation o such atoalkit,
the Glasgow Virtual Madine Toadlkit, is described. The Glasgow Virtual Macdhine
Tod kit automaticdly generates ajust-in-time compil er, integrates predse garbage
colledioninto the virtual machine, and automaticdly manages the complex inter-
dependencies between all the virtual maciine comporents.

Two different virtual machines have been constructed using the GVMT. One is
a minima implementation o Scheme; which was implemented in under three
weeks to demonstrate that todlkits like the GVMT can enable the eay construc-
tion o virtua madines. The seoond the HotPy VM for Python is a high-
performance virtual macdine; it demonstrates that a virtual machine built with
a todkit can be fast and that the use of a toaolkit does nat overly constrain the
high-level design. Evaluation shows that HotPy outperforms the standard Python
interpreter, CPython by alarge margin, and hes performance on a par with PyPy,
the fastest PythonVM currently avail able.

Contents

1 Introduction 11
1.1 Virtua Madiines 12
1.2 DynamicLanguages i i 12
1.3 TheProblem. 13
14 Thesis e 14
15 Contributions 14
16 Outline 15

2 Virtual Machines 17
21 AlittleHistory 17
22 Interpreters 19
23 GabageColledion 24
24 Optimisationfor DynamicLanguages 31
25 PythonVirtual Machines 33
2.6 Other Interpreted LanguagesandtheirVMs 36
27 Sdf-Interpreters 43
2.8 Multi-ThreadingandDynamicLanguages 43
29 Conclusion e 44

3 Abstract Machine Based Todkits 45
31 Introduwction 45
3.2 TheEsentia Feauresof aVirtual Machine 47
3.3 AnAbstragd Madhinefor Virtual Madiines. 48
3.4 Optimisationin VMsfor DynamicLanguages 52
3.5 Whento usethe éstrad macdiine gpproach? 54
3.6 Alternative Approachesto BuildingVMs 55
37 RelaaledWork 56
38 Conclusions 57

4 The Glasgow Virtual Machine Todlkit 59
41 OVEIVIEW e e e 59
42 TheAbstrad Machine. 61
43 Front-EndToodls. 66
44 Bak-EndToods 71
45 Trandating GVMT Abstrad Madine Code to Red Macdhine Code 73

2

4.6 Memory ManagementintheGVMT 78

47 Locks 86
4.8 Concurrency and Garbage Colledion. 88
4.9 Comparisond PyPyandGVMT 90
4.10 The GVMT Scheme Example Implementation. 91
411 Conclusions e 92
HotPy, ANew VM for Python 95
51 Introdwction 95
52 TheHotPyVMModd 96
53 DesgndtheHotPyVM 99
54 TradngandTraces, 104
55 Optimisationd Traces 108
56 Speddisation e 111
5.7 DeferredObjedCredion 113
5.8 Further Optimisations. 119
59 DeOptimisation 120
510 AnExample 120
5.11 Deviationsfromthe Design o CPython 125
512 Dictionaries 126
513 RelatedWork 130
514 Conclusion 131
Results and Evaluation 133
6.1 Introdwction 133
6.2 Utility of the GVMT and TodkitsinGeneral 133
6.3 Performanceof the GVMT SchemeVM 134
6.4 Comparison d Unladen Swallow, the PyPy VM, andHotPy . . . 135
6.5 Aspedsof Virtual Madine Performance. 143
6.6 MemoryUsage 146
6.7 Effedof GarbageColledion 149
6.8 Potentia for Further Optimisation 150
6.9 Conclusions 152
Conclusions 155
71 ReviewoftheThesis 155
7.2 SignificentResults o 156
7.3 DissrtationSummary 156
74 FutureWork 158
75 InClosing 160
The GVMT Abstract Machine Instruction Set 162
The GVMT Abstract Machine Language Grammar 197
Python Attribute Lookup Semantics 200

3

C.1l Définitions. 200
C.2 LookupAlgorithm 201
D SurogaeFunctions 203
D.1 The rew_ methodfortuple 203
D.2 The__cdl__methodfortype. 204
D.3 TheBinary Operator 204
E TheHotPy Virtual Machine Bytecodes 205
E.1 Baselnstructions 205
E.2 InstructionsRequired for Tradng. 213
E.3 SpeddisedInstructions. 216
E4 D.OC.Ingtructions 221
ES5 Superinstructions. 222
F Results 224
Bibliography 228

List of Tables

2.1 MainPythonImplementations 34
2.2 ManRubylmplementations 39
41 GVMTTYPES . . . o e e e e e e e e e e e e e 64
6.1 Unoptimised Interpreters. Short Benchmarks 139
6.2 Unoptimised Interpreters. Medium Benchmarks 139
6.3 Full VM. ShotBenchmarks 140
6.4 Full VM.MediumBenchmarks. 140
6.5 Full VM.LongBenchmarks 141
6.6 Optimised Interpreters. Short Benchmarks 141
6.7 Optimised Interpreters. Medium Benchmarks 141
6.8 Interpreter vs. Compiler. Short Benchmarks 142
6.9 Interpreter vs. Compiler. Medium Benchmarks 142
6.10 Interpreter vs. Compiler. LongBenchmarks 142

6.11 HotPy(C) Performance Permutations. Speeds Relative to CPython 144
6.12 HotPy(Py) Performance Permutations. Speeds Relative to CPython 144

6.13 Speeal Up Dueto Adding Speddiser; HotPy(C). 144
6.14 Speal Up Dueto AddingD.O.C.; HotPy(C). 145
6.15 Speeal Up Dueto Adding Compiler; HotPy(C). 145
6.16 Speal Up Dueto Adding Spedadliser; HotPy(Py). 145
6.17 Speed Up Dueto AddingD.O.C.; HotPy(Py). 145
6.18 Speal Up Dueto Adding Compiler; HotPy(Py). 146
6.19 MemoryUsage 147
6.20 CPythonGCpercentages v v i v v i v i o 149
6.21 Theoreticd CPythonSpeedups 149
F1 Timings(in se@mnds); short benchmarks 225
F2 Timings(in seonds); medium benchmarks 226
F.3 Timings(insemnds); long kenchmarks 227

List

21
2.2
2.3
24
25
2.6
2.7
2.8
2.9
210

31
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

of Figures

Token Threaded Code — Stack-based programfor A+B 20
Switch Threaded Code — Stadk-based programfor A+B 20
Switch Threaded ImplementationinC 21
Dired Threaded Code — Stadk-based programfor A+B 21
Indired Threaded Code — Stadk-based program for A+B 21
Subroutine Threaded Code — Stadk-based programfor A+B 22
Call Threaded Code — Stadk-based programfor A+B 22
Memory Cycle 24
Uncolledable g/clefor ReferenceCourting 27
Sdf VM TegFormats 29
Generalised Byteaode Optimiser 54
Toolkit Asssted Optimiser 55
TheGVMTToOs e 60
The GVMT Abstrad MachineModel 62
Treefora +=b 67
The GVMT-built Compiler 72
The GVMT Compiler Generator 73
A Memory Zone Consisting o EightBlocks 79
Addressword (most significant bit totheleft) 81
Lock representations Lo 87
Lockstates 88
AHotPy Thread 97
Call sequence 98
TheHotPy Stadk 102
Control of ExeautioninHotPy 103
TheHotPy Optimiser Chain 109
SourceCodefor DOCExample 116
TraceWithou DOC 117
TraceWithDOC 118
Shadow Stacks For Start of Tracein Figure5.7 118
Fiboracd Program oL 121
Flowgraphfor fib function 122
Flowgraphfor fib_list function 122

5.13 Traces of the Fiboraca Program Withan Inpuof 40 123

5.14 Extended Tracefor Overflow 124
5.15 TheHotPydict 128
6.1 Performanceof Scheme Implementations 135
6.2 Performanceof HotPy and PyPy comparedto CandJava 150
6.3 Quality of HotPy and PyPy Optimisations Measured against Java
(OpendDK) 152

List of Algorithms

4.1
4.2
4.3
4.4
4.5
C1
C2
C3

Card-marking byohjed address 83
Card-marking byslotaddress. 83
Conventional Card-marking. 84
Naive Bump-pointer Allocaion 85
Improved Bump-pointer Allocation. 85
PythonAttribute Lookup(Objeds) 202
PythonAttribute Lookup(Types) 202

Descriptor Lookup

Acknowledgements

First and foremost, | would like to thank Ally Price for her love and suppat
throughou my PhD, and for proof reading, and rerealing, severa versions of
thisdisertation.

| would like to thank my supervisor, David Wett, for his dili gent and professonal
supervision.

| would also like to thank the members of the open source @wmmunity for pro-
viding all the software withou which my research would have been impossble. |
particularly want to thanks al thase who write documentation, manage websites,
and dothe other low-profile tasks that make it all work.

10

Chapter 1

| ntroduction

The use of dynamic languages, such as Python[62] and Ruby [67], has become
more widespread over the past decale. There ae many reasonsfor this, including
ease of use and agreder use of programming languages by nonprofessonal pro-
grammers duch as biologists and web-designers. Whatever the reasons, it means
that more and more computing pover is devoted to runnng programs in these

languages.

Increasing the performance of these programs could save mnsiderable amourts
of time and reduce energy consumption, espedally as dynamic languages tend
to perform relatively poaly compared with static langueges, such as Jva [42].
However, improving the performance of dynamic langueges is difficult withou
considering haw they are implemented.

Static compilation is inappropriate for dynamic languages, as the resulting exe-
cutable would be very large and sometimes dower than the equivalent interpreted
program, due to memory cading effeds. Consequently, dynamic languages are
implemented using virtual machines. Sincevirtual macdiines are anecessry fea
ture of dynamic languages, improving the performance of dynamic languages re-
quires improving the performance of the underlying virtual machines.

Knowledge aou the dficient implementation o virtual macdines for dynamic
languages currently lags behind that for static languages, like Java and C#. Not
only that, but the techniques used for implementing Javaor C# are not necessarily
the corred ones to apply to dynamic languages. Althoughimplementation of
virtual machinesfor dynamic languagesisnaot as advanced asfor static languages,
improving the performance of dynamic languages is an adive reseach area For
dynamic languages, such as Python, there ae known techniques for increasing
performance of their virtual madines.

As the optimisation o dynamic languages becmes more sophisticated, the en-
gineaing challenges in implementing them bemme greder. This is arealy a
problem. Commonly used virtual madhines use inefficient memory management

11

techniques, not because better techniques are not known, but becaise they are
hard to implement. An important chall enge for dynamic languagesis how to han-
dle the engineeaing aspeds of implementing better virtual machines. The many
comporents of a dynamic language virtual macine ae not easily separated, and
performance enhancing techniques can make this interweaving o concerns an
impenetrable tangle. This is espedally a problem for open-source or reseach
projeds, which often do nd have the infrastructure required to use the heavy-
weight software engineaing techniques that might tame this complexity.

1.1 Virtual Machines

The term *virtual madine’ (VM) has a number of meanings. At its most general
it means any madine where & least part of that macdine is redised in software
rather than hardware, but thisis too kroad a definition to be useful. In computer
science, the virtual macdhine has come to acquire anumber of related meanings,
the book Virtual Madhines [70] describes these. In this disertation, the term
virtual machine refers to a program that can exeaute other programs in a spedfic
binary format, by emulating a machine for that program format. The austom
binary format is usually known as ‘bytecde’ athough strictly, byteade only
refers to those formats where the instructionis encoded as awhale byte.

1.2 Dynamic Languages

The term *dynamic language’ iscommonly used to refer to any language with dy-
namic typing. However, dynamic languages often have many feaures, beyondthe
type system, that static languagesladk. For example, Pythonand Rubyincludethe
ability to modify the behaviour of moduesandclassesat runtime, changethe dass
of an ohjed, add attributes to individual objeds, and provide accesto debuggng
fedures for runnng programs; the standard Python debugger is implemented in
Pythonand can be imported and run byany Python program at run-time. For this
reason, Python and Ruby are sometimes known as ‘highly dynamic’ languages.
These highly dynamic languages are dhallenging to optimise, and thus their per-
formanceis generally somewhat slower than static languages.

Despite being slower, dynamic languages have akey advantage. Programs de-
veloped in a dynamic language tend to be shorter, and by implication, cost less
to develop and have fewer defeds. They also seem to be eaier to lean and are
popuar among fart-time programmers such as (non-computer) scientists and en-
gineas.

This thesisis abou the implementation o dynamic langueges, particularly those
languages uppating many dynamic fedures. Pythonwas chosen asit i sthe most

12

widely used general-purpose highly dynamic language. PHP and Javascript are
probably used more widely, but they are nat as dynamic as Python na are they
redly general-purpose languages, bath being qute web spedfic.

1.3 TheProblem

1.3.1 Developing VMsfor Dynamic L anguages

Developing a modern VM is a big projed. Development of Sun's HotSpot
Java Virtual Madhine (JVM) [58] and Microsoft's Common Language Runtime
(CLR) [55] have eat taken a huge amourt of resources. Other high-performance
VMs for Javascript such as Tracemonkey [31] and the V8 engine for Googe
Chrome, also have large budgets and manpower resources when compared with
community-developed or acalemic VMSs.

This means that new or minority languages have ather to run on ursophisticaed
VMs or be modified to work on a pre-existing gatform such as the VM. This
can be aproblem for dynamic languages, such as Python a Ruby. Althoughthese
languages can be made to run onthe VM or CLR, performanceisrelatively poa.
For exampl e, the Pythonimplementationsfor the VM and CLR are nofaster than
the standard Python implementation, CPython, despite the presence of a just-in-
time compiler and high-performance garbage wlledors[49, 41].

It is aready too dfficult for many open source or acadlemic communitiesto pro-
duce astate-of-the at VM for a dynamic language. This stuation will only get
worse & new optimisations for dynamic languages are discovered; the enginee-
ing chall enges of developing virtual macdines for those languages will grow ever
greder. The red chalenge for making dyramic languages faster is not develop-
ing new optimisations, but developing new waysto buld VMsthat canincorporate
those optimisations.

1.3.2 A Possble Solution

Althoughall VMs are different, some common fedures can be observed. All
modern VMs interpret some sort of pseudo machine aode, usually bytecode, and
provide automatic memory management. It shoud be possbleto hide these com-
mon feaures behind some sort of interface either in the form of atod or as a
library. Spedfic VMs could then be spedfied using this interface This would
simplify the design o the VM as only the language spedfic parts would need to
be considered.

13

1.4 Thesis

It isthe central thesis of this dissertation that:
The best way, in fad the only pradicd way, to buld a high-performance
virtual machine for adynamic language is using atoal or toolkit.
Such atoadkit shoud be designed aroundan abstrad machine model.

Such atoalkit can be constructed in amoduar fashion, all owing ead toal
or comporent to use pre-existingtools or comporents.

Using such atoadlkit, it is possbleto buld avirtua madinethat is at least
as fast as virtual machines built using alternative techniques, and to do so
with lesseffort.

1.5 Contributions

1.5.1 Core Contributions
Thisreseach :
Demonstrates that a todlkit that uses ready-made comporentsis cgpable of

producing virtual madines with competitive performance

Describes an effedive way to construct virtual macdines for dynamic lan-
guages using atoalkit.

Describes the how the optimisationtechniques for dynamic languages differ
from thase for static languages and shows that thase techniques are orthog
ona to ead ather, spedficdly:

that high performance can be adieved with standard compilation tedh-
niques by applying, at the bytecode level, optimisations gedfic to dynamic
languages.

1.5.2 Ancillary Contributions
This reseach also:

Describes a new extension o block-structured heges, which allows pin-
ning o objeds and moving colledors to be combined within a generational
framework.

14

Evaluates the relative aosts and benefits of various implementation and op
timisation techniques for Python, and by implication, other dynamic lan-
guages.

15.3 Software

Two pieces of software were produced as part of this reseacch: the Glasgow Vir-
tual Madine Todkit (GVMT) and the HotPy Virtual Machine.

The Glasgow Virtual Madine Toadlkit is atoadkit for building VMs for dynamic
languages. High performanceVMs can be constructed quickly usingthe GVMT.

TheHotPy VM isan implementation o Pythonthat can paentialy serve asan ex-
perimental platform for VM implementationtechniques. The HotPy VM suppats
al the core functionality of the language, but has limited library suppat.

1.6 Outline

Chapter 2 starts with a very brief history of VMs. The various aspeds of VMs
are then discussed, covering the following pants: dispatching techniques avail -
able for interpreters; the relative merits of register-based and stadk-based VMs;
garbage wlledion techniques; and approaches to ogimisationin VMs. The ma-
jor VM implementations currently avail able ae then surveyed. The dchapter con-
cludes by discussng the difficulty of implementinga VM incorporating all these
many aspeds.

Chapter 3 describes a new approach to constructing VMs. This approac consists
of building a set of todls, or toadlkit, based around an abstrad macdine model.
The existence of the toolkit means that VMs can be designed withou concern
over difficulties of interfadngthe various VM comporents. The éstrad madine
model al owsthe todlkit to be built i n amoduar fashion.

Chapter 4 describes the Glasgow Virtua Madine Todkit, a todkit based onthe
ideas from Chapter 3. It describes the abstrad macdine for the GVMT in detail .
The tod s in the todkit are discussed, both front-end toadls for converting source
code to abstrad madiine cde and badk end tods, espeaally the just-in-time-
compiler generator. An extension d block-structured hegs is described, along
with agarbage alledor which suppatsa copying colledor and onrdemand oljed
pinning.

Chapter 5 describes the HotPy Virtual Madine, a VM for Python bult with the
GVMT. HotPy performs many optimisations as byteamde-to-byteade transforma-
tions, as advocaed in Chapter 3, separating the dynamic language optimisations
from the low-level optimisations provided by the GVMT. HotPy is the first VM,

15

of which | am aware, that is designed around the use of bytemde-to-bytecde
optimisations. The structure of HotPy is described, highlighting hav the use of
the GVMT influences the design. Emphasisis also laid onaspeds of the design
which differ considerably from the design o CPython

Chapter 6 evaluates HotPy and to alesser extent the GVMT. It showsthat atoalkit
can be used to construct aVM that compares favourably with the dternatives. By
separating the various optimisations that HotPy uses, it is posgbleto show clealy
that spedalisation-based optimisations are more valuable for dynamic languages
than traditional optimisations, and that purely interpreter-based optimisations can
yield large spead-ups. It is also shown that spedalisation-based and traditional
optimisations are complementary; combining the two can yield very good perfor-
mance

Chapter 7 summarises the results and conclusions from the other chapters. It
makes ome suggestions for future work and ottlines ways in which some of the
results can be gpplied to existingVMs.

Appendices cover the full i nstructions sts of both the GVMT abstrad macdine
and the HotPy virtual machine, as well results and

16

Chapter 2

Virtual Machines

As mentioned in the introduction, the term ‘virtual madiine’ has a number of
different meanings. In this chapter, and the rest of thisthesis, the term virtual ma-
chine (VM) istaken to mean a program that diredly exeautes amachine-readable
program. The programs being run can bein text form, but are more usually in the
form of pseudo machine-code. This chapter provides an overview of VM tedch-
nologies, dynamic languages, and the relationship between the two.

2.1 ALittleHistory

2.1.1 Early developments

The first virtual macdiine was, as far as the author is aware, the ‘control routine
used to diredly exeaute the intermediate language of Algd 60, as part of the
Whetstone compil er, described in the Algal 60 Implementation [63]. The virtua
madine of the Forth language [56] is the first virtual madine to be designed to
be the primary, or only, means of exeauting alanguage.

The first bytecode! format to attain reasonably widespread use was the p-code of
USCD Pascd [12]. P-code was loosely based onthe o-code intermediate form of
BCPL [64]. P-code was designed to be exeauted diredly, was gmilar in form to
red machine ade, and could be compil ed to machine de quite eaily. Smalltalk
was the first language to rely on a byteade that emboded feaures not present
in red madine ades, so in some sense Smalltalk byteade was the first modern
byteaode format.

The overheal of interpreting byteaode means that interpreted languages are d-
most always dower than native macdine ade. Consequently, compili ng byteaode

1Some of the formats described are not strictly bytecode, but the term * VM binary program’ is
rather cumbersome.

17

to madiine amde & runtimeis an obvous performance improving tedhnique, pro-
vided that the aode is run a sufficient number of times to overcome the st of
compilation. The first runtime compil ers were part of ealy LISPsystemsin the
196G, but these aeaed machine ade diredly from the abstrad syntax tree The
Smalltalk-80 system included ajust-in-time (JIT) compil er [24].

A more detail ed overview of the field, including more history up to 2004 can be
foundin the two excdlent overview papers: A Brief History of Just-In-Time [6]
and A Survey of Adaptive Optimizaionin Virtua Madines|[5].

2.1.2 Trendsin Research into Virtual Machines

Until recently the only high-performance VM for a genuinely dynamic lan-
guage was the Self VM [74]. Despite being more dynamic than its predecessor,
Smalltalk, Self gave better performance thanks to a sophisticated compiler. A
number of novel optimisations were developed for Self [22], althougha number
of the more complex analyseswere dropped in later versions, thetypeinformation
being gathered at runtime instead [38].

The avent of Java shifted emphasis in virtual machine reseach from dynamic
languages to static ones, and most reseach on Mrtual macines focused on the
JVM and ore JVM in particular, the Jikes RVM [43]. Over the last few yeas,
reseach has again turned towards dynamic language VMs. This trend has been
driven by the importance of Javascript for the world wide web and bytherisein
popuarity of ‘ scripting’ languages, such as Pythonand Ruby.

2.1.3 Recat developments

The modern trend in bytecode-based languages has been towards expressveness
and uility over performance Thistendsto mean that the individual byteamdesin
languages auch as Pythonand Ruby have ahigher semantic level than langueges
like Java. These ‘fat’ bytecodes are harder to beneficially compil e than the ‘thin’

byteaodes of Java, sincethe interpretative overheal is propartional smaller. Until

quite recently, neither Python na Ruby have had any runtime compil ation cgpa-

bilit y2.

There was littl e reseach into the dficient implementation o dynamic languages
from the end o reseach into Self in the ealy 199Gs until aresurgencein the late
2006s. The rise of Javascript and the increasing popuarity of Python and Ruby
has caused an increase in research into thisarea Much of thisrecent reseach has
been focused on opgimisations determined dyramicdly rather than staticdly; see
Sedion 24.3.

2The PyPy projed(http://pypy.org), and Rubinius(http://rubini.us) added machine code gener-
ation cgpability to Pythonand Ruby VMsin 2009

18

2.2 Interpreters

In computer science the term ‘interpreter’ is used to mean any pieceof software
that deaodes and exeautes ome form of program representation. This is taken
to exclude the use of a physicd madine ‘interpreting madine code. Although
it is posgble to interpret the original source @de of a program diredly, modern
interpreters do nd do so. They interpret some form of the program that has been
trandlated into a machine-readable binary from the original human-readable tex-
tual source

For the rest of thisthesisthe term ‘interpreter’ refers to a procedure that exeautes
programsin amadine, rather than human, readable form (but not macine-code).

2.2.1 Interpreter dispatch techniques

In an interpreter, dispatch isthe processof deaodingthe next instructionandtrans-
ferring control to the macdhine code that will exeaute that instruction. Reseach on
interpreter dispatch tedhniques has, unsurprisingly, been focused on improving
the sped of interpreters. However, the speed of different dispatching techniques
depends on the underlying hardware. As hardware design hes changed over the
yeas, particularly with the introduction o pipelining and super-scdar exeaution,
so the relative performance of diff erent techniques has altered.

Most modern interpreted languages are implemented by atwo stage processwhere
the source @mde is translated into code for a VM, then that VM code is exeauted
by an interpreter. Althoughsome interpreters, Perl5 and Ruby18, interpret aform
that follows the original syntax, most use aform closer to the form of macine
code.

Byteade Dispatching

The most commonly used forms of VM code interpreter are Token Threaded and
Switch Threaded. Figure 2.1 shows the pseudo machine cde for Token Thread-
ing; the aode to locate the aldress of the next instruction is dugicated at the
end o every instruction. Figure 2.2 shows the pseudo machine ade for Switch
Threaling; there is only one instance of the aode to locae the aldress of the
next instruction, next . All other instructions include ajump to next. The main
advantage of these techniques is that the VM code is independent of the ac¢ual
implementation. Switch Threaling is 5 named becaise it can be implemented
usingthe swi t ch statement in C. Switch Threading hes the advantage that it can
be implemented patably in C (see Figure 2.3) but Token Threading is usualy
faster. For hardware that employs branch prediction, which is most modern hard-
ware, the single dispatching pant in the Switch Threading interpreter can cause

19

byt ecode: tabl e: push: add:

1 /*push*/ &nop ¥Sptt = *++ip ¥Sp++ = *--sp + *--sp
A/*literal*/ &push i = decode(*++ip) i = decode(*++ip)

1 /*push*/ &add addr = table[i] addr = table[i]
B/*literal*/ ... jump *addr jump *addr

2 [*add*/

Figure 2.1: Token Threaded Code — Stadk-based program for A+B

more branch mis-predictions, making Token Threading significantly faster.

When the VM code is encoded in such away that thefirst byte of ead instruction
contains only the token correspondng to the instruction, the code is generally
known as ‘bytecode’ . When using byteaode the decode operationis not required,
speading upthe dispatch. Byteadeisavery widely used form of VM code, being
used inthe VM, CLR, Python Ruby (1.9+), Smalltalk, Self and ahers.

byt ecode: next : tabl e:
1 /*push*/ i = decode(*++ip) &nop
A addr = table[i] &push
1 /*push*/ junp *addr &add
B
2 [*add*/

push:
*Sptt = *++ip
junp next

Figure 2.2: Switch Threaded Code — Stadk-based program for A+B

AddressBased Dispatching

An alternativeto byteadeisto encode the program as ali st of the addresses. Each
addressis the addressof the code that implements the aorrespondng instruction.
This form is known as Dired Threaling, see Figure 2.4. Dired Threading [9]
is origina source of the term ‘threading’ in this context. The word ‘threading
was used as the exeaution threads its way throughthe instruction stream and the
interpreter machine mde. Dired Threading was originally designed to reduce
code size for compiled code, but the alvent of larger memories made this use
redunchnt.

A modified form of Direa Threading, which adds a level of indiredion to the
addressfetching, isIndired Threaling; seeFigure 2.5. Althoughindired Thread-
ing is dightly slower than Dired Threading, the extralevel of indiredion makes

20

next :
swi tch(*++ip) {

case PUSH.
*Sp++ = *++ip;
goto next;
case ADD:
*Sp++ = *--sp + *--sp;
goto next;
case ...
}
Figure 2.3: Switch Threaded Implementationin C
t hread: push: add:
&push *sp++ = *(++ip) *Sp++ = *--sp + *--3p
A junp *++ip junp *++ip
&push
B
&add

Figure 2.4: Dired Threaded Code — Stack-based program for A+B

handing d data eaier andisthe standard threading method wsed in Forth imple-
mentations.

Anocther dternative is to encode the program as a series of cdls. The encod
ing then becomes diredly exeautable. Eadh instruction implementation would
end with a return statement. Thisis Subroutine Threading; seeFigure 2.6. Note
that since the threa is exeautable code, data can nolonger be anbedded in the
thread. Indired, Dired and Subroutine threading were largely developed to keep
programs gnal on macdines with limited memory, rather than as techniques for
implementing complex languages.

Before the advent of long ppelinesin modern processors, Dired Threading gen-

thread: push: add:
&push *sp++ = *(*ip+l) *Sp++ = *--sp + *--sp
A jump *(*++ip) jump *(*++ip)
&push
B
&add

Figure 2.5: Indired Threaded Code — Stadk-based program for A+B

21

t hread: push: add:

cal | push *sp++ = *dp++ *Sp++ = *--sp + *--3p
call push ret ret
call add
dat a:
A
B

Figure 2.6: Subroutine Threaded Code — Stack-based program for A+B

eraly outperformed subroutine threading. However, modern pipelined procesors
do nd handle VM instruction dspatching well, as the branches are hard for hard-
ware to predict. For pipelined processors, Subroutine Threading makes the flow
of control visible to the procesor, which leads to fewer branch mis-predictions,
and consequently better performance.

A variant on Dired Threading and Subroutine Threading is Call Threading. Call
Threaling encodes the program as a series of addresses, like Dired Threading,
but performs cdls, rather than jumps, to exeaute the instruction bodes. This has
both the cdl overhead of Subroutine Threading and the poa branch prediction
of Dired Threading and is thus the slowest of the three see Figure 2.7. Call
Threading, like Switch Threading, can be implemented as portable C.

| oop:
cal | (*i p++)
goto | oop

thread: push: add:
&push *Ssp++ = *(++ip) ¥*sp++ = *--sp + *--sp
A ret ret
&push
B
&add

Figure 2.7: Call Threaded Code — Stadk-based program for A+B

The fastest threading technique of all i s Context Threading [11] which is an en-
hancement of Subroutine Threaling that converts branches in instruction bodes
diredly into branchesin the program thread. Performance can befurther improved
by inlining the bodes of some of the small er instructionsinto the VM code.

It is debatable whether interpreters employing the fastest dispatching techniques,
for example Context Threading with seledive inlining, are redly interpreters at

22

al. | would suggest that the line between interpretation and compil ation has been
crossd, and that the fastest interpreters are redly just simple, easily portable,
just-in-time compil ers.

2.2.2 Register based VMs

Anather approad to reducing the overhead of instruction dspatch isto reducethe
number of instructions. This can be dore by using a ‘register’ style instruction
Set.

Traditionaly virtual macdines have been implemented as dadk madines. Both
the VM andthe CLR are stadk machines. Althoughstadk machines are common
inthe VM world, hardware stadk madines are extremely rare. Thereasonfor this
isthat in hardware the stad is a bottlened in data flow which makes it difficult
for stack machines to compete with register macdines.

However, the situation is different for a VM. In a software VM, the operands
canna be fetched and deaoded in paralel. This means that stadk madines do
the same amourt of computation as register machines; aso stadk maciine code
is more compad. The alvantage of a register-based instruction set is that fewer
instructions are required. Having fewer instructions increases performance of an
interpreter, due to the reduced stall s caused by incorred prediction o branches.

For a Pentium 4, Shi et a. [69] foundan approximately 30% speedup for VM
code repladng a stadk-based interpreter with a register-based ore. However, the
register based code was optimised to make more dficient use of the‘registers’, but
the stadk code was not optimised to make more dficient use of the stakk. Since
Maierhofer and Ertl [52] founda speedup d abou 10% from optimising stadk
code, thiswould suggest areduced speedup d around 2@%. It isworth naingthat
the abowve speaedups where reported for adired-threaded interpreter. Asfar asl am
aware, there ae noresults avail able for a subroutine-threaded or context-threaded
interpreter.

There ae two mainstrean VMs that are register based, the Lua virtual macine
[40] and the Zend PHP engine. Lua switched from a stadk-based byteade to
a register-based bytemde between versions 4 and 5 The implementers report
speedups of between 3% and ower 100 for a few simple benchmarks due to
the change in instruction format. There is no stadk-based equivalent to the Zend
engine, SO comparisons are not passble.

2.2.3 Compilation

Althoughthe best performing interpreter (a register-based context-threaded in-
terpreter) would be significantly faster than a simple stack-based switch-threaded

23

interpreter, it would appea that the overhead (both at runtime andin terms of engi-
neaing eff ort) would be better spent on genuine compil ation. After al, aregister-
based context-threaded interpreter requires register all ocaion and the production
of native code for branches and cdls. It isonly ashort step to full compil ation.

2.3 GarbageColledion

All major VM-based languages, with the exception o Forth, manage memory
automaticdly. This makes the development of software much easier, dthoughit
does come & a small cost in performance. Automatic memory management is
generally known as garbage mlledion, even thoughautomatic memory manage-
ment involves allocaion o memory as well as colledion d garbage.

Garbage mlledion allows languages and the programmers who use them to re-
gard memory as an infinitely renewable resource. By tracking which chunks of
memory are no longer accessble by the program, the garbage wlledor can recy-
cle those chunks of memory for reuse. For the rest of this sdion, | will refer to
these chunks of memory as ‘objeds’, even thoughthey may not be objedsin the

objed-oriented sense.
=

Program
Stack & .{
Globals -.|
Free
Memory
The Heap

Allocator

Figure 2.8: Memory Cycle

Garbage wlledion consists of two parts. an alocaor which provides objeds to
the program, and a olledor which regycles thase objeds that canna be readed
by the program. The olledor redaims objeds 0 that the underlying memory can
be freed and made avail able to the dl ocator. Figure 2.8 shows the memory cycle;
the objeds labell ed G are unreatable and can thus be redaimed by the alledor;
the memory they occupied isthen freefor use by the dl ocaor.

Whil e advanced coll edors can run concurrently with the rest of the program, col-
ledions generaly take placewhil e the program is suspended. However, as the

24

number of procesors on standard computers increases, concurrent coll edors will
probably become more common.

Since the design d colledors is considerably more complex than that of allo-
caors, memory managers are generally described in terms of their colledors.
Garbage mlledors can be dassfied as either reference murtingcolledorsor trac
ing colledors. ‘ Garbage Colledion’ [45] by Jones and Lins provides an excdl ent
overview of the subjed, athoughit is a little out of date. A more up to date
list of pubicaions can be found orine & The Garbage Coll edion Bibliography
maintained by Richard Jones[44].

Most reseach into garbage olledionsince2000 hastaken placeusingthe MM Tk
[15] garbage wlledion framework in the Jikes RVM [3]. This has the alvantage
that various algorithms and techniques can be compared diredly, but it does mean
that it is rather biased towards Java goplications.

Comparing the performance of various garbage mlledionsis difficult as no ore
type of colledor is faster than any other for all workloads. Despite this, it is
possble to make some generali sations.

2.3.1 Allocators

Althoughmuch simpler than the mlledors, allocaors are an important part of
a memory management system. Allocaors come in two forms; freelist aloca
tors and region-based all ocaors. Freelist allocaors work by seleding alist that
holds objeds of the corred size (or larger), and returning thefirst objeda from that
list. Region-based al ocaors work by incrementing a pointer into aregion o free
memory and returning the old value of that pointer. Region-based all ocators are
often cdled bump-paointer all ocaors, since dlocation involves incrementing (or
‘bumping’) a pointer. Bump-pointer alocators are ssimple enoughthat their fast
path can be inlined at the site of all ocation, making them even faster. Obviously
both all ocators neal fall -back medanisms, either to hande empty listsinthe cae
of afreelist allocaor, or when the pointer would passthe end o the regionin a
region-based all ocaor.

Region-based all ocaors can all ocate objedsfaster than freelist all ocaors. In gen-
eral, only region-based colledors can freememory in aform suitable for region-
based all océtion.

2.3.2 Tracing

Most garbage mlledors are ‘tradng colledors. Tradng coll edors determine dl
live objeds by traang the links between olgedsin the heg. A colledionisdore
by forminga dosed set of all objedsreadable, diredly or indiredly through dher

25

objeds, from the stadk and gobal variables. All remaining oljeds are therefore
garbage and can be redaimed. There ae two fundamenta tradng algorithms:
copying and marking.

Copying agorithms move objeds as they are foundto a new area of memory.
The entirety of the old memory areais then available for regycling. Copying
colledors suppat region-base dlocaors. Marking algorithms mark objeds as
they are found The unmarked spaces between marked oljeds are then avail able
for regycling.

The aost of copying colledionis propationa to the total size of the live objeds.
The oost of marking colledion is propational to the size of the heg, but with a
significantly lower constant fador than for copying. So for sparse hegps (few live
objeds, lots of garbage) copying colledors are generally faster, whereas for dense
hegps marking colledors are faster. In the red world, hegs tend to be neither
sparse nor dense, but in the middle, so the dhoice and design o garbage wlledors
isnot straightforward.

Marking Colledors

Marking coll edors can be divided into threetypes. Mark and Sweep [54], Mark-
Compad [10], and Mark-Region [17].

Mark and Swee colledors are the ssmplest. After marking all li ve objeds, all
intervening deal oljeds are returned to the freelist. Mark and Sweep colledors
are prone to fragmentation and canna be used with aregion-based all ocator.

Mark-Compad coll edors avoid fragmentation, but are slower. After marking all
live objeds, al li ve obeds are moved, usualy retaining their relative paosition, to
a oontiguous region. The whale remaining spaceis thus unfragmented, all owing
aregion-based al ocaor to be used.

Mark-Region coll edors reduce fragmentation and are of a similar speed to Mark
and Swee colledors. Mark-Regions aub-divide the heg into regions. During
marking o live objeds, bath the objed and the region containing the objea are
marked. Although oty empty regions can be redaimed, most memory can be
redaimed, sincelive objeds tend to form clumps. To work well a Mark-Region
colledor nedals a hierarchy of regions and must perform locdised compadion.
L ocdi sed compadion reduces fragmentation, but at amuch lower cost than whole
hegp compadion. Mark-region coll edors suppat region-based all ocators.

It isposgbleto have very fast colledion o regions by colleding an entire region
at once at a pre-determined pant in the program [68]. However, this technique
canna be gplied to dynamic languages as it requires extensive static analysis to
determine when the region can be freed.

26

Figure 2.9: Uncolledable ¢ycle for Reference Courting

2.3.3 Reference Counting

Reference munting garbage wlledors work by maintaining areference eurt for
eat ohed. Thisreference @urt for objed X is the number of references to X
from the stadk, global variables and aher objeds. When this court readtes zero,
the objed may be redaimed. Reference murting hes two advantages. First, no
separate mlledion phese is required, as colledion is integrated with al ocaion.
Semnd, as vonas an oljed becomes garbage, its memory isrecgycled.

However, reference murtingaso hastwo serious flaws. Thefirst isthat maintain-
ingreference murtsis expensive; reference ounting garbage oll edors generaly
have higher overheads than their traang equivalents. The seondisthat if objeds
form a gycle, al reference muns remain above zeo and canna be redaimed,
even thoughthe whale ¢ycleis unreatable and thus garbage. Figure 2.3.3 shows
areference g/cle that is garbage, but uncoll edable by reference munting.

For interadive languages, the advantage of nea-zero pause times for colledion
may outweigh the performance ®st. Consequently there ae anumber of en-
hanced reference munting agorithms which hande ¢/cles. Nonethelessthe only
widely used VM that usesreference omurtingisthe CPythonVM; all other Python
VMs use tradng colledors. The CPython VM also includes an optiona tradng
colledor, that colleds cycles.

2.3.4 Generational Colledors

Generational colledors divide the hegp into two or more regions cdled genera-
tions. Objeds are dlocaed in the youngest generation, often knovn as a ‘nurs-
ery’. If they survive longenough they are promoted into the older generations
over a series of colledions. Generational Colledors generally give better perfor-

27

mancethan smple wlledors, if the rate & which obeds becme garbage differs
for objeds of different ages.

For most programs, what is known as the ‘we& generational hypahesis' halds.
The week generational hypahesis dates that young olpeds are more likely to die
than older objeds®. When the weak generational hypahesis holds, generational
garbage wmlledors work well by colleding young olpeds frequently, which can
be dore chealy, and colleding dder objeds infrequently.

In order to work corredly, generational garbage lledors must be aleto find all
live objedsin younger generations. In order to be dficient, they must be ale to
do so withou searching the older generations. This can be dore by keeping a set
of old-to-youngreferences. The usual way to dothisisto modify theinterpreter to
record any old-to-youngreferences creaed in between colledions. Generational
colledors are generall y faster than their non-generational equivalents, as the sav-
ings of nat scanning the older generations outweigh the ast of maintaining the
set of old-to-youngreferences. However, it isnat hard to construct a pathologicd
program for which a generational colledor is dower than the nongenerational
equivalent.

There is no requirement for a generational colledor to use the same olledion
methodfor its younger generations as for older generations. In fad, it is common
to use a @pying colledor for the nursery, which isusually sparse when coll eded,
and a marking coll edor for the older generations, which are usually more dense.
Having a copying colledor for the nursery all ows the use of a region-based al-
locator, providing fast allocaion o new objeds. It is aso passhble to combine
areference ourning mature space ad atradng (usually copying) nursery. This
shoud reduce pauses, as mature objeds are wlleded incrementally.

2.3.5 Tagged Pointers

Vaues in dynamic languages are usually represented by a pointer to a block of
memory which contains the value of the objed. Representing asmall value (such
as an integer) by a pointer to heg oljed that contains that value is referred to a
boxing; the objed isa‘box which hddsthe value.

Sinceobjedsin the heg will be digned to some memory boundxry (usualy 4, 8
or 16 bytes) thelow-order bits of apointer will be zeo. It isposshbleto represent a
valuediredly inthe pointer by ‘tagging the pointer. A simpletagging schemefor
a 32 bt madhine might be to store a31 kit integer in the pointer by multi plying

3Note that the strong generational hypathesis, that states that objeds become lesslikely to die
as they get older, is not generally true. In other words, suppcse that objeds are divided in three
ages, young middle and dd. Thewedk generational hypahesis dates that young oljeds are more
likely to diethan middeor old oljeds, whichisgenerally true. The strong generational hypahesis
also states that middie objeds are more likely to die than old obeds, which is generally not the
cese.

28

| 30-bit signed integer |00

| top 30 bits of word-aligned pointer | 01]
| 30 bits of IEEE floating point number 10|
| Garbage collector header bits |11

Figure 2.10: Self VM Tag Formats

it by two and adding ore; setting the low-order bit to 1. Pointers would be left
unchanged with the low-order bit set to 0. The value represented by the 32 ht
word would be determined by examiningits low-order bit; if the bit were setto 1
then the value would be an integer equal to the value of the machine word divided
by two, otherwise the word would treaed as a pointer. Figure 2.10 shows a more
complex tagging scheme used by the Self VM.

2.3.6 Heap Layout

Many VMs are designed so that the whale heg is contiguous and the nursery and
mature space ae in fixed pasitions. This layout is mple to implement, and en-
ablestesting o whether an olged isin the old or young generation by comparing
itsaddresswith afixed value. However, it isinflexible, only al ows afixed amount
of memory to be used and might not work well with library code that usesits own
memory management.

An dternative to a contiguows hegp is to divide the hegp into a number of blocks,
or pages. It is passble to group oheds of the same type onto the same page.
The objed’s type can thus be determined from itsits addressalone, which all ows
amore compad representation o objeds. Thisis know as a BIBOP (big bag of
pages) implementation. The first documented used of this technique is for the
Mad.isp system by Stede [47].

Hudson et a.[39] describe a language-independent garbage wlledor todlkit
which suppats a heg divided into pages, and show how a generational collec
tor can be suppated. Each page has a generation, which allows the generation
of an ohed to be determined quickly and withou storing the information ona
per-objed basis.

Dybvig, Eby and Bruggeman [27] extend the BIBOP concept to what they cdl
‘meta-type’ information, which is mply any shared informationabou all objeds

29

onapage, nat necessarily their type. Their system provides afast al ocaor, alo-
caingal objedsinto the same page, then segregating them on promotion. Pages
containing large objeds are promoted from one generation to ancther withou

copying.

2.3.7 Garbage Colledorsfor Dynamic L anguages

The interadion between the garbage olledor, the rest of the program and the
hardware is complex and very hard to analyse. It is thus amost impassble to
determinetherelative costs of various coll edors except by dired experimentation.

Bladkburn et a.[14] provide an empiricd comparison o copying, mark-and-
sweep and reference-courting garbage mlledors, both generational and non
generational, for Java benchmarks runnng onthe Jikes RVM. The results show
wide variationsin memory usage charaderistics. Thiswould sean to suggest that
the relative performance of various garbage all edionagorithms depends at least
as much onthe goplicaion damain than the language used. However, itispaosshble
to make afew observations abou memory management for dynamic languages.

Programs written in dynamic languages tend to obey the wed generational hy-
pothesis, even if the same program written in a static language would na. Thisis
because dynamic languages tend to all ocate alarge number of short-lived oljeds
such as boxed numbers, frames and closures. Most of these extraobjeds are very
short-lived, existingfor the duration o asingle functioncdl or less

Although opimisations can remove the dlocaion d many intermediate values,
frames and closures [22], a cnsiderable number will remain, and it would be
surprising to find any sensible program written in a dynamic language that did
not obey the wed generational hypahesis. This would seam to strongy suggest
that the use of a region-based al ocaor and a awpying colledor for the youngest
generationis amost mandatory.

Althoughit is desirable to use a @pying coll edor, it may cause problems. Many
dynamic languages, such as Python Ruby and PHP amongst others, are expeded
tointerad closely with librarieswrittenin C. Interfadngli brarieswrittenin C with
agarbage wlledor that moves objeds can cause problems, as neither C compil ers
nor C programmers exped objeds to be moved, seemingly at randam. This does
lead to the seemingly contradictory requirements that objeds do nd move, in
order to interad with library code, and that objeds can be moved by the garbage
colledor, for performancereasons. It shoud, however, be noted that only objeds
pas<ed to library code need to be ‘pinned’; al others can be movable.

An dternative is to passa ‘hande from the VM to the library code. This adds
an extralevel of indiredionwhich may be unacceptable for performance reasons
andin terms of complexity. For example, when passnglarge byte arays from the
VM and the I/O subsystem via ahandle, it is necessary to either copy the whole

30

array or to accessindividua bytes via the hande. Both of these dternatives are
expensive, so the aility to pin ogedsishighly desirable.

It would appea that a garbage wlledor for dynamic languages shoud be similar
to a garbage olledor for an oljed-oriented language li ke Java, with the require-
ments of very fast all ocation for short-lived olgeds and the adility to pin ojeds.
By using the BIBOP technique described in the previous sdion, pages can be
pinned on cemand; they can be promoted by changing the page tag. The Im-
mix colledor [17] suppats pinning and region-based all ocation, althoughit does
not suppat a wmpying nusery. A design o segregated hegp that builds on pre-
vious work and that suppats both a copying nusery and ondemand pnningis
described in Sedion 46.4.

2.4 Optimisation for Dynamic Languages

2.4.1 Adaptive Optimisation

Adaptive optimisation is a term used to describe optimisation that adapts to the
running program. Adaptive optimisation focuses on spending ogimisation eff ort
whereit will providethe gredest reward. Thisisdone by comparingthe estimated
performance gain for optimising a pieceof code with the st of doing the opti-
misation; there is no pant in opimising a pieceof code that will only run orce,
whereas a pieceof code that may run hilli onsof timesisworth ogtimising heavily.
The ideaof focusing ogimisation effort on ‘hot-spots' dates bad to at least the
19805 [24]. The term adaptive compil ationis often used insteal.

Once mde for optimisation has been seleded, dedading which optimisations to
apply to that code is something of an art. Most adaptive optimisers have alarge
number of tuning parameters which are set experimentaly.

Optimisation control

Before aode can be optimised, the optimisation controller must determine what
code is worth optimising. There ae two widely used approadies to optimising
code. The first approach optimises code acording to the static structure of the
program, by optimising whole procedures or loops. The second approach ogti-
mises acording to which code is adually used at runtime, determined dynami-
cdly by tradng the exeaution o the cde. The former approach has been used
for JIT compil ation sincethe days of Lisp, andis gill widely used, notably in the
Sun HotSpot JVM, and for a staticdly typed language like Java gives very good
results. The latter approad, that of optimisingtraces, isused in the TraceMonkey
JavaScript engine of Mozilla Firefox, amongst others, and provides dgnificant
speedups for dynamic languages [31].

31

2.4.2 Whole Procedure Optimisation

The procedure based approach to adaptive optimisation records the number of
times eat procedure is cdled. Once the cdl count reades a threshold value,
then the procedure is optimised and compiled. In pradice various refinements
are used. For example, the usage court can be made to decay, so that procedures
must be exeauted frequently, not merely many timesin total, before they are op-
timised. Ancther important refinement is to chocse the procedure to be compil ed
by analysis of the cdl-stack, once ahot-spot has been reatded. For example, it
may be more profitable to compil e the cdl er of the trigger procedure, rather than
the trigger procedure itself, and thus be aleto perform inlining.

2.4.3 TraceOptimisation

Tracé optimisationis a method d determining entirely dynamicaly which code
to optimise. By taking advantage of the fad that optimisation will occur during
the program’s exeaution, tradng determines the aodeto be optimised by recrding
the acual exeaution o the program, with noregard to its datic structure.

Traces must be seleded before they can be optimised. Traces are identified by
monitoring certain pantsin the program, usually badkward branches, until one of
theseis exeauted enoughtimesto trigger recording of atrace Duringtracerecord-
ingthe program is exeauted acrding to the usual semantics, and the instructions
exeauted are recorded.

Tracereoording halts succesfully when the starting pant of the traceis again
readed, but tracerecording may not aways be succesdul. One of the reasons
for failure is that the tracebecomes too long, but other reasons are possble; for
example, an urmatched return instruction could be readed or an exception could
be thrown.

If the trace ompletes succesully, then the recorded traceis optimised and com-
piled. The newly compiled codeisthen addto a cate. When the start of thetrace
is next encountered during interpretation, the compiled code can be exeauted in-
stead.

During recording o a trace branch instructions may be encourtered, in which
case the tracerecords the taken branch, and inserts a condtional exit at that point.
During subsequent exeaution d atrace the condtional exit may be taken. If this
happens a sufficient number of times a new traceis recorded. These new traces
neel to be joined to the existingtraces.

4Tradngin this context is completely separate from tradng in the garbage oll edion sense.

32

Trace Stitching

In the original tracebased optimiser, Dynamo[8], when anew traceiscreded, itis
‘stitched’ to the original trace Thisisdone by modifyingthe code & the exit point

sothat it jumpsdiredly to the new trace Tracestitchingrequires a cade of traces.

When an exit from a branch istaken, the cade is cheded. If an appropriate trace
isinthe cateitis gditched to the eit paint.

TraceTrees

An dternative to tracestitching is to incorporate the new traceinto the old ore
and re-optimise the extended trace These extended traces are known as ‘trace
trees| 32] as the combined traces form a treelike structure. For traceseledion
based entirely aroundloops, tracetrees work well, but do rely on having a very
fast compil er, since mde may be recompil ed several times.

244 Speaalisation

Spedalisation is a transformation which conwverts a general pieceof code to a
more spedalised, and pdentially faster, pieceof code. Using spedalised code
also requires that guard code is inserted to prevent the new lessgenera code be-
ing exeauted when it would nat be corred. In the event of aguard faili ng®, and the
spedalised code being inappli cable, exeaution returns to the original code. Trac
ing can be viewed as aform of spedalisationin which the amdeis edalised for
the flow of exeaution throughthe program that is adually observed. Tradng can
also drive aditional spedadlisation by recording nd only the flow of exeaution,
but also the types of data. Code can then be spedalised bah for a particular path
of exeaution and for the types of variable adually used.

2.5 Python Virtual Machines

Until the aeaion d Jythor{49], there was only one implementation o Python,
which served as the de fado spedficaion for the language. There was no
clea separation o language and implementation. Fortunately that situation hes
changed and the language is now reasonably well, if nat formally, defined.
Nonethel essthe default i mplementation, now known as CPython remains the ref-
erence standard.

All the PythonVMs are under adive development, often with the goal of adively
improving performance. This, combined with the ladk of standard benchmark

SFailure of aguard does not mean that it goes wrong, but that the condtionit istestingis false.

33

suite, makes predse comparison dfficult. Table 2.1 summarises the main Python
implementations, the performance is from various developers own assessnents,
which seem to be in broad agreement with ead other.

25.1 CPython

The standard implementation o Python known as CPythonasit iswrittenin C,
has evolved as Python hes evolved. Consequently it still has a number of design
fedures that, while perhaps appropriate for an ealy implementation o a new
language, are not desirable in a modern, high-performance VM. These fedures
are simple reference @murting as a means of garbage olledion, and a ‘global
interpreter lock’, which prevents more than ore interpreter thread exeauting at
once It isworth emphasising that these ae not feaures of the Pythonlanguage,
merely the CPythonimplementation.

The choice of simple reference munting for garbage mlledion may have been a
reasonable choicewhen Pythonwasfirst evolving, but itisared burden now. The
global i nterpreter lock isan urfortunate side dfed of the garbage wlledion strat-
egy, as smplereference ourtingisnot safe for concurrent exeaution. To make it
safe would require extremely fine-grained locking, which would be prohibitively
expensive for single-thread applications. So the global i nterpreter lock, which en-
sures only one threal is adive in the interpreter at once is used instead. The use
of simple reference munting hes a detrimental effed on CPython performance

Implementation GC Threads | JT Performance
(relative to CPython)
CPython ReferenceCourting | G.I.L. | No Same
CPythont+Psyco | ReferenceCounting | G.I.L. | Yes Faster (variable)
PyPy Generational G.I.L. | Yes Faster
Unladen Swallow | Reference Courting | G.I.L. | Yes Faster
Jython As WM Native | Yes Slower
IronPython As.NET Native | Yes Abou equal

Table 2.1: Main PythonImplementations

2.5.2 Psyco

Psyco[65] isaruntime compil er that interleaves, at avery finelevel, interpretation,
spedalisation and compilation. It is extremely goodat removing interpretetive
overhead as well as the overhead of having boxed integers and floating pants.
The speadups achieved vary from x 100 for pure integer arithmetic code, down
to x1.1 or lessfor some gplicaions. The name ‘Psyco’ is a dightly jumbled
aaonym for the ‘ Python Spedalising Compiler’. AlthoughPsyco performs well

34

for some types of applications, it is smewhat ad hoc. The key ideas in Psyco
were reused in the more robust and elegant PyPy projed.

253 PyPy

The PyPy[66] projed istwo thingsin ore: atranslationtoad for converting Python
programs into efficient C equivalents, and a Python VM written in Python The
resulting VM exeautable is atrandation o the PyPy VM source @de, in Python
to madhine wde, by thetrandationtod. Thismeansthat thefinal VM hasfeaures
present in the VM source @mde, plus fedures inserted by the tookit. The toadl is
covered in more detail in Sedion 37.2. The PyPy VM implementationis fairly
unremarkable (before trandation) apart from the anndationsto gude the transla
tion process Thetrandationtod isresporsiblefor inserting the garbage olledor
and generating the JIT compil er.

The PyPy generated JIT compil er uses a spedalising tradng approac to optimi-
sation. Thetradngisdore, nat at the level of the program being exeauted, but at
the level of the underlying interpreter.

Like CPython, the PyPy VM includes a global interpreter lock, which prevents
red concurrency. However, it does not use reference @urting for garbage mllec
tion, so it would be possble to make PyPy thread-capable by adding locking on
key data structures. One of the PyPy developers, Madg Fijakowski, estimated
that removing the global i nterpreter lock would be ‘a month or two’'s work[29].

2.5.4 Jython and IronPython

Jythonis a Pythonimplementationfor the Java Virtual Madine. IronPython[41]
is a Pythonimplementation for the .NET framework. The primary focus of ead
implementationis transparent interadion with the standard libraries for that plat-
form; performanceis a semndary goal. Both Jython and IronPython make use
of their underlying datform’s garbage olledors and have no gobal interpreter
lock. Both implementations need to make heary use of locking, in order to be
thread-safe.

Jythori's performanceis poa compared to the standard CPythonimplementation.
IronPythori's performance is better and is largely comparable with CPython, a-
thoughas dated before, performanceis not the primary goal for either implemen-
tation.

35

2.5.5 Unladen Swallow

Unladen Swallow is a branch of CPythonwhich uses LLVM[50] to provide JIT
compilation. It is astated goal of the projed nat to doany new reseach, merely
to implement already puldished optimisations. No attempts to remove the global
interpreter lock or to implement better garbage olledion are being made. The
Unladen Swall ow developers claim speedups ranging from x 1.1 to x 1.8 relative
to CPython 26 for their benchmarks.

For amore detail ed comparison o the performanceof PyPy and Unladen Swall ow
seeSedion 64.5.

2.5.6 Static compilation of Python — ShedSkin

An dternative gpproac to improving Python performanceis to translate Python
programs to a staticdly-typed language. ShedSkin[26] is a Pythonto C++ trans-
lator. It uses type-inferenceto staticdly type whole programs, which can then be
trandlated to C++. Unfortunately most Python programs are sufficiently dynamic
that they canna be staticdly typed. Since ShedSkin performs whole-program
analysis, it must be aleto type the whale program. For thase programswhich are
amenable to thisanalysis, performance improvements are impressve.

Many programs written in dynamic languages are mainly, but not whally, static in
style. The problem is that a program that is 1% dynamic will cause ShedSkin to
fail, whereas an adaptive optimising VM could give large performance gains.

For those programs that ShedSkin can handle, it gives an approximate upper
boundfor performance and atarget for dynamic optimisersto am for.

2.6 Other Interpreted Languagesand their VMs

2.6.1 Java

The Java programming language[42] neals no introduction. Althoughit is a
staticdly-typed language, the dynamic nature of classloading can present im-
plementers of JVMs with some of the problems faced by implementers of high
performance VMs for dynamic languages. For this reason it is worth looking at
implementations of Java and haw they ded with the dynamic aspeds of the lan-
guage, espedally as the techniques used have been covered in detail i n a number
of research papers andtedhnicd reports. Many of these techniques are goplicable
to dynamic languages.

36

Sun Hotspot

The HotSpot VM from Sun is the most widely avail able, and reference, imple-
mentation o Java. Its performance is good it suppats a number of platforms,
andit is now open-source. HotSpot uses mixed-mode exeaution; it contains both
an interpreter and compil er, and uses whole-procedure optimisation. HotSpot in-
terprets code until it become ‘hot’ (hence the name), at which pant the mde is
compiled. HotSpot uses whole procedure optimisation, rather than tracebased
optimisation. The HotSpot compil er isa powerful optimising compil er; programs
can beslow to start up, but longrunnng programs can compete with C++ and For-
tran for spead. Palenczny et a. [58] give agood owerview, but most pulications
relatingto it are more promotional than technicd in style.

Jalapeio/JikesRVM

The Jikes RvM (originally Jalapefio), from IBM, is areseach VM implemented
in Java. Unlike HotSpat, the implementation o the Jikes RVM iswell described.
The vast mgjority of papers written on ogimising the VM use the Jikes RVM
as an experimental platform. The Jikes RVM is described in detall in an IBM
technicd report[3].

The Jikes RVM has no interpreter, but compiles all code on loading, quickly pro-
ducing poa quality native amde. It uses adaptive optimisation, optimising and
recompili ng code & necessary. So, unlike HotSpat, which has an interpreter and
compil er, Jikes RVM has two compil ers; afast compil er and an optimising com-
piler. Like HotSpat, the Jikes RVM uses whole procedure optimisation. The
approach used by the Jikes RVM is unlikely to be gplicable unmodified to lan-
guages like Python, as most of the optimisation techniques are suited to static
languages. Nonetheless the basic premise of only optimising parts of the pro-
gram which are most used is the fundamental ideabehind high performance for
byteade-interpreted languages.

26.2 Sdf

The Self language[74] was developed from Smalltalk in the ealy 199Gs. Self isa
prototype-based, rather than a dassbased, pure objed-oriented language.

The Saf Virtual Machine

The Self VM is described in Chambers' PhD thesig[22]. Chambers describes the
various techniques used to reduce the overheal of the many dyramic feduresin
Self. The Self VM described is sgnificantly faster than the Smalltalk VMs that

37

precealed it, despite Self being more dynamic than Smalltalk. Chambers claimed
to have atieved half the speed of equivalent C code, athoughmost of the bench-
marks were small and long running, reducing the dfed of compilation time on
total exeaution time. The Self VM is where many techniques used in modern
JVMs and Javascript engines were first devel oped.

2.6.3 Lua

The Lualanguage wasfirst developed in 1993 It isadynamic language; variables
are dynamicdly typed, but only alimited range of types are avail able. Its design
goals, which have been adhered to throughod its development[4Q], are that the
language shoud be simple, efficient, portable and lightweight. The authors define
‘efficient’ as nat the same &s fast, they define it as meaning ‘fast while keguing
the interpreter small and patable’. The standard Lua VM is a pure interpreter;
no JIT compiler isincluded. Despite this, Luais generaly regarded as the fastest
mainstrean dynamic language.

There is an implementation of Lua with a JIT compiler, LuaJlT [51], which is
faster till; the latest version has performance @mmparable with slower staticdly
typed languages, such as Haskell.

2.6.4 Ruby

Ruby is an ohed-oriented dynamic language. Its motto is ‘everythingis an ob
jed’. Whilstitis gmilarto Perlinsyntax, it ismore adescendant of Smallt alk/Self
than Perl.

Like Python, Ruby has a number of diff erent implementations, but the default i m-
plementationis Ruby 18. Ruby 18 isunusua in na beingabytewmdeinterpreter;
the interpreter exeautes the ebstrad syntax treediredly. Also, like Python Ruby
has no dficial benchmark suite, and all i mplementations are under constant de-
velopment. Table 2.2 summarises the main implementations; estimates of relative
performance ae intentional vague and may change.

Ruby 1.8 is adso generally regarded as one of the slowest dynamic language im-
plementations, and thisis suppated by benchmarks[23].

Like Python, Ruby also has implementations for the VM (JRuby) and .NET
(IronRuby). Benchmarking suggests that JRuby ouperforms IronRuby, which
contrasts with Python, where IronPython ouperforms Jython Thiswould suggest
that the VM and .NET are rougHy as goodas ead other for suppating dyremic
languages; whichisunsurprisingsincethe JVM and .NET are fundamentall y quite
simil ar.

38

Ruby also has two other implementations, Ruby 19 and Rubinius. Ruby 19
uses a byteaode interpreter, and hes performanceloosely comparable to CPython
Rubinius aimsto replace @amost al of Ruby's gandard library, which is currently
written in C, with Ruby equivalents. In order to do this Rubinius must increase
the performance of pure Ruby code considerably. Rubinius has largely achieved
thisgoal thanksto aJI'T compiler and more advanced garbage lledion. Despite
the more advanced internals, Rubinius is currently no faster than Ruby 18, as a
result of havingto exeaute libraries written in Ruby rather than in C.

Ruby's, like Pythori's, suppat for multi ple threals of exeaution varies aaossim-
plementations. JRuby and IronRuby use the underlying gatform threals, andthus
suppat threads well. Ruby 18 runsin a single native thread, performing switch-
ing d Ruby threads internally. Consequently only one Ruby thread can run at a
time. Ruby 19 can suppat multi ple native threads, but li ke CPython, has a global
interpreter lock (Ruby 19 cdlsit agloba VM lock), which prevents more than
one threal exeauting bytecode & atime.

Ruby, the languege, has feaures which presume the original i mplementation. For
example, Ruby providesaniterator, Qbj ect Space: : each_obj ect , whichiterates
over every objed in the heg. Obvioudly, this causes problems for both garbage
colledion and concurrency. It makes using a moving garbage lledor very diffi-
cult and causes problemsfor threads, asall objedsare dwaysglobally accessble.
JRuby has an option nd to suppat thisfeaure, asit causes performance problems
onthe JVM.

Implementation GC Threads | JIT | Performance(relativeto 1.9)
Ruby 1.8 Mark & Swegp | Green | No Slower
Ruby 19 Mak & Sweep | G.I.L. | No Same
Rubinius Mark-Region | Green | Yes Slower (but improving)
JRuby As WM Native | Yes Faster
IronRuby As.NET Native | Yes Abou equal

Table 2.2: Main Ruby Implementations

2.6.5 Perl

Perl was probably the first genera purpose scripting languege and is dill widely
used, althoughit is popdarity isdedining. Perl 5isunusual in that the interpreter
operates diredly on the astrad syntax tree rather than using byteades. It uses
reference ourting for garbage wlledion. The next version o Perl, Perl 6, usesa
new VM, the Parrot VM.

39

The Parr ot Virtual Machine

The Parrot VM [60] was designed to be agenera purpose virtua madine for
al dynamic languages. However, the only reasonably complete implementation
of any mainstream language for Parrot is the Perl 6 implementation®. Parrot is a
register-based virtual machine that includes, or is planned to include, pluggable
predse garbage mlledionand JIT compil ation. Exad detail s are hard to find and
may change.

Performance datais also hard to come by, but the following may be indicative: in
2007, Mike Pdll 7 posted his comparison of afew simple benchmarks comparing
Luarunnng onthe Parrot VM (version 0.4) with the standard Luainterpreter and
LuallT[59]. Lua on Parrot was “20 to 30 times dower” than the standard Lua
interpreter and “50 to 200times dower” than Luall T. These numbers are not as
bad as they may seem, asLuallT isvery fast.

One would assume that performance had improved considerably since 2007, but
in his blog d October 200976], Andrew Whitworth complained that for ‘some
benchmarks' theforthcomingrelease of Parrot, version 1.7, was 400% slower than
the 0.9 release of January of that yea.

26.6 PHP

PHP is very widely used in server-side web programming. The language is dy-
namicdly typed, but does nat al ow as much dyramism as Python However, PHP
suppatsawide range of parameter passng and aher complex fedures. The Zend
PHP engine, which isthe only widely used PHP engine, isunusual in anumber of
ways. Firstly it can be configured to use any ore of threediff erent threading tech-
niques. cdl threading, dired threading a switch threading. The ‘bytecdes are
inaVLIW® style and eadh instructionis very large (in the order of 100 bytes), in-
cludingamadine aldress(for cdl threading o diredthrealing), operandindices,
operand types and even symbal-table references. One of the more interesting fea
tures is that by using cdl threading o dired threading, the number of byteade
implementations can be esentialy limitless al owing the Zend engine to include
large numbers of speaali sed instructions. Zendinstruction operands can be of five
types, and ead instruction takes two operands; there ae patentially 25 dfferent
spedalisations of eat operation. Zend hes abou 150 dfferent opcodes. If all
of these were to be spedalised it would result in ailmost 4000 dfferent instruc-
tions. This form of static spedalisation is unique to the Zend engine, and is not
appli cable to oljed-oriented languages with an extensible type system.

6Even the Perl 6 implementationis not fully complete, but it i s usable.
"Developer of Luall T
8Very Longlnstruction Word.

40

2.6.7 Javascript

Javascript is probably the most widely exeauted interpreted language in existence,
because of its use in web browsers; amost al smart phores as well desktop com-
puters have one or more browsers, al with a Javascript interpreter. However, it
is used rarely in any other environment so canna redly be regarded as a genera
purpose programming language. Javascript is a prototype-based ohed-oriented
language, like Self, and many of the optimisations used in Self are gplicable to
Javascript.

Currently, the fastest Javascript engine is the V8 engine in Googe Chrome. The
V8 engine does nat include abyteaode interpreter; it compil es the source @mde
diredly to madcine aode. This is a reasonable gproach for Javascript, as the
programisawaysdelivered over theinternet, never stored localy, so the overhead
of parsing the source mde and the generation o some form of code, whether
byteaode or machine aode, canna be avoided. Simple machine code, with cdls
for complex operations, can be generated almost as quickly as byteade. V8 uses
a number of code optimisations from the original Self implementation. The two
most notable ae inline caties and maps. Maps, also known as hidden classs,
record information abou the layout of a particular objed and are idedly shared
by all objeds with the same layout. Inline cades record the expeded map of the
recever objed at a cdl site, branching dredly to the gpropriate methodif the
adua map matches the expeded map. V8 also includes a generational garbage
colledor, with a dual mark-and-sweep/mark-compad mature oll edor.

2.6.8 TheLisp Family

Lispisafamily of languages rather than asingle language. The original Lisp was
designed for symbalic computationand datesfrom the late 19505[54]. Lisp andits
variants are general purpose dynamic languages. The outstanding feaure of Lisp
isthat all code can be treded as data. Syntax is very simple, allowing programs
to be represented using the simple data structures (li sts and trees) used throughou
lisp programming. Manipulation o programs by themselves or other programsis
relatively common pacein Lisp programming.

The Lisp family has two main branches: Common Lisp and Scheme. There ae
number of diff erences between Common Lisp and Scheme. The most important
difference in the context of dynamic languages, is that Common Lisp includes
optional type dedarations. This means that Common Lisp VMs do nd make
much eff ort to optimise dynamicdly typed code. However, Scheme implementa
tions must optimise dynamicaly typed code, if they are to perform well. Scheme
also mandates that stad overflow will never occur as a result of using tail cdls,
whereas Common Lisp does nat.

41

2.6.9 SchemeVMs

Scheme[72] isaversion o Lisp with a standardised core and library. It has many
implementations, two of which will be discussd here.

M zScheme

Mzscheme® is part of the PLT-Scheme[57] distribution and is a fast, mature
Scheme interpreter with run-time compil ation. Mzscheme is based arounda byte-
code interpreter. The astrad syntax treeis analysed and a number of optimi-
sations performed before trandating to bytecode. The JIT compiler is based on
GNU Lightning[1]. The garbage wlledor is a partly-conservative mlledor de-
rived from the Boehm colledor.

Mzscheme has an unwsual way of handlingtail cdls. Mzscheme converts Smple
tail reaursion to loops in the byteaode, but all other cals use the C stadk. When
making a cdl that would owverflow the C stad, the C stad is first saved to the
heg, then exeaution jumps bad up the stadk, using the | ongj np function. The
function can then be cdled, as it will have sufficient stadk space Later, when
the saved part of the C stad is required, it is restored. This approach alows
Mzscheme to use the standard cdling conventions of the underlying hardware,
resulting in fast cdls. Because the front-end converts tail reaursion to loops, the
stadk saving medanism shoud be only rarely required.

Bigloo

Bigloo[13] is a compiler for nonlazy functional languages, which emits C as its
target language. Bigloo has a front-end for Scheme and ML. It uses a representa-
tion o the untyped lambda cdculus, cdled A", asits intermediate representation.
Biglooincludes aruntime evaluator, but it i s not fully complete, nor designed for
spedd; thus Bigloois not a strictly conformant Scheme implementation.

Bigloo translates A" to C code, first performing many transformations on the A"
form. These transformations can be grouped into efficiency improving transfor-
mations and into transformations which transform the A" code to a style better
suited to trandationto idiomatic C. The C compil er can produce better code from
thisidiomatic C than from C trandated diredly from lambda cdculus. The cde
to implement these transformations runs to tens of thousands of lines of Scheme
code.

Since, the Bigloo compiler can perform whole-program analysis it can perform
many optimisationsthat would beimpossblein aninteradive system. The Bigloo
runtime uses the Boehm conservative oll edor.

9mzscheme has been renamed ‘radket’ sincethe time of writing

42

2.7 Sdf-Interpreters

A sdf-interpreter is an implementation o an interpreter, or virtual macdhine, in
the language being interpreted. It is posgble to implement a language of suffi-
cient power in itself trivially; for example, it is passble to implement a Python
interpreter as foll ows:

i nport sys
execfile(sys.argv[1])

This 2ort of implementation is known as meta-circular evaluation. In order to
redly implement a virtual madhine an implementation can only use fedures that
can be diredly trandated to the underlying machine. The Jikes RVM, the Klein
VM[75] for Self, and PyPy are dl salf-interpreters. The JikesRVM andtheKlein
VM bath include runtime compil erswhich can be used to bodstrap the VM. PyPy
trandates the running program to a lower-level form, usualy C, which can then
be compil ed.

The percaved advantages of self-interpretationare that the VM can bewrittenina
higher-level language andthat li brary code can be more dosely integrated with the
VM sincethey are written in the same language. However, many comporents of a
VM are quite low-level and writing them in too high-level alanguage may cause
difficulties; code may invalve alot of ‘magic’ cdls and be difficult to foll ow.
In fad it may be better to write aVM in more than ore language: a high-level
language for high-level comporents and a lower-level languege for lower-level
comporents.

2.8 Multi-Threading and Dynamic Languages

The reader may have naticed that dynamic languages, particularly Python and
Ruby, seem to strugde to suppat concurrency. Global interpreter locks are com-
mon implementations of these languages. So what is the problem?

The problem stemsfrom the fad that these languages provide data structures, such
aslists, setsand dctionaries, asfundamental types. Sincethese data structuresare
mutable, that is they can be modified, they require locking when used in a multi -
threaded environment. Immutable data structures, such as tuples and strings do
not need any locking.

Both Pythonand Ruby evolved in a single-threaded environment; macines with
more than processor were rare. Pythonand Ruby programmers are acaistomed to
being able to write programs, even multi-threaded ores, withou any synchroni-
sation. This contrasts with, for example, Java programmers, who generally know

43

that synchronisation is required in multi-threaded programs which use mutable
data structures.

The second problem is that these same data structures are heavily used internally
in the implementations. Therest of thisdiscussonwill focus on Python although
similar arguments apply to Ruby. In Python dictionaries are used internally to
hold gobal variables and ojed instance variables. This could cause some unex-
peded interadions between threads. Suppase, for example, that onethread creaes
and stores a new global variable ‘x’ and ancther threal creaes and stores a new
global variable ‘y’. In most languages, one would exped that (at least at some
futuretime) both ‘x’ and‘y’ would exist and be visibleto bah threads. In amulti-
threaded Pythonwithou synchronisation, it is possblethat ‘x’ (or 'y’) would nat
exist at al. What would happen is that the dictionary halding the global variables
might need resizing to insert anew variable. Both threads would then attempt this
resizing at the same time, inserting’x’ and’y’ respedively into their locd copy.
Both then write badk the new dictionary at the same time, arace ondtion, and
one or other of the modificaionsislost. Similar problems might occur with the
dictionaries used to hdd instance member values.

There ae anumber of possble solutionsto these problems, which range between
the foll owing two extremes:

1. Design al built-in, mutable data-structures < that they are fully thread-
safe. That is, uselockingfor al operations onthese data-structures. Thisis
potentialy very expensive.

2. Insert the asolute minimum number of locks to ensure that the integrity
of the VM is not compromised. The amount of locking required is that
which would prevent the VM crashing. This would put the resporsibility
for locking oljeds on the programmer in asimilar way to Java.

IronPythonand Jython bdh use solutions smilar to 1 abowve.

2.9 Conclusion

High-level, dynamic languages are more popuar than ever. Despite this, the qual-
ity of implementationseems not to have improved over thelast 15 yeas, athough
there ae some improvements with the aurrent (2010 generation o Javascript en-
gines. The reasons for this beame deaer when one mnsiders that most of the
reseach onimproving VM performancewas doreonalanguage, Self, with avery
simpleVM; the Self VM had 8 byteaodes. Python hasabou 100. The engineaing
eff ort to implement the Self VM, writing the entire VM from scratch, was large.
For alanguage like Pythonthe dfort would be enormous and beyondthe means
of most organisations. A different approach to buldingVMsisrequired.

44

Chapter 3

Abstract Machine Based Toadkits

This chapter describes a method d constructing virtual macines using a toolkit
designed around an abstrad machine model. In this chapter, the term ‘abstrad
maaine is defined, and an abstrad macdiine mode is outlined which incorpo-
rates esential fedures of a VM for dynamic languages. The requirements for a
todlkit for constructing VMs are discussed and the comporents of such a todlkit
are outlined. The design and implementation d such a todlkit is justified as it
reduces overall complexity, but does nat limit the devel oper’s ability to construct
ahigh-performanceVM.

3.1 Introduction

Development of a high-performance VM is no easy task, espedally for the com-
plex VMs required for dynamic languages. Althoughsome comporents of a
VM can be designed and implemented separately, others are boundtogether quite
tightly. For example, in order to use apredse garbage wlledor, al code that ma-
nipulates pointers into the hegp must be identified. These pointer manipulations
may bein library code, in the interpreter or even in code that has been generated
at runtime. For an evolving language like Ruby a Python all the comporents
must conform to the new semantics whenever a change occurs. Thisis espedally
anissefor JT compil ers, whenever anew bytecode is added, or the semantics of
existing byteaodes change, the compil er must mimic the changesin theinterpreter
exadly.

Unless ®me way is foundto reduce this complexity in the interadions between
the comporents, the aedion d new VMs will be possble only for large organ-
isations. Thiswould be ared lossbath for acalemia, in terms of creding new
experimental |anguages, and for languages suppated by community devel opment
such as Pythonand Ruby:.

45

By separating the parts shared by many VMs, from the language spedfic parts,
the construction of aVM can be simplified.

3.1.1 Abstract Machines

Put simply, an abstrad madhine is a macine definition, rather than an imple-
mentation. The terms ‘abstrad madine’ and ‘virtual machine’ are both used to
describe some sort of intermediate representation between a sourcelanguege and
a target madine, usualy a hardware macine. It is important to differentiate
between abstrad macdines and virtual madines, at least for the purpaose of this
thesis. Unfortunetely, the terms are commonly used interchangeably.

Althoughthe usage of the two terms is gmilar, it is possble to observe some
differences in general. The term ‘abstrad macdine’ is generally used when the
madine language is used as a trandation step between two other languages.
For example the ‘abstrad continuations madine[4] and the SpinelessTagless
G-Madineg[46] are both described as abstrad madhines, and are used as an in-
termediate representation. The term ‘virtual machine’ is more often used when
the madine language is evaluated diredly. For example, the VM and CLR are
usualy referred to as virtual machines. The distinctionisimportant as virtual ma-
chine languages are designed for exeaution, whereas abstrad madine languages
are designed for trandlation into an exeautable form.

For the purposes of this thesis, an abstrad madine language is textual and is
designed to be translated into another form, whereas a virtual macine language
isbinary andis designed to be exeauted diredly.

The first well-defined abstrad madine was probably the intermediate language
for Algd 60, mentioned in Sedion 21.1. Diehl, Hartel and Sestoft[25] list a
large number of abstrad madhines and virtual machines, using the term abstrad
madhinesfor both, regarding avirtual maciine & an exeautable astrad machine.

3.1.2 A Todkitfor Constructing VMs

One gproach to bulding VMs s to construct a set of tods, or toadlkit, to buld a
VM. Such atoadlkit would buld aVM from a spedficaion o the interpreter and
suppatingcode. Thisapproadhisemboded in bah PyPy andthe Glasgow Virtual
Madine Todkit (GVMT), whichisdescribed in Chapter 4. Both thesetodkitsare
ableto generate aVM with J T compil er andintegrate apredse garbage wlledor,
from a spedficaion o theinterpreter and suppating code. Sedion 49 includesa
detail ed comparison o the GVMT and PyPy.

Thegred advantage of aVM development todl, or todkit, isthat many parts of the
VM can be handed by the todkit. Generic fedures of the VM, such as agarbage

46

colleaed heg, can be conceptually separated from the VM spedficdion detail s,
such as the semantics of byteades, data representation and suppating functions.
This leaves the developer freeto ded with the language-spedfic partsin any way
they choose, thus pealing development with littl e or nolossin flexibility.

Once such a VM development todkit has been creded, new VMs can be eaily
constructed that suppat advanced garbage mlledion and just-in-time compila
tion; the developer just needs to spedfy the byteade interpreter and write any
suppating code.

3.2 TheEssntial Featuresof a Virtual Machine

In order to dedde what feaures a toolkit shoud suppat, it is useful to examine
what feaures are commonin modern VMs.

3.2.1 GarbageColledion

Garbage lledionisa commonfeaure anongst VMs!. Efficient garbage wllec
tionis, aongwith JT compil ation, one of the keysto goodVM performance

Although as discussd in Sedion 23.7, a garbage wlledor for a dynamic lan-
guage has a number of spedfic requirements, the performance daraderistics of
the garbage olledor need na be part of the astrad madiine. It is necessary
only that the astrad madine suppats garbage wlledion. Animportant paint to
note ebou garbage wlledionishow pervasiveisits effed on the generated code.
All code, whether in the interpreter, in JT compiled code or in suppating code,
must be implemented in such away that all referencesto oljedscan befoundand
modified by the garbage mlledor. This meansthat all roats, that is pointers from
the stadk or global variables, into the hegp must be identifiable.

3.2.2 Exeaution Control

Control of the exeaution, or flow, of a program is a key part of any language.
Exeaution control can be divided into two types. concurrent and serial.

Control over the concurrent exeaution o a program is, at the operating-system
level, either by processes or threads. Processes are quite loosely couged, commu-
nicaing ony by messages. Threals are more tightly couded, sharing memory.
Since both processes and threads are provided by the operating system, the &-
strad machine neals to interface ¢eanly with these feaures, but it does not need

1A notable exceptionis the Forth VM.

a7

to provide them.

The cntrol over a single thread of exeaution varies widely between languages.
As well as smple flow control in the form of branches and subroutines, mod-
ern languages provide nonlocd transfers of control in the form of exceptions,
co-routines or continuations. Continuations are the most powerful of these, and
cgpture most of the exeaution state of a program at the point at which they are
creded. It is posgble to implement both exceptions and co-routines with contin-
uations, but continuations require significantly more resources than either excep-
tions or co-routines.

In addition, other forms of flow control are cmncavable and it shoud be possble
to implement new ones onthe astrad machine.

3.3 An Abstract Machinefor Virtual Machines

An abstrad macdineisusually designed with one programminglanguagein mind,
but could easily be reused for other languages with similar semantics. For ex-
ample, the ‘abstrad continuations maciine was designed for use in compili ng
ML. However, it has no ML spedfic feaures in it; it would suppat any non
lazy functiona programming languege that required suppat for continuations.
The Spineless Tagless G-Madine, designed for Haskell, shoud be &le to sup-
port Miranda or ancther lazy functional programming language. Even the Warren
Abstrad Madhine, designed for Prolog, might be agoodtarget for any language
requiring some sort of badtrading.

Althoughthesethree dstrad macdineswere designed to implement aspedfic lan-
guage, the madine spedficaions can be defined in terms unrelated to the source
language definitions. Theoreticdly, any Turing complete ebstrad machine could
ad as a target for any language. However, if the language requires a feaure in
order to run efficiently andthe abstrad machine does not suppat that feaure then
it will be difficult to make an efficient implementation. Likewise, if an abstrad
madhine is designed to suppat a feaure that the language does not need, the
overhea of the unused feaure may impad performance

Requirements for the Abstract Machine

The astrad madhine for a virtual machine shoud serve & an intermediate rep-
resentation between the language used to define the VM and the hardware. The
semantic level of the ebstrad madhine will t herefore lie between that of the hard-
ware and the virtual madine.

This means that the dstrad macdine shoud have alanguage that is a suitable
target for a C compiler or similar, and shoud provide feaures required for con-

48

structing a dynamic language VM. To be asuitable target, an abstrad machine
language must have an comprehensive instruction set with well-defined seman-
tics. The astrad madcinelanguageis not expeded to be exeauted withou further
tranglation.

Itis necessary to be &le to compil e the astrad madiine ade into madine mde
for ared madine, and to doso reasonably efficiently. The astrad machine can
be viewed as the intermediate representation between source @de for the VM
and macdhine-code implementation o that VM. Like a @mpiler's intermediate
representation it shoud be designed to be an eff edive bridge between the source
code andthefinal output, which inthiscaseisaVM. The astrad macdine shoud
suppat feaures common to VMs, withou constraining the design o individual
VMsunduy.

A VM Todkit Based on an Abstract M achine

In order for atodlkit to trandateitsinpu to acdual madcine code, it isnecessary to
define the semantics. By using an abstrad machine & aform of intermediate rep-
resentation, the semantics can be defined in terms of the ebstrad madcine, and all
todscan easily collaborate to form a usable toalkit. Implementation o the toalkit
is smplified as tods can be separated into front end (source to abstrad-madiine
code) and badk end (abstrad-macdhine ade to red-macdhine mde) comporents.

Developing an abstrad machine for VMs can simplify the development of VMs
by separating the development into two parts: developing the todls to translate
VMs described in terms of the éstrad madine into exeautable programs; and
design and development of the VM itself. Thetods can paentialy be reused for
other VMs. By choasingthe design o the éstrad madhine so that it separates the
parts which are general to all VMs from the parts which are spedfic a particular
VM, the overall development effort can be reduced significantly.

3.3.1 Designing an Abstract Machine

While an abstrad machine shoud be & genera as possble, it will have to be
tailored to its intended damain to some degree For example, will the astrad
madhine be stadk-based or register-based? How much control over memory man-
agement shoud the VM developer have? What sort of suppat for runtime opti-
misations will t he abstrad madine provide?

A balance neals to be found ketween spedficity and generality. An abstrad ma-
chine shoud na be so spedfic that it only suppats one VM, neither shoud it be
so genera that it is no more useful for building VMs than a standard compil er.
The design space ca be viewed as a spedrum running from language-spedfic
VMs, such as the VM, to general purpose compilers, such as the GNU C/C++

49

compiler. A useful abstrad macdhine shoud li e somewhere between these two ex-
tremes. Some feaures of VMs, such as garbage mlledion, are dmost universal,
soitisobwviousthat the abstrad machine shoudincorporate them. Othersfeaures,
such as continuations, are much lesscommon and it is a matter of judgement as
to whether they shoud be included.

3.3.2 Spedal Statusof Interpreters

The concept of the interpreter as a spedal entity is key to bulding VMs using a
toadlkit. The interpreter isnaot just ancther function. Because the VM isaprogram
that runs programs, the abstrad machine must suppat not only the program, the
VM, but the program run onthe program, the bytecodes. To dothis, interpreters
nedl to be treaed spedally. The state of the interpreter represents the exeaution
state of the interpreted program, which neals to be suppated by the abstrad ma-
chine.

By differentiating between interpretersand aher functions, the semantics of com-
piler and interpreter generators can be more dealy stated. This geda status
makes it much simpler to define and generate a ompiler which guarantees that
the behaviour of compiled code exactly matches that of the interpreted original.
Theinterpreter’sinstruction panter becomes part of the ebstrad macine state, on
apar with the hardware machine’ sinstruction panter, enabling a unified approac
to handling exeaution control in bath the interpreter and supparting code.

Treding the interpreter as a speda entity also has advantages for efficient im-
plementation. Since the interpreter is part of the astrad model, the interpreter
shoud integrate seamlesdy with the rest of the VM. When implemented, cdling
from interpreted into compil ed code, or vice-versa, shoud cost no more than any
other madhine-level cal.

3.3.3 Compilation

If aVM isto achieve good performance it needs a JIT compiler to convert se-
guences of byteades to macdhine code; akey feaure of atoalkit for buildingVMs
isto generate that compiler. The todkit shoud be &le to automaticdly generate
aJIT compiler from the interpreter spedficaion.

An automaticdly generated compiler shoud produce @de that has exadly the
same semantics as the byteades it derives from. Of course ‘exadly the same se-
mantics will depend onthe exad abstrad madine but areasonable interpretation
is that the observable behaviour shoud be the same.

Put formally:
Given a compil er generator CG and an interpreter generator |1 G, provided by the

50

toalkit, and aset of byteaode definiti ons By, provided bythe VM devel oper. Then,
duringVM construction, the interpreter Iy, and compiler Cy, are generated asfol-
lows:

Interpreter Generation: lym := 1 G(Bym)

Compil er Generation: Cym := CG(Bym)

At runtime, when the VM is exeauting, given some valid byteaodesb and an inpu
X:

Bytecdes b can be compil ed with Cp, to producecl,

Compilation: 5, := Cym(b).

When the compil ed code is exeauted with input X, it shoud be equivalent to inter-
preting b with the interpreter |,y andinput x. That is:

@ (x) = Iym(b,x)) Vh,x, provided that b and x are valid. What values of b and
x are valid depends on bah the set of bytecode definitions By, and the astraa
madchine definition.

Correctness

One of the main reasons for using atoadlkit is the ability to spedfy the interpreter
and the compiler from a common source. It isimportant that the interpreter and
compiled code ae dfedively equivalent. Confidence that this is the cae can
derive from formal proof of the eguivalence or statisticd evidencein the form of
testing.

Formal verification o the tod kit will be impossble unlessit is posgble to verify
al the comporents. In order to reducethe engineeing effort required to crede a
toalkit, reuse of externa comporents auch as the C compiler or a runtime com-
pilation library is necessary. Proving the properties of these comporents is nat
feasible.

Sinceformal verificaionisimpradicd, validation must be dore by testing, code
reviews and aher software engineeaing techniques. Althoughthe use of these
tedhniques is outside the scope of this thesis, it is worth naing that the use of
external componrents removes cetain categories of errors, as these componrents
must verify their input to some extent and can be trusted to generate corred output
for thegiveninpu. For example, if theinterpreter generator usesthe C compil er to
generate madiine ade, then some dasses of low-level errorsin the final madcine
code, such as the use of incorred cdli ng conventions, will nat occur.

3.34 Introspedion

Introspedionisthe &bility of a program to examine and perhaps modify the state
of the underlying machine, which in this case is the éstrad madine. The full
state of the abstrad macdine shoud be visible to the program, althoughefficiency
requirements may mean that only parts of it are modifiable.

51

Introspedion is useful for a mupe of reasons. It allows the VM to provide sup-
port for debuggng and todls. It isaso useful for suppating advanced language
feaures. For example, continuations can be aeaed by using a combination o
norlocd jumps, for flow control, and wsing introspedion fedures to record nec
essry stack and hegp information.

3.4 Optimisationin VMsfor Dynamic Languages

One of the most important measures of avirtual madineisits geal. A VM that
includes the adility to optimise code & runtime will almost invariably be faster
than ore that does not.

Optimisations can be loosely grouped into lower-level traditional optimisations,
used in conventional compilers for static languages, and higher-level optimisa-
tions which are often language-spedfic. There must also be an intermediate rep-
resentation which all ows the two levels of optimisation to communicae. For a
dynamic language, the main aim of these high-level optimisationswill be, in gen-
eral, to remove a much dynamism as possble, thus producing intermediate code
that traditional optimisations can turn into efficient madcine cde.

3.4.1 Traditional Optimisations

Although dymamic languages may require new and interesting ogimisation tech-
niques, they also require traditional compil er techniquesin order to provide good
performance These techniques include sophisticated register all ocation, constant
propagation and ather optimisationsfoundin most compil er textbooks. These op-
timisations can be gppli ed after the high-level optimisations, so standard toodscan
be used.

3.4.2 Intermediate Representations

To translate from a high-level representation, such as bytecode or source @de,
diredly to madine ade is amost impossble to dowell. By using ore or more
intermediate representations, the tranglation can be made much simpler and more
effedive.

A wide range of intermediate forms are possble. These intermediate representa-
tionscan beloosely classfied as either program-level or machine-level. Program-
level forms contain al, or most, of the semantic information present in the orig-
inal program and are suitable for language-spedfic optimisations. Madhine-level
forms are suitable for traditional optimisations and code generation. Lower-level

52

languages generally do nd need program-level representations. For example the
GNU C/C++ compiler (GCC) has two intermediate representations, GIMPLE?
and RTL3; both can be mnsidered to be machine-level representations.

Effedive optimisation d dynamic languages requires diff erent sorts of optimisa-
tions from C and a program-level intermediate representation is needed. Most
dynamic languages aready have aprogram-level representation, their byteade.
Byteade is a very flexible format, caries program level i nformation, and makes
a goodintermediate representation.

3.4.3 Adaptive Optimisation Engines

Asdiscussd in Sedion 24.1, an adaptive optimisation engine wnsists of a on-
troller, which seleds code to optimise, and an optimiser, which transforms the
code. Theterm ‘adaptive’ isused as the engine aapts to the running program; its
behaviour is determined at runtime.

Once asequence of bytecodes has been seleded for optimisation, whether it is a
whole procedure or nat, it is first translated into a program-level representation,
then high-level optimisationsare gplied to it. Then it istrandated into madine-
level representation, low-level optimisationsare gpplied, andfinaly itistrans ated
into madine-code.

Obviously additional stages can be added or stages omitted, but this idedised
model will serve as auseful reference point. Figure 3.1 shows a generali sed trans-
lation peth from bytecode to machine wde.

3.4.4 Building an Adaptive Optimisation Engine Using a
Toadlkit

There ae two parts to bulding an optimisation engine. The first part is the se-
ledion o the mde to optimise. The seand part is the optimisation itself. The
seledion o codeislargely language spedfic and shoud nat require dired suppat
from the abstrad machine or toalkit. The second part is nat only more complex,
but is 4rondy influenced by the design o the astrad macdine.

In Figure 3.1, it shoud be noted that the first two translation steps, from byte-
code to optimised high-level intermediate representation (IR), are largely lan-
guage spedfic and urrelated to the abstrad macdine, whereas the later steps are
more astrad-madhine spedfic.

As mentioned in Sedion 34.2, byteade can fulfil the role of a program-level

2Generic structured InterM ediate rePresentaion LanguegE
SRegister Transfer Language

53

Bytecode

High-level Optimisations
 J

Initial Translation

High-Level IR

High-level

Optimiser High-Level IR

A 4

Translation
Low-level

Low-Level IR Low-Level IR

Optimiser
4
Machine cod:
generation

Machine code

Low-level Optimisations

Figure 3.1: Generalised Byteade Optimiser

IR; it is gmple to analyse, and wsualy contains al of the semantic information
present in the source @mde. Figure 3.2 shows an optimisation peth using bytecode
as a program-level IR, including toalkit generated comporents to translate from
byteade to madcine wde.

In order to ease the construction d byteade-to-byteade trandators, the toalkit
shoud suppat credion o arbitrary interpreters over the same bytecode used for
the main interpreter. As an additional benefit, this will also ease the aedion o
byteaode disassemblers, verifiers, and similar toals.

The astrad madhine spedfies neither the means of optimisation control nor any
language-spedfic optimisations. Whil st thismay seem to be an omisson, it allows
the VM developer to choose an appropriate overall design, and nd worry abou
the lower-level details.

3.5 When to usethe abstract machine approach?

One question that has not been diredly addressed so far, is this: Is the dstrad
madine goproach worth using for a single VM; in other words, is it worth con-
structing a todkit such as the GVMT just to crede asingle VM? The answer
depends onthe complexity of the resulting VM. For avery simple or toy VM, the
answer must be no, but for aVM for a complex language li ke Python, the answer
is probably yes. The ahility to add and remove bytecodes easily, and to be ableto
develop the garbage oll edor separately from the rest of the VM, yet have it well

54

Language-Specific

Bytecode Bytecode Optimise|

Bytecode

Tool-generated Back-end

Tool-generate
Translator

Conventional Code Generator

Low-Level IR LenHsE Low-Level IR

Optimiser
4
Machine cod:
generation

Machine code

Figure 3.2: Toolkit Asgsted Optimiser

integrated for performance benefits, is very productive.

If atodlkit alrealy exists, itisworth usingeven for asmall or prototype language,
as using that todkit shoud produce abetter VM than using a pre-existing VM
such asthe JVM; thisis demonstrated in Sedion 4.10.

3.6 Alternative Approachesto BuildingVMs

There ae many posshble ways of developing VMs, but four caegories cover all
existing and proposed approadies. creding atoad to buld VMs; building atruly
general-purpose VM; aseemblinga VM from alibrary of comporents; and bul d-
ing an adaptable VM. Thefirst of these has arealy been covered in some detail .

3.6.1 A General Purpose VM

One gproach would be to buld a genuinely general purpose VM, that is, aVM
with an instruction set so broad that a very large range of sourcelanguages could
be trandated to it. The only attempt to dothis, of which | am aware, is the Parrot
VM which was discussed in Sedion 26.5. The problem with this approac is
that the VM must suppat many feaures which will not be required for any given
language, but will still add owerhead.

3.6.2 A Component Based VM

Ancther approach would beto buld alibrary of commoncomporents. Whilethis
has been dore for memory management[15], creaing a library of compil ers for

55

al possblebytemdesisclealy impossble.

It ispossbleto buldaVM from comporents, provided the translation from byte-
code to lower-level representation is coded manualy. VMKIit[33] isa JVM built
usingLLVM as T compil er badk-end, the Boehm coll edor[18] f or memory man-
agement and GNU clasgath[34] to provide the libraries. The resulting VM isa
compiler-only design, like the Jikes RVM. It has competitive performance once
running, but isvery slow to start up and hes relatively poa performancefor mem-
ory intensive goplicaions. The slow start up is as a result of having to compile
significant amounts of library code & runtime. The poa performancefor memory
intensive goplicaionsisdueto the use of a mnservative garbage wlledor.

3.6.3 An Adaptable Virtual Machine

A third approad is to buld an flexible VM that can be adapted to suit new lan-
guages dynamicdly. This could either be a genera-purpose VM that is then
trimmed down, or aminima VM with the &bility to add new bytecde instruc-
tions at runtime. The latter approad is taken by the MVM/InIVM projed[73].
The MVM is an extensible VM with a small i nstruction set, suppating JIT com-
pil ation and garbage mlledion. Theinstruction set can be dynamicaly extended
by loading new cagpabiliti es defined in a Lisp-like language.

A Java Virtual Madine, JnJVM, is creded by modifying, at runtime, the MVM.
Exeaution happens in two pheses; the first phase is loading the new bytecodes,
which extends the MVM; the seand plase runs the byteade program in the
new, extended, VM. The aurrent approach of creaingthe VM at run time would
probably be unacceptable when running small scripts, althoughit would probably
be straightforward to dothe adaptation at build time.

This would appea to be apromising approach, but it is not clea how far from
the core MVM the VM could be extended and still perform well. Unfortunately,
reseach in this diredion seemsto have ceaed.

3.7 Reated Work

3.7.1 Vmgen and Tiger

Vmgen[2§] is the interpreter generator used to buld the GForth VM. Vmgen is
focused on produwcing fast interpreters, and can produce very fast interpreters for
anumber of different architedures. However, vmgen does nat have the ability to
produce a ompil er, nor doesit suppat easy integrationwith the other comporents
of the VM. A more sophisticaed version d vmgen, Tiger[21], is avail able, which

56

isdesigned to further enhanceinterpreter performance and ease of use, rather than
adding aher todls.

3.7.2 PyPy

The PyPy projed[66] consists of two comporents. a trandation tod for con-
verting interpreters written in RPython (a slightly restricted form of Python) into
VMs;, and a Pythoninterpreter written in RPython Thetranslationtod can trans-
late any RPython program into reasonably efficient C (and ather staticdly-typed
representations), athoughits primary purposeisto compil ethe Pythoninterpreter.

The PyPy trandationtoadl, termed ‘tranglation toal-chain’, converts the high-level
(RPython) representation to successvely lower-level representations, by using
whoale program analysis to remove the dynamism inherent in (R)Python The JIT
compil er generated by PyPy works by tradngthe exeaution o the interpreter[19],
rather than the exeaution o the program®. The interpreter sourceis annatated in
order to help the compil er generator determine what to compile and when.

A detail ed comparison between PyPy andthe GVMT can befoundin Sedion 4.9.

3.8 Conclusions

A VM consists of anumber of tightly couded comporents. Althoughthese com-
porents canna be developed independently, the aedion o a number of these
comporents can be automated, freeéng the developer to concentrate on higher-
level issues. By designingalow-level abstrad machine and developingan acom-
panyingtoalkit, aspeds dich as memory management and JI'T compil ation can be
grealy simplified, alowing the VM developer to concentrate on issues auch as
optimisation pdicy or whatever novel feaures the new VM includes.

In their paper on VM construction for dynamic langueges, Bolz and Rigo[20]
concludethat writingVMs'‘ by hand' is unsustainable and that some sort of tool(s)
are required. Althoughthe medhanism of automation in PyPy differs from the
GVMT, automationisanecessty. A toalkit that implementsthefeaures discussed
in this Chapter is presented in Chapter 4.

4PyPy initialy aimed to suppat runtime compilation wsing partial evaluation, athoughat-
tempts to dothis have now been abandored.

57

58

Chapter 4

The Glasgow Virtual Machine
Toadkit

The Glasgow Virtua Madine Toadlkit (GVMT) is an embodment of the astrad
madine principle discussed in Chapter 3. The GVMT is designed to suppat
construction o dynamic languages. A manua for the GVMT is avail able from
http://code. googl e. com p/ gvnt / downl oads/ | ist/.

In this chapter | will give an overview of the GVMT and describe some of its
novel feauresin more detail .

4.1 Overview

The GVMT is based around an abstrad madine definition and consists of two
sets of tods: front-end todls to convert C source @mde to abstrad macdhine awde;
and badk-end todls to conwert the estrad macdiine ade into a working virtual
madine.

The front-end tools consist of a C compiler, an interpreter generator and
seandary-interpreter generator. The C compil er converts C code into instructions
for the abstrad machine. Theinterpreter generator and seandary-interpreter gen-
erator convert C-styleinterpreter definitionsinto instructionsfor the same astraa
madine.

The badk-end todls are a @mpil er-generator, to generate a @mpil er from the ab-
strad machine bytecde spedficaion, an assembler to convert abstrad madcine
code to madciine ade, and a linker to ensure that comporents are laid ou in a
way that the garbage wlledor can understand. Figure 4.1 showshow thetoolsare
used to generate an exeautable viathe astrad madcine aode.

The GVMT abstrad madine spedficaly targets dynamic languages. It isastadck-

59

Qnterpreter Definitions (9

GVMT Interpreter
Generator

GVMT Secondary
Interpreter Generatoy

Other Code (C)

GVMT C Compiler

GVMT Abstract Machr{

GVMT Assembler

/

[GVMT Object File9

\

GVMT Linker

System Object Filg

5\

GVMT Compiler
Generator

Sytem Linker

é

Figure4.1: The GVMT Todls

60

based abstrad madine that is suitable as a target for a C compiler. It can be
trandated efficiently into exeautable code and it suppats feaures necessary for
buildinga VM for dynamic languages.

4.2 The Abstract Machine

The GVMT abstrad madhine is a stack madine; al arithmetic operations (such
as addition) operate onthe stac and, like Forth but unlike the VM, all procedure
parameters are moved to and from the stadk explicitly. A number of operations
for stadk manipulation are dso provided, in order to asgst with the often complex
procedure cdling semantics of languages like Python It is also designed to be
garbage wlledion safe throughod.

421 TheAbstract Machine Modéd

The GVMT abstrad madine consists of one or more threads of exeaution and
main memory. Ead thread consists of threestads: the data stadk, used for eval-
uating expressons and passng parameters; the control stad, which hdds adiva
tion records for procedures; and the state stadk used to save the abstrad machine
state. The state stadk is used to implement exceptions, closures, or other complex
flow control. SeeFigure 4.2. The GVMT abstrad macdine is also fully thread
safe and provides feaures to suppat concurrency in the VM.

The main memory of the GVMT abstrad machine cntains two distinct regions,
agarbage olleded hegp and user-managed memory. All pointer instructions dif-
ferentiate between pantersinto the garbage-coll eded heg and pdntersinto user-
managed memory.

Finally, and pasgbly most importantly, the éstrad macdhine suppatsinterpreters
as peda obeds. Asdiscussd in Sedion 33.2, this al ows the GVMT to pro-
duce aJIT compiler automaticdly and ensure that interpreted code and compil ed
code behave in the same way. An interpreter is defined by a set of named byte-
codes, ead ore of which is defined by its dadk effed and the ade describing
its mantics. An example of a bytecode defined for the GVMT is given in Sec
tion 43.2.

4.2.2 Stack-based exeaution model

A stakk-based exeaution model i s chaosen for two reasons. Thefirst is Imply that
most modern VMs are stadk-based. The secondis that it is generdly easier to
implement source to byteaode compilers for stadk-based intermediate forms. In

61

Threads

\
\
i
1

\

LT User

» O.r | O M -7
R R) o
% = & JUT ~
= %
B T PO RN Managed
) o | ST Memory
o - = [~]
= 7 QL <
Q AR N
-~

1
1
T

I
1

1
’
’

3
*I
I
[
Q
©

Figure 4.2: The GVMT Abstrad Machine Model

terms of performance it does nat redly matter whether the astrad machine is
stadk or register based, since astack-based form is easily interchangeale with a
threeaddressform.

423 GVMT Abstract Machine Code

As befits an abstrad madine code, GVMT abstrad machine aode (GAMC) has
no hinary representation; it is purely textual. Instructionsare generally of theform
XXX_T or XXX_T(N) where XXXistheinstruction name, T theoperandtype andNis
an integer. For example, ADD | 4 addstwo 32-hit i ntegers, whereas TSTORE_R(N)
stores a Reference to the NI" temporary variable.

The instruction set also has a large number of instructions to provide accesto
abstrad madine feaures such as the garbage mlledor and the state stadk. The
full i nstruction set is listed in Appendix A. For the full grammar of the GVMT
abstrad machine code format, including deta, seeAppendix B

424 The Stacks

Eadc thread of exeaution hes threestadks: the data stadk, the control stadk and the
state stadk.

62

Data Stack

All arithmetic operations poptheir operands from the data stack and push the re-
sult to the data stadk. The data stad is kept in thread-locd memory, with the
top-of-stadk determined by the stadk pointer, SP. SP can be accesed and modified
diredly, allowing the VM implementer a large degreeof flexibility. However, it
can only be acce=d by spedfic instructions, which gives badk-ends ome free
dom to kegp some of the values nea the top o the stadk in registers; in order
to improve performance Instructions are dso provided for block insertions and
deletions on the data stadk; all owing custom cdli ng conventions and feaures like
C’'svararg semantics to be implemented.

Control Stack

The ocontrol stack holdslocd variablesfor ead functionadivation, as well asany
information required by the native ABIL. Thiswill usually be integrated with the
native stack. The badk-endisresporsiblefor ensuringthat all references (garbage-
colleaed panters) stored in the control stadk are reatable by the garbage wllec
tor.

State Stack

The state stadk is used to preserve and restore the madiine state. A state objed
consists of the aurrent point of exeaution, as well as the aurrent control and data-
stadk pointers. Instructions are provided to make nonlocd jumps in exeaution,
restoringthe machine state to the state stored in the objed ontop o the state stack.
State objeds do nd encapsulate the whole madine state; no record is kept of the
contents of the hegp or of the contents of the data stadk, just the depth.

425 Data Types

The GVMT suppats twelve different data types, which are listed in table 4.1;
eight integer types (four signed and four unsigned), two floating pant types and
two panter types. The GVMT has two different pointer types 9 that pointers
into the garbage-colleded heg and pdnters into user-managed memory can be
corredly diff erentiated.

Many instructions have asuffix which matches the code of the type. For example,
theinstructionto perform signed add ontwo 4-byte integersis ADD | 4. The type
of data and instruction must generally match, with a few exceptions. Applying
a signed operation to an ursigned value implicitly converts it to a signed value,

1ApplicaionBinary Interface

63

Kind Size | Code
Signed Integer 1 11
Signed Integer 2 12
Signed Integer 4 14
Signed Integer 8 18

Unsigned Integer 1 Ul
Unsigned Integer 2 uz2
Unsigned Integer 4 U4
Unsigned Integer 8 us
Floating Point 4 F4
Floating Point 8 F8
(Non-heap) Pointer | 4or8| P
(Heq) Reference | 4ar8 | R

Table 4.1: GVMT Types

and viceversa. The ADD_P instruction adds a pointer to an integer, not to another
pointer.

The GVMT abstrad machine may be ather 32 hit (4 bytes), or 64 ht (8 bytes),
which determines the size of pointers and references. GVMT abstrad macdine
code is generaly not portable from one sizeto the other, but the types | PTR and
UPTR are provided as aliases for pointer sized integer types.

Data stack items can hdd any GVMT data type. When integers anall er than the
word size ae pushed to the stack, they are extended to word size, retaining their
value. Thus dgned integers are signed extended and ursigned integers are zeo
extended. Arithmetic operations onintegers compute the full result which isthen
truncaed to the size of the instruction; division rounds towards 0. Floating pant
operations behave & edfied by IEEE 754 The GVMT does not spedfy byte-
order; implementations will match the underlying architedure.

426 Exeation Mode

In thefollowing dscusson, theterm ‘bytecode’ is used below to refer to avirtual -
madine instruction and the term ‘instruction’ is used to refer to an abstrad-
madine instruction. Byteaodes (virtual-madine instructions) are defined by se-
guences of instructions (abstrad-madine instructions).

Exeaution o athread starts by creainganew set of stacksfor that thread. Initially
all stadks are enpty. The aguments passed to thegvnt _start _t hread function
are pushed to the data stadk, followed by the address of the start function. A
CALL_Xinstructionisthen exeauted, where X depends on the type spedfied in the
gvnt _start _thread function. The CALL_X pops the aldressof the function to
be cdled from thetop o the stadk and cdlsit.

64

Functions

A functionin GVMT isdefined as a linea sequence of instructions.

Exeaution o a function procedes as follows. A frame containing al the tempo-
rary variables necessary for the functionis pushed to the control stack. Thisframe
beammes the aurrent frame for accessng al temporary variables; temporary vari-
ablesin frames other than the aurrent frame caana be accesd. Theinternal | ay-
out of thisframe isimplementation defined. Thefirst instructionin the functionis
then exeauted, proceadingto the next instructionand so on The exceptionsto this
are flow control instructions, HOP and BRANCH, which may jump to a designated
succesor instruction.

Temporary variables are accesd by the TLOAD _X(n) and TSTORE_X(n) instruc-
tions. They have no addressand have the same types as data stadk elements, with
the same restrictions on mixing types.

Interpreters

Aninterpreter adsexternaly like anormal function; it can be cdl ed like any other.
Internally, its behaviour is substantially diff erent from that of anormal function.

The interpreter commences exeaution, like anormal function, by pushing aframe
tothe control stadk. Thisframewill have sufficient spaceto store dl thetemporary
variables of the byteades of the interpreter plus any interpreter-scope variables.
The interpreter definiti on spedfies the names and types of these variables.

Eadch adivation o an interpreter contains a virtual-madine-level instruction
pointer which tell s it which bytecde to exeaute. The start-point of the interpreter
ispassd in as a parameter and popped from the data-stadk on entry.

Exeaution o byteades proceealsin a linea fashion, unlessa JUVP or FAR_JUWP
abstrad-madine instructionis encourtered.

The exeaution o individual bytecodes proceels as foll ows: The dstrad-macdhine
instructions that make up that bytecde ae exeauted in the same way asfor anor-
mal function. Shoud the end o the bytemde be readed (as it will be for most
byteaodes) then the instruction panter is updated to pant at the next instruction
and that instructionis then exeauted. If aJUWP or FAR_JUWP abstrad-madiinein-
structionisencourtered, then the virtual-madine-level i nstruction panter ismod-
ified, the exeaution o the aurrent bytecode halts immediately, and the byteade
pointed to the (modified) virtual-madine-level instruction panter is exeauted.

65

Compiled Code

The output of the compiler is a function and can be cdled like any other. Its
behaviour, in GVMT abstrad-madine terms?, is exadly the same as if the inter-
preter were cdl ed with the sameinpu (byteaodes) as passed to the compil er when
it generated the compil ed function, provided the byteades are not modified.

4.3 Front-End Tools

The front-end todls exist to al ow the VM developer to program in C, rather than
diredly in abstrad madiine mde. The tods translate C into abstrad madhine
code. There ae threetods, the interpreter generator, GVMTIC, the secndary
interpreter generator, GVMTXC and the C compiler, GYMTC. GVMTIC translates
interpreter definitionsinto GAMC. GVMTXC translates scondary interpreter def-
initionsto GAMC, usingthe output of GVMTIC to ensure that the bytecde format
used by primary and secondary interpreters is consistent. The C compiler trans-
lates all nonrinterpreter code and ads likes a standard C compiler with GAMC
as its output. The distinction between primary and secondary interpreters is that
the primary interpreter defines the byteade format, whereas the secondary inter-
preters conform to that format.

The front-end tools accest standard C code® with arange of built-in functions to
suppat the various abstrad madine fedures that are not diredly suppated in C.

43.1 TheC Compiler

The GVMT C compiler, GYMTC, uses the LCC[35] C compiler with a austom
badk end. In additionto generating GVMT abstrad machine code, GVvMTC does
simpletype analysisto diff erentiate between heg pantersand aher pointers, un-
does any ursafe (for garbage lledion) optimisations that LCC may have dore,
and produces error messages for any unsafe use of pointers. Unsafe uses of point-
ers include the ill egal use of pointers to the middle of an oljed, or attempting
to use nonheg panters as heg panters (or viceversa). The GVMT code and
documentationrefersto heg panters as references and northeg panters smply
as pointers.

2|ts red-world behaviour may differ; it shoud be faster, and it may implement the top o the
data-stack differently.
3C89 code

66

Figure4.3: Treefora += b
Trandating LCC Intermediate Codeto GAMC

Theintermediate representation used by LCCisalist of trees|30]; ead statement
in the C sourceis represented by ore or more trees. For example, the C statement
a += b; isrepresented by the treein Figure 4.3. Conwverting treerepresentations
to stadk code can be dore by walkingthe treebottom-upleft-to-right. Thetreefor
a += b; can berepresented asa b + a =inreverse-palish naation. If a andb
are bath locd variables and four byte integers, then the GAMC codefora += b;
could be

TLOAD_ | 4(1) TLOAD |4(2) ADD |4 TSTORE |4(1)

Loopng constructs are converted into explicit branches by the LCC front-end.
These ae represented in GAMC by the HOP instruction for an uncondtional jump
and BRANCH_T or BRANCH_F for a condtional jump. All branches must have an
explicit TARGET.

The following example mde is taken from the source @de for the HotPy VM.
It credes a new string (a heg oljed) from an array of charaders (a non-heg
objed). Thefunctiongvnt _mal | oc creaes anew objed in the hea.

1. R_str string_from_chars(uint16_tx chars, int count) {
2.inti;

3. R_strresult = (R_str)gvmt_malloc(sizeof(string_header) + (count << 1));
4. result—>0b_type = type_str;

5. result—>length = count;

6. for (i = 0; i < count; i++) {

7. result—>text[i] = chars]i];

8.}

9. string_hash(result);

10. return result;

11}

Thisistrandated into the following abstrad madine code, with LI NE and FI LE
instructions removed: The numbers at the start of ead line arrespondto theline
numbers above.

67

1. string_from_chars:

NAME(O, "chars") TSTORE_P(0) NAME(1l,"count") TSTORE_l4(1)

TLOAD 14(1) 1 LSH U4 12 ADD U4 GC MALLOC NAME(3,"result") TSTORE R(3)
ADDR(type_str) PLOAD R TLOAD R(3) 0 RSTORE R

TLOAD 14(1) TLOAD R(3) 4 RSTORE U4

0 NAME(2,"i") TSTORE_l4(2) HOP(193) TARGET(194)

TLOAD 14(2) 1 LSH_I4 TSTORE_l14(5) TLOAD 14(5) TLOAD P(0) ADD P PLOAD U2
TLOAD R(3) 12 TLOAD_l4(5) ADD_l4 RSTORE U2

6. TLOAD_ 14(2) 1 ADD 14 TSTORE_14(2) TARGET(193)

6. TLOAD_l4(2) TLOAD_I4(1) LT_l4 BRANCH T(194)
9
1

N o ok w

. TLOAD_R(3) ADDR(string_hash) CALL_V
0. TLOAD_R(3) RETURN_R ;

The translation from the C code works as foll ows;

Linel Line 1 dedares two parameters, which are passed on the stadk and must
be stored into temporary variables with the instructions T_STORE P(0)
and T_STORE_I 4(1). They are dso named for debuggng pupases with
NAME(0, "chars") andNAME(1, "count ") .

Line2 Line2isjust adedaration, so nocodeis generated.

Line3 The expressonsi zeof (string_header) + (count << 1)) istransated
toTLOAD 14(1) 1 LSH W4 12 ADD W4. Thegvnt _mal | oc functionisan
intrinsic function, so the cdl i strandlated diredly to the GC_MALLOC instruc-
tion.

Line4 The expressontype_str isagloba variable, so the value is loaded from
a fixed address ADDR(type_str) PLOAD R. Sinceresult isaheg ref-
erence, a RSTORE_R instruction must be used to store the ob_t ype field;
interna pointers are forbidden.

Line5 Line5is gdmilar to line 4, except that the | engt h field is an integer, so the
RSTORE_W4 instructionis used instead.

Line6 The for statement is three statements in ore; an initialisation, a test and
an increment. The initidlisation, i = 0 translates to 0 TSTORE | 4(2)
followed by a HOP instruction to jump to the end o the loop. The
increment and test are emitted after the body d the loopg the in-
crement as TLOAD 14(2) 1 ADD |4 TSTORE_I4(2) and the test as
TLOAD_|4(2) TLOAD I4(1) LT_I4 BRANCH T(194).

Line7 The LCC front-end performs common sub-expresson elimi-

nation to crede the temporary t5 =1 << 1 which is trans
lated as TLOAD 14(2) 1 LSH 14 TSTORE |4(5). The vaue
chars[i] becomes TLOAD [4(5) TLOAD P(0) ADD P PLOAD U2
which is dored in result->text[i] by

TLOAD _R(3) 12 TLOAD |4(5) ADD |4 RSTORE_L2.
Line9 Thestring_hash functionis dedared asvoi d sois cdled with a CALL_V
instruction.

The strict separation between nontheg panters, designated P, and hegp refer-
ences, designated R, shoud be noted. On line 7, loading the charader from the

68

array char s usesaPLOAD_U2 instructionwhereas the store into the stringr esul t
uses the RSTORE_U2 instruction.

4.3.2 Thelnterpreter Generator

The GVMT Interpreter Generator, GVMTIC, translates an interpreter definition
intoa GAMC file.

A GVMT interpreter definition consists of two parts. alist of interpreter-scope
variables and a list of bytecode definitions. Eadh byteade definition consists
of an effed dedaration and a block of C code. The dfed dedaration describes
the values taken from the stadk, operands taken from the instruction stream, and
the values pushed badk to the stack. The block of C code determines what the
byteade acually does.

The dfed dedaration d a bytecode takes the form of a Forth-style stack com-
ment: (inputs -- outputs). Inpus may come from the stak, or from the
byteade instruction stream, in which case the name is prefixed with one or more
‘# charaders. The number of #sindicaes the number of bytesto form the value.
All inpusand ouputs are of theformt ype name.

The following example bytecode definitionis taken from the GVMT Scheme im-
plementation (described in Sedion 4.10). It stores the value aurrently ontop o
the stadk into thelocd variableindexed by the next valuein theinstructionstream.

load_local (int #index — GVMT_Object o) {
o = frame—>values[index];

}

The first line givesits name | oad_| ocal and the dfed dedaration. The dfed
dedaration hes one input i nt #i ndex which is a one byte inpu taken from the
instruction stream, and ore output GYMI_(bj ect o which isaheg oljed. The
secndlineisthe C code which determines what it does; f r ane is an interpreter-
scope variable, andis areferenceto the Scheme adivation frame.

Trandation to GAMC

The GVMT interpreter generator, GVMTIC, parses the dfed dedaration, and del-
egates the trandlation o the body to the C compiler, GvmTC. For the example
abowe, GvMTIC trandatesthe | oad_| ocal instructioninto the following GVMT
abstrad madine definition, thistime with LI NE and Fl LE instructionsleft in:

load_local =33:

FILE("interpreter.vmc") LINE(360) #@ NAME(O,"index") TSTORE_I4(0)
LINE(361) TLOAD 14(0) 2 LSH_l4 TSTORE_14(3) LADDR(frame)

PLOAD R 8 TLOAD_14(3) ADD_l4 RLOAD R NAME(1,"0o") TSTORE_R(1)

69

LINE(360) TLOAD_R(1) ;

The interpreter generator automaticdly assgns an opcode to any byteaode defi-
nition that does nat have one. In this case, line 1, | oad_| ocal =33, shows that
GVMTIC has assgned an opcode of 33to this byteade.

Inpus taken from the instruction strean are implemented with the #@instruc-
tion, which takes the next byte from the instruction stream and pushes it to
the data stadk. The interpreter locd variable, frane, is not accessd as a tem-
porary, but using the LADDR instruction; the expresson frame is trandated to
LADDR(frame) PLOAD R. Theremaining code isthe same &asif it were translated
by the C compil er, except that thereis notrailing RETURN_X.

If required, byteaodes can also be defined in a Forth-like style compasing instruc-
tions out of other instructions and the GAMC instruction set.

43.3 TheGVMT Sewmndary-Interpreter Generator

In addition to the main interpreter it i s often useful to have additional i nterpreters
that operate onthe same instruction set. Examples of these include verifiers, anal-
ysis toals and ogimisers. The GVMT provides a semndary-interpreter genera
tor, GVMTXC, which can take apartia definition o an interpreter, filling in the
missng byteaode definitions with no-ops. The secondary-interpreter generator
guarantees that the new interpreter uses exadly the same bytecde format as the
main interpreter, producing an error message if any definition conflicts with the
primary definition. The secondary-interpreter generator makes the implementa-
tion d bytemde dis-assemblers and verifiers smpler and qucker, by ensuring
that there is no mismatch in the instruction set, and that no byteades have been
omitted.

When a secondary interpreter is defined, the secondary-interpreter generator per-
forms two adions. For byteades that are spedfied it verifies that they take the
same number of values from the instruction stream as the instruction with the
same name in the primary interpreter and that it has the same opcode; the trans-
lation to GAMC is performed in exadly the same way as for the primary inter-
preter. For bytecodes that are unspedfied, a byteaode is generated that consumes
the same number of values from the instruction stream, but performs no adion.
A misdngl oad_| ocal byteade from the example ebove would be trandlated as
| oad_| ocal =33: #@ DROP ; which would consume one byte from the instruc-
tion stream and then discard it.

70

4.3.4 Multiple Interpreters

It isworth panting ou that the GVMT suppats multi ple primary interpretersin
one VM. It is sometimes useful to have more than ore primary interpreter in a
singe VM, for example aVM might require asecond interpreter for handing
regular expressons. In addition, ead primary interpreter can have any number of
se@ndary interpreters.

4.4 Back-End Tools

The badk-end tods take the GAMC produced by the front-end todls as inpu and
generate a @mplete VM. The GAMC is usualy generated by the GVMT front
endtods, but that isnot anecessty. The GVMT bad-end tools generate machine
code via the native C/C++ compiler, currently GCC, and a JIT-compiler library,
currently LLVM.

441 TheGVMT Assmbler

The GVMT asembler, GVMTAS, trandates GVMT abstrad machine ade to na-
tive objed files. It iscdled an ‘assembler’ asit converts low-level code to native
code, but is rather more complex than most assemblers. GVMTAS uses the native
C compil er to generate macdhine wde.

The seamingly redundant translation d GVMT abstrad machine code, which was
creded from C code, badk to C codeis necessary for two reasons. Thefirst reason
isto ensure that garbage ll edionisaues, such as gadk and hegp layout, are dedt
with corredly. The secondisto enable the the interpreter generator and compil er
generator to share a ®mmon low-level bytecode spedficaion.

Trangdation to C involves dad erasure and handling o the interpreter-level in-
struction panter, data stadk and frame pointer. It also involvesinsertion o code to
assst garbage mlledionandto perform nonlocd jumps. Sincethe GVMT treds
interpreters as edal objeds, GVMTAS aso generates the adual i nterpreter exe-
cutable using a similar process At the red-madine level, generated interpreters
are stand-alone functions like any other. The translation processis described in
more detail i n Sedion 45.

442 TheGVMT Compiler Generator

The GVMT compil er generator, GVMTCC, generates a JI'T compiler from an in-
terpreter definition. The input to GVMTCC is an interpreter definitionin GAMC

71

Bytecode

Initial Translation
GVMT-generated Back-end
High-level
Annotated optimisations
Bytecode »{ Bytecode
GVMT-generated
Translation
LLVM Code Generator
Low-level
LLVM IR opimisations _} | | vm IR

Machine code
generation

Machine code

Figure 4.4: The GVMT-built Compil er

form. In other words, the input to GVMTCC isthe output from GVMTIC.

Formally, GvmTcCC takes an interpreter definitiond and produces a compiler ¢y,
that when given alist of byteades b, produces a function fgp. Exeauting fgp is
equivaent to interpreting the list of byteaodes b with the interpreter iy generated
by GVMTAS from the same interpreter definitiond.

gvmtcc(d) — cq Build time

cq(b) — fgp Compiletime

fan(_) =iq(b,_) Exeautiontime

Figure 4.5 shows this graphicaly. In the figure, the generated compiler is both
data and a process It is data as it is the output of GVvMTCCIt is also a process
which compil es byteade.

The simplest way to compil e asequence of byteades, eat of which consists of
alist of abstrad madhine instructions, would be to first concatenate thase astrad
madine instructions, then trandate the resulting (very long) list of abstrad ma-
chine instructions, instruction byinstruction, to native machine cde. Thiswould
result in a compiler that was douldy inefficient, being bah slow and producing
slow machine mde. The problem with this naive gpproac is that the generated
code has to dolots of work that could have been be dore during compil ation, or
eliminated al together at build time.

An obviousway toimprovethisisto use standard compil er techniquesto optimise

72

GAMC » GVMTCC Process
Bytecode GompneD M?:C()féige

Figure 4.5: The GVMT Compil er Generator

either the abstrad madine aode or some eyuivalent, before generating macine
code. GvMTCC generated compilers use LLVM[50] to perform machine gen-
eration. Rather than generate aode to convert individual GAMC instructions to
LLVM form, GvmMTCC uses partia evaluationtechniquesto generate codethat can
generate LLVM intermediate representation dredly, bytecde & a time, withou
passngthroughthe GAMC representation. LLVM can then dofurther analysis at
runtime before generating madine ade.

An important step when translating from stadk-based code to threeaddressform
is dak erasure. GVMTCC doesintra-bytecde stadk erasure & build time and the
GVMTCC generated compil er does inter-byteade stadk erasure & compil etime.

AlthoughcvmTcc iscurrently reliant on LLVM[50] to doitsfinal machine-code
generation, other options such asusinglibJIT or a austom-badk end are possble.

45 Trandating GVMT Abstract Machine Code to
Real Machine Code

In order to crede VMs that perform well, the astrad macine must be mapped
efficiently onto the hardware. Mappingthe GVMT abstrad maciineto ared ma
chine primarily involves converting the astrad macine ade into red madine
code via dther the native C compiler or a JIT-compil er library, currently LLVM.

451 Stack Erasure

Thefirst stagein transformingthe GVMT abstrad machine mdeinto red machine
code is to eiminate & much stad traffic as possble by converting the aode to
three aldressform. For example, the sequence

73

TLOAD_[4(0) TLOAD 14(1) ADD_l4 TSTORE_l4(2)

can be onwerted to the-three aldressform:
t2 = t0 + t1;

Not al stad traffic can be diminated; the stad is used for parameter passng and
the memory in the stadk can be accesed diredly by the VM developer. Therefore
an adual stadk must exist. For example, the sequence

TLOAD_[4(0) MUL_I4 TSTORE_[4(2)

canna be onwerted diredly to three adress form, as there ae insufficient
operands avail able for the MJL_I 4 instruction. An explicit pop from the mem-
ory stack must be inserted. The resulting codeis:

sO
t2

stack_pop();
sO + tO;

Similarly, stack pushes are sometimes required. The sequence
TLOAD_14(0) TLOAD_l4(1) ADD_l4

must push the final value to the stack. The resulting codeis:

sO = t0O + t1,;
stack _push(s0);

The stad is implemented simply with a dedicaed region d memory and a stadk
pointer. There is one stack pointer, SR per thread, and it is used frequently, so
idedly it shoud be kept in aregister.

Tranglating to C Code

With the exception o the JIT compiler output, all GVMT abstrad madcine code
istrandated to machine aode via C. For efficiency reassons some of the generated
code may be tail ored to the spedfic architedure and compiler, but it is generally
portable.

Trandation d most instructionsthat operate onthe stac is precaled by stadk era-
sureto producethree adresscode. Thisthree aldresscode can then be amitted as
aseries of C statements. Almost al arithmetic andlogicd operators map diredly
to the C equivalent, but some cae needs to taken with signed and ursigned values.
For example, the RSH_| 4 instruction performs a signed arithmetic right shift, but
the C standard does not state whether the operator >> is arithmetic or logicd for
signed values. Therefore RSH | 4 canna be diredly trandated as x >> n. For
those achitedures which perform logicd shifts the foll owing expressonis used:
((-(x<0))&(~(-1>>n))) [(x>>n)

74

The flow control instructions, HOP and BRANCH, can be encoded as smple got o
statements. Trandation o other instructions depends onthe memory management
subsystem, discussed in the next sedion, and onthe implementation o the stacks.

As an example consider the definition o thel oad_| ocal bytecode from Sedion
4.3.2.

load_local (int #index — GVMT_Object 0) {
o = frame—>values[index];

}

which trandates into the GVMT abstrad machine aode:

load_local =33:

FILE("interpreter.vmc") LINE(360) #@ NAME(O,"index") TSTORE_I4(0)
LINE(361) TLOAD_l4(0) 2 LSH_l4 TSTORE_l4(3) LADDR(frame)

PLOAD R 8 TLOAD_ 14(3) ADD_I4 RLOAD R NAME(1,"0o") TSTORE R(1)
LINE(360) TLOAD R(1)

Sincel oad_| ocal is abyteaode, rather than a function, it will be wrapped in a
switch statement as part of the interpreter dispatch loop. Each bytemdeisacase
statement, plus the dedaration o any variables required.

| oad_| ocal istranslated to C asfollows (the following code is the adual output
from the ssembler, GVMTAS):

1. case _gvmt_opcode_interpreter_load local:

[+ Deltas 1 0 1 =/ {

2. GVMT_Object gvmt_r137; {

int32_t index; GVMT_Object o; int32_t gvmt_t3; /x Mem temps []
#line 360 "interpreter.vmc"

index = _gvmt_ip[1];

#line 361 "interpreter.vmc"

gvmt_t3 = (index<<2); \

© 00N O~ W

. #line 360 "interpreter.vmc"
10. gvmt_r137 = o; }
11. gvmt_ip += 2; gvmt_sp[—1].0 = gvmt_rl137; gvmt sp —= 1; } break;

Thisisexplained, line by line, as follows:

Linel The case statement for dispatching. The comment /* Deltas 1 0 1 */
describes the number of instruction bytes consumed, the number of stack
values consumed and the number of stadk values produced, respedively.

Line 2 Dedares avariable used astop o stack.

Line 3 Dedares the explicitly named temporary variables.

Line 4 Dedares the line number and file for the debuggng information.

Line5 The trandation o #@ TSTORE | 4(0). The variable gvnt ip isthein-
struction panter.

75

0 = (((GVMT_memoryx*)(((char*)(gvmt_frame .frame))+(8+gvmt_t3)))—>R);

Line6 Asline4.

Line7 Thetranslation of TLOAD 14(0) 2 LSH |4 TSTORE | 4(3)

Line8 The sub-expresson LADDR(frame) PLOAD R translates to
gvnt _frame.frane. The variable gvnt _franme is a C struct holding
the interpreter-scope variables.

Line9 Asline4.

Line 10 Thetrandation o TLOAD R(1). GVMT triesto maintain the top values of
the stadk in registers, rather than in memory. The variable gvnt _r 137 is
used to hdd the top o stack value.

Line11 Adjusts the instruction panter, gvnt _ip += 2, saves gvnt _r137 to
the memory stad, gvnt _sp[-1].0 = gvnt _r 137, and adjusts the stadk
pointer,gvnt _sp -= 1.

452 Memory

GVMT memory is divided into two parts. a garbage-colleded part, or heg, and
a user-managed part. For the user-managed part of the memory, the astrad-
machine model corresponds diredly to the memory model of C and mapsdiredly
to the hardware.

Implementing the garbage mlleded part of memory requires a garbage olledor
to be implemented, and the interfacebetween the rest of the abstrad macdine and
the hego to be defined. The GVMT garbage olledor is discussd in Sedion 4.6.
The interfacebetween the generated code and the heg consists of four parts: al-
locaion, GC safe-paints, barriers and identification o paintersinto the heg. For
bump-pointer al ocaors, discussed in Sedion 23.1, the fast al ocaion path isin-
lined into the code and the slower fall badk implemented with a cdl to the garbage
colledor. Both GVvMTAS and GvmMTCC perform memory-management improve-
ments, such as removing redundant stores during oljed initialisation, discussed
in Sedion 4.6.5, andinlining o write barriers, discussed in Sedion 4.6.2.

GC safe-paints are implemented as a test of a globa variable to seeif garbage
colledionis pending. If it is, then a cdl to the garbage-colledor is made. All
generated code conforms to the same convention for layout of frames in the con-
trol stadk, in order to ensure that the garbage olledor can corredly identify all
pointersinto the hegp.

45.3 TheControl Stack

The oontrol stack consists of values that are not garbage-colleded (integers,
floating-point values and wser-managed panters) and references to garbage-
colleaed values which need to be scanned during garbage olledion. The control
stad is thus implemented as a singly linked list of blocks of references inter-
spersed with nonreferences and whatever bookkeegping values the native ABI re-

76

quires. Thefirst nodein the linked list isthe aurrent frame, andis pointed to by a
thread-locd frame-painter.

This approadh, and haov to implement it in automaticdly-generated C code, is
described in more detail by Henderson [36]. When implemented naively, this
can result in excessve memory traffic. The number of explicit memory accesses
required can bereduced by wsinglivenessanalysis; if areferenceisnaot live acoss
a GC safe paint, it can be ignaed. Jung et a. [48] describe the use of this
technique in a Java-to-C compil er.

An aternative goproach would be to record the off set information for ead refer-
encein the control-stadk framein atable. Althoughthiswould probably be faster,
it isimpaossblein patable C or with LLVM. The st of maintaining the linked
list does not seem to be aproblem.

454 Handling the Stack Pointer and Frame Pointer

Sincethe GVMT frame-painter can be synthesised chegply anywhere that the C
struct implementing the topmost frame isin scope, the only time that the GVMT
frame-pointer needs to be made explicit is when cdling a procedure, so that the
newly credaed frame can be linked into the control stak. The frame pointer, FR,
can be synthesised by the C code:

FP = &gvmt_frame;

where gvmt_frameisthe C struct for the control-stad frame. Thistransatesinto
asingle madineinstruction:

FP = %fp_register + fixed_offset

The stadk pointer, SR is required throughou the program and may be modified
aaosscdls. However, its exad management can be left to the C compiler or
LLVM, provided that its value is made explicit at both cdl and return sites. This
suggests the foll owing strategy for cdls and returns:

At cdl sites: passFPand SPin registers. Passthe top-of-stadk value(s) in registers
if the achitedure dlows it. The x86 architedure only alows two parameters to
be passed in registers, so the GVMT stadk must be pushed to memory at cal sites.

At return sites: If the macdhine ABI suppats two return registers then return the
functionresult in ore and SPin the other. If the maciine ABI suppats only one
return register, like the x86, then return the SPin aregister and the function result
onthe stac.

77

455 The State Stack and Exeaution Control

In order to save and resume the exeaution state of the astrad madcineit is nec
essry to save nat only the data stack pointer SR, but also the state of the control
stadk and the aurrent point of exeaution. The aurrent point of exeaution includes
both the interpreter’sinstruction panter and the hardware instruction panter.

This requires saving the state of the red madine, using something akin to C's
set j unp-l ongj unp mecdhanism. For the x86 implementation, a austom function
for saving state (set j unp) and restoring state (I ongj unp) were written in assem-
bler. Althoughthis is nat portable, it is fewer than 20 lines of assembler and
shoud be eay to adapt to other architedures.

4.6 Memory Management inthe GVMT

The GVMT heg organisation is designed to suppat garbage wlledion withou
dictating the garbage mlledion algorithm. Whilst it isimpaossble to predict all
requirements, generalisations can be made. As discussed in Sedion 23.7, the
foll owing requirements are postulated as likely for most, if not al, dynamic lan-

guages:

e Allocation is frequent, with many oljeds dying young(the we& genera-
tional hypahesis halds).

e The sizeof hegp may vary widely at runtime & the same VM may be used
for running bah small scripts and sizeale goplications.

e In order to alow the VM to be enbedded or to use pre-existing libraries,
objeds may nedal to be ‘pinned’, that is, it may be required of the garbage
colledor that it does not move cetain oljeds.

It shoud aso be noted that the GVMT heg organisation exists to help creae
GVMT memory managers. The GVMT abstrad macdine model is completely
independent of the hegp organisation. An entirely new hegp organisation could be
used withou aff eding the other componrents of the todkit, with the exception o
the linker.

4.6.1 TheThreelLevelsof Memory Hierarchy

The GVMT hea is organised in a hierarchicd fashion. This organisation all ows
easy resizing o the different regions of the heg, and al ows chunks of memory
to betransferred between different logicd areas without physicdly moving them.

78

/[Header Block]\
[[Card J[card J(Card][Card |[Card J(Card | Card | Card]]
[[Card J[card J(Card][Card |[Card J(Card | Card | Card }]
[[Card J[card J(Card][Card |[Card J(Card | Card | Card]]
[[Card |[card ([Card][Card |[Card |[Card | Card | Card]]
[[Card J[card J(Card][Card |(Card J(Card | Card | Card]]
[[Card |[card ([Card][Card |[Card | Card | Card | Card]]
[[Card J[card J(Card][Card |(Card J(Card | Card | Card]]

Figure 4.6: A Memory Zone Consisting o Eight Blocks

There ae three @mporents in the GVMT memory hierarchy: zones, blocks and
cards. Zones are compased of blocks, which are compaosed of cards.

The GVMT heg organisation extends the BIBOP and page-based organisations
discussd in Sedion 23.6. The extra level (Zone) abowe the page (or Block) is
added so that information abou a block can be stored outside of the block without
requiring aglobal table. It also all ows better separation o garbage wlledor data
structures from the hegp oljeds.

Zones are the units of memory used by GVMT to interad with the operating sys-
tem. Blocks are the chunks of memory that are passed between the various compo-
nents of the garbage mlledor. Cards are used for finer-grained operations, such
as finding inter-generational pointers and for pinning. Figure 4.6 shows a zone
of eight blocks, ead containing eight cards. The first block is used as a healer,
rather than containing cards. A red zone would contain more than eight blocks,
ead containing more than eight cards.

All comporents are digned to afixed pover of two. Additionally the sizeof cards
and Hdocks match their alignment; the size of a zone must be amultiple of its
alignment. Althoughthe sizes of cards, blocks and zones can be varied acoss
implementationsthey must, for performancereasons, be determined at build time.

Addresses and Indices of Memory Chunks

Thisinsistenceon powver of two aignment all ows a number of important garbage
colledionfeauresto beimplemented efficiently onafragmented hegp. The zone,
block or card containing any word in memory can be foundextremely easily using
a single bitwise operation; no memory accessis required. Similarly the index of
any card within ablock or of any block within a zone can be dso be cdculated in

79

a oouge of instructions, with nomemory access

Consider a chunk d memory with a size and alignment of 2" bytes, and an arbi-
trary addressa of width W bits. The addressof the start of the chunkcontaininga
isthemost significant W — n bits of a. The off set of a withinthat chunkistheleast
significant n bits. This can be realily extended to finding the index of the chunk
of size 2™ containing a within the enclosing chunk d size 2" provided m < n.
The index of the smaller chunkis the least significant n bits right shifted by m,
evauatedinCas(a & K) >> mwhereK = (1<<n)- 1.

Zones

All memory is aayuired from the operating system as zones. Zones are the only
memory entity whose size may differ from its alignment. Zones whose sizeis
larger than their alignment are required for handling very large objeds.

The first one or two blocks of a zone ae used as header blocks. These ae not
usable for memory all ocaion as they provide spacefor the cad-marking table,
pinning kitmap and, if required, for objed-marking kitmaps.

Blocks

Blocks are the most important level in the hierarchy. They are the chunks of
memory handed to thread-locd all ocaors by the global all ocaor, and can serve
asthe larger region for a mark-region coll edor.

Blocks are the units of memory that can be transferred between logicd spaces®;
eah block belongs to exadly one space All blocks, except header blocks, are
compased whally of cards, withou any additional space Sincethey can be vir-
tualy ‘moved’ withou being physicdly moved, they are dso useful for suppat-
ing pnning in a moving colledor. Since pinned oljeds canna be moved, when
‘copying apinned oljed, the block containingthe objed is ‘virtually copied’ by
transferring ownership of the block to the target space The spaceto which ablock
belongsis unrelated to the zone in which it is physicaly locaed.

Cards

Card are the lowest level of the hierarchy. Cards are used for inter-generational
pointer recording[71] and for mark-region colledorg[17]. Cards are fairly unim-
portant compared with blocks and zones; only their sizeis of interest as this de-

4The term ‘space is generally used in garbage-coll edionliterature to refer to an areawhich is
logicdly rather than physicdly distinct.

80

Zone Block Card Byte

Figure 4.7: Addressword (most significant bit to the left)

termines the amourt of spacerequired in the header blocks for internal data struc-
tures.

Sizesand Alignments

All alignments, whether for cards, blocks or zones, are powers of two. Thismeans
that the layout of a zone can be described by threeintegers: LogyCardSze (LCS),
LogBlockSze (LBS) and LogpZoneAlignment (LZS). Zones larger than their
alignment are only used for very large objeds and are not divided into blocks,
but do contain aheader. The size of most zonesis equal to the zone dignment.

This means that for the GVMT heg layout, the address of the Zone contain-
ing addressa isa & (-(1<<LZS)) and the index of a Line within a Block is
(a & ((1<<LBS)-1)) >> LCS.Thisisillustrated in Figure 4.7.

For example, suppase the chunk sizes were chosen so that LCS = 8, LBS = 16
andLZS =24 for a32 bt address pace For an addressOxA1B2C3D4 the Zone
addresswould be 0OXA1000000the Block addresswould be 0xA1B20000and the
Card addresswould be 0xA1B2C300. The index of the Block within the Zone
would be 0xB2, the index of the Card within the Block would be 0xC3, and the
index of the Card within the Zone would be 0xB2C3.

Header Blocks

The number of header blocks depends on the size of the data structures required
by the garbage-colledion algorithm used, so the following is an example only.
The garbage mlledor used for the HotPy VM is a generational colledor, with
an Immix[17] mature-space olledor and suppat for pinning. As a generationa
colledor, a cad-marking table of one byte per cad is required. As a marking
colledor, the Immix coll edor requires abitmap of one bit per word, aswell asone
byte per card and ore word per block for internal book-kegoing. Finally, pinning
requires one bit per card. The cad-marking table shoud start at the beginning
of the zone; see Sedion 4.6.2 for the reasons. The dignment of the other data
structures is less performance aiticad and they are laid ou to minimise space

usage.

81

Choosing the Sizes

As long as there is aifficient room for the necessary data-structures, the cad,
block and zone sizes shoud be chosen to maximise performance

Cards can serve both as lines for a mark-region colledor and as the cads in a
card-marking colledor. Inthe cae of card-marking, a128 byte cad sizeseemsto
give the best trade-off between acaracy and spaceoverhead. Empiricd evidence
suggests that 128 bytes is also the best size for lines in the Immix mark-region
colledor. The block size shoud be amultiple of the virtual memory page size,
but this is easy to achieve & virtual-memory pages are usualy smaller than the
ided block size Since the cad-marking table is heavily used in a generational
system, it may help performanceif its szeis a multiple of the virtual-memory
page size The size of the cad-marking table is the number of cards per zone,
(Zone Size/Card Size). For example, pages are 4096 byesin the x86 architedure,
S0 (ZoneSize/CardSze) > 4096=- LZS— LCS> 12

The Current GVMT Zone | mplementation

Currently in the GVMT, cards are 128 (27) bytes and Hocks are 32k (21°) bytes,
Zore dignment is512k(21°) bytes. Zonesizes can be any integral multi ple of the
alignment. These values can be realily changed by rebuil dingthe GVMT. For the
generational colledor with pinning abou 18 kbytes per zone (1.8%) are wasted
due to the dignment requirements.

ObjedsLarger than a Zone

Objeds larger than the zone dignment need spedal handing. In order to accom-
modate one of these objeds, a zone whose size is larger than its aignment is
required. This super-sized zone will still have a cad-marking table, but no pn-
ning map is required. Additionally, since objeds gpan many blocks, alocaionis
not dore via blocks, so no per-block datais required. Therefore, the objed can
start immediately after the cad-marking table.

The fad that an oljed can be larger than the zone dignment has implicationsfor
cad-marking. If the zone mntainingthe cad-markingtable were cdculated from
the addressbeing written to, the byte to be marked could be in the midde of an
objed. Therefore, the zone containingthe cad-mark must be the zone containing
the start of the objed being written into, regardlessof whether the cad-index is
determined by the objed or the slot written to. There ae two coroll aries of this:
the cad-marking tableis nolarger for a super-sized zone than for anormal zone,
regardlessof the objed size, andfor an ojed spanning N zones, ead cad-mark
can refer to N different cards.

82

46.2 Write-Barriers

As discussd abowve, the GVMT memory layout includes card-marking tables.
Card marking is fast as the zone address can be cdculated with a single and
instruction and the cad index computed with two operations, and and shift.
Thus the cdculation d the mark addressis only four instructions and, unlike a
card-marking scheme with a single global table, no register or global variable is
required to hdd the table address

Cards can either be marked acardingto the objed written to, or the slot written to.
Sincethe size of an oljed may exceal the dignment of a zone, the cad-marking
table is dways determined by the objeda address The cad index may, however,
be determined by the objed or the field written to. Whether cards are marked
by oljed or by field depends on the garbage wlledor in use; seeAlgorithms 4.1
and 4.2.

In the following algorithms the & operator is the bitwise-and operator, and >u> is
the unsigned right-shift operator. The cad-marking table is aligned with the start
of the zone.

Algorithm 4.1 Card-marking by ohed address
zone — objed& (—2-25)

card_index« (objed& (2-25— 1)) > LCS
zone[card_indeX =1

Marking by ohed can beimplemented in fiveinstructionsfor the x86 architedure
(objed addressin register %edx):

movl %edx, %ax

andl $1048575, %dx
andl $-1048576, %ax
shrl $7, %dx

movb $1, (%ax, %edx)

Algorithm 4.2 Card-marking byslot address
zone — objed& (—2-45)
slot = objed + of fset
card_index— (0t& (225 1)) > LCS
zone[card_index =1

Marking byfield can be implemented in six instructions for the x86 architedure
(objed addressin register %edx, off set in register %&cx):

movl %dx, %ax

83

addl %cx, %edx

andl $1048575, %sdx
andl $-1048576, %ax
shrl $7, %dx

movb $1, (%ax, %edx)

Algorithm 4.3 Conventional Card-marking

card_index— objed > LCS
card_mark_table[card_indeX =1

By way of comparisonthe write barrier used in the Self VM[22] for card-marking
is listed in Algorithm 4.3 Althoughit might sean that the overhead for using
a fragmented heq is excessve, taking five or size instructions rather than the
standard two or threg the standard method reeds to find the addressof the cad-
mark table. Thiseither requires a dedicaed register (which isnot pradicd for the
x86) or it must be read from memory:

movl card _mark_table, %ax
shrl $7, %dx
nmovb $1, (%ax, %edx)

The memory-rea instruction is likely to cost more than three ALU instructions,
meaning that the GVMT write-barrier may be faster than the standard sequence
Since the overhead of card-marking is usualy in the order of 1% of optimised
compiled code[16], it does naot redly matter whether the GVMT write-barrier isa
bit faster, or abit slower.

4.6.3 Allocation

The motivation for the hierarchicad memory organisationisto allow copying col-
ledion to co-exist with ohjed-pinning, and the main reason that copying collec
tionisdesirableisthat it al owsfast objed alocaion.

Bump-Pointer Allocation

The fastest way to alocae new objeds is Imply to increment (or deaement)
a pointer. Obviously some sort of ched is required to ensure that the pointer
does not exceal the limits of the avail able space Algorithm 4.4 shows the naive
algorithm; freeisthe pointer to the beginning o freememory.

In order to suppat concurrent alocaion, the freepointer and the limit-pointer
must be thread-locd. This means either that they are relatively expensiveto real
and write or that they require dedicated registers.

84

Algorithm 4.4 Naive Bump-pointer All ocdion
if size+ free< limit_pointer then

result = free

free= free+size
else

result = call _all ocator (size)
end if

The powers-of-two nature of the GVMT hegp architedure provides away of dis-
pensing with the limit-pointer. Memory is handed to the per-thread all ocaors in
blocks of size2-BS, Thismeansthat limit_painter = roundug freg 2-8S).

Since roundugx, 2Y) = x+ ((—X)&(2Y — 1)), the limit test can be rewritten as
free+ size < free+ ((—free&(2-BS—1)). Thisin turn simplifies to size <
((—freg&(2-BS—1)). Theimproved all ocaion codeis shown in Algarithm 4.5.

Algorithm 4.5 Improved Bump-pointer All océion

if ize < — free& (225 1) then

result = free

free= free+size
ese

result = call _all ocator (size)
end if

46.4 TheGVMT Generational Pinning Colledor

Asdiscussedin Sedion 23.7, itisuseful for adynamic language garbage oolledor
to be generational andto suppat pinning. Althoughthe GVMT suppatsanumber
of colledors, the most advanced is the default coll edor, the Generationa-Pinning
Colledor.

The GVMT generationa-pinning colledor is designed to provide fast all ocaion
and fast colledion combined with the adility to pin ojeds. The mlledor is a
generational colledor, with two generations. a apying nusery and an Immix
mature space It also contains a pinned space but thisis not a separate generation
and is colleded at the same time & the nursery. The Immix agorithm suppats
pinning and reeds no modificaion for pinning mature objeds.

Pinning o nursery objeds is dore & follows. When an oljed is pinned, the
objed and its enclosing card(s) are marked as pinned. If the enclosing dock
is not already marked as pinned it is transferred from the nursery to the pinned
space During the next minor colledion, blocks in the pinned space ae scanned
and marked, rather than copied. All blocksin the pinned space ae then transferred
to the mature space thus‘ virtually copying' the pinned ojed to the mature space

85

After subsequent major colledions, any block with no pnned cards remaining is
unmarked as pinned and can be used namally.

Overdll, the hierarchicd block approadc givesincreased flexibility in the imple-
mentation o garbage-coll edion algorithms, at littl e or no cost.

4.6.5 Optimising Memory Allocation in theGVMT

Althoughthereisawedth of pulicaionson garbage mlledion, the medanics of
alocaionare barely mentioned. Memory all ocaionfor atoadlkit ismore complex
than for asingle VM and merits some discusson.

When a pieceof memory is alocaed by the dlocator, it must be in a safe state
for scanning o garbage lledion. Thismeansthat it must contain only valid ref-
erences. Therefore the dlocator must ensure that the dlocated memory contains
only valid data before it i s returned to the user program.

For staticdly-typed languages that ensure that al fields of an oljed are initiali sed,
there is no redl for the dlocaor to zero the memory, but for a toakit, which
knows very little @ou the VM, the memory must be made safe. This leals to
a number of inefficiencies. Firstly most of the fields of a newly alocated objed
will be initiaised anyway, resulting in redundant code, but worse still, all those
initi ali sations are writes into an ojed, so they will i ncur a write-barrier penalty
despite the fad that nowrite barriers are required for newly all ocaed objeds.

The GVMT performs ome analysis to remove most of this redundant work. Al-
locationis glit i nto two: the dlocation, and zeroingthe memory. The GC_MALLOC
instructionis 9lit i nto code to dothe dlocaion, anda__ ZERO MEMORY instruc-
tion. Subsequent analysis conservatively determines which instructions overwrite
which fields in the objed. The _ ZERO MEMORY instructionis then removed and
replaced with aminimal sequences of writes, to zero any field na explicitly ini-
tialised. All initialising writes are replaceal with equivalents that do nd contain
awrite barrier. The aurrent implementationis quite conservative, so a spedal in-
trinsic function, gvnt _ful ly_initialised(),isprovidedfortheVM developer
to inform the GVMT that an oljed has been fully initiali sed.

4.7 Locks

Althoughthe GVMT is designed to suppat concurrency and is targeted at dy-
namic languages, many dyramic languages were not designed with concurrency
in mind. The two most popuar dynamic languages, Python and Ruby, have
evolved in a single-threaded environment, and have feaures that are avkward
to suppat in a multi-threaded environment. For example, Pythonlist operations,

86

Unlocked | 0 ‘ 01 |

Locked | Lock-count Thread ID ‘ 10 |
Busy | 222222222222277 11 |
Contended | Address of heavyweight lock ‘ 00 |

Figure 4.8: Lock representations

such as appending to alist, are implicitly atomic (uninterruptable). Python pgo-
grammers are likely to be surprised by noratomic behaviour from such opera-
tions, so lockingisrequired for many common operations.

In order to suppat this high level of synchronisationthe GVMT provides a fast,
lightweight mutex® for the common case where locking operations are unlikely
to be contended. For locks that are likely to be contended, the operating system
mutex may off er better performance

The GVMT lock is based on mutexes designed for the VM, which also requires
fast, lightweight mutexes. The GVMT lock is dmilar in designto ‘thin-locks|[7]
and ‘meta-locks| 2], bath developed for the VM. Unlike the VM case, the lock
isnot embedded into the objed header (in the GVMT there is no oljed header),
nor isthere arequirement, peauli ar to Java, that all objeds can be used as mutexes.
Consequently, aGVMT lock takes a full word of memory. A word is assumed to
be 32 hits for the remainder of this discusgon, athough 64 It macdines would
use 64 kit | ocks.

The word is broken into two parts: the most significant 30 hits, and the least sig-
nificant two hits. Theleast significant bits represent four states: unlocked, locked,
contended and bwsy. SeeFigure 4.8. In the unlocked state the least significant bits
are 01 and the other 30 hits are dl 0. In the locked state the least significant bits
are 10 and the other bits hold the thread id and the lock court. In the busy state
the least significant bits are 11 and the other 30 bts are in transition. Finally, in
the contended state the full word is a pointer to a hearyweight lock, so the least
significant bitsare 00.

To lock an unocked GVMT lock, a single compare-and-swap operation is re-
quired, swapping the unlocked value with the thread-spedfic locked value. Un-
locking is equally fast, simply doing the swap in reverse. There ae four other
cases for locking: reaursive locking (relocking alock already locked by the same
thread) which simply incrementsthe lock-count atomicdly; contended locking on

Smutual exclusion lock

87

Unlocked

——— lock unlock
(count >0)

Making HW lock
(busy)

no waiting threads

Unlocking HW lock
(busy)

Add waiting thread
(busy)

contended

Figure 4.9: Lock states

apreviously uncontended lock; contended locking onan already contended lock;
and locking a busy lock. Locking a busy lock invalves ginning urtil the lock is
nolonger busy and then locking.

Acquiringa contended lock isamulti-stage process A contended lock isapointer
to a hearyweight lock, compaosed of an operating-system mutex and condtion
variable. Locking the hearyweight lock is dore by waiting onthe condtion vari-
able before a@tempting to lock the operating-system mutex. In order to be aleto
use the hearyweight lock, the GVMT lock must transition from the locked state
to the contended state. This is dore via the busy state. When a thread wishes
to lock a GVMT lock which is locked, but not yet contended, it must atomicdly
change the state to busy, then alocate the heavryweight lock before aomicdly
transitioning to the contended state.

In order to prevent hearyweight locks from being freed whil e other threals are
waiting onthem, modificaions to the court of waiti ng threads can be made only
with the lock state & busy. SeeFigure 4.9 for the state transition dagram; oval
nodes are stabl e states, redanguar nodes are transition (busy) states.

4.8 Concurrency and Garbage Colledion

Sincethe GVMT suppats concurrency and df ers garbage wlledion, the garbage
colledor must work corredly ina concurrent environment. The memory manage-
ment cycle can be viewed as having threeparts: all ocaion, synchronisation and
colledion.

88

4.8.1 Concurrent Allocation

The aurrent GVMT garbage wlledor is a generational colledor (see Sec
tion 23.4). Asauming that the vast mgjority of alocations are of small objeds,
only alocationfrom the nursery need be concurrent. Larger objeds are dl ocated
by asinge dlocaor proteded with aglobal |ock.

Eadh thread of exeaution hes its own allocaor. Eacd alocaor can then allocae
objeds without any synchronisation being required. When an all ocator runs out
of memory, it acquires a new block from the global pod.

4.8.2 Synchronisation

Since the GVMT garbage mlledor is a stop-the-world colledor, all mutator
threads must be stopped before the garbage mll edioncan start. When an all ocaor
fails to aaquire anew block from the global pod, it signals that garbage wllec
tionisto occur. It doesthisby settingaglobal flag, gvnt _col | ect or _wai ti ng,
reducing the running-thread court by ore, and waiting for completion o garbage
colledion. When the running-thread court reates zero, the clledor may start.
All running-thread count modificaions are performed atomicdly. Whenever a
thread encounters a GC safe point (a GC_SAFE instruction) it tests to seeif the
gvnt _col l ector_waiting flag has been set, and if it has, it deaements the
running-threadl court and waits for the garbage alledor to complete.

There is a problem with this mple running-thread court scheme, as it prevents
garbage mlledion from happening if any thread is performing some slow opera-
tion, such as waiting for an internet padet. Consequently, it must be possble to
perform garbage mlledion when threads are exeauting netive cde. When native
code is entered, the running-thread count must be deaemented. It is then incre-
mented when the thread returns from the foreign cdl. However, when garbage
colledion is happening, threads must be halted shoud they return from native
code.

To prevent athreal restarting duing garbage oll edion, the foll owing convention
is observed: in order to modify the running-thread court from zero, a dedicaed
mutex must be aquired. The garbage oll edor haldsthis mutex when it iscolled-
ing, preventing any thread from restarting. Finally, to prevent expensive locking
and udocking in single-threaded code, a ‘dummy’ threa is creded to increase
the running-thread count by ore. The first thread to request garbage wlledion
‘stops’ this thread, which is restarted by the garbage olledor immediately after
completion o garbage wlledion.

89

4.8.3 Concurrency within the Colledor

Currently the wolledor is sngle-threaded. Concurrency could be suppated in two
ways, either by running some of the mlledion concurrently with the program,
or by using several concurrent threads to do the mlledion. There ae numer-
ous approaches to concurrent garbage alledion, many of them deriving from
the Mostly-Concurrent algorithm of Printezs and Detlef5[61]. Marlow et a.[53]
describe the tedhniques used to implement a parall el garbage mlledor in the Glas-
gow Haskell Compiler.

4.9 Comparison of PyPy and GVMT

PyPy andthe GVMT have a ®mmon pupose, simplifyingthe aedion o aVM
for dynamic languages. Both PyPy and the GVMT provide garbage olledion
and can automaticdly generate aJIT compiler, but they differ in choice of inpu
languages, level of automation, complexity, and design phlosophy

Thedesign d PyPy isbased onthe premisethat implementingaVM inavery high
level language, namely Python will simplify the implementation, with attendant
benefits in flexibility and maintainability. Thisis dore by pushing as much of the
complexity as passhleinto thetodls, in order to hide it from the developer. PyPy
aims to minimise the cost of implementing the VM, at the st of increasing the
complexity of thetod set. The design o the GVMT considers the dfort required
to implement both the todlkit andthe VM. Thetotal cost, bath of the VM and the
toakit, shoud be minimised. The GVMT design assumes that the toadlkit will be
used for relatively few VMs, whereas the PyPy design assumes that the tools will
be used for many different VM implementations.

The inpu language to PyPy is RPython a dialed of Python GVMT takes C as
itsinpu language, enhanced with a number of built-in functions to accessimpor-
tant abstrad-madhine fedures auch as the stack and garbage wlledor. Although
RPythonis undoultedly more expressve than C, even C enhanced with garbage
colledion and exception handling, it may not be that much more expressvein a
VM implementation. A VM isaninherently low-level system.

The choice of input language is more than a cosmetic difference & it affeds the
complexity of thetod set to alargedegree Conwverting C to abstrad macdine-code
is a straightforward task involving a modified patable C compiler. Conwerting
from RPythonto alow-level form involvesa complex mixture of partial evaluation
and whole-program type inference 66.

PyPy and GVMT also differ in their approach to J T-compiler generation. Both
tod setsare capable of generatinga JI'T compil er from an interpreter spedfication.
PyPy produces atracebased compil er that performs several optimisationstail ored
to dynamic languages, such as gedalisation and escgpe andysis. The GVMT

90

compil er performs conventional compil er optimisationsonly. The PyPy generated
compiler is undoukedly the more powerful of the two in the context of dynamic
languages. However, by optimising at the bytemde level, and using language-
spedfic optimisationsthat are unavail able to an automaticdly-generated compil er,
a more powerful optimisation system can be built with the GVMT. Chapter 5
describes how this can be dore and Chapter 6 shows that the performance of the
two approadiesis broadly comparable.

The GVMT has two advantages over PyPy. It suppats multi ple threads of exea-
tionand hes a better method d suppating integration with exist C libraries.

Suppat for multiple threads of exeaution was designed into the GVMT. It pro-
vides lightweight locks, which can be enbedded in hegp oljeds. Its memory al-
locaor is multi-threaded, and althoughthe mlledor is sngle-threaded, it i sthread
safe. AlthoughPyPy hasaglobal i nterpreter lock, thisisnot an inherent limitation
in the design o PyPy, but of its current implementation.

The GVMT suppats integration with existing C libraries in two ways. The first
isamost incidental; thanks to the comparatively low level of the GVMT abstrad
madhine, it mapsto the C exeautionmodel quite deanly. The secondis deli berate;
the garbage mlledor suppats pinning. This allows heg al ocaed oljeds to be
passed safely to C library code, which can exeaute concurrently with the garbage
colledor.

410 TheGVMT Scheme Example I mplementation

The GVMT distribution includes an example virtual machine, GVMT-Scheme.
GVMT-Scheme was designed and implemented with the following gcls:

e Provide a dea implementationthat ill ustrates how to usethe GVMT.

e Beimplementablein about two weeks?

e Implement enough ¢ Scheme to provide ameaningful performance mm-
parison with other Scheme implementations.

GVMT-Scheme does nat provide the full Scheme number tower, just integers and
floating-point numbers. However, it does have full runtime type cheding, which
isone of the two main overheads that a Scheme implementation must hand e; the
other being garbage wlledion. Since GVM T-schemeis not afull i mplementation
it is unfair to compare its code sizeto that of other Schemes, GVMT-Scheme is
under 40001lines of code. GVMT-Scheme mntains a predse garbage olledor
anda JIT compiler, both provided by the GVMT.

5The implementation actually took just under threeweeks.

91

4.10.1 Implementation Details

All Schemes exeaute what is cdl ed aread-eval-print loop. In GVMT-Scheme, the
‘read’ part isimplemented by parsing the source @de to form an Abstrad Syntax
Treeg trandatingthe AST to byteade, and performing simpletail -reaursion elimi-
nation onthe byteade. The‘eva’ part of the read-eval-print loopisimplemented
by exeauting the byteades. The first time asequence of byteades is evaluated,
its bytecodes are interpreted. The secondtime asequence of bytecdes is evalu-
ated, the byteaodes are optimised and JIT compiled. Subsequent evaluations are
performed by exeauting the generated machine code.

Integers are tagged, but al other data types are boxed. Frames are dlocaed on
the hegp, in order to suppat closures.

Optimisation in GVMT-Scheme is performed in five passs, four bytecde-to-
byteade optimisation passes generated by the GVMT secondary interpreter gen-
erator, GVMTXC, followed by JT compiler generated by GVMT compil er gener-
ator. The byteade-to-byteade optimisation passes are:

Determineif it is possbleto remove frames for this closure

Remove framesif possble.

Jump threading; remove jumps to jumps and jumpsto returns.

Load-store dimination; remove deal stores, convert store-load pairs to
copy-store pairs.

The optimisers are implemented in lessthan 500lines of code.

4.11 Conclusions

The GVMT s designed around a stadk-based abstrad macdhine that provides
garbage mlledion. As described in Chapter 3, the use of an abstrad macine d-
lows the separation o the front-end todls from the badk-end todls. The front-ends
todsof the GVMT, the C compiler (GVMTC), theinterpreter generator (GVMTIC),
andthe sendary interpreter generator (GVMTXC), convert source mdeto GVMT
abstrad machine ade, in a way that is largely independent of the target archi-
tedure. The badk-end todls, the sssmbler (GVMTAS), the compiler generator
(cvmTCC) and the GVMT linker, convert the ébstrad maciine ade into exe-
cutable code. The badk-endtod swere designed andimplemented separately from
the front-end todls.

The implementation o the astrad madine, that is the mapping o abstrad ma-
chine to red madine, has been performed reasonably efficiently for the x86 ar-
chitedure. It has implemented withou using any unwsual feaures of the x86

92

architedures. A new implemention, for a diff erent architedure, shoud be aleto
reuse much of the design and some of the code of the x86 implementation.

As described in Sedion 23.7, dynamic languages require rapid alocaion o
memory, for short-lived oljeds, and the &bility to pin olgeds in memory, for
interfadng with library code. The GVMT memory management system isable to
med both these requirements using anovel hegp layout.

4111 Future Work

Toalkits are, aimost by definition, never complete. A wide range of tods and
fedures could be alded to the GVMT.

Onefeaure that would be useful isanew compil er badk-end. The aurrent LLVM-
based badk end hes a large memory footprint and its compil ation spedl is rather
slow for ajust-in-time compil er. Althougha new compil er badk endisunlikely to
produce mde that runs as fast as that produced by LLVM, it could be expeded to
producethat code more quickly and use lessmemory.

93

94

Chapter 5

HotPy, A New VM for Python

This Chapter introduces and dscussesthe HotPy VM for Python First, the model
of exeaution o the VM isoutlined. The design o the VM, particularly its opti-
misation control is discussed. The optimisation stages are then covered, noting
that the optimisers all work as byteade-to-byteade transations as advocaed in
Chapter 3. An extended example of operation is then given. Finaly, HotPy is
compared to similar work.

5.1 Introduction

The HotPy virtual macdhineisa VM for Python, built using the GVMT. ‘HotPy’
isareaursive aconym for HotPy Optimising Tradng Python HotPy implements
the 3.x series of the language, rather than the more widely used 2.x series. The
complete source mde and some documentationis available from htt p: // code.

googl e. con p/ hot py/ .

HotPy islargely a‘proof of concept’ for a high-performance, dynamic-language
VM which is built using atodkit. All the feaures that make Pythoninteresting,
and dfficult to implement efficiently, are included: iterators, generators, closures
and the ability to manipulate dmost any oljed or classat runtime. Althoughthe
core VM and oljeds are implemented, library suppat is far from complete.

The design d HotPy is driven by the ideg discussd in Chapter 3, that bytecode
is a goodintermediate representation for optimisation. HotPy is thus designed
as ahigh-performanceinterpreter foremost. HotPy optimises frequently exeauted
parts of the code, asdomost high-performanceVMs, but continuesto interpret the
optimised byteaodes until they become sufficiently ‘hat’ to be worth compili ngto
madine ade. Compilationis performed by a GVMT-built J'T compil er.

The HotPy VM can thus be dasdfied as a tradng-spedalising interpreter, with
aJIT compiler. This means that al optimisations edfic to Pythonare handed

95

within theinterpreter, leavingthe GVMT-built compil er to dolow-level optimisa-
tions and machine-code generation.

52 TheHotPy VM M odel

The HotPy VM performs many optimisations in order to achieve good perfor-
mance So that the optimisations it performs can be understood and analysed,
there must be ameans to describe the state of the VM.

52.1 TheHigh Level Model

The HotPy VM consists of asingle, global garbage-colleaed heg of objeds, one
or more GVMT-level threads of exeaution and ore or more HotPy threads. Each
GVMT-level thread exeautes one HotPy thread at atime. Inthe HotPy VM model,
eat GVMT-level thread consists of asingle referenceto a HotPy t hr ead objed
and the GVMT-provided data-stadk.

The semantics of HotPy can be defined as if were just a byteaode interpreter,
withou compil ation. The bytecode-instruction pdnter is managed by the GVMT-
generated comporents, but it is visible to the HotPy VM. Allocaion d objeds
and garbage-colledionis managed by the GVMT.

5.2.2 Exeaution
Threads

Eadc HotPy threal is described by a singlet hr ead objed. The aurrent state of
exeautionisdescribed by astad of f r ame objeds, implemented asasingly linked
list.

Before describing an exeauting thread, it is easier to describe asuspended thread.
Each frane hasaret urn_i p which pants to the next bytecde to be exeauted
when that frame is the aurrent frame. For ead t ry statement that has been ex-
eauted and is dill i n scope, there exists one excepti on_handl er objed. These
exception_handl er obeds are atached to the relevant frame to form a chain.
SeeFigure 5.1

When athrea is exeauting, ther et urn_i p field of the aurrent frame isignared;
instead the GVMT hand es the instruction panter, current _i p. A thread isre-
sumed by setting the current _ip tothereturn_i p of the aurrent frame, then
exeautingas normal. A threal is suspended by settingther et urn_i p of the aur-
rent frametothecurrent _i p. Threads canna be suspended in mid-bytede.

96

HotPy Frame
(Start frame)
A

HotPy Frame Exception Exception
Handler Handler
A

HotPy Frame Exception
Handler

HotPy Frame

A

HotPy Frame Thread object
(Current Frame)|

Figure5.1: A HotPy Threal

Starting a Thread

Exeaution d thread is darted by cdling the py_cal | function. This sts up the
current thread, pushinganew f r ane onto the frame stadk, settingcurrent i p to
thefirst bytecode in the cdled function and starting exeaution.

Bytemdes

Exeaution o a HotPy thread occurs by the successve exeaution o individual
bytemdes. Each byteade transforms the state of the VM. A complete description
of al byteamdesin included in Appendix E.

Calling Functions

Thef _cal | instruction expeds threevalues to be onthe data stad: the objed to
be cdled, atuple of paositional parameters and a dictionary of named parameters,
with thedictionary ontop o stadk. Thef cal | instruction has varying semantics
depending onthe objed being cdled.

When the cdl able objed isaPythonfunction, then exeaution proceals asfoll ows:

The cdlable, tuple and dctionary are popyed from the stad.

A new frane iscreaed and pushed to the frame stack.

The frame is then initiaised using the parameters gored in the tuple and
dictionary.

Theret urn_ip field of the aurrent frameis st to the addressof the instruc-
tionfollowingthef cal | instruction.

97

e Thecurrent _ipis =t tothefirst bytecode in the cdled function and exe-
cution proceeds.

Figure 5.2 shows the changes to the frame stack.

A
A i

Code

L
HotPy Frame A

Code

L
HotPy Frame A

HotPy Frame B
HotPy Frame B XXX
call< XXX
yyy 4 call
A , Yy
HotPy Frame C / } Called
HotPy Frame C return_ip—7 Code
return_ip—1——e
5 t

HotPy Frame D

return_ip———e

Thread object Thread object

(a) Before cdl (b) After cdl

Current [P
Current [P

Figure 5.2: Call sequence

Calling native (C) code

In order to implement Python pgroperly, particularly to suppat library code written
in C, it must be passhbleto cdl C codefrom Pythonand viceversa. Callsto C code
are dfedively opaque to the VM. When cdling a C function, the parameters are
popped from the stadk and pas<ed to the function (thisis handled by the GVMT).

C code may nead to cdl badk into Python code. For example, the
dict. __getitem methodisimplementedin C for speed, but may need to cal
the __hash__ method d a dassimplemented in Python

C code cdls bad into the VM, by cdling a Python function using the py _cal |
function. This creaes a new HotPy frame, which is pushed to the frame stad,
and cdl s bad into the interpreter to resume exeaution.

98

5.3 Design of theHotPy VM

5.3.1 Overview

The HotPy VM isan advanced interpreter first and a compil er second HotPy per-
forms high-level optimisations as byteamde-to-byteamde transformations. These
high-level optimisations, which are important for performance, are akey part of
the VM design. Low-level optimisations, including compil ation o byteades to
maaine ades, are handled by the GVM T-generated compil er.

The interpreter is in fad severa interpreters in one. There is the main byte-
code interpreter, a tradng variant of the main interpreter, a set of byteade-to-
byteade trandation stages (which are themselves bytemde interpreters) and a
super-interpreter, which direds the exeaution o the various interpreters and o
compiled code.

Exeaution o a program starts in the super-interpreter, which immediately cdls
the main bytemde interpreter to commence interpreting the bytemdes. When a
badk-edge or a cdl i s encourtered sufficient times, the super-interpreter chedks
to seeif the code has already been optimised. If optimised code is found then
the optimised code is exeauted, otherwise the traang interpreter is garted. Once
the traang-interpreter completes, the recorded traceis transformed to optimised
byteaodes.

Tradng and ogimisation may also be triggered when an exit from atraceis exe-
cuted sufficient times. In this case the optimisation passes can use type informa-
tionrecorded at the exit point to generate better optimised byteades. HotPy uses
tracestitching, as described in Sedion 24.3, to form traces over the working set
of the program being exeauted.

5.3.2 Disconneding the Two Machine States

The most straightforward implementation o HotPy would be to map the HotPy
VM state diredly onto the GVMT abstrad madhine state. In other words, func-
tioncdlsin HotPy would be implemented with cdl s at the astrad machinelevel,
and exceptionswould be implemented diredly usingthe GVMT exception med-
anism. The GVMT Scheme implementationin Sedion 4.10 showsthat thisworks
well and gvesreasonably good performance However, for an advanced optimis-
ingVM like HotPy, it israther limiting.

SinceHotPy isatracinginterpeter it must be ableto exeautetraces, that is, it must
be aleto exeaute sequences of code whase structureisonly weekly related to that
of the original program. Traces may start or endin the midde of afunction, cross
function boundries, or even end in the midde of aloop. The GVMT abstrad

99

madine does not diredly suppat this behaviour, so it is necessary to separate
the HotPy VM state from the GVMT abstrad madhine state. It also happens that
this sparation o states makes the implementation o feaures auch as generators
and closures much simpler. It isassumed that any inefficiencies resulting from the
separation o states causes can be removed by later optimisations. This appeasto
bethe case in pradice

In order to separate the GVMT abstrad madine state from the HotPy VM state,
it must be posgble to make abitrary cdlsin ore state withou aff eding the other.
Similarly, the exception stad (try-except blocks) in Pythonshoud be unrelated to
the GVMT state stadk. Thisis adchieved by implementing the HotPy cdl stadk on
the heg and by implementing exception handlers as objeds attadched to the aur-
rent frame. Implementing the HotPy stadk frames as heg oljeds makes it much
easier to suppat generators, closures, debuggng, and exception handing. Once
HotPy frames are implemented as hegp oljeds, it is draightforward to implement
exception handers for a try-except block as a linked list of handers attached to
the aurrent frame.

Both trace &its and raising o exceptions are handed using the
gvmt _transfer() functiont which alows values on the data stak to be
preserved. Findly, it is necessry to ensure that the depths of al the GVMT
stacks remain bounakd (and idedly, small) whatever the exeaution path. The
super-interpreter ensures this whil e managing traceseledion and exeaution.

Necessary Invariants

Whilst it is desirable to completely decoupe the state of the HotPy VM and the
GVMT abstrad madine, it is nat entirely possble. The problem isthat if stack
depths are totally unrelated it would be possble for aloop containing cdls at the
VM level to credae degoer and degper stadk depth at the dstrad madhine level.
To prevent this, a single invariant is required; a no pant during exeaution may
the dstrad madine stack be degoer than when the aurrently exeautingVM frame
was first exeauted. In other words, areturn at the VM level must cause areturn at
the abstrad machine level, if the correspondngcdl at the VM level caused a cdl
at the abstrad macdhine level. Also, noloopmay be transformed into reaursion.

5.3.3 The Super-Interpreter

The super-interpreter isahigh-level i nterpreter which is concerned with exeauting
sequences of bytemdes, rather than individual bytecdes. Its roleis to dispatch
the exeaution o code rather than perform that exeaution. Exeaution o bytecodes
istherole of the interpreter or compil er-generated madine aode.

1The gvmt_transfer() function is essentially an exception raising mechanism that, unlike
gvmt_raise(), does not restore the data stadk to its original value.

100

The super-interpreter performs the dispatch by looking up the aurrent VM in-
struction panter in a cade of traces, implemented as a hashtable. Each thread
of exeaution hesits own trace cabe. When atraceis foundin the hashtable, that
traceis exeauted. If the traceis not found then the unogimised code is exeauted
by the standard interpreter.

The super-interpreter is also resporsible for handling exceptions. When an ex-
ceptionisraised it is caught in the super-interpreter. The super-interpreter then
dispatchesto the gopropriate bytecodes for the exception handler.

The flow of control between the super-interpreter and the other interpreters can
happen in bah diredions. Control can re-enter the super-interpreter when a
tracefinishes or when an exception is raised. The GVMT provides two med-
anisms for a cdleeto passcontrol bad to cdler: a conventional return, and the
gvnt _transfer() function. In HotPy, the former is used when exeaution moves
from optimised traceto ancther, the latter for exception handing and aher cir-
cumstances.

As exeaution progresses traces are recrded and ogimised. Eventualy a stealy
state shoud be reated where the vast mgjority of code exeauted exists in the
cade of traces, as optimised traces. In this dealy state the job d the super-
interpreter is Imply to exeaute one optimised trace dter ancther.

Reenterant Super-Interpreter

The super-interpreter is the entry paint to Pythoncode from C code. Idedly, the
only entry point would be & the start of the program, but a number of functions
that must be implemented in C can cdl into Python code. Therefore the super-
interpreter must be re-entrant. Since the super-interpreter is implemented onthe
GVMT abstrad madine, itscdl depth does nat correspondto the HotPy VM cdl
depth, espedally when handing exceptions, which may need to passthroughan
arbitrary number of super-interpreter invocaions.

All adivation frames must have aknown cdl depth, both to conform to Python
semantics and to prevent stadk overflow. When the super-interpreter isinvoked, it
records the aurrent cdl depth. Whenever the super-interpreter cgptures an excep-
tion, it chedksto seeif the cdl depth of the frame to be resumed hasadepth that is
lessthan the recorded cal depth. If it does then the super-interpreter raises an ex-
ception to passresporsibility to the next outer invocaion o the super-interpreter.

Figure 5.3 shows an example cdl stad for the HotPy VM. Ead cdl to the super-
interpreter corresponds to ore or more cdls at the VM level. The VM stad is
maintained on the heg. Handing o cdls at the VM level is dmple enough
when a cdl is made in frame ‘B’, a new frame ‘A’ is creded. Likewise returns
are fairly ssimple: the top VM frame is discarded, and if the aurrent frame was
the entry frame for the super-interpreter, it returns as well. Exception handlingis

101

Super—Interpreter entry HotPy Frame

Invocation > E

V4
HotPy Frame Exception Exception
D Handler Handler
A

A
HotPy Frame
C

Super—Interpreter entry
Invocation > HotPy Frame
Y B
A
Super—Interpreter HotPy Frame
Invocation entry | | yA
X >
(Current) (Current Frame)
GVMT Control Stack The Heap

Figure 5.3: The HotPy Stack

more complex. Exception hander objeds, which record enoughstate information
to restorethe VM state, are dtached to VM frames. When an exceptionisraised,
it is caught in the super-interpreter, which then cheds the aurrent frame for ex-
ception handers, poppang frames urtil it finds one. If it readies its entry frame,
the exceptionisre-raised, to be caight by the next outer super-interpreter. In Fig-
ure 5.3, if an exceptionwereraised, it would be caight in the super-interpreter (X),
which would re-raise the exception. Thiswould then be caught by Y, unwinding
the HotPy stad to read frame D which contains exception handlers.

5.34 ActiveLinks

Active links rve & the glue between traces (Figure 5.14 shows links joining
traces). They are cdled activelinks as they can change their behaviour, but main-
tain the same interfaceto the rest of the VM. Active links al ow the optimisation
of traces, withou changing the shape of the tracegraph.

An adive link consists of a painter to a function, cal | , a pointer to some byte-
codes, i p, apoainter to atrace(whichisinitialy null), and some type information.
Thei p pointsto the unogimised byteades. The functiontype of cal | takestwo
parameters; thefirst is the adive link itself, which allowsiit to be self modifying;
the second parameter describes the VM state. Active links embodya positionin
the byteade, with type information to all ow better spedalisation.

The behaviour of an adive link varies depending on hav many times it has exe-
cuted; how ‘haot’ it is. Cold code is exeauted, unogimised, by the interpreter, in
which casethecal | passsthe origina unogimised byteades to the interpreter.

102

Super—Interpreter |—————oo——o- 00K __________| »| Trace Cache

T
g] A ‘
. / [\
4 / | \
/ ! ! \
start gxception gxecute luokupll /update ll insert vadd
! / ! \
\ / \
I
\) 4) !
[trace exirin] ! \
Py call exception Interpreter Active Links ! [
execute i ‘.
1 ,’ |
| 1
\ 1
trace trace \ request , II
1
1
\ I 1
S
. N o
C Library Code Tracing Interpreter 7~ Compilation Queue
/
/
/
/
N plete /
/
/
A /
Optimiser

Figure 5.4: Control of Exeautionin HotPy

Warm code is dill i nterpreted, but in an optimised form; cal | exeautes the inter-
preter with the optimised byteadesin the trace Hot code is compil ed to madiine
code, which is exeauted diredly; cal | exeautes the compiled code diredly. All
exitsfrom traces point to adive links, which areinitialy cold.

The self-modifying behaviour allows other code to trea adive links as bladk
boxes. The value returned by the cal | is the next adive link to be run. This
alowsthe stealy state dispatchingin the super-interpreter to be implemented asa
simple cdl-threaded interpreter (Sedion 22.1):

do {
link = link—>call (thread_state, frame, link);
} while (1);

Anadivelinkcan bein oreof six states. Four of these states are starting states and
depend onthe instruction that caused the traceto exit, whether it was a bodean
test failure, a badk-edge, areturn (or yield) or a many-valued test failure. These
diff erent states determine how aggressvely the amde is optimised and whether or
naot the starting context is used in spedalising the trace The two remaining states
are interpreted traces and compil ed code.

5.3.5 Control within the HotPy VM

Figure 5.4 shows the relationship between the comporents of the HotPy VM.
Solid arrows represent control flow; dashed arrows represent dataflow. As can be
seen from the figure, adive links perform a central role in the HotPy VM. Rather
than explain ead arrow, it isill ustrative to consider the lifetime of an adive link.
In the following elaboration, words in italics correspond dredly to labels in the
figure.

103

An adive link is creaed for ead exit in atrace Initialy it is cold. Once it
beammes warm it performs a lookup in the trace cabe for a matching trace It
is probable than nore will be found so the adive link starts a trace, which runs
until it i s complete, at which pant the traceis optimised. The optimised code is
inserted into the trace cabe. Control then returns to the super-interpreter once
optimisationis dore.

The adive link will probably be exeauted again and will lookup the tracewhich,
having been previously creaed, it will find. Thetraceisthen exeated in the inter-
preter. If atraceraises an excetion then control returns to the super-interpreter,
otherwise atrace ext must occur and ancther adive link gains control.

Once a adive link beaomes hat it sends arequest to the compil ation queue and
continues to exeaite in the interpreter. Once @mpilation is completed, the com-
piled code is added to the tracein the cade, which updaesthe adive link.

54 Tracing and Traces

The HotPy tradng interpreter is generated by the secondary interpreter generator,
GVMTXC, from the same source & the main interpreter?. When tradng, HotPy
records the values of the inpus and ouputs of al instructions, as well as the
intructions themselves, in order to generate atracethat is gedfic not only to the
instructions exeauted, but also to the types of the variables used.

Tradngis initiated either by the interpreter or by an adive link. The interpreter
starts traang when it deteds a warm bad edge or function cdl. An adive link
attadhed to an exit from the tracewill start ancther tracewhen that exit beaomes
warm.

Traces darted by the interpreter have no contextual type information and the re-
sulting trace ca aways be exeauted in placeof the original byteades. When
tradngis darted by an adive link, the traceis gedalised acording to the type
information recorded in the adive link. This means that the trace ca be better
optimised, athoughthe trace ca be used in fewer contexts. This may produce
more traces than just using nonspedalised traces, as traces can overlap. Since
traces tend to be very small relative to overall memory use, some dugdicaionis
not a problem. HotPy is designed so that the output from the tradng interpreter
is exeautable byteaode; however, thisisimportant only for testingand debuggng,
astraces are usually spedalised and optimised immediately uponcompletion.

Finally, it shoud be noted that there is a one-to-many relation between pantsin
the original bytecde and traces; a single byteade may correspondto the start
of several traces, al spedalised for different contexts. Thisisill ustrated by the
examplein Sedion 510.

2Making heavy use of #ifdef statementsin the source mde.

104

54.1 Remrding aTrace

When rewording a tracethe interpreter must also perform the normal adions for
that byteade. Byteades can be dassfied as atomic, branching o non-atomic.

When the tradng interpreter encourters an atomic bytecode, it will record that
byteande. When a branching byteade is encourtered, an exiting equivalent is
recrded. For example the branching byteacdeon_t r ue which jumpsif thetop o
stack evaluatesto Tr ue would be recorded asexi t _on_f al se shoud the branch
be taken. The eits from traces are discussed in Sedion 54.3. When a non
atomic bytecodeisencourtered, it may berecorded diredly or a cdl to asurrogate
function may be tracead instead, Sedion 54.2 describesthisin detail .

Halting

Tradng must halt, or the program could na terminate. HotPy haltstradngif any
of the following condtions are reated:

A loopis deteded.

A bad edgeisreaded.

Reaursionis deteded.

Morer et urn oryi el d instructions are encourtered than cdls.
An exceptionisraised in the traceor C code cdl ed from the trace

In the first four cases the traceis kept for further optimisation. If a loop was
deteded, then the traceis closed; it can be exeauted immediately. If abadk edge
or reaursion is deteded, then the traceis saved and tradng continues with a new
trace it is assumed that aloopwill be foundin a subsequent trace If too many
returnoryi el dsare encourtered then an uncondtional exit i sadded to thetrace
after which the traceis saved and namal exeaution resumes. If an exception is
raised then the traceis discarded and namal exeaution resumes.

5.4.2 Non-Atomic Bytecodes

In Python, and aher high-level languages, the bytecdes have ahigh semantic
content and are often nortatomic. A non-atomic byteade is one whose exeaution
state can be observed from the VM state. For example the byteaode bi nary may
cdl an __add__ function written in Python The VM state can be interrogated
during that function, even thoughbi nary is part way throughits exeaution. Most
byteaodes are @aomic. For example, anative_cal | bytewmde is atomic as the
transfer of control occurs at the end o the byteaode.

The existence of nonratomic byteades compli cates tradng sinceit may be poss-
bleto observethe VM in a state that corresponds to the midd e of some byteade.

105

In the case of the bi nary instruction, it is desirable to tracethroughany cdled
function. However, that canna be doreif the bi nary byteadeisremrded, asthe
functionthat would be traced occursin the midde of the bi nary instruction. One
approach would be to code bi nary as a series of lower level byteades, eat of
which is atomic. However, for nontracel code and cases where the aditionis
performed by C code, thisis grosdy inefficient. HotPy gets aroundthis by substi-
tuting, when tradng and where necessary, a Python function for the nonatomic
byteade.

Some bytecodes are nortatomic, but extremely unlikely to occur in atrace such as
make_func. These ae recrded as normal; tradng is suspended during their ex-
eaution to prevent incorred dugicaion. The following byteaodes are non-atomic
and likely to occur in atrace the operators bi nary, unary and i npl ace, and
f call. Thef _call can be aomic if it is cdling afunction, but nonatomic if
cdlinga dass

In the case of the operators, normal lookupis performed. If aC functionisfound
the original byteamde is rearded. If no C functionis found the byteaode is not
recorded and a Python function that performs the look upis tracel instead. This
is dore in the expedation that, when optimised, the advantages of inlining the
Pythonimplementation o the operator will outweighthe penalty of the extrabyte-
codes.

In the case of cdlsto afunction a boundmethoda speaal byteade to mark the
cdl siteisremrded. Callsto classesare handled bylookingfor asurrogate Python
functionfor the dass which isthen traced. If no surrogate functionis avail able, a
more general Pythonequivalent of thetype. __cal | __ methodistraced.

To seemore dealy the problems here, consider the expressond + e where d
ande are both Deci mal s, astandard library classwritten in Python If the traang
interpreter wereto record thebi nar y bytecode and continuetradng, it would then
record the body d theDeci mal . __add__ function. When thistracewas exeauted
it would exeaute the addition twice, once for the bi nary byteade and orce for
the recorded cdl. So recording the bi nary bytecode and continued tradng are
mutually incompatible. Sinceit is desirable to continue tradng, the bi nary byte-
code canna be recrded, but some semanticaly equivalent code must be traced
instea.

The Pythonequivaentsfor thebi nary byteamde ndtype. __cal | __, aongwith
the surrogate functionfor t upl e() , are shown in Appendix D.

54.3 TraceEndsAnd Exits

When tradng reates a condtiona byteaode, the taken branch isrecorded. How-
ever, when the traceis exeauted again a diff erent branch could be taken. To hande
thisposshility condtiona side exitsare added to thetrace An uncondtional exit

106

may be added to the end d the tracewhen tradng halts. These &its from traces
are dasdfied asfoll owsin HotPy:

Back Edges

Tradng stops at badk edges, in order to prevent nontermination o traces and
to attempt to find loops. Consequently, on reading a back edge during tradng,
the traceis optimised, and a new traceis darted immediately using the aurrent
context.

Return and Yidlds

Tradng namally continues throughreturns and yields, unlessthe traceis unbal-
anced, in which casetradngishalted. A traceisunbalanced when there would be
more returns or yields than cdl s, were the traceto be continued.

Boolean Exits

When a @ndtional branch, such asan i f statement, is encourtered the tradng
interpreter will record thetaken branch only. An exit point must beinserted for the
branch that is not taken. These side exits gart tradng when they become warm.

Multi-Choice Exits

When afunction a methodcdl i s encourtered the tradng interpreter will record
the function cdled and tracethe exeaution o that function. An exit point must be
inserted to hande cases where adifferent function is encourtered during subse-
guent exeaution.

5.4.4 Avoiding Code Explosion

In Python, function o method cdls are resolved dyramicdly. This means that
a cdl site could paentialy cdl adifferent function a method every time it was
readed. Therefore exit pointsfor function a methodentry could paentially start
a new trace eery few iterations. This problem of code explosion is common
for any form of spedalisation; the number of spedalised forms may grow almost
withou limit.

Informal measurements of the Self system showed that cdl sites cdl the same
functionabou 93% of thetime, two diff erent functions abou 5% of the time, and

107

more than two functions lessthan 2% of the time [37)].

Asaiming similar behaviour for Python it would seem that the best approacd for
cdl sites that cdl more than two different functionsis to smply resume normal
interpretation.

HotPy avoids code explosionas aresult of tradng by resuming standard interpre-
tationif thetrace &itsat a cdl site. A more advanced approach would beto all ow
one, but only one, new trace & an exit. Thiswould cover the cases where a cél
site cdls two different functions. The aurrent, simple gproach seems to work
well enoughin pradice

5.5 Optimisation of Traces

Once atracehas been recrded it can be further optimised. All the HotPy op-
timisations, except the JT compiler, are implemented as byteade-to-byteade
tranglations.

Pythonis a highly dynamic language, which means that there ae many events
that could paentialy occur during the exeaution o a Python pogram. Most of
these events do nd occur in most programs; they could, but in pradice they do
not. For example, function definitions bind a function oljed to a global variable;
potentialy a new value could be assgned to this variable, but thisis unusual.

All optimisations in HotPy are focused on making the program fast in the case
where these eventsdo na occur, with littl eor noregard to program performancein
therare casethat they do occur. However, program behaviour, ignaringtimingand
memory usage isales, must remain the same whatever optimisations are gppli ed.

Asan example of an ogtimisation, the namel i st in the global namespaceusually
refers to the list class it could be redefined in a program, but thisis regarded as
bad pradice HotPy attempts to make the cost of reading o avauelikel i st as
close to zero as possble, even if this makes the aost of writing such avalue very
expensive.

5.5.1 Optimisation Chain

The optimisersin HotPy form a dhain; oncethe tradng interpreter has completed
recordingatrace it isoptimised. The optimisersin HotPy are designed towork in
astrict order, althoughindividual passes can be omitted for experimental and de-
buggng puposes. The order is: speaalisation, deferred oljed creaion, pegphde
(clean up), andfinally compil ation. Figure 5.5 shows the optimisation chain.

Spedadlisationis performed first asit requiresthetype informationthat is recorded

108

Bytecode Trace
+ Recorded Valueg

Specialiser

Bytecode Traceg

Deferred Object Creatio

Bytecode Trac%

 J

Peephole Optimisey

-

GVMT-generated Compilef

Machine Code

Figure 5.5: The HotPy Optimiser Chain

109

during traang, and it makes the subsequent passes more dfedive. Spedalisation
replaces general byteades with type-spedfic versions. The Deferred Objed Cre-
ation (D.O.C.) passis next and removes redundant code that would otherwise ae-
ate unrecessary objeds. The pegohde optimiser replaces short simple sequences
of byteades with faster equivalents. Shoud the tracebecome sufficiently hat itis
compil ed to machine cde.

Spedalisation, dongwith tradng, is aspeaulative optimisation. In other words, it
makes assumptions abou the running program, so that it can better optimise the
byteades. The other passes are mnservative; they make no assumptions.

55.2 Guards

For HotPy to make assumptions abou the runnng program, there must be some
way to ensure that the program exeautes corredly if these sssumptionsare wrong
To dothis HotPy must add extra code, known as guards, to ensure that any as-
sumptions are ather corred or, if they are incorred, that a different code path is
exeauted. HotPy uses two types of guard, inline guards and ‘ out-of-line’ guards.

Inline Guards

The optimised code, produced by speaalisation, will only work corredly for val-
ues of a particular classor even for a particular value. A guard is thus inserted
immediately before the spedali sed operation; thisis an inline guard. The instruc-
tionsensur e_t agged andensur e_t ype used in the examplein Sedion 510 are
inline guards.

Out-of-Line Guards

Some operations, such as realing a global variable that is redly a constant, are
very common. Most of the work dore in hashtable seaches is unrecessary, end-
lesdy rechedking the same values. In HotPy, and in CPython, changing a global
variable or a dassattribute involvesaprocedure cdl (intheVM, nat in the Python
program). Sincethese values are not expeded to change, these procedures can be
modified to include guards. The anortised cost of the guardsis nea to zero asthe
procedures are never cdled in pradice yet they al ow the removal of the repeaed
chedks from the frequently exeauted code. These guards are cdled ou-of-line
guards to differentiate them from inline guards, which must be exeauted when-
ever the guarded code is exeauted. Out-of-line guards are used in the examplein
Sedion 510, but are nat visiblein the trace

Althoughthe term out-of-line guard is new, the concept is not. The origina Self
compiler included the &bility to invalidate code if certain assumptions were vio-

110

lated. The HotSpot VM treas nonfinal classes as final, invalidating compil ed
codeif anew subclassisloaded. Both of these feaures can be regarded as out-of-
line guards.

5.6 Speaalisation

The tradng interpreter records both the instructions exeauted and the values en-
courtered duing exeaution. It is reasonable to assume that the next time apiece
of codeisexeauted, it islikely to seethe sametypes of values as the previoustime
it exeauted. This ‘type stability’ can be exploited by spedalising the code so that
it runsfaster for the expeded types of values. For example, if traang records that
the operands of abi nary instructionare both tagged integers, the bi nar y instruc-
tionis converted to an i _add instruction and two guards are inserted to ensure
that both operands are tagged integers.

Spedalisation, asthisisknown, is conceptuall y straightforward; spedalised byte-
codes are substituted for general bytemdes. In pradice, the spedalisation pass
has a'so to insert guards to ensure that the code ads corredly if the types of val-
ues change later. If unexpeded types are encourtered then the trace &its. Even
thoughspedalisation is a fairly simple process it can yield significant perfor-
mance benefits, as shown in Sedion 6.5.

In HotPy, the spedali ser performs all the optimisationsthat require the type infor-
mation gathered by the tradng phaese. This includes not only obviously speadal-
ising transformations such as converting a (general) unary operation to a (spe-
cific) native_cal |, but al other optimisations that depend onthe type of the
values expeded. For example, the | oad_gl obal instruction is translated to a
fast | oad_gl obal ortoafast_constant in this pass as type informationis
required to dedde whether to trea the global as a cmnstant or as a variable.

The spedaliser also performs optimisations on data acces both global variables
and attributes of classes and oljeds. These optimisations depend onthe HotPy
dictionary structure and are discussed in Sedion 512.2.

The traceproduced by the spedalisation passhas type information embedded in
it, in the form of ensur e guard instructions and spedalised operations uch as
i _add. This allows subsequent optimisation passs to ad on the bytecodes in
a tracewithout requiring additional type information. All speaulative optimisa-
tions are performed by the tradng pess (customising for flow control) and the
speaaliser (customising for type). Later optimisations are not speaulative, taking
advantage of the oppatunities exposed by the speaulative passes.

111

5.6.1 Speaalisation of Byteades

Spedadisationisalinea passoperating on ore byteade & atime. The speaaliser
maintains type information abou locd variables and the stack. It uses thisinfor-
mation, combined with the type information recorded during tradng to spedalise
individual byteades.

Spedalisation o abytecde isafive stage process

e Look upthe types of the operands of an instruction.

e Add guardsto ensure the type or other property of any operandsrequired to
spedali se the byteade.

Update the type information for the operands.

Emit the spedalised byteade

Store the type information for the result of the bytecode.

For example, consider abi nary addition byteaode. Now assume that the top two
values on the stadk have been recorded as tagged integers by the traang phese.
First of al thetypesof the operandsarelooked upandfoundto be probalytagged
integers. Guards must be added to ensure that the operands areindeead tagged inte-
gers, two byteaodes, ensur e_t agged andensur e_t agged?2 are emitted. Thetype
of these valuesis now known, so the type informationis updated. The spedalised
bytedei _add isnow emitted. Sincetheresult of i _add isawaysatagged inte-
ger, thisinformationisrecrded. In thisexamplethebi nary bytemdeisreplacel
with the sequenceensur e_t agged ensure_tagged?2 i _add. Althoughthe new
sequenceislonger, the individual byteaodes are much faster.

For instructionslike | oad_gl obal the processisthe same. The differenceisthat
the guard required is an ou-of-line guard, so does not show up in the resulting
trace

5.6.2 Reording TypeInformation

The type information for a value is recorded as a triple; a dassobjed, a set of
threebodean flags, and a dictionary-keys objeds (for optimisingthel oad _attr
bytemde, seeSedion 512.2). The threeflags recrd whether a value is definite
or probable; whether or not it isatagged value; and whether it i s paositive (it isthe
clas9 or negative (it is not the dasg. Negative types are required for exits where
aguard hasfail ed; the guarded value will be definitely nat an instance of the dass

During spedalisation, type information is recorded for the locd variables of the
current frame, for the locd variables of all frames recorded in the frame stad and
for al values onthe stadk. When type informationis ladking for an operand, the
type of the value recorded duingtradngis used as the probalde type.

112

Type information is recorded in the adive links for al exits, to ensure dfedive
spedalisation o ‘ hot’” exits. In order to avoid excessve spedalisation oy alim-
ited amount of typeinformationisrecrded; thelocd variables of upto two frames
and the top two values on the stadk. To avoid excessve memory usage thisinfor-
mationis gored in the adive linksin a compressd form.

5.6.3 Loop Optimisation

Loop opimisation in HotPy, like loop ogimisationin a conventional compil er,
consists of moving code out of the loop. On completion o spedalising aloop,
two sets of type information will be available, one for entry to the loopand ore
for exit from the loop. For corrednessit is osmetimes necessary to insert extra
chedks immediately before the end o the loopif the type of a variable is wider
at the end o loop than at the start. Conwersely, it is beneficia to insert extra
chedks before the start of the loop to narrow the type of any variables that are
wider at the start of the loop than at the end, eliminating the neead for chedks in
the loop. Itisalso passble that the types of avariable & the start and end o the
loop are contradictory, in which case a diedk must be inserted at the end o the
loop, to enforce the type expeded at the start. This ched will fail, causing the
traceto exit. Hopefully, atype-stable loopwill be foundafter some small number
of additional traces.

5.6.4 Avoiding Code Explosion dueto Spedalisation

Code explosion can be caused by spedalisation, as well as by tradng. The spe-
cialiser avoids causing code explosion by nd spedalising the first bytecode in a
trace This has a small cost, as traces are not as well spedalised as they could
be. However, it does ensure that no more than two diff erent traces can result from
spedalising abytemde.

5.7 Deferred Objed Creation

Tradng and spedali sation may expose redundancy in the form of parameter han-
dling, cheks aroundcdl sandin the form of repeded chedks. The deferred oljea
credion (DOC) passcan remove many of these redundancies.

The DOC passimplements a form of escagpe analysisin order to avoid creding
expensivetemporary objeds. To conform to Pythonsemantics, HotPy must creae
alot of small objeds which have alimited lifetime. AlthoughHotPy possesses
agenerational garbage lledor which alows such oljedsto be aeaed cheagly,
thereis dill asignificant cost to all ocaing and initiaisingthese objeds.

113

Many of the objeds have alifetime of only a few bytecdes and exist only as
temporary containers for other values. Most of these short-lived objeds are ae-
ated in order to manage the passng o parameters to procedures. Parameters are
passd in tuples and dcts® and then stored in a frame. Frames, tuples and dcts
are dl heg-al ocated oljeds. By deferringthe aedion o these objedsit i s often
possble to avoid creaingthem at all.

Deferred oljea credion currently defers the aedion o the following oheds:
tuples, (empty) dicts, boundmethods, frames and slices®. For small functions,
such as property get methods, that traang hes inlined, the DOC passcan reduce
the code exeauted to a minimum. The DOC pass like dl the HotPy optimiser
passs, isalinea-time pass

5.7.1 Shadow Stacks

The DOC passdefers creaing oljedsfor aslongas possble. To dothis, it main-
tains a shadow data stadk and a shadow frame stadk to record objeds that it is
currently deferring. The shadow data stadk and a shadow frame stad record the
difference between the original, non-deferred state and the adual, deferred state.
When the DOC pass encourters an instruction that would crede anew objed
which would be of atype that the DOC passunderstands, such as tuple, then a
deferred objed is pushed to the shadow stadk. The DOC passaso maintains a
shadow line number.

There ae anumber of instructions that the DOC pass understands but canna
defer. To handle these, the DOC passis able to mix objeds that have dready
been creaed with deferred ones. For example, if the DOC pass encourters an
I _add instruction it must ensure that the top two values on the stadk adualy
exist, emitting the code to creae any deferred objeds. It then emits thei _add
instruction and pushes a marker to the deferred stack, showing that the objed on
top o the shadow stack corresponds to the one ontop o thered stac.

5.7.2 Thread-Local Cache

In order to hande astadk of mixed deferred and nondeferred oheds, a thread-
locd cade is required to store nondeferred oljeds. These cadied oljeds can
then betreaed as deferred oljeds; the deferred operationisthe operation d load-
ing them from the cade. For example, the pack 2 instruction takes the top two
values from the stadk and creaes atuple. The DOC passwants to defer credion
of thetuple. Thisiseasy if the toptwo values onthe stadk are deferred, but what

3In Pythonthe built-in dictionary type is known as ‘dict’ .
4Seehttp://docs. python. org/library/stdtypes. htnl for a description o these data
structures.

114

if oneisnaot? Suppcse that the objed on the top o stadk is a deferred constant,
but the seacond ohed onthe stadkk is ared, nondeferred oljed. In this case the
DOC passemits ast or e_cache instruction to move the red value off the stadk
into the cate. The deferred tuple then consists of a pair of deferred oljeds:. the
deferred constant and a deferred load from the cadie.

5.7.3 Reawmnstruction of the Original VM State on Exits

In order for deferred ojed credionto work effedively, it must defer the aedion
of objeds quite aggressvely. To successully do this and to maintain correadness
sequences of codeto restorethe VM state must be added to all trace «its. Further-
more, in the case of native cdlsthat do nd modify global state, but may raise an
exception, code to restore the state must be atached to exception handlers aaoss
such cdls. Inthe example &owe, thenati ve_cal | instructionis converted to a
native_call protect instruction. Thenative_cal | _protect instruction at-
tadhes corredive aode to the thread exception hander for the duration o the cdl.
In the event of an exception being raised, the crredive mde is exeauted, which
reaedesthe corred VM state.

Sincethe generation o these code sequences is done once during ogimisations,
while the savings due to na creaing oljeds unrecessarily occur continuotsly,
the potential speed upis sgnificant.

574 An Example

The following example is taken from the gcbench benchmark used in the next
chapter.

Figure 5.6 shows siippets of source @de which are mvered by a single trace
during tradng. The first two snippets, line 87 and lines 52 - 56, are from the
gcbench program; the third snippet, lines 77 - 80, is from the HotPy library.

Exeaution o the tracestarts by cdling the dassNode to creade anew instance
(first snippet, line 87). This has been tracal throughthe library code for objea
credion (third snippet, lines 77 -80), which cdlsthe _init__ method d the
Node (seandsnippet, lines 54-56).

The program is run with the DOC passturned off and the tracein Figure 5.7 is
creaed. The numbersonthe left are the off set from the start of the trace in bytes.
All hexadeamal values are the addresses of objeds that have been pinned and
inlined by the spedaliser. All instructions of the form | i ne_xxx N ... setthe
line number to N and perform operation xxx.

When the program is run with the DOC passturned on the traceshown in Fig-

115

87 return Node()

52 cl ass Node(object):

53

54 def __init_ (self, |I=None, r=None):
55 self.left =1

56 self.right =r

77 def alloc_and_ init(cls, *args, **kws):
78 obj = object _allocate(cls)

79 cls. __init__(obj, *args, **kws)

80 return obj

Figure 5.6: Source Code for DOC Example

ure 5.8 is produced. The new traceisis athird of the length (12 rather than 35
instructions) of the previous version. The DOC passisalinea pass soitsadions
can befoll owed by scanningthe tracein Figure 5.7 from top to batom. The DOC
passwas able to remove two thirds of the code as foll ows.

The net result of the code from offsets 0 to 38isto a aeae anew frame and
push a constant value to the stack. The DOC pass defers these operations as
neither the frame nor the value isrequired yet. For ead instructionin the original
sequence, the operationrequired is performed by the DOC on its shadow stads,
noinstructionsare adualy emitted. Figure 5.9 showsthe state of the shadow data
stack and shadow frame stadks for ead instruction in the sequence. The states
shown are those after the instruction has been evaluated; the data stad is to the
left of the | divider.

Thenative_cal | instructionat off set 40 requires parameters onthe stad, so the
stadk can be deferred no longer and the DOC pass emits the f ast _const ant
instruction to reaeae the singe constant value on the stadk. Since the
obj ect _al | ocat e function is annaated as not accessng gobal state, there is
no redl to crede the frame acossthe cdl. Sinceline numbers are stored in the
frame, if the frameis deferred then thel i ne instructions can be deferred as well.

The store_frane instruction at offset 46 stores the newly creded Node into
the aurrent frame. However, the aurrent frame does nat exist, having been de-
ferred, so the DOC pass gores the value into the thread-locd cade, emitting the
store_to_cache 0 instruction.

So far the DOC passhas consumed 14instructions, emitted three and has deferred
the aedion o aframe,

The instructions from 56 to 77 marshal the parameters for the Node. __init
function and then uses them to crede anew frame. Once aain the DOC pass
defers credion o the new frame. There ae now two frames on the shadow frame

116

o N O

20
22
29
34
36
37
38
40
46
48
55
56
61
63
65
67
68
70
71
77
78
82
84
89
93
95
100
101
105
106

:line_fast_constant 87 Oxb7bOaf a0

cenmpty_tuple

;dictionary

:new_enter 0x82aa080 [* Entry to alloc_and init */
:make_frame 2 Oxb7b0ades

cinit_frame

:line_fast_constant 78 0x82aa800

:fast_constant Oxb7bOaf a0

- pack _parans 1

-drop

. drop_under

unpack 1

:native_call 0x80d5630 /* Call to object _allocate */
:store frane 3

:line_fast _constant 79 Oxb7bOaf a0

drop

:fast_constant Oxb7bOaec8

-fast_load frame 3

s pack 1 [* Parameter marshalling */
.fast _load frame 1 [* on line 79 */

:tupl e_concat [* ditto */

:fast_load frame 2 [* ditto */

:copy_di ct [* ditto */

-make _frame 2 0x828f4ch /* Entry to Node. _init__ */
cinit _frame

:line_fast load frame 55 1

:fast_load frame O

.fast_store_attr 4 4 /* self.left =1 */
:line_fast |oad frame 56 2

.fast _load frame 0

.fast _store_ attr 4 1 /* self.right =1 */
:func_return

:line_fast load frame 80 3

:func_return

creturn_exit 0xb7b109c0

Figure 5.7: TraceWithou DOC

117

10
16
18
19
21
26
27
29
34
36
38

o N O

20
22
29
34
36
37
38

:fast_constant Oxb7a8afal

:native_call _protect 0x80d5630 0xb7b07908

:store_to _cache 0

:none

1 oad_fromcache 0
.fast _store attr 4 4
:none

1 oad_from cache 0
.fast _store attr 4 1

1 oad_fromcache 0
:clear_cache 1
creturn_exit 0xb7a90f bc

Figure 5.8: TraceWith DOC

line fast constant: Nod
enpty_tuple: Node, (
dictionary: Node, (), {
new enter: alloc_init, (Node,) {
make frane: alloc_init, (Node,) {

init_frane:
l'ine_fast_constant: obj _alloc
fast _constant: obj _alloc, Node

pack _params: obj _alloc, (Node,),

dr op: obj _alloc, (Node,
drop_under: (Node,
unpack 1: Nod

Figure 5.9: Shadow Stadks For Start of Tracein Figure 5.7

118

<enpty>
<enpty>
<enpty>
<empty>
(local s
(local s
(locals
(locals
(local s
(local s
(local s
(

[* self.left =1 */

[* self.right =71 */

Node,
Node,
Node,
Node,
Node,
Node,
Node,

e R R e e e e N

— N N N N N N N

Lt Wt W e W e W W W}
[S S S W W Wy)
— N N N N N N

stack. The instructions at off sets 78 to 84 load two locd variables and store one
into aslot in the other. The DOC passcan defer the loads, but canna defer the
| oad_sl ot instruction so is forced to materiali se the stadk (but not the frames).
The DOC pass materiali ses the stadk, consisting o None (the default parameter
for |) andthe new Node objed, by emittingnone andl oad_from cache 0 before
thel oad_sl ot instruction.

Thefunc_returninstructionat off set 100 pors the topmost deferred frame. The
seaondfunc_ret urn popsthe remaining deferred frame. Thereturn_exit in-
structionforcesthe DOC to reaede the entire VM state. Asthere ae no deferred
frames, only the stack needs to be updated with al oad_from cache 0 instruc-
tion. Finally, acl ear _cache 1 instructionisemitted so that the cate doesretain
any oljeds.

5.7.5 Unboxing Numbers

As well as avoiding the aedion of compaosite objeds, it aso beneficial to avoid
creaing boxed numbers. Since HotPy uses tagged integers, thisis not asimpor-
tant as it might be for other VMs, but HotPy does use boxed floats. The DOC
passaso handes floats, but is limited in its effediveness as it can only unbox
intermediate values that spend their whale lifetime on the stack. As onas a
float is dored in a locd variable then that float must be aeaed (un-deferred).
Deferred olged creaion could be extended in two ways, both of which would
improve the performance of floating-point numbers. The first would be to defer
objed creaion aadossloop boundries; the sesacond would be to defer stores into
nondeferred frames.

5.8 Further Optimisations

The remaining opimisations performed by HotPy are ‘pegphde’ optimisations,
that isthey are simple transformations which replace ashort sequence of instruc-
tionswith amore dficient form. For example, tradngmay insert a condtional exit
immediately after a bodean test, say exit _on_fal se. Speaalisation may then
be ale to infer that a comparison is aways true, and convert the expresson to
asingletrue instruction. The redundant instruction pair true, exit _on_f al se
can then be diminated.

Other examples include making the instruction sequence more dficient for the
GVMT's dadk-based compil er, such as repladngastore _frane, | oad frane
pair with acopy, store_frame pair. A few more complex replacanents are per-
formed, aimed at cleaning upthe output from the main optimisation pas<es.

119

5.8.1 Compiling Traces

Once atracebemmes aufficiently hat, it is added to a priority queue for compil &
tion. In order to prevent undue pauses, the compil ationtimeislimited to a cetain
fradion o the exeautiontime. Potentially compil ation could take placein a sepa-
rate thread from the interpreter, but thishas nat been implemented yet. Onasingle
proces9or it islimited to approximately one quarter of total exeautiontime. On a
multi-processor machine compilationis limited, arbitrarily, to approximately one
half of the exeautiontime of the interpreter thread.

Traces are compiled using the GVMT generated compiler. The cde generated
by the compil er matches the interfaceof the interpreter®. Thisamost matches the
signatureof thecal | functioninthe adivelink (seeSedion 5.3.4) soimmediately
before compil ation an extrainstructionis inserted in front of the first byteade to
discad the extra parameter of the cal | function. Thecal | pointer can then be
set to pant diredly to the compil ed code.

5.9 De-Optimisation

All the optimisationsin HotPy are d@ther speaulative or depend on dher speaula
tive optimisations. These need to be guarded, as described in Sedion 55.2. When
an inline guard fail s, exeaution continues corredly on a different path. However,
when an ou-of-line guard fails, it invalidates code, which must never exeaite
again. In order to prevent the exeaution o invalidated code, all traces are chedked
for validity before exeaution. In addition to the dhedk at the start of a trace a
deopt i m se_check instructionis aso inserted after any cdl to code which might
invalidate the aurrent trace Invalidated traces are unlinked from any adive links
that may attempt to cdl them. When they are no longer referenced, they are
garbage wlleded.

510 An Example

Figure 5.10 shows a ssimple Python pogram for finding alist of Fiboraca num-
berswhich will be used to ill ustrate how HotPy creaes andlinkstraces. Although
a very small program, it serves to ill ustrate some of the key points of HotPy’s
operation. The print statement on the fina line is commented ou to prevent the
traces becomingtoolarge to show onasinge page.

Compili ng the source mde into byteaodes gives the flow graphs for the functions
fibandfib_|istinFigues5.11and 512respedively. The flow graphs show a

SExcept that it does not take abytecde aldressas its first parameter; seethe GVMT manual
for more detail s.

120

i mport sys

def fib(count):
n0, n1 =0, 1
for i in range(count):
yield nl
n0, nl1 = nl1, n0 + nl

© 00 N O g B W N P

def fib_list(count):
return [f for f in fib(count)]

P
= o

fibs = fib_list(int(sys.argv[1]))
#print (fibs)

=
w N

Figure 5.10: Fibonaca Program

dired corresponcdenceto the source @de.

Runnng the program with an inpu of 40 causes the loopinthefib_|ist func-
tion to become warm, and HotPy starts tradng. Tradng is triggered when the
exeaution court of end_| oop instruction exceals the threshold value. Tradng
then starts from the next instruction to be exeauted, which in this example is
al oad_frane instruction. Tradng continues until the end_| oop instruction is
readed again and a dosed loopis recrded.

During tradng, the cdl to the fi b generator function is inlined; the resulting
traceis shown in Figure 5.13(a). Entry to the fi b generator function is marked
by agen_enter instruction. The gen_yi el d instruction marks the paint where
exeautionreturnsto thefi b_|i st function. The <ENTRY> at the top o the trace
means that the trace ca be entered diredly from the interpreter and corresponds
totheend_| oop instructioninthefib_|i st function.

Sincethe st of bytecode-to-bytecde tranglationis low, the traceis immediately
speaalised to produce the traceshown in Figure 5.13(b) and then further opti-
mised (in this example further optimisation has no effed). The resulting traceis
spedalised nat only for the flow-control, which happens during tradng, but for
the types of values observed during traang. In this example, the bi nary (addi-
tion) instruction has been replaced withthei _add, whichis edali sed for tagged
integers. Guards have been added to ensure corredness All the (guarded) side
exitsare old, as the program exeautes mainly aroundthe loop. The optimisations
are explained more fully in Sedion 55.

If the program isrunwith ahigher inpu value, say 60, thenn0 andnl will exceed
the maximum size for tagged integers and must be stored as boxed integers on
the hegp. This will cause one of the ensur e_t agged guards in the loopto fail.
Onceit hasfall ed a sufficient number of times, the side &xit isthen ha and HotPy

121

line 4 m
byte 0
byt Ioaq/_frame 1
el
v cal‘_special
swa|
P storfe_frame 2
store_frame 3 ine 6
ine
store_frame 4
load_frame 4
line 5 o
yiel
load_global ine 7
ine
load_frame 0
load_frame 4
pack_paramg
Pa— load_frame 3
cal
— Ioaﬁi_frame 4
call_special -
blr*ary add
store_frame 1 #
wap
for_loop .
exception storeLframe 3
store&frame 4
end_loop
exit_loop
none
return

Figure 5.11: Flowgraphfor fib function

line 10

list

store_frame 1

~

load_global
Ioaqi_frame 2
load_frame 0
call_special
pack_params
store_frame 3
f_call
load_frame 1
call_special
Ioaé’_frame 3
store_frame 2 -
Ilstlappend
list_for excenti
ption end_loop
exit_loop
load_frame 1
return

Figure 5.12: Flowgraphfor fib_list function

122

~
<ENTRY>

ensurﬁa_in/tialised
ensurfeﬁ%itialised
fastflﬁ)adjrame 2
m g#n_enter
<Ey§ITI¢(> Iine_fa‘st_load_frame
Ioat#_frame 2 fast_|oad_frame 3
gén_enter fast_|oad_frame 4
line Jload_frame enspre_tagged2
Ioald_frame 3 engure_tagged
load_frame 4 i_add
bjnary add swap
swap store_frame 3
store_frame 3 store_frame 4
store_frame 4 fast_load_frame 1
logd_frame 1 type_erisure int_iteratgr
call_special nativ%»call_protect
sto}e_frame 2 stor\e_frame 2
Iine_lload_frame Iineja%tﬁloadfframe
g#njield ge‘njield
stor‘efframe 3 stor%e_frame 3
Ioad‘_frame 1 fast_ld\ad_frame 1
Ioadkrframe 3 fast_loxad_frame 3
Iist_\ippend Iist_k\ppend
jump jump
(a) Initial (b) Spedalised

Figure 5.13: Traces of the Fibonaca Program With an Inpu of 40

starts tradng from that point. HotPy maintains type information for ead exit
(in a compad form), meaning that when a new traceis recorded it can be more
effedively spedali sed.

The resulting, optimised, tracegraphis shown in Figure 5.14. As exeaution pro-
cealsfrom thefirst hot exit, anew traceis creaed urtil abadk edgeisreaded. In
order to discover loops, tradng must restart onreating abadk edge. This causes
the intermediate traces in the midde of Figure 5.14 to be aeaed before anew
loopisfound which is shown ontheright of Figure 5.14. The new loopis amost
identicd to the original loop, but is gedalised for boxed, rather than tagged, in-
tegers and dces not require an ensure_i ni tial i sed instruction onentry. The
seventh to ninth instructions show the diff erent spedali sation.

The alditional short, unconreded, tracein Figure 5.14 is caused by parts of lines
five and six of the program beaoming ha whil e the program transiti ons from the
loop onthe left to the loop onthe right.

123

<ENTRY>

load_frame 1

type_ensure int_iteratdr

native_call_protect

store_frame 2

line_load_frame

exit

)
<ENTRY>
ensurk_in]{ialised
ensu’re_ﬁmalised
fasl_lbad_frame 2
g#nﬁenter
Iineifa{stiloadjrame

fast_Joad_frame 3

fast_Joad_frame 4 ﬂg)_,._. binary add
deoptimise_checl

enslre_tagged2

ensure_tagged swap
i_add store_frame 3

swap store_frame 4
link
store_frame 3 back_exit L—.—> fast_load_frame 1
type_ensure int_iteratdr

store_frame 4

native_call_protect

fast_|oad_frame 1

store_frame 2

type_er{sure int_iteratdr
nativ%_cal |_protect
stoﬁe_frame 2

line_fast_load_frame
gen_yield
store_frame 3

Iine_fa%;t_load_frame
g%n _yield
stor#ﬁframe 3

fast_load_frame 1

fast_load_frame 3

/

list_append

fastilqadiframe 1
fastilobdiframe 3 back_exit link fast_| ; d_frame 3
Iist_%append type_er{s#e_drop int|
jump fast_l#)ad_frame 2
gq‘n_emer

Iineﬁfa#tﬁloadiframe

fastilbadiframe 3

fast_lpad_frame 4

type| ensure2 int

type_ensure int

native| call_no_prot

swap

store_frame 3

store_frame 4

fastilpadiframe 1

typeien}sure int_iteratqgr
nativeLcaII_protect
storF_frame 2
Iine_fa%t_load_frame
g%n _yield
stor(%jrame 3
fastﬁlo}adiframe 1
fastilc)%adiframe 3
list_append

jump

Figure 5.14: Extended Tracefor Overflow

124

5.11 Deviationsfrom the Design of CPython

Where paossble, HotPy foll ows the overall design o CPython However HotPy
does differ in some notable ways. Apart from the obvious diff erencesin optimisa-
tion o bytecode and JI'T compil ation, there ae differences in the way classes are
laid ou, in the way that operators are handed, and in the implementation d the
dictionary type.

5111 ClassLayout

A class(t ype) objed in CPython contains over 70 panters in order to suppat,
reasonably efficiently, the large number of ‘ speaal’ methods required by Python
In Python, a speda methodis one where the existence of an attribute with the
same namein the objed does nat alter the behaviour, asit would for anonspeaad
method For example, any type that suppats addition must have __add__ and
__radd__ methods. A dot in thetype objed is required for ead of the many
speda methods. Since the speda methods are dso visible to the Python po-
grammer, a ot wrapper® objed must be dso be installed in the type's attribute
dictionary for ead speda method

HotPy dispenses with al but six of these painters, storing the other 60+ spe-
cial attributes diredly in the type's dictionary. Five speda-method panters,
__getattribute , setattr_, get , set and delete are
necessry for corredness One alditional pointer __hash__ is retained for ef-
ficiency. Althoughthis smplificaionwould be expeded to reduce performance,
in pradiceit haslittl e dfed, due mainly to the way that HotPy handles operators.

5112 Operatorsas Partial Multi-Methods

In Python the semantics of binary operators, such as addition, are defined interms
of dispatch onthe operand types, firstly onthe left operand, and then ontheright
operand. The semantics are complicaed by subtyping, but in general work as
follows: Consider the expressonx + y. To determine the value of this expres-
sion, Pythonfirst evaluatesx. __add__(y), and shoud that fall, it then evaluates
y. _radd__(x).Both__add _and__radd__ are speda methodks.

In CPython addition is implemented by trying x. _add_ (y) before
y. __radd__(x),withfalureindicaed by returning the Not | npl ement ed value.
For example, the expressoni + f, where i isanint andf is afloat,
is evaluated by CPython as follows. CPython cdls the function __add__ be-
longngtoint: int. add_ (i, f). Sinceint. add _ can only hande

A dot wrapper is an oed instaled in a dassdictionary which makes the slots (pointers) in
the C implementation visible to the Python grogrammer.

125

addition d ints this fails, returning Not | npl enented. CPython then cdls
float. radd_(f, i) whichreturnsthe corred result.

In HotPy, operators are implemented as partial multi-methods. Ead operator
contains a hashtable which maps all valid pairs of the built-in typesto the relevant
function. For exampletheadd operator containsamappingfromthe (i nt , f | oat)
pair to theadd_i nt _f| oat function. The operationx + y iscomputed by look-
ing upthe pair (type(x), type(y)) inthe hastable and applying the resulting
functionto (x,y). If nofunctionisfound CPython-style doulde dispatchingis
then used. Althoughslower for user-defined types, it is ggnificantly faster for
built-in types,. It also makes the traang and ogdimisation of binary operations
faster and ssimpler as only user-defined types need to be hand ed.

5.12 Dictionaries

In Python, dictionaries are used bah as mappingsin user code and to implement
namespaces in the virtual macine. Python hes threekinds of namespaces; type
attributes, objed attributesand gobal (modue-level) variables. Type dtributesare
stored in a spedal type, di ct _proxy, which isimplemented as a standard open-
addressed hashtable. However, objed attributes and gobal variables are held in
standard Python dctionaries, of type di ct. This means that the di ct classhas
to perform threesimil ar but diff erent roles; objed hamespace modu e namespace
and explicit mapping. Althoughthedi ct hasonly oneinterface ead of the three
roles has distinct usage charaderistics.

In CPython the di ct is implemented as an open-addressed hashtable that has
been refined over severa yeas. It istuned for a combination o the usage dharac
teristics of modue variables and oljed attributes. This works well for CPython
but HotPy has diff erent requirements and performance dharaderistics. For exam-
ple, in CPython memory allocaion is dow and this constrains the design o the
di ct. Memory alocation is considerably faster in HotPy, so alocaionis not a
bottlened.

5.12.1 Python Dictionary Usage

Analysis of the usage of di ct sin Python (the language, not any particular imple-
mentation) suggests a different design for the di ct from that of CPython The
most common wse of dictionaries in Pythonis not explicit, but implicit, as con-
tainersfor global variables and oljed attributes.

126

Global Variables

Global variables in Python are often effedively constants such as functions or
classes; not only dothese (almost) never change, they can bereal very frequently.
Even if some variables do vary, the set of variable names, which isthe set of keys
inthedi ct, changes very rarely. In order to optimise reading o global variables,
it isuseful to be aleto keg them in aknown locaion in memory, so accesscan
be fast. In order to tred the dfedive constants as adua constantsit is necessary
to guard against their values changing.

Objea Attributes

Most objeds of agiven class onceinitialised, will shareidenticd attribute names.
In other words, for any given classit is highly likely that di ct s of al the objeds
of that classwill have equivalent keys. Thus memory use can be aut in half by
ensuring that, for those dasses that alow it, all objeds of a dass $are the same
keys. Thisaso meansthat the off set of any attribute in the objeds of agiven class
are computable from the dassaone. Unlike the values in a modue's di ct, the
valuesin adi ct used to hdd an ohjed’s attributes are likely to change; it is just
the keys that are unlikely to change.

Program-Level Mappings

Althoughthis usage islessfrequent than for global variablesand oljed attributes,
it is norethelessimportant. Any optimisations designed to improve the perfor-
mance of the ébove caes houd na impad the performance of the expli cit use of
dictionaries too much.

5.12.2 Design of the HotPy Dict

Noting that alocdion is not a battlened, and that objed attribute dictionaries
stand to gain from sharing keys, the main ideabehind the design is to split the
keysand values of adi ct into two different objeds, rather than pairing them. So
instead of one table consisting o [key, value, key, value..] there ae two tables:
[key, key, ..] and [value, value, ..], the nt" key correspondngto the nt value. In
order to all ow safe’, concurrent resizing o di ct s, the referenceto the keys objedt
must be stored in the values objed, not in thedi ct direaly. Additionally, shared
keys must be immutable, or race ondtions might occur. These constraints have
anegative dfed on accestimesto keys, but it is gnall compared to the benefits
of the optimisations that beaome possble.

’Not racefreg but ensuring the dict remainsin avalid state.

127

__class__|

values __class__|

length

size

keys __class__|
values length

load

used

keys

Figure 5.15: The HotPy dict

Figure 5.15 shows the HotPy di ct implementation. In the values objed, | engt h
isthelength of the values array, si ze isthe number of values, andkeys refersto
the keys objed. In the keys objed, | engt h is the length of the keys array, | oad
is the maximum number of keys before resizing, and used is the number of keys
(some of which may have a ©rrespondng nl in the values objed, if the value
has been deleted). Note the invariant values.size < keys.used < keys.load. By
adding a further invariant that a key is never removed from a keys objed® some
useful optimisations are possble. To alow sharing o keys objeds, shared keys
objeds are initialised with keys.used = keys.load. Combined with the constraint
keys.used < keys.load and the prohibition onremoving keys from a keys objeq,
this makes these keys objeds immutable.

Finally, given that the valuesobjed is separate from the di ct objed, itispossble
to givethevaluesobjed of amoduedictionary adifferent class and thus diff erent
behaviour from that of anonmoduedi ct .

Attribute Optimisations

In CPythonand unogpimised code in HotPy, accessng an attribute of an objed in-
volves compli caed, and thus dow, look up Thefull semantics of Pythonattribute
look upis described in Appendix C. The atribute being read may be an overrid-
ing descriptor, such as a property, a non-overriding descriptor, like amethod, or
an ordinary attribute, stored in the objed’s dictionary.

If an attribute is an overriding descriptor, it can be optimised by inserting a guard
into the dasssdictionary to ensure that the dtribute does nat change. Thisallows
the descriptor's__get _ methodto be cdled diredly, or possbly inlined.

8K eyscan be removed from a dict by resizingit, possbly to the same size; unused keys are not
copied duingresizing.

128

If an attribute is dored in the objed’s dictionary, a more complex optimisationis
required. It is worth recdli ng that non-descriptor attributes in Python are inde-
pendent of the objed’s class This makes objed dictionariesin Pythonsimilar to
objeds in a prototype-based language, such as Self or Javascript. In Self, artifi-
cial classlike objedsare mnstructed to group ohedsinto somethinglike dases.
HotPy does something similar. Eacd class cades a keys objed, which is used
to initialise the di ct of every objea of that class This ensures that for most
classs, al objeds with the same dasswill share the same keys objed. As well
as sving memory, this can be used for performance optimisation. During ogi-
misation the off set of the key in the keys table is found and this, as well as the
off set of the dictionary in the objed, can be used to perform fast attribute fetches
and stores. An ou-of-line guard must be inserted into the dass(andinto its super
classs) to ensure that it does not aaquire adescriptor of the same name &s the
attribute. An inline guard must be inserted to ensure that the keys objed in the
di ct matchesthe keysobjed inthe dass The aldressof the dtribute in question
isthen 0->_dict__->val ues[key_offset]. No dctionary lookus or class
seaches areinvolved.

If an attribute is a nonroverriding descriptor, such as a method, similar guards
to those éove must be inserted to ensure that the objed has no attribute in its
dictionary which could mask the descriptor. The descriptor can then be cdled
diredly. In the cae of a Python function, tradng may have drealy inlined the
cdl.

Global Variables and Constants

In Python classes and functions are boundto namesin the same way as any other
value. This makes it impaossble to tell for certain whether a global variable is
in fad a constant. The distinction between variable and constant is important.
Tredingavariable as a constant would result i n wasted eff ort as code is optimised
only to be discarded, but treaing a constant as variable would result in consider-
ably lessefficient code. HotPy uses the very simple heuristic that global variables
haolding classes or functions are cnstants and all others are variables.

Since dl global variables are kept in di ct s belongng to modues, when these
di ct sare aeded they are given a values objed with a different classfrom non
moduedi ct s. Thisvauesobjed can hdd additional guards to proted attributes
against deletion and, in the case of values treaed as constants, against modifi-
caion. By pinning® the values objed, the aldressof the global variable can be
computed duing optimisation and dobal variables can be accesed by a single
real, asfast asastaticdly typed language. Constant values can beinlined into the
byteaode.

9Preventing the garbage cll ector from movingit.

129

5.13 Related Work

Zaleski et a.[78] describe Yeti, a gradually extensible traceinterpreter for Java.
Yeti was designed so that J T compil ation could be added incrementally, a byte-
code & atime. In order to improve the performance of code that it could only
partly compile, Yeti needed to be ale to interchange interpreted code and com-
piled code. This requirement is gmilar to that of HotPy for staged optimisation
and results in aspeds of the designs being similar. Yeti implements individual
byteades, linea blocks (extended basic blocks) and traces al as cdlable func-
tions, allowing them to be fredy interchanged. Yeti constructs linea blocks,
which are implemented using subroutine threading, from byteades on demand.
It constructs traces from linea blocks when a badk-edge bemmes hot. Since Yeti
implements Jva, no spedadisation is required other than the inlining o virtual
cdls, which happens as aside-effed of tradang.

Williams et a.[77] describe aspedalising interpreter for Lua, which is not trace
based, but buil ds a spedali sed flow-graph for the exeauted program. It spedalises
on demand, but since Lua has only a few types, spedalisation daes not result
in excesgve dugicaion. Since Python has an unbounéd number of types, this
technique is not applicable diredly to Python Speaalisationin HotPy is driven
by traceseledion. Asfar as| am aware, HotPy is the first VM which performs
aggressve optimisation as byteamde-to-byteade transformations.

Deferred Objed Creation

Deferred oljed creaionis aform of escgpe analysis. Escagpe analysisis usually
used to al ocae objeds on the stadk, rather than the hegp, but that is not possble
with the aurrent GVMT garbage wlledor. The cade for storing nordeferred
objeds srvesthisrole. Of course, nat alocaing an olged at al i s even chegper
than stadk all ocaion.

Rigo[65] describes ‘representation based spedalizaion' in which changes to the
representation o objeds are made & runtime to reflea their usage. It main ap-
plicaionisthe unboxng o numbers, but is also applied to tuplesand lists. The
representation of atuple of known size can be changed to a set of discrete values;
thisisin essencewhat deferred oljed creaionis doingwhen atupleis deferred.
The main performancebenefit of representation based spedalizationin Psyco was
unboxng d integers, but the performancegainsfor floats and li sts were consider-
able; seeSedion 25.2. Deferred oljed credionis atednique for implementing
representation based spedali zaionin the context of a stack-based bytecde inter-
preter.

130

5.14 Conclusion

In summary, the HotPy VM is designed to make full use of the astrad machine
model outlined in Chapter 3 andthe GVMT in particular. The restrictions on the
design thusimpaosed have not been overly constraining.

The combination o these mnstraints, plus the delegation o garbage wlledion
and JIT compil ationisaues to the toadlkit, has helped to focus design dedsions on
the essntia by removing the incidental.

Implementing the optimisations appropriate for a language like Python as a se-
guence of byede-to-byteade transformations works well. This method d im-
plementing oimisationsis conceptuall y straightforward, easy to implement and
easy to debug The aility to add a new bytecode with a few lines of code and
have dl theinterpreters and the JIT compil er automaticdly updated makes exper-
imentation extremely easy.

131

132

Chapter 6

Results and Evaluation

6.1 Introduction

Evauating the dfedivenessof atodlkit li ke the GVMT is difficult to do dredly.
To do so would require the development of two or more virtual machines from
the same spedficaion; one using the GVMT, and the others using dfferent tech-
niques. Even then it would be very hard to determine which charaderistics of the
resulting VMs were due to differences in the developers and which were due to
the tods. Not only that, but the resources required would be well beyond thase
available for this reseach. Evauating the usefulnessof todkitsin general is an
even more impradica task. Since adired comparisonisimpradicd, the useful-
nessof the GVMT must evaluated indiredly by comparing the VMs built using
the GVMT with similar VMs constructed using aher methocks.

6.2 Utility of the GVMT and Toolkitsin General

As discussd in Chapter 3, the task of building a VM for a dynamic language
that integrates predse garbage alledionandaJIT compiler isdifficult withou a
toaolkit. Of course, if buildinga VM for a dynamic language were just as difficult
with the todlkit, then the developer might dedde not to bather using the toadlkit,
perhaps optingto use a nservative garbage wlledor instead. Fortunately, toolk-
itsdo nd neeal to impaose excessve difficulties; the GVMT does nat.

Consider the GVMT-Scheme VM discus=d in Sedion 4.10. To creae aScheme
interpreter with the same basic functionality would have required asimil ar amourt
of code, since both would be written in a mixture of C (for the core VM) and
Scheme (for any libraries). The Scheme interpreter written without the toalkit
would na have had to conform to the GVMT interface but would have required
integrating a conservative garbage olledor. Integrating a conservative garbage

133

colledor is a simple task, but so is conforming to the GVMT interface Any
optimisers would na have had the benefit of the mnsistency chedking provided
by the GVMT, and would thus have taken at least as longto develop. Overal, it
seams reasonable to exped that withou the toadlkit, the resulting VM would be
expeded to have taken at least as much time to develop, and would ladk predse
garbage mlledionand JT compil ation.

6.3 Performanceofthe GVMT SchemeVM

Althoughthe GVMT alows VMs to be developed quickly, in order to be useful
it must produce VMs of adequate performance. The GVMT-Scheme VM was de-
signed for clarity and speal of development, norethelessit shoud provide good
performance given that it performs basic optimisations, has predse garbage l-
ledionand uses JT compil ation.

6.3.1 PerformanceComparison of SchemeVMs

Figure 6.1 compares the performance of GVMT-Schemeto threeother implemen-
tations. Mzscheme, described in Sedion 26.9, Bigloo, described in Sedion 26.9,
and SISC, a VM based Scheme interpreter. SISC isa JVM based Scheme im-
plementation. It claims to be the fastest Scheme implementationfor the VM, but
does not perform any optimisations of the sort used in Mzscheme or Bigloo. Its
complexity seems to be rougHy ona par with that of GVMT-Scheme; the core of
SISC contains rather more lines of code than GVMT-Scheme.

The three benchmarks are seleded from the ‘computer language benchmark
game'l. All results are normalised to the Mzscheme interpreter without com-
pilation (meschenme -i). The *-i’ suffix (gvnt -i and nzscheme -i) refers to
the interpreter-only version (no compil ation). Note the logarithmic scae.

As can be seen from Figure 6.1, GVMT-Scheme performance is comparable to
that of Mzscheme. Considering the maturity of Mzscheme and gven that GVMT
Scheme was developed in under three weeks, this is a very satisfadory result
which demonstrates the usefulnessof the GVMT.

Both Mzscheme and GVMT-scheme outperform SISC by a large margin. The
relatively poa performance of SISC, which runs on the VM, serves to show
the problems of adapting a language to a VM designed for a different type of

language.

The performance of the Bigloo compiled code demonstrates that there is con
siderable room for performance improvement in the VMs. However, in order to

thttp://shoot out . al i ot h. debi an. or g/

134

| | | |
bigoo W
B mzscheme ¥
o u mzscheme -i X
gvmt []
10:‘ n gvmt -i O .
: X sIsC v
©
1) ﬁ %
(O]
& 5 =
g O
©
& 1r ¥ X X X ;
V4
\V/ < V
01 | | | |
6 <
%0 03 % %
@ Q 9 \
> 2 % 2
) > % ®
® 5 2
®

Figure 6.1: Performance of Scheme Implementations

move towards this level of performance many sophsticated optimisations would
be required.

6.4 Comparison of Unladen Swallow, the PyPy VM,
and HotPy

In order to assessthe quality of the HotPy VM, it will be compared with three
other Pythoninterpreters: the standard CPythoninterpreter, Unladen Swall ow and
the PyPy VM, seeSedions 2.5.1, 2.5.5, 2.5.3 respedively.

Before comparing the performance of the virtual madines, a brief comparison o
the differing designs of the four VMsisin order.

6.4.1 Relevant Design Details

These four diff erent systems use diff erent tedhniques to implement the VM. Both
CPythonand Unladen Swall ow are built using the standard C and C++ compil ers,

135

Unladen Swallow is afork of CPythonand uses LLVM to add JIT compil ation.
HotPy and PyPy (VM) are built using toadls, the GVMT and PyPy (tod-chain),
respedively.

HotPy and PyPy both have agenerational garbage wlledor, whereas CPython
and Unladen Swallow use reference-courting for garbage mlledion. Unladen
Swall ow performs profiling at runtime to gude subsequent compil ation, whereas
HotPy and PyPy use traang to drive subsequent optimisation. HotPy performs
most of its optimisations as bytecode-to-bytecode transformation. PyPy performs
its optimisations on the same intermediate representation used to drive its cus-
tom machine-code generator. Unladen Swallow and HotPy both use LLVM for
machine-code generation.

A Note on the Significance of Results

The am of the benchmarking exercise here is to compare naot the individual im-
plementations, but the underlying techniques. Unfortunately it is very difficult to
separate the two. Implementation detail s can acount for a significant diff erence
in performance Consequently, when comparing dffering implementations, it is
probably wise nat to attach much significanceto small diff erencesin performance

The difference in performance between the base line performance of Unladen
Swallow (which performs no ogimisations) and Python 3isabout 10% (in Tables
6.1 and 62). This difference is whaly due to differing implementation detail s
between Python2 and Python3 It thus sans reasonable to ignare such small
differences andto regard larger diff erences, of say upto 3%, as of limited signif-
icance

For example, when comparing HotPy to Unladen Swall ow, the comparisonis be-
tween the underlying methods of building the virtual madine, the differing ap-
proades to optimisation and efficiency of the ade in the implementation. Al-
thoughit is possble to isolate these variables to some degreg it is only possble
to be confident in aresult if the differences are large.

When comparing the performance of two diff erent settings of the same implemen-
tation, this caution daes not apply.

6.4.2 Benchmarks Used

There is no standard benchmark suite for Python The Unladen Swall ow bench-
mark suite has become the de fado standard for benchmarking Python 2x virtual
madhines, but has not been pated to Python 3 so could na be used. The ‘py-
bench’ suite that is included with Pythonis designed for benchmarking compo-
nents of CPythonand would givewildly varying results for atracebased speaal-

136

ising ogdimiser; some benchmarks would be optimised to nahing, others might
resist optimisation atogether. For example, one benchmark tests integer arith-
metic by performing a number of simple operations on constants. HotPy (and
PyPy) would optimise these avay entirely.

Six programs were chosen as benchmarks. The benchmarks were dhosen to test
the VM rather than the suppating library. They exercise arange of the core
fedures of the VM, namely integer and floating pant arithmetic, list operations,
generators, iterators, simple string manipulationand very basic I/0.

Two benchmarks, ‘pystone’ and ‘richards’, have been used for benchmarking
Pythonsince ealy versions. The ‘gcbench’ benchmark was taken from the Un-
laden Swall ow benchmark suite, since abenchmark that stressed the garbage ol-
ledor was required, and it iswas trivial to pat to Python 3 The remaining three
benchmarks, ‘fannkuch’, ‘fasta’ and ‘spedral-norm’, were taken from the Com-
puter Language Shoaout Game. HotPy'slimited library suppat ruled ou anum-
ber of the Computer Language Shoaout Game benchmarks, the remainder of the
benchmarks tested either one library comporent, such as the regular expresson
engine or large integer arithmetic, or were floating pant computations. Since
Pythonis not generally used for computationall y intensive tasks, including more
than onre floating pant benchmark would bias the results.

The source mdefor all the benchmarksisinthe/ benchnar ks subdredory of the
HotPy distribution.

6.4.3 Experimental Set Up

The madine used was an Intel Pentium 4 runnngat 3.00GHz with IMb of cade,
running Linux. The machine was very lightly loaded (the X-server and Cronjob
scheduler were both turned off).

The versions of the VMs used were:

e HotPy — Revision 44 (built with GVMT revision 62, http://code.
googl e. cont p/ hot py/ http://code. googl e. com p/ gvnt/

e PyPy — Version 13, http://pypy. org/ downl oad/ pypy- 1. 3- | i nux.
tar.bz2 and http://pypy.org/ downl oad/ pypy- 1. 3-1inux-nojit.
tar.bz2

e Unladen Swallow — Revision 1159 http://code. google.con p/
unl aden- swal | ow

e CPython— Version 31.1, http://ww. pyt hon. org/ ft p/ pyt hon/ 3. 1.
1/ Python-3.1.1.tgz

137

AlthoughHotPy has the patential to be multi-threaded, the experimental version
was dnge-threaded only; compil ation was dore in the main interpreter thread.
This semed to be the fairest comparison as all the other VMs have aglobal in-
terpreter lock. The GVMT garbage olledor expeds to run in a multi-threaded
environment, so the garbage mlledor hasto perform some synchronisation, even
when running asingle-threaded program. This sansto have no ndicedle dfed
on performance

Two variants of the HotPy VM were benchmarked. The two were the same ex-
cept for the geti temand setit emmethods for lists. The first version (marked
‘C’) has the getitemand setitemmethods written in C. The second version
(marked ‘Py’) has the methods written in Python The Python implementations
of the methods delegate to more spedalised versions written in C. The diff erent
performance daraderistics of the two libraries helps to ill ustrate the dfed of
optimisation onPythoncode.

All benchmarks were run onall virtual madines for threedifferent durations, a
short run o abou a second (+60%) for the CPythonimplementation, a medium
run o abou ten seconds and alongrun o abou one hunded seconds. The short
runs were used to demonstrate the lag effed of warm-up onthe optimisers; the
longruns were to all ow the optimisers to warm up fully.

All benchmarks were run ten times, the slowest two discarded, and the rest aver-
aged. The entries in the column labelled *Mean' are the geometric means of the
benchmark times.

All tables in this dion show the performance relative to CPythort larger num-
bers are better. The configurations, inpusand full results, astimesin seconds, for
all runsare shownin Appendix F.

6.4.4 BaseLlinePerformance

In order to asessthe dfedivenessof the toadkits in constructing ssmple, non
optimising VMs, the performance of the base interpreters was measured. All the
VMswererunwith J'T compil ationturned off and, in the case of HotPy, all other
optimisations were turned off as well. Tables 6.1 and 6.2 show the performance
of the two HotPy variants, Unladen Swallow and PyPy relative to CPython Ta-
ble 6.1 showsthe results for the short runs and Table 6.2 shows the results for the
medium length runs. Results for the two lengths of runs are quite similar, which
isunsurprising gven that no runtime optimisations are taking pgace

The small differences between the performance of Unladen Swallow (withou
compil ation) and CPython are a @nsequence of Unladen Swallow being based
onthe 2.6 release of CPython rather than the 3.1 release. The differenceis amall,
but does show that implementation detail sdo effed performance, even thoughthe
important feaures of the design are the same.

138

gcbench | pystone| richards| fannkuch | fasta | spedral | Mean
Un. Sw. (noJIT) | 1.00 1.19 | 0.68 129 |137| 130 | 111
HotPy (base, C) 1.52 130 | 115 105 |052| 083 | 1.01
HotPy (base, Py) | 1.50 1.00 | 1.13 033 |036| 083 | 0.74
PyPy (interpreter) | 0.69 062 | 0.37 091 |047| 087 | 062

Table 6.1: Unoptimised Interpreters. Short Benchmarks. Speed Relative to
CPython

gcbench | pystone| richards| fannkuch | fasta | spedral | Mean
Un. Sw. (noJIT) | 0.99 1.18 | 0.66 128 |135| 135 | 1.10
HotPy (base, C) 1.54 134 | 1.20 111 |050| 088 | 1.03
HotPy (base, Py) | 151 1.02 | 115 031 |033]| 0.88 | 0.74
PyPy (interpreter) | 0.66 060 | 0.35 087 |044| 091 | 060

Table 6.2: Unoptimised Interpreters. Medium Benchmarks. Speed Relative to
CPython

HotPy(C) runs at abou the same speeal as CPython HotPy(Py) and PyPy are
both slower than CPython by abou the same margin. Of course, neither PyPy
nor HotPy are designed to be run without any optimisation. The performance
of HotPy(C) shows that a VM built with a todkit need be no slower than ore
constructed conventionally, even without any attempt at optimisation. HotPy(Py)
is naticedly slower than HotPy(C) as it must run extra Python code, whichiit is
not optimising.

6.45 Full VM Performance

Tables 6.3 and 6.4 show the performanceof the two HotPy variantsand PyPy, with
their default settings. Unladen Swall ow is also tested with two diff erent settings,
the default setting, which compil es methods when hat, and with the JIT compil er
awayson.

HotPy(C) isfastest onthe shortest benchmarks, by atiny margin over HotPy(Py).
PyPy is alittl e Slower, but not by a significant amount. For the medium bench-
marks, PyPy is the fastest by abou 10%, not a significant margin.

The margins in the individual benchmarks are more significant. HotPy is faster
for the gcbench and pystone benchmarks. The pystone benchmark iswrittenin a
procedural style andis mainly integer based. The use of tagged integersis proba-
bly a big help to HotPy for this benchmark. The gcbench benchmark is designed

139

gcbench | pystone| richards|fannkuch | fasta | spedral | Mean
HotPy (JIT, C) 2.95 242 | 164 136 |099| 244 | 1.84
HotPy (JIT, Py) 294 | 238 | 156 146 | 094 | 245 | 1.82
PyPy (with JIT) 1.47 287 | 0.89 217 |100| 334 | 173
Un. Sw. (default) | 1.07 048 | 0.37 068 |084| 106 | 0.70
Un. Sw. (always) | 0.60 039 | 0.18 055 |043| 090 | 046

Table 6.3: Full VM. Short Benchmarks. Speed Relative to CPython

gcbench | pystone| richards|fannkuch | fasta | spedral | Mean
PyPy (with JIT) 3.82 7.23 | 3.93 415 |1.09| 1174 | 423
HotPy (JIT, Py) 5.63 772 | 232 341 | 192| 463 | 381
HotPy (JIT, C) 5.39 785 | 254 270 | 212| 466 | 3.77
Un. Sw. (always) | 1.05 092 | 049 156 | 125| 167 | 1.08
Un. Sw. (default) | 1.21 069 | 044 066 |132| 209 | 093

Table 6.4: Full VM. Medium Benchmarks. Speead Relative to CPython

to test garbage mlledion performance but incidentaly tests objed initialisation
performance & well. The fasta benchmark tests Impletext formating and ouput.
PyPy does nat perform very well on this benchmark, only beaing CPython bya
small margin. The main loopin fasta is driven by a generator? so it is possble
that the version 1.3 of PyPy does not optimise generators well. Althoughit starts
more slowly PyPy is faster for the richards benchmark. The richards benchmark
has a number of balanced i f statements which can creae arelatively large num-
ber of traces for the program size PyPy is able to cope better with this thanks to
its compil er, which is alot faster than the LLVM-based compil er of HotPy. PyPy
is clealy faster for the spedral-norm benchmark. The spedral-norm benchmark
makes extensive use of floating pant cdculations, which isan areain which PyPy
is particularly strong

The performance of Unladen Swallow is aurprisingly poar, starting very slowly
and orly just overtaking CPython for the medium length benchmarks. The
richards benchmark seems to cause Unladen Swall ow even more problems than
the tracebased optimisers of HotPy and PyPy, which is aurprising, as Un-
laden Swall ow uses a function-at-a-time optimiser and shoudn’'t care when bah
branches of a condtional statement are taken.

In order to allow the slower LLVM-based compil ers time to fully compile code,
Table 6.5 shows relative performance for the long ktenchmarks. For the longest

2Generators in Pythonare akind o iterator in form of a function that includes ayi el d ex-
presson. Eacdh yi el d expresson suspends exeaiution o the function and returns a value. The
generator isresumed by cdlingits__next __ method

140

gcbench| pystone|richards|fannkuch| fasta | spedral | Mean
HotPy (JIT, Py) 9.77 | 1286 | 4.14 509 |264| 724 | 6.08
HotPy (JIT, C) 882 | 1354 | 424 364 |296| 7.26 | 583
PyPy (with JIT) 7.31 9.00 | 6.82 459 | 114| 1249 | 555
Un. Sw. (always) | 1.09 1.09 | 0.60 189 |161| 183 | 1.26
Un. Sw. (default) | 1.13 0.73 | 045 066 |158| 1.74 | 094

Table 6.5: Full VM. LongBenchmarks. Speed Relative to CPython

runs, HotPy outperforms PyPy by an insignificant margin. HotPy is noticedle
faster than PyPy for integer work (pystone), and slower for floating pant (spedral-
norm). This suggests that HotPy would benefit from better optimisation o float-
ing pant computations. Conwersely, PyPy would benefit from improved inte-
ger performance and better handling o generators (if that is the problem in the
fasta benchmark). Unladen Swallow’s performanceis 4dill relatively poar, but im-
proved. Informal experiments showed that the performance of Unladen Swall ow
did na improve by much with even over longer runs.

6.4.6 Interpreter-Only Performance

gcbench | pystone| richards| fannkuch | fasta | spedral | Mean
HotPy (int-opt, C) | 3.98 310 | 244 167 (081 217 | 211
HotPy (int-opt, Py) | 3.97 3.08 | 223 150 |0.79| 217 | 2.03
PyPy (interpreter) | 0.69 062 | 0.37 091 |047| 087 | 062

Table 6.6: Optimised Interpreters. Short Benchmarks. Speed Relative to CPython

gcbench | pystone|richards| fannkuch | fasta | spedra | Mean
HotPy (int-opt, C) | 4.30 | 320 | 259 | 171 |077| 234 | 219
HotPy (int-opt, Py) | 430 | 318 | 238 | 171 |0.75| 234 | 214
PyPy (interpreter) | 066 | 0.60 | 0.35 087 | 044 091 | 060

Table 6.7: Optimised Interpreters. Medium Benchmarks. Speeal Relative to
CPython

For some environments a JIT compil er is not avail able. Possbly the host device
lacks aufficient memory, or theresourcesfor portingthe JIT compil er are not avail -
able. To simulate this case dl the VMs are benchmarked with the JT compil er
disabled, but other optimisations left functioning. The results are shown in Ta
bles 6.6 and 6.7. HotPy outperforms CPython byafador of two, and ouperforms

141

PyPy by afador of three Thisisan additional advantage of performing ogimi-
sations at the byteaode level; | arge performance gains can be made whil e kegoing
the advantages of an interpreter, namely portabilit y and ease of maintenance

It is worth panting ou that PyPy makes no attempt to optimise this case. It is
probable that by applying some of the optimisations used in the compiler, and
exeauting the resulting intermediate form, the PyPy interpreter could be made
faster.

6.4.7 Comparing Compilation to Other Optimisations

gcbench| pystone|richards|fannkuch | fasta | spedral| Mean
HotPy (int-opt, C) | 3.98 310 | 244 167 081 217 | 211
HotPy (int-opt, Py) | 3.97 3.08 | 223 150 |0.79| 217 | 2.03
Un. Sw. (default) 1.07 048 | 0.37 068 [084| 106 | 0.70
Un. Sw. (always) 0.60 039 | 0.18 055 |043| 090 | 046

Table 6.8: Interpreter vs. Compiler. Short Benchmarks. Speedl Relative to
CPython

gcbench | pystone| richards|fannkuch | fasta | spedral | Mean
HotPy (int-opt,C) | 4.30 | 3.20 | 259 171 | 077 | 234 | 219
HotPy (int-opt, Py) | 430 | 318 | 238 | 171 |0.75| 234 | 214
Un. Sw. (always) 1.05 | 092 | 049 156 |125| 167 | 1.08
Un. Sw. (default) 121 | 069 | 044 066 |132| 209 | 093

Table 6.9: Interpreter vs. Compiler. Medium Benchmarks. Speed Relative to
CPython

gcbench| pystone|richards|fannkuch | fasta | spedral| Mean
HotPy (int-opt, C) | 6.20 324 | 261 172 |090| 240 | 241
HotPy (int-opt, Py) | 6.15 322 | 233 174 1087 | 239 | 235
Un. Sw. (always) 1.09 1.09 | 0.60 189 |161| 183 | 1.26
Un. Sw. (default) 1.13 0.73 | 045 066 |158| 174 | 094

Table 6.10: Interpreter vs. Compiler. Long Benchmarks. Speed Relative to
CPython

It is folklore that high performancein virtua madines is synonymous with JIT
compilation. Whilst this is generaly true for static languages, it is not neces-

142

sarily so for dynamic languages. Tables 6.8, 6.9 and 6.10 compare the perfor-
mance of Unladen Swallow and HotPy in interpreter-only mode. Unsurprisingly
for the short benchmarks HotPy is much faster. The differenceis dill | arge for the
medium benchmarks.

For the longest benchmarks, Unladen Swallow with the JIT aways on is faster
than HotPy for two of the benchmarks. The HotPy interpreter is faster on the
other long kenchmarks, some by a large margin, and is sgnificantly faster on
average. On the default setting, Unladen Swall ow speels up the fasta and spedral
norm benchmarks, but its overall performanceispoa. AlthoughHotPy appeasto
spead up onthe gcbench benchmark from the medium to the longruns, thisisin
fad a slow down by CPythonand Unladen Swallow. This dow down is probably
caused by the garbage-cycle mlledor which has nonlinea behaviour.

The relatively poa performance of Unladen Swallow adds weight to the agu-
ment that dynamic languages, such as Python are just not amenable to the sort
of optimisations used for static languages. Of course, once the dynamic form of
the program has been transformed into a form that is more statical y-typed, using
tradng and spedali sation, then compil ationto macdine cdeisauseful technique.

6.5 Aspedsof Virtual Machine Performance

Althoughthe goal of comparing the different virtual macdines was to see the
effeds of differing construction techniques, it also shed some light on the rela
tive value of differing ogimisation techniques. This merits further examination.
HotPy can be used as an experimental platform, asit isdesigned so that the various
optimisations are moduar and can be turned on a off independently. The inter-
adions between various optimisations for dynamic languages can be explored by
running HotPy with diff erent settings.

The design o HotPy is such that all optimisations, including the compil er, work
ontraces. It istherefore impossble for HotPy to do any optimisations withou
first tradng. That is nat to say that such optimisations canna be dore withou
traang. Williamset al.[77] implement aspedalisinginterpreter for Lua, in which
spedalisationis performed on demand. There is no separate tradng phese. They
report speed-ups of abou 30%. However, since Lua and Python are quite diff er-
ent, it is very hard to make any meaningful comparison o their results with the
results for HotPy.

6.5.1 Permutations

Apart from tradng, all other optimisation passes can be turned on a off indepen-
dently. Asdescribed in Sedion 55.1, the HotPy optimisersform a chain: tradng,

143

speaalisation, deferred ohed creaion (DOC), peghde optimisations and com-
pilation. Sincethe optimisers are designed to work as a chain, ead passmay not
produce & clean code as it could, as ead passrelies onthe later passes to clean
it up. Asa mnsequence, all permutations are run with the pegphde optimiser on,
in order to minimise this effed.

The same set of benchmarks and duations, as described in Sedion 64.3, were
used. The permutations of optimisations used were:

¢ No tradng; the base-line interpreter.

e Tradng orly. (T)

e Tradngandspedalising. (TS)

e TradngandDOC. (TD)

e Tradng, spedaisingand DOC. (TSD)

e Tradngandcompilation. (TC)

e Tradng, spedalising and compilation. (TSC)

e Tradng, DOC and compilation. (TDC)

e Full, al four passs. (TSDC)

T TS | TD | TSD | TC | TSC | TDC | TSDC
Short Benchmarks | 1.10| 191|096 | 211 | 0.76 | 1.46 | 0.75 | 1.83

Medium Benchmarks | 1.09| 1.96| 095| 219 | 105|251 | 1.04 | 3.78
LongBenchmarks | 1.16 | 2.14|1.01| 241 | 1.24| 342 | 1.25| 5.83

Table 6.11: HotPy(C) Performance Permutations. Speeds Relative to CPython

T TS | TD | TSD | TC | TSC | TDC | TSDC
Short Benchmarks | 0.80| 1.30| 0.73| 1.97 | 054 | 1.07 | 056 | 1.82
Medium Benchmarks | 0.78 | 1.31 | 0.71| 2.14 | 0.74| 1.70 | 0.78 | 3.80
LongBenchmarks | 0.83|1.41|0.76| 234 | 0.89| 232 | 093 | 6.11

Table 6.12: HotPy(Py) Performance Permutations. Speeds Relative to CPython

T | TS| TD | TSD | TC | TSC | TDC

Short Benchmarks | 1.73| — | 218| — |192| — | 245
Medium Benchmarks | 1.80| — | 231| — |239| — | 3.63
LongBenchmarks | 1.84| — | 238 | — | 275| — | 4.67

Table 6.13: Speed Up Due to Adding Speaaliser; HotPy(C).

Tables 6.11 and 6.12 show the mean speeds of the various permutations relative
to CPython Results for the individual benchmarks are shown in Appendix F.

144

T TS |TD | TSD | TC | TSC | TDC

Short Benchmarks | 087|110 — | — 098|125 —
Medium Benchmarks | 0.87 | 1.12| — | — | 100|151 | —
LongBenchmarks | 0.87|112| — | — |100| 1.71 | —

Table 6.14: Speed Up Dueto Adding D.O.C.; HotPy(C).

T TS | TD | TSD | TC | TSC | TDC
Short Benchmarks | 0.69 | 0.77| 0.77| 087 | — | — —
Medium Benchmarks | 096 | 1.28 | 1.10| 1.73 | — | — —
LongBenchmarks | 1.07 | 1.60| 1.24| 242 | — | — —

Table 6.15: Speed Up Due to Adding Compil er; HotPy(C).

Theinterrelations between the passes are shown more dealy by Tables6.13, 6.14
and 6.15 for HotPy(C) and by Tables 6.16, 6.17 and 6.18 for HotPy(Py). Theta
bles show the relative speed-ups for individual passes, for the mean of the bench-
marks. Each column showsthe spead-upsfor adding the optimisation passfor that
table, to the permutation of that column.

Itisimmediately clea that speaalisationisimportant for performance The gains
for spedalisation by itself are large. Not only that, spedalisation significantly
improvesthe quality of inpu to the other optimisers, generating even larger gains.
It isworth naing that both of the spedali sation-withou-compil ation settings (TS
and TSD) outperform both of compil ation-withou-spedali sationsettings (TC and
TDC) for all the benchmarks of any duration.

The utility of deferred oljed credion depends alot onwhich other optimisations
are used. It is useful when combined with speaalisation and even more useful
when compilation is used as well. When used with neither spedalisation na
compilation (TD), it adually slows code down. Thisisto be expeded sinceDOC
relies on predse type information to avoid having to crede objeds aaosscdls
and operators. The interadion with compilation is a result of DOC generating
more bytemdes, that perform dightly lesswork, when no type information is

T |TS| TD | TSD | TC | TSC | TDC

Short Benchmarks | 1.63| — | 270 — |[198| — | 3.25
Medium Benchmarks | 1.68| — | 3.02| — |229| — | 4.89
LongBenchmarks | 1.71| — | 309| — |262| — | 6.56

Table 6.16. Speed Up Due to Adding Speddli ser; HotPy(Py).

T TS | TD | TSD | TC | TSC | TDC

Short Benchmarks | 092|152 — | — | 103|170 —
Medium Benchmarks | 091 | 163| — | — | 1.04| 223 | —
LongBenchmarks | 092|166 — | — | 105|263 | —

Table 6.17: Spead Up Due to Adding D.O.C.; HotPy(Py).

145

T TS | TD | TSD | TC | TSC | TDC
Short Benchmarks | 0.68 | 082 0.76 | 092 | — | — —
Medium Benchmarks | 095130109 | 1.78 | — | — —
LongBenchmarks | 1.07 | 1.64 | 1.23| 261 | — | — —

Table 6.18. Speed Up Due to Adding Compil er; HotPy(Py).

available. Thisresultsin code that is a littl e faster once ompiled, but is dower
when interpreted. DOC is a worthwhile optimisation, since when paired with
speaalisationit always results in speedups; in the best cases it more than doubles
performance

Compilation byitself is of no use asit tendsto slow code down, but is very useful
when following onfrom other optimisations. Compil ationis doully reliant onthe
quality of code generated by the upstream passes. Not only can the compil er pro-
duce better macdhine ade from better byteaode, it can do more quickly, allowing
more aode to be compil ed which further increases performance

Spedalisation Is Key

Theresultsclealy show that tracedriven spedali sationis the keyoptimisationfor
HotPy, and byimplication for the optimisation o other dynamic languages. That
spedalisation is important for optimising dyramic languages is not surprising;
what is dightly surprising is its effed on aher optimisations. Withou speadali-
sation, the D.O.C passis esentialy uselessand compilation is not much better.
Compilation is at least seven times as effedive (measured in terms of speedup)
with spedali sation than withou.

Spedalisation uocks the other optimisations. Althoughthe speed upfrom DOC
is abou the same as that from spedali sation and the speed up from compil ation
excedls these, the other optimisations only work well with spedalised inpu.

The poa performance of compil ationwithou the help of spedali sationmay shed
some light onthe performance of Unladen Swall ow. Unladen Swall ow does some
profiling to gather type-information at runtime, but withou tracedriven spedali-
sation this appeasto be of limited use.

6.6 Memory Usage

Increased performance often comes at the aost of incressed memory usage, as
time-spacetrade off s can be made. Optimisers, espedally compil ers can use on-
siderable amourts of memory.

146

6.6.1 Experimental Method

Red memory usageis difficult to measure with an operating system that suppats
virtual memory, sincethe red memory avail able to a processis eff edively hidden
by the operating system. Linux, which was the system used for development and
measurement, provides no consistent measure of red memory usage. Although
it is impossble to measure red memory usage withou modifying the operating
system, it is possble to measure the minimum amount of virtual memory that a
VM needs to complete abenchmark.

Eadh benchmark (long version) was run repeaedly on ead VM, successvely in-
creasing the anount of the maximum amourt of memory avail able to the process
using the linuxul i mt -v utility, until the process completed properly, 5 times
inarow.

6.6.2 Results

Table 6.19 shows the minimum amourt of memory (in megabytes) required to run
eadh benchmark; small er number are better. PyPy without aJIT isnot considered
as its performance is worse than CPythoris. The ‘hello’ benchmark is a single
line benchmark to test how much memory ead VM requires in order to start up
and shut down.

hello| gcbench|pystone|richards|fannkuch|fasta| spedral
CPython 6 97 7 7 6 7 7
Un. Sw. (default) | 16 111 21 22 20 21 18
HotPy (full) 44 113 63 65 64 62 62
HotPy (nocomp) | 26 87 27 28 29 27 27
PyPy (withJIT) | 37 92 40 41 40 48 40

Table 6.19; LongBenchmarks. Minimum Required Virtual Memory

As can be seen CPython wses considerably less memory than any of the other
VMs, except for the GCBench benchmark where HotPy (interpreter only) and
PyPy use alittl e lessthan CPython

Considering al but the GCBench benchmarks, Unladen Swallow uses 11-15
Mbytes more than CPython, PyPy uses 33 to 41 Mbytes more, HotPy (withou
the compiler) uses 17 to 20 Mbytes more and HotPy (full) uses 50 to 55 Mbytes
more.

Memory usage can be broken into two parts; fixed overheads and dyramic mem-
ory use. Clealy HotPy and PyPy have large fixed memory overheads. The fixed
overhead of HotPy (with compil er) is particularly large.

147

Fixed Memory Overhead of HotPy

The fixed memory overheads of HotPy can be broken dovninto threeparts; trans-
lation owerheads, memory management overhead andthe JIT compil er. These ae
mainly attributable to the GVMT, rather than HotPy itself.

HotPy (withou the compiler) uses 20 to 23 Mbytes more than CPython (except
for GCBench). Running HotPy with a memory debugger shows no significant
memory leks. The GVMT runtime dlocaes an 8 Mbyte nursery at start up.
Reaompiling GVMT to use al Mbyte nursery reduces the memory usage by up
to 8 Mbytes. However, with a 1 Mbyte nursery GCBench uses almost as much
memory and runs quite alot slower; avariable sized nursery isobviously required.
The GVMT linker aso lays out memory rather sparsely, taking 15 Mbytes for
datathat could be fitted in 0.5 MBytes. Intotal, the heg isabou 8 Mbytes larger
than it needsto be & start up.

By default, Linux al ocaes 2 Mbytes of stadk spaceper thread. GVMT credes
a mlledor thread and a finaliser thread in addition to the main thread. The sep-
aration o the HotPy VM frame stack from the underlying GVMT stadk means
that HotPy can run deeply reaursive programswith very littl e C stack. Thismeans
that the stadk spacefor eat thread can be reduced to 100K bytes or less Experi-
mentall y reducing the stack spaceto 100K bytes (usingul i m t) reduces memory
usage by over 5 MBytes.

Clealy most of the overhea is an artifad of the implementation, rather than a
fundamental issue. Removing the combined overheads of nursery, layout and
stadks would reduce the fixed memory overhead from 20 MBytes down to 6 o 7
Mbytes. This shoud be addressed in future versions of the GVMT and HotPy.

The HotPy compil er is built as a separate dynamicaly linked library, and adds 18
Mbytes for the *hello world’ program which loads the compil er, but does nat run
it. Thiscompares unfavourably to Unladen Swall ow which adds abou 10 Mbytes
fixed overhead to CPython

Dynamic Memory Usage of HotPy

The dynamic overhead of HotPy, that isthe extramemory required to runisdom-
inated by the hegp memory required for objeds and the temporary memory re-
quired bythe LLVM compil er badkend.

Both HotPy and PyPy are ale to reduce the memory footprint of objea dic-
tionaries by sharing the keys. The dfed of thisis shown in the GCBench re-
sults. CPython and Unladen Swallow require aou 90 Mbytes more than the
other benchmarks. HotPy requires about 60 Mbytes and PyPy requires abou 50
Mbytes. AlthoughHotPy uses more memory than PyPy for its hegp oljeds, it
uses asimpler approac than PyPy and uses alot lessmemory than CPython

148

The HotPy compiler uses a further 16 to 20 MBytes when exeauting. This is
considerably more than Unladen Swall ow which adds up to 5 Mbytes more when
running. The reasons why the HotPy compil er uses o much more memory than
Unladen Swall ow are not clea. BothrequireLLVM andthe GVMT generated part
of the compiler islessthan 1 Mbyte. The fina maciine mde by LLVM shoud
be compaad and efficient; LLVM is competitive with GCC and the J T compil er
generates the same de &s the offline version. The madine code generated by
the HotPy VM seansto be dficient, it outperforms Unladen Swall ow by a consid-
erablemargin. Itis passblethat the LLVM intermediate representation generated
by the GVMT compiler is large and for some reason causes LLVM to use con
siderable memory to perform its optimisations; the GVMT uses optimisationsin
LLVM equivalent to the -O2 setting for the static compil er.

The best way to reduce dynamic memory use would be to replaceLLVM with a
leaner compil er.

6.7 Effed of Garbage Colledion

gcbench | pystone | richards | fannkuch | n-body | richards
40.5% 6.4% 4.5% 6.2% 2.9% 5.8%
Table 6.20: CPython GC percentages
Non-GC
Spedad up | gcbench | pystone | richards | fannkuch | n-body | richards | Mean
X 2 14 1.9 1.9 1.9 19 19 18
x 3 1.7 2.7 2.8 2.7 2.8 2.7 2.5
X 5 1.9 4.0 4.2 4.0 45 4.1 3.6
x 8 2.1 55 6.1 5.6 6.7 5.7 5.0

Table 6.21: Theoreticd CPython Speadups

Table 6.20 shows the percent time spent in expli cit memory management function
in CPythonfor the medium benchmarks. The datawas gathered using the oprofile
profiling todl and summingthe exeautiontime of al functions expli citly involved
in alocaion o dedl ocation. No functions which initi ali se objeds were included,
nor was any attempt made to measure the overhead of reference ounting.

Table 6.21 show the expeded overall speed-up o the VM if al other comporents
of the VM were sped up bythe fador onthe left, but no attempt made to improve
garbage olledion performance

149

Obviously thisisan over-simplification, but it suggest that reference ourting dces
not prevent useful improvementsin performance However, if large speed-ups are
required then the overheal of poar garbage olledionwill become aproblem. To
achieve aspeead-up o five, the stated gaal of Unladen Swallow and an achiev-
able goal, as PyPy and HotPy have demonstrated, would require speeding upthe
remainder of the VM by afador of eight; quite an ambiti ous target.

6.8 Potential for Further Optimisation

AlthoughPyPy and HotPy achieve significant speedups over CPython, they re-
main slow compared to VMs for Java or C#, let alone compiled C or Fortran.

Althoughit is impossble to pu a definite upper bound onthe performance of a
Python VM, it is reasonable to assume that a Python VM is not going to be &
fast as compiled C code or Javarunnng onamodern VM. A dired comparison o
HotPy and PyPy to compiled C and amodern JavaVM isnot necessary meaning-
ful due to many dyramic feaures of Pythonthat are not present in staticaly typed
languages. Nonethelessa comparison dces have some value. It provides a (rather
high) upper bound onexpedations for possble performance improvements, and
gives some objedive way of measuring the quality of optimisation.

I I I I C(GCCI-OB) AI
1000 Java -Xint X -
Java []
A HotPy O
A PyPy W/
[]
o AN
% 1005— A [] B =
g ~ A -
s
&
108 O g Vo
F v X X O
O < X
X O
X
l | | | | | |
e} Ky <. ~< ~< X))
8 7) < Y °
e ? K % %
>

Figure 6.2: Performance of HotPy and PyPy compared to C and Java

150

Figure 6.2 shows the performance of HotPy, PyPy compared with C and Java
equivaents of the Python kenchmarks. The C and Java versions of the first
three benchmarks are broadly similar to the Python versions. The C version d
GCBench is a dired trandation d the Java version, using the Boehm conserva-
tive colledor to perform memory management. The secondthreebenchmarks are
taken from the Computer Language Benchmark Game, and are more idiomatic
for all threelanguages.

Source mdeisincluded in the benchmar ks folder of the HotPy distribution. The
JavaVM used was OpenJDK 1.6.0_0(build 1.6.0_0-b11, mixed-mode, sharing),
using bah the default setting and the interpreter-only setting (-Xint). The C com-
piler was GCC 4.2.4 using -O3 optimisation.

Itisclea from Figure 6.2 that thereis plenty of scope for improving performance
How much HotPy or PyPy could be improved is far from clea. What is clea is
that minor efficiency improvements, such as better maciine aode generation o
lower memory management overhead is nat going to make Pythonasfast as Jva;
completely new optimisations are required.

6.8.1 Quality of Optimisation

Given some baseline performance and a target optimisation it is possble to cd-
culate aquality metric for an optimisation. For a baseline time, t, atarget timet;,
and thetime for aVM being assesxd t,, ametric can be cdculated to asessthe
‘quality’ of the optimisations applied. The metric is designed so that no speedup
givesametric of 0 and achieving the target givesa metric of 1.

A logarithmic, rather than a linea, metric is chosen. The logarithmic metric
(log(tp) —log(ty))/(log(ty) —log(t;)) givesresultsonarange of 0to 1and gvesa
metric of 0.5when the speedupfor the VM isthe squareroat of thetarget speedup.
Thelinea metric, (tp/ty—1)/(tp/tt — 1)), would give unddy small valuesfor sig-
nificant speedups in cases where t; is much smaller than t, . Figure 6.3 shows
the‘quality’, using the logarithmic metric, of the optimisations used in HotPy and
PyPy measured against CPythonas the baseli ne and Java (OpenJDK) asthetarget.

With the exception o thefasta benchmark, the qualiti es of HotPy and PyPy cluster
around 05, a sort of haf way mark. The fasta benchmark is the odd ore out;
the quality metric for HotPy is low and for PyPy is close to zero. Although
the fasta benchmark has been optimised espeaally for CPython, its gyle is not
that unusual, making heavy use of generators and list comprehensions. There
is no compelling reason why this shoud na be optimised as well as the other
benchmarks. This merits further investigation, perhaps suggesting that generators
and li st comprehensions are harder to optimise than other constructs.

151

I I
HotPy O
PyPy
0.8 | -
\V4
0.6 |- i
2 O
< O
& ©) vV -
04 v 9 1
O
O
02 F -
0 | | | | V |
0 %y //\ < < %)
%) % % N S
%, % % % v %
5 ® % %O
%

Figure 6.3: Quality of HotPy and PyPy Optimisations Measured against Java
(OpendDK)

6.9 Conclusions

Theresultsin Sedions 6.4.7 and 6.5.1 show that dthoughJIT compilationis nec
essry for high performance it is not sufficient. Withou applying ogimisations
suitablefor dynamic languages before generating madine aode, the resulting ma-
chine code will li kely be bulky and inefficient.

The dfedive optimisation d dynamic languages requires a number of comple-
mentary optimisations. Althoughtraang and spedalising can yield worthwhile
performancegains, to achieve larger gainsrequiresa combination o optimisations
including JIT compilation. A high-performance garbage oolledor isalso required
or the time spent managing memory will dil ute the hard won performancegains.

Althoughthe optimisations are complementary it is clea that spedalisationisthe
key optimisation; withou it all other optimisations are of littl e or no value.

Analysis of the memory usage of HotPy showsthat the GVMT needs somerefine-
ments of its garbage mlledor implementation, in order to reduce wasted space
Repladng LLVM would aso reduce memory usage.

AlthoughHotPy and PyPy have similar mean performance, the differences in-

152

dicae that eath VM has areas which could implemented better, yielding further
performanceimprovements withou novel optimisations. The comparison with C
and Java shows even with refinements, neither HotPy nor PyPy achieve anywhere
nea the performance of staticdly typed, compil ed code. How far this gap can be
closed remains an open question. The resultsin Sedion 6.8.1 show a measure of

the quality of optimisation, but there no way to determine what level of quality is
attainable.

153

154

Chapter 7

Conclusions

7.1 Review oftheThesis

In the introduction, the central thesis of the dissertationwas dated as:

The best way, in fad the only pradicd way, to buld a high-performance
virtual madine for adynamic language isusingatoadl or toalkit.

Such atoadlkit shoud be designed aroundan abstrad macdhine model.

Such atoadlkit can be constructed in amoduar fashion, all owing ead toad
or comporent to use pre-existing tools or componrents.

Using such atodlkit, it is passbleto buld avirtual madcine that is at least
as fast as virtual madines built using alternative tedhniques, and to do so
with lesseffort.

The enormous resources put into the VM and CLR indicaes that credaingavir-
tual madhine that combines predase GC and JIT compilationis no easy task. Of
the many VMs discussed in Chapter 2, very few managed to combine predse GC
and J'T compil ation, and those that did were for languages smpler than Python
It isreasonable to conclude that integratingthe complex feaures of aVM requires
some sort of toadl suppat.

Itisunlikely that using atoadlkit based aroundan abstrad macdineisthe only way
to construct aVM for dynamic languages, but there ae nocompelli ngaternatives.
As argued in Chapter 3, using a todkit allows clea separation o low-level and
high-level concerns. Designingthe toadlkit aroundawell -defined abstrad macdine
brings considerable benefits in moduarity. The GVMT, discussed in Chapter 4,
demonstrated that toadlkit can be made by modifying and wrapping pre-existing
todsin amoduar fashion.

155

The utility of the GVMT was demonstrated by the construction o two diff erent
VMs. In Chapter 6 comparison d the VMs constructed by the GVMT showed
that VMs constructed by toalkits can perform at least as well as those constructed
by other means.

What is nat clea is whether atod with the power and generality of the GVMT
is required. For the construction d a single virtua macine asimpler spedal
purpcse tood might be more gopropriate. Nonetheless given that the GVMT does
exist, itisavauabletod for experimentationwith VM design.

7.2 Significant Results

Aswell as demonstrating that using atodlkit is an effedive way to crede virtual
madhines, this disertation also ill uminates other aspeds of the nstruction o
virtual machines for dynamic languages.

7.2.1 Bytemde-to-Byteade Optimisations

The most important result is showing the dfedivenessof byteade-to-byteade
trangations as a means of optimising exeaution traces. Large speed ups are pos-
sible in purely interpreted code, by tradng and then applying spedalisation and
escgpe analysis to the resulting traces. The speed ups gained are complementary
to thase from compil ation.

7.2.2 Comparison of Optimisation Techniques

Analysis of the HotPy VM shows the relative power of various optimisationted-
nigues and the dependencies between those optimisations. Spedalisation was
shown, in addition to providing a speedup d its own, to be key to the other op-
timisations. Esentialy, withou spedalisation, the other optimisations are not
worthwhil e.

7.3 Dissertation Summary

As discus=d in the introduction, the implementation o a high-performance vir-
tual machine for dynamic languages is a hard task. It isthe central thesis of this
dissertation that the implementation o these VMs beammes more manageable by
using atoalkit, withou impairing performance The use of atoadlkit all ows proper

156

separation o high-level and low-level concerns. Low-level concerns auch asinte-
gration o the garbage oll edor and machine-code generation are managed by the
toalkit, which leaves the devel oper better able to addressthe high-level isaues.

The astrad machinemodel (Chapter 3) providesthis same separation of concerns
within the todkit. The front-end todls target the abstrad machine, and the bad-
end toadls nead no knavledge of how the aéstrad macdiine code was generated.
Thisis much like are-targetable compil er.

The generdity of the todkit makes it flexible. When implementing the Glasgow
Virtual Madine Toadkit (GVMT) (Chapter 4) | implicitly assumed that VM func-
tion cdls would map to GVMT function cdls, and that the J'T compiler would
be compiling whole functions. However, HotPy ended up wsing tracebased op-
timisation. Compiling traces was no problem as the J T compiler can compile
arbitrary (terminated) sequences of byteades, and was able to compil e traces just
aswell asfunctions.

The implementation o HotPy, as described in Chapter 5, makes full use of the
GVMT provided cgoabiliti es. The fadliti es for exception handing, J'T compil a
tion and garbage wlledion are used to the full. By usingthe GVMT, the imple-
mentation d HotPy has no dependence on the low-level implementation detail s
of GVMT provided comporents. Asthe implementer of HotPy, | was unaware of
what numericd value was assgned to ead opcode, when the garbage olledor
was run, or how the garbage mlledor foundall references. The JIT compil er was
always avail able. Whenever anew bytecde was added or an old one removed, the
JT compiler was automaticdly updated; the interpreter and J'T compil er always
obey the same semantics. Thetodkit also ensured that all t he bytecode processors
conformed to the same byteade format.

Theonly red restrictionsthat the GVMT putsonthe VM devel oper are that thein-
put tothe JIT compil er must be byteaodes, andthe necessary limitationsonthe use
of heg panters. The requirement that the input to the JIT compil er must be byte-
codes forces the developer to implement optimisations as bytecode-to-bytecode
transformations. As argued in Chapter 3, thisis not a problem as byteade is a
goodintermediate representation. The HotPy optimisers described in Sedion 55
were eay to implement and debug The suppat for secndary bytecode inter-
preters provided by the GVMT made them easy to implement. They were eay
to debug as the output could be disasseembled and visually scanned, which made
errors easy to locae.

The results shown in Chapter 6 clealy demonstrate that the enforced separation
of high-level and low-level optimisationis not harmful to performance Not only
does sparating the optimisations not harm performance, it all ows the optimisa-
tions to be used independently. This was most clealy shown in Sedion 6.4.6,
where disabling compil ation all owed HotPy to still perform reasonably well, but
crippled the other optimising VMs. The ability to separate high-level optimisa-
tions from low-level ones al ows the relative utility of these to be demonstated in

157

Sedion 65.

The dfedivenessof interpreter-only optimisationsis a key discovery of thisre-
seach. As down in Sedion 64.7, which compares an interpreter-only opti-
mising VM (HotPy) with a compil er-based VM (Unladen Swall ow), tracebased
byteaode-to-byteande optimisations can be an effedive way of optimising dy-
namic languages. Not only is tracebased bytemde-to-byteade optimisation an
effedive optimisation, it isan ided preaursor to conventional JIT compil ation.

Althoughcompil ationto madciine adeis dill valuable, it shoud be implemented
after other optimisations. It is nat only Pythonto which these aguments apply.
The performance of Javascript VMsisimportant to many web-based appli cations;
Javascript programs are often short and the cost of JIT compil ation, unlesscare-
fully engineered, can ouweigh the advantages. Byteade-to-bytecde trandation
provides a possble dternative to JT compilation as it will, in general, be faster
and use lessmemory.

Evaluating the memory usage of HotPy shows that the GVMT in its current form
credes VMs with large memory foatprints. However, analysis dhows that this
problem is nat fundamentally due to the use atodlkit, rather it is an artifad of
implementation.

Finally, the performance of HotPy and PyPy were compared to compiled C and
Java (the OpendDK V M). Although boh VMs manage adieve large speed ups
relative to CPython their performance is much worse than either compiled C or
the JavaV M. The performanceof highly dynamic languages can still beimproved
by a considerable degree How that shoud be dore has yet to be discovered.

7.4 Future Work

Further reseach can be divided into performance enhancements and the evalu-
ation o different VM optimisations. The lesons leant can also be gplied to
existingVMs.

The maximum benefit from bytemde-to-bytemde optimisations might be
adhieved, nat by large improvements in reseach VMs, but by applying these
optimisations to the mainstream VMs. Severa dynamic languages, particularly
Ruby, would benefit from implementing tracebased byteade-to-byteade opti-
misations. However, this dissertation focuses on Python The CPythonVM could
be improved by applying the results of Chapter 6.

158

7.4.1 Applying the Research to CPython

My recommendations for improving the performance of the CPython VM are
therefore asfoll ows:

1. Determine astrategy for improving the garbage wlledor. This drategy
shoud be formulated first so that subsequent optimisations do nd prevent
it being implemented.

2. Implement a tracerecorder for recording traces and a super-interpreter for
managing the exeaution d traces. The resulting traces, and ouput from
all subsequent optimisers, shoud be exeautable; this will allow separate
development and testing.

3. Implement a spedali sation pess to spedalise traces.
4. Implement adeferred oljed creaion (DOC) pass and pegohde optimiser.

5. Once the spedalisation and DOC passes are stabili sed and the byteaode
format is fixed, then a JT compiler can be implemented. Since the input
to the JIT is aready well optimised, a dired translation to LLVM IR, or
equivalent, shoud work well.

6. Implement the strategy, determined in the first step, for improving the
garbage wlledor.

The strategy for improving the garbage wlledor is outside the scope of thesis.

7.4.2 Performance Enhancementstothe GVMT and HotPy

Performance enhancementsfor the GVMT arelikely to beincrementa changes of
limited scope and d littl e interest to the acaemic community. The only potential
for significant improvement is in the compiler implementation, which is rather
slow. HotPy isamuch more promising dredion, asthereisthe potential for large
and interesting performance improvements.

An Almost-Trace Compiler

Tracebased optimisations are important in VMs, nat only to allow spedalisa
tion, but because tracebased JI'T compil ers can be much faster than conventional
compil ers yet still generate aode of the same quality. The HotPy VM and pden-
tialy other research VMsbuilt usingthe GVMT, usetraang at the bytecde level.

Ihttp://11vmorg/docs/ LangRef . ht

159

However, these traces may nat be proper traces at the abstrad macdhinelevel, even
thoughthey are & the byteaode level.

For a system like HotPy, it would be goodfor the GVM T-generated compil er to
be & fast as a tracebased compiler, and be &le to compil e the ‘amost’ traces
that may result from proper traces at the byteade level. If code quality does not
matter, it is easy to make afaster compil er than the aurrent LLVM compiler. The
challenge would be to extend a tracebased compiler to handle ‘almost’ traces,
producing quelity code, but faster than the aurrent LLV M-based compil er.

Other Byteade-to-Bytemde Trandations

HotPy, althoughconsiderably faster than CPython still | ags behind aher language
implementations. For example, the LuallT VM for Luais much faster. Obviously,
improving the performance of the underlying todkit will help to reduce this dif-
ference but thereis Hill much room for improvement at the byteade level. A first
step would be to extend the DOC passto be &le to defer objed credion aaoss
badkward jumps at the end o loops and to unboxfloats (and passbly complex
numbers).

7.4.3 Evaluation of VM Optimisation Tedhniques

One poatential use of the GVMT, and o HotPy, is as afixed base for comparative
evaluation d optimisation techniques. For example, a more predse examination
of the relative merits of whaole-function ogimisation versus tracebased optimi-
sation could be made by implementing bah of these optimisations in a single
VM built usingthe GVMT. The aility to reduce externa fadors to a minimum
is necessry to perform truly meaningful comparisons. As the GVMT Scheme
VM demonstrates, VMs can be constructed in atime frame that makes this sort of
experimentation viable.

7.5 In Closing

The mre message of this dissertation is that building a VM for a complex and
evolving language like Pythonis much easier with a set of appropriate toadls. The
key reasonfor thisisthat a VM consists of a number of closely interading perts
that interfacein ways that conventional programming languages do nd suppat
well. By conwverting the source @de for the interpreter and libraries into abstrad
madine ade, it is possble to anayse and transform this code. This enables the
code generators to weave the garbage wll edor into the rest of the VM, and makes
it possbleto generate an interpreter and J T compil er from the same source @de.

160

The adility to change the interpreter source and heave anew VM with aJIT com-
piler up and running within a minute or two is enormously helpful. The speel of
development of known optimisationsin the VM isincreased considerably, andthe
ability to experiment very quickly helps with the design o new optimisations.

161

Appendix A

The GVMT Abstract Machine
| nstruction Set

Introduction

Thisappendix listsal 367instructions of the GVMT abstrad madineinstruction
set. Theinstructionset isnot aslarge asit first appeas. Many of these ae multiple
versions of theform OP_X where X can be any or al of thetwelve diff erent types.
Thesetypesarell, 12, 14,18, U1, U2, U4, U8, F4, F8, B R.

IX, UX and FX refer to a signed integer, unsigned integer and floating pant red
of size (in bytes) X. Pisapointer and R is areference. P pointers cannd point
into the GC hea. R references are pointersthat can only point into the GC heap.

For all i nstructions where the type is a pointer sized integer, 14 and U4 for 32-bit
madhines or 18 and U8 for 64-bit machines, there is an dias for ead instruction
of the form OP_IPTR or OP_UPTR. E.g. on a 32-bit madine the instruction
ADD 14 hasan diasADD_|IPTR.

TOS is an abbreviation for top-of-stadk and NOS is an abbreviation for next-on-
stack.

Ead instructionislisted below in the form:

Name (inputs =- outputs)

Instruction stream effed
Description o the instruction

162

#+ (—=—)

2 operand bytes. Pushes 1 byte to in-
struction stream.

Fetches the first two values in the in-
struction stream, adds them and pushes
the result bad to the stream.

#(—=—)

2 operand bytes. Pushes 1 byte to in-
struction stream.

Fetches the first two values in the in-
struction stream, subtrads them and
pushes the result badk to the stream.

#m(—=—)

No operand bytes. Pushes 1 byte to in-
struction stream.
Push 1 byte value to the front of thein-
struction stream.

#2@ (— = operand)

2 operand bytes.

Fetches the next 2 bytes from the in-
struction stream. Combine into an in-
teger, first byte is most significant.Push
onto the data stac.

#4@ (— = operand)

4 operand bytes.

Fetches the next 4 bytes from the in-
struction stream. Combine into an in-
teger, first byte is most significant.Push
onto the data stack.

#@ (— = operand)

1 operand byte.
Fetches the next byte from the instruc-
tion strean. Push ornto the data stad.

#n] (—=—)

No operand bytes. Pushes 1 byte to in-
struction stream.

Only valid in an interpreter defintion.
Peeks into the instruction strean and
pushes the n" byte in the stream to the
front of the instruction stream.

ADDR(name) (— = addresg

Pushes the address of the global vari-
able name to the stack (as a painter).

ADD_F4 (op1, op2 = result)

Binary operation: 32 ht floating pant
add.

result := opl+ op2

ADD_F8 (op1, op2 = result)

Binary operation: 64 bt floating pant
add.

result := opl+ op2

ADD_14 (opl, op2 = result)

Binary operation: 32 bt signed integer
add.

result := opl+ op2

163

ADD_18 (op1, op2 = result)

Binary operation: 64 bt signed integer
add.

result := opl+ op2

ADD_14 (opl, op2 = result)

Binary operation: 32 kit signed integer
add.

result := opl+ op2

ADD_P (op1, op2 = result)

Binary operation: pointer add.

result := opl+ op2

ADD_U4 (opl, op2 = result)

Binary operation: 32 bt unsigned inte-
ger add.

result := opl+ op2

ADD_US8 (op1, op2 = result)

Binary operation: 64 bt unsigned inte-
ger add.

result := opl+ op2

ADD_U4 (opl, op2 = result)

Binary operation: 32 bt unsigned inte-
ger add.

result := opl+ op2

ALL OCA_F4 (n = ptr)

Allocaes gace for n 32 ht float-
ing pants in the aurrent control stadk
frame, leaving padnter to alocaed
gpacein TOS. All memory all ocated af-
ter a PUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
nat necessarily immediately redaimed.
All memory al ocaed isinvalidated and
redaimed by aRETURN instruction.

ALL OCA_F8 (n = ptr)

Allocaes gace for n 64 ht float-
ing pants in the aurrent control stadk
frame, leaving panter to alocaed
gpacein TOS. All memory all ocated af-
ter aPUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
nat necessarily immediately redaimed.
All memory all ocaed isinvalidated and
redaimed by a RETURN instruction.

ALL OCA_11 (n = ptr)

Allocaes acefor n 8 hit signed inte-
gers in the aurrent control stadk frame,
leaving pdnter to alocaed spacein
TOS. All memory alocaed after a
PUSH_CURRENT_STATE is invali-
dated immediately by a RAISE, but not
necessarily immediately redaimed. All
memory all ocaed isinvalidated and re-
claimed by aRETURN instruction.

ALL OCA_[2 (n = ptr)

Allocaes gace for n 16 kLt signed
integers in the aurrent control stadk
frame, leaving pdanter to allocaed

164

gpacein TOS. All memory all ocaed af-
ter a PUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory all ocated isinvalidated and
redaimed by a RETURN instruction.

ALL OCA_14(n = ptr)

Allocaes gace for n 32 bt signed
integers in the aurrent control stadk
frame, leaving pdnter to alocaed
gpacein TOS. All memory all ocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory al ocaed isinvalidated and
redaimed by a RETURN instruction.

ALL OCA_18(n = ptr)

Allocaes gace for n 64 bt signed
integers in the aurrent control stadk
frame, leaving pdnter to allocaed
spacein TOS. All memory all ocated af-
ter a PUSH_CURRENT _STATE isin-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory all ocated isinvalidated and
redaimed by a RETURN instruction.

ALL OCA_14(n = ptr)

Allocaes gace for n 32 bt signed
integers in the aurrent control stadk
frame, learing pdnter to alocaed
spacein TOS. All memory all ocated af-
ter a PUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory al ocaed isinvalidated and
redaimed by a RETURN instruction.

ALL OCA_P (n = ptr)

Allocates gace for n panters in
the aurrent control stadk frame, lear-
ing panter to alocaed space in
TOS. All memory dlocaed after a
PUSH_CURRENT_STATE is invali-
dated immediately by a RAISE, but not
necessarily immediately redaimed. All
memory alocaed isinvalidated and re-
claimed by aRETURN instruction.

ALL OCA_R (n = ptr)

Allocates gace for n references in
the aurrent control stack frame, leav-
ing panter to adlocaed space in
TOS. All memory dlocaed after a
PUSH_CURRENT_STATE is invali-
dated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory all ocaed isinvalidated and
redaimed by a RETURN instruction.
ALLOCA_R canna be used after the
first HOP, BRANCH, TARGET, JUMP
or FAR_JUMP instruction.

ALL OCA_U1 (n = ptr)

Allocaes gace for n 8 kit unsigned
integers in the aurrent control stadk
frame, leaving panter to allocaed
spacein TOS. All memory all ocated af-
ter a PUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory all ocaed isinvalidated and
redaimed by a RETURN instruction.

165

ALL OCA_U2 (n = ptr)

Allocaes gpacefor n 16 bt unsigned
integers in the aurrent control stadk
frame, leaving padnter to allocaed
gpacein TOS. All memory all ocated af-
ter a PUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory all ocated isinvalidated and
redaimed by aRETURN instruction.

ALL OCA_U4 (n = ptr)

Allocaes gacefor n 32 bt unsigned
integers in the aurrent control stadk
frame, leaving padnter to allocaed
gpacein TOS. All memory all ocated af-
ter a PUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory al ocaed isinvalidated and
redaimed by aRETURN instruction.

ALL OCA_U8 (n = ptr)

Allocaes gpacefor n 64 kbt unsigned
integers in the aurrent control stadk
frame, leaving pdnter to alocaed
spacein TOS. All memory al ocaed af-
ter a PUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory al ocaed isinvalidated and
redaimed by aRETURN instruction.

ALL OCA_U4 (n = ptr)

Allocaes gacefor n 32 bt unsigned
integers in the aurrent control stadk
frame, leaving pdnter to alocaed

spacein TOS. All memory al ocated af-
ter a PUSH_CURRENT_STATE isin-
validated immediately by a RAISE, but
not necessarily immediately redaimed.
All memory al ocaed isinvalidated and
redaimed by aRETURN instruction.

AND_14 (opl, op2 = result)

Binary operation: 32 bt signed integer
bitwise and.

result := oplé& op2

AND_18 (op1, op2 = result)

Binary operation: 64 bit signed integer
bitwise and.

result := opl& op2

AND_14 (opl, op2 = result)

Binary operation: 32 bt signed integer
bitwise and.

result := oplé& op2

AND_U4 (op1, op2 = result)

Binary operation: 32 bt unsigned inte-
ger bitwise and.

result := opl& op2

AND _U8 (op1, op2 = result)

Binary operation: 64 kit unsigned inte-
ger bitwise and.

result := oplé& op2

166

AND_U4 (opl, op2 = result)

Binary operation: 32 hit unsigned inte-
ger bitwise and.

result := oplé& op2

BRANCH_F(n) (cond = —)

Branchif TOSiszeroto Target(n). TOS
must be an integer.

BRANCH_T(n) (cond = —)

Branch if TOSis nonzero to Target(n).
TOS must be an integer.

CALL _F4 (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. Thefunction cdled must
return a 32 kit floating pant.

CALL _F8 (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. Thefunction cdled must
return a 64 kit floating pant.

CALL _14 (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. Thefunction caled must
return a 32 kit signed integer.

CALL _I8 (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. The function cal ed must
return a 64 kit signed integer.

CALL _I4 (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
responsibility. The function cdled must
return a 32 kit signed integer.

CALL _P (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. The function cal ed must
return a pointer.

CALL _R (— = value)

Cdlls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. The function caled must
return areference

CALL _U4 (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stadk isthe cdle€s
resporsibility. The function cal ed must
return a 32 kit unsigned integer.

167

CALL _U8 (— = value)

Calls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. The function caled must
return a 64 kit unsigned integer.

CALL _U4 (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. The function cdl ed must
return a 32 kit unsigned integer.

CALL _V (— = value)

Cdls the function whose aldress is
TOS. TOS must be apointer. Removal
parameters from the stack isthe cdle€s
resporsibility. The function cdl ed must
return void.

D2F (val = result)

Conwerts 64 kit floating pdnt to 32 Lt
floating pant. Thisis a conwertion, not
a cast. It isthe value that remains the
same, nat the bit-pattern.

D2l (val = result)

Conwerts 64 kit floating pdnt to 32 Lt
signed integer. Thisisa wnwertion, not
a cast. It isthe value that remains the
same, not the bit-pattern.

D2L (val = result)

Conwerts 64 bt floating pdnt to 64 Lt
signed integer. Thisisa conwertion, not
a cast. It isthe value that remains the
same, nat the bit-pattern.

DIV_F4 (opl, op2 = result)

Binary operation: 32 ht floating pant
divide.

result := opl/ op2 Rounds towards
zeo.

DIV_F8 (opl, op2 = result)

Binary operation: 64 bt floating pant
divide.

result := opl/ op2 Rounds towards
zero.

DIV_14 (opl, op2 = result)

Binary operation: 32 bit signed integer
divide.

result := opl/ op2 Rounds towards
zero.

DIV_18(opl, op2 = result)

Binary operation: 64 kit signed integer
divide.

result := opl/ op2 Rounds towards
zero.

168

DIV_14 (opl, op2 = result)
Binary operation: 32 bit signed integer
divide.

result := opl/ op2 Rounds towards
zero.

DIV_U4 (opl, op2 = result)
Binary operation: 32 hit unsigned inte-
ger divide.

result := opl/ op2 Rounds towards
zero.

DIV_US8 (opl, op2 = result)

Binary operation: 64 hit unsigned inte-
ger divide.

result := opl/ op2 Rounds towards
zero.

DIV_U4 (opl, op2 = result)

Binary operation: 32 hit unsigned inte-
ger divide.

result := opl/ op2 Rounds towards
zero.

DROP (top = —)

Drops the top value from the stack.

DROP_N(n = —)

1 operand hyte.
Drops n values from the stad at off set

fetched from strean.E.g. for offset=1

and =2, TOS would be untouched, but
NOS and 30S would be discarded

EQ_F4 (opl, op2 = comp)

Comparison operation: 32 ht floating
point equals.

comp :=opl=op2

EQ_F8(opl, op2 = comp)

Comparison operation: 64 ht floating
point equals.

comp :=opl=op2

EQ_I4 (opl, op2 = comp)

Comparison operation: 32 kit signedin-
teger equals.

comp :=opl=op2

EQ_18(op1, op2 = comp)

Comparison operation: 64 kit signedin-
teger equals.

comp :=opl=op2

EQ_14 (op1, op2 = comp)

Comparison operation: 32 hit signedin-
teger equals.

comp :=opl=op2

169

EQ_P (op1, op2 = comp)

Comparison operation: pointer equals.

comp :=opl=op2

EQ_R (opl, op2 = comp)

Comparison reference

equals.

oferation:

comp := opl=op2

EQ_U4 (opl, op2 = comp)

Comparison operation: 32 kit unsigned
integer equals.

comp :=opl=op2

EQ _US8 (opl, op2 = comp)

Comparison operation: 64 hit unsigned
integer equals.

comp := opl=op2

EQ_U4 (opl, op2 = comp)

Comparison operation: 32 kit unsigned
integer equals.

comp := opl=op2

EXT_I1 (value = extended)

Sign extends TOS from to a 11 to a
pointer-sized integer.

EXT_I2 (value = extended)

Sign extends TOS from to a 12 to a
pointer-sized integer.

EXT_l4 (value = extended)

Sign extends TOS from to a 14 to a
pointer-sized integer.

EXT_l4 (value = extended)

Sign extends TOS from to a 14 to a
pointer-sized integer.

EXT_U1 (value = extended)

Zero extends TOS from to a Ul to a

pointer-sized integer.

EXT_U2 (value = extended)

Zero extends TOS from to a U2 to a

pointer-sized integer.

EXT_U4 (value = extended)

Zero extends TOS from to a U4 to a

pointer-sized integer.

EXT_U4 (value = extended)

Zero extends TOS from to a U4 to a
pointer-sized integer.

170

F2D (val = result)

Conwerts 32 bt floating pant to 64 Lt
floating pant. Thisisa conwertion, not
a cat. It is the value that remains the
same, nat the bit-pattern.

F2I (val = result)

Conwverts 32 hit floating pant to 32 kit
signed integer. Thisisa conwertion, not
a cat. It isthe value that remains the
same, naot the bit-pattern.

F2L (val = result)

Conwverts 32 hit floating pant to 64 kit
signed integer. Thisisa conwvertion, not
a cat. It isthe value that remains the
same, nat the bit-pattern.

FAR_JUMP (ip = —)

Continue interpretation, with the aur-
rent abstrad machine state, at the IP
popped from the stack. FAR_JUMP
is intended for unusual flow control in
code procesrs and the like.Warning:
This instruction is not suppated in
compil ed code, in order to use jumpsin
compil ed code use JUMP instead.

FIELD_IS NOT_NULL (objed, off-
set = value)

Tests whether an obed field is null.
Equivdent to RLOAD_X 0 EQ X
where X isaR, P or apointer sized in-

teger.

FIELD_IS NULL (objed, offset =
value)

Tests whether an oljead field is null.
Equivdent to RLOAD_X 0 EQ X
where X isaR, P or apoainter sized in-

teger.

FILE (name) (— = —)

Dedares the source file for this code.
Informational only, like #FILE in C.

FULLY_INITIALIZED (objedt = —
)

Dedare TOS obea to be fully-
initi ali sed.This al ows optimisations to
be made by the todkit.Drops TOS as a
side dfed. TOS must be areferenceit
isa(serious) error if TOS objedhasany
uniniti ali sed referencefields

GC_MALL OC (size=ref)

Allocaes sze bytes in the heg lear-
ing reference to alocaed space in
TOS. GC pass may replace with a
faster inline version. Defaults to
GC_MALLOC CALL.

GC_MALL OC_CALL (size=-ref)

Allocaes dze bytes, via a cdl to
the GC colledor. Generaly users
shoud use GC_ MALLOC and alow
the todlkit to substitute gopropriate in-
line code.Safe to use, but front-ends
shoud use GC_MALLOC instea.

171

GC_MALL OC_FAST (size=> ref)

Fast allocaes dze bytes, ref is O if
canna alocae fast. Generaly users
shoud use GC_MALLOC and alow
the todlkit to substitute gppropriate in-
line acode.For internal toalkit use only.

GC_SAFE (— = —)

Dedaresthispaint to be asafe point for
garbage wlledionto occur at. GC pass
shoud replacewith a austom version.
Defaultsto GC_SAFE_CALL.

GC_SAFE_CALL (— = —)

Cals GCtoinformit that cdlingthread
is sfe for garbage wlledion. Gener-
aly users shoud use GC_SAFE and a-
low the toalkit to substitute gopropriate
inline ade.

GE_F4 (op1, op2 = comp)

Comparison operation: 32 ht floating
point greder than or equals.

comp :=opl> op2

GE_F8 (op1, op2 = comp)

Comparison operation: 64 kbt floating
point greaer than or equals.

comp :=opl> op2

GE_l4 (op1, op2 = comp)

Comparison operation: 32 kit signedin-
teger greaer than or equals.

comp :=opl> op2

GE_I8 (op1, op2 = comp)

Comparison operation: 64 Lt signedin-
teger greder than or equals.

comp :=opl> op2

GE_I4 (op1, op2 = comp)

Comparison operation: 32 kit signedin-
teger greder than or equals.

comp :=opl> op2

GE_P (op1, op2 = comp)

Comparison operation: pointer greder
than or equals.

comp :=opl> op2

GE_U4 (opl, op2 = comp)

Comparison operation: 32 kit unsigned
integer greaer than or equals.

comp :=opl> op2

GE_U8 (op1, op2 = comp)

Comparison operation: 64 bt unsigned
integer greder than or equals.

comp :=opl> op2

172

GE_U4 (op1, op2 = comp)

Comparison operation: 32 bt unsigned
integer greaer than or equals.

comp :=opl> op2

GT_F4 (opl, op2 = comp)

Comparison operation: 32 kit floating
point greaer than.

comp := opl> op2

GT_F8(opl, op2 = comp)

Comparison operation: 64 ht floating
point greaer than.

comp := opl> op2

GT_l14 (opl, op2 = comp)

Comparison operation: 32 kit signedin-
teger greaer than.

comp :=opl> op2

GT_18(opl, op2 = comp)

Comparison operation: 64 ht signedin-
teger greaer than.

comp :=opl> op2

GT_l4 (opl, op2 = comp)

Comparison operation: 32 lt signedin-
teger greder than.

comp := opl> op2

GT_P (opl, op2 = comp)

Comparison operation: pointer greder
than.

comp :=opl> op2

GT_U4 (opl, op2 = comp)

Comparison operation: 32 kit unsigned
integer greder than.

comp := opl> op2

GT_U8 (opl, op2 = comp)

Comparison operation: 64 bt unsigned
integer greder than.

comp := opl> op2

GT_U4 (opl, op2 = comp)

Comparison operation: 32 bt unsigned
integer greaer than.

comp :=opl> op2

HOP(N) (— = —)

Jump (uncondtionally) to TARGET(n)

12D (val = result)

Conwerts 32 hit signed integer to 64 Lt
floating pant. Thisisa cnwertion, nat
a cat. It is the value that remains the
same, not the bit-pattern.

173

| 2F (val = result)

Converts 32 hit signed integer to 32 it
floating pant. Thisisa conwertion, nat
a cat. It is the value that remains the
same, nat the bit-pattern.

INSERT (n = addresy

1 operand byte.

Pops count off the stadk. Inserts n
NULL s into the stack at off set fetched
from theinstructionstream.Ensures that
al i nserted values are flushed to mem-
ory. Pushes the addressof first inserted
slot to the stack.

INV_I4 (opl = value)

Unary operation: 32 hit signed integer
bitwise invert.

INV_I8 (opl = value)

Unary operation: 64 hit signed integer
bitwise invert.

INV_I4 (opl = value)

Unary operation: 32 kit signed integer
bitwise invert.

INV_U4 (opl = value)

Unary operation: 32 kit unsigned inte-
ger bitwiseinvert.

INV_US8 (opl = value)

Unary operation: 64 kit unsigned inte-
ger bitwise invert.

INV_U4 (opl = value)

Unary operation: 32 kit unsigned inte-
ger bitwise invert.

P (— = instruction_pointer)

Pushes the aurrent (interpreter) instruc-
tion panter to TOS.

JUMP (— = —)

2 operand bytes.

Only valid in byteacode ontext. Per-
forms VM jump. Jumps by N bytes,
where N is the next two-byte value in
the instruction stream.

L2D (val = result)

Conwverts 64 hit signed integer to 64 Lt
floating pant. Thisis a conwertion, not
a cat. It isthe value that remains the
same, nat the bit-pattern.

L2F (val = result)

Conwerts 64 hit signed integer to 32 it
floating pant. Thisisa conwertion, not
a cast. It isthe value that remains the
same, nat the bit-pattern.

174

L2l (val = result)

Converts 64 hit signed integer to 32 it
signed integer. Thisisa conwvertion, not
a cat. It isthe value that remains the
same, naot the bit-pattern.

LADDR (name) (— =- addr)

Pushes the addressof the locd variable
"'name’ to TOS.

LE_F4 (opl, op2 = comp)

Comparison operation: 32 ht floating
point lessthan or equals.

comp :=opl< op2

LE_F8 (opl, op2 = comp)

Comparison operation: 64 ht floating
point lessthan or equals.

comp :=opl< op2

LE_14 (opl, op2 = comp)

Comparison operation: 32 hit signedin-
teger lessthan or equals.

comp :=opl< op2

LE_18 (opl, op2 = comp)

Comparison operation: 64 ht signedin-
teger lessthan or equals.

comp :=opl< op2

LE 14 (opl, op2 = comp)

Comparison operation: 32 kit signedin-
teger lessthan or equals.

comp :=opl< op2

LE_P (opl, op2 = comp)

Comparison oferation:
than or equals.

pointer less

comp :=opl< op2

LE_U4 (opl, op2 = comp)

Comparison operation: 32 bt unsigned
integer lessthan or equals.

comp :=opl< op2

LE_U8 (opl, op2 = comp)

Comparison operation: 64 kbt unsigned
integer lessthan or equals.

comp :=opl< op2

LE_U4 (opl, op2 = comp)

Comparison operation: 32 bt unsigned
integer lessthan or equals.

comp :=opl< op2

LINE(N) (— = —)
Set the source @de line number of the
source @de. Informationa only, like

#LINEinC.

175

LOCK (lock = —)

Lock the gvmt-lock pointed to by TOS.
Pop TOS.

LOCK_INTERNAL (offset, objed =
—)

Lock the gvmt-lock in objed referred to

by TOS at offset NOS. Pop bah refer-
ence and df set from stack.

LSH_14 (opl, op2 = result)

Binary operation: 32 hit signed integer
left shift.

result := opl< op2

LSH_18 (opl, op2 = result)

Binary operation: 64 bt signed integer
left shift.

result := opl< op2

LSH_14 (opl, op2 = result)

Binary operation: 32 bt signed integer
left shift.

result := opl< op2

LSH_U4 (opl, op2 = result)

Binary operation: 32 kbt unsigned inte-
ger left shift.

result := opl< op2

LSH_US8 (opl, op2 = result)

Binary operation: 64 bt unsigned inte-
ger left shift.

result := opl < op2

LSH_U4 (opl, op2 = result)

Binary operation: 32 kit unsigned inte-
ger left shift.

result := opl < op2

LT _F4 (opl, op2 = comp)

Comparison operation: 32 ht floating
point lessthan.

comp := opl< op2

LT _F8 (opl, op2 = comp)

Comparison operation: 64 ht floating
point lessthan.

comp :=opl< op2

LT _14 (op1, op2 = comp)

Comparison operation: 32 hit signedin-
teger lessthan.

comp :=opl< op2

LT 18 (opl, op2 = comp)

Comparison operation: 64 Lt signedin-
teger lessthan.

comp := opl< op2

176

LT _14 (opl, op2 = comp)

Comparison operation: 32 bt signedin-
teger lessthan.

comp :=opl< op2
LT _P (op1, op2 = comp)

Comparison oferation:
than.

pointer less

comp := opl< op2

LT _U4 (opl, op2 = comp)

Comparison operation: 32 hit unsigned
integer lessthan.

comp := opl< op2

LT _U8 (op1, op2 = comp)

Comparison operation: 64 hit unsigned
integer lessthan.

comp :=opl< op2

LT _U4 (opl, op2 = comp)

Comparison operation: 32 kit unsigned
integer lessthan.

comp :=opl< op2

MOD 14 (opl, op2 = result)

Binary operation: 32 ht signed integer
moduo.

result := opl

MOD_I8 (opl, op2 = result)

Binary operation: 64 bit signed integer
moduo.

result := opl

MOD |14 (opl, op2 = result)

Binary operation: 32 bt signed integer
moduo.

result := opl

MOD_U4 (opl, op2 = result)

Binary operation: 32 bt unsigned inte-
ger moduo.

result := opl

MOD_US8 (opl, op2 = result)

Binary operation: 64 bt unsigned inte-
ger moduo.

result := opl

MOD_U4 (opl, op2 = result)

Binary operation: 32 kit unsigned inte-
ger moduo.

result := opl

MUL_F4 (opl, op2 = result)

Binary operation: 32 ht floating pant
multiply.

result := opl x op2

177

MUL_F8 (op1, op2 = result)

Binary operation: 64 bt floating pant
multiply.

result := opl x op2

MUL 14 (opl, op2 = result)

Binary operation: 32 bt signed integer
multi ply.

result := oplx op2

MUL 18 (opl, op2 = result)

Binary operation: 64 kit signed integer
multiply.

result := oplx op2

MUL _14 (opl, op2 = result)

Binary operation: 32 bit signed integer
multiply.

result := opl x op2

MUL_U4 (opl, op2 = result)

Binary operation: 32 bt unsigned inte-
ger multiply.

result := opl x op2

MUL _U8 (opl, op2 = result)

Binary operation: 64 kbt unsigned inte-
ger multiply.

result := oplx op2

MUL_U4 (opl, op2 = result)

Binary operation: 32 bt unsigned inte-
ger multiply.

result := opl x op2

NAME(n,name) (— = —)
Name the n" temporary variable, for

debuggng pupaoses.

NARG_F4 (val = —)

Native agument of type 32 kit floating
point. TOSis pushed to the native agu-
ment stad.

NARG_F8 (val = —)

Native agument of type 64 bt floating
point. TOSis pushed to the native agu-
ment stad.

NARG_14 (val = —)

Native agument of type 32 ht signed
integer. TOS is pushed to the native a-
gument stack.

NARG_18 (val = —)

Native agument of type 64 ht signed
integer. TOS is pushed to the native a-
gument stack.

178

NARG_14 (val = —)

Native agument of type 32 hit signed
integer. TOS is pushed to the native a-
gument stack.

NARG_P (val = —)

Native agument of type pointer. TOS
is pushed to the native agument stad.

NARG_U4 (val = —)

Native agument of type 32 kit unsigned
integer. TOS is pushed to the native a-
gument stack.

NARG_US8 (val = —)

Native agument of type 64 kit unsigned
integer. TOS is pushed to the native a-
gument stack.

NARG_U4 (val = —)

Native agument of type 32 bt unsigned
integer. TOS is pushed to the native a-
gument stack.

NEG_F4 (opl = value)

Unary operation: 32 ht floating pant
negate.

NEG_F8 (opl = value)

Unary operation: 64 ht floating pant
negate.

NEG_I4 (opl = value)

Unary operation: 32 bt signed integer

negate.

NEG_I8 (opl = value)

Unary operation: 64 bit signed integer

negate.

NEG_I4 (opl = value)

Unary operation: 32 hit signed integer

negate.

NEXT_IP (— = instruction_pointer)

Pushes the (interpreter) instruction
pointer for the next instructionto TOS.
Thisisequal to IP plusthelength of the
current byteade

NE_F4 (opl, op2 = comp)

Comparison operation: 32 kit floating
point not equals.

comp :=opleqop2

NE_F8 (opl, op2 = comp)

Comparison operation: 64 ht floating
point not equals.

comp :=opleqop2

179

NE_14 (opl, op2 = comp)

Comparison operation: 32 kit signedin-
teger not equals.

comp := opleqop2
NE_I8 (opl, op2 = comp)

Comparison operation: 64 bt signedin-
teger not equals.

comp := opleqop2
NE_I4 (opl, op2 = comp)

Comparison operation: 32 kit signedin-
teger not equals.

comp := opleqop2
NE_P (opl, op2 = comp)

Comparison ogeration:
equals.

pointer naot

comp := opleqop2

NE_R (opl, op2 = comp)

Comparison operation: reference not

equals.
comp := opleqop2

NE_U4 (op1, op2 = comp)

Comparison operation: 32 kit unsigned
integer not equals.

comp := opleqop2

NE_U8 (op1, op2 = comp)

Comparison operation: 64 bt unsigned
integer not equals.

comp := opleqop2

NE_U4 (opl, op2 = comp)

Comparison operation: 32 bt unsigned
integer not equals.

comp := opleqop2

N_CALL _F4(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be a32 bt floating pant.

N_CALL _F8(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be a64 ht floating pant.

N_CALL _14(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be a32 kit signed integer.

180

N_CALL _I4(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be a32 bt signed integer.

N_CALL _I8(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stack. Pushes the return value
which must be a64 kit signed integer.

N_CALL _NO_GC_F4(n)
value)

(_

=

As N_CALL_F4(n). Garbage mllec
tionis suspended duingthiscdl. Only
use the NO_GC variant for cdls which
canna block. If unsureuse N_CALL.

N_CALL _NO_GC_F8(n) =

value)

(_

As N_CALL_F8(n). Garbage mllec
tionis suspended duing thiscdl. Only
use the NO_GC variant for cdls which
canna block. If unsureuse N_CALL.

N_CALL_NO_GC_I4(n)
value)

(_

=

AsN_CALL _14(n). Garbage mlledion
is suspended duing this cdl. Only use
the NO_GC variant for cdlswhich can-
not block. If unsureuseN_CALL.

N_CALL NO_GC_l4(n) =

value)

(_

AsN_CALL 14(n). Garbage wmlledion
is suspended during thiscdl. Only use
the NO_GC variant for cdlswhich can-
not block. If unsureuse N_CALL.

N_CALL NO_GC 18(n)
value)

(_

=

AsN_CALL _18(n). Garbage olledion
is suspended duringthiscdl. Only use
the NO_GC variant for cdl swhich can-
not block. If unsureuse N_CALL.

N_CALL _NO_GC_P(n)
value)

(_

=

AsN_CALL_P(n). Garbage mlledion
is suspended duing thiscdl. Only use
the NO_GC variant for cdlswhich can-
not block. If unsureuse N_CALL.

N_CALL _NO_GC_R(n)
value)

(_

=

AsN_CALL_R(n). Garbage mlledion
is uspended duringthiscdl. Only use
the NO_GC variant for cdl swhich can-
not block. If unsureuse N_CALL.

N_CALL _NO_GC_U4(n)
value)

(_

=

As N_CALL _U4(n). Garbage mllec
tionis suspended duingthiscdl. Only
use the NO_GC variant for cdls which
canna block. If unsureuse N_CALL.

181

N_CALL _NO_GC_U4(n)
value)

(_

=

As N_CALL _U4(n). Garbage ollec
tionis suspended duingthiscdl. Only
use the NO_GC variant for cdls which
canna block. If unsureuse N_CALL.

N_CALL _NO_GC_U8§(n)
value)

(_

=

As N_CALL _U8(n). Garbage wllec
tionis suspended duingthiscdl. Only
use the NO_GC variant for cdlswhich
canna block. If unsureuse N_CALL.

N_CALL _NO_GC _V(n)
value)

(_

=

AsN_CALL _V(n). Garbage mlledion
is suspended duingthiscdl. Only use
the NO_GC variant for cdlswhich can-
naot block. If unsureuse N_CALL.

N_CALL _P(n) (— = value)

Cdls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be apointer.

N_CALL _R(n) (— = value)

Cdlls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be areference

N_CALL _U4(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be a32 ht unsigned inte-
ger.

N_CALL _U4(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be a32 ht unsigned inte-
ger.

N_CALL _U8(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be a64 ht unsigned inte-
ger.

N_CALL _V(n) (— = value)

Calls the function whose aldress is
TOS. Uses the native cdling conven-
tionfor this platform with O parameters
which are popped from the native a-
gument stadk. Pushes the return value
which must be avoid.

182

OPCODE (— = opcode)

Pushes the aurrent opcode to TOS.

OR_14 (op1, op2 = result)

Binary operation: 32 ht signed integer
bitwise or.

result := opl| op2

OR_18 (0op1, op2 = result)

Binary operation: 64 ht signed integer
bitwise or.

result := opl| op2

OR_14 (op1, op2 = result)

Binary operation: 32 hit signed integer
bitwise or.

result := opl| op2

OR_U4 (op1, op2 = result)

Binary operation: 32 kbt unsigned inte-
ger bitwise or.

result := opl| op2

OR_US8 (op1, op2 = result)

Binary operation: 64 kbt unsigned inte-
ger bitwiseor.

result := opl| op2

OR_U4 (opl, op2 = result)

Binary operation: 32 bt unsigned inte-
ger bitwise or.

result := opl| op2

PICK_F4 (— = n'M)

1 operand hyte.
Picks the n' item from the data

stadk(TOS is index O)and pushes it to
TOS.

PICK_F8 (— = n'M

1 operand byte.
Picks the n" item from the data

stadk(TOS is index O)and pushes it to
TOS.

PICK_14 (— = n'M)

1 operand hyte.
Picks the n" item from the data

stack(TOS is index O)and pushes it to
TOS.

PICK_18(— = ntM)

1 operand byte.
Picks the n' item from the data

stadk(TOS is index O)and pushes it to
TOS.

PICK |4 (— = n'h)

1 operand hyte.
Picks the n" item from the data

183

stadk(TOS is index O)and pushes it to
TOS.

PICK P (— = nth)

1 operand byte.
Picks the n' item from the data

stadk(TOS is index O)and pushes it to
TOS.

PICK_R (— = nth

1 operand byte.
Picks the n' item from the data

stadk(TOS is index O)and pushes it to
TOS.

PICK_U4 (— = nh)

1 operand byte.
Picks the n' item from the data

stadk(TOS is index O)and pushes it to
TOS.

PICK_U8(— = n'")

1 operand byte.
Picks the n' item from the data

stack(TOS is index O)and pushes it to
TOS.

PICK_U4 (— = nth)

1 operand byte.

Picks the n" item from the data
stadk(TOS is index O)and pushes it to
TOS.

PIN (objed =- pinned)

Pins the objed on TOS. Changes type
of TOS from areferenceto apointer.

PINNED_OBJECT (pointer =- ob-
jed)

Dedares that pointer isin fad a refer-
ence to a pinned oljed. Changes type
of TOS from a pointer to areference It
is an error if the pointer is not a refer-
ence to a pinned ojed. Incorred use
of thisinstruction can be difficult to de-
ted. Usewith care.

PLOAD_F4 (addr = value)

Load from memory. Push 32 ht float-
ing pant value loaded from addressin
TOS (which must be apainter).

PLOAD_F8 (addr = value)

Load from memory. Push 64 lt float-
ing pant value loaded from addressin
TOS (which must be apointer).

PLOAD_I1 (addr = value)

Load from memory. Push 8 bt signed
integer value loaded from address in
TOS (which must be apainter).

PLOAD_I2 (addr = value)

Load from memory. Push 16 bt signed
integer value loaded from address in
TOS (which must be apainter).

184

PLOAD_I4 (addr = value)

Load from memory. Push 32 lit signed
integer value loaded from address in
TOS (which must be apainter).

PLOAD_I8 (addr = value)

Load from memory. Push 64 Lt signed
integer value loaded from address in
TOS (which must be apointer).

PLOAD_I4 (addr = value)

Load from memory. Push 32 Lt signed
integer value loaded from address in
TOS (which must be apainter).

PLOAD_P (addr = value)

Load from memory. Push panter value
loaded from address in TOS (which
must be apointer).

PLOAD_R (addr = value)

Load from memory. Push reference
value loaded from address in TOS
(which must be apainter).

PLOAD_U1 (addr = value)

Load from memory. Push 8 bt un
signed integer value loaded from ad-
dressin TOS (which must be apaointer).

PLOAD_UZ2 (addr = value)

Load from memory. Push 16 kit un-
signed integer value loaded from ad-
dressin TOS (which must be apaointer).

PLOAD_U4 (addr = value)

Load from memory. Push 32 bt un-
signed integer value loaded from ad-
dressin TOS (which must be apaointer).

PLOAD_U8 (addr = value)

Load from memory. Push 64 Lt un-
signed integer value loaded from ad-
dressin TOS (which must be apointer).

PLOAD_U4 (addr = value)

Load from memory. Push 32 bt un-
signed integer value loaded from ad-
dressin TOS (which must be apointer).

POP_STATE (— = value)

Pops and dscads the state-objed on
top o the state stack.

PSTORE_F4 (value, arr ay = —)

Store to memory. Store 32 hbit floating
point value in NOS to addressin TOS.
(TOS must be apainter)

PSTORE_F8 (value, arr ay = —)

Store to memory. Store 64 ht floating
point value in NOS to addressin TOS.

185

(TOS must be apainter)

PSTORE_I1 (value, array = —)

Store to memory. Store 8 hit signed in-
teger value in NOS to addressin TOS.
(TOS must be apainter)

PSTORE_|2 (value, arr ay = —)

Storeto memory. Store 16 bt signed in-
teger value in NOS to addressin TOS.
(TOS must be apointer)

PSTORE_14 (value, arr ay = —)

Store to memory. Store 32 hit signed in-
teger value in NOS to addressin TOS.
(TOS must be apoainter)

PSTORE_I8 (value, arr ay = —)

Storeto memory. Store 64 bt signed in-
teger value in NOS to addressin TOS.
(TOS must be apointer)

PSTORE_14 (value, arr ay = —)

Store to memory. Store 32 hit signed in-
teger value in NOS to addressin TOS.
(TOS must be apointer)

PSTORE_P (value, arr ay = —)

Store to memory. Store pointer valuein
NOS to addressin TOS. (TOS must be
apointer)

PSTORE_R (value, arr ay = —)

Store to memory. Store reference value
in NOS to addressin TOS. (TOS must
be apoainter)

PSTORE_U1 (value, arr ay = —)

Store to memory. Store 8 hit unsigned
integer valuein NOS to addressin TOS.
(TOS must be apointer)

PSTORE_UZ2 (value, arr ay = —)

Store to memory. Store 16 kit unsigned
integer valuein NOS to addressin TOS.
(TOS must be apointer)

PSTORE_U4 (value, arr ay = —)

Store to memory. Store 32 kit unsigned
integer valuein NOS to addressin TOS.
(TOS must be apointer)

PSTORE_US8 (value, arr ay = —)

Store to memory. Store 64 kit unsigned
integer valuein NOS to addressin TOS.
(TOS must be apoainter)

PSTORE_U4 (value, arr ay = —)

Store to memory. Store 32 kit unsigned
integer valuein NOS to addressin TOS.
(TOS must be apoainter)

186

PUSH_CURRENT_STATE (—
value)

=

Pushes a new state-objed to the state
stadk and pushes 0 to TOS, when ini-
tialy exeauted. When exeaution re-
sumes after a RAISE or TRANSFER,
then the value in the transfer register is
pushed to TOS.

RAISE (value = —)

Pop TOS, which must be areference,
and pacein the transfer register. Ex-
amine the state objed on top o state
stack. Pop values from the data-stadk to
the depth recorded. Resume exeaution
from the PUSH_CURRENT_STATE
instruction that stored the state objed
onthe state stack.

RETURN_F4 (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

RETURN_F8 (value = —)

Returnsfrom the aurrent function. Type
must match that of CALL instruction.

RETURN_|4 (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

RETURN_I8 (value = —)

Returnsfrom the aurrent function. Type
must match that of CALL instruction.

RETURN_|4 (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

RETURN_P (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

RETURN_R (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

RETURN_U4 (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

RETURN_US8 (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

RETURN_U4 (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

RETURN_V (value = —)

Returns from the aurrent function. Type
must match that of CALL instruction.

187

RLOAD_F4 (objed, offset = value)

Load from objed. Load 32 ht float-
ing pant value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_F8 (objed, offset = value)

Load from objed. Load 64 bt float-
ing pant value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_11 (objed, offset = value)

Load from objed. Load 8 ht signed
integer value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_12 (objed, offset = value)

Load from objed. Load 16 bt signed
integer value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_14 (objed, offset = value)

Load from objed. Load 32 kit signed
integer value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_]8 (objed, offset = value)

Load from objed. Load 64 bt signed
integer value from objed NOS at off-

set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_14 (objed, offset = value)

Load from objed. Load 32 bt signed
integer value from objea NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_P (objed, offset = value)

Load from objed. Load panter value
from objed NOS at offset TOS. (NOS
must be areference and TOS must be
an integer)

RLOAD_R (objed, offset = value)

Load from objed. Load referencevalue
from objed NOS at offset TOS. (NOS
must be areference and TOS must be an
integer)Any readl-barriers required by
the garbage alledor are performed.

RLOAD_UL1 (objed, offset = value)

Load from objed. Load 8 bt unsigned
integer value from objea NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_U2 (objed, offset = value)

Load from objed. Load 16 bt unsigned
integer value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

188

RLOAD_U4 (objed, offset = value)

Load from objed. Load 32 kit unsigned
integer value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_US (objed, offset = value)

Load from objed. Load 64 kit unsigned
integer value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_U4 (objed, offset = value)

Load from objed. Load 32 kit unsigned
integer value from objed NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RSH_14 (opl, op2 = result)

Binary operation: 32 hit signed integer
arithmetic right shift.

result := opl>> op2

RSH_18(opl, op2 = result)

Binary operation: 64 ht signed integer
arithmetic right shift.

result := opl> op2

RSH_14 (opl, op2 = result)

Binary operation: 32 ht signed integer
arithmetic right shift.

result := opl>> op2

RSH_U4 (op1, op2 = result)
Binary operation: 32 bt unsigned inte-
ger logicd right shift.

result := opl>> op2

RSH_U8 (op1, op2 = result)
Binary operation: 64 kit unsigned inte-
ger logicd right shift.

result := opl>> op2

RSH_U4 (opl, op2 = result)

Binary operation: 32 ht unsigned inte-
ger logicd right shift.

result := opl> op2

RSTORE_F4 (value, objed, offset =
—)

Store into ojed. Store 32 bt floating
point value & 30Sinto obhed NOS, off-
set TOS. (NOS must be areference and
TOS must be an integer)

RSTORE_F8 (value, objed, offset =
—)

Store into ojed. Store 64 bt floating
point value & 30Sinto obhed NOS, off-
set TOS. (NOS must be areference and
TOS must be an integer)

189

RSTORE_I1 (value, objed, offset =
—)

Store into olged. Store 8 hit signed in-
teger value & 30Sinto oged NOS, off-
set TOS. (NOS must be areference and
TOS must be an integer)

RSTORE_I2 (value, objed, offset =
—)

Store into ojed. Store 16 ht signed
integer value & 30S into oljed NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_14 (value, objed, offset =
—)

Store into ojed. Store 32 ht signed
integer value & 30S into ojed NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_I8 (value, objed, offset =
—)

Store into obed. Store 64 ht signed
integer value & 30S into oljed NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_14 (value, objed, offset =
—)

Store into ojed. Store 32 ht signed
integer value & 30S into oljed NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_P (value, objed, offset =
—)

Store into obed. Store pointer value
at 30S into ojed NOS, offset TOS.
(NOS must be a reference and TOS
must be an integer)

RSTORE_R (value, objed, offset =
—)

Store into objed. Store referencevalue
a 30S into ojea NOS, offset TOS.
(NOS must be a reference and TOS
must be an integer)Any write-barriers
required by the garbage wlledor are
performed.

RSTORE_U1 (value, objed, offset =
—)

Store into objed. Store 8 bit unsigned
integer value & 30S into objed NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_UZ2 (value, objed, offset =
—)

Store into ohed. Store 16 kbt unsigned
integer value & 30S into oged NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_U4 (value, objed, offset =
—)

Store into ohed. Store 32 kit unsigned
integer value & 30S into oljed NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

190

RSTORE_US (value, objed, offset =
—)

Store into obhed. Store 64 kit unsigned
integer value & 30S into oljed NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_UA4 (value, objed, offset =
—)

Store into obed. Store 32 kit unsigned
integer value & 30S into oljed NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

SIGN (val = extended)

On a 32 bt machine, sign extend TOS
from a 32 ht value to a 64 bt value.
Thisisanoc-opfor 64kt madines.

STACK (— =)

Pushes the data-stadk stad-pointer to
TOS. The data stadk grows downwards,
so stadk items will be & non-negative
offsets from sp. Values subsequently
pushed onto the stadk are not visible.
Attempting to accessvalues at negative
offsets is an error. As 0n as a net
paositive number of values are popped
from the stack, sp becomes invalid and
shoud not be used.

SUB_F4 (opl, op2 = result)

Binary operation: 32 ht floating pant
subtrad.

result := opl- op2

SUB_F8 (op1, op2 = result)

Binary operation: 64 ht floating pant
subtrad.

result := opl- op2

SUB_14 (opl, op2 = result)

Binary operation: 32 bit signed integer
subtrad.

result := opl- op2

SUB_18 (opl, op2 = result)

Binary operation: 64 bt signed integer
subtrad.

result := opl- op2

SUB_14 (opl, op2 = result)

Binary operation: 32 bit signed integer
subtrad.

result := opl- op2

SUB_P (opl, op2 = result)

Binary operation: pointer subtrad.

result := opl- op2

SUB_U4 (opl, op2 = result)

Binary operation: 32 kit unsigned inte-
ger subtrad.

result := opl- op2

191

SUB_US8 (opl, op2 = result)

Binary operation: 64 kbt unsigned inte-
ger subtrad.

result := opl- op2
SUB_U4 (opl, op2 = result)

Binary operation: 32 bt unsigned inte-
ger subtrad.

result := opl- op2
SYMBOL (— = addresg

2 operand bytes.
Push addressof symbal to TOS

TARGET(n) (— = —)

Target for Jump and Branch.

TL OAD_F4(n) (— = value)

Push the contents of the ni temporary
variable as a 32 lt floating pant

TLOAD_F8(n) (— = value)

Push the contents of the ni temporary
variable as a 64 hit floating pant

TLOAD_l14(n) (— = value)

Push the contents of the n" temporary
variable as a 32 bt signed integer

TLOAD_l14(n) (— = value)

Push the cntents of the n" temporary
variable as a32 bt signed integer

TLOAD_18(n) (— = value)

Push the cntents of the n" temporary
variable as a 64 bt signed integer

TLOAD_P(n) (— = value)

Push the cntents of the n" temporary
variable as apointer

TLOAD_R(n) (— = value)

Push the mntents of the n" temporary
variable as areference

TLOAD_U4(n) (— = value)

Push the mntents of the n temporary
variable as a 32 bt unsigned integer

TLOAD_U4(n) (— = value)

Push the ntents of the n" temporary
variable as a 32 bt unsigned integer

TLOAD_U8(n) (— = value)

Push the cntents of the n" temporary
variable as a 64 bt unsigned integer

192

TRANSFER (— = —)

Pop TOS, which must be a refer-
ence and pace in the transfer reg-
ister. Resume exeaution from the
PUSH_CURRENT_STATE instruction
that stored the state objed on the state
stadk. Unlike RAISE, TRANSHER
does not modify the data stack.

TSTORE_F4(n) (value= —)

Pop a 32 bt floating pant from the
stack and store in the ni" temporary
variable.

TSTORE_F8(n) (value= —)

Pop a 64 bt floating pant from the
stadk and store in the n" temporary
variable.

TSTORE_I4(n) (value = —)

Pop a 32 bt signed integer from the
stadk and store in the n" temporary
variable.

TSTORE_I4(n) (value = —)

Pop a 32 ht signed integer from the
stack and store in the n" temporary
variable.

TSTORE_I8(n) (value = —)

Pop a 64 bt signed integer from the
stack and store in the n" temporary
variable.

TSTORE_P(n) (value = —)

Pop a pointer from the stack and store
in the n™ temporary variable.

TSTORE_R(n) (value= —)

Pop areferencefrom the stadk and store
in the n™ temporary variable.

TSTORE_U4(n) (value = —)

Pop a 32 kit unsigned integer from the
stack and store in the n' temporary
variable.

TSTORE_U4(n) (value = —)

Pop a 32 kit unsigned integer from the
stack and store in the n' temporary
variable.

TSTORE_U8(n) (value = —)

Pop a 64 kit unsigned integer from the
stack and store in the n" temporary
variable.

TYPE_NAME(n,name) (— = —)

Name the (reference) type of the nt
temporary variable, for debuggng pu-
pOSEsS.

UNLOCK (lock = —)

Unlock the gvmt-lock pointed to by
TOS. Pop TOS.

193

UNLOCK_INTERNAL (offset, ob-
jed = —)

Unlock the fast-lock in objed referred
to by TOS at off set NOS. Pop bah ref-
erence and df set from stad.

V_CALL _F4 (— = value)

1 operand byte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
strean (which is consumed). Calls the
function whose aldressis TOS. Upon
return removes the n parameters are
from the datastack. The functioncdled
must return a 32 ht floating pant.

V_CALL _F8(— = value)

1 operand byte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
strean (which is consumed). Calls the
function whose aldressis TOS. Upon
return removes the n parameters are
from the data stack. The functioncdled
must return a 64 ht floating pant.

V_CALL |4 (— = value)

1 operand byte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
strean (which is consumed). Calls the
function whose aldressis TOS. Upon
return removes the n parameters are
from the data stack. The functioncdled
must return a 32 it signed integer.

V_CALL _18(— = value)

1 operand hyte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
strean (which is consumed). Calls the
function whose adressis TOS. Upon
return removes the n parameters are
from the data stack. Thefunctioncdled
must return a 64 bt signed integer.

V_CALL 14 (— = value)

1 operand byte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
strean (which is consumed). Calls the
function whose aldressis TOS. Upon
return removes the n parameters are
from the datastack. Thefunctioncdled
must return a 32 hit signed integer.

V_CALL P (— = value)

1 operand byte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
strean (which is consumed). Calls the
function whose aldressis TOS. Upon
return removes the n parameters are
from the datastack. Thefunctioncdled
must return a pointer.

V_CALL _R (— = value)

1 operand hyte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
strean (which is consumed). Calls the
function whose aldressis TOS. Upon
return removes the n parameters are

194

from the datastadk. Thefunctioncdled
must return areference

V_CALL _U4 (— = value)

1 operand byte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
stream (which is consumed). Calls the
function whose addressis TOS. Upon
return removes the n parameters are
from the datastadk. Thefunctioncdled
must return a 32 bt unsigned integer.

V_CALL U8 (— = value)

1 operand hyte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
stream (which is consumed). Calls the
function whose addressis TOS. Upon
return removes the n parameters are
from the datastadk. Thefunctioncdled
must return a 64 kit unsigned integer.

V_CALL U4 (— = value)

1 operand hyte.

Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction
strean (which is consumed). Calls the
function whose aldressis TOS. Upon
return removes the n parameters are
from the datastadk. Thefunctioncdled
must return a 32 bt unsigned integer.

V_CALL _V (— = value)

1 operand hyte.
Variadic cdl. The number of parame-
ters, n, isthe next bytein theinstruction

strean (which is consumed). Calls the
function whaose adressis TOS. Upon
return removes the n parameters are
from the data stack. The functioncdled
must return void.

XOR_I14 (opl, op2 = result)

Binary operation: 32 bt signed integer
bitwise exclusiveor.

result := opl® op2

XOR_18 (0op1, op2 = result)

Binary operation: 64 bit signed integer
bitwise exclusiveor.

result := opl® op2

XOR_I14 (opl, op2 = result)

Binary operation: 32 bt signed integer
bitwise exclusiveor.

result := opl® op2

XOR_U4 (opl, op2 = result)

Binary operation: 32 ht unsigned inte-
ger bitwise exclusive or.

result := opl® op2

XOR_U8 (opl, op2 = result)

Binary operation: 64 kit unsigned inte-
ger bitwise exclusiveor.

result := opl® op2

195

XOR_U4 (opl, op2 = result) ZERO (val = extended)

Binary operation: 32 bt unsigned inte-

ger bitwise exclusive or. On a 32 hit madine, zero extend TOS
from a 32 bt value to a 64 bt value.
result := opl® op2 Thisisano-opfor 64kt madines.

196

Appendix B

The GVMT Abstract Machine
L anguage Grammar

Top Level Rule

file: section+ debug info?

Rules

section: (bytecode _section | code_section | heap_section
opaque_section | root_section)

byt ecode_section: '.bytecodes’ new |ines
((bytecode _directive | bytecode) new |ines)*

code_section: '.code’ new_ |ines
((code_directive | function) new_|ines)*

heap_section: '.heap’ new_|ines
((heap_directive | data_declaration) new_|ines)*

opaque_section: '.opaque’ new_|lines
((data_directive | data_declaration) new_|ines)*

roots_section: '.roots’ new_|ines
((data_directive | address) new |ines)*

instruction: ID((" (ID(',” ID*)? "))?

197

bytecode: ID ("= digit+)? ('[’ qualifier* *]")? ’':’ instruction* ’;
function: ID('[’ qualifier* *]")? ’:’ instruction* ’;’

data_declaration: integral value | float_val ue |
string_val ue | address

bytecode_directive: '.local’” | '.name’ ID| '.master’

heap _directive: '.public’ ID| '.object’ ID| ’.end
data_directive: '.public’ ID| ".label” ID

integral value: int_type nunber

float _value: float _type float_nunber

string_value: 'string text

address: ’address’ (0 | ID

debug_info: ((type_directive | menber_directive) new_|ines)*
type directive: '.type’ ('struct’'|’'object’) ID

menber _directive: '.menber’ 1D nenber_type '@ nunber

member _type: int_type | float_type | pointer_type | reference_type
struct _type: "S(" ID")’

pointer type: 'P(’ (menber _type | '? | struct_type) ')’

reference type: '"R(’ ID")’

Tokens

ID: letter(letter|digit)*

number: digit+

float _nunmber: digit (*." digit)? (e ("+|'-") digit+)?
text: """ char* '"’

198

int_type: 'u'?int’ ('8] 16"|'32"|'64")
float type: "float’' ('32"|'64")

new lines: "\n ((" "|'\t")*" \n)*

Part Tokens

letter: [A-Za-z_]

digit: [0-9]

| egal _ascii = Any ascii char fromcode 32 to 126,
except '\n’, "\t’, "\’ 7’7 and "’

char: legal _ascii | "'\n" | "\t" | "\\" | "\"" | "\"" |

"\"[0-3][0-7][0-7]

Ignored Tokens

whitespace: ' '|’\t’

coment: /' /T ¥ '\n’

199

Appendix C

Python Attribute L ookup Semantics

C.1 Definitions

Attribute lookupin Pythonrefers to the syntadic dement obj . att r whereobj is
any objed, andattr isalega name.

Methodcdlsof theobj . attr () aretreaed the same a any other attribute lookup
followed bya cdl. In other wordsobj . attr() =f() wheref = obj.attr.

For the purpases of the dgorithmsin this appendix, the following are assumed?:

e All madhine-level objed representations have the field dict, which may be
null.

All madine-level type representations have the fields getattribute, get, set,
mro and, since dl classes are dso ojeds, dict.

getattribute and mro are never null.

get and set may be nul.

If set isnonnull, get must be nornnull.

The expresson obj — attr istaken to mean dired accessto the field named attr
in the underlying representation o the objed referred to by obj.The arow in the
expressonobj — attr isused as it refleds the C syntax for accessngafield of a
structure througha pointer.

The fields getattribute, get and set point, if they are nonnull, to macine-level
functions (not Pythonfunctions). The mro field pantsto vedor of types defining

LVMs are not required to implement things this way; it just makes the dgorithms cleaer.

200

attribute lookup ader for that type. The first item in the mro vedor is the type
itself, andthe last is alwaysobj ect , the base type of everything.

Thefollowing expressons are used, in descending ader of precalence

e Tobjisareferenceto thetype objed for the type of obj.

f(x,y) means cdl the madcine-level function f with x and y as its argu-
ments.

vi meanstheith item in the vedor v.

d(name) meansto lookupname in the dictionary referred to by d.

e a= b means bhitwise equivalence (a and b can be pointers or macine inte-
gers.

e a:= b means copythe vaue (which will be apaointer) of b into a.

C.2 Lookup Algorithm

Initially the macdhine-level pointer obj refersto the Python ohed obj . The Python
expressonobj . attr isevaluated as 7obj — getattribute(obj, attr). Although
this can be overridden by any type, in general it i s not, the main exception being
classobjeds.

The default objed lookupis shownin Algorithm C.1. A referenceto the resulting
objed will be stored in result.

For classobjeds, that isobjeds where 7 obj C type, attribute lookupis shownin
Algorithm C.2.

Thedescri ptor _| ookup functionisdefined in Algorithm C.3.

201

Algorithm C.1 PythonAttribute Lookup(Objeds)

cls:= Tobj
desc := descriptor_|lookup(cls, attr)
if desc # 0 and 7 desc — set # 0 then
result := 7 desc — get(obj,cls)
else
d :=obj — dict
if d # 0andd(attr) # 0 then
result := d(attr)
elseif desc # 0 and 7desc — get # 0 then
result := 7desc — get(obj,cls)
elseif desc # O then
result := desc
else
result := ERFOR
end if
end if

Algorithm C.2 PythonAttribute Lookup(Types)

desc := descriptor_|lookup(cls, attr)
if desc # 0 and T desc — get # O then
result := 7 desc — get(None, obj)
elseif desc # O then
result := desc
else
result := ERFOR
end if

Algorithm C.3 Descriptor Lookup

mro :=cls— nmro

i:=0

repeat
t = mro;
result :=t — dict(attr)
i=i+1

until result # 0 or t = objed

202

Appendix D

Surr ogae Functions

The foll ow functions use some HotPy-spedfic annaations. These annaations are
required to ensure arred semantics, and avoid circularity. The anndations are:

The @ur e anndation oy appliesto C functions and states that the function has
no gobal side-effeds. The @_f uncti on annaation orly informs the VM that
thisisafunctionwrittenin C. The @ret hod(cl ass, name) anndaationstoresthis
functionasamethodinthecl ass dictionary with thekey name. The@no_trace
anndation indicaes that this function shoud na appea in a tracebad in the
event of an exception being raised

D.1 The_new__ method for tuple

@ _pure

@c_function

def tuple_from_list(cls:type, l:list)—>tuple:
pass

@method(tuple,’__new__ ")
def new_tuple(cls, seq):
if type(seq) is list:
return tuple_from_list(cls, seq)
elif type(seq) is tuple:
return seq
else:
| =[x for x in seq]
return tuple_from_list(cls,)
del new_tuple

203

D.2 The call method for type

@ _no_trace
def type_call(cls, xargs, *xkws):
obj =cls.__new__(cls, xargs, *xkws)
if isinstance(obj, cls):
obj.__init__ (xargs, *xkws)
return obj

D.3 TheBinary Operator

This function implements binary operators. For addition nane andr nane would
be‘ add ’'and’ radd_’respedively.

def binary_operator(name, rname, opl, op2):
t1 = type(opl)
t2 = type(op2)
if issubclass(t2, t1):
if rname in t2._ dict_ :
result =t2.__dict__[rname](op2, opl)
if result is not Notimplemented:
return result
if name in t1.__ dict_ :
result =tl. dict _[name](opl, op2)
if result is not Notlmplemented:
return result
else:
if name in t1.__ dict_ :
result =tl. dict _[name](opl, op2)
if result is not Notlmplemented:
return result
if rname in t2.__ dict__:
result =t2.__dict_ [rname](op2, opl)
if result is not Notlmplemented:
return result
_binary_operator_error(tl, t2, name)

204

Appendix E

TheHotPy Virtual Machine
Byteaodes

All instructions are shown in the GVMT interpreter description format of name
followed by stadk effed andinstructioneffed. Values onthe left of the— divider
are inpus, those on the right are outputs. All outputs go the stadk. Inputs come
from the stadk unlessmarked with a #, in which case they are fetched from the
instruction stream. #x is a one byte value, ##xisatwo byte value. #7 isapointer
sized value.

For example:

truth(R_objed o— R_bod b)
Explanatory text follows the stadk effed.

E.1 Baselnstructions

The instructions listed in this sdion are thase required to express unogimised
Python programs. The output of the source-to-bytecode compil er consistsentirely
of these bytecodes.

E.1.1 Atomiclnstructions

These instructions are treaed as atomic by the optimisers. They are recorded
diredly by tradng and either left intad or removed entirely by subsequent opti-
misations.

205

as tuple(R_objed obj — R_tuplet)

obj must be alist or atuple. If itisalist thenit is converted to atuple. Used for
pasdng parameters (onthe cdler side).

byte (int #n — R_int i)

Pushes an integer (in the range -128to 127inclusive) to the stack.

constant(unsigned ##index — R_aobjed objed)
Push a constant to TOS.
object = sys._getframe().f_code.co_consts[index]
copy(R_objed x — R_objed x, R_dbjed x)
Duplicaes TOS

copy_dict(R_dict d — R_dict d)
Replacedictionary in TOS with a shall ow copy, used for parameter marshalli ng.

delete_gobal (unsigned ##name —)
Delete from globals (modue dictionary)

delete local(unsigned ##name —)

Delete from frame locds (as dictionary)

dict_insert(R_dict d, R_str key, R_objed value— R_dict d)
d[key] = val ue
Inserts key/value pair into dict, leaszing the dict on the stack. Used for parameter
marshalli ng.
dictionary(— R_dict d)
Pushes a new, empty dictionary to the stac.

drop(R_objed x —)
Pops (and dscards) TOS

empty_tuple(— R_tuplet)
Pushes an empty tuple to the stad.

exit_loop(R_BaseException ex —)

If ex isnat aStoplterationthen reraise ex. Used at exit from aloopto diff erentiate
between looptermination and ather exceptions.

206

false(— R_bodl f)

Pushes False to the stack.

flip3 (R_objed x1, R_objed x2, R_objed x3 — R_objed x3, R_adbjea x2,
R_objed x1)

Fli ps the top threevalues on the stack.

isS(R_objed 01, R_objed 02— R_bod b)
b =o0lis 02

line(unsigned ##ineno —)
Set the line number and cdlstraang function (if any).

sys. _getframe().f_lineno = lineno

list(uint8_t #count — R_list I)

Remove top court elements from the stack, creding anew list.

list_append(R_list|, R_objed 0—)

Used in list comprehension, where| isguaranteed to be alist.

load_deref(unsigned #depth, unsigned #n — R_objed value)

Load anonlocd from framein stadk.

load_frame(unsigned #n — R_objed value)

L oads value from the n" locd variable. Raise an exceptionif locd variable has
been assgned. Equivalent to:

value = sys. getframe(). _array[n]

except that _array isnat visiblein pythoncode.

load_global(unsigned ##name — R_objed value)
Load from globals (modue dictionary)

load_local (unsigned ##name — R_objed value)

Load from frame locds (as dictionary)

name(int #index — R_str name)
Pushes a string from the cde-objed’s nametable.
207

none(— R_NoneTypen)
Pushes None to the sta.

nop(—)
No operation

over (R_objed x, R_objed x1 — R_objed x, R_adbjed x1, R_objed x)
Pushes a mpy d the seoond value on the stadk to the stack.

pack(uint8_t #count — R_tuplet)

Padk the top count elements from the stad into a new tuple.

pack params(uint8_t #count — R_tuplet, R_dict empty)

Conceptually ike padk, but also pushes an empty dict. Used for parameter mar-
shallingin the common case where there ae no named parameters.

pick (int #n — R_objed o)

Picks the n" (TOS isindex 0) value from the stack

pop_handler(—)
Pops exception-handler.

rotate (R_objed x1, R_objed x2, R_objed x3 — R_adbjed x2, R_objed x3,
R_objed x1)

Rotates the top threeval ues on the stad.

rotated4 (R_objed x1, R_objed x2, R_adbjed x3, R_objed x4 — R_objed x2,
R_objed x3, R_objed x4, R_objed x1)

Rotates the top four values on the stack.

rrot(R_objed x1, R_objed x2, R_objed x3 — R_objed x3, R_adbjed x1,
R_objed x2)

Courter rotates the top threevalues on the stack.

dice(R_objed 01, R_objed 02, R_adbjed 03— R_dlices)

s = slice(ol, 02, 03)

Makes anew dlice
208

store_deref(unsigned #depth, unsigned #n, R_objed value —)

Store anonlocd to framein stadk.

store_frame(R_objed value, unsigned #n —)

Stores valuein the ' locd variable. Equivalent to:
sys. getfranme(). _array[n] = value

except that _array isnat visiblein pythoncode.

store_global(unsigned ##name, R_objed value—)
Store to globals (modue dictionary)

store_local (unsigned ##name, R_objed value—)

Store to frame locds (as dictionary)

subtype(R_typet0, R_typetl — R_bod b)
b =t0 \subseteq t1

swap (R_objed x, R_objed x1 — R_objed x1, R_adbjed x)
Exchanges the top two values on the stack

true(— R_bodl t)
Pushes True to the stad.

tuple _concat(R_tupletl, R_tuplet2 — R_tuplet3)
t3 =t1 +12

t1 and t3 must be tuples, used for parameter marshalli ng.

two_copy(R_objed x, R_dbjed x1 — R_objed x, R_dbjed x1, R_objed X,
R_objed x1)

Duplicaes the two values on the stadk

type _chedk(R_aobjed objed, R_type ds— R_bod b)

Push Trueif obj ect isaninstanceof cl s, False otherwise.

unpack (uint8_t #len, R_objed objed —)
obj ect must be alist or tuple and o length | en. Unpadks onto the stad.
209

E.1.2 Compound Instructions

These instructions can be defined in terms of other instructions. For example
the bi nary byteamde can be defined in Python, as shown in Appendix D. These
byteaodes can be replaceal by a cdl to a function that implements the same func-
tionality. However, this only dore during traang.

binary(uint8_t #index, R_objed |, R_objed r — R_objed value)
Applies binary operator. Operators are stored in aglobal tuple.

value = binary_operator_tuple[index](l, r)

contains(R_objed item, R_objed container — R_objed result)

result = itemin container

delete_attr(unsigned ##index, R_objed obj —)
Fetches name from the code-objed’s name table.

del obj.name

delitem(R_objed seq, R_objed index —)
del seq[iten]

getitem(R_objed seq, R_odbjed index — R_objed value)

val ue = seq[i ndex]

inplacg(uint8_t #index, R_objed |, R_odbjed r — R_objed value)
Appliesinplaceoperator. Operators are stored in aglobal tuple.

val ue = inplace_operator_tuple[index](l, r)

iter(R_objed 0— R_abjed it)

it =iter(o)

load_attr(unsigned ##index, R_objed obj — R_objed value)
Fetches name from the code-objed’s name table.

val ue = obj.nane

next(R_objed it — R_objed value)
value = next(it)
210

not(R_objed bl — R_bod b2)
b2 = not bool (bl)

sequence to_list_or_tuple(R_objed obj — R_objed | t)

Conwert obj to alist, unlessit is arealy alist or tuple, in which case nathingis
dore.

setitem(R_objed value, R_adbjed seq, R_objed index —)

seq[index] = value

store_attr(unsigned ##index, R_objed value, R_objed obj —)

Fetches name from the code-objed’s name table.

obj . nane = val ue

truth(R_objed o — R_bod b)
b = bool (0)

unary(uint8_t #index, R_objed o — R_aobjed value)
Apply unary operator (-X, +X, X)

yield(R_objed value—)

Yields value to cdler context by performing the following: Pops current frame
from stack. Sets current ip to value stored in (now current) frame.

E.1.3 Instructions Replaced During Tracing

Theseinstructions are replaced duingtraang with asingle dternative. Jumps are
eliminated and condtional branches are replaced with conditonal exits.

debug(— R_bod d)
Push value of global constant __debug__ (either Tr ue or Fal se)

end_loop(int ##dfset —)
Jump by dfset (to start of loop) Posgble start of tradng.

end_proted(int ##dfset —)
Pops exception-hand er and jumps by off set
211

f call(R_objed callable, R_tupleargs, R_dict kws— R_objed value)
Calls cdlable with args and kws

value = call abl e(*args, **kws)

for_loop(int ##dfset —)
As proted, but marks alooprather than atry-except block.

jump(int ##dfset —)
Jump by df set.

on_false(int ##dfset, R_objed 0 —)
Jump by dfset if TOS evaluatesto False

on_true(int ##dfset, R_objed 0 —)
Jump by dfset if TOS evaluatesto True

proted(int ##dfset —)

Push an exception-handler, which will cach Exception and jump to current ip +
off set.

return(R_objed val — R_objed val)

If in a generator, raise Stoplteration. Otherwise, asyield
E.1.4 InstructionsNot Allowed in a Trace

The following instructions have complex semantics and are expeded to occur
only in start-up code. If any of thme ae encountered during traang the traceis
abandored and namal i nterpretation continues.

import(R_objed file— R_objed objeq)
Used for the import statement.

object = __inport_ (file)

make_clasqint ##name, R_objed dict, R_tuple bases— R_type ds)
Make anew class
make_closure(uint8_t #code index, R_tuple defaults, R_dict annotations —
R_objea f)
Make anew closure, code-objed isfetched from constant array.
212

make func(uint8_t #code index, R_tuple defaults, R_dict annotations —
R_objed f)

Make anew function, code-objed is fetched from constant array.

new_scope(—)

Credesaframe and pushesit. Used in classdedarations

pop_scope(— R_dict locals)
Pops the frame pushed by new_scope, leavingitslocds dictionary on the stad.

raise(R_objed 0—)

Raise an exception; o if it isan exception, an error otherwise.

E.2 Instructions Required for Tracing

Theinstructionsrequired for tradng are mainly equivalents of branch instructions
that exit the traceinstead. For example the on_t r ue byteade which branhces if
the TOS evaluates as true will be replaced withexi t _on_f al se if the branch was
taken or exit _on_true if it wasnat.

ched_valid(R_exec link link —)

If traceisinvalidated, exit traceto unogimised code.

exit_on_false(R_bod cond, intptr_t #]exit —)

Exitif cond isFalse cond must be abodean.

exit_on_true(R_bod cond, intptr_t #fexit —)

Exitif cond is True; cond must be abodean.

fast_constant(unsigned #Taddress— R_abjed objed)
Pushes constant objed at address Used by odimiser.

fast_frame(uint8_t #count, intptr_t #]func, intptr_t #Tnext_ip —)

Crede and puwsh a new frame for the function f unc and initialise it with the top
count values onthe stack.

213

fast_line(unsigned ##lineno —)
Set the line number (does nat cdl tradng function)

sys. getframe().f_lineno = lineno

func_ched(intptr_t #7code, intptr_t #Jexit, R_objed obj —)

Ensure that the ol is exadly the function spedfied by func. If it is a different
value then exit the trace

gen_chedk(unsigned #Tnext_ip, intptr_t #foriginal_ip, R_generator gen —)

Ensure that gen isagenerator and that the next ip for the generator is as expeded.
If not then resume interpretation of unogimised code.

gen_enter(unsigned #Jcaller_ip, intptr_t #Toriginal_ip, R_generator gen —)

Set the return addressin current frameto cal | er _i p, and push generator frame.

gen_exit (—)

Raise aStoplteration exception.

gen_yield(unsigned #1next_ip, R_objed val — R_objed val)

Set the aurrent frame's instruction pdnter (for resuming the generator) to
next i p. Pops current frame from stadk. Sets current ip to value stored in previ-
ous frame.

init_frame(R_function func, R_tuplet, R_dictd —)

Initi ali ses the aurrent frame from func, t and d. func determines number and
format of parameters, as well as default values. t and d contain the parameter
values.

interpret(intptr_t #Jresume_ip —)

Resume the interpreter from resume _ip.

load_spedal(R_objed obj, unsigned #index — R_objed attr)

Load spedal attribute, fetching the name from spedal _name table, name =
speci al _names[i ndex] .

attr = obj.name

Thereisafallbadk functionfor ead index, which iscdledinthe event of obyj.name
not being defined.

attr = fallback[index] (obj)
214

make frame(intptr_t #Jret_addr, R_function func —)

Set instruction panter of current frametoret addr. Creae anew frame, deter-
miningsizefrom f unc. Push new frame to frame stac.

new_enter(unsigned #{func_addr, R_type ds, R _tuple t, R_dict d —
R_function func, R_tuplet, R_dict d)

Enter the surrogate ‘new’ function. Replaces cl s with the surrogate function
func, replacest with(cls,) + t andleavesd untouched. Equivalent to:
flip3pack 1swaptuple _concat | oad const flip3

pop_frame(—)
Pops frame.

prepare_bm_call(R_bound_method bm, R _tuple t, R _dict d — R_objed
func, R_tuplet, R_dict d)

Prepare a c#l for aboundmethod Extrads =if and cdlable from b prefixingt
with self.

t = (bm__self ,) +t; func = bm__func__

proted_with_exit(#7link —)
Push an exception-handler, which will cach Exceptionand exit to link.

recursion_exit(intptr_t #7next_ip, intptr_t #7exit —)

Set next_ip and exitstrace

return_exit(intptr_t #7exit —)

Pops frame and exits trace

trace exit(intptr_t #7exit —)

Exitstrace

trace proted(#faddr —)

Push an exception-hand er, which will caich Exception and interpret from addr .

type(R_objed objed — R_typet)

t=type(objed)
215

E.3 Spedalised Instructions

Spedalised instructions are used when the type of the operands are known. Many
are of theformi _xxx or f _xxx which are operations goeaalised for integers and
floats respedively. Thenative_cal | instructionallows C functions to be cdled
diredly inplaceof thef _cal | or bi nary byteades, when the tyes are known.

bind(intptr_t #7func, R_objed self — R_bound_method bm)

Creae aboundmethodfrom sel f andf unc.

bm self =self; bm__func__ = func

ched_keys(unsigned ##dict_off set, unsigned #7key address intptr_t #Texit,
R_objed obj —)

Ensure that the dict-keys of obj matches the expeded ore. If it does not then
leave the traceto the handler pointed to by exit. Requires that the type of obj is
known.

deoptimise_ched(intptr_t #trace addr, intptr_t #Toriginal_ip—)

If tracehas been invalidated, resume interpretationfromori gi nal _i p

ensure_initialised(unsigned #n, intptr_t #7exit —)

If locd variable n is uninitiali sed then resume interpreter fromexi t .

ensure_tagged(intptr_t #7exit, R_objed obj — R_abjed obj)

Ensurethat obj isatagged integer. Leavesobj onthe stad. If it has anather type
then leave the traceto the handler pointed to by exit.

ensure_tagged2(intptr_t #7exit, R_objed obj, R_objed tos— R_objed obj,
R_objed tos)

Like ensure _tagged, but for the seaond value on the stack. Important for binary
operations.

ensure_tagged _drop(intptr_t #7exit, R_objed obj] —)

Like ensure_tagged, but does not leave obj onthe stack.

ensure_type(unsigned #]code, intptr_t #7exit, R_objed obj — R_adbjed 0)

Ensure that obj has the type spedfied by code. Learesobj onthe stad. If it has
another type then leave the traceto the handler pointed to by exit.

216

ensure_type2(intptr_t #7code, intptr_t #Jexit, R_objed obj, R_objed tos —
R_objed o, R_adbjed tos)

Like type_ensure, but for the seaond item on the stadk. Important for binary
operations.
ensure_type drop(intptr_t #7code, intptr_t #7exit, R_objed obj —)

Like ensure_type, but does not leare obj onthe stad.

ensure_value(intptr_t #7code, intptr_t #7exit, R_objed obj — R_objed 0)
Ensure that the obyj is exadly value spedfied by code. Leaves obj onthe stadk. If
it isadifferent value then exit the trace

f add(R_float f1, R _float f2— R_float result)
Addition spedalised for floats. f 1 andf 2 must be floats.

result =f1 + f2

f div(R_floatf1, R_float f2— R_float result)
Diivisionspedalised for floats. f 1 andf 2 must be floats.

f eq(R _float f1, R _float f2— R_bod result)
Equality test spedalised for floats . f 1 andf 2 must be floats.

f ge(R _floatfl, R float f2— R_bod result)
Comparison spedalised for floats . f 1 andf 2 must be floats.

f ot(R_floatf1, R_float f2— R_bod result)
Comparison spedalised for floats . f 1 and f 2 must be floats.

f le(R float f1, R_float f2— R_bod result)
Comparison spedalised for floats . f 1 and f 2 must be floats.

f It(R_float f1, R_float f2— R_bodl result)
Comparison spedalised for floats . f 1 andf 2 must be floats.

f mul(R_float f1, R_float f2— R_float result)
Multi plication spedalised for floats. f 1 andf 2 must be floats.

f ne(R _float f1, R _float f2— R_bod result)
Inequality test spedalised for floats . f 1 and f 2 must be floats.
217

f neg(R_float f — R_float result)
Negation spedalised for floats. f must be afloat.

f sub(R_float f1, R_float f2— R_float result)

Subtradion spedalised for floats. f 1 and f 2 must be floats.
fast_load_attr(unsigned ##dict_offset , unsigned ##index, R_objed objed —
R_objed value)

Rapidly loads a value from objed dictionary. Requires that both the type of obj
isknown and that its dict-keys have been cheded.

fast_load_frame(uintptr_t #n — R_objed value)

Loads value from the n locd variable. Like | oad_frame, but does not chedk
that locd variable has been assgned.

fast_load_global(intptr_t #Taddress unsigned ##index — R_objed value)

Fetch the di ct _val ues objed from address The di ct _val ues objed will be-
longto amodue-level dictionary. Fetch val ue fromi ndex inthedi ct _val ues
objed. Requires guards onthe moduedict to ensurethat dict isnot resized or that
item isnot deleted.

value = ((R_di ct_val ues)address)->val ues[i ndex];

fast_not(R_bod bl — R_bod b2)
b2 = not bl

b1 must be abodean.

fast_store_attr(unsigned ##dict_offset, unsigned ##index, R_objed value,
R_objed objed —)

Rapidly stores avalue to the objed dictionary. Requires that both the type of obj
isknown and that its dict-keys have been cheded.

fast_store_global(intptr_t #7address unsigned ##index, R_objed value—)
Stores a global from modue dict-values at address with off set index. Requires
guards onthe modue dict to ensure that dict is not resized.

i2d(R_objed o — double out)

Conwert atagged int to a C doule (an unboyed float)

i2f(R_objed 0 — R_float result)
Conwvert atagged int to a (boxed) float.
218

i_add(R_int i1, R_inti2, intptr_t #Texit — R_int result)

Addition spedalised for tagged integers. i 1 andi 2 must be tagged integers. If
result overflows then boxthe result and leave the traceto the handler pointed to
by exit.

result =il +1i2
i_comp_eq(R_int i1, R_int i2— R_bodl result)
Equality test for tagged integers.

i_comp_ge(R_intil, R_inti2— R_bod result)
Comparison for tagged integers.

i_comp_gt(R_int i1, R_inti2— R_bod result)
Comparison for tagged integers.

i_comp_le(R_intil, R_inti2— R_bod result)
Comparison for tagged integers.

i_comp_It(R_intil, R_inti2— R_bod result)
Comparison for tagged integers.

result =il<i2

i_comp_ne(R_int i1, R_int i2— R_bodl result)
Inequality test for tagged integers.

i_dedqR_int i1, unsigned #2, intptr_t #7exit — R_int result)
Likei_inc, but for subtradion.

result =il-i2

i_div(R_intil, R_inti2— R_float result)

result =il1/ i2

i_inc(R_int i1, unsigned #2, intptr_t #7exit — R_int result)

Increment for tagged integers. i 1 must be atagged integer. If result overflows
then boxthe result and leave the traceto the handler pointed to by exit.

result =il +i2
i_mul(R_intil, R_inti2— R_int result)
Multipliesthe tagged integers, i 1 andi 2. Result may be tagged or boxed.

result =il*i2
219

i_prod(R_int i1, unsigned #i2, intptr_t #7exit — R_int result)

Multiplies the integersi 1 andi 2. i 1 must be atagged integer. Result may be
tagged or boxed.

result =il * i2

i_rshift(R_int 01, R_int 02— R_int result)
Right shifti 1 byi 2.1 1 andi 2 must be tagged integers.

result =il >1i2

i_sub(R_intil, R_inti2, intptr_t #7exit — R_int result)
Likei_add, but for subtradion.

result =il - i2

load_slot(unsigned #offset, R_objed objed — R_objed value)

Load valuefrom obj ect at of f set. Raise exceptionif slot is uniniti ali sed.

native_call (int #count, intptr_t #7func_addr — R_objed value)
Call the native (GVMT) function at f unc_addr with count parameters.

native_call_no_prot(int #count, intptr_t #func_addr — R_objed value)

As native cdl. The"no_pot" isto inform the optimisers that this function will
not raise an exception and dces not neal to be proteded.

native call_proted(int #count, intptr_t #7func_addr, intptr_t #7on_except —
R_objed value)

Cdl the native (GVMT) function at f unc_addr with count parameters. If an
exceptionisraised, resume interpreter fromon_except .

native_setitem(intptr_t #/func_addr, R_objed value, R_objed seq, R_objed
index —)

Like native_cdl, but takes same inpus as stitem and dscards return value.

store_slot(unsigned #offset, R_objed value, R_objed objed —)

Store valueinto obj ect at of f set .

unpack _native params(intptr_t #func_addr, R_objed c, R_tuplet, R_dict
d—)

Unpadks the parameters in t (d must be empty) onto the stadk, providing the
number of parameters is the same &s that required by the builti n (C) function at
func_addr . If parameters do nd match, raise an exception.

220

E.4 D.O.C. Instructions

These instructions are those required by the Deferred Objed Credion pass They
are dther related to unboxng floating pant operations, or to storing valuesin the
(thread-locd) cade, in order to avoid creding frames.

ched_initialised(unsigned #n —)

If locd variablen is uninitialised then raise an exception.

clear_cache(uintptr_t #count —)

Cleas (setsto NULL to alow the objeds to be mlleded) the first count cade
sots.

d2f(double x — R_float result)

Box a C douleto produce afloat.
d_add(doublel, double r — double out)

out =1 +r
Spedalised form for unboyed floats (C douldes).

d_byte(int #val — double out)
Pushesval (small integer) asadoube.

d_div(doublel, double r — double out)
Spedalised form for unboyed floats (C douldes).

d_idiv(R_int 01, R_int 02— double out)
out = ol/o02
Produce adoule by dividingtagged integers.

d_mul(doublel, double r — double out)
Spedalised form for unboyed floats (C douldes).

d_neg(double f — double out)
Spedalised form for unboyed float (C doule).

d_sub(doublel, double r — double out)
Spedalised form for unboyed floats (C douldes).
221

f2d(R_float f — double out)

Unboxafloat to produce adoube.

load_from_cache(uintptr_t #n — R_objed value)

Loads the nth cadhed slot. The cade is used to store values that would be stored
in the frame, but canna as the frame is deferred.

store_to_cache(uintptr_t #n, R_objed value—)

Storesval ue to nth cadhed slot.

E.5 Super Instructions

Super-instructions are ancaenations of other instructions. For example, the in-
struction| i ne_none isthe concatenation o the instructions| i ne and none.

drop_under (R_objed nos, R_adbjed tos— R_objed tos)
Dropsnoslearing TOS in place

i_exit_eq(R_intil, R_inti2, intptr_t #7exit —)
Exit traceif i 1 =i 2, for tagged integers.

i_exit_ge(R_intil, R_inti2, intptr_t #Texit —)
Exittraceifi 1 > i 2, for tagged integers.

i_exit_gt(R_intil, R_inti2, intptr_t #7exit —)
Exit traceifi 1 > i 2, for tagged integers.

i_exit_le(R_intil, R_inti2, intptr_t #Jexit —)
Exittraceifi 1 <i 2, for tagged integers.

i_exit It(R_intil, R_inti2, intptr_t #Jexit —)
Exit traceifi 1 < i 2, for tagged integers.

i_exit_ ne(R_intil, R_inti2, intptr_t #7exit —)
Exittraceifi 1 eqi 2, for tagged integers.

line byte(—)
Super instructionequal to | i ne followed by byt e
222

line fast_constant(—)
Super instructionequal to | i ne followed byf ast _const ant

line fast_load frame(—)
Super instructionequal to | i ne followed byfast | oad_frame

line fast_load global(—)
Super instructionequal to | i ne followed byfast | oad_gl obal

line_load_frame(—)
Super instructionequal to| i ne followed byl oad_f rane

line_load_gobal(—)
Super instructionequal to | i ne followed byl oad_gl obal

line_none(—)

Super instructionequal to | i ne foll owed bynone

223

Appendix F

Results

224

HotPy (base, C)
HotPy (base, Py)
HotPy (JIT, C)
HotPy (JIT, Py)
HotPy (int-opt, C)
HotPy (int-opt, Py)
HotPy(C) t
HotPy(C) tc
HotPy(C) td
HotPy(C) tdc
HotPy(C) ts
HotPy(C) tsc
HotPy(C) tsd
HotPy(C) tsdc
HotPy(Py) t
HotPy(Py) tc
HotPy(Py) td
HotPy(Py) tdc
HotPy(Py) ts
HotPy(Py) tsc
HotPy(Py) tsd
HotPy(Py) tsdc
Python3
PyPy (interpreter)
PyPy (with JIT)
uUn. Sw. (always)

Un. Sw. (default)
Un. Sw. (noJIT)

gcbench
1.06
1.08
0.55
0.55
041
041
1.05
1.27
1.20
131
0.71
0.97
041
0.54
1.07
1.28
1.22
1.34
0.73
1.03
041
0.55
161
2.34
1.10
2.68
151
161

pystone|richards

0.78
1.02
0.42
0.43
0.33
0.33
0.71
1.34
0.82
1.23
041
0.59
0.33
0.42
0.93
1.99
1.03
1.89
0.60
0.81
0.33
0.43
1.02
1.66
0.36
2.64
213
0.86

0.52
0.53
0.37
0.38
0.25
0.27
0.51
0.80
0.54
0.82
0.25
0.38
0.25
0.37
0.53
0.83
0.56
0.84
0.28
041
0.27
0.38
0.60
1.63
0.68
3.24
1.60
0.89

fannkuch
0.40
1.25
0.31
0.29
0.25
0.28
0.34
0.52
0.43
0.64
0.21
0.27
0.25
0.32
1.20
1.79
1.26
1.77
0.81
0.82
0.33
0.29
0.42
0.46
0.19
0.75
0.62
0.32

fasta
0.83
1.21
0.43
0.46
0.53
0.55
0.74
0.98
0.87
0.93
0.48
0.51
0.53
0.43
1.08
1.35
1.18
1.24
0.74
0.67
0.55
0.47
0.43
0.92
0.43
1.00
0.51
0.32

Table F.1: Timings (in seonds); short benchmarks.

225

spedra
0.90
0.90
0.31
0.31
0.35
0.35
0.75
1.01
0.83
0.98
0.38
0.47
0.35
0.31
0.76
1.03
0.84
0.95
0.38
0.47
0.35
0.31
0.75
0.86
0.23
0.83
0.71
0.58

HotPy (base, C)
HotPy (base, Py)
HotPy (JIT, C)
HotPy (JIT, Py)
HotPy (int-opt, C)
HotPy (int-opt, Py)
HotPy(C) t
HotPy(C) tc
HotPy(C) td
HotPy(C) tdc
HotPy(C) ts
HotPy(C) tsc
HotPy(C) tsd
HotPy(C) tsdc
HotPy(Py) t
HotPy(Py) tc
HotPy(Py) td
HotPy(Py) tdc
HotPy(Py) ts
HotPy(Py) tsc
HotPy(Py) tsd
HotPy(Py) tsdc
Python3
PyPy (interpreter)
PyPy (with JIT)
uUn. Sw. (always)

Un. Sw. (default)
Un. Sw. (noJIT)

gcbench
9.79
9.96
2.80
2.68
351
3.50
9.63
9.70
1101
10.12
6.53
5.64
3.50
2.79
9.85
9.75
11.37
10.19
6.61
5.92
3.52
2.69
15.07
2274
3.95
14.36
1248
15.15

pystone
7.32
9.65
1.25
1.27
3.07
3.09
6.88
7.85
8.00
8.17
3.82
243
3.07
1.24
9.04
11.22
10.03
11.01
5.81
3.98
3.08
1.27
9.82
16.33
1.36
10.62
14.28
8.33

richards
4.69
490
2.21
242
2.17
2.37
4.89
6.30
5.18
6.40
2.23
2.39
2.17
2.21
5.07
6.67
5.45
6.72
2.48
2.93
2.35
244
5.62
16.08
1.43
1144
12.87
8.56

fannkuch
3.49
12.46
1.44
1.14
2.28
2.27
3.22
3.56
4.04
3.76
1.87
1.37
2.26
1.44
11.79
1271
1259
11.36
7.77
459
2.31
1.15
3.88
444
0.93
2.49
5.91
3.04

fasta
7.79
11.69
1.84
2.04
5.09
5.23
717
6.22
8.53
6.01
455
2.72
5.08
1.83
10.56
8.77
1159
8.04
717
3.95
5.26
2.03
3.92
8.98
3.61
3.13
2.96
2.89

Table F.2: Timings (in seconds); medium benchmarks.

226

spedra
7.59
7.59
1.43
1.44
2.84
2.84
6.58
6.03
7.26
5.47
311
2.79
2.84
1.43
6.59
6.13
7.32
5.58
3.13
2.79
2.84
1.43
6.66
7.33
0.57
3.99
3.18
4.93

HotPy (JIT, C)
HotPy (JIT, Py)
HotPy (int-opt, C)
HotPy (int-opt, Py)
HotPy(C) t
HotPy(C) tc
HotPy(C) td
HotPy(C) tdc
HotPy(C) ts
HotPy(C) tsc
HotPy(C) tsd
HotPy(C) tsdc
HotPy(Py) t
HotPy(Py) tc
HotPy(Py) td
HotPy(Py) tdc
HotPy(Py) ts
HotPy(Py) tsc
HotPy(Py) tsd
HotPy(Py) tsdc
Python3
PyPy (with JIT)
Un. Sw. (dways)
Un. Sw. (default)

gcbench
2717
2452
38.65
3893
10811
10187
11976
10667
7497
57.94
38.75
27.30
11001
10470
12237
10751
77.93
61.80
3892
24.61
23955
3275
22021
21184

pystone
7.27
7.66
3041
30.57
68.63
7272
80.09
75.30
38.01
1825
3041
7.29
90.21
99.77
99.80
98.63
57.79
3181
30.58
7.62
98.44
10.93
90.34
13572

richards
1315
13.46
21.32
23.87
49.49
5241
52.94
5232
22.02
15.49
21.29
13.10
5140
54.94
55.14
54.87
24.64
16.71
23.60
1346
55.69
8.16
92.79
12290

fannkuch
1172
8.38
24.85
2453
34.79
3150
4472
34.31
20.19
1211
24.89
11.74
13225
11359
14084
10063
87.01
41.86
25.02
8.21
42.63
9.29
2256
64.51

fasta
13.45
15.08
4411
4595
7273
59.35
84.75
55.02
3950
21.59
44.09
13.49
10588
83.04
11513
76.02
63.02
3179
4611
15.08
39.76
34.88
24.68
2521

Table F.3: Timings (in semnds); long kenchmarks.

227

spedral
10.18
10.20
30.78
30.86
7159
61.45
80.64
54.87
3385
24.00
30.79
1012
7298
62.89
79.64
56.54
34.01
24.04
30.83
10.14
7389
5.92
40.45
42.57

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10

[11]

Gnulightning. htt p: // www. gnu. or g/ sof t war e/ | i ght ni ng/ .

Ole Agesen, David Detlefs, Alex Garthwaite, RossKnippel, Y. S. Ramakr-
ishna, and Derek White. An efficient meta-lock for implementing ukdquitous
synchronizaion. In OOPSLA, pages 207-2221999

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Chai,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvi-
nov, M. F. Mergen, T. Ngo, J. R. Russll, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Srealhar, H. Srinivasan, and J. Whaley. The
Jalapefio virtual madine. IBM Systems Journal, 39(1):211-2382000

A. W. Appel. Compilingwith Continuations. Cambridge Univ. Press 1991

Matthew Arnald, Stephen J. Fink, David Grove, Michad Hind, and Peter F.
Sweeney. A survey of adaptive optimizaionin virtual madines. Reseach
Report RC23143(W0312097), IBM, 2004

John Aycock. A brief history of just-in-time. CSURV. Computing Suiveys,
35,2003

David F. Baoon, Ravi Konuu, Chet Murthy, and Mauricio Serrano. Thin
locks: Feaherweight synchronization for java. In SSGPLAN '98 Confer-
ence on Programming Languag Design andImplementation, pages 258—
268 1998

Vasanth Bala, Evelyn Duesterwald, and Sanjeer Banerjia. Dynamo: atrans-
parent dynamic optimizaion system. In PLDI, pages 1-12 200Q

JamesR. Bell. Threaded code. Communications of the ACM, 16(6):370-372
1973

E. C. Berkeley and Daniel G. Bobrow. The programming language LISP.
Its operation and applicaions. Report, The MIT Press Cambridge, Mas-
sadhusetts, 1964

Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angela Demke Brown.
Context threading: A flexible and efficient dispatch tedhnique for virtual
madhine interpreters. In Code Generation andOptimization (CGO), pages
15-26 2005

228

[12]

[13]

[14]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

R. E. Berry. Experiencewith the pascd P-compil er. Sdtware— Practiceand
Experience 8(5):617—627 September 1978

Bigloo hamepage. htt p: // ww«+ sop. i nria.fr/ m mosa/fp/Bigl oo/ .

Stephen M. Bladkburn, Perry Cheng, and Kathryn S. McKinley. Myths and
rediti es: the performance impaad of garbage mlledion. SGMETRICS Per-
formance Evaluation Review, 32(1):25-36 2004

Stephen M. Bladkburn, Perry Cheng, andKathryn S. McKinley. Oil andwa-
ter? High performance garbage mlledionin Javawith MM TK. In Proceed-
ings of the 26th Internationd Conference on Sdtware Engineeing, pages
137-146 Edinbugh, May 2004

Stephen M. Bladkburn and Tony Hosking. Barriers: Friend o foe? In
David F. Bacon and Amer Diwan, editors, Proceealings of the Fourth ISM,
pages 143—-151 Vancouwer, Canada, October 2004 ACM Press

Stephen M. Bladkburn and Kathryn S. McKinley. Immix: a mark-region
garbage mlledor with space dficiency, fast colledion, and mutator perfor-
mance In Procealings of the 2008ACM SIGPLAN conference on Program:+
ming language design andimplementation, PLDI " 08, pages 22—-32 New
York, NY, USA, 2008 ACM.

Hans-Juergen Boehm and Mark Weiser. Garbage wlledion in an uncoop-
erative environment. Sdtware—Practice and Experience 18(9):807-820
1988

Carl Friedrich Bolz, Antonio Cuni, Madeg Fijalkowski, and Armin Rigo.
Tradng the meta-level: Pypy's tradng JT compiler. In ICOOOLPS’09:
Procealings of the 4th workshop onthe Implementation, Compil ation, Op-
timization o Objed-Oriented Languages and Programning Systems, pages
18-25 New York, NY, USA, 2009 ACM.

Carl Friedrich Bolz and Armin Rigo. How to nat write virtual madines for
dynamic languages. In 3rd Workshop onDynamic Languages and Applica-
tions, 2007.

Kevin Casey, David Gregg, and M. Anton Ertl. Tiger - an interpreter gener-
ationtod. In Rastislav Bodik, editor, CC, volume 3443 d Ledure Notesin
Computer Science, pages 246—249 Springer, 2005

Craig Chambers. The Design andImplementation of the SELF Compil er, an
Optimizing Compiler for Objed-Oriented Programming Languages. PhD
thesis, Stanford University, March 1992

Computer Language Shoaout. http://shootout. al i oth. debi an. org/
u32/ ruby. php.

229

[24]

[29]

[26]

[27]

[28]

[29]
[30]

[31]

[32

[33]

[34]
[33]

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation o the
smalltalk-80 system. In POPL '84: Procealings of the 11th ACM SIGACT-
S GPLAN symposium on Principles of programninglanguagps, pages 297—
302 New York, NY, USA, 1984 ACM.

Stephan Diehl, Pieter H. Hartel, and Peter Sestoft. Abstrad madines for
programming language implementation. Future Generation Comp. Syst,
16(7):739-751200Q

Mark Dufour. Shed skin— an optimizing Pythonto-C++ compil er. Master’'s
thesis, Delft University of Techndogy, 2006

R. Kent Dybvig, David Eby, and Carl Bruggeman. Don't stop the BIBOP:
Flexible and efficient storage management for dynamicdly-typed languages.
Technicd Report 400, Indiana University Computer Science Department,
March 1994

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. Vmgen -
a generator of efficient virtual macdine interpreters. Sdtw, Pract. Exper,
32(3):265-2942002

Maag Fijakowski. http://pycon.blip.tv/filel 3259650/ .

Christopher W. Fraser and David R. Hanson. The lcc 4.x code-generation
interface Tedhnicd Report MSR-TR-2001-64, Microsoft Reseach (MSR),
July 2001

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Man-
delin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris
Zbarsky, Jason Orendaff, Jese Ruderman, Edwin W. Smith, Rick Reit-
maier, Michad Bebenita, Mason Chang, and Michad Franz. Tracebased
just-in-time type spedalizaion for dynamic languages. In PLDI '09: Pro-
cealings of the 2009ACM SIGPLAN conference on Programning languag
design andimplementation, pages 465-478 New York, NY, USA, 2009
ACM.

Andreas Gal and Michad Franz. Incremental dynamic code generationwith
tracetrees. Technicd Report ICS-TR-06-16, University of California, Irvine,
2006

Nicolas Geoffray, Gad Thomas, Charles Clément, and Bertil Folliot. A
lazy developer approach: buildinga JVM with third party software. In Luis
Veiga, Vasco Amaral, R. Nigel Horspod, and Giacomo Cabri, editors, PPPJ,
volume 347 d ACM Internationd Conference Procealing Series, pages 73—
82. ACM, 2008

GNU clasgoath. http://ww. gnu. or g/ sof t war e/ cl asspat h/ .

David R. Hanson and Christopher W. Fraser. A Retargetable C Compiler:
Design andimplementation. Addison Wesley, 1995

230

[36] Fergus Henderson. Accurate garbage mlledion in an uncooperative ewvi-
ronment. In 1ISVIM *02: Proceeadings of the 3rd internationd symposiumon
Memory management, pages 150-156New York, NY, USA, 2002 ACM.

[37] UrsHolzle. Adaptive Optimizationfor Self: Reconcili ng High Performance
with Exploratory Programmning. PhD dissertation, Stanford University, Stan-
ford, CA , USA, 1994

[38] Urs Hdolzle and David Ungar. Reonciling responsiveness with perfor-
mancein pure objed-oriented languages. ACM Trans. Program. Lang Syst.,
18(4):355-4001996

[39] Richard L. Hudson, J. E Moss Amer Diwan, and Christopher F. Weight. A
language-independent garbage oll edor todkit. Tednicd report, Amherst,
MA, USA, 1991

[40] Roberto lerusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes
Filho. Theimplementation o Lua5.0. J. UCS, 11(7):1159-11762005

[41] IronPython hamepage. http://ironpyt hon. codepl ex. con .
[42] Java. http://java.sun.con .

[43] The Jikes reseach virtual machine. http://jikesrvm sourcef orge.
net/.

[44] Richard Jones. The garbage wlledion kibliography. http://wamv. cs.
kent . ac. uk/ peopl e/ staff/rej/gchi b/ gcbib. htnl.

[45] Richard Jones and Rafad D. Lins. Garbage Colledion: Algorithmsfor Au-
tomatic Dynamic Memory Management. Wiley, 1996

[46] Simon L. Peyton Jones. Implementing lazy functional languages on stock
hardware: the spinelesstaglessG-madine. Journal of Functiond Program-
ming, 2(2):127-202 July 92.

[47] Guy Lewis Stedejr. Datarepresentationsin PDP-10 MACLISP. Report A.
. MEMO 420 Massachusetts Institute of Techndogy, A.l. Lab., Cambridge,
Massachusetts, 1977.

[48] DongHeon Jung SungHwan Bae Jaemok Lee Soo-Mook Moon and
JongKuk Park. Suppating predse garbage olledionin java byteade-to-c
ahead-of-time compil er for embedded systems. In CASES’ 06: Procealings
of the 2006internationd conference on Compil ers, architecure and synthe-
sisfor embedded systems, pages 35—42 New York, NY, USA, 2006 ACM.

[49] The JythonProjed. http://jython. org.

[50] ChrisArthur Lattner. LLVM: An infrastructure for multi -stage optimizaion.
Master’s thesis, University of 1li nois at Urbana-Champaign, 2002

231

[51] TheLuallT projed. http://luajit.org/.

[52] Martin Maierhofer and M. Anton Ertl. Locd stad alocaion. In CC’98:
Procealings of the 7th Internationd Conference on Compiler Construction,
pages 189-203London UK, 1998 Springer-Verlag.

[53] SimonMarlow, Tim Harris, Roshan P. James, and Simon Peyton Jones. Par-
ale generational-copying garbage wlledion with a block-structured heao.
In ISVIM ’08: Procealings of the 7th internationad sympasium on Memory
management, pages 11-2Q New York, NY, USA, 2008 ACM.

[54] J. McCarthy. Reaursive functions of symbalic expressons and their compu-
tation by machine. Comm Assoc. Comput. Mach., 3(3):184-195196Q

[55] Erik Mejer and John Gough Tedhnicd overview of the common language
runtime. Technicd report, Microsoft Research, 200Q

[56] C.H. Moore. FORTH: anew way to program a mini computer. Astronamy
& Astrophysics Suppement Series, 15:497-511 April-June 1974

[57] PLT scheme. http://plt-scheme. org/.

[58] Michad Palecany, Christopher A. Vick, and Cliff Click. The Java
HotSpot™ server compiler. In Java™ Virtual Machine Research andTedh-
nology Symposium. USENIX, 2001

[59] MikePadll. http://www.nntp.perl.org/group/perl.perl6.internal 200709/msg40359html.
[60] Parrot Virtual Madiine. http://waw. parrot. org/.

[61] TonyPrintezsandDavid Detlefs. A generational mostly-concurrent garbage
colledor. In 1ISMM, pages 143-154200Q

[62] PythonSoftware Foundition. Python programminglanguage. ht t p: / / www.
pyt hon. org/ .

[63] B. Randell and L. J. Russll. Algd 60 implementation. Academic Press
New York, NY, 1964

[64] Martin Richards. BCPL: A tod for compiler writing and system program-
ming. In Proceealings AFIPS Sping Joint Computer Conference, Boston,
Mass, pages 557-566 American Federation d | nformation Processng So-
cieties, May 1969

[65] Armin Rigo. Representation-based just-in-time spedali zation and the psyco
prototype for Python In Nevin Heintze and Peter Sestoft, editors, PEPM,
pages 15-26 ACM, 2004

[66] Armin Rigoand Samuele Pedroni. PyPy’s approad to virtual machine con-
struction. In Peri L. Tarr and Willi am R. Cook, editors, OOPSLA Compan
ion, pages 944-953 ACM, 2006

232

[67]
[68]

[69]

[70]
[71]

[72]

[73]

[74

[73]

[76]

[77]

[78]

Ruby programming language. htt p: / / www. r uby- | ang. or g/ .

C. Ruggeri and T. P. Murtagh. Lifetime analysis of dynamicdly all ocaed
objeds. In Procealings of the 15th ACM SIGPLAN-SGACT sympasium
on Principles of programming languages, POPL '88, pages 285-293 New
York, NY, USA, 1988 ACM.

Yunhe Shi, David Gregg, Andrew Bedty, and M. Anton Ertl. Virtua ma
chine showdown: Stadk versus registers. In Virtual Exeaition Environments
(VEE’05), pages 153-1632005

James E. Smith and Ravi Nair. Virtual Machines. Morgan Kaufmann, 2005

Patrick Sobalvarro. A lifetime-based garbage lledor for lisp systems on
general-purpose computers. Tedhnicd Report AITR-1417, MIT, Al Lab,
February 1988

Jr. Stede, Guy Lewis and Gerald Jay Sussman. The revised report on
scheme: A dialed of lisp. Tedhnicd Report Al Memo 452 Massadhusetts
Institute of Techndogy, 1978

G. Thomas, N. Geoffray, C. Clément, and B. Folliot. Designing Highly
Flexible Virtua Madines. the JnJVM Experience. Sdtware: Practiceand
Experience (SPE), 2008

David Ungar and Randall B. Smith. SELF: The power of simplicity. Lisp
and §mbalic Computation, 4(3):187-2051991

David Ungar, Adam Spitz, and Alex Ausch. Constructingametadrcular vir-
tual machinein an exploratory programmingenvironment. In Ralph Johnson
and Richard P. Gabriel, editors, OOPS_A Companon, pages 11-20 ACM,
2005

Andrew Whitworth. http://wknight8111blogspot.com/200910optimizing-
parrot.html.

Kevin Willi ams, Jason McCandess and David Gregg. Dynamic interpre-
tation for dynamic scripting languages. In Andreas Moshovas, J. Gregory
Steffan, Kim M. Hazdwood and David R. Kadi, editors, CGO, pages 278—
287. ACM, 2010

Mathew Zaleski, Angela Demke Brown, and Kevin Stoodey. YETI: agrad-
ualY Extensible Tracelnterpreter. In Chandra Krintz, Steven Hand, and
David Tarditi, editors, Procealings of the 3rd Internationd Conference on
Virtual Exeaution Environments, VEE 2007, pages 83—-93 ACM, 2007.

233

