
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Shannon, Mark (2011) The construction of high-performance virtual
machines for dynamic languages. PhD thesis.

http://theses.gla.ac.uk/2975/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

The Construction of
High-Performance Virtual Machines

for Dynamic Languages

Mark Shannon, MSc.

Submitted for the Degree of
Doctor of Philosophy

School of Computing Science
College of Science and Engineering

University of Glasgow

November 2011

2

Abstract

Dynamic languages, such as Python and Ruby, have become more widely used
over the past decade. Despite this, the standard virtual machines for these lan-
guageshavedisappointing performance. Thesevirtual machinesareslow, not be-
cause methods for achieving better performance are unknown, but because their
implementation is hard. What makes the implementation of high-performance
virtual machines difficult is not that they are large pieces of software, but that
there are fundamental andcomplex interdependenciesbetween their components.
In order to work together correctly, the interpreter, just-in-time compiler, garbage
collector and library must all conform to thesameprecise low-level protocols.

In this dissertation I describe amethodfor constructing virtual machines for dy-
namic languages, andexplain how to designavirtual machine toolkit by building
it aroundan abstract machine. The design and implementation of such a toolkit,
theGlasgow Virtual MachineToolkit, isdescribed. TheGlasgow Virtual Machine
Toolkit automatically generatesajust-in-time compiler, integratesprecisegarbage
collection into thevirtual machine, andautomatically manages the complex inter-
dependenciesbetween all thevirtual machine components.

Two different virtual machines have been constructed using the GVMT. One is
a minimal implementation of Scheme; which was implemented in under three
weeks to demonstrate that toolkits like the GVMT can enable the easy construc-
tion of virtual machines. The second, the HotPy VM for Python, is a high-
performance virtual machine; it demonstrates that a virtual machine built with
a toolkit can be fast and that the use of a toolkit does not overly constrain the
high-level design. Evaluationshows that HotPy outperforms the standard Python
interpreter, CPython, by a largemargin, and has performanceonapar with PyPy,
the fastest PythonVM currently available.

Contents

1 Introduction 11
1.1 Virtual Machines . 12
1.2 Dynamic Languages . 12
1.3 TheProblem . 13
1.4 Thesis .14
1.5 Contributions . 14
1.6 Outline . 15

2 Vir tual Machines 17
2.1 A LittleHistory . 17
2.2 Interpreters . 19
2.3 GarbageCollection . 24
2.4 Optimisationfor Dynamic Languages 31
2.5 PythonVirtual Machines . 33
2.6 Other Interpreted Languagesand their VMs 36
2.7 Self-Interpreters . 43
2.8 Multi -Threadingand Dynamic Languages 43
2.9 Conclusion . 44

3 Abstract MachineBased Toolkits 45
3.1 Introduction . 45
3.2 TheEssential Features of aVirtual Machine 47
3.3 An Abstract Machine for Virtual Machines 48
3.4 Optimisation in VMs for Dynamic Languages 52
3.5 When to use the abstract machine approach? 54
3.6 AlternativeApproaches to BuildingVMs 55
3.7 Related Work . 56
3.8 Conclusions . 57

4 The Glasgow Vir tual Machine Toolkit 59
4.1 Overview . 59
4.2 TheAbstract Machine . 61
4.3 Front-End Tools . 66
4.4 Back-End Tools . 71
4.5 TranslatingGVMT Abstract MachineCode to Real MachineCode 73

2

4.6 Memory Management in theGVMT 78
4.7 Locks .86
4.8 Concurrency and GarbageCollection 88
4.9 Comparison of PyPy and GVMT 90
4.10 TheGVMT Scheme Example Implementation 91
4.11 Conclusions . 92

5 HotPy, A New VM for Python 95
5.1 Introduction . 95
5.2 TheHotPy VM Model . 96
5.3 Design of theHotPy VM . 99
5.4 Tracingand Traces .104
5.5 Optimisation of Traces .108
5.6 Specialisation .111
5.7 Deferred Object Creation .113
5.8 Further Optimisations .119
5.9 De-Optimisation .120
5.10 An Example .120
5.11 Deviations from theDesign of CPython125
5.12 Dictionaries .126
5.13 Related Work .130
5.14 Conclusion .131

6 Results and Evaluation 133
6.1 Introduction .133
6.2 Utilit y of theGVMT and Toolkits in General 133
6.3 Performanceof theGVMT SchemeVM134
6.4 Comparison of Unladen Swallow, thePyPy VM, and HotPy . . . 135
6.5 Aspectsof Virtual MachinePerformance143
6.6 Memory Usage .146
6.7 Effect of GarbageCollection .149
6.8 Potential for Further Optimisation150
6.9 Conclusions .152

7 Conclusions 155
7.1 Review of theThesis .155
7.2 Significant Results .156
7.3 DissertationSummary .156
7.4 FutureWork .158
7.5 In Closing .160

A The GVMT Abstract Machine Instruction Set 162

B The GVMT Abstract Machine Language Grammar 197

C Python Att r ibute Lookup Semantics 200

3

C.1 Definitions .200
C.2 LookupAlgorithm .201

D Surr ogate Functions 203
D.1 The__new__methodfor tuple203
D.2 The__call__methodfor type .204
D.3 TheBinary Operator .204

E The HotPy Vir tual Machine Bytecodes 205
E.1 Base Instructions .205
E.2 InstructionsRequired for Tracing213
E.3 Specialised Instructions .216
E.4 D.O.C. Instructions .221
E.5 Super Instructions .222

F Results 224

Bibliography 228

4

List of Tables

2.1 Main PythonImplementations 34
2.2 Main Ruby Implementations . 39

4.1 GVMT Types . 64

6.1 Unoptimised Interpreters. Short Benchmarks 139
6.2 Unoptimised Interpreters. Medium Benchmarks 139
6.3 Full VM. Short Benchmarks .140
6.4 Full VM. Medium Benchmarks140
6.5 Full VM. LongBenchmarks .141
6.6 Optimised Interpreters. Short Benchmarks 141
6.7 Optimised Interpreters. Medium Benchmarks 141
6.8 Interpreter vs. Compiler. Short Benchmarks 142
6.9 Interpreter vs. Compiler. Medium Benchmarks 142
6.10 Interpreter vs. Compiler. LongBenchmarks 142
6.11 HotPy(C) PerformancePermutations. Speeds Relative to CPython 144
6.12 HotPy(Py) PerformancePermutations. Speeds Relative to CPython 144
6.13 Speed Up Due to AddingSpecialiser; HotPy(C). 144
6.14 Speed Up Due to AddingD.O.C.; HotPy(C). 145
6.15 Speed Up Due to AddingCompiler; HotPy(C). 145
6.16 Speed Up Due to AddingSpecialiser; HotPy(Py). 145
6.17 Speed Up Due to AddingD.O.C.; HotPy(Py). 145
6.18 Speed Up Due to AddingCompiler; HotPy(Py). 146
6.19 Memory Usage .147
6.20 CPythonGC percentages .149
6.21 Theoretical CPythonSpeedups149

F.1 Timings(in seconds); short benchmarks225
F.2 Timings(in seconds); medium benchmarks 226
F.3 Timings(in seconds); long benchmarks227

5

List of Figures

2.1 Token Threaded Code– Stack-based program for A+B 20
2.2 Switch Threaded Code– Stack-based program for A+B 20
2.3 Switch Threaded Implementation in C 21
2.4 Direct Threaded Code– Stack-based program for A+B 21
2.5 Indirect Threaded Code– Stack-based program for A+B 21
2.6 SubroutineThreaded Code – Stack-based program for A+B 22
2.7 Call Threaded Code– Stack-based program for A+B 22
2.8 Memory Cycle . 24
2.9 Uncollectable cycle for ReferenceCounting 27
2.10 Self VM Tag Formats . 29

3.1 Generalised BytecodeOptimiser 54
3.2 Toolkit Assisted Optimiser . 55

4.1 TheGVMT Tools . 60
4.2 TheGVMT Abstract MachineModel 62
4.3 Treefor a += b . 67
4.4 TheGVMT-built Compiler . 72
4.5 TheGVMT Compiler Generator 73
4.6 A Memory ZoneConsisting of Eight Blocks 79
4.7 Addressword (most significant bit to the left) 81
4.8 Lock representations . 87
4.9 Lock states . 88

5.1 A HotPy Thread . 97
5.2 Call sequence . 98
5.3 TheHotPy Stack .102
5.4 Control of Execution in HotPy103
5.5 TheHotPy Optimiser Chain .109
5.6 SourceCode for DOC Example116
5.7 TraceWithout DOC .117
5.8 TraceWith DOC .118
5.9 Shadow Stacks For Start of Tracein Figure5.7 118
5.10 Fibonacci Program .121
5.11 Flowgraph for fib function .122
5.12 Flowgraph for fib_list function122

6

5.13 Traces of theFibonacci Program With an Input of 40 123
5.14 Extended Tracefor Overflow .124
5.15 TheHotPy dict .128

6.1 Performanceof Scheme Implementations 135
6.2 Performanceof HotPy and PyPy compared to C and Java 150
6.3 Quality of HotPy and PyPy OptimisationsMeasured against Java

(OpenJDK) .152

7

List of Algor ithms

4.1 Card-marking by object address 83
4.2 Card-marking byslot address . 83
4.3 Conventional Card-marking . 84
4.4 NaïveBump-pointer Allocation 85
4.5 Improved Bump-pointer Allocation 85
C.1 PythonAttributeLookup(Objects)202
C.2 PythonAttributeLookup(Types)202
C.3 Descriptor Lookup .202

8

Acknowledgements

First and foremost, I would like to thank Ally Price for her love and support
throughout my PhD, and for proof reading, and rereading, several versions of
thisdissertation.

I would like to thank my supervisor, David Watt, for hisdili gent and professional
supervision.

I would also like to thank the members of the open source community for pro-
vidingall thesoftwarewithout which my research would havebeen impossible. I
particularly want to thanks all those who write documentation, manage websites,
and dotheother low-profile tasks that make it all work.

9

10

Chapter 1

Introduction

The use of dynamic languages, such as Python [62] and Ruby [67], has become
morewidespread over thepast decade. There aremany reasons for this, including
easeof use and agreater useof programming languagesby non-professional pro-
grammers such as biologists and web-designers. Whatever the reasons, it means
that more and more computing power is devoted to running programs in these
languages.

Increasing the performance of these programs could save considerable amounts
of time and reduce energy consumption, especially as dynamic languages tend
to perform relatively poorly compared with static languages, such as Java [42].
However, improving the performance of dynamic languages is difficult without
considering how they are implemented.

Static compilation is inappropriate for dynamic languages, as the resulting exe-
cutablewould bevery large andsometimes slower than the equivalent interpreted
program, due to memory caching effects. Consequently, dynamic languages are
implemented using virtual machines. Sincevirtual machines are anecessary fea-
tureof dynamic languages, improving theperformanceof dynamic languages re-
quires improving theperformanceof theunderlying virtual machines.

Knowledge about the efficient implementation of virtual machines for dynamic
languages currently lags behind that for static languages, like Java and C#. Not
only that, but thetechniquesused for implementingJavaor C# arenot necessarily
the correct ones to apply to dynamic languages. Althoughimplementation of
virtual machinesfor dynamic languagesisnot asadvanced asfor static languages,
improving the performanceof dynamic languages is an active research area. For
dynamic languages, such as Python, there are known techniques for increasing
performanceof their virtual machines.

As the optimisation of dynamic languages becomes more sophisticated, the en-
gineering challenges in implementing them become greater. This is already a
problem. Commonly used virtual machines use inefficient memory management

11

techniques, not because better techniques are not known, but because they are
hard to implement. An important challenge for dynamic languages ishow to han-
dle the engineering aspects of implementing better virtual machines. The many
components of a dynamic language virtual machine are not easily separated, and
performance enhancing techniques can make this interweaving of concerns an
impenetrable tangle. This is especially a problem for open-source or research
projects, which often do not have the infrastructure required to use the heavy-
weight software engineering techniques that might tamethiscomplexity.

1.1 Vir tual Machines

The term ‘virtual machine’ (VM) has a number of meanings. At its most general
it means any machine where at least part of that machine is realised in software
rather than hardware, but this is too broad a definition to be useful. In computer
science, the virtual machine has come to acquire anumber of related meanings;
the book Virtual Machines [70] describes these. In this dissertation, the term
virtual machine refers to a program that can execute other programs in a specific
binary format, by emulating a machine for that program format. The custom
binary format is usually known as ‘bytecode’ although, strictly, bytecode only
refers to those formatswhere the instruction isencoded as awholebyte.

1.2 Dynamic Languages

Theterm ‘dynamic language’ iscommonly used to refer to any languagewith dy-
namic typing. However, dynamic languagesoften havemany features, beyondthe
typesystem, that static languageslack. For example, PythonandRubyincludethe
abilit y tomodify thebehaviour of modulesandclassesat runtime, changethe class
of an object, add attributes to individual objects, and provide accessto debugging
features for running programs; the standard Python debugger is implemented in
Pythonand can be imported and run byany Python program at run-time. For this
reason, Python and Ruby are sometimes known as ‘highly dynamic’ languages.
These highly dynamic languages are challenging to optimise, and thus their per-
formanceisgenerally somewhat slower than static languages.

Despite being slower, dynamic languages have akey advantage. Programs de-
veloped in a dynamic language tend to be shorter, and by implication, cost less
to develop and have fewer defects. They also seem to be easier to learn and are
popular among part-time programmers such as (non-computer) scientists and en-
gineers.

This thesis is about the implementation of dynamic languages, particularly those
languages supportingmany dynamic features. Pythonwaschosen as it is themost

12

widely used general-purpose highly dynamic language. PHP and Javascript are
probably used more widely, but they are not as dynamic as Python nor are they
really general-purpose languages, both being quiteweb specific.

1.3 TheProblem

1.3.1 Developing VMs for Dynamic Languages

Developing a modern VM is a big project. Development of Sun’s HotSpot
Java Virtual Machine (JVM) [58] and Microsoft’s Common Language Runtime
(CLR) [55] have each taken ahuge amount of resources. Other high-performance
VMs for Javascript such as Tracemonkey [31] and the V8 engine for Google
Chrome, also have large budgets and manpower resources when compared with
community-developed or academic VMs.

This means that new or minority languages have either to run on unsophisticated
VMs or be modified to work on a pre-existing platform such as the JVM. This
can be aproblem for dynamic languages, such asPython or Ruby. Althoughthese
languagescan bemadeto run ontheJVM or CLR, performanceisrelatively poor.
For example, thePythonimplementationsfor theJVM andCLR arenofaster than
the standard Python implementation, CPython, despite the presence of a just-in-
time compiler and high-performancegarbage collectors [49, 41].

It is already too difficult for many open sourceor academic communities to pro-
duce astate-of-the art VM for a dynamic language. This situation will only get
worse as new optimisations for dynamic languages are discovered; the engineer-
ing challenges of developing virtual machines for those languages will grow ever
greater. The real challenge for making dynamic languages faster is not develop-
ing new optimisations, but developing new waysto buildVMsthat can incorporate
thoseoptimisations.

1.3.2 A PossibleSolution

Althoughall VMs are different, some common features can be observed. All
modern VMs interpret some sort of pseudomachine code, usually bytecode, and
provide automatic memory management. It should bepossible to hide these com-
mon features behind some sort of interface, either in the form of a tool or as a
library. Specific VMs could then be specified using this interface. This would
simpli fy the design of the VM as only the language specific parts would need to
be considered.

13

1.4 Thesis

It is the central thesisof thisdissertation that:

The best way, in fact the only practical way, to build a high-performance
virtual machine for adynamic language isusinga tool or toolkit.

Such a toolkit should bedesigned aroundan abstract machinemodel.

Such a toolkit can be constructed in a modular fashion, allowing each tool
or component to usepre-existing toolsor components.

Using such a toolkit, it i s possible to build a virtual machine that is at least
as fast as virtual machines built using alternative techniques, and to do so
with lesseffort.

1.5 Contr ibutions

1.5.1 Core Contr ibutions

This research :

Demonstrates that a toolkit that uses ready-made components is capable of
producing virtual machineswith competitiveperformance.

Describes an effective way to construct virtual machines for dynamic lan-
guages usinga toolkit.

Describesthehow theoptimisationtechniquesfor dynamic languagesdiffer
from those for static languages andshows that those techniquesareorthog-
onal to each other, specifically:

that high performance can be achieved with standard compilation tech-
niquesby applying, at thebytecodelevel, optimisations specific to dynamic
languages.

1.5.2 Ancill ary Contr ibutions

This research also:

Describes a new extension of block-structured heaps, which allows pin-
ning of objectsandmovingcollectors to be combined within agenerational
framework.

14

Evaluates the relative costs and benefits of various implementationand op-
timisation techniques for Python, and by implication, other dynamic lan-
guages.

1.5.3 Software

Two pieces of software were produced as part of this research: the Glasgow Vir-
tual MachineToolkit (GVMT) and theHotPy Virtual Machine.

The Glasgow Virtual Machine Toolkit i s a toolkit for building VMs for dynamic
languages. High performanceVMscan be constructed quickly using theGVMT.

TheHotPy VM isan implementation of Pythonthat can potentially serve asan ex-
perimental platform for VM implementationtechniques. TheHotPy VM supports
all the core functionality of the language, but has limited library support.

1.6 Outline

Chapter 2 starts with a very brief history of VMs. The various aspects of VMs
are then discussed, covering the following points: dispatching techniques avail -
able for interpreters; the relative merits of register-based and stack-based VMs;
garbage collection techniques; and approaches to optimisation in VMs. The ma-
jor VM implementations currently available are then surveyed. The chapter con-
cludes by discussing the difficulty of implementing a VM incorporating all these
many aspects.

Chapter 3 describesanew approach to constructingVMs. Thisapproach consists
of building a set of tools, or toolkit, based aroundan abstract machine model.
The existence of the toolkit means that VMs can be designed without concern
over difficultiesof interfacing thevariousVM components. The abstract machine
model allows the toolkit to bebuilt i n amodular fashion.

Chapter 4 describes the Glasgow Virtual Machine Toolkit, a toolkit based onthe
ideas from Chapter 3. It describes the abstract machine for the GVMT in detail .
The tools in the toolkit are discussed, both front-end tools for converting source
code to abstract machine code and back end tools, especially the just-in-time-
compiler generator. An extension of block-structured heaps is described, along
withagarbage collector whichsupportsa copyingcollector and on-demand object
pinning.

Chapter 5 describes the HotPy Virtual Machine, a VM for Python built with the
GVMT. HotPy performsmany optimisationsasbytecode-to-bytecodetransforma-
tions, as advocated in Chapter 3, separating the dynamic language optimisations
from the low-level optimisations provided by the GVMT. HotPy is the first VM,

15

of which I am aware, that is designed around the use of bytecode-to-bytecode
optimisations. The structure of HotPy is described, highlighting how the use of
the GVMT influences the design. Emphasis is also laid onaspects of the design
which differ considerably from thedesign of CPython.

Chapter 6 evaluatesHotPy andto alesser extent theGVMT. It showsthat atoolkit
can beused to construct aVM that compares favourably with the alternatives. By
separating thevariousoptimisationsthat HotPy uses, it i spossibleto show clearly
that specialisation-based optimisations are more valuable for dynamic languages
than traditional optimisations, and that purely interpreter-based optimisationscan
yield large speed-ups. It is also shown that specialisation-based and traditional
optimisationsare complementary; combining the two can yield very good perfor-
mance.

Chapter 7 summarises the results and conclusions from the other chapters. It
makes some suggestions for future work and outlines ways in which some of the
results can be applied to existingVMs.

Appendices cover the full i nstructions sets of both the GVMT abstract machine
and theHotPy virtual machine, as well resultsand

16

Chapter 2

Vir tual Machines

As mentioned in the introduction, the term ‘virtual machine’ has a number of
different meanings. In thischapter, and therest of this thesis, the term virtual ma-
chine (VM) is taken to mean aprogram that directly executesamachine-readable
program. Theprogramsbeing runcan be in text form, but aremoreusually in the
form of pseudo machine-code. This chapter provides an overview of VM tech-
nologies, dynamic languages, and the relationship between the two.

2.1 A Litt leHistory

2.1.1 Ear ly developments

The first virtual machine was, as far as the author is aware, the ‘control routine’
used to directly execute the intermediate language of Algol 60, as part of the
Whetstone compiler, described in the Algol 60 Implementation [63]. The virtual
machine of the Forth language [56] is the first virtual machine to be designed to
be theprimary, or only, means of executinga language.

The first bytecode1 format to attain reasonably widespread use was the p-code of
USCD Pascal [12]. P-code was loosely based onthe o-code intermediate form of
BCPL [64]. P-code was designed to be executed directly, was similar in form to
real machine code, andcould be compiled to machine codequite easily. Smalltalk
was the first language to rely on a bytecode that embodied features not present
in real machine codes, so in some sense Smalltalk bytecode was the first modern
bytecode format.

The overhead of interpreting bytecode means that interpreted languages are al-
most always slower than nativemachine code. Consequently, compili ng bytecode

1Someof the formatsdescribed arenot strictly bytecode, but the term ‘VM binary program’ is
rather cumbersome.

17

to machine code at runtime is an obviousperformanceimproving technique, pro-
vided that the code is run a sufficient number of times to overcome the cost of
compilation. The first runtime compilers were part of early LISPsystems in the
1960s, but these created machine code directly from the abstract syntax tree. The
Smalltalk-80system included a just-in-time(JIT) compiler [24].

A more detailed overview of the field, including more history up to 2004, can be
foundin the two excellent overview papers: A Brief History of Just-In-Time [6]
and A Survey of AdaptiveOptimization in Virtual Machines [5].

2.1.2 Trends in Research into Vir tual Machines

Until recently the only high-performance VM for a genuinely dynamic lan-
guage was the Self VM [74]. Despite being more dynamic than its predecessor,
Smalltalk, Self gave better performance, thanks to a sophisticated compiler. A
number of novel optimisations were developed for Self [22], althougha number
of themore complex analysesweredropped in later versions, thetypeinformation
being gathered at runtime instead [38].

The advent of Java shifted emphasis in virtual machine research from dynamic
languages to static ones, and most research on virtual machines focused on the
JVM and one JVM in particular, the Jikes RVM [43]. Over the last few years,
research has again turned towards dynamic language VMs. This trend has been
driven by the importanceof Javascript for the world wide web and bythe rise in
popularity of ‘ scripting’ languages, such asPythonandRuby.

2.1.3 Recent developments

The modern trend in bytecode-based languages has been towards expressiveness
and utilit y over performance. This tends to mean that the individual bytecodes in
languages such as Pythonand Ruby have ahigher semantic level than languages
like Java. These ‘f at’ bytecodes are harder to beneficially compile than the ‘ thin’
bytecodes of Java, sincethe interpretativeoverhead is proportional smaller. Until
quite recently, neither Python nor Ruby have had any runtime compilation capa-
bilit y2.

There was littl e research into the efficient implementation of dynamic languages
from the end of research into Self in the early 1990s until a resurgencein the late
2000s. The rise of Javascript and the increasing popularity of Python and Ruby
has caused an increase in research into thisarea. Much of this recent research has
been focused on optimisationsdetermined dynamically rather than statically; see
Section 2.4.3.

2The PyPy project(http://pypy.org), and Rubinius(http://rubini.us) added machine code gener-
ationcapabilit y to PythonandRubyVMs in 2009.

18

2.2 In terpreters

In computer science the term ‘ interpreter’ is used to mean any pieceof software
that decodes and executes some form of program representation. This is taken
to exclude the use of a physical machine ‘ interpreting’ machine code. Although
it is possible to interpret the original source code of a program directly, modern
interpreters do not do so. They interpret some form of the program that has been
translated into a machine-readable binary from the original human-readable tex-
tual source.

For the rest of this thesis the term ‘ interpreter’ refers to a procedure that executes
programsin amachine, rather than human, readable form (but not machine-code).

2.2.1 Interpreter dispatch techniques

In an interpreter, dispatch istheprocessof decodingthenext instructionandtrans-
ferringcontrol to themachine code that will execute that instruction. Research on
interpreter dispatch techniques has, unsurprisingly, been focused on improving
the speed of interpreters. However, the speed of different dispatching techniques
depends on the underlying hardware. As hardware design has changed over the
years, particularly with the introduction of pipeliningand super-scalar execution,
so the relativeperformanceof different techniqueshas altered.

Most modern interpreted languagesareimplemented byatwostageprocesswhere
the source code is translated into code for a VM, then that VM code is executed
by an interpreter. Althoughsomeinterpreters, Perl5 andRuby1.8, interpret aform
that follows the original syntax, most use aform closer to the form of machine
code.

Bytecode Dispatching

The most commonly used forms of VM code interpreter are Token Threaded and
Switch Threaded. Figure 2.1 shows the pseudomachine code for Token Thread-
ing; the code to locate the address of the next instruction is duplicated at the
end of every instruction. Figure 2.2 shows the pseudomachine code for Switch
Threading; there is only one instance of the code to locate the address of the
next instruction, next. All other instructions include ajump to next. The main
advantage of these techniques is that the VM code is independent of the actual
implementation. Switch Threading is so named because it can be implemented
using the switch statement in C. Switch Threading has the advantage that it can
be implemented portably in C (see Figure 2.3) but Token Threading is usually
faster. For hardware that employsbranch prediction, which is most modern hard-
ware, the single dispatching point in the Switch Threading interpreter can cause

19

bytecode: table: push: add:
1 /*push*/ &nop *sp++ = *++ip *sp++ = *--sp + *--sp
A /*literal*/ &push i = decode(*++ip) i = decode(*++ip)
1 /*push*/ &add addr = table[i] addr = table[i]
B /*literal*/ ... jump *addr jump *addr
2 /*add*/

Figure2.1: Token Threaded Code– Stack-based program for A+B

morebranch mis-predictions, makingToken Threadingsignificantly faster.

When theVM code isencoded in such away that thefirst byteof each instruction
contains only the token corresponding to the instruction, the code is generally
known as ‘bytecode’ . When using bytecodethedecode operation isnot required,
speeding upthedispatch. Bytecode isavery widely used form of VM code, being
used in theJVM, CLR, Python, Ruby (1.9+), Smalltalk, Self and others.

bytecode: next: table:
1 /*push*/ i = decode(*++ip) &nop
A addr = table[i] &push
1 /*push*/ jump *addr &add
B ...
2 /*add*/

push:
*sp++ = *++ip
jump next

Figure2.2: Switch Threaded Code– Stack-based program for A+B

Address-Based Dispatching

An alternativeto bytecodeisto encodetheprogram asalist of the addresses. Each
addressis the addressof the code that implements the corresponding instruction.
This form is known as Direct Threading, seeFigure 2.4. Direct Threading [9]
is original source of the term ‘ threading’ in this context. The word ‘ threading’
was used as the execution threads its way throughthe instruction stream and the
interpreter machine code. Direct Threading was originally designed to reduce
code size for compiled code, but the advent of larger memories made this use
redundant.

A modified form of Direct Threading, which adds a level of indirection to the
addressfetching, is Indirect Threading; seeFigure2.5. AlthoughIndirect Thread-
ing is slightly slower than Direct Threading, the extra level of indirection makes

20

next:
switch(*++ip) {
case PUSH:

*sp++ = *++ip;
goto next;

case ADD:
*sp++ = *--sp + *--sp;
goto next;

case ...
}

Figure2.3: Switch Threaded Implementation in C

thread: push: add:
&push *sp++ = *(++ip) *sp++ = *--sp + *--sp
A jump *++ip jump *++ip
&push
B
&add

Figure2.4: Direct Threaded Code– Stack-based program for A+B

handling of data easier and is thestandard threading method used in Forth imple-
mentations.

Another alternative is to encode the program as a series of calls. The encod-
ing then becomes directly executable. Each instruction implementation would
end with a return statement. This is Subroutine Threading; seeFigure 2.6. Note
that since the thread is executable code, data can no longer be embedded in the
thread. Indirect, Direct and Subroutine threading were largely developed to keep
programs small on machines with limited memory, rather than as techniques for
implementingcomplex languages.

Before the advent of long pipelines in modern processors, Direct Threading gen-

thread: push: add:
&push *sp++ = *(*ip+1) *sp++ = *--sp + *--sp
A jump *(*++ip) jump *(*++ip)
&push
B
&add

Figure2.5: Indirect Threaded Code – Stack-based program for A+B

21

thread: push: add:
call push *sp++ = *dp++ *sp++ = *--sp + *--sp
call push ret ret
call add

data:
A
B

Figure2.6: SubroutineThreaded Code– Stack-based program for A+B

erally outperformed subroutinethreading. However, modern pipelined processors
do not handleVM instruction dispatchingwell , as thebranches arehard for hard-
ware to predict. For pipelined processors, Subroutine Threading makes the flow
of control visible to the processor, which leads to fewer branch mis-predictions,
and consequently better performance.

A variant on Direct Threading and Subroutine Threading is Call Threading. Call
Threading encodes the program as a series of addresses, like Direct Threading,
but performs calls, rather than jumps, to execute the instruction bodies. This has
both the call overhead of Subroutine Threading and the poor branch prediction
of Direct Threading and is thus the slowest of the three; see Figure 2.7. Call
Threading, likeSwitch Threading, can be implemented as portableC.

loop:
call(*ip++)
goto loop

thread: push: add:
&push *sp++ = *(++ip) *sp++ = *--sp + *--sp
A ret ret
&push
B
&add

Figure2.7: Call Threaded Code – Stack-based program for A+B

The fastest threading technique of all i s Context Threading [11] which is an en-
hancement of Subroutine Threading that converts branches in instruction bodies
directly into branchesin theprogram thread. Performance can befurther improved
by inlining thebodiesof someof thesmaller instructions into theVM code.

It is debatable whether interpreters employing the fastest dispatching techniques,
for example Context Threading with selective inlining, are really interpreters at

22

all . I would suggest that the linebetween interpretationand compilation hasbeen
crossed, and that the fastest interpreters are really just simple, easily portable,
just-in-time compilers.

2.2.2 Register based VMs

Another approach to reducingtheoverhead of instruction dispatch is to reducethe
number of instructions. This can be done by using a ‘register’ style instruction
set.

Traditionally virtual machines have been implemented as stack machines. Both
theJVM and theCLR are stack machines. Althoughstack machinesare common
in theVM world, hardwarestack machinesare extremely rare. Thereasonfor this
is that in hardware the stack is a bottleneck in data flow which makes it difficult
for stack machines to competewith register machines.

However, the situation is different for a VM. In a software VM, the operands
cannot be fetched and decoded in parallel. This means that stack machines do
the same amount of computation as register machines; also stack machine code
is more compact. The advantage of a register-based instruction set is that fewer
instructions are required. Having fewer instructions increases performanceof an
interpreter, due to thereduced stallscaused by incorrect prediction of branches.

For a Pentium 4, Shi et al. [69] foundan approximately 30% speedup for JVM
code replacing a stack-based interpreter with a register-based one. However, the
register based codewasoptimised to makemore efficient useof the‘registers’ , but
the stack code was not optimised to make more efficient use of the stack. Since
Maierhofer and Ertl [52] founda speedup of about 10% from optimising stack
code, thiswould suggest areduced speedup of around 20%. It isworth notingthat
the abovespeedupswherereported for adirect-threaded interpreter. Asfar asI am
aware, there arenoresultsavailable for asubroutine-threaded or context-threaded
interpreter.

There are two mainstream VMs that are register based, the Lua virtual machine
[40] and the Zend PHP engine. Lua switched from a stack-based bytecode to
a register-based bytecode between versions 4 and 5. The implementers report
speedups of between 3% and over 100% for a few simple benchmarks due to
the change in instruction format. There is no stack-based equivalent to the Zend
engine, so comparisonsare not possible.

2.2.3 Compilation

Althoughthe best performing interpreter (a register-based context-threaded in-
terpreter) would be significantly faster than a simplestack-based switch-threaded

23

interpreter, it wouldappear that theoverhead (bothat runtime andin termsof engi-
neeringeffort) would bebetter spent on genuine compilation. After all , a register-
based context-threaded interpreter requires register allocation and the production
of native code for branches and calls. It isonly ashort step to full compilation.

2.3 GarbageCollection

All major VM-based languages, with the exception of Forth, manage memory
automatically. This makes the development of software much easier, althoughit
does come at a small cost in performance. Automatic memory management is
generally known as garbage collection, even thoughautomatic memory manage-
ment involvesallocation of memory as well as collection of garbage.

Garbage collection allows languages and the programmers who use them to re-
gard memory as an infinitely renewable resource. By tracking which chunks of
memory are no longer accessible by the program, the garbage collector can recy-
cle those chunks of memory for reuse. For the rest of this section, I will refer to
these chunks of memory as ‘objects’ , even thoughthey may not be objects in the
object-oriented sense.

G

GG

Collector

Program
Stack &
Globals

The Heap

 Free
Memory

Allocator

Figure2.8: Memory Cycle

Garbage collection consists of two parts: an allocator which provides objects to
the program, and a collector which recycles those objects that cannot be reached
by theprogram. The collector reclaimsobjects so that theunderlyingmemory can
be freed and made available to the allocator. Figure 2.8 shows thememory cycle;
the objects labelled G are unreachable and can thus be reclaimed by the collector;
thememory they occupied is then freefor useby the allocator.

While advanced collectorscan run concurrently with the rest of theprogram, col-
lections generally take placewhile the program is suspended. However, as the

24

number of processorsonstandard computers increases, concurrent collectorswill
probably becomemore common.

Since the design of collectors is considerably more complex than that of allo-
cators, memory managers are generally described in terms of their collectors.
Garbage collectorscan be classified aseither reference countingcollectorsor trac-
ingcollectors. ‘GarbageCollection’ [45] by JonesandLinsprovidesan excellent
overview of the subject, althoughit is a littl e out of date. A more up to date
list of publications can be found online at The Garbage Collection Bibliography
maintained by Richard Jones[44].

Most research into garbage collectionsince2000 hastaken placeusingtheMMTk
[15] garbage collection framework in the Jikes RVM [3]. This has the advantage
that variousalgorithmsandtechniquescan be compared directly, but it doesmean
that it i s rather biased towards Java applications.

Comparing the performance of various garbage collections is difficult as no one
type of collector is faster than any other for all workloads. Despite this, it i s
possible to makesomegeneralisations.

2.3.1 Allocators

Althoughmuch simpler than the collectors, allocators are an important part of
a memory management system. Allocators come in two forms; free-list alloca-
tors and region-based allocators. Free-list allocators work by selecting a list that
holdsobjectsof the correct size(or larger), andreturning thefirst object from that
list. Region-based allocators work by incrementinga pointer into a region of free
memory and returning the old value of that pointer. Region-based allocators are
often called bump-pointer allocators, since allocation involves incrementing (or
‘bumping’) a pointer. Bump-pointer allocators are simple enoughthat their fast
path can be inlined at the site of allocation, making them even faster. Obviously
both allocatorsneed fall -back mechanisms, either to handle empty lists in the case
of a free-list allocator, or when the pointer would passthe end of the region in a
region-based allocator.

Region-basedallocatorscan allocateobjectsfaster than free-list allocators. In gen-
eral, only region-based collectors can freememory in a form suitable for region-
based allocation.

2.3.2 Tracing

Most garbage collectors are ‘ tracing’ collectors. Tracing collectors determine all
liveobjects by tracing the linksbetween objects in theheap. A collection is done
by forminga closedset of all objectsreachable, directly or indirectly through other

25

objects, from the stack and global variables. All remaining objects are therefore
garbage and can be reclaimed. There are two fundamental tracing algorithms:
copyingand marking.

Copying algorithms move objects as they are found to a new area of memory.
The entirety of the old memory area is then available for recycling. Copying
collectors support region-base allocators. Marking algorithms mark objects as
they are found. The unmarked spaces between marked objects are then available
for recycling.

The cost of copying collection is proportional to the total sizeof the liveobjects.
The cost of marking collection is proportional to the sizeof the heap, but with a
significantly lower constant factor than for copying. So for sparseheaps (few live
objects, lotsof garbage) copyingcollectorsaregenerally faster, whereasfor dense
heaps marking collectors are faster. In the real world, heaps tend to be neither
sparsenor dense, but in themiddle, so the choice and design of garbage collectors
is not straightforward.

Marking Collectors

Marking collectors can be divided into threetypes: Mark and Sweep [54], Mark-
Compact [10], and Mark-Region [17].

Mark and Sweep collectors are the simplest. After marking all li ve objects, all
intervening dead objects are returned to the freelist. Mark and Sweep collectors
are prone to fragmentationand cannot beused with a region-based allocator.

Mark-Compact collectors avoid fragmentation, but are slower. After marking all
liveobjects, all li veobjects aremoved, usually retaining their relativeposition, to
a contiguous region. The whole remaining spaceis thus unfragmented, allowing
a region-based allocator to beused.

Mark-Region collectors reducefragmentation and are of a similar speed to Mark
and Sweep collectors. Mark-Regions sub-divide the heap into regions. During
marking of live objects, both the object and the region containing the object are
marked. Although only empty regions can be reclaimed, most memory can be
reclaimed, since live objects tend to form clumps. To work well a Mark-Region
collector needs a hierarchy of regions and must perform localised compaction.
Localised compactionreducesfragmentation, but at amuch lower cost than whole
heap compaction. Mark-regioncollectors support region-based allocators.

It is possible to have very fast collection of regions by collecting an entire region
at once, at a pre-determined point in the program [68]. However, this technique
cannot be applied to dynamic languages as it requires extensivestatic analysis to
determinewhen the regioncan be freed.

26

a

count = 1

b

count = 1

c

count = 1

Figure2.9: Uncollectable cycle for ReferenceCounting

2.3.3 ReferenceCounting

Reference counting garbage collectors work by maintaininga reference count for
each object. This reference count for object X is the number of references to X
from the stack, global variables and other objects. When this count reaches zero,
the object may be reclaimed. Reference counting has two advantages. First, no
separate collection phase is required, as collection is integrated with allocation.
Second, as soonas an object becomesgarbage, itsmemory is recycled.

However, reference countingalso hastwo seriousflaws. Thefirst is that maintain-
ingreference counts isexpensive; reference counting garbage collectorsgenerally
havehigher overheads than their tracing equivalents. Thesecondis that if objects
form a cycle, all reference counts remain above zero and cannot be reclaimed,
even thoughthewhole cycle isunreachable and thusgarbage. Figure2.3.3 shows
a reference cycle that isgarbage, but uncollectableby reference counting.

For interactive languages, the advantage of near-zero pause times for collection
may outweigh the performance cost. Consequently there are a number of en-
hanced reference counting algorithmswhich handle cycles. Nonethelessthe only
widely used VM that usesreference countingistheCPythonVM; all other Python
VMs use tracing collectors. The CPython VM also includes an optional tracing
collector, that collects cycles.

2.3.4 Generational Collectors

Generational collectors divide the heap into two or more regions called genera-
tions. Objects are allocated in the youngest generation, often known as a ‘nurs-
ery’ . If they survive long enough, they are promoted into the older generations
over a series of collections. Generational Collectors generally give better perfor-

27

mancethan simple collectors, if the rate at which objects become garbage differs
for objectsof different ages.

For most programs, what is known as the ‘weak generational hypothesis’ holds.
Theweak generational hypothesis states that young objectsare more likely to die
than older objects3. When the weak generational hypothesis holds, generational
garbage collectors work well by collecting young objects frequently, which can
bedone cheaply, and collecting older objects infrequently.

In order to work correctly, generational garbage collectorsmust be able to findall
live objects in younger generations. In order to be efficient, they must be able to
do so without searching the older generations. This can be done by keeping a set
of old-to-youngreferences. Theusual way to dothisisto modify theinterpreter to
record any old-to-youngreferences created in between collections. Generational
collectors are generally faster than their non-generational equivalents, as the sav-
ings of not scanning the older generations outweigh the cost of maintaining the
set of old-to-youngreferences. However, it i snot hard to construct apathological
program for which a generational collector is slower than the non-generational
equivalent.

There is no requirement for a generational collector to use the same collection
methodfor itsyounger generationsas for older generations. In fact, it i s common
to use a copyingcollector for thenursery, which isusually sparsewhen collected,
and a marking collector for the older generations, which are usually more dense.
Having a copying collector for the nursery allows the use of a region-based al-
locator, providing fast allocation of new objects. It is also possible to combine
a reference counting mature space and a tracing (usually copying) nursery. This
should reducepauses, as matureobjects are collected incrementally.

2.3.5 Tagged Pointers

Values in dynamic languages are usually represented by a pointer to a block of
memory which contains thevalueof theobject. Representing asmall value (such
as an integer) by a pointer to heap object that contains that value is referred to a
boxing; theobject isa ‘box’ which holds thevalue.

Sinceobjects in the heap will be aligned to some memory boundary (usually 4, 8
or 16 bytes) thelow-order bitsof apointer will be zero. It ispossibleto represent a
valuedirectly in thepointer by ‘ tagging’ thepointer. A simpletaggingschemefor
a 32 bit machine might be to store a31 bit integer in the pointer by multiplying

3Note that the strong generational hypothesis, that states that objectsbecome lesslikely to die
as they get older, is not generally true. In other words, suppose that objects are divided in three
ages, young, middle and old. Theweak generational hypothesis states that young objectsaremore
likely to diethan middleor old objects, which isgenerally true. Thestrong generational hypothesis
also states that middle objects are more likely to die than old objects, which is generally not the
case.

28

Figure2.10: Self VM Tag Formats

it by two and adding one; setting the low-order bit to 1. Pointers would be left
unchanged with the low-order bit set to 0. The value represented by the 32 bit
word would be determined by examining its low-order bit; i f thebit were set to 1
then thevaluewould be an integer equal to thevalueof themachineword divided
by two, otherwise the word would treated as a pointer. Figure 2.10 showsa more
complex taggingschemeused by theSelf VM.

2.3.6 Heap Layout

Many VMsaredesigned so that thewholeheap iscontiguousandthenursery and
mature space are in fixed positions. This layout is simple to implement, and en-
ables testing of whether an object is in theold or young generation bycomparing
itsaddresswith afixed value. However, it i s inflexible, only allowsafixed amount
of memory to beused andmight not work well with library code that uses itsown
memory management.

An alternative to a contiguousheap is to divide theheap into anumber of blocks,
or pages. It is possible to group objects of the same type onto the same page.
Theobject’s type can thus be determined from its its addressalone, which allows
a more compact representation of objects. This is know as a BIBOP (big bag of
pages) implementation. The first documented used of this technique is for the
MacLisp system by Steele [47].

Hudson et al.[39] describe a language-independent garbage collector toolkit
which supports a heap divided into pages, and show how a generational collec-
tor can be supported. Each page has a generation, which allows the generation
of an object to be determined quickly and without storing the information ona
per-object basis.

Dybvig, Eby and Bruggeman [27] extend the BIBOP concept to what they call
‘meta-type’ information, which is simply any shared informationabout all objects

29

on a page, not necessarily their type. Their system provides a fast allocator, allo-
cating all objects into the samepage, then segregating them on promotion. Pages
containing large objects are promoted from one generation to another without
copying.

2.3.7 GarbageCollectors for Dynamic Languages

The interaction between the garbage collector, the rest of the program and the
hardware is complex and very hard to analyse. It is thus almost impossible to
determinetherelative costsof variouscollectorsexcept by direct experimentation.

Blackburn et al.[14] provide an empirical comparison of copying, mark-and-
sweep and reference-counting garbage collectors, both generational and non-
generational, for Java benchmarks running onthe Jikes RVM. The results show
widevariations in memory usage characteristics. Thiswould seem to suggest that
therelativeperformanceof variousgarbage collectionalgorithmsdependsat least
asmuch onthe application domain than thelanguageused. However, it i spossible
to make afew observationsabout memory management for dynamic languages.

Programs written in dynamic languages tend to obey the weak generational hy-
pothesis, even if thesameprogram written in a static languagewould not. This is
because dynamic languages tend to allocate alarge number of short-lived objects
such asboxed numbers, framesand closures. Most of these extraobjectsarevery
short-lived, existing for theduration of a single functioncall or less.

Although optimisations can remove the allocation of many intermediate values,
frames and closures [22], a considerable number will remain, and it would be
surprising to find any sensible program written in a dynamic language that did
not obey the weak generational hypothesis. This would seem to strongly suggest
that the use of a region-based allocator and a copying collector for the youngest
generation isalmost mandatory.

Althoughit is desirable to use a copying collector, it may cause problems. Many
dynamic languages, such as Python, Ruby and PHP amongst others, are expected
to interact closely with librarieswritten in C. Interfacinglibrarieswritten in C with
agarbage collector that movesobjectscan causeproblems, asneither C compilers
nor C programmers expect objects to be moved, seemingly at random. This does
lead to the seemingly contradictory requirements that objects do not move, in
order to interact with library code, and that objects can be moved by the garbage
collector, for performancereasons. It should, however, be noted that only objects
passed to library codeneed to be ‘pinned’ ; all otherscan bemovable.

An alternative is to passa ‘handle’ fr om the VM to the library code. This adds
an extra level of indirection which may be unacceptable for performancereasons
and in termsof complexity. For example, when passing largebyte arrays from the
VM and the I/O subsystem via ahandle, it i s necessary to either copy the whole

30

array or to accessindividual bytes via the handle. Both of these alternatives are
expensive, so the abilit y to pin objects ishighly desirable.

It would appear that a garbage collector for dynamic languages should be similar
to a garbage collector for an object-oriented language like Java, with the require-
ments of very fast allocation for short-lived objects and the abilit y to pin objects.
By using the BIBOP technique described in the previous section, pages can be
pinned on demand; they can be promoted by changing the page tag. The Im-
mix collector [17] supports pinningand region-based allocation, althoughit does
not support a copying nursery. A design of segregated heap that builds on pre-
vious work and that supports both a copying nursery and on-demand pinning is
described in Section 4.6.4.

2.4 Optimisation for Dynamic Languages

2.4.1 Adaptive Optimisation

Adaptive optimisation is a term used to describe optimisation that adapts to the
running program. Adaptive optimisation focuses on spending optimisation effort
whereit will providethegreatest reward. This isdoneby comparingthe estimated
performancegain for optimising a pieceof code with the cost of doing the opti-
misation; there is no point in optimising a pieceof code that will only run once,
whereasapieceof codethat may run billi onsof timesisworth optimising heavily.
The ideaof focusing optimisation effort on ‘hot-spots’ dates back to at least the
1980s [24]. The term adaptive compilation isoften used instead.

Once code for optimisation has been selected, deciding which optimisations to
apply to that code is something of an art. Most adaptive optimisers have alarge
number of tuning parameters which areset experimentally.

Optimisation control

Before code can be optimised, the optimisation controller must determine what
code is worth optimising. There are two widely used approaches to optimising
code. The first approach optimises code according to the static structure of the
program, by optimising whole procedures or loops. The second approach opti-
mises according to which code is actually used at runtime, determined dynami-
cally by tracing the execution of the code. The former approach has been used
for JIT compilationsincethedays of Lisp, and is still widely used, notably in the
Sun HotSpot JVM, and for a statically typed language like Java gives very good
results. The latter approach, that of optimisingtraces, isused in theTraceMonkey
JavaScript engine of Mozill a Firefox, amongst others, and provides significant
speedups for dynamic languages [31].

31

2.4.2 WholeProcedure Optimisation

The procedure based approach to adaptive optimisation records the number of
times each procedure is called. Once the call count reaches a threshold value,
then the procedure is optimised and compiled. In practice, various refinements
are used. For example, the usage count can be made to decay, so that procedures
must be executed frequently, not merely many times in total, before they are op-
timised. Another important refinement is to choose the procedure to be compiled
by analysis of the call -stack, once ahot-spot has been reached. For example, it
may be more profitable to compile the caller of the trigger procedure, rather than
the trigger procedure itself, and thusbe able to perform inlining.

2.4.3 TraceOptimisation

Trace4 optimisation is a method of determining entirely dynamically which code
to optimise. By taking advantage of the fact that optimisation will occur during
theprogram’sexecution, tracing determinesthe codeto beoptimised byrecording
the actual execution of theprogram, with noregard to its static structure.

Traces must be selected before they can be optimised. Traces are identified by
monitoringcertain points in theprogram, usually backward branches, until oneof
theseisexecuted enoughtimesto trigger recording of atrace. Duringtracerecord-
ing theprogram isexecuted according to theusual semantics, andthe instructions
executed are recorded.

Tracerecording halts successfully when the starting point of the traceis again
reached, but tracerecording may not always be successful. One of the reasons
for failure is that the tracebecomes too long, but other reasons are possible; for
example, an unmatched return instructioncould bereached or an exceptioncould
be thrown.

If the trace completes successfully, then the recorded traceis optimised and com-
piled. Thenewly compiled codeis then addto a cache. When thestart of thetrace
is next encountered during interpretation, the compiled code can be executed in-
stead.

During recording of a trace, branch instructions may be encountered, in which
case the tracerecords thetaken branch, and insertsa conditional exit at that point.
During subsequent execution of a trace, the conditional exit may be taken. If this
happens a sufficient number of times a new traceis recorded. These new traces
need to be joined to the existing traces.

4Tracing in this context is completely separate from tracing in the garbage collectionsense.

32

TraceStitching

In theoriginal trace-based optimiser, Dynamo[8], when anew traceiscreated, it i s
‘stitched’ to theoriginal trace. Thisisdoneby modifyingthe code at the exit point
so that it jumpsdirectly to thenew trace. Tracestitchingrequiresa cacheof traces.
When an exit from abranch is taken, the cache ischecked. If an appropriate trace
is in the cache it is stitched to the exit point.

TraceTrees

An alternative to tracestitching is to incorporate the new traceinto the old one
and re-optimise the extended trace. These extended traces are known as ‘ trace
trees’[32] as the combined traces form a tree-like structure. For traceselection
based entirely aroundloops, tracetrees work well , but do rely on having a very
fast compiler, since codemay be recompiled several times.

2.4.4 Specialisation

Specialisation is a transformation which converts a general pieceof code to a
more specialised, and potentially faster, pieceof code. Using specialised code
also requires that guard code is inserted to prevent the new less-general code be-
ingexecuted when it would not be correct. In the event of aguard faili ng5, andthe
specialised code being inapplicable, execution returns to the original code. Trac-
ing can be viewed as a form of specialisation in which the code is specialised for
the flow of execution throughthe program that is actually observed. Tracing can
also drive additional specialisation by recording not only the flow of execution,
but also the types of data. Code can then be specialised both for a particular path
of executionand for the typesof variable actually used.

2.5 Python Vir tual Machines

Until the creation of Jython[49], there was only one implementation of Python,
which served as the de facto specification for the language. There was no
clear separation of language and implementation. Fortunately that situation has
changed and the language is now reasonably well , if not formally, defined.
Nonethelessthedefault implementation, now known asCPython, remainstheref-
erencestandard.

All thePythonVMsareunder activedevelopment, often with thegoal of actively
improving performance. This, combined with the lack of standard benchmark

5Failureof aguard doesnot mean that it goeswrong, but that the conditionit is testing is false.

33

suite, makes precise comparison difficult. Table 2.1 summarises the main Python
implementations; the performance is from various developers own assessments,
which seem to be in broad agreement with each other.

2.5.1 CPython

The standard implementation of Python, known as CPythonas it is written in C,
has evolved as Python has evolved. Consequently it still has a number of design
features that, while perhaps appropriate for an early implementation of a new
language, are not desirable in a modern, high-performance VM. These features
are simple reference counting as a means of garbage collection, and a ‘global
interpreter lock’ , which prevents more than one interpreter thread executing at
once. It is worth emphasising that these are not features of the Python language,
merely theCPythonimplementation.

The choiceof simple reference counting for garbage collection may have been a
reasonable choicewhen Pythonwasfirst evolving, but it i sareal burden now. The
global interpreter lock isan unfortunateside effect of thegarbage collectionstrat-
egy, as simple reference counting isnot safe for concurrent execution. To make it
safe would require extremely fine-grained locking, which would be prohibitively
expensivefor single-thread applications. So theglobal interpreter lock, which en-
sures only one thread is active in the interpreter at once, is used instead. The use
of simple reference counting has adetrimental effect onCPython performance.

Implementation GC Threads JIT Performance
(relative to CPython)

CPython ReferenceCounting G.I.L. No Same
CPython+Psyco ReferenceCounting G.I.L. Yes Faster (variable)

PyPy Generational G.I.L. Yes Faster
Unladen Swallow ReferenceCounting G.I.L. Yes Faster

Jython As JVM Native Yes Slower
IronPython As .NET Native Yes About equal

Table2.1: Main PythonImplementations

2.5.2 Psyco

Psyco[65] isaruntime compiler that interleaves, at avery finelevel, interpretation,
specialisation and compilation. It is extremely goodat removing interpretative
overhead as well as the overhead of having boxed integers and floating points.
The speedups achieved vary from ×100 for pure integer arithmetic code, down
to ×1.1 or less for some applications. The name ‘Psyco’ is a slightly jumbled
acronym for the ‘PythonSpecialising Compiler’ . AlthoughPsyco performs well

34

for some types of applications, it i s somewhat ad hoc. The key ideas in Psyco
were reused in themore robust andelegant PyPy project.

2.5.3 PyPy

ThePyPy[66] project is two thingsin one: atranslationtool for convertingPython
programs into efficient C equivalents, and a PythonVM written in Python. The
resultingVM executable is a translation of the PyPy VM source code, in Python,
to machine code, by thetranslationtool. Thismeansthat thefinal VM hasfeatures
present in the VM source code, plus features inserted by the toolkit. The tool is
covered in more detail i n Section 3.7.2. The PyPy VM implementation is fairly
unremarkable (before translation) apart from the annotations to guide the transla-
tion process. Thetranslationtool is responsiblefor insertingthegarbage collector
and generating theJIT compiler.

The PyPy generated JIT compiler uses a specialising tracing approach to optimi-
sation. The tracing is done, not at the level of the program being executed, but at
the level of theunderlying interpreter.

Like CPython, the PyPy VM includes a global interpreter lock, which prevents
real concurrency. However, it doesnot usereference counting for garbage collec-
tion, so it would be possible to make PyPy thread-capable by adding locking on
key data structures. One of the PyPy developers, Maciej Fijalkowski, estimated
that removing theglobal interpreter lock would be ‘amonth or two’s’ work[29].

2.5.4 Jython and I ronPython

JythonisaPythonimplementationfor theJavaVirtual Machine. IronPython[41]
is a Python implementation for the .NET framework. The primary focus of each
implementation is transparent interaction with the standard libraries for that plat-
form; performance is a secondary goal. Both Jython and IronPython make use
of their underlying platform’s garbage collectors and have no global interpreter
lock. Both implementations need to make heavy use of locking, in order to be
thread-safe.

Jython’sperformanceispoor compared to thestandard CPythonimplementation.
IronPython’s performance is better and is largely comparable with CPython, al-
thoughas stated before, performanceisnot theprimary goal for either implemen-
tation.

35

2.5.5 Unladen Swallow

Unladen Swallow is a branch of CPython which uses LLVM[50] to provide JIT
compilation. It is a stated goal of the project not to doany new research, merely
to implement already published optimisations. No attempts to remove the global
interpreter lock or to implement better garbage collection are being made. The
Unladen Swallow developers claim speedups ranging from×1.1 to×1.8 relative
to CPython 2.6 for their benchmarks.

For amoredetailed comparison of theperformanceof PyPy andUnladen Swallow
seeSection 6.4.5.

2.5.6 Static compilation of Python — ShedSkin

An alternative approach to improving Python performance is to translate Python
programs to a statically-typed language. ShedSkin[26] is a Pythonto C++ trans-
lator. It uses type-inferenceto statically type wholeprograms, which can then be
translated to C++. Unfortunately most Python programs are sufficiently dynamic
that they cannot be statically typed. Since ShedSkin performs whole-program
analysis, it must be ableto typethewholeprogram. For thoseprogramswhich are
amenable to thisanalysis, performanceimprovementsare impressive.

Many programswritten in dynamic languagesaremainly, but not wholly, static in
style. The problem is that a program that is 1% dynamic will cause ShedSkin to
fail , whereas an adaptiveoptimisingVM could give largeperformancegains.

For those programs that ShedSkin can handle, it gives an approximate upper
boundfor performance and a target for dynamic optimisers to aim for.

2.6 Other In terpreted Languagesand their VMs

2.6.1 Java

The Java programming language[42] needs no introduction. Although it is a
statically-typed language, the dynamic nature of class loading can present im-
plementers of JVMs with some of the problems faced by implementers of high-
performance VMs for dynamic languages. For this reason it is worth looking at
implementations of Java and how they deal with the dynamic aspects of the lan-
guage, especially as the techniques used have been covered in detail i n a number
of research papers and technical reports. Many of these techniquesare applicable
to dynamic languages.

36

Sun Hotspot

The HotSpot VM from Sun is the most widely available, and reference, imple-
mentation of Java. Its performance is good, it supports a number of platforms,
and it is now open-source. HotSpot uses mixed-mode execution; it contains both
an interpreter and compiler, and uses whole-procedure optimisation. HotSpot in-
terprets code until it become ‘hot’ (hence the name), at which point the code is
compiled. HotSpot uses whole procedure optimisation, rather than trace-based
optimisation. TheHotSpot compiler isapowerful optimisingcompiler; programs
can beslow to start up, but longrunning programscan competewith C++ andFor-
tran for speed. Palenczny et al. [58] give agood overview, but most publications
relating to it aremorepromotional than technical in style.

Jalapeño/JikesRVM

The Jikes RVM (originally Jalapeño), from IBM, is a research VM implemented
in Java. UnlikeHotSpot, the implementation of the Jikes RVM is well described.
The vast majority of papers written on optimising the JVM use the Jikes RVM
as an experimental platform. The Jikes RVM is described in detail i n an IBM
technical report[3].

TheJikes RVM has no interpreter, but compiles all code on loading, quickly pro-
ducing poor quality native code. It uses adaptive optimisation, optimising and
recompili ng code as necessary. So, unlike HotSpot, which has an interpreter and
compiler, Jikes RVM has two compilers; a fast compiler and an optimising com-
piler. Like HotSpot, the Jikes RVM uses whole procedure optimisation. The
approach used by the Jikes RVM is unlikely to be applicable unmodified to lan-
guages like Python, as most of the optimisation techniques are suited to static
languages. Nonetheless, the basic premise of only optimising parts of the pro-
gram which are most used is the fundamental ideabehind high performance for
bytecode-interpreted languages.

2.6.2 Self

TheSelf language[74] was developed from Smalltalk in the early 1990s. Self isa
prototype-based, rather than a class-based, pureobject-oriented language.

The Self Vir tual Machine

The Self VM is described in Chambers’ PhD thesis[22]. Chambers describes the
various techniques used to reducethe overhead of the many dynamic features in
Self. The Self VM described is significantly faster than the Smalltalk VMs that

37

preceded it, despite Self being more dynamic than Smalltalk. Chambers claimed
to have achieved half thespeed of equivalent C code, althoughmost of thebench-
marks were small and long running, reducing the effect of compilation time on
total execution time. The Self VM is where many techniques used in modern
JVMsand Javascript engineswere first developed.

2.6.3 Lua

TheLualanguagewasfirst developed in 1993. It isadynamic language; variables
are dynamically typed, but only a limited range of types are available. Its design
goals, which have been adhered to throughout its development[40], are that the
languageshould besimple, efficient, portable and lightweight. The authorsdefine
‘efficient’ as not the same as fast, they define it as meaning ‘f ast while keeping
the interpreter small and portable’ . The standard Lua VM is a pure interpreter;
no JIT compiler is included. Despite this, Lua is generally regarded as the fastest
mainstream dynamic language.

There is an implementation of Lua with a JIT compiler, LuaJIT [51], which is
faster still; t he latest version has performance comparable with slower statically
typed languages, such as Haskell .

2.6.4 Ruby

Ruby is an object-oriented dynamic language. Its motto is ‘everything is an ob-
ject’ . Whilst it i s similar toPerl in syntax, it i smore adescendant of Smalltalk/Self
than Perl.

LikePython, Ruby hasanumber of different implementations, but thedefault im-
plementationisRuby 1.8. Ruby 1.8 isunusual in not beingabytecodeinterpreter;
the interpreter executes the abstract syntax treedirectly. Also, li ke Python, Ruby
has no official benchmark suite, and all i mplementations are under constant de-
velopment. Table2.2 summarisesthemain implementations; estimatesof relative
performance are intentional vague and may change.

Ruby 1.8 is also generally regarded as one of the slowest dynamic language im-
plementations, and this is supported by benchmarks[23].

Like Python, Ruby also has implementations for the JVM (JRuby) and .NET
(IronRuby). Benchmarking suggests that JRuby outperforms IronRuby, which
contrastswith Python, whereIronPython outperforms Jython. Thiswould suggest
that theJVM and .NET are roughly asgoodaseach other for supporting dynamic
languages; which isunsurprisingsincetheJVM and.NETarefundamentally quite
similar.

38

Ruby also has two other implementations, Ruby 1.9 and Rubinius. Ruby 1.9
usesabytecode interpreter, and hasperformanceloosely comparable to CPython.
Rubiniusaims to replace almost all of Ruby’s standard library, which is currently
written in C, with Ruby equivalents. In order to do this Rubinius must increase
the performanceof pure Ruby code considerably. Rubinius has largely achieved
thisgoal thanks to aJIT compiler andmore advanced garbage collection. Despite
the more advanced internals, Rubinius is currently no faster than Ruby 1.8, as a
result of having to execute libraries written in Ruby rather than in C.

Ruby’s, li kePython’s, support for multiple threads of execution varies acrossim-
plementations. JRubyandIronRuby usetheunderlying platform threads, andthus
support threads well . Ruby 1.8 runs in a single native thread, performing switch-
ing of Ruby threads internally. Consequently only one Ruby thread can run at a
time. Ruby 1.9 can support multiplenativethreads, but li keCPython, hasaglobal
interpreter lock (Ruby 1.9 calls it a global VM lock), which prevents more than
one thread executing bytecode at a time.

Ruby, the language, has features which presumetheoriginal implementation. For
example, Ruby providesan iterator, ObjectSpace::each_object, which iterates
over every object in the heap. Obviously, this causes problems for both garbage
collectionand concurrency. It makesusingamoving garbage collector very diffi-
cult andcausesproblemsfor threads, asall objectsare alwaysglobally accessible.
JRuby hasan option not to support thisfeature, asit causesperformanceproblems
on theJVM.

Implementation GC Threads JIT Performance(relative to 1.9)
Ruby 1.8 Mark & Sweep Green No Slower
Ruby 1.9 Mark & Sweep G.I.L. No Same
Rubinius Mark-Region Green Yes Slower (but improving)
JRuby As JVM Native Yes Faster

IronRuby As .NET Native Yes About equal

Table2.2: Main Ruby Implementations

2.6.5 Perl

Perl was probably the first general purpose scripting language and is still widely
used, althoughit ispopularity isdeclining. Perl 5 isunusual in that the interpreter
operates directly on the abstract syntax tree, rather than using bytecodes. It uses
reference counting for garbage collection. Thenext version of Perl, Perl 6, uses a
new VM, theParrot VM.

39

The Parr ot Vir tual Machine

The Parrot VM [60] was designed to be ageneral purpose virtual machine for
all dynamic languages. However, the only reasonably complete implementation
of any mainstream language for Parrot is the Perl 6 implementation6. Parrot is a
register-based virtual machine that includes, or is planned to include, pluggable
precise garbage collectionand JIT compilation. Exact details arehard to find and
may change.

Performancedata is also hard to comeby, but the followingmay be indicative: in
2007, Mike Pall7 posted his comparison of a few simple benchmarks comparing
Lua running ontheParrot VM (version 0.4) with thestandard Lua interpreter and
LuaJIT[59]. Lua on Parrot was “20 to 30 times slower” than the standard Lua
interpreter and “50 to 200times slower” than LuaJIT. These numbers are not as
bad as they may seem, as LuaJIT isvery fast.

One would assume that performancehad improved considerably since2007, but
in his blog of October 2009[76], Andrew Whitworth complained that for ‘some
benchmarks’ theforthcomingreleaseof Parrot, version 1.7, was400%slower than
the0.9 releaseof January of that year.

2.6.6 PHP

PHP is very widely used in server-side web programming. The language is dy-
namically typed, but doesnot allow asmuch dynamism asPython. However, PHP
supportsawiderangeof parameter passingand other complex features. TheZend
PHPengine, which is theonly widely used PHPengine, isunusual in anumber of
ways. Firstly it can be configured to use any oneof threedifferent threading tech-
niques: call threading, direct threading or switch threading. The ‘bytecodes’ are
in aVLIW8 style andeach instruction isvery large(in theorder of 100 bytes), in-
cludingamachine address(for call threading or directthreading), operandindices,
operand typesandeven symbol-tablereferences. Oneof themore interesting fea-
tures is that by using call threading or direct threading, the number of bytecode
implementationscan be essentially limitless, allowing theZendengine to include
largenumbersof specialised instructions. Zendinstruction operandscan beof five
types, and each instruction takes two operands; there are potentially 25 different
specialisations of each operation. Zend has about 150 different opcodes. If all
of these were to be specialised it would result in almost 4000 different instruc-
tions. This form of static specialisation is unique to the Zend engine, and is not
applicable to object-oriented languages with an extensible typesystem.

6Even thePerl 6 implementation isnot fully complete, but it isusable.
7Developer of LuaJIT
8Very LongInstructionWord.

40

2.6.7 Javascript

Javascript isprobably themost widely executed interpreted languagein existence,
becauseof itsuse in web browsers; almost all smart phonesas well desktopcom-
puters have one or more browsers, all with a Javascript interpreter. However, it
is used rarely in any other environment so cannot really be regarded as a general
purpose programming language. Javascript is a prototype-based object-oriented
language, like Self, and many of the optimisations used in Self are applicable to
Javascript.

Currently, the fastest Javascript engine is the V8 engine in Google Chrome. The
V8 engine does not include abytecode interpreter; it compiles the source code
directly to machine code. This is a reasonable approach for Javascript, as the
program isalwaysdelivered over theinternet, never stored locally, so theoverhead
of parsing the source code and the generation of some form of code, whether
bytecode or machine code, cannot be avoided. Simple machine code, with calls
for complex operations, can be generated almost as quickly as bytecode. V8 uses
a number of code optimisations from the original Self implementation. The two
most notable are inline caches and maps. Maps, also known as hidden classes,
record information about the layout of a particular object and are ideally shared
by all objects with the same layout. Inline caches record the expected map of the
receiver object at a call site, branching directly to the appropriate method if the
actual map matches the expected map. V8 also includes a generational garbage
collector, with adual mark-and-sweep/mark-compact mature collector.

2.6.8 TheLisp Family

Lisp isa family of languagesrather than asingle language. Theoriginal Lisp was
designed for symbolic computationand datesfrom thelate1950s[54]. Lispandits
variants are general purpose dynamic languages. The outstanding feature of Lisp
is that all code can be treated as data. Syntax is very simple, allowing programs
to berepresented usingthesimpledatastructures(listsandtrees) used throughout
lisp programming. Manipulation of programs by themselvesor other programs is
relatively common placein Lisp programming.

The Lisp family has two main branches: Common Lisp and Scheme. There are
number of differences between Common Lisp and Scheme. The most important
difference, in the context of dynamic languages, is that Common Lisp includes
optional type declarations. This means that Common Lisp VMs do not make
much effort to optimisedynamically typed code. However, Scheme implementa-
tionsmust optimisedynamically typed code, if they are to perform well . Scheme
also mandates that stack overflow will never occur as a result of using tail calls,
whereas CommonLisp doesnot.

41

2.6.9 Scheme VMs

Scheme[72] is a version of Lisp with a standardised core and library. It has many
implementations, two of which will bediscussed here.

MzScheme

Mzscheme9 is part of the PLT-Scheme[57] distribution and is a fast, mature
Schemeinterpreter with run-time compilation. Mzschemeisbased aroundabyte-
code interpreter. The abstract syntax tree is analysed and a number of optimi-
sations performed before translating to bytecode. The JIT compiler is based on
GNU Lightning[1]. The garbage collector is a partly-conservative collector de-
rived from theBoehm collector.

Mzscheme has an unusual way of handling tail calls. Mzscheme converts simple
tail recursion to loops in the bytecode, but all other calls use the C stack. When
making a call that would overflow the C stack, the C stack is first saved to the
heap, then execution jumps back up the stack, using the longjmp function. The
function can then be called, as it will have sufficient stack space. Later, when
the saved part of the C stack is required, it i s restored. This approach allows
Mzscheme to use the standard calli ng conventions of the underlying hardware,
resulting in fast calls. Because the front-end converts tail recursion to loops, the
stack savingmechanism should beonly rarely required.

Bigloo

Bigloo[13] is a compiler for non-lazy functional languages, which emits C as its
target language. Bigloo has a front-end for Scheme and ML. It uses a representa-
tion of theuntyped lambda calculus, called Λn, as its intermediate representation.
Bigloo includes a runtime evaluator, but it i s not fully complete, nor designed for
speed; thusBigloo isnot astrictly conformant Scheme implementation.

Bigloo translates Λn to C code, first performing many transformations on the Λn

form. These transformations can be grouped into efficiency improving transfor-
mations and into transformations which transform the Λn code to a style better
suited to translation to idiomatic C. TheC compiler can producebetter code from
this idiomatic C than from C translated directly from lambda calculus. The code
to implement these transformations runs to tens of thousands of lines of Scheme
code.

Since, the Bigloo compiler can perform whole-program analysis it can perform
many optimisationsthat would beimpossiblein an interactivesystem. TheBigloo
runtimeuses theBoehm conservative collector.

9mzschemehasbeen renamed ‘racket’ sincethe time of writing

42

2.7 Self-In terpreters

A self-interpreter is an implementation of an interpreter, or virtual machine, in
the language being interpreted. It is possible to implement a language of suffi-
cient power in itself trivially; for example, it i s possible to implement a Python
interpreter as follows:

import sys
execfile(sys.argv[1])

This sort of implementation is known as meta-circular evaluation. In order to
really implement a virtual machine an implementation can only use features that
can be directly translated to the underlying machine. The Jikes RVM, the Klein
VM[75] for Self, andPyPy are all self-interpreters. TheJikesRVM and theKlein
VM both includeruntime compilerswhich can beused to bootstrap theVM. PyPy
translates the running program to a lower-level form, usually C, which can then
be compiled.

Theperceived advantagesof self-interpretationarethat theVM can bewritten in a
higher-level language andthat library code can bemore closely integratedwith the
VM sincethey arewritten in thesamelanguage. However, many componentsof a
VM are quite low-level and writing them in too high-level a language may cause
difficulties; code may involve a lot of ‘ magic’ calls and be difficult to follow.
In fact it may be better to write aVM in more than one language: a high-level
language for high-level components and a lower-level language for lower-level
components.

2.8 Multi-Threading and Dynamic Languages

The reader may have noticed that dynamic languages, particularly Python and
Ruby, seem to struggle to support concurrency. Global interpreter locks are com-
mon implementationsof these languages. So what is theproblem?

Theproblem stemsfrom thefact that theselanguagesprovidedatastructures, such
aslists, setsand dictionaries, asfundamental types. Sincethesedatastructuresare
mutable, that is they can be modified, they require locking when used in a multi -
threaded environment. Immutable data structures, such as tuples and strings do
not need any locking.

Both Pythonand Ruby evolved in a single-threaded environment; machines with
morethan processor were rare. PythonandRuby programmersare accustomed to
being able to write programs, even multi -threaded ones, without any synchroni-
sation. This contrasts with, for example, Java programmers, who generally know

43

that synchronisation is required in multi -threaded programs which use mutable
datastructures.

The second problem is that these same data structures are heavily used internally
in theimplementations. Therest of thisdiscussionwill focusonPython, although
similar arguments apply to Ruby. In Python, dictionaries are used internally to
hold global variables and object instancevariables. This could cause some unex-
pected interactionsbetween threads. Suppose, for example, that onethread creates
and stores a new global variable ‘x’ and another thread creates and stores a new
global variable ‘y’ . In most languages, one would expect that (at least at some
futuretime) both ‘x’ and‘y’ would exist and bevisibleto both threads. In amulti -
threaded Pythonwithout synchronisation, it i s possible that ‘x’ (or ’y’) would not
exist at all . What would happen is that thedictionary holding theglobal variables
might need resizing to insert anew variable. Both threadswould then attempt this
resizing at the same time, inserting ’x’ and ’y’ respectively into their local copy.
Both then write back the new dictionary at the same time, a race condition, and
one or other of the modifications is lost. Similar problems might occur with the
dictionariesused to hold instancemember values.

There are anumber of possiblesolutionsto theseproblems, which rangebetween
the following two extremes:

1. Design all built -in, mutable data-structures so that they are fully thread-
safe. That is, use locking for all operationson thesedata-structures. This is
potentially very expensive.

2. Insert the absolute minimum number of locks to ensure that the integrity
of the VM is not compromised. The amount of locking required is that
which would prevent the VM crashing. This would put the responsibilit y
for locking objectson theprogrammer in asimilar way to Java.

IronPythonandJython both usesolutions similar to 1above.

2.9 Conclusion

High-level, dynamic languagesaremorepopular than ever. Despite this, thequal-
ity of implementationseemsnot to have improved over thelast 15 years, although
there aresome improvementswith the current (2010) generation of Javascript en-
gines. The reasons for this become clearer when one considers that most of the
research onimprovingVM performancewasdoneonalanguage, Self, with avery
simpleVM; theSelf VM had 8 bytecodes. Python hasabout 100. The engineering
effort to implement the Self VM, writing the entire VM from scratch, was large.
For a language like Python the effort would be enormous and beyondthe means
of most organisations. A different approach to buildingVMs is required.

44

Chapter 3

Abstract MachineBased Toolkits

This chapter describes a method of constructing virtual machines using a toolkit
designed aroundan abstract machine model. In this chapter, the term ‘abstract
machine’ is defined, and an abstract machine model is outlined which incorpo-
rates essential features of a VM for dynamic languages. The requirements for a
toolkit for constructing VMs are discussed and the components of such a toolkit
are outlined. The design and implementation of such a toolkit i s justified as it
reduces overall complexity, but does not limit the developer’s abilit y to construct
ahigh-performanceVM.

3.1 In troduction

Development of a high-performanceVM is no easy task, especially for the com-
plex VMs required for dynamic languages. Althoughsome components of a
VM can bedesigned and implemented separately, othersareboundtogether quite
tightly. For example, in order to use aprecise garbage collector, all code that ma-
nipulates pointers into the heap must be identified. These pointer manipulations
may be in library code, in the interpreter or even in code that has been generated
at runtime. For an evolving language like Ruby or Python, all the components
must conform to thenew semanticswhenever a changeoccurs. This is especially
an issuefor JIT compilers; whenever anew bytecodeisadded, or thesemanticsof
existing bytecodeschange, the compiler must mimic the changesin theinterpreter
exactly.

Unless some way is foundto reduce this complexity in the interactions between
the components, the creation of new VMs will be possible only for large organ-
isations. This would be areal lossboth for academia, in terms of creating new
experimental languages, andfor languages supported bycommunity development
such as Pythonand Ruby.

45

By separating the parts shared by many VMs, from the language specific parts,
the construction of a VM can besimplified.

3.1.1 Abstract Machines

Put simply, an abstract machine is a machine definition, rather than an imple-
mentation. The terms ‘abstract machine’ and ‘virtual machine’ are both used to
describe somesort of intermediate representation between a sourcelanguage and
a target machine, usually a hardware machine. It is important to differentiate
between abstract machines and virtual machines, at least for the purpose of this
thesis. Unfortunately, the termsare commonly used interchangeably.

Althoughthe usage of the two terms is similar, it i s possible to observe some
differences in general. The term ‘abstract machine’ is generally used when the
machine language is used as a translation step between two other languages.
For example the ‘abstract continuations machine’[4] and the Spineless-Tagless
G-Machine[46] are both described as abstract machines, and are used as an in-
termediate representation. The term ‘virtual machine’ is more often used when
the machine language is evaluated directly. For example, the JVM and CLR are
usually referred to asvirtual machines. Thedistinctionis important asvirtual ma-
chine languages are designed for execution, whereas abstract machine languages
are designed for translation into an executable form.

For the purposes of this thesis, an abstract machine language is textual and is
designed to be translated into another form, whereas a virtual machine language
is binary and isdesigned to be executed directly.

The first well -defined abstract machine was probably the intermediate language
for Algol 60, mentioned in Section 2.1.1. Diehl, Hartel and Sestoft[25] li st a
large number of abstract machines and virtual machines, using the term abstract
machinesfor both, regardingavirtual machine asan executable abstract machine.

3.1.2 A Toolkit for Constructing VMs

One approach to building VMs is to construct a set of tools, or toolkit, to build a
VM. Such a toolkit would build a VM from a specification of the interpreter and
supportingcode. Thisapproach isembodied in bothPyPy andtheGlasgow Virtual
MachineToolkit (GVMT), which isdescribed inChapter 4. Both thesetoolkitsare
ableto generate aVM with JIT compiler andintegrate aprecisegarbage collector,
from aspecification of the interpreter andsupportingcode. Section 4.9 includesa
detailed comparison of theGVMT and PyPy.

Thegreat advantageof aVM development tool, or toolkit, isthat many partsof the
VM can behandled by the toolkit. Generic features of theVM, such as agarbage

46

collected heap, can be conceptually separated from the VM specification details,
such as thesemantics of bytecodes, data representation and supporting functions.
This leaves thedeveloper freeto deal with the language-specific parts in any way
they choose, thus speeding development with littl eor no lossin flexibilit y.

Once such a VM development toolkit has been created, new VMs can be easily
constructed that support advanced garbage collection and just-in-time compila-
tion; the developer just needs to specify the bytecode interpreter and write any
supportingcode.

3.2 TheEssential Featuresof a Vir tual Machine

In order to decide what features a toolkit should support, it i s useful to examine
what features are common in modern VMs.

3.2.1 GarbageCollection

Garbage collection isa commonfeature amongst VMs1. Efficient garbage collec-
tion is, alongwith JIT compilation, oneof thekeys to goodVM performance.

Although, as discussed in Section 2.3.7, a garbage collector for a dynamic lan-
guage has a number of specific requirements, the performance characteristics of
the garbage collector need not be part of the abstract machine. It is necessary
only that the abstract machinesupportsgarbage collection. An important point to
note about garbage collection ishow pervasive is itseffect on thegenerated code.
All code, whether in the interpreter, in JIT compiled code or in supporting code,
must beimplemented in such away that all references to objectscan befoundand
modified by the garbage collector. This means that all roots, that is pointers from
thestack or global variables, into theheap must be identifiable.

3.2.2 Execution Control

Control of the execution, or flow, of a program is a key part of any language.
Executioncontrol can bedivided into two types: concurrent andserial.

Control over the concurrent execution of a program is, at the operating-system
level, either by processesor threads. Processesarequite loosely coupled, commu-
nicating only by messages. Threads are more tightly coupled, sharing memory.
Since both processes and threads are provided by the operating system, the ab-
stract machine needs to interface cleanly with these features, but it does not need

1A notable exception is the Forth VM.

47

to provide them.

The control over a single thread of execution varies widely between languages.
As well as simple flow control in the form of branches and subroutines, mod-
ern languages provide non-local transfers of control in the form of exceptions,
co-routines or continuations. Continuations are the most powerful of these, and
capture most of the execution state of a program at the point at which they are
created. It is possible to implement both exceptions and co-routines with contin-
uations, but continuations require significantly more resources than either excep-
tionsor co-routines.

In addition, other forms of flow control are conceivable and it should be possible
to implement new ones on the abstract machine.

3.3 An Abstract Machine for Vir tual Machines

An abstract machineisusually designed with oneprogramminglanguagein mind,
but could easily be reused for other languages with similar semantics. For ex-
ample, the ‘abstract continuations machine’ was designed for use in compili ng
ML. However, it has no ML specific features in it; it would support any non-
lazy functional programming language that required support for continuations.
The Spineless-TaglessG-Machine, designed for Haskell , should be able to sup-
port Mirandaor another lazy functional programminglanguage. Even theWarren
Abstract Machine, designed for Prolog, might be agoodtarget for any language
requiring somesort of backtracking.

Althoughthesethree abstract machinesweredesigned to implement aspecific lan-
guage, the machine specifications can be defined in terms unrelated to the source
language definitions. Theoretically, any Turing complete abstract machine could
act as a target for any language. However, if the language requires a feature in
order to runefficiently andthe abstract machinedoesnot support that feature then
it will be difficult to make an efficient implementation. Likewise, if an abstract
machine is designed to support a feature that the language does not need, the
overhead of theunused feature may impact performance.

Requirements for the Abstract Machine

The abstract machine for a virtual machine should serve as an intermediate rep-
resentation between the language used to define the VM and the hardware. The
semantic level of the abstract machinewill t herefore liebetween that of thehard-
ware and thevirtual machine.

This means that the abstract machine should have a language that is a suitable
target for a C compiler or similar, and should provide features required for con-

48

structing a dynamic language VM. To be asuitable target, an abstract machine
language must have an comprehensive instruction set with well -defined seman-
tics. The abstract machinelanguageisnot expected to be executed without further
translation.

It is necessary to be able to compile the abstract machine code into machine code
for a real machine, and to doso reasonably efficiently. The abstract machine can
be viewed as the intermediate representation between source code for the VM
and machine-code implementation of that VM. Like a compiler’s intermediate
representation it should be designed to be an effective bridge between the source
code andthefinal output, which in thiscaseisaVM. The abstract machineshould
support features common to VMs, without constraining the design of individual
VMsunduly.

A VM Toolkit Based on an Abstract Machine

In order for atoolkit to translate its input to actual machine code, it i snecessary to
define thesemantics. By usingan abstract machine asa form of intermediaterep-
resentation, thesemanticscan bedefined in termsof the abstract machine, andall
toolscan easily collaborateto form ausabletoolkit. Implementation of thetoolkit
is simplified as tools can be separated into front end (source to abstract-machine
code) and back end(abstract-machine code to real-machine code) components.

Developing an abstract machine for VMs can simpli fy the development of VMs
by separating the development into two parts: developing the tools to translate
VMs described in terms of the abstract machine into executable programs; and
design and development of the VM itself. The tools can potentially be reused for
other VMs. By choosingthedesign of the abstract machineso that it separates the
parts which are general to all VMs from the parts which are specific aparticular
VM, theoverall development effort can be reduced significantly.

3.3.1 Designing an Abstract Machine

While an abstract machine should be as general as possible, it will have to be
tailored to its intended domain to some degree. For example, will t he abstract
machinebestack-based or register-based? How much control over memory man-
agement should the VM developer have? What sort of support for runtime opti-
misationswill t he abstract machineprovide?

A balanceneeds to be found between specificity and generality. An abstract ma-
chine should not be so specific that it only supports one VM, neither should it be
so general that it i s no more useful for building VMs than a standard compiler.
The design space can be viewed as a spectrum running from language-specific
VMs, such as the JVM, to general purpose compilers, such as the GNU C/C++

49

compiler. A useful abstract machineshould liesomewherebetween these two ex-
tremes. Some features of VMs, such as garbage collection, are almost universal,
so it isobviousthat the abstract machineshould incorporatethem. Othersfeatures,
such as continuations, are much lesscommon and it is a matter of judgement as
to whether they should be included.

3.3.2 Special Status of Interpreters

The concept of the interpreter as a special entity is key to building VMs using a
toolkit. The interpreter isnot just another function. Because theVM isaprogram
that runs programs, the abstract machine must support not only the program, the
VM, but the program run onthe program, the bytecodes. To dothis, interpreters
need to be treated specially. The state of the interpreter represents the execution
state of the interpreted program, which needs to be supported by the abstract ma-
chine.

By differentiating between interpretersand other functions, thesemanticsof com-
piler and interpreter generators can be more clearly stated. This special status
makes it much simpler to define and generate a compiler which guarantees that
the behaviour of compiled code exactly matches that of the interpreted original.
Theinterpreter’s instruction pointer becomespart of the abstract machinestate, on
apar with thehardwaremachine’sinstruction pointer, enablingaunified approach
to handlingexecutioncontrol in both the interpreter and supportingcode.

Treating the interpreter as a special entity also has advantages for efficient im-
plementation. Since the interpreter is part of the abstract model, the interpreter
should integrate seamlessly with the rest of the VM. When implemented, calli ng
from interpreted into compiled code, or vice-versa, should cost no more than any
other machine-level call .

3.3.3 Compilation

If a VM is to achieve good performance it needs a JIT compiler to convert se-
quencesof bytecodesto machine code; akey featureof atoolkit for buildingVMs
is to generate that compiler. The toolkit should be able to automatically generate
a JIT compiler from the interpreter specification.

An automatically generated compiler should produce code that has exactly the
same semantics as the bytecodes it derives from. Of course ‘exactly the same se-
mantics’ will depend onthe exact abstract machinebut areasonable interpretation
is that theobservablebehaviour should be thesame.

Put formally:
Given a compiler generator CG and an interpreter generator IG, provided by the

50

toolkit, andaset of bytecodedefinitionsBvm provided bytheVM developer. Then,
duringVM construction, theinterpreter Ivm andcompiler Cvm aregenerated asfol-
lows:
Interpreter Generation: Ivm := IG(Bvm)
Compiler Generation: Cvm := CG(Bvm)
At runtime, when theVM isexecuting, given somevalid bytecodesb andan input
x:
Bytecodes b can be compiled withCvm to producecb

vm:
Compilation: cb

vm := Cvm(b).
When the compiled code isexecuted with input x, it should be equivalent to inter-
pretingb with the interpreter Ivm and input x. That is:
cb

vm(x) ≡ I vm(b,x)) ∀b,x, provided that b and x are valid. What values of b and
x are valid depends on both the set of bytecode definitions Bvm and the abstract
machinedefinition.

Correctness

Oneof the main reasons for usinga toolkit i s the abilit y to specify the interpreter
and the compiler from a common source. It is important that the interpreter and
compiled code are effectively equivalent. Confidence that this is the case can
derive from formal proof of the equivalenceor statistical evidencein the form of
testing.

Formal verification of the toolkit will be impossibleunlessit is possible to verify
all the components. In order to reducethe engineering effort required to create a
toolkit, reuse of external components such as the C compiler or a runtime com-
pilation library is necessary. Proving the properties of these components is not
feasible.

Sinceformal verification is impractical, validation must be done by testing, code
reviews and other software engineering techniques. Althoughthe use of these
techniques is outside the scope of this thesis, it i s worth noting that the use of
external components removes certain categories of errors, as these components
must verify their input to some extent andcan betrusted to generate correct output
for thegiven input. For example, if theinterpreter generator usestheC compiler to
generatemachine code, then some classesof low-level errors in thefinal machine
code, such as theuseof incorrect calli ngconventions, will not occur.

3.3.4 Introspection

Introspection is the abilit y of a program to examine and perhaps modify the state
of the underlying machine, which in this case is the abstract machine. The full
stateof the abstract machineshould bevisibleto theprogram, althoughefficiency
requirementsmay mean that only parts of it aremodifiable.

51

Introspection is useful for a couple of reasons. It allows the VM to provide sup-
port for debugging and tools. It is also useful for supporting advanced language
features. For example, continuations can be created by using a combination of
non-local jumps, for flow control, and using introspection features to record nec-
essary stack and heap information.

3.4 Optimisation in VMs for Dynamic Languages

One of the most important measures of a virtual machine is its speed. A VM that
includes the abilit y to optimise code at runtime will almost invariably be faster
than one that does not.

Optimisations can be loosely grouped into lower-level traditional optimisations,
used in conventional compilers for static languages, and higher-level optimisa-
tions which are often language-specific. There must also be an intermediate rep-
resentation which allows the two levels of optimisation to communicate. For a
dynamic language, themain aim of thesehigh-level optimisationswill be, in gen-
eral, to remove as much dynamism as possible, thusproducing intermediate code
that traditional optimisationscan turn into efficient machine code.

3.4.1 Traditional Optimisations

Although dynamic languages may require new and interesting optimisation tech-
niques, they also require traditional compiler techniques in order to providegood
performance. These techniques includesophisticated register allocation, constant
propagationand other optimisationsfoundin most compiler textbooks. Theseop-
timisationscan be applied after thehigh-level optimisations, so standard toolscan
beused.

3.4.2 IntermediateRepresentations

To translate from a high-level representation, such as bytecode or source code,
directly to machine code is almost impossible to dowell . By using one or more
intermediate representations, the translationcan be mademuch simpler and more
effective.

A wide range of intermediate forms are possible. These intermediate representa-
tionscan be loosely classified aseither program-level or machine-level. Program-
level forms contain all , or most, of the semantic information present in the orig-
inal program and are suitable for language-specific optimisations. Machine-level
forms are suitable for traditional optimisationsand code generation. Lower-level

52

languages generally do not need program-level representations. For example the
GNU C/C++ compiler (GCC) has two intermediate representations, GIMPLE2

andRTL3; both can be considered to bemachine-level representations.

Effective optimisation of dynamic languages requires different sorts of optimisa-
tions from C and a program-level intermediate representation is needed. Most
dynamic languages already have aprogram-level representation, their bytecode.
Bytecode is a very flexible format, carries program level information, and makes
agoodintermediate representation.

3.4.3 Adaptive Optimisation Engines

As discussed in Section 2.4.1, an adaptive optimisation engine consists of a con-
troller, which selects code to optimise, and an optimiser, which transforms the
code. The term ‘adaptive’ isused as the engine adapts to the running program; its
behaviour isdetermined at runtime.

Once asequenceof bytecodes has been selected for optimisation, whether it i s a
whole procedure or not, it i s first translated into a program-level representation,
then high-level optimisationsare applied to it. Then it is translated into machine-
level representation, low-level optimisationsare applied, andfinally it i stranslated
into machine-code.

Obviously additional stages can be added or stages omitted, but this idealised
model will serve asauseful referencepoint. Figure3.1 showsageneralised trans-
lation path from bytecode to machine code.

3.4.4 Building an Adaptive Optimisation Engine Using a
Toolkit

There are two parts to building an optimisation engine. The first part is the se-
lection of the code to optimise. The second part is the optimisation itself. The
selection of codeis largely languagespecific andshould not requiredirect support
from the abstract machine or toolkit. The second part is not only more complex,
but is strongly influenced by thedesign of the abstract machine.

In Figure 3.1, it should be noted that the first two translation steps, from byte-
code to optimised high-level intermediate representation (IR), are largely lan-
guage specific and unrelated to the abstract machine, whereas the later steps are
more abstract-machinespecific.

As mentioned in Section 3.4.2, bytecode can fulfil the role of a program-level

2Generic structured InterMediaterePresentaionLanguagE
3Register Transfer Language

53

 High-level Optimisations

 Low-level Optimisations

Bytecode

Initial Translation

 High-Level IR
High-level
Optimiser

High-Level IR

Translation

Low-Level IR
Low-level
Optimiser

Low-Level IR

 Machine code
generation

Machine code

Figure3.1: Generalised BytecodeOptimiser

IR; it i s simple to analyse, and usually contains all of the semantic information
present in thesource code. Figure3.2 showsan optimisation path using bytecode
as a program-level IR, including toolkit generated components to translate from
bytecode to machine code.

In order to ease the construction of bytecode-to-bytecode translators, the toolkit
should support creation of arbitrary interpreters over the same bytecode used for
the main interpreter. As an additional benefit, this will also ease the creation of
bytecodedisassemblers, verifiers, and similar tools.

The abstract machine specifies neither the means of optimisationcontrol nor any
language-specific optimisations. Whilst thismay seem to be an omission, it allows
the VM developer to choose an appropriate overall design, and not worry about
the lower-level details.

3.5 When to use theabstract machineapproach?

One question that has not been directly addressed so far, is this: Is the abstract
machine approach worth using for a single VM; in other words, is it worth con-
structing a toolkit such as the GVMT just to create a single VM? The answer
dependson the complexity of the resultingVM. For avery simpleor toy VM, the
answer must beno, but for aVM for a complex language likePython, the answer
is probably yes. The abilit y to add and removebytecodes easily, and to be able to
develop thegarbage collector separately from the rest of theVM, yet have it well

54

Tool-generated Back-end

Conventional Code Generator

Bytecode
Language-Specific

Bytecode Optimiser
Bytecode

Tool-generated
Translator

Low-Level IR
Low-level
Optimiser

Low-Level IR

 Machine code
generation

Machine code

Figure3.2: Toolkit Assisted Optimiser

integrated for performancebenefits, isvery productive.

If a toolkit already exists, it i sworth usingeven for asmall or prototypelanguage,
as using that toolkit should produce abetter VM than using a pre-existing VM
such as theJVM; this is demonstrated in Section 4.10.

3.6 AlternativeApproaches to Building VMs

There are many possible ways of developing VMs, but four categories cover all
existing and proposed approaches: creating a tool to build VMs; building a truly
general-purposeVM; assemblinga VM from a library of components; and build-
ingan adaptableVM. Thefirst of thesehas already been covered in somedetail .

3.6.1 A General PurposeVM

One approach would be to build a genuinely general purpose VM, that is, a VM
with an instructionset so broad that a very large range of sourcelanguages could
be translated to it. The only attempt to dothis, of which I am aware, is theParrot
VM which was discussed in Section 2.6.5. The problem with this approach is
that theVM must support many features which will not be required for any given
language, but will still add overhead.

3.6.2 A Component Based VM

Another approach would beto build a library of commoncomponents. Whilethis
has been done for memory management[15], creating a library of compilers for

55

all possiblebytecodes isclearly impossible.

It ispossibleto build aVM from components, provided thetranslationfrom byte-
code to lower-level representation is coded manually. VMKit[33] is a JVM built
usingLLVM as JIT compiler back-end, theBoehm collector[18] for memory man-
agement and GNU classpath[34] to provide the libraries. The resulting VM is a
compiler-only design, like the Jikes RVM. It has competitive performance once
running, but isvery slow to start upand hasrelatively poor performancefor mem-
ory intensive applications. The slow start up is as a result of having to compile
significant amountsof library code at runtime. Thepoor performancefor memory
intensive applications isdue to theuseof a conservativegarbage collector.

3.6.3 An Adaptable Vir tual Machine

A third approach is to build an flexible VM that can be adapted to suit new lan-
guages dynamically. This could either be a general-purpose VM that is then
trimmed down, or a minimal VM with the abilit y to add new bytecode instruc-
tions at runtime. The latter approach is taken by the MVM/JnJVM project[73].
The MVM is an extensibleVM with a small i nstructionset, supporting JIT com-
pilation and garbage collection. The instruction set can be dynamically extended
by loading new capabiliti esdefined in aLisp-like language.

A Java Virtual Machine, JnJVM, is created by modifying, at runtime, the MVM.
Execution happens in two phases; the first phase is loading the new bytecodes,
which extends the MVM; the second phase runs the bytecode program in the
new, extended, VM. The current approach of creating the VM at run time would
probably beunacceptablewhen runningsmall scripts, althoughit would probably
bestraightforward to dothe adaptationat build time.

This would appear to be apromising approach, but it i s not clear how far from
the core MVM the VM could be extended and still perform well . Unfortunately,
research in thisdirectionseems to have ceased.

3.7 Related Work

3.7.1 Vmgen and Tiger

Vmgen[28] is the interpreter generator used to build the GForth VM. Vmgen is
focused on producing fast interpreters, and can producevery fast interpreters for
a number of different architectures. However, vmgen does not have the abilit y to
produce a compiler, nor doesit support easy integrationwith theother components
of theVM. A moresophisticated version of vmgen, Tiger[21], isavailable, which

56

isdesigned to further enhanceinterpreter performance andeaseof use, rather than
adding other tools.

3.7.2 PyPy

The PyPy project[66] consists of two components: a translation tool for con-
verting interpreters written in RPython(a slightly restricted form of Python) into
VMs; andaPythoninterpreter written in RPython. The translation tool can trans-
late any RPython program into reasonably efficient C (and other statically-typed
representations), althoughitsprimary purposeistocompilethePythoninterpreter.

ThePyPy translation tool, termed ‘ translation tool-chain’ , converts thehigh-level
(RPython) representation to successively lower-level representations, by using
wholeprogram analysis to remove the dynamism inherent in (R)Python. The JIT
compiler generated byPyPy worksby tracing the execution of the interpreter[19],
rather than the execution of the program4. The interpreter source is annotated in
order to help the compiler generator determinewhat to compile andwhen.

A detailed comparison between PyPy andtheGVMT can befoundin Section 4.9.

3.8 Conclusions

A VM consistsof anumber of tightly coupled components. Althoughthese com-
ponents cannot be developed independently, the creation of a number of these
components can be automated, freeing the developer to concentrate on higher-
level issues. By designingalow-level abstract machine and developingan accom-
panyingtoolkit, aspects such asmemory management andJIT compilationcan be
greatly simplified, allowing the VM developer to concentrate on issues such as
optimisation policy or whatever novel features thenew VM includes.

In their paper on VM construction for dynamic languages, Bolz and Rigo[20]
concludethat writingVMs‘by hand’ isunsustainable andthat somesort of tool(s)
are required. Althoughthe mechanism of automation in PyPy differs from the
GVMT, automationisanecessity. A toolkit that implementsthefeaturesdiscussed
in thisChapter is presented in Chapter 4.

4PyPy initially aimed to support runtime compilation using partial evaluation, althoughat-
tempts to dothishavenow been abandoned.

57

58

Chapter 4

TheGlasgow Vir tual Machine
Toolkit

The Glasgow Virtual Machine Toolkit (GVMT) is an embodiment of the abstract
machine principle discussed in Chapter 3. The GVMT is designed to support
construction of dynamic languages. A manual for the GVMT is available from
http://code.google.com/p/gvmt/downloads/list/.

In this chapter I will give an overview of the GVMT and describe some of its
novel features in moredetail .

4.1 Overview

The GVMT is based aroundan abstract machine definition and consists of two
sets of tools: front-end tools to convert C source code to abstract machine code;
and back-end tools to convert the abstract machine code into a working virtual
machine.

The front-end tools consist of a C compiler, an interpreter generator and
secondary-interpreter generator. TheC compiler convertsC codeinto instructions
for the abstract machine. Theinterpreter generator andsecondary-interpreter gen-
erator convert C-style interpreter definitionsinto instructionsfor thesame abstract
machine.

The back-end tools are a compiler-generator, to generate a compiler from the ab-
stract machine bytecode specification, an assembler to convert abstract machine
code to machine code, and a linker to ensure that components are laid out in a
way that thegarbage collector can understand. Figure4.1 showshow thetoolsare
used to generate an executablevia the abstract machine code.

TheGVMT abstract machinespecifically targetsdynamic languages. It isastack-

59

Interpreter Definitions (C)

GVMT Interpreter
Generator

GVMT Secondary
Interpreter Generator

Other Code (C)

GVMT C Compiler

GVMT Abstract Machine Code

GVMT Assembler

GVMT Compiler
Generator

GVMT Object Files

System Object File

GVMT Linker

Sytem Linker

Executable

Figure4.1: TheGVMT Tools

60

based abstract machine that is suitable as a target for a C compiler. It can be
translated efficiently into executable code and it supports features necessary for
buildingaVM for dynamic languages.

4.2 TheAbstract Machine

The GVMT abstract machine is a stack machine; all arithmetic operations (such
asaddition) operateonthestack and, likeForth but unlike theJVM, all procedure
parameters are moved to and from the stack explicitl y. A number of operations
for stack manipulationare also provided, in order to assist with theoften complex
procedure calli ng semantics of languages like Python. It is also designed to be
garbage collectionsafe throughout.

4.2.1 TheAbstract Machine Model

The GVMT abstract machine consists of one or more threads of execution and
main memory. Each thread consists of threestacks: the data stack, used for eval-
uatingexpressions and passing parameters; the control stack, which holdsactiva-
tion records for procedures; and the state stack used to save the abstract machine
state. Thestatestack isused to implement exceptions, closures, or other complex
flow control. SeeFigure 4.2. The GVMT abstract machine is also fully thread
safe and provides features to support concurrency in theVM.

The main memory of the GVMT abstract machine contains two distinct regions,
agarbage collected heap and user-managed memory. All pointer instructionsdif-
ferentiatebetween pointersinto thegarbage-collected heap and pointers into user-
managed memory.

Finally, and possibly most importantly, the abstract machinesupports interpreters
as special objects. As discussed in Section 3.3.2, this allows the GVMT to pro-
duce aJIT compiler automatically and ensure that interpreted code and compiled
code behave in the same way. An interpreter is defined by a set of named byte-
codes, each one of which is defined by its stack effect and the code describing
its semantics. An example of a bytecode defined for the GVMT is given in Sec-
tion 4.3.2.

4.2.2 Stack-based execution model

A stack-based executionmodel is chosen for two reasons. The first is simply that
most modern VMs are stack-based. The second is that it i s generally easier to
implement source to bytecode compilers for stack-based intermediate forms. In

61

 User

Managed

 Memory

Heap

S
ta

te
 S

ta
c
k

D
a
ta

 S
ta

c
k

C
o
n
tro

l S
ta

c
k

Threads

Figure4.2: TheGVMT Abstract MachineModel

terms of performance it does not really matter whether the abstract machine is
stack or register based, since astack-based form is easily interchangeable with a
three-addressform.

4.2.3 GVMT Abstract Machine Code

As befits an abstract machine code, GVMT abstract machine code (GAMC) has
no binary representation; it i spurely textual. Instructionsaregenerally of theform
XXX_T or XXX_T(N)whereXXX is theinstruction name, T theoperandtype andN is
an integer. For example, ADD_I4 adds two 32-bit integers, whereasTSTORE_R(N)
stores aReferenceto theNth temporary variable.

The instruction set also has a large number of instructions to provide access to
abstract machine features such as the garbage collector and the state stack. The
full i nstruction set is listed in Appendix A. For the full grammar of the GVMT
abstract machine code format, including data, seeAppendix B

4.2.4 TheStacks

Each thread of execution has threestacks: thedatastack, the control stack andthe
statestack.

62

Data Stack

All arithmetic operations poptheir operands from the data stack and push the re-
sult to the data stack. The data stack is kept in thread-local memory, with the
top-of-stack determined by thestack pointer, SP. SP can be accessed andmodified
directly, allowing the VM implementer a large degreeof flexibilit y. However, it
can only be accessed by specific instructions, which gives back-ends some free-
dom to keep some of the values near the top of the stack in registers; in order
to improve performance. Instructions are also provided for block insertions and
deletionson thedatastack; allowingcustom calli ngconventionsand features like
C’svararg semantics to be implemented.

Control Stack

The control stack holds local variablesfor each functionactivation, aswell asany
information required by the native ABI1. This will usually be integrated with the
nativestack. Theback-endisresponsiblefor ensuringthat all references(garbage-
collected pointers) stored in the control stack are reachableby thegarbage collec-
tor.

StateStack

The state stack is used to preserve and restore the machine state. A state object
consists of the current point of execution, as well as the current control and data-
stack pointers. Instructions are provided to make non-local jumps in execution,
restoringthemachinestateto thestatestored in theobject ontop of thestatestack.
Stateobjects do not encapsulate thewholemachinestate; no record iskept of the
contentsof theheap or of the contentsof thedatastack, just thedepth.

4.2.5 Data Types

The GVMT supports twelve different data types, which are listed in table 4.1;
eight integer types (four signed and four unsigned), two floating point types and
two pointer types. The GVMT has two different pointer types so that pointers
into the garbage-collected heap and pointers into user-managed memory can be
correctly differentiated.

Many instructionshave asuffix which matches the codeof the type. For example,
the instruction to perform signed add ontwo 4-byte integers isADD_I4. The type
of data and instruction must generally match, with a few exceptions. Applying
a signed operation to an unsigned value implicitl y converts it to a signed value,

1ApplicationBinary Interface

63

Kind Size Code
Signed Integer 1 I1
Signed Integer 2 I2
Signed Integer 4 I4
Signed Integer 8 I8

Unsigned Integer 1 U1
Unsigned Integer 2 U2
Unsigned Integer 4 U4
Unsigned Integer 8 U8

FloatingPoint 4 F4
FloatingPoint 8 F8

(Non-heap) Pointer 4 or 8 P
(Heap) Reference 4 or 8 R

Table4.1: GVMT Types

and viceversa. TheADD_P instructionadds a pointer to an integer, not to another
pointer.

The GVMT abstract machine may be either 32 bit (4 bytes), or 64 bit (8 bytes),
which determines the size of pointers and references. GVMT abstract machine
code is generally not portable from one sizeto the other, but the types IPTR and
UPTR areprovided as aliases for pointer sized integer types.

Data stack items can hold any GVMT data type. When integers smaller than the
word size are pushed to the stack, they are extended to word size, retaining their
value. Thus signed integers are signed extended and unsigned integers are zero
extended. Arithmetic operationson integers compute the full result which is then
truncated to the sizeof the instruction; division rounds towards 0. Floating point
operations behave as specified by IEEE754. The GVMT does not specify byte-
order; implementationswill match theunderlyingarchitecture.

4.2.6 Execution Model

In thefollowing discussion, theterm ‘bytecode’ isused below to refer to avirtual-
machine instruction and the term ‘ instruction’ is used to refer to an abstract-
machine instruction. Bytecodes (virtual-machine instructions) are defined by se-
quences of instructions(abstract-machine instructions).

Execution of athread startsby creatinganew set of stacksfor that thread. Initially
all stacks are empty. The arguments passed to the gvmt_start_thread function
are pushed to the data stack, followed by the address of the start function. A
CALL_X instruction is then executed, whereX depends on the typespecified in the
gvmt_start_thread function. The CALL_X pops the addressof the function to
be called from the top of thestack and calls it.

64

Functions

A function in GVMT isdefined asa linear sequenceof instructions.

Execution of a function procedes as follows: A frame containing all the tempo-
rary variablesnecessary for thefunctionispushed to the control stack. Thisframe
becomes the current frame for accessing all temporary variables; temporary vari-
ables in framesother than the current frame cannot be accessed. The internal lay-
out of this frame is implementation defined. Thefirst instructionin thefunction is
then executed, proceedingto thenext instructionandso on. The exceptionsto this
are flow control instructions, HOP and BRANCH, which may jump to a designated
successor instruction.

Temporary variables are accessed by theTLOAD_X(n) and TSTORE_X(n) instruc-
tions. They havenoaddressand have thesame typesas datastack elements, with
thesamerestrictionson mixing types.

Interpreters

An interpreter actsexternally like anormal function; it can be called like any other.
Internally, itsbehaviour is substantially different from that of anormal function.

The interpreter commencesexecution, li ke anormal function, by pushinga frame
to the control stack. Thisframewill havesufficient spaceto store all thetemporary
variables of the bytecodes of the interpreter plus any interpreter-scope variables.
The interpreter definitionspecifies thenamesand typesof thesevariables.

Each activation of an interpreter contains a virtual-machine-level instruction
pointer which tells it which bytecode to execute. Thestart-point of the interpreter
ispassed in as aparameter and popped from thedata-stack on entry.

Execution of bytecodes proceeds in a linear fashion, unlessa JUMP or FAR_JUMP
abstract-machine instruction isencountered.

The execution of individual bytecodesproceedsas follows: The abstract-machine
instructionsthat makeupthat bytecode are executed in thesameway as for anor-
mal function. Should the end of the bytecode be reached (as it will be for most
bytecodes) then the instruction pointer is updated to point at the next instruction
and that instruction is then executed. If aJUMP or FAR_JUMP abstract-machine in-
structionisencountered, then thevirtual-machine-level instruction pointer ismod-
ified, the execution of the current bytecode halts immediately, and the bytecode
pointed to the(modified) virtual-machine-level instruction pointer isexecuted.

65

Compiled Code

The output of the compiler is a function and can be called like any other. Its
behaviour, in GVMT abstract-machine terms2, is exactly the same as if the inter-
preter were called with thesameinput (bytecodes) aspassed to the compiler when
it generated the compiled function, provided thebytecodes arenot modified.

4.3 Front-End Tools

The front-end tools exist to allow the VM developer to program in C, rather than
directly in abstract machine code. The tools translate C into abstract machine
code. There are three tools; the interpreter generator, GVMTIC, the secondary
interpreter generator, GVMTXC and the C compiler, GVMTC. GVMTIC translates
interpreter definitionsinto GAMC. GVMTXC translates secondary interpreter def-
initionsto GAMC, usingtheoutput of GVMTIC to ensurethat thebytecodeformat
used by primary and secondary interpreters is consistent. The C compiler trans-
lates all non-interpreter code and acts likes a standard C compiler with GAMC
as its output. The distinction between primary and secondary interpreters is that
the primary interpreter defines the bytecode format, whereas the secondary inter-
preters conform to that format.

The front-end tools accept standard C code3 with a range of built -in functions to
support thevariousabstract machine features that are not directly supported in C.

4.3.1 TheC Compiler

The GVMT C compiler, GVMTC, uses the LCC[35] C compiler with a custom
back end. In addition to generating GVMT abstract machine code, GVMTC does
simpletype analysis to differentiatebetween heap pointersand other pointers, un-
does any unsafe (for garbage collection) optimisations that LCC may have done,
and produceserror messages for any unsafeuseof pointers. Unsafeusesof point-
ers include the ill egal use of pointers to the middle of an object, or attempting
to use non-heap pointers as heap pointers (or vice-versa). The GVMT code and
documentationrefers to heap pointersas referencesand non-heap pointers simply
as pointers.

2Its real-world behaviour may differ; it should be faster, and it may implement the top of the
data-stack differently.

3C89code

66

=

a+

a b

Figure4.3: Treefor a += b

Translating LCC Intermediate Code to GAMC

Theintermediaterepresentation used byLCCisa list of trees[30]; each statement
in theC sourceis represented by oneor more trees. For example, theC statement
a += b; is represented by the treein Figure 4.3. Converting treerepresentations
to stack code can bedoneby walkingthetreebottom-upleft-to-right. Thetreefor
a += b; can be represented as a b + a = in reverse-polish notation. If a and b
areboth local variablesand four byte integers, then theGAMC code for a += b;
could be

TLOAD_I4(1) TLOAD_I4(2) ADD_I4 TSTORE_I4(1)

Looping constructs are converted into explicit branches by the LCC front-end.
These are represented in GAMC by theHOP instructionfor an unconditional jump
and BRANCH_T or BRANCH_F for a conditional jump. All branches must have an
explicit TARGET.

The following example code is taken from the source code for the HotPy VM.
It creates a new string (a heap object) from an array of characters (a non-heap
object). The functiongvmt_malloc creates anew object in theheap.

1. R_str string_from_chars(uint16_t∗ chars, int count) {
2. int i;
3. R_str result = (R_str)gvmt_malloc(sizeof(string_header) + (count << 1));
4. result−>ob_type = type_str;
5. result−>length = count;
6. for (i = 0; i < count; i++) {
7. result−>text[i] = chars[i];
8. }
9. string_hash(result);
10. return result;
11.}

This is translated into the following abstract machine code, with LINE and FILE
instructionsremoved: Thenumbersat thestart of each line correspondto the line
numbersabove.

67

1. s t r ing_f rom_chars :
NAME(0 , " chars ") TSTORE_P(0) NAME(1 , " count ") TSTORE_I4(1)

3 . TLOAD_I4(1) 1 LSH_U4 12 ADD_U4 GC_MALLOC NAME(3 , " r e s u l t ") TSTORE_R(3)
4 . ADDR(t ype_s t r) PLOAD_R TLOAD_R(3) 0 RSTORE_R
5. TLOAD_I4(1) TLOAD_R(3) 4 RSTORE_U4
6. 0 NAME(2 , " i ") TSTORE_I4(2) HOP(193) TARGET(194)
7. TLOAD_I4(2) 1 LSH_I4 TSTORE_I4(5) TLOAD_I4(5) TLOAD_P(0) ADD_P PLOAD_U2

TLOAD_R(3) 12 TLOAD_I4 (5) ADD_I4 RSTORE_U2
6. TLOAD_I4(2) 1 ADD_I4 TSTORE_I4(2) TARGET(193)
6. TLOAD_I4(2) TLOAD_I4(1) LT_I4 BRANCH_T(194)
9. TLOAD_R(3) ADDR(s t r ing_hash) CALL_V
10. TLOAD_R(3) RETURN_R ;

The translation from theC codeworks as follows:

Line1 Line 1 declares two parameters, which are passed on the stack and must
be stored into temporary variables with the instructions T_STORE_P(0)
and T_STORE_I4(1). They are also named for debugging purposes with
NAME(0,"chars") andNAME(1,"count").

Line2 Line2 is just adeclaration, so nocode is generated.
Line3 The expressionsizeof(string_header) + (count << 1)) istranslated

to TLOAD_I4(1) 1 LSH_U4 12 ADD_U4. Thegvmt_malloc function is an
intrinsic function, so the call i s translated directly to theGC_MALLOC instruc-
tion.

Line4 The expression type_str is a global variable, so the value is loaded from
a fixed address: ADDR(type_str) PLOAD_R. Since result is a heap ref-
erence, a RSTORE_R instruction must be used to store the ob_type field;
internal pointersare forbidden.

Line5 Line 5 is similar to line 4, except that the length field is an integer, so the
RSTORE_U4 instruction isused instead.

Line6 The for statement is threestatements in one; an initialisation, a test and
an increment. The initialisation, i = 0 translates to 0 TSTORE_I4(2)
followed by a HOP instruction to jump to the end of the loop. The
increment and test are emitted after the body of the loop; the in-
crement as TLOAD_I4(2) 1 ADD_I4 TSTORE_I4(2) and the test as
TLOAD_I4(2) TLOAD_I4(1) LT_I4 BRANCH_T(194).

Line7 The LCC front-end performs common sub-expression elimi-
nation to create the temporary t5 = i << 1 which is trans-
lated as TLOAD_I4(2) 1 LSH_I4 TSTORE_I4(5). The value
chars[i] becomes TLOAD_I4(5) TLOAD_P(0) ADD_P PLOAD_U2
which is stored in result->text[i] by
TLOAD_R(3) 12 TLOAD_I4(5) ADD_I4 RSTORE_U2.

Line9 The string_hash function is declared as void so is called with a CALL_V
instruction.

The strict separation between non-heap pointers, designated P, and heap refer-
ences, designated R, should be noted. On line 7, loading the character from the

68

array chars usesaPLOAD_U2 instructionwhereas thestore into thestringresult
uses theRSTORE_U2 instruction.

4.3.2 The Interpreter Generator

The GVMT Interpreter Generator, GVMTIC, translates an interpreter definition
into a GAMC file.

A GVMT interpreter definition consists of two parts: a list of interpreter-scope
variables and a list of bytecode definitions. Each bytecode definition consists
of an effect declaration and a block of C code. The effect declaration describes
the values taken from the stack, operands taken from the instruction stream, and
the values pushed back to the stack. The block of C code determines what the
bytecode actually does.

The effect declaration of a bytecode takes the form of a Forth-style stack com-
ment: (inputs -- outputs). Inputs may come from the stack, or from the
bytecode instructionstream, in which case the name is prefixed with oneor more
‘#’ characters. Thenumber of #s indicates thenumber of bytes to form thevalue.
All i nputsand outputsare of the form type name.

The followingexamplebytecodedefinition is taken from theGVMT Scheme im-
plementation (described in Section 4.10). It stores the value currently on top of
thestack into thelocal variableindexed bythenext valuein theinstructionstream.

l oad_ loca l (i n t #index −− GVMT_Object o) {
o = frame−>values [index] ;

}

The first line gives its name load_local and the effect declaration. The effect
declaration has one input int #index which is a one byte input taken from the
instruction stream, and one output GVMT_Object o which is a heap object. The
secondline is the C code which determines what it does; frame is an interpreter-
scopevariable, and is a referenceto theScheme activationframe.

Translation to GAMC

TheGVMT interpreter generator, GVMTIC, parses the effect declaration, and del-
egates the translation of the body to the C compiler, GVMTC. For the example
above, GVMTIC translates the load_local instruction into the following GVMT
abstract machinedefinition, this timewith LINE andFILE instructions left in:

l oad_ loca l =33:
FILE (" i n t e r p r e t e r . vmc") LINE (360) #@ NAME(0 , " index ") TSTORE_I4(0)
LINE (361) TLOAD_I4 (0) 2 LSH_I4 TSTORE_I4(3) LADDR(frame)
PLOAD_R 8 TLOAD_I4 (3) ADD_I4 RLOAD_R NAME(1 , "o ") TSTORE_R(1)

69

LINE (360) TLOAD_R(1) ;

The interpreter generator automatically assigns an opcode to any bytecode defi-
nition that does not have one. In this case, line 1, load_local=33, shows that
GVMTIC has assigned an opcodeof 33 to thisbytecode.

Inputs taken from the instruction stream are implemented with the #@ instruc-
tion, which takes the next byte from the instruction stream and pushes it to
the data stack. The interpreter local variable, frame, is not accessed as a tem-
porary, but using the LADDR instruction; the expression frame is translated to
LADDR(frame) PLOAD_R. The remainingcode is thesame as if it were translated
by theC compiler, except that there isno traili ngRETURN_X.

If required, bytecodescan also bedefined in aForth-likestyle composing instruc-
tionsout of other instructionsand theGAMC instructionset.

4.3.3 TheGVMT Secondary-Interpreter Generator

In addition to themain interpreter it i s often useful to have additional interpreters
that operateonthesameinstructionset. Examplesof these includeverifiers, anal-
ysis tools and optimisers. The GVMT provides a secondary-interpreter genera-
tor, GVMTXC, which can take apartial definition of an interpreter, filli ng in the
missing bytecode definitions with no-ops. The secondary-interpreter generator
guarantees that the new interpreter uses exactly the same bytecode format as the
main interpreter, producing an error message if any definition conflicts with the
primary definition. The secondary-interpreter generator makes the implementa-
tion of bytecode dis-assemblers and verifiers simpler and quicker, by ensuring
that there is no mismatch in the instruction set, and that no bytecodes have been
omitted.

When a secondary interpreter is defined, the secondary-interpreter generator per-
forms two actions. For bytecodes that are specified it verifies that they take the
same number of values from the instruction stream as the instruction with the
same name in the primary interpreter and that it has the same opcode; the trans-
lation to GAMC is performed in exactly the same way as for the primary inter-
preter. For bytecodes that are unspecified, a bytecode is generated that consumes
the same number of values from the instruction stream, but performs no action.
A missingload_local bytecode from the example abovewould be translated as
load_local=33: #@ DROP ; which would consume one byte from the instruc-
tionstream and then discard it.

70

4.3.4 Multiple Interpreters

It is worth pointing out that the GVMT supports multiple primary interpreters in
one VM. It is sometimes useful to have more than one primary interpreter in a
single VM, for example a VM might require a second interpreter for handling
regular expressions. In addition, each primary interpreter can have any number of
secondary interpreters.

4.4 Back-End Tools

The back-end tools take the GAMC produced by the front-end tools as input and
generate a complete VM. The GAMC is usually generated by the GVMT front
endtools, but that isnot anecessity. TheGVMT back-endtoolsgeneratemachine
code via the native C/C++ compiler, currently GCC, and a JIT-compiler library,
currently LLVM.

4.4.1 TheGVMT Assembler

The GVMT assembler, GVMTAS, translates GVMT abstract machine code to na-
tiveobject files. It is called an ‘assembler’ as it converts low-level code to native
code, but is rather more complex than most assemblers. GVMTAS uses the native
C compiler to generate machine code.

Theseemingly redundant translation of GVMT abstract machine code, which was
created from C code, back to C codeisnecessary for two reasons. Thefirst reason
is to ensure that garbage collectionissues, such as stack and heap layout, aredealt
with correctly. The secondis to enable the the interpreter generator and compiler
generator to share a common low-level bytecodespecification.

Translation to C involves stack erasure and handling of the interpreter-level in-
struction pointer, datastack andframepointer. It also involvesinsertion of codeto
assist garbage collectionand to perform non-local jumps. SincetheGVMT treats
interpreters as special objects, GVMTAS also generates the actual interpreter exe-
cutable using a similar process. At the real-machine level, generated interpreters
are stand-alone functions like any other. The translation processis described in
moredetail i n Section 4.5.

4.4.2 TheGVMT Compiler Generator

The GVMT compiler generator, GVMTCC, generates a JIT compiler from an in-
terpreter definition. The input to GVMTCC is an interpreter definition in GAMC

71

GVMT-generated Back-end

LLVM Code Generator

Bytecode

Annotated
Bytecode

 Initial Translation

Bytecode

 High-level
optimisations

LLVM IR

 GVMT-generated
Translation

LLVM IR

Low-level
optimisations

Machine code

 Machine code
generation

Figure4.4: TheGVMT-built Compiler

form. In other words, the input to GVMTCC is theoutput from GVMTIC.

Formally, GVMTCC takes an interpreter definition d and produces a compiler cd,
that when given a list of bytecodes b, produces a function fdb. Executing fdb is
equivalent to interpreting the list of bytecodes b with the interpreter id generated
by GVMTAS from thesame interpreter definitiond.

gvmtcc(d)→ cd Build time
cd(b)→ fdb Compile time
fdb(_)≡ id(b,_) Execution time

Figure 4.5 shows this graphically. In the figure, the generated compiler is both
data and a process. It is data as it is the output of GVMTCCİt is also a process
which compilesbytecode.

The simplest way to compile asequenceof bytecodes, each of which consists of
a list of abstract machine instructions, would be to first concatenate those abstract
machine instructions, then translate the resulting (very long) list of abstract ma-
chine instructions, instruction byinstruction, to nativemachine code. Thiswould
result in a compiler that was doubly inefficient, being both slow and producing
slow machine code. The problem with this naïve approach is that the generated
code has to do lots of work that could have been be done during compilation, or
eliminated all together at build time.

An obviousway to improvethisisto usestandard compiler techniquesto optimise

72

GAMC GVMTCC

Bytecode Compiler
Machine

 Code

Process

Data

Figure4.5: TheGVMT Compiler Generator

either the abstract machine code or some equivalent, before generating machine
code. GVMTCC generated compilers use LLVM[50] to perform machine gen-
eration. Rather than generate code to convert individual GAMC instructions to
LLVM form, GVMTCC usespartial evaluationtechniquesto generate codethat can
generate LLVM intermediate representation directly, bytecode at a time, without
passing throughtheGAMC representation. LLVM can then dofurther analysisat
runtimebefore generatingmachine code.

An important step when translating from stack-based code to three-addressform
is stack erasure. GVMTCC does intra-bytecodestack erasure at build time and the
GVMTCC generated compiler does inter-bytecodestack erasure at compile time.

AlthoughGVMTCC iscurrently reliant onLLVM[50] to doitsfinal machine-code
generation, other options such as using libJIT or a custom-back end arepossible.

4.5 Translating GVMT Abstract Machine Code to
Real MachineCode

In order to create VMs that perform well , the abstract machine must be mapped
efficiently onto thehardware. Mapping theGVMT abstract machineto areal ma-
chine primarily involves converting the abstract machine code into real machine
codevia either thenativeC compiler or aJIT-compiler library, currently LLVM.

4.5.1 Stack Erasure

Thefirst stagein transformingtheGVMT abstract machine codeinto real machine
code is to eliminate as much stack traffic as possible by converting the code to
three addressform. For example, thesequence:

73

TLOAD_I4(0) TLOAD_I4(1) ADD_I4 TSTORE_I4 (2)

can be converted to the-three addressform:

t 2 = t 0 + t 1 ;

Not all stack traffic can be eliminated; thestack isused for parameter passingand
thememory in thestack can be accessed directly by theVM developer. Therefore
an actual stack must exist. For example, thesequence:

TLOAD_I4(0) MUL_I4 TSTORE_I4 (2)

cannot be converted directly to three address form, as there are insufficient
operands available for the MUL_I4 instruction. An explicit pop from the mem-
ory stack must be inserted. Theresultingcode is:

s0 = stack_pop () ;
t 2 = s0 + t 0 ;

Similarly, stack pushesare sometimesrequired. Thesequence:

TLOAD_I4(0) TLOAD_I4(1) ADD_I4

must push thefinal value to thestack. The resultingcode is:

s0 = t 0 + t 1 ;
st ack _ p ush (s0) ;

The stack is implemented simply with a dedicated region of memory and a stack
pointer. There is one stack pointer, SP, per thread, and it is used frequently, so
ideally it should bekept in a register.

Translating to C Code

With the exception of the JIT compiler output, all GVMT abstract machine code
is translated to machine code via C. For efficiency reasons some of the generated
code may be tailored to the specific architecture and compiler, but it i s generally
portable.

Translation of most instructionsthat operateonthestack ispreceded bystack era-
sureto producethree addresscode. Thisthree addresscode can then be emitted as
a series of C statements. Almost all arithmetic and logical operators map directly
to theC equivalent, but some careneedsto taken with signed and unsigned values.
For example, the RSH_I4 instruction performs a signed arithmetic right shift, but
the C standard does not state whether the operator >> is arithmetic or logical for
signed values. Therefore RSH_I4 cannot be directly translated as x >> n. For
those architectures which perform logical shifts the followingexpression isused:
((-(x<0))&(~(-1>>n)))|(x>>n)

74

The flow control instructions, HOP and BRANCH, can be encoded as simple goto
statements. Translation of other instructionsdependsonthememory management
subsystem, discussed in thenext section, and onthe implementation of thestacks.

As an example consider the definition of theload_local bytecode from Section
4.3.2.

l oad_ loca l (i n t #index −− GVMT_Object o) {
o = frame−>values [index] ;

}

which translates into theGVMT abstract machine code:

l oad_ loca l =33:
FILE (" i n t e r p r e t e r . vmc") LINE (360) #@ NAME(0 , " index ") TSTORE_I4(0)
LINE (361) TLOAD_I4 (0) 2 LSH_I4 TSTORE_I4(3) LADDR(frame)
PLOAD_R 8 TLOAD_I4 (3) ADD_I4 RLOAD_R NAME(1 , "o ") TSTORE_R(1)
LINE (360) TLOAD_R(1) ;

Sinceload_local is a bytecode, rather than a function, it will be wrapped in a
switch statement as part of the interpreter dispatch loop. Each bytecode is acase
statement, plus thedeclaration of any variables required.

load_local is translated to C as follows (the following code is the actual output
from the assembler, GVMTAS):

1. case _gvmt_opcode_in terpre ter_ load_ loca l :
/∗ Del tas 1 0 1 ∗ / {
2 . GVMT_Object gvmt_r137 ; {
3 . i n t 3 2 _ t index ; GVMT_Object o ; i n t 3 2 _ t gvmt_t3 ; /∗ Mem temps [] ∗ /
4. # l i n e 360 " i n t e r p r e t e r . vmc"
5. index = _gvmt_ip [1] ;
6 . # l i n e 361 " i n t e r p r e t e r . vmc"
7. gvmt_t3 = (index < <2); \
8 . o = (((GVMT_memory∗) (((char ∗) (gvmt_frame . frame))+ (8+ gvmt_t3)))−>R) ;
9 . # l i n e 360 " i n t e r p r e t e r . vmc"
10. gvmt_r137 = o ; }
11. _gvmt_ip += 2; gvmt_sp [−1] .o = gvmt_r137 ; gvmt_sp −= 1; } break ;

This isexplained, lineby line, as follows:

Line1 The case statement for dispatching. The comment /* Deltas 1 0 1 */
describes the number of instruction bytes consumed, the number of stack
valuesconsumed and thenumber of stack valuesproduced, respectively.

Line2 Declares avariableused as top of stack.
Line3 Declares the explicitl y named temporary variables.
Line4 Declares the linenumber and file for thedebugging information.
Line5 The translation of #@ TSTORE_I4(0). The variable _gvmt_ip is the in-

struction pointer.

75

Line6 As line4.
Line7 The translation of TLOAD_I4(0) 2 LSH_I4 TSTORE_I4(3)
Line8 The sub-expression LADDR(frame) PLOAD_R translates to

gvmt_frame.frame. The variable gvmt_frame is a C struct holding
the interpreter-scopevariables.

Line9 As line4.
Line10 The translation of TLOAD_R(1). GVMT tries to maintain the top values of

the stack in registers, rather than in memory. The variable gvmt_r137 is
used to hold the top of stack value.

Line11 Adjusts the instruction pointer, _gvmt_ip += 2, saves gvmt_r137 to
the memory stack, gvmt_sp[-1].o = gvmt_r137, and adjusts the stack
pointer, gvmt_sp -= 1.

4.5.2 Memory

GVMT memory is divided into two parts: a garbage-collected part, or heap, and
a user-managed part. For the user-managed part of the memory, the abstract-
machinemodel correspondsdirectly to thememory model of C andmapsdirectly
to thehardware.

Implementing the garbage collected part of memory requires a garbage collector
to be implemented, and the interfacebetween therest of the abstract machine and
the heap to be defined. The GVMT garbage collector is discussed in Section 4.6.
The interfacebetween the generated code and the heap consists of four parts: al-
location, GC safe-points, barriers and identification of pointers into theheap. For
bump-pointer allocators, discussed in Section 2.3.1, the fast allocation path is in-
lined into the code andtheslower fallback implemented with a call to thegarbage
collector. Both GVMTAS and GVMTCC perform memory-management improve-
ments, such as removing redundant stores during object initialisation, discussed
in Section 4.6.5, and inlining of writebarriers, discussed in Section 4.6.2.

GC safe-points are implemented as a test of a global variable to see if garbage
collection is pending. If it i s, then a call to the garbage-collector is made. All
generated code conforms to the same convention for layout of frames in the con-
trol stack, in order to ensure that the garbage collector can correctly identify all
pointers into theheap.

4.5.3 TheControl Stack

The control stack consists of values that are not garbage-collected (integers,
floating-point values and user-managed pointers) and references to garbage-
collected valueswhich need to bescanned during garbage collection. The control
stack is thus implemented as a singly linked list of blocks of references inter-
spersed with non-references and whatever bookkeeping values the nativeABI re-

76

quires. The first node in the linked list is the current frame, and is pointed to by a
thread-local frame-pointer.

This approach, and how to implement it in automatically-generated C code, is
described in more detail by Henderson [36]. When implemented naïvely, this
can result in excessive memory traffic. The number of explicit memory accesses
required can bereduced by using livenessanalysis; if areferenceisnot live across
a GC safe point, it can be ignored. Jung et al. [48] describe the use of this
technique in aJava-to-C compiler.

An alternative approach would be to record the offset information for each refer-
encein the control-stack framein atable. Althoughthiswould probably befaster,
it i s impossible in portable C or with LLVM. The cost of maintaining the linked
list does not seem to be aproblem.

4.5.4 Handling theStack Pointer and FramePointer

Since the GVMT frame-pointer can be synthesised cheaply anywhere that the C
struct implementing the topmost frame is in scope, the only time that the GVMT
frame-pointer needs to be made explicit i s when calli ng a procedure, so that the
newly created frame can be linked into the control stack. The frame pointer, FP,
can besynthesised by theC code:

FP = &gvmt_fr ame ;

wheregvmt_frame is theC struct for the control-stack frame. This translates into
asinglemachine instruction:

FP = %f p _r eg i st er + f i x ed _ of f set

The stack pointer, SP, is required throughout the program and may be modified
across calls. However, its exact management can be left to the C compiler or
LLVM, provided that its value is made explicit at both call and return sites. This
suggests the followingstrategy for callsand returns:

At call sites: passFPandSPin registers. Passthetop-of-stack value(s) in registers
if the architecture allows it. The x86 architecture only allows two parameters to
bepassed in registers, so theGVMT stack must bepushed to memory at call sites.

At return sites: If the machine ABI supports two return registers then return the
function result in one and SPin the other. If the machine ABI supports only one
return register, li ke thex86, then return theSPin aregister and thefunctionresult
on thestack.

77

4.5.5 TheStateStack and Execution Control

In order to save and resume the execution state of the abstract machine it is nec-
essary to save not only the data stack pointer SP, but also the state of the control
stack and the current point of execution. The current point of execution includes
both the interpreter’s instruction pointer and thehardware instruction pointer.

This requires saving the state of the real machine, using something akin to C’s
setjump-longjump mechanism. For the x86 implementation, a custom function
for savingstate (setjump) and restoring state (longjump) were written in assem-
bler. Althoughthis is not portable, it i s fewer than 20 lines of assembler and
should be easy to adapt to other architectures.

4.6 Memory Management in theGVMT

The GVMT heap organisation is designed to support garbage collection without
dictating the garbage collection algorithm. Whilst it i s impossible to predict all
requirements, generalisations can be made. As discussed in Section 2.3.7, the
following requirements are postulated as likely for most, if not all , dynamic lan-
guages:

• Allocation is frequent, with many objects dying young(the weak genera-
tional hypothesisholds).

• The sizeof heap may vary widely at runtime as the same VM may be used
for running both small scriptsand sizeable applications.

• In order to allow the VM to be embedded or to use pre-existing libraries,
objects may need to be ‘pinned’ , that is, it may be required of the garbage
collector that it does not move certain objects.

It should also be noted that the GVMT heap organisation exists to help create
GVMT memory managers. The GVMT abstract machine model is completely
independent of theheap organisation. An entirely new heap organisationcould be
used without affecting the other components of the toolkit, with the exception of
the linker.

4.6.1 TheThree Levelsof Memory Hierarchy

The GVMT heap is organised in a hierarchical fashion. This organisation allows
easy resizing of the different regions of the heap, and allows chunks of memory
to be transferred between different logical areas without physically movingthem.

78

Card Card Card CardCardCardCard Card

Card Card Card CardCardCardCard Card

Card Card Card CardCardCardCard Card

Card Card Card CardCardCardCard Card

Card Card Card CardCardCardCard Card

Card Card Card CardCardCardCard Card

Card Card Card CardCardCardCard Card

Header Block

Figure4.6: A Memory ZoneConsisting of Eight Blocks

There are three components in the GVMT memory hierarchy: zones, blocks and
cards. Zonesare composed of blocks, which are composed of cards.

The GVMT heap organisation extends the BIBOP and page-based organisations
discussed in Section 2.3.6. The extra level (Zone) above the page (or Block) is
added so that informationabout ablock can bestored outsideof theblock without
requiring a global table. It also allows better separation of garbage collector data
structures from theheap objects.

Zones are theunits of memory used by GVMT to interact with the operating sys-
tem. Blocksarethe chunksof memory that arepassed between thevariouscompo-
nents of the garbage collector. Cards are used for finer-grained operations, such
as finding inter-generational pointers and for pinning. Figure 4.6 shows a zone
of eight blocks, each containing eight cards. The first block is used as a header,
rather than containing cards. A real zone would contain more than eight blocks,
each containingmore than eight cards.

All componentsare aligned to afixed power of two. Additionally thesizeof cards
and blocks match their alignment; the size of a zone must be a multiple of its
alignment. Althoughthe sizes of cards, blocks and zones can be varied across
implementationsthey must, for performancereasons, bedetermined at build time.

Addresses and Indices of Memory Chunks

This insistenceon power of two alignment allowsa number of important garbage
collectionfeatures to beimplemented efficiently onafragmented heap. The zone,
block or card containingany word in memory can befoundextremely easily using
a single bitwise operation; no memory accessis required. Similarly the index of
any card within ablock or of any block within a zone can be also be calculated in

79

a coupleof instructions, with nomemory access.

Consider a chunk of memory with a size and alignment of 2n bytes, and an arbi-
trary addressa of widthW bits. The addressof thestart of the chunkcontaininga
is themost significant W−n bitsof a. Theoffset of a within that chunkistheleast
significant n bits. This can be readily extended to finding the index of the chunk
of size 2m containing a within the enclosing chunk of size 2n provided m < n.
The index of the smaller chunk is the least significant n bits right shifted by m,
evaluated in C as(a & K) >> m whereK = (1<<n)-1.

Zones

All memory is acquired from the operating system as zones. Zones are the only
memory entity whose size may differ from its alignment. Zones whose size is
larger than their alignment are required for handling very largeobjects.

The first one or two blocks of a zone are used as header blocks. These are not
usable for memory allocation as they provide spacefor the card-marking table,
pinning bitmap and, if required, for object-marking bitmaps.

Blocks

Blocks are the most important level in the hierarchy. They are the chunks of
memory handed to thread-local allocators by the global allocator, and can serve
as the larger region for a mark-regioncollector.

Blocks are the units of memory that can be transferred between logical spaces4;
each block belongs to exactly one space. All blocks, except header blocks, are
composed wholly of cards, without any additional space. Since they can be vir-
tually ‘moved’ without being physically moved, they are also useful for support-
ing pinning in a moving collector. Sincepinned objects cannot be moved, when
‘copying’ a pinned object, theblock containing theobject is ‘virtually copied’ by
transferring ownership of theblock to thetarget space. Thespaceto which ablock
belongs is unrelated to the zone in which it is physically located.

Cards

Card are the lowest level of the hierarchy. Cards are used for inter-generational
pointer recording[71] and for mark-region collectors[17]. Cards are fairly unim-
portant compared with blocks and zones; only their size is of interest as this de-

4The term ‘space’ isgenerally used in garbage-collectionliterature to refer to an areawhich is
logically rather than physically distinct.

80

Figure4.7: Addressword (most significant bit to the left)

terminesthe amount of spacerequired in theheader blocksfor internal datastruc-
tures.

Sizes and Alignments

All alignments, whether for cards, blocksor zones, arepowersof two. Thismeans
that the layout of a zone can bedescribed by threeintegers: Log2CardSize(LCS),
Log2BlockSize (LBS) and Log2ZoneAlignment (LZS). Zones larger than their
alignment are only used for very large objects and are not divided into blocks,
but docontain aheader. Thesizeof most zones is equal to the zone alignment.

This means that for the GVMT heap layout, the address of the Zone contain-
ing address a is a & (-(1<<LZS)) and the index of a Line within a Block is
(a & ((1<<LBS)-1)) >> LCS. This is ill ustrated in Figure4.7.

For example, suppose the chunk sizes were chosen so that LCS = 8, LBS = 16
and LZS = 24 for a 32 bit address space. For an address0xA1B2C3D4 the Zone
addresswould be0xA1000000, theBlock addresswould be0xA1B20000andthe
Card addresswould be 0xA1B2C300. The index of the Block within the Zone
would be 0xB2, the index of the Card within the Block would be 0xC3, and the
index of theCard within theZonewould be0xB2C3.

Header Blocks

The number of header blocks depends on the sizeof the data structures required
by the garbage-collection algorithm used, so the following is an example only.
The garbage collector used for the HotPy VM is a generational collector, with
an Immix[17] mature-space collector and support for pinning. As a generational
collector, a card-marking table of one byte per card is required. As a marking
collector, theImmix collector requiresabitmap of onebit per word, aswell asone
byte per card and one word per block for internal book-keeping. Finally, pinning
requires one bit per card. The card-marking table should start at the beginning
of the zone; seeSection 4.6.2 for the reasons. The alignment of the other data
structures is less performance criti cal and they are laid out to minimise space
usage.

81

Choosing the Sizes

As long as there is sufficient room for the necessary data-structures, the card,
block and zonesizes should be chosen to maximiseperformance.

Cards can serve both as lines for a mark-region collector and as the cards in a
card-markingcollector. In the caseof card-marking, a128 byte card sizeseemsto
give the best trade-off between accuracy and spaceoverhead. Empirical evidence
suggests that 128 bytes is also the best size for lines in the Immix mark-region
collector. The block size should be amultiple of the virtual memory page size,
but this is easy to achieve as virtual-memory pages are usually smaller than the
ideal block size. Since the card-marking table is heavily used in a generational
system, it may help performance if its size is a multiple of the virtual-memory
page size. The size of the card-marking table is the number of cards per zone,
(ZoneSize/Card Size). For example, pagesare4096 bytes in thex86architecture,
so (ZoneSize/CardSize)≥ 4096⇒ LZS−LCS≥ 12.

The Current GVMT Zone Implementation

Currently in the GVMT, cards are 128(27) bytes and blocks are 32k (215) bytes.
Zone alignment is512k(219) bytes. Zonesizescan be any integral multipleof the
alignment. Thesevaluescan bereadily changed byrebuildingtheGVMT. For the
generational collector with pinning about 18 kbytes per zone (1.8%) are wasted
due to the alignment requirements.

Objects Larger than a Zone

Objects larger than the zone alignment need special handling. In order to accom-
modate one of these objects, a zone whose size is larger than its alignment is
required. This super-sized zone will still have a card-marking table, but no pin-
ning map is required. Additionally, sinceobjects span many blocks, allocation is
not done via blocks, so no per-block data is required. Therefore, the object can
start immediately after the card-marking table.

The fact that an object can be larger than the zone alignment has implications for
card-marking. If the zone containingthe card-marking tablewere calculated from
the addressbeing written to, the byte to be marked could be in the middle of an
object. Therefore, the zone containing the card-mark must be the zone containing
the start of the object being written into, regardlessof whether the card-index is
determined by the object or the slot written to. There are two corollaries of this:
the card-marking table is no larger for a super-sized zone than for a normal zone,
regardlessof theobject size, and for an object spanningN zones, each card-mark
can refer to N different cards.

82

4.6.2 Write-Barr iers

As discussed above, the GVMT memory layout includes card-marking tables.
Card marking is fast as the zone address can be calculated with a single and
instruction and the card index computed with two operations, and and shift.
Thus the calculation of the mark address is only four instructions and, unlike a
card-marking scheme with a single global table, no register or global variable is
required to hold the table address.

Cardscaneither bemarkedaccordingto theobject written to, or theslot written to.
Sincethesizeof an object may exceed the alignment of a zone, the card-marking
table is always determined by the object address. The card index may, however,
be determined by the object or the field written to. Whether cards are marked
by object or by field depends on the garbage collector in use; seeAlgorithms 4.1
and 4.2.

In the following algorithms the & operator is the bitwise-and operator, and
u
≫ is

theunsigned right-shift operator. The card-marking table is aligned with the start
of the zone.

Algor ithm 4.1 Card-marking by object address

zone← object&(−2LZS)

card_index← (object&(2LZS−1))
u
≫ LCS

zone[card_index] = 1

Marking by object can beimplemented in fiveinstructionsfor thex86architecture
(object addressin register %edx):

movl %edx, %eax
andl $1048575, %edx
andl $-1048576, %eax
shrl $7, %edx
movb $1, (%eax,%edx)

Algor ithm 4.2 Card-marking byslot address

zone← object&(−2LZS)
slot = object +of f set

card_index← (slot&(2LZS−1))
u
≫ LCS

zone[card_index] = 1

Marking byfield can be implemented in six instructions for the x86 architecture
(object addressin register %edx, offset in register %ecx):

movl %edx, %eax

83

addl %ecx, %edx
andl $1048575, %edx
andl $-1048576, %eax
shrl $7, %edx
movb $1, (%eax,%edx)

Algor ithm 4.3 Conventional Card-marking

card_index← object
u
≫ LCS

card_mark_table[card_index] = 1

By way of comparisonthewritebarrier used in theSelf VM[22] for card-marking
is listed in Algorithm 4.3 Althoughit might seem that the overhead for using
a fragmented heap is excessive, taking five or size instructions rather than the
standard two or three, the standard method needs to find the addressof the card-
mark table. Thiseither requiresadedicated register (which isnot practical for the
x86) or it must be read from memory:

movl card_mark_table, %eax
shrl $7, %edx
movb $1, (%eax,%edx)

The memory-read instruction is likely to cost more than threeALU instructions,
meaning that the GVMT write-barrier may be faster than the standard sequence.
Since the overhead of card-marking is usually in the order of 1% of optimised
compiled code[16], it doesnot really matter whether theGVMT write-barrier isa
bit faster, or abit slower.

4.6.3 Allocation

The motivation for the hierarchical memory organisation is to allow copying col-
lection to co-exist with object-pinning, and the main reason that copying collec-
tion is desirable is that it allows fast object allocation.

Bump-Pointer Allocation

The fastest way to allocate new objects is simply to increment (or decrement)
a pointer. Obviously some sort of check is required to ensure that the pointer
does not exceed the limits of the available space. Algorithm 4.4 shows the naïve
algorithm; f reeis thepointer to thebeginning of freememory.

In order to support concurrent allocation, the free-pointer and the limit-pointer
must be thread-local. This means either that they are relatively expensive to read
and writeor that they requirededicated registers.

84

Algor ithm 4.4 NaïveBump-pointer Allocation
if size+ f ree< limit_pointer then

result = f ree
f ree= f ree+size

else
result = call _all ocator(size)

end if

Thepowers-of-two nature of the GVMT heap architecture provides a way of dis-
pensing with the limit-pointer. Memory is handed to the per-thread allocators in
blocksof size2LBS. Thismeans that limit_pointer = roundup(f ree,2LBS).

Since roundup(x,2y) = x+ ((−x)&(2y− 1)), the limit test can be rewritten as
f ree+ size < f ree+ ((− f ree)&(2LBS− 1)). This in turn simplifies to size <
((− f ree)&(2LBS−1)). The improved allocationcode is shown in Algorithm 4.5.

Algor ithm 4.5 Improved Bump-pointer Allocation

if size
u
<− f ree&(2LZS−1) then

result = f ree
f ree= f ree+size

else
result = call _all ocator(size)

end if

4.6.4 TheGVMT Generational Pinning Collector

Asdiscussed inSection 2.3.7, it i suseful for adynamic languagegarbage collector
to begenerational andtosupport pinning. AlthoughtheGVMT supportsanumber
of collectors, themost advanced is thedefault collector, theGenerational-Pinning
Collector.

The GVMT generational-pinning collector is designed to provide fast allocation
and fast collection combined with the abilit y to pin objects. The collector is a
generational collector, with two generations: a copying nursery and an Immix
maturespace. It also containsapinned space, but this isnot aseparategeneration
and is collected at the same time as the nursery. The Immix algorithm supports
pinningand needsno modification for pinningmatureobjects.

Pinning of nursery objects is done as follows. When an object is pinned, the
object and its enclosing card(s) are marked as pinned. If the enclosing block
is not already marked as pinned it is transferred from the nursery to the pinned
space. During the next minor collection, blocks in the pinned space are scanned
andmarked, rather than copied. All blocksin thepinned space arethen transferred
to thematurespace, thus‘virtually copying’ thepinned object to thematurespace.

85

After subsequent major collections, any block with no pinned cards remaining is
unmarked as pinned and can beused normally.

Overall , the hierarchical block approach gives increased flexibilit y in the imple-
mentation of garbage-collectionalgorithms, at littl eor nocost.

4.6.5 Optimising Memory Allocation in theGVMT

Althoughthereisawealth of publicationson garbage collection, themechanicsof
allocationarebarely mentioned. Memory allocationfor a toolkit i smore complex
than for asingleVM and merits somediscussion.

When a pieceof memory is allocated by the allocator, it must be in a safe state
for scanning or garbage collection. Thismeans that it must contain only valid ref-
erences. Therefore the allocator must ensure that the allocated memory contains
only valid databefore it is returned to theuser program.

For statically-typed languagesthat ensurethat all fieldsof an object areinitialised,
there is no need for the allocator to zero the memory, but for a toolkit, which
knows very littl e about the VM, the memory must be made safe. This leads to
a number of inefficiencies. Firstly most of the fields of a newly allocated object
will be initialised anyway, resulting in redundant code, but worse still , all those
initialisations are writes into an object, so they will i ncur a write-barrier penalty
despite the fact that nowritebarriers are required for newly allocated objects.

The GVMT performs some analysis to remove most of this redundant work. Al-
location is split i nto two: the allocation, andzeroingthememory. TheGC_MALLOC
instruction is split i nto code to do the allocation, and a __ZERO_MEMORY instruc-
tion. Subsequent analysisconservatively determineswhich instructionsoverwrite
which fields in the object. The __ZERO_MEMORY instruction is then removed and
replaced with a minimal sequences of writes, to zero any field not explicitl y ini-
tialised. All i nitialising writes are replaced with equivalents that do not contain
a write barrier. The current implementation is quite conservative, so a special in-
trinsic function, gvmt_fully_initialised(), isprovided for theVM developer
to inform theGVMT that an object hasbeen fully initialised.

4.7 Locks

Althoughthe GVMT is designed to support concurrency and is targeted at dy-
namic languages, many dynamic languages were not designed with concurrency
in mind. The two most popular dynamic languages, Python and Ruby, have
evolved in a single-threaded environment, and have features that are awkward
to support in a multi -threaded environment. For example, Pythonlist operations,

86

Figure4.8: Lock representations

such as appending to a list, are implicitl y atomic (uninterruptable). Python pro-
grammers are likely to be surprised by non-atomic behaviour from such opera-
tions, so locking is required for many common operations.

In order to support this high level of synchronisation the GVMT provides a fast,
lightweight mutex5 for the common case where locking operations are unlikely
to be contended. For locks that are likely to be contended, the operating system
mutex may offer better performance.

The GVMT lock is based onmutexes designed for the JVM, which also requires
fast, lightweight mutexes. The GVMT lock is similar in design to ‘ thin-locks’[7]
and ‘meta-locks’[2], both developed for the JVM. Unlike the JVM case, the lock
is not embedded into the object header (in the GVMT there is no object header),
nor isthere arequirement, peculiar to Java, that all objectscan beused asmutexes.
Consequently, a GVMT lock takes a full word of memory. A word is assumed to
be 32 bits for the remainder of this discussion, although 64 bit machines would
use64 bit locks.

The word is broken into two parts: the most significant 30 bits, and the least sig-
nificant two bits. Theleast significant bits represent four states: unlocked, locked,
contended and busy. SeeFigure4.8. In theunlocked state theleast significant bits
are 01 and the other 30 bits are all 0. In the locked state the least significant bits
are 10 and the other bits hold the thread id and the lock count. In the busy state
the least significant bits are 11 and the other 30 bits are in transition. Finally, in
the contended state the full word is a pointer to a heavyweight lock, so the least
significant bitsare 00.

To lock an unlocked GVMT lock, a single compare-and-swap operation is re-
quired, swapping the unlocked value with the thread-specific locked value. Un-
locking is equally fast, simply doing the swap in reverse. There are four other
cases for locking: recursive locking (relocking a lock already locked by the same
thread) which simply incrementsthelock-count atomically; contended locking on

5mutual exclusion lock

87

Unlocked Lockedlock

unlock
 (count = 0)

lock
(recursive)

unlock
(count > 0)

Making HW lock
(busy)

lock
(contended)

Add waiting thread
(busy)

contended

Unlocking HW lock
(busy)

no waiting threads

waiting threads
lock

unlock

Figure4.9: Lock states

a previously uncontended lock; contended locking onan already contended lock;
and locking a busy lock. Locking a busy lock involves spinning until the lock is
no longer busy and then locking.

Acquiringa contended lock isamulti -stageprocess. A contended lock isapointer
to a heavyweight lock, composed of an operating-system mutex and condition
variable. Locking the heavyweight lock is done by waiting onthe condition vari-
able before attempting to lock the operating-system mutex. In order to be able to
use the heavyweight lock, the GVMT lock must transition from the locked state
to the contended state. This is done via the busy state. When a thread wishes
to lock a GVMT lock which is locked, but not yet contended, it must atomically
change the state to busy, then allocate the heavyweight lock before atomically
transitioning to the contended state.

In order to prevent heavyweight locks from being freed while other threads are
waiting onthem, modifications to the count of waiting threads can be made only
with the lock state as busy. SeeFigure 4.9 for the state transition diagram; oval
nodes arestablestates, rectangular nodesare transition(busy) states.

4.8 Concurrency and GarbageCollection

SincetheGVMT supportsconcurrency and offersgarbage collection, thegarbage
collector must work correctly in a concurrent environment. Thememory manage-
ment cycle can be viewed as having threeparts: allocation, synchronisation and
collection.

88

4.8.1 Concurrent Allocation

The current GVMT garbage collector is a generational collector (see Sec-
tion 2.3.4). Assuming that the vast majority of allocations are of small objects,
only allocation from the nursery need be concurrent. Larger objects are allocated
by asingle allocator protected with aglobal lock.

Each thread of execution has its own allocator. Each allocator can then allocate
objects without any synchronisation being required. When an allocator runs out
of memory, it acquires anew block from theglobal pool.

4.8.2 Synchronisation

Since the GVMT garbage collector is a stop-the-world collector, all mutator
threadsmust bestopped beforethegarbage collectioncan start. When an allocator
fails to acquire anew block from the global pool, it signals that garbage collec-
tion is to occur. It does this by setting a global flag, gvmt_collector_waiting,
reducing the running-thread count by one, and waiting for completion of garbage
collection. When the running-thread count reaches zero, the collector may start.
All running-thread count modifications are performed atomically. Whenever a
thread encounters a GC safe point (a GC_SAFE instruction) it tests to see if the
gvmt_collector_waiting flag has been set, and if it has, it decrements the
running-thread count and waits for thegarbage collector to complete.

There is a problem with this simple running-thread count scheme, as it prevents
garbage collection from happening if any thread is performing some slow opera-
tion, such as waiting for an internet packet. Consequently, it must be possible to
perform garbage collection when threads are executing native code. When native
code is entered, the running-thread count must be decremented. It is then incre-
mented when the thread returns from the foreign call . However, when garbage
collection is happening, threads must be halted should they return from native
code.

To prevent a thread restarting during garbage collection, thefollowingconvention
is observed: in order to modify the running-thread count from zero, a dedicated
mutex must be acquired. Thegarbage collector holdsthismutex when it iscollect-
ing, preventing any thread from restarting. Finally, to prevent expensive locking
and unlocking in single-threaded code, a ‘dummy’ thread is created to increase
the running-thread count by one. The first thread to request garbage collection
‘stops’ this thread, which is restarted by the garbage collector immediately after
completion of garbage collection.

89

4.8.3 Concurrency within theCollector

Currently the collector is single-threaded. Concurrency could besupported in two
ways, either by running some of the collection concurrently with the program,
or by using several concurrent threads to do the collection. There are numer-
ous approaches to concurrent garbage collection, many of them deriving from
the Mostly-Concurrent algorithm of Printezis and Detlefs[61]. Marlow et al.[53]
describethetechniquesused to implement aparallel garbage collector in theGlas-
gow Haskell Compiler.

4.9 Compar ison of PyPy and GVMT

PyPy and the GVMT have a common purpose, simpli fying the creation of a VM
for dynamic languages. Both PyPy and the GVMT provide garbage collection
and can automatically generate aJIT compiler, but they differ in choiceof input
languages, level of automation, complexity, and design philosophy.

Thedesign of PyPy isbased onthepremisethat implementingaVM in avery high
level language, namely Python, will simpli fy the implementation, with attendant
benefits in flexibilit y and maintainabilit y. This is doneby pushingas much of the
complexity as possible into the tools, in order to hide it from thedeveloper. PyPy
aims to minimise the cost of implementing the VM, at the cost of increasing the
complexity of the tool set. Thedesign of theGVMT considers the effort required
to implement both the toolkit and theVM. The total cost, both of theVM and the
toolkit, should be minimised. The GVMT design assumes that the toolkit will be
used for relatively few VMs, whereas thePyPy designassumes that the toolswill
beused for many different VM implementations.

The input language to PyPy is RPython, a dialect of Python. GVMT takes C as
its input language, enhanced with a number of built -in functions to accessimpor-
tant abstract-machine features such as the stack and garbage collector. Although
RPython is undoubtedly more expressive than C, even C enhanced with garbage
collection and exception handling, it may not be that much more expressive in a
VM implementation. A VM is an inherently low-level system.

The choiceof input language is more than a cosmetic difference as it affects the
complexity of thetool set toalargedegree. ConvertingCtoabstract machine-code
is a straightforward task involving a modified portable C compiler. Converting
from RPythonto alow-level form involvesa complex mixtureof partial evaluation
and whole-program type inference[66].

PyPy and GVMT also differ in their approach to JIT-compiler generation. Both
tool setsare capableof generatingaJIT compiler from an interpreter specification.
PyPy producesatrace-based compiler that performs several optimisationstailored
to dynamic languages, such as specialisation and escape analysis. The GVMT

90

compiler performsconventional compiler optimisationsonly. ThePyPy generated
compiler is undoubtedly the more powerful of the two in the context of dynamic
languages. However, by optimising at the bytecode level, and using language-
specific optimisationsthat areunavailabletoan automatically-generatedcompiler,
a more powerful optimisation system can be built with the GVMT. Chapter 5
describes how this can be done and Chapter 6 shows that the performanceof the
two approaches isbroadly comparable.

TheGVMT has two advantagesover PyPy. It supportsmultiple threadsof execu-
tionand has abetter method of supporting integrationwith exist C libraries.

Support for multiple threads of execution was designed into the GVMT. It pro-
vides lightweight locks, which can be embedded in heap objects. Its memory al-
locator ismulti -threaded, andalthoughthe collector is single-threaded, it i s thread
safe. AlthoughPyPy hasaglobal interpreter lock, thisisnot an inherent limitation
in thedesign of PyPy, but of itscurrent implementation.

The GVMT supports integration with existing C libraries in two ways. The first
is almost incidental; thanks to the comparatively low level of the GVMT abstract
machine, it mapsto theC executionmodel quite cleanly. Thesecondisdeliberate;
the garbage collector supports pinning. This allows heap allocated objects to be
passed safely to C library code, which can execute concurrently with the garbage
collector.

4.10 TheGVMT SchemeExample Implementation

The GVMT distribution includes an example virtual machine, GVMT-Scheme.
GVMT-Schemewas designed and implemented with the following goals:

• Provide a clear implementation that ill ustrateshow to use theGVMT.
• Be implementable in about two weeks6

• Implement enough of Scheme to provide ameaningful performance com-
parison with other Scheme implementations.

GVMT-Schemedoesnot providethefull Schemenumber tower, just integersand
floating-point numbers. However, it does have full runtime type checking, which
isone of the two main overheads that a Scheme implementationmust handle; the
other being garbage collection. SinceGVMT-schemeisnot a full i mplementation
it is unfair to compare its code size to that of other Schemes; GVMT-Scheme is
under 4000 lines of code. GVMT-Scheme contains a precise garbage collector
andaJIT compiler, both provided by theGVMT.

6The implementationactually took just under threeweeks.

91

4.10.1 Implementation Details

All Schemesexecutewhat iscalled aread-eval-print loop. In GVMT-Scheme, the
‘read’ part is implemented by parsing thesource code to form an Abstract Syntax
Tree, translatingtheAST to bytecode, and performingsimpletail -recursionelimi-
nation onthebytecode. The ‘eval’ part of the read-eval-print loopis implemented
by executing the bytecodes. The first time asequenceof bytecodes is evaluated,
its bytecodes are interpreted. The secondtime asequenceof bytecodes is evalu-
ated, the bytecodes are optimised and JIT compiled. Subsequent evaluations are
performed by executing thegenerated machine code.

Integers are tagged, but all other data types are boxed. Frames are allocated on
theheap, in order to support closures.

Optimisation in GVMT-Scheme is performed in five passes, four bytecode-to-
bytecodeoptimisation passes generated by theGVMT secondary interpreter gen-
erator, GVMTXC, followed by JIT compiler generated by GVMT compiler gener-
ator. Thebytecode-to-bytecodeoptimisation passesare:

• Determine if it i spossible to remove frames for thisclosure
• Remove frames if possible.
• Jump threading; remove jumpsto jumpsand jumpsto returns.
• Load-store elimination; remove dead stores, convert store-load pairs to

copy-storepairs.

Theoptimisersare implemented in lessthan 500linesof code.

4.11 Conclusions

The GVMT is designed around a stack-based abstract machine that provides
garbage collection. As described in Chapter 3, the use of an abstract machine al-
lows theseparation of thefront-endtools from theback-endtools. Thefront-ends
toolsof theGVMT, theC compiler (GVMTC), theinterpreter generator (GVMTIC),
andthesecondary interpreter generator (GVMTXC), convert source codetoGVMT
abstract machine code, in a way that is largely independent of the target archi-
tecture. The back-end tools, the assembler (GVMTAS), the compiler generator
(GVMTCC) and the GVMT linker, convert the abstract machine code into exe-
cutable code. Theback-endtoolsweredesignedandimplementedseparately from
the front-end tools.

The implementation of the abstract machine, that is the mapping of abstract ma-
chine to real machine, has been performed reasonably efficiently for the x86 ar-
chitecture. It has implemented without using any unusual features of the x86

92

architectures. A new implemention, for a different architecture, should be able to
reusemuch of thedesignandsomeof the codeof thex86 implementation.

As described in Section 2.3.7, dynamic languages require rapid allocation of
memory, for short-lived objects, and the abilit y to pin objects in memory, for
interfacingwith library code. TheGVMT memory management system isable to
meet both these requirementsusinganovel heap layout.

4.11.1 Future Work

Toolkits are, almost by definition, never complete. A wide range of tools and
features could be added to theGVMT.

Onefeature that would beuseful isanew compiler back-end. The current LLVM-
based back end has a large memory footprint and its compilation speed is rather
slow for a just-in-time compiler. Althoughanew compiler back end isunlikely to
produce code that runs as fast as that produced by LLVM, it could be expected to
producethat codemorequickly and use lessmemory.

93

94

Chapter 5

HotPy, A New VM for Python

ThisChapter introducesand discussestheHotPy VM for Python. First, themodel
of execution of the VM is outlined. The design of the VM, particularly its opti-
misation control is discussed. The optimisation stages are then covered, noting
that the optimisers all work as bytecode-to-bytecode translations as advocated in
Chapter 3. An extended example of operation is then given. Finally, HotPy is
compared to similar work.

5.1 In troduction

The HotPy virtual machine is a VM for Python, built using the GVMT. ‘HotPy’
is a recursive acronym for HotPy OptimisingTracing Python. HotPy implements
the 3.x series of the language, rather than the more widely used 2.x series. The
complete source code and some documentation is available from http://code.
google.com/p/hotpy/.

HotPy is largely a ‘proof of concept’ f or a high-performance, dynamic-language
VM which is built using a toolkit. All the features that make Python interesting,
and difficult to implement efficiently, are included: iterators, generators, closures
and the abilit y to manipulate almost any object or classat runtime. Althoughthe
coreVM and objectsare implemented, library support is far from complete.

The design of HotPy is driven by the idea, discussed in Chapter 3, that bytecode
is a good intermediate representation for optimisation. HotPy is thus designed
asahigh-performanceinterpreter foremost. HotPy optimisesfrequently executed
partsof the code, asdomost high-performanceVMs, but continuesto interpret the
optimised bytecodesuntil they becomesufficiently ‘hot’ to beworth compili ngto
machine code. Compilation isperformed by aGVMT-built JIT compiler.

The HotPy VM can thus be classified as a tracing-specialising interpreter, with
a JIT compiler. This means that all optimisations specific to Pythonare handled

95

within the interpreter, leaving theGVMT-built compiler to dolow-level optimisa-
tionsand machine-codegeneration.

5.2 TheHotPy VM M odel

The HotPy VM performs many optimisations in order to achieve good perfor-
mance. So that the optimisations it performs can be understood and analysed,
there must be ameans to describe thestateof theVM.

5.2.1 TheHigh Level Model

TheHotPy VM consistsof asingle, global garbage-collected heap of objects, one
or more GVMT-level threads of execution and one or more HotPy threads. Each
GVMT-level thread executesoneHotPy thread at atime. In theHotPy VM model,
each GVMT-level thread consists of a single referenceto a HotPy thread object
and theGVMT-provided data-stack.

The semantics of HotPy can be defined as if were just a bytecode interpreter,
without compilation. Thebytecode-instruction pointer ismanaged bytheGVMT-
generated components, but it i s visible to the HotPy VM. Allocation of objects
and garbage-collection ismanaged by theGVMT.

5.2.2 Execution

Threads

Each HotPy thread is described by a single thread object. The current state of
executionisdescribed byastack of frame objects, implemented asasingly linked
list.

Before describingan executing thread, it i seasier to describe asuspended thread.
Each frame has a return_ip which points to the next bytecode to be executed
when that frame is the current frame. For each try statement that has been ex-
ecuted and is still i n scope, there exists one exception_handler object. These
exception_handler objects are attached to the relevant frame to form a chain.
SeeFigure5.1

When a thread is executing, the return_ip field of the current frame is ignored;
instead the GVMT handles the instruction pointer, current_ip. A thread is re-
sumed by setting the current_ip to the return_ip of the current frame, then
executing as normal. A thread is suspended by setting thereturn_ip of the cur-
rent frame to thecurrent_ip. Threads cannot besuspended in mid-bytecode.

96

HotPy Frame

(Current Frame)

HotPy Frame

HotPy Frame

HotPy Frame Exception

Handler

Exception

Handler

HotPy Frame

(Start frame)

Thread object

Exception

Handler

Figure5.1: A HotPy Thread

Star ting a Thread

Execution of thread is started by calli ng the py_call function. This sets up the
current thread, pushinganew frame onto the framestack, settingcurrent_ip to
thefirst bytecode in the called functionandstartingexecution.

Bytecodes

Execution of a HotPy thread occurs by the successive execution of individual
bytecodes. Each bytecodetransformsthestateof theVM. A completedescription
of all bytecodes in included in Appendix E.

Calli ng Functions

Thef_call instructionexpects threevalues to be on the data stack: the object to
be called, a tuple of positional parameters and a dictionary of named parameters,
with thedictionary ontop of stack. Thef_call instruction hasvaryingsemantics
depending ontheobject beingcalled.

When the callableobject isaPythonfunction, then execution proceedsasfollows:

• The callable, tuple and dictionary arepopped from thestack.
• A new frame is created and pushed to the frame stack.
• The frame is then initialised using the parameters stored in the tuple and

dictionary.
• Thereturn_ip field of the current frameis set to the addressof theinstruc-

tion following thef_call instruction.

97

• The current_ip is set to the first bytecode in the called function and exe-
cution proceeds.

Figure 5.2 showsthe changes to the framestack.

HotPy Frame C

return_ip

HotPy Frame B

HotPy Frame A

Thread object

Current IP

xxx
call
yyy

Code

(a) Before call

HotPy Frame C

return_ip

HotPy Frame B

HotPy Frame A

Thread object

Current IP

xxx
call
yyy

Code

HotPy Frame D

return_ip

Called

Code

(b) After call

Figure5.2: Call sequence

Calli ng native (C) code

In order to implement Python properly, particularly to support library codewritten
in C, it must bepossibleto call C codefrom Pythonand viceversa. CallstoC code
are effectively opaque to the VM. When calli ng a C function, the parameters are
popped from thestack and passed to the function (this ishandled by theGVMT).

C code may need to call back into Python code. For example, the
dict.__getitem__ methodis implemented in C for speed, but may need to call
the__hash__ method of a classimplemented in Python.

C code calls back into the VM, by calli ng a Python function using the py_call
function. This creates a new HotPy frame, which is pushed to the frame stack,
and calls back into the interpreter to resume execution.

98

5.3 Design of theHotPy VM

5.3.1 Overview

TheHotPy VM isan advanced interpreter first anda compiler second. HotPy per-
forms high-level optimisations as bytecode-to-bytecode transformations. These
high-level optimisations, which are important for performance, are akey part of
the VM design. Low-level optimisations, including compilation of bytecodes to
machine codes, arehandled by theGVMT-generated compiler.

The interpreter is in fact several interpreters in one. There is the main byte-
code interpreter, a tracing variant of the main interpreter, a set of bytecode-to-
bytecode translation stages (which are themselves bytecode interpreters) and a
super-interpreter, which directs the execution of the various interpreters and of
compiled code.

Execution of a program starts in the super-interpreter, which immediately calls
the main bytecode interpreter to commence interpreting the bytecodes. When a
back-edge or a call i s encountered sufficient times, the super-interpreter checks
to see if the code has already been optimised. If optimised code is foundthen
the optimised code is executed, otherwise the tracing interpreter is started. Once
the tracing-interpreter completes, the recorded traceis transformed to optimised
bytecodes.

Tracing and optimisationmay also be triggered when an exit from a traceis exe-
cuted sufficient times. In this case the optimisation passes can use type informa-
tionrecorded at the exit point to generatebetter optimised bytecodes. HotPy uses
tracestitching, as described in Section 2.4.3, to form traces over the working set
of theprogram beingexecuted.

5.3.2 Disconnecting the Two Machine States

The most straightforward implementation of HotPy would be to map the HotPy
VM state directly onto the GVMT abstract machine state. In other words, func-
tioncalls in HotPy would beimplemented with callsat the abstract machinelevel,
andexceptionswould be implemented directly usingtheGVMT exceptionmech-
anism. TheGVMT Schemeimplementationin Section 4.10showsthat thisworks
well and gives reasonably good performance. However, for an advanced optimis-
ingVM likeHotPy, it i s rather limiting.

SinceHotPy isa tracing interpeter it must be ableto executetraces, that is, it must
be ableto executesequencesof codewhosestructureisonly weakly related to that
of theoriginal program. Tracesmay start or end in themiddleof a function, cross
function boundaries, or even end in the middle of a loop. The GVMT abstract

99

machine does not directly support this behaviour, so it is necessary to separate
the HotPy VM state from the GVMT abstract machine state. It also happens that
this separation of states makes the implementation of features such as generators
andclosuresmuch simpler. It isassumed that any inefficienciesresultingfrom the
separation of statescausescan beremoved by later optimisations. Thisappears to
be the case in practice.

In order to separate the GVMT abstract machine state from the HotPy VM state,
it must bepossible to make arbitrary calls in onestatewithout affecting theother.
Similarly, the exceptionstack (try-except blocks) in Pythonshould beunrelated to
the GVMT statestack. This is achieved by implementing theHotPy call stack on
the heap and by implementing exception handlers as objects attached to the cur-
rent frame. Implementing the HotPy stack frames as heap objects makes it much
easier to support generators, closures, debugging, and exception handling. Once
HotPy framesare implemented asheap objects, it i s straightforward to implement
exception handlers for a try-except block as a linked list of handlers attached to
the current frame.

Both trace exits and raising of exceptions are handled using the
gvmt_transfer() function1 which allows values on the data stack to be
preserved. Finally, it i s necessary to ensure that the depths of all the GVMT
stacks remain bounded (and ideally, small) whatever the execution path. The
super-interpreter ensures thiswhilemanaging traceselection andexecution.

Necessary Invar iants

Whilst it i s desirable to completely decouple the state of the HotPy VM and the
GVMT abstract machine, it i s not entirely possible. The problem is that if stack
depths are totally unrelated it would be possible for a loopcontaining calls at the
VM level to create deeper and deeper stack depth at the abstract machine level.
To prevent this, a single invariant is required; at no point during execution may
the abstract machinestack bedeeper than when the currently executingVM frame
was first executed. In other words, a return at theVM level must cause areturn at
the abstract machine level, if the correspondingcall at theVM level caused a call
at the abstract machine level. Also, no loopmay be transformed into recursion.

5.3.3 TheSuper-Interpreter

Thesuper-interpreter isahigh-level interpreter which isconcerned with executing
sequences of bytecodes, rather than individual bytecodes. Its role is to dispatch
the execution of code rather than perform that execution. Execution of bytecodes
is the roleof the interpreter or compiler-generated machine code.

1The gvmt_transfer() function is essentially an exception raising mechanism that, unlike
gvmt_raise(), doesnot restore thedatastack to itsoriginal value.

100

The super-interpreter performs the dispatch by looking up the current VM in-
struction pointer in a cache of traces, implemented as a hashtable. Each thread
of execution has its own trace cache. When a traceis foundin the hashtable, that
traceis executed. If the traceis not found, then the unoptimised code is executed
by thestandard interpreter.

The super-interpreter is also responsible for handling exceptions. When an ex-
ception is raised it is caught in the super-interpreter. The super-interpreter then
dispatches to the appropriatebytecodes for the exception handler.

The flow of control between the super-interpreter and the other interpreters can
happen in both directions. Control can re-enter the super-interpreter when a
tracefinishes or when an exception is raised. The GVMT provides two mech-
anisms for a calleeto passcontrol back to caller: a conventional return, and the
gvmt_transfer() function. In HotPy, the former is used when executionmoves
from optimised traceto another, the latter for exception handling and other cir-
cumstances.

As execution progresses traces are recorded and optimised. Eventually a steady
state should be reached where the vast majority of code executed exists in the
cache of traces, as optimised traces. In this steady state the job of the super-
interpreter is simply to executeoneoptimised trace after another.

Reenterant Super-Interpreter

The super-interpreter is the entry point to Pythoncode from C code. Ideally, the
only entry point would be at the start of the program, but a number of functions
that must be implemented in C can call i nto Python code. Therefore the super-
interpreter must be re-entrant. Since the super-interpreter is implemented on the
GVMT abstract machine, itscall depth doesnot correspondto theHotPy VM call
depth, especially when handling exceptions, which may need to passthroughan
arbitrary number of super-interpreter invocations.

All activation frames must have aknown call depth, both to conform to Python
semanticsand to prevent stack overflow. When thesuper-interpreter is invoked, it
records the current call depth. Whenever the super-interpreter captures an excep-
tion, it checks to seeif the call depth of theframeto beresumed hasadepth that is
lessthan therecorded call depth. If it does then thesuper-interpreter raisesan ex-
ception to passresponsibilit y to thenext outer invocation of thesuper-interpreter.

Figure5.3 showsan example call stack for theHotPy VM. Each call to thesuper-
interpreter corresponds to one or more calls at the VM level. The VM stack is
maintained on the heap. Handling of calls at the VM level is simple enough;
when a call i s made in frame ‘B’ , a new frame ‘A’ is created. Likewise returns
are fairly simple: the top VM frame is discarded, and if the current frame was
the entry frame for the super-interpreter, it returns as well . Exception handling is

101

GVMT Control Stack The Heap

Super−Interpreter

Invocation

Z

Super−Interpreter

Invocation

Y

entry

entry

entry

Super−Interpreter

Invocation

X

(Current)

HotPy Frame

A

(Current Frame)

HotPy Frame

B

HotPy Frame

C

HotPy Frame

D
Exception

Handler

Exception

Handler

HotPy Frame

E

Figure5.3: TheHotPy Stack

more complex. Exception handler objects, which record enoughstate information
to restore theVM state, are attached to VM frames. When an exception is raised,
it i s caught in the super-interpreter, which then checks the current frame for ex-
ception handlers, popping frames until it finds one. If it reaches its entry frame,
the exception is re-raised, to be caught by thenext outer super-interpreter. In Fig-
ure5.3, if an exceptionwereraised, it would be caught in thesuper-interpreter (X),
which would re-raise the exception. This would then be caught by Y, unwinding
theHotPy stack to reach frameD which containsexception handlers.

5.3.4 ActiveL inks

Active links serve as the glue between traces (Figure 5.14 shows links joining
traces). They are called active linksas they can change their behaviour, but main-
tain the same interfaceto the rest of the VM. Active links allow the optimisation
of traces, without changing theshapeof the tracegraph.

An active link consists of a pointer to a function, call, a pointer to some byte-
codes, ip, apointer to a trace(which is initially null), andsometype information.
Theip points to theunoptimised bytecodes. The function typeof call takes two
parameters; the first is the active link itself, which allows it to be self modifying;
the second parameter describes the VM state. Active links embodya position in
thebytecode, with type information to allow better specialisation.

The behaviour of an active link varies depending on how many times it has exe-
cuted; how ‘hot’ it i s. Cold code is executed, unoptimised, by the interpreter, in
which case thecall passes the original unoptimised bytecodes to the interpreter.

102

Super−Interpreter

Interpreter

start

Active Links

execute

Trace Cachelookup

exception

trace exit

Tracing Interpreter

trace

C Library Code

C call

execute

lookup

Compilation Queue

requesttrace

update add

exception

Optimiser

complete

done

insert

Py call

Figure5.4: Control of Execution in HotPy

Warm code is still i nterpreted, but in an optimised form; call executes the inter-
preter with theoptimised bytecodes in thetrace. Hot code iscompiled to machine
code, which is executed directly; call executes the compiled code directly. All
exits from traces point to active links, which are initially cold.

The self-modifying behaviour allows other code to treat active links as black
boxes. The value returned by the call is the next active link to be run. This
allowsthesteady statedispatching in thesuper-interpreter to be implemented asa
simple call -threaded interpreter (Section 2.2.1):

do {
l i n k = l i nk−>c al l (t hr e ad _st at e , fr ame , l i n k) ;

} whi l e (1) ;

Anactivelinkcan bein oneof six states. Four of thesestatesarestartingstatesand
depend onthe instruction that caused the traceto exit, whether it was a boolean
test failure, a back-edge, a return (or yield) or a many-valued test failure. These
different states determine how aggressively the code is optimised and whether or
not thestartingcontext isused in specialising the trace. The two remainingstates
are interpreted traces and compiled code.

5.3.5 Control within theHotPy VM

Figure 5.4 shows the relationship between the components of the HotPy VM.
Solid arrows represent control flow; dashed arrows represent dataflow. Ascan be
seen from the figure, active linksperform a central role in the HotPy VM. Rather
than explain each arrow, it i s ill ustrative to consider the li fetimeof an active link.
In the following elaboration, words in italics correspond directly to labels in the
figure.

103

An active link is created for each exit in a trace. Initially it i s cold. Once it
becomes warm it performs a lookup in the trace cache for a matching trace. It
is probable than none will be found, so the active link starts a trace, which runs
until it i s complete, at which point the traceis optimised. The optimised code is
inserted into the trace cache. Control then returns to the super-interpreter once
optimisation isdone.

The active link will probably be executed again and will lookup the tracewhich,
having been previously created, it will find. Thetraceisthen executed in theinter-
preter. If a traceraises an exception then control returns to the super-interpreter,
otherwise atrace exit must occur and another active link gainscontrol.

Once an active link becomes hot it sends a request to the compilation queue and
continues to execute in the interpreter. Once compilation is completed, the com-
piled code isadded to the tracein the cache, which updates the active link.

5.4 Tracing and Traces

TheHotPy tracing interpreter isgenerated by thesecondary interpreter generator,
GVMTXC, from the same source as the main interpreter2. When tracing, HotPy
records the values of the inputs and outputs of all i nstructions, as well as the
intructions themselves, in order to generate atracethat is specific not only to the
instructionsexecuted, but also to the typesof thevariablesused.

Tracing is initiated either by the interpreter or by an active link. The interpreter
starts tracing when it detects a warm back edge or function call . An active link
attached to an exit from the tracewill start another tracewhen that exit becomes
warm.

Traces started by the interpreter have no contextual type information and the re-
sulting trace can always be executed in placeof the original bytecodes. When
tracing is started by an active link, the traceis specialised according to the type
information recorded in the active link. This means that the trace can be better
optimised, althoughthe trace can be used in fewer contexts. This may produce
more traces than just using non-specialised traces, as traces can overlap. Since
traces tend to be very small relative to overall memory use, some duplication is
not a problem. HotPy is designed so that the output from the tracing interpreter
isexecutablebytecode; however, this is important only for testingand debugging,
as traces areusually specialised and optimised immediately uponcompletion.

Finally, it should be noted that there is a one-to-many relation between points in
the original bytecode and traces; a single bytecode may correspondto the start
of several traces, all specialised for different contexts. This is ill ustrated by the
example in Section 5.10.

2Making heavy use of #ifdef statements in thesource code.

104

5.4.1 Recording a Trace

When recording a tracethe interpreter must also perform the normal actions for
that bytecode. Bytecodes can be classified as atomic, branching or non-atomic.

When the tracing interpreter encounters an atomic bytecode, it will record that
bytecode. When a branching bytecode is encountered, an exiting equivalent is
recorded. For examplethebranching bytecodeon_true which jumpsif thetop of
stack evaluates to True would be recorded as exit_on_false should the branch
be taken. The exits from traces are discussed in Section 5.4.3. When a non-
atomic bytecodeisencountered, it may berecorded directly or a call to asurrogate
functionmay be traced instead, Section 5.4.2 describes this in detail .

Halting

Tracing must halt, or the program could not terminate. HotPy halts tracing if any
of the followingconditionsare reached:

• A loopis detected.
• A back edge is reached.
• Recursion is detected.
• Morereturn or yield instructionsare encountered than calls.
• An exception is raised in the traceor C code called from the trace.

In the first four cases the traceis kept for further optimisation. If a loop was
detected, then the traceis closed; it can be executed immediately. If a back edge
or recursion is detected, then the traceis saved and tracing continues with a new
trace; it i s assumed that a loopwill be foundin a subsequent trace. If too many
return or yieldsare encountered then an unconditional exit isadded to thetrace
after which the traceis saved and normal execution resumes. If an exception is
raised then the traceisdiscarded and normal executionresumes.

5.4.2 Non-Atomic Bytecodes

In Python, and other high-level languages, the bytecodes have ahigh semantic
content andareoften non-atomic. A non-atomic bytecode isonewhose execution
state can be observed from the VM state. For example the bytecodebinary may
call an __add__ function written in Python. The VM state can be interrogated
during that function, even thoughbinary ispart way throughitsexecution. Most
bytecodes are atomic. For example, a native_call bytecode is atomic as the
transfer of control occurs at the end of thebytecode.

The existenceof non-atomic bytecodescomplicates tracingsinceit may bepossi-
ble to observetheVM in astate that corresponds to themiddleof somebytecode.

105

In the case of the binary instruction, it i s desirable to tracethroughany called
function. However, that cannot bedoneif thebinary bytecodeis recorded, as the
function that would betraced occurs in themiddleof thebinary instruction. One
approach would be to code binary as a series of lower level bytecodes, each of
which is atomic. However, for non-traced code and cases where the addition is
performed byC code, this isgrossly inefficient. HotPy getsaroundthisby substi-
tuting, when tracing and where necessary, a Python function for the non-atomic
bytecode.

Somebytecodesarenon-atomic, but extremely unlikely to occur in atrace, suchas
make_func. These are recorded as normal; tracing is suspended during their ex-
ecution to prevent incorrect duplication. The following bytecodes are non-atomic
and li kely to occur in a trace: the operators binary, unary and inplace, and
f_call. The f_call can be atomic if it i s calli ng a function, but non-atomic if
calli ng a class.

In the caseof theoperators, normal lookupisperformed. If aC function is found,
the original bytecode is recorded. If no C function is found, the bytecode is not
recorded and a Pythonfunction that performs the look upis traced instead. This
is done in the expectation that, when optimised, the advantages of inlining the
Pythonimplementation of theoperator will outweighthepenalty of the extrabyte-
codes.

In the case of calls to a function or boundmethoda special bytecode to mark the
call siteisrecorded. Calls to classesarehandled bylookingfor asurrogatePython
function for the class, which is then traced. If nosurrogate function isavailable, a
moregeneral Pythonequivalent of thetype.__call__ methodis traced.

To seemore clearly the problems here, consider the expression d + e where d
ande areboth Decimals, astandard library classwritten in Python. If the tracing
interpreter wereto record thebinary bytecode andcontinuetracing, it would then
record thebody of theDecimal.__add__ function. When this tracewasexecuted
it would execute the addition twice, once for the binary bytecode and once for
the recorded call . So recording the binary bytecode and continued tracing are
mutually incompatible. Sinceit is desirable to continue tracing, thebinary byte-
code cannot be recorded, but some semantically equivalent code must be traced
instead.

ThePythonequivalentsfor thebinary bytecode andtype.__call__, alongwith
thesurrogate function for tuple(), areshown in Appendix D.

5.4.3 TraceEnds And Exits

When tracing reaches a conditional bytecode, the taken branch is recorded. How-
ever, when thetraceisexecuted again adifferent branch could betaken. To handle
thispossibilit y conditional side exitsare added to thetrace. An unconditional exit

106

may be added to the end of the tracewhen tracing halts. These exits from traces
are classified as follows in HotPy:

Back Edges

Tracing stops at back edges, in order to prevent non-termination of traces and
to attempt to find loops. Consequently, on reaching a back edge during tracing,
the traceis optimised, and a new traceis started immediately using the current
context.

Return and Yields

Tracing normally continues throughreturns and yields, unlessthe traceis unbal-
anced, in which case tracing ishalted. A traceisunbalanced when therewould be
morereturns or yields than calls, were the traceto be continued.

Boolean Exits

When a conditional branch, such as an if statement, is encountered the tracing
interpreter will record thetaken branch only. An exit point must beinserted for the
branch that isnot taken. Theseside exits start tracing when they becomewarm.

Multi-ChoiceExits

When a function or methodcall i s encountered the tracing interpreter will record
the functioncalled and tracethe execution of that function. An exit point must be
inserted to handle cases where adifferent function is encountered during subse-
quent execution.

5.4.4 Avoiding Code Explosion

In Python, function or method calls are resolved dynamically. This means that
a call site could potentially call a different function or methodevery time it was
reached. Therefore exit points for function or methodentry could potentially start
a new trace every few iterations. This problem of code explosion is common
for any form of specialisation; the number of specialised forms may grow almost
without limit.

Informal measurements of the Self system showed that call sites call the same
functionabout 93% of thetime, two different functionsabout 5% of the time, and

107

more than two functions lessthan 2% of the time [37].

Assuming similar behaviour for Python, it would seem that the best approach for
call sites that call more than two different functions is to simply resume normal
interpretation.

HotPy avoidscode explosionas aresult of tracing byresumingstandard interpre-
tation if thetrace exitsat a call site. A more advanced approach would beto allow
one, but only one, new trace at an exit. This would cover the cases where a call
site calls two different functions. The current, simple approach seems to work
well enoughin practice.

5.5 Optimisation of Traces

Once atracehas been recorded it can be further optimised. All the HotPy op-
timisations, except the JIT compiler, are implemented as bytecode-to-bytecode
translations.

Python is a highly dynamic language, which means that there are many events
that could potentially occur during the execution of a Python program. Most of
these events do not occur in most programs; they could, but in practice they do
not. For example, function definitions bind a function object to a global variable;
potentially anew value could be assigned to thisvariable, but this is unusual.

All optimisations in HotPy are focused on making the program fast in the case
wherethese eventsdo not occur, with littl eor noregard to program performancein
therare casethat they do occur. However, program behaviour, ignoringtimingand
memory usage issues, must remain thesamewhatever optimisationsare applied.

Asan exampleof an optimisation, thenamelist in theglobal namespaceusually
refers to the list class; it could be redefined in a program, but this is regarded as
bad practice. HotPy attempts to make the cost of reading of a value like list as
close to zero as possible, even if this makes the cost of writing such a value very
expensive.

5.5.1 Optimisation Chain

The optimisers in HotPy form a chain; oncethe tracing interpreter has completed
recordingatrace, it i soptimised. Theoptimisersin HotPy aredesigned to work in
a strict order, althoughindividual passes can be omitted for experimental and de-
bugging purposes. Theorder is: specialisation, deferred object creation, peephole
(clean up), and finally compilation. Figure5.5 showstheoptimisationchain.

Specialisationisperformed first asit requiresthetypeinformationthat isrecorded

108

Bytecode Trace
+ Recorded Values

Specialiser

Bytecode Trace

Deferred Object Creation

Bytecode Trace

Peephole Optimiser

Bytecode Trace

Hot?

GVMT-generated Compiler

Machine Code

Figure5.5: TheHotPy Optimiser Chain

109

during tracing, and it makes the subsequent passes more effective. Specialisation
replaces general bytecodeswith type-specific versions. TheDeferred Object Cre-
ation(D.O.C.) passisnext andremovesredundant codethat would otherwise cre-
ate unnecessary objects. Thepeephole optimiser replaces short simplesequences
of bytecodeswith faster equivalents. Should thetracebecomesufficiently hot it i s
compiled to machine code.

Specialisation, alongwith tracing, isaspeculativeoptimisation. In other words, it
makes assumptions about the running program, so that it can better optimise the
bytecodes. Theother passes are conservative; they makeno assumptions.

5.5.2 Guards

For HotPy to make assumptions about the running program, there must be some
way to ensurethat theprogram executescorrectly if these assumptionsarewrong.
To do this HotPy must add extra code, known as guards, to ensure that any as-
sumptions are either correct or, if they are incorrect, that a different code path is
executed. HotPy uses two typesof guard, inlineguards and ‘out-of-line’ guards.

Inline Guards

The optimised code, produced by specialisation, will only work correctly for val-
ues of a particular classor even for a particular value. A guard is thus inserted
immediately before thespecialised operation; this is an inlineguard. The instruc-
tions ensure_tagged andensure_type used in the example in Section 5.10 are
inlineguards.

Out-of-L ine Guards

Some operations, such as reading a global variable that is really a constant, are
very common. Most of the work done in hashtable searches is unnecessary, end-
lessly rechecking the same values. In HotPy, and in CPython, changing a global
variableor a classattributeinvolvesaprocedure call (in theVM, not in thePython
program). Sincethesevaluesarenot expected to change, theseprocedures can be
modified to includeguards. The amortised cost of theguards isnear to zero as the
proceduresarenever called in practice, yet they allow theremoval of the repeated
checks from the frequently executed code. These guards are called out-of-line
guards to differentiate them from inline guards, which must be executed when-
ever the guarded code is executed. Out-of-line guards are used in the example in
Section 5.10, but arenot visible in the trace.

Althoughthe term out-of-line guard is new, the concept is not. The original Self
compiler included the abilit y to invalidate code if certain assumptions were vio-

110

lated. The HotSpot JVM treats non-final classes as final, invalidating compiled
code if anew subclassis loaded. Both of thesefeaturescan beregarded asout-of-
lineguards.

5.6 Specialisation

The tracing interpreter records both the instructions executed and the values en-
countered during execution. It is reasonable to assume that the next time apiece
of codeisexecuted, it i s li kely to seethesametypesof valuesas theprevioustime
it executed. This ‘ type stabilit y’ can be exploited by specialising the code so that
it runs faster for the expected typesof values. For example, if tracing records that
theoperandsof abinary instructionareboth tagged integers, thebinary instruc-
tion is converted to an i_add instruction and two guards are inserted to ensure
that both operands are tagged integers.

Specialisation, as this isknown, isconceptually straightforward; specialised byte-
codes are substituted for general bytecodes. In practice, the specialisation pass
has also to insert guards to ensure that the code acts correctly if the types of val-
ues change later. If unexpected types are encountered then the trace exits. Even
thoughspecialisation is a fairly simple process, it can yield significant perfor-
mancebenefits, as shown in Section 6.5.

In HotPy, thespecialiser performsall theoptimisationsthat require thetype infor-
mation gathered by the tracing phase. This includes not only obviously special-
ising transformations such as converting a (general) unary operation to a (spe-
cific) native_call, but all other optimisations that depend on the type of the
values expected. For example, the load_global instruction is translated to a
fast_load_global or to a fast_constant in this pass, as type information is
required to decidewhether to treat theglobal asa constant or as avariable.

The specialiser also performs optimisationson data access, both global variables
and attributes of classes and objects. These optimisations depend onthe HotPy
dictionary structure and arediscussed in Section 5.12.2.

The traceproduced by the specialisation passhas type information embedded in
it, in the form of ensure guard instructions and specialised operations such as
i_add. This allows subsequent optimisation passes to act on the bytecodes in
a tracewithout requiring additional type information. All speculative optimisa-
tions are performed by the tracing pass (customising for flow control) and the
specialiser (customising for type). Later optimisationsare not speculative, taking
advantageof theopportunitiesexposed by thespeculativepasses.

111

5.6.1 Specialisation of Bytecodes

Specialisation isa linear passoperating on onebytecode at a time. Thespecialiser
maintains type information about local variables and the stack. It uses this infor-
mation, combined with the type informationrecorded during tracing to specialise
individual bytecodes.

Specialisation of abytecode isafivestageprocess:

• Look upthe typesof theoperandsof an instruction.
• Add guards to ensure the typeor other property of any operandsrequired to

specialise thebytecode.
• Update the type information for theoperands.
• Emit thespecialised bytecode
• Store the type information for the result of thebytecode.

For example, consider abinary addition bytecode. Now assumethat the top two
values on the stack have been recorded as tagged integers by the tracing phase.
First of all thetypesof theoperandsarelooked upandfoundto beprobably tagged
integers. Guardsmust be added to ensurethat theoperandsareindeed tagged inte-
gers; two bytecodes, ensure_tagged andensure_tagged2are emitted. Thetype
of thesevalues isnow known, so thetype information isupdated. Thespecialised
bytecodei_add isnow emitted. Sincetheresult of i_add isalwaysatagged inte-
ger, this informationisrecorded. In thisexamplethebinary bytecode isreplaced
with thesequenceensure_tagged ensure_tagged2 i_add. Althoughthenew
sequenceis longer, the individual bytecodes aremuch faster.

For instructions likeload_global the processis thesame. Thedifferenceis that
the guard required is an out-of-line guard, so does not show up in the resulting
trace.

5.6.2 Recording Type Information

The type information for a value is recorded as a triple; a classobject, a set of
threeboolean flags, and a dictionary-keys objects (for optimising theload_attr
bytecode, seeSection 5.12.2). The threeflags record whether a value is definite
or probable; whether or not it i sa tagged value; andwhether it i spositive(it is the
class) or negative(it i s not the class). Negative types are required for exits where
aguard has failed; theguarded valuewill bedefinitely not an instanceof the class.

During specialisation, type information is recorded for the local variables of the
current frame, for the local variablesof all frames recorded in theframestack and
for all values on the stack. When type information is lacking for an operand, the
typeof thevalue recorded during tracing isused as theprobable type.

112

Type information is recorded in the active links for all exits, to ensure effective
specialisation of ‘ hot’ exits. In order to avoid excessivespecialisation only a lim-
itedamount of typeinformationisrecorded; thelocal variablesof upto two frames
and the top two values on thestack. To avoid excessivememory usage this infor-
mation is stored in the active links in a compressed form.

5.6.3 Loop Optimisation

Loop optimisation in HotPy, like loop optimisation in a conventional compiler,
consists of moving code out of the loop. On completion of specialising a loop,
two sets of type information will be available, one for entry to the loopand one
for exit from the loop. For correctnessit is sometimes necessary to insert extra
checks immediately before the end of the loop if the type of a variable is wider
at the end of loop than at the start. Conversely, it i s beneficial to insert extra
checks before the start of the loop to narrow the type of any variables that are
wider at the start of the loop than at the end, eliminating the need for checks in
the loop. It is also possible that the types of a variable at the start and end of the
loopare contradictory, in which case a check must be inserted at the end of the
loop, to enforce the type expected at the start. This check will fail , causing the
traceto exit. Hopefully, a type-stable loopwill be foundafter somesmall number
of additional traces.

5.6.4 Avoiding Code Explosion due to Specialisation

Code explosion can be caused by specialisation, as well as by tracing. The spe-
cialiser avoids causing code explosion by not specialising the first bytecode in a
trace. This has a small cost, as traces are not as well specialised as they could
be. However, it doesensure that nomore than two different tracescan result from
specialisingabytecode.

5.7 Deferred Object Creation

Tracing and specialisation may expose redundancy in the form of parameter han-
dling, checksaroundcallsandin theform of repeated checks. Thedeferred object
creation (DOC) passcan removemany of these redundancies.

The DOC passimplements a form of escape analysis in order to avoid creating
expensivetemporary objects. To conform to Pythonsemantics, HotPy must create
a lot of small objects which have alimited li fetime. AlthoughHotPy possesses
a generational garbage collector which allows such objects to be created cheaply,
there is still a significant cost to allocatingand initialisingtheseobjects.

113

Many of the objects have a li fetime of only a few bytecodes and exist only as
temporary containers for other values. Most of these short-lived objects are cre-
ated in order to manage the passing of parameters to procedures. Parameters are
passed in tuples and dicts3 and then stored in a frame. Frames, tuples and dicts
are all heap-allocated objects. By deferring the creation of theseobjects it i soften
possible to avoid creating them at all .

Deferred object creation currently defers the creation of the following objects:
tuples, (empty) dicts, boundmethods, frames and slices4. For small functions,
such as property get methods, that tracing has inlined, the DOC passcan reduce
the code executed to a minimum. The DOC pass, like all the HotPy optimiser
passes, isa linear-timepass.

5.7.1 Shadow Stacks

The DOC passdefers creating objects for as longas possible. To dothis, it main-
tains a shadow data stack and a shadow frame stack to record objects that it i s
currently deferring. The shadow data stack and a shadow frame stack record the
differencebetween the original, non-deferred state and the actual, deferred state.
When the DOC pass encounters an instruction that would create a new object
which would be of a type that the DOC passunderstands, such as tuple, then a
deferred object is pushed to the shadow stack. The DOC passalso maintains a
shadow linenumber.

There are a number of instructions that the DOC pass understands but cannot
defer. To handle these, the DOC pass is able to mix objects that have already
been created with deferred ones. For example, if the DOC passencounters an
i_add instruction it must ensure that the top two values on the stack actually
exist, emitting the code to create any deferred objects. It then emits the i_add
instruction and pushes a marker to the deferred stack, showing that the object on
top of theshadow stack corresponds to theoneon top of the real stack.

5.7.2 Thread-Local Cache

In order to handle astack of mixed deferred and non-deferred objects, a thread-
local cache is required to store non-deferred objects. These cached objects can
then betreated asdeferred objects; thedeferred operation is theoperation of load-
ing them from the cache. For example, the pack 2 instruction takes the top two
values from the stack and creates a tuple. The DOC passwants to defer creation
of the tuple. This is easy if the top two values on the stack are deferred, but what

3In Pythonthebuilt -in dictionary type isknown as ‘dict’ .
4See http://docs.python.org/library/stdtypes.html for a description of these data

structures.

114

if one is not? Suppose that the object on the top of stack is a deferred constant,
but the second object on the stack is a real, non-deferred object. In this case the
DOC passemits a store_cache instruction to move the real value off the stack
into the cache. The deferred tuple then consists of a pair of deferred objects: the
deferred constant and adeferred load from the cache.

5.7.3 Reconstruction of theOr iginal VM Stateon Exits

In order for deferred object creation to work effectively, it must defer the creation
of objectsquite aggressively. To successfully do this and to maintain correctness,
sequencesof codeto restoretheVM statemust be added to all t race exits. Further-
more, in the case of native calls that do not modify global state, but may raise an
exception, code to restore the state must be attached to exception handlers across
such calls. In the example above, the native_call instruction is converted to a
native_call_protect instruction. The native_call_protect instruction at-
taches corrective code to the thread exception handler for theduration of the call .
In the event of an exception being raised, the corrective code is executed, which
recreates the correct VM state.

Since the generation of these code sequences is done onceduring optimisations,
while the savings due to not creating objects unnecessarily occur continuously,
thepotential speed upis significant.

5.7.4 An Example

The following example is taken from the gcbench benchmark used in the next
chapter.

Figure 5.6 shows snippets of source code which are covered by a single trace
during tracing. The first two snippets, line 87 and lines 52 - 56, are from the
gcbench program; the third snippet, lines77 - 80, is from theHotPy library.

Execution of the tracestarts by calli ng the classNode to create anew instance
(first snippet, line 87). This has been traced throughthe library code for object
creation (third snippet, lines 77 -80), which calls the __init__ method of the
Node (secondsnippet, lines54-56).

The program is run with the DOC passturned off and the tracein Figure 5.7 is
created. Thenumberson the left are theoffset from thestart of the trace, in bytes.
All hexadecimal values are the addresses of objects that have been pinned and
inlined by the specialiser. All i nstructions of the form line_xxx N ... set the
linenumber to N and perform operationxxx.

When the program is run with the DOC passturned on the traceshown in Fig-

115

87 return Node()

52 class Node(object):
53
54 def __init__(self, l=None, r=None):
55 self.left = l
56 self.right = r

77 def alloc_and_init(cls, *args, **kws):
78 obj = object_allocate(cls)
79 cls.__init__(obj, *args, **kws)
80 return obj

Figure5.6: SourceCode for DOC Example

ure 5.8 is produced. The new traceis is a third of the length (12 rather than 35
instructions) of thepreviousversion. TheDOC passisa linear pass, so itsactions
can befollowed byscanningthetracein Figure5.7 from topto bottom. TheDOC
passwas able to remove two thirdsof the code as follows.

The net result of the code from offsets 0 to 38 is to a create anew frame and
push a constant value to the stack. The DOC pass defers these operations as
neither theframenor thevalue is required yet. For each instruction in theoriginal
sequence, the operation required is performed by the DOC on its shadow stacks,
no instructionsare actually emitted. Figure5.9 showsthestateof theshadow data
stack and shadow frame stacks for each instruction in the sequence. The states
shown are those after the instruction has been evaluated; the data stack is to the
left of the| divider.

Thenative_call instructionat offset 40 requiresparametersonthestack, so the
stack can be deferred no longer and the DOC pass emits the fast_constant
instruction to recreate the single constant value on the stack. Since the
object_allocate function is annotated as not accessing global state, there is
no need to create the frame acrossthe call . Since line numbers are stored in the
frame, if the frame is deferred then theline instructionscan bedeferred as well .

The store_frame instruction at offset 46 stores the newly created Node into
the current frame. However, the current frame does not exist, having been de-
ferred, so the DOC pass stores the value into the thread-local cache, emitting the
store_to_cache 0 instruction.

So far theDOC passhasconsumed 14instructions, emitted three and hasdeferred
the creation of a frame.

The instructions from 56 to 77 marshal the parameters for the Node.__init__
function and then uses them to create anew frame. Once again the DOC pass
defers creation of thenew frame. There arenow two frames on theshadow frame

116

0 :line_fast_constant 87 0xb7b0afa0
7 :empty_tuple
8 :dictionary
9 :new_enter 0x82aa080 /* Entry to alloc_and_init */
14 :make_frame 2 0xb7b0a4e4
20 :init_frame
22 :line_fast_constant 78 0x82aa800
29 :fast_constant 0xb7b0afa0
34 :pack_params 1
36 :drop
37 :drop_under
38 :unpack 1
40 :native_call 0x80d5630 /* Call to object_allocate */
46 :store_frame 3
48 :line_fast_constant 79 0xb7b0afa0
55 :drop
56 :fast_constant 0xb7b0aec8
61 :fast_load_frame 3
63 :pack 1 /* Parameter marshalling */
65 :fast_load_frame 1 /* on line 79 */
67 :tuple_concat /* ditto */
68 :fast_load_frame 2 /* ditto */
70 :copy_dict /* ditto */
71 :make_frame 2 0x828f4cb /* Entry to Node.__init__ */
77 :init_frame
78 :line_fast_load_frame 55 1
82 :fast_load_frame 0
84 :fast_store_attr 4 4 /* self.left = l */
89 :line_fast_load_frame 56 2
93 :fast_load_frame 0
95 :fast_store_attr 4 1 /* self.right = r */
100 :func_return
101 :line_fast_load_frame 80 3
105 :func_return
106 :return_exit 0xb7b109c0

Figure5.7: TraceWithout DOC

117

0 :fast_constant 0xb7a8afa0
10 :native_call_protect 0x80d5630 0xb7b07908
16 :store_to_cache 0
18 :none
19 :load_from_cache 0
21 :fast_store_attr 4 4 /* self.left = l */
26 :none
27 :load_from_cache 0
29 :fast_store_attr 4 1 /* self.right = r */
34 :load_from_cache 0
36 :clear_cache 1
38 :return_exit 0xb7a90fbc

Figure5.8: TraceWith DOC

0 line_fast_constant: Node | <empty>
7 empty_tuple: Node, () | <empty>
8 dictionary: Node, (), {} | <empty>
9 new_enter: alloc_init, (Node,) {} | <empty>
14 make_frame: alloc_init, (Node,) {} | (locals = -, -, -)
20 init_frame: | (locals = Node, (), {})
22 line_fast_constant: obj_alloc | (locals = Node, (), {})
29 fast_constant: obj_alloc, Node | (locals = Node, (), {})
34 pack_params: obj_alloc, (Node,), {}| (locals = Node, (), {})
36 drop: obj_alloc, (Node,) | (locals = Node, (), {})
37 drop_under: (Node,) | (locals = Node, (), {})
38 unpack 1: Node | (locals = Node, (), {})

Figure5.9: Shadow Stacks For Start of Tracein Figure5.7

118

stack. The instructions at offsets 78 to 84 load two local variables and store one
into a slot in the other. The DOC passcan defer the loads, but cannot defer the
load_slot instruction so is forced to materialise the stack (but not the frames).
The DOC passmaterialises the stack, consisting of None (the default parameter
for l) andthenew Node object, byemittingnone andload_from_cache 0 before
theload_slot instruction.

Thefunc_return instructionat offset 100 pops the topmost deferred frame. The
secondfunc_return pops the remaining deferred frame. The return_exit in-
structionforces theDOC to recreate the entireVM state. As there areno deferred
frames, only the stack needs to be updated with a load_from_cache 0 instruc-
tion. Finally, aclear_cache 1 instructionisemitted so that the cachedoesretain
any objects.

5.7.5 Unboxing Numbers

As well as avoiding the creation of composite objects, it also beneficial to avoid
creating boxed numbers. SinceHotPy uses tagged integers, this is not as impor-
tant as it might be for other VMs, but HotPy does use boxed floats. The DOC
passalso handles floats, but is limited in its effectiveness, as it can only unbox
intermediate values that spend their whole li fetime on the stack. As soon as a
float is stored in a local variable then that float must be created (un-deferred).
Deferred object creation could be extended in two ways, both of which would
improve the performance of floating-point numbers. The first would be to defer
object creation acrossloop boundaries; the second would be to defer stores into
non-deferred frames.

5.8 Fur ther Optimisations

The remaining optimisations performed by HotPy are ‘peephole’ optimisations,
that is they are simple transformationswhich replace ashort sequenceof instruc-
tionswithamore efficient form. For example, tracingmay insert a conditional exit
immediately after a boolean test, say exit_on_false. Specialisation may then
be able to infer that a comparison is always true, and convert the expression to
a single true instruction. The redundant instruction pair true, exit_on_false
can then be eliminated.

Other examples include making the instruction sequence more efficient for the
GVMT’s stack-based compiler, such as replacing a store_frame, load_frame
pair with a copy, store_frame pair. A few more complex replacements are per-
formed, aimed at cleaning uptheoutput from themain optimisation passes.

119

5.8.1 Compili ng Traces

Once atracebecomes sufficiently hot, it i s added to apriority queue for compila-
tion. In order to prevent unduepauses, the compilationtimeis limited to a certain
fraction of the execution time. Potentially compilationcould takeplacein asepa-
ratethread from theinterpreter, but thishasnot been implemented yet. On asingle
processor it i s limited to approximately one quarter of total execution time. On a
multi -processor machine compilation is limited, arbitraril y, to approximately one
half of the execution timeof the interpreter thread.

Traces are compiled using the GVMT generated compiler. The code generated
by the compiler matches the interfaceof the interpreter5. Thisalmost matches the
signatureof thecall functionin the activelink (seeSection 5.3.4) so immediately
before compilationan extra instruction is inserted in front of the first bytecode to
discard the extra parameter of the call function. The call pointer can then be
set to point directly to the compiled code.

5.9 De-Optimisation

All the optimisations in HotPy are either speculativeor depend on other specula-
tiveoptimisations. Theseneed to beguarded, asdescribed in Section 5.5.2. When
an inline guard fails, execution continues correctly on a different path. However,
when an out-of-line guard fails, it invalidates code, which must never execute
again. In order to prevent the execution of invalidated code, all t racesare checked
for validity before execution. In addition to the check at the start of a trace, a
deoptimise_check instructionisalso inserted after any call to codewhich might
invalidate the current trace. Invalidated traces are unlinked from any active links
that may attempt to call them. When they are no longer referenced, they are
garbage collected.

5.10 An Example

Figure 5.10 shows a simple Python program for finding a list of Fibonacci num-
berswhich will beused to ill ustratehow HotPy createsandlinkstraces. Although
a very small program, it serves to ill ustrate some of the key points of HotPy’s
operation. The print statement on the final li ne is commented out to prevent the
traces becoming too large to show on asinglepage.

Compili ng thesource code into bytecodes gives the flow graphs for the functions
fib andfib_list in Figures5.11and 5.12 respectively. Theflow graphs show a

5Except that it does not take abytecode addressas its first parameter; seethe GVMT manual
for moredetails.

120

1 import sys
2

3 def fib(count):
4 n0, n1 = 0, 1
5 for i in range(count):
6 yield n1
7 n0, n1 = n1, n0 + n1
8
9 def fib_list(count):

10 return [f for f in fib(count)]
11

12 fibs = fib_list(int(sys.argv[1]))
13 #print(fibs)

Figure5.10: Fibonacci Program

direct correspondenceto thesource code.

Running the program with an input of 40 causes the loopin the fib_list func-
tion to become warm, and HotPy starts tracing. Tracing is triggered when the
execution count of end_loop instruction exceeds the threshold value. Tracing
then starts from the next instruction to be executed, which in this example is
a load_frame instruction. Tracing continues until the end_loop instruction is
reached again and a closed loopis recorded.

During tracing, the call to the fib generator function is inlined; the resulting
traceis shown in Figure 5.13(a). Entry to the fib generator function is marked
by a gen_enter instruction. The gen_yield instruction marks the point where
execution returns to the fib_list function. The <ENTRY> at the top of the trace
means that the trace can be entered directly from the interpreter and corresponds
to theend_loop instruction in thefib_list function.

Sincethe cost of bytecode-to-bytecodetranslation is low, thetraceis immediately
specialised to produce the traceshown in Figure 5.13(b) and then further opti-
mised (in this example further optimisation has no effect). The resulting traceis
specialised not only for the flow-control, which happens during tracing, but for
the types of values observed during tracing. In this example, the binary (addi-
tion) instruction hasbeen replaced with thei_add, which is specialised for tagged
integers. Guards have been added to ensure correctness. All the (guarded) side
exitsare cold, as theprogram executesmainly aroundtheloop. Theoptimisations
are explained more fully in Section 5.5.

If theprogram isrunwith ahigher input value, say 60, then n0 andn1 will exceed
the maximum size for tagged integers and must be stored as boxed integers on
the heap. This will cause one of the ensure_tagged guards in the loop to fail .
Onceit has failed asufficient number of times, theside exit is then hot andHotPy

121

line 4

byte 0

byte 1

swap

store_frame 3

store_frame 4

line 5

load_global

load_frame 0

pack_params

f_call

call_special

store_frame 1

for_loop

load_frame 1

call_special

store_frame 2

line 6

load_frame 4

yield

line 7

load_frame 4

load_frame 3

load_frame 4

binary add

swap

store_frame 3

store_frame 4

end_loop

exit_loop

none

return

exception

Figure5.11: Flowgraph for fib function

line 10

list

store_frame 1

load_global

load_frame 0

pack_params

f_call

call_special

store_frame 2

list_for

load_frame 2

call_special

store_frame 3

load_frame 1

load_frame 3

list_append

end_loop

exit_loop

load_frame 1

return

exception

Figure5.12: Flowgraph for fib_list function

122

<ENTRY>

load_frame 2

gen_enter

line_load_frame

load_frame 3

load_frame 4

binary add

swap

store_frame 3

store_frame 4

load_frame 1

call_special

store_frame 2

line_load_frame

gen_yield

store_frame 3

load_frame 1

load_frame 3

list_append

jump

(a) Initial

<ENTRY>

ensure_initialised

ensure_initialised

fast_load_frame 2

gen_enter

line_fast_load_frame

fast_load_frame 3

fast_load_frame 4

ensure_tagged2

ensure_tagged

i_add

swap

store_frame 3

store_frame 4

fast_load_frame 1

type_ensure int_iterator

native_call_protect

store_frame 2

line_fast_load_frame

gen_yield

store_frame 3

fast_load_frame 1

fast_load_frame 3

list_append

jump

Active
Link

cold

Active
Link

cold

Active
Link

cold

(b) Specialised

Figure5.13: Traces of theFibonacci Program With an Input of 40

starts tracing from that point. HotPy maintains type information for each exit
(in a compact form), meaning that when a new traceis recorded it can be more
effectively specialised.

The resulting, optimised, tracegraph is shown in Figure 5.14. As execution pro-
ceeds from thefirst hot exit, anew traceiscreated until aback edge isreached. In
order to discover loops, tracing must restart on reaching aback edge. Thiscauses
the intermediate traces in the middle of Figure 5.14 to be created before anew
loopis found, which is shown ontheright of Figure5.14. Thenew loopisalmost
identical to the original loop, but is specialised for boxed, rather than tagged, in-
tegers and does not require an ensure_initialised instruction onentry. The
seventh to ninth instructions show thedifferent specialisation.

The additional short, unconnected, tracein Figure5.14 iscaused by partsof lines
five and six of the program becoming hot while the program transitions from the
loop onthe left to the loop onthe right.

123

fast_load_frame 1

type_ensure int_iterator

native_call_protect

store_frame 2

line_fast_load_frame

gen_yield

store_frame 3

fast_load_frame 1

fast_load_frame 3

list_append

back_exit

Active
Link

cold

Active
Link

link
fast_load_frame 3

type_ensure_drop int

fast_load_frame 2

gen_enter

line_fast_load_frame

fast_load_frame 3

fast_load_frame 4

type_ensure2 int

type_ensure int

native_call_no_prot

swap

store_frame 3

store_frame 4

fast_load_frame 1

type_ensure int_iterator

native_call_protect

store_frame 2

line_fast_load_frame

gen_yield

store_frame 3

fast_load_frame 1

fast_load_frame 3

list_append

jump

Active
Link

cold

Active
Link

cold

Active
Link

cold

Active
Link

cold

<ENTRY>

ensure_initialised

ensure_initialised

fast_load_frame 2

gen_enter

line_fast_load_frame

fast_load_frame 3

fast_load_frame 4

ensure_tagged2

ensure_tagged

i_add

swap

store_frame 3

store_frame 4

fast_load_frame 1

type_ensure int_iterator

native_call_protect

store_frame 2

line_fast_load_frame

gen_yield

store_frame 3

fast_load_frame 1

fast_load_frame 3

list_append

jump

Active
Link

hot (8)

Active
Link

cold

Active
Link

cold

binary add

deoptimise_check

swap

store_frame 3

store_frame 4

back_exit
Active
Link

link

<ENTRY>

load_frame 1

type_ensure int_iterator

native_call_protect

store_frame 2

line_load_frame

exit

Active
Link

cold

Figure5.14: Extended Tracefor Overflow

124

5.11 Deviations from theDesign of CPython

Where possible, HotPy follows the overall design of CPython. However HotPy
doesdiffer in somenotableways. Apart from theobviousdifferences in optimisa-
tion of bytecode and JIT compilation, there are differences in the way classes are
laid out, in the way that operators are handled, and in the implementation of the
dictionary type.

5.11.1 ClassLayout

A class(type) object in CPython contains over 70 pointers in order to support,
reasonably efficiently, the large number of ‘ special’ methods required by Python.
In Python, a special method is one where the existence of an attribute with the
samenamein theobject doesnot alter thebehaviour, as it would for anon-special
method. For example, any type that supports addition must have __add__ and
__radd__ methods. A slot in the type object is required for each of the many
special methods. Since the special methods are also visible to the Python pro-
grammer, a slot wrapper6 object must be also be installed in the type’s attribute
dictionary for each special method.

HotPy dispenses with all but six of these pointers, storing the other 60+ spe-
cial attributes directly in the type’s dictionary. Five special-method pointers,
__getattribute__, __setattr__, __get__, __set__ and __delete__ are
necessary for correctness. One additional pointer __hash__ is retained for ef-
ficiency. Althoughthis simplification would be expected to reduceperformance,
in practiceit has littl e effect, duemainly to theway that HotPy handlesoperators.

5.11.2 Operatorsas Par tial Multi-Methods

In Python, thesemanticsof binary operators, such asaddition, aredefined in terms
of dispatch ontheoperand types, firstly on the left operand, and then onthe right
operand. The semantics are complicated by subtyping, but in general work as
follows: Consider the expression x + y. To determine the value of this expres-
sion, Pythonfirst evaluatesx.__add__(y), and should that fail , it then evaluates
y.__radd__(x). Both __add__ and__radd__ are special methods.

In CPython, addition is implemented by trying x.__add__(y) before
y.__radd__(x), with failure indicated by returning theNotImplemented value.
For example, the expression i + f, where i is an int and f is a float,
is evaluated by CPython as follows: CPython calls the function __add__ be-
longing to int: int.__add__(i, f). Since int.__add__ can only handle

6A slot wrapper is an object installed in a classdictionary which makes the slots (pointers) in
theC implementation visible to the Python programmer.

125

addition of ints this fails, returning NotImplemented. CPython then calls
float.__radd__(f, i) which returns the correct result.

In HotPy, operators are implemented as partial multi -methods. Each operator
containsahashtablewhich mapsall valid pairsof thebuilt -in typesto therelevant
function. For exampletheadd operator containsamappingfrom the(int, float)
pair to the add_int_float function. The operation x + y is computed by look-
ing upthe pair (type(x), type(y)) in the hastable and applying the resulting
function to (x,y). If no function is found, CPython-style double dispatching is
then used. Althoughslower for user-defined types, it i s significantly faster for
built -in types,. It also makes the tracing and optimisation of binary operations
faster andsimpler as only user-defined typesneed to behandled.

5.12 Dictionar ies

In Python, dictionaries are used both as mappings in user code and to implement
namespaces in the virtual machine. Python has threekinds of namespaces; type
attributes, object attributesand global (module-level) variables. Type attributesare
stored in a special type, dict_proxy, which is implemented as a standard open-
addressed hashtable. However, object attributes and global variables are held in
standard Python dictionaries, of type dict. This means that the dict classhas
to perform threesimilar but different roles; object namespace, modulenamespace
andexplicit mapping. Althoughthedict hasonly one interface, each of thethree
roles has distinct usage characteristics.

In CPython, the dict is implemented as an open-addressed hashtable that has
been refined over several years. It is tuned for a combination of theusage charac-
teristics of module variables and object attributes. This works well for CPython,
but HotPy has different requirements and performance characteristics. For exam-
ple, in CPython memory allocation is slow and this constrains the design of the
dict. Memory allocation is considerably faster in HotPy, so allocation is not a
bottleneck.

5.12.1 Python Dictionary Usage

Analysisof theusageof dicts in Python(the language, not any particular imple-
mentation) suggests a different design for the dict from that of CPython. The
most common use of dictionaries in Python is not explicit, but implicit, as con-
tainers for global variablesand object attributes.

126

Global Var iables

Global variables in Python are often effectively constants such as functions or
classes; not only dothese(almost) never change, they can beread very frequently.
Even if somevariablesdo vary, theset of variablenames, which is theset of keys
in thedict, changes very rarely. In order to optimise reading of global variables,
it i s useful to be able to keep them in a known location in memory, so accesscan
be fast. In order to treat the effective constants as actual constants it i s necessary
to guard against their valueschanging.

Object Att r ibutes

Most objectsof agiven class, onceinitialised, will shareidentical attributenames.
In other words, for any given classit is highly likely that dicts of all the objects
of that classwill have equivalent keys. Thus memory use can be cut in half by
ensuring that, for those classes that allow it, all objects of a class share the same
keys. Thisalso meansthat theoffset of any attribute in theobjectsof agiven class
are computable from the classalone. Unlike the values in a module’s dict, the
values in a dict used to hold an object’s attributes are li kely to change; it i s just
thekeys that areunlikely to change.

Program-Level Mappings

Althoughthisusageis lessfrequent than for global variablesand object attributes,
it i s nonetheless important. Any optimisations designed to improve the perfor-
manceof the above cases should not impact theperformanceof the explicit useof
dictionaries too much.

5.12.2 Design of theHotPy Dict

Noting that allocation is not a bottleneck, and that object attribute dictionaries
stand to gain from sharing keys, the main ideabehind the design is to split the
keysand valuesof adict into two different objects, rather than pairing them. So
instead of one table consisting of [key, value, key, value...] there are two tables:
[key, key, ...] and [value, value, ...], thenth key corresponding to the nth value. In
order to allow safe7, concurrent resizing of dicts, thereferenceto thekeysobject
must be stored in the values object, not in thedict directly. Additionally, shared
keys must be immutable, or race conditions might occur. These constraints have
a negative effect on accesstimes to keys, but it i s small compared to the benefits
of theoptimisationsthat becomepossible.

7Not racefree, but ensuring thedict remains in a valid state.

127

__class__

values __class__

length

size

keys

values
.
.
.

__class__

length

load

used

keys
.
.
.

Figure5.15: TheHotPy dict

Figure 5.15 shows the HotPy dict implementation. In the values object, length
is the length of the valuesarray, size is the number of values, andkeys refers to
the keys object. In the keys object, length is the length of the keys array, load
is the maximum number of keys before resizing, and used is the number of keys
(some of which may have a corresponding nil i n the values object, if the value
has been deleted). Note the invariant values.size 6 keys.used 6 keys.load. By
adding a further invariant that a key is never removed from a keys object8 some
useful optimisations are possible. To allow sharing of keys objects, shared keys
objects are initialised with keys.used = keys.load. Combined with the constraint
keys.used 6 keys.load and the prohibition onremoving keys from a keys object,
thismakes thesekeysobjects immutable.

Finally, given that thevaluesobject is separate from thedict object, it i spossible
to givethevaluesobject of amoduledictionary adifferent class, andthusdifferent
behaviour from that of anon-moduledict.

Att r ibute Optimisations

In CPythonand unoptimised code in HotPy, accessingan attributeof an object in-
volvescomplicated, andthus slow, look up. Thefull semanticsof Pythonattribute
look upis described in Appendix C. The attribute being read may be an overrid-
ing descriptor, such as a property, a non-overriding descriptor, li ke amethod, or
an ordinary attribute, stored in theobject’sdictionary.

If an attribute is an overriding descriptor, it can beoptimised by insertingaguard
into the class’sdictionary to ensure that the attributedoesnot change. Thisallows
thedescriptor’s__get__ methodto be called directly, or possibly inlined.

8Keyscan beremoved from adict by resizing it, possibly to thesamesize; unused keysarenot
copied duringresizing.

128

If an attribute is stored in the object’s dictionary, a more complex optimisation is
required. It is worth recalli ng that non-descriptor attributes in Python are inde-
pendent of the object’s class. This makes object dictionaries in Pythonsimilar to
objects in a prototype-based language, such as Self or Javascript. In Self, artifi-
cial class-likeobjectsare constructed to group objects into somethinglike classes.
HotPy does something similar. Each classcaches a keys object, which is used
to initialise the dict of every object of that class. This ensures that for most
classes, all objects with the same classwill share the same keys object. As well
as saving memory, this can be used for performance optimisation. During opti-
misation the offset of the key in the keys table is found, and this, as well as the
offset of the dictionary in the object, can be used to perform fast attribute fetches
andstores. An out-of-lineguard must be inserted into the class(and into its super
classes) to ensure that it does not acquire adescriptor of the same name as the
attribute. An inline guard must be inserted to ensure that the keys object in the
dict matches thekeysobject in the class. The addressof the attribute in question
is then o->__dict__->values[key_offset]. No dictionary lookups or class
searches are involved.

If an attribute is a non-overriding descriptor, such as a method, similar guards
to those above must be inserted to ensure that the object has no attribute in its
dictionary which could mask the descriptor. The descriptor can then be called
directly. In the case of a Python function, tracing may have already inlined the
call .

Global Var iables and Constants

In Python, classesandfunctionsareboundto names in thesameway asany other
value. This makes it impossible to tell for certain whether a global variable is
in fact a constant. The distinction between variable and constant is important.
Treatingavariable asa constant would result in wasted effort ascodeisoptimised
only to be discarded, but treating a constant as variable would result in consider-
ably lessefficient code. HotPy uses thevery simpleheuristic that global variables
holdingclasses or functionsare constantsand all othersare variables.

Since all global variables are kept in dicts belonging to modules, when these
dicts are created they are given a values object with a different classfrom non-
moduledicts. This values object can hold additional guards to protect attributes
against deletion and, in the case of values treated as constants, against modifi-
cation. By pinning9 the values object, the addressof the global variable can be
computed during optimisation and global variables can be accessed by a single
read, as fast asastatically typed language. Constant valuescan be inlined into the
bytecode.

9Preventingthegarbage collector from movingit.

129

5.13 Related Work

Zaleski et al.[78] describe Yeti, a gradually extensible traceinterpreter for Java.
Yeti was designed so that JIT compilation could be added incrementally, a byte-
code at a time. In order to improve the performance of code that it could only
partly compile, Yeti needed to be able to interchange interpreted code and com-
piled code. This requirement is similar to that of HotPy for staged optimisation
and results in aspects of the designs being similar. Yeti implements individual
bytecodes, linear blocks (extended basic blocks) and traces all as callable func-
tions, allowing them to be freely interchanged. Yeti constructs linear blocks,
which are implemented using subroutine threading, from bytecodes on demand.
It constructs traces from linear blocks when a back-edgebecomes hot. SinceYeti
implements Java, no specialisation is required other than the inlining of virtual
calls, which happens as aside-effect of tracing.

Willi ams et al.[77] describe aspecialising interpreter for Lua, which is not trace-
based, but buildsaspecialised flow-graphfor the executed program. It specialises
on demand, but since Lua has only a few types, specialisation does not result
in excessive duplication. Since Python has an unbounded number of types, this
technique is not applicable directly to Python. Specialisation in HotPy is driven
by traceselection. As far as I am aware, HotPy is the first VM which performs
aggressiveoptimisationas bytecode-to-bytecode transformations.

Deferred Object Creation

Deferred object creation is a form of escape analysis. Escape analysis is usually
used to allocate objects on the stack, rather than the heap, but that is not possible
with the current GVMT garbage collector. The cache for storing non-deferred
objects serves this role. Of course, not allocating an object at all i s even cheaper
than stack allocation.

Rigo[65] describes ‘representation based specialization’ in which changes to the
representation of objects are made at runtime to reflect their usage. It main ap-
plication is the unboxing of numbers, but is also applied to tuples and lists. The
representation of a tupleof known size can be changed to aset of discretevalues;
this is in essencewhat deferred object creation is doing when a tuple is deferred.
Themain performancebenefit of representation based specializationin Psyco was
unboxing of integers, but theperformancegainsfor floatsand listswere consider-
able; seeSection 2.5.2. Deferred object creation is a technique for implementing
representation based specialization in the context of astack-based bytecode inter-
preter.

130

5.14 Conclusion

In summary, the HotPy VM is designed to make full use of the abstract machine
model outlined in Chapter 3 and the GVMT in particular. The restrictions on the
design thus imposed havenot been overly constraining.

The combination of these constraints, plus the delegation of garbage collection
and JIT compilation issues to the toolkit, has helped to focus design decisions on
the essential by removing the incidental.

Implementing the optimisations appropriate for a language like Python as a se-
quenceof byecode-to-bytecode transformations works well . This method of im-
plementing optimisations is conceptually straightforward, easy to implement and
easy to debug. The abilit y to add a new bytecode with a few lines of code and
have all the interpretersand theJIT compiler automatically updated makesexper-
imentationextremely easy.

131

132

Chapter 6

Results and Evaluation

6.1 In troduction

Evaluating the effectivenessof a toolkit li ke the GVMT is difficult to do directly.
To do so would require the development of two or more virtual machines from
the same specification; one using the GVMT, and the others using different tech-
niques. Even then it would be very hard to determinewhich characteristics of the
resulting VMs were due to differences in the developers and which were due to
the tools. Not only that, but the resources required would be well beyond those
available for this research. Evaluating the usefulnessof toolkits in general is an
even more impractical task. Since adirect comparison is impractical, the useful-
nessof the GVMT must evaluated indirectly by comparing the VMs built using
theGVMT with similar VMsconstructed using other methods.

6.2 Utili ty of theGVMT and Toolkits in General

As discussed in Chapter 3, the task of building a VM for a dynamic language
that integratesprecise garbage collection and a JIT compiler is difficult without a
toolkit. Of course, if buildinga VM for a dynamic languagewere just as difficult
with the toolkit, then the developer might decide not to bother using the toolkit,
perhapsoptingto use a conservativegarbage collector instead. Fortunately, toolk-
itsdo not need to impose excessivedifficulties; theGVMT doesnot.

Consider the GVMT-Scheme VM discussed in Section 4.10. To create aScheme
interpreter with thesamebasic functionality would haverequired asimilar amount
of code, since both would be written in a mixture of C (for the core VM) and
Scheme (for any libraries). The Scheme interpreter written without the toolkit
would not have had to conform to the GVMT interface, but would have required
integrating a conservative garbage collector. Integrating a conservative garbage

133

collector is a simple task, but so is conforming to the GVMT interface. Any
optimisers would not have had the benefit of the consistency checking provided
by the GVMT, and would thus have taken at least as longto develop. Overall , it
seems reasonable to expect that without the toolkit, the resulting VM would be
expected to have taken at least as much time to develop, and would lack precise
garbage collectionand JIT compilation.

6.3 Performanceof theGVMT SchemeVM

Althoughthe GVMT allows VMs to be developed quickly, in order to be useful
it must produceVMsof adequateperformance. TheGVMT-SchemeVM wasde-
signed for clarity and speed of development, nonethelessit should provide good
performance given that it performs basic optimisations, has precise garbage col-
lection and uses JIT compilation.

6.3.1 PerformanceCompar ison of Scheme VMs

Figure6.1 comparestheperformanceof GVMT-Schemeto threeother implemen-
tations: Mzscheme, described in Section 2.6.9, Bigloo, described in Section 2.6.9,
and SISC, a JVM based Scheme interpreter. SISC is a JVM based Scheme im-
plementation. It claims to be thefastest Scheme implementationfor theJVM, but
does not perform any optimisations of the sort used in Mzscheme or Bigloo. Its
complexity seems to be roughly ona par with that of GVMT-Scheme; the coreof
SISC contains rather more linesof code than GVMT-Scheme.

The three benchmarks are selected from the ‘computer language benchmark
game’1. All results are normalised to the Mzscheme interpreter without com-
pilation (mzscheme -i). The ‘- i’ suffix (gvmt -i and mzscheme -i) refers to
the interpreter-only version (no compilation). Note the logarithmic scale.

As can be seen from Figure 6.1, GVMT-Scheme performance is comparable to
that of Mzscheme. Considering thematurity of Mzscheme and given that GVMT
Scheme was developed in under three weeks, this is a very satisfactory result
which demonstrates theusefulnessof theGVMT.

Both Mzscheme and GVMT-scheme outperform SISC by a large margin. The
relatively poor performance of SISC, which runs on the JVM, serves to show
the problems of adapting a language to a VM designed for a different type of
language.

The performance of the Bigloo compiled code demonstrates that there is con-
siderable room for performance improvement in the VMs. However, in order to

1http://shootout.alioth.debian.org/

134

 0.1

 1

 10

queens

binary-trees

fannkuch

geo-m
ean

R
el

at
iv

e
S

pe
ed

bigloo
mzscheme

mzscheme -i
gvmt

gvmt -i
SISC

Figure6.1: Performanceof Scheme Implementations

move towards this level of performance, many sophisticated optimisationswould
be required.

6.4 Compar ison of Unladen Swallow, thePyPy VM,
and HotPy

In order to assessthe quality of the HotPy VM, it will be compared with three
other Pythoninterpreters: thestandard CPythoninterpreter, Unladen Swallow and
thePyPy VM; seeSections2.5.1, 2.5.5, 2.5.3 respectively.

Before comparing theperformanceof thevirtual machines, abrief comparison of
thediffering designsof the four VMs is in order.

6.4.1 Relevant Design Details

These four different systemsusedifferent techniques to implement theVM. Both
CPythonandUnladen Swallow arebuilt usingthestandard C andC++ compilers;

135

Unladen Swallow is a fork of CPython and uses LLVM to add JIT compilation.
HotPy and PyPy (VM) are built using tools, the GVMT and PyPy (tool-chain),
respectively.

HotPy and PyPy both have a generational garbage collector, whereas CPython
and Unladen Swallow use reference-counting for garbage collection. Unladen
Swallow performs profiling at runtime to guide subsequent compilation, whereas
HotPy and PyPy use tracing to drive subsequent optimisation. HotPy performs
most of itsoptimisationsas bytecode-to-bytecode transformation. PyPy performs
its optimisations on the same intermediate representation used to drive its cus-
tom machine-code generator. Unladen Swallow and HotPy both use LLVM for
machine-codegeneration.

A Noteon the Significanceof Results

The aim of the benchmarking exercise here is to compare not the individual im-
plementations, but the underlying techniques. Unfortunately it i s very difficult to
separate the two. Implementation details can account for a significant difference
in performance. Consequently, when comparing differing implementations, it i s
probably wisenot to attach muchsignificanceto small differencesin performance.

The difference in performance between the base line performance of Unladen
Swallow (which performsno optimisations) andPython 3isabout 10% (in Tables
6.1 and 6.2). This difference is wholly due to differing implementation details
between Python2 and Python3. It thus seems reasonable to ignore such small
differencesandto regard larger differences, of say upto 30%, asof limited signif-
icance.

For example, when comparing HotPy to Unladen Swallow, the comparison is be-
tween the underlying methods of building the virtual machine, the differing ap-
proaches to optimisation and efficiency of the code in the implementation. Al-
thoughit is possible to isolate these variables to some degree, it i s only possible
to be confident in a result i f thedifferences are large.

When comparingtheperformanceof two different settingsof thesameimplemen-
tation, thiscaution does not apply.

6.4.2 Benchmarks Used

There is no standard benchmark suite for Python. The Unladen Swallow bench-
mark suitehas becomethede facto standard for benchmarkingPython 2.x virtual
machines, but has not been ported to Python 3, so could not be used. The ‘py-
bench’ suite that is included with Python is designed for benchmarking compo-
nentsof CPythonandwould givewildly varying results for a trace-based special-

136

ising optimiser; some benchmarks would be optimised to nothing, others might
resist optimisation altogether. For example, one benchmark tests integer arith-
metic by performing a number of simple operations on constants. HotPy (and
PyPy) would optimisethese away entirely.

Six programs were chosen as benchmarks. The benchmarks were chosen to test
the VM rather than the supporting library. They exercise a range of the core
features of the VM, namely integer and floating point arithmetic, li st operations,
generators, iterators, simplestringmanipulationand very basic I/O.

Two benchmarks, ‘pystone’ and ‘r ichards’ , have been used for benchmarking
Pythonsince early versions. The ‘gcbench’ benchmark was taken from the Un-
laden Swallow benchmark suite, since abenchmark that stressed thegarbage col-
lector was required, and it is was trivial to port to Python 3. The remaining three
benchmarks, ‘f annkuch’ , ‘f asta’ and ‘spectral-norm’ , were taken from the Com-
puter LanguageShootout Game. HotPy’s limited library support ruled out anum-
ber of theComputer LanguageShootout Game benchmarks, the remainder of the
benchmarks tested either one library component, such as the regular expression
engine or large integer arithmetic, or were floating point computations. Since
Pythonis not generally used for computationally intensive tasks, including more
than onefloating point benchmark would bias theresults.

Thesource codefor all thebenchmarks is in the/benchmarks subdirectory of the
HotPy distribution.

6.4.3 Experimental Set Up

Themachineused wasan Intel Pentium 4 runningat 3.00GHz with 1Mb of cache,
running Linux. The machine was very lightly loaded (the X-server and Cron job
scheduler were both turned off) .

Theversionsof theVMs used were:

• HotPy — Revision 44 (built with GVMT revision 62), http://code.
google.com/p/hotpy/ http://code.google.com/p/gvmt/

• PyPy — Version 1.3, http://pypy.org/download/pypy-1.3-linux.
tar.bz2 and http://pypy.org/download/pypy-1.3-linux-nojit.
tar.bz2

• Unladen Swallow — Revision 1159, http://code.google.com/p/
unladen-swallow/

• CPython — Version 3.1.1, http://www.python.org/ftp/python/3.1.
1/Python-3.1.1.tgz

137

AlthoughHotPy has the potential to be multi -threaded, the experimental version
was single-threaded only; compilation was done in the main interpreter thread.
This seemed to be the fairest comparison as all the other VMs have aglobal in-
terpreter lock. The GVMT garbage collector expects to run in a multi -threaded
environment, so the garbage collector has to perform somesynchronisation, even
when runningasingle-threaded program. This seems to haveno noticeable effect
on performance.

Two variants of the HotPy VM were benchmarked. The two were the same ex-
cept for the getitem and setitem methods for lists. The first version (marked
‘C’) has the getitem and setitem methods written in C. The second version
(marked ‘Py’) has the methods written in Python. The Python implementations
of the methods delegate to more specialised versions written in C. The different
performance characteristics of the two libraries helps to ill ustrate the effect of
optimisation onPythoncode.

All benchmarks were run onall virtual machines for threedifferent durations, a
short run of about a second(±60%) for the CPython implementation, a medium
run of about ten seconds and a longrun of about one hundred seconds. The short
runs were used to demonstrate the lag effect of warm-up onthe optimisers; the
longrunswere to allow theoptimisers to warm up fully.

All benchmarks were run ten times, the slowest two discarded, and the rest aver-
aged. The entries in the column labelled ‘Mean’ are the geometric means of the
benchmark times.

All tables in this section show the performancerelative to CPython; larger num-
bersarebetter. The configurations, inputsandfull results, as times in seconds, for
all runsare shown in Appendix F.

6.4.4 BaseLine Performance

In order to assess the effectivenessof the toolkits in constructing simple, non-
optimising VMs, the performanceof the base interpreters was measured. All the
VMswererunwith JIT compilationturned off and, in the caseof HotPy, all other
optimisations were turned off as well . Tables 6.1 and 6.2 show the performance
of the two HotPy variants, Unladen Swallow and PyPy relative to CPython. Ta-
ble6.1 showsthe results for theshort runsand Table6.2 showsthe results for the
medium length runs. Results for the two lengths of runs are quite similar, which
is unsurprising given that no runtimeoptimisationsare taking place.

The small differences between the performance of Unladen Swallow (without
compilation) and CPython are a consequence of Unladen Swallow being based
on the2.6 releaseof CPython, rather than the3.1 release. Thedifferenceis small ,
but does show that implementation detailsdoeffect performance, even thoughthe
important features of thedesignare thesame.

138

gcbench pystone richards fannkuch fasta spectral Mean
Un. Sw. (no JIT) 1.00 1.19 0.68 1.29 1.37 1.30 1.11
HotPy (base, C) 1.52 1.30 1.15 1.05 0.52 0.83 1.01
HotPy (base, Py) 1.50 1.00 1.13 0.33 0.36 0.83 0.74
PyPy (interpreter) 0.69 0.62 0.37 0.91 0.47 0.87 0.62

Table 6.1: Unoptimised Interpreters. Short Benchmarks. Speed Relative to
CPython

gcbench pystone richards fannkuch fasta spectral Mean
Un. Sw. (no JIT) 0.99 1.18 0.66 1.28 1.35 1.35 1.10
HotPy (base, C) 1.54 1.34 1.20 1.11 0.50 0.88 1.03
HotPy (base, Py) 1.51 1.02 1.15 0.31 0.33 0.88 0.74
PyPy (interpreter) 0.66 0.60 0.35 0.87 0.44 0.91 0.60

Table 6.2: Unoptimised Interpreters. Medium Benchmarks. Speed Relative to
CPython

HotPy(C) runs at about the same speed as CPython. HotPy(Py) and PyPy are
both slower than CPython, by about the same margin. Of course, neither PyPy
nor HotPy are designed to be run without any optimisation. The performance
of HotPy(C) shows that a VM built with a toolkit need be no slower than one
constructed conventionally, even without any attempt at optimisation. HotPy(Py)
is noticeably slower than HotPy(C) as it must run extra Pythoncode, which it is
not optimising.

6.4.5 Full VM Performance

Tables6.3 and 6.4 show theperformanceof thetwoHotPy variantsandPyPy, with
their default settings. Unladen Swallow is also tested with two different settings;
thedefault setting, which compiles methodswhen hot, and with the JIT compiler
alwayson.

HotPy(C) is fastest on theshortest benchmarks, by a tiny margin over HotPy(Py).
PyPy is a littl e slower, but not by a significant amount. For the medium bench-
marks, PyPy is the fastest by about 10%, not asignificant margin.

The margins in the individual benchmarks are more significant. HotPy is faster
for the gcbench and pystonebenchmarks. The pystone benchmark is written in a
procedural style and is mainly integer based. Theuseof tagged integers isproba-
bly a big help to HotPy for this benchmark. The gcbench benchmark is designed

139

gcbench pystone richards fannkuch fasta spectral Mean
HotPy (JIT, C) 2.95 2.42 1.64 1.36 0.99 2.44 1.84
HotPy (JIT, Py) 2.94 2.38 1.56 1.46 0.94 2.45 1.82
PyPy (with JIT) 1.47 2.87 0.89 2.17 1.00 3.34 1.73

Un. Sw. (default) 1.07 0.48 0.37 0.68 0.84 1.06 0.70
Un. Sw. (always) 0.60 0.39 0.18 0.55 0.43 0.90 0.46

Table6.3: Full VM. Short Benchmarks. Speed Relative to CPython

gcbench pystone richards fannkuch fasta spectral Mean
PyPy (with JIT) 3.82 7.23 3.93 4.15 1.09 11.74 4.23
HotPy (JIT, Py) 5.63 7.72 2.32 3.41 1.92 4.63 3.81
HotPy (JIT, C) 5.39 7.85 2.54 2.70 2.12 4.66 3.77

Un. Sw. (always) 1.05 0.92 0.49 1.56 1.25 1.67 1.08
Un. Sw. (default) 1.21 0.69 0.44 0.66 1.32 2.09 0.93

Table6.4: Full VM. Medium Benchmarks. Speed Relative to CPython

to test garbage collection performance, but incidentally tests object initialisation
performance aswell . Thefastabenchmark tests simpletext formatingand output.
PyPy does not perform very well on this benchmark, only beating CPython bya
small margin. The main loop in fasta is driven by a generator2 so it is possible
that the version 1.3 of PyPy does not optimisegenerators well . Althoughit starts
more slowly PyPy is faster for the richards benchmark. The richards benchmark
has a number of balanced if statements which can create arelatively large num-
ber of traces for the program size. PyPy is able to cope better with this thanks to
its compiler, which is a lot faster than the LLVM-based compiler of HotPy. PyPy
is clearly faster for the spectral-norm benchmark. The spectral-norm benchmark
makesextensiveuseof floating point calculations, which isan areain which PyPy
is particularly strong.

The performance of Unladen Swallow is surprisingly poor, starting very slowly
and only just overtaking CPython for the medium length benchmarks. The
richards benchmark seems to cause Unladen Swallow even more problems than
the trace-based optimisers of HotPy and PyPy, which is surprising, as Un-
laden Swallow uses a function-at-a-time optimiser and shouldn’t care when both
branches of a conditional statement are taken.

In order to allow the slower LLVM-based compilers time to fully compile code,
Table 6.5 shows relative performance for the long benchmarks. For the longest

2Generators in Pythonare akind of iterator in form of a function that includes a yield ex-
pression. Each yield expression suspends execution of the function and returns a value. The
generator is resumed bycalli ng its__next__ method.

140

gcbench pystone richards fannkuch fasta spectral Mean
HotPy (JIT, Py) 9.77 12.86 4.14 5.09 2.64 7.24 6.08
HotPy (JIT, C) 8.82 13.54 4.24 3.64 2.96 7.26 5.83
PyPy (with JIT) 7.31 9.00 6.82 4.59 1.14 12.49 5.55

Un. Sw. (always) 1.09 1.09 0.60 1.89 1.61 1.83 1.26
Un. Sw. (default) 1.13 0.73 0.45 0.66 1.58 1.74 0.94

Table6.5: Full VM. LongBenchmarks. Speed Relative to CPython

runs, HotPy outperforms PyPy by an insignificant margin. HotPy is noticeable
faster thanPyPy for integer work (pystone), andslower for floating point (spectral-
norm). This suggests that HotPy would benefit from better optimisation of float-
ing point computations. Conversely, PyPy would benefit from improved inte-
ger performance and better handling of generators (if that is the problem in the
fastabenchmark). Unladen Swallow’sperformanceis still relatively poor, but im-
proved. Informal experiments showed that the performanceof Unladen Swallow
did not improveby much with even over longer runs.

6.4.6 Interpreter-Only Performance

gcbench pystone richards fannkuch fasta spectral Mean
HotPy (int-opt, C) 3.98 3.10 2.44 1.67 0.81 2.17 2.11
HotPy (int-opt, Py) 3.97 3.08 2.23 1.50 0.79 2.17 2.03
PyPy (interpreter) 0.69 0.62 0.37 0.91 0.47 0.87 0.62

Table6.6: Optimised Interpreters. Short Benchmarks. Speed Relative to CPython

gcbench pystone richards fannkuch fasta spectral Mean
HotPy (int-opt, C) 4.30 3.20 2.59 1.71 0.77 2.34 2.19
HotPy (int-opt, Py) 4.30 3.18 2.38 1.71 0.75 2.34 2.14
PyPy (interpreter) 0.66 0.60 0.35 0.87 0.44 0.91 0.60

Table 6.7: Optimised Interpreters. Medium Benchmarks. Speed Relative to
CPython

For some environments a JIT compiler is not available. Possibly the host device
lacks sufficient memory, or theresourcesfor portingtheJIT compiler arenot avail -
able. To simulate this case all the VMs are benchmarked with the JIT compiler
disabled, but other optimisations left functioning. The results are shown in Ta-
bles6.6 and 6.7. HotPy outperformsCPython bya factor of two, and outperforms

141

PyPy by a factor of three. This is an additional advantage of performing optimi-
sationsat thebytecode level; largeperformancegainscan bemadewhilekeeping
the advantagesof an interpreter, namely portabilit y and easeof maintenance.

It is worth pointing out that PyPy makes no attempt to optimise this case. It is
probable that by applying some of the optimisations used in the compiler, and
executing the resulting intermediate form, the PyPy interpreter could be made
faster.

6.4.7 Compar ing Compilation to Other Optimisations

gcbench pystone richards fannkuch fasta spectral Mean
HotPy (int-opt, C) 3.98 3.10 2.44 1.67 0.81 2.17 2.11
HotPy (int-opt, Py) 3.97 3.08 2.23 1.50 0.79 2.17 2.03
Un. Sw. (default) 1.07 0.48 0.37 0.68 0.84 1.06 0.70
Un. Sw. (always) 0.60 0.39 0.18 0.55 0.43 0.90 0.46

Table 6.8: Interpreter vs. Compiler. Short Benchmarks. Speed Relative to
CPython

gcbench pystone richards fannkuch fasta spectral Mean
HotPy (int-opt, C) 4.30 3.20 2.59 1.71 0.77 2.34 2.19
HotPy (int-opt, Py) 4.30 3.18 2.38 1.71 0.75 2.34 2.14
Un. Sw. (always) 1.05 0.92 0.49 1.56 1.25 1.67 1.08
Un. Sw. (default) 1.21 0.69 0.44 0.66 1.32 2.09 0.93

Table 6.9: Interpreter vs. Compiler. Medium Benchmarks. Speed Relative to
CPython

gcbench pystone richards fannkuch fasta spectral Mean
HotPy (int-opt, C) 6.20 3.24 2.61 1.72 0.90 2.40 2.41
HotPy (int-opt, Py) 6.15 3.22 2.33 1.74 0.87 2.39 2.35
Un. Sw. (always) 1.09 1.09 0.60 1.89 1.61 1.83 1.26
Un. Sw. (default) 1.13 0.73 0.45 0.66 1.58 1.74 0.94

Table 6.10: Interpreter vs. Compiler. Long Benchmarks. Speed Relative to
CPython

It is folklore that high performance in virtual machines is synonymous with JIT
compilation. Whilst this is generally true for static languages, it i s not neces-

142

sarily so for dynamic languages. Tables 6.8, 6.9 and 6.10 compare the perfor-
manceof Unladen Swallow and HotPy in interpreter-only mode. Unsurprisingly
for theshort benchmarksHotPy ismuch faster. Thedifferenceis still l argefor the
medium benchmarks.

For the longest benchmarks, Unladen Swallow with the JIT always on is faster
than HotPy for two of the benchmarks. The HotPy interpreter is faster on the
other long benchmarks, some by a large margin, and is significantly faster on
average. On thedefault setting, Unladen Swallow speedsupthefasta andspectral
norm benchmarks, but itsoverall performanceispoor. AlthoughHotPy appearsto
speed up onthe gcbench benchmark from the medium to the longruns, this is in
fact a slow down by CPythonand Unladen Swallow. This slow down is probably
caused by thegarbage-cycle collector which has non-linear behaviour.

The relatively poor performance of Unladen Swallow adds weight to the argu-
ment that dynamic languages, such as Python, are just not amenable to the sort
of optimisations used for static languages. Of course, oncethe dynamic form of
theprogram has been transformed into a form that is more statically-typed, using
tracingandspecialisation, then compilationto machine codeisauseful technique.

6.5 Aspectsof Vir tual MachinePerformance

Althoughthe goal of comparing the different virtual machines was to see the
effects of differing construction techniques, it also shed some light on the rela-
tive value of differing optimisation techniques. This merits further examination.
HotPy can beused asan experimental platform, asit isdesignedso that thevarious
optimisations are modular and can be turned on or off independently. The inter-
actions between variousoptimisations for dynamic languages can be explored by
runningHotPy with different settings.

The design of HotPy is such that all optimisations, including the compiler, work
on traces. It is therefore impossible for HotPy to do any optimisations without
first tracing. That is not to say that such optimisations cannot be done without
tracing. Willi amset al.[77] implement aspecialising interpreter for Lua, in which
specialisation is performed on demand. There is no separate tracing phase. They
report speed-ups of about 30%. However, sinceLua and Pythonare quite differ-
ent, it i s very hard to make any meaningful comparison of their results with the
results for HotPy.

6.5.1 Permutations

Apart from tracing, all other optimisation passes can be turned on or off indepen-
dently. Asdescribed in Section 5.5.1, theHotPy optimisers form a chain: tracing,

143

specialisation, deferred object creation (DOC), peephole optimisations and com-
pilation. Sincethe optimisersare designed to work as a chain, each passmay not
produce as clean code as it could, as each passrelies on the later passes to clean
it up. As a consequence, all permutationsare run with thepeepholeoptimiser on,
in order to minimisethiseffect.

The same set of benchmarks and durations, as described in Section 6.4.3, were
used. Thepermutationsof optimisationsused were:

• No tracing; thebase-line interpreter.

• Tracing only. (T)

• Tracing andspecialising. (TS)

• Tracing andDOC. (TD)

• Tracing, specialisingand DOC. (TSD)

• Tracing andcompilation. (TC)

• Tracing, specialisingand compilation. (TSC)

• Tracing, DOC and compilation. (TDC)

• Full , all four passes. (TSDC)

T TS TD TSD TC TSC TDC TSDC
Short Benchmarks 1.10 1.91 0.96 2.11 0.76 1.46 0.75 1.83

Medium Benchmarks 1.09 1.96 0.95 2.19 1.05 2.51 1.04 3.78
LongBenchmarks 1.16 2.14 1.01 2.41 1.24 3.42 1.25 5.83

Table6.11: HotPy(C) PerformancePermutations. Speeds Relative to CPython

T TS TD TSD TC TSC TDC TSDC
Short Benchmarks 0.80 1.30 0.73 1.97 0.54 1.07 0.56 1.82

Medium Benchmarks 0.78 1.31 0.71 2.14 0.74 1.70 0.78 3.80
LongBenchmarks 0.83 1.41 0.76 2.34 0.89 2.32 0.93 6.11

Table6.12: HotPy(Py) PerformancePermutations. Speeds Relative to CPython

T TS TD TSD TC TSC TDC
Short Benchmarks 1.73 — 2.18 — 1.92 — 2.45

Medium Benchmarks 1.80 — 2.31 — 2.39 — 3.63
LongBenchmarks 1.84 — 2.38 — 2.75 — 4.67

Table6.13: Speed Up Due to AddingSpecialiser; HotPy(C).

Tables 6.11 and 6.12 show the mean speeds of the various permutations relative
to CPython. Results for the individual benchmarksare shown in Appendix F.

144

T TS TD TSD TC TSC TDC
Short Benchmarks 0.87 1.10 — — 0.98 1.25 —

Medium Benchmarks 0.87 1.12 — — 1.00 1.51 —
LongBenchmarks 0.87 1.12 — — 1.00 1.71 —

Table6.14: Speed Up Due to AddingD.O.C.; HotPy(C).

T TS TD TSD TC TSC TDC
Short Benchmarks 0.69 0.77 0.77 0.87 — — —

Medium Benchmarks 0.96 1.28 1.10 1.73 — — —
LongBenchmarks 1.07 1.60 1.24 2.42 — — —

Table6.15: Speed Up Due to AddingCompiler; HotPy(C).

Theinterrelationsbetween thepassesareshown more clearly by Tables6.13, 6.14
and 6.15 for HotPy(C) and byTables 6.16, 6.17 and 6.18 for HotPy(Py). The ta-
bles show the relativespeed-ups for individual passes, for themean of thebench-
marks. Each column showsthespeed-upsfor addingtheoptimisation passfor that
table, to thepermutation of that column.

It is immediately clear that specialisation is important for performance. Thegains
for specialisation by itself are large. Not only that, specialisation significantly
improvesthequality of input to theother optimisers, generatingeven larger gains.
It is worth noting that both of thespecialisation-without-compilationsettings(TS
andTSD) outperform both of compilation-without-specialisationsettings(TC and
TDC) for all thebenchmarksof any duration.

Theutilit y of deferred object creation depends a lot on which other optimisations
are used. It is useful when combined with specialisation and even more useful
when compilation is used as well . When used with neither specialisation nor
compilation(TD), it actually slowscodedown. This is to be expected sinceDOC
relies on precise type information to avoid having to create objects acrosscalls
and operators. The interaction with compilation is a result of DOC generating
more bytecodes, that perform slightly less work, when no type information is

T TS TD TSD TC TSC TDC
Short Benchmarks 1.63 — 2.70 — 1.98 — 3.25

Medium Benchmarks 1.68 — 3.02 — 2.29 — 4.89
LongBenchmarks 1.71 — 3.09 — 2.62 — 6.56

Table6.16: Speed Up Due to AddingSpecialiser; HotPy(Py).

T TS TD TSD TC TSC TDC
Short Benchmarks 0.92 1.52 — — 1.03 1.70 —

Medium Benchmarks 0.91 1.63 — — 1.04 2.23 —
LongBenchmarks 0.92 1.66 — — 1.05 2.63 —

Table6.17: Speed Up Due to AddingD.O.C.; HotPy(Py).

145

T TS TD TSD TC TSC TDC
Short Benchmarks 0.68 0.82 0.76 0.92 — — —

Medium Benchmarks 0.95 1.30 1.09 1.78 — — —
LongBenchmarks 1.07 1.64 1.23 2.61 — — —

Table6.18: Speed Up Due to AddingCompiler; HotPy(Py).

available. This results in code that is a littl e faster once compiled, but is slower
when interpreted. DOC is a worthwhile optimisation, since when paired with
specialisation it always results in speedups; in thebest cases it more than doubles
performance.

Compilation byitself isof no use as it tends to slow codedown, but isvery useful
when following onfrom other optimisations. Compilationisdoubly reliant on the
quality of codegenerated by theupstream passes. Not only can the compiler pro-
ducebetter machine code from better bytecode, it can domore quickly, allowing
more code to be compiled which further increases performance.

Specialisation Is Key

Theresultsclearly show that trace-driven specialisationis thekeyoptimisationfor
HotPy, and byimplication for the optimisation of other dynamic languages. That
specialisation is important for optimising dynamic languages is not surprising;
what is slightly surprising is its effect on other optimisations. Without speciali -
sation, the D.O.C passis essentially uselessand compilation is not much better.
Compilation is at least seven times as effective (measured in terms of speedup)
with specialisation than without.

Specialisation unlocks theother optimisations. Althoughthespeed upfrom DOC
is about the same as that from specialisation and the speed upfrom compilation
exceeds these, theother optimisationsonly work well with specialised input.

Thepoor performanceof compilationwithout thehelp of specialisationmay shed
somelight ontheperformanceof Unladen Swallow. Unladen Swallow does some
profiling to gather type-information at runtime, but without trace-driven speciali -
sation thisappears to beof limited use.

6.6 Memory Usage

Increased performance often comes at the cost of increased memory usage, as
time-spacetradeoffscan bemade. Optimisers, especially compilerscan use con-
siderable amountsof memory.

146

6.6.1 Experimental Method

Real memory usage isdifficult to measurewith an operatingsystem that supports
virtual memory, sincethereal memory available to aprocessiseffectively hidden
by the operating system. Linux, which was the system used for development and
measurement, provides no consistent measure of real memory usage. Although
it is impossible to measure real memory usage without modifying the operating
system, it is possible to measure the minimum amount of virtual memory that a
VM needs to complete abenchmark.

Each benchmark (long version) was run repeatedly on each VM, successively in-
creasing the amount of themaximum amount of memory available to theprocess,
using the linux ulimit -v utilit y, until the processcompleted properly, 5 times
in a row.

6.6.2 Results

Table6.19showstheminimum amount of memory (in megabytes) required to run
each benchmark; smaller number arebetter. PyPy without aJIT isnot considered
as its performance is worse than CPython’s. The ‘hello’ benchmark is a single
line benchmark to test how much memory each VM requires in order to start up
andshut down.

hello gcbench pystone richards fannkuch fasta spectral
CPython 6 97 7 7 6 7 7

Un. Sw. (default) 16 111 21 22 20 21 18
HotPy (full) 44 113 63 65 64 62 62

HotPy (no comp) 26 87 27 28 29 27 27
PyPy (with JIT) 37 92 40 41 40 48 40

Table6.19: LongBenchmarks. Minimum Required Virtual Memory

As can be seen CPython uses considerably less memory than any of the other
VMs, except for the GCBench benchmark where HotPy (interpreter only) and
PyPy use alittl e lessthan CPython.

Considering all but the GCBench benchmarks, Unladen Swallow uses 11-15
Mbytes more than CPython, PyPy uses 33 to 41 Mbytes more, HotPy (without
the compiler) uses 17 to 20Mbytes more and HotPy (full) uses 50 to 55Mbytes
more.

Memory usage can be broken into two parts; fixed overheads and dynamic mem-
ory use. Clearly HotPy and PyPy have large fixed memory overheads. The fixed
overhead of HotPy (with compiler) isparticularly large.

147

Fixed Memory Overhead of HotPy

Thefixed memory overheadsof HotPy can bebroken down into threeparts; trans-
lation overheads, memory management overhead and theJIT compiler. These are
mainly attributable to theGVMT, rather than HotPy itself.

HotPy (without the compiler) uses 20 to 23 Mbytes more than CPython (except
for GCBench). Running HotPy with a memory debugger shows no significant
memory leaks. The GVMT runtime allocates an 8 Mbyte nursery at start up.
Recompili ng GVMT to use a1 Mbyte nursery reduces the memory usage by up
to 8 Mbytes. However, with a 1 Mbyte nursery GCBench uses almost as much
memory andrunsquite alot slower; avariablesized nursery isobviously required.
The GVMT linker also lays out memory rather sparsely, taking 1.5 Mbytes for
data that could befitted in 0.5 MBytes. In total, theheap isabout 8 Mbytes larger
than it needs to be at start up.

By default, Linux allocates 2 Mbytes of stack spaceper thread. GVMT creates
a collector thread and a finaliser thread in addition to the main thread. The sep-
aration of the HotPy VM frame stack from the underlying GVMT stack means
that HotPy can run deeply recursiveprogramswith very littl eC stack. Thismeans
that thestack spacefor each thread can be reduced to 100Kbytesor less. Experi-
mentally reducing thestack spaceto 100Kbytes(usingulimit) reducesmemory
usageby over 5 MBytes.

Clearly most of the overhead is an artifact of the implementation, rather than a
fundamental issue. Removing the combined overheads of nursery, layout and
stacks would reducethe fixed memory overhead from 20 MBytes down to 6 or 7
Mbytes. This should be addressed in futureversionsof theGVMT and HotPy.

TheHotPy compiler isbuilt as aseparate dynamically linked library, andadds 18
Mbytes for the ‘hello world’ program which loads the compiler, but does not run
it. Thiscomparesunfavourably to Unladen Swallow which addsabout 10Mbytes
fixed overhead to CPython.

Dynamic Memory Usageof HotPy

Thedynamic overhead of HotPy, that is the extramemory required to run isdom-
inated by the heap memory required for objects and the temporary memory re-
quired by theLLVM compiler backend.

Both HotPy and PyPy are able to reduce the memory footprint of object dic-
tionaries by sharing the keys. The effect of this is shown in the GCBench re-
sults. CPython and Unladen Swallow require about 90 Mbytes more than the
other benchmarks. HotPy requires about 60 Mbytes and PyPy requires about 50
Mbytes. AlthoughHotPy uses more memory than PyPy for its heap objects, it
uses asimpler approach than PyPy and uses a lot lessmemory than CPython.

148

The HotPy compiler uses a further 16 to 20 MBytes when executing. This is
considerably more than Unladen Swallow which addsup to 5Mbytesmorewhen
running. The reasons why the HotPy compiler uses so much more memory than
UnladenSwallow arenot clear. Both requireLLVM andtheGVMT generated part
of the compiler is lessthan 1 Mbyte. The final machine code by LLVM should
be compact and efficient; LLVM is competitive with GCC and the JIT compiler
generates the same code as the offline version. The machine code generated by
theHotPy VM seemsto be efficient, it outperformsUnladen Swallow by a consid-
erablemargin. It ispossiblethat theLLVM intermediaterepresentation generated
by the GVMT compiler is large and for some reason causes LLVM to use con-
siderable memory to perform its optimisations; the GVMT uses optimisations in
LLVM equivalent to the -O2 setting for thestatic compiler.

The best way to reducedynamic memory use would be to replaceLLVM with a
leaner compiler.

6.7 Effect of GarbageCollection

gcbench pystone richards fannkuch n-body richards
40.5% 6.4% 4.5% 6.2% 2.9% 5.8%

Table6.20: CPythonGC percentages

Non-GC
Speed up gcbench pystone richards fannkuch n-body richards Mean
× 2 1.4 1.9 1.9 1.9 1.9 1.9 1.8
× 3 1.7 2.7 2.8 2.7 2.8 2.7 2.5
× 5 1.9 4.0 4.2 4.0 4.5 4.1 3.6
× 8 2.1 5.5 6.1 5.6 6.7 5.7 5.0

Table6.21: Theoretical CPythonSpeedups

Table6.20showsthepercent timespent in explicit memory management function
in CPythonfor themedium benchmarks. Thedatawasgathered usingtheoprofile
profiling tool and summingthe execution timeof all functionsexplicitl y involved
in allocation or deallocation. No functionswhich initialiseobjectswere included,
nor was any attempt made to measure theoverhead of reference counting.

Table6.21show the expected overall speed-up of theVM if all other components
of theVM weresped up bythe factor on the left, but noattempt madeto improve
garbage collection performance.

149

Obviously thisisan over-simplification, but it suggest that reference counting does
not prevent useful improvementsin performance. However, if largespeed-upsare
required then theoverhead of poor garbage collectionwill become aproblem. To
achieve aspeed-up of five, the stated goal of Unladen Swallow and an achiev-
able goal, as PyPy and HotPy have demonstrated, would require speeding upthe
remainder of theVM by a factor of eight; quite an ambitious target.

6.8 Potential for Fur ther Optimisation

AlthoughPyPy and HotPy achieve significant speedups over CPython, they re-
main slow compared to VMs for Javaor C#, let alone compiled C or Fortran.

Althoughit is impossible to put a definite upper bound onthe performance of a
Python VM, it is reasonable to assume that a Python VM is not going to be as
fast ascompiled C codeor Javarunning onamodern VM. A direct comparison of
HotPy andPyPy to compiled C andamodern JavaVM isnot necessary meaning-
ful dueto many dynamic featuresof Pythonthat arenot present in statically typed
languages. Nonethelessa comparison does havesomevalue. It providesa (rather
high) upper bound onexpectations for possible performance improvements, and
gives someobjectiveway of measuring thequality of optimisation.

 1

 10

 100

 1000

gcbench

stones

richards

fannkuch

fasta

spectralnorm

R
el

at
iv

e
S

pe
ed

C (GCC -O3)
Java -Xint

Java
HotPy
PyPy

Figure6.2: Performanceof HotPy andPyPy compared to C and Java

150

Figure 6.2 shows the performance of HotPy, PyPy compared with C and Java
equivalents of the Python benchmarks. The C and Java versions of the first
threebenchmarks are broadly similar to the Python versions. The C version of
GCBench is a direct translation of the Java version, using the Boehm conserva-
tive collector to perform memory management. Thesecondthreebenchmarksare
taken from the Computer Language Benchmark Game, and are more idiomatic
for all threelanguages.

Source code is included in thebenchmarks folder of the HotPy distribution. The
Java VM used was OpenJDK 1.6.0_0(build 1.6.0_0-b11, mixed-mode, sharing),
using both thedefault settingand the interpreter-only setting(-Xint). TheC com-
piler was GCC 4.2.4 using -O3 optimisation.

It isclear from Figure6.2 that there isplenty of scopefor improving performance.
How much HotPy or PyPy could be improved is far from clear. What is clear is
that minor efficiency improvements, such as better machine code generation or
lower memory management overhead isnot going to makePythonas fast as Java;
completely new optimisationsare required.

6.8.1 Quali ty of Optimisation

Given some baseline performance and a target optimisation it is possible to cal-
culate aquality metric for an optimisation. For abaseline time, tb a target time tt ,
and the time for a VM being assessed tv, a metric can be calculated to assessthe
‘quality’ of the optimisationsapplied. The metric is designed so that no speedup
givesametric of 0 and achieving the target givesa metric of 1.

A logarithmic, rather than a linear, metric is chosen. The logarithmic metric
(log(tb)− log(tv))/(log(tb)− log(tt)) givesresultsonarangeof 0 to 1and givesa
metricof 0.5when thespeedupfor theVM isthesquareroot of thetarget speedup.
The linear metric, (tb/tv−1)/(tb/tt−1)), would giveunduly small valuesfor sig-
nificant speedups in cases where tt is much smaller than tb . Figure 6.3 shows
the‘quality’ , usingthe logarithmic metric, of theoptimisationsused in HotPy and
PyPy measured against CPythonasthebaseline andJava(OpenJDK) asthetarget.

With the exception of thefastabenchmark, thequaliti esof HotPy andPyPy cluster
around 0.5, a sort of half way mark. The fasta benchmark is the odd one out;
the quality metric for HotPy is low and for PyPy is close to zero. Although,
the fasta benchmark has been optimised especially for CPython, its style is not
that unusual, making heavy use of generators and list comprehensions. There
is no compelli ng reason why this should not be optimised as well as the other
benchmarks. Thismerits further investigation, perhaps suggesting that generators
and list comprehensionsare harder to optimisethan other constructs.

151

 0

 0.2

 0.4

 0.6

 0.8

 1

gcbench

stones

richards

fannkuch

fasta

spectralnorm

Q
ua

lit
y

HotPy
PyPy

Figure 6.3: Quality of HotPy and PyPy Optimisations Measured against Java
(OpenJDK)

6.9 Conclusions

Theresults in Sections6.4.7 and 6.5.1 show that althoughJIT compilation isnec-
essary for high performance, it i s not sufficient. Without applying optimisations
suitablefor dynamic languagesbeforegeneratingmachine code, theresultingma-
chine codewill li kely bebulky and inefficient.

The effective optimisation of dynamic languages requires a number of comple-
mentary optimisations. Althoughtracing and specialising can yield worthwhile
performancegains, toachievelarger gainsrequiresa combination of optimisations
includingJIT compilation. A high-performancegarbage collector isalso required
or the timespent managingmemory will dilute thehard won performancegains.

Althoughtheoptimisationsare complementary it i sclear that specialisation is the
key optimisation; without it all other optimisationsare of littl eor no value.

Analysisof thememory usageof HotPy showsthat theGVMT needs somerefine-
ments of its garbage collector implementation, in order to reduce wasted space.
Replacing LLVM would also reducememory usage.

AlthoughHotPy and PyPy have similar mean performance, the differences in-

152

dicate that each VM has areas which could implemented better, yielding further
performanceimprovementswithout novel optimisations. The comparison with C
andJavashowseven with refinements, neither HotPy nor PyPy achieve anywhere
near the performanceof statically typed, compiled code. How far this gap can be
closed remains an open question. The results in Section 6.8.1 show a measure of
thequality of optimisation, but thereno way to determinewhat level of quality is
attainable.

153

154

Chapter 7

Conclusions

7.1 Review of theThesis

In the introduction, the central thesisof thedissertationwas stated as:

The best way, in fact the only practical way, to build a high-performance
virtual machine for adynamic language isusinga tool or toolkit.

Such a toolkit should bedesigned aroundan abstract machinemodel.

Such a toolkit can be constructed in a modular fashion, allowing each tool
or component to usepre-existing toolsor components.

Using such a toolkit, it i s possible to build a virtual machine that is at least
as fast as virtual machines built using alternative techniques, and to do so
with lesseffort.

The enormous resources put into the JVM and CLR indicates that creating a vir-
tual machine that combines precise GC and JIT compilation is no easy task. Of
themany VMsdiscussed in Chapter 2, very few managed to combinepreciseGC
and JIT compilation, and those that did were for languages simpler than Python.
It isreasonableto concludethat integratingthe complex featuresof aVM requires
somesort of tool support.

It isunlikely that usingatoolkit based aroundan abstract machineis theonly way
toconstruct aVM for dynamic languages, but there arenocompelli ngalternatives.
As argued in Chapter 3, using a toolkit allows clear separation of low-level and
high-level concerns. Designingthetoolkit aroundawell -defined abstract machine
brings considerable benefits in modularity. The GVMT, discussed in Chapter 4,
demonstrated that toolkit can be made by modifying and wrapping pre-existing
tools in amodular fashion.

155

The utilit y of the GVMT was demonstrated by the construction of two different
VMs. In Chapter 6 comparison of the VMs constructed by the GVMT showed
that VMsconstructed by toolkitscan perform at least aswell as those constructed
by other means.

What is not clear is whether a tool with the power and generality of the GVMT
is required. For the construction of a single virtual machine a simpler special
purpose tool might bemore appropriate. Nonetheless, given that theGVMT does
exist, it i s avaluable tool for experimentationwith VM design.

7.2 Significant Results

As well as demonstrating that using a toolkit i s an effective way to create virtual
machines, this dissertation also ill uminates other aspects of the construction of
virtual machines for dynamic languages.

7.2.1 Bytecode-to-BytecodeOptimisations

The most important result is showing the effectivenessof bytecode-to-bytecode
translations as a means of optimising execution traces. Large speed ups are pos-
sible in purely interpreted code, by tracing and then applying specialisation and
escape analysis to the resulting traces. The speed ups gained are complementary
to those from compilation.

7.2.2 Compar ison of Optimisation Techniques

Analysisof theHotPy VM showstherelativepower of variousoptimisationtech-
niques and the dependencies between those optimisations. Specialisation was
shown, in addition to providing a speedup of its own, to be key to the other op-
timisations. Essentially, without specialisation, the other optimisations are not
worthwhile.

7.3 Dissertation Summary

As discussed in the introduction, the implementation of a high-performancevir-
tual machine for dynamic languages is a hard task. It is the central thesis of this
dissertation that the implementation of these VMs becomes more manageable by
usingatoolkit, without impairing performance. Theuseof a toolkit allowsproper

156

separation of high-level and low-level concerns. Low-level concerns such as inte-
gration of thegarbage collector andmachine-codegenerationaremanaged by the
toolkit, which leaves thedeveloper better able to addressthehigh-level issues.

The abstract machinemodel (Chapter 3) providesthis sameseparation of concerns
within the toolkit. The front-end tools target the abstract machine, and the back-
end tools need no knowledge of how the abstract machine code was generated.
This ismuch like are-targetable compiler.

The generality of the toolkit makes it flexible. When implementing the Glasgow
Virtual MachineToolkit (GVMT) (Chapter 4) I implicitl y assumed that VM func-
tion calls would map to GVMT function calls, and that the JIT compiler would
be compili ng whole functions. However, HotPy ended up using trace-based op-
timisation. Compili ng traces was no problem as the JIT compiler can compile
arbitrary (terminated) sequencesof bytecodes, andwasable to compiletraces just
aswell as functions.

The implementation of HotPy, as described in Chapter 5, makes full use of the
GVMT provided capabiliti es. The faciliti es for exception handling, JIT compila-
tion and garbage collection are used to the full . By using the GVMT, the imple-
mentation of HotPy has no dependence on the low-level implementation details
of GVMT provided components. As the implementer of HotPy, I was unawareof
what numerical value was assigned to each opcode, when the garbage collector
was run, or how thegarbage collector foundall references. TheJIT compiler was
alwaysavailable. Whenever anew bytecodewasadded or an old oneremoved, the
JIT compiler was automatically updated; the interpreter and JIT compiler always
obey thesamesemantics. Thetoolkit also ensured that all thebytecodeprocessors
conformed to thesamebytecode format.

Theonly real restrictionsthat theGVMT putsontheVM developer arethat thein-
put to theJIT compiler must bebytecodes, andthenecessary limitationsontheuse
of heap pointers. Therequirement that the input to theJIT compiler must bebyte-
codes forces the developer to implement optimisations as bytecode-to-bytecode
transformations. As argued in Chapter 3, this is not a problem as bytecode is a
goodintermediate representation. The HotPy optimisersdescribed in Section 5.5
were easy to implement and debug. The support for secondary bytecode inter-
preters provided by the GVMT made them easy to implement. They were easy
to debugas the output could be disassembled and visually scanned, which made
errors easy to locate.

The results shown in Chapter 6 clearly demonstrate that the enforced separation
of high-level and low-level optimisation is not harmful to performance. Not only
does separating the optimisations not harm performance, it allows the optimisa-
tions to be used independently. This was most clearly shown in Section 6.4.6,
where disabling compilation allowed HotPy to still perform reasonably well , but
crippled the other optimising VMs. The abilit y to separate high-level optimisa-
tions from low-level ones allows the relative utilit y of these to be demonstated in

157

Section 6.5.

The effectivenessof interpreter-only optimisations is a key discovery of this re-
search. As shown in Section 6.4.7, which compares an interpreter-only opti-
mising VM (HotPy) with a compiler-based VM (Unladen Swallow), trace-based
bytecode-to-bytecode optimisations can be an effective way of optimising dy-
namic languages. Not only is trace-based bytecode-to-bytecode optimisation an
effectiveoptimisation, it i san ideal precursor to conventional JIT compilation.

Althoughcompilationto machine code is still valuable, it should be implemented
after other optimisations. It is not only Python to which these arguments apply.
Theperformanceof Javascript VMsis important to many web-based applications;
Javascript programs are often short and the cost of JIT compilation, unlesscare-
fully engineered, can outweigh the advantages. Bytecode-to-bytecode translation
provides a possible alternative to JIT compilation as it will , in general, be faster
and use lessmemory.

Evaluating thememory usageof HotPy shows that theGVMT in its current form
creates VMs with large memory footprints. However, analysis shows that this
problem is not fundamentally due to the use a toolkit, rather it i s an artifact of
implementation.

Finally, the performance of HotPy and PyPy were compared to compiled C and
Java (the OpenJDK VM). Although both VMs manage achieve large speed ups
relative to CPython, their performance is much worse than either compiled C or
theJavaVM. Theperformanceof highly dynamic languagescan still beimproved
by a considerabledegree. How that should bedonehas yet to bediscovered.

7.4 Future Work

Further research can be divided into performance enhancements and the evalu-
ation of different VM optimisations. The lessons learnt can also be applied to
existingVMs.

The maximum benefit from bytecode-to-bytecode optimisations might be
achieved, not by large improvements in research VMs, but by applying these
optimisations to the mainstream VMs. Several dynamic languages, particularly
Ruby, would benefit from implementing trace-based bytecode-to-bytecode opti-
misations. However, thisdissertationfocuses onPython. TheCPythonVM could
be improved by applying the resultsof Chapter 6.

158

7.4.1 Applying theResearch to CPython

My recommendations for improving the performance of the CPython VM are
therefore as follows:

1. Determine a strategy for improving the garbage collector. This strategy
should be formulated first so that subsequent optimisations do not prevent
it being implemented.

2. Implement a tracerecorder for recording traces and a super-interpreter for
managing the execution of traces. The resulting traces, and output from
all subsequent optimisers, should be executable; this will allow separate
development and testing.

3. Implement aspecialisation pass, to specialise traces.

4. Implement adeferred object creation (DOC) pass, and peepholeoptimiser.

5. Once the specialisation and DOC passes are stabili sed and the bytecode
format is fixed, then a JIT compiler can be implemented. Since the input
to the JIT is already well optimised, a direct translation to LLVM IR1, or
equivalent, should work well .

6. Implement the strategy, determined in the first step, for improving the
garbage collector.

Thestrategy for improving thegarbage collector isoutside thescopeof thesis.

7.4.2 PerformanceEnhancements to theGVMT and HotPy

Performance enhancements for theGVMT are likely to beincremental changesof
limited scope and of littl e interest to the academic community. Theonly potential
for significant improvement is in the compiler implementation, which is rather
slow. HotPy isamuch morepromising direction, as there is thepotential for large
and interesting performanceimprovements.

An Almost-TraceCompiler

Trace-based optimisations are important in VMs, not only to allow specialisa-
tion, but because trace-based JIT compilers can be much faster than conventional
compilers yet still generate code of the same quality. The HotPy VM and poten-
tially other research VMsbuilt usingtheGVMT, usetracingat thebytecodelevel.

1http://llvm.org/docs/LangRef.html

159

However, thesetracesmay not beproper tracesat the abstract machinelevel, even
thoughthey are at thebytecode level.

For a system like HotPy, it would be goodfor the GVMT-generated compiler to
be as fast as a trace-based compiler, and be able to compile the ‘almost’ traces
that may result from proper traces at the bytecode level. If code quality does not
matter, it i s easy to make afaster compiler than the current LLVM compiler. The
challenge would be to extend a trace-based compiler to handle ‘almost’ traces,
producing quality code, but faster than the current LLVM-based compiler.

Other Bytecode-to-Bytecode Translations

HotPy, althoughconsiderably faster thanCPython, still l agsbehind other language
implementations. For example, theLuaJIT VM for Luaismuch faster. Obviously,
improving the performanceof the underlying toolkit will help to reducethis dif-
ference, but there is still much room for improvement at thebytecodelevel. A first
step would be to extend the DOC passto be able to defer object creation across
backward jumps at the end of loops and to unboxfloats (and possibly complex
numbers).

7.4.3 Evaluation of VM Optimisation Techniques

One potential use of the GVMT, and of HotPy, is as a fixed base for comparative
evaluation of optimisation techniques. For example, a more precise examination
of the relative merits of whole-function optimisation versus trace-based optimi-
sation could be made by implementing both of these optimisations in a single
VM built using the GVMT. The abilit y to reduce external factors to a minimum
is necessary to perform truly meaningful comparisons. As the GVMT Scheme
VM demonstrates, VMscan be constructed in atimeframethat makes this sort of
experimentation viable.

7.5 In Closing

The core message of this dissertation is that building a VM for a complex and
evolving language likePythonis much easier with aset of appropriate tools. The
key reason for this is that a VM consists of a number of closely interacting parts
that interfacein ways that conventional programming languages do not support
well . By converting the source code for the interpreter and libraries into abstract
machine code, it i s possible to analyse and transform this code. This enables the
codegenerators to weavethegarbage collector into therest of theVM, andmakes
it possibleto generate an interpreter andJIT compiler from thesamesource code.

160

The abilit y to change the interpreter source and have anew VM with a JIT com-
piler up and running within a minuteor two is enormously helpful. The speed of
development of known optimisationsin theVM isincreased considerably, andthe
abilit y to experiment very quickly helps with thedesign of new optimisations.

161

Appendix A

TheGVMT Abstract Machine
Instruction Set

In troduction

Thisappendix listsall 367instructionsof theGVMT abstract machineinstruction
set. Theinstructionset isnot aslarge asit first appears. Many of these aremultiple
versionsof theform OP_X whereX can be any or all of thetwelvedifferent types.
These types are I1, I2, I4, I8, U1, U2, U4, U8, F4, F8, P, R.

IX, UX and FX refer to a signed integer, unsigned integer and floating point real
of size (in bytes) X. P is a pointer and R is a reference. P pointers cannot point
into theGC heap. R references arepointers that can only point into theGC heap.

For all i nstructionswhere the type is a pointer sized integer, I4 and U4 for 32-bit
machines or I8 and U8 for 64-bit machines, there is an alias for each instruction
of the form OP_IPTR or OP_UPTR. E.g. on a 32-bit machine the instruction
ADD_I4 has an aliasADD_IPTR.

TOS is an abbreviation for top-of-stack and NOS is an abbreviation for next-on-
stack.

Each instruction is listed below in the form:

Name(inputs⇒ outputs)

Instructionstreameffect
Description of the instruction

162

#+ (—⇒—)

2 operand bytes. Pushes 1 byte to in-
structionstream.
Fetches the first two values in the in-
struction stream, adds them and pushes
theresult back to thestream.

#- (—⇒—)

2 operand bytes. Pushes 1 byte to in-
structionstream.
Fetches the first two values in the in-
struction stream, subtracts them and
pushes theresult back to thestream.

#n (—⇒—)

No operand bytes. Pushes 1 byte to in-
structionstream.
Push 1 byte value to the front of the in-
structionstream.

#2@ (—⇒ operand)

2 operand bytes.
Fetches the next 2 bytes from the in-
struction stream. Combine into an in-
teger, first byte is most significant.Push
onto thedatastack.

#4@ (—⇒ operand)

4 operand bytes.
Fetches the next 4 bytes from the in-
struction stream. Combine into an in-
teger, first byte is most significant.Push
onto thedatastack.

#@ (—⇒ operand)

1 operand byte.
Fetches the next byte from the instruc-
tionstream. Push onto thedatastack.

#[n] (—⇒—)

No operand bytes. Pushes 1 byte to in-
structionstream.
Only valid in an interpreter defintion.
Peeks into the instruction stream and
pushes the nth byte in the stream to the
front of the instructionstream.

ADDR(name) (—⇒ address)

Pushes the address of the global vari-
ablename to thestack (as apointer).

ADD_F4 (op1, op2⇒ result)

Binary operation: 32 bit floating point
add.

result := op1+ op2.

ADD_F8 (op1, op2⇒ result)

Binary operation: 64 bit floating point
add.

result := op1+ op2.

ADD_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
add.

result := op1+ op2.

163

ADD_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
add.

result := op1+ op2.

ADD_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
add.

result := op1+ op2.

ADD_P (op1, op2⇒ result)

Binary operation: pointer add.

result := op1+ op2.

ADD_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger add.

result := op1+ op2.

ADD_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger add.

result := op1+ op2.

ADD_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger add.

result := op1+ op2.

ALL OCA_F4 (n⇒ ptr)

Allocates space for n 32 bit float-
ing points in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed byaRETURN instruction.

ALL OCA_F8 (n⇒ ptr)

Allocates space for n 64 bit float-
ing points in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed byaRETURN instruction.

ALL OCA_I1 (n⇒ ptr)

Allocates spacefor n 8 bit signed inte-
gers in the current control stack frame,
leaving pointer to allocated space in
TOS. All memory allocated after a
PUSH_CURRENT_STATE is invali -
dated immediately by a RAISE, but not
necessarily immediately reclaimed. All
memory allocated is invalidated and re-
claimed by aRETURN instruction.

ALL OCA_I2 (n⇒ ptr)

Allocates space for n 16 bit signed
integers in the current control stack
frame, leaving pointer to allocated

164

spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed by aRETURN instruction.

ALL OCA_I4 (n⇒ ptr)

Allocates space for n 32 bit signed
integers in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed by aRETURN instruction.

ALL OCA_I8 (n⇒ ptr)

Allocates space for n 64 bit signed
integers in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed by aRETURN instruction.

ALL OCA_I4 (n⇒ ptr)

Allocates space for n 32 bit signed
integers in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed by aRETURN instruction.

ALL OCA_P (n⇒ ptr)

Allocates space for n pointers in
the current control stack frame, leav-
ing pointer to allocated space in
TOS. All memory allocated after a
PUSH_CURRENT_STATE is invali -
dated immediately by a RAISE, but not
necessarily immediately reclaimed. All
memory allocated is invalidated and re-
claimed by aRETURN instruction.

ALL OCA_R (n⇒ ptr)

Allocates space for n references in
the current control stack frame, leav-
ing pointer to allocated space in
TOS. All memory allocated after a
PUSH_CURRENT_STATE is invali -
dated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed by a RETURN instruction.
ALLOCA_R cannot be used after the
first HOP, BRANCH, TARGET, JUMP
or FAR_JUMPinstruction.

ALL OCA_U1 (n⇒ ptr)

Allocates space for n 8 bit unsigned
integers in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed byaRETURN instruction.

165

ALL OCA_U2 (n⇒ ptr)

Allocates space for n 16 bit unsigned
integers in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed by aRETURN instruction.

ALL OCA_U4 (n⇒ ptr)

Allocates space for n 32 bit unsigned
integers in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed by aRETURN instruction.

ALL OCA_U8 (n⇒ ptr)

Allocates space for n 64 bit unsigned
integers in the current control stack
frame, leaving pointer to allocated
spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed by aRETURN instruction.

ALL OCA_U4 (n⇒ ptr)

Allocates space for n 32 bit unsigned
integers in the current control stack
frame, leaving pointer to allocated

spacein TOS. All memory allocated af-
ter a PUSH_CURRENT_STATE is in-
validated immediately by a RAISE, but
not necessarily immediately reclaimed.
All memory allocated is invalidated and
reclaimed byaRETURN instruction.

AND_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
bitwise and.

result := op1& op2.

AND_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
bitwise and.

result := op1& op2.

AND_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
bitwise and.

result := op1& op2.

AND_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger bitwise and.

result := op1& op2.

AND_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger bitwise and.

result := op1& op2.

166

AND_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger bitwise and.

result := op1& op2.

BRANCH_F(n) (cond⇒—)

Branch if TOSiszero to Target(n). TOS
must be an integer.

BRANCH_T(n) (cond⇒—)

Branch if TOS is non-zero to Target(n).
TOSmust be an integer.

CALL _F4 (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack isthe callee’s
responsibilit y. Thefunctioncalled must
return a 32 bit floating point.

CALL _F8 (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack isthe callee’s
responsibilit y. Thefunctioncalled must
return a 64 bit floating point.

CALL _I4 (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack isthe callee’s
responsibilit y. Thefunctioncalled must
return a 32 bit signed integer.

CALL _I8 (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack is the callee’s
responsibilit y. Thefunctioncalled must
return a64 bit signed integer.

CALL _I4 (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack is the callee’s
responsibilit y. Thefunctioncalled must
return a32 bit signed integer.

CALL _P (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack is the callee’s
responsibilit y. Thefunctioncalled must
return apointer.

CALL _R (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack is the callee’s
responsibilit y. Thefunctioncalled must
return a reference.

CALL _U4 (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack is the callee’s
responsibilit y. Thefunctioncalled must
return a32 bit unsigned integer.

167

CALL _U8 (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack isthe callee’s
responsibilit y. Thefunctioncalled must
return a64 bit unsigned integer.

CALL _U4 (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack isthe callee’s
responsibilit y. Thefunctioncalled must
return a32 bit unsigned integer.

CALL _V (—⇒ value)

Calls the function whose address is
TOS. TOS must be apointer. Removal
parameters from thestack isthe callee’s
responsibilit y. Thefunctioncalled must
return void.

D2F (val⇒ result)

Converts 64 bit floating point to 32 bit
floating point. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

D2I (val⇒ result)

Converts 64 bit floating point to 32 bit
signed integer. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

D2L (val⇒ result)

Converts 64 bit floating point to 64 bit
signed integer. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

DIV_F4 (op1, op2⇒ result)

Binary operation: 32 bit floating point
divide.

result := op1 / op2. Rounds towards
zero.

DIV_F8 (op1, op2⇒ result)

Binary operation: 64 bit floating point
divide.

result := op1 / op2. Rounds towards
zero.

DIV_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
divide.

result := op1 / op2. Rounds towards
zero.

DIV_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
divide.

result := op1 / op2. Rounds towards
zero.

168

DIV_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
divide.

result := op1 / op2. Rounds towards
zero.

DIV_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger divide.

result := op1 / op2. Rounds towards
zero.

DIV_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger divide.

result := op1 / op2. Rounds towards
zero.

DIV_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger divide.

result := op1 / op2. Rounds towards
zero.

DROP (top⇒—)

Drops the top value from thestack.

DROP_N (n⇒—)

1 operand byte.
Drops n values from the stack at offset
fetched from stream.E.g. for offset=1

and n=2, TOS would be untouched, but
NOSand 3OSwould bediscarded

EQ_F4 (op1, op2⇒ comp)

Comparison operation: 32 bit floating
point equals.

comp := op1= op2.

EQ_F8 (op1, op2⇒ comp)

Comparison operation: 64 bit floating
point equals.

comp := op1= op2.

EQ_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger equals.

comp := op1= op2.

EQ_I8 (op1, op2⇒ comp)

Comparison operation: 64 bit signed in-
teger equals.

comp := op1= op2.

EQ_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger equals.

comp := op1= op2.

169

EQ_P (op1, op2⇒ comp)

Comparison operation: pointer equals.

comp := op1= op2.

EQ_R (op1, op2⇒ comp)

Comparison operation: reference
equals.

comp := op1= op2.

EQ_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer equals.

comp := op1= op2.

EQ_U8 (op1, op2⇒ comp)

Comparison operation: 64 bit unsigned
integer equals.

comp := op1= op2.

EQ_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer equals.

comp := op1= op2.

EXT_I1 (value⇒ extended)

Sign extends TOS from to a I1 to a
pointer-sized integer.

EXT_I2 (value⇒ extended)

Sign extends TOS from to a I2 to a
pointer-sized integer.

EXT_I4 (value⇒ extended)

Sign extends TOS from to a I4 to a
pointer-sized integer.

EXT_I4 (value⇒ extended)

Sign extends TOS from to a I4 to a
pointer-sized integer.

EXT_U1 (value⇒ extended)

Zero extends TOS from to a U1 to a
pointer-sized integer.

EXT_U2 (value⇒ extended)

Zero extends TOS from to a U2 to a
pointer-sized integer.

EXT_U4 (value⇒ extended)

Zero extends TOS from to a U4 to a
pointer-sized integer.

EXT_U4 (value⇒ extended)

Zero extends TOS from to a U4 to a
pointer-sized integer.

170

F2D (val ⇒ result)

Converts 32 bit floating point to 64 bit
floating point. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

F2I (val⇒ result)

Converts 32 bit floating point to 32 bit
signed integer. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

F2L (val⇒ result)

Converts 32 bit floating point to 64 bit
signed integer. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

FAR_JUMP (ip⇒—)

Continue interpretation, with the cur-
rent abstract machine state, at the IP
popped from the stack. FAR_JUMP
is intended for unusual flow control in
code processors and the like.Warning:
This instruction is not supported in
compiled code, in order to use jumps in
compiled codeuseJUMPinstead.

FIELD_IS_NOT_NULL (object, off-
set ⇒ value)

Tests whether an object field is null .
Equivalent to RLOAD_X 0 EQ_X
where X is a R, P or a pointer sized in-
teger.

FIELD_IS_NULL (object, offset ⇒
value)

Tests whether an object field is null .
Equivalent to RLOAD_X 0 EQ_X
where X is a R, P or a pointer sized in-
teger.

FILE(name) (—⇒—)

Declares the source file for this code.
Informational only, li ke#FILE in C.

FULLY_INITIALIZED (object ⇒—
)

Declare TOS object to be fully-
initialised.This allows optimisations to
be made by the toolkit.Drops TOS as a
side effect. TOS must be areference,it
isa(serious) error if TOSobjecthasany
uninitialised referencefields

GC_MALL OC (size⇒ ref)

Allocates size bytes in the heap leav-
ing reference to allocated space in
TOS. GC pass may replace with a
faster inline version. Defaults to
GC_MALLOC_CALL.

GC_MALL OC_CALL (size⇒ ref)

Allocates size bytes, via a call to
the GC collector. Generally users
should use GC_MALLOC and allow
the toolkit to substitute appropriate in-
line code.Safe to use, but front-ends
should useGC_MALLOC instead.

171

GC_MALL OC_FAST (size⇒ ref)

Fast allocates size bytes, ref is 0 if
cannot allocate fast. Generally users
should use GC_MALLOC and allow
the toolkit to substitute appropriate in-
line code.For internal toolkit useonly.

GC_SAFE (—⇒—)

Declares thispoint to be asafepoint for
garbage collection to occur at. GC pass
should replacewith a custom version.
Defaults to GC_SAFE_CALL.

GC_SAFE_CALL (—⇒—)

CallsGC to inform it that calli ngthread
is safe for garbage collection. Gener-
ally users should useGC_SAFE andal-
low the toolkit to substitute appropriate
inline code.

GE_F4 (op1, op2⇒ comp)

Comparison operation: 32 bit floating
point greater than or equals.

comp := op1≥ op2.

GE_F8 (op1, op2⇒ comp)

Comparison operation: 64 bit floating
point greater than or equals.

comp := op1≥ op2.

GE_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger greater than or equals.

comp := op1≥ op2.

GE_I8 (op1, op2⇒ comp)

Comparison operation: 64 bit signed in-
teger greater than or equals.

comp := op1≥ op2.

GE_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger greater than or equals.

comp := op1≥ op2.

GE_P (op1, op2⇒ comp)

Comparison operation: pointer greater
than or equals.

comp := op1≥ op2.

GE_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer greater than or equals.

comp := op1≥ op2.

GE_U8 (op1, op2⇒ comp)

Comparison operation: 64 bit unsigned
integer greater than or equals.

comp := op1≥ op2.

172

GE_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer greater than or equals.

comp := op1≥ op2.

GT_F4 (op1, op2⇒ comp)

Comparison operation: 32 bit floating
point greater than.

comp := op1> op2.

GT_F8 (op1, op2⇒ comp)

Comparison operation: 64 bit floating
point greater than.

comp := op1> op2.

GT_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger greater than.

comp := op1> op2.

GT_I8 (op1, op2⇒ comp)

Comparison operation: 64 bit signed in-
teger greater than.

comp := op1> op2.

GT_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger greater than.

comp := op1> op2.

GT_P (op1, op2⇒ comp)

Comparison operation: pointer greater
than.

comp := op1> op2.

GT_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer greater than.

comp := op1> op2.

GT_U8 (op1, op2⇒ comp)

Comparison operation: 64 bit unsigned
integer greater than.

comp := op1> op2.

GT_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer greater than.

comp := op1> op2.

HOP(n) (—⇒—)

Jump (unconditionally) to TARGET(n)

I2D (val ⇒ result)

Converts 32 bit signed integer to 64 bit
floating point. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

173

I2F (val⇒ result)

Converts 32 bit signed integer to 32 bit
floating point. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

INSERT (n⇒ address)

1 operand byte.
Pops count off the stack. Inserts n
NULLs into the stack at offset fetched
from theinstructionstream.Ensuresthat
all i nserted values are flushed to mem-
ory. Pushes the addressof first inserted
slot to thestack.

INV_I4 (op1⇒ value)

Unary operation: 32 bit signed integer
bitwise invert.

INV_I8 (op1⇒ value)

Unary operation: 64 bit signed integer
bitwise invert.

INV_I4 (op1⇒ value)

Unary operation: 32 bit signed integer
bitwise invert.

INV_U4 (op1⇒ value)

Unary operation: 32 bit unsigned inte-
ger bitwise invert.

INV_U8 (op1⇒ value)

Unary operation: 64 bit unsigned inte-
ger bitwise invert.

INV_U4 (op1⇒ value)

Unary operation: 32 bit unsigned inte-
ger bitwise invert.

IP (—⇒ instruction_pointer)

Pushes the current (interpreter) instruc-
tion pointer to TOS.

JUMP (—⇒—)

2 operand bytes.
Only valid in bytecode context. Per-
forms VM jump. Jumps by N bytes,
where N is the next two-byte value in
the instructionstream.

L2D (val⇒ result)

Converts 64 bit signed integer to 64 bit
floating point. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

L2F (val⇒ result)

Converts 64 bit signed integer to 32 bit
floating point. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

174

L2I (val ⇒ result)

Converts 64 bit signed integer to 32 bit
signed integer. This is a convertion, not
a cast. It is the value that remains the
same, not thebit-pattern.

LADDR(name) (—⇒ addr)

Pushes the addressof the local variable
’name’ to TOS.

LE_F4 (op1, op2⇒ comp)

Comparison operation: 32 bit floating
point lessthan or equals.

comp := op1≤ op2.

LE_F8 (op1, op2⇒ comp)

Comparison operation: 64 bit floating
point lessthan or equals.

comp := op1≤ op2.

LE_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger lessthan or equals.

comp := op1≤ op2.

LE_I8 (op1, op2⇒ comp)

Comparison operation: 64 bit signed in-
teger lessthan or equals.

comp := op1≤ op2.

LE_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger lessthan or equals.

comp := op1≤ op2.

LE_P (op1, op2⇒ comp)

Comparison operation: pointer less
than or equals.

comp := op1≤ op2.

LE_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer lessthan or equals.

comp := op1≤ op2.

LE_U8 (op1, op2⇒ comp)

Comparison operation: 64 bit unsigned
integer lessthan or equals.

comp := op1≤ op2.

LE_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer lessthan or equals.

comp := op1≤ op2.

LINE(n) (—⇒—)

Set the source code line number of the
source code. Informational only, li ke
#LINE in C.

175

LOCK (lock ⇒—)

Lock thegvmt-lock pointed to by TOS.
Pop TOS.

LOCK_INTERNAL (offset, object⇒
—)

Lock thegvmt-lock in object referred to
by TOS at offset NOS. Pop both refer-
ence and offset from stack.

LSH_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
left shift.

result := op1≪ op2.

LSH_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
left shift.

result := op1≪ op2.

LSH_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
left shift.

result := op1≪ op2.

LSH_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger left shift.

result := op1≪ op2.

LSH_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger left shift.

result := op1≪ op2.

LSH_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger left shift.

result := op1≪ op2.

LT _F4 (op1, op2⇒ comp)

Comparison operation: 32 bit floating
point lessthan.

comp := op1< op2.

LT _F8 (op1, op2⇒ comp)

Comparison operation: 64 bit floating
point lessthan.

comp := op1< op2.

LT _I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger lessthan.

comp := op1< op2.

LT _I8 (op1, op2⇒ comp)

Comparison operation: 64 bit signed in-
teger lessthan.

comp := op1< op2.

176

LT _I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger lessthan.

comp := op1< op2.

LT _P (op1, op2⇒ comp)

Comparison operation: pointer less
than.

comp := op1< op2.

LT _U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer lessthan.

comp := op1< op2.

LT _U8 (op1, op2⇒ comp)

Comparison operation: 64 bit unsigned
integer lessthan.

comp := op1< op2.

LT _U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer lessthan.

comp := op1< op2.

MOD_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
modulo.

result := op1

MOD_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
modulo.

result := op1

MOD_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
modulo.

result := op1

MOD_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger modulo.

result := op1

MOD_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger modulo.

result := op1

MOD_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger modulo.

result := op1

MUL_F4 (op1, op2⇒ result)

Binary operation: 32 bit floating point
multiply.

result := op1× op2.

177

MUL_F8 (op1, op2⇒ result)

Binary operation: 64 bit floating point
multiply.

result := op1× op2.

MUL_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
multiply.

result := op1× op2.

MUL_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
multiply.

result := op1× op2.

MUL_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
multiply.

result := op1× op2.

MUL_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger multiply.

result := op1× op2.

MUL_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger multiply.

result := op1× op2.

MUL_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger multiply.

result := op1× op2.

NAME(n,name) (—⇒—)

Name the nth temporary variable, for
debugging purposes.

NARG_F4 (val⇒—)

Native argument of type 32 bit floating
point. TOSispushed to thenative argu-
ment stack.

NARG_F8 (val⇒—)

Native argument of type 64 bit floating
point. TOSispushed to thenative argu-
ment stack.

NARG_I4 (val⇒—)

Native argument of type 32 bit signed
integer. TOS is pushed to the native ar-
gument stack.

NARG_I8 (val⇒—)

Native argument of type 64 bit signed
integer. TOS is pushed to the native ar-
gument stack.

178

NARG_I4 (val ⇒—)

Native argument of type 32 bit signed
integer. TOS is pushed to the native ar-
gument stack.

NARG_P (val ⇒—)

Native argument of type pointer. TOS
ispushed to thenative argument stack.

NARG_U4 (val ⇒—)

Native argument of type32 bit unsigned
integer. TOS is pushed to the native ar-
gument stack.

NARG_U8 (val ⇒—)

Native argument of type64 bit unsigned
integer. TOS is pushed to the native ar-
gument stack.

NARG_U4 (val ⇒—)

Native argument of type32 bit unsigned
integer. TOS is pushed to the native ar-
gument stack.

NEG_F4 (op1⇒ value)

Unary operation: 32 bit floating point
negate.

NEG_F8 (op1⇒ value)

Unary operation: 64 bit floating point
negate.

NEG_I4 (op1⇒ value)

Unary operation: 32 bit signed integer
negate.

NEG_I8 (op1⇒ value)

Unary operation: 64 bit signed integer
negate.

NEG_I4 (op1⇒ value)

Unary operation: 32 bit signed integer
negate.

NEXT_IP (—⇒ instruction_pointer)

Pushes the (interpreter) instruction
pointer for the next instruction to TOS.
This isequal to IPplus the length of the
current bytecode

NE_F4 (op1, op2⇒ comp)

Comparison operation: 32 bit floating
point not equals.

comp := op1eq op2.

NE_F8 (op1, op2⇒ comp)

Comparison operation: 64 bit floating
point not equals.

comp := op1eq op2.

179

NE_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger not equals.

comp := op1eq op2.

NE_I8 (op1, op2⇒ comp)

Comparison operation: 64 bit signed in-
teger not equals.

comp := op1eq op2.

NE_I4 (op1, op2⇒ comp)

Comparison operation: 32 bit signed in-
teger not equals.

comp := op1eq op2.

NE_P (op1, op2⇒ comp)

Comparison operation: pointer not
equals.

comp := op1eq op2.

NE_R (op1, op2⇒ comp)

Comparison operation: reference not
equals.

comp := op1eq op2.

NE_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer not equals.

comp := op1eq op2.

NE_U8 (op1, op2⇒ comp)

Comparison operation: 64 bit unsigned
integer not equals.

comp := op1eq op2.

NE_U4 (op1, op2⇒ comp)

Comparison operation: 32 bit unsigned
integer not equals.

comp := op1eq op2.

N_CALL _F4(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be a32 bit floating point.

N_CALL _F8(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be a64 bit floating point.

N_CALL _I4(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be a32 bit signed integer.

180

N_CALL _I4(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be a32 bit signed integer.

N_CALL _I8(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be a64 bit signed integer.

N_CALL _NO_GC_F4(n) (— ⇒
value)

As N_CALL_F4(n). Garbage collec-
tion is suspended during this call . Only
use the NO_GC variant for calls which
cannot block. If unsureuseN_CALL.

N_CALL _NO_GC_F8(n) (— ⇒
value)

As N_CALL_F8(n). Garbage collec-
tion is suspended during this call . Only
use the NO_GC variant for calls which
cannot block. If unsureuseN_CALL.

N_CALL _NO_GC_I4(n) (— ⇒
value)

AsN_CALL_I4(n). Garbage collection
is suspended during this call . Only use
theNO_GC variant for callswhich can-
not block. If unsureuseN_CALL.

N_CALL _NO_GC_I4(n) (— ⇒
value)

As N_CALL_I4(n). Garbage collection
is suspended during this call . Only use
theNO_GC variant for callswhich can-
not block. If unsureuseN_CALL.

N_CALL _NO_GC_I8(n) (— ⇒
value)

As N_CALL_I8(n). Garbage collection
is suspended during this call . Only use
theNO_GC variant for callswhich can-
not block. If unsureuseN_CALL.

N_CALL _NO_GC_P(n) (— ⇒
value)

As N_CALL_P(n). Garbage collection
is suspended during this call . Only use
theNO_GC variant for callswhich can-
not block. If unsureuseN_CALL.

N_CALL _NO_GC_R(n) (— ⇒
value)

As N_CALL_R(n). Garbage collection
is suspended during this call . Only use
theNO_GC variant for callswhich can-
not block. If unsureuseN_CALL.

N_CALL _NO_GC_U4(n) (— ⇒
value)

As N_CALL_U4(n). Garbage collec-
tion is suspended during this call . Only
use the NO_GC variant for calls which
cannot block. If unsureuseN_CALL.

181

N_CALL _NO_GC_U4(n) (— ⇒
value)

As N_CALL_U4(n). Garbage collec-
tion is suspended during this call . Only
use the NO_GC variant for calls which
cannot block. If unsureuseN_CALL.

N_CALL _NO_GC_U8(n) (— ⇒
value)

As N_CALL_U8(n). Garbage collec-
tion is suspended during this call . Only
use the NO_GC variant for calls which
cannot block. If unsureuseN_CALL.

N_CALL _NO_GC_V(n) (— ⇒
value)

As N_CALL_V(n). Garbage collection
is suspended during this call . Only use
theNO_GC variant for callswhich can-
not block. If unsureuseN_CALL.

N_CALL _P(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be apointer.

N_CALL _R(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be areference.

N_CALL _U4(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be a 32 bit unsigned inte-
ger.

N_CALL _U4(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be a 32 bit unsigned inte-
ger.

N_CALL _U8(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be a 64 bit unsigned inte-
ger.

N_CALL _V(n) (—⇒ value)

Calls the function whose address is
TOS. Uses the native calli ng conven-
tion for this platform with 0 parameters
which are popped from the native ar-
gument stack. Pushes the return value
which must be avoid.

182

OPCODE (—⇒ opcode)

Pushes the current opcode to TOS.

OR_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
bitwiseor.

result := op1| op2.

OR_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
bitwiseor.

result := op1| op2.

OR_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
bitwiseor.

result := op1| op2.

OR_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger bitwiseor.

result := op1| op2.

OR_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger bitwiseor.

result := op1| op2.

OR_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger bitwiseor.

result := op1| op2.

PICK_F4 (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PICK_F8 (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PICK_I4 (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PICK_I8 (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PICK_I4 (—⇒ nth)

1 operand byte.
Picks the nth item from the data

183

stack(TOS is index 0)and pushes it to
TOS.

PICK_P (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PICK_R (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PICK_U4 (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PICK_U8 (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PICK_U4 (—⇒ nth)

1 operand byte.
Picks the nth item from the data
stack(TOS is index 0)and pushes it to
TOS.

PIN (object ⇒ pinned)

Pins the object on TOS. Changes type
of TOSfrom areferenceto apointer.

PINNED_OBJECT (pointer ⇒ ob-
ject)

Declares that pointer is in fact a refer-
ence to a pinned object. Changes type
of TOS from a pointer to a reference. It
is an error if the pointer is not a refer-
ence to a pinned object. Incorrect use
of this instructioncan bedifficult to de-
tect. Usewith care.

PLOAD_F4 (addr ⇒ value)

Load from memory. Push 32 bit float-
ing point value loaded from address in
TOS(which must be apointer).

PLOAD_F8 (addr ⇒ value)

Load from memory. Push 64 bit float-
ing point value loaded from address in
TOS(which must be apointer).

PLOAD_I1 (addr ⇒ value)

Load from memory. Push 8 bit signed
integer value loaded from address in
TOS(which must be apointer).

PLOAD_I2 (addr ⇒ value)

Load from memory. Push 16 bit signed
integer value loaded from address in
TOS(which must be apointer).

184

PLOAD_I4 (addr ⇒ value)

Load from memory. Push 32 bit signed
integer value loaded from address in
TOS(which must be apointer).

PLOAD_I8 (addr ⇒ value)

Load from memory. Push 64 bit signed
integer value loaded from address in
TOS(which must be apointer).

PLOAD_I4 (addr ⇒ value)

Load from memory. Push 32 bit signed
integer value loaded from address in
TOS(which must be apointer).

PLOAD_P (addr ⇒ value)

Load from memory. Push pointer value
loaded from address in TOS (which
must be apointer).

PLOAD_R (addr ⇒ value)

Load from memory. Push reference
value loaded from address in TOS
(which must be apointer).

PLOAD_U1 (addr ⇒ value)

Load from memory. Push 8 bit un-
signed integer value loaded from ad-
dressin TOS(which must be apointer).

PLOAD_U2 (addr ⇒ value)

Load from memory. Push 16 bit un-
signed integer value loaded from ad-
dressin TOS(which must be apointer).

PLOAD_U4 (addr ⇒ value)

Load from memory. Push 32 bit un-
signed integer value loaded from ad-
dressin TOS(which must be apointer).

PLOAD_U8 (addr ⇒ value)

Load from memory. Push 64 bit un-
signed integer value loaded from ad-
dressin TOS(which must be apointer).

PLOAD_U4 (addr ⇒ value)

Load from memory. Push 32 bit un-
signed integer value loaded from ad-
dressin TOS(which must be apointer).

POP_STATE (—⇒ value)

Pops and discards the state-object on
top of thestatestack.

PSTORE_F4 (value, arr ay⇒—)

Store to memory. Store 32 bit floating
point value in NOS to addressin TOS.
(TOSmust be apointer)

PSTORE_F8 (value, arr ay⇒—)

Store to memory. Store 64 bit floating
point value in NOS to addressin TOS.

185

(TOS must be apointer)

PSTORE_I1 (value, arr ay⇒—)

Store to memory. Store 8 bit signed in-
teger value in NOS to addressin TOS.
(TOS must be apointer)

PSTORE_I2 (value, arr ay⇒—)

Storeto memory. Store16 bit signed in-
teger value in NOS to addressin TOS.
(TOS must be apointer)

PSTORE_I4 (value, arr ay⇒—)

Storeto memory. Store32 bit signed in-
teger value in NOS to addressin TOS.
(TOS must be apointer)

PSTORE_I8 (value, arr ay⇒—)

Storeto memory. Store64 bit signed in-
teger value in NOS to addressin TOS.
(TOS must be apointer)

PSTORE_I4 (value, arr ay⇒—)

Storeto memory. Store32 bit signed in-
teger value in NOS to addressin TOS.
(TOS must be apointer)

PSTORE_P (value, arr ay⇒—)

Store to memory. Storepointer value in
NOS to addressin TOS. (TOS must be
a pointer)

PSTORE_R (value, arr ay⇒—)

Store to memory. Store referencevalue
in NOS to addressin TOS. (TOS must
be apointer)

PSTORE_U1 (value, arr ay⇒—)

Store to memory. Store 8 bit unsigned
integer valuein NOSto addressin TOS.
(TOSmust be apointer)

PSTORE_U2 (value, arr ay⇒—)

Store to memory. Store 16 bit unsigned
integer valuein NOSto addressin TOS.
(TOSmust be apointer)

PSTORE_U4 (value, arr ay⇒—)

Store to memory. Store 32 bit unsigned
integer valuein NOSto addressin TOS.
(TOSmust be apointer)

PSTORE_U8 (value, arr ay⇒—)

Store to memory. Store 64 bit unsigned
integer valuein NOSto addressin TOS.
(TOSmust be apointer)

PSTORE_U4 (value, arr ay⇒—)

Store to memory. Store 32 bit unsigned
integer valuein NOSto addressin TOS.
(TOSmust be apointer)

186

PUSH_CURRENT_STATE (— ⇒
value)

Pushes a new state-object to the state
stack and pushes 0 to TOS, when ini-
tially executed. When execution re-
sumes after a RAISE or TRANSFER,
then the value in the transfer register is
pushed to TOS.

RAISE (value⇒—)

Pop TOS, which must be a reference,
and placein the transfer register. Ex-
amine the state object on top of state
stack. Pop valuesfrom thedata-stack to
the depth recorded. Resume execution
from the PUSH_CURRENT_STATE
instruction that stored the state object
on thestatestack.

RETURN_F4 (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_F8 (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_I4 (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_I8 (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_I4 (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_P (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_R (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_U4 (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_U8 (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_U4 (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

RETURN_V (value⇒—)

Returnsfrom the current function. Type
must match that of CALL instruction.

187

RLOAD_F4 (object, offset ⇒ value)

Load from object. Load 32 bit float-
ing point value from object NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_F8 (object, offset ⇒ value)

Load from object. Load 64 bit float-
ing point value from object NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_I1 (object, offset ⇒ value)

Load from object. Load 8 bit signed
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_I2 (object, offset ⇒ value)

Load from object. Load 16 bit signed
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_I4 (object, offset ⇒ value)

Load from object. Load 32 bit signed
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOS must be an integer)

RLOAD_I8 (object, offset ⇒ value)

Load from object. Load 64 bit signed
integer value from object NOS at off-

set TOS. (NOS must be areference and
TOSmust be an integer)

RLOAD_I4 (object, offset ⇒ value)

Load from object. Load 32 bit signed
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOSmust be an integer)

RLOAD_P (object, offset ⇒ value)

Load from object. Load pointer value
from object NOS at offset TOS. (NOS
must be a reference and TOS must be
an integer)

RLOAD_R (object, offset ⇒ value)

Load from object. Load referencevalue
from object NOS at offset TOS. (NOS
must be areference andTOSmust be an
integer)Any read-barriers required by
thegarbage collector areperformed.

RLOAD_U1 (object, offset ⇒ value)

Load from object. Load 8 bit unsigned
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOSmust be an integer)

RLOAD_U2 (object, offset ⇒ value)

Load from object. Load 16 bit unsigned
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOSmust be an integer)

188

RLOAD_U4 (object, offset ⇒ value)

Load from object. Load 32 bit unsigned
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOSmust be an integer)

RLOAD_U8 (object, offset ⇒ value)

Load from object. Load 64 bit unsigned
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOSmust be an integer)

RLOAD_U4 (object, offset ⇒ value)

Load from object. Load 32 bit unsigned
integer value from object NOS at off-
set TOS. (NOS must be areference and
TOSmust be an integer)

RSH_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
arithmetic right shift.

result := op1≫ op2.

RSH_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
arithmetic right shift.

result := op1≫ op2.

RSH_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
arithmetic right shift.

result := op1≫ op2.

RSH_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger logical right shift.

result := op1≫ op2.

RSH_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger logical right shift.

result := op1≫ op2.

RSH_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger logical right shift.

result := op1≫ op2.

RSTORE_F4 (value, object, offset ⇒
—)

Store into object. Store 32 bit floating
point value at 3OSinto object NOS, off-
set TOS. (NOS must be areference and
TOSmust be an integer)

RSTORE_F8 (value, object, offset ⇒
—)

Store into object. Store 64 bit floating
point value at 3OSinto object NOS, off-
set TOS. (NOS must be areference and
TOSmust be an integer)

189

RSTORE_I1 (value, object, offset ⇒
—)

Store into object. Store 8 bit signed in-
teger value at 3OSinto object NOS, off-
set TOS. (NOS must be areference and
TOS must be an integer)

RSTORE_I2 (value, object, offset ⇒
—)

Store into object. Store 16 bit signed
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_I4 (value, object, offset ⇒
—)

Store into object. Store 32 bit signed
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_I8 (value, object, offset ⇒
—)

Store into object. Store 64 bit signed
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_I4 (value, object, offset ⇒
—)

Store into object. Store 32 bit signed
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
and TOS must be an integer)

RSTORE_P (value, object, offset ⇒
—)

Store into object. Store pointer value
at 3OS into object NOS, offset TOS.
(NOS must be a reference and TOS
must be an integer)

RSTORE_R (value, object, offset ⇒
—)

Store into object. Store referencevalue
at 3OS into object NOS, offset TOS.
(NOS must be a reference and TOS
must be an integer)Any write-barriers
required by the garbage collector are
performed.

RSTORE_U1 (value, object, offset ⇒
—)

Store into object. Store 8 bit unsigned
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
and TOSmust be an integer)

RSTORE_U2 (value, object, offset ⇒
—)

Store into object. Store 16 bit unsigned
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
and TOSmust be an integer)

RSTORE_U4 (value, object, offset ⇒
—)

Store into object. Store 32 bit unsigned
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
and TOSmust be an integer)

190

RSTORE_U8 (value, object, offset⇒
—)

Store into object. Store 64 bit unsigned
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
andTOS must be an integer)

RSTORE_U4 (value, object, offset⇒
—)

Store into object. Store 32 bit unsigned
integer value at 3OS into object NOS,
offset TOS. (NOS must be areference
andTOS must be an integer)

SIGN (val⇒ extended)

On a 32 bit machine, sign extend TOS
from a 32 bit value to a 64 bit value.
This isano-op for 64bit machines.

STACK (—⇒ sp)

Pushes the data-stack stack-pointer to
TOS. Thedatastack growsdownwards,
so stack items will be at non-negative
offsets from sp. Values subsequently
pushed on to the stack are not visible.
Attempting to accessvalues at negative
offsets is an error. As soon as a net
positive number of values are popped
from the stack, sp becomes invalid and
should not beused.

SUB_F4 (op1, op2⇒ result)

Binary operation: 32 bit floating point
subtract.

result := op1- op2.

SUB_F8 (op1, op2⇒ result)

Binary operation: 64 bit floating point
subtract.

result := op1- op2.

SUB_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
subtract.

result := op1- op2.

SUB_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
subtract.

result := op1- op2.

SUB_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
subtract.

result := op1- op2.

SUB_P (op1, op2⇒ result)

Binary operation: pointer subtract.

result := op1- op2.

SUB_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger subtract.

result := op1- op2.

191

SUB_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger subtract.

result := op1- op2.

SUB_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger subtract.

result := op1- op2.

SYMBOL (—⇒ address)

2 operand bytes.
Push addressof symbol to TOS

TARGET(n) (—⇒—)

Target for Jump andBranch.

TL OAD_F4(n) (—⇒ value)

Push the contents of the nth temporary
variable as a32 bit floating point

TL OAD_F8(n) (—⇒ value)

Push the contents of the nth temporary
variable as a64 bit floating point

TL OAD_I4(n) (—⇒ value)

Push the contents of the nth temporary
variable as a32 bit signed integer

TL OAD_I4(n) (—⇒ value)

Push the contents of the nth temporary
variable as a32 bit signed integer

TL OAD_I8(n) (—⇒ value)

Push the contents of the nth temporary
variable as a64 bit signed integer

TL OAD_P(n) (—⇒ value)

Push the contents of the nth temporary
variable as apointer

TL OAD_R(n) (—⇒ value)

Push the contents of the nth temporary
variable as a reference

TL OAD_U4(n) (—⇒ value)

Push the contents of the nth temporary
variable as a32 bit unsigned integer

TL OAD_U4(n) (—⇒ value)

Push the contents of the nth temporary
variable as a32 bit unsigned integer

TL OAD_U8(n) (—⇒ value)

Push the contents of the nth temporary
variable as a64 bit unsigned integer

192

TRANSFER (—⇒—)

Pop TOS, which must be a refer-
ence, and place in the transfer reg-
ister. Resume execution from the
PUSH_CURRENT_STATE instruction
that stored the state object on the state
stack. Unlike RAISE, TRANSFER
doesnot modify thedatastack.

TSTORE_F4(n) (value⇒—)

Pop a 32 bit floating point from the
stack and store in the nth temporary
variable.

TSTORE_F8(n) (value⇒—)

Pop a 64 bit floating point from the
stack and store in the nth temporary
variable.

TSTORE_I4(n) (value⇒—)

Pop a 32 bit signed integer from the
stack and store in the nth temporary
variable.

TSTORE_I4(n) (value⇒—)

Pop a 32 bit signed integer from the
stack and store in the nth temporary
variable.

TSTORE_I8(n) (value⇒—)

Pop a 64 bit signed integer from the
stack and store in the nth temporary
variable.

TSTORE_P(n) (value⇒—)

Pop a pointer from the stack and store
in thenth temporary variable.

TSTORE_R(n) (value⇒—)

Popareferencefrom thestack andstore
in thenth temporary variable.

TSTORE_U4(n) (value⇒—)

Pop a 32 bit unsigned integer from the
stack and store in the nth temporary
variable.

TSTORE_U4(n) (value⇒—)

Pop a 32 bit unsigned integer from the
stack and store in the nth temporary
variable.

TSTORE_U8(n) (value⇒—)

Pop a 64 bit unsigned integer from the
stack and store in the nth temporary
variable.

TYPE_NAME(n,name) (—⇒—)

Name the (reference) type of the nth

temporary variable, for debugging pur-
poses.

UNLOCK (lock ⇒—)

Unlock the gvmt-lock pointed to by
TOS. Pop TOS.

193

UNLOCK_INTERNAL (offset, ob-
ject ⇒—)

Unlock the fast-lock in object referred
to by TOS at offset NOS. Pop both ref-
erence and offset from stack.

V_CALL _F4 (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a32 bit floating point.

V_CALL _F8 (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a64 bit floating point.

V_CALL _I4 (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a32 bit signed integer.

V_CALL _I8 (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a 64 bit signed integer.

V_CALL _I4 (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a 32 bit signed integer.

V_CALL _P (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a pointer.

V_CALL _R (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are

194

from thedatastack. Thefunctioncalled
must return a reference.

V_CALL _U4 (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a32 bit unsigned integer.

V_CALL _U8 (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a64 bit unsigned integer.

V_CALL _U4 (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction
stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return a32 bit unsigned integer.

V_CALL _V (—⇒ value)

1 operand byte.
Variadic call . The number of parame-
ters, n, is thenext byte in theinstruction

stream (which is consumed). Calls the
function whose address is TOS. Upon
return removes the n parameters are
from thedatastack. Thefunctioncalled
must return void.

XOR_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
bitwise exclusiveor.

result := op1⊕ op2.

XOR_I8 (op1, op2⇒ result)

Binary operation: 64 bit signed integer
bitwise exclusiveor.

result := op1⊕ op2.

XOR_I4 (op1, op2⇒ result)

Binary operation: 32 bit signed integer
bitwise exclusiveor.

result := op1⊕ op2.

XOR_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger bitwise exclusiveor.

result := op1⊕ op2.

XOR_U8 (op1, op2⇒ result)

Binary operation: 64 bit unsigned inte-
ger bitwise exclusiveor.

result := op1⊕ op2.

195

XOR_U4 (op1, op2⇒ result)

Binary operation: 32 bit unsigned inte-
ger bitwise exclusiveor.

result := op1⊕ op2.

ZERO (val ⇒ extended)

On a 32 bit machine, zero extend TOS
from a 32 bit value to a 64 bit value.
This isano-op for 64bit machines.

196

Appendix B

TheGVMT Abstract Machine
Language Grammar

Top Level Rule

file: section+ debug_info?

Rules

section: (bytecode_section | code_section | heap_section |
opaque_section | root_section)

bytecode_section: ’.bytecodes’ new_lines
((bytecode_directive | bytecode) new_lines)*

code_section: ’.code’ new_lines
((code_directive | function) new_lines)*

heap_section: ’.heap’ new_lines
((heap_directive | data_declaration) new_lines)*

opaque_section: ’.opaque’ new_lines
((data_directive | data_declaration) new_lines)*

roots_section: ’.roots’ new_lines
((data_directive | address) new_lines)*

instruction: ID (’(’ (ID (’,’ ID)*)? ’)’)?

197

bytecode: ID (’=’ digit+)? (’[’ qualifier* ’]’)? ’:’ instruction* ’;’

function: ID (’[’ qualifier* ’]’)? ’:’ instruction* ’;’

data_declaration: integral_value | float_value |
string_value | address

bytecode_directive: ’.local’ | ’.name’ ID | ’.master’

heap_directive: ’.public’ ID | ’.object’ ID | ’.end’

data_directive: ’.public’ ID | ’.label’ ID

integral_value: int_type number

float_value: float_type float_number

string_value: ’string’ text

address: ’address’ (0 | ID)

debug_info: ((type_directive | member_directive) new_lines)*

type_directive: ’.type’ (’struct’|’object’) ID

member_directive: ’.member’ ID member_type ’@’ number

member_type: int_type | float_type | pointer_type | reference_type

struct_type: ’S(’ ID ’)’

pointer_type: ’P(’ (member_type | ’?’ | struct_type) ’)’

reference_type: ’R(’ ID ’)’

Tokens

ID: letter(letter|digit)*

number: digit+

float_number: digit (’.’ digit)? (’e’ (’+’|’-’) digit+)?

text: ’"’ char* ’"’

198

int_type: ’u’?’int’(’8’|’16’|’32’|’64’)

float_type: ’float’(’32’|’64’)

new_lines: ’\n’((’ ’|’\t’)*’\n’)*

Part Tokens

letter: [A-Za-z_]

digit: [0-9]

legal_ascii = Any ascii char from code 32 to 126,
except ’\n’, ’\t’, ’\’, ’’’, and ’"’.

char: legal_ascii | ’’\n’ | ’\t’ | ’\\’ | ’\’’ | ’\"’ |
’\’[0-3][0-7][0-7]

Ignored Tokens

whitespace: ’ ’|’\t’

comment: ’/’ ’/’ .* ’\n’

199

Appendix C

Python Att r ibuteLookup Semantics

C.1 Definitions

Attribute lookupin Pythonrefers to thesyntactic element obj.attr whereobj is
any object, andattr isa legal name.

Methodcallsof theobj.attr() aretreated thesame asany other attributelookup
followed by a call . In other wordsobj.attr()≡ f() wheref = obj.attr.

For thepurposesof the algorithms in thisappendix, the followingare assumed1:

• All machine-level object representations have the field dict, which may be
null .

• All machine-level typerepresentationshave thefieldsgetattribute, get, set,
mro and, since all classes are also objects, dict.

• getattributeandmro arenever null .

• get and set may benull .

• If set is non-null , get must benon-null .

The expression obj → attr is taken to mean direct accessto the field named attr
in the underlying representation of the object referred to by obj.The arrow in the
expression obj→ attr is used as it reflects the C syntax for accessing a field of a
structure throughapointer.

The fields getattribute, get and set point, if they are non-null , to machine-level
functions (not Pythonfunctions). Themro field points to vector of types defining

1VMsarenot required to implement things thisway; it just makes the algorithmsclearer.

200

attribute lookup order for that type. The first item in the mro vector is the type
itself, and the last is alwaysobject, thebase typeof everything.

The followingexpressionsareused, in descending order of precedence.

• T obj is a referenceto the typeobject for the typeof obj.

• f (x,y) means call the machine-level function f with x and y as its argu-
ments.

• vi means the ith item in thevector v.

• d〈name〉means to lookupname in thedictionary referred to by d.

• a≡ b means bitwise equivalence(a and b can be pointers or machine inte-
gers.

• a := b means copy thevalue(which will be apointer) of b into a.

C.2 Lookup Algor ithm

Initially themachine-level pointer obj refersto thePython object obj. ThePython
expression obj.attr is evaluated as T obj → getattribute(obj,attr). Although
this can be overridden by any type, in general it i s not, the main exception being
classobjects.

Thedefault object lookupis shown in Algorithm C.1. A referenceto theresulting
object will bestored in result .

For classobjects, that isobjectswhereT obj ⊆ type, attribute lookupis shown in
Algorithm C.2.

Thedescriptor_lookup function isdefined in Algorithm C.3.

201

Algor ithm C.1 PythonAttributeLookup(Objects)
cls := T obj
desc := descriptor_lookup(cls,attr)
if desc 6= 0 andT desc→ set 6= 0 then

result := T desc→ get(obj,cls)
else

d := obj→ dict
if d 6= 0 and d〈attr〉 6= 0 then

result := d〈attr〉
else if desc 6= 0 andT desc→ get 6= 0 then

result := T desc→ get(obj,cls)
else if desc 6= 0 then

result := desc
else

result := ERROR
end if

end if

Algor ithm C.2 PythonAttributeLookup(Types)
desc := descriptor_lookup(cls,attr)
if desc 6= 0 andT desc→ get 6= 0 then

result := T desc→ get(None,obj)
else if desc 6= 0 then

result := desc
else

result := ERROR
end if

Algor ithm C.3 Descriptor Lookup
mro := cls→mro
i := 0
repeat

t = mroi

result := t→ dict〈attr〉
i := i +1

until result 6= 0 or t ≡ object

202

Appendix D

Surr ogateFunctions

Thefollow functionsusesomeHotPy-specific annotations. These annotationsare
required to ensure correct semantics, and avoid circularity. The annotationsare:

The@pure annotation only applies to C functionsand states that the function has
no global side-effects. The @c_function annotation only informs the VM that
thisisafunctionwritten in C. The@method(class, name) annotationstoresthis
functionasamethodin theclass dictionary with thekey name. The@_no_trace
annotation indicates that this function should not appear in a trace-back in the
event of an exception being raised

D.1 The__new__method for tuple

@_pure
@c_function
def tuple_from_list(cls:type, l:list)−>tuple:

pass

@method(tuple, ’__new__’)
def new_tuple(cls, seq):

if type(seq) is list:
return tuple_from_list(cls, seq)

elif type(seq) is tuple:
return seq

else:
l = [x for x in seq]
return tuple_from_list(cls, l)

del new_tuple

203

D.2 The__call__method for type

@_no_trace
def type_call(cls, ∗args, ∗∗kws):

obj = cls.__new__(cls, ∗args, ∗∗kws)
if isinstance(obj, cls):

obj.__init__(∗args, ∗∗kws)
return obj

D.3 TheBinary Operator

This function implements binary operators. For addition name and rname would
be ‘__add__’ and ‘__radd__’ respectively.

def binary_operator(name, rname, op1, op2):
t1 = type(op1)
t2 = type(op2)
if issubclass(t2, t1):

if rname in t2.__dict__:
result = t2.__dict__[rname](op2, op1)
if result is not NotImplemented:

return result
if name in t1.__dict__:

result = t1.__dict__[name](op1, op2)
if result is not NotImplemented:

return result
else:

if name in t1.__dict__:
result = t1.__dict__[name](op1, op2)
if result is not NotImplemented:

return result
if rname in t2.__dict__:

result = t2.__dict__[rname](op2, op1)
if result is not NotImplemented:

return result
_binary_operator_error(t1, t2, name)

204

Appendix E

TheHotPy Vir tual Machine
Bytecodes

All i nstructions are shown in the GVMT interpreter description format of name
followed bystack effect and instructioneffect. Valuesonthe left of the— divider
are inputs, those on the right are outputs. All outputs go the stack. Inputs come
from the stack unlessmarked with a #, in which case they are fetched from the
instructionstream. #x is a onebytevalue, ##x isa two bytevalue. #↑ is apointer
sized value.

For example:

truth(R_object o — R_bool b)

Explanatory text follows thestack effect.

E.1 Base Instructions

The instructions listed in this section are those required to expressunoptimised
Python programs. Theoutput of thesource-to-bytecode compiler consistsentirely
of thesebytecodes.

E.1.1 Atomic Instructions

These instructions are treated as atomic by the optimisers. They are recorded
directly by tracing and either left intact or removed entirely by subsequent opti-
misations.

205

as_tuple(R_object obj — R_tuple t)

obj must be alist or a tuple. If it i s a list then it is converted to a tuple. Used for
passing parameters (on the caller side).

byte (int #n — R_int i)

Pushes an integer (in the range -128to 127inclusive) to thestack.

constant(unsigned ##index — R_object object)

Push a constant to TOS.

object = sys._getframe().f_code.co_consts[index]

copy(R_object x — R_object x, R_object x)

DuplicatesTOS

copy_dict(R_dict d — R_dict d)

Replacedictionary in TOSwith ashallow copy, used for parameter marshalli ng.

delete_global(unsigned ##name—)

Delete from globals (moduledictionary)

delete_local(unsigned ##name—)

Delete from frame locals (as dictionary)

dict_insert(R_dict d, R_str key, R_object value— R_dict d)

d[key] = value

Inserts key/value pair into dict, leaving the dict on the stack. Used for parameter
marshalli ng.

dictionary(— R_dict d)

Pushes anew, empty dictionary to thestack.

drop(R_object x —)

Pops (and discards) TOS

empty_tuple(— R_tuple t)

Pushes an empty tuple to thestack.

exit_loop(R_BaseException ex —)

If ex isnot aStopIterationthen reraiseex. Used at exit from aloopto differentiate
between loopterminationand other exceptions.

206

false(— R_bool f)

PushesFalse to thestack.

flip3 (R_object x1, R_object x2, R_object x3 — R_object x3, R_object x2,
R_object x1)

Flips the top threevalueson thestack.

is(R_object o1, R_object o2 — R_bool b)

b = o1 is o2

line(unsigned ##lineno —)

Set the linenumber and calls tracing function (if any).

sys._getframe().f_lineno = lineno

li st(uint8_t #count — R_list l)

Remove topcount elements from thestack, creating anew list.

li st_append(R_list l, R_object o —)

Used in list comprehension, wherel isguaranteed to be alist.

load_deref(unsigned #depth, unsigned #n — R_object value)

Load anon-local from frame in stack.

load_frame(unsigned #n — R_object value)

Loads value from the nth local variable. Raise an exception if local variable has
been assigned. Equivalent to:

value = sys._getframe()._array[n]

except that _array isnot visible in pythoncode.

load_global(unsigned ##name— R_object value)

Load from globals (moduledictionary)

load_local(unsigned ##name— R_object value)

Load from frame locals (as dictionary)

name(int ##index — R_str name)

Pushesastring from the code-object’s nametable.

207

none(— R_NoneTypen)

Pushes None to thestack.

nop(—)

No operation

over (R_object x, R_object x1 — R_object x, R_object x1, R_object x)

Pushes a copy of thesecond valueon thestack to thestack.

pack(uint8_t #count — R_tuple t)

Pack the topcount elements from thestack into anew tuple.

pack_params(uint8_t #count — R_tuple t, R_dict empty)

Conceptually ike pack, but also pushes an empty dict. Used for parameter mar-
shalli ng in the commoncasewhere there are no named parameters.

pick (int #n — R_object o)

Picks thenth (TOS is index 0) value from thestack

pop_handler(—)

Pops exception-handler.

rotate (R_object x1, R_object x2, R_object x3 — R_object x2, R_object x3,
R_object x1)

Rotates the top threevalueson thestack.

rotate4 (R_object x1, R_object x2, R_object x3, R_object x4 — R_object x2,
R_object x3, R_object x4, R_object x1)

Rotates the top four valueson thestack.

rr ot(R_object x1, R_object x2, R_object x3 — R_object x3, R_object x1,
R_object x2)

Counter rotates the top threevalueson thestack.

slice(R_object o1, R_object o2, R_object o3 — R_slices)

s = slice(o1, o2, o3)

Makes anew slice.

208

store_deref(unsigned #depth, unsigned #n, R_object value—)

Store anon-local to frame in stack.

store_frame(R_object value, unsigned #n —)

Stores value in thenth local variable. Equivalent to:

sys._getframe()._array[n] = value

except that _array isnot visible in pythoncode.

store_global(unsigned ##name, R_object value—)

Store to globals (moduledictionary)

store_local(unsigned ##name, R_object value—)

Store to frame locals (as dictionary)

subtype(R_type t0, R_type t1 — R_bool b)

b = t0 \subseteq t1

swap (R_object x, R_object x1 — R_object x1, R_object x)

Exchanges the top two valueson thestack

true(— R_bool t)

PushesTrue to thestack.

tuple_concat(R_tuple t1, R_tuple t2 — R_tuple t3)

t3 = t1 + t2

t1 and t3 must be tuples, used for parameter marshalli ng.

two_copy(R_object x, R_object x1 — R_object x, R_object x1, R_object x,
R_object x1)

Duplicates the two valueson thestack

type_check(R_object object, R_type cls — R_bool b)

Push True if object is an instanceof cls, Falseotherwise.

unpack (uint8_t #len, R_object object —)

object must be alist or tuple and of length len. Unpacksonto thestack.

209

E.1.2 Compound Instructions

These instructions can be defined in terms of other instructions. For example
the binary bytecode can be defined in Python, as shown in Appendix D. These
bytecodes can be replaced by a call to a function that implements the same func-
tionality. However, thisonly doneduring tracing.

binary(uint8_t #index, R_object l, R_object r — R_object value)

Appliesbinary operator. Operators arestored in aglobal tuple.

value = binary_operator_tuple[index](l, r)

contains(R_object item, R_object container — R_object result)

result = item in container

delete_att r (unsigned ##index, R_object obj —)

Fetches namefrom the code-object’snametable.

del obj.name

deli tem(R_object seq, R_object index —)

del seq[item]

getitem(R_object seq, R_object index — R_object value)

value = seq[index]

inplace(uint8_t #index, R_object l, R_object r — R_object value)

Applies inplaceoperator. Operators arestored in aglobal tuple.

value = inplace_operator_tuple[index](l, r)

iter(R_object o — R_object it)

it = iter(o)

load_att r (unsigned ##index, R_object obj — R_object value)

Fetches namefrom the code-object’snametable.

value = obj.name

next(R_object it — R_object value)

value = next(it)

210

not(R_object b1 — R_bool b2)

b2 = not bool(b1)

sequence_to_list_or_tuple(R_object obj — R_object l_t)

Convert obj to a list, unlessit is already a list or tuple, in which case nothing is
done.

setitem(R_object value, R_object seq, R_object index —)

seq[index] = value

store_att r (unsigned ##index, R_object value, R_object obj —)

Fetches name from the code-object’sname table.

obj.name = value

truth(R_object o — R_bool b)

b = bool(o)

unary(uint8_t #index, R_object o — R_object value)

Apply unary operator (-x, +x, x)

yield(R_object value—)

Yields value to caller context by performing the following: Pops current frame
from stack. Sets current ip to valuestored in (now current) frame.

E.1.3 Instructions Replaced Dur ing Tracing

These instructionsare replaced duringtracingwith asingle alternative. Jumpsare
eliminated and conditional branches are replaced with condiitonal exits.

debug(— R_bool d)

Push valueof global constant __debug__ (either True or False)

end_loop(int ##offset —)

Jump by offset (to start of loop) Possiblestart of tracing.

end_protect(int ##offset —)

Popsexception-handler and jumpsby offset

211

f_call (R_object callable, R_tuple args, R_dict kws — R_object value)

Calls callablewith args and kws

value = callable(*args, **kws)

for_loop(int ##offset —)

As protect, but marksa looprather than a try-except block.

jump(int ##offset —)

Jump by offset.

on_false(int ##offset, R_object o —)

Jump by offset if TOSevaluates to False

on_true(int ##offset, R_object o —)

Jump by offset if TOSevaluates to True

protect(int ##offset —)

Push an exception-handler, which will catch Exception and jump to current ip +
offset.

return(R_object val — R_object val)

If in agenerator, raiseStopIteration. Otherwise, as yield

E.1.4 Instructions Not Allowed in a Trace

The following instructions have complex semantics and are expected to occur
only in start-up code. If any of thme are encountered during tracing the traceis
abandoned and normal interpretationcontinues.

impor t(R_object file— R_object object)

Used for the import statement.

object = __import__(file)

make_class(int ##name, R_object dict, R_tuple bases — R_type cls)

Make anew class

make_closure(uint8_t #code_index, R_tuple defaults, R_dict annotations —
R_object f)

Make anew closure, code-object is fetched from constant array.

212

make_func(uint8_t #code_index, R_tuple defaults, R_dict annotations —
R_object f)

Make anew function, code-object is fetched from constant array.

new_scope(—)

Creates a frame and pushes it. Used in classdeclarations

pop_scope(— R_dict locals)

Pops the framepushed bynew_scope, leaving its locals dictionary on thestack.

raise(R_object o —)

Raise an exception; o if it i san exception, an error otherwise.

E.2 InstructionsRequired for Tracing

Theinstructionsrequired for tracingaremainly equivalentsof branch instructions
that exit the traceinstead. For example the on_true bytecode which branhces if
theTOSevaluatesas truewill bereplaced with exit_on_false if thebranch was
taken or exit_on_true if it was not.

check_valid(R_exec_link link —)

If traceis invalidated, exit traceto unoptimised code.

exit_on_false(R_bool cond, intptr_t #↑exit —)

Exit i f cond is False; cond must be aboolean.

exit_on_true(R_bool cond, intptr_t #↑exit —)

Exit i f cond is True; cond must be aboolean.

fast_constant(unsigned #↑address— R_object object)

Pushesconstant object at address. Used by optimiser.

fast_frame(uint8_t #count, intptr_t #↑func, intptr_t #↑next_ip —)

Create and push a new frame for the function func and initialise it with the top
count valueson thestack.

213

fast_line(unsigned ##lineno —)

Set the linenumber (does not call t racing function)

sys._getframe().f_lineno = lineno

func_check(intptr_t #↑code, intptr_t #↑exit, R_object obj —)

Ensure that the obj is exactly the function specified by func. If it i s a different
value then exit the trace.

gen_check(unsigned #↑next_ip, intptr_t #↑or iginal_ip, R_generator gen —)

Ensurethat gen isagenerator andthat thenext ip for thegenerator isasexpected.
If not then resume interpretation of unoptimised code.

gen_enter(unsigned #↑caller_ip, intptr_t #↑or iginal_ip, R_generator gen —)

Set the return addressin current frame to caller_ip, and push generator frame.

gen_exit (—)

Raise aStopIterationexception.

gen_yield(unsigned #↑next_ip, R_object val — R_object val)

Set the current frame’s instruction pointer (for resuming the generator) to
next_ip. Pops current frame from stack. Sets current ip to valuestored in previ-
ous frame.

init_frame(R_function func, R_tuple t, R_dict d —)

Initialises the current frame from func, t and d. func determines number and
format of parameters, as well as default values. t and d contain the parameter
values.

interpret(intptr_t #↑resume_ip —)

Resume the interpreter from resume_ip.

load_special(R_object obj , unsigned #index — R_object att r)

Load special attribute, fetching the name from special_name table, name =
special_names[index].

attr = obj.name

Thereisafallback functionfor each index, which iscalled in the event of obj.name
not being defined.

attr = fallback[index](obj)

214

make_frame(intptr_t #↑ret_addr, R_function func —)

Set instruction pointer of current frame to ret_addr. Create anew frame, deter-
miningsizefrom func. Push new frame to framestack.

new_enter(unsigned #↑func_addr, R_type cls, R_tuple t, R_dict d —
R_function func, R_tuple t, R_dict d)

Enter the surrogate ‘new’ f unction. Replaces cls with the surrogate function
func, replacest with (cls,) + t and leavesd untouched. Equivalent to:
flip3 pack 1 swap tuple_concat load_const flip3

pop_frame(—)

Pops frame.

prepare_bm_call (R_bound_method bm, R_tuple t, R_dict d — R_object
func, R_tuple t, R_dict d)

Prepare a call for abound-method. Extracts self andcallable from bm; prefixingt
with self.

t = (bm.__self__,) + t; func = bm.__func__

protect_with_exit(#↑link —)

Push an exception-handler, which will catch Exceptionand exit to link.

recursion_exit(intptr_t #↑next_ip, intptr_t #↑exit —)

Set next_ip and exits trace.

return_exit(intptr_t #↑exit —)

Pops frame and exits trace.

trace_exit(intptr_t #↑exit —)

Exits trace.

trace_protect(#↑addr —)

Push an exception-handler, which will catch Exceptionand interpret from addr.

type(R_object object — R_type t)

t = type(object)

215

E.3 Specialised Instructions

Specialised instructionsareused when thetypeof theoperandsareknown. Many
are of the form i_xxx or f_xxx which are operations specialised for integersand
floats respectively. The native_call instruction allows C functions to be called
directly inplaceof thef_call or binary bytecodes, when the tyesare known.

bind(intptr_t #↑func, R_object self — R_bound_method bm)

Create abound-methodfrom self andfunc.

bm.__self__ = self; bm.__func__ = func

check_keys(unsigned ##dict_offset, unsigned #↑key_address, intptr_t #↑exit,
R_object obj —)

Ensure that the dict-keys of obj matches the expected one. If it does not then
leave the traceto the handler pointed to by exit. Requires that the type of obj is
known.

deoptimise_check(intptr_t #↑trace_addr, intptr_t #↑or iginal_ip —)

If tracehas been invalidated, resume interpretation from original_ip

ensure_initialised(unsigned #n, intptr_t #↑exit —)

If local variablen is uninitialised then resume interpreter from exit.

ensure_tagged(intptr_t #↑exit, R_object obj — R_object obj)

Ensurethat obj isa tagged integer. Leavesobj onthestack. If it hasanother type
then leave the traceto thehandler pointed to byexit.

ensure_tagged2(intptr_t #↑exit, R_object obj , R_object tos — R_object obj ,
R_object tos)

Like ensure_tagged, but for the second value on the stack. Important for binary
operations.

ensure_tagged_drop(intptr_t #↑exit, R_object obj —)

Like ensure_tagged, but does not leaveobj on thestack.

ensure_type(unsigned #↑code, intptr_t #↑exit, R_object obj — R_object o)

Ensure that obj has the typespecified by code. Leavesobj on the stack. If it has
another type then leave the traceto thehandler pointed to byexit.

216

ensure_type2(intptr_t #↑code, intptr_t #↑exit, R_object obj , R_object tos —
R_object o, R_object tos)

Like type_ensure, but for the second item on the stack. Important for binary
operations.

ensure_type_drop(intptr_t #↑code, intptr_t #↑exit, R_object obj —)

Like ensure_type, but doesnot leaveobj on thestack.

ensure_value(intptr_t #↑code, intptr_t #↑exit, R_object obj — R_object o)

Ensure that theobj isexactly valuespecified bycode. Leaves obj on thestack. If
it i sadifferent value then exit the trace.

f_add(R_float f1, R_float f2 — R_float result)

Additionspecialised for floats. f1 andf2 must befloats.

result = f1 + f2

f_div(R_float f1, R_float f2 — R_float result)

Diivisionspecialised for floats. f1 andf2 must befloats.

f_eq(R_float f1, R_float f2 — R_bool result)

Equality test specialised for floats . f1 andf2 must befloats.

f_ge(R_float f1, R_float f2 — R_bool result)

Comparisonspecialised for floats . f1 andf2 must befloats.

f_gt(R_float f1, R_float f2 — R_bool result)

Comparisonspecialised for floats . f1 andf2 must befloats.

f_le(R_float f1, R_float f2 — R_bool result)

Comparisonspecialised for floats . f1 andf2 must befloats.

f_lt(R_float f1, R_float f2 — R_bool result)

Comparisonspecialised for floats . f1 andf2 must befloats.

f_mul(R_float f1, R_float f2 — R_float result)

Multiplicationspecialised for floats. f1 andf2 must befloats.

f_ne(R_float f1, R_float f2 — R_bool result)

Inequality test specialised for floats . f1 andf2 must befloats.

217

f_neg(R_float f — R_float result)

Negationspecialised for floats. f must be afloat.

f_sub(R_float f1, R_float f2 — R_float result)

Subtraction specialised for floats. f1 andf2 must befloats.

fast_load_att r (unsigned ##dict_offset , unsigned ##index, R_object object —
R_object value)

Rapidly loads a value from object dictionary. Requires that both the type of obj
is known and that itsdict-keyshavebeen checked.

fast_load_frame(uintptr_t #n — R_object value)

Loads value from the nth local variable. Like load_frame, but does not check
that local variablehasbeen assigned.

fast_load_global(intptr_t #↑address, unsigned ##index — R_object value)

Fetch the dict_values object from address. The dict_values object will be-
longto a module-level dictionary. Fetch value from index in the dict_values
object. Requiresguardsonthemoduledict to ensurethat dict isnot resized or that
item isnot deleted.

value = ((R_dict_values)address)->values[index];

fast_not(R_bool b1 — R_bool b2)

b2 = not b1

b1 must be aboolean.

fast_store_att r (unsigned ##dict_offset, unsigned ##index, R_object value,
R_object object —)

Rapidly stores avalue to theobject dictionary. Requires that both the typeof obj
is known and that itsdict-keyshavebeen checked.

fast_store_global(intptr_t #↑address, unsigned ##index, R_object value—)

Stores a global from module dict-values at address, with offset index. Requires
guards on themoduledict to ensure that dict is not resized.

i2d(R_object o — double out)

Convert a tagged int to aC double (an unboxed float)

i2f(R_object o — R_float result)

Convert a tagged int to a (boxed) float.

218

i_add(R_int i1, R_int i2, intptr_t #↑exit — R_int result)

Addition specialised for tagged integers. i1 and i2 must be tagged integers. If
result overflows then box the result and leave the traceto the handler pointed to
by exit.

result = i1 + i2

i_comp_eq(R_int i1, R_int i2 — R_bool result)

Equality test for tagged integers.

i_comp_ge(R_int i1, R_int i2 — R_bool result)

Comparison for tagged integers.

i_comp_gt(R_int i1, R_int i2 — R_bool result)

Comparison for tagged integers.

i_comp_le(R_int i1, R_int i2 — R_bool result)

Comparison for tagged integers.

i_comp_lt(R_int i1, R_int i2 — R_bool result)

Comparison for tagged integers.

result = i1 < i2

i_comp_ne(R_int i1, R_int i2 — R_bool result)

Inequality test for tagged integers.

i_dec(R_int i1, unsigned #i2, intptr_t #↑exit — R_int result)

Like i_inc, but for subtraction.

result = i1 - i2

i_div(R_int i1, R_int i2 — R_float result)

result = i1 / i2

i_inc(R_int i1, unsigned #i2, intptr_t #↑exit — R_int result)

Increment for tagged integers. i1 must be atagged integer. If result overflows
then boxthe result and leave the traceto thehandler pointed to byexit.

result = i1 + i2

i_mul(R_int i1, R_int i2 — R_int result)

Multiplies the tagged integers, i1 andi2. Result may be tagged or boxed.

result = i1 * i2
219

i_prod(R_int i1, unsigned #i2, intptr_t #↑exit — R_int result)

Multiplies the integers i1 and i2. i1 must be atagged integer. Result may be
tagged or boxed.

result = i1 * i2

i_rshift(R_int o1, R_int o2— R_int result)

Right shift i1 by i2. i1 andi2 must be tagged integers.

result = i1 >> i2

i_sub(R_int i1, R_int i2, intptr_t #↑exit — R_int result)

Like i_add, but for subtraction.

result = i1 - i2

load_slot(unsigned #offset, R_object object — R_object value)

Load value from object at offset. Raise exception if slot isuninitialised.

native_call (int #count, intptr_t #↑func_addr — R_object value)

Call thenative (GVMT) functionat func_addr with count parameters.

native_call_no_prot(int #count, intptr_t #↑func_addr — R_object value)

As native_call . The "no_prot" is to inform the optimisers that this function will
not raise an exceptionand does not need to beprotected.

native_call_protect(int #count, intptr_t #↑func_addr, intptr_t #↑on_except —
R_object value)

Call the native (GVMT) function at func_addr with count parameters. If an
exception is raised, resume interpreter from on_except.

native_setitem(intptr_t #↑func_addr, R_object value, R_object seq, R_object
index —)

Likenative_call , but takes same inputsas setitem and discards return value.

store_slot(unsigned #offset, R_object value, R_object object —)

Store value into object at offset.

unpack_native_params(intptr_t #↑func_addr, R_object c, R_tuple t, R_dict
d —)

Unpacks the parameters in t (d must be empty) onto the stack, providing the
number of parameters is the same as that required by the builti n (C) function at
func_addr. If parameters do not match, raise an exception.

220

E.4 D.O.C. Instructions

These instructionsare thoserequired by theDeferred Object Creation pass. They
are either related to unboxingfloating point operations, or to storing values in the
(thread-local) cache, in order to avoid creating frames.

check_initialised(unsigned #n —)

If local variablen is uninitialised then raise an exception.

clear_cache(uintptr_t #count —)

Clears (sets to NULL to allow the objects to be collected) the first count cache
slots.

d2f(double x — R_float result)

Box aC double to produce afloat.

d_add(double l, double r — double out)

out = l + r

Specialised form for unboxed floats (C doubles).

d_byte(int #val — double out)

Pushesval (small i nteger) as adouble.

d_div(double l, double r — double out)

Specialised form for unboxed floats (C doubles).

d_idiv(R_int o1, R_int o2— double out)

out = o1/o2

Produce adoubleby dividingtagged integers.

d_mul(double l, double r — double out)

Specialised form for unboxed floats (C doubles).

d_neg(double f — double out)

Specialised form for unboxed float (C double).

d_sub(double l, double r — double out)

Specialised form for unboxed floats (C doubles).

221

f2d(R_float f — doubleout)

Unboxafloat to produce adouble.

load_from_cache(uintptr_t #n — R_object value)

Loads the nth cached slot. The cache is used to store values that would be stored
in the frame, but cannot as the frame is deferred.

store_to_cache(uintptr_t #n, R_object value—)

Storesvalue to nth cached slot.

E.5 Super Instructions

Super-instructions are concatenations of other instructions. For example, the in-
structionline_none is the concatenation of the instructionsline andnone.

drop_under (R_object nos, R_object tos — R_object tos)

Drops nos leavingTOS in place.

i_exit_eq(R_int i1, R_int i2, intptr_t #↑exit —)

Exit traceif i1 = i2, for tagged integers.

i_exit_ge(R_int i1, R_int i2, intptr_t #↑exit —)

Exit traceif i1 ≥ i2, for tagged integers.

i_exit_gt(R_int i1, R_int i2, intptr_t #↑exit —)

Exit traceif i1 > i2, for tagged integers.

i_exit_le(R_int i1, R_int i2, intptr_t #↑exit —)

Exit traceif i1 ≤ i2, for tagged integers.

i_exit_lt(R_int i1, R_int i2, intptr_t #↑exit —)

Exit traceif i1 < i2, for tagged integers.

i_exit_ne(R_int i1, R_int i2, intptr_t #↑exit —)

Exit traceif i1 eq i2, for tagged integers.

line_byte(—)

Super instructionequal to line followed bybyte

222

line_fast_constant(—)

Super instructionequal to line followed byfast_constant

line_fast_load_frame(—)

Super instructionequal to line followed byfast_load_frame

line_fast_load_global(—)

Super instructionequal to line followed byfast_load_global

line_load_frame(—)

Super instructionequal to line followed byload_frame

line_load_global(—)

Super instructionequal to line followed byload_global

line_none(—)

Super instructionequal to line followed bynone

223

Appendix F

Results

224

gcbench pystone richards fannkuch fasta spectral
HotPy (base, C) 1.06 0.78 0.52 0.40 0.83 0.90
HotPy (base, Py) 1.08 1.02 0.53 1.25 1.21 0.90
HotPy (JIT, C) 0.55 0.42 0.37 0.31 0.43 0.31
HotPy (JIT, Py) 0.55 0.43 0.38 0.29 0.46 0.31

HotPy (int-opt, C) 0.41 0.33 0.25 0.25 0.53 0.35
HotPy (int-opt, Py) 0.41 0.33 0.27 0.28 0.55 0.35

HotPy(C) t 1.05 0.71 0.51 0.34 0.74 0.75
HotPy(C) tc 1.27 1.34 0.80 0.52 0.98 1.01
HotPy(C) td 1.20 0.82 0.54 0.43 0.87 0.83
HotPy(C) tdc 1.31 1.23 0.82 0.64 0.93 0.98
HotPy(C) ts 0.71 0.41 0.25 0.21 0.48 0.38
HotPy(C) tsc 0.97 0.59 0.38 0.27 0.51 0.47
HotPy(C) tsd 0.41 0.33 0.25 0.25 0.53 0.35
HotPy(C) tsdc 0.54 0.42 0.37 0.32 0.43 0.31
HotPy(Py) t 1.07 0.93 0.53 1.20 1.08 0.76
HotPy(Py) tc 1.28 1.99 0.83 1.79 1.35 1.03
HotPy(Py) td 1.22 1.03 0.56 1.26 1.18 0.84
HotPy(Py) tdc 1.34 1.89 0.84 1.77 1.24 0.95
HotPy(Py) ts 0.73 0.60 0.28 0.81 0.74 0.38
HotPy(Py) tsc 1.03 0.81 0.41 0.82 0.67 0.47
HotPy(Py) tsd 0.41 0.33 0.27 0.33 0.55 0.35
HotPy(Py) tsdc 0.55 0.43 0.38 0.29 0.47 0.31

Python3 1.61 1.02 0.60 0.42 0.43 0.75
PyPy (interpreter) 2.34 1.66 1.63 0.46 0.92 0.86
PyPy (with JIT) 1.10 0.36 0.68 0.19 0.43 0.23

Un. Sw. (always) 2.68 2.64 3.24 0.75 1.00 0.83
Un. Sw. (default) 1.51 2.13 1.60 0.62 0.51 0.71
Un. Sw. (noJIT) 1.61 0.86 0.89 0.32 0.32 0.58

TableF.1: Timings(in seconds); short benchmarks.

225

gcbench pystone richards fannkuch fasta spectral
HotPy (base, C) 9.79 7.32 4.69 3.49 7.79 7.59
HotPy (base, Py) 9.96 9.65 4.90 12.46 11.69 7.59
HotPy (JIT, C) 2.80 1.25 2.21 1.44 1.84 1.43
HotPy (JIT, Py) 2.68 1.27 2.42 1.14 2.04 1.44

HotPy (int-opt, C) 3.51 3.07 2.17 2.28 5.09 2.84
HotPy (int-opt, Py) 3.50 3.09 2.37 2.27 5.23 2.84

HotPy(C) t 9.63 6.88 4.89 3.22 7.17 6.58
HotPy(C) tc 9.70 7.85 6.30 3.56 6.22 6.03
HotPy(C) td 11.01 8.00 5.18 4.04 8.53 7.26
HotPy(C) tdc 10.12 8.17 6.40 3.76 6.01 5.47
HotPy(C) ts 6.53 3.82 2.23 1.87 4.55 3.11
HotPy(C) tsc 5.64 2.43 2.39 1.37 2.72 2.79
HotPy(C) tsd 3.50 3.07 2.17 2.26 5.08 2.84
HotPy(C) tsdc 2.79 1.24 2.21 1.44 1.83 1.43
HotPy(Py) t 9.85 9.04 5.07 11.79 10.56 6.59
HotPy(Py) tc 9.75 11.22 6.67 12.71 8.77 6.13
HotPy(Py) td 11.37 10.03 5.45 12.59 11.59 7.32
HotPy(Py) tdc 10.19 11.01 6.72 11.36 8.04 5.58
HotPy(Py) ts 6.61 5.81 2.48 7.77 7.17 3.13
HotPy(Py) tsc 5.92 3.98 2.93 4.59 3.95 2.79
HotPy(Py) tsd 3.52 3.08 2.35 2.31 5.26 2.84
HotPy(Py) tsdc 2.69 1.27 2.44 1.15 2.03 1.43

Python3 15.07 9.82 5.62 3.88 3.92 6.66
PyPy (interpreter) 22.74 16.33 16.08 4.44 8.98 7.33
PyPy (with JIT) 3.95 1.36 1.43 0.93 3.61 0.57

Un. Sw. (always) 14.36 10.62 11.44 2.49 3.13 3.99
Un. Sw. (default) 12.48 14.28 12.87 5.91 2.96 3.18
Un. Sw. (noJIT) 15.15 8.33 8.56 3.04 2.89 4.93

TableF.2: Timings(in seconds); medium benchmarks.

226

gcbench pystone richards fannkuch fasta spectral
HotPy (JIT, C) 27.17 7.27 13.15 11.72 13.45 10.18
HotPy (JIT, Py) 24.52 7.66 13.46 8.38 15.08 10.20

HotPy (int-opt, C) 38.65 30.41 21.32 24.85 44.11 30.78
HotPy (int-opt, Py) 38.93 30.57 23.87 24.53 45.95 30.86

HotPy(C) t 108.11 68.63 49.49 34.79 72.73 71.59
HotPy(C) tc 101.87 72.72 52.41 31.50 59.35 61.45
HotPy(C) td 119.76 80.09 52.94 44.72 84.75 80.64
HotPy(C) tdc 106.67 75.30 52.32 34.31 55.02 54.87
HotPy(C) ts 74.97 38.01 22.02 20.19 39.50 33.85
HotPy(C) tsc 57.94 18.25 15.49 12.11 21.59 24.00
HotPy(C) tsd 38.75 30.41 21.29 24.89 44.09 30.79
HotPy(C) tsdc 27.30 7.29 13.10 11.74 13.49 10.12
HotPy(Py) t 110.01 90.21 51.40 132.25 105.88 72.98
HotPy(Py) tc 104.70 99.77 54.94 113.59 83.04 62.89
HotPy(Py) td 122.37 99.80 55.14 140.84 115.13 79.64
HotPy(Py) tdc 107.51 98.63 54.87 100.63 76.02 56.54
HotPy(Py) ts 77.93 57.79 24.64 87.01 63.02 34.01
HotPy(Py) tsc 61.80 31.81 16.71 41.86 31.79 24.04
HotPy(Py) tsd 38.92 30.58 23.60 25.02 46.11 30.83
HotPy(Py) tsdc 24.61 7.62 13.46 8.21 15.08 10.14

Python3 239.55 98.44 55.69 42.63 39.76 73.89
PyPy (with JIT) 32.75 10.93 8.16 9.29 34.88 5.92

Un. Sw. (always) 220.21 90.34 92.79 22.56 24.68 40.45
Un. Sw. (default) 211.84 135.72 122.90 64.51 25.21 42.57

TableF.3: Timings(in seconds); long benchmarks.

227

Bibliography

[1] Gnu lightning. http://www.gnu.org/software/lightning/.

[2] Ole Agesen, David Detlefs, Alex Garthwaite, RossKnippel, Y. S. Ramakr-
ishna, andDerek White. An efficient meta-lock for implementing ubiquitous
synchronization. In OOPSLA, pages 207–222, 1999.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvi-
nov, M. F. Mergen, T. Ngo, J. R. Russell , V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeño virtual machine. IBM SystemsJournal, 39(1):211–238, 2000.

[4] A. W. Appel. Compili ngwith Continuations. CambridgeUniv. Press, 1991.

[5] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F.
Sweeney. A survey of adaptive optimization in virtual machines. Research
Report RC23143(W0312-097), IBM, 2004.

[6] JohnAycock. A brief history of just-in-time. CSURV: Computing Surveys,
35, 2003.

[7] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin
locks: Featherweight synchronization for java. In SIGPLAN ’98 Confer-
ence on Programming Language Design andImplementation, pages 258–
268, 1998.

[8] Vasanth Bala, Evelyn Duesterwald, andSanjeev Banerjia. Dynamo: a trans-
parent dynamic optimizationsystem. In PLDI, pages 1–12, 2000.

[9] JamesR. Bell . Threaded code. Communicationsof theACM, 16(6):370–372,
1973.

[10] E. C. Berkeley and Daniel G. Bobrow. The programming language LISP:
Its operation and applications. Report, The MIT Press, Cambridge, Mas-
sachusetts, 1964.

[11] Marc Berndl, Benjamin Vitale, Mathew Zaleski, andAngelaDemkeBrown.
Context threading: A flexible and efficient dispatch technique for virtual
machine interpreters. In Code Generation andOptimization (CGO), pages
15–26, 2005.

228

[12] R. E. Berry. Experiencewith thepascal P-compiler. Software– Practiceand
Experience, 8(5):617–627, September 1978.

[13] Bigloo homepage. http://www-sop.inria.fr/mimosa/fp/Bigloo/.

[14] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and
realiti es: the performanceimpact of garbage collection. SIGMETRICSPer-
formanceEvaluationReview, 32(1):25–36, 2004.

[15] Stephen M. Blackburn, Perry Cheng, andKathryn S. McKinley. Oil andwa-
ter? High performancegarbage collection in Javawith MMTk. In Proceed-
ings of the 26th International Conference on Software Engineering, pages
137–146, Edinburgh, May 2004.

[16] Stephen M. Blackburn and Tony Hosking. Barriers: Friend or foe? In
David F. Bacon andAmer Diwan, editors, Proceedingsof theFourth ISMM,
pages 143–151, Vancouver, Canada, October 2004. ACM Press.

[17] Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-region
garbage collector with space efficiency, fast collection, and mutator perfor-
mance. In Proceedingsof the2008ACM SIGPLAN conferenceonProgram-
ming language design andimplementation, PLDI ’ 08, pages 22–32, New
York, NY, USA, 2008. ACM.

[18] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoop-
erative environment. Software—Practice and Experience, 18(9):807–820,
1988.

[19] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo.
Tracing the meta-level: Pypy’s tracing JIT compiler. In ICOOOLPS ’09:
Proceedings of the 4th workshop onthe Implementation, Compilation, Op-
timization of Object-Oriented Languages andProgramming Systems, pages
18–25, New York, NY, USA, 2009. ACM.

[20] Carl Friedrich Bolz and Armin Rigo. How to not writevirtual machines for
dynamic languages. In 3rd Workshop onDynamic Languages andApplica-
tions, 2007.

[21] Kevin Casey, David Gregg, and M. AntonErtl. Tiger - an interpreter gener-
ation tool. In Rastislav Bodík, editor, CC, volume3443 of Lecture Notes in
Computer Science, pages 246–249. Springer, 2005.

[22] Craig Chambers. TheDesign andImplementation of theSELF Compiler, an
Optimizing Compiler for Object-Oriented Programming Languages. PhD
thesis, Stanford University, March 1992.

[23] Computer Language Shootout. http://shootout.alioth.debian.org/
u32/ruby.php.

229

[24] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the
smalltalk-80 system. In POPL ’84: Proceedings of the 11th ACM SIGACT-
SIGPLAN symposiumonPrinciplesof programminglanguages, pages297–
302, New York, NY, USA, 1984. ACM.

[25] Stephan Diehl, Pieter H. Hartel, and Peter Sestoft. Abstract machines for
programming language implementation. Future Generation Comp. Syst,
16(7):739–751, 2000.

[26] Mark Dufour. Shed skin— an optimizingPython-to-C++ compiler. Master’s
thesis, Delft University of Technology, 2006.

[27] R. Kent Dybvig, David Eby, and Carl Bruggeman. Don’t stop the BIBOP:
Flexible andefficient storagemanagement for dynamically-typed languages.
Technical Report 400, Indiana University Computer Science Department,
March 1994.

[28] M. Anton Ertl, David Gregg, Andreas Krall , and Bernd Paysan. Vmgen -
a generator of efficient virtual machine interpreters. Softw, Pract. Exper,
32(3):265–294, 2002.

[29] Maciej Fijalkowski. http://pycon.blip.tv/file/3259650/.

[30] Christopher W. Fraser and David R. Hanson. The lcc 4.x code-generation
interface. Technical Report MSR-TR-2001-64, Microsoft Research (MSR),
July 2001.

[31] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Man-
delin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris
Zbarsky, Jason Orendorff , Jesse Ruderman, Edwin W. Smith, Rick Reit-
maier, Michael Bebenita, Mason Chang, and Michael Franz. Trace-based
just-in-time type specialization for dynamic languages. In PLDI ’ 09: Pro-
ceedingsof the2009ACM SIGPLAN conferenceonProgramminglanguage
design andimplementation, pages 465–478, New York, NY, USA, 2009.
ACM.

[32] AndreasGal andMichael Franz. Incremental dynamic codegenerationwith
tracetrees. Technical Report ICS-TR-06-16, University of Cali fornia, Irvine,
2006.

[33] Nicolas Geoffray, Gaël Thomas, Charles Clément, and Bertil Folli ot. A
lazy developer approach: building a JVM with third party software. In Luís
Veiga, VascoAmaral, R. Nigel Horspool, andGiacomoCabri, editors, PPPJ,
volume347 of ACM International ConferenceProceeding Series, pages73–
82. ACM, 2008.

[34] GNU classpath. http://www.gnu.org/software/classpath/.

[35] David R. Hanson and Christopher W. Fraser. A Retargetable C Compiler:
Design andImplementation. AddisonWesley, 1995.

230

[36] Fergus Henderson. Accurate garbage collection in an uncooperative envi-
ronment. In ISMM ’02: Proceedings of the 3rd international symposium on
Memory management, pages 150–156, New York, NY, USA, 2002. ACM.

[37] Urs Hölzle. AdaptiveOptimization for Self: Reconcili ng High Performance
with ExploratoryProgramming. PhD dissertation, StanfordUniversity, Stan-
ford , CA , USA, 1994.

[38] Urs Hölzle and David Ungar. Reconcili ng responsiveness with perfor-
mancein pureobject-oriented languages. ACM Trans. Program. Lang. Syst.,
18(4):355–400, 1996.

[39] Richard L. Hudson, J. E Moss, Amer Diwan, and Christopher F. Weight. A
language-independent garbage collector toolkit. Technical report, Amherst,
MA, USA, 1991.

[40] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes
Filho. The implementation of Lua5.0. J. UCS, 11(7):1159–1176, 2005.

[41] IronPython homepage. http://ironpython.codeplex.com/.

[42] Java. http://java.sun.com/.

[43] The Jikes research virtual machine. http://jikesrvm.sourceforge.
net/.

[44] Richard Jones. The garbage collection bibliography. http://www.cs.
kent.ac.uk/people/staff/rej/gcbib/gcbib.html.

[45] Richard Jones and Rafael D. Lins. GarbageCollection: Algorithms for Au-
tomatic Dynamic Memory Management. Wiley, 1996.

[46] Simon L. Peyton Jones. Implementing lazy functional languages on stock
hardware: thespinelesstaglessG-machine. Journal of Functional Program-
ming, 2(2):127–202, July 92.

[47] Guy LewisSteele jr. Data representations in PDP-10 MACLISP. Report A.
I. MEMO420, MassachusettsInstituteof Technology, A.I. Lab., Cambridge,
Massachusetts, 1977.

[48] Dong-Heon Jung, Sung-Hwan Bae, Jaemok Lee, Soo-Mook Moon, and
JongKuk Park. Supporting precise garbage collection in java bytecode-to-c
ahead-of-time compiler for embedded systems. In CASES’06: Proceedings
of the2006international conferenceonCompilers, architectureandsynthe-
sis for embedded systems, pages35–42, New York, NY, USA, 2006. ACM.

[49] TheJythonProject. http://jython.org.

[50] ChrisArthur Lattner. LLVM: An infrastructurefor multi -stageoptimization.
Master’s thesis, University of I lli noisat Urbana-Champaign, 2002.

231

[51] TheLuaJIT project. http://luajit.org/.

[52] Martin Maierhofer and M. Anton Ertl. Local stack allocation. In CC ’98:
Proceedingsof the7th International Conferenceon Compiler Construction,
pages 189–203, London, UK, 1998. Springer-Verlag.

[53] SimonMarlow, Tim Harris, Roshan P. James, andSimonPeytonJones. Par-
allel generational-copying garbage collection with a block-structured heap.
In ISMM ’08: Proceedings of the 7th international symposium on Memory
management, pages 11–20, New York, NY, USA, 2008. ACM.

[54] J. McCarthy. Recursive functionsof symbolic expressionsand their compu-
tation bymachine. Comm. Assoc. Comput. Mach., 3(3):184–195, 1960.

[55] Erik Meijer and JohnGough. Technical overview of the common language
runtime. Technical report, Microsoft Research, 2000.

[56] C. H. Moore. FORTH: a new way to program a mini computer. Astronomy
& AstrophysicsSupplement Series, 15:497–511, April–June1974.

[57] PLT scheme. http://plt-scheme.org/.

[58] Michael Paleczny, Christopher A. Vick, and Cli ff Click. The Java
HotSpotTM server compiler. In JavaTM Virtual MachineResearch andTech-
nology Symposium. USENIX, 2001.

[59] MikePall . http://www.nntp.perl.org/group/perl.perl6.internals/2007/09/msg40359.html.

[60] Parrot Virtual Machine. http://www.parrot.org/.

[61] TonyPrintezisandDavidDetlefs. A generational mostly-concurrent garbage
collector. In ISMM, pages 143–154, 2000.

[62] PythonSoftwareFoundation. Python programminglanguage. http://www.
python.org/.

[63] B. Randell and L. J. Russell . Algol 60 implementation. Academic Press,
New York, NY, 1964.

[64] Martin Richards. BCPL: A tool for compiler writing and system program-
ming. In Proceedings AFIPS Spring Joint Computer Conference, Boston,
Mass., pages 557–566. American Federation of Information Processing So-
cieties, May 1969.

[65] Armin Rigo. Representation-based just-in-timespecializationandthepsyco
prototype for Python. In Nevin Heintze and Peter Sestoft, editors, PEPM,
pages 15–26. ACM, 2004.

[66] Armin RigoandSamuelePedroni. PyPy’sapproach to virtual machine con-
struction. In Peri L. Tarr and Willi am R. Cook, editors, OOPSLA Compan-
ion, pages 944–953. ACM, 2006.

232

[67] Ruby programming language. http://www.ruby-lang.org/.

[68] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated
objects. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’88, pages 285–293, New
York, NY, USA, 1988. ACM.

[69] Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl. Virtual ma-
chineshowdown: Stack versus registers. In Virtual ExecutionEnvironments
(VEE’05), pages 153–163, 2005.

[70] JamesE. Smith andRavi Nair. Virtual Machines. Morgan Kaufmann, 2005.

[71] Patrick Sobalvarro. A li fetime-based garbage collector for li sp systems on
general-purpose computers. Technical Report AITR-1417, MIT, AI Lab,
February 1988.

[72] Jr. Steele, Guy Lewis and Gerald Jay Sussman. The revised report on
scheme: A dialect of li sp. Technical Report AI Memo 452, Massachusetts
Instituteof Technology, 1978.

[73] G. Thomas, N. Geoffray, C. Clément, and B. Folli ot. Designing Highly
Flexible Virtual Machines: the JnJVM Experience. Software: Practiceand
Experience(SPE), 2008.

[74] David Ungar and Randall B. Smith. SELF: The power of simplicity. Lisp
and Symbolic Computation, 4(3):187–205, 1991.

[75] David Ungar, Adam Spitz, andAlex Ausch. Constructingametacircular vir-
tual machinein an exploratory programmingenvironment. In RalphJohnson
and Richard P. Gabriel, editors, OOPSLA Companion, pages 11–20. ACM,
2005.

[76] Andrew Whitworth. http://wknight8111.blogspot.com/2009/10/optimizing-
parrot.html.

[77] Kevin Willi ams, Jason McCandless, and David Gregg. Dynamic interpre-
tation for dynamic scripting languages. In Andreas Moshovos, J. Gregory
Steffan, Kim M. Hazelwood, andDavid R. Kaeli , editors, CGO, pages278–
287. ACM, 2010.

[78] Mathew Zaleski, AngelaDemkeBrown, andKevin Stoodley. YETI: agrad-
uallY Extensible TraceInterpreter. In Chandra Krintz, Steven Hand, and
David Tarditi , editors, Proceedings of the 3rd International Conference on
Virtual Execution Environments, VEE2007, pages 83–93. ACM, 2007.

233

